

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Hong Kong Polytechnic University

Department of Computing

Building a Decision Cluster Classification

Model by a Clustering Algorithm to

Classify Large High Dimensional Data

with Multiple Classes

Yan LI

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

February 2010

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree of diploma,

except where due acknowledgement has been made in the text.

_______________________ (Signed)

_____LI Yan_____________ (Name of Student)

 ii

Abstract

Clustering and classification are two basic tasks in data mining. As the complexity of

data increases, the existing techniques for classification face a lot of challenges, for

instance, classifying large high dimensional data with multiple classes. Therefore, new

techniques need to be innovated to deal with data in large volume and high dimensions.

In this thesis, we aim to propose a possible way to solve this problem by integrating

clustering algorithm into classification work.

We propose a new classification framework. This framework consists of three phases:

(i) a clustering algorithm is called recursively to build a decision cluster tree, (ii) a

classification model is built from this decision cluster tree, (iii) new samples are

classified by this classification model. There are many research problems existing in this

framework. In this thesis, we describe our methodology for those problems.

In this framework, we propose a new classification method ADCC (Automatic

Decision Cluster Classifier) that is designed to use a variable weighting k-means

algorithm W-k-means to build a decision cluster tree so that the variable weights of each

dimension can be obtained from the training data and used in classification. In

partitioning the training data, W-k-means automatically computes the variable weights

according to the data distributions so that important variables can get more weights and

the noisy variables get less weight. In clustering a data set (i.e., a node), the class

variable is removed from the data, so the class variable has no impact on the clustering

results. The class variable is used in determining the dominant class for each cluster. To

build a better cluster tree, effective methods for selection of the number of clusters and

the initial cluster centers at each node are introduced. Furthermore, we use various tests

including Anderson-Darling test to determine whether a node can be further partitioned

or not. In this way, distribution of the training samples at each node is considered

together with the purity and the size of the node. A decision cluster classifier consists of

a set of disjoint decision clusters, each labeled with a dominant class that determines the

 iii

class of new objects falling in the cluster. A series of experiments on both synthetic and

real data sets have been conducted. The results show that the new classification method

(ADCC) performed better in accuracy and scalability than the existing methods of KNN,

decision tree and SVM. It is particularly suitable for large, high dimensional data with

many classes.

Sometimes, ADCC method generates some weak decision clusters in which no single

class dominates. Existence of weak decision clusters in the model can affect

classification performance of the model. In a weak decision cluster, there is no dominant

class, so it is difficult to justify the class of the new objects. It has been shown that

classification accuracy could be improved after weak decision clusters were avoided

from the model. Weak decision clusters occur because objects of different classes are

mixed in the clustering process to generate decision clusters. If we assume that objects in

the same class have their own cluster distributions, we can separate objects of different

classes according to the object class labels and generate a decision cluster tree for each

class of objects. Then, we combine the decision clusters of different classes to form the

decision cluster classification model. In this way, weak decision clusters can be avoided.

We propose a Decision Cluster Forest (DCF) method to build a set of decision cluster

trees (decision cluster forest) which form a classification model. Instead of building a

single decision cluster tree from the entire training data, we build a set of cluster trees

from subsets of the training data set to form a decision cluster forest. Each tree in the

forest is built from the subset of objects in the same class. The proposition for this

method is that the objects in the same class tend to have their own spatial distributions in

the data space. Therefore, decision clusters of objects in the same class are found. The

decision clusters in the same tree have the same dominant class. In this way, no weak

cluster is created in such decision cluster tree. A decision cluster model can be selected

from the set of leaf decision clusters from the decision cluster forest so the model is

called a decision cluster forest classification model (DCFC). The decision cluster forest

method has advantages of classifying data with multiple classes because the DCFC

model is guaranteed to contain decision clusters in all classes. DCFC model is a more

 iv

intuitive and direct multi-class classification method.

We propose a different classification method based on the tree structure. We propose a

Crotch Ensemble classification model for high dimensional data with multiple classes.

Generated from a decision cluster tree, a crotch is an inner node of the tree together with

its direct children. If the dominant classes of children of a crotch are not all the same, the

crotch is defined as a crotch predictor that is a classifier by itself. A crotch ensemble

consists of a set of crotch predictors. When classifying a new object, a subset of crotch

predictors is selected according to the distances between the object and the crotches. A

classification is made on the object as the class predicted by the crotch predictors with

the maximum accumulative weights. The experimental results on both synthetic and real

data have shown that the Crotch Ensemble model is efficient and effective when

classifying new samples.

We propose a special application of our framework in text data classification. A

subspace clustering algorithm is integrated to build the decision cluster tree. We adopt

cosine distance metric for this application. Experimental results have shown that our

framework can integrate different clustering algorithms and other possible methods and

can get better classification results for text classification.

Finally, we give the theoretical analysis of error bound of our DCC model. We prove

that our Cluster-based classification model (DCC model) is better than the Object-based

classification method.

 v

List of Publications

The following technical papers have been published or are currently under review based

on the result generated from this work.

1. Yan Li, Edward Hung, Korris Chung. A Subspace Decision Cluster Classifier for

Text Classification. Submitted to Expert Systems with Applications. Under

review (submitted on 10 Feb. 2010) ;

2. Yan Li, Zhaocai Sun, Joshua Huang, Yunming Ye, Edward Hung. An ensemble

of decision cluster crotches for classification of high dimensional data.

Submitted to Pattern Recognition Letters. Review result is major revision.

(submitted on 1 Aug. 2009);

3. Yan Li, Edward Hung, Korris Chung, Joshua Huang. Using A Variable

Weighting k-Means Method to Build A Decision Cluster Classification Model.

Submitted to International Journal of Pattern Recognition and Artificial

Intelligence. Under review (submitted on 19 Feb. 2009);

4. Yan Li, Edward Hung, “Building A Decision Cluster Forest Model to Classify

High Dimensional Data with Multi-classes”, Proceedings of The 1st Asian

Conference on Machine Learning (ACML'09), LNAI 5828, pp. 263–277,

Nanjing, China, November 2-4, 2009. (acceptance rate = 27 / 113 = 23.9%);

5. Yan Li, Edward Hung, Korris Chung, Joshua Huang, “Building A Decision

Cluster Classification Model for High Dimensional Data by A Variable

Weighting k-Means Method”, Proceedings of the Twenty-First Australasian

Joint Conference on Artificial Intelligence, pages 337-347, Auckland, December

1-5, 2008. (acceptance rate = 42/143 = 29%).

 vi

http://www.comp.polyu.edu.hk/%7Ecsehung/paper/DCFC.pdf
http://www.comp.polyu.edu.hk/%7Ecsehung/paper/DCFC.pdf
http://www.comp.polyu.edu.hk/%7Ecsehung/paper/adcc.pdf
http://www.comp.polyu.edu.hk/%7Ecsehung/paper/adcc.pdf
http://www.comp.polyu.edu.hk/%7Ecsehung/paper/adcc.pdf

6. Yunming Ye, Xutao Li, Biao Wu, Yan Li, “Feature Weighting

Information-Theoretic Co-clustering for Document Clustering”, Proceedings of

the 2nd International Conference on Computer Science and its Applications

(CSA 2009), pages 2-2, Korea, December 10-12, 2009.

7. Zhaocai Sun, Zhi Liu, Yan Li, “Kernal-based Decision Cluster Classifier”, ICIC

express letters, vol.4 (4): 1223-1229, 2010.

 vii

Acknowledgements

I would like to take this opportunity to express my heartful gratitude to everyone who

generously gave me their support and kindness.

First of all, I would like to express my gratitude and appreciation to my Supervisor, Dr.

Edward Hung, for his continuously patient guidance throughout my research studies. My

Ph.D. studies would have never been completed without his encouragement, help, and

wonderful suggestions. He is precise for all things including research work,

teaching work as well as the details in the daily grind. His attitude and

methodology for research and other all things not only contributed to my Ph.D.

studies, but also influences all my life.

My special thanks is for my co-supervisor Dr. Korris Chung. He gave me a lot of

good comments and suggestions. He encouraged me and help me to do research during

my Ph.D. studies. I also want to thank Prof. Joshua Zhexue Huang. He was my

teacher during my Master studies. He gave me many good ideas and

methodologies for my Ph.D. program. From them I have learned quite a lot. They

were always ready to give advice and help.

 I would like to thank Mr. Xiaoguang Xu and Dr. Zhaocai Sun for their good

comments and kind help. We have cooperated many research works. I also really

appreciate the open and friendly environment at Department of Computing. It provides

comfortable study environment including soft resource and hard resource. All teachers

and students are friendly and accommodating.

 At last, I would like to express my deepest thanks to my parents, my husband and my

daughter. Their love, constant support and encouragement made me what I am.

 viii

Table of Contents

Abstract... iii

List of Publications... vi

Acknowledgements... viii

1 Introduction ..1

1.1 Problem Statement ..1

1.2 Motivations ...3

1.3 Statement of Contributions ...4

1.4 Organization..5

2 Literature Review...9

2.1 Review of Classification ...9

2.1.1 K-nearest Neighbors (KNN) ..9

2.1.2 Decision Tree ...10

2.1.3 Support Vector Machine (SVM) ..11

2.1.4 Text Classification Methods...13

2.2 Review of Clustering ..15

2.3 Integration of Classification and Clustering ...17

3 Decision Cluster Tree Framework..20

3.1 Framework ..20

3.2 Preliminary Definition ..22

3.3 Research Problem ...24

4 Using A Variable Weighting k-Means Method to Build A Decision
Cluster Classification Model ...28

4.1 Introduction...28

4.2 Automatic Decision Cluster Classification Method..................................30

4.2.1 ADCC Algorithm ...31

4.2.2 Constructing a Decision Cluster Tree with W-k-means.................32

4.2.3 Model Selection and Classification..36

4.3 Experiments ..37

4.3.1 Experiment Setup ...38

4.3.2 Experiments on Synthetic Data..38

4.3.3 Experiments on Spatial Data..45

4.3.4 Experiments on Text Data ..47

4.3.5 Experiments on Cancer Data..49

4.3.6 Experiments on Other Real Data..51

 ix

4.3.7 Parameter Analysis...52

4.4 Conclusion ..54

5 Building A Decision Cluster Forest Model to Classify High Dimensional
Data with Multi-classes..56

5.1 Introduction...56

5.2 Decision Cluster Forest ...59

5.2.1 Decision Cluster Forest (DCF)...59

5.2.2 DCF Classification (DCFC) Model ...62

5.2.3 DCFC Algorithm..63

5.3 Experiments ..65

5.3.1 Experiments on Text Data ..66

5.3.2 Experiments on Other Real Data..69

5.3.3 Scalability.. ...69

5.4 Conclusion ..71

6 An Ensemble of Decision Cluster Crotches for Classification of High
Dimensional Data ...73

6.1 Introduction...73

6.2 Crotch Ensemble Algorithm..75

6.2.1 Crotch Predictor ...77

6.2.2 Crotch Ensemble ..78

6.2.3 Crotch Predictor Bounding ..80

6.2.4 Crotch Weight Training..82

6.3 Analysis...86

6.3.1 Original Decision Cluster Model and Its Shortcoming..................87

6.3.2 Correction by Crotch Ensemble ...89

6.3.3 Bounding Crotch Predictors...92

6.4 Experiments ..94

6.4.1 Analyzing Parameters ..95

6.4.2 Scalability.. ...97

6.4.3 Experiments on Real Data..99

6.5 Conclusion ..101

7 A Subspace Decision Cluster Classifier for Text Classification103

7.1 Introduction..103

7.2 Entropy Weighting k-Means Algorithm...105

7.3 Subspace Decision Cluster Tree...106

7.3.1 Definitions..107

7.3.2 Subspace Decision Cluster Classifier (SDCC) Algorithm...........107

7.3.3 Constructing a Subspace Decision Cluster Tree109

7.3.4 Model Selection and Classification ..110

7.4 Experiments ...111

7.4.1 Evaluation Method..111

 x

7.4.2 Data sets and Experimental Settings...113

7.4.3 Overall Performance ...115

7.4.4 Performance Details..115

7.5 Conclusion ...117

8 Theoretical Analysis of Error Bound ...119

8.1 Why Cluster-based Is Better than Object-based119

8.2 Error Bound...123

9 Conclusion...126

9.1 Main Contributions ...126

9.2 Future Work...128

Bibliography ...130

 xi

Lists of Figures

Fig. 1.1 An advantage of Cluster-based classification. .. 2

Fig. 1.2 The relationship between cluster and class of iris data set...................................... 3

Fig. 1.3 The framework of this thesis... 5

Fig. 3.1 The process of constructing a decision cluster tree... 20

Fig. 3.2 Classify a new object with the leaf nodes. .. 21

Fig. 3.3 Example of a decision cluster tree .. 24

Fig. 3.4 The way of Cluster-based classification method .. 24

Fig. 4.1 The distribution of the data set T on the dimensions X and Y. 40

Fig. 4.2 Two methods of selecting the initial cluster centers. .. 41

Fig. 4.3 Projection of the data set on different subspaces. ... 43

Fig. 4.4 Scalability comparison between ADCC, KNN and decision tree. 45

Fig. 4.5 The data distribution of D4. .. 46

Fig. 4.6 Classification results on five data sets. ... 47

Fig. 4.7 Classification results on text data sets... 49

Fig. 4.8 The effect of α on classification accuracy. .. 53

Fig. 4.9 The effect of δ on classification accuracy. .. 53

Fig. 4.10 The effect of β on classification accuracy. .. 54

Fig. 5.1 Distribution of decision cluster trees in a decision cluster forest.......................... 61

Fig. 5.2 Generation of decision cluster trees for a decision cluster forest.......................... 61

Fig. 5.3 Classification results on text data sets... 68

Fig. 5.4 Execution time vs. dimension number. ... 71

 xii

Fig. 5.5 Execution time vs. data size.. 71

Fig. 6.1 Example of a decision cluster tree (the letter A, B and C beside the nodes are

dominant classes) ... 76

Fig. 6.2 The Crotch Ensemble built from the decision cluster tree in Fig. 6.1. 78

Fig. 6.3 Specify Bounding Predictor for the sample x . (, and are

distances between

1d 2d 3d

x and three predictors, star and rectangle denote the

different dominant classes). ... 80

Fig. 6.4 Synthetic data set S. .. 85

Fig. 6.5 Distribution of the data set D. ... 87

Fig. 6.6 The decision cluster tree built from data set D. .. 88

Fig. 6.7 Class decision areas partitioned by the ADCC model. ... 89

Fig. 6.8 Crotch Ensemble built from the tee in Fig. 6.6... 90

Fig. 6.9 Samples are wrongly classified by ADCC and Crotch Ensemble (‘□’

denotes the samples which are wrongly classified by ADCC but corrected

by Crotch Ensemble, ‘◇’ denotes the samples which wrongly classified by

Crotch Ensemble but rightly classified by ADCC, and * denotes the samples

which are wrongly classified by both methods)... 91

Fig. 6.10 Finding Bounding Predictor. ... 92

Fig. 6.11 Classification with Bounding Predictor. .. 94

Fig. 6.12 The distribution of data set . .. 95 1S

Fig. 6.13 Performance effected by  96

Fig. 6.14 Performance effected by  97

Fig. 6.15 Classification accuracy vs. dimension number ... 98

Fig. 6.16 Classification accuracy vs. data size ... 99

 xiii

Lists of Tables

Table 3.1 Research problems. ... 27

Table 4.1 ADCC Algorithm. ... 31

Table 4.2 The class distribution of X.. 33

Table 4.3 Algorithm of Terminal-Test(X)... 36

Table 4.4 Synthetic data set T. .. 39

Table 4.5 Classification results from random selection and supervised selection of

initial clusters centers (R for random selection, P for supervised selection)........ 42

Table 4.6 The weight distribution on the three dimensions. ... 43

Table 4.7 Impact of variable weighting on classification accuracy. 44

Table 4.8 Two groups of synthetic data sets (each having three classes). 44

Table 4.9 Spatial simulation data sets. .. 46

Table 4.10 Text data sets generated from the 20-Newsgroups data (Seti_j denotes the

jth data set with i classes)... 48

Table 4.11 Summary of gene expression data sets. .. 50

Table 4.12 Classification accuracy on gene expression data sets. .. 50

Table 4.13 Execution time (seconds) on gene expression data sets. 51

Table 4.14 Other real data sets. ... 51

Table 4.15 Classification accuracy on gene expression data sets. .. 52

Table 5.1 DCFC Algorithm... 64

Table 5.2 Algorithm of Stop-Test(C). ... 65

Table 5.3 Text data sets generated from the 20-Newsgroups data 67

 xiv

 xv

Table 5.4 Other real data sets.. 69

Table 5.5 Classification results of data sets in Table 5.4 by five classification methods...... 69

Table 5.6 Two groups of synthetic data sets (each having three classes). 70

Table 6.1 Crotch Predictor weight training algorithm. ... 83

Table 6.2 Classification results are improved by crotch predictor weight training. 86

Table 6.3 Generation characteristics of (two orientation variances are 7 and 1). 95 1S

Table 6.4 Two groups of synthetic data sets (each having three classes). 98

Table 6.5 Four real data sets. .. 100

Table 6.6 Classification results on four real data sets. .. 100

Table 6.7 Crotch Ensemble correction.. 101

Table 7.1 SDCC Algorithm... 108

Table 7.2 The contingency table for class ... 112 ic

Table 7.3 Text data sets generated from the 20-Newsgroups data...................................... 114

Table 7.4 Overall performance comparison of different classification methods. 115

Table 7.5 F1 value on data set T1. .. 115

Table 7.6 F1 value on data set T2. .. 116

Table 7.7 F1 value on data set T3. .. 116

Table 7.8 F1 value on data set T4. .. 116

Table 7.9 F1 value on data set T5. .. 116

Table 7.10 F1 value on data set T6. .. 117

Table 7.11 F1 value on data set T7. .. 117

Table 7.12 F1 value on data set T8. .. 117

Chapter 1

Introduction

This chapter introduces the research problems and the motivations of this thesis. We also

address the originality, contribution and the organization of this thesis.

1.1 Problem Statement

As complexity of data increases, the existing classification techniques face a lot of

challenges, for instance, the Grand Challenge data mining problems proposed in the

recent KDD Panel Report [21]. Therefore, new techniques need to be innovated to deal

with large, high dimensional data with multiple classes. Such data occur in many

application domains such as text mining, multimedia mining and bio-informatics.

Clustering and classification are two basic tasks in data mining. Classification is a

supervised learning method which builds a model from training data first and then labels

unknown data with the model. Clustering is an unsupervised learning method. Clustering

is a process of partitioning a set of objects into clusters to make that objects in the same

cluster are more similar or closer to each other than objects in different clusters.

Classification and clustering have been extensively studied in data mining, machine

learning, statistics and pattern recognition, but they are seldom considered together.

Clustering methods have some advantages that classification methods do not have. How

to integrate and make use of the advantages of clustering and classification is a

meaningful research problem. Our work is an attempt to integrate clustering into

classification techniques to deal with classification problems.

We will use an example to explain the advantages of our Cluster-based classification

which uses decision clusters to classify new objects. This example includes the classic

exclusive-Or (XOR) problem as shown in Fig. 1.1(a). There are 900 objects distributed

in 4 clusters that are classified into 2 classes marked with ‘○’ in red and ‘*’ in blue

respectively. The bottom left cluster is mixed by 200 ‘*’ and 100 ‘○’. Other three

clusters include 200 objects respectively. SVM methods map the data to another feature

space by a kernel function so that a linear hyperplane can be found to separate the

objects from two classes with highly computation cost. User cannot understand the

internal details and working principles of the SVM classifier. Our Cluster-based

classification method deals with the problem from a clustering perspective instead of the

number of classes in the data set. Our method partitions the whole data set into four

clusters without considering two classes. Fig. 1.1(b) shows that our method partitions the

data set into four clusters denoted by four different colors respectively. Each cluster has

a dominant class as its class label. If the new objects are closer to the cluster 3, they will

be classified as cluster 3’s dominant class ‘*’. Any classification algorithm cannot

classify cluster 3 with precision higher than 75% due to its own data distribution (its

purity is 75%).

 (a) the data set with XOR problem (b) space partition by Cluster-based classification

Fig. 1.1 An advantage of Cluster-based classification.

From this example, we can sum up the advantages of our Cluster-based classification

method as follows: it is easy to understand; it permits impure decision clusters to save

 2

computational cost, so it dose not have overtraining problems and has high robustness;

simple partition methods can work under this framework.

1.2 Motivations

Our goal is to find a new classification method which integrates advantages of clustering

and classification. Our motivation mainly includes three aspects: clustering can be used

for data reduction and data sampling; objects in the same cluster tend to be in the same

class; some clustering algorithms are efficient for large high dimensional data.

Figure 1.2 shows the data distribution on three dimensions of the iris data set from

UCI repository [23]. The data points are drawn in different color according to their class

labels. We can see that, the points in the same class are closer to each other and form a

cluster. That is also shown that the objects in the same cluster tend to be in the same

class.

Fig. 1.2 The relationship between cluster and class of iris data set.

In conclusion, our thesis aims at solving some classification problems (e.g. high

dimensional sparse problem, XOR problem) from a new angle. Our Cluster-based

classification framework integrates the clustering and classification techniques together

 3

to combine their advantages.

1.3 Statement of Contributions

Figure 1.3 illustrates the main work of this thesis as well as the corresponding

contributions which are claimed to be original as follows:

1. A novel classification framework integrating clustering algorithm into classification

is presented. Under this framework, a clustering algorithm is called recursively to

build a decision cluster tree or forest. Based on the decision cluster tree or forest, a

classification model is specified. This classification framework includes three steps:

tree (forest) construction, model selection and classification.

2. An Automatic Decision Cluster Classification (ADCC) method is proposed, where,

the weighted k-means clustering algorithm is adopted to build the decision cluster

tree because it is efficient for large data sets and it can reduce the influence of noisy

attributes by assigning them smaller weights.

3. A Decision Cluster Forest Classification (DCFC) method is developed to deal with

the weak decision cluster problem and the multi-classes problem. Instead of

building a single decision cluster tree from the entire training data, this method

builds a set of decision cluster trees from subsets of the training data set to form a

decision cluster forest. Each tree in the forest is built from a subset of objects in the

same class.

4. Text data is a typical high dimensional sparse data. Subspace clustering algorithm is

efficient for text data. A Subspace Decision Cluster Classification (SDCC) method

is designed for text classification.

5. A set of decision clusters are selected from the decision cluster tree or forest plus a

specific distance metric as a classification model.

6. Another model selection, named Crotch Ensemble, is introduced. Instead of

 4

considering a set of decision clusters, this model considers all crotch predictors

which are inner nodes with their children.

7. A KNN-like classification step is implemented on the first kind of classification

model. This kind of Cluster-based classification is proved to be better than

Object-based classification.

8. An experimental scheme is designed to demonstrate the performance of this series

of classification methods under the decision cluster classification framework.

Fig. 1.3 The framework of this thesis.

1.4 Organization

Following the introduction, the thesis proceeds in Chapter 2 with a literature review of

classification techniques, clustering algorithms and the integration of clustering and

classification. Among clustering algorithms, special attention is given to k-means type

algorithms which are used in our new classification methods.

The subsequent chapters (Chapters 3-9) present the research contributions of this

thesis. All the chapters correspond to work that has been published or is currently under

 5

review.

In Chapter 3, we propose a new classification framework. Under this framework, a

clustering algorithm is called recursively to build a decision cluster tree; a classification

model is selected from this decision cluster tree; new samples are classified by this

classifier with a KNN-like way.

We then propose the first classification model under the new framework in Chapter 4.

The new classification method ADCC (Automatic Decision Cluster Classifier) is

designed to use a variable weighting k-means algorithm W-k-means [2] to build a

decision cluster tree so that the variable weights of each dimension can be obtained from

the training data and used in classification. In partitioning the training data, W-k-means

automatically computes the variable weights according to the data distributions so that

important variables can get larger weights and the noisy variables get smaller weights.

In clustering a data set (i.e., a node), the class variable is removed from the data, so the

class variable has no impact on the clustering results. The class variable is used in

determining the dominant class for each cluster. Effective methods for selection of the

number of clusters and the initial cluster centers at each node are introduced to build a

better decision cluster tree. Furthermore, we use various tests including

Anderson-Darling test [6] to determine whether a node can be further partitioned or not.

In this way, distribution of the training samples at each node is considered together with

the purity and the size of the node. A decision cluster classifier (DCC) consists of a set

of disjoint decision clusters, each labeled with a dominant class that determines the class

of new objects falling in the cluster. A series of experiments on both synthetic and real

data sets have been conducted to show that the new classification method (ADCC)

performs better in accuracy and scalability than the existing methods of KNN, decision

tree and SVM. It is particularly suitable for large, high dimensional data with many

classes.

 6

In Chapter 5, we propose a Decision Cluster Forest (DCF) method to build a decision

cluster forest. We also present the method to construct a classification model from the

decision cluster forest. Instead of building a single decision cluster tree from the entire

training data, we build a set of decision cluster trees from subsets of the training data set

to form a decision cluster forest. Each tree in the forest is built from the subset of objects

in the same class. The proposition for this method is that the objects in the same class

tend to have their own spatial distributions in the data space. Therefore, decision clusters

of objects in the same class are found. The decision clusters in the same tree have the

same dominant class. In this way, no weak cluster is created in such decision cluster

trees. A decision cluster classification model can be selected from any subset of leaf

decision clusters in the decision cluster forest, so the classification model is called a

decision cluster forest classification model (DCFC). The decision cluster forest method

has advantages of classifying data with multiple classes because the DCFC model is

guaranteed to contain decision clusters in all classes. DCFC model is a more intuitive

and direct multi-class classification method and easy to use.

In Chapter 6, we propose a Crotch Ensemble classification model for high

dimensional data with multiple classes. Generated from a decision cluster tree, a crotch

is an inner node of the tree together with its direct children. If the children of a crotch

have more than one dominant class, the crotch is defined as a crotch predictor that forms

a classifier by itself. A Crotch Ensemble consists of a set of crotch predictors. When

classifying a new object, a subset of crotch predictors is selected according to the

distances between the object and the crotch predictors. A classification is made on the

object as the class predicted by the crotch predictors with the maximum accumulative

weights. The experimental results on both synthetic and real data have shown that the

Crotch Ensemble model is efficient and effective when classifying new samples.

In Chapter 7, we propose a special application of our framework in text data

 7

 8

classification. A subspace clustering algorithm (Entropy Weighting k-Means) is

integrated to build a decision cluster tree. We adopt cosine distance metric for this

application. Experimental results have shown that our framework can integrate different

clustering algorithms and other possible methods and can get better classification results

for text classification.

In Chapter 8, we analyze why our DCC model (Cluster-based classification) is better

than KNN method (Object-based classification). The error bound is also discussed in

this chapter.

Finally, we give the conclusions of our work in Chapter 9, where some suggestions

for further work are also discussed.

Chapter 2

Literature Review

In this chapter, we briefly review the research on classification methods, clustering

methods and the integration of classification and clustering. In the first part, we review

some well-known classification methods. The traditional classification methods face a

lot of challenges including how to classify large high dimensional data. We will compare

our new approach with some well-known classification methods reviewed in this chapter.

The text data is a classic example of high dimensional data. Text classification

algorithms are also briefly reviewed. In the second part, we review the clustering

methods. In our new approaches, we integrate some of them into our work. The third

part reviews the research works which integrate clustering and classification.

2.1 Review of Classification

Classification has been extensively studied in data mining, machine learning, statistics

and pattern recognition. Many classification approaches have been investigated in the

literature, including KNN, decision tree induction, rule-based classifier, instance-based

classifier, artificial neural networks, Support Vector Machine (SVM) etc.

2.1.1 K-nearest Neighbors (KNN)

K-nearest neighbors (KNN) [34] is a simple technique to build classification models.

However, it cannot perform classification well on large data sets because of high

computational cost. This is because KNN is an instance-based classification method and

it uses all of the training objects in classifying new objects. For data set with many

classes, it requires a sufficient coverage of cases from all classes in the training data in

order to produce accurate classification results. Therefore, such KNN models will be

computationally and spatially expensive in classifying new data. Another problem is that

when the number of classes is large, it becomes tricky to select the neighborhood

parameter k. There is some research work done to solve KNN’s time consuming

problem [24]. Accelerating the KNN classification process to handle large data through

reduction of instances is another research direction [35-38]. A detailed survey can be

found in [46, 47].

2.1.2 Decision Tree

A decision tree classifier uses the ‘divide and conquer’ and greedy strategies to construct

an appropriate tree from a given training data set. In a decision tree, each internal node

denotes a test on a non-class attribute, where each branch represents an outcome of the

test. Each leaf node denotes a class or a class distribution. A path traced from the root to

a leaf node represents a classification rule. How to select a test attribute and how to

partition a sample set are the key parts of the decision tree construction. Different

decision tree algorithms adopt different techniques. For example, C4.5 algorithm adopts

gain ratio [25] as the attribute selection standard while CART algorithm adopts Gini

index [25].

In dealing with large and complex data sets, decision tree techniques are widely used

due to their high efficiency. A majority of work on decision trees in data mining is an

extension of Quinlan’s ID3 and C4.5 [27]. Tree induction is the core process in decision

tree classification. Most existing tree induction methods proceed in a greedy top-down

fashion, where they start with an empty tree and the entire data set, and recursively split

the data set in internal nodes based on specific split metrics. The models are often based

on a small number of dimensions even if the data has many dimensions such as text data.

This is because that each partitioning step in building a decision tree model only

considers one dimension while the information is usually stored among many

dimensions. There are other possible drawbacks of the decision tree classification

 10

algorithm [61]: when there are large number of classes, the number of leaves become

larger and will result in overlapping problem; the incorrect classification results will

accumulate and be passed to deeper levels; it is difficult to design an optimal decision

tree for classification.

According to the number of attributes used in split metrics, decision tree induction

methods can be classified into two categories: univariate tree induction and multivariate

tree induction [27]. The former finds a split according to a single attribute which is

recognized as the most useful in discriminating the input data set. In case of multivariate

tree induction, finding a split can be seen as finding a composite attribute (combination

of existing attributes) that has a good discriminatory capability. In this perspective our

ADCC method of building classification trees can be regarded as a multivariate tree

induction technique. Multivariate tree induction is not as widely studied as univariate

decision trees. Most multivariate decision tree methods consider oblique trees which

have tests based on a linear combination of the attributes at some internal nodes.

Existing methods include linear discriminant trees [28, 29], hill climbing methods [30,

31], Neural trees [32, 33] etc. However, most methods are not scalable in dealing with

large data sets. Our method differentiates from these approaches in that it employs

weighting k-means type algorithm as the split function, and only selects leave nodes

from the tree to induce the final classification model.

2.1.3 Support Vector Machine (SVM)

Support Vector Machine (SVM) [148] is a new and effective classification method.

Since the first paper presented by Vladimir Vapnik in 1992 [149], SVM has been widely

used in many applications, such as handwritten digit recognition [150], face recognition

[151], text classification [108], gene pattern classification [152] etc. Margin is a key

concept in SVM, which measures the separation of two classes. For linearly separable

data, the key problem of linear SVM algorithms is to find a separation hyperplane that

 11

can lead to maximum margin. The hyperplane with maximum margin is called

maximum marginal hyperplane (MMH), which generates an optimal separation of two

classes. MMH can be further defined as support vectors so that the problem of searching

MMH can be mapped to the problem of finding support vectors. Searching of support

vectors is a constrained quadratic optimization problem and can be solved by classical

non-linear programming tools and the application of the Karush-Kuhn-Tucker (KKT)

Sufficiency Theorem. For non-linear data classification, a feature space transformation

step will be required before performing the quadratic optimization process (searching the

support vectors in linear classification cases). The basic idea is that the linearly

inseparable data can be transformed into higher dimensional space using a nonlinear

mapping (such as some kernel functions). The resulted data will be linearly separable in

the new dimensional space, where a simple linear SVM algorithm can be employed to

learn the classification model. In spite of many successes in various applications, SVM

has some intrinsic disadvantages. First, the performance of classification algorithm is

sensitive to the selection of the kernel function and its parameters [153], where different

data sets will require diverse parameter settings to get good results. This is undesirable

in real applications, since searching the best parameter is very difficult if not impossible,

due to the high computational complexity of SVM. Secondly, SVM classifiers usually

work as a black box and it’s hard for users to understand the internal details. This

characteristic limits its applications to some critical areas, such as medical diagnosis,

where the interpretable property is essential. Moreover, original SVM can only solve

two-class classification problem. For multi-class data, many two-class SVM classifiers

will need to be learned by pairwising combination or Directed Acyclic Graph (DAG)

mode [154], which will decrease the classification accuracies in many real applications

and require more computational cost. Finally, for those data sets with mixed

distribution of different class, SVM can not find an appropriate hyperplane to

separate the objects of different classes.

 12

2.1.4 Text Classification Methods

In recent years, with the advent of the Web and the enormous growth of digital content

in Internet and the availability of more powerful hardware, text classification (TC) has

been given more attention and more researches [69]. As the development of hardware,

data collection and data storage, a lot of classification techniques to TC have been

explored in the literature, such as the Bayesian method [70-72,94,95], k-nearest

neighbors (KNN) [73-75,96], decision tree [87-90,98-100], artificial neural networks

[78-81,97], support vector machines (SVM) [83-85,101,102,108], centroid-based

approaches [93,103-107], and some other algorithms [76,77,82,86,91,92].

Naive Bayes is a common text classification method that is computationally efficient

and easy to implement [95]. Rennie and Shih’s work [70] discusses several systemic

problems of Bayes text classification algorithms and proposes possible solutions to

avoid those problems. Naive Bayes algorithms often adopt two event models: the

multinomial event model and the multivariate Bernoulli event model. The multinomial

event model is frequently referred as multinomial Naive Bayes (MNB) for short [72].

Ref. [72] presents a multinomial Naive Bayes model for text classification and shows

that the multinomial Naive Bayes model outperforms the multivariate Bernoulli model.

Makoto and Takenobu’s work [71] proposes a cluster-based text classification method,

where training documents are partitioned into several clusters before classifying new

documents. A new document is compared with each cluster rather than with each

training document. In this work, Hierarchical Bayesian Clustering (HBC) algorithm is

employed to construct a set of clusters for cluster-based classification [71].

 KNN method is a case-based learning method which requires large computational

cost for calculating similarities between each new testing document and each training

document. Section 2.1.1 has already discussed KNN in details. Memory Based

Reasoning (MBR) [73] is a typical KNN method. Ref. [73] proposes to use MBR to

classify news stories, which does not require manual topic definitions. Expert Network

 13

is proposed in [74] to categorize natural language documents automatically. In this

method, a set of training documents with expert-assigned classes are used to construct a

network that reflects the conditional probabilities of classes assigned to a document. In

the expert network, the training documents form the nodes on the intermediate level, the

words generated from the training documents form the input nodes, and the classes are

the output nodes. A word node (input node) and a document node (intermediate node)

are connected if this word occurs in this document. A document node (intermediate node)

and a class node (output node) are connected if this class is assigned to this document by

experts similarly. The relevance rankings of classes given to a new testing document are

evaluated by those connections. A new classifier called the KNN model-based classifier

(KNN Model) is proposed in [96]. KNN Model improves the standard KNN by avoiding

the critical problems of KNN, including lazy learning problem and selecting appropriate

value of k.

Transductive Support Vector Machines for text classification were introduced in [108]

which are more suitable for text classification than regular Support Vector Machines.

SVM is an effective technique to build classification models from text data. However, its

computational complexity prohibits it from being used on very large training data.

Centroid-based text classification methods have the advantages of small

computational cost in both training stage and testing stage. However, it is difficult to

locate optimal centroids. A fast Class-Feature-Centroid (CFC) classifier for multi-class

text classification is designed in [93]. In CFC, centroids are built from inter-class class

distribution and inner-class class distribution. This centroids selection method

incorporates inter-class and inner-class term distribution and constructs better initial

centroids than traditional centroids. Furthermore, CFC adopts a denormalized cosine

metrics to calculate the distance between a document and a centroid. Experimental

results show that CFC outperforms SVM and other centroid-based text classification

methods. CFC is more robust than SVM on sparse data. In [107], Tam et al. have

 14

compared centroid-based text classification methods with neighborhood-based and

statistical text classification methods.

2.2 Review of Clustering

Clustering is another important problem in data mining. Clustering is a process of

partitioning objects into clusters to make that objects in a cluster are more similar than

objects in different clusters. There are a lot of clustering algorithms in the literature. In

general, clustering algorithms can be classified into the following types: Partitioning

algorithms, Hierarchical algorithms, Model-based algorithms, Density-based algorithms

and Grid-based algorithms. In recent years, some new types of clustering algorithms

have been proposed, such as subspace clustering algorithm, co-clustering algorithm.

K-means [134], k-Medoids [133] and k-Prototype[18] are classical Partitioning

algorithms. CLARA (Clustering LARge Applications) [133] and its improved version

CLARANS (Clustering LArge Applications based upon RANdomized Search) [135]

were proposed to deal with the problem that k-medoids algorithms cannot work

efficiently for larger data sets. BIRCH (Balanced Iterative Reducing and Clustering

Using Hierarchies) [136], ROCK (RObust Clustering using linKs) [137,138] and CURE

(Clustering Using REpresentatives) [139] are three typical hierarchical clustering

methods. Density-based clustering algorithms have been proposed to discover arbitrary

shape clusters. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

[140], OPTICS (Ordering Points To Identify the Clustering Structure) [141] and

DENCLUE (DENsity-based CLUstEring) [142] are density-based clustering algorithms.

Some typical grid-based clustering algorithms include STING (Statistical Information

Grid) [143], WaveCluster [144] and CLIQUE (Clustering In QUEst) [131]. Model-based

clustering algorithms try to find the best fit between the given data and some

mathematical model. COBWEB [145] is an early model-based clustering algorithm.

 15

Among so many clustering techniques, k-means type algorithms are the most popular

methods due to their efficiency and scalability in clustering large data sets.

K-prototype [18] algorithm can deal with categorical data. Many new clustering

methods, such as weighting-k-means (WKM) [2] and Entropy Weighting k-Means

(EWKM) [3], extend the k-means algorithm and get better clustering results.

Weighting-k-means (WKM) [2] can find out noisy attributes as well as normal attributes

by assigning smaller weights to noisy attributes. It is suitable for high dimensional data

with noisy attributes. It is worth to take better use of k-means type algorithm in data

mining.

High dimensional and sparse data is very common in real world. Text data is a typical

example of this kind of data. In these kinds of data, the clusters always exist in a subset

of attributes not in the whole attributes space. Subspace clustering methods are designed

to find clusters in different subsets of attributes. Ref. [58] compares many subspace

clustering methods. The famous subspace clustering algorithms include PROCLUS

[146], FASTDOC [12], HARP [147], CLIQUE [131], ORCLUS [11] and EWKM [3].

An Entropy Weighting k-Means (EWKM) algorithm [3], a kind of soft subspace

clustering algorithm, can do subspace clustering on high-dimensional sparse data sets.

EWKM clusters data samples in the entire dimensional space but assigns different

weights to different dimensions for each cluster during clustering process. The

dimensions which are more important for identifying the corresponding cluster will get

larger weights. Different dimensions make different contributions to the evaluation of

objects in a cluster. WKM is not a subspace algorithm. It just assigns smaller weights for

noisy dimensions and larger weights for non-noisy dimensions. All clusters have the

same weight distribution of the entire data space in WKM. However, EWKM can find

clusters in subspaces by giving different weight distributions for different clusters while

WKM fails to do this.

 16

Co-clustering, also called bi-clustering [63], is to partition data matrix to small

sub-matrix by clustering rows and columns. General clustering is to find similar rows

(objects) using distance metrics computed with columns (attributes). Co-clustering has

recently received a lot of attention in several practical applications such as in genes and

experimental conditions in bioinformatics [65], text mining [64], recommender systems

[66], etc. In [59], a partitioned co-clustering formulation that is driven by the search for

a good matrix approximation was introduced. They introduce a new minimum Bregman

information (MBI) principle. MBI generalizes the maximum entropy and standard least

squares principles simultaneously, and leads to a matrix approximation that is optimal

among all generalized additive models in a certain natural parameter space.

None of the existing clustering algorithms can perform well on all kinds of data sets.

Different clustering algorithms are conformable for different kinds of data sets. Some

research work done in clustering algorithms focused on the problems of large data sets,

high dimensions, and large number of classes [8-14,16,17]. Ref. [8] reviews and

compares many algorithms for clustering large data sets. In their work, Steinbach et al.

[9] analyze the challenges of clustering high dimensional data from two aspects:

different clustering tools and different types of data. Cai et al. propose a novel clustering

algorithm [10] for high-dimensional document clustering, which aims to cluster the

documents into different semantic classes. The document space is always in high

dimension. The high-dimensional documents can be projected into a lower dimensional

space by using Locality Preserving Indexing (LPI). Projective clustering algorithms

[11-14] have been successfully utilized to deal with high-dimensional data clustering

problems.

2.3 Integration of Classification and Clustering

Clustering methods can be applied to supervised classification problems. Several

clustering-based classification techniques have been explored [5,15,19,22,35]. Mui and

 17

Fu's work [19] was an early example of using an interactive approach to building

classification models. The basic procedure was to use a k-means algorithm to partition

the training data into k clusters without using the class variable. Then, for each cluster,

the percentage of each class was calculated according to the class variable. If one class

was found to be dominant in the cluster, say over 90%, this class label was assigned to

this cluster as its class and the cluster was taken as a leaf without further partition. If no

dominant class was found, the cluster was further partitioned with the k-means algorithm.

This process continues until all clusters became leaves. The centers of the leaf clusters

together with the dominant classes of these leaf clusters formed a KNN-like

classification model. When a new object was classified, the distances between the new

case and the cluster centers were computed, the dominant class of the center with the

shortest distance to the new object was assigned to the new case. Since the number of

leaf clusters was much smaller than the number of training cases in a KNN model, this

cluster center based model was more efficient than the KNN model. In their work,

Zhang et al. [35] propose a cluster-based tree algorithm for accelerating KNN

classification. This cluster-based tree algorithm consists of two steps: tree construction

and classification. They evaluate the effectiveness in comparison with the standard KNN

and the condensation-based tree algorithm. Kyriakopoulou and Kalamboukis’s work [22]

is a comparatively new trial to integrate clustering into classification. In this work, they

propose a new classification algorithm with clustering which consists three steps:

clustering step in which both training and testing data set are clustered; Expansion step

in which the data set is augmented with meta-features originated from the clustering step;

Classification step in which a classifier is trained based on the expanded data set. This

algorithm can learn a classifier from small training data set by combining supervised

learning with semi-supervised or unsupervised learning methods. The learned classifier

can exploit the distribution information of testing data before classifying them.

 18

The Cluster-based classification model follows a probability mixture model in which

each cluster is considered as a distribution of objects of one class in the

multi-dimensional data space. As such, the instances in the same cluster tend to have the

same class label. Classification can be considered as a high level model that can map

one class to more than one cluster. In this way, classification can be viewed as a

clustering problem that can be solved with a clustering process.

Zhexue Huang and Michael K.Ng proposed decision clusters classifier in 2000 [1].

This decision cluster classifier model adopted the k-prototype clustering algorithm to

construct a decision clusters tree using the interactive Fast Map algorithm. Then they use

a KNN-like algorithm to perform classification. Building the model and validating the

clusters are based on human beings’ judgment which is not automatic. Compared to

these interactive approaches, our Automatic Decision Cluster Classifier (ADCC) is

different from them: ADCC proposes an automatic hierarchical clustering method which

uses some new clustering algorithms; ADCC will consider the class label during the tree

construction to specify the number of sub-clusters; ADCC uses termination test methods

not human beings’ judgment to decide whether the current cluster is a leaf or not. Other

clustering algorithms, other distance metrics or other possible methods can be integrated

into Decision Cluster Classifier model. In the following chapters, a series of new

classification methods are proposed under the Decision Cluster Tree framework.

 19

Chapter 3

Decision Cluster Tree Framework

In this chapter, we present a new classification framework. In this framework, a

clustering algorithm is used to build a decision cluster tree. Based on this tree, a decision

cluster classification model will be specified. At last, new objects are classified through

a KNN-like way.

3.1 Framework

Fig. 3.1 demonstrates the idea of Decision Cluster Tree framework.

Fig. 3.1 The process of constructing a decision cluster tree.

The details of the process in Fig. 3.1 are as follows. There is a training data set

including four classes. Different shapes denote different classes. For the first iteration,

 20

we partition the whole training data set into four clusters , , and . All

samples in belong to the same class, so does not need to be further partitioned

and becomes a leaf node. It is the similar case for .But and need to be

partitioned in the following iteration. We assume that both and should be

partitioned into two clusters according to a method which is used to specify the number

of sub-clusters. is then partitioned into and , and is partitioned into

 and . , , and become leaf nodes according to our

termination test method. Finally there are six leaf nodes , , , , and

. The construction of decision cluster tree is completed. Fig. 3.2 presents the

classification model generated from decision clusters and the process of classifying a

new data.

1A

A

2A

3

3A

4A

2 A

3A

A

31

4A

41A

1A

42A

1A

31A

42

2A

A

A 4

A

32A

4

3A

A

32

1A

41A

42A

31 32A 41A A

Fig. 3.2 Classify a new object with the leaf nodes.

In Fig. 3.2, we select all leaf nodes from the decision cluster tree as the classifier

model. Each leaf is generalized by its center and the most frequent class label. These

centers are the training objects for the final KNN-like classification step. For the new

object, we compute the distance between it and each center of the node of the classifier

model. We assign the new object to the class of the nearest cluster. We call this process

KNN-like classification. In the above example, the new object is classified as the

dominant class of . 32A

 21

In short, this new classification framework mainly includes three steps: tree

construction, model selection and classification.

3.2 Preliminary Definition

Before we discuss the details of the decision cluster classifier framework, we describe

some preliminary definitions [1] and present our research problems and the goal. These

definitions will be used in the rest of this thesis.

A training data set 1 2{ , , , }nX x x x 

X

contains samples with m attributes and k

classes. A cluster such that the all samples in belong to

n

C C X and fulfill

certain criteria of similarities.

Definition 1. A clustering or k-clustering of X is a partition of X into

clusters , which satisfies:

k

kCCC ,...,, 21 iC   , 1, ,i k  , , and

, , . The clustering can be represented as a sequence

.

XC
k

i i 1

i j  i j

),...,2 KCC

C C

,(1CX

, 1, ,i j k 

When generating a clustering from the training data, the class labels of objects are

removed first so the objects are clustered without using the label information.

Definition 2. The dominant class in a cluster is the class that the majority of objects

are labeled to. A cluster with a dominant class is called a decision cluster. The

percentage of the dominant class in the cluster defines the confidence level of the

decision cluster.

Definition 3. A decision cluster classification (DCC) model is a subset of decision

clusters plus a defined distance function. The distance function is used to compute the

distances between an object to be classified and the selected centers of decision clusters.

 22

Definition 4. A clustering with clusters is said to be nested in the clustering

, which contains () clusters, if for any cluster (i = 1,…,k) in , there is

a cluster (j=1,…,r) in T such that and there exists at least one cluster

 in S , which holds and

S

C

k

T

iC

r

j

j

k

C 

iC S

jC iC C

i jC Ci  .

Definition 5. A Decision Cluster Tree is a sequence of nested clusterings, so that for

any two level p, q with p < q (i.e., level p is high than level q) and for any cluster 1q
jC 

in level q, there is a cluster 1p
iC  in level p such that 1 1q p

j iC C  .

Figure 3.3 shows an example of a decision cluster tree of four levels. A decision

cluster tree consists of a root which is the training data set X at level 0, a number of

internal nodes and a number of leaf nodes. It is like decision tree, an internal node is an

intermediate outcome; a following decision will be made whether it needs to be further

divided and its immediate sub-clusters represent the output of the just decision.

The root X is partitioned into 3 clusters , , . Here, the superscript indicates

the level of the node from which the clusters are generated and the subscript is the

cluster number in this level. Clusters and are further partitioned into 2 and 3

sub clusters respectively, which form level 2 of the cluster tree. Subsequently, two

clusters and are further partitioned into three and two sub clusters respectively,

which form level 3 of the cluster tree. This tree can be represented as the sequence of

nested clusterings as:

0
1C 0

2C

0
3C

0
3C

0
1C

1
2C 1

4C

0 1 1 2 2 2 0 0 1 1 2 2 1
1 1 2 1 2 3 2 3 3 4 4 5 5((, (, ,)), , (, (,),))X C C C C C C C C C C C C C .

 23

Fig. 3.3 A decision cluster tree.

3.3 Research Problem

In this thesis, we solve the classification problem by building decision cluster tree with

clustering algorithm. We call this kind of classification method Cluster-based

classification. The idea of Cluster-based classification is shown in Fig. 3.4. It is different

from the traditional Object-based classifications which train the classifier from the class

labels of training data directly. Cluster-based classification builds many decision areas

from clustering training data without class labels recursively. Every decision area has a

dominant class. The objects in the same class can be distributed in more than one

decision areas.

Fig. 3.4 The difference between Cluster-based classification and Object-based

classification.

 In the kind of Cluster-based classification, the classification problem is considered

 24

from another aspect instead of the probabilities. Clusters often exist in the areas with big

conditional probabilities. This kind of Cluster-based classification is based on the

Bayesian Theory as well as Bayesian Classifiers, but it is based on the clusters not based

on estimating conditional probabilities. Under Cluster-based classification framework,

we have the following assumptions: objects in the same class tend to have the similar

characteristics and be close to each other; objects in the same cluster tend to be in the

same class. In our method, we want to integrate the advantages of clustering with the

advantages of classification. We formulate our method as follows:

1. Building decision cluster tree(s)  by calling clustering algorithm on the training

data : S

: S  (3-1)

2. Selecting decision clusters which are used to construct the classifier from : C 

: C  (3-2)

where , i jC C 
1

K

ii
C S


 , i j , is the number of all decision clusters

in classifie

K

r.

3. Building decision areas from with space partition method to partition the

whole data space

P C

dR :

: C P  (3-3)

where , i jP P 
1

K d
ii

P R


 , i j . In fact, is corresponding to . P C

4. Building classifier to classify new objects X .

, , () (|)i ix C x P     (3-4)

where ()iC is defined in Equation (3-5).

 25

() arg max (())
j i

i j
x C

C I W x


 


  (3-5)

In Equation (3-5), is the class label of ()jW x jx . Any testing object will be

classified as the dominant class of the decision area in which the object falls. In this

thesis, we present a series of research works related to the above problems.

 Definition 6. A Classification Model is either (1) a subset of disjoint decision clusters,

or (2) a sub-tree pruned from  , in which it has the same root with . The first kind

of model is named as Sample-based Model, and the second kind of model is named as

Tree-based Model. They are all following the principle of Cluster-based classification.



Definition 7. Model Selection is a process of selecting a classification model 

from to maximize the classification accuracy. 

Definition 8. Model Complexity is to describe the complexity of a classification

model. The model complexity metric adopted in our work is the number of nodes in a

classification model.

In principle, any subset of decision clusters or any sub-tree from a decision cluster

tree can be treated as a classification model. However, the classification accuracy of a

concrete classification model depends on which classification model is used. If the

classification accuracies of different classification models are identical, then the simplest

one is the best choice. Therefore, the following processes are crucial: (1) generation of a

decision cluster tree and (2) selection of a classification model.

So our problem can be described as follows: Given a training data set and a

clustering algorithm f, generating the decision cluster tree

S

 by recursively calling f to

partition the nodes and calling termination test method to test whether to end the

partition or not. At last, select a best classification model  to execute classification.

Table 3.1 shows the research problems under the decision cluster tree framework.

 26

 27

In fact, we want to find an optimal integration of clustering methods, termination test

methods, model selection methods, classification methods and other possible solutions

for a special problem. Following the Decision Cluster Tree framework, we can build

classifiers for different kinds of data sets. In the following chapters, we will discuss the

techniques used to solve these problems.

Table 3.1 Research problems.

Step Research problems
Which clustering algorithms can be implemented?
How to do the termination test?
How to specify the number of attributes used in the clustering
process?

Tree construction

How to specify the number of sub-clusters of an internal node in
decision cluster tree?
How to do the model selection?
A subset of decision clusters or a sub-tree?
What other model selection methods can be referenced?
（boosting, bagging, random forest）
Which model is best for the concrete problem?
Select one or many?

Model selection

Interactive or automatically?
How to classify unknown data?
Which distance metric can be used?

Classification

KNN-like or decision tree-like?

Chapter 4

Using A Variable Weighting k-Means

Method to Build A Decision Cluster

Classification Model

In this chapter, a new classification method Automatic Decision Cluster Classifier

(ADCC) for high dimensional data is proposed. In this method, a decision cluster

classification (DCC) model consists of a set of disjoint decision clusters, each labeled

with a dominant class that determines the class of new objects falling in the cluster. A

decision cluster tree is first generated from a training data set by recursively calling a

variable weighting k-means algorithm. Then, the DCC model is extracted from the

decision cluster tree. Various tests including Anderson-Darling test [6] are used to

determine the stopping condition of the tree growing. A series of experiments on both

synthetic and real data sets have been conducted. Experimental results show that the new

classification method (ADCC) performed better in accuracy and scalability than existing

methods like KNN, decision tree and SVM. ADCC is particularly suitable for large, high

dimensional data with many classes.

4.1 Introduction

In Chapter 3, we have proposed a novel Cluster-based classification framework which

integrates clustering into classification. Under this new framework, we propose many

classification methodologies. In this chapter, we present the first Decision Cluster

Classification model which uses a variable weighting k-means clustering algorithm.

Classification is a basic task in data mining. As complexity of data increases, the

existing techniques for classification face a lot of challenges, for instance, solving the

Grand Challenge data mining problems proposed in the recent KDD Panel Report [21].

Therefore, new techniques need to be innovated to deal with large, high dimensional

data with multiple classes. Such data occur in many application domains such as text

mining, multimedia mining and bio-informatics. This chapter proposes an Automatic

Decision Cluster Classifier (ADCC) that is designed to achieve that goal.

Clustering methods have been applied to supervised classification problems

[5,15,22,35]. An early example of using the k-means clustering method to build a cluster

tree classification model was given in [19], where, a binary cluster tree was built by

interactively executing the k-means clustering algorithm. At each node, a further

partition was determined by the percentage of the dominant class in the cluster node.

However, only small numeric data could be classified and every time only two

sub-clusters are formed. In 2000, Huang et al. proposed a new interactive approach to

build a decision cluster classification model [1]. In this approach, the k-prototypes

clustering algorithm was used to partition the training data, and a visual cluster

validation method [60] was adopted to verify the partitioning result at each cluster node.

The above two interactive methods are not adequate for high dimensional data with

noisy attributes because the clustering algorithms used are not able to handle noisy

attributes and it is time consuming to involve human judgment.

In this chapter, we propose to use the variable weighting k-means (W-k-means)

algorithm [2] to build a Cluster-based classification model automatically. Because

W-k-means is able to reduce the impact of noisy attributes by assigning smaller weights

to them in clustering. In another word, W-k-means implicitly performs attribute

selection in the clustering process. Meanwhile, the weight information can also be used

in classification to improve the classification quality. As such, W-k-means is more

suitable for high dimensional data with noisy attributes. Another improvement from the

 29

previous methods is that in the tree growing process we use various tests including

Anderson-Darling test to determine whether a node can be further partitioned or not. In

this way, distribution of the training samples at each node is considered together with the

percentage of the dominant class used in the previous methods [1]. Anderson-Darling

test replaces the visual cluster validation method as in [1] so as to automate the tree

building process.

A series of experiments on both synthetic and real data sets were conducted to

demonstrate the effectiveness and the accuracy of the ADCC method. Compared with

other classification methods, including KNN [34], J48 [27] (a decision tree algorithm)

and SMO [124] (one of SVM algorithms), our experimental results show that the ADCC

method has performed better than other methods in both classification accuracy and

scalability on large high dimensional sparse data sets. Thus the results demonstrate that

the ADCC method is more suitable for large, high dimensional data with many classes.

This chapter is accordingly organized as follows. In Section 4.2, we present the

details of the ADCC algorithm. In Section 4.3, we show the experimental results on

synthetic data sets and real data sets. Concluding remarks are given in Section 4.4.

4.2 Automatic Decision Cluster Classification Method

In this section, we demonstrate the techniques during the construction process of a

decision cluster tree. The W-k-means [2] algorithm was adopted to build a decision

cluster tree because it is efficient and able to automatically compute the attribute weights

from the training data to reduce the effect of noisy attributes. The number of sub-clusters

and the initial centers must be specified before executing W-k-means. The ADCC

algorithm uses the function (,)K Selection X  to return the number of sub-clusters

for current cluster, where X is the current cluster and  is the threshold.

(,)K Selection X  computes the percentage of each class and return k as the

number of classes with a percentage greater than  . Then, we compute the real centers

 30

of the classes as the initial centers. This is called supervised selection which, instead

of random selection, is implemented in the ADCC algorithm as the function

, where k is the number of sub-clusters generated by

k

elect

el

(,)C S ion k X

(,K S ection X) .

4.2.1 ADCC Algorithm

Table 4.1 shows the algorithm of automatic construction of decision cluster tree under

the above Cluster-based classification framework.

Table 4.1 ADCC Algorithm.

Input: A training data set (with m dimensions and classes). T c

Output: A classification model modADCC el .

1. initialize a decision cluster tree with root { ; DCT }T

2. sign the root as internal node;

3. for each internal node X in DCT

4. if ( XTe) sign rminal Test X as leaf node;

5. = k K ()election ,XS 

CENTER

;

6. = ARRAY (,)C Selection k X ; ///Compute initial centers

7. run W-k-means on X with k and CENTER ARRAY ;

8. sign sub-clusters as internal node; k

k

ADCC 

9. add sub-clusters into ; DCT

10. end for

11. extract all leaf nodes from as classification model DCT modADCC el

and represent each node by its center and dominant class;

12. return ; mod el

 31

4.2.2 Constructing a Decision Cluster Tree with W-k-means

The traditional k-means algorithm treats all attributes equally. It is well-known that a

meaningful cluster usually exists in a subset of all attributes. W-k-means can

automatically weigh attributes on their importance during the clustering process [2].

W-k-means introduces a new step to the basic k-means algorithm to update the variable

weights based on the current partition of data. A weight calculation formula is used to

minimize the objective function of clustering given a fixed partition of data. The

important attributes can get larger weights while the insignificant attributes will get

smaller weights. The effect of noisy attributes can be reduced by smaller weights. For

the data set with noisy attributes, W-k-means outperforms the standard k-means

algorithm [2].

In our work, the construction of the decision cluster tree is a recursive division

process by recursively executing the W-k-means clustering algorithm. To partition a

cluster into sub-clusters with W-k-means algorithm, we need to specify a parameter

which is the number of sub-clusters to be generated. We also need to specify the initial

centers for each sub-cluster. Here, we take advantage of the class information. We

propose some methods to control the iteration and improve the clustering process. These

methods include the method of selecting for W-k-means (

k

k (,)K Selection X  , the

method of selecting initial centers for W-k-means ((,)Selection k XC ) and the

termination test method ( Terminal Te X st), where X is the current node to be

partitioned, α is a threshold and is the number of sub-clusters. They correspond to

solving the three problems at the end of chapter 3, i.e., (1) How many clusters to be

generated at each node? (2) How to specify the initial centers? (3) Where to stop at each

path of the tree?

k

 32

The Selection Method for k in W-k-means

Here, is the number of sub-clusters of the current cluster (node) k X in a decision

cluster tree. The value of is very crucial for W-k-means algorithm as it will

influence not only the following iteration steps of W-k-means algorithm but also the

final classification accuracy. In the following we will discuss the problem of how to

determine the value of . We give an example to explain our method:

k

k

Suppose the current cluster X has five classes (, i=1,...,5) as shown in Table 4.2.

We do not simply set to 5, but we set to 3 since there are mainly only three

classes of samples added with some noises from and . This method can reduce

the impact of noisy data.

iC

4

k k

C 5C

Table 4.2 The class distribution of X .

1C 2C 3C 4C 5C

Objects 300 200 100 5 5

Percentage 0.49 0.32 0.16 0.008 0.008

We determine the value of by considering the distribution of classes. We compute

the percentage of samples in each class compared with all samples in the current node.

Given a threshold α, let be the number of classes whose percentages are larger than

or equal to α. Consider the above example. If α equals to 0.1, , and C have

the percentage values larger than α, so we will set as 3 instead of 5.

k

k

1C 2C 3

k

We implemented the selection of by the function k (,)K Selection X  : X is

the current sample set and α is the threshold. The function returns the value of . k

The Computation Method for Initial Centers in W-k-means

W-k-means algorithm is a local search approximation algorithm. The final result

depends on the initial centers. Therefore, how to specify the initial centers is critical for

 33

the clustering accuracy. If we can specify better centers in the beginning, it can reduce

the number of iterations and get better clustering result more quickly.

Currently, there are two methods for determination of initial centers: random selection

and density-based selection [20]. The random selection method leads to the various and

unstable clustering result because the centers are determined randomly. The

density-based selection needs to search the whole sample space to compute the density,

so it decreases the efficiency vastly.

In this thesis we present a new method called supervised selection method. Under

this method, we compute the centers of objects of each class using the information of

class label. These class centers are used as the initial centers for W-k-means algorithm.

We implemented this method by (,)C Selection k X : X is the current cluster to be

partitioned and is the number of sub-clusters generated by k (,)K Selection X  .

We first compute and store the percentage of each class to the whole data of current

cluster. We then select the first classes (with the largest percentages) to compute the

 class centers as the output of the function

k

k (,)k XC Selection . Using the class

centers can accelerate the step of selecting the initial centers as well as improve the

accuracy of determination of initial centers vastly. The efficiency of this new method

will be shown in the experiment section.

Termination Test Method

Coming to an intermediate node in decision cluster tree, it is critical to determine

whether it is terminal or not. Not terminal means that it should be further partitioned. We

call the testing process as termination test or stopping test. This stage is vital for the

whole tree construction and will influence the quality of the tree as well as the quality

and computing efficiency of the classifier. We use multiple termination conditions: the

size, class purity and data distribution to determine whether a node will be further

partitioned or not.

 34

Cluster size: If the cluster size is too small, this cluster should be a leaf node and

labeled with the dominant class label. This principle can avoid overfitting problem.

Cluster purity: If the cluster size is big enough, the cluster purity should be further

estimated. If the percentage of the most frequent class is bigger than the critical value,

this cluster node should be a leaf node and labeled with the dominant class label.

Data distribution: Objects in a cluster intend to follow a normal distribution. If we

can test how well the objects in a node follow the normal distribution, we can determine

how likely they belong to a cluster. The data distribution can be tested by a distribution

test method: Anderson Darling (AD) Test [6,7]. AD Test can determine whether a

sample comes from a specified distribution. The AD Test was invented by Wilbur

Anderson and Donald A. Darling in 1952. It is one of the most powerful statistical

methods for detecting the most departures from normality based on the following. Given

a hypothesized underlying distribution, the data can be transformed to a uniform

distribution. The transformed data can then be tested for uniformity with a distance test

[125]. If the testing result satisfies the AD Test criteria, this cluster node should be a leaf

node and labeled with the dominant class label, otherwise this cluster node should be

further partitioned into sub-clusters.

We implemented a termination test method considering the above three aspects by

 which is shown in Table 4.3.  Terminal Test X  AD Test X returns true if the

distribution of X is almost likely normal distribution. needs

two parameters, δ and β. δ is the size threshold of a cluster and depends on the size of

the smallest class which includes the fewest samples compared with other classes in the

whole training data set. β is the purity threshold to judge whether a cluster is pure

enough not to be divided.

 Test XTerminal

 Terminal Test X judges the size and purity first before

doing because AD Test X   AD Test X needs more time and judging the size

 35

and purity can filter some obvious cases. We label the cluster with the dominant class

(the most frequent class in a cluster) if it is a leaf node.

Table 4.3 Algorithm of Terminal-Test(X).

Input: the node X contains objects. n

Output: A Boolean value Termi which is either (i) TRUE which means "stop" or

(ii) FALSE, otherwise.

Remarks:

δ: the threshold of the number of samples in X (e.g., 10).

β: the threshold of the frequency of a class in X (e.g., 90\%).

Begin

1. Termi = FALSE;

2. if (n <δ OR the frequency of the dominant class >β OR  AD Test X

3. Termi = TRUE and label X with the dominant class label;

4. return Termi;

End

4.2.3 Model Selection and Classification

After a decision cluster tree is built, any subset of disjoint decision clusters makes a

DCC model. There are many ways to select classification models from a decision cluster

tree. In this work, we select the leaf nodes of the decision cluster tree, because leaf nodes

are disjoint with each other and all of them as a whole cover all training samples.

 36

The classification model is used to classify new objects as the following: (1) Define a

distance function specific for classification; (2) Compute the distances between a new

object and the centers of the decision clusters in the model; (3) Identify the decision

cl n cluster to

the new object as its class.

In this work, we use the weighted Euclidean distance function as follows:

uster with the shortest distance to the object. Assign the label of the decisio

 
n

ii yxwd 2))(((4-1)

In Equation (4-1), iw is the weight for the i th attribute. The weights are computed

when we cluster the training data by the W-k-means clustering algorithm. Since the

weight distribution is different when we cluster a different node, here we

i
i

1

 adopt the

weight distribution computed when we cluster the root of the decision cluster tree. The

stance metric will be shown in Section 4.3.2.

4.3 Experiments

. Weka [126] implementations of these algorithms

w

tegrates the original KNN algorithm for comparison.

We executed ADCC and the original KNN on this platform, and executed other

classification algorithms on Weka.

effectiveness of this weighted di

In this section, we describe the experiments we have conducted on both synthetic and

real data sets. The experimental results demonstrate that ADCC outperforms the original

KNN [34] in terms of speed, scalability and classification accuracy vastly. We also

conduct experiments to compare ADCC to other classification methods, including

decision tree (J48) and SVM (SMO)

ere used in our comparisons. The synthetic data sets and real data sets used in the

experiment will be described below.

We have implemented ADCC system in java and conducted a series of experiments.

The resulting ADCC system also in

 37

4.3.1 Experiment Setup

All experiments were done on Windows XP platform running on an Intel (R) Xeon(R),

1.60 GHz computer with 8GB memory. We conducted experiments on synthetic data

sets and real data sets. We adopt the accuracy and execution time as the evaluation

methods to compare the classification quality to other classification algorithms. The

experiments on synthetic data sets are used to demonstrate that our model is effective

and efficient. Meanwhile, we ran experiments on real data sets to compare our methods

to other classification methods in speed, scalability and classification quality.

In our experiments, we use default parameters for J48 and SMO in Weka. For J48, the

minimus number of instances per leaf is set as 2. The SMOs are trained with a linear

kernel where the complexity parameter C is set as 1.0. For KNN, the number of

neighbors, k, is equals to 1. For ADCC, we always set α (the parameter in

(,)K Selection X  which was presented in Section 4.2.2) equal to 0.05, δ (a

parameter in  al Test XTermin

 Terminal Test X

 which is presented in Section 4.2.2) equal to the

10% of the number of samples in smallest class, and β (another parameter in

 which is presented in Section 4.2.2) equal to 90%.

4.3.2 Experiments on Synthetic Data

We conducted experiments on synthetic data sets to demonstrate the efficiency and

scalability of our methods and to compare the classification performance with other

classification algorithms (KNN, decision tree (J48) and SVM (SMO)) on spatial data

sets.

Through the experiments described here, we want to (1) verify that our method of

selecting initial cluster centers is efficient and can get better classification results; (2)

demonstrate that ADCC can identify noisy attributes and reduce their influences by

using W-k-means as the decision cluster tree construction algorithm; (3) show that the

 38

weight information generated during the decision cluster tree construction is useful to

improve the classification quality; (4) demonstrate that the KNN-like classification

method in ADCC outperforms original KNN in classification speed and scalability. The

details will be described in the following parts.

1. Supervised selection of initial cluster centers

The ADCC model includes K Selection and C Selection (presented in

Section 4.2) algorithms to specify the number of sub-clusters and the initial centers in

W-k-means. It has good capabilities of reducing the influence of noisy attributes and

noisy samples. We generate the following synthetic data set T, which includes 3

numerical attributes (X, Y and Z), 8 classes and 3,400 samples. The data set are

uniformly distributed on the attribute Z, Z is the noisy attribute. The details of T are

listed in table 4.4:

Table 4.4 Synthetic data set T.

Class Center Variance Instances

1 (0,4,2) 0.5，0.5，2.309 500

2 (2,3,2) 0.2，0.2，2.309 200

3 (4,4,2) 0.5，0.5，2.309 500

4 (1,2,2) 0.2，0.2，2.309 200

5 (3,2,2) 0.2，0.2，2.309 200

6 (0,0,2) 0.5，0.5，2.309 500

7 (2,1,2) 0.2，0.2，2.309 200

8 (4,0,2) 0.5，0.5，2.039 500

Noisy samples 600

Fig. 4.1 shows the distribution of T on the subspace X and Y, where different classes

are represented with different colors. From the Table 4.4 and Fig. 4.1, we found that

there are 8 clusters with normally distribution on X and Y. The circle denotes the real

centers for each cluster. There are some noisy samples existed on the subspace X and Y.

We set the class labels for noisy samples randomly. These noisy samples are used to test

the efficiency of the selection method of initial cluster centers.

 39

-2 -1 0 1 2 3 4 5 6
-2

-1

0

1

2

3

4

5

6

Fig. 4.1 The distribution of the data set T on the dimensions X and Y.

Fig. 4.2 shows the two different methods of setting initial cluster centers. The circles

denote the real centers for each cluster. In Fig. 4.2 (a), initial centers are set randomly,

denoted by the '+' symbols. The centers randomly selected are usually divergent from the

real centers, which makes either no center or more than one center in a cluster. Either

case may increase the number of iterations before W-k-means can stop. Fig. 4.2 (b)

shows the centers computed by our method C Selection directly from each class.

The centers computed by our method denoted by the rectangle symbols are a bit

deviated from real cluster centers due to the noisy samples, but the deviations are

insignificant and acceptable.

 40

-2 -1 0 1 2 3 4 5 6
-2

-1

0

1

2

3

4

5

6

a）random selection

-2 -1 0 1 2 3 4 5 6
-2

-1

0

1

2

3

4

5

6

 b）supervised selection

Fig. 4.2 Two methods of selecting the initial cluster centers.

 We compare these two initial center selection methods, random selection and

 41

supervised selection. Table 4.5 shows the results of 10-fold cross-validation experiments

measured in recall [49], precision [48] and F-Measure [50]. We can see that except the

precision of class C2, all results produced by the supervised selection were better than

the random selection.

Table 4.5 Classification results from random selection and supervised selection of

initial clusters centers (R for random selection, P for supervised selection).

 C1 C2 C3 C4 C5 C6 C7 C8

R 0.907 0.710 0.831 0.719 0.714 0.877 0.818 0.883
Recall

P 0.941 1.00 0.926 1.000 1.000 1.000 1.000 0.982

R 0.770 0.875 0.817 0.908 0.733 0.841 0.875 0.883
Precision

P 1.000 0.786 1.000 0.941 0.875 1.000 0.985 1.000

R 0.833 0.784 0.824 0.802 0.724 0.859 0.846 0.883
F-Measure

P 0.970 0.880 0.962 0.970 0.933 1.000 0.979 0.991

2. Identification of noisy attributes and utilization of weight information

W-k-means algorithm can identify noisy attributes by assigning them smaller weights

to reduce the influence of noisy attributes. In ADCC model, the weights generated by

W-k-means executed in the root node are used to define the weighted distance function

when the classifier classifying new objects.

Figure 4.3 plots the synthetic data set T in Table 4.4 in different two-dimensional

subspaces. X and Y represent the two attributes that contain eight normally distributed

clusters while Z is the noisy attribute on which the samples are uniformly distributed.

The clusters cannot be found in the subspaces with Z.

The weights got by executing ADCC five times are shown in Table 4.6. Z gets a

smaller weight in every trial since Z has a smaller discrimination capability for

clustering.

 42

(a) X,Y

(b) X,Z (c) Y,Z

Fig. 4.3 Projection of the data set on different subspaces.

Table 4.6 The weight distribution on the three dimensions.

Times Weight of X Weight of Y Weight of Z

1 0.385 0.399 0.215

2 0.370 0.370 0.257

3 0.344 0.335 0.319

4 0.395 0.392 0.211

5 0.370 0.386 0.242

The following experiments demonstrate that whether the weight information should

be used in classification step or not. We adopt the average weights from Table 4.6 as the

weights of the three attributes in classification. 10-fold cross-validation is performed in

this experiment. The comparison results are demonstrated in Table 4.7. We can see that

using weight information (using weighted Euclidean distance function) performs better

in most classes. The total average accuracy is 85.46% without weight information, while

it can get higher accuracy up to 90.82% by exploiting weight information. In addition to

better clustering produced by W-k-means, the classification accuracy is improved by

 43

adding the weight information in KNN-like classification step in ADCC. This method

reduces the influences of noisy attributes.

Table 4.7 Impact of variable weighting on classification accuracy.

 C1 C2 C3 C4 C5 C6 C7 C8

Not use 0.938 0.530 0.909 0.650 0.744 0.987 0.762 0.823
Recall

Use 0.968 0.579 0.968 0.690 0.733 0.989 1.000 0.957

Not use 0.997 0.469 0.998 0.577 0.512 0.993 0.826 0.923
Precision

Use 1.000 0.527 1.000 0.663 0.753 1.000 0.824 1.000

Not use 0.967 0.498 0.952 0.611 0.607 0.990 0.793 0.870
F-Measure

Use 0.984 0.552 0.984 0.667 0.743 0.955 0.903 0.978

3. Classification Speed and Scalability

We generated two groups of synthetic data sets with different numbers of dimensions

and instances (shown in Table 4.8). Each data set contains three clusters randomly

generated with normal distributions. In each run, we used 70% of data as training data

and the remaining 30% as testing data. We recorded the total execution time and

compared the performance of KNN-like classification method in ADCC with original

KNN and J48 with different number of dimensions and instances respectively. Table 4.8

shows the details of data sets: data sets A1 to A8 have the number of dimensions varying

from 5 to 500, and data sets B1 to B8 have the number of data instances varying from

3,000 to 90,000.

Table 4.8 Two groups of synthetic data sets (each having three classes).

Data sets Dimensions Instances Data sets Dimensions Instances
A1 5 5,000 B1 4 3,000
A2 20 5,000 B2 4 9,000
A3 50 5,000 B3 4 15,000
A4 100 5,000 B4 4 30,000
A5 200 5,000 B5 4 45,000
A6 300 5,000 B6 4 60,000
A7 400 5,000 B7 4 75,000
A8 500 5,000 B8 4 90,000

The experimental results are shown in Fig. 4.4. Fig. 4.4(a) shows the execution time

against the number of instances and Fig. 4.4(b) shows the execution time against the

 44

number of dimensions. We can see that the execution time increased linearly for ADCC

whereas the execution time for KNN increased rapidly when the number of instanced

approached 75000. Although the execution time for KNN increased linearly as the

number of dimensions increased, the increase in time was much faster than ADCC.

Meanwhile, the execution times for ADCC and decision tree (J48) are comparable to

each other and scalable on large data.

 (a) Execution time vs. data size

(b) Execution time vs. dimension number

Fig. 4.4 Scalability comparison between ADCC, KNN and decision tree.

4.3.3 Experiments on Spatial Data

We generated five spatial data sets with varying the size from thousands to millions of

 45

objects. A series of experiments were conducted on those data sets to show that ADCC

can classify spatial data better than other algorithms (e.g. KNN, J48, SMO). Meanwhile

the scalability of ADCC was further demonstrated. Table 4.9 gives the information of the

five spatial simulation data sets. They have similar data distribution. We randomly

choose one of them and show the data distribution in Fig. 4.5.

Table 4.9 Spatial simulation data sets.

Data sets Classes Attributes Size

D1 3 2 13,100

D2 4 2 49,000

D3 5 2 106,087

D4 5 2 524,985

D5 4 2 814,975

Fig. 4.5 The data distribution of D4.

The comparative results of ADCC and other three classification algorithms are shown

in Fig. 4.6. Fig. 4.6(a) shows the classification accuracy on the five data sets and Fig.

4.6(b) demonstrates the classification speed on those five data sets and scalability as the

size of data set increased. We can see that ADCC outperforms other three algorithms

especially SMO on most cases in terms of accuracy and speed. Meanwhile, the

 46

execution time of ADCC and J48 increased linearly whereas the execution time for KNN

and SMO increased vastly.

(a) Accuracy

(b) Execution time

Fig. 4.6 Classification results on five data sets.

4.3.4 Experiments on Text Data

We show the comparison results of ADCC algorithm and other three classification

methods: KNN, decision tree (J48) and SVM (SMO) on the 20-Newsgroups data which

is taken from the UCI machine learning data repository [23]. The original text data was

 47

first preprocessed to strip the news messages from the special tags and the email headers

and eliminate the stem words and stop words. The dimension (word) in each document

was weighted by the Term Frequency (TF). Table 4.10 lists eight data sets built from the

20-Newsgroups data. We preprocessed these data sets by deleting some dimensions with

smallest TF value. Several thousands words is enough for text data. We also keep all

words for Set2_3 and Set2_4 to show our algorithm is efficient on high dimensional data.

Different data sets have different cluster properties. Some of them have semantically

similar classes, whereas others contain semantically different classes. Some of them

have overlapping words (dimensions), while some of them contain the unbalanced

number of documents in each class.

Table 4.10 Text data sets generated from the 20-Newsgroups data (Seti_j denotes the

jth data set with i classes).

Data sets Classes Dimension Size

Set2_1
alt.attheism

comp.graphics
5201

200
200

Set2_2
comp.sys.imb.pc.hardware

comp.sys.mac.hardware
4970

200
200

Set2_3
talk.politics.mideast

talk.politics.misc
16411

200
200

Set2_4
rec.autos

rec.motocycles
13243

400
400

Set4_1

comp. graphics
comp.os.ms.windows.misc

rec.autos
sci.electronics

7387

400
300
200
100

Set4_2

comp.os.ms.windows.misc
comp.sys.imb.pc.hardware

comp.sys.mac.hardware
comp.windows.x

7302

300
300
300
300

Set6_1

comp.graphics
comp.os.ms.windows.misc
comp.sys.imb.pc.hardware

comp.sys.mac.hardware
rec.autos

sci.electronics

9425

120
120
120
120
120
120

Set6_2

comp.graphics
comp.os.ms.windows.misc
comp.sys.imb.pc.hardware

comp.sys.mac.hardware
comp.windows.x

rec.autos

8724

120
120
120
120
100
120

 48

Four classification algorithms, ADCC, KNN, J48 and SMO, were tested on these data

sets. Fig. 4.7 shows the classification accuracy and execution time on eight text data sets.

We can see that ADCC have the highest accuracy and shortest execution time.

(a) Accuracy

(b) Execution time

Fig. 4.7 Classification results on text data sets.

4.3.5 Experiments on Cancer Data

We also conducted experiments on six gene data sets related to studies of human cancer,

 49

which were taken from K-TSP Program Download Page [127]. They have collected 19

publicly available microarray data sets, with sample sizes ranging from 33 to 327 and

the number of genes ranging from 2 000 to 16 063. For our decision cluster tree model

to be more effective, the training samples should not be too few so that there can be

more than a few members in each cluster. Thus, we choose six gene expression data sets

since other data sets in K-TSP program are limited in sample size. Table 4.11 lists the

characteristics of these six data sets.

Table 4.11 Summary of gene expression data sets.

Data sets Classes Genes Samples Training samples Testing samples

GCM 2 16063 280 196 84

Lung 2 12533 181 127 54

Leukemia 2 7129 72 50 22

Prostate1 2 12600 102 72 30

Prostate2 2 12625 88 62 26

Leukemia3 7 12558 327 215 112

We conducted this series of experiments in a similar manner to the experiments on

text data sets. Four classification algorithms, ADCC, KNN, J48 and SMO were tested on

these data sets. We used 10-fold cross-validation experiment method except Leukemia3.

For Leukemia3, we used the training data set and the testing data set originally provided

from the original references. Table 4.12 and Table 4.13 show the classification accuracy

and execution time on six gene data sets. We can see that, ADCC also have the highest

accuracy and the shortest execution time.

Table 4.12 Classification accuracy on gene expression data sets.

Data sets ADCC KNN J48 SMO

GCM 89.29 84.52 75 89.28

Lung 99.5 98 94 98

Leukemia 99 86.3 79.1 98

Prostate1 87.1 90 74 83

Prostate2 80.8 76 55 70

Leukemia3 91.96 75.89 75.89 83.92

 50

Table 4.13 Execution time (seconds) on gene expression data sets.

Data sets ADCC KNN J48 SMO

GCM 26.141 26.187 27.84 29.8

Lung 2.812 8.937 4.2 7.58

Leukemia 1.422 1.953 1.38 1.41

Prostate1 7.078 3.719 2.53 4.76

Prostate2 4.516 9.797 3.59 3.7

Leukemia3 16.031 21.094 9.53 24.38

4.3.6 Experiments on Other Real Data

There are other real-world data sets which are chosen from UCI machine learning data

repository [23]. Table 4.14 lists the characteristics of these real data sets.

Table 4.14 Other real data sets.

Data sets Instances Dimensions Classes Training Testing

Waveform 5000 40 3 3500 1500

Reuters 9980 337 10 6986 2994

The results of execution time and classification accuracy generated by four

classification methods from these two real data sets are listed in Table 4.15. From Table

4.15, we can see that for data set Waveform, the accuracy of ADCC was higher than

those of KNN and J48 (decision tree method) and lower than SMO (SVM). ADCC was

much faster than KNN but slower than the other two. Comparatively, this data set was

simpler with fewer dimensions and instances and a small number of classes. However,

for data set Reuters which was more complex with more instances and classes, and much

higher dimensions, ADDC outperformed all other algorithms in classification accuracy.

It was much faster than KNN and SVM, but only slightly slower than the decision tree

implementation. The results further demonstrate that ADDC is more suitable for large,

high dimensional data with many classes.

 51

Table 4.15 Classification accuracy on gene expression data sets.

Data sets Waveform Reuters

Metrics Time(s) Acc.(%) Time(s) Acc.(%)

ADCC 2.516 83.8 74.952 68.97

KNN 15.688 70.8 485.625 57.95

J48 1.2 73.26 35.23 65.29

SMO 1.94 85 392.91 65.86

4.3.7 Parameter Analysis

ADCC needs three parameters, i.e. α , δ and β . α is the threshold in

(,)K Selection X 

 Terminal Test X

 presented in Section 4.2. δ and β are two parameters of

, which is also presented in Section 4.2. From our experience, α

can be set from 0.02 to 0.09. In our previous experimentsα was set to 0.05.

In the algorithm (see Table 4.3), we first consider the size of

the cluster and the purity of the cluster and then consider the result of

when we determine whether the current cluster

 Terminal Test X

 AD Test X

X should be further divided. Since it

takes longer for than judging the size and the purity of AD Test X  X , so we

want to filter the obvious situations under which the cluster needs not to be further

divided. Thus, the size threshold δ and the purity threshold β can be set to the

values so that the further clustering of X should be terminated obviously when X

does not pass either of these thresholds. δ depends on the size of the smallest class

which includes the fewest samples compared with other classes before clustering the

whole training samples. δ can be set from 3% to 10% of the number of samples in the

smallest class, and β can be changed from 85% to 95%. In our previous experiments

we set β to 90%, and δ to 10% of the number of samples in the smallest class.

We use three data sets, i.e. D3, Set4_1 and Prostate1 which were chosen from Table

 52

4.9, Table 4.10, Table 4.11 respectively to demonstrate how these parameters influence

the classification result.

Fig. 4.8 The effect of α on classification accuracy.

Fig. 4.9 The effect of δ on classification accuracy.

 53

Fig. 4.10 The effect of β on classification accuracy.

Fig. 4.8 shows the classification accuracy against different values of α of ADCC on

the three data sets. We can see that the classification accuracy was not sensitive to α

when α changed from 0.02 to 0.09. Fig. 4.9 shows the classification accuracy against

different values of δ of ADCC on the three data sets. The classification result of

ADCC method was robust on the parameter δ when δ changed from 3% to 10% of

the number of samples in the smallest class. Fig. 4.10 shows the classification accuracy

against different values of β of ADCC on the three data sets. We can see that the

classification accuracy was not sensitive to β when β changed from 0.85 to 0.95.

These results demonstrated that the classification result of ADCC method was robust on

the parameter α, δ and β. In the experiments of the following chapters, if we do

not demonstrate especially, the settings of these three parameters are the same as the

value in this chapter.

4.4 Conclusion

In this Chapter, we have proposed a new classification method following the

 54

Cluster-based classification framework (Decision Cluster Tree framework). We have

presented an automatic algorithm ADCC which uses the variable weighting k-means

algorithm W-k-means to build a decision cluster tree from a training data set. In this

automatic approach, we have proposed solutions to solve three important problems: (1)

selection of the number of sub-clusters at each node, (2) selection of the initial cluster

centers, and (3) termination of further clustering at a node.

We have presented experimental results on both synthetic and real world data sets and

compared the performance of ADCC with those of other well-known classification

methods. The comparison results have shown that ADCC has advantages in classifying

large, high dimensional data with multiple classes.

 55

Chapter 5

Building A Decision Cluster Forest

Model to Classify High Dimensional

Data with Multi-classes

In this chapter, a decision cluster forest classification model is proposed for high

dimensional data with multiple classes. A decision cluster forest (DCF) consists of a set

of decision cluster trees, in which the leaves of each tree are clusters labeled with the

same class that determines the class of new objects falling in the clusters. By recursively

calling a variable weighting k-means algorithm, a decision cluster tree can be generated

from a subset of the training data that contains the objects in the same class. The set of

 decision cluster trees grown from the subsets of classes constitute the decision

cluster forest. Anderson-Darling test is used to determine the stopping condition of tree

growing. A DCF Classification (DCFC) model is selected from all leaves of the

decision cluster trees in the forest. A series of experiments on both synthetic and real

data sets have shown that the DCFC model performed better in accuracy and scalability

than the single decision cluster tree method and the methods of KNN, decision tree and

SVM. This new model is particularly suitable for large, high dimensional data with

many classes.

m m

m

5.1 Introduction

One challenge in data mining is classification of high dimensional data with multiple

classes [21]. This kind of data may occur in application fields such as text mining,

multimedia mining and bio-informatics. To solve this problem, the ADCC method was

 56

proposed in [109], which builds a classification model from high dimensional data.

Given a training data set, the ADCC algorithm recursively calls the variable weighting

k-means algorithm (W-k-means) [2] to generate a decision cluster tree. Each node with

its dominant class forms a decision cluster. ADCC uses the leaves of the tree as the

classification model, and leaves are labeled with their dominant classes to determine the

classes of new objects falling in the clusters. Experimental results have shown that this

decision cluster classification model was effective and efficient in classifying high

dimensional data [109].

One shortcoming of this ADCC method is that the algorithm generates some weak

decision clusters in which no single class dominates. Existence of weak clusters in the

model can affect classification performance of the model. It has been shown that

classification accuracy could be improved after weak decision clusters were removed

from the model [120]. Weak decision clusters occur because objects of different classes

are mixed in the clustering process to generate decision clusters. If we assume that

objects in the same class have their own cluster distributions, we can separate objects of

different classes according to the object class labels and generate decision clusters from

objects in each class. Then, we combine the decision clusters of different classes to form

the decision cluster classification model. In this way, weak decision clusters can be

avoided.

In this chapter, we propose a Decision Cluster Forest method to build a decision

cluster classification model from high dimensional data with multiple classes. Instead of

building a single decision cluster tree from the entire training data, we build a set of

decision cluster trees from subsets of the training data set to form a decision cluster

forest. Each tree in the forest is built from the subset of objects in the same class. The

proposition for this method is that the objects in the same class tend to have their own

spatial distributions in the data space. Therefore, decision clusters of objects in the same

class are found. The decision clusters in the same tree have the same dominant class. In

 57

this way, no weak decision cluster is created in such decision cluster tree. A decision

cluster model can be selected from any subset of leaf decision clusters from the decision

cluster forest so the model is called a decision cluster forest classification model

(DCFC).

The decision cluster forest method has advantages of classifying data with multiple

classes because the DCFC model is guaranteed to contain decision clusters in all classes.

In other multi-class classification methods, such as decision trees, the information of

small classes is often under represented in the model. The error-correcting output codes

method (ECOC) was designed to solve multi-class learning problem by learning

multiple binary classification models and matching the classification results with the

designed codeword to correct misclassifications [121]. This new method is more like an

ensemble method but the challenge is on the design of code word. In contrast, the DCFC

model is a more intuitive and direct multi-class classification method and easy to use.

In growing a decision cluster tree from a subset of objects in the same class, we adopt

the W-k-means algorithm to reduce the effect of noisy attributes in high dimensional

data. We also grow a binary decision cluster tree and use Anderson Darling Test [6,7] as

a stopping criterion in tree growing. We have conducted a series of experiments on both

synthetic and real data sets to demonstrate the efficiency and accuracy of the DCFC

method. Compared with other classification methods, including ADCC, KNN, J48 (a

decision tree algorithm) and SMO (one of SVM algorithms), our experimental results

have shown that the DCFC method has performed better than those methods in

classification accuracy on large high dimensional sparse data sets. Thus the results

demonstrate that the DCFC method is more suitable for large, high dimensional data

with many classes.

Clustering methods have been explored to solve classification problems [22,35]. An

early example of using the k-means clustering algorithm to build a cluster tree

classification model can go back to early 80's [19]. In this work, a binary cluster tree was

 58

built by interactively executing the k-means clustering algorithm. At each node, a further

partition was determined by the percentage of the dominant class in the cluster node.

However, only small numeric data could be classified and every time only two

sub-clusters are formed. In 2000, Huang et al. proposed a new interactive approach to

build a decision cluster classification model [1]. In this approach, the k-prototypes

clustering algorithm was used to partition the training data, and a visual cluster

validation method [60] was adopted to verify the partitioning result at each cluster node.

The above two interactive methods are not adequate for high dimensional data with

noise because the clustering algorithms used are not able to handle noisy attributes and it

is too time consuming to involve human judgment. The concept clustering tree which is

a decision tree where each node as well as each leaf corresponds to a cluster is proposed

by Blockeel et al. [122]. The nodes of decision cluster tree proposed in our method are

also clusters, but the process of the tree construction including partition method,

stopping criteria and the number of sub-clusters are totally different.

The rest of this chapter is organized as follows. In Section 5.2, we introduce the

decision cluster forest classification model and the algorithm for model building. In

Section 5.3, experimental results and comparisons are reported. In Section 5.4, we

conclude this chapter.

5.2 Decision Cluster Forest

In this section, we describe how to construct the decision cluster forest and how to do

classification with the decision cluster forest.

5.2.1 Decision Cluster Forest (DCF)

A Decision Cluster Forest (DCF) consists of a set of decision cluster trees. Each tree

grows from a subset of the training data that contains objects in the same class. If the

training data X has m classes, the decision cluster forest will have m decision

 59

cluster trees. Given a decision cluster forest, a Decision Cluster Forest Classification

(DCFC) model can be built by simply extracting the leaves of decision cluster trees.

All decision clusters in a DCFC model from the decision cluster forest have strong

dominant classes with 100 percentage distribution. This approach follows the

proposition that in a large high dimensional data set with multiple classes, the objects in

each class tend to occupy a spatial region with its own mixture density distribution.

Therefore, the mixture densities can be discovered in a clustering process from the set of

objects in the same class.

Let X be a training data set of objects in classes. We divide n m X into

subsets

m

1 2, ,...)m(X X X

m

, each with objects in the same class. For each subset, we use a

clustering algorithm to build a decision cluster tree in which all nodes have the same

dominant class. The decision cluster forest consists of decision cluster trees with

nodes of different dominant classes. Fig. 5.1 illustrates a decision cluster forest with

different decision cluster trees.

m

Given a decision cluster forest, we can select any subset of decision clusters from

multiple trees to build a DCFC model. Similar to the single decision cluster tree method,

the performance of a DCFC model on classification accuracy also depends on the quality

of the decision cluster trees and the selection of decision clusters to be included in the

model. Therefore, the following two processes are crucial: (1) generation of a set of

decision cluster trees and (2) selection of a subset of the decision clusters from the

decision cluster forest for the classification model.

 60

Fig. 5.1 Distribution of decision cluster trees in a decision cluster forest.

Fig. 5.2 Generation of decision cluster trees for a decision cluster forest.

Given a subset iX from the training data set X , a decision cluster tree can be built

with a process similar to that used in building a single decision cluster tree. However,

since all objects in the data set are in the same class, class distribution calculation is not

necessary. When executing W-k-means on each inner node, the parameter (the k

 61

number of clusters should be divided) of W-k-means is unknown. To avoid decreasing

the clustering quality due to a too large k value, we set parameter k to 2 and

generate a hierarchical binary cluster tree. That is, we perform a binary partition to result

in a binary tree at each inner node. All decision clusters are assigned the same dominant

class. A decision cluster tree with the same dominant class is shown in Fig. 5.2. Multiple

decision cluster trees are generated from different subsets of training data with different

dominant classes marked in different colors.

Take the left tree from Fig. 5.2 as an example. This binary decision cluster tree is

generated from the data subset 1X shown in the root. The root 1X is first partitioned

into 2 clusters , . Here, the cluster index indicates the clusters are

generated from the data of class 1. Therefore, all clusters have the same dominant class 1.

The superscript indicates the level of the node from which the clusters are generated and

the subscript is the cluster number in this level. Cluster is further partitioned into 2

sub-clusters , , which form level 2 of this decision cluster tree. This binary

partition process continues until the stopping criteria are satisfied at the two leaves.

Other decision clusters trees marked in different colors are generated from different

subsets of the training data in a similar way.

0
11C

1
1 1C

0
21C 1C

0
21C

1C 1
2

In a real world training data set, the distribution of classes is often unbalanced. Some

classes have more objects than others. Therefore, the depths of decision cluster trees are

different. In the extreme case such as 3X , a decision cluster tree may have only the root

because the number of objects is too small. In this case, we treat 3X as one decision

cluster in the model.

5.2.2 DCF Classification (DCFC) Model

The decision cluster forest in Fig. 5.2 can be represented in a sequence of nested

clusterings as follows:

 62

)}),,(();...;2,2(2));1,1(1,1(1{ 0
2

1
2

1
1

0
1

0
2

0
1

1
2

1
1

0
2

0
1 CmCmCmCmXmCCXCCCCX , (5-1)

In this sequence, the decision clusters with the same dominant class are grouped in the

top level of iX for 1 . Any subset of disjoint decision clusters from the top

levels downward can make a DCFC model. There are many ways to select classification

models from a decision cluster forest. In this work, we select the leaf nodes of each

decision cluster tree in the decision cluster forest to build the DCFC model. Each

decision cluster in the model is represented by its center and dominant class.

i m 

The DCFC model classifies new objects in a KNN-like way as follows:

1. Compute the distances between a new object and the centers of the decision clusters

with a distance function;

2. Assign to the object the dominant class of the decision cluster with the shortest

distance to the object.

5.2.3 DCFC Algorithm

Table 5.1 shows the DCFC algorithm to automatically build a decision cluster forest

and select a leaf-based DCFC model. The input to the algorithm is a training data set

with classes and the output from the algorithm is a DCFC model. The algorithm

first divides the input data

m

X into m subsets. For each subset, it calls the W-k-means

algorithm to generate a decision cluster tree. At each node, it calls

function to test the stopping criteria to determine whether to call W-k-means to partition

the node into two children nodes or turn the node to a leaf node. After all decision

cluster trees are generated, a decision cluster forest is obtained. Finally, the set of all leaf

decision clusters is returned as the DCFC model.

 Stop Test

 63

Table 5.1 DCFC Algorithm.

Input: A training data set X with m classes.

Output: A classification model DCFC model .

Begin

1. partition X into m training data subsets, 1 2{ , ,..., }mX X X X .

2. for each training data subset iX , 1,...,i m ;

3. initialize a decision cluster tree with root {iDCT iX };

4. sign the root as internal node;

5. for each internal node in C iDCT

6. if () sign C as leaf node;  Stop Test C

7. run W-k-means on to produce two new sub-clusters; C

8. sign the two new sub-clusters as internal node and add them into ; iDCT

9. end for

10. end for

11. include all leaf nodes from all trees into the classification model m

DCFC model and represent each node by its center and its dominant class;

12. return ; DCFC model

End

The algorithm is given in Table 5.2. Since all data objects belong

to the same class, the class label information is no longer useful in the tree generation

 Stop Test C

 64

process. In this algorithm, only two stopping criteria are considered: the number of

objects in the data subset and the Anderson Darling (AD) Test [6,7]. If a node cluster is

too small, it need not be further partitioned. If objects in a cluster follow a normal

distribution, it is a good cluster and does not need a further partition. Anderson Darling

(AD) Test is a powerful statistical method to determine whether a sample comes from a

specified distribution or not. If the testing result satisfies the AD Test criteria, this cluster

node is treated as a leaf node. Otherwise, it is further partitioned into sub-clusters.

Table 5.2 Algorithm of Stop-Test(C).

Input: the node which contains n objects. C

Output: A Boolean value stop which is either (i) TRUE which means "stop" or

(ii) FALSE, otherwise.

Remarks:

δ: the threshold of the number of samples in (e.g., 10). C

Begin

1. stop = FALSE;

2. if (n <δ OR AD-Test(C)

3. stop = TRUE and label C with the dominant class label;

4. return stop;

End

5.3 Experiments

In this section, we present the 10-fold cross-validation experiments we have conducted

on both synthetic and real-world data sets. The experimental results demonstrate that

 65

DCFC outperforms some existing classification algorithms, including original KNN,

decision tree (J48), SVM (SMO) and ADCC [109] in terms of speed, scalability and

classification accuracy. Weka [126] implementations of J48 and SMO were used in our

comparisons. DCFC algorithm and ADCC were implemented in java.

All experiments were conducted on an Intel(R) Xeon(R), 1.60 GHz computer with

8GB memory. We compared the accuracy and execution time of these classification

algorithms. In our experiments, our setting is similar to [109] where default parameters

were used for J48 and SMO in Weka. For J48, the minimal number of instances per leaf

is set as 2. The SMOs were trained with a linear kernel where the complexity parameter

C was set as 1.0. For KNN, the number of neighbors, k, equals to 1. For ADCC, we use

the same parameter settings as in Chapter 4.

DCFC needs one parameter  presented in  Stop Test C , which is presented in

Section 5.2.3. In  CStop Test algorithm (see Table 5.2), we first consider the size

of the current node and then consider the result of AD-TEST(C) when we determine

whether the current node C should be further divided. Since it takes longer for

AD-TEST(C) than judging the size, we want to filter the obvious condition under which

the node need not be further divided. Thus, the size threshold  can be set to values so

that the further clustering of should be stopped obviously when the data size in node

 is less than

C

C  .  depends on the size of the root node and is always set to 5% of

the number of samples in the root node. If the size of a node is smaller than 5% of the

size of the root, we consider this node as a leaf automatically.

5.3.1 Experiments on Text Data

We compared DCFC with other three well-known classification algorithms and ADCC

on some high dimensional real data sets. These data sets are taken from the UCI

machine learning data repository [23].

Table 5.3 lists eight data sets built from the Twenty Newsgroups data following the

 66

similar method in Chapter 4. The original text data was first preprocessed to strip the

news messages from the special tags and the email headers and eliminate the stem words

and stop words. The dimension (word) in each document was weighted by the Term

Frequency (TF). We preprocessed these data sets by deleting some dimensions with

smallest TF values. The resulting text data contain several thousand frequent words.

Different data sets have different cluster properties. Some of them have semantically

similar classes (e.g. T_2), whereas others contain semantically different classes (e.g.

T_1). Some of them have overlapping words (dimensions) (e.g. T_5), while some of

them contain the unbalanced number of documents in each class (e.g. T_8). This group

of text data sets is different from the group in Chapter 4. We generate the different data

sets every time to show that our framework is effective on so many different data sets.

Table 5.3 Text data sets generated from the 20-Newsgroups data .

Data sets Classes Dimension Size

T_1
alt.attheism

comp.graphics
3939

200
200

T_2
talk.politics.mideast

talk.politics.misc
5795

200
200

T_3
comp.sys.imb.pc.hardware

comp.sys.mac.hardware
2558

200
200

T_4
Alt.attheism

Talk.religion.misc
5856

300
300

T_5
rec.autos

rec.motocycles
3154

400
400

T_6
rec.autos

rec.motocycles
3979

200
400

T_7

comp. graphics
Rec.sport.baseball

Sci.space
Talk.politics.mideast

7924

200
200
200
200

T_8

comp. graphics
Rec.sport.baseball

Sci.space
Talk.politics.mideast

8549

300
200
100
50

Five classification algorithms, DCFC, ADCC, KNN, J48 and SMO, were tested on

these text data sets. Each classification algorithm was run 10 times on each data set

using different 30% of data as testing test (70% as training data). The deviation of

results of each algorithm is not large, so we report their average. Fig. 5.3 shows the

 67

classification accuracy and execution time on these text data sets. We can see that DCFC

achieves higher accuracy than ADCC, KNN and J48 in most cases. DCFC and ADCC

are comparably faster than other algorithms. DCFC achieves higher or close accuracy to

SMO but much faster than that.

(a) Accuracy

(b) Execution time

Fig. 5.3 Classification results on text data sets.

 68

5.3.2 Experiments on Other Real Data

Table 5.4 lists the other two real data sets which are also taken from UCI machine

learning repository [23].

Table 5.4 Other real data sets.

Data sets Instances Dimensions Classes Training Testing

Waveform 5000 40 3 3500 1500

reuters 9980 337 10 6986 2994

Table 5.5 lists the results of execution time and classification accuracy generated by

five classification methods from these two real data sets. These two data sets are

comparably simple and low dimensional. DCFC works as well as ADCC which is more

suitable for large, high dimensional data.

Table 5.5 Classification results of data sets in Table 5.4 by five classification methods.

Data sets Waveform Reuters

Metrics Time(s) Acc.(%) Time(s) Acc.(%)

DCFC 2.5031 84.4 81.922 68

ADCC 2.516 83.8 74.952 68.97

KNN 15.688 70.8 485.625 57.95

J48 1.2 73.26 35.23 65.29

SMO 1.94 85 392.91 65.86

5.3.3 Scalability

We conducted experiments on synthetic data sets to demonstrate and compare the

scalability between our new DCFC algorithm and other classification algorithms. The

results show that our method is more scalable when the number of samples and

dimensions increase.

 69

We adopted the same two groups of synthetic data sets with different numbers of

dimensions and samples (shown in Table 5.6) as the same as in Chapter 4. The two

groups of synthetic data sets are listed here again to make the thesis easy to follow. Each

data set contains three clusters randomly generated with normal distributions. The class

labels are randomly arranged. We recorded the total execution time and compared the

performance of DCFC with original KNN, J48 and ADCC with different number of

dimensions and samples respectively.

Table 5.6 Two groups of synthetic data sets (each having three classes).

Data sets Dimensions Instances Data sets Dimensions Instances
A1 5 5,000 B1 4 3,000
A2 20 5,000 B2 4 9,000
A3 50 5,000 B3 4 15,000
A4 100 5,000 B4 4 30,000
A5 200 5,000 B5 4 45,000
A6 300 5,000 B6 4 60,000
A7 400 5,000 B7 4 75,000
A8 500 5,000 B8 4 90,000

Figure 5.4 shows the execution time against the number of dimensions and Fig. 5.5

shows the execution time against the number of samples. Because the curve of the result

of KNN ranges too large to demonstrate the curves of other algorithms clearly, we

presented the results in two sub-figures. Sub-figure (a) is the comparison results of

DCFC, ADCC, SMO and J48, and Sub-figure (b) is the comparison results adding KNN.

We can see that the execution time increased linearly for DCFC, ADCC, SMO and J48

whereas the execution time for KNN increased rapidly when the number of instances

approached 90000. Although the execution time for KNN increased linearly as the

number of dimensions increased, the increase was much faster than DCFC, SMO,

ADCC and J48. Meanwhile, the execution times for DCFC, ADCC, SMO and decision

tree (J48) are comparable to each other and scalable on this group of data sets. SMO

grows faster over dimensions than DCFC, ADCC and J48.

 70

(a) Except KNN (b) With KNN

Fig. 5.4 Execution time vs. dimension number.

(a) Except KNN (b) With KNN

Fig. 5.5 Execution time vs. data size.

5.4 Conclusion

In this chapter, we have proposed a new classification method for using a clustering

method to build a decision cluster forest. Decision cluster classification models are

generated from the decision cluster forest. We have presented an automatic algorithm

DCFC which uses the variable weighting k-means algorithm W-k-means to build a

 71

decision cluster forest from a training data set. The classifier is constructed by selecting

all leaf nodes from the decision cluster forest.

We have presented experimental results on both synthetic and real world data sets and

compared the performance of DCFC with those of other well-known classification

methods. The comparison results have shown that DCFC has advantages in classifying

large, high dimensional data with multiple classes.

 72

Chapter 6

An Ensemble of Decision Cluster

Crotches for Classification of High

Dimensional Data

In this chapter, we present a Crotch Ensemble classification model for high dimensional

data with multiple classes. A Crotch Ensemble is obtained from a decision cluster tree

built by calling a clustering algorithm recursively. A Crotch is an inner node of the tree

together with its direct children. If the children of a crotch have more than one dominant

class, the crotch is defined as a Crotch Predictor that is a classifier by itself. A crotch

ensemble consists of a set of crotch predictors. When classifying a new object, a subset

of crotch predictors is selected according to the distances between the object and the

crotches. A classification is made on the object as the class predicted by the crotch

predictors with the maximum accumulative weights. The experimental results on both

synthetic and real data have shown that the Crotch Ensemble model can get better

classification results on high dimensional data than other classification methods.

6.1 Introduction

We present an ensemble of crotches of decision clusters for classification of high

dimensional data with multiple classes in this chapter. A decision cluster tree is built by

calling a clustering algorithm recursively. Each node with its dominant class forms a

decision cluster [109]. A crotch is an inner decision cluster with its children in the

decision cluster tree. This chapter presents a new classification method which uses an

ensemble of classification models produced from crotches. An ensemble of classification

 73

models gains better performance and wider working space than a single classification

model.

A crotch consists of an inner node and its children nodes in a decision cluster tree.

When traversing the tree, a crotch whose children have more than one dominant class is

regarded as a crotch predictor which itself forms a classification model. These

classification models (crotch predictors) construct the Crotch Ensemble. Our task is to

generate a more effective classifier based on this crotch ensemble.

Crotch Ensemble is an extension to the decision cluster classification model ADCC

proposed in [109]. The ADCC model consists of a set of decision clusters that are taken

from all leaves of a decision cluster tree built from a training data set. In this leaf

decision cluster model, the domain space can be divided with the Voronoi partition [119]

into a set of non-overlapping decision regions by the set of decision cluster centers. The

decision about the class of a new object is made by the decision cluster in whose

decision region the object falls. Classification errors often occur at the boundary of two

decision cluster regions with different dominant classes and in the decision regions of

weak decision clusters that contain objects of multiple classes without clearly dominant

class. The crotch ensemble classifies a new object with multiple crotch predictors which

are built from decision clusters at different levels of the decision cluster tree and the

decision clusters in different crotch predictors can overlap. If a new object is

misclassified by one crotch predictor, the misclassification can be corrected by other

crotch predictors. Therefore, multiple predictor decisions are more robust than the single

decision cluster decision. A series of experiments on both synthetic and real data sets

have demonstrated that the efficiency and the accuracy of the Crotch Ensemble method

is superior to the ADCC model. Compared with other classification methods, including

KNN [34], J48 (a decision tree algorithm) [27], Random Forest [118] and ADCC [109],

our experimental results also showed that the Crotch Ensemble has performed better

than other methods on large, high dimensional data with many classes.

 74

The decision tree has been proved as a useful and powerful tool in data mining and

machine learning [27,110,111,112]. However, with the quick development of data

acquisition, data transmission and storage technology, traditional decision tree methods

face a lot of challenges in classification of high dimensional data with multiple classes

[21,113]. A decision tree is often built from a small number of dimensions from high

dimension such as text data. This is because each partitioning step in building a decision

tree model only considers one dimension while the information is usually stored among

many dimensions. When there are a large number of classes, a large number of leaves

are generated, which will cause an over-fitting problem [30,114,115,116,117]. To avoid

these disadvantages, ADCC algorithm [109] was proposed to take a subset of

dimensions at each node to build a decision cluster tree from high dimensional data with

a clustering algorithm.

The rest of this chapter is organized as follows. Section 6.2 proposes the Crotch

Ensemble algorithm. Discussions and analysis about the crotch ensemble method are

given in Section 6.3. Experiments on synthetic and real data sets are presented in Section

6.4. Section 6.5 concludes this work.

6.2 Crotch Ensemble Algorithm

This section proposes Crotch Ensemble algorithm, which uses crotch predictors of a

decision cluster tree to construct a classification model. It includes three steps, selecting

crotch predictors, constructing Crotch Ensemble classifier and training crotch weight.

Section 6.2.1 presents how to get crotches from a decision cluster tree and select

useful crotch predictors among them. Crotch Ensemble classifier is proposed in section

6.2.2. Section 6.2.3 discusses predictor bounding to avoid the influence of outer crotch

predictors which are too far away from the new samples. In section 6.2.4, the scheme of

training crotch weight to enhance the crotch ensemble classifier is presented.

 75

Fig. 6.1 shows an example of a decision cluster tree of four levels. Level 0 is the root

 which is the training data set. The root is partitioned into three clusters ,

, . Here, the superscript indicates the level of the node from which the clusters

are generated and the subscript is the cluster number in this level. Clusters and

are further partitioned into 2 and 3 sub-clusters respectively, which form level 2 of the

cluster tree. Subsequently, two clusters and are further partitioned into three

and two sub-clusters respectively, which form level 3 of the cluster tree. This tree can be

represented as the following sequence of nested clusterings as

.

T

0
2C

(T

T

,C

0
1C

0
3C

0
3C

0
1 (C C

0
1C

1
2C

1
4 (C

1
4C

),1 1 2 2 2 0 0 1 2 2 1
1 2 1 2 3 2 3 3 4 5 5, (, ,)), , (,))C C C C C C C C C

Fig. 6.1 Example of a decision cluster tree (the letter A, B and C beside the nodes are

dominant classes).

Based on this decision cluster tree, each node with a dominant class is a decision

cluster. ADCC selects all leaf nodes (as the

classification model. When classifying a new object , ADCC computes the distances

between and every leaf, then classify to the label of the nearest leaf node (cluster).

),,,,,,,, 1
5

2
5

2
4

1
3

0
2

2
3

2
2

2
1

1
1 CCCCCCCCC

t

t

t

ADCC outperforms some traditional classification algorithms, such as decision tree,

SVM, KNN, on large high dimensional data, but it still has some drawbacks. It only

selects leaves to construct the classification model. There is no evidence to prove that

 76

leaves are better than inner nodes when classifying new objects. Contrarily, in some

instances, inner nodes may even be better than leaves. In a word, it is hard to judge

which choice is better. Another shortcoming of ADCC is that all leaves are

non-overlapping. The classification errors often occur in the boundary areas of adjacent

clusters due to the mixture distribution of objects in different class. In next section, we

will introduce our algorithm, which considers both leaves and inner nodes and selects

useful nodes automatically.

6.2.1 Crotch Predictor

Definition 1. A Crotch is a sub-structure of a decision cluster tree, which is any inner

node (decision cluster) with its children.

Crotch is sub-structure of a tree. A crotch only includes a father cluster and its

children. In this paper, crotches are represented in a sequential form. For example, in Fig.

6.1, there are totally five crotches: , , ,

, .

),,(0
3

0
2

0
1 CCCT),(1

2
1
1

0
1 CCC),,(2

3
2
2

2
1

1
2 CCCC

),,(1
5

1
4

1
3

0
3 CCCC),(2

5
2
4

1
4 CCC

Definition 2. Crotch Predictor is a crotch whose children have more than one

dominant class.

Only crotch predictors are useful in classification. For example, in Fig. 6.1,

 is a crotch but not a crotch predictor because both children have the

dominant class A. This crotch cannot be used in classifying new samples.

),(1
2

1
1

0
1 CCC

When using a crotch predictor to classify a given sample, distances between this

sample and the centers of children are computed first; then, this sample is classified with

the dominant class of the nearest child cluster.

 77

6.2.2 Crotch Ensemble

We can generate many crotch predictors from a decision cluster tree. The crotches on

higher level are more general so that they can get lower accuracy when classifying new

samples. Whereas, the crotches on lower level are more specific so that they can get

higher accuracy in limited local domain. Our new classification method Crotch

Ensemble integrates the information on both high level and low level to construct a

strong classifier by co-working and inter-restraining.

Fig. 6.2 The Crotch Ensemble built from the decision cluster tree in Fig. 6.1.

Definition 3. Crotch Ensemble is a set of crotch predictors which are generated from

a decision cluster tree. It is also called Crotch Ensemble Classifier. The Crotch

Ensemble P includes K crotch predictors: P },...,,{ 21 KPPP . returns the

predicted class label argued to x. Crotch Ensemble belongs to the Tree-based Model

(defined in Section 3.4).

)(xj

The crotch predictors are generated from a decision cluster tree and put together to

construct a crotch ensemble classifier. For example, Fig. 6.2 is a crotch ensemble

classifier built from the decision cluster tree in Fig. 6.1. This crotch ensemble includes

all crotch predictors in Fig. 6.1. An objective function of Crotch Ensemble classifier is

defined as following:

 78





K

j
j

l

lxPxF
1

))(()(maxarg (6-1)

where is the number of crotch predictors in the crotch ensemble classifier, K)(jP

is the j th crotch predictor. is a logical function, it will return 1 if the condition

is TRUE, otherwise it will return 0. The condition is determining whether the

classification result of the crotch predictor to classify the sample

 )(

x is the class . The

function returns the class label, , with which Function (6-1) gets the

maximal value. A crotch predictor classifies a sample to the child which is nearest to the

sample like the classification method in [109].

l

arg max l

K crotch predictors are generated from a decision cluster tree. Their contributions

for classifying new samples are different due to each of them getting different

classification accuracy when classifying new samples. Crotch predictors which can get

better performance are more important than other predictors and should have bigger

weights. Considering varying performance of each crotch predictor, a weight factor is

added to Function (6-1). Then, the new objective function of Crotch Ensemble classifier

is proposed as following:

 



K

j
jj

l

lxPWxF
1

))(()(maxarg (6-2)

In Function (6-2), is the weight of the jW j th crotch predictor , which

satisfies and . The performance of Crotch Ensemble classifier

affects the value of weight

)(jP

10 W j 1
1




K

j
jW

1(jW j),..., K . We propose a training method in Section

6.2.4 to get this weight distribution of all crotch predictors in the Crotch Ensemble.

 79

6.2.3 Crotch Predictor Bounding

Crotch Ensemble uses all crotch predictors to classify new samples by maximizing

function (2). However not all crotch predictors are useful for classifying a new sample.

Fig. 6.3 shows an example of this problem. There are three predictors , and

.

1P 2P

3P x is a sample to be classified, and are near to 1P 3P x , but is very far

from

2P

x and should be neglected when classifying x . So, it is necessary to define a

predictor boundary to filter the crotch predictors when classifying new samples.

Fig. 6.3 Specify Bounding Predictor for the sample x . (, and are

distances between

1d 2d 3d

x and three predictors, star and rectangle denote the different

dominant classes).

Suppose },...,,{ 21 KPPP

C

 is the Crotch Ensemble, and it includes crotch

predictors. is the metric space. The Definition 5 is used to neglect far away crotch

predictors.

K

Definition 4. The distance between a sample and a crotch predictor P

 Dist(},...,,{ 21 KPPP x ,) is the distance between this sample and the center of the

nearest children node in this crotch.

iP

 80

Definition 5. Given a sample x in C , the Bounding Predictor of x , ()xB

'}kK

, is a

subset of P with K' crotch predictors, that is 1 2() { , ,k k ...,x P P PB , which

satisfies (1) K' <= K, ()xB , (2) the distances between  P 0x and each crotch

predictor in are smaller than a given distance threshold B  .

The following function (6-3) is used to determine whether the crotch predictor

belongs to the bounding predictor of the sample

iP

x when classifying x . If it returns 1,

the testing predictor belongs to the bounding predictor. iP



 


others

PxDist
P i

ix ,0

),(,1
)(


 (6-3)

The value of distance threshold  is min((,))
i

i
P

Dist x P



P

 which multiplies the

smallest distance between x and all of P by iP  . We call bounding predictor

factor and it satisfies  1. If   = 1, the bounding predictor only includes the

nearest crotch predictor(s).

For example, in Fig. 6.3, for Bounding Predictor of the sample x , is

()xB = . 1 3{ , }P P

We integrated the function (6-3) into the function (6-2) to get the new objective

function of the Crotch Ensemble classifier as follows:

1

() (()) (())arg max
K

x j j j
jl

F x P x W P x l


    (6-4)

Classifying a new sample with the function (6-4) takes the following three steps: (a)

generating Crotch Ensemble from a decision cluster tree; (b) selecting Bounding

Predictor for the new sample; (c) classifying the new sample to the class which

maximize the function (6-4).

 81

6.2.4 Crotch Weight Training

This section describes how the weights of Crotch Predictors are trained before Crotch

Ensemble is used to do classification as discussed in Section 6.2.2.

For a sample 'x , each crotch predictor in Crotch Ensemble classifies 'x . Some of

them classify 'x correctly and others classify 'x wrongly. The crotch predictors who

can classify 'x correctly are added into , and those classify 'rP x wrongly compose

. and eP : { (') (')}jP P x l x|r j P P : {) (e jP P x('j ')}l x P P | , where

 is the correct class label of (l x ') 'x . The corresponding weight sets of predictor sets

 and are and respectively. For the Crotch Ensemble , if

,

rP

F x

e

'x

P rW eW

) (l

P

(') 'x is classified wrongly by this Crotch Ensemble, it must have,

j e i r

j i
W W

W W
 

 
W W

 (6-5)

Our goal is to train the weights for crotch predictors so that the important crotch

predictors have bigger weights and others have smaller weights. A simple strategy is

increasing weights for the crotch predictors which tend to classify new samples correctly

and reducing weights for the crotch predictors which are more likely to get error results.

Table 6.1 is the Crotch Predictor weight training algorithm.

 82

Table 6.1 Crotch Predictor weight training algorithm.

1 2{ , ,..., }KP P PP ; Input: Crotch Predictors Set

 Training Set, , 1 1 2 2{ , () , , () ,..., , () }N Nx l x x l x x l x      X

(1,2,...,)ix i  N is training sample, is its correct label.

Parameters: threshold of bounding predictor factor,

()il x

 ;

 extend coefficient,  ; iteration times,

Output:

T .

1 2{ , ,..., }KW W W W .

Begin

1. initialize 0 as K

2. compute classification error rate)

 0 0 0
1 2{ , ,..., }KW W W W 0 1/ , (1, 2,...,)jW K j  ;

0(errR W in training set using

 classifier feed with ;

3. For from 1 to

4.

5. For each sample

X

()F x 0W

t T

1t tW W 

ix in X (1,2,...,)i N

6. If

7. x

8. x

9. 

10.

() ()i iF x l x

1

(() ())
K

t t
err j j i i

j

W W P x l


   ;

1

(() ())
K

t t
acc j j i i

j

W W P x l


   ;

 (() ()) 2 1j i iP x l x    ;

 ()t t acc
j j

err

W
W W

W
   ;

11. re-normalize weights

12. End If

13. End For

14. If)

W ;

1() (t t
err errR W R W 

15. ;

16. break;

17. End If

18. EndFor

End

 1tW W 

 83

From Table 6.1, we can see that when Crotch Ensemble classifies the sample 'x

wrongly, the weights of crotch predictors are adjusted by multiplying coefficients. Them

weights of those crotch predictors which classify 'x wrongly multiply a coefficient

smaller than 1, and the weights of those crotch predictors which classify 'x correctly

multiply a coefficient bigger than 1. Let
j e

jErr W



W P

 and
i rW iAcc
P

'

W .

From 6-5, there is when Crotch Ensemble classify Err Acc x wrongly. The

coefficient which should be smaller than 1 can be specified as
Acc

Err
, and the other

coefficient which should be bigger than 1 can be specified as
Err

Acc
. Thus, the weights

are adjusted as following,

,

,

j j j

i i i

Acc
W W W

Err
Err

W W W
Acc

   

   


W

W

e

r

 (6-6)

After adjusting of weights, the weights of those crotch predictors which classify 'x

correctly become bigger than before and the weights of those crotch predictors which

classify 'x wrongly become smaller than before. If the adjustment have the result

j e i r

j i
W W

W W
 

 
W W

 (6-7)

'x will be classified correctly after adjusting the weights of crotch predictors. We can

control the extent of adjustment by step length parameter  . That is,

()k k

Acc
W W

Err
   (6-8)

In expression (6-8),  is sign coefficient, it is equal to 1 or -1. If , k rW P  = -1,

and else if ,kW Pe  = 1.  is extent coefficient. If  is too small, the weights

 84

cannot be adjusted any more and the classification results of the wrongly classified

sample cannot be corrected. If  is too large, the weights are adjusted too much and

lead to over-fitting problem.

Weights are adjusted once in every iteration step of Crotch Predictor weight training

algorithm. In each iteration step, weights W should be re-normalized to satisfy

. Weights distribution of crotch predictors is improved in every iteration step. 1kW 

Fig. 6.4 Synthetic data set S.

Figure 6.4 draws a synthetic data set which includes 5600 samples, 19 clusters, 2

classes in 2 dimensions. We compare ADCC with each step of Crotch Predictor weight

training of Crotch Ensemble on this synthetic data set. We take 70% of the data as the

training data to build decision cluster tree and to train crotch predictor weights. The

remaining 30% data is testing data. When training crotch predictor weights, the Crotch

Predictor weights training algorithm (seen in Table 6.1 takes 2 iteration steps to

converge and stop. We classify the testing data with Crotch Ensemble based on different

three weights distribution (initial weights, weights got from first iteration step, weights

got from second iteration step). Table 6.2 lists the error rate of classification under

S

 85

Crotch Ensemble with those three weights distribution and under ADCC method. We

can see that crotch predictor weight training can improve the performance of Crotch

Ensemble. Crotch Ensemble outperforms ADCC on this synthetic data set.

Table 6.2 Classification results are improved by crotch predictor weight training.

classifier Initial weight Iteration1 Iteration2 ADCC

Error rate 21.6% 4.8 3.7 7.5

6.3 Analysis

In this section, we use a simple example to show why Crotch Ensemble can work better

than ADCC. The example data set D is shown in Fig. 6.5. There are 800 points in 4

normally distributed clusters that are classified into 2 classes marked with ‘×’ in red

and ‘○’ in green respectively. The 4 stars indicate the 4 cluster centers. We first build

an ADCC model to classify this data set and identify the misclassified points. Then, we

show how Crotch Ensemble can correct these misclassifications. Finally, we discuss the

bounding effect in crotch ensemble.

 86

Fig. 6.5 Distribution of the data set D.

6.3.1 Original Decision Cluster Model and Its Shortcoming

Figure 6.6 shows the decision cluster tree built from data set with the ADCC [109]

method. Each decision cluster node is marked with two symbols, one representing the

dominant class and the other one representing the cluster center. The legend of these

symbols is shown on the left side of the figure. The symbols are used to indicate the

dominant classes and cluster centers in the data distribution figures in this section. From

this decision cluster tree, we select all leaf nodes to build a leaf-based decision cluster

model .

D

1 2 3 4 5(, , , ,)ADCC L L L L L

 87

Fig. 6.6 The decision cluster tree built from data set D.

Given the 5 cluster centers in the ADCC model, we can draw a Voronoi diagram [119]

in Fig. 6.7 to show how the data space is partitioned by the ADCC model. The 5

sub-regions , , , and in Fig. 6.7 indicate the decision areas of

the 5 decision clusters , , , and in the ADCC model, respectively. A

point falling in a decision area is classified as the dominant class of the decision cluster

in the model. We can see that decision areas do not overlap in this leaf-based decision

cluster model.

1 'L 2 'L 3 'L

1L

4 'L

2 L

5 'L

4L 3 L 5L

In this model, the classification decision is determined by only one decision cluster.

The classification performance depends on the purity of the decision clusters, i.e., the

percentage of the dominant class in the decision area. If points of different classes

overlap in the neighbor decision clusters, classification errors occur. For example in the

decision area of decision cluster in Fig. 6.7, there are some points in class

‘○’ which would be misclassified as class ‘×’ because the dominant class of

is ‘×’. These are the inherent classification errors of the decision cluster which

cannot be corrected in this model. However, some of these errors may be corrected by

3 'L 3L

3 'L

 88

incorporating the parent decision clusters and neighbor decision clusters into the

classification decision. This is the consideration of the Crotch Ensemble model.

Fig. 6.7 Class decision areas partitioned by the ADCC model.

6.3.2 Correction by Crotch Ensemble

From the decision cluster tree in Fig. 6.6, we can extract four crotches and three of them

can be used as crotch predictors. We ignore the crotch that includes leaf nodes and

 because the dominant classes of these leaf nodes are the same.

3L

4L

We plot the crotch ensemble model of 3 crotch predictors in different levels in Fig.

6.8. Predictor 1 is the crotch corresponding to the partitioning of the root node in Fig.

6.6. Predictor 2 is the crotch corresponding to the partitioning of the second child of the

root node. Predictor 3 is the crotch corresponding to the partitioning of one child of

Predictor 2. The Voronoi partition of the space with a line by each crotch predictor is

also shown in Fig. 6.8. The two class labels in the ellipse indicate the dominant classes

 89

of the decision areas separated by the line. The bottom frame in Fig. 6.8 shows the

overlap projection of three crotch predictors in the crotch ensemble model. Comparing

Fig. 6.7 with Fig. 6.8, we can observe that some misclassified points of class ‘○’ by

decision cluster in Fig. 6.7 can be correctly classified by Predictor 2 and Predictor

3.

3L

Fig. 6.8 Crotch Ensemble built from the tee in Fig. 6.6.

Since the decision area in Fig. 6.7 does not contain misclassified points, we

remove decision area and plot the rest decision areas , , and in

1 'L

1 'L 2 'L 3 'L 4 'L 5 'L

 90

Fig. 6.9. The misclassified points are represented as ‘□’. We can see all these points

occur in decision area ‘ ’ whose dominant class is ‘×’. However, the true class of

these misclassified points is ‘○’. With the Crotch Ensemble model to classify the

points, we can find that Predictor 1 classifies these points as class ‘×’ whereas

Predictor 2 and Predictor 3 classify these points as class ‘○’ according to the distances

between these points and the Crotch Predictors. The weight of Predictor 1 is 0.26

and the weights and for Predictor 2 and Predictor 3 are 0.25 and 0.49,

respectively. Because of < + , these points are classified as class ‘○’.

Therefore, the misclassifications of some points by the ADCC model are corrected by

the Crotch Ensemble model.

3L

1W

2W 3W

1W 2W 3W

Fig. 6.9 Samples are wrongly classified by ADCC and Crotch Ensemble (‘□’ denotes

the samples which are wrongly classified by ADCC but corrected by Crotch Ensemble,

‘◇’ denotes the samples which wrongly classified by Crotch Ensemble but rightly

classified by ADCC, and * denotes the samples which are wrongly classified by both

methods).

 91

6.3.3 Bounding Crotch Predictors

In the crotch ensemble model, a new object is classified by the collective decision of

multiple crotch predictors, including the primary crotch predictor that is the closest to

the project, the crotch predictors that overlap but are at the higher levels of the primary

crotch predictor in the decision cluster tree, and the crotch predictors that are the close

neighbors to the primary crotch predictor. In a large crotch ensemble model that consists

of many crotch predictors, not every crotch predictor makes positive contribution to the

right classification decision. Some crotch predictors that are far away from the primary

crotch predictor can make negative contribution to the classification. Therefore, we

define a distance threshold  to exclude the crotch predictors whose distances to the

object to be classified exceed  . The crotch predictors who are selected from the crotch

ensemble model to classify a new object are called bounding predictors. Depending on

the object locations, different sets of bounding predictors are selected to classify

different objects.

Figure 6.10 shows an example of the crotch ensemble model built from the decision

cluster tree in Fig. 6.8. Given an object X , its distance to the primary crotch predictor

Predictor 1 is . Let the bounding predictor factor (, 1)Dist X P  > 2, the crotch

predictors within the dashed lines will be included as the bounding predictors to classify

X . In this case, Predictor 2 is included whereas Predictor 3 is excluded.

 92

Fig. 6.10 Finding Bounding Predictor.

Figure 6.11 further illustrates how the classification is made by the joint decision of

bounding crotch predictors. Given a bounding predictor factor  > 1, we draw two

hyperbolas and along the axis linking Predictor 1 and Predictor 2, and the

axis linking Predictor 1 and Predictor 3, respectively. For the simplification, hyperbolas

 is not drawn in Fig. 6.11. Here we take

1,2 1,3

2,3 1,2 and 1,3 for example. The points

on the left side of whose Bounding Predictor include Predictor 1 but do not

include Predictor 2 and the points on the other side of

1,2

1,2 include Predictor 2 but do

not include Predictor 1. It is the same way to analyze the points on the two sides of .

The Bounding Predictors of the points in decision area only include Predictor 1, so

the classification decision is made on the points in decision area by the Predictor 1

with its weight . In the same way, the Bounding Predictors of the points in decision

area and are { 1 , 2 } and { 1 3 } respectively. The classification decision

in the decision area 2D is made jointly by Predictor 1 with its eight 1W and

1,3

1D

1D

1W

32D D P P P , P

 w

 93

Predictor 2 with its weight 2W whereas the classification decision in the decision area

3D is made jointly by Predictor 1 with its weight 1W and Predictor 3 with its weight

. 2D and 3D are the boundary areas of the three crotch predictors. In the ADCC

model, classification errors often occur in the boundary areas due to the mixture

distribution of objects in different classes. Some misclassifications can be corrected by

the joint decision in the bounding crotch ensemble

3W

 model.

Fig. 6.11 Classification with Bounding Predictor.

The effect of bounding crotch predictors is significant. Taking the data in Fig. 6.4 as

an example, 1039 points were misclassified with the crotch ensemble model without

bounding. After bounding the crotch predictors, 972 misclassifications were corrected.

6.4 Experiments

In this section, we present the experiments we have conducted on both synthetic and real

data sets. The experiments on synthetic data have analyzed the parameters of Crotch

Ensemble and compared the performance with other algorithms (including Decision

 94

Tree and ADCC) by increasing the size and the number of dimensions of the data sets.

We also compared the classification performance of these classification algorithms on

real data sets. All experiments were conducted on an Intel(R) Xeon(R), 1.60 GHz

computer with 8GB memory.

6.4.1 Analyzing Parameters

We generated the synthetic data set whose characteristics are given in Table 6.3.

 includes two classes, each with 3 clusters. Each cluster contains 200 samples

following a normal distribution. Some clusters are overlapping. The shape and

distribution are shown in Fig. 6.12.

1S

1S

Table 6.3 Generation characteristics of (two orientation variances are 7 and 1). 1S

 Class1 Class2

 Cluster1 Cluster2 Cluster3 Cluster1 Cluster2 Cluster3

centroid (10,10) (0,10) (-10,10) (8,12) (-4,10) (-10,6)

orientation / 4 13 /12 2 / 3 / 4 13 /12 2 / 3

Fig. 6.12 The distribution of data set . 1S

 95

There are two important parameters  and  in Crotch Ensemble. Their values

will influence the performance of the classification model. 1  is used to compute

the threshold of crotch predictor bounding (see Section 3.3). It affects the number of the

predictors selected to classify a new sample. If  =1, only the nearest predictor is

selected to perform classification. In this condition, the Crotch Ensemble classification

method is the same as the classification step of ADCC. The value of  should not be

too big or too small. If  is too big, some too far away predictors are selected but they

are not useful for classifying the current sample. If the value of  is too small, the

useful predictors may be missed. We execute Crotch Ensemble on the data set to

demonstrate how the parameter

1S

 influences the classification result. Fig. 6.13 shows

the classification accuracy against different values of  on Crotch Ensemble. We can

see that the classification accuracy is increasing by increasing the value of  at the

beginning but it is decreasing after the value of  reaches around 8. When the value of

 is bigger than 10, the accuracy is not stable. From our experience the range from 2 to

8 is a good choice of the value of  . The best choices may be different for different

data sets, but the trends of the accuracy lines are the similar.

Fig. 6.13 Performance effected by  .

 96

Another important parameter  controls the updating range when adjusting the

crotch weights (see Section 3.4). It controls the extent of adjusting weights of each

crotch predictor in every iteration step. We still execute Crotch Ensemble on the data set

 to demonstrate how the parameter 1S  influences the classification result. Fig. 6.14

shows the classification accuracy against different values of  on Crotch Ensemble.

We can see that the classification accuracy reaches the highest value when  is around

1. The classification accuracy is increasing by increasing the value of  at the

beginning but it is decreasing after the value of  reaches around 1. From our

experience the range from 0.6 to 1.4 is a good choice of the value of  .

Fig. 6.14 Performance effected by  .

6.4.2 Scalability

We generated two groups of synthetic data sets with different numbers of dimensions

and instances (shown in Table 6.4). Each data set contains ten clusters randomly

generated with normal distributions. Each cluster is randomly labeled with one of the

three classes. In each run, we used 70% of data as training data and the remaining 30%

as testing data. We compared the performance of Crotch Ensemble with ADCC and

 97

decision tree algorithm J48 with different number of dimensions and instances

respectively. Table 6.4 shows the details of data sets: data sets A1 to A8 have the

number of dimensions varying from 10 to 10,000; data sets B1 to B8 have the number of

data instances varying from 50 to 100,000.

Table 6.4 Two groups of synthetic data sets (each having three classes).

Data sets Dimensions Instances Data sets Dimensions Instances

A1 5 5,000 B1 4 3,000

A2 20 5,000 B2 4 9,000

A3 50 5,000 B3 4 15,000

A4 100 5,000 B4 4 30,000

A5 200 5,000 B5 4 45,000
A6 300 5,000 B6 4 60,000

A7 400 5,000 B7 4 75,000

A8 500 5,000 B8 4 90,000

The experimental results are shown in Fig. 6.15 and Fig. 6.16. Fig. 6.15 shows the

cl

ensions.

Be

assification accuracy against the number of instances. We can see that the

classification accuracy of J48 decreases obviously when the number of dimension is

increasing. Crotch Ensemble and ADCC perform better than J48 and are stable. Crotch

Ensemble and ADCC have similar performance on high dimensional data sets.

Fig. 6.16 shows the classification accuracy against the number of dim

cause Crotch Ensemble needs more samples to train weights, it performs worse in

small data set. Crotch Ensemble performs better than ADCC and J48 on large data sets.

 98

Fig. 6.15 Classification accuracy vs. dimension number.

Fig. 6.16 Classification accuracy vs. data size.

6.4.3 Experiments on Real Data

We show the comparison results of Crotch Ensemble algorithm and other four

classification methods: decision tree (J48), original KNN, Random Forest and ADCC on

 99

five real data sets which are taken from the UCI machine learning data repository [23].

We implemented Crotch Ensemble and ADCC in java. J48, KNN and Random Forest

are implemented in Weka [126]. BreastCancer is authored by Prognostic Wisconsin

Breast Cancer Database. For the Reuters data set, the standard document frequency

method was used to select relevant attributes from the original feature space. Madelon is

an artificial data set, which was part of the NIPS 2003 feature selection challenge.

optdigits is Optical Recognition of Handwritten Digits Data Set. Table 6.5 lists these

ata sets.

Tab ur real d

d

le 6.5 Fo ata sets.

Data Set Instances Dimensions Classes Training Testing

Breastcancer 569 32 2 398 171

Madelon 4400 500 2 2000 2400

Reuters 9980 337 10 6986 2994

Optidigits 5620 64 10 3823 1797

The comparative results with 10-fold cross-validation of Crotch Ensemble and other

four algorithms are shown in Table 6.6. We can see that Crotch Ensemble outperforms

other algorithms in most conditions.

Tabl sificatio ur real e 6.6 Clas n results on fo data sets.

Algorithm Breastcancer Madelon Reuters Optidigits

Crotch 96.7% 72.3% 71.5% 91.7%

ADCC 94.9% 72.2% 69.3% 90.9%

Decision 94.2% 67.2% 67.7% 89.7%

KNN 83.9% 63.2% 65.1% 80.5%

Random 95.7% 59.7% 67.8% 96.8%

 100

On the same data sets, we record the wrongly classified samples by ADCC and Crotch

Ensemble. Table 6.7 shows how much the Crotch Ensemble corrects the ADCC result.

Crotch Ensemble is abbreviated as CE.

Table 6.7 Crotch Ensemble correction.

Data set ADCC wrongly classified

but CE rightly classified

ADCC rightly classified

but CE wrongly classified

Breastcancer 7 5

Madelon 321 315

Reuters 674 633

Optidigits 75 57

6.5 Conclusion

In this chapter, we propose a new classification method Crotch Ensemble based on the

decision cluster tree. We have presented the method of selecting crotch predictor and the

algorithm of training the weights for each crotch predictor. We define the Bounding

Predictor to filter the crotch predictors when classifying new samples. Those too far

away predictors are neglected when classifying a sample using Bounding Predictor of

this sample. We analyzed why Crotch Ensemble can correct some misclassified samples

by ADCC and how to choose the near crotch predictors.

 We have presented experimental results on both synthetic and real world data sets to

analyze the parameters and to compare the performance of Crotch Ensemble with those

of other well-known classification methods and our previous classification method

ADCC. The comparison results have shown that Crotch Ensemble has advantages in

classifying large, high dimensional data with multiple classes and performs better than

 101

the previous method ADCC. The experimental results have also demonstrated Crotch

Ensemble can correct ADCC's results and Crotch Ensemble with Predictor Bounding

can filter too far away crotch predictors to improve the classification result.

 102

Chapter 7

A Subspace Decision Cluster

Classifier for Text Classification

In this chapter, a new classification method (SDCC) for high dimensional text data with

multiple classes is proposed. In this method, a subspace decision cluster classification

(SDCC) model consists of a set of disjoint subspace decision clusters, each labeled with

a dominant class to determine the class of new objects falling in the cluster. A subspace

decision cluster tree is first generated from a training data set by recursively calling a

subspace clustering algorithm Entropy Weighting k-means algorithm. Then, the SDCC

model is extracted from the subspace decision cluster tree. Various tests including

Anderson-Darling test are used to determine the stopping condition of the tree growing.

A series of experiments on real text data sets have been conducted. Their results show

that the new classification method (SDCC) outperforms the existing methods like

decision tree and SVM. SDCC is particularly suitable for large, high dimensional sparse

text data with many classes.

7.1 Introduction

Text classification aims at assigning class labels to text records. It is widely extended in

many web mining areas, such as Blog documents classification [128], robust

classification of rare queries in search engines [103] and hierarchical text classification

[101,129]. Text data is a typical example of high dimensional data. Classifying high

dimensional data faces many challenges [21]. There are usually thousands or more

dimensions, which is the total number of unique words in text data. In a text data set,

records (documents) related to a particular topic, for example, politics, usually contain a

subset of words (dimensions) which are discriminative for these documents. Those

 103

dimensions describing politics are less likely to exist in documents of other topics such

as sports. This situation implies that different dimensions have different contributions for

documents in different classes. Furthermore, in high dimensional data, the variations of

distances between any two data samples becomes less significant [130], so meaningful

clusters can only be found in some subspace of the whole high dimensional space [131].

We can find clusters from subspaces of the dimensions instead of the entire dimensions

by subspace clustering algorithms. We intend to apply the advantages of subspace

clustering into the classification to deal with the sparse high dimensional data.

Cluster-based classification model follows a probability mixture model in which each

cluster is considered as a distribution of objects of one class in the multidimensional data

space [120]. Objects in the same cluster tend to have the same class label. On the other

hand, it can be viewed as mapping a class to one or more clusters. In this way,

classification can be seen as a clustering problem that can be solved with a clustering

process.

In this chapter, we integrate a subspace clustering algorithm Entropy Weighting

k-Means (EWKM) [3] into our classification framework. There are three main steps in

this work. Fist we build a subspace decision cluster tree by recursively calling the

subspace clustering algorithm EWKM. In every partition, the sub-clusters are found in

their own subspaces instead of the entire data space. After building the subspace

decision cluster tree, we generate a classifier from the tree. Finally, we specify a distance

metric for our classifier to classify new samples. In growing the subspace decision

cluster tree, we adopt the EWKM to deal with the data sparsity problem which exists in

high dimensional data. EWKM extends the k-Means clustering process to calculate a

weight for each dimension in each cluster and use the weight distribution to identify the

subsets of important dimensions instead of the whole dimensional space. We adopt

Anderson Darling Test [6,7] as a stopping criterion in tree growing. Our experimental

results on many real text data sets generated from 20-newsgroup corpus demonstrate that

 104

our Subspace Decision Cluster Classifier outperforms other classifiers including SVM,

decision tree.

The rest of this chapter is organized as follows. In Section 7.2, we briefly review the

subspace clustering algorithm Entropy Weighting k-Means (EWKM). In Section 7.3, we

introduce the construction method of the subspace decision cluster tree and the methods

of model selection and classification. In Section 7.4, experimental results and

comparisons are reported. In Section 7.5, we conclude this chapter.

7.2 Entropy Weighting k-Means Algorithm

In this section, we briefly review the subspace clustering algorithm Entropy Weighting

k-Means (EWKM) [3] used for clustering high-dimensional sparse data.

High dimensional data is common in real world data mining applications, such as text

data mining, bioinformatics data mining and business data mining. Sparsity is a classic

problem of high dimensional data. In text data mining, documents related to a particular

topic such as culture are characterized by a subset of words. Words appearing in culture

documents may not appear in sport documents. The clustering algorithms dealing with

this kind of high dimensional sparse data are called subspace clustering algorithms. In

the subspace clustering, each cluster contains a set of samples identified by a subset of

dimensions.

Entropy Weighting k-Means (EWKM) algorithm is a soft subspace clustering

algorithm which clusters data samples in the entire dimensional space but assigns

different weights to different dimensions for each cluster during clustering process [3].

The dimensions which are more important for identifying the corresponding cluster will

get larger weights. Dimensions make different contributions to the evaluation of objects

in a cluster. It is different from Weighting k-means (WKM) which is adopted in the work

of Chapter 4. WKM is not a subspace algorithm. It just assigns smaller weights for noisy

dimensions and larger weights for non-noisy dimensions. All clusters have the same

 105

weight distribution of the entire data space in WKM. However, EWKM can find clusters

in subspaces by giving different weight distributions for different clusters.

The objective function is written as follows:

2

1 1 1 1

(, ,) [() log]
k n m m

lj li li ji li li
l j i i

F W Z z x   
   

       (7-1)

Subject to

1

1

1,1 ,1 , {0,1}

1,1 ,1 ,0 1

k

lj lj
l

m

li li
i

j n l k

l k i m

 

 





      

       





 (7-2)

In Function (7-1), is the number of objects, is the number of clusters and

is the number of dimensions.

n k m

 is the weight distribution of dimensions for each

cluster, Z is the centroids of the clusters, and W is partition matrix. lj is the

degree of membership of the j th object belonging to the th cluster. l li is the weight

for the th dimension in the th cluster. i l jix is value of the th dimension the i j th

object and is the value of the th component of the th cluster center. The details

of the EWKM algorithm can be found in [3].

liz i l

7.3 Subspace Decision Cluster Tree

In this section we demonstrate the techniques during the construction process of a

subspace decision cluster tree. The Entropy Weighting k-Means (EWKM) [3] clustering

algorithm is adopted to build a subspace decision cluster tree because it is efficient and

able to automatically find clusters from subspace of data instead of the entire data space

and compute the attribute weights from the training data to reduce the effect of noisy

attributes. Sub-clusters which are generated from the same father cluster are represented

in different subsets of attributes.

 106

7.3.1 Definitions

Let 1 2{ , ,..., }nX x x x

m

 be a training data set of classified objects, each described

by attributes and labeled by one of classes.

n

K

Definition 1. The dominant class in a cluster is the class that the majority of objects

are labeled. A cluster with a dominant class is called a decision cluster. The percentage

of the dominant class in the cluster defines the confidence level of the decision cluster.

Definition 2. A subspace decision cluster (SDC) is a cluster which is generated by a

subspace clustering algorithm and exists in the subspace of all dimensions.

Definition 3. A subspace decision cluster classifier (SDCC) consists of a subset of

subspace decision clusters generalized from the whole training data set.

In principle, any subset of subspace decision clusters can form a SDCC model.

However, the model performance on classification accuracy depends on the subspace

decision clusters generated by the clustering process and also depends on which

subspace decision clusters are selected to form the classification model. Therefore, the

following two processes are crucial: (1) generation of a set of subspace decision clusters

and (2) selection of a subset of these clusters for the model. Below, we present a method

to generate a set of nested clusters that form a subspace decision cluster tree for

classification model selection.

 7.3.2 Subspace Decision Cluster Classifier (SDCC) Algorithm

Table 7.1 shows the algorithm of automatic construction of subspace decision cluster

tree and the selection of the SDCC model.

 107

Table 7.1 SDCC Algorithm.

Input: A training data set (with m dimensions and classes). T K

Output: A classification model modSDCC el .

Tree construction

1. initialize a subspace decision cluster tree with root { ; SDCT }T

2. sign the root as internal node;

3. for each internal node X in SD CT

4. if () min ()Ter al Test X

5. sign X as leafnode ;

6. break;

7. end if

8. (,)k K Selection X   ;

9. CENT = ER ARRAY (,)C Selection k X ;//Compute initial centers

10. run on EWKM X with k and CENTER ARRAY ;

11. sign sub-clusters as ; k int ernalnode

12. assign sub-clusters to ; k SDCT

13. end for

Model selection

14. extract all leaf nodes from as classification model ; SDCT modSDCC el

15. return ; modSDCC el

End

 108

7.3.3 Constructing a Subspace Decision Cluster Tree

Subspace clustering algorithms can find clusters from subspace instead of the entire

attributes space. EWKM is one of soft subspace clustering algorithms [3] which is to

cluster objects in the entire data space but assign different weighting values to the

attributes of clusters in the clustering process, based on the importance of the attributes

in identifying the corresponding clusters. EWKM can automatically weigh attributes on

their importance during the clustering process.

In EWKM algorithm, a new step is introduced to the basic k-means algorithm to

update the weight entropy based on the current partition of data. The objective function

with this new term can minimize the within-cluster dispersion and maximize the

negative weight entropy (the second term in Function (7-1) to stimulate more

dimensions to contribute to the identification of clusters simultaneously. For the high

dimensional text data sets, EWKM algorithm outperforms the other subspace clustering

algorithms [2].

In this chapter, the construction of the subspace decision cluster tree is a recursive

division process by recursively executing the EWKM clustering algorithm. To partition

a cluster into sub-clusters with EWKM algorithm, we need to specify a parameter

which is the number of sub-clusters to be generated. We also need to specify the initial

centers for each sub-cluster. Here, we still take advantage of the class label information

as in Chapter 4. We propose some methods to control the iteration and improve the

clustering process. These methods include the method of selecting k for EWKM

(

k

(,)K Selection X 

(,)C Selection k X

), the method of selecting initial centers for EWKM

() and the termination test method (), where  Terminal Te X st

X is the current node to be partitioned, α is a threshold and is the number of

sub-clusters. These methods are explained in Chapter 4.

k

We determine the value of by considering the distribution of classes. We compute k

 109

the percentage of samples in each class compared with all samples in the current node.

Given a threshold α, let be the number of classes whose percentages are larger than

or equal to α. This paper implemented the selection of by the function

k

k

(,)K Selection X  : X is the current sample set and α is the threshold. The

function returns the value of . EWKM algorithm is a local search approximation

algorithm. If we can specify better centers at the beginning, it can reduce the number of

iterations and get better clustering result more quickly. In this chapter we still use

supervised selection method

k

C (,)Selection k X . Using the class centers can

accelerate the process of selecting the initial centers as well as improve the accuracy of

determination of initial centers vastly. The stopping test stage which determines whether

a node should be further divided or not, is vital for the whole tree construction and will

influence the quality of the tree as well as the quality and computing efficiency of the

classifier. We consider the size, class purity and data distribution together when doing

the stopping test. We implemented a termination test method considering the above three

aspects by method in Chapter 4. The efficiency of these methods

have been shown in Chapter 4.

 XTerminalTest

7.3.4 Model Selection and Classification

After a subspace decision cluster tree is built, any subset of disjoint decision clusters

makes a SDCC model. In this work, we select the leaf nodes of the subspace decision

cluster tree because leaf nodes are disjoint with each other and all of them as a whole

cover all training samples.

The classification model is used to classify new objects as the following: (1) Select a

distance function specific for classification; (2) Compute the distances between a new

object and the centers of the decision clusters in the model; (3) Identify the decision

cluster with the shortest distance to the object and assign the label of the decision cluster

to the new object as its class.

 110

In this work, we use the cosine distance function which is often used in text mining as

follows:

(,)
|| |||| ||

A B
Sim A B

A B


 (7-3)

Function (7-3) is a measure of similarity between two documents by finding the

cosine of the angle between them. Given two vectors (representing the two documents),

A and B, the cosine similarity is represented using their dot product and magnitudes as

shown in Function (7-3).

7.4 Experiments

In this section, we present the experiments we have conducted on real text data sets. We

compared the classification performance of our classification algorithm and other

classification algorithms. All experiments were conducted on in Intel(R) Xeon(R), 1.60

GHz computer with 8GB memory.

7.4.1 Evaluation Method

We compare our SDCC on the Text Classification task with other classification methods

such as J48 [27](one of decision tree algorithms), SMO [124] (one of SVM methods in

Weka [126]) and libSVM [132]. In this chapter, we focus on classifying multi-class text

classification. 10-fold cross-validation has been accomplished for each data set.

To evaluate the classification performance for each class, F1 [50], precision [48] and

recall [49] as shown in the Equation (7-4), (7-5) and (7-6) were used. To measure the

average performance for all classes of the whole data sets, the macro-averaging F1 and

micro-averaging F1 were used. F1 is a combined form for precision (P) and recall (R),

which is defined as Equation (7-4).

2
1

PR
F

P R



 (7-4)

 111

Table 7.2 The contingency table for class . ic

Real class
Class ic

Positive Negative

Positive iTP iFP Classifier results
Negative iFN iTN

i
i

i i

TP
P

TP FP



 (7-5)

i
i

i i

TP
R

TP FN



 (7-6)

Micro-averaging: and P R are obtained by summing over all individual

decisions as shown in Equation (7-7), (7-8) and (7-9), where  indicates

micro-averaging.

1

1
()

K

ii
K

i ii

TPTP
P

TP FP TP FP

 



 
 




 (7-7)

1

1
()

K

ii
K

i ii

TPTP
R

TP FN TP FN

 



 
 




 (7-8)

2
1

P R
F

P R

 


 


 (7-9)

Macro-averaging: precision and recall are first evaluated “locally” for each class, and

then “globally” by averaging over the results of the different classes as shown in

Equation (7-10), (7-11), and (7-12), where M indicates macro-averaging.

1

K

iM i
P

P
K
  (7-10)

1

K

iM i
R

R
K
  (7-11)

 112

2
1

M M
M

M M

P R
F

P R



 (7-12)

In the rest of this chapter, we use 1F  and 1M F to denote micro-F1 and

macro-F1 respectively.

7.4.2 Data sets and Experimental Settings

Our experiments were done on 20-Newsgroups data which is taken from the UCI

machine learning data repository [23]. The original text data was first preprocessed to

strip the news messages from the special tags and the email headers and eliminate the

stem words and stop words. The dimension (word) in each document was weighted by

the Term Frequency (TF). Table 7.3 lists eight data sets built from the 20-Newsgroups

data. We preprocessed these data sets by deleting some dimensions with smallest TF

value. Several thousands words is enough for text data. We also keep all words for T1,

T2 and T8 to show our algorithm is efficient on very high dimensional sparse data. Data

sets have different cluster properties. Some of them have semantically similar classes

(such as T3, T6), whereas others contain semantically different classes (such as T1, T2,

T7, T8). Some of them have overlapping words (dimensions) (such as T5, T6, T7), while

some of them contain the unbalanced number of documents in each class (such as T2).

We evaluate our SDCC classifier on the real Text Classification task by comparing

SDCC's performance with decision tree (J48) [24] and the two SVM methods (SMO

[124] and libSVM [132]). Weka [126] implementations of J48 and SMO were used in

our comparisons. We adopted Weka LibSVM (WLSVM) [132] which combines the

strength of Weka and LibSVM. Weka has a GUI and produces many useful statistics and

is easy to use. LibSVM runs much faster than Weka SMO and supports several SVM

methods. WLSVM can be viewed as an implementation of the LibSVM running under

Weka environment. Our new method SDCC is implemented in java. For the two SVM

tools (SMO and libSVM), the linear kernel and the default settings were used which

 113

yields the best results in our experiments. For SDCC, we always set α (the parameter

in (,)K Selection X 

 rminal Test X

) equal to 0.05, δ(a parameter in) equal

to the 10% of the number of samples in smallest class, and β (another parameter in

) equal to 90%.

 Terminal Test X

Te

Table 7.3 Text data sets generated from the 20-Newsgroups data.

 114

7.4.3 Overall Performance

We compare the overall performance of our method with J48, SMO and libSVM. The

comparison results are shown in Table 7.4. We can see that SDCC outperforms the other

three classification algorithms obviously on T1, T2 and T8. For the other five text data

sets, SDCC outperforms J48 and SMO vastly and its performance is comparable with

libSVM.

Table 7.4 Overall performance comparison of different classification methods.

Classifier Metric T1 T2 T3 T4 T5 T6 T7 T8

SDCC
1F 
1M F

0.9425
0.9462

0.8863
0.8714

0.9681
0.9691

0.9722
0.9725

0.9677
0.9681

0.9646
0.9659

0.9583
0.9602

0.806
0.8152

J48
1F 
1M F

0.7725
0.7829

0.7726
0.7815

0.8541
0.8545

0.8958
0.8963

0.8114
0.8119

0.7865
0.7875

0.7316
0.7321

0.59
0.6117

SMO
1F 
1M F

0.8975
0.9007

0.8127
0.8102

0.8569
0.8577

0.893
0.8942

0.8656
0.8684

0.8656
0.8686

0.8475
0.852

0.724
0.7445

LibSVM
1F 
1M F

0.895
0.8977

0.8528
0.8394

0.9861
0.9863

0.9861
0.9862

0.9802
0.9805

0.9802
0.9804

0.9783
0.9785

0.716
0.7629

7.4.4 Performance Details

Table 7.5 to Table 7.12 show the performance details on data set T1 to T8. We can see

that SDCC and libSVM outperforms the other classification algorithms on each class of

those text data sets. SDCC is better than libSVM for several percent on some data sets

on which SDCC work better obviously. At the same time, libSVM is better than SDCC

for only one or two percent on the other data sets, on which other algorithms also work

well.

Table 7.5 F1 value on data set T1.

class# SDCC J48 SMO libSVM
2 0.904 0.701 0.858 0.884

10 0.964 0.779 0.894 0.88
15 0.931 0.791 0.882 0.878
18 0.974 0.835 0.959 0.942

 115

Table 7.6 F1 value on data set T2.

class# SDCC J48 SMO libSVM
2 0.888 0.767 0.842 0.866

10 0.933 0.82 0.83 0.897
15 0.824 0.693 0.696 0.758
18 0.788 0.8 0.788 0.75

Table 7.7 F1 value on data set T3.

class# SDCC J48 SMO libSVM
2 0.992 0.871 0.805 0.996
3 0.987 0.967 1 1
4 0.943 0.856 0.805 0.967
5 0.983 0.798 0.839 0.987
8 0.983 0.858 0.868 0.996

13 0.921 0.774 0.824 0.971

Table 7.8 F1 value on data set T4.

class# SDCC J48 SMO libSVM
2 0.979 0.887 0.789 0.988
3 0.952 0.928 0.983 0.992
8 0.983 0.855 0.874 0.992

13 0.967 0.841 0.877 0.975
18 0.967 0.947 0.987 0.992
19 0.983 0.916 0.851 0.979

Table 7.9 F1 value on data set T5.

class# SDCC J48 SMO libSVM
1 0.975 0.881 0.916 0.992
2 0.959 0.758 0.759 0.983
4 0.929 0.793 0.873 0.975
5 0.975 0.75 0.864 0.988
8 0.983 0.878 0.891 0.992
9 0.979 0.807 0.88 0.96

19 0.958 0.815 0.907 0.975
20 0.979 0.808 0.846 0.979

 116

Table 7.10 F1 value on data set T6.

class# SDCC J48 SMO libSVM
2 0.979 0.755 0.784 0.988
3 0.987 0.963 0.996 1
4 0.919 0.777 0.814 0.959
5 0.987 0.682 0.858 0.987
8 0.988 0.871 0.897 0.996

13 0.911 0.675 0.843 0.951
19 0.967 0.826 0.903 0.987
20 0.979 0.74 0.841 0.975

Table 7.11 F1 value on data set T7.

class# SDCC J48 SMO libSVM
1 0.979 0.77 0.924 0.987
2 0.979 0.696 0.722 0.983
4 0.91 0.714 0.829 0.962
5 0.975 0.748 0.811 0.987
8 0.967 0.763 0.838 0.992
9 0.996 0.795 0.888 0.775

10 0.943 0.733 0.866 0.955
12 0.947 0.721 0.935 0.987
13 0.89 0.589 0.797 0.958
14 1 0.787 0.892 0.996

Table 7.12 F1 value on data set T8.

class# SDCC J48 SMO libSVM
3 0.846 0.68 0.72 0.744
5 0.707 0.505 0.59 0.674
7 0.97 0.674 0.851 0.8
8 0.841 0.653 0.578 0.503

10 0.81 0.731 0.854 0.876
14 0.844 0.667 0.787 0.765
15 0.712 0.423 0.769 0.777
16 0.925 0.783 0.889 0.901
18 0.66 0.322 0.6 0.612
20 0.766 0.598 0.713 0.733

7.5 Conclusion

In this chapter, we propose a subspace decision cluster classifier (SDCC) based on the

 117

subspace decision cluster tree. This new method is designed for classifying text data sets.

SDCC adopts subspace clustering algorithm EWKM to build a subspace decision cluster

tree from a training data set. A classifier includes the cosine distance metric and a set of

subspace decision clusters which are selected from the subspace decision cluster tree.

SDCC is efficient in classifying text data sets because of the efficiency of the decision

cluster tree framework which integrates subspace clustering into classification, and also

the subspace clustering and cosine distance metric for text data mining.

We have presented experimental results on real text data sets to compare the

performance of subspace decision cluster classification method with those of other

well-known classification methods. The comparison results have shown that SDCC has

advantages in classifying large, high dimensional sparse text data with multiple classes.

 118

Chapter 8

Theoretical Analysis of Error Bound

In this chapter, we will analyze why our DCC model (Cluster-based classification) is

better than KNN method (Object-based classification). The error bound will also be

discussed in this chapter.

8.1 Why Cluster-based Is Better than Object-based

The classification step of our Decision Cluster Classification framework is KNN-like

classification. The new object is classified to the class of the nearest cluster in classifier.

We call this kind of classification Cluster-based classification, while, we call KNN

classification Object-based classification. It has been proved that the error rate of KNN

algorithm, , is less than double of the error rate of Bayesian algorithm .

That is [123].

()NNP e

() 2NNP e 

*()P e

*()P e

In our DCC framework, we adopt decision clusters instead of objects adopted by

KNN algorithm. The objects in the same decision cluster are close to each other and

with similar behavior. Decisions based on similar objects are more convincible than

decisions based on independent objects. For a cluster , the dominant class is

defined as the most frequent class in as follows:

'C '

'C

' '

' 'arg max (())
x C

W x





    (8-1)

In Equation (8-1), is the class label of the object '()W x 'x . If is the nearest

cluster to a new object

'C

x , the object x is labeled by the dominant class of cluster '

 119

'C . If the class label of 'x is  , '(())W x   equals to 1, else '(())W x  

equals to 0. The definition of ' comes from statistical view.

 We suppose there are classes in the cluster , c 'C 1 2, ,..., c   , each of them has

its own probability to be the dominant class ' . We can show the reliability of a cluster

by studying the probabilities ')iPr (ob   . The objects in the same cluster have

similar behaviors, their posterior probabilities for a class

'C

i are approximately equal.

This condition satisfies the following equation:

' ' 'Pr (| , (),i j job x x C j k')  ' '| ,i k kx x C Pr ob  ,1 ,j k c  (8-2)

So, the posterior probability for each class in the same cluster can be compared by the

numbers of objects they include. There exists a class m (1 m c ) which has larger

posterior probability than other classes. That is

' ', x ')C  ' ' 'Pr (| ,)ob x x x C
1
max Pr (|m i

i c
ob 

 
 (8-3)

Theorem 1 If there are enough samples with similar behavior in a cluster , then

there is the probability approximately equal to 1 that

'C

m is the dominant class of

.

'

'C

 Proof

 is the posterior probability of class iPP i , .

According to the large number law, can be approximately equal to the frequency

of samples in class

' ' '| ,)i i x x C Pr (PP ob 

iPP

i . So that, we have the following equation:

' '') x CC
'

'

(())
Pr (

| |
iW x

PP ob
C

' 'x|i i ,x


 
 

   (8-4)

 120

In Equation (8-4), is the number of objects in cluster . From Equation (8-3)

and (8-4), we get the following equation:

'| C | 'C

' '

'

'1 1

(())
max{ } max{ }

| |
ix C

m i
i c i c

W x
PP PP

C




   

 
  (8-5)

From the definition of dominate class ' (Equation (8-1)), we get

'Pr () 1mob    (8-6)

Theorem 2 The error rate of Decision Cluster Classification model is lower than that

of the KNN algorithm.

Proof

In the nearest neighbor algorithm, if there are enough training samples, then the

posterior probability of object x for class i is almost equal to that of the nearest 'x .

Equation (8-7) presents this condition.

'Pr (|) Pr (|)i iob x ob x  (8-7)

Here, x and 'x are independent objects. The posterior probability for the pair '(,)x x

from class pair (,)i j  is Equation (8-8).

' 'Pr (, | ,) Pr (|) Pr (|)i j i job x x ob x ob x     (8-8)

The right-classified probability of the object P (|)NN r x x is the probability that

x and 'x have the same class label,

'

1 1

P (|) Pr (, | ,) ()
c c

NN i j i j
i j

r x ob x x  
 

   (8-9)

From Equation (8-7), (8-8) and (8-9), we get Equation (8-10).

 121

' 2

1 1 1

P (|) Pr (|) Pr (|) () Pr (|)
c c c

NN i j i j i
i j i

r x ob x ob x ob x    
  

       (8-10)

 Similarly, we can get the right-classification probability of DCC model for

classifying x . The probability of right classification is the probability of the real class

labels of objects being equal to the dominant classes of decision clusters. Suppose the

nearest cluster to x is the cluster . In another point of view, 'C x can be treated as a

member of . 'C 'x is any object in , and it has similar posterior properties with 'C x .

That is

' ' 'Pr (| ,) Pr (|)i iob x x C ob x   (8-11)

 The right-classification probability of DCC model for classifying P (|DCC r x) x

can be presented by the following equation:

'

1 1

P (|) Pr (|) Pr () (
c c

)DCC i j i j
i j

r x ob x ob  
 

      (8-12)

 From Theorem 1, we have

' 1,
Pr ()

0,
i m

iob
others

 



   


 (8-13)

Equation (8-12) can be simplified by integrating (8-13) as follows:

1

P (|) Pr (|) () Pr (|)
c

DCC i i m m
i

r x ob x ob x   


     (8-14)

From Equation (8-10), (8-14) and Pr (|) Pr (|)m iob x ob x  ,

, we have the following expression:
1

Pr (|) 1
c

i
i

ob x




2

1

1

P (|) Pr (|)

Pr (|) Pr (|) Pr (|) P (|)

c

NN i
i

c

i m m DCC
i

r x ob x

ob x ob x ob x r x



  







   




 (8-15)

 122

 From Equation (8-15), the right-classification probability for any point x in the

space dR of the nearest neighbor algorithm is less than or equal to that of the DCC

model. At the same time, the error rate of all objects in the space P (DCC e) dR of

DCC model is smaller than the error rate of the nearest neighbor algorithm as

show in the following expression:

P ()NN e

P () 1 P (|) 1 P (|) P (d dDCC DCC NN NNx R x R
e r x r x

 
     )e (8-16)

8.2 Error Bound

Suppose the decision clusters in classification model are credible enough to reflect the

space partition. The priori probability of the sample x falling into one of the

decision clusters of classifier can be estimated.

k

Pr () i
i i

N
p ob x P

N
   (8-17)

 In Equation (8-17), i is the decision cluster in classifier is the number

of objects o iP and N is the number of total objects in all decision clusters of the

classifier.

P ith ,

f

 iN

 The probability of right classification is the probability of the real class labels of

objects being equal to the dominant classes of decision clusters. The expectation of

being classified correctly by classifier can be expressed by the expectation of being

classified correctly by decision cluster as demonstrated in Equation (8-18).

((())) ((()))i iE I l x p E I l x    (8-18)

We use to denote the purity of the decision cluster . In general, the

bigger of the more reliable of the cluster . We adopt a reliability function

()iPur P

iN

ith

iP

iP

()R n

with parameter to discriminate different decision clusters. n ()R n is a monotone

 123

increasing function in the scale of . [0,1] ()iR N is the reliability of the decision

cluster . Because the probability of right classification of a decision cluster cannot be

bigger than the purity of this decision cluster and the value of

ith

iP

()iR N

i

 cannot be bigger

than 1, we have the following equation:

((() ()E I l x R N)) ()i iPur P 

))

 (8-19)

From Equation (8-18) and (8-19), we get the following equation:

((() ()i iE I l x R N()Pur P 

)) 

 (8-20)

((()) ()i iE I l x P R N (p Pur i (8-21)

We denote , then we have Equation (8-22). Here, k is the

number of decision clusters in classifier.

min min{ (Pur Pur)}iP

minPur min

1 1

((())))
k k

i i

Pur
l x p

N


 

   ()i iR N (iN R N iE I (8-22)

' () ' Let () ()f n n R n  , we have () ()f n R Rn n  n , and

'' ())' ''() (2f n R n n R   n . '' (0 ' (0) 0 '' (0) 2R ' (0) 0R) 2f R     . If there is a

point which makes ''
0()f N0N 0 (, then f n

0()

) is a convex function in .

We have already known that

0(0,)N

R()n R N in 0(,)N  . From function (8-21) we

have the following function:

0 0

min (
N

((())))
i iN N

Pur
E I l x 

 

   (
N N

f N

0N

())i if N (8-23)

Suppose there are clusters whose sizes (the number of objects) are smaller than

. is the sum of the number of objects of the clusters. The sizes of the

remain clusters are bigger than . According to the characteristics of the

convex function, we have the following function (8-24) and (8-25),

0k

0N
0kN

k

0k

0k

 124

 125

0 0

0

0 0
0 0

() () (i

i

iN N k
i

N N

N N
f N k f k f

k k




   )


 (8-24)

0 0

0

0

0
0 0

() () () () ()i

i

iN N k
i k

N N

N N N
f N k k f N N R

k k k k





     

 


 (8-25)

From Expression (8-23), (8-24) and (8-25) we can get the following

0 0

0 0

min

0 0

((())) (() () ())k k
k k

N NPur
E I l x N R N N R

N k k


N

k


    


 (8-26)

The error bound can be estimated now:

0 0

0 0

min

0 0

1 ((()))

1 ((() () ()))k
k k

Error E I l x

N NPur
N R N N R

N k k k
kN

  


    


 (8-27)

0 0min
min

0 0

1 () (() (k kk
N N N N NPur N

Error Pur R R R
k k N k k k

0

0

))k 
   

 
 (8-28)

0 0

0 0

min
min

0 0

min
0

1 () (

1 (1) ()

k kk

k k

N N N NPur N
Error Pur R R

k k N k k

N N N
Pur R

N k k

)
 

  
 


  



 (8-29)

We simplify the 0

0

()kN N
R

k k




 as 0()R x , we can get the final conclusion that

0

min 01 (1) (kN
Error Pur R x

N
  ) (8-30)

We can see that, the precision of DCC model partially depends on the size and purity

of decision clusters of classifier. The bigger and more pure decision clusters lead to

getting lower error rate.

Chapter 9

Conclusion

We have presented a new classification framework which integrates clustering into

classification work. Under this framework, different classifiers are proposed with

different characteristics. Main distributions are listed in Section 9.1 and future work is

given in Section 9.2.

9.1 Main Contributions

 A novel Cluster-based classification framework which adopts clustering

algorithm to solve classification problem is presented. This framework considers

clustering and classification together. Under this Cluster-based classification

framework, a decision cluster tree or forest is built from partitioning the training

data set recursively by calling a clustering algorithm. Then, a classification

model is specified from the decision cluster tree or forest. Finally, new objects

are classified by this classification model. In a word, this classification

framework includes three steps: tree (forest) construction, model selection and

classification.

 An Automatic Decision Cluster Classification (ADCC) method is proposed, in

which, the weighted k-means (W-k-means) clustering algorithm is used to build

a Cluster-based classification model automatically. W-k-means is efficient for

large data sets and it can reduce the influence of noisy attributes by assigning

them smaller weights. The decision cluster tree is built by executing W-k-means

clustering algorithm recursively. In the tree growing process, we use various

tests including Anderson-Darling test to determine whether a node can be further

 A Decision Cluster Forest Classification (DCFC) method is developed to deal

with weak decision cluster problem and multiple classes problem. This method

builds a set of decision cluster trees from subsets of the training data set instead

of building a single decision cluster tree. These decision cluster trees form a

decision cluster forest. Each tree in the forest is built from the subset of objects

in the same class. The decision clusters in the same tree have the same dominant

class. In this way, no weak decision cluster in which no single class dominates is

created in such decision cluster tree. The decision cluster forest method has

advantages of classifying data with multiple classes because the DCFC model is

guaranteed to contain decision clusters in all classes. DCFC model is a more

intuitive and direct multi-class classification method.

 Text data is a typical high dimensional sparse data. Subspace clustering

algorithms are efficient for this kind of high dimensional sparse data. A Subspace

Decision Cluster Classification (SDCC) method is designed for text

classification. In this work, a subspace decision cluster tree is generated from the

training data set by recursively calling a subspace clustering algorithm Entropy

Weighting k-Means algorithm. In every partition, the sub-clusters are found in

their own subspaces instead of the entire dimension space. After building the

subspace decision cluster tree, we generate a classifier form the tree. In the

classification step, we use the cosine distance function which is often used in text

mining to compute the distances between new objects and the subspace decision

clusters.

 A set of decision clusters which are selected from decision cluster tree or forest

plus a specific distance metric construct a classification model. In our work, we

select leaf nodes to construct the classifier. Euclidean distance function and

 127

Cosine distance function are both integrated into our Cluster-based classification

framework. A KNN-like classification step is implemented when classifying new

objects.

 Another model selection, named Crotch Ensemble, is introduced. Instead of

considering a set of decision clusters, this model considers Crotch Predictors

which are inner nodes with their direct children. When classifying a new object,

a subset of crotch predictors is selected according to the distances between the

object and the crotch predictors. A classification is made on the object as the

class predicted by the crotch predictors with the maximum accumulative weights.

If a new object is misclassified by one crotch predictor, the misclassification can

be corrected by other crotch predictors. Multiple crotch predictor decisions are

more robust than the single decision cluster decision.

 An experimental scheme is designed to demonstrate the performance of this

series of classification methods under the Decision Cluster Tree framework. We

have demonstrated the efficiency and effectiveness of our new methods. We also

conducted experiments to compare our new methods with other classification

methods.

9.2 Future Work

We now discuss a few directions along which we plan to continue our work.

 More complex model selection methods. In this thesis, the model selection

methods are a little simple. We would like to design some other model selection

methods. We plan to study more model selection methods and to extract new

model selection methods for our Cluster-based classification framework.

 More experiments to compare the DCFC model with the ECOC multi-class

classification method. The error-correcting output codes method (ECOC) was

 128

designed to solve multi-class learning problem by learning multiple binary

classification models and matching the classification results with the designed

codeword to correct misclassifications. We plan to compare our DCFC method

with ECOC on multi-class classification problem specially.

 Other subspace algorithms to be implemented in our framework. There are a lot

of subspace clustering algorithms in the literature. Besides EWKM, we intend to

investigate other subspace clustering algorithms according to their own

characteristics.

 Further use of branch information in classification step. In this thesis, we have

not made good use of the information of branches in the decision cluster tree. We

plan to make use of the information of branches further.

 Further theoretical analysis. We would like to give a complete theoretical system

for our Cluster-based classification framework. We plan to analyze why our

Cluster-based classification framework integrates clustering methods into

classification problem from theoretical view.

 More research work on dealing with other kinds of data sets. We would like to

handle other cluster shapes except spherical cluster shape.

 129

Bibliography

[1] J.Z. Huang, M.K. Ng, T. Lin and D. Cheung, “An Interactive Approach to

Building Classification Models by Clustering and Cluster Validation,” IDEAL

2000, LNCS 1983, pp. 23-28, 2000.

[2] J.Z. Huang, M.K. Ng, H.Q. Rong and Z.C. Li, “Automated Variable Weighting in

k-Means Type Clustering,” IEEE Transactions on Pattern Analysis. Mach.

Intell., Vol. 27, no. 5, pp. 657-668, 2005.

[3] L. Jing, M. Ng and J. Huang, “An Entropy Weighting k-means Algorithm for

Subspace Clustering of High-dimensional Sparse Data,” IEEE Transactions on

Knowledge and Data Engineering, vol.19, pp. 1026-1041, 2007.

[4] S.K. Murthy, “Automatic construction of decision trees from data: a

multidisciplinary survey,” Data Mining Knowl. Disc., vol. 2, no. 4, pp. 345–389,

1998.

[5] H.J. Zeng, X.H. Wang, Z. Chen and W.Y. Ma, “CBC: Clustering Based Text

Classification Requiring Minimal Labeled Data,” Proc. of the Third IEEE

International Conference on Data Mining (ICDM’03), pp. 443-450, 2003.

[6] T.W. Anderson and D.A. Darling, “Asymptotic theory of certain

"goodness-of-fit" criteria based on stochastic processes,” Annals of

Mathematical Statistics vol. 23, pp. 193-212, 1952.

[7] M.A. Stephens, “EDF Statistics for Goodness of Fit and Some Comparisons,”

Journal of the American Statistical Association, vol. 69, pp. 730-737, 1974.

[8] A.K. Jain, M.N. Murty and P.L. Flynn, “Data Clustering: A Review,” ACM

Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999.

[9] M. Steinbach, L. Ertoz and V. Kumar, “The Challenges of Clustering High

Dimensional Data,”

http://www-users.cs.umn.edu/~ertoz/papers/clustering_chapter.pdf, 2003.

[10] D. Cai, X. He and J. Han, “Document Clustering Using Locality Preserving

Indexing,” IEEE Trans. Knowledge and Data Eng.,vol. 17, no. 12, Dec. 2005.

 130

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/n/Ng:Michael_K=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/n/Ng:Michael_K=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/r/Rong:Hongqiang.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Li:Zichen.html
http://www.informatik.uni-trier.de/~ley/db/journals/pami/pami27.html#HuangNRL05
http://www.informatik.uni-trier.de/~ley/db/journals/pami/pami27.html#HuangNRL05
http://en.wikipedia.org/w/index.php?title=Donald_A._Darling&action=edit

[11] C.C. Aggarwal and P.S. Yu, “Finding Generalized Projected Clusters in High

Dimensional Spaces,” Proc. ACM SIGMOD Int’l Conf. Management of Data,

pp. 70-81, 2000.

[12] C.M. Procopiuc, M. Jones, P.K. Agarwal and T.M. Murali, “A Monte Carlo

Algorithm for Fast Projective Clustering,” Proc. ACM SIGMOD Int’l Conf.

Management of Data, pp. 418-427, 2002.

[13] C. Domeniconi, D. Papadopoulos, D. Gunopulos and S. Ma, “Subspace

Clustering of High Dimensional Data,” Proc. SIAM Int’l Conf. Data Mining, pp.

246-257, 2004.

[14] J.H. Friedman and J.J. Meulman, “Clustering Objects on Subsets of Attributes,”

J. Royal Statistical Soc. B, vol. 66, no. 4, pp. 815-849, 2004.

[15] N. Ye and X.Y. Li, “A Machine Learning Algorithm Based on Supervised

Clustering and Classification,” AMT 2001, LNCS 2252, pp. 327–334, 2001.

[16] L. Jing, M.K. Ng, J. Xu and J.Z. Huang, “Subspace Clustering of Text

Documents with Feature Weighting k-Means Algorithm,” Proc. of the Ninth

Pacific-Asia Conf. Knowledge Discovery and Data Mining, pp. 802-812, 2005.

[17] L. Parsons, E. Haque and H. Liu, “Subspace Clustering for High Dimensional

Data: A Review,” SIGKDD Explorations, vol. 6, no. 1, pp. 90-105, 2004.

[18] Z. Huang, “Extensions to the k-Means Algorithms for Clustering Large Data

Sets with Categorical Values,” Data Ming and Knowledge Discovery, vol. 2, no.

3, pp. 283-304, 1998.

[19] J. Mui and K. Fu, “Automated Classification of Nucleated Blood Cells Using a

Binary Tree Classifier,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 2, No. 5, pp. 429-443, 1980.

[20] Y.M. Ye, J. Huang, X.J. Chen, S.G. Zhou, G. Williams and X.F. Xu,

“Neighborhood Density Method for Selecting Initial Cluster Centers in

K-Means Clustering,” PAKDD, pp. 189-198, 2006.

[21] G. Piatetsky-Shapiro, C. Djeraba, L. Getoor, R. Grossman, R. Feldman and M.

Zaki, “What Are The Grand Challenges for Data Mining,” PAKDD-2006 Panel

Report, SIGKDD Explorations, vol. 8, no.2, pp. 70-77, 2006.

 131

http://www.informatik.uni-trier.de/~ley/db/conf/pakdd/pakdd2006.html#YeHCZWX06

[22] A. Kyriakopoulou and T. Kalamboukis, “Text Classification Using Clustering,”

ECML-PKDD Discovery Challenge Workshop Proceedings, 2006.

[23] C. Blake and C. Merz, UCI Repository of machine learning databases,

Department of Information and Computer Science, University of California,

Irvine, CA, 1998[http://www.ics.uci.edu/~mlearn/MLRepository.html].

[25] J. Han and M. Kamber: Data Mining Concepts and Techniques, Second Edition.

2006.

[26] C.J. van Rijsbergen, Information Retireval, 2nd ed., London, Butterworths,

London, 1979.

[27] Quinlan, John Ross, C4.5: Programs for Machine Learning. Morgan Kaufmann

Pub., San Mateo, CA,1993.

[28] K.C. You and King-Sun Fu, “An approach to the design of a linear binary tree

classifier,” Proc. of the Third Symposium on Machine Processing of Remotely

Sensed Data, West Lafayette, IN, 1976. Purdue Univ.

[29] Robust linear discriminant trees. In (AI&Stats-95), pp. 285–291.

[30] Breiman, Leo, Jerome Friedman, Richard Olshen, and Charles Stone,

“Classification and Regression Trees,” Wadsworth Int. Group, 1984.

[31] S. Murthy, S. Kasif and S. Steven, “A system for induction of oblique decision

trees,” J. of Artificial Intelligence Research, vol. 2, pp. 1–33, August 1994.

[32] M. Golea, and M. Marchand, “A growth algorithm for neural network decision

trees,” EuroPhysics Letters, vol. 12, no. 3, pp. 205–210, June 1990.

[33] J.A. Sirat and J.-P. Nadal, “Neural trees: A new tool for classification,” Network:

Computation in Neural Systems, vol. 1, no. 4, pp. 423–438, October 1990.

[34] T.M. Cover and P.E. Hart, “Nearest Neighbor Pattern Classification,” IEEE

Trans. Information Theory, vol. 13, no. 1, pp. 21-27, 1967.

[35] B. Zhang, S. N. Srihari, “Fast k-Nearest Neighbor Classification Using

Cluster-Based Trees,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 26, No. 4, April 2004.

 132

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/z/Zhang:Bin.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Srihari:Sargur_N=.html

[36] F. Angiulli, “Fast Nearest Neighbor Condensation for Large Data Sets

Classification,” IEEE Transactions on Knowledge and Data Engineering, vol.

19, no. 11, pp. 1450-1464, 2007.

[37] F. Angiulli, “Fast Condensed Nearest Neighbor Rule,” Proc. of the 22nd Int’l

Conf. Machine Learning (ICML ’05), pp. 25-32, 2005.

[38] G.L. Ritter, H.B. Woodruff, S.R. Lowry, and T.L. Isenhour, “An Algorithm for a

Selective Nearest Neighbor Decision Rule,” IEEE Trans. Information Theory,

vol. 21, pp. 665-669, Nov. 1975.

[39] C.L. Chang, “Finding Prototypes for Nearest Neighbor Decision Rule,” IEEE

Trans. Computers, vol. 23, no. 11, pp. 1179-1184, Nov. 1974.

[40] P.E. Hart, “Condensed Nearest Neighbor Rule,” IEEE Trans. Information

Theory, vol. 14, pp. 515-516, May 1968.

[41] D.W. Jacobs and D. Weinshall, “Classification with Non-Metric Distances:

Image Retrieval and Class Representation,” IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 22, no. 6, pp. 583-600, June 2000.

[42] A.J. Broder, “Strategies for Efficient Incremental Nearest Neighbor Search,”

Pattern Recognition, vol. 23, nos. 1/2, pp. 171-178, Nov. 1986.

[43] A. Farago, T. Linder and G. Lugosi, “Fast Nearest-Neighbor Search in

Dissimilarity Spaces,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 15, no. 9, pp. 957-962, Sept. 1993.

[44] J.H. Friedman, F. Baskett and L.J. Shustek, “An Algorithm for Finding Nearest

Neighbors,” IEEE Trans. Computers, vol. 24, no. 10, pp. 1000-1006, Oct. 1975.

[45] K. Fukunaga and P.M. Narendra, “A Branch and Bound Algorithm for

Computing k-Nearest Neighbors,” IEEE Trans. Computers, vol. 24, no. 7, pp.

750-753, July 1975.

[46] G. Toussaint, “Proximity Graphs for Nearest Neighbor Decision Rules: Recent

Progress,” Proc. of the 34th Symp. Interface of Computing Science and

Statistics (Interface ’02), Apr. 2002.

[47] D.R. Wilson and T.R. Martinez, “Reduction Techniques for Instance-Based

Learning Algorithms,” Machine Learning, vol. 38, no. 3, pp. 257-286, 2000.

 133

[48] R. Bar-Haim, I. Dagan, B. Dolan, L. Ferro, D. Giampiccolo, B. Magnini, and I.

Szpektor, “The Second PASCAL Recognising Textual Entailment Challenge,”

Proc. of the Second PASCAL ChallengesWorkshop on Recognising Textual

Entailment, Venezia, Italy, 2006.

[49] I. Dagan, O. Glickman and B. Magnini, “The PASCAL Recognising Textual

Entailment Challenge,” Proc. of the PASCAL Challenges Workshop on

Recognising Textual Entailment, Southampton, UK, pp. 1–8, 2005.

[50] J. Herrera, A. Penas and F. Verdejo, “Question Answering Pilot Task at CLEF

2004,” Working Notes of the CLEF 2004 Workshop, Bath, United Kingdom,

2004.

[51] R.S. Zemel and G.E. Hinton, “Learning population codes by minimum

description length,” Neural Computation, vol. 7, no. 3, pp. 549–564, 1995.

[52] G.E. Hinton and R. Zemel, “Autoencoders, minimum description length and

helmholtz free energy,” Advances in Neural Information Processing Systems 6,

1994.

[53] Hiroshi Tenmoto, Mineichi Kudo and Masaru Shimbo, “MDL-Based Selection

of the Number of Components in Mixture Models for Pattern Classification,”

SSPR/SPR, pp. 831-836, 1998.

[54] H. Bischof, A. Leonardis, and A. Selb, “MDL principle for robust vector

quantization,” Pattern Analysis and Application, vol. 2, no. 1, pp. 59-72, 1999.

[55] Petri Kontkanen, Petri Myllymaki, Wray Buntine, Jorma Rissanen and Henry

Tirri, “An MDL framework for data clustering,” Advances in Minimum

Description Length: Theory and Applications, P. Grunwald, I.J. Myung, and M.

Pitt, Eds., pp. 323–353. MIT Press, Cambridge, 2005.

[56] Petri Kontkanen, Hannes Wettig, and Petri Myllymäki, “NML Computation

Algorithms for Tree-Structured Multinomial Bayesian Networks,” EURASIP

Journal on Bioinformatics and Systems Biology, vol. 2007, Article ID 90947, 11

pages, 2007. doi:10.1155/2007/90947.

[57] J.I. Myung, D.J.Navarro, Mark A. Pitt, “Model selection by normalized

maximum likelihood,” Journal of Mathematical Psychology, vol. 50, pp.

167–179, 2006.

 134

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T08-3TVP5TF-17&_user=107833&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=0636aca7a05e66bc43ab9bfe5e7e0bb0#bb31#bb31
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Tenmoto:Hiroshi.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Shimbo:Masaru.html
http://www.informatik.uni-trier.de/~ley/db/conf/sspr/sspr1998.html#TenmotoKS98

[58] Anne Patrikainen and Marina Meila, “Comparing Subspace Clusterings,” IEEE

Trans. Knowledge and Data Engineering, Vol. 18, No. 7, July 2006.

[59] Arindam Banerjee and Inderjit Dhillon, “A Generalized Maximum Entropy

Approach to Bregman Co-clustering and Matrix Approximation,” Journal of

Machine Learning Research, vol. 8, 2007.

[60] Z. Huang and T. Lin, “A Visual Method of Cluster Validation with Fastmap,”

PAKDD 2000, LNAI 1805, pp. 153-164, 2000.

[61] S.R. Safavian and D. Landgrebe, “A survey of Decision Tree Classifier

Methodology,” IEEE Transactions ON Neural Networks, Vol. 2, pp. 285-293,

1991.

[62] M.J. Kearns and Y. Mansour, “A Fast, Bottom-Up Decision Tree Pruning

Algorithm with Near-Optimal Generalization,” ICML, pp. 269-277, 1998.

[63] A. Hartigan, “Direct clustering of a data matrix,” Journal of the American

Statistical Association, vol. 67, no. 337, pp. 123-129, 1972.

[64] B. Gao, T. Liu, X. Zheng, Q. Cheng and W. Ma, “Consistent bipartite graph

co-partitioning for starstructured high-order heterogeneous data co-clustering,”

Proc. of the 11th International Conference on Knowledge Discovery and Data

Mining (KDD), pp. 41–50, 2005.

[65] H. Cho, I.S. Dhillon, Y. Guan and S. Sra, “Minimum sum-squared residue

co-clustering of gene expression data,” Proc. of the 4th SIAM International

Conference on Data Mining (SDM), pp. 114–125, 2004.

[66] T. George and S. Merugu, “A scalable collaborative filtering framework based

on co-clustering,” Proc. of the IEEE Conference on Data Mining, pp. 625–628,

2005.

[67] J. Rissanen, “Modeling by the shortest data description,” Automatica 14, pp.

465-471, 1978.

[68] J. Rissanen, “Fisher information and stochastic complexity,” IEEE Transactions

on Information Theory, vol. 42, no. 1, pp. 40-47, 1996.

[69] F. Sebastiani, “Machine learning in automated text categorization,” ACM

Computing Surveys, vol. 34, no. 1, pp. 1-47, 2002.

 135

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Mansour:Yishay.html
http://www.informatik.uni-trier.de/~ley/db/conf/icml/icml1998.html#KearnsM98

[70] J. D. M. Rennie, L. Shih, J. Teevan and D. R. Karger, “Tackling the poor

assumptions of naive Bayes text classifiers,” Proc. of the Twentieth

International Conference on Machine Learning, pp. 616–623, 2003.

[71] I. Makoto and T. Takenobu, “Cluster-Based text categorization: A comparison

of category search strategies,” Proc. of the 18th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pp.

273–280, 1995.

[72] A. Mccallum and K. Nigam, “A comparison of event models for naive Bayes

text classification,” Proc. of the AAAI-98 Workshop on Learning for Text

Categorization, pp. 41–48, 1998.

[73] B. Masand, G. Lino and D. Waltz, “Classifying news stories using memory

based reasoning,” Proc. of the 15th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pp. 59–65,

1992.

[74] Y. M. Yang, “Expert network: Effective and efficient learning from human

decisions in text categorization and retrieval,” Proc. of the 17th Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval, pp. 13–22, 1994.

[75] Y. M. Yang and X. Liu, “A re-examination of text categorization methods,” Proc.

of the 22nd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 42–49, 1999.

[76] C. Buckley, G. Salton and J. Allan, “The effect of adding relevance information

in a relevance feedback environment,” Proc. of the 17th Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval, pp. 292–300, 1994.

[77] T. Joachims, “A probabilistic analysis of the Rocchio algorithm with TFIDF for

text categorization,” Proc. of the 14th International Conference on Machine

Learning, pp. 143–151, 1997.

[78] H. Guo and S.B. Gelfand, “Classification trees with neural network feature

extraction,” IEEE Trans. Neural Netw, Nol. 3, no. 6, pp. 923–933, 1992.

[79] J.M. Liu, and T. S. Chua, “Building semantic perceptron net for topic spotting,”

 136

Proc. of the 37th Meeting of the Association of Computational Linguistics, pp.

370–377, 2001.

[80] H.T. Ng, W.B. Goh and K.L. Low, “Feature selection, perceptron learning, and a

usability case study for text categorization,” Proc. of the 20th Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval, pp. 67–73, 1997.

[81] M.E. Ruiz and P. Srinivasan, “Hierarchical neural networks for text

categorization,” Proc. of the 22nd Annual International ACMSIGIR Conference

on Research and Development in Information Retrieval, pp. 81–82, 1999.

[82] H. Schutze, D.A. Hull and J.O. Pedersen, “A comparison of classifier and

document representations for the routing problem,” Proc. of the 18th Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval, pp. 229–237, 1995.

[83] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, Vol. 20,

pp. 273–297, 1995.

[84] T. Joachims, “Text categorization with support vector machines: Learning with

many relevant features,” Proc. of the 10th European Conference on Machine

Learning, pp. 137–142, 1998.

[85] T. Joachims, “Learning to Classify Text Using Support Vector Machines,”

Kluwer Academic, Hingharn,MA, 2002.

[86] R. Schapire and Y. Singer, “BoosTexter: A boosting-based system for text

categorization,” Machine Learning, vol. 39, no. 2–3, pp. 135–168, 2000.

[87] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, “Classification and

Regression Trees,” Wadsworth, Belmont, CA, 1984.

[88] C.E. Brodley and P.E. Utgoff, “Multivariate decision trees,” Machine Learning,

vol. 19, no. 1, pp. 45–77, 1995.

[89] J. Quinlan, “C4.5: Programming for Machine Learning,” Morgan Kaumann,

SanFransisco, CA, 1993.

[90] P.E. Utgoff and C.E. Brodley, “Linear machine decision trees,” COINS Tech.

Rep. 91–10, Dept. of Computer Science, University of Massachusetts, 1991.

 137

[91] L. Denoyer, H. Zaragoza and P. Gallinari, “HMM-Based passage models for

document classification and ranking,” Proc. of the 23rd European Colloquium

on Information Retrieval Research, pp. 126–135, 2001.

[92] D.R.H. Miller, T. Leek and R.M. Schwartz, “A hidden Markov model

information retrieval system,” Proc. of the 22nd Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pp.

214–221, 1999.

[93] H. Guan, J.Y. Zhou and M.Y. Guo, “A Class-Feature-Centroid Classifier for

Text Categorization,” Proc. 18th International Word Wide Web Conference

(WWW2009), 2009.

[94] P. Frasconi, G. Soda and A. Vullo, “Text categorization for multi-page

documents: a hybrid naïve Bayes HMM approach,” Proc. of the 1st

ACM/IEEE-CS joint conference on Digital libraries, pp. 11-20, ACM Press

New York, NY, USA, 2001.

[95] A.M. Kibriya, E. Frank, B. Pfahringer and G. Holmes, “Multinomial naïve

bayes for text categorization revisited,” Advances in Artificial Intelligence (AI

2004), pp. 488-499,2004.

[96] G.D. Guo, H. Wang, D. Bell, Y.X, Bi and K. Greer, “Using kNN model for

automatic text categorization,” Soft Computing, vol. 10, no. 5, pp. 423-430,

2006.

[97] R.N. Chau, C.S. Yeh and K.A. Smith, “A neural network model for hierarchical

multilingual text categorization,” Advances in Neural Networks, LNCS, pp.

238-245, 2005.

[98] S. Gao, W. Wu, G.H. Lee and T.S. Chua, “A maximal figure-of-merit

(MFoM)-learning approach to robust classifier design for text categorization,”

ACM Transactions on Information Systems, vol. 42, no. 2, pp. 190-218, 2006.

[99] D. Lewis and J. Catlett, “Heterogeneous uncertainty sampling for supervised

learning,” Proc. of the Eleventh International Conference on Machine Learning,

pp. 148-156, 1994.

[100] S. Weiss, C. Apte, F. Damerau, D. Johnson, F. Oles, T. Goetz and T. Hampp,

“Maximizing text-mining performance,” IEEE Intelligent Systems, pp. 63-69,

 138

1999.

[101] S. Dumais and H. Chen, “Hierarchical classification of Web content,” Proc. of

the 23rd Annual International ACM SIGIR conference on Research and

Development in Information Retrieval, pp. 256-263, 2000.

[102] R. Klinkenberg and T. Joachims, “Detecting Concept Drift with Support Vector

Machines,” Proc. of the 7th International Conference on Machine Learning, pp.

487-494, 2000.

[103] A. Broder, M. Fontoura, E. Gabrilovich, A. Joshi, V. Josifovski and T. Zhang,

“Robust classification of rare queries using web knowledge,” Proc. of the 30th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, pp. 231-238, 2007.

[104] Z. Cataltepe and E. Aygun, “An improvement of centroid-based classification

algorithm for text classification,” IEEE 23rd International Conference on Data

Engineering Workshop, pp. 952-956, 2007.

[105] V. Lertnattee and T. Theeramunkong, “Class normalization in centroid-based

text categorization,” Information Sciences, vol. 176, no. 12, pp. 1712-1738,

2006.

[106] S. Tan, “An improved centroid classifier for text categorization,” Expert

Systems with Applications, vol.35, no. 1-2, pp. 279-285, 2008.

[107] V. Tam, A. Santoso and R. Setiono, “A comparative study of centroid-based,

neighborhood-based and statistical approaches for effective document

categorization,” 16th International Conference on Pattern Recognition, pp.

235-238, 2002.

[108] T. Joachims, “Transductive Inference for Text Classification using Support

Vector Machines,” Proc. of the International Conference on Machine Learning

(ICML), pp. 200-209, 1999.

[109] Yan Li, Edward Hung, Korris Chung, Joshua Huang, “Building A Decision

Cluster Classification Model for High Dimensional Data by A Variable

Weighting k-Means Method,” Proc. of the Twenty-First Australasian Joint

Conference on Artificial Intelligence, pp. 337-347, 2008.

 139

http://www.comp.polyu.edu.hk/%7Ecsehung/paper/adcc.pdf
http://www.comp.polyu.edu.hk/%7Ecsehung/paper/adcc.pdf
http://www.comp.polyu.edu.hk/%7Ecsehung/paper/adcc.pdf

[110] J.R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp.

81-106, 1986.

[111] R. Rastogi and K. Shim, “Public: Adecision tree classifier that integrates

building and pruning,” Proc. of the 24th International Conference on Very Large

Data Bases, pp. 404-415, 1998.

[112] M. Metha, R. Agrawal and J. Riassnen, “SLIQ: A fast scalable classifier for

data mining,” Extending Database Technology, pp. 18-32, 1996.

[113] P.S. Gregory, D. Chabane, G. Lise, G. Robert, F. Ronen and Z. Mohammed,

“Grand challenges spur grand results- Private groups are offering big cash

prizes to anyone who can solve a range of daunting problems,” The Christian

Science Monitor, www.csmonitor.com/2006/0112/p13s01-stss.html, 2006.

[114] H. Kim and G. J. Koehler, “An investigation on the conditions of pruning and

induced decision tree,” European Journal of Operation Research, vol.77, pp.

82-95, 1994.

[115] J. Mingers, “An empirical comparision of pruning methods for decision tree

induction,” Machine Learning, vol. 2, pp. 227-243, 1989.

[116] J. Furnkranz, “Pruning algorithms for rule learning,” Machine Learning, vol.

27, pp. 139-172, 1997.

[117] G. Martinez-Munoz, D.Hernandez-Lobato and A. Suarez, “An Analysis of

Ensemble Pruning Techniques Based on Ordered Aggregation,” IEEE

Transactions on Pattern Analysis and Machine Inteligence, vol. 31, no. 2, pp.

245-258, 2009.

[118] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5-32,

2001.

[119] M.G. Voronoi. Nouvelles application des paramtres continus `a la th´eorie des

formes quadratiques, deuxi`eme m´emoire, recherche sur le parall ´eloedres

primitives. Journal f¨ur die reine und angewandte Mathematik, vol. 134, pp.

198- 207, 1908.

[120] L.P. Jing, J. Huang, M. Ng and H. Q. Rong, “A feature weighting approach to

building classification models by interactive clustering,” Modeling decisions for

 140

http://www.csmonitor.com/2006/0112/p13s01-stss.html

artificial intelligence, Springer-Verlag, pp. 284-294, 2004.

[121] T. Dietterich and G. Bakiri, “Solving multiclass learning problems via

error-correction output codes,” Journal of Artificial Intelligence Research, vol.

2, pp. 263-286, 1995.

[122] H. Blockeel, L. Raedt and J. Ramong, “Top-down induction of clustering

trees,” Proc. of the 15th International Conference on Machine Learning, pp.

55-63, 1998.

[123] Richard O. Duda, Peter E. Hart and David G. Stork, Pattern classification,

Second Edition, pp. 179-182, 2004.

[124] J. Platt, “ Sequential minimal optimization: A fast algorithm for training

support vector machines,” Microsoft Research,Tech.Rep.:MSR-TR-98-14, 1998.

[125] S.S. Shapiro and R.S. Francia, “An Approximate Analysis of Variance Test for

Normality,” Journal of the American Statistical Association, vol. 67, no. 337, pp.

215-216, 1972.

[126] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann and Ian H. Witten (2009), “The WEKA Data Mining Software: An

Update,” SGKDD Explorations, vol. 11, no. 1.

[http://www.cs.waikato.ac.nz/~ml/weka/].

[127] Aik Choon Tan, Daniel Q. Naiman, Lei Xu, Raimond L. Winslow and Donald

Geman, “K-TSP Program Download Page,”

2005[https://jshare.johnshopkins.edu].

[128] X. Ni, G. Xue, X. Ling, Y. Yu, and Q. Yang, “Exploring in the weblog space by

detecting informative and affective articles,” In: WWW, Branff, Canada. (2007)

[129] G. Xue, D. Xing, Q. Yang, and Y. Yu, “Deep classification in large-scale text

hierarchies,” Proc. of the 31st Annual International ACM SIGIR Conference, pp.

627-634, 2008.

[130] K. Beyer, J. Goldstein, R. Ramakrishnan and U. Shaft, “When is "nearest

neighbor" meaningful?” Database Theory-ICDT '99, LNCS 1999, pp.217-235,

1999.

[131] R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan, “Automatic subspace

 141

http://www.cs.waikato.ac.nz/%7Eml/weka/

clustering of high dimensional data for data mining applications,” SIGMOD

Record ACM Special Interest Group on Management of Data, pp. 94-105, 1998.

[132] Yasser EL-Manzalawy and Vasant Honavar, “LSVM: Integrating LibSVM into

Weka Environment,” 2005 [http://www.cs.iastate.edu/~yasser/wlsvm].

[133] L. Kaufman and P.J. Rousseeuw, “Finding groups in data: an introduction to

cluster analysis,” New York: John Wiley & Sons, 1990.

[134] J. MacQueen, “Some methods for classification and analysis of multivariate

observations,” Proc. of the 5th Berkeley Symp. Math. Statist, pp. 281-297, 1967.

[135] R. Ng and J. Han, “Efficient and effective clustering method for spatial data

mining,” Proc. of the 1994 Int. Conf. Very Large Data Bases (VLDB’94), pp.

144-155, 1994.

[136] T. Zhang, R. Ramakrishnan and M. Livny, “BIRCH: An efficient data

clustering method for very large databases,” Proc. of the 1996 ACM-SIGMOD

Int. Conf. Management of Data (SIGMOD’96), pp. 103-114, 1996.

[137] S. Guha, R. Rastogi and K. Shim, “Roch: A robust clustering algorithm for

categorical attributes,” Proc. of the 1999 Int. Conf. Data Engineering

(ICDE’99), pp. 512-521, 1999.

[138] G. Karypis, E.H. Han and V. Kumar, “CHAMELEON: A hierarchical

clustering algorithm using dynamic modeling,” COMPUTER, pp. 68-75, 1999.

[139] S. Guha, R. Rastogi and K. Shim, “Cure: An efficient clustering algorithm for

large databases,” Proc. of the ACM-SIGMOD Int. Conf. Management of Data

(SIGMOD’98), pp. 73-84, 1998.

[140] M. Ester, H.P. Kriegel, J. Sander and X. Xu, “A density-based algorithm for

discovering clusters in large spatial databases,” Proc. of the Int. Conf.

Knowledge Discovery and Data Mining (KDD’96), pp. 226-231, 1996.

[141] M. Ankerst, M. Breunig, H.P. Kriegel and J. Sander, “OPTICS: Ordering

points to identify the clustering structure,” Proc. of the ACM-SIGMOD Int.

Conf. Management of Data (SIGMOD’99), pp. 49-60, 1999.

[142] A. Hinneburg and D.A. Keim, “An efficient approach to clustering in large

multimedia databases with noise,” Proc. of the Int. Conf. Knowledge Discovery

 142

and Data Mining (KDD’98), pp. 58-65, 1998.

[143] W. Wang, J. Yang and R. Muntz, “STING: A statistical information grid

approach to special data mining,” Proc. of the Int. Conf. Very Large Data Bases

(VLDB’97), pp. 186-195, 1997.

[144] G. Sheikholeslami, S. Chatterjee and A. Zhang, “WaveCluster: A

multi-resolution clustering approach for very large spatial databases,” Proc. of

the Int. Conf. Very Large Data Bases (VLDB’98), pp. 428-439, 1998.

[145] D. Fisher, “Improving inference through conceptual clustering,” Proc. of the

AAAI Conf., pp. 461-465, 1987.

[146] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu and J. Park, “A framework for

finding projected clusters in high dimensional spaces,” Proc. of the ACM

SIGMOD Int. Conf. Management of Data, pp. 193-199, 1999.

[147] K.Y. Yip, D.W. Cheung and M.K. Ng, “HARP: a practical projected clustering

algorithm,” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 11, pp.

1387-1397, 2004.

[148] Vladimir Vapnikr: The Nature of Statistical Learning Theory, Springer-Verlag,

1995.

[149] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal

margin classifiers,” the 5th Annual ACM Workshop on COLT, pp. 144-152,

1992.

[150] Dejan Gorgevik and Dusan Cakmakov, “Combining SVM Classifiers for

Handwritten Digit Recognition,” Proc. of the 16th International Conference on

Pattern Recognition, pp. 102-105, 2002.

[151] B. Heisele and P. Ho, T. Poggio, “Face Recognition with Support Vector

Machines: Global versus Component-based Approach,” Proc. of the 8th IEEE

International Conference on Computer Vision, pp. 688-694, 2001.

[152] Y. D. Cai, X. J. Liu, X. B. Xu and G. P. Zhou, “Support Vector Machines for

predicting protein structural class,” BMC Bioinformatics, vol. 2, no. 3, pp. 1-5,

2001.

[153] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern

 143

 144

Recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp.

121-167, 1998.

[154] J. Platt, N. Cristianini and J. Shawe-Taylor, “Large Margin DAGs for

Multiclass Classification,” Proc. Neural Information Processing Systems, pp.

547-553, 2000.

	Abstract
	List of Publications
	Acknowledgements
	Introduction
	1.1 Problem Statement
	1.2 Motivations
	1.3 Statement of Contributions
	1.4 Organization

	Literature Review
	2.1 Review of Classification
	2.1.1 K-nearest Neighbors (KNN)
	2.1.2 Decision Tree
	2.1.3 Support Vector Machine (SVM)
	2.1.4 Text Classification Methods

	2.2 Review of Clustering
	2.3 Integration of Classification and Clustering

	Decision Cluster Tree Framework
	3.1 Framework
	3.2 Preliminary Definition
	3.3 Research Problem

	Using A Variable Weighting k-Means Method to Build A Decision Cluster Classification Model
	4.1 Introduction
	4.2 Automatic Decision Cluster Classification Method
	4.2.1 ADCC Algorithm
	4.2.2 Constructing a Decision Cluster Tree with W-k-means
	4.2.3 Model Selection and Classification

	4.3 Experiments
	4.3.1 Experiment Setup
	4.3.2 Experiments on Synthetic Data
	4.3.3 Experiments on Spatial Data
	4.3.4 Experiments on Text Data
	4.3.5 Experiments on Cancer Data
	4.3.6 Experiments on Other Real Data
	4.3.7 Parameter Analysis

	4.4 Conclusion

	Building A Decision Cluster Forest Model to Classify High Dimensional Data with Multi-classes
	5.1 Introduction
	5.2 Decision Cluster Forest
	5.2.1 Decision Cluster Forest (DCF)
	5.2.2 DCF Classification (DCFC) Model
	5.2.3 DCFC Algorithm

	5.3 Experiments
	5.3.1 Experiments on Text Data
	5.3.2 Experiments on Other Real Data
	5.3.3 Scalability

	5.4 Conclusion

	An Ensemble of Decision Cluster Crotches for Classification of High Dimensional Data
	6.1 Introduction
	6.2 Crotch Ensemble Algorithm
	6.2.1 Crotch Predictor
	6.2.2 Crotch Ensemble
	6.2.3 Crotch Predictor Bounding
	6.2.4 Crotch Weight Training

	6.3 Analysis
	6.3.1 Original Decision Cluster Model and Its Shortcoming
	6.3.2 Correction by Crotch Ensemble
	6.3.3 Bounding Crotch Predictors

	6.4 Experiments
	6.4.1 Analyzing Parameters
	6.4.2 Scalability
	6.4.3 Experiments on Real Data

	6.5 Conclusion

	A Subspace Decision Cluster Classifier for Text Classification
	7.1 Introduction
	7.2 Entropy Weighting k-Means Algorithm
	7.3 Subspace Decision Cluster Tree
	7.3.1 Definitions
	 7.3.2 Subspace Decision Cluster Classifier (SDCC) Algorithm
	7.3.3 Constructing a Subspace Decision Cluster Tree
	7.3.4 Model Selection and Classification

	7.4 Experiments
	7.4.1 Evaluation Method
	7.4.2 Data sets and Experimental Settings
	7.4.3 Overall Performance
	7.4.4 Performance Details

	7.5 Conclusion

	Theoretical Analysis of Error Bound
	8.1 Why Cluster-based Is Better than Object-based
	8.2 Error Bound

	Conclusion
	9.1 Main Contributions
	9.2 Future Work

	Bibliography

