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Abstract 

Clustering and classification are two basic tasks in data mining. As the complexity of 

data increases, the existing techniques for classification face a lot of challenges, for 

instance, classifying large high dimensional data with multiple classes. Therefore, new 

techniques need to be innovated to deal with data in large volume and high dimensions. 

In this thesis, we aim to propose a possible way to solve this problem by integrating 

clustering algorithm into classification work. 

We propose a new classification framework. This framework consists of three phases: 

(i) a clustering algorithm is called recursively to build a decision cluster tree, (ii) a 

classification model is built from this decision cluster tree, (iii) new samples are 

classified by this classification model. There are many research problems existing in this 

framework. In this thesis, we describe our methodology for those problems. 

In this framework, we propose a new classification method ADCC (Automatic 

Decision Cluster Classifier) that is designed to use a variable weighting k-means 

algorithm W-k-means to build a decision cluster tree so that the variable weights of each 

dimension can be obtained from the training data and used in classification. In 

partitioning the training data, W-k-means automatically computes the variable weights 

according to the data distributions so that important variables can get more weights and 

the noisy variables get less weight. In clustering a data set (i.e., a node), the class 

variable is removed from the data, so the class variable has no impact on the clustering 

results. The class variable is used in determining the dominant class for each cluster. To 

build a better cluster tree, effective methods for selection of the number of clusters and 

the initial cluster centers at each node are introduced. Furthermore, we use various tests 

including Anderson-Darling test to determine whether a node can be further partitioned 

or not. In this way, distribution of the training samples at each node is considered 

together with the purity and the size of the node. A decision cluster classifier consists of 

a set of disjoint decision clusters, each labeled with a dominant class that determines the 
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class of new objects falling in the cluster. A series of experiments on both synthetic and 

real data sets have been conducted. The results show that the new classification method 

(ADCC) performed better in accuracy and scalability than the existing methods of KNN, 

decision tree and SVM. It is particularly suitable for large, high dimensional data with 

many classes. 

Sometimes, ADCC method generates some weak decision clusters in which no single 

class dominates. Existence of weak decision clusters in the model can affect 

classification performance of the model. In a weak decision cluster, there is no dominant 

class, so it is difficult to justify the class of the new objects.  It has been shown that 

classification accuracy could be improved after weak decision clusters were avoided 

from the model. Weak decision clusters occur because objects of different classes are 

mixed in the clustering process to generate decision clusters. If we assume that objects in 

the same class have their own cluster distributions, we can separate objects of different 

classes according to the object class labels and generate a decision cluster tree for each 

class of objects. Then, we combine the decision clusters of different classes to form the 

decision cluster classification model. In this way, weak decision clusters can be avoided. 

We propose a Decision Cluster Forest (DCF) method to build a set of decision cluster 

trees (decision cluster forest) which form a classification model. Instead of building a 

single decision cluster tree from the entire training data, we build a set of cluster trees 

from subsets of the training data set to form a decision cluster forest. Each tree in the 

forest is built from the subset of objects in the same class. The proposition for this 

method is that the objects in the same class tend to have their own spatial distributions in 

the data space. Therefore, decision clusters of objects in the same class are found. The 

decision clusters in the same tree have the same dominant class. In this way, no weak 

cluster is created in such decision cluster tree. A decision cluster model can be selected 

from the set of leaf decision clusters from the decision cluster forest so the model is 

called a decision cluster forest classification model (DCFC). The decision cluster forest 

method has advantages of classifying data with multiple classes because the DCFC 

model is guaranteed to contain decision clusters in all classes. DCFC model is a more 
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intuitive and direct multi-class classification method. 

We propose a different classification method based on the tree structure. We propose a 

Crotch Ensemble classification model for high dimensional data with multiple classes. 

Generated from a decision cluster tree, a crotch is an inner node of the tree together with 

its direct children. If the dominant classes of children of a crotch are not all the same, the 

crotch is defined as a crotch predictor that is a classifier by itself. A crotch ensemble 

consists of a set of crotch predictors. When classifying a new object, a subset of crotch 

predictors is selected according to the distances between the object and the crotches. A 

classification is made on the object as the class predicted by the crotch predictors with 

the maximum accumulative weights. The experimental results on both synthetic and real 

data have shown that the Crotch Ensemble model is efficient and effective when 

classifying new samples. 

We propose a special application of our framework in text data classification. A 

subspace clustering algorithm is integrated to build the decision cluster tree. We adopt 

cosine distance metric for this application. Experimental results have shown that our 

framework can integrate different clustering algorithms and other possible methods and 

can get better classification results for text classification.  

Finally, we give the theoretical analysis of error bound of our DCC model. We prove 

that our Cluster-based classification model (DCC model) is better than the Object-based 

classification method. 
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Chapter 1 

Introduction 

This chapter introduces the research problems and the motivations of this thesis. We also 

address the originality, contribution and the organization of this thesis.  

1.1   Problem Statement  

As complexity of data increases, the existing classification techniques face a lot of 

challenges, for instance, the Grand Challenge data mining problems proposed in the 

recent KDD Panel Report [21]. Therefore, new techniques need to be innovated to deal 

with large, high dimensional data with multiple classes. Such data occur in many 

application domains such as text mining, multimedia mining and bio-informatics.  

Clustering and classification are two basic tasks in data mining. Classification is a 

supervised learning method which builds a model from training data first and then labels 

unknown data with the model. Clustering is an unsupervised learning method. Clustering 

is a process of partitioning a set of objects into clusters to make that objects in the same 

cluster are more similar or closer to each other than objects in different clusters. 

Classification and clustering have been extensively studied in data mining, machine 

learning, statistics and pattern recognition, but they are seldom considered together. 

Clustering methods have some advantages that classification methods do not have. How 

to integrate and make use of the advantages of clustering and classification is a 

meaningful research problem. Our work is an attempt to integrate clustering into 

classification techniques to deal with classification problems.  

We will use an example to explain the advantages of our Cluster-based classification 

which uses decision clusters to classify new objects. This example includes the classic 

 



 

exclusive-Or (XOR) problem as shown in Fig. 1.1(a). There are 900 objects distributed 

in 4 clusters that are classified into 2 classes marked with ‘○’ in red and ‘*’ in blue 

respectively. The bottom left cluster is mixed by 200 ‘*’ and 100 ‘○’. Other three 

clusters include 200 objects respectively. SVM methods map the data to another feature 

space by a kernel function so that a linear hyperplane can be found to separate the 

objects from two classes with highly computation cost. User cannot understand the 

internal details and working principles of the SVM classifier. Our Cluster-based 

classification method deals with the problem from a clustering perspective instead of the 

number of classes in the data set. Our method partitions the whole data set into four 

clusters without considering two classes. Fig. 1.1(b) shows that our method partitions the 

data set into four clusters denoted by four different colors respectively. Each cluster has 

a dominant class as its class label. If the new objects are closer to the cluster 3, they will 

be classified as cluster 3’s dominant class ‘*’. Any classification algorithm cannot 

classify cluster 3 with precision higher than 75% due to its own data distribution (its 

purity is 75%).  

 

 (a) the data set with XOR problem   (b) space partition by Cluster-based classification 

Fig. 1.1  An advantage of Cluster-based classification. 

From this example, we can sum up the advantages of our Cluster-based classification 

method as follows: it is easy to understand; it permits impure decision clusters to save 
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computational cost, so it dose not have overtraining problems and has high robustness; 

simple partition methods can work under this framework. 

1.2   Motivations 

Our goal is to find a new classification method which integrates advantages of clustering 

and classification. Our motivation mainly includes three aspects: clustering can be used 

for data reduction and data sampling; objects in the same cluster tend to be in the same 

class; some clustering algorithms are efficient for large high dimensional data.  

Figure 1.2 shows the data distribution on three dimensions of the iris data set from 

UCI repository [23]. The data points are drawn in different color according to their class 

labels. We can see that, the points in the same class are closer to each other and form a 

cluster. That is also shown that the objects in the same cluster tend to be in the same 

class.  

 

Fig. 1.2  The relationship between cluster and class of iris data set. 

In conclusion, our thesis aims at solving some classification problems (e.g. high 

dimensional sparse problem, XOR problem) from a new angle. Our Cluster-based 

classification framework integrates the clustering and classification techniques together 
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to combine their advantages.  

1.3   Statement of Contributions 

Figure 1.3 illustrates the main work of this thesis as well as the corresponding 

contributions which are claimed to be original as follows:  

1. A novel classification framework integrating clustering algorithm into classification 

is presented. Under this framework, a clustering algorithm is called recursively to 

build a decision cluster tree or forest. Based on the decision cluster tree or forest, a 

classification model is specified. This classification framework includes three steps: 

tree (forest) construction, model selection and classification. 

2. An Automatic Decision Cluster Classification (ADCC) method is proposed, where, 

the weighted k-means clustering algorithm is adopted to build the decision cluster 

tree because it is efficient for large data sets and it can reduce the influence of noisy 

attributes by assigning them smaller weights. 

3. A Decision Cluster Forest Classification (DCFC) method is developed to deal with 

the weak decision cluster problem and the multi-classes problem. Instead of 

building a single decision cluster tree from the entire training data, this method 

builds a set of decision cluster trees from subsets of the training data set to form a 

decision cluster forest. Each tree in the forest is built from a subset of objects in the 

same class. 

4. Text data is a typical high dimensional sparse data. Subspace clustering algorithm is 

efficient for text data. A Subspace Decision Cluster Classification (SDCC) method 

is designed for text classification.   

5. A set of decision clusters are selected from the decision cluster tree or forest plus a 

specific distance metric as a classification model.  

6. Another model selection, named Crotch Ensemble, is introduced. Instead of 
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considering a set of decision clusters, this model considers all crotch predictors 

which are inner nodes with their children. 

7. A KNN-like classification step is implemented on the first kind of classification 

model. This kind of Cluster-based classification is proved to be better than 

Object-based classification.  

8. An experimental scheme is designed to demonstrate the performance of this series 

of classification methods under the decision cluster classification framework.  

 

Fig. 1.3  The framework of this thesis. 

1.4   Organization 

Following the introduction, the thesis proceeds in Chapter 2 with a literature review of 

classification techniques, clustering algorithms and the integration of clustering and 

classification. Among clustering algorithms, special attention is given to k-means type 

algorithms which are used in our new classification methods.  

The subsequent chapters (Chapters 3-9) present the research contributions of this 

thesis. All the chapters correspond to work that has been published or is currently under 
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review.  

In Chapter 3, we propose a new classification framework. Under this framework, a 

clustering algorithm is called recursively to build a decision cluster tree; a classification 

model is selected from this decision cluster tree; new samples are classified by this 

classifier with a KNN-like way. 

We then propose the first classification model under the new framework in Chapter 4. 

The new classification method ADCC (Automatic Decision Cluster Classifier) is 

designed to use a variable weighting k-means algorithm W-k-means [2] to build a 

decision cluster tree so that the variable weights of each dimension can be obtained from 

the training data and used in classification. In partitioning the training data, W-k-means 

automatically computes the variable weights according to the data distributions so that 

important variables can get larger weights and the noisy variables get smaller weights. 

In clustering a data set (i.e., a node), the class variable is removed from the data, so the 

class variable has no impact on the clustering results. The class variable is used in 

determining the dominant class for each cluster. Effective methods for selection of the 

number of clusters and the initial cluster centers at each node are introduced to build a 

better decision cluster tree. Furthermore, we use various tests including 

Anderson-Darling test [6] to determine whether a node can be further partitioned or not. 

In this way, distribution of the training samples at each node is considered together with 

the purity and the size of the node. A decision cluster classifier (DCC) consists of a set 

of disjoint decision clusters, each labeled with a dominant class that determines the class 

of new objects falling in the cluster. A series of experiments on both synthetic and real 

data sets have been conducted to show that the new classification method (ADCC) 

performs better in accuracy and scalability than the existing methods of KNN, decision 

tree and SVM. It is particularly suitable for large, high dimensional data with many 

classes. 
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In Chapter 5, we propose a Decision Cluster Forest (DCF) method to build a decision 

cluster forest. We also present the method to construct a classification model from the 

decision cluster forest. Instead of building a single decision cluster tree from the entire 

training data, we build a set of decision cluster trees from subsets of the training data set 

to form a decision cluster forest. Each tree in the forest is built from the subset of objects 

in the same class. The proposition for this method is that the objects in the same class 

tend to have their own spatial distributions in the data space. Therefore, decision clusters 

of objects in the same class are found. The decision clusters in the same tree have the 

same dominant class. In this way, no weak cluster is created in such decision cluster 

trees. A decision cluster classification model can be selected from any subset of leaf 

decision clusters in the decision cluster forest, so the classification model is called a 

decision cluster forest classification model (DCFC). The decision cluster forest method 

has advantages of classifying data with multiple classes because the DCFC model is 

guaranteed to contain decision clusters in all classes. DCFC model is a more intuitive 

and direct multi-class classification method and easy to use. 

In Chapter 6, we propose a Crotch Ensemble classification model for high 

dimensional data with multiple classes. Generated from a decision cluster tree, a crotch 

is an inner node of the tree together with its direct children. If the children of a crotch 

have more than one dominant class, the crotch is defined as a crotch predictor that forms 

a classifier by itself. A Crotch Ensemble consists of a set of crotch predictors. When 

classifying a new object, a subset of crotch predictors is selected according to the 

distances between the object and the crotch predictors. A classification is made on the 

object as the class predicted by the crotch predictors with the maximum accumulative 

weights. The experimental results on both synthetic and real data have shown that the 

Crotch Ensemble model is efficient and effective when classifying new samples. 

In Chapter 7, we propose a special application of our framework in text data 

 7



 

 8

classification. A subspace clustering algorithm (Entropy Weighting k-Means) is 

integrated to build a decision cluster tree. We adopt cosine distance metric for this 

application. Experimental results have shown that our framework can integrate different 

clustering algorithms and other possible methods and can get better classification results 

for text classification. 

In Chapter 8, we analyze why our DCC model (Cluster-based classification) is better 

than KNN method (Object-based classification). The error bound is also discussed in 

this chapter. 

Finally, we give the conclusions of our work in Chapter 9, where some suggestions 

for further work are also discussed.



Chapter 2 

Literature Review 

In this chapter, we briefly review the research on classification methods, clustering 

methods and the integration of classification and clustering. In the first part, we review 

some well-known classification methods. The traditional classification methods face a 

lot of challenges including how to classify large high dimensional data. We will compare 

our new approach with some well-known classification methods reviewed in this chapter. 

The text data is a classic example of high dimensional data. Text classification 

algorithms are also briefly reviewed. In the second part, we review the clustering 

methods. In our new approaches, we integrate some of them into our work. The third 

part reviews the research works which integrate clustering and classification.   

2.1   Review of Classification  

Classification has been extensively studied in data mining, machine learning, statistics 

and pattern recognition. Many classification approaches have been investigated in the 

literature, including KNN, decision tree induction, rule-based classifier, instance-based 

classifier, artificial neural networks, Support Vector Machine (SVM) etc.  

2.1.1   K-nearest Neighbors (KNN) 

K-nearest neighbors (KNN) [34] is a simple technique to build classification models. 

However, it cannot perform classification well on large data sets because of high 

computational cost. This is because KNN is an instance-based classification method and 

it uses all of the training objects in classifying new objects. For data set with many 

classes, it requires a sufficient coverage of cases from all classes in the training data in 

order to produce accurate classification results. Therefore, such KNN models will be 

 



 

computationally and spatially expensive in classifying new data. Another problem is that 

when the number of classes is large, it becomes tricky to select the neighborhood 

parameter k. There is some research work done to solve KNN’s time consuming 

problem [24]. Accelerating the KNN classification process to handle large data through 

reduction of instances is another research direction [35-38]. A detailed survey can be 

found in [46, 47]. 

2.1.2   Decision Tree 

A decision tree classifier uses the ‘divide and conquer’ and greedy strategies to construct 

an appropriate tree from a given training data set. In a decision tree, each internal node 

denotes a test on a non-class attribute, where each branch represents an outcome of the 

test. Each leaf node denotes a class or a class distribution. A path traced from the root to 

a leaf node represents a classification rule. How to select a test attribute and how to 

partition a sample set are the key parts of the decision tree construction. Different 

decision tree algorithms adopt different techniques. For example, C4.5 algorithm adopts 

gain ratio [25] as the attribute selection standard while CART algorithm adopts Gini 

index [25]. 

In dealing with large and complex data sets, decision tree techniques are widely used 

due to their high efficiency. A majority of work on decision trees in data mining is an 

extension of Quinlan’s ID3 and C4.5 [27]. Tree induction is the core process in decision 

tree classification. Most existing tree induction methods proceed in a greedy top-down 

fashion, where they start with an empty tree and the entire data set, and recursively split 

the data set in internal nodes based on specific split metrics. The models are often based 

on a small number of dimensions even if the data has many dimensions such as text data. 

This is because that each partitioning step in building a decision tree model only 

considers one dimension while the information is usually stored among many 

dimensions. There are other possible drawbacks of the decision tree classification 
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algorithm [61]: when there are large number of classes, the number of leaves become 

larger and will result in overlapping problem; the incorrect classification results will 

accumulate and  be passed to deeper levels; it is difficult to design an optimal decision 

tree for classification.  

According to the number of attributes used in split metrics, decision tree induction 

methods can be classified into two categories: univariate tree induction and multivariate 

tree induction [27]. The former finds a split according to a single attribute which is 

recognized as the most useful in discriminating the input data set. In case of multivariate 

tree induction, finding a split can be seen as finding a composite attribute (combination 

of existing attributes) that has a good discriminatory capability. In this perspective our 

ADCC method of building classification trees can be regarded as a multivariate tree 

induction technique. Multivariate tree induction is not as widely studied as univariate 

decision trees. Most multivariate decision tree methods consider oblique trees which 

have tests based on a linear combination of the attributes at some internal nodes. 

Existing methods include linear discriminant trees [28, 29], hill climbing methods [30, 

31], Neural trees [32, 33] etc. However, most methods are not scalable in dealing with 

large data sets. Our method differentiates from these approaches in that it employs 

weighting k-means type algorithm as the split function, and only selects leave nodes 

from the tree to induce the final classification model. 

2.1.3   Support Vector Machine (SVM) 

Support Vector Machine (SVM) [148] is a new and effective classification method. 

Since the first paper presented by Vladimir Vapnik in 1992 [149], SVM has been widely 

used in many applications, such as handwritten digit recognition [150], face recognition 

[151], text classification [108], gene pattern classification [152] etc. Margin is a key 

concept in SVM, which measures the separation of two classes. For linearly separable 

data, the key problem of linear SVM algorithms is to find a separation hyperplane that 
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can lead to maximum margin. The hyperplane with maximum margin is called 

maximum marginal hyperplane (MMH), which generates an optimal separation of two 

classes. MMH can be further defined as support vectors so that the problem of searching 

MMH can be mapped to the problem of finding support vectors. Searching of support 

vectors is a constrained quadratic optimization problem and can be solved by classical 

non-linear programming tools and the application of the Karush-Kuhn-Tucker (KKT) 

Sufficiency Theorem. For non-linear data classification, a feature space transformation 

step will be required before performing the quadratic optimization process (searching the 

support vectors in linear classification cases). The basic idea is that the linearly 

inseparable data can be transformed into higher dimensional space using a nonlinear 

mapping (such as some kernel functions). The resulted data will be linearly separable in 

the new dimensional space, where a simple linear SVM algorithm can be employed to 

learn the classification model. In spite of many successes in various applications, SVM 

has some intrinsic disadvantages. First, the performance of classification algorithm is 

sensitive to the selection of the kernel function and its parameters [153], where different 

data sets will require diverse parameter settings to get good results. This is undesirable 

in real applications, since searching the best parameter is very difficult if not impossible, 

due to the high computational complexity of SVM. Secondly, SVM classifiers usually 

work as a black box and it’s hard for users to understand the internal details. This 

characteristic limits its applications to some critical areas, such as medical diagnosis, 

where the interpretable property is essential. Moreover, original SVM can only solve 

two-class classification problem. For multi-class data, many two-class SVM classifiers 

will need to be learned by pairwising combination or Directed Acyclic Graph (DAG) 

mode [154], which will decrease the classification accuracies in many real applications 

and require more computational cost. Finally, for those data sets with mixed 

distribution of different class, SVM can not find an appropriate hyperplane to 

separate the objects of different classes. 
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2.1.4   Text Classification Methods 

In recent years, with the advent of the Web and the enormous growth of digital content 

in Internet and the availability of more powerful hardware, text classification (TC) has 

been given more attention and more researches [69]. As the development of hardware, 

data collection and data storage, a lot of classification techniques to TC have been 

explored in the literature, such as the Bayesian method [70-72,94,95], k-nearest 

neighbors (KNN) [73-75,96], decision tree [87-90,98-100], artificial neural networks 

[78-81,97], support vector machines (SVM) [83-85,101,102,108], centroid-based 

approaches [93,103-107], and some other algorithms [76,77,82,86,91,92].  

Naive Bayes is a common text classification method that is computationally efficient 

and easy to implement [95]. Rennie and Shih’s work [70] discusses several systemic 

problems of Bayes text classification algorithms and proposes possible solutions to 

avoid those problems. Naive Bayes algorithms often adopt two event models: the 

multinomial event model and the multivariate Bernoulli event model. The multinomial 

event model is frequently referred as multinomial Naive Bayes (MNB) for short [72]. 

Ref. [72] presents a multinomial Naive Bayes model for text classification and shows 

that the multinomial Naive Bayes model outperforms the multivariate Bernoulli model. 

Makoto and Takenobu’s work [71] proposes a cluster-based text classification method, 

where training documents are partitioned into several clusters before classifying new 

documents. A new document is compared with each cluster rather than with each 

training document. In this work, Hierarchical Bayesian Clustering (HBC) algorithm is 

employed to construct a set of clusters for cluster-based classification [71].    

 KNN method is a case-based learning method which requires large computational 

cost for calculating similarities between each new testing document and each training 

document. Section 2.1.1 has already discussed KNN in details. Memory Based 

Reasoning (MBR) [73] is a typical KNN method. Ref. [73] proposes to use MBR to 

classify news stories, which does not require manual topic definitions. Expert Network 
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is proposed in [74] to categorize natural language documents automatically. In this 

method, a set of training documents with expert-assigned classes are used to construct a 

network that reflects the conditional probabilities of classes assigned to a document. In 

the expert network, the training documents form the nodes on the intermediate level, the 

words generated from the training documents form the input nodes, and the classes are 

the output nodes. A word node (input node) and a document node (intermediate node) 

are connected if this word occurs in this document. A document node (intermediate node) 

and a class node (output node) are connected if this class is assigned to this document by 

experts similarly. The relevance rankings of classes given to a new testing document are 

evaluated by those connections. A new classifier called the KNN model-based classifier 

(KNN Model) is proposed in [96]. KNN Model improves the standard KNN by avoiding 

the critical problems of KNN, including lazy learning problem and selecting appropriate 

value of k.  

Transductive Support Vector Machines for text classification were introduced in [108] 

which are more suitable for text classification than regular Support Vector Machines. 

SVM is an effective technique to build classification models from text data. However, its 

computational complexity prohibits it from being used on very large training data. 

Centroid-based text classification methods have the advantages of small 

computational cost in both training stage and testing stage. However, it is difficult to 

locate optimal centroids. A fast Class-Feature-Centroid (CFC) classifier for multi-class 

text classification is designed in [93]. In CFC, centroids are built from inter-class class 

distribution and inner-class class distribution. This centroids selection method 

incorporates inter-class and inner-class term distribution and constructs better initial 

centroids than traditional centroids. Furthermore, CFC adopts a denormalized cosine 

metrics to calculate the distance between a document and a centroid. Experimental 

results show that CFC outperforms SVM and other centroid-based text classification 

methods. CFC is more robust than SVM on sparse data. In [107], Tam et al. have 

 14



 

compared centroid-based text classification methods with neighborhood-based and 

statistical text classification methods.   

2.2   Review of Clustering 

Clustering is another important problem in data mining. Clustering is a process of 

partitioning objects into clusters to make that objects in a cluster are more similar than 

objects in different clusters. There are a lot of clustering algorithms in the literature. In 

general, clustering algorithms can be classified into the following types: Partitioning 

algorithms, Hierarchical algorithms, Model-based algorithms, Density-based algorithms 

and Grid-based algorithms. In recent years, some new types of clustering algorithms 

have been proposed, such as subspace clustering algorithm, co-clustering algorithm. 

K-means [134], k-Medoids [133] and k-Prototype[18] are classical Partitioning 

algorithms. CLARA (Clustering LARge Applications) [133] and its improved version 

CLARANS (Clustering LArge Applications based upon RANdomized Search) [135] 

were proposed to deal with the problem that k-medoids algorithms cannot work 

efficiently for larger data sets. BIRCH (Balanced Iterative Reducing and Clustering 

Using Hierarchies) [136], ROCK (RObust Clustering using linKs) [137,138] and CURE 

(Clustering Using REpresentatives) [139] are three typical hierarchical clustering 

methods. Density-based clustering algorithms have been proposed to discover arbitrary 

shape clusters. DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 

[140], OPTICS (Ordering Points To Identify the Clustering Structure) [141] and 

DENCLUE (DENsity-based CLUstEring) [142] are density-based clustering algorithms. 

Some typical grid-based clustering algorithms include STING (Statistical Information 

Grid) [143], WaveCluster [144] and CLIQUE (Clustering In QUEst) [131]. Model-based 

clustering algorithms try to find the best fit between the given data and some 

mathematical model. COBWEB [145] is an early model-based clustering algorithm. 
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Among so many clustering techniques, k-means type algorithms are the most popular 

methods due to their efficiency and scalability in clustering large data sets.  

K-prototype [18] algorithm can deal with categorical data. Many new clustering 

methods, such as weighting-k-means (WKM) [2] and Entropy Weighting k-Means 

(EWKM) [3], extend the k-means algorithm and get better clustering results. 

Weighting-k-means (WKM) [2] can find out noisy attributes as well as normal attributes 

by assigning smaller weights to noisy attributes. It is suitable for high dimensional data 

with noisy attributes. It is worth to take better use of k-means type algorithm in data 

mining.  

High dimensional and sparse data is very common in real world. Text data is a typical 

example of this kind of data. In these kinds of data, the clusters always exist in a subset 

of attributes not in the whole attributes space. Subspace clustering methods are designed 

to find clusters in different subsets of attributes. Ref. [58] compares many subspace 

clustering methods. The famous subspace clustering algorithms include PROCLUS 

[146], FASTDOC [12], HARP [147], CLIQUE [131], ORCLUS [11] and EWKM [3]. 

An Entropy Weighting k-Means (EWKM) algorithm [3], a kind of soft subspace 

clustering algorithm, can do subspace clustering on high-dimensional sparse data sets. 

EWKM clusters data samples in the entire dimensional space but assigns different 

weights to different dimensions for each cluster during clustering process. The 

dimensions which are more important for identifying the corresponding cluster will get 

larger weights. Different dimensions make different contributions to the evaluation of 

objects in a cluster. WKM is not a subspace algorithm. It just assigns smaller weights for 

noisy dimensions and larger weights for non-noisy dimensions. All clusters have the 

same weight distribution of the entire data space in WKM. However, EWKM can find 

clusters in subspaces by giving different weight distributions for different clusters while 

WKM fails to do this. 
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Co-clustering, also called bi-clustering [63], is to partition data matrix to small 

sub-matrix by clustering rows and columns. General clustering is to find similar rows 

(objects) using distance metrics computed with columns (attributes). Co-clustering has 

recently received a lot of attention in several practical applications such as in genes and 

experimental conditions in bioinformatics [65], text mining [64], recommender systems 

[66], etc. In [59], a partitioned co-clustering formulation that is driven by the search for 

a good matrix approximation was introduced. They introduce a new minimum Bregman 

information (MBI) principle. MBI generalizes the maximum entropy and standard least 

squares principles simultaneously, and leads to a matrix approximation that is optimal 

among all generalized additive models in a certain natural parameter space. 

None of the existing clustering algorithms can perform well on all kinds of data sets. 

Different clustering algorithms are conformable for different kinds of data sets. Some 

research work done in clustering algorithms focused on the problems of large data sets, 

high dimensions, and large number of classes [8-14,16,17]. Ref. [8] reviews and 

compares many algorithms for clustering large data sets. In their work, Steinbach et al. 

[9] analyze the challenges of clustering high dimensional data from two aspects: 

different clustering tools and different types of data. Cai et al. propose a novel clustering 

algorithm [10] for high-dimensional document clustering, which aims to cluster the 

documents into different semantic classes. The document space is always in high 

dimension. The high-dimensional documents can be projected into a lower dimensional 

space by using Locality Preserving Indexing (LPI). Projective clustering algorithms 

[11-14] have been successfully utilized to deal with high-dimensional data clustering 

problems.  

2.3   Integration of Classification and Clustering 

Clustering methods can be applied to supervised classification problems. Several 

clustering-based classification techniques have been explored [5,15,19,22,35]. Mui and 
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Fu's work [19] was an early example of using an interactive approach to building 

classification models. The basic procedure was to use a k-means algorithm to partition 

the training data into k clusters without using the class variable. Then, for each cluster, 

the percentage of each class was calculated according to the class variable. If one class 

was found to be dominant in the cluster, say over 90%, this class label was assigned to 

this cluster as its class and the cluster was taken as a leaf without further partition. If no 

dominant class was found, the cluster was further partitioned with the k-means algorithm. 

This process continues until all clusters became leaves. The centers of the leaf clusters 

together with the dominant classes of these leaf clusters formed a KNN-like 

classification model. When a new object was classified, the distances between the new 

case and the cluster centers were computed, the dominant class of the center with the 

shortest distance to the new object was assigned to the new case. Since the number of 

leaf clusters was much smaller than the number of training cases in a KNN model, this 

cluster center based model was more efficient than the KNN model. In their work, 

Zhang et al. [35] propose a cluster-based tree algorithm for accelerating KNN 

classification. This cluster-based tree algorithm consists of two steps: tree construction 

and classification. They evaluate the effectiveness in comparison with the standard KNN 

and the condensation-based tree algorithm. Kyriakopoulou and Kalamboukis’s work [22] 

is a comparatively new trial to integrate clustering into classification. In this work, they 

propose a new classification algorithm with clustering which consists three steps: 

clustering step in which both training and testing data set are clustered; Expansion step 

in which the data set is augmented with meta-features originated from the clustering step; 

Classification step in which a classifier is trained based on the expanded data set. This 

algorithm can learn a classifier from small training data set by combining supervised 

learning with semi-supervised or unsupervised learning methods. The learned classifier 

can exploit the distribution information of testing data before classifying them.  
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The Cluster-based classification model follows a probability mixture model in which 

each cluster is considered as a distribution of objects of one class in the 

multi-dimensional data space. As such, the instances in the same cluster tend to have the 

same class label. Classification can be considered as a high level model that can map 

one class to more than one cluster. In this way, classification can be viewed as a 

clustering problem that can be solved with a clustering process. 

Zhexue Huang and Michael K.Ng proposed decision clusters classifier in 2000 [1]. 

This decision cluster classifier model adopted the k-prototype clustering algorithm to 

construct a decision clusters tree using the interactive Fast Map algorithm. Then they use 

a KNN-like algorithm to perform classification. Building the model and validating the 

clusters are based on human beings’ judgment which is not automatic. Compared to 

these interactive approaches, our Automatic Decision Cluster Classifier (ADCC) is 

different from them: ADCC proposes an automatic hierarchical clustering method which 

uses some new clustering algorithms; ADCC will consider the class label during the tree 

construction to specify the number of sub-clusters; ADCC uses termination test methods 

not human beings’ judgment to decide whether the current cluster is a leaf or not. Other 

clustering algorithms, other distance metrics or other possible methods can be integrated 

into Decision Cluster Classifier model. In the following chapters, a series of new 

classification methods are proposed under the Decision Cluster Tree framework.  

 19



 

Chapter 3 

Decision Cluster Tree Framework 

In this chapter, we present a new classification framework. In this framework, a 

clustering algorithm is used to build a decision cluster tree. Based on this tree, a decision 

cluster classification model will be specified. At last, new objects are classified through 

a KNN-like way. 

3.1   Framework  

Fig. 3.1 demonstrates the idea of Decision Cluster Tree framework.  

 
 

Fig. 3.1  The process of constructing a decision cluster tree. 

The details of the process in Fig. 3.1 are as follows. There is a training data set 

including four classes. Different shapes denote different classes. For the first iteration, 
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we partition the whole training data set into four clusters , ,  and . All 

samples in  belong to the same class, so  does not need to be further partitioned 

and becomes a leaf node. It is the similar case for .But  and  need to be 

partitioned in the following iteration. We assume that both  and should be 

partitioned into two clusters according to a method which is used to specify the number 

of sub-clusters.  is then partitioned into  and , and  is partitioned into 

 and . , ,  and  become leaf nodes according to our 

termination test method. Finally there are six leaf nodes , , , ,  and 

. The construction of decision cluster tree is completed. Fig. 3.2 presents the 

classification model generated from decision clusters and the process of classifying a 

new data.   

1A

A

2A

3

3A

4A

2 A

3A

A

31

4A

41A

1A

42A

1A

31A

42

2A

A

A 4

A

32A

4

3A

A

32

1A

41A

42A

31 32A 41A A

 
Fig. 3.2  Classify a new object with the leaf nodes. 

In Fig. 3.2, we select all leaf nodes from the decision cluster tree as the classifier 

model. Each leaf is generalized by its center and the most frequent class label. These 

centers are the training objects for the final KNN-like classification step. For the new 

object, we compute the distance between it and each center of the node of the classifier 

model. We assign the new object to the class of the nearest cluster. We call this process 

KNN-like classification. In the above example, the new object is classified as the 

dominant class of .  32A
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In short, this new classification framework mainly includes three steps: tree 

construction, model selection and classification.   

3.2   Preliminary Definition 

Before we discuss the details of the decision cluster classifier framework, we describe 

some preliminary definitions [1] and present our research problems and the goal. These 

definitions will be used in the rest of this thesis. 

A training data set 1 2{ , , , }nX x x x 

X

contains  samples with m attributes and k 

classes. A cluster  such that the all samples in  belong to 

n

C C X  and fulfill 

certain criteria of similarities. 

Definition 1. A clustering or k-clustering of X  is a partition of X  into  

clusters , which satisfies:

k

kCCC ,...,, 21 iC   , 1, ,i k  , , and 

, , . The clustering can be represented as a sequence 

. 

XC
k

i i 1

i j  i j

),...,2 KCC

C C

,( 1CX

, 1, ,i j k 

When generating a clustering from the training data, the class labels of objects are 

removed first so the objects are clustered without using the label information. 

Definition 2. The dominant class in a cluster is the class that the majority of objects 

are labeled to. A cluster with a dominant class is called a decision cluster. The 

percentage of the dominant class in the cluster defines the confidence level of the 

decision cluster. 

Definition 3. A decision cluster classification (DCC) model is a subset of decision 

clusters plus a defined distance function. The distance function is used to compute the 

distances between an object to be classified and the selected centers of decision clusters. 
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Definition 4. A clustering  with  clusters is said to be nested in the clustering 

, which contains  ( ) clusters, if for any cluster  ( i = 1,…,k ) in , there is 

a cluster  (j=1,…,r) in T  such that  and there exists at least one cluster 

 in S , which holds  and 

S

C

k

T

iC

r

j

j

k

C 

iC S

jC iC C

i jC Ci  . 

Definition 5. A Decision Cluster Tree is a sequence of nested clusterings, so that for 

any two level p, q with p < q (i.e., level p is high than level q) and for any cluster 1q
jC   

in level q, there is a cluster 1p
iC   in level p such that 1 1q p

j iC C  . 

Figure 3.3 shows an example of a decision cluster tree of four levels. A decision 

cluster tree consists of a root which is the training data set X at level 0, a number of 

internal nodes and a number of leaf nodes. It is like decision tree, an internal node is an 

intermediate outcome; a following decision will be made whether it needs to be further 

divided and its immediate sub-clusters represent the output of the just decision.   

The root X is partitioned into 3 clusters , , . Here, the superscript indicates 

the level of the node from which the clusters are generated and the subscript is the 

cluster number in this level. Clusters  and  are further partitioned into 2 and 3 

sub clusters respectively, which form level 2 of the cluster tree. Subsequently, two 

clusters  and  are further partitioned into three and two sub clusters respectively, 

which form level 3 of the cluster tree. This tree can be represented as the sequence of 

nested clusterings as:  

0
1C 0

2C

0
3C

0
3C

0
1C

1
2C 1

4C

0 1 1 2 2 2 0 0 1 1 2 2 1
1 1 2 1 2 3 2 3 3 4 4 5 5( ( , ( , , )), , ( , ( , ), ))X C C C C C C C C C C C C C . 

 23



 

 
Fig. 3.3  A decision cluster tree. 

3.3   Research Problem 

In this thesis, we solve the classification problem by building decision cluster tree with 

clustering algorithm. We call this kind of classification method Cluster-based 

classification. The idea of Cluster-based classification is shown in Fig. 3.4. It is different 

from the traditional Object-based classifications which train the classifier from the class 

labels of training data directly. Cluster-based classification builds many decision areas 

from clustering training data without class labels recursively. Every decision area has a 

dominant class. The objects in the same class can be distributed in more than one 

decision areas.  

 
 

Fig. 3.4  The difference between Cluster-based classification and Object-based 

classification. 

  In the kind of Cluster-based classification, the classification problem is considered 

 24



 

from another aspect instead of the probabilities. Clusters often exist in the areas with big 

conditional probabilities. This kind of Cluster-based classification is based on the 

Bayesian Theory as well as Bayesian Classifiers, but it is based on the clusters not based 

on estimating conditional probabilities. Under Cluster-based classification framework, 

we have the following assumptions: objects in the same class tend to have the similar 

characteristics and be close to each other; objects in the same cluster tend to be in the 

same class. In our method, we want to integrate the advantages of clustering with the 

advantages of classification. We formulate our method as follows: 

1. Building decision cluster tree(s)   by calling clustering algorithm on the training 

data : S

: S   (3-1)

2. Selecting decision clusters  which are used to construct the classifier from : C 

: C   (3-2)

where , i jC C 
1

K

ii
C S


 , i j ,  is the number of all decision clusters 

in classifie

K

r. 

3. Building decision areas  from  with space partition method to partition the 

whole data space 

P C

dR : 

: C P   (3-3)

where , i jP P 
1

K d
ii

P R


 , i j . In fact,  is corresponding to .  P C

4. Building classifier  to classify new objects X .  

, , ( ) ( | )i ix C x P      (3-4)

where ( )iC  is defined in Equation (3-5). 
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( ) arg max ( ( ) )
j i

i j
x C

C I W x


 


   (3-5)

In Equation (3-5),  is the class label of ( )jW x jx . Any testing object will be 

classified as the dominant class of the decision area in which the object falls. In this 

thesis, we present a series of research works related to the above problems.     

  Definition 6. A Classification Model is either (1) a subset of disjoint decision clusters, 

or (2) a sub-tree pruned from  , in which it has the same root with . The first kind 

of model is named as Sample-based Model, and the second kind of model is named as 

Tree-based Model. They are all following the principle of Cluster-based classification. 



Definition 7. Model Selection is a process of selecting a classification model   

from  to maximize the classification accuracy. 

Definition 8. Model Complexity is to describe the complexity of a classification 

model. The model complexity metric adopted in our work is the number of nodes in a 

classification model. 

In principle, any subset of decision clusters or any sub-tree from a decision cluster 

tree can be treated as a classification model. However, the classification accuracy of a 

concrete classification model depends on which classification model is used. If the 

classification accuracies of different classification models are identical, then the simplest 

one is the best choice. Therefore, the following processes are crucial: (1) generation of a 

decision cluster tree and (2) selection of a classification model.  

So our problem can be described as follows: Given a training data set  and a 

clustering algorithm f, generating the decision cluster tree 

S

  by recursively calling f to 

partition the nodes and calling termination test method to test whether to end the 

partition or not. At last, select a best classification model   to execute classification. 

Table 3.1 shows the research problems under the decision cluster tree framework.  
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In fact, we want to find an optimal integration of clustering methods, termination test 

methods, model selection methods, classification methods and other possible solutions 

for a special problem. Following the Decision Cluster Tree framework, we can build 

classifiers for different kinds of data sets. In the following chapters, we will discuss the 

techniques used to solve these problems. 

Table 3.1  Research problems. 

Step Research problems 
Which clustering algorithms can be implemented? 
How to do the termination test? 
How to specify the number of attributes used in the clustering 
process? 

Tree construction 

How to specify the number of sub-clusters of an internal node in 
decision cluster tree? 
How to do the model selection? 
A subset of decision clusters or a sub-tree? 
What other model selection methods can be referenced? 
（boosting, bagging, random forest） 
Which model is best for the concrete problem?   
Select one or many? 

Model selection 

Interactive or automatically? 
How to classify unknown data? 
Which distance metric can be used? 

Classification  

KNN-like or decision tree-like? 

 

 



Chapter 4 

Using A Variable Weighting k-Means 

Method to Build A Decision Cluster 

Classification Model  

In this chapter, a new classification method Automatic Decision Cluster Classifier 

(ADCC) for high dimensional data is proposed. In this method, a decision cluster 

classification (DCC) model consists of a set of disjoint decision clusters, each labeled 

with a dominant class that determines the class of new objects falling in the cluster. A 

decision cluster tree is first generated from a training data set by recursively calling a 

variable weighting k-means algorithm. Then, the DCC model is extracted from the 

decision cluster tree. Various tests including Anderson-Darling test [6] are used to 

determine the stopping condition of the tree growing. A series of experiments on both 

synthetic and real data sets have been conducted. Experimental results show that the new 

classification method (ADCC) performed better in accuracy and scalability than existing 

methods like KNN, decision tree and SVM. ADCC is particularly suitable for large, high 

dimensional data with many classes. 

4.1   Introduction 

In Chapter 3, we have proposed a novel Cluster-based classification framework which 

integrates clustering into classification. Under this new framework, we propose many 

classification methodologies. In this chapter, we present the first Decision Cluster 

Classification model which uses a variable weighting k-means clustering algorithm. 

 



 

Classification is a basic task in data mining. As complexity of data increases, the 

existing techniques for classification face a lot of challenges, for instance, solving the 

Grand Challenge data mining problems proposed in the recent KDD Panel Report [21]. 

Therefore, new techniques need to be innovated to deal with large, high dimensional 

data with multiple classes. Such data occur in many application domains such as text 

mining, multimedia mining and bio-informatics. This chapter proposes an Automatic 

Decision Cluster Classifier (ADCC) that is designed to achieve that goal. 

Clustering methods have been applied to supervised classification problems 

[5,15,22,35]. An early example of using the k-means clustering method to build a cluster 

tree classification model was given in [19], where, a binary cluster tree was built by 

interactively executing the k-means clustering algorithm. At each node, a further 

partition was determined by the percentage of the dominant class in the cluster node. 

However, only small numeric data could be classified and every time only two 

sub-clusters are formed. In 2000, Huang et al. proposed a new interactive approach to 

build a decision cluster classification model [1]. In this approach, the k-prototypes 

clustering algorithm was used to partition the training data, and a visual cluster 

validation method [60] was adopted to verify the partitioning result at each cluster node. 

The above two interactive methods are not adequate for high dimensional data with 

noisy attributes because the clustering algorithms used are not able to handle noisy 

attributes and it is time consuming to involve human judgment. 

In this chapter, we propose to use the variable weighting k-means (W-k-means) 

algorithm [2] to build a Cluster-based classification model automatically. Because 

W-k-means is able to reduce the impact of noisy attributes by assigning smaller weights 

to them in clustering. In another word, W-k-means implicitly performs attribute 

selection in the clustering process. Meanwhile, the weight information can also be used 

in classification to improve the classification quality. As such, W-k-means is more 

suitable for high dimensional data with noisy attributes. Another improvement from the 
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previous methods is that in the tree growing process we use various tests including 

Anderson-Darling test to determine whether a node can be further partitioned or not. In 

this way, distribution of the training samples at each node is considered together with the 

percentage of the dominant class used in the previous methods [1]. Anderson-Darling 

test replaces the visual cluster validation method as in [1] so as to automate the tree 

building process. 

A series of experiments on both synthetic and real data sets were conducted to 

demonstrate the effectiveness and the accuracy of the ADCC method. Compared with 

other classification methods, including KNN [34], J48 [27] (a decision tree algorithm) 

and SMO [124] (one of SVM algorithms), our experimental results show that the ADCC 

method has performed better than other methods in both classification accuracy and 

scalability on large high dimensional sparse data sets. Thus the results demonstrate that 

the ADCC method is more suitable for large, high dimensional data with many classes. 

This chapter is accordingly organized as follows. In Section 4.2, we present the 

details of the ADCC algorithm. In Section 4.3, we show the experimental results on 

synthetic data sets and real data sets. Concluding remarks are given in Section 4.4.  

4.2   Automatic Decision Cluster Classification Method 

In this section, we demonstrate the techniques during the construction process of a 

decision cluster tree. The W-k-means [2] algorithm was adopted to build a decision 

cluster tree because it is efficient and able to automatically compute the attribute weights 

from the training data to reduce the effect of noisy attributes. The number of sub-clusters 

and the initial centers must be specified before executing W-k-means. The ADCC 

algorithm uses the function ( , )K Selection X   to return the number of sub-clusters 

for current cluster, where X  is the current cluster and   is the threshold. 

( , )K Selection X   computes the percentage of each class and return k  as the 

number of classes with a percentage greater than  . Then, we compute the real centers 
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of the  classes as the initial centers. This is called supervised selection which, instead 

of random selection, is implemented in the ADCC algorithm as the function 

, where k  is the number of sub-clusters generated by 

k

elect

el

( , )C S ion k X

( ,K S ection X ) . 

4.2.1   ADCC Algorithm 

Table 4.1 shows the algorithm of automatic construction of decision cluster tree under 

the above Cluster-based classification framework. 

Table 4.1  ADCC Algorithm.  

Input: A training data set  (with m  dimensions and  classes). T c

Output: A classification model modADCC el . 
 
1.  initialize a decision cluster tree  with root { ;  DCT }T
 
2.  sign the root as internal node; 
 
3.  for each internal node X  in   DCT
 
4.      if (  XTe )  sign rminal Test X  as leaf node; 

 
5.       = k K ( )election ,XS 

CENTER

; 
 
6.      = ARRAY ( , )C Selection k X ; ///Compute initial centers 
 
7.      run W-k-means on X  with k  and CENTER ARRAY ; 
 
8.      sign  sub-clusters as internal node; k

k

ADCC 

 
9.      add  sub-clusters into ; DCT
 
10.  end for  
 
11. extract all leaf nodes from  as classification model  DCT modADCC el
 

and represent each node by its center and dominant class;  
 

12. return ; mod el
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4.2.2   Constructing a Decision Cluster Tree with W-k-means 

The traditional k-means algorithm treats all attributes equally. It is well-known that a 

meaningful cluster usually exists in a subset of all attributes. W-k-means can 

automatically weigh attributes on their importance during the clustering process [2]. 

W-k-means introduces a new step to the basic k-means algorithm to update the variable 

weights based on the current partition of data. A weight calculation formula is used to 

minimize the objective function of clustering given a fixed partition of data. The 

important attributes can get larger weights while the insignificant attributes will get 

smaller weights. The effect of noisy attributes can be reduced by smaller weights. For 

the data set with noisy attributes, W-k-means outperforms the standard k-means 

algorithm [2].  

In our work, the construction of the decision cluster tree is a recursive division 

process by recursively executing the W-k-means clustering algorithm. To partition a 

cluster into sub-clusters with W-k-means algorithm, we need to specify a parameter  

which is the number of sub-clusters to be generated. We also need to specify the initial 

centers for each sub-cluster. Here, we take advantage of the class information. We 

propose some methods to control the iteration and improve the clustering process. These 

methods include the method of selecting  for W-k-means (

k

k ( , )K Selection X  , the 

method of selecting initial centers for W-k-means ( ( , )Selection k XC  ) and the 

termination test method (  Terminal Te X st ), where X  is the current node to be 

partitioned, α is a threshold and  is the number of sub-clusters. They correspond to 

solving the three problems at the end of chapter 3, i.e., (1) How many clusters to be 

generated at each node? (2) How to specify the initial centers? (3) Where to stop at each 

path of the tree? 

k
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The Selection Method for k in W-k-means 

Here,  is the number of sub-clusters of the current cluster (node) k X  in a decision 

cluster tree. The value of  is very crucial for W-k-means algorithm as it will 

influence not only the following iteration steps of W-k-means algorithm but also the 

final classification accuracy. In the following we will discuss the problem of how to 

determine the value of . We give an example to explain our method: 

k

k

Suppose the current cluster X  has five classes ( , i=1,...,5) as shown in Table 4.2. 

We do not simply set  to 5, but we set  to 3 since there are mainly only three 

classes of samples added with some noises from  and . This method can reduce 

the impact of noisy data. 

iC

4

k k

C 5C

Table 4.2  The class distribution of X .  

  
1C  2C 3C  4C  5C  

Objects 300 200 100 5 5 

Percentage 0.49 0.32 0.16 0.008 0.008

We determine the value of  by considering the distribution of classes. We compute 

the percentage of samples in each class compared with all samples in the current node. 

Given a threshold α, let  be the number of classes whose percentages are larger than 

or equal to α. Consider the above example. If α equals to 0.1, ,  and C  have 

the percentage values larger than α, so we will set  as 3 instead of 5. 

k

k

1C 2C 3

k

We implemented the selection of  by the function k ( , )K Selection X  : X  is 

the current sample set and α is the threshold. The function returns the value of . k

The Computation Method for Initial Centers in W-k-means 

W-k-means algorithm is a local search approximation algorithm. The final result 

depends on the initial centers. Therefore, how to specify the initial centers is critical for 
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the clustering accuracy. If we can specify better centers in the beginning, it can reduce 

the number of iterations and get better clustering result more quickly. 

Currently, there are two methods for determination of initial centers: random selection 

and density-based selection [20]. The random selection method leads to the various and 

unstable clustering result because the centers are determined randomly. The 

density-based selection needs to search the whole sample space to compute the density, 

so it decreases the efficiency vastly. 

In this thesis we present a new method called supervised selection method. Under 

this method, we compute the centers of objects of each class using the information of 

class label. These class centers are used as the initial centers for W-k-means algorithm. 

We implemented this method by ( , )C Selection k X : X  is the current cluster to be 

partitioned and  is the number of sub-clusters generated by k ( , )K Selection X  . 

We first compute and store the percentage of each class to the whole data of current 

cluster. We then select the first  classes (with the largest percentages) to compute the 

 class centers as the output of the function 

k

k ( , )k XC Selection . Using the class 

centers can accelerate the step of selecting the initial centers as well as improve the 

accuracy of determination of initial centers vastly. The efficiency of this new method 

will be shown in the experiment section. 

Termination Test Method 

Coming to an intermediate node in decision cluster tree, it is critical to determine 

whether it is terminal or not. Not terminal means that it should be further partitioned. We 

call the testing process as termination test or stopping test. This stage is vital for the 

whole tree construction and will influence the quality of the tree as well as the quality 

and computing efficiency of the classifier. We use multiple termination conditions: the 

size, class purity and data distribution to determine whether a node will be further 

partitioned or not. 

 34



 

Cluster size: If the cluster size is too small, this cluster should be a leaf node and 

labeled with the dominant class label. This principle can avoid overfitting problem. 

Cluster purity: If the cluster size is big enough, the cluster purity should be further 

estimated. If the percentage of the most frequent class is bigger than the critical value, 

this cluster node should be a leaf node and labeled with the dominant class label. 

Data distribution: Objects in a cluster intend to follow a normal distribution. If we 

can test how well the objects in a node follow the normal distribution, we can determine 

how likely they belong to a cluster. The data distribution can be tested by a distribution 

test method: Anderson Darling (AD) Test [6,7]. AD Test can determine whether a 

sample comes from a specified distribution. The AD Test was invented by Wilbur 

Anderson and Donald A. Darling in 1952. It is one of the most powerful statistical 

methods for detecting the most departures from normality based on the following. Given 

a hypothesized underlying distribution, the data can be transformed to a uniform 

distribution. The transformed data can then be tested for uniformity with a distance test 

[125]. If the testing result satisfies the AD Test criteria, this cluster node should be a leaf 

node and labeled with the dominant class label, otherwise this cluster node should be 

further partitioned into sub-clusters. 

We implemented a termination test method considering the above three aspects by 

 which is shown in Table 4.3.  Terminal Test X  AD Test X  returns true if the 

distribution of X  is almost likely normal distribution.  needs 

two parameters, δ and β. δ is the size threshold of a cluster and depends on the size of 

the smallest class which includes the fewest samples compared with other classes in the 

whole training data set. β is the purity threshold to judge whether a cluster is pure 

enough not to be divided. 

 Test XTerminal

 Terminal Test X  judges the size and purity first before 

doing  because AD Test X   AD Test X  needs more time and judging the size 
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and purity can filter some obvious cases. We label the cluster with the dominant class 

(the most frequent class in a cluster) if it is a leaf node. 

Table 4.3  Algorithm of Terminal-Test(X).  

Input: the node X  contains  objects. n

Output: A Boolean value Termi which is either (i) TRUE which means "stop" or  

(ii) FALSE, otherwise. 

Remarks:  

δ: the threshold of the number of samples in X  (e.g., 10). 

β: the threshold of the frequency of a class in X  (e.g., 90\%). 

Begin  

1.  Termi = FALSE; 

2.  if (n <δ OR the frequency of the dominant class >β OR   AD Test X

3.      Termi = TRUE and label X  with the dominant class label; 

4.   return Termi; 

End  

 

4.2.3   Model Selection and Classification 

After a decision cluster tree is built, any subset of disjoint decision clusters makes a 

DCC model. There are many ways to select classification models from a decision cluster 

tree. In this work, we select the leaf nodes of the decision cluster tree, because leaf nodes 

are disjoint with each other and all of them as a whole cover all training samples.  
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The classification model is used to classify new objects as the following: (1) Define a 

distance function specific for classification; (2) Compute the distances between a new 

object and the centers of the decision clusters in the model; (3) Identify the decision 

cl n cluster to 

the new object as its class. 

In this work, we use the weighted Euclidean distance function as follows: 

uster with the shortest distance to the object. Assign the label of the decisio

 
n

ii yxwd 2))((  (4-1)

In Equation (4-1), iw  is the weight for the i th attribute. The weights are computed 

when we cluster the training data by the W-k-means clustering algorithm. Since the 

weight distribution is different when we cluster a different node, here we

i
i

1

 adopt the 

weight distribution computed when we cluster the root of the decision cluster tree. The 

stance metric will be shown in Section 4.3.2. 

4.3   Experiments 

. Weka [126] implementations of these algorithms 

w

tegrates the original KNN algorithm for comparison. 

We executed ADCC and the original KNN on this platform, and executed other 

classification algorithms on Weka. 

effectiveness of this weighted di

In this section, we describe the experiments we have conducted on both synthetic and 

real data sets. The experimental results demonstrate that ADCC outperforms the original 

KNN [34] in terms of speed, scalability and classification accuracy vastly. We also 

conduct experiments to compare ADCC to other classification methods, including 

decision tree (J48) and SVM (SMO)

ere used in our comparisons. The synthetic data sets and real data sets used in the 

experiment will be described below. 

We have implemented ADCC system in java and conducted a series of experiments. 

The resulting ADCC system also in
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4.3.1   Experiment Setup 

All experiments were done on Windows XP platform running on an Intel (R) Xeon(R), 

1.60 GHz computer with 8GB memory. We conducted experiments on synthetic data 

sets and real data sets. We adopt the accuracy and execution time as the evaluation 

methods to compare the classification quality to other classification algorithms. The 

experiments on synthetic data sets are used to demonstrate that our model is effective 

and efficient. Meanwhile, we ran experiments on real data sets to compare our methods 

to other classification methods in speed, scalability and classification quality.  

In our experiments, we use default parameters for J48 and SMO in Weka. For J48, the 

minimus number of instances per leaf is set as 2. The SMOs are trained with a linear 

kernel where the complexity parameter C is set as 1.0. For KNN, the number of 

neighbors, k, is equals to 1. For ADCC, we always set α (the parameter in 

( , )K Selection X   which was presented in Section 4.2.2) equal to 0.05, δ (a 

parameter in  al Test XTermin

 Terminal Test X

 which is presented in Section 4.2.2) equal to the 

10% of the number of samples in smallest class, and β (another parameter in 

 which is presented in Section 4.2.2) equal to 90%.     

4.3.2   Experiments on Synthetic Data 

We conducted experiments on synthetic data sets to demonstrate the efficiency and 

scalability of our methods and to compare the classification performance with other 

classification algorithms (KNN, decision tree (J48) and SVM (SMO)) on spatial data 

sets. 

Through the experiments described here, we want to (1) verify that our method of 

selecting initial cluster centers is efficient and can get better classification results; (2) 

demonstrate that ADCC can identify noisy attributes and reduce their influences by 

using W-k-means as the decision cluster tree construction algorithm; (3) show that the 
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weight information generated during the decision cluster tree construction is useful to 

improve the classification quality; (4) demonstrate that the KNN-like classification 

method in ADCC outperforms original KNN in classification speed and scalability. The 

details will be described in the following parts. 

1. Supervised selection of initial cluster centers 

The ADCC model includes K Selection  and C Selection  (presented in 

Section 4.2) algorithms to specify the number of sub-clusters and the initial centers in 

W-k-means. It has good capabilities of reducing the influence of noisy attributes and 

noisy samples. We generate the following synthetic data set T, which includes 3 

numerical attributes (X, Y and Z), 8 classes and 3,400 samples. The data set are 

uniformly distributed on the attribute Z, Z is the noisy attribute. The details of T are 

listed in table 4.4: 

Table 4.4  Synthetic data set T.  

Class Center Variance  Instances 

1 (0,4,2) 0.5，0.5，2.309 500 

2 (2,3,2) 0.2，0.2，2.309 200 

3 (4,4,2) 0.5，0.5，2.309 500 

4 (1,2,2) 0.2，0.2，2.309 200 

5 (3,2,2) 0.2，0.2，2.309 200 

6 (0,0,2) 0.5，0.5，2.309 500 

7 (2,1,2) 0.2，0.2，2.309 200 

8 (4,0,2) 0.5，0.5，2.039 500 

Noisy samples   600 

 

Fig. 4.1 shows the distribution of T on the subspace X and Y, where different classes 

are represented with different colors. From the Table 4.4 and Fig. 4.1, we found that 

there are 8 clusters with normally distribution on X and Y. The circle denotes the real 

centers for each cluster. There are some noisy samples existed on the subspace X and Y. 

We set the class labels for noisy samples randomly. These noisy samples are used to test 

the efficiency of the selection method of initial cluster centers. 
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Fig. 4.1  The distribution of the data set T on the dimensions X and Y. 

Fig. 4.2 shows the two different methods of setting initial cluster centers. The circles 

denote the real centers for each cluster. In Fig. 4.2 (a), initial centers are set randomly, 

denoted by the '+' symbols. The centers randomly selected are usually divergent from the 

real centers, which makes either no center or more than one center in a cluster. Either 

case may increase the number of iterations before W-k-means can stop. Fig. 4.2 (b) 

shows the centers computed by our method C Selection  directly from each class. 

The centers computed by our method denoted by the rectangle symbols are a bit 

deviated from real cluster centers due to the noisy samples, but the deviations are 

insignificant and acceptable. 
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                   b）supervised selection 

 

Fig. 4.2  Two methods of selecting the initial cluster centers. 

  We compare these two initial center selection methods, random selection and 
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supervised selection. Table 4.5 shows the results of 10-fold cross-validation experiments 

measured in recall [49], precision [48] and F-Measure [50]. We can see that except the 

precision of class C2, all results produced by the supervised selection were better than 

the random selection. 

Table 4.5  Classification results from random selection and supervised selection of 

initial clusters centers (R for random selection, P for supervised selection).  

 

 C1 C2 C3 C4 C5 C6 C7 C8 

R 0.907 0.710 0.831 0.719 0.714 0.877 0.818 0.883
Recall 

P 0.941 1.00 0.926 1.000 1.000 1.000 1.000 0.982

R 0.770 0.875 0.817 0.908 0.733 0.841 0.875 0.883
Precision 

P 1.000 0.786 1.000 0.941 0.875 1.000 0.985 1.000

R 0.833 0.784 0.824 0.802 0.724 0.859 0.846 0.883
F-Measure 

P 0.970 0.880 0.962 0.970 0.933 1.000 0.979 0.991

2. Identification of noisy attributes and utilization of weight information 

W-k-means algorithm can identify noisy attributes by assigning them smaller weights 

to reduce the influence of noisy attributes. In ADCC model, the weights generated by 

W-k-means executed in the root node are used to define the weighted distance function 

when the classifier classifying new objects. 

Figure 4.3 plots the synthetic data set T in Table 4.4 in different two-dimensional 

subspaces. X and Y represent the two attributes that contain eight normally distributed 

clusters while Z is the noisy attribute on which the samples are uniformly distributed. 

The clusters cannot be found in the subspaces with Z.  

The weights got by executing ADCC five times are shown in Table 4.6. Z gets a 

smaller weight in every trial since Z has a smaller discrimination capability for 

clustering. 
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(a) X,Y 

 
(b) X,Z                      (c) Y,Z 

 

Fig. 4.3  Projection of the data set on different subspaces. 

Table 4.6  The weight distribution on the three dimensions.  

Times Weight of X Weight of Y Weight of Z 

1 0.385 0.399 0.215 

2 0.370 0.370 0.257 

3 0.344 0.335 0.319 

4 0.395 0.392 0.211 

5 0.370 0.386 0.242 

 

The following experiments demonstrate that whether the weight information should 

be used in classification step or not. We adopt the average weights from Table 4.6 as the 

weights of the three attributes in classification. 10-fold cross-validation is performed in 

this experiment. The comparison results are demonstrated in Table 4.7. We can see that 

using weight information (using weighted Euclidean distance function) performs better 

in most classes. The total average accuracy is 85.46% without weight information, while 

it can get higher accuracy up to 90.82% by exploiting weight information. In addition to 

better clustering produced by W-k-means, the classification accuracy is improved by 
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adding the weight information in KNN-like classification step in ADCC. This method 

reduces the influences of noisy attributes. 

Table 4.7  Impact of variable weighting on classification accuracy.  

 C1 C2 C3 C4 C5 C6 C7 C8 

Not use 0.938 0.530 0.909 0.650 0.744 0.987 0.762 0.823
Recall 

Use 0.968 0.579 0.968 0.690 0.733 0.989 1.000 0.957

Not use 0.997 0.469 0.998 0.577 0.512 0.993 0.826 0.923
Precision 

Use 1.000 0.527 1.000 0.663 0.753 1.000 0.824 1.000

Not use 0.967 0.498 0.952 0.611 0.607 0.990 0.793 0.870
F-Measure 

Use 0.984 0.552 0.984 0.667 0.743 0.955 0.903 0.978

 

3. Classification Speed and Scalability 

We generated two groups of synthetic data sets with different numbers of dimensions 

and instances (shown in Table 4.8). Each data set contains three clusters randomly 

generated with normal distributions. In each run, we used 70% of data as training data 

and the remaining 30% as testing data. We recorded the total execution time and 

compared the performance of KNN-like classification method in ADCC with original 

KNN and J48 with different number of dimensions and instances respectively. Table 4.8 

shows the details of data sets: data sets A1 to A8 have the number of dimensions varying 

from 5 to 500, and data sets B1 to B8 have the number of data instances varying from 

3,000 to 90,000. 

Table 4.8  Two groups of synthetic data sets (each having three classes).  

Data sets Dimensions  Instances  Data sets Dimensions  Instances  
A1 5 5,000 B1 4 3,000 
A2 20 5,000 B2 4 9,000 
A3 50 5,000 B3 4 15,000 
A4 100 5,000 B4 4 30,000 
A5 200 5,000 B5 4 45,000 
A6 300 5,000 B6 4 60,000 
A7 400 5,000 B7 4 75,000 
A8 500 5,000 B8 4 90,000 

 

The experimental results are shown in Fig. 4.4. Fig. 4.4(a) shows the execution time 

against the number of instances and Fig. 4.4(b) shows the execution time against the 
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number of dimensions. We can see that the execution time increased linearly for ADCC 

whereas the execution time for KNN increased rapidly when the number of instanced 

approached 75000. Although the execution time for KNN increased linearly as the 

number of dimensions increased, the increase in time was much faster than ADCC. 

Meanwhile, the execution times for ADCC and decision tree (J48) are comparable to 

each other and scalable on large data.  

 

 (a) Execution time vs. data size 

 

(b) Execution time vs. dimension number 

Fig. 4.4  Scalability comparison between ADCC, KNN and decision tree. 

4.3.3   Experiments on Spatial Data 

We generated five spatial data sets with varying the size from thousands to millions of 
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objects. A series of experiments were conducted on those data sets to show that ADCC 

can classify spatial data better than other algorithms (e.g. KNN, J48, SMO). Meanwhile 

the scalability of ADCC was further demonstrated. Table 4.9 gives the information of the 

five spatial simulation data sets. They have similar data distribution. We randomly 

choose one of them and show the data distribution in Fig. 4.5. 

Table 4.9  Spatial simulation data sets.  

Data sets Classes Attributes Size  

D1 3 2 13,100 

D2 4 2 49,000 

D3 5 2 106,087

D4 5 2 524,985

D5 4 2 814,975

 

 

Fig. 4.5  The data distribution of D4. 

The comparative results of ADCC and other three classification algorithms are shown 

in Fig. 4.6. Fig. 4.6(a) shows the classification accuracy on the five data sets and Fig. 

4.6(b) demonstrates the classification speed on those five data sets and scalability as the 

size of data set increased. We can see that ADCC outperforms other three algorithms 

especially SMO on most cases in terms of accuracy and speed. Meanwhile, the 
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execution time of ADCC and J48 increased linearly whereas the execution time for KNN 

and SMO increased vastly. 

    

(a) Accuracy 

 

(b) Execution time 

Fig. 4.6  Classification results on five data sets. 

4.3.4   Experiments on Text Data  

We show the comparison results of ADCC algorithm and other three classification 

methods: KNN, decision tree (J48) and SVM (SMO) on the 20-Newsgroups data which 

is taken from the UCI machine learning data repository [23]. The original text data was 
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first preprocessed to strip the news messages from the special tags and the email headers 

and eliminate the stem words and stop words. The dimension (word) in each document 

was weighted by the Term Frequency (TF). Table 4.10 lists eight data sets built from the 

20-Newsgroups data. We preprocessed these data sets by deleting some dimensions with 

smallest TF value. Several thousands words is enough for text data. We also keep all 

words for Set2_3 and Set2_4 to show our algorithm is efficient on high dimensional data. 

Different data sets have different cluster properties. Some of them have semantically 

similar classes, whereas others contain semantically different classes. Some of them 

have overlapping words (dimensions), while some of them contain the unbalanced 

number of documents in each class. 

Table 4.10  Text data sets generated from the 20-Newsgroups data (Seti_j denotes the 

jth data set with i classes).  

Data sets Classes  Dimension Size  

Set2_1 
alt.attheism 

comp.graphics 
5201 

200 
200 

Set2_2 
comp.sys.imb.pc.hardware 

comp.sys.mac.hardware 
4970 

200 
200 

Set2_3 
talk.politics.mideast 

talk.politics.misc 
16411 

200 
200 

Set2_4 
rec.autos 

rec.motocycles 
13243 

400 
400 

Set4_1 

comp. graphics 
comp.os.ms.windows.misc 

rec.autos 
sci.electronics 

7387 

400 
300 
200 
100 

Set4_2 

comp.os.ms.windows.misc 
comp.sys.imb.pc.hardware 

comp.sys.mac.hardware 
comp.windows.x 

7302 

300 
300 
300 
300 

Set6_1 

comp.graphics 
comp.os.ms.windows.misc 
comp.sys.imb.pc.hardware 

comp.sys.mac.hardware 
rec.autos 

sci.electronics 

9425 

120 
120 
120 
120 
120 
120 

Set6_2 

comp.graphics 
comp.os.ms.windows.misc 
comp.sys.imb.pc.hardware 

comp.sys.mac.hardware 
comp.windows.x 

rec.autos 

8724 

120 
120 
120 
120 
100 
120 
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Four classification algorithms, ADCC, KNN, J48 and SMO, were tested on these data 

sets. Fig. 4.7 shows the classification accuracy and execution time on eight text data sets. 

We can see that ADCC have the highest accuracy and shortest execution time. 

 

(a) Accuracy 

 

(b) Execution time 

Fig. 4.7  Classification results on text data sets. 

4.3.5   Experiments on Cancer Data 

We also conducted experiments on six gene data sets related to studies of human cancer, 
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which were taken from K-TSP Program Download Page [127]. They have collected 19 

publicly available microarray data sets, with sample sizes ranging from 33 to 327 and 

the number of genes ranging from 2 000 to 16 063. For our decision cluster tree model 

to be more effective, the training samples should not be too few so that there can be 

more than a few members in each cluster. Thus, we choose six gene expression data sets 

since other data sets in K-TSP program are limited in sample size. Table 4.11 lists the 

characteristics of these six data sets. 

Table 4.11  Summary of gene expression data sets.  

Data sets Classes Genes  Samples Training samples Testing samples 

GCM 2 16063 280 196 84 

Lung 2 12533 181 127 54 

Leukemia 2 7129 72 50 22 

Prostate1 2 12600 102 72 30 

Prostate2 2 12625 88 62 26 

Leukemia3 7 12558 327 215 112 

 

We conducted this series of experiments in a similar manner to the experiments on 

text data sets. Four classification algorithms, ADCC, KNN, J48 and SMO were tested on 

these data sets. We used 10-fold cross-validation experiment method except Leukemia3. 

For Leukemia3, we used the training data set and the testing data set originally provided 

from the original references. Table 4.12 and Table 4.13 show the classification accuracy 

and execution time on six gene data sets. We can see that, ADCC also have the highest 

accuracy and the shortest execution time. 

Table 4.12  Classification accuracy on gene expression data sets.  

Data sets ADCC KNN J48 SMO 

GCM 89.29 84.52 75 89.28 

Lung 99.5 98 94 98 

Leukemia 99 86.3 79.1 98 

Prostate1 87.1 90 74 83 

Prostate2 80.8 76 55 70 

Leukemia3 91.96 75.89 75.89 83.92 
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Table 4.13  Execution time (seconds) on gene expression data sets.  

Data sets ADCC KNN J48 SMO 

GCM 26.141 26.187 27.84 29.8 

Lung 2.812 8.937 4.2 7.58 

Leukemia 1.422 1.953 1.38 1.41 

Prostate1 7.078 3.719 2.53 4.76 

Prostate2 4.516 9.797 3.59 3.7 

Leukemia3 16.031 21.094 9.53 24.38 

 

4.3.6   Experiments on Other Real Data 

There are other real-world data sets which are chosen from UCI machine learning data 

repository [23]. Table 4.14 lists the characteristics of these real data sets. 

Table 4.14  Other real data sets.  

Data sets Instances  Dimensions Classes  Training  Testing  

Waveform 5000 40 3 3500 1500 

Reuters 9980 337 10 6986 2994 

The results of execution time and classification accuracy generated by four 

classification methods from these two real data sets are listed in Table 4.15. From Table 

4.15, we can see that for data set Waveform, the accuracy of ADCC was higher than 

those of KNN and J48 (decision tree method) and lower than SMO (SVM). ADCC was 

much faster than KNN but slower than the other two. Comparatively, this data set was 

simpler with fewer dimensions and instances and a small number of classes. However, 

for data set Reuters which was more complex with more instances and classes, and much 

higher dimensions, ADDC outperformed all other algorithms in classification accuracy. 

It was much faster than KNN and SVM, but only slightly slower than the decision tree 

implementation. The results further demonstrate that ADDC is more suitable for large, 

high dimensional data with many classes. 
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Table 4.15  Classification accuracy on gene expression data sets.  

Data sets Waveform Reuters  

Metrics Time(s) Acc.(%) Time(s) Acc.(%) 

ADCC 2.516 83.8 74.952 68.97 

KNN 15.688 70.8 485.625 57.95 

J48 1.2 73.26 35.23 65.29 

SMO 1.94 85 392.91 65.86 

 

4.3.7   Parameter Analysis 

ADCC needs three parameters, i.e. α , δ  and β . α  is the threshold in  

( , )K Selection X 

 Terminal Test X

  presented in Section 4.2. δ and β are two parameters of 

, which is also presented in Section 4.2. From our experience, α 

can be set from 0.02 to 0.09. In our previous experimentsα was set to 0.05. 

In the  algorithm (see Table 4.3), we first consider the size of 

the cluster and the purity of the cluster and then consider the result of  

when we determine whether the current cluster 

 Terminal Test X

 AD Test X

X  should be further divided. Since it 

takes longer for  than judging the size and the purity of AD Test X  X , so we 

want to filter the obvious situations under which the cluster needs not to be further 

divided. Thus, the size threshold δ and the purity threshold β can be set to the 

values so that the further clustering of X  should be terminated obviously when X  

does not pass either of these thresholds. δ depends on the size of the smallest class 

which includes the fewest samples compared with other classes before clustering the 

whole training samples. δ can be set from 3% to 10% of the number of samples in the 

smallest class, and β can be changed from 85% to 95%. In our previous experiments 

we set β to 90%, and δ to 10% of the number of samples in the smallest class. 

We use three data sets, i.e. D3, Set4_1 and Prostate1 which were chosen from Table 
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4.9, Table 4.10, Table 4.11 respectively to demonstrate how these parameters influence 

the classification result.  

 

Fig. 4.8  The effect of α on classification accuracy. 

 

 

Fig. 4.9  The effect of δ on classification accuracy. 
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Fig. 4.10   The effect of β on classification accuracy. 

Fig. 4.8 shows the classification accuracy against different values of α of ADCC on 

the three data sets. We can see that the classification accuracy was not sensitive to α 

when α changed from 0.02 to 0.09. Fig. 4.9 shows the classification accuracy against 

different values of δ of ADCC on the three data sets. The classification result of 

ADCC method was robust on the parameter δ when δ changed from 3% to 10% of 

the number of samples in the smallest class. Fig. 4.10 shows the classification accuracy 

against different values of β of ADCC on the three data sets. We can see that the 

classification accuracy was not sensitive to β when β changed from 0.85 to 0.95. 

These results demonstrated that the classification result of ADCC method was robust on 

the parameter α, δ and β. In the experiments of the following chapters, if we do 

not demonstrate especially, the settings of these three parameters are the same as the 

value in this chapter. 

4.4   Conclusion 

In this Chapter, we have proposed a new classification method following the 
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Cluster-based classification framework (Decision Cluster Tree framework). We have 

presented an automatic algorithm ADCC which uses the variable weighting k-means 

algorithm W-k-means to build a decision cluster tree from a training data set. In this 

automatic approach, we have proposed solutions to solve three important problems: (1) 

selection of the number of sub-clusters at each node, (2) selection of the initial cluster 

centers, and (3) termination of further clustering at a node. 

We have presented experimental results on both synthetic and real world data sets and 

compared the performance of ADCC with those of other well-known classification 

methods. The comparison results have shown that ADCC has advantages in classifying 

large, high dimensional data with multiple classes. 
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Chapter 5 

Building A Decision Cluster Forest 

Model to Classify High Dimensional 

Data with Multi-classes 

In this chapter, a decision cluster forest classification model is proposed for high 

dimensional data with multiple classes. A decision cluster forest (DCF) consists of a set 

of decision cluster trees, in which the leaves of each tree are clusters labeled with the 

same class that determines the class of new objects falling in the clusters. By recursively 

calling a variable weighting k-means algorithm, a decision cluster tree can be generated 

from a subset of the training data that contains the objects in the same class. The set of 

 decision cluster trees grown from the subsets of  classes constitute the decision 

cluster forest. Anderson-Darling test is used to determine the stopping condition of tree 

growing. A DCF Classification (DCFC) model is selected from all leaves of the  

decision cluster trees in the forest. A series of experiments on both synthetic and real 

data sets have shown that the DCFC model performed better in accuracy and scalability 

than the single decision cluster tree method and the methods of KNN, decision tree and 

SVM. This new model is particularly suitable for large, high dimensional data with 

many classes. 

m m

m

5.1   Introduction 

One challenge in data mining is classification of high dimensional data with multiple 

classes [21]. This kind of data may occur in application fields such as text mining, 

multimedia mining and bio-informatics. To solve this problem, the ADCC method was 
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proposed in [109], which builds a classification model from high dimensional data. 

Given a training data set, the ADCC algorithm recursively calls the variable weighting 

k-means algorithm (W-k-means) [2] to generate a decision cluster tree. Each node with 

its dominant class forms a decision cluster. ADCC uses the leaves of the tree as the 

classification model, and leaves are labeled with their dominant classes to determine the 

classes of new objects falling in the clusters. Experimental results have shown that this 

decision cluster classification model was effective and efficient in classifying high 

dimensional data [109]. 

One shortcoming of this ADCC method is that the algorithm generates some weak 

decision clusters in which no single class dominates. Existence of weak clusters in the 

model can affect classification performance of the model. It has been shown that 

classification accuracy could be improved after weak decision clusters were removed 

from the model [120]. Weak decision clusters occur because objects of different classes 

are mixed in the clustering process to generate decision clusters. If we assume that 

objects in the same class have their own cluster distributions, we can separate objects of 

different classes according to the object class labels and generate decision clusters from 

objects in each class. Then, we combine the decision clusters of different classes to form 

the decision cluster classification model. In this way, weak decision clusters can be 

avoided. 

In this chapter, we propose a Decision Cluster Forest method to build a decision 

cluster classification model from high dimensional data with multiple classes. Instead of 

building a single decision cluster tree from the entire training data, we build a set of 

decision cluster trees from subsets of the training data set to form a decision cluster 

forest. Each tree in the forest is built from the subset of objects in the same class. The 

proposition for this method is that the objects in the same class tend to have their own 

spatial distributions in the data space. Therefore, decision clusters of objects in the same 

class are found. The decision clusters in the same tree have the same dominant class. In 
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this way, no weak decision cluster is created in such decision cluster tree. A decision 

cluster model can be selected from any subset of leaf decision clusters from the decision 

cluster forest so the model is called a decision cluster forest classification model 

(DCFC). 

The decision cluster forest method has advantages of classifying data with multiple 

classes because the DCFC model is guaranteed to contain decision clusters in all classes. 

In other multi-class classification methods, such as decision trees, the information of 

small classes is often under represented in the model. The error-correcting output codes 

method (ECOC) was designed to solve multi-class learning problem by learning 

multiple binary classification models and matching the classification results with the 

designed codeword to correct misclassifications [121]. This new method is more like an 

ensemble method but the challenge is on the design of code word. In contrast, the DCFC 

model is a more intuitive and direct multi-class classification method and easy to use. 

In growing a decision cluster tree from a subset of objects in the same class, we adopt 

the W-k-means algorithm to reduce the effect of noisy attributes in high dimensional 

data. We also grow a binary decision cluster tree and use Anderson Darling Test [6,7] as 

a stopping criterion in tree growing. We have conducted a series of experiments on both 

synthetic and real data sets to demonstrate the efficiency and accuracy of the DCFC 

method. Compared with other classification methods, including ADCC, KNN, J48 (a 

decision tree algorithm) and SMO (one of SVM algorithms), our experimental results 

have shown that the DCFC method has performed better than those methods in 

classification accuracy on large high dimensional sparse data sets. Thus the results 

demonstrate that the DCFC method is more suitable for large, high dimensional data 

with many classes. 

Clustering methods have been explored to solve classification problems [22,35]. An 

early example of using the k-means clustering algorithm to build a cluster tree 

classification model can go back to early 80's [19]. In this work, a binary cluster tree was 
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built by interactively executing the k-means clustering algorithm. At each node, a further 

partition was determined by the percentage of the dominant class in the cluster node. 

However, only small numeric data could be classified and every time only two 

sub-clusters are formed. In 2000, Huang et al. proposed a new interactive approach to 

build a decision cluster classification model [1]. In this approach, the k-prototypes 

clustering algorithm was used to partition the training data, and a visual cluster 

validation method [60] was adopted to verify the partitioning result at each cluster node. 

The above two interactive methods are not adequate for high dimensional data with 

noise because the clustering algorithms used are not able to handle noisy attributes and it 

is too time consuming to involve human judgment. The concept clustering tree which is 

a decision tree where each node as well as each leaf corresponds to a cluster is proposed 

by Blockeel et al. [122]. The nodes of decision cluster tree proposed in our method are 

also clusters, but the process of the tree construction including partition method, 

stopping criteria and the number of sub-clusters are totally different.  

The rest of this chapter is organized as follows. In Section 5.2, we introduce the 

decision cluster forest classification model and the algorithm for model building. In 

Section 5.3, experimental results and comparisons are reported. In Section 5.4, we 

conclude this chapter. 

5.2   Decision Cluster Forest 

In this section, we describe how to construct the decision cluster forest and how to do 

classification with the decision cluster forest. 

5.2.1   Decision Cluster Forest (DCF) 

A Decision Cluster Forest (DCF) consists of a set of decision cluster trees. Each tree 

grows from a subset of the training data that contains objects in the same class. If the 

training data X  has m  classes, the decision cluster forest will have m  decision 
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cluster trees. Given a decision cluster forest, a Decision Cluster Forest Classification 

(DCFC) model can be built by simply extracting the leaves of decision cluster trees. 

All decision clusters in a DCFC model from the decision cluster forest have strong 

dominant classes with 100 percentage distribution. This approach follows the 

proposition that in a large high dimensional data set with multiple classes, the objects in 

each class tend to occupy a spatial region with its own mixture density distribution. 

Therefore, the mixture densities can be discovered in a clustering process from the set of 

objects in the same class. 

Let X  be a training data set of  objects in  classes. We divide n m X  into  

subsets 

m

1 2, ,... )m(X X X

m

, each with objects in the same class. For each subset, we use a 

clustering algorithm to build a decision cluster tree in which all nodes have the same 

dominant class. The decision cluster forest consists of  decision cluster trees with 

nodes of  different dominant classes. Fig. 5.1 illustrates a decision cluster forest with 

different decision cluster trees.  

m

Given a decision cluster forest, we can select any subset of decision clusters from 

multiple trees to build a DCFC model. Similar to the single decision cluster tree method, 

the performance of a DCFC model on classification accuracy also depends on the quality 

of the decision cluster trees and the selection of decision clusters to be included in the 

model. Therefore, the following two processes are crucial: (1) generation of a set of 

decision cluster trees and (2) selection of a subset of the decision clusters from the 

decision cluster forest for the classification model. 

 

 

 

 

 60



 

 

 

 

Fig. 5.1  Distribution of decision cluster trees in a decision cluster forest. 

 

 

Fig. 5.2  Generation of decision cluster trees for a decision cluster forest. 

Given a subset iX  from the training data set X , a decision cluster tree can be built 

with a process similar to that used in building a single decision cluster tree. However, 

since all objects in the data set are in the same class, class distribution calculation is not 

necessary. When executing W-k-means on each inner node, the parameter  (the k
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number of clusters should be divided) of W-k-means is unknown. To avoid decreasing 

the clustering quality due to a too large k  value, we set parameter k  to 2 and 

generate a hierarchical binary cluster tree. That is, we perform a binary partition to result 

in a binary tree at each inner node. All decision clusters are assigned the same dominant 

class. A decision cluster tree with the same dominant class is shown in Fig. 5.2. Multiple 

decision cluster trees are generated from different subsets of training data with different 

dominant classes marked in different colors. 

Take the left tree from Fig. 5.2 as an example. This binary decision cluster tree is 

generated from the data subset 1X  shown in the root. The root 1X  is first partitioned 

into 2 clusters , . Here, the cluster index  indicates the clusters are 

generated from the data of class 1. Therefore, all clusters have the same dominant class 1. 

The superscript indicates the level of the node from which the clusters are generated and 

the subscript is the cluster number in this level. Cluster  is further partitioned into 2 

sub-clusters , , which form level 2 of this decision cluster tree. This binary 

partition process continues until the stopping criteria are satisfied at the two leaves. 

Other decision clusters trees marked in different colors are generated from different 

subsets of the training data in a similar way. 

0
11C

1
1 1C

0
21C 1C

0
21C

1C 1
2

In a real world training data set, the distribution of classes is often unbalanced. Some 

classes have more objects than others. Therefore, the depths of decision cluster trees are 

different. In the extreme case such as 3X , a decision cluster tree may have only the root 

because the number of objects is too small. In this case, we treat 3X  as one decision 

cluster in the model. 

5.2.2   DCF Classification (DCFC) Model 

The decision cluster forest in Fig. 5.2 can be represented in a sequence of nested 

clusterings as follows: 
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In this sequence, the decision clusters with the same dominant class are grouped in the 

top level of iX  for 1 . Any subset of disjoint decision clusters from the top 

levels downward can make a DCFC model. There are many ways to select classification 

models from a decision cluster forest. In this work, we select the leaf nodes of each 

decision cluster tree in the decision cluster forest to build the DCFC model. Each 

decision cluster in the model is represented by its center and dominant class. 

i m 

The DCFC model classifies new objects in a KNN-like way as follows: 

1. Compute the distances between a new object and the centers of the decision clusters 

with a distance function; 

2. Assign to the object the dominant class of the decision cluster with the shortest 

distance to the object. 

5.2.3   DCFC Algorithm 

Table 5.1 shows the DCFC algorithm to automatically build a decision cluster forest 

and select a leaf-based DCFC model. The input to the algorithm is a training data set 

with  classes and the output from the algorithm is a DCFC model. The algorithm 

first divides the input data 

m

X  into m  subsets. For each subset, it calls the W-k-means 

algorithm to generate a decision cluster tree. At each node, it calls  

function to test the stopping criteria to determine whether to call W-k-means to partition 

the node into two children nodes or turn the node to a leaf node. After all decision 

cluster trees are generated, a decision cluster forest is obtained. Finally, the set of all leaf 

decision clusters is returned as the DCFC model. 

 Stop Test
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Table 5.1  DCFC Algorithm.  

Input: A training data set X  with m  classes. 

Output: A classification model DCFC model . 

Begin  

1.  partition X  into m training data subsets, 1 2{ , ,..., }mX X X X . 

2.  for each training data subset iX , 1,...,i m ; 

3.    initialize a decision cluster tree  with root  {iDCT iX }; 

4.    sign the root as internal node; 

5.    for each internal node  in   C iDCT

6.       if ( )  sign C  as leaf node;  Stop Test C

7.       run W-k-means on  to produce two new sub-clusters; C

8.       sign the two new sub-clusters as internal node and add them into ; iDCT

9.    end for  

10. end for 

11. include all leaf nodes from all  trees into the classification model m

DCFC model  and  represent each node by its center and its dominant class;  

12. return ; DCFC model

End  

 

The  algorithm is given in Table 5.2. Since all data objects belong 

to the same class, the class label information is no longer useful in the tree generation 

 Stop Test C
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process. In this algorithm, only two stopping criteria are considered: the number of 

objects in the data subset and the Anderson Darling (AD) Test [6,7]. If a node cluster is 

too small, it need not be further partitioned. If objects in a cluster follow a normal 

distribution, it is a good cluster and does not need a further partition. Anderson Darling 

(AD) Test is a powerful statistical method to determine whether a sample comes from a 

specified distribution or not. If the testing result satisfies the AD Test criteria, this cluster 

node is treated as a leaf node. Otherwise, it is further partitioned into sub-clusters. 

Table 5.2  Algorithm of Stop-Test(C).  

Input: the node  which contains n objects. C

Output: A Boolean value stop which is either (i) TRUE which means "stop" or  

(ii) FALSE, otherwise. 

Remarks:  

δ: the threshold of the number of samples in  (e.g., 10). C

Begin  

1.  stop = FALSE; 

2.  if (n <δ OR AD-Test( C ) 

3.      stop = TRUE and label C with the dominant class label; 

4.   return stop; 

End  

 

5.3   Experiments 

In this section, we present the 10-fold cross-validation experiments we have conducted 

on both synthetic and real-world data sets. The experimental results demonstrate that 
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DCFC outperforms some existing classification algorithms, including original KNN, 

decision tree (J48), SVM (SMO) and ADCC [109] in terms of speed, scalability and 

classification accuracy. Weka [126] implementations of J48 and SMO were used in our 

comparisons. DCFC algorithm and ADCC were implemented in java. 

All experiments were conducted on an Intel(R) Xeon(R), 1.60 GHz computer with 

8GB memory. We compared the accuracy and execution time of these classification 

algorithms. In our experiments, our setting is similar to [109] where default parameters 

were used for J48 and SMO in Weka. For J48, the minimal number of instances per leaf 

is set as 2. The SMOs were trained with a linear kernel where the complexity parameter 

C was set as 1.0. For KNN, the number of neighbors, k, equals to 1. For ADCC, we use 

the same parameter settings as in Chapter 4.  

DCFC needs one parameter   presented in  Stop Test C , which is presented in 

Section 5.2.3. In  CStop Test  algorithm (see Table 5.2), we first consider the size 

of the current node and then consider the result of AD-TEST( C ) when we determine 

whether the current node C  should be further divided. Since it takes longer for 

AD-TEST(C) than judging the size, we want to filter the obvious condition under which 

the node need not be further divided. Thus, the size threshold   can be set to values so 

that the further clustering of  should be stopped obviously when the data size in node 

 is less than 

C

C  .   depends on the size of the root node and is always set to 5% of 

the number of samples in the root node. If the size of a node is smaller than 5% of the 

size of the root, we consider this node as a leaf automatically. 

5.3.1   Experiments on Text Data 

We compared DCFC with other three well-known classification algorithms and ADCC 

on some high dimensional real data sets. These data sets are taken from the UCI 

machine learning data repository [23]. 

Table 5.3 lists eight data sets built from the Twenty Newsgroups data following the 
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similar method in Chapter 4. The original text data was first preprocessed to strip the 

news messages from the special tags and the email headers and eliminate the stem words 

and stop words. The dimension (word) in each document was weighted by the Term 

Frequency (TF). We preprocessed these data sets by deleting some dimensions with 

smallest TF values. The resulting text data contain several thousand frequent words. 

Different data sets have different cluster properties. Some of them have semantically 

similar classes (e.g. T_2), whereas others contain semantically different classes (e.g. 

T_1). Some of them have overlapping words (dimensions) (e.g. T_5), while some of 

them contain the unbalanced number of documents in each class (e.g. T_8). This group 

of text data sets is different from the group in Chapter 4. We generate the different data 

sets every time to show that our framework is effective on so many different data sets. 

Table 5.3  Text data sets generated from the 20-Newsgroups data .  

Data sets Classes  Dimension Size  

T_1 
alt.attheism 

comp.graphics 
3939 

200 
200 

T_2 
talk.politics.mideast 

talk.politics.misc 
5795 

200 
200 

T_3 
comp.sys.imb.pc.hardware 

comp.sys.mac.hardware 
2558 

200 
200 

T_4 
Alt.attheism 

Talk.religion.misc 
5856 

300 
300 

T_5 
rec.autos 

rec.motocycles 
3154 

400 
400 

T_6 
rec.autos 

rec.motocycles 
3979 

200 
400 

T_7 

comp. graphics 
Rec.sport.baseball 

Sci.space 
Talk.politics.mideast 

7924 

200 
200 
200 
200 

T_8 

comp. graphics 
Rec.sport.baseball 

Sci.space 
Talk.politics.mideast 

8549 

300 
200 
100 
50 

 

Five classification algorithms, DCFC, ADCC, KNN, J48 and SMO, were tested on 

these text data sets. Each classification algorithm was run 10 times on each data set 

using different 30% of data as testing test (70% as training data). The deviation of 

results of each algorithm is not large, so we report their average. Fig. 5.3 shows the 
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classification accuracy and execution time on these text data sets. We can see that DCFC 

achieves higher accuracy than ADCC, KNN and J48 in most cases. DCFC and ADCC 

are comparably faster than other algorithms. DCFC achieves higher or close accuracy to 

SMO but much faster than that. 

 

(a) Accuracy 

 

(b) Execution time 

Fig. 5.3  Classification results on text data sets. 
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5.3.2   Experiments on Other Real Data 

Table 5.4 lists the other two real data sets which are also taken from UCI machine 

learning repository [23].  

Table 5.4  Other real data sets.  

Data sets Instances  Dimensions Classes  Training  Testing  

Waveform 5000 40 3 3500 1500 

reuters 9980 337 10 6986 2994 

 

Table 5.5 lists the results of execution time and classification accuracy generated by 

five classification methods from these two real data sets. These two data sets are 

comparably simple and low dimensional. DCFC works as well as ADCC which is more 

suitable for large, high dimensional data. 

 
 

Table 5.5  Classification results of data sets in Table 5.4 by five classification methods.  

Data sets Waveform Reuters  

Metrics Time(s) Acc.(%) Time(s) Acc.(%) 

DCFC 2.5031 84.4 81.922 68 

ADCC 2.516 83.8 74.952 68.97 

KNN 15.688 70.8 485.625 57.95 

J48 1.2 73.26 35.23 65.29 

SMO 1.94 85 392.91 65.86 

 

5.3.3   Scalability 

We conducted experiments on synthetic data sets to demonstrate and compare the 

scalability between our new DCFC algorithm and other classification algorithms. The 

results show that our method is more scalable when the number of samples and 

dimensions increase.  
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We adopted the same two groups of synthetic data sets with different numbers of 

dimensions and samples (shown in Table 5.6) as the same as in Chapter 4. The two 

groups of synthetic data sets are listed here again to make the thesis easy to follow. Each 

data set contains three clusters randomly generated with normal distributions. The class 

labels are randomly arranged. We recorded the total execution time and compared the 

performance of DCFC with original KNN, J48 and ADCC with different number of 

dimensions and samples respectively. 

Table 5.6  Two groups of synthetic data sets (each having three classes). 

Data sets Dimensions Instances Data sets Dimensions Instances 
A1 5 5,000 B1 4 3,000 
A2 20 5,000 B2 4 9,000 
A3 50 5,000 B3 4 15,000 
A4 100 5,000 B4 4 30,000 
A5 200 5,000 B5 4 45,000 
A6 300 5,000 B6 4 60,000 
A7 400 5,000 B7 4 75,000 
A8 500 5,000 B8 4 90,000 

Figure 5.4 shows the execution time against the number of dimensions and Fig. 5.5 

shows the execution time against the number of samples. Because the curve of the result 

of KNN ranges too large to demonstrate the curves of other algorithms clearly, we 

presented the results in two sub-figures. Sub-figure (a) is the comparison results of 

DCFC, ADCC, SMO and J48, and Sub-figure (b) is the comparison results adding KNN. 

We can see that the execution time increased linearly for DCFC, ADCC, SMO and J48 

whereas the execution time for KNN increased rapidly when the number of instances 

approached 90000. Although the execution time for KNN increased linearly as the 

number of dimensions increased, the increase was much faster than DCFC, SMO, 

ADCC and J48. Meanwhile, the execution times for DCFC, ADCC, SMO and decision 

tree (J48) are comparable to each other and scalable on this group of data sets. SMO 

grows faster over dimensions than DCFC, ADCC and J48. 
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(a) Except KNN (b) With KNN 

Fig. 5.4 Execution time vs. dimension number. 

 

(a) Except KNN (b) With KNN 

Fig. 5.5 Execution time vs. data size. 

 

5.4   Conclusion 

In this chapter, we have proposed a new classification method for using a clustering 

method to build a decision cluster forest. Decision cluster classification models are 

generated from the decision cluster forest. We have presented an automatic algorithm 

DCFC which uses the variable weighting k-means algorithm W-k-means to build a 
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decision cluster forest from a training data set. The classifier is constructed by selecting 

all leaf nodes from the decision cluster forest.  

We have presented experimental results on both synthetic and real world data sets and 

compared the performance of DCFC with those of other well-known classification 

methods. The comparison results have shown that DCFC has advantages in classifying 

large, high dimensional data with multiple classes.  
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Chapter 6 

An Ensemble of Decision Cluster 

Crotches for Classification of High 

Dimensional Data 

In this chapter, we present a Crotch Ensemble classification model for high dimensional 

data with multiple classes. A Crotch Ensemble is obtained from a decision cluster tree 

built by calling a clustering algorithm recursively. A Crotch is an inner node of the tree 

together with its direct children. If the children of a crotch have more than one dominant 

class, the crotch is defined as a Crotch Predictor that is a classifier by itself. A crotch 

ensemble consists of a set of crotch predictors. When classifying a new object, a subset 

of crotch predictors is selected according to the distances between the object and the 

crotches. A classification is made on the object as the class predicted by the crotch 

predictors with the maximum accumulative weights. The experimental results on both 

synthetic and real data have shown that the Crotch Ensemble model can get better 

classification results on high dimensional data than other classification methods. 

6.1   Introduction 

We present an ensemble of crotches of decision clusters for classification of high 

dimensional data with multiple classes in this chapter. A decision cluster tree is built by 

calling a clustering algorithm recursively. Each node with its dominant class forms a 

decision cluster [109]. A crotch is an inner decision cluster with its children in the 

decision cluster tree. This chapter presents a new classification method which uses an 

ensemble of classification models produced from crotches. An ensemble of classification 
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models gains better performance and wider working space than a single classification 

model. 

A crotch consists of an inner node and its children nodes in a decision cluster tree. 

When traversing the tree, a crotch whose children have more than one dominant class is 

regarded as a crotch predictor which itself forms a classification model. These 

classification models (crotch predictors) construct the Crotch Ensemble. Our task is to 

generate a more effective classifier based on this crotch ensemble. 

Crotch Ensemble is an extension to the decision cluster classification model ADCC 

proposed in [109]. The ADCC model consists of a set of decision clusters that are taken 

from all leaves of a decision cluster tree built from a training data set. In this leaf 

decision cluster model, the domain space can be divided with the Voronoi partition [119] 

into a set of non-overlapping decision regions by the set of decision cluster centers. The 

decision about the class of a new object is made by the decision cluster in whose 

decision region the object falls. Classification errors often occur at the boundary of two 

decision cluster regions with different dominant classes and in the decision regions of 

weak decision clusters that contain objects of multiple classes without clearly dominant 

class. The crotch ensemble classifies a new object with multiple crotch predictors which 

are built from decision clusters at different levels of the decision cluster tree and the 

decision clusters in different crotch predictors can overlap. If a new object is 

misclassified by one crotch predictor, the misclassification can be corrected by other 

crotch predictors. Therefore, multiple predictor decisions are more robust than the single 

decision cluster decision. A series of experiments on both synthetic and real data sets 

have demonstrated that the efficiency and the accuracy of the Crotch Ensemble method 

is superior to the ADCC model. Compared with other classification methods, including 

KNN [34], J48 (a decision tree algorithm) [27], Random Forest [118] and ADCC [109], 

our experimental results also showed that the Crotch Ensemble has performed better 

than other methods on large, high dimensional data with many classes. 
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The decision tree has been proved as a useful and powerful tool in data mining and 

machine learning [27,110,111,112]. However, with the quick development of data 

acquisition, data transmission and storage technology, traditional decision tree methods 

face a lot of challenges in classification of high dimensional data with multiple classes 

[21,113]. A decision tree is often built from a small number of dimensions from high 

dimension such as text data. This is because each partitioning step in building a decision 

tree model only considers one dimension while the information is usually stored among 

many dimensions. When there are a large number of classes, a large number of leaves 

are generated, which will cause an over-fitting problem [30,114,115,116,117]. To avoid 

these disadvantages, ADCC algorithm [109] was proposed to take a subset of 

dimensions at each node to build a decision cluster tree from high dimensional data with 

a clustering algorithm. 

The rest of this chapter is organized as follows. Section 6.2 proposes the Crotch 

Ensemble algorithm. Discussions and analysis about the crotch ensemble method are 

given in Section 6.3. Experiments on synthetic and real data sets are presented in Section 

6.4. Section 6.5 concludes this work.  

6.2   Crotch Ensemble Algorithm 

This section proposes Crotch Ensemble algorithm, which uses crotch predictors of a 

decision cluster tree to construct a classification model. It includes three steps, selecting 

crotch predictors, constructing Crotch Ensemble classifier and training crotch weight. 

Section 6.2.1 presents how to get crotches from a decision cluster tree and select 

useful crotch predictors among them. Crotch Ensemble classifier is proposed in section 

6.2.2. Section 6.2.3 discusses predictor bounding to avoid the influence of outer crotch 

predictors which are too far away from the new samples. In section 6.2.4, the scheme of 

training crotch weight to enhance the crotch ensemble classifier is presented. 
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Fig. 6.1 shows an example of a decision cluster tree of four levels. Level 0 is the root 

 which is the training data set. The root  is partitioned into three clusters , 

, . Here, the superscript indicates the level of the node from which the clusters 

are generated and the subscript is the cluster number in this level. Clusters  and  

are further partitioned into 2 and 3 sub-clusters respectively, which form level 2 of the 

cluster tree. Subsequently, two clusters  and  are further partitioned into three 

and two sub-clusters respectively, which form level 3 of the cluster tree. This tree can be 

represented as the following sequence of nested clusterings as 

. 
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Fig. 6.1  Example of a decision cluster tree (the letter A, B and C beside the nodes are 

dominant classes). 

Based on this decision cluster tree, each node with a dominant class is a decision 

cluster. ADCC selects all leaf nodes (  as the 

classification model. When classifying a new object , ADCC computes the distances 

between  and every leaf, then classify  to the label of the nearest leaf node (cluster). 
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ADCC outperforms some traditional classification algorithms, such as decision tree, 

SVM, KNN, on large high dimensional data, but it still has some drawbacks. It only 

selects leaves to construct the classification model. There is no evidence to prove that 
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leaves are better than inner nodes when classifying new objects. Contrarily, in some 

instances, inner nodes may even be better than leaves. In a word, it is hard to judge 

which choice is better. Another shortcoming of ADCC is that all leaves are 

non-overlapping. The classification errors often occur in the boundary areas of adjacent 

clusters due to the mixture distribution of objects in different class. In next section, we 

will introduce our algorithm, which considers both leaves and inner nodes and selects 

useful nodes automatically. 

6.2.1   Crotch Predictor 

Definition 1. A Crotch is a sub-structure of a decision cluster tree, which is any inner 

node (decision cluster) with its children. 

Crotch is sub-structure of a tree. A crotch only includes a father cluster and its 

children. In this paper, crotches are represented in a sequential form. For example, in Fig. 

6.1, there are totally five crotches: , , , 

, . 

),,( 0
3

0
2

0
1 CCCT ),( 1

2
1
1

0
1 CCC ),,( 2

3
2
2

2
1

1
2 CCCC

),,( 1
5

1
4

1
3

0
3 CCCC ),( 2

5
2
4

1
4 CCC

Definition 2. Crotch Predictor is a crotch whose children have more than one 

dominant class. 

Only crotch predictors are useful in classification. For example, in Fig. 6.1, 

 is a crotch but not a crotch predictor because both children have the 

dominant class A. This crotch cannot be used in classifying new samples. 

),( 1
2

1
1

0
1 CCC

When using a crotch predictor to classify a given sample, distances between this 

sample and the centers of children are computed first; then, this sample is classified with 

the dominant class of the nearest child cluster.   
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6.2.2   Crotch Ensemble 

We can generate many crotch predictors from a decision cluster tree. The crotches on 

higher level are more general so that they can get lower accuracy when classifying new 

samples. Whereas, the crotches on lower level are more specific so that they can get 

higher accuracy in limited local domain. Our new classification method Crotch 

Ensemble integrates the information on both high level and low level to construct a 

strong classifier by co-working and inter-restraining. 

 

Fig. 6.2  The Crotch Ensemble built from the decision cluster tree in Fig. 6.1. 

Definition 3. Crotch Ensemble is a set of crotch predictors which are generated from 

a decision cluster tree. It is also called Crotch Ensemble Classifier. The Crotch 

Ensemble P  includes K crotch predictors: P },...,,{ 21 KPPP .  returns the 

predicted class label argued to x. Crotch Ensemble belongs to the Tree-based Model 

(defined in Section 3.4). 

)(xj

The crotch predictors are generated from a decision cluster tree and put together to 

construct a crotch ensemble classifier. For example, Fig. 6.2 is a crotch ensemble 

classifier built from the decision cluster tree in Fig. 6.1. This crotch ensemble includes 

all crotch predictors in Fig. 6.1. An objective function of Crotch Ensemble classifier is 

defined as following: 
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))(()( maxarg  (6-1)

where  is the number of crotch predictors in the crotch ensemble classifier, K )(jP  

is the j th crotch predictor.  is a logical function, it will return 1 if the condition 

is TRUE, otherwise it will return 0. The condition is determining whether the 

classification result of the crotch predictor to classify the sample 

 )(

x  is the class . The 

function  returns the class label, , with which Function (6-1) gets the 

maximal value. A crotch predictor classifies a sample to the child which is nearest to the 

sample like the classification method in [109]. 

l

arg max l

K  crotch predictors are generated from a decision cluster tree. Their contributions 

for classifying new samples are different due to each of them getting different 

classification accuracy when classifying new samples. Crotch predictors which can get 

better performance are more important than other predictors and should have bigger 

weights. Considering varying performance of each crotch predictor, a weight factor is 

added to Function (6-1). Then, the new objective function of Crotch Ensemble classifier 

is proposed as following: 

 



K

j
jj

l

lxPWxF
1

))(()( maxarg  (6-2)

In Function (6-2), is the weight of the jW j th crotch predictor , which 

satisfies  and . The performance of Crotch Ensemble classifier 

affects the value of weight 

)(jP

10 W j 1
1




K

j
jW

1( jW j ),..., K . We propose a training method in Section 

6.2.4 to get this weight distribution of all crotch predictors in the Crotch Ensemble.  
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6.2.3   Crotch Predictor Bounding 

Crotch Ensemble uses all crotch predictors to classify new samples by maximizing 

function (2). However not all crotch predictors are useful for classifying a new sample. 

Fig. 6.3 shows an example of this problem.  There are three predictors ,  and 

. 

1P 2P

3P x  is a sample to be classified,  and  are near to 1P 3P x , but  is very far 

from 

2P

x  and should be neglected when classifying x . So, it is necessary to define a 

predictor boundary to filter the crotch predictors when classifying new samples. 

 

Fig. 6.3  Specify Bounding Predictor for the sample x . ( ,  and  are 

distances between 

1d 2d 3d

x  and three predictors, star and rectangle denote the different 

dominant classes). 

Suppose },...,,{ 21 KPPP

C

 is the Crotch Ensemble, and it includes  crotch 

predictors.  is the metric space. The Definition 5 is used to neglect far away crotch 

predictors. 

K

Definition 4. The distance between a sample and a crotch predictor P 

 Dist(},...,,{ 21 KPPP x , ) is the distance between this sample and the center of the 

nearest children node in this crotch. 

iP
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Definition 5. Given a sample x  in C , the Bounding Predictor of x , ( )xB

'}kK

, is a 

subset of P  with K' crotch predictors, that is 1 2( ) { , ,k k ...,x P P PB , which 

satisfies (1) K' <= K, ( )xB  , (2) the distances between  P 0x  and each crotch 

predictor in  are smaller than a given distance threshold B  . 

The following function (6-3) is used to determine whether the crotch predictor  

belongs to the bounding predictor of the sample 

iP

x  when classifying x . If it returns 1, 

the testing predictor  belongs to the bounding predictor. iP



 


others

PxDist
P i

ix ,0

),(,1
)(


 (6-3)

The value of distance threshold   is min( ( , ))
i

i
P

Dist x P



P

 which multiplies the 

smallest distance between x  and all  of P by iP  . We call  bounding predictor 

factor and it satisfies    1. If    = 1, the bounding predictor only includes the 

nearest crotch predictor(s). 

For example, in Fig. 6.3, for Bounding Predictor of the sample x , is 

( )xB = . 1 3{ , }P P

We integrated the function (6-3) into the function (6-2) to get the new objective 

function of the Crotch Ensemble classifier as follows: 

1

( ) ( ( )) ( ( ) )arg max
K

x j j j
jl

F x P x W P x l


     (6-4)

Classifying a new sample with the function (6-4) takes the following three steps: (a) 

generating Crotch Ensemble from a decision cluster tree; (b) selecting Bounding 

Predictor for the new sample; (c) classifying the new sample to the class which 

maximize the function (6-4). 
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6.2.4   Crotch Weight Training 

This section describes how the weights of Crotch Predictors are trained before Crotch 

Ensemble is used to do classification as discussed in Section 6.2.2. 

For a sample 'x , each crotch predictor in Crotch Ensemble classifies 'x . Some of 

them classify 'x  correctly and others classify 'x  wrongly. The crotch predictors who 

can classify 'x  correctly are added into , and those classify 'rP x  wrongly compose 

.  and eP : { ( ') ( ')}jP P x l x|r j P P : { ) (e jP P x( 'j ')}l x P P | , where 

 is the correct class label of (l x ') 'x . The corresponding weight sets of predictor sets 

 and  are  and  respectively. For the Crotch Ensemble , if  

, 

rP

F x

e

'x

P rW eW

) (l

P

( ' ) 'x  is classified wrongly by this Crotch Ensemble, it must have,  

j e i r

j i
W W

W W
 

 
W W

 (6-5)

Our goal is to train the weights for crotch predictors so that the important crotch 

predictors have bigger weights and others have smaller weights. A simple strategy is 

increasing weights for the crotch predictors which tend to classify new samples correctly 

and reducing weights for the crotch predictors which are more likely to get error results. 

Table 6.1 is the Crotch Predictor weight training algorithm. 
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Table 6.1  Crotch Predictor weight training algorithm.  

 

1 2{ , ,..., }KP P PP ; Input:  Crotch Predictors Set 

  Training Set, ,   1 1 2 2{ , ( ) , , ( ) ,..., , ( ) }N Nx l x x l x x l x      X

( 1,2,..., )ix i   N is training sample, is its correct label. 

Parameters:  threshold of bounding predictor factor, 

( )il x  

 ; 

             extend coefficient,  ; iteration times, 

Output:   

T . 

1 2{ , ,..., }KW W W W . 

Begin 

1. initialize 0  as K

2. compute classification error rate )

 0 0 0
1 2{ , ,..., }KW W W W 0 1/ , ( 1, 2,..., )jW K j  ; 

0(errR W  in training set using 

 classifier  feed with ; 

3.   For from 1 to 

4.  

5.  For each sample 

X

( )F x 0W

t  T  

1t tW W   

ix  in X ( 1,2,..., )i N  

6.   If 

7.    x

8.    x

9.    

10.    

( ) ( )i iF x l x  

  
1

( ( ) ( ))
K

t t
err j j i i

j

W W P x l


   ; 

1

( ( ) ( ))
K

t t
acc j j i i

j

W W P x l


   ; 

  ( ( ) ( )) 2 1j i iP x l x    ; 

  ( )t t acc
j j

err

W
W W

W
   ; 

11.      re-normalize weights 

12.         End If 

13.  End For 

14. If )

W ; 

1( ) (t t
err errR W R W   

15.        ; 

16.         break; 

17.      End If 

18.  EndFor 

End 

 1tW W 
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From Table 6.1, we can see that when Crotch Ensemble classifies the sample 'x  

wrongly, the weights of crotch predictors are adjusted by multiplying coefficients. Them 

weights of those crotch predictors which classify 'x  wrongly multiply a coefficient 

smaller than 1, and the weights of those crotch predictors which classify 'x  correctly 

multiply a coefficient bigger than 1. Let 
j e

jErr W



W P

 and 
i rW iAcc
P

'

W . 

From 6-5, there is  when Crotch Ensemble classify Err Acc x  wrongly. The 

coefficient which should be smaller than 1 can be specified as 
Acc

Err
, and the other 

coefficient which should be bigger than 1 can be specified as 
Err

Acc
. Thus, the weights 

are adjusted as following, 

,

,

j j j

i i i

Acc
W W W

Err
Err

W W W
Acc

   

   


W

W

e

r

 (6-6)

After adjusting of weights, the weights of those crotch predictors which classify 'x  

correctly become bigger than before and the weights of those crotch predictors which 

classify 'x  wrongly become smaller than before. If the adjustment have the result 

j e i r

j i
W W

W W
 

 
W W

 (6-7)

'x  will be classified correctly after adjusting the weights of crotch predictors. We can 

control the extent of adjustment by step length parameter  . That is, 

( )k k

Acc
W W

Err
    (6-8)

In expression (6-8),   is sign coefficient, it is equal to 1 or -1. If  , k rW P  = -1, 

and else if ,kW Pe  = 1.   is extent coefficient. If   is too small, the weights 
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cannot be adjusted any more and the classification results of the wrongly classified 

sample cannot be corrected. If   is too large, the weights are adjusted too much and 

lead to over-fitting problem. 

Weights are adjusted once in every iteration step of Crotch Predictor weight training 

algorithm. In each iteration step, weights W  should be re-normalized to satisfy 

. Weights distribution of crotch predictors is improved in every iteration step. 1kW 

 

Fig. 6.4  Synthetic data set S. 

Figure 6.4 draws a synthetic data set  which includes 5600 samples, 19 clusters, 2 

classes in 2 dimensions. We compare ADCC with each step of Crotch Predictor weight 

training of Crotch Ensemble on this synthetic data set. We take 70% of the data as the 

training data to build decision cluster tree and to train crotch predictor weights. The 

remaining 30% data is testing data. When training crotch predictor weights, the Crotch 

Predictor weights training algorithm (seen in Table 6.1 takes 2 iteration steps to 

converge and stop. We classify the testing data with Crotch Ensemble based on different 

three weights distribution (initial weights, weights got from first iteration step, weights 

got from second iteration step). Table 6.2 lists the error rate of classification under 

S
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Crotch Ensemble with those three weights distribution and under ADCC method. We 

can see that crotch predictor weight training can improve the performance of Crotch 

Ensemble. Crotch Ensemble outperforms ADCC on this synthetic data set. 

Table 6.2  Classification results are improved by crotch predictor weight training.  

classifier Initial weight Iteration1 Iteration2 ADCC 

Error rate 21.6% 4.8 3.7 7.5 

 

6.3   Analysis 

In this section, we use a simple example to show why Crotch Ensemble can work better 

than ADCC. The example data set D is shown in Fig. 6.5. There are 800 points in 4 

normally distributed clusters that are classified into 2 classes marked with ‘×’ in red 

and ‘○’ in green respectively. The 4 stars indicate the 4 cluster centers. We first build 

an ADCC model to classify this data set and identify the misclassified points. Then, we 

show how Crotch Ensemble can correct these misclassifications. Finally, we discuss the 

bounding effect in crotch ensemble. 
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Fig. 6.5  Distribution of the data set D. 

 

6.3.1   Original Decision Cluster Model and Its Shortcoming 

Figure 6.6 shows the decision cluster tree built from data set  with the ADCC [109] 

method. Each decision cluster node is marked with two symbols, one representing the 

dominant class and the other one representing the cluster center. The legend of these 

symbols is shown on the left side of the figure. The symbols are used to indicate the 

dominant classes and cluster centers in the data distribution figures in this section. From 

this decision cluster tree, we select all leaf nodes to build a leaf-based decision cluster 

model . 

D

1 2 3 4 5( , , , , )ADCC L L L L L
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Fig. 6.6  The decision cluster tree built from data set D. 

Given the 5 cluster centers in the ADCC model, we can draw a Voronoi diagram [119] 

in Fig. 6.7 to show how the data space is partitioned by the ADCC model. The 5 

sub-regions , , ,  and  in Fig. 6.7 indicate the decision areas of 

the 5 decision clusters , , ,  and  in the ADCC model, respectively. A 

point falling in a decision area is classified as the dominant class of the decision cluster 

in the model. We can see that decision areas do not overlap in this leaf-based decision 

cluster model. 

1 'L 2 'L 3 'L

1L

4 'L

2 L

5 'L

4L 3 L 5L

In this model, the classification decision is determined by only one decision cluster. 

The classification performance depends on the purity of the decision clusters, i.e., the 

percentage of the dominant class in the decision area. If points of different classes 

overlap in the neighbor decision clusters, classification errors occur. For example in the 

decision area  of decision cluster  in Fig. 6.7, there are some points in class 

‘○’ which would be misclassified as class ‘×’ because the dominant class of  

is ‘×’. These are the inherent classification errors of the decision cluster which 

cannot be corrected in this model. However, some of these errors may be corrected by 

3 'L 3L

3 'L
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incorporating the parent decision clusters and neighbor decision clusters into the 

classification decision. This is the consideration of the Crotch Ensemble model. 

 

Fig. 6.7  Class decision areas partitioned by the ADCC model. 

 

6.3.2   Correction by Crotch Ensemble 

From the decision cluster tree in Fig. 6.6, we can extract four crotches and three of them 

can be used as crotch predictors. We ignore the crotch that includes leaf nodes  and 

 because the dominant classes of these leaf nodes are the same.  

3L

4L

We plot the crotch ensemble model of 3 crotch predictors in different levels in Fig. 

6.8. Predictor 1 is the crotch corresponding to the partitioning of the root node in Fig. 

6.6. Predictor 2 is the crotch corresponding to the partitioning of the second child of the 

root node. Predictor 3 is the crotch corresponding to the partitioning of one child of 

Predictor 2. The Voronoi partition of the space with a line by each crotch predictor is 

also shown in Fig. 6.8. The two class labels in the ellipse indicate the dominant classes 
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of the decision areas separated by the line. The bottom frame in Fig. 6.8 shows the 

overlap projection of three crotch predictors in the crotch ensemble model. Comparing 

Fig. 6.7 with Fig. 6.8, we can observe that some misclassified points of class ‘○’ by 

decision cluster  in Fig. 6.7 can be correctly classified by Predictor 2 and Predictor 

3. 

3L

 

Fig. 6.8  Crotch Ensemble built from the tee in Fig. 6.6. 

Since the decision area  in Fig. 6.7 does not contain misclassified points, we 

remove decision area  and plot the rest decision areas , ,  and  in 

1 'L

1 'L 2 'L 3 'L 4 'L 5 'L
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Fig. 6.9. The misclassified points are represented as ‘□’. We can see all these points 

occur in decision area ‘ ’ whose dominant class is ‘×’. However, the true class of 

these misclassified points is  ‘○’. With the Crotch Ensemble model to classify the 

points, we can find that Predictor 1 classifies these points as class ‘×’ whereas 

Predictor 2 and Predictor 3 classify these points as class  ‘○’ according to the distances 

between these points and the Crotch Predictors. The weight  of Predictor 1 is 0.26 

and the weights  and  for Predictor 2 and Predictor 3 are 0.25 and 0.49, 

respectively. Because of <  + , these points are classified as class ‘○’. 

Therefore, the misclassifications of some points by the ADCC model are corrected by 

the Crotch Ensemble model. 

3L

1W

2W 3W

1W 2W 3W

 

Fig. 6.9  Samples are wrongly classified by ADCC and Crotch Ensemble (‘□’ denotes 

the samples which are wrongly classified by ADCC but corrected by Crotch Ensemble, 

‘◇’ denotes the samples which wrongly classified by Crotch Ensemble but rightly 

classified by ADCC, and * denotes the samples which are wrongly classified by both 

methods).  
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6.3.3   Bounding Crotch Predictors 

In the crotch ensemble model, a new object is classified by the collective decision of 

multiple crotch predictors, including the primary crotch predictor that is the closest to 

the project, the crotch predictors that overlap but are at the higher levels of the primary 

crotch predictor in the decision cluster tree, and the crotch predictors that are the close 

neighbors to the primary crotch predictor. In a large crotch ensemble model that consists 

of many crotch predictors, not every crotch predictor makes positive contribution to the 

right classification decision. Some crotch predictors that are far away from the primary 

crotch predictor can make negative contribution to the classification. Therefore, we 

define a distance threshold   to exclude the crotch predictors whose distances to the 

object to be classified exceed  . The crotch predictors who are selected from the crotch 

ensemble model to classify a new object are called bounding predictors. Depending on 

the object locations, different sets of bounding predictors are selected to classify 

different objects. 

Figure 6.10 shows an example of the crotch ensemble model built from the decision 

cluster tree in Fig. 6.8. Given an object X , its distance to the primary crotch predictor 

Predictor 1 is . Let the bounding predictor factor ( , 1)Dist X P   > 2, the crotch 

predictors within the dashed lines will be included as the bounding predictors to classify 

X . In this case, Predictor 2 is included whereas Predictor 3 is excluded. 
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Fig. 6.10  Finding Bounding Predictor. 

Figure 6.11 further illustrates how the classification is made by the joint decision of 

bounding crotch predictors. Given a bounding predictor factor   > 1, we draw two 

hyperbolas  and  along the axis linking Predictor 1 and Predictor 2, and the 

axis linking Predictor 1 and Predictor 3, respectively. For the simplification, hyperbolas 

 is not drawn in Fig. 6.11. Here we take 

1,2 1,3

2,3 1,2  and 1,3  for example. The points 

on the left side of  whose Bounding Predictor include Predictor 1 but do not 

include Predictor 2 and the points on the other side of 

1,2

1,2  include Predictor 2 but do 

not include Predictor 1. It is the same way to analyze the points on the two sides of . 

The Bounding Predictors of the points in decision area  only include Predictor 1, so 

the classification decision is made on the points in decision area  by the Predictor 1 

with its weight . In the same way, the Bounding Predictors of the points in decision 

area  and  are { 1 , 2 } and { 1 3 } respectively. The classification decision 

in the decision area 2D  is made jointly by Predictor 1 with its eight 1W  and 

1,3

1D

1D

1W

32D D P P P , P

 w
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Predictor 2 with its weight 2W  whereas the classification decision in the decision area 

3D  is made jointly by Predictor 1 with its weight 1W  and Predictor 3 with its weight 

. 2D  and 3D  are the boundary areas of the three crotch predictors. In the ADCC 

model, classification errors often occur in the boundary areas due to the mixture 

distribution of objects in different classes. Some misclassifications can be corrected by 

the joint decision in the bounding crotch ensemble

3W

 model. 

 

Fig. 6.11  Classification with Bounding Predictor. 

The effect of bounding crotch predictors is significant. Taking the data in Fig. 6.4 as 

an example, 1039 points were misclassified with the crotch ensemble model without 

bounding. After bounding the crotch predictors, 972 misclassifications were corrected. 

6.4   Experiments  

In this section, we present the experiments we have conducted on both synthetic and real 

data sets. The experiments on synthetic data have analyzed the parameters of Crotch 

Ensemble and compared the performance with other algorithms (including Decision 
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Tree and ADCC) by increasing the size and the number of dimensions of the data sets. 

We also compared the classification performance of these classification algorithms on 

real data sets. All experiments were conducted on an Intel(R) Xeon(R), 1.60 GHz 

computer with 8GB memory. 

6.4.1   Analyzing Parameters 

We generated the synthetic data set  whose characteristics are given in Table 6.3. 

 includes two classes, each with 3 clusters. Each cluster contains 200 samples 

following a normal distribution. Some clusters are overlapping. The shape and 

distribution are shown in Fig. 6.12. 

1S

1S

Table 6.3  Generation characteristics of  (two orientation variances are 7 and 1).  1S

 Class1 Class2 

 Cluster1 Cluster2 Cluster3 Cluster1 Cluster2 Cluster3 

centroid (10,10) (0,10) (-10,10) (8,12) (-4,10) (-10,6) 

orientation / 4  13 /12 2 / 3  / 4  13 /12  2 / 3  

 

 

Fig. 6.12  The distribution of data set . 1S
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There are two important parameters   and   in Crotch Ensemble. Their values 

will influence the performance of the classification model. 1   is used to compute 

the threshold of crotch predictor bounding (see Section 3.3). It affects the number of the 

predictors selected to classify a new sample. If  =1, only the nearest predictor is 

selected to perform classification. In this condition, the Crotch Ensemble classification 

method is the same as the classification step of ADCC. The value of   should not be 

too big or too small. If   is too big, some too far away predictors are selected but they 

are not useful for classifying the current sample. If the value of   is too small, the 

useful predictors may be missed. We execute Crotch Ensemble on the data set  to 

demonstrate how the parameter 

1S

  influences the classification result. Fig. 6.13 shows 

the classification accuracy against different values of   on Crotch Ensemble. We can 

see that the classification accuracy is increasing by increasing the value of   at the 

beginning but it is decreasing after the value of   reaches around 8. When the value of 

  is bigger than 10, the accuracy is not stable. From our experience the range from 2 to 

8 is a good choice of the value of  . The best choices may be different for different 

data sets, but the trends of the accuracy lines are the similar. 

 

Fig. 6.13  Performance effected by  . 
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Another important parameter   controls the updating range when adjusting the 

crotch weights (see Section 3.4). It controls the extent of adjusting weights of each 

crotch predictor in every iteration step. We still execute Crotch Ensemble on the data set 

 to demonstrate how the parameter 1S   influences the classification result. Fig. 6.14 

shows the classification accuracy against different values of   on Crotch Ensemble. 

We can see that the classification accuracy reaches the highest value when   is around 

1. The classification accuracy is increasing by increasing the value of   at the 

beginning but it is decreasing after the value of   reaches around 1. From our 

experience the range from 0.6 to 1.4 is a good choice of the value of  . 

 

Fig. 6.14  Performance effected by  . 

6.4.2   Scalability 

We generated two groups of synthetic data sets with different numbers of dimensions 

and instances (shown in Table 6.4). Each data set contains ten clusters randomly 

generated with normal distributions. Each cluster is randomly labeled with one of the 

three classes. In each run, we used 70% of data as training data and the remaining 30% 

as testing data. We compared the performance of Crotch Ensemble with ADCC and 
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decision tree algorithm J48 with different number of dimensions and instances 

respectively. Table 6.4 shows the details of data sets: data sets A1 to A8 have the 

number of dimensions varying from 10 to 10,000; data sets B1 to B8 have the number of 

data instances varying from 50 to 100,000.  

Table 6.4  Two groups of synthetic data sets (each having three classes).  

Data sets Dimensions  Instances  Data sets Dimensions  Instances  

A1 5 5,000 B1 4 3,000 

A2 20 5,000 B2 4 9,000 

A3 50 5,000 B3 4 15,000 

A4 100 5,000 B4 4 30,000 

A5 200 5,000 B5 4 45,000 
A6 300 5,000 B6 4 60,000 

A7 400 5,000 B7 4 75,000 

A8 500 5,000 B8 4 90,000 

 

The experimental results are shown in Fig. 6.15 and Fig. 6.16. Fig. 6.15 shows the 

cl

ensions. 

Be

assification accuracy against the number of instances. We can see that the 

classification accuracy of J48 decreases obviously when the number of dimension is 

increasing. Crotch Ensemble and ADCC perform better than J48 and are stable. Crotch 

Ensemble and ADCC have similar performance on high dimensional data sets. 

Fig. 6.16 shows the classification accuracy against the number of dim

cause Crotch Ensemble needs more samples to train weights, it performs worse in 

small data set. Crotch Ensemble performs better than ADCC and J48 on large data sets.  
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Fig. 6.15   Classification accuracy vs. dimension number. 

 

 

Fig. 6.16  Classification accuracy vs. data size. 

  

6.4.3   Experiments on Real Data 

We show the comparison results of Crotch Ensemble algorithm and other four 

classification methods: decision tree (J48), original KNN, Random Forest and ADCC on 
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five real data sets which are taken from the UCI machine learning data repository [23]. 

We implemented Crotch Ensemble and ADCC in java. J48, KNN and Random Forest 

are implemented in Weka [126]. BreastCancer is authored by Prognostic Wisconsin 

Breast Cancer Database. For the Reuters data set, the standard document frequency 

method was used to select relevant attributes from the original feature space. Madelon is 

an artificial data set, which was part of the NIPS 2003 feature selection challenge. 

optdigits is Optical Recognition of Handwritten Digits Data Set. Table 6.5 lists these 

ata sets. 

 

Tab ur real d

d

le 6.5  Fo ata sets.  

Data Set Instances Dimensions Classes Training Testing 

Breastcancer 569 32 2 398 171 

Madelon 4400 500 2 2000 2400 

Reuters 9980 337 10 6986 2994 

Optidigits 5620 64 10 3823 1797 

The comparative results with 10-fold cross-validation of Crotch Ensemble and other 

four algorithms are shown in Table 6.6. We can see that Crotch Ensemble outperforms 

other algorithms in most conditions. 

Tabl sificatio ur real  e 6.6  Clas n results on fo data sets. 

Algorithm Breastcancer Madelon Reuters Optidigits

Crotch 96.7% 72.3% 71.5% 91.7% 

ADCC 94.9% 72.2% 69.3% 90.9% 

Decision 94.2% 67.2% 67.7% 89.7% 

KNN 83.9% 63.2% 65.1% 80.5% 

Random 95.7% 59.7% 67.8% 96.8% 
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On the same data sets, we record the wrongly classified samples by ADCC and Crotch 

Ensemble. Table 6.7 shows how much the Crotch Ensemble corrects the ADCC result. 

Crotch Ensemble is abbreviated as CE.  

Table 6.7  Crotch Ensemble correction.  

Data set ADCC wrongly classified

but CE rightly classified 

ADCC rightly classified 

but CE wrongly classified

Breastcancer 7 5 

Madelon 321 315 

Reuters 674 633 

Optidigits 75 57 

 

6.5   Conclusion 

In this chapter, we propose a new classification method Crotch Ensemble based on the 

decision cluster tree. We have presented the method of selecting crotch predictor and the 

algorithm of training the weights for each crotch predictor. We define the Bounding 

Predictor to filter the crotch predictors when classifying new samples. Those too far 

away predictors are neglected when classifying a sample using Bounding Predictor of 

this sample. We analyzed why Crotch Ensemble can correct some misclassified samples 

by ADCC and how to choose the near crotch predictors. 

  We have presented experimental results on both synthetic and real world data sets to 

analyze the parameters and to compare the performance of Crotch Ensemble with those 

of other well-known classification methods and our previous classification method 

ADCC. The comparison results have shown that Crotch Ensemble has advantages in 

classifying large, high dimensional data with multiple classes and performs better than 
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the previous method ADCC. The experimental results have also demonstrated Crotch 

Ensemble can correct ADCC's results and Crotch Ensemble with Predictor Bounding 

can filter too far away crotch predictors to improve the classification result.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 102



 

Chapter 7 

A Subspace Decision Cluster 

Classifier for Text Classification 

In this chapter, a new classification method (SDCC) for high dimensional text data with 

multiple classes is proposed. In this method, a subspace decision cluster classification 

(SDCC) model consists of a set of disjoint subspace decision clusters, each labeled with 

a dominant class to determine the class of new objects falling in the cluster. A subspace 

decision cluster tree is first generated from a training data set by recursively calling a 

subspace clustering algorithm Entropy Weighting k-means algorithm. Then, the SDCC 

model is extracted from the subspace decision cluster tree. Various tests including 

Anderson-Darling test are used to determine the stopping condition of the tree growing. 

A series of experiments on real text data sets have been conducted. Their results show 

that the new classification method (SDCC) outperforms the existing methods like 

decision tree and SVM. SDCC is particularly suitable for large, high dimensional sparse 

text data with many classes. 

7.1 Introduction 

Text classification aims at assigning class labels to text records. It is widely extended in 

many web mining areas, such as Blog documents classification [128], robust 

classification of rare queries in search engines [103] and hierarchical text classification 

[101,129]. Text data is a typical example of high dimensional data. Classifying high 

dimensional data faces many challenges [21]. There are usually thousands or more 

dimensions, which is the total number of unique words in text data. In a text data set, 

records (documents) related to a particular topic, for example, politics, usually contain a 

subset of words (dimensions) which are discriminative for these documents. Those 
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dimensions describing politics are less likely to exist in documents of other topics such 

as sports. This situation implies that different dimensions have different contributions for 

documents in different classes. Furthermore, in high dimensional data, the variations of 

distances between any two data samples becomes less significant [130], so meaningful 

clusters can only be found in some subspace of the whole high dimensional space [131]. 

We can find clusters from subspaces of the dimensions instead of the entire dimensions 

by subspace clustering algorithms. We intend to apply the advantages of subspace 

clustering into the classification to deal with the sparse high dimensional data. 

Cluster-based classification model follows a probability mixture model in which each 

cluster is considered as a distribution of objects of one class in the multidimensional data 

space [120]. Objects in the same cluster tend to have the same class label. On the other 

hand, it can be viewed as mapping a class to one or more clusters. In this way, 

classification can be seen as a clustering problem that can be solved with a clustering 

process. 

In this chapter, we integrate a subspace clustering algorithm Entropy Weighting 

k-Means (EWKM) [3] into our classification framework. There are three main steps in 

this work. Fist we build a subspace decision cluster tree by recursively calling the 

subspace clustering algorithm EWKM. In every partition, the sub-clusters are found in 

their own subspaces instead of the entire data space. After building the subspace 

decision cluster tree, we generate a classifier from the tree. Finally, we specify a distance 

metric for our classifier to classify new samples. In growing the subspace decision 

cluster tree, we adopt the EWKM to deal with the data sparsity problem which exists in 

high dimensional data. EWKM extends the k-Means clustering process to calculate a 

weight for each dimension in each cluster and use the weight distribution to identify the 

subsets of important dimensions instead of the whole dimensional space. We adopt 

Anderson Darling Test [6,7] as a stopping criterion in tree growing. Our experimental 

results on many real text data sets generated from 20-newsgroup corpus demonstrate that 
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our Subspace Decision Cluster Classifier outperforms other classifiers including SVM, 

decision tree. 

The rest of this chapter is organized as follows. In Section 7.2, we briefly review the 

subspace clustering algorithm Entropy Weighting k-Means (EWKM). In Section 7.3, we 

introduce the construction method of the subspace decision cluster tree and the methods 

of model selection and classification. In Section 7.4, experimental results and 

comparisons are reported. In Section 7.5, we conclude this chapter. 

7.2 Entropy Weighting k-Means Algorithm 

In this section, we briefly review the subspace clustering algorithm Entropy Weighting 

k-Means (EWKM) [3] used for clustering high-dimensional sparse data. 

High dimensional data is common in real world data mining applications, such as text 

data mining, bioinformatics data mining and business data mining. Sparsity is a classic 

problem of high dimensional data. In text data mining, documents related to a particular 

topic such as culture are characterized by a subset of words. Words appearing in culture 

documents may not appear in sport documents. The clustering algorithms dealing with 

this kind of high dimensional sparse data are called subspace clustering algorithms. In 

the subspace clustering, each cluster contains a set of samples identified by a subset of 

dimensions. 

Entropy Weighting k-Means (EWKM) algorithm is a soft subspace clustering 

algorithm which clusters data samples in the entire dimensional space but assigns 

different weights to different dimensions for each cluster during clustering process [3]. 

The dimensions which are more important for identifying the corresponding cluster will 

get larger weights. Dimensions make different contributions to the evaluation of objects 

in a cluster. It is different from Weighting k-means (WKM) which is adopted in the work 

of Chapter 4. WKM is not a subspace algorithm. It just assigns smaller weights for noisy 

dimensions and larger weights for non-noisy dimensions. All clusters have the same 
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weight distribution of the entire data space in WKM. However, EWKM can find clusters 

in subspaces by giving different weight distributions for different clusters. 

The objective function is written as follows: 

2

1 1 1 1
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In Function (7-1),  is the number of objects,  is the number of clusters and  

is the number of dimensions. 

n k m

  is the weight distribution of dimensions for each 

cluster, Z  is the centroids of the clusters, and W  is partition matrix. lj  is the 

degree of membership of the j th object belonging to the th cluster. l li  is the weight 

for the th dimension in the th cluster. i l jix  is value of the th dimension the i j th 

object and  is the value of the th component of the th cluster center. The details 

of the EWKM algorithm can be found in [3]. 

liz i l

7.3 Subspace Decision Cluster Tree 

In this section we demonstrate the techniques during the construction process of a 

subspace decision cluster tree. The Entropy Weighting k-Means (EWKM) [3] clustering 

algorithm is adopted to build a subspace decision cluster tree because it is efficient and 

able to automatically find clusters from subspace of data instead of the entire data space 

and compute the attribute weights from the training data to reduce the effect of noisy 

attributes. Sub-clusters which are generated from the same father cluster are represented 

in different subsets of attributes. 
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7.3.1   Definitions 

Let 1 2{ , ,..., }nX x x x

m

 be a training data set of  classified objects, each described 

by  attributes and labeled by one of  classes.  

n

K

Definition 1. The dominant class in a cluster is the class that the majority of objects 

are labeled. A cluster with a dominant class is called a decision cluster. The percentage 

of the dominant class in the cluster defines the confidence level of the decision cluster. 

Definition 2. A subspace decision cluster (SDC) is a cluster which is generated by a 

subspace clustering algorithm and exists in the subspace of all dimensions. 

Definition 3. A subspace decision cluster classifier (SDCC) consists of a subset of 

subspace decision clusters generalized from the whole training data set. 

In principle, any subset of subspace decision clusters can form a SDCC model. 

However, the model performance on classification accuracy depends on the subspace 

decision clusters generated by the clustering process and also depends on which 

subspace decision clusters are selected to form the classification model. Therefore, the 

following two processes are crucial: (1) generation of a set of subspace decision clusters 

and (2) selection of a subset of these clusters for the model. Below, we present a method 

to generate a set of nested clusters that form a subspace decision cluster tree for 

classification model selection. 

 7.3.2   Subspace Decision Cluster Classifier (SDCC) Algorithm 

Table 7.1 shows the algorithm of automatic construction of subspace decision cluster 

tree and the selection of the SDCC model. 
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Table 7.1  SDCC Algorithm.  

Input: A training data set  (with m  dimensions and  classes). T K

Output: A classification model modSDCC el . 

Tree construction 

1.  initialize a subspace decision cluster tree  with root { ; SDCT }T

2.  sign the root as internal node; 

3.  for each internal node X  in SD  CT

4.    if ( ) min ( )Ter al Test X

5.      sign X  as leafnode ; 

6.      break;  

7.    end if 

8.    ( , )k K Selection X   ; 

9.    CENT  = ER ARRAY ( , )C Selection k X ;//Compute initial centers  

10.   run on EWKM X  with k  and CENTER ARRAY ; 

11.   sign  sub-clusters as ; k int ernalnode

12.   assign  sub-clusters to ; k SDCT

13. end for  

Model selection 

14. extract all leaf nodes from  as classification model ; SDCT modSDCC el

15. return ; modSDCC el

End  
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7.3.3 Constructing a Subspace Decision Cluster Tree 

Subspace clustering algorithms can find clusters from subspace instead of the entire 

attributes space. EWKM is one of soft subspace clustering algorithms [3] which is to 

cluster objects in the entire data space but assign different weighting values to the 

attributes of clusters in the clustering process, based on the importance of the attributes 

in identifying the corresponding clusters. EWKM can automatically weigh attributes on 

their importance during the clustering process. 

In EWKM algorithm, a new step is introduced to the basic k-means algorithm to 

update the weight entropy based on the current partition of data. The objective function 

with this new term can minimize the within-cluster dispersion and maximize the 

negative weight entropy (the second term in Function (7-1) to stimulate more 

dimensions to contribute to the identification of clusters simultaneously. For the high 

dimensional text data sets, EWKM algorithm outperforms the other subspace clustering 

algorithms [2]. 

In this chapter, the construction of the subspace decision cluster tree is a recursive 

division process by recursively executing the EWKM clustering algorithm. To partition 

a cluster into sub-clusters with EWKM algorithm, we need to specify a parameter  

which is the number of sub-clusters to be generated. We also need to specify the initial 

centers for each sub-cluster. Here, we still take advantage of the class label information 

as in Chapter 4. We propose some methods to control the iteration and improve the 

clustering process. These methods include the method of selecting k  for EWKM 

(

k

( , )K Selection X 

( , )C Selection k X

), the method of selecting initial centers for EWKM 

( ) and the termination test method ( ), where  Terminal Te X st

X  is the current node to be partitioned, α is a threshold and  is the number of 

sub-clusters. These methods are explained in Chapter 4. 

k

We determine the value of  by considering the distribution of classes. We compute k
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the percentage of samples in each class compared with all samples in the current node. 

Given a threshold α, let  be the number of classes whose percentages are larger than 

or equal to α. This paper implemented the selection of  by the function 

k

k

( , )K Selection X  : X  is the current sample set and α is the threshold. The 

function returns the value of . EWKM algorithm is a local search approximation 

algorithm. If we can specify better centers at the beginning, it can reduce the number of 

iterations and get better clustering result more quickly. In this chapter we still use 

supervised selection method 

k

C ( , )Selection k X . Using the class centers can 

accelerate the process of selecting the initial centers as well as improve the accuracy of 

determination of initial centers vastly. The stopping test stage which determines whether 

a node should be further divided or not, is vital for the whole tree construction and will 

influence the quality of the tree as well as the quality and computing efficiency of the 

classifier. We consider the size, class purity and data distribution together when doing 

the stopping test. We implemented a termination test method considering the above three 

aspects by  method in Chapter 4. The efficiency of these methods 

have been shown in Chapter 4. 

 XTerminalTest

7.3.4 Model Selection and Classification 

After a subspace decision cluster tree is built, any subset of disjoint decision clusters 

makes a SDCC model. In this work, we select the leaf nodes of the subspace decision 

cluster tree because leaf nodes are disjoint with each other and all of them as a whole 

cover all training samples. 

The classification model is used to classify new objects as the following: (1) Select a 

distance function specific for classification; (2) Compute the distances between a new 

object and the centers of the decision clusters in the model; (3) Identify the decision 

cluster with the shortest distance to the object and assign the label of the decision cluster 

to the new object as its class. 
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In this work, we use the cosine distance function which is often used in text mining as 

follows: 

( , )
|| |||| ||

A B
Sim A B

A B


  (7-3)

Function (7-3) is a measure of similarity between two documents by finding the 

cosine of the angle between them. Given two vectors (representing the two documents), 

A and B, the cosine similarity is represented using their dot product and magnitudes as 

shown in Function (7-3). 

7.4 Experiments 

In this section, we present the experiments we have conducted on real text data sets. We 

compared the classification performance of our classification algorithm and other 

classification algorithms. All experiments were conducted on in Intel(R) Xeon(R), 1.60 

GHz computer with 8GB memory. 

7.4.1 Evaluation Method 

We compare our SDCC on the Text Classification task with other classification methods 

such as J48 [27](one of decision tree algorithms), SMO [124] (one of SVM methods in 

Weka [126]) and libSVM [132]. In this chapter, we focus on classifying multi-class text 

classification. 10-fold cross-validation has been accomplished for each data set. 

To evaluate the classification performance for each class, F1 [50], precision [48] and 

recall [49] as shown in the Equation (7-4), (7-5) and (7-6) were used. To measure the 

average performance for all classes of the whole data sets, the macro-averaging F1 and 

micro-averaging F1 were used. F1 is a combined form for precision (P) and recall (R), 

which is defined as Equation (7-4). 

2
1

PR
F

P R



 (7-4)
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Table 7.2  The contingency table for class .  ic

Real class 
Class  ic

Positive Negative

Positive iTP  iFP  Classifier results
Negative iFN  iTN  

i
i

i i

TP
P

TP FP



 (7-5)

i
i

i i

TP
R

TP FN



 (7-6)

Micro-averaging:  and P R   are obtained by summing over all individual 

decisions as shown in Equation (7-7), (7-8) and (7-9), where   indicates 

micro-averaging. 

1

1
( )

K

ii
K

i ii

TPTP
P

TP FP TP FP

 



 
 




 (7-7)

1

1
( )

K

ii
K

i ii

TPTP
R

TP FN TP FN

 



 
 




 (7-8)

2
1

P R
F

P R

 


 


 (7-9)

Macro-averaging: precision and recall are first evaluated “locally” for each class, and 

then “globally” by averaging over the results of the different classes as shown in 

Equation (7-10), (7-11), and (7-12), where M  indicates macro-averaging. 

1

K

iM i
P

P
K
   (7-10)

1

K

iM i
R

R
K
   (7-11)
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2
1

M M
M

M M

P R
F

P R



 (7-12)

In the rest of this chapter, we use 1F   and 1M F  to denote micro-F1 and 

macro-F1 respectively. 

7.4.2 Data sets and Experimental Settings 

Our experiments were done on 20-Newsgroups data which is taken from the UCI 

machine learning data repository [23]. The original text data was first preprocessed to 

strip the news messages from the special tags and the email headers and eliminate the 

stem words and stop words. The dimension (word) in each document was weighted by 

the Term Frequency (TF). Table 7.3 lists eight data sets built from the 20-Newsgroups 

data. We preprocessed these data sets by deleting some dimensions with smallest TF 

value. Several thousands words is enough for text data. We also keep all words for T1, 

T2 and T8 to show our algorithm is efficient on very high dimensional sparse data. Data 

sets have different cluster properties. Some of them have semantically similar classes 

(such as T3, T6), whereas others contain semantically different classes (such as T1, T2, 

T7, T8). Some of them have overlapping words (dimensions) (such as T5, T6, T7), while 

some of them contain the unbalanced number of documents in each class (such as T2). 

We evaluate our SDCC classifier on the real Text Classification task by comparing 

SDCC's performance with decision tree (J48) [24] and the two SVM methods (SMO 

[124] and libSVM [132]). Weka [126] implementations of J48 and SMO were used in 

our comparisons. We adopted Weka LibSVM (WLSVM) [132] which combines the 

strength of Weka and LibSVM. Weka has a GUI and produces many useful statistics and 

is easy to use. LibSVM runs much faster than Weka SMO and supports several SVM 

methods. WLSVM can be viewed as an implementation of the LibSVM running under 

Weka environment. Our new method SDCC is implemented in java. For the two SVM 

tools (SMO and libSVM), the linear kernel and the default settings were used which 
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yields the best results in our experiments. For SDCC, we always set α (the parameter 

in ( , )K Selection X 

 rminal Test X

) equal to 0.05, δ(a parameter in ) equal 

to the 10% of the number of samples in smallest class, and β (another parameter in 

) equal to 90%.  

 Terminal Test X

Te

Table 7.3  Text data sets generated from the 20-Newsgroups data.  
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7.4.3 Overall Performance 

We compare the overall performance of our method with J48, SMO and libSVM. The 

comparison results are shown in Table 7.4. We can see that SDCC outperforms the other 

three classification algorithms obviously on T1, T2 and T8. For the other five text data 

sets, SDCC outperforms J48 and SMO vastly and its performance is comparable with 

libSVM.  

Table 7.4  Overall performance comparison of different classification methods.  

Classifier Metric T1 T2 T3 T4 T5 T6 T7 T8 

SDCC 
1F   
1M F  

0.9425 
0.9462 

0.8863
0.8714

0.9681
0.9691

0.9722
0.9725

0.9677
0.9681

0.9646 
0.9659 

0.9583 
0.9602 

0.806 
0.8152

J48 
1F   
1M F  

0.7725 
0.7829 

0.7726
0.7815

0.8541
0.8545

0.8958
0.8963

0.8114
0.8119

0.7865 
0.7875 

0.7316 
0.7321 

0.59 
0.6117

SMO 
1F   
1M F  

0.8975 
0.9007 

0.8127
0.8102

0.8569
0.8577

0.893
0.8942

0.8656
0.8684

0.8656 
0.8686 

0.8475 
0.852 

0.724 
0.7445

LibSVM 
1F   
1M F  

0.895 
0.8977 

0.8528
0.8394

0.9861
0.9863

0.9861
0.9862

0.9802
0.9805

0.9802 
0.9804 

0.9783 
0.9785 

0.716 
0.7629

 

7.4.4 Performance Details 

Table 7.5 to Table 7.12 show the performance details on data set T1 to T8. We can see 

that SDCC and libSVM outperforms the other classification algorithms on each class of 

those text data sets. SDCC is better than libSVM for several percent on some data sets 

on which SDCC work better obviously. At the same time, libSVM is better than SDCC 

for only one or two percent on the other data sets, on which other algorithms also work 

well. 

Table 7.5  F1 value on data set T1.  

class# SDCC J48 SMO libSVM 
2 0.904 0.701 0.858 0.884 

10 0.964 0.779 0.894 0.88 
15 0.931 0.791 0.882 0.878 
18 0.974 0.835 0.959 0.942 
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Table 7.6  F1 value on data set T2.  

class# SDCC J48 SMO libSVM 
2 0.888 0.767 0.842 0.866 

10 0.933 0.82 0.83 0.897 
15 0.824 0.693 0.696 0.758 
18 0.788 0.8 0.788 0.75 

 

Table 7.7  F1 value on data set T3.  

class# SDCC J48 SMO libSVM 
2 0.992 0.871 0.805 0.996 
3 0.987 0.967 1 1 
4 0.943 0.856 0.805 0.967 
5 0.983 0.798 0.839 0.987 
8 0.983 0.858 0.868 0.996 

13 0.921 0.774 0.824 0.971 
 

Table 7.8  F1 value on data set T4.  

class# SDCC J48 SMO libSVM 
2 0.979 0.887 0.789 0.988 
3 0.952 0.928 0.983 0.992 
8 0.983 0.855 0.874 0.992 

13 0.967 0.841 0.877 0.975 
18 0.967 0.947 0.987 0.992 
19 0.983 0.916 0.851 0.979 

 

Table 7.9  F1 value on data set T5.  

class# SDCC J48 SMO libSVM 
1 0.975 0.881 0.916 0.992 
2 0.959 0.758 0.759 0.983 
4 0.929 0.793 0.873 0.975 
5 0.975 0.75 0.864 0.988 
8 0.983 0.878 0.891 0.992 
9 0.979 0.807 0.88 0.96 

19 0.958 0.815 0.907 0.975 
20 0.979 0.808 0.846 0.979 
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Table 7.10  F1 value on data set T6.  

class# SDCC J48 SMO libSVM 
2 0.979 0.755 0.784 0.988 
3 0.987 0.963 0.996 1 
4 0.919 0.777 0.814 0.959 
5 0.987 0.682 0.858 0.987 
8 0.988 0.871 0.897 0.996 

13 0.911 0.675 0.843 0.951 
19 0.967 0.826 0.903 0.987 
20 0.979 0.74 0.841 0.975 

 

Table 7.11  F1 value on data set T7.  

class# SDCC J48 SMO libSVM 
1 0.979 0.77 0.924 0.987 
2 0.979 0.696 0.722 0.983 
4 0.91 0.714 0.829 0.962 
5 0.975 0.748 0.811 0.987 
8 0.967 0.763 0.838 0.992 
9 0.996 0.795 0.888 0.775 

10 0.943 0.733 0.866 0.955 
12 0.947 0.721 0.935 0.987 
13 0.89 0.589 0.797 0.958 
14 1 0.787 0.892 0.996 

 

Table 7.12  F1 value on data set T8.  

class# SDCC J48 SMO libSVM 
3 0.846 0.68 0.72 0.744 
5 0.707 0.505 0.59 0.674 
7 0.97 0.674 0.851 0.8 
8 0.841 0.653 0.578 0.503 

10 0.81 0.731 0.854 0.876 
14 0.844 0.667 0.787 0.765 
15 0.712 0.423 0.769 0.777 
16 0.925 0.783 0.889 0.901 
18 0.66 0.322 0.6 0.612 
20 0.766 0.598 0.713 0.733 

 

7.5 Conclusion 

In this chapter, we propose a subspace decision cluster classifier (SDCC) based on the 
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subspace decision cluster tree. This new method is designed for classifying text data sets. 

SDCC adopts subspace clustering algorithm EWKM to build a subspace decision cluster 

tree from a training data set. A classifier includes the cosine distance metric and a set of 

subspace decision clusters which are selected from the subspace decision cluster tree. 

SDCC is efficient in classifying text data sets because of the efficiency of the decision 

cluster tree framework which integrates subspace clustering into classification, and also 

the subspace clustering and cosine distance metric for text data mining. 

We have presented experimental results on real text data sets to compare the 

performance of subspace decision cluster classification method with those of other 

well-known classification methods. The comparison results have shown that SDCC has 

advantages in classifying large, high dimensional sparse text data with multiple classes. 
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Chapter 8 

Theoretical Analysis of Error Bound  

In this chapter, we will analyze why our DCC model (Cluster-based classification) is 

better than KNN method (Object-based classification). The error bound will also be 

discussed in this chapter. 

8.1   Why Cluster-based Is Better than Object-based 

The classification step of our Decision Cluster Classification framework is KNN-like 

classification. The new object is classified to the class of the nearest cluster in classifier. 

We call this kind of classification Cluster-based classification, while, we call KNN 

classification Object-based classification. It has been proved that the error rate of KNN 

algorithm, , is less than double of the error rate of Bayesian algorithm . 

That is  [123]. 

( )NNP e

( ) 2NNP e 

*( )P e

*( )P e

In our DCC framework, we adopt decision clusters instead of objects adopted by 

KNN algorithm. The objects in the same decision cluster are close to each other and 

with similar behavior. Decisions based on similar objects are more convincible than 

decisions based on independent objects. For a cluster , the dominant class  is 

defined as the most frequent class in as follows: 

'C '

'C

' '

' 'arg max ( ( ) )
x C

W x





     (8-1)

In Equation (8-1),  is the class label of the object '( )W x 'x . If  is the nearest 

cluster to a new object 

'C

x , the object x  is labeled by the dominant class  of cluster '
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'C . If the class label of 'x  is  , '( ( ) )W x    equals to 1, else '( ( ) )W x    

equals to 0. The definition of '  comes from statistical view. 

  We suppose there are  classes in the cluster , c 'C 1 2, ,..., c   , each of them has 

its own probability to be the dominant class ' . We can show the reliability of a cluster 

by studying the probabilities ' )iPr (ob   . The objects in the same cluster  have 

similar behaviors, their posterior probabilities for a class 

'C

i  are approximately equal. 

This condition satisfies the following equation:  

' ' 'Pr ( | , ( ),i j job x x C j k' )  ' '| ,i k kx x C Pr ob  ,1 ,j k c   (8-2)

So, the posterior probability for each class in the same cluster can be compared by the 

numbers of objects they include. There exists a class m (1 m c  ) which has larger 

posterior probability than other classes. That is  

' ', x ' )C  ' ' 'Pr ( | , )ob x x x C
1
max Pr ( |m i

i c
ob 

 
 (8-3)

Theorem 1 If there are enough samples with similar behavior in a cluster , then 

there is the probability approximately equal to 1 that 

'C

m  is the dominant class  of 

.  

'

'C

  Proof  

   is the posterior probability of class iPP i , . 

According to the large number law,  can be approximately equal to the frequency 

of samples in class 

' ' '| , )i i x x C Pr (PP ob 

iPP

i . So that, we have the following equation: 

' '' ) x CC
'

'

( ( ) )
Pr (

| |
iW x

PP ob
C

' 'x|i i ,x


 
 

    (8-4)
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In Equation (8-4),  is the number of objects in cluster . From Equation (8-3) 

and (8-4), we get the following equation: 

'| C | 'C

' '

'

'1 1

( ( ) )
max{ } max{ }

| |
ix C

m i
i c i c

W x
PP PP

C




   

 
   (8-5)

From the definition of dominate class '  (Equation (8-1)), we get 

'Pr ( ) 1mob     (8-6)

Theorem 2 The error rate of Decision Cluster Classification model is lower than that 

of the KNN algorithm. 

Proof 

In the nearest neighbor algorithm, if there are enough training samples, then the 

posterior probability of object x  for class i  is almost equal to that of the nearest 'x . 

Equation (8-7) presents this condition.  

'Pr ( | ) Pr ( | )i iob x ob x   (8-7)

Here, x and 'x  are independent objects. The posterior probability for the pair '( , )x x  

from class pair ( , )i j   is Equation (8-8). 

' 'Pr ( , | , ) Pr ( | ) Pr ( | )i j i job x x ob x ob x      (8-8)

The right-classified probability  of the object P ( | )NN r x x  is the probability that 

x and 'x  have the same class label, 

'

1 1

P ( | ) Pr ( , | , ) ( )
c c

NN i j i j
i j

r x ob x x  
 

    (8-9)

From Equation (8-7), (8-8) and (8-9), we get Equation (8-10). 
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' 2

1 1 1

P ( | ) Pr ( | ) Pr ( | ) ( ) Pr ( | )
c c c

NN i j i j i
i j i

r x ob x ob x ob x    
  

        (8-10)

  Similarly, we can get the right-classification probability of DCC model for 

classifying x . The probability of right classification is the probability of the real class 

labels of objects being equal to the dominant classes of decision clusters. Suppose the 

nearest cluster to x  is the cluster . In another point of view, 'C x  can be treated as a 

member of . 'C 'x  is any object in , and it has similar posterior properties with 'C x . 

That is  

' ' 'Pr ( | , ) Pr ( | )i iob x x C ob x    (8-11)

  The right-classification probability  of DCC model for classifying P ( |DCC r x) x  

can be presented by the following equation:  

'

1 1

P ( | ) Pr ( | ) Pr ( ) (
c c

)DCC i j i j
i j

r x ob x ob  
 

       (8-12)

  From Theorem 1, we have 

' 1,
Pr ( )

0,
i m

iob
others

 



   


 (8-13)

Equation (8-12) can be simplified by integrating (8-13) as follows: 

1

P ( | ) Pr ( | ) ( ) Pr ( | )
c

DCC i i m m
i

r x ob x ob x   


      (8-14)

From Equation (8-10), (8-14) and Pr ( | ) Pr ( | )m iob x ob x  , 

, we have the following expression: 
1

Pr ( | ) 1
c

i
i

ob x




2

1

1

P ( | ) Pr ( | )

Pr ( | ) Pr ( | ) Pr ( | ) P ( | )

c

NN i
i

c

i m m DCC
i

r x ob x

ob x ob x ob x r x



  







   




 (8-15)
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  From Equation (8-15), the right-classification probability for any point x  in the 

space dR  of the nearest neighbor algorithm is less than or equal to that of the DCC 

model. At the same time, the error rate  of all objects in the space P (DCC e) dR  of 

DCC model is smaller than the error rate  of the nearest neighbor algorithm as 

show in the following expression: 

P ( )NN e

P ( ) 1 P ( | ) 1 P ( | ) P (d dDCC DCC NN NNx R x R
e r x r x

 
      )e  (8-16)

8.2   Error Bound 

Suppose the decision clusters in classification model are credible enough to reflect the 

space partition. The priori probability of the sample x  falling into one of the  

decision clusters of classifier can be estimated.  

k

Pr ( ) i
i i

N
p ob x P

N
    (8-17)

  In Equation (8-17), i  is the  decision cluster in classifier  is the number 

of objects o iP  and N  is the number of total objects in all decision clusters of the 

classifier.  

P ith ,

f 

 iN

 

  The probability of right classification is the probability of the real class labels of 

objects being equal to the dominant classes of decision clusters. The expectation of 

being classified correctly by classifier can be expressed by the expectation of being 

classified correctly by decision cluster as demonstrated in Equation (8-18).  

( ( ( ) )) ( ( ( ) ))i iE I l x p E I l x     (8-18)

We use  to denote the purity of the  decision cluster . In general, the 

bigger of  the more reliable of the cluster . We adopt a reliability function 

( )iPur P

iN

ith

iP

iP

( )R n  

with parameter  to discriminate different decision clusters. n ( )R n  is a monotone 
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increasing function in the scale of . [0,1] ( )iR N  is the reliability of the  decision 

cluster . Because the probability of right classification of a decision cluster cannot be 

bigger than the purity of this decision cluster and the value of 

ith

iP

( )iR N

i

 cannot be bigger 

than 1, we have the following equation: 

( ( ( ) ( )E I l x R N)) ( )i iPur P 

))

 (8-19)

From Equation (8-18) and (8-19), we get the following equation: 

( ( ( ) ( )i iE I l x R N( )Pur P 

)) 

 (8-20)

( ( ( ) ) ( )i iE I l x P R N (p Pur i  (8-21)

We denote , then we have Equation (8-22). Here, k is the 

number of decision clusters in classifier. 

min min{ (Pur Pur )}iP

minPur min

1 1

( ( ( ) )) )
k k

i i

Pur
l x p

N


 

   ( )i iR N (iN R N iE I  (8-22)

' ( ) '  Let ( ) ( )f n n R n  , we have ( ) ( )f n R Rn n  n , and 
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Suppose there are  clusters whose sizes (the number of objects) are smaller than 

.  is the sum of the number of objects of the  clusters. The sizes of the 

remain  clusters are bigger than . According to the characteristics of the 

convex function, we have the following function (8-24) and (8-25),  
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From Expression (8-23), (8-24) and (8-25) we can get the following  
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The error bound can be estimated now: 
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We simplify the 0

0
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 as 0( )R x , we can get the final conclusion that 
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We can see that, the precision of DCC model partially depends on the size and purity 

of decision clusters of classifier. The bigger and more pure decision clusters lead to 

getting lower error rate.  

 



Chapter 9 

Conclusion 

We have presented a new classification framework which integrates clustering into 

classification work. Under this framework, different classifiers are proposed with 

different characteristics. Main distributions are listed in Section 9.1 and future work is 

given in Section 9.2.  

9.1   Main Contributions 

 A novel Cluster-based classification framework which adopts clustering 

algorithm to solve classification problem is presented. This framework considers 

clustering and classification together. Under this Cluster-based classification 

framework, a decision cluster tree or forest is built from partitioning the training 

data set recursively by calling a clustering algorithm. Then, a classification 

model is specified from the decision cluster tree or forest. Finally, new objects 

are classified by this classification model. In a word, this classification 

framework includes three steps: tree (forest) construction, model selection and 

classification. 

 An Automatic Decision Cluster Classification (ADCC) method is proposed, in 

which, the weighted k-means (W-k-means) clustering algorithm is used to build 

a Cluster-based classification model automatically. W-k-means is efficient for 

large data sets and it can reduce the influence of noisy attributes by assigning 

them smaller weights. The decision cluster tree is built by executing W-k-means 

clustering algorithm recursively. In the tree growing process, we use various 

tests including Anderson-Darling test to determine whether a node can be further 

 



 

 A Decision Cluster Forest Classification (DCFC) method is developed to deal 

with weak decision cluster problem and multiple classes problem. This method 

builds a set of decision cluster trees from subsets of the training data set instead 

of building a single decision cluster tree. These decision cluster trees form a 

decision cluster forest. Each tree in the forest is built from the subset of objects 

in the same class. The decision clusters in the same tree have the same dominant 

class. In this way, no weak decision cluster in which no single class dominates is 

created in such decision cluster tree. The decision cluster forest method has 

advantages of classifying data with multiple classes because the DCFC model is 

guaranteed to contain decision clusters in all classes. DCFC model is a more 

intuitive and direct multi-class classification method. 

 Text data is a typical high dimensional sparse data. Subspace clustering 

algorithms are efficient for this kind of high dimensional sparse data. A Subspace 

Decision Cluster Classification (SDCC) method is designed for text 

classification. In this work, a subspace decision cluster tree is generated from the 

training data set by recursively calling a subspace clustering algorithm Entropy 

Weighting k-Means algorithm. In every partition, the sub-clusters are found in 

their own subspaces instead of the entire dimension space. After building the 

subspace decision cluster tree, we generate a classifier form the tree. In the 

classification step, we use the cosine distance function which is often used in text 

mining to compute the distances between new objects and the subspace decision 

clusters.    

 A set of decision clusters which are selected from decision cluster tree or forest 

plus a specific distance metric construct a classification model. In our work, we 

select leaf nodes to construct the classifier. Euclidean distance function and 
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Cosine distance function are both integrated into our Cluster-based classification 

framework. A KNN-like classification step is implemented when classifying new 

objects. 

 Another model selection, named Crotch Ensemble, is introduced. Instead of 

considering a set of decision clusters, this model considers Crotch Predictors 

which are inner nodes with their direct children. When classifying a new object, 

a subset of crotch predictors is selected according to the distances between the 

object and the crotch predictors. A classification is made on the object as the 

class predicted by the crotch predictors with the maximum accumulative weights. 

If a new object is misclassified by one crotch predictor, the misclassification can 

be corrected by other crotch predictors. Multiple crotch predictor decisions are 

more robust than the single decision cluster decision.  

 An experimental scheme is designed to demonstrate the performance of this 

series of classification methods under the Decision Cluster Tree framework. We 

have demonstrated the efficiency and effectiveness of our new methods. We also 

conducted experiments to compare our new methods with other classification 

methods.  

9.2   Future Work 

We now discuss a few directions along which we plan to continue our work.  

 More complex model selection methods. In this thesis, the model selection 

methods are a little simple. We would like to design some other model selection 

methods. We plan to study more model selection methods and to extract new 

model selection methods for our Cluster-based classification framework. 

 More experiments to compare the DCFC model with the ECOC multi-class 

classification method. The error-correcting output codes method (ECOC) was 
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designed to solve multi-class learning problem by learning multiple binary 

classification models and matching the classification results with the designed 

codeword to correct misclassifications. We plan to compare our DCFC method 

with ECOC on multi-class classification problem specially.   

 Other subspace algorithms to be implemented in our framework. There are a lot 

of subspace clustering algorithms in the literature. Besides EWKM, we intend to 

investigate other subspace clustering algorithms according to their own 

characteristics.  

 Further use of branch information in classification step. In this thesis, we have 

not made good use of the information of branches in the decision cluster tree. We 

plan to make use of the information of branches further.  

 Further theoretical analysis. We would like to give a complete theoretical system 

for our Cluster-based classification framework. We plan to analyze why our 

Cluster-based classification framework integrates clustering methods into 

classification problem from theoretical view.   

 More research work on dealing with other kinds of data sets. We would like to 

handle other cluster shapes except spherical cluster shape. 
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