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ABSTRACT 

 

In vibration-based model updating, the finite element model is iteratively modified to 

ensure its vibration properties reproduce the measured counterparts in an optimal 

way. The finite element model of a large-scale structure usually consists of a large 

number of degrees of freedom. Calculating the eigensolutions and eigensensitivities 

of such a finite element model and updating it are very expensive in terms of 

computation time and memory. The substructuring method is a promising solution 

for reducing computation load in both of these tasks. This PhD study develops a 

forward and an inverse substructuring approaches that can be used to update finite 

element models of large-scale structures.  

 

In the forward substructuring approach, the eigensolutions and eigensensitivities of 

the global structure are calculated from those of the independent substructures and 

compared with global structure measurements through an optimization process. 

Kron‟s substructuring method for eigensolutions is improved in terms of 

computational efficiency by retaining only the first few eigenmodes of the 

independent substructures as master modes to assemble a reduced eigenequation for 

the global structure. This improvement not only reduces the computational endeavor 

required in extracting the complete eigenmodes of all the substructures, but also 

produces a smaller eigenequation that is frequently analyzed during the model 

updating process. The reduced eigenequation for eigensolutions is subsequently 

extended to calculate the first-order and high-order eigensensitivities of the global 

structure with respect to elemental parameters. The eigensensitivity matrices are 
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determined from the derivative matrices of only those substructures that contain the 

designed elements, thus realizing a significant reduction in computational cost. In 

consequence, the calculated eigensolutions and eigensensitivities are used in the 

practical model updating process. As accurate eigensolutions and eigensensitivities 

are needed in the final steps of the model updating procedure, an iterative scheme is 

proposed to calculate the eigensolutions and eigensensitivities more accurately using 

only a few master modes.  

 

In the second part of the thesis, an inverse substructuring approach is developed by 

extracting substructural flexibility matrices from the experimental modal data. As a 

result, the focused substructure is treated as an independent structure to be updated 

directly using a global model updating method, thus accelerating the conventional 

optimization process significantly. The model condensation technique is also 

employed, as the measurement exercise is usually conducted at an incomplete set of 

points on a practical structure. This inverse substructuring approach allows for the 

focused substructures to be updated directly based purely on the measurements taken 

in the local area. 

 

The proposed substructuring-based model updating approaches are applied to a few 

numerical, laboratory, and real structures. The results verify that these substructuring 

methods are computationally efficient and accurate in finite element model updating 

and associated applications. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Accurate finite element (FE) models are frequently required in a large number of 

applications such as design optimization, damage identification, structural control, 

and structural health monitoring. Due to uncertainties in the geometry, material 

properties, and boundary conditions, the dynamic responses of a structure predicted 

by a highly idealized numerical model usually differ from its measured responses. For 

example, Brownjohn et al. (2000) reported that the differences between the 

experimental and numerical modal frequencies of a curved cable-stayed bridge 

exceeded 10% for most modes and even reached 40% in some cases. Jaishi and Ren 

(2005) observed differences of up to 20% in the natural frequencies predicted by an 

FE model and those measured in a steel arch bridge, and reported that modal 

assurance criteria (MAC) values could be as low as 62%. Similarly, Zivanovic et al. 

(2007) found that the natural frequencies of a footbridge predicted by an FE model in 

design before updating differed from their experimental counterparts by 29.8%. 

Therefore, FE models need to be updated effectively to obtain a more accurate model 

that can be used for various purposes such as response prediction and damage 

identification. 

 

1.2 Finite Element Model Updating 

Model updating methods have been extensively developed in two categories: one-step 

methods and iterative methods. The former directly reconstruct the system matrices of 

the analytical model, while latter modify the physical parameters of the FE model 

repeatedly to minimize the discrepancy between analytical modal properties (such as 
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frequencies and mode shapes) and their measured counterparts. Iterative methods 

have become more popular because they allow for the physical meaning of the 

predicted parameters to be reflected and preserve symmetry, positive-definiteness, 

and sparseness in the updated matrices.  

 

Most iterative methods employ optimization techniques, which require that the 

eigensolutions and associated sensitivity matrices of the analytical model be 

calculated in each iteration. As a result, for a large-scale numerical model, the 

iterative model updating method is very expensive in terms of computation time and 

computer memory for the following reasons:  

 Large system matrices (stiffness and mass matrices) take up a large amount of 

storage space;  

 Extracting eigensolutions from large system matrices is a time-consuming 

process, and calculating eigensensitivity consumes significantly more 

computational resources;  

 Many uncertain parameters need to be adjusted in a large-scale numerical model. 

It takes a long time or is even impractical to calculate eigensensitivity with 

respect to the large number of updating parameters that the model contains. 

Moreover, the large number of parameters makes convergence of the large-scale 

optimization problem much more difficult.  

 

Due to the aforementioned difficulties, updating the model of a large-scale structure 

usually involves a heavy workload. For example, Xia et al. (2006) carried out a 

model updating exercise for the Balla Balla Bridge in Western Australia, which was 

modeled with 907 elements, 949 nodes, and 5,400 degrees of freedom (DOFs). 

Convergence of the optimization took 155 iterations and cost about 420 hours. Within 

each iteration, calculating the eigensolutions took about 10 seconds, whereas 

calculating the eigensensitivities with respect to the uncertain parameters took more 
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than two hours. This indicates that calculation of eigensensitivity dominants the 

computation time during the model updating. In another study, a fine FE model was 

established for the Tsing Ma Suspension Bridge that consisted of about 300,000 

nodes, 450,000 elements, and 1.2 million DOFs. It took about five hours to obtain the 

first 100 eigensolutions using a 64-bit Itanium server with eight CPUs of 1.5 GHz 

each (Duan et al. 2006). In this case, it is very difficult to update the model for such a 

large-scale structure using a conventional approach, even with such a powerful 

computer. 

 

The computational burden associated with the iterative model updating method has 

led to a search for new model updating methods for large-scale structures that are 

both accurate and efficient. 

 

1.3 Substructuring Methods 

The substructuring approach can potentially be used an alternative to the conventional 

iterative model updating method in dealing with large-scale structures. The 

advantages of the substructuring approach include the following:  

 As the global structure is replaced by smaller and more manageable 

substructures, it is much easier and quicker to analyze small system matrices;  

 Substructuring methods allow not only for the identification of local parts, but 

also reduce the number of uncertain parameters and alleviate the ill-condition 

problem; 

 In practical testing, the experimental instruments can be saved if it is necessary 

to measure the whole structure only for one or more substructures. 

 

The substructuring approach can be utilized by employing the forward and inverse 

methods, respectively. In the forward substructuring method, the partitioned 

substructures are analyzed independently to obtain their designated solutions, which 
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are assembled to recover the solutions for the global structure by imposing constraints 

at the interfaces. The forward substructuring method has been employed for the 

eigensolutions of the global structure. However, its application to the model updating 

of practical structures is hindered because the conventional substructuring methods 

require the complete eigenmodes of all substructures to assemble the eigenmodes of 

the global structure. This is time-consuming and not worthwhile, as only a few 

eigenmodes of the global structure are generally of interest in model updating. 

 

On the other hand, the substructuring approach can be used in an inverse manner to 

extract substructural properties from the properties of the global structure, by 

satisfying the constraints of displacement compatibility and force compatibility. 

Accordingly, the focused substructure can be treated as an independent structure to be 

updated using a conventional model updating method, thus improving the efficiency 

of the optimization process. This type of substructuring method requires an effective 

decoupling algorithm to ensure the extraction of substructural properties that validly 

represent the real local area.  

 

Subject to the difficulties encountered in terms of efficiency or accuracy, there is a 

need to develop a new more efficient and effective substructuring approach to update 

models of large-scale structures. 

 

1.4 Research Objectives 

This study aimed at developing a more efficient substructuring approach for updating 

models of large-scale structures is motivated by the distinct advantages of 

substructuring methods in dealing with large-scale structures.  

 

The above goal will be achieved under the two following approaches: 

1. Develop an efficient substructuring-based model updating method that employs 
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the forward substructuring approach as follows: 

 Develop a concise-form and efficient substructuring method for calculating 

eigensolutions for the global structure; 

 Extend the efficient substructuring method to calculate the eigensensitivities of 

the global structure; 

 Formulate a substructuring-based model updating procedure. 

2. Develop a substructuring-based model updating procedure based on an inverse 

approach: 

 Derive the substructural flexibility matrix from measured modal data of the 

global structure; 

 Formulate a model updating procedure for independent substructures. 

 

1.5 Thesis Organization 

This thesis comprises nine chapters as illustrated in Figure 1-1. Chapter 2 summaries 

the extant literature on various model updating algorithms and substructuring 

methods and on a range of applications. Three numerical examples and three 

experimental structures are described in Chapter 3. In Chapter 4, the computational 

efficiency of Kron‟s substructuring method is improved to enable the eigensolutions 

of the global structure to be calculated. The improved substructuring method is then 

extended to calculate eigensensitivities in Chapter 5. The substructural eigensolutions 

and eigensensitivities are applied to the sensitivity-based model updating process in 

Chapter 6. A new iterative scheme is subsequently proposed in Chapter 7 to improve 

the accuracy of the substructuring method in calculating eigensolutions and 

eigensensitivities and the scheme is applied to the model updating process. In Chapter 

8, an inverse substructuring approach is developed by extracting the substructural 

flexibility matrices from the experimental modal data. After normalizing the extracted 
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substructural flexibility, one independent substructure is directly updated instead of 

updating the global structure. Chapter 9 concludes the thesis and discusses possible 

future research. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews the technical literatures concerning widely used model updating 

algorithms and substructuring methods. 

 

Model updating technique has been widely employed in a lot of research works. 

Most of the practical applications are based on the dynamic measurement, although 

other kinds of data can be employed in theory (Humar et al. 2006; Friswell 2007). 

The vibration-based model updating methods are usually treated as an optimization 

problem in terms of minimizing the discrepancy between the analytical prediction 

and the practical measurement. A model updating process usually contains three 

aspects: selection of measurement as reference data, selection of parameters to 

update, and the procedure of model tuning (Brownjohn et al. 2001). 

 

According to whether the optimization process is carried out directly from the 

measured time signals or from the frequency domain information via Fourier 

transformation, model updating methods are basically categorized into time domain 

methods and frequency domain methods (Koh and Perry 2010). The former aims to 

reproduce the structural dynamic responses such as displacement, velocity and 

acceleration. The frequency domain updating method uses the modal characteristics 

such as the frequencies, model shapes and modal flexibility, to tune the model 

parameters. The frequency domain characteristics reflect the global condition of a 

structure and the input information is not required. The model updating methods 

using frequency domain data will be concentrated in this chapter. Ljung and Glover 
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(1981) stated that, the frequency domain methods and the time domain methods can 

be complementary to each other instead of rival. 

 

Model updating method aims to perturb the system matrices such as mass, stiffness 

and damping matrices so that the responses of the updated model resemble the 

measured data as closely as possible. The system matrices can be updated, either by 

perturbing the items in the matrices directly, or by iteratively modifying the physical 

parameters such as axial stiffness EA and bending rigidity EI to indirectly update the 

system matrices. Accordingly, the model updating methods reviewed in this chapter 

include the direct updating methods and the iterative updating methods. Particularly, 

the iterative model updating methods will be studied comprehensively, since it is 

becoming more popular due to the meaningful interpretation of the predicted 

parameters and the preservation of the symmetry, positive-definiteness and 

sparseness in the updated matrices.  

 

The responses of a structure are usually measured at only a limited number of 

locations and over a limited frequency range, indicating that only a relatively small 

number of mode shapes with a reduced number of nodes are measured. This 

inevitable size incompatibility between the analytical and experimental modes makes 

the direct comparison difficult. The model reduction and data expansion algorithms 

frequently used in model updating are also reviewed in this report. 

 

As far as the substructuring method is concerned, its theories and wide applications 

in static analysis, dynamic analysis, nonlinear analysis, and system identification will 

be reviewed in the final part of the chapter. 
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2.2 Finite Element Model Updating Methods 

2.2.1 Direct Model Updating Methods 

The direct model updating methods try to find the updated matrices (stiffness and/or 

mass) which produce the real responses of a structure as closely as possible by 

solving an objective function under certain constraints. In these methods, the 

elements in the system matrices are treated as variables. The direction updating 

methods have been used extensively for FE model refinement and damage detection, 

which includes the minimum norm approach, minimum rank approach and matrix 

mixing updating approach (Abdalla et al. 2000).  

 

Model updating often produces sets of equations whose solution are ill-conditioned 

and extra information is required to produce a well-conditioned estimation problem. 

One possibility to consider all the uncertain parameters without sufficient extra 

constraints is taking the minimum norm solution. Berman and Nagy (1983) initiated 

a formulation of the optimal updating problem, which minimized the Frobenius 

Norm of global matrix perturbations, using the zero modal force error and the 

property of matrix symmetry as constraints. Kabe (1985) made sure that the zero 

coefficients of the analytical stiffness matrix were maintained in the updated stiffness 

matrix, and adjusted the non-zero elements of the stiffness matrix to reduce the 

uncertain parameters involved. McGowan et al. (1990) employed the mode shape 

expansion algorithms to extrapolate the incomplete measured mode shapes to be 

comparable with the analytical modes, thus releasing the ill-conditioned problem. 

Smith (1998) presented an alternating projection algorithm for system matrix 

adjustment. Constraints of sparsity and positive definiteness were imposed via 

successive orthogonal projections onto the convex sets. The definiteness constraints 

were found to be more effective and computationally efficient if applied after the 

sparsity constraints rather than simultaneously with them. Other than inclusion of 
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extra constraints, Friswell et al. (1998b) considered only a subset of the parameters 

to be in error, to deal with the ill-condition problem. The critical decision was then 

the choice of parameters to include in the subset. Carvalho et al (2006; 2007) 

computed the missing components of the measured experimental eigenvectors in an 

algorithmic way by using the sophisticated and stable matrix computational 

techniques, thus avoiding the potential drawback of the ill-conditioned matrix 

transformation.  

 

Another approach to the direct model updating technique is to minimize the rank of 

the perturbation matrix instead of the norm of it. Zimmerman and Kaouk (1994) 

revealed that the perturbation matrices tended to be of small rank because damage 

was usually located in a few structural members rather than distributed all over the 

structure. Doebling (1996b) extended the method by updating the elemental stiffness 

(or substructural stiffness coefficients) rather than the global stiffness matrix. The 

method computed a minimum rank solution for the perturbations of the elemental 

stiffness parameters while constraining the connectivity of the global stiffness matrix. 

Because it computed minimum-rank updates directly to the elemental stiffness 

parameter, this method was proved to be sensitive to the change of local elemental 

stiffness parameters. Abdalla et al. (1998; 2000) improved the computation 

efficiency of the minimum rank optimal matrix updating, using an interior point 

optimization algorithms. The developed methods additionally enforced the 

constraints such as symmetry, sparsity and positive definiteness. Zimmerman et al. 

(2000) applied the minimum rank updating method to the case where mass, damping 

and stiffness properties were changed simultaneously. It made use of the cross 

orthogonality relationships, singular value decomposition, as well as the knowledge 

gained from the uncoupled damage location algorithm. Yang and Liu (2009) 

minimized the rank of the perturbed flexibility matrices according to the number of 

non-zero eigenvalues of the discrepancy of the flexibility matrix. 
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Matrix mixing update method was developed by Caesar (1987). For the mass 

normalized mode shapes, the following equations should be satisfied 
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If some modes are not measured, the analytical counterparts are in place of them. 

Then the m measured modes and (n-m) unmeasured modes from analytical model are 

combined as 
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To et al. (1990) and Neidbal et al. (1990) updated the analytical mass and stiffness 

matrices with matrix mixing update approach by enforcing orthogonality with 

respect to the measured mode shapes. The method was extended to satisfy both the 

eigenequation and the orthogonality relations, which had the advantage of preserving 

the physical connectivity of the updated model. Hajela and Soeiro (1990) updated the 

analytical model with matrix mixing update approach again. The static displacement 

obtained by loads was used to simulate higher modes that were difficult to measure 

in practice. 

 

In sum, the direct model updating methods have been widely studied by researchers 

in the past half century, but not limited to the above review documents. Although the 

direct model updating methods do not require the parametric analytical models, it is 

apparent by now that those methods have significant disadvantages. The direct model 
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updating methods reconstruct the system matrices arbitrarily, which may not be 

meaningful. Indeed, the original purpose of these methods was not model updating or 

damage detection but often vibration control and stability. However, it is very 

unlikely that these methods will prove useful in the majority of structural health 

monitoring (Bakir et al. 2007). 

 

2.2.2 Iterative Model Updating Methods 

Other than the direct model updating methods, the iterative model updating methods 

aim to update the physical parameters of the analytical model, such as the material 

properties (Young‟s modulus, Poisson‟s ratio, mass density, etc.) or the physical 

dimensions of the model. Consequently a parametric model of the structure is 

required. The iterative methods allow a wide choice of physically meaningful 

parameters, preserve the matrix properties of symmetry, sparseness and 

positive-definiteness, and guarantee the structural connectivity. Due to these merits, 

the iterative methods have been becoming more popularly used in model updating. 

An FE model updating mainly includes three aspects, the updating parameters, the 

objective function and the optimization algorithms.  

 

2.2.2.1 Updating Parameters 

Selection of parameters to be updated is very critical to a successful model updating 

and requires engineering judgment. Two important issues deserve considerations, i.e., 

how many parameters should be selected and which parameters from the many 

candidates are preferred. The number of updating parameters should be kept as small 

as possible to guarantee a well-conditioned updating problem, and release the 

expensive computation of eigensolutions and the associated eigensensitivities 

(Friswell et al. 2001). Besides, it is necessary to select the most effective updating 

parameters that produce a genuine improvement in the modeling of the structure. If 

inappropriate model parameters are selected, the updated model either cannot 
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reproduce the required dynamic properties accurately or does not represent the real 

structure. In the latter case, although the objective function reduces to below a 

threshold, the updated model has no real meaning and the obtained parameters are, in 

effect, the compensation for the real model parameters. Therefore, the analyst should 

first know what inaccuracy of the model comes from and which part of the model 

needs updating, based on the features of the measurement data and his knowledge of 

the model. The parameters can be the elemental axial stiffness (EA) and bending 

rigidity (EI) (Xia et al. 2008), or the geometric dimension (Mottershead et al. 1996), 

or the stiffness of particular area such as the structure joint (Law et al. 2001). 

Apparently the selection of parameters is closely associated with the modelling of the 

structure of interest. 

 

2.2.2.2 Optimisation Algorithms 

The widespread up-to-date optimization algorithms in iterative model updating 

methods mainly include the sensitivity-based model updating method and the 

evolutionary method such as the genetic algorithm (GA) and the neural network 

algorithm. In this study, the sensitivity-based algorithm will be concentrated. 

 

Basically, the sensitivity-based model updating is an inverse procedure to correct the 

uncertain parameters of the analytical model, which is usually posed as a 

minimization problem to find the optimimum r
*
 such that (Bakir et al. 2007) 

     *J r J r , r  (2-5) 

  
li i uir r r  , (i=1, 2, …, n) 

where r is the design variables, with rli and rui representing the lower and upper 

bounds, respectively. For example, the general objective function combining the 

modal properties of the frequency and the mode shape is usually denoted as 

(Brownjohn et al. 2001) 
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where E

if  and 
E

ji  represent the experimental ith natural frequency and the ith 

mode shape at the jth point, A

if  and 
A

ji  represent the frequency and mode shape 

counterparts from the analytical FE model which are expressed as the function of the 

uncertain physical parameters  r , 
iW
 and iW  are the weight coefficient due to 

the different measurement accuracy of the frequencies and mode shapes. The 

objective function is minimized by adjusting continuously the parameters {r} of the 

initial FE model through optimization searching techniques.  

 

To find the optimal searching direction, sensitivity analysis is usually conducted to 

compute the rate of the change of a particular response quantity with respect to the 

change in a physical parameter. For example, the sensitivity matrix of the frequency 

and mode shape with respect to the parameter r can be expressed as 
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Brownjohn et al. (2001) explicitly described the sensitivity-based FE model updating 

method and its application to structure condition assessment, particular for bridge 

structure. Teughels and De Roeck (2004) addressed the general sensitivity-based 

model updating method using damage functions and the trust region approach. The 

detailed procedures and applications were then presented in a companion work 

(Bakir et al. 2007). Zivanovic et al. (2007) generalized the complete 

sensitivity-based model updating process mainly into five phrases, including the 

initial FE modeling, modal testing, manual model tuning, automatic updating, and 

physical interpretation of all parameter changes. The standard procedure was 

implemented on a lively steel box girder footbridge.  
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As regards the aforementioned algorithm, the main task of the sensitivity-based 

model updating procedure includes the construction of the objective function and 

calculation of the sensitivity matrix. The objective function is usually evolved from 

the eigensolutions of the analytical model and the measured eigenmodes. The basic 

algorithm in calculation of eigensolutions of an analytical model is standard. The 

various types of objective functions are addressed in the following section. 

 

2.2.2.3 Objective Functions 

Selection of the objective functions has a profound impact on the optimization 

problem. The updating objective should be sensitive to small changes in the 

parameters. Otherwise, the difference between the analytical model and experimental 

observation may be reconciled by the changes in other more sensitive parameters 

which might be less in need of updating. In that case, the updated model replicates 

the measurements but does not represent the real model.  

 

There are commonly five expressions possibly used to be model updating objectives 

which are the frequency residual, mode shape related function, modal flexibility 

residual, modal strain energy, and frequency response function (Humar et al. 2006).  

 

The advantage of the frequency-based model updating approach can be concluded as 

the following aspects. i) Since frequency measurements can be cheaply acquired, the 

approach could provide an inexpensive structural assessment technique. ii) The 

measurement of natural frequencies can be quickly conducted and is often reliable. iii) 

Moreover, the natural frequencies are the global property of a structure and thus can 

be measured at a few locations or even at one point. However, the frequency-based 

model updating is limited in widespread application since the changes in natural 

frequencies cannot provide the spatial information (Salawu 1997). Multiple 
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frequencies shifts can provide the spatial information because changes in the 

structure at different locations will cause different combinations of changes in the 

modal frequencies. But there is often an insufficient number of frequencies with 

significant enough changes to determine the location uniquely (Doebling 1996a). 

 

Mode shapes inherently contain the spatial information about structural changes, and 

therefore utilization of the differences in mode shapes represents another subgroup of 

objective function in model updating. Allemang and Brown (1982) proposed the 

Modal Assurance Criteria (MAC) to estimate the degree of correlation between the 

mode shapes of the analytical model and experimental measurement. 
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There has been a significant amount of works selecting the combination of the 

frequencies and model shapes as objective for FE model updating over the past years. 

Wu and Li (2004) updated the FE model of an existing 310 m tall Nanjing TV Tower 

based on frequencies and mode shapes from ambient vibration measurements. Jaishi 

and Ren (2005) updated a half-through arch bridge with the modal frequencies and 

mode shapes from the ambient vibration testing. Bakir et al. (2007) attempted to 

minimize the MAC values and the relative differences of the frequencies to update a 

multistorey complex structure with a complex damage pattern. A sensitivity-based 

FE model updating scheme with a trust region algorithm was applied to an actual 

residential building from Turkey that had been subjected to the 1999 Kocaeli and 

Duzce earthquakes. Daniell and Macdonald (2007) updated the FE model of a 

cable-stayed bridge, in which the natural frequencies and mode shapes were 

compared with those from ambient vibration tests. Weber and Paultre (2010) 

performed a sensitivity-based model updating procedure on a three-dimensional truss 

tower tested in the laboratory. A number of mathematical techniques were combined 
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in a consistent way, including regularization of the nonlinear updating problem and 

its linearization.  

 

It should be noted that, the successfully updating procedure with the natural 

frequencies and mode shapes is heavily affected by the environmental factors. Many 

researchers observed that, the modal frequencies varied significantly in a single day 

due to the temperature change, and it was necessary to discriminate the variation of 

the modal properties due to the environmental change from those caused by the 

structural change (Xia et al. 2006). Roberts and Pearson (1998) monitored a 9-span, 

840m long bridge. They found that the changes due to the environment could 

account for the changes in frequencies as much as 3% ~ 4% during a year. Farrar et 

al. (1997) reported that, the first three frequencies of the Alamosa Canyon Bridge 

varied approximately 5% during a 24 h time period, and a regression model that 

described the variation of frequencies due to the change of temperature were 

provided by Sohn et al. (1999), to establish the confidence intervals of the 

frequencies with respect to the varied temperatures. Peeters and Roeck (2001) 

presented the results of almost one year monitoring of the Z24-Bridge in Switzerland, 

and reported that the first four frequencies varied more than ten percent during the 

testing period. Xia et al. (2006) periodically tested a laboratory reinforced concrete 

slab nearly two years to investigate the variation of the frequencies, mode shapes and 

damping with respect to the temperature and humidity changes. They found that the 

frequencies bore a strong negative correlation with the temperature and humidity, the 

damping ratio possessed a positive correlation, and no obvious correlation from the 

mode shapes. Ni et al. (2009) eliminated the temperature effect in vibration based 

structural damage detection of Ting Kau Bridge. A neural network models was 

established based on 770 hours frequency and temperature data.  

 

It is commonly understood that the natural frequencies and mode shapes of a 
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structure have different sensitivities on the updated parameters, and the degrees of 

accuracy of the measured natural frequencies and mode shapes are also different. In 

general, the natural frequency is less sensitive to the structural parameters, but can be 

measured more accurately than the mode shape. To take into consideration of their 

contributions in model updating, different weights can be assigned to the natural 

frequency and mode shape in the objective function and the sensitivity matrix [S]. 

Baruch and Bar-Itzhack (1978) firstly introduced the concept of the weighted 

coefficient. The weights of the mode shapes were chosen to be smaller than those of 

the frequencies (Ricles and Kosmatka 1992). Friswell et al. (1998d) chose the 

weighted coefficient for each individual frequency and mode shape to construct the 

objective according to the measured vibration data. Christodoulou and Papadimitriou 

(2007) established the weighted residuals metric to update the elemental parameters. 

A Bayesian statistical framework was then used to rationally select the optimal 

values of the weights based on the measured modal data.  

 

Derivatives of the mode shapes (the mode shape curvatures) are proved to be more 

sensitive to small perturbations than the mode shapes, and therefore, can also serve 

as objective indices in model updating. The mode shape curvature is written by the 

central difference approximation in the work of Pandey et al. (1991) as  
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j
h

  


  


 
(2-9) 

where h is the distance between two successive measured locations. Abdel Wahab 

and De Roeck (1999) used the mode shape curve to identify the change of the 

elemental parameters before and after updating, which was further applied to the Z24 

bridge. 

 

Changes in strain energy are also used as an optimization objective in some research 

work. In fact, the mode shape curvature is correspondent to the strain energy at that 
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location. The modal strain energy (MSE) for the jth mode is 

     
1
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T

j j jU   K
 

(2-10) 

The modes that yield the highest value of strain energy are the modes that tend to 

stretch the stiffness matrix the most, which has the most significant contribution to 

the stiffness matrix, and thus provides the best information about changes to the 

elemental stiffness parameters of the structure. Sanayei and Saletnik (1996a) used the 

strain residual function as objective to minimize the difference between the analytical 

strains and measured ones, and applied this method to a truss and a frame to estimate 

the elemental parameters (Sanayei and Saletnik 1996b). Shi et al. (2000) derived the 

sensitivity of MSE with respect to the elemental parameters, and proved that the use 

MSE was more sensitive to local damage than other mode shape based indices. Jaishi 

and Ren (2007) used the eigenfrequency residual and MSE residual as two objective 

functions of the multiobjective optimization. The gradient of the proposed modal 

strain energy objective function was derived with the help of the eigenvalue and 

eigenvector derivatives. 

 

Since each entry of the modal flexibility component consists of the coupling of the 

mode shapes and frequencies for different modes, the scope of measured data is 

greatly enlarged compared with the use of the natural frequencies and mode shapes. 

Therefore, more and more researchers incorporate the modal flexibility index in their 

model updating process. Aktan et al. (1994) firstly proposed the use of the measured 

flexibility as a „condition index‟ to indicate the relative integrity of a bridge. Pandey 

and Biswas (1994) applied the modal flexibility based model updating to several 

numerical examples, and to the damage identification of an actual spliced beam. 

They showed that the estimates of the damage condition and the location of the 

damage could be obtained from just the first two measured modes of the structure. 

Zhao and Dewolf (1999) presented a comparison on the use of the natural 

frequencies, mode shapes, and modal flexibility matrix for structure condition 
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assessment. The results demonstrated that the modal flexibility were more likely to 

indicate the local change of the elemental parameters than the other two. Topole 

(1997) developed an algorithm to calculate the contribution of the flexibility to the 

sensitivity of the model parameters, and applied it to detect the damage of a 

simulated structure with truss member. Similarly, Reisch and Park (2000) refined the 

elevated highway bridge column based on the relative changes in localized flexibility 

properties. Wu and Law (2004a) studied the truncated sparse modal flexibility 

obtained from the incomplete measurements and derived explicitly its sensitivity 

with respect to the elemental generic parameter. In the companion paper, Wu and 

Law (2004b) reported on the experimental verification of the above-mentioned 

truncated modal flexibility based model updating method. Jaishi and Ren (2006) 

chose the modal flexibility residual as the objective function for model updating, and 

derived its gradient explicitly. In their research, all the elements in the FE model 

were used as updating parameters, which was the extreme adverse condition in 

practical FE model updating. Jaishi et al. (2007) applied the FE model updating 

method in real bridge structures. An eigenvalue sensitivity study was feasible to see 

the effect of various parameters to the concerned modes, according to which the most 

sensitive parameters were selected for the flexibility-based model updating. Duan et 

al. (2005) assembled the proportional flexibility matrix with arbitrarily scaled modal 

shapes for model updating in ambient vibration. The damage locating vector method 

was proposed to the case of ambient vibration with incomplete measured DOFs, 

when the normalized flexibility matrices were not available (Gao et al. 2007). Catbas 

et al. (2008) combined the flexibility and flexibility curvature for structural health 

monitoring. 

 

Frequency response data is another kind of objective function that can be used in 

model updating, since it includes a great deal of information. Lin and Ewins (1994) 

tackled the model updating problem by using the measured FRF data directly, which 



22 

was incomplete in both the measured modes and coordinates. Ziaei-Rad (1997) 

developed a FRF-based model updating by expanding the inverse matrix of FRF as a 

Taylor series function with respect to the structural parameters. Modak et al. (2002) 

obtained the updated models by both a direct model updating method and an iterative 

model updating method based on the FRF data. Esfandiari et al. (2009) used the FRF 

and natural frequencies data for finite element model updating. Sensitivity formula, 

normalization and proper selection of measured frequency points improved the 

accuracy and convergence of model updating. 

 

Intending to extract as much as information from the limited experimental test, some 

researchers propose multi-objective model updating technique, which attempts to 

minimize two or more objectives simultaneously. Jaishi and Ren (2007) used a 

multi-objective optimization technique to minimize the natural frequency residual 

and modal strain energy residual simultaneously. Perera and Ruiz (2008) carried out 

the multistage FE model updating based on the residuals of flexibility and the 

residuals of the frequencies and mode shapes. In the research of Christodoulou and 

Papadimitriou (2007) , a weighted residuals metric was firstly established to update 

the elemental parameters. Standard optimization techniques were then used to find 

the optimal values of the structural parameters that minimized the weighted residuals 

metric.  

 

2.2.2.4 Sensitivity Matrix 

The sensitivity matrix serves for indicating the searching direction of the 

optimization algorithm, which endows the more sensitive parameter (with respect to 

the objective function) a higher priority. Calculation of the eigensensitivity is the 

most computationally expensive component of model updating. 
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1) First-order Eigensolutions Derivatives 

The sensitivity matrix [S] can be computed for all physical elemental parameters 

using the finite difference method, modal method and Nelson‟s method (Sutter et al. 

1988).   

 

The finite difference method uses a difference formula to numerically approximate 

the derivative, which calculates the eigensolutions at one or more perturbed design 

points and compares the differences at those points (Choi and Kim 2005). This 

method is sensitive to round off and truncation errors associated with the step size 

used. Zivanovic et al. (2007) used the forward finite difference approach with an 

assumed parameter change of +1% for all updating parameters.  

 

The modal method approximates the eigenvector derivatives as a linear combination 

of the eigenvectors. Fox and Kapoor (1968) firstly utilized the modal method to 

determine the eigenvalue and eigenvector derivatives by considering the changes of 

the physical parameters in the mass and stiffness matrices, which set a solid 

foundation for the eigensensitivity analysis of dynamic systems. It required all modes 

of the system to calculate the interested eigenvalue and eigenvector derivatives, 

which was computationally expensive for large-scale structures. Wang (1985; 1991) 

developed the modified modal method to reduce the number of modes required. The 

eigenvector derivatives were represented by the truncated eigenvectors together with 

a residual static mode, accounting for the contribution of the discarded higher modes 

approximately. The coefficients of the residual modes were computed by a 

Bubnov-Galerkin method from the governing equation. Alvin (1997) proposed an 

iterative approach to determine the eigenvector derivatives. The modal superposition 

solution was used as the initial point, and then the iterative sensitivity computation 

was performed with the existing set of eigenmodes.  
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Nelson‟s method (1976) is an exact method for calculating the eigenvector 

derivatives. It calculates the eigenvector derivative of one mode just using the modal 

data of that mode solely. Additionally, it preserves the banded nature of the system 

mass and stiffness matrices, and thereby significantly reduces the computational cost. 

Sutter et al. (1988) compared various sensitivity methods, including the difference 

method, modal method, improved modal method and Nelson‟s method. They 

concluded that Nelson's method was the most powerful one since it was exact and 

computationally efficient.  

 

The original Nelson‟s method supposed that the target structure was grounded and 

did not contain repeated frequencies. Many researchers have developed it to deal 

with the general structures which might include the repeated frequencies or the rigid 

body modes. Ojalvo (1988), Mills-Curran (1988) and Dailey (1989) generalized 

Nelson‟s method to solve the eigensolution derivatives of the real symmetric 

eigensystems with repeated eigenvalues, by deleting the rows and columns of the 

singular matrix [K−λM] to form a reduced full-rank coefficient matrix. Song et al. 

(1996) introduced a set of non-modal vectors which were mass orthogonal with 

respect to the repeated eigenvectors, based on the generalized Schmidt 

orthogonalization. The non-modal vectors served to span the subspace of the 

eigenvector derivatives for the repeated eigenpairs. Wu et al. (2006; 2007) used only 

the eigenvectors corresponding to the repeated eigenvalues to form a non-singular 

coefficient matrix. The improvement preserved the symmetry of the coefficient 

matrix and had exactly the same bandwidth as the original eigenequation. Lin and 

Lim (1996) calculated the eigenvalue and eigenvector derivatives when considering 

the rigid body modes. A small shift was introduced on both the stiffness and mass 

matrices. 

 

Computation efficiency of Nelson‟s method is improved by a few researchers. Lin et 
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al. (1996) represented the eigenvector derivative of a separate mode by the 

eigenvalue and eigenvector of the mode itself and an inverse of the system matrix. 

The method retained all the computational advantages of Nelson‟s method, but 

avoided the tedious procedure to select properly the eigenvector element and the 

inversion of the system matrices which were required by Nelson‟s method. Lin and 

Lim (1995) combined the eigensensitivity analyses with the static model reduction 

technique. They reduced the order of the original analytical FE model, yet enabled 

the design sensitivity analysis to be performed efficiently by suitable selection of the 

master and slave coordinates. 

 

Based on the Nelson‟s method, the sensitivity matrix for the modal flexibility and 

strain energy were derived in the work of Jaishi et al. (2007) and Jaishi and Ren 

(2007), in which the flexibility matrix and strain energy matrix were used as the 

objective function in model updating. 

 

2) Second-order and High-order Eigensolutions Derivatives 

The computation of the second-order eigensensitivity or high-order eigensensitivity 

is sometimes required for the large variations of the design parameters or the 

repeated natural frequencies. Friswell (1995) extended Nelson‟s method to calculate 

the second- and high-order eigenvector derivatives, by repeatedly differentiating 

Nelson‟s eigenequation. Choi et al. (2004) computed the first-, second- and 

higher-order derivatives of eigenvalues and eigenvectors associated with repeated 

eigenvalues. Repeated eigenvectors and orthonormal conditions were adopted to 

compose an algebraic equation, which was then used to compute the high-order 

derivatives of eigenvalues and eigenvectors simultaneously. Guedria et al. (2007) 

calculated the high-order derivatives of both left and right eigenvectors for damped, 

symmetric as well as asymmetric systems, and generalized the application of 

Nelson‟s method. 
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2.2.3 Stochastic Model Updating Methods 

The above-mentioned literatures assume that the analytical FE model is precise 

enough to represent the vibration properties of the structure and the measurements 

are accurate as well. In reality, both assumptions are not true.  

 

The measured data and the initial FE model inevitably contain uncertainties that 

might lead to unreliable or even false parameter updating. The sources of modeling 

uncertainties mainly include: the variations in the material properties during 

manufacture, inexact modeling of the material constitutive behavior, uncertainties 

introduced during the construction process, inexact modeling of the boundary 

conditions, errors because of the spatial discretization of the structure, and 

unmodeled features such as neglected „nonstructural‟ components (Sohn 2007). The 

sources of measurement uncertainties mainly include two parts, the measurement 

noise and the identification errors. The former is due to the noise from the 

experimental equipments and test environment. The latter one is introduced during 

the data processing, and the simplification of a nonlinear, complex system into a 

linear, real system.  

 

Because of these inevitable uncertainties, model updating can be tackled in a 

stochastic manner. Three commonly used approaches considering the uncertainty in 

model updating are the Monte Carlo simulation (MCS) method, the perturbation 

method, and the Bayesian method (Khodaparast et al. 2008). 

 

In the MCS method, a large number of samples following the given probability 

density functions (PDFs) of modal data are generated and repeatedly used for model 

updating. The desired statistics are eventually estimated from these updating results. 

Neal (1993) discussed the Markov Chain Monte Carlo method and used it for the 
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solution of integrals arising in Bayesian inference. Mosegaard and Tarantotla (2002) 

provided an introduction and thorough discussion of the Monte Carlo sampling 

techniques and their application in probabilistic parameter estimation problems. 

Mares et al. (2006) and Mottershead et al. (2006) described the theory of the 

stochastic model updating using a Monte Carlo inverse procedure with multiple sets 

of experimental results. The Monte Carlo inverse propagation and multivariate 

multiple regressions were employed to solve a set of analytical models with 

randomized updating parameters. The main disadvantage of the MCS method is that, 

it is computationally intensive as it requires a large number of simulations to obtain 

an accurate and valid statistics. 

 

An alternative approach to estimate the effect of uncertainty is the perturbation 

method. This approach expands each term in the model updating equation with a 

truncated Taylor series expansion around the mean value and then proceeds the 

approximation with the moments of solutions (Hua et al. 2008). The second moment 

solution is usually applied to evaluate the mean and standard deviation of the 

response, or to evaluate the failure probabilities. Liu (1995) investigated the 

measurement noise effect on the damage detection with the perturbation method. Xia 

et al. (2002) and Xia and Hao (2003) took into account the effects of random noise in 

both the vibration data and analytical model. The structural stiffness parameters in 

the intact state and damaged state were evaluated with a two-stage model updating 

process. The statistical FE model of the structure at the undamaged state was derived 

in the first-stage updating, by considering the statistical uncertainties of the initial 

analytical model and the noise in the measured frequencies. The second stage was to 

update the improved model to derive a statistical FE model in the damaged state, 

considering the measurement noise in the damaged structure. Probability of damage 

existence was estimated by comparing the probability distributions of the stiffness 

parameters in the undamaged and damaged states. Hua et al. (2008) derived two 
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recursive equations to estimate the first two moments of the random structural 

parameters from the statistics of the measured modal data. Khodaparast et al. (2008) 

omitted the correlation between the updated parameters and measured data of Hua‟s 

work (Hua et al. 2008), and the intensive computation of the second-order 

sensitivities was then saved. Based on the work of Hua and Khodaparast, Govers and 

Link (2010) adjusted the mean values of the design parameters and their associated 

covariance matrix from multiple sets of experimental modal data other than a single 

set of data. In fact, the limitation of the perturbation method is that the initial starting 

estimate should be close to the true value, similar to the conventional deterministic 

sensitivity-based model updating. 

 

The third widely used statistical model updating method adopts the Bayesian theory. 

Beck and Karafygiotis (1998) and Karafygiotis and Beck (1998) provided a general 

Bayesian statistical framework for updating a structural model and its associated 

uncertainties. A Bayesian probabilistic framework for modal updating allows 

obtaining not only the optimal (most probable) values of the updated parameters but 

also their uncertainties from their joint probability distribution. Katafygiotis et al. 

(2001) and Yuen and Katafygiotis (2001) proposed the Bayesian probabilistic 

approach to estimate the uncertainties using ambient testing data. Yuen and 

Katafygiotis (2002) considered both the input error (input measurement noise) and 

output error (output measurement noise and modeling error). The input error and 

output error were modeled by independent white noise processes and contributed 

towards the uncertainty. Lam et al. (2004) and Johnson et al. (2004) applied the 

Bayesian based model updating to the structural health monitoring of the Phase I 

IASC–ASCE benchmark study. Yuen and Katafygiotis (2005) extended Bayesian 

probabilistic approach to the case without considering any input measurements or 

any information regarding the stochastic model of the input. It did not require the 

response to be stationary and did not assume any knowledge of the parametric form 
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of the spectral density of the input. The Bayesian probabilistic approach was 

subsequently combined with a substructure concept, allowing for the identification 

and monitoring of some critical substructures only (Yuen and Katafygiotis 2006). 

Cheung and Beck (2009) developed the Hybrid Monte Carlo method (Hamiltonian 

Markov chain method) to solve the Bayesian model updating problem. It showed 

high potential for solving model updating problems in higher-dimensional parameter 

spaces without restriction on the model (linear or nonlinear) and on the type of data. 

In essence, one of the most useful applications of Bayesian model updating is to 

predict the future events based on the past observations (Cheung and Beck 2009). 

 

Schueller and Jensen (2008) stated that the stochastic search algorithms would be the 

most promising technique for analyzing complex problems. Efficient procedures to 

deal with optimization considering uncertainties should become the rule and not the 

exception in future engineering design. 

 

2.2.4 Model Updating for Damage Identification 

Structural damage can be defined as changes in structural parameters which 

adversely affect the current or future performance of the structure whereas structural 

damage detection aims to find such changes in the structure using measurement data 

(Friswell 2007). The methods for damage identification can be usually found as the 

damage index methods, signal based methods and model updating methods.  

 

The damage index methods make use of the measured modal properties of a structure 

at both intact and damage states. The natural frequency shifts (Friswell et al. 1994; 

Salawu 1997), mode shape changes (Parloo et al. 2003), mode shape 

curvatures/strain mode shapes (Pandey et al. 1991), modal flexibility changes 

(Pandey et al. 1994), modal strain energy changes (Shi et al. 2002) and frequencies 

response functions (Ni et al. 2006) are usually used as indicator to identify the 
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structural damage location and extend. 

 

Damage is typically a local phenomenon which tends to be captured by higher 

frequency modes. Many signal based identification methods such as wavelet 

transform (Wang and Deng 1999), wavelet packets transform (Chang and Sun 2005), 

Hilbert-Huang transform (Huang 2000; Liu 2006) have been developed to 

decompose a signal using a short-duration wave/function, thus allowing a refined 

decomposition rather than decomposition with infinite-duration sinusoids such as 

Fourier transforms. The main advantage in using the signal based damage 

identification method is the ability to perform local analysis of a signal (Reda Taha et 

al. 2006). 

 

With the model updating technique, the damage can be identified by comparing the 

differences between the updated model and the original one (usually the reduction of 

the stiffness parameters) (Friswell and Mottershead 1995). The model updating 

method cannot only detect the structural damage, but also quantify the damage 

severity. The model updating methods and their application in damage identification 

have been reviewed in the former part of this section. The model updating methods 

that will be proposed in the following chapters can be used for damage identification 

as well. In a word, model updating is one way to perform damage identification 

analysis, and damage identification is one application for model updating. Actually 

model updating can be used for a range of applications but not limited to the damage 

identification, such as optimization design, prediction of response and so on (Friswell 

2001). 

 

2.3 Model Condensation and Data Expansion 

The outcome of the modal experiments is incomplete in two senses. First, it contains 

only a partial set of the natural frequencies and mode shapes. Second, the measured 
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mode shapes consist of a limited number of DOFs, typically much smaller than the 

number of DOFs in the analytical model. It means that only a relatively small 

number of mode shapes with limited points are measured. To compare the analytical 

modal properties with the experimental ones, either the analytical model needs to be 

condensed or the experimental data enlarged. 

 

Matching the mode shapes in modal dimension is usually achieved by applying the 

modal assurance criterion and thus selecting the analytical mode shapes that have a 

counterpart in the experimental set. Matching the mode shapes in spatial dimension, 

i.e., the number of DOFs, is not as obvious. Most model updating techniques require 

a one-to-one correspondence between the analytical model and experimental 

measurement, and hence either a reduction or expansion procedure must be 

employed to resolve the inconformity between them.  

 

2.3.1 Model Condensation 

If the objective is to assess the degree of correlation between the experimental and 

analytical models, a reduction of the analytical mode shape to the size of the 

measured one is probably the wisest route because of its simplicity and accuracy 

(Friswell and Mottershead 1995).  

 

1) Condensation with the Stiffness and Mass Matrices 

The classical eigenequation is divided according to the master and slave DOFs as 
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where the subscripts „a‟ and „b‟ relate to the master and slave coordinates, 

respectively, and the master DOFs are usually regarded as the measured coordinates. 

The full-DOF eigenvector is expressed by the eigenvector of master DOFs with 

transformation as 
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The corresponding reduced mass and stiffness matrices are given by 

  T
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Guyan reduction (Guyan 1965) is one of the most popular and basic condensation 

techniques. This method neglects the inertia terms and gives the transformation 

matrix of 
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With this static condensation algorithm, the modal responses obtained are exact only 

at zero frequency. As the interested frequency increases, the neglected inertia terms 

become more significant (O‟Callahan 1989). The dynamic reduction is an extension 

of Guyan‟s method. The transformation matrix is modified to include the inertia 

forces at the chosen eigenvalue 
0 , and given by 
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(2-15) 

If this shift frequency 
0  is equal to zero, this method is equivalent to the static 

condensation. O‟Callahan (1989) developed an improved reduced system (IRS) 

condensation method, which included a higher-order term in Taylor series expansion 

of the inverse of the dynamic stiffness matrix. The transformation matrix is 

expressed as 
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where  
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Friswell et al. (1995) developed an iterative IRS strategy to get more accurate results. 

The transformation matrix (Eq. (2-16)) is expressed as an iterative form 
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The convergence of this iteration was proved mathematically (Friswell et al. 1998a). 

The disadvantage of this reduction method is that the estimated results are acceptable 

only in the domain of (0, fc), where the cut-off frequency fc is the smallest frequency 

of the structure with all the master DOFs grounded. 

 

Xia and Lin (2004b) improved the Friswell‟s method by including all the inertia 

terms in the transformation matrix without any approximation, and proposed the 

iterative order reduction (IOR) method. The reduced eigenequation is formulated as 
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where the reduced stiffness matrix 
SK  is the same as that in Guyan reduction. The 

reduced mass matrix MD is composed by the mass matrix in Guyan reduction with an 

iterated perturbation. MD is iteratively updated by 
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Afterwards, Xia and Lin (2004a) modified the reduced eigenequation based on the 

same iteratively updated transformation matrix (Eq. (2-20) and Eq. (2-21)). The 

reduced eigenequation is given by 
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This modification preserved the symmetric property of the stiffness and mass 

matrices. 

 

Choi et al. (2008) performed the iterative dynamic condensation at the substructural 

level. Since the iterative dynamic condensation spent a lot of computation time to 

construct the transformation matrix, it was more efficient if the transformation matrix 

was constructed for the substructures instead of the global structure. 

 

2) Condensation with Eigensolutions 

O‟Callahan et al. (1989) presented the system equivalent reduction expansion 

process (SEREP). The analytical eigensolutions take the place of the system matrices 

to recover the unmeasured DOFs. The analytical eigenvectors are partitioned into the 

master and slave coordinates 
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and the transformation matrix is introduced by a generalized inverse of the analytical 

eigenvectors as 
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2.3.2 Data Expansion 

Reducing the analytical model to the size of the experimental model is not always 

recommended since the measurement coordinates are unlikely to be the best master 

coordinates from a reduction viewpoint. In addition, if the objective is to estimate the 

rotational DOFs using the measured data, the expansion of the measured mode 

shapes to the size of the analytical model is required. 

 

There are mainly three kinds of methods for data expansion in spatial dimension. The 
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first approach employs the extrapolation of the measured DOFs to those of the full 

model. The second route uses the mass and stiffness matrices of the analytical model 

to compute the mode shape values at the DOFs missed in the measurement. The third 

alternative utilizes the analytical mode shapes directly with the assumption that the 

unmeasured mode shapes can be expressed as the linear combinations of the 

measured ones. 

 

1) Spatial Curve Fitting 

Measurement of rotation is usually much more difficult and expensive than that of 

the translational movement. The rotations of two closely spaced points can be 

estimated as their translations divided by the distance. To avoid too densely arranged 

transducers, the curve fitting can also be used to estimate the translation values at 

some interior points.  

 

Williams and Green (1990) utilized the cubic polynomial to fit the measured 

translational mode shapes, and then differentiated it to obtain the required rotations. 

Ng'andu et al. (1993) employed the curve fitting for the beam-like structures and the 

surface fitting for the plate or shell structures, to estimate the rotational responses. In 

later work, Ng‟andu et al. (1995) adopted the spline functions to estimate the 

rotational coordinates. They investigated the influence of the smoothing factor and 

the distribution of the measurement points, both of which were proved to control the 

accuracy of estimation. The measurement noise was smoothed in their method.  

 

Although it is quick, cheap, and does not require prior knowledge of the analytical 

model, the spatial curve fitting technique is not often used since the structures with 

complex spatial formations or sudden changes of structural geometry are difficult to 

be evaluated with the spatial curve fitting technique. 
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2) Expansion with the Stiffness and Mass Matrices 

The second method expands the measured mode shapes to the analytical size, making 

use of the analytical system matrices. In essence, the mode shape expansion is the 

inverse of model reduction. Accordingly, the aforementioned model condensation 

techniques can be employed reversely. The primary task of mode shape expansion is 

to estimate the transformation matrix T for the slave DOFs and master DOFs. 

  
a

a

b


 



 
  
 

T  (2-25) 

Guyan expansion is the reverse procedure of the static condensation described 

previously (Balmes 2000). Corresponding to the Guyan condensation, the slave 

DOFs is estimated by 

  1

b bb ba a  K K  (2-26) 

 

From the dynamic reduction based on Eq. (2-11), the slave DOFs of the ith mode is 

given by 

  
ab i ab aa i aa

bi ai

bb i bb ba i ba

 
 

 


    

     
    

K M K M

K M K M
 (2-27) 

 

3) Expansion with Eigensolutions 

The third kind of expansion methods is that use only the analytical eigenvectors, but 

not the system matrices (K, M). The simplest method of mode shape expansion is to 

substitute the elements of the mode shapes from the FE model for the DOFs that 

have not been measured.  

  

E

a

A

b






 
  
 

 (2-28) 

This simple method can be used only if the analytical and measured mode shapes 

have been scaled in the same way. 
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In the model coordinate method, the relationship between the experimental mode 

shapes and the analytical mode shapes at the master DOFs are expressed as follows. 

  E A

a aΦ Φ t  (2-29) 

Eq. (2-29) gives the transformation matrix 

   A E

a a



t Φ Φ  (2-30) 

The unmeasured DOFs can be estimated from the transformation matrix of 

  E A

b bΦ Φ t  (2-31) 

Retroactively, the transformation matrix t can also be used for full model directly, 

which smooth the measured mode shapes (Lipkins and Vandeurzen 1987). 

 

In SEREP expansion method (O‟Callahan et al. 1989), the full mode shapes are 

expressed as a linear combination of the measured eigenvectors, on the basis of the 

transformation matrix 

     E

aΦ T Φ  (2-32) 

T is regarded as a global curve-fitting function which projects the eigenvector 

elements from the measured part to the full system. The transformation matrix T can 

be constructed in various manners as  
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E
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a
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 

Φ
T Φ

Φ
 

(2-33) 

 

Gysin (1990) compared the above methods to check their accuracy when applied to a 

spring mass structure. Both expansion error and damage localization capability were 

evaluated for each technique. It was concluded that no expansion method was 

satisfactory for all cases. If the expansion was utilized for model updating or damage 

identification and the maximum discrepancy were located at the measured DOFs, the 

dynamic expansion method performed best among them. Imregun and Ewins (1993) 
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employed the dynamic expansion and the model coordinate method to compare the 

system matrices based expansion and the eigensolution based expansion, using a 

spring-mass system, a cantilever beam, and a free-free plate. They also concluded 

that the quality of the expanded mode shapes was case-dependent. Random errors of 

the measured data did not affect the quality of the expanded mode shapes. The 

complexity of the mode shapes, however, was a significant adverse factor. Therefore, 

it was unlikely that acceptable results could be obtained in the case of markedly 

complex mode shapes. 

 

4) Orthogonal Procrustes Expansion 

Another problem associated with the experimental mode shapes is orthogonalization, 

i.e., looking for the minimal modification that will transform the set of mode shapes 

into an orthogonal state with respect to the mass matrix.  

  
T

E A E   Φ M Φ I  (2-34) 

Baruch and Itzhack (1978) presented an optimal orthogonalization technique to 

adjust the measured modes orthogonal to the mass matrix. Kenigsbuch and Halevi 

(1998) proposed both a direct and an iterative method for computing the orthogonal 

modes, which were closest to the measured ones in a weighted Euclidean sense. 

Smith and Beattie (1990) expanded the measured mode shape vectors from the 

orthogonal Procrustes algorithm. The orthogonal Procrustes problem can be viewed 

as a search for a linear relationship between the original analytical eigenvectors and 

the measured eigenvectors (Smith and Beattie 1990). 

  

E A

a a

opE A

b b

   
   

   

Φ Φ
P

Φ Φ
 (2-35) 

The orthogonal Procrustes problem can then be formally stated as 

  
min

op

E A

a a op
P

Φ Φ P , subject to 
T

op op P P I
 

(2-36) 

The expanded and mass orthogonal eigenvectors are then given by Eq. (2-35). 
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Accurate expansion results depend on the accuracy of the measured mode shapes, the 

selection of the measured DOFs, as well as the magnitude of error in the original 

model. 

 

2.3.3 Information Enlargement 

Due to the limitation of instruments, the experimental information may not satisfy 

the requirement of system identification or model updating. It is necessary to enlarge 

the information from the limited instruments. 

 

Doebling (1995) and Doebling et al. (1996) estimated the residual flexibility from 

the experimental vibration data. The FRF of the response at DOF i due to an 

excitation at DOF j can be written as a sum over all of the modal modes as 

    2

2 2
1

i j

k k
ij

k k

 
 

 





 
   

 
H  (2-37) 

Suppose that there are n1 modes below the measured bandwidth (including 

rigid-body modes) and n2 modes in the measured bandwidth, Eq. (2-37) can be 

represented by 

   
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When the structure is free and the rigid body modes are considered, the first term of 

Eq. (2-38) is rewritten as 
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And the third part is 
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   (2-40) 

which is often referred to as the residual flexibility. The residual flexibility term can 

be obtained by curve fitting algorithm. 
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Rade and Lallement (1998) examined several strategies for the enrichment of 

experimental data, based on the exploitation of different boundary conditions. Kwon 

and Lin (2004) proposed a frequency selection method for efficient FRF-based 

model updating. The selected frequencies can carry as much information as possible 

with a limited number of frequencies. Cottin and Reetz (2006) repeated different sets 

of the measured natural frequencies to improve the accuracy of the parameter 

estimation.  

 

2.4 Substructuring Methods 

As stated by Klerk et al. (2008), analysis of a structural system in substructure 

manner has some important advantages over the global method. 

1) The substructuring method allows evaluation of large or complex structures, 

which might be inefficient or even prohibited for global method.  

2) It allows identification of local problems and elimination of local subsystem 

behavior that has no significant impact on the assembled system.  

3) It allows combination of distinct modeled parts in an efficient way and solving 

only one or several parts at a time. 

4) It allows sharing and combining substructures from different project groups. 

Due to these advantages, the substructuring methods have been widely used in 

aerospace, mechanical and civil engineering with a range of applications. 

 

2.4.1 Substructuring Methods for Eigenproperties 

The substructuring methods for eigenproperties are usually utilized in three domains, 

the physical, frequency and modal domains.  

1) In the physical domain, a structure is characterized by its mass, stiffness, and 

damping matrices for a discretized linearized model. The substructuring method 
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applied in physical domain mainly aims to divide the large mass, stiffness and 

damping matrices into smaller ones, and subsequently releases the computational 

load.  

2) A structure in the frequency domain is seen through its frequency response 

functions. It is widely used in experimental substructuring method, when the FRFs of 

the substructures have been experimentally determined.  

3) In the modal domain, the dynamic behavior of a structure is interpreted as a 

superposition of modal responses. That is, the displacement in the physical domain is 

projected to the modal basis, usually the substructural eigenmodes. 

 

2.4.1.1 Physical Domain 

The global structure with N DOFs is divided into NS substructures. The motion 

equation of the jth substructure may be written as 

  
                              j j j j j j j j

x t x t x t f t g t   M C K  (2-41) 

where  j
M , 

 j
C , and  j

K  are the mass, damping, and stiffness matrices of the 

jth substructure, 
    j

x t  denotes the displacement vector, 
    j

f t  is the 

external force vector, and 
    j

g t  is the connecting forces between the adjacent 

substructures. The motion equations are coupled for the NS substructures and can be 

rewritten in a block-diagonal format as 

           p p px x x f g   M C K   (2-42) 

with the compatibility condition and equilibrium condition 

   x B 0 ,  T g L 0  (2-43) 

where the matrix B operates on the interface DOFs and is a signed Boolean matrix if 

the interface DOFs are matching, and the matrix L is a geometric operator to connect 

the DOFs in the global structure with those in the independent substructures. p
M , 

p
C  and p

K  denote the primitive matrices which directly assemble the mass, 
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damping and stiffness matrices of the substructures. If the interface force are 

expressed in Lagrange multiplier form of  

     Tg  B  (2-44) 

The assembled matrix is expressed as 

  
p p p Tx x x f

  

            
              

            

M 0 C 0 K B

00 0 0 0 B 0

 
 (2-45) 

Choi et al. (2008) applied this substructural concept in model condensation technique. 

The global stiffness and mass matrices were handled instead by the substructural 

matrices, which save much computation cost in construction of the transformation 

matrix T (Eq. (2-16)) that is expensive in conventional model condensation 

technique.  

 

2.4.1.2 Frequency Domain 

Performing a Fourier transform on Eq. (2-42) and Eq. (2-43) gives the following set 

of governing equations in the frequency domain (Gordis et al. 1991). 
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where   x  ,   f  ,   g   represent the amplitude of the harmonic 

response and forces, H
p
 is a block-diagonal matrix containing the dynamic stiffness 

matrices of the substructures, i.e., 

    2p p p pj j     H M C K  (2-47) 

Similar to the physical domain substructuring method, the interface force can be 

expressed in Lagrange multiplier form of     Tg    B . Consequently, Eq. 

(2-46) can be re-written in a coupled form as 
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where   is omitted for brevity. The displacement can be obtained in the receptance 

formula as 

                
1

1 1 1 1
p p T p T px f f


   

 H H B B H B B H  (2-49) 

Classically, frequency domain substructuring is performed by primarily coupling the 

dynamic stiffness H
p
. As dynamic stiffness matrix H

p
 is hard to obtain directly in 

practice, they are obtained by inverting the measured receptance matrix and usually 

carried out as coupling the impedance matrix  
1

p


H  directly (Imregun and Robb 

1992; D'Ambrogio and Sestieri 2004). 

 

2.4.1.3 Modal Domain 

The displacement vector  x  in Eq. (2-45) can be decoupled in modal domain as 

   = px qΦ , and the undamped eigenproblem with dynamic substructuring method 

can be obtained as 

  
p T p

p pq q
     

      
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0K B M 0
Φ Φ

0B 0 0 0
 (2-50) 

The substructuring method in modal domain is usually used to extract the 

eigensolutions and eigensensitivities. The substructural eigensolution methods 

mainly include the component mode synthesis (CMS) method, Kron‟s substructuring 

method, Rayleigh-Ritz based substructuring method. 

 

(a) Component Mode Synthesis Method 

In CMS method, the component modes for each substructure can be classified into 

four groups according to the boundary conditions, which include the rigid body 

modes, normal modes, constraint modes and attachment modes (Craig 2000).  

1) The rigid body modes (RBMs) describe the rigid body movement of a free 
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substructure. It can be obtained either by numerically extracting a null basis from the 

free stiffness K, or by considering its self-equilibrium. With the former manner, the 

rank deficient K is determined and rearranged as 

  
II IB

BI BB

 
  
 

K K
K

K K
 (2-51) 

where 
IIK  is a square matrix with a full rank. The subscript „I‟ represents the inner 

DOFs and the subscript „B‟ represents the interface DOFs. A generalized inverse is 

computed as 
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0 0
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 (2-52) 

where R is the rigid body modes. For a free structure with a large number of DOFs, 

the above calculation is not only expensive but also inaccurate. Alternatively, the 

self-equilibrium method can be used (Felippa and Park 1997). For a two-dimensional 

structure having N nodes, the three independent RBMs are the x translation ( Rx = 1, 

Ry = 0 ), the y translation ( Rx = 0, Ry = 1 ) and the z rotation ( Rx = -y, Ry = x ), i.e., 
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1 1
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 (2-53) 

The columns of R are naturally orthogonal by construction, and can be normalized 

by dividing 1 2N , 1 2N  and  
1 2

2 2 1i ix y  
  , respectively. 

 

2) The normal modes are obtained using the general eigenequation for both the fixed 

boundary condition and free boundary condition. The fixed interface normal modes 

are obtained by restraining all boundary DOFs and solving the following 

eigenequation. 

      II i II I i
  K M 0  (2-54) 

The complete fixed interface normal modes are expressed as 
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where Ni is the number of normal modes, which is equal to the quantity of the inner 

DOFs. Only the inner DOFs are used to construct the normal modes for the fixed 

interface condition. When normalized with respect to the mass matrix 
IIM , the fixed 

interface modes satisfy 

  T

I II I Φ M Φ I , T

I II I Φ K Φ Λ  (2-56) 

The free interface normal modes are obtained by releasing all boundary DOFs and 

solving the eigenequation 

     0j j
  K M  ( j = 1, 2… Nd = N - Nr ) (2-57) 

where Nd and Nr are the number of the deformational modes and the rigid body 

modes, respectively. 

 

3) A constraint mode is defined as the force to generate a unit displacement to one 

coordinate of a specified „constraint‟ coordinate C, while the remaining coordinates 

of that set C are restrained, and the remaining DOFs of the structure are free. The 

force equilibrium satisfies 
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 (2-58) 

The constraint mode matrix is given by 

  
1

b

IB II IB

c
N N BB BB




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Φ K K
Φ
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 (2-59) 

where Nb is the number of constraint modes, and equal to the number of the inner 

DOFs. The constraint modes are stiffness orthogonal to all of the fixed interface 

normal modes, that is 

  T

n c Φ KΦ 0  (2-60) 
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4) An attachment mode is regarded as the displacement vector due to a single unit 

force applied at one of the given coordinates A, which is therefore acquired by 

  
II IB I

BI BB B B

     
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     

K K Φ 0
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 (2-61) 

 

Based on the four groups of mode components, applications of the CMS methods are 

reviewed as follows. 

 

Fixed Interface CMS 

The fixed interface CMS was initially proposed by Hurty in 1965 (Hurty 1965), in 

which the interface DOFs were fixed by using constraint modes associated with the 

static response due to the unit displacements on the interface DOFs. Craig and 

Bampton (1968) (for the discrete case) and Morand and Ohayon (1979) (for the 

continuous case) expressed the eigenmodes of each substructure with the fixed 

coupling interfaces and the static boundary functions associated with the coupling 

interfaces, which made the fixed interface CMS method known widely. Suarez and 

Singh (1992) improved the computation accuracy of the method by using the mode 

superposition algorithm to account for the truncated normal modes. 

 

Qiu et al. (1997) proposed an exact fixed interface CMS method, in which the exact 

residual constraint modes were constructed based upon an incomplete set of normal 

modes of the substructures. In this regard, the exact constraint modes were expressed 

in two parts: the static constraint modes and a residual term, with which it 

represented exactly the effect of the discarded normal modes. Shyu et al. (1997) 

improved the computation accuracy of the fixed interface approach by retaining the 

higher-order term. Instead of the static constraint mode, quasi-static modes were used 

to capture the inertial effects of the truncated modes, which depended on the value of 

a centering frequency parameter. 
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Heo and Ehmann (1991) calculated the eigensensitivity of the global structure based 

on the derivative matrices of the constraint modes and fixed normal modes of the 

substructures. Hassis (2000) proposed a projection basis for the fixed interface CMS 

method. For each fixed boundary, a „boundary structure‟ was associated and 

determined by applying the normal modes of the associated boundary structure to the 

interface boundary. Takewaki and Uetani (2000) proposed an inverse fixed interface 

CMS procedure to enhance the computational efficiency for updating damped large 

structural systems. Bennighof and Lehoucq (2004) presented an automatically 

multilevel substructuring method for the eigenvalue computations in linear 

elastodynamics, which was accomplished by dividing a structure recursively into 

substructures on multiple levels. They solved the fixed interface eigenvalues on the 

substructures and interfaces.  

 

Free Interface CMS 

MacNeal (1971) and Rubin (1975) initially proposed the free interface CMS method, 

in which the free interface normal modes and the attachment modes were combined 

to express the substructural modes, and a linking force was used to enforce the 

rigid/weak connection between the substructures.  

 

Arora and Nuyen (1980) combined the free interface CMS technique with the 

subspace iteration method to obtain the eigensolutions of the global structure. 

Likewise, Lee and Jung (1995) developed the free interface CMS technique 

combining with the modified Lanczos method. The obtained natural frequencies and 

mode shapes were improved in both efficiency and accuracy. Lallemand et al. (1999) 

derived the eigensensitivity formulae of the global structure by enforcing the linking 

force on the derivative matrices of the substructural rigid body modes, free-interface 

normal modes and attachment modes. 
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Felippa et al. (1998) studied the attachment modes for both the symmetric and 

unsymmetrical free stiffness matrices. For the unsymmetrical case two kinds of 

attachment modes, one preserving the Penrose conditions and the other the spectral 

properties, were examined. Rixen (2004) assembled the free substructures using the 

dual assembly of the interface force and enforced only weak interface compatibility. 

The constraint of weak interface compatibility was more natural than classical free 

interface CMS procedures and led to simpler reduced matrices. Markovic et al. (2007) 

derived the free interface CMS formula in an inverse procedure, which partitioned 

the entire structure via the localized Lagrange multiplier method. Unlike the majority 

of the available CMS approaches, where one retained the full dimension of the 

interface boundary DOFs, this method allowed the reduction of the interface DOFs. 

 

Hybrid Substructuring Methods 

Liew et al. (1996) stated that the fixed interface CMS method could achieve more 

accurate results but take longer computation time than the free CMS method. Some 

researchers proposed the hybrid CMS method to combine the fixed interface and free 

interface cases.  

 

Liew et al. (1993) proposed a hybrid CMS method for analysis of the free vibration 

of a rectangular plate with mixed interface conditions. Several plate cases were 

solved to demonstrate the applicability and accuracy of the hybrid method.  

 

Farhat and Geradin (1994) constructed a substructure interface impedance operator 

with a spectral analysis. The procedures for „gluing‟ the non-conforming and 

incompatible substructure models were proposed. They considered the CMS method 

for assembling heterogeneous substructures and recast it into a hybrid variational 

formulation. 
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Qiu et al. (2003) expressed the substructural displacements exactly as linear 

combination of the fixed and free interface modes. The higher free interface modes 

were expressed in terms of some lower mixed modes by means of an exact 

expression. 

 

Morgan et al. (2003) combined the fixed interface and free interface modes for 

identification of non-proportionally damped systems. The fixed interface method was 

applicable when the finite element matrices were employed for analytical 

implementation. The free interface method was used within an experimental 

implementation with test data.  

 

Shanmugam and Padmanabhan (2006) proposed a hybrid fixed-free interface method, 

in which the analyst could decide which boundary was to be fixed and which to be 

free, in order to achieve the full potential of this method. 

 

(b) Kron’s Substructuring Method 

Kron (1963) first proposed a substructuring method to study the eigensolutions of 

systems with a large number of variables in a piecewise manner. This method 

partitioned and reconnected the substructures in their natural manner, without 

intentionally constraining the boundary coordinates or releasing the boundary 

coordinates. It constituted the receptance matrix by imposing displacement 

constraints at the interface coordinates of the adjacent substructures via the Lagrange 

multiplier technique and virtual work theorem. Simpson and Tabarrok (1968) 

initiated Kron‟s complicated electrical notation into its structural receptance form, 

and searched the eigenvalues by the bisection scanning and the sign count algorithm. 

They described the complicated process of Kron‟s substructuring method with a 

simple case study, and extended to cover various problems such as the complex 
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eigenproblem of damped structure (Simpson 1973b). To render the Kron‟s procedure 

more attractive in design applications, the eigenvalue and eigenvector derivative 

formulae were then derived based on the Kron‟s receptance matrix (Simpson 1973a). 

Mackenzie (1974) validated this substructuring method and showed that the in-core 

requirements and operational counts of Kron‟s substructuring method were very 

competitive and advantageous, comparing with other substructuring methods. 

 

Afterwards, Simpson (1982) replaced the receptance formula with a transcendental 

dynamic stiffness matrix. The Newtonian process was utilized to accelerate the 

computation. Sehmi (1985) further improved it with a quadratically convergent 

Newtonian procedure. The procedure was integrated with the Strum sequence 

algorithm, so that the eigensolutions were obtained in ascending order without 

missing. Williams and Kennedy (1988) proposed a multiple determinant parabolic 

interpolation method to ensure the successful convergence of the required 

eigenvalues in all circumstances. 

 

Turner (1983) attempted to reduce the computational load of the Kron‟s method via 

static condensation, but the results were not precise enough to satisfy the requirement 

of usual applications. Subsequently, this method was ignored by researchers, because 

it was not comparable to other fast developing eigensolvers at the global structure 

level, such as the Lanczos method and Subspace Iteration method. Sehmi 

transformed the Kron‟s receptance matrix and combined the eigenproblem with 

numerical solutions of the Lanczos method (Sehmi 1986) and Subspace Iteration 

method (Sehmi 1989). This improvement renders the Kron‟s substructuring method 

new value, although it requires calculating all eigenpairs of each substructure 

primarily.  

 

Zhao and Simpson (1988) applied Kron‟s substructuring procedure in analysis of a 
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stable damped spinning structure, with the presence of the centrifugal force and 

steady-state internal force. Lui (1998) discussed some theoretical aspects of the 

Kron‟s receptance matrix, such as the zeros and poles of the eigenvalues, and 

summarized detailed characteristics of Kron‟s substructuring method.  

 

(c) Rayleigh-Ritz Based Substructure Approach 

For a continuum system, an exact analytical solution is not always possible and an 

approximate solution via some kinds of structural discretization is undertaken, which 

divides the continuum system into several substructures. With the substructure 

manner, the solution of the global structure can be formed from the space of the 

admissible functions to constrain the substructures. Admissible functions, which are 

determined by the global shape function, need satisfy only the geometric interface 

conditions. This approach is known as the Rayleigh-Ritz based substructure method. 

Basically, each substructure is approximated by a set of admissible trial vectors, and 

an iteration process is employed so that the eigensolutions converge to the accurate 

ones of the continuum system (Meirovitch 1997). 

 

Meirovitch and Kwak (1990) stated that, the use of mere admissible functions was 

characterized by poor or slow convergence, which in turn was likely to demand 

relatively large numbers of substructures. In addition, while analyzing individual 

substructure, a finite linear combination of the admissible functions of the same class 

was not capable of satisfying the natural boundary conditions. They conceived 

quasi-comparison functions, which were the linear combinations of the admissible 

functions capable of approximating the differential equation and the natural boundary 

conditions to any degree of accuracy by merely increasing the orders of the variables 

in the approximated solution. 

 

Meirovitch and Kwak (1991) employed a consistent kinematical procedure in the 
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Reyleigh-Ritz based substructure method to ensure the geometric compatibility 

conditions at interface points automatically. The mathematical proof of convergence 

of this substructure synthesis was presented later (Meirovitch and Kwak 1992). 

Morales (2000) extended the Rayleigh-Ritz based substructure synthesis method to 

analyze more general structures, including the complex variables. Johnson (2003) 

intended to amount the admissible functions to a series of constraints on the system 

variables. The geometric compatibility was verified to be the equivalent of 

generating underlying admissible shape functions. 

 

(d) Modes Selection Scheme 

In modal domain analysis of the dynamic substructuring methods, some modes are 

retained while the others are discarded. Intrinsically, the modes associated with the 

lowest frequencies are suggested to be retained. But this is not always correct.  

 

Spanos and Tsuha (1991) proposed a two-stage method to encompass the optimal 

modes in the substructures. In the first stage, Rayleigh-Ritz algorithm was utilized to 

eliminate the unimportant and unreliable high modes. In the second stage, a modal 

balancing method further eliminated the modes that were least affected by the 

actuators, disturbances and interface forces, and that contributed least to the motions 

at the sensors and substructure interface locations. Tournour et al. (2001) 

investigated the convergence properties with respect to the quantity of the retained 

modes, from which a convergence criterion was proposed. Six test cases were used to 

evaluate the number of necessary modes in the substructures ensuring the accuracy 

of the free interface CMS method. Givoli et al. (2004) proposed a criterion of „modal 

importance‟ to choose the modes to be retained in the linear dynamical substructures. 

A norm indicator was proposed, and the important modes of the substructures were 

those whose coupling matrices had the highest norm. 
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In sum, all the three substructuring methods in modal domain (CMS method, Kron‟s 

substructuring method and the Rayleigh-Ritz based substructuring method) are 

fundamentally inspired from the concept of Ritz method, in which different types of 

modes are chosen as Ritz vectors for each substructure. In Rayleigh-Ritz based 

substructuring method, the Ritz vectors are designated by the shape functions of the 

independent substructures and enforced by the shape function of the global structure. 

The CMS method either constrains all boundaries of the partitioned substructures or 

releases all of them intentionally. In the former case, the Ritz vectors are represented 

by fixed normal modes and enforced by the constraint modes. In the later case, the 

Ritz vectors encompass the rigid body modes and the free normal modes, which are 

enforced by the linking forces. Kron‟s substructuring method partitions and 

reconnects the substructures in their natural manner, without intentionally 

constraining the boundary coordinates or releasing them. The Ritz vectors are the 

eigensolutions of the independent substructures, which are assembled to represent the 

global structure by a determined geometric matrix. As a result, the Kron‟s 

substructuring method requires less computer memory and much fewer operational 

counts, and thereby is adopted in this research. 

 

2.4.2 Generic Substructure Method 

A generic element is a family of elements that encompasses all possible element 

formulations described by the same displacement field. Once a member of the family 

is defined (the baseline element), it is possible to obtain any other elements in the 

family, by modifying the baseline eigenvalues and transforming the baseline 

eigenvectors (Gladwell and Ahmadian 1995). Accordingly, model updating consists 

of two parts: defining the generic family of the elements and finding the appropriate 

parameter values to specify the model in this family. Similarly, a substructure could 

be regarded as a generic element. 
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Doebling (1995) decomposed the measured stiffness matrix or flexibility matrix into 

the component stiffness matrices of the underlying structural elements. Assuming 

that an N DOF global structure is divided into NS elements or substructures, the 

stiffness matrix of the jth element/substructure, which has the size of 
 j

N  and rank 

of  j
q , can be decomposed as 

  
       

T
j j j j 

 
K Φ Λ Φ  (2-62) 

where  j
Φ  is regarded as the static eigenvector with the size of 

   j j
N q , and 

 j
Λ  is the diagonal matrix of the nonzero static eigenvalues of the jth element. If 

the elemental displacements are related to the global DOFs by 
      j j

gx xT , 

and the global stiffness matrix is formed by assembling the elemental stiffness 

matrices as 
     

1

SN
T

j j j

g

j

 
 K T K T , the global matrix can be written as 

  
         

1

SN
T T Tj j j j j p p p

g T T

j

           K T Φ Λ Φ T Φ Λ Φ  (2-63) 

where p

TΦ  is regarded as the „connectivity matrix‟ of the generic elements and 

defined by 

             1 1 2 2 S S

TT T
N Np

T

     
       

Φ T Φ T Φ T Φ  (2-64) 

The superscript „p‟ denotes the primitive matrices of the diagonally assembled 

substructures, subscript „g‟ denotes the variables associated with the global structure, 

and p
Λ  is a diagonal assembly of the elemental static eigenvalues 

 j
Λ , which can 

by expressed by the elemental physical properties, such as EI, EA, and GJ. The static 

eigenvector  j
Φ  is determined for a group of elements, such as the Bernoulli-Euler 

beam elements. In model updating or damage identification, the changes in elemental 

parameters can be determined from the variation of p
Λ . The elemental eigenvalues 

and eigenvectors can be used for a substructure as well, in which the substructure is 

regarded as a super-element. 
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Ahmadian et al. (1997) selected the updated parameters based on the generic 

elements, and compared with those of traditional selection strategy. The selection 

strategy based on generic element was proved to produce a structure more consistent 

with the test data. Friswell et al. (1997) updated the physical parameters in a scheme 

combining the genetic substructure algorithm and the sensitivity method for the 

location and quantification of damage. The updating parameters were chosen to be 

the static eigenvalues of the genetic substructure. Later, they used the generic 

substructure technique to improve the dynamic models of the golf clubs (Friswell et 

al. 1998c). The club shaft was modeled with a generic beam substructure and the 

eigenvalues of the substructure were chosen as uncertain parameters to be updated. 

 

Zimmerman et al. (1999) applied the Ritz vectors in a modified minimum rank 

perturbation to the genetic substructure algorithm. The static eigenvalues of the 

substructures were employed to represent the effect of damage. Ratcliffe et al. (2000) 

applied the generic substructure approach to the joint identification. The number of 

generic parameters was limited by enforcing symmetry of elemental system matrices 

and persevering coupling of the uncoupled modes. Law et al. (2001) employed the 

generic substructure method to update the semirigid joints together with other 

parameters of a structural system. Titurus et al. (2003) defined a T-joint as generic 

substructure, in which the first two eigenvalues of the substructure were chosen as 

parameters to update a welded frame.  

 

Terrell et al. (2007) mentioned that unconstrained generic substructure 

transformations may change the connectivity of the system matrices. They utilized 

the constrained generic substructure transformations in finite element model updating. 

The substructural eigenvalues were the uncertain parameters used in the global 

updating procedure and the substructural eigenvector matrix was optimized to 
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enforce the connectivity constraints. Di and Law (2007) decomposed the elemental 

matrices of a frame element into the eigenvalue and eigenvector matrices. The 

generic eigenvectors reflected the different load-carrying capacities of the generic 

element. The eigenvalues represented physically the stiffness of the generic element 

corresponding to its different deformational mode shapes. The eigen-parameters 

were then included in a flexibility-based and sensitivity-based model updating 

algorithm for the condition assessment of the plane frame structure. 

 

2.4.3 System Identification with Substructure Method 

Koh et al. (1991) used a substructure approach to estimate the structural parameters  

in time domain. For the substructure considered, the equations of motion may be 

extracted as 
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(2-65) 

in which, subscript „I‟ and „B‟ denotes the internal coordinates and interface 

boundary coordinates of a substructure, respectively. Treating interaction effects at 

the interface ends as „input‟, Eq. (2-65) can be re-arranged as 

                    II I II I II I I IB B IB B IB Bx t x t x t f t x t x t x t     M C K M C K   

   (2-66) 

Koh et al. (1991) formulated and solved the state and observation equations for the 

substructures by the extended Kalman filter method with a weighted global iteration 

algorithm. The substructures with and without overlapping members were considered 

respectively.  

 

Koh et al. (2003) adopted the „quasi-static displacement‟ vector to release the 

requirement of time signals including the displacement, velocity and acceleration at 

the interface in Eq. (2-66). The displacements of the internal DOFs are separated into 
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the quasi-static displacements   s

Ix t  and the relative displacements   *

Ix t , 

          *s

I I Ix t x t x t   (2-67) 

where 

          1s

I II IB B Bx t x t x t  K K r  

Without considering the damping force, the motion equation of the substructure 

gives, 

                 * * *

II I II I II I I IB II Bx t x t x t f t x t    M C K M M r  
 

(2-68) 

Accordingly, only accelerations (no displacements or velocities) at the interface 

DOFs are required to compute the interface motion forces. They extended this 

method to progressive structural identification. Once the unknown structural 

parameters of the former substructure were identified, an extended substructure was 

identified based on the former recognized substructure. The substructure was 

enlarged gradually, until the entire structure or the necessary part was identified. 

Sometimes the interface points are located at the places where the sensors are 

unapproachable. Koh and Shankar (2003) related the response at a point to the 

excitation at another point by a receptance function, and eliminated the interface 

forces by using different sets of measurement in the focused substructure under the 

same excitation condition.  

 

Yun and Lee (1997) developed a substructural identification method by employing 

the sequential prediction error method and auto-regressive and moving average with 

exogenous inputs (ARMAX) model to process the observation data on the 

substructures. Yun and Bahng (2000) adopted a backpropagation neural network in 

substructural identification of a complex system.  

 

Tee et al. (2005) proposed two system identification methods at the substructural 

level. The first one was based on the first-order state space formulation of the 
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substructures where the eigensystem realization algorithm (ERA) and the 

observer/Kalman filter identification (OKID) were used. Identification at the global 

level was then performed to obtain the second-order model parameters. In the second 

method, identification was performed at the substructural level in both the first- and 

second-order model identification. Tee et al. (2009) incorporated the substructural 

identification with model condensation technique. The SEREP condensation was 

adopted, and the stiffness parameters were recovered from the identified condensed 

stiffness matrices (Koh et al. 2006). The method allowed fewer sensors and actuators 

involved conversion from the first-order to second-order models. 

 

Yang and Huang (2007) and Huang and Yang (2008) employed the substructure 

concept in the proposed sequential nonlinear least-square estimation with unknown 

inputs and unknown outputs, to identify damages at critical locations of the complex 

structures. 

 

2.4.4 Disassembly of the Global Structure into Substructures 

Nearly all of the above-mentioned literatures on dynamic substructuring methods 

include both the disassembling and reassembling procedure, to recover the property 

of the global structure. During the model updating process, the analytical model of 

the global structure is iteratively reproduced with various substructuring methods, 

and then compared with the experimental counterparts. On the other hand, there is 

another approach, which inversely extracts the substructural properties from the 

global structure under some constraints. Although this approach is less used, it has 

merits in some aspects. For example, the measurement quantities of the substructures 

are obtained by decomposing the measurement of the global structure. Consequently, 

the interest substructure can be treated as an independent structure using traditional 

global methods.  
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Gordis (1997) firstly related the global flexibility with the substructural flexibility 

matrices by a force method. For a statically determinate structure, the force method 

yields the global flexibility by 

  0 0

T p

g F B F B  (2-69) 

where Fg is the global flexibility, F
p
 is the diagonal assembly of the substructural 

flexibility matrices, and B0 is the load transformation matrix which is obtained from 

the applied loads to the internal forces for the determinate structures. Based on this 

relation, the substructural flexibility matrices can be estimated from the global 

flexibility matrix. As B0 was rank deficient, the extracted substructural flexibility 

matrices were further constrained by a mapping matrix. Gordis (1997) examined this 

disassembly procedure and claimed that the disassembly was only feasible for the 

determinate beam-like structures.  

 

Felippa and Park (1997) extended the force method to more types of structures, by 

additionally accounting for the constraints of conservation of the elemental rigid 

body modes and the block-diagonal character of the resultant substructural matrices. 

If the structure is statically indeterminate, the redundant load transformation matrix 

B1 is additionally constructed so that the global flexibility relates to the substructural 

flexibility matrix as  

   0 1 1 1 1 0

T p p T p T p

g
  
 

F B F F B B F B B F B  (2-70) 

To determine the substructural flexibility matrix F
p
, one must construct the load 

transformation matrix B0 and B1 beforehand. Park et al. (1997) used this force 

method to calculate the interface forces and displacements between the adjacent 

substructures under predefined loads. With the forces and displacements on the 

boundaries, one substructure might be singled out for various kinds of analysis. 

 

Based on the load transformation matrix B0 and B1, Park and Reich (1998) evaluated 

three
 
methods in disassembly of the global flexibility matrix, the frequency domain 
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flexibility method, the deformation-based flexibility method,
 
and the strain-based 

flexibility method, in which the global flexibility was generated from the FRF data, 

displacement data, and strain data, respectively. Accordingly, the transformation 

matrix B0 and B1 were constructed based on the connectivity of FRF, displacement 

and strain data. These methods were applied to a ten-story building with a beam-like 

model and a laboratory bridge
 
structure. The strain-based substructural flexibility 

method was proved to be more desirable in the studies since it provided more 

accurate solutions than the other two.  

 

Doebling et al. (1998) developed the disassembly procedures for both the stiffness 

and flexibility matrices based on the generic substructure concept. The 

elemental/substructural matrices were decomposed into elemental eigenvectors and 

eigenvalues. The elemental eigenvectors were dependent only on known quantities 

such as geometry and assumed shape functions, whereas the elemental eigenvalues 

needed to be determined. This method projected the experimentally measured 

flexibility matrix according to the strain energy distribution in the regional generic 

substructures. Using both the presumed connectivity and strain energy distribution 

pattern, the method formed a well-determined linear least square problem for the 

structural eigenvalues. 

 

Alvin and Park (1999) stated that, the force method that was originated by Gordis 

(1997) heavily depended on the choice of load transformation matrices B0 and B1. 

For the continuum structures, such as plates and shells, matrices B0 and B1 were 

difficult to be uniquely determined if the load path was complicated. They developed 

a direct flexibility method to extract the substructural flexibility matrices from the 

measured flexibility matrix. Other than the force method in which the substructural 

flexibility and the global flexibility were connected based on the load path, Alvin and 

Park (1999) connected them uniquely by the substructural rigid body modes and the 
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substructural connectivity topology. The substructural displacement vector {x
p
} and 

the substructural forces  pf  can be expressed in terms of the global displacement 

vector {xg} and stiffness matrix as 

     p

gx x L ,    T p

gf fL  (2-71) 

       p p p p

gf x x K K L  (2-72) 

L is determined by the geometric topology. Considering the Lagrange multiplier, the 

substructural displacement and force can be expressed by the global ones as 

         p T

gf f 


 L C  (2-73) 

         p p p

rx f x


 K R  (2-74) 

where  C  is the Lagrange expression of the interface force and  rxR  is the 

rigid body motion. They are constrained by the displacement compatibility and force 

compatibility, respectively 

    0T px C  (2-75) 

    0T pf R  (2-76) 

After  C  and  rxR  are solved, the displacement and external force vectors 

can be expressed with the substructural flexibility, which is subsequently related to 

the global flexibility. Alvin and Park (1999) extracted the substructural flexibility 

matrices with an iterative scheme from the global flexibility. Felippa and Park (2002) 

extended this direct flexibility method to multilevel substructural analysis, and 

applied it to parallel computation technique. 

 

2.4.5 Comprehensive Applications of Substructuring Technology 

1) Periodic or Repetitive Substructures 

A periodic system is comprised of a number of identical substructures arranged 

sequentially and having identical connection properties between all pairs of adjacent 
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substructures (Garvey and Penny 1994). Josson et al. (1995) introduced recursive 

substructuring algorithm among periodic structures. In each recursive step, the initial 

problem was transformed into a new problem involving half the number of the 

identical substructures. Sunar and Rao (1997) utilized the substructuring method for 

the active control design of large periodic structure. The free vibration analysis of a 

periodic structure was reduced to that of a substructure by the wave propagation 

method. The relations between the interactions of identical substructures were 

obtained by using the quadratic eigenvalue problem. These relations were then used 

to assemble the global controller of the entire structure from the sub-controller 

designed for a reference substructure. Aldraihem (2007) examined the dynamic 

stability of a collar-stiffened pipe by using the Euler-Bernoulli beam theory. The pipe 

was considered to be composed of identical substructures and be connected in an 

identical fashion.  

 

2) Modeling Different Parts in Substructure Manner 

A system is often composed of different parts, which have different properties and 

are coupled with determined connections. The different parts can be analyzed 

independently in substructure manner. Huang et al. (1996) used two substructures to 

model two parts of a composite tower under wind-induced vibrations, because 

different damping characteristics arose from the construction of the tower with two 

kinds of materials. Jia (1999) utilized the substructuring technique to model the 

coupled bending dynamics of a spinning-shaft-disk system. The shaft, disk and spin 

were treated as three substructures, respectively. Biondi and Muscolino (2003) 

modeled a coupled structural systems as a combination of the continuous and FE 

discretized substructures. The interface condition was assumed to be free for the 

discretized substructure and to be elastic constraints for the continuous beam. Biondi 

et al. (2005) divided a train-track-bridge system into three substructures due to the 

different properties of the three parts. The procedure handled the dynamic responses 
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of the vehicles, rails and bridge simultaneously. Wegner et al. (2005) divided a 

soil-structure interaction model into two substructures. The unbounded soil was 

modeled by the scaled boundary finite element method, and the structure was 

modeled by a standard FE method. Cai et al. (2008) investigated the dynamic 

responses of a track-ground system subjected to moving train passages by the 

substructuring method. The whole system was divided into two separately 

formulated substructures, the track and the ground.  

 

3) Nonlinear Analysis 

Nonlinear analysis is much more computationally intensive than linear analysis. 

Clough and Wilson (1979) applied the substructuring method to the problems with 

local nonlinearities. A structure was divided a linear substructure and a nonlinear 

substructure, respectively. The linear substructure was further divided into more 

substructures, while the nonlinear substructure was kept as a complete system. Han 

and Abel (1985) proposed an adaptive substructuring algorithm to handle nonlinear 

problems. The stresses of the elements within linear substructures were often 

evaluated during the analysis. If the stresses of an element exceeded a predefined 

level, the substructure was re-substructured and the overstressed element was 

re-assigned from the linear substructure to the nonlinear substructure. Chen and 

Archer (2005) presented a domain decomposition method for nonlinear substructures. 

The nonlinear behavior of a substructure was updated by adding correcting modes. 

The efficiency was improved by cooperating with a parallel processing technique.  

 

2.5 Challenges in Model Updating and Substructuring Methods 

Although the vibration-based model updating has been investigated extensively, 

there are a number of issues that need to be addressed to make the method more 

practical and commonly applied in the civil engineering community, as follows. 
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1) There is a considerable computational burden associated with the traditional 

model updating methods if the practical structure is represented by a large model 

in size (Brownjohn 2007; Farrar and Worden 2007). In iterative model updating 

methods, the eigensolutions and eigensensitivities are repeatedly required from 

the large-scale analytical model, which is very inefficient.  

2) The number of uncertain parameters that need updating is large for civil 

structures, which may render the optimization process ill-conditioned or the 

results physically meaningless (Friswell et al. 2007).  

3) The effect of uncertainty within a model and the measurement data is difficult to 

quantify (Sohn 2007). How the uncertainty propagates also deserves 

investigations. 

4) The substructuring methods can reduce the size of the system matrices and 

decrease the number of updating parameters, and therefore reduce the 

ill-conditioned difficulty and improve the computational efficiency. The 

substructuring methods, however, may bear errors to some degree, particularly in 

modeling the interface forces and displacement compatibility. In addition, the 

effect of uncertainty due to the modeling or measurement noise may accumulate 

and propagate across the substructures, as the adjacent substructures interact 

mutually. 
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CHAPTER THREE 

 NUMERICAL AND EXPERIMENTAL EXAMPLES 

3.1 Introduction  

A few numerical and experimental examples that will be employed in the subsequent 

chapters are described here together for convenience. The numerical examples 

include a spring-mass model, a three-span frame, and the Guangzhou New Television 

Tower, which respectively represent the small, medium and large structures to 

investigate the accuracy and efficiency of the proposed substructuring methods. Three 

experimental structures, a cantilever beam, a portal frame, and the Balla Balla River 

Bridge, serve for the application of the substructuring-based model updating. This 

chapter will present the detailed description of the numerical and experimental 

examples. 

 

3.2 Numerical Examples 

3.2.1 A Spring-mass Model 

A simple spring-mass model with six DOFs (Figure 3-1) will be utilized in this thesis 

to explicitly describe the details of the substructuring methods. The spring-mass 

system is a one-dimensional structure, which is fixed at one end and free at the other. 

The stiffness parameters of the six springs are set to k1 = k2 = k3 = 10 N/m, k4 = k5 = k6 

=20 N/m. The six masses are set to m1 = 1 kg, m2 = 2 kg, m3 = 1 kg, m4 = 2 kg, m5 = 2 

kg, m6 = 1 kg. The stiffness matrix of this structure is 
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Figure 3-1: Spring-mass Model with Six DOFs  

 

The structure is divided into two substructures at Mass 3 as Figure 3-1. After division, 

the first substructure is a fixed structure, and the second substructure is free. To be an 

independent structure, the first substructure has the form as Figure 3-2. 

 

 

 

 

 

Figure 3-2: First Substructure of the Spring-mass Model 

 

 

 

 

Figure 3-3: Second Substructure of the Spring-mass Model 

 

As usual fixed structure, the first substructure has full-rank stiffness matrix and modal 

flexibility matrix as 
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The second substructure is free and displayed in Figure 3-3 as an independent 

structure. The stiffness matrix of the second substructure is singular, which is given as 
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(3-3) 

And the modal flexibility matrix is 

   2

0.0486 0.0069 0.0181 0.0264

0.0069 0.0153 0.0097 0.0181

0.0181 0.0097 0.0153 0.0069

0.0264 0.0181 0.0069 0.0486

  
 

 
 
  
 
  

F  (3-4) 

 

3.2.2 A Three-span Frame Structure 

A three-span frame (Figure 3-4) is numerically modeled by 160 two-dimensional 

beam elements each 2.5 m long, which results in 140 nodes and 408 DOFs. The 

material constants of the beam elements are chosen as: bending rigidity (EI) 

=17010
6 2Nm , axial rigidity (EA) = 250010

6
 N, mass per unit length (ρA) = 110 

kg/m, and Poisson's ratio = 0.3. The elements are labeled as Figure 3-4(a). 

 

The frame is disassembled into three substructures when it is divided at eight nodes 

as shown in Figure 3-4(b), resulting 51, 55 and 42 nodes in the three substructures. 

The eight interface nodes introduce 48 interface DOFs (each node has three DOFs) 

with 24 identical/repeated ones. 
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3.2.3 The Guangzhou New Television Tower 

The Guangzhou New Television Tower is a 610 m high super-tall structure that 

consists of a main tower (454 m) and an antennary mast (156 m) as shown in Figure 

3-5. The structure comprises a reinforced concrete inner tube and a steel outer tube 

with concrete-filled-tube (CFT) columns. There are 37 floors connecting the inner 

tube and the outer tube, which serve for offices, entertainment, catering, tour and 

mainly emission of television signal. 

 

                          

(a) Landscape View                (b) Global Model           (c) Substructures 

Figure 3-5: Guangzhou New Television Tower and the FE Model 
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The analytical model of the TV tower shown in Figure 3-5(b) comprises three parts: 

the outer tube, inner tube, and the connections between them.  

 

The outer tube consists of 24 CFT columns, uniformly spaced in an oval while 

inclined in the vertical direction. The 24 CFT columns are interconnected transversely 

by steel ring beams and bracings. The analytical model of the outer tube is composed 

of 1128 nodes and 3312 three-dimensional beam elements.  

 

The inner tube is an oval shape with a constant dimension of 14m   17m in plan, 

but its centroid differs from that of the outer tube. The inner tube is composed of the 

floors and shear walls, which are modeled by 1440 nodes and 1924 three-dimensional 

shell elements. 

 

The girder-floor connection between the inner tube and outer tube are modeled by 

888 nodes and 2,832 three-dimensional beam elements. Including the mast, the 

analytical model of the entire structure consists of 8,738 three-dimensional elements, 

3,671 nodes (each has six DOFs), and 21,690 DOFs in total.  

 

When applying substructuring method, the global structure is divided into 10 

substructures along the vertical direction as shown in Figure 3-5(c). The nodes and 

elements included in each substructure are listed in Table 3-1. 

 

Table 3-1: Division Formation for the FE Model of the Guangzhou New TV Tower 

Substructure index Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10 

No. of nodes 336 456 432 432 336 336 432 440 488 487 

No. of elements 657 945 873 873 786 786 873 846 990 1109 

No. of 

 interface nodes 
     56    56    56    56    56    56   56    56    56 
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3.3 Experimental Examples 

3.3.1 Experimental Instruments 

Accelerometer Bruel & Kjaer 4370 were used in the laboratory tests to record the 

acceleration response of a structure. Bruel & Kjaer 4370 is a type of single axis 

piezoelectric accelerometer sensitive along its Z axis down to nearly 10 μ g, and 

conventionally useful over a range of 0.1 Hz up to about 1/3 of its mechanical 

resonance frequency of 15 ~ 21 kHz. It works well for low level and low frequency 

vibration measurement. The specification of the accelerometer is listed in Table 3-2. 

Each accelerometer was mounted on the experimental model with a magnetic 

mounting base ( total mass is 77.68 g ). The mass of each accelerometer is modeled 

as a concentrated mass in the FE model. The output charge of the accelerometers is 

gauged in terms of voltage. 

 

Table 3-2: Specification of Bruel & Kjaer 4370 Accelerometer  

Piezoelectric material pz23 

Charge sensitivity 10 pC/ms
-2

 or 98 pC/g (±2%) 

Voltage sensitivity 8 mV/ms
-2

 or 80 mV/g (±2%) 

Mounted resonance 16 kHz 

Frequency range 0.2 Hz ~ 3500 Hz (5%), 0.1 Hz ~ 4800 Hz (10%) 

Ambient temperature range -74 
o
C ~ 250 

o
C 

Dimensions 
21 mm diameter 

22.6 mm height excluding the top connector 

Weight 
54 g  

77.68 g (including the magnetic mounting base) 

 

The Bruel & Kjaer amplifier 2635 and Bruel & Kjaer amplifier 2692 were employed 

to amplify the raw signal. The former is a four-stage amplifier consisting of the input 

amplifier, lowpass filter amplifier, integrator amplifier and output amplifier. The 

overload detector, test oscillator, and power supply unit are also included. Bruel & 

Kjaer amplifier 2692 contains up to four modular channels, each consisting of a 

common module as amplifier 2635. One amplifier 2962 is equivalent to four of 
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amplifier 2635 in the present testing.  

 

The hammer provides an easy, economical and accurate way to produce excitations 

for structure dynamic testing. The SINOCERA LC-04A hammer with a rubber tip 

was employed in the laboratory tests. Its specification is listed in Table 3-3.  

 

Table 3-3: Specification of the Impact Hammer 

Sensitivity (pC/N) 4 

Max. shock force (kN) 60 

Head diameter (mm) 30 

Head mass (g) 300 

Frequency responses 

Steel tip 10 kHz 

Aluminum tip 3 kHz 

Nylon tip 2 kHz 

Rubber tip 500 Hz 

 

The instruments used in the tests are shown in Figure 3-6. 

 

Figure 3-6: Instruments Used in the Experimental Tests 

 

3.3.2 A Cantilever Beam 

The first laboratory example is a steel cantilever beam as shown in Figure 3-7. The 
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beam is 50.1 mm wide, 3.0 mm high and 750 mm long as illustrated in Figure 3-8. 

The mass density was measured as 8.02610
3
 kg/m

3
. To assure that the boundary 

condition was not altered in each testing, two thick blocks were welded on both sides 

of the clamped end as shown in Figure 3-7. 

 

The structure was tested in the intact state and four damage configurations, 

respectively, which are given in Table 3-4. The beam was first tested without 

introduction of any damage as „Case 0‟. Afterwards, the beam was cut at Location 1 

as shown in Figure 3-8, with depth of d = 5 mm, 10 mm, and 15 mm gradually, 

corresponding to „Case 1‟, „Case 2‟, „Case 3‟, respectively. In „Case 4‟, the beam was 

additionally cut at Location 2 with depth of d = 10 mm. The width of the cuts is b = 5 

mm in all of the damage cases. One typical cut is demonstrated in Figure 3-9.  

Table 3-4: Configuration of the Damage Scenarios 

 
Case 0 Case 1 Case 2 Case 3 Case 4 

Damage 

configuration 
Intact 

Location 1  

d = 5 mm 

Location 1  

d = 10 mm 

Location 1  

d = 15 mm 

Location 1  

d = 15 mm 

Location 2  

d = 10 mm 

 

 

Figure 3-7: Experimental Beam Specimen 
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Figure 3-8: Configuration of the Beam Specimen (Unit: mm) 

 

 

Figure 3-9: One Typical Cut of the Beam Specimen 

 

Ten accelerometers were mounted evenly on the beam as shown in Figure 3-8. The 

beam was impacted vertically by the hammer at the location of 187.5 mm away from 

the clamped end. Three hits were imposed on the beam for each damage 
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configuration to average the signals.  

 

In all cases, time history of input and responses were recorded for about 30 seconds 

with a sampling frequency of 3000 Hz. One typical set of measurement is shown in 

Figure 3-10 and Figure 3-11. Diagrams of auto-power spectral density of input, FRF, 

and coherence function are obtained using software DIAMOND (Doebling et al. 

1997), and are illustrated in Figures 3-12 to 3-14, respectively. In Figure 3-14, the 

coherence function values are almost equal to one except at the resonances and 

anti-resonances in the range of 0 ~ 500 Hz. Therefore, the test data are satisfactory to 

extract the modal data in the frequency range of 0 ~500 Hz. 
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Figure 3-12: Auto-power Spectral Density of the Input Force 
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Figure 3-13: Magnitude of Frequency Response Function 
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Figure 3-14: Coherence Function 
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The frequencies and mode shapes were extracted using the rational polynomial 

curve-fitting with Forsythe orthogonal polynomials (Formenti and Richardson 2002), 

which is provided in DIAMOND. Six modes could be identified in all of the five 

states with confidence, and the natural frequencies are listed in Table 3-5 together 

with the changes of the frequencies as compared to the undamaged state. From the 

table, it can be seen that nearly all of the frequencies decrease continuously with 

increase of damage severity.  

 

Table 3-5: Measured Frequencies in the Different States 

Modes 

Undamaged 

State 
Damaged States 

Case 0 Case 1 Case 2 Case 3 Case 4 

Freq.  

(Hz) 

Freq.  

(Hz) 

Diff.  

(%) 

Freq.  

(Hz) 

Diff.  

(%) 

Freq.  

(Hz) 

Diff.  

(%) 

Freq.  

(Hz) 

Diff.  

(%) 

1 3.499  3.438  -1.75% 3.500  0.02% 3.426  -2.09% 3.422  -2.22% 

2 21.848  21.851  0.01% 21.518  -1.51% 21.497  -1.61% 21.201  -2.96% 

3 60.290  60.280  -0.02% 59.580  -1.18% 59.668  -1.03% 59.003  -2.13% 

4 118.819  118.685  -0.11% 117.399  -1.20% 116.817  -1.69% 116.611  -1.86% 

5 194.708  193.715  -0.51% 190.254  -2.29% 188.426  -3.23% 187.289  -3.81% 

6 306.107  304.317  -0.58% 299.233  -2.25% 295.669  -3.41% 294.385  -3.83% 

 

The mode shapes were normalized with respect to the mass matrix using the Modal 

Scale Factor (Allemang 2003), and the results are illustrated in Figure 3-15. Mode 

shapes in the damaged states do not differentiate much from the undamaged ones by 

visual inspection. The variations of MAC values can reflect the change of mode 

shapes, and they will be given in the later chapters where model updating approaches 

are employed to identify the damage. 
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(b) Case 1 
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(d) Case 3 
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Figure 3-15: Measured Mode Shapes in Different Configurations 

 

3.3.3 A Frame Structure  

The second laboratory example is a steel frame structure as shown in Figure 3-16. To 

model the fixed boundary condition, the bottoms of the columns were welded onto a 

thick plate (size of 700 mm  150 mm  30 mm), which was fixed on the strong floor 

as shown in Figure 3-17. The vibration testing was carried out first in the undamaged 

states, and subsequently, two damage configurations were introduced. 
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The cross section of the beam is 50.0  8.8 mm
2
, and the columns 50.0  4.4 mm

2
. 

The mass density was measured as 7.67  10
3
 kg/m

3
. The detailed dimension of the 

frame is given in Figure 3-18. Since the real structures in civil engineering usually 

possess low-frequency modes, six steel blocks with each 1.0 kg weight were glued on 

the bottom of the beam to decrease the natural frequencies of this laboratory model. 

 

 

  Figure 3-16: Overview of the Frame Structure 

 

 

Figure 3-17: Support of the Frame Structure 
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Figure 3-18: Configuration of the Frame Structure (Unit: mm) 

A vibration testing was performed in the undamaged state first. The sampling 

frequency was set to 2000 Hz. To identify the mass-normalized mode shapes, the 

specimen was excited with the instrumented hammer at the reference point indicated 

in Figure 3-18, and the response at the excitation point was also recorded by an 

accelerometer (Schwarz and Richardson 2003). 

 

The frame was impacted three times to average the signals, with each impact lasting 
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30 seconds. The acceleration responses were recorded at the points and directions 

denoted in Figure 3-18. The recorded input and output time history were analyzed 

with DIAMOND software to derive the auto-power spectral density, FRF function 

and coherence function where the typical curves are displayed in Figures 3-19 ~ 3-23. 
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Figure 3-19: Input Force Time History 
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Figure 3-20: Recorded Acceleration Time History 
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Figure 3-21: Auto-power Spectral Density of the Input Force 
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Figure 3-22: Magnitude of Frequency Response Function 
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Figure 3-23: Coherence Function 

Due to limitation of accelerometers, the accelerometers were moved along the frame 

to obtain the complete mode shapes of the whole structure. In all groups of tests, one 

accelerometer located at the reference point in Figure 3-18 kept unaltered as reference 

when the others moved. Subsequently, the first 14 frequencies and mass-normalized 

mode shapes are extracted with confidence as shown in Figure 3-24. 
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Figure 3-24: Frequencies and Mode Shapes of the Frame Structure 

 

Next, two damage configurations were introduced in the frame specimen. In the first 

case, the column of the first storey was cut at 180 mm away from the support as 

shown in Figure 3-18. The width of the cut is b = 10mm, and the depth d = 15mm. 

Afterwards, the second storey was cut at 750 mm from the support with a width b = 

10mm and depth d = 15mm. The frame was tested again, and the sampling 

frequencies, impact points, impact times, and the duration of data recording were the 

same as those in the undamaged state. The input and the responses were picked up at 

the same points and directions as well. The damages cause little change in mode 

shapes, which can not be differentiated by visual inspection and not shown herein. 

The MAC values of mode shapes will be given in later chapters for model updating 

purpose. 

 

3.3.4 The Balla Balla River Bridge 

The Balla Balla River Bridge, as shown in Figure 3-25, is a three-span continuous 

reinforced concrete bridge located on Coastal Highway over the Balla Balla River in 

the Shire of Roebourne. An FE model based on design drawings has been established 

by Xia et al. (2008). The FE model of this bridge has 907 elements, 947 nodes each 

has six DOFs, and 5420 DOFs in total, as shown in Figure 3-26. The elements used 

in the model are listed in Table 3-6.  
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Figure 3-25: General view of Balla Balla River Bridge 

 

Table 3-6: Elements of the FE Model of Balla Balla River Bridge 

Bridge component Element type Quantity 

Bearing Beam 56 

Slab Shell 288 

Girder Shell 252 

Stirrup Beam 231 

Diaphragm Shell 80 

Total 
 

907 

 

In the field vibration testing (Xia et al. 2008), the instrumented DYTRAN 5803A 

sledge hammer (12 LB, 1.0 mV/LbF, with 4 additional tips) was used to excite the 

bridge structure, and Kistler accelerometers model 8330A2.5 and 8330A3 were used 

to collect the test data. The accelerometers were placed in seven rows corresponding 

to the seven girders. There are 19 measurement points in each row and 133 in total as 

shown in Figure 3-27. Ten pairs of natural frequencies and mode shapes were 

extracted from the FRFs by the Rational Fraction Polynomial method, and are 

illustrated in Figure 3-28. 
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Figure 3-26: FE Model of the Balla Balla River Bridge 

 

 

Figure 3-27: Locations of Sensors 

 

 

Mode 1: 

Freq = 6.7629 Hz  Damping = 1.0645 % 

 
Mode 2: 

Freq = 7.9483 Hz  Damping = 1.0128 % 
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Mode 3: 

Freq = 10.0572 Hz  Damping = 1.9862 % 

 

Mode 4: 

Freq = 10.7510 Hz  Damping = 1.0840 % 

 

Mode 5: 

Freq = 11.0323 Hz  Damping = 1.0817 % 

Mode 6: 

Freq = 12.6418 Hz  Damping = 0.8752 % 

 
Mode 7: 

Freq = 14.7137 Hz  Damping = 1.3474 % 

 

 

Mode 8: 

Freq = 15.7606 Hz  Damping = 0.8596 % 

 
Mode 9: 

Freq = 16.3876 Hz  Damping = 0.7797 % 

 

 

Mode 10: 

Freq = 20.1832 Hz  Damping = 0.9794 % 

 
Figure 3-28: Measured Frequencies and Mode Shapes of the Balla Balla River Bridge 
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CHAPTER FOUR 

EIGENSOLUTIONS WITH SUBSTRUCTURING 

METHOD 

4.1 Introduction 

In the FE model updating field, eigensolutions of an analytical model serve to 

construct the objective function. The elemental parameters in the FE model are 

iteratively modified, so that the modal properties (such as frequencies and mode 

shapes) match the measured counterparts in an optimal way. To achieve this, the 

eigensolutions of the analytical model need to be calculated repeatedly.  

 

The analytical model of a large-scale structure consists of a large number of elements 

and nodes to simulate the real structure accurately. Efficiently obtaining the 

eigensolutions from the large size model is a big challenge. Algorithms that have been 

developed for the eigensolutions of large-scale structures include the sparse matrix 

techniques, order reduction methods, and substructuring methods. Sparse matrix 

techniques exploit the sparsity of the assembled mass and stiffness matrices and 

perform numerical operations directly on the large-size system matrices 

mathematically, such as the Lanczos algorithm or Subspace Iteration method (Bath 

1982). They are widely used in enormous commercial software such as ABAQUS and 

ANSYS. Order reduction methods reduce the size of the system matrices by 

removing some DOFs of the original FE model and retaining a much smaller set. 

Then the reduced eigenequation is solved to approximate the eigensolutions of the 
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original structure. Guyan reduction (Guyan 1965), IRS method (Friswell 1997), and 

IOR method (Xia and Lin 2004) are typical ones in this category. Substructuring 

methods divide a structure into smaller independent substructures, and the 

eigensolutions of the original structure are recovered from the eigenproperties of the 

independent substructures by constraining on the interface of the adjacent 

substructures (Klerk et al. 2008). The substructuring methods possess some benefits 

for the model updating process. In particular, using the substructuring methods, the 

optimization process handles one or several substructures only instead of the global 

structure, and thus improves the computational efficiency significantly. The 

substructuring method is studied in this research. Calculation of eigensolutions with 

the substructuring method is presented in this chapter first. 

 

Mackenzie (1974) showed that the in-core requirements and operational counts of 

Kron‟s substructuring method were very competitive, comparing with other 

substructuring methods. The disadvantage of Kron‟s method is that the complete 

eigensolutions of all substructures are required to obtain the eigensolutions of the 

global structure, which is time consuming for a large-scale structure. To improve this 

computational inefficiency, a modal truncation approximation is proposed, in which 

only the lowest eigensolutions of the substructures need to be calculated. The 

discarded higher eigensolutions are compensated by the first-order residual flexibility 

or the second-order residual flexibility. The division of substructures and the selection 

of master modes in each substructure are also studied.  

 

4.2 Kron’s Substructuring Method for Eigensolutions 

Calculation of eigensolutions with the substructuring method consists of three basic 



91 

steps: division of a global structure into substructures, calculation of the 

eigensolutions for the independent substructures, and reconnection of the 

substructures to the global structure with compatibility equations. In this section, the 

Kron‟s substructuring method will be presented first for completeness. 

 

A generalized eigenvalue problem for the N DOFs structure has the form of 

     i i i  K M
 

(4-1) 

where K and M are N × N stiffness and mass matrices, respectively, 
i  is the ith 

eigenvalue, and  i  represents the corresponding eigenvector.  

 

The global structure is divided into NS independent substructures, and each 

substructure has N
(j)

 DOFs ( j = 1, 2,…, NS ). This division procedure produces N
T
 

interface DOFs. Each interface DOF in the original global structure is shared by two 

or more substructures that are connected to it. The total number of DOFs of all 

substructures increases to N
P
, which is larger than N. For example, if the nth ( n = 1, 

2, …, N
T
 ) interface DOF is shared by 

nt  substructures, it has 

     

1 1

1

T
SNN

jP

n

n= j=

N = N + t N  
 

(4-2) 

As an independent structure, each substructure has the stiffness matrix  j
K  and 

mass matrix  j
M . The generalized eigenequation of the jth substructure can be 

written as 

  
           j j j j j

i i i  K M
 

(4-3) 

Both  j
K  and  j

M  are of order N
(j)

   N
(j)

. 
 

j

i  
and 

  j

i  are the ith 

eigenvalue and eigenvector of the jth substructure, respectively. Eq. (4-3) yields N
(j)
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pairs of eigenvalues and eigenvectors as
 

  

     
 

 
1 2Diag , ,..., j

j j j j

N
   
 

Λ , 
     

 

 
1 2, ,..., j

j j j j

N
   
 

Φ  (4-4) 

 

Mass normalization of the eigenpairs leads to 

  

     
 

       

j

T
j j j

N

T
j j j j

  
 

  
 

Φ M Φ I

Φ K Φ Λ
 

(4-5) 

Diagonally assembling the submatrices to the primitive form gives 

 

     1 2
Diag , ,..., SNp  

 
M M M M ,  

     1 2
Diag , ,..., SNp  

 
K K K K  

 

     1 2
Diag , ,..., SNp  

 
Φ Φ Φ Φ ,  

     1 2
Diag , ,..., SNp  

 
Λ Λ Λ Λ

 
(4-6) 

where superscript „p‟ denotes the variables associated with the primitive form, and the 

size of the above matrices is N
P
   N

P
. Due to the orthogonality conditions in Eq. 

(4-5), it follows that, 

  
P

T
p p p

N

T
p p p p

   

   

Φ M Φ I

Φ K Φ Λ
 

(4-7) 

Reconnection of the primitive system can be performed by considering the geometric 

compatibility and force equilibrium at the interface points of the adjacent 

substructures.  

 

If  x  is the displacement vector of the original global structure with the size of 

1N , it is expanded to  x  with the size of 1PN   after substructuring, which 

includes identical displacements in the interface DOFs. The geometric compatibility 

is sufficed by applying displacement constraints as 

   x C 0
 

(4-8) 

where C is a rectangular matrix containing the general implicit constraints that ensure 
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the nodes at the interfaces have identical displacements. In matrix C, each row 

contains two non-zero elements. For rigid connections, the two elements are 1 and -1, 

respectively. If the connected points x1 and x2 are not rigidly connected, which have 

the relation x1 = ax2, the two non-zero elements are 1 and –a. Kron‟s method 

considers the connection condition by matrix C, instead of adding more items such as 

the constraint modes or linking force (Hurty 1965; MacNeal 1971). 

 

With the virtual work theorem, the motion equation of the undamped structure is 

         ext con

p px x f f  M K
 

(4-9) 

where  x  and  x  are the acceleration and displacement vectors of the 

substructures,  extf  is the external force, and  conf  is the connection force from 

the adjacent substructures. For a free vibration system,  ext 0f  , and the virtual 

work done by the connection force along  x  is 

    con

Tf x W
 

(4-10) 

Considering the connection process to be incomplete, the compatibility is violated at 

the interface coordinates by an amount of   . Eq. (4-8) becomes 

     x C  (4-11) 

In the interface coordinates, there is an associated force vector   , representing the 

internal connection forces due to the „misfit‟. Eq. (4-11) gives 

         
T T

x     W C  (4-12) 

From Eq. (4-10) and Eq. (4-12), one can obtain 

        con

TTf x x   C  
(4-13) 
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and thus 

     con

Tf C
 

(4-14) 

Consequently, Eq. (4-9) is transformed into 

  

p p T xx

ττ

         
         

        

0M 0 K C

00 0 C 0




 

(4-15) 

Assuming the oscillatory solution      , , τ exp
TT

x j t   , the expanded mode 

shape of the global structure can be related to the primitive form of the mode shapes 

p
Φ  via the modal coordinates z as 

  

p

ττ

     
    

    

zΦ 0

0 I
 

(4-16) 

where   is the expanded mode shape of the global structure including the identical 

values in the interface DOFs. Considering the orthogonality relations in Eq. (4-5), Eq. 

(4-15) can be transformed into the canonical form (Sehmi 1989) 

  

p

T τ

      
    

     

z 0Λ I Γ

0Γ 0
 

(4-17) 

where  
T

pΓ CΦ  is referred to as the normal connection matrix. Using the above 

procedure, the nodes at the interface points of the adjacent substructures are 

constrained to move jointly. Therefore, the eigenvalue   obtained from Eq. (4-17) 

is equal to the eigenvalue   of the original global structure. As Φ  consists of the 

expanded eigenvectors  , the eigenvectors of the global structure Φ  can be 

obtained after discarding the identical DOFs in Φ . Γ  has the order of 

 P PN N N  , where  PN N  is the number of constraint relations and much 

smaller than N
P
. 
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The first line of Eq. (4-17) gives 

   
1

p τ


 z Λ I Γ
 

(4-18) 

Substituting Eq. (4-18) into the second line of Eq. (4-17) to eliminate the modal 

coordinates z, one has 

   
1

= 0T p τ


Γ Λ I Γ   or  0τ E  (4-19) 

where T
E = Γ DΓ  and  

1
p 



 D Λ I . 

 

Matrix E with the size of  PN N   PN N , is known as the Kron matrix or 

receptance matrix. Since the above analysis has no approximation in the derivation of 

E, the obtained eigenvalues are exactly those of the original global structure. 

 

4.3 First-order Residual Flexibility Based Modal Truncation  

In the original Kron‟s method,   is obtained by scanning the determinant of matrix 

E (Simpson 1974). Obviously, this is very time-consuming as E is dependent on the 

unknown item  . Sehmi (1986; 1989) applied numerical approaches (Subspace 

Iteration method and Lanczos method) to Kron‟s substructuring method, and 

estimated the eigensolutions more efficiently. Nevertheless, it is onerous to calculate 

the complete eigensolutions of each substructure to assemble 
p

Λ  and 
p

Φ . 

Moreover, the final eigenequation for searching the eigensolutions has the size of N
P
 

  N
P
, which will be very large for large-scale structures.  

 

To overcome this difficulty, the present research will improve the efficiency of Kron‟s 

substructuring method by introducing a modal truncation technique. This is based on 

the fact that the higher modes have little contribution to the receptance matrix. In 
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consequence, only some lowest modes are retained in the substructures, while the 

higher modes are discarded and compensated with the first-order residual flexibility. 

 

4.3.1 Method Description 

In each substructure, the first few eigensolutions, corresponding to the lower 

vibration modes, are selected as the „master‟ modes. The residual higher modes are 

treated as the „slave‟ modes. Similar to the model reduction technique, the master 

modes are retained while the slave modes are discarded in the later calculations. 

Hereinafter, subscript „m‟ and „s‟ will represent the „master‟ and „slave‟ variables, 

respectively.  

 

Assuming that the first 
 j
mN  ( j = 1, 2, …, NS ) modes in the jth substructure are 

chosen as the „master‟ modes while the residual 
 j
sN  higher modes are the „slave‟ 

modes, the jth substructure has the „master‟ eigenpairs and „slave‟ eigenpairs as 

  

     
 
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1 2Diag , ,..., j

m

j j j j

m N
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Λ
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 
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1 2, ,..., j

m

j j j j

m N
   
 

Φ
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 
 
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   
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+1 2
Diag , ,...,j j j j

m m m s

j j j j

s N N N N
  

 
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 

Λ
, 

 
 

 
 

 
   

 

+1 2
, ,...,j j j j

m m m s

j j j j

s N N N N
  

 

 
 

Φ
, 

  

 

1

SN
jp

m m

j=

N N ,  

1

SN
jp

s s

j=

N N ,        1,2,...,
j j j

m s SN N N j N  
 

(4-20) 

Assembling all „master‟ eigenpairs and „slave‟ eigenpairs, respectively, one has 

 
     1 2

Diag , ,..., SNp

m m m m
 
 

Λ Λ Λ Λ
, 

     1 2
Diag , ,..., SNp

m m m m
 
 

Φ Φ Φ Φ=  

 

     1 2
Diag , ,..., SNp

s s s s
 
 

Λ Λ Λ Λ
, 

     1 2
Diag , ,..., SNp

s s s s
 
 

Φ Φ Φ Φ=
 

(4-21) 

Denoting 
T

p

m m
   Γ CΦ  

and 
T

p

s s
   Γ CΦ , Eq. (4-17) can be expanded as 

  

p

m m m

p

s s s

T T

m s τ





      
     

      
          

Λ I 0 Γ z 0

0 Λ I Γ z 0

Γ Γ 0 0
 

(4-22) 
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The second line of Eq. (4-22) gives 

         
1

=p

s s s τ τ


 z Λ I Γ t
 

(4-23) 

where  
1

= p

s s


t Λ I Γ . 

 

The full eigenvector of Eq. (4-22) can be expressed as 

  1

0

0

0

m

m m

s
τ τ

τ

   
      

       
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z z

z t T
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 (4-24) 

Substituting Eq. (4-24) into Eq. (4-22) and pre-multiplying T1 on both sides of Eq. 

(4-22), the full-dimension eigenequation is reduced into 

  
 

1

p

m m m

T T p

m s s s
τ






      
     
        

Λ I Γ z 0

0Γ Γ Λ I Γ
 

(4-25) 

In Eq. (4-25), Taylor expansion of the nonlinear item  
1

p

s 


Λ I  introduces 

         
1 1 2 3

2p p p p

s s s s  
   

    Λ I Λ Λ Λ 
 

(4-26) 

 

In general, the required eigenvalue   corresponds to the lowest modes of the global 

structure, and is much smaller than the items in p

sΛ  when the master modes is 

chosen properly. In that case, by retaining only the first item of the Taylor expansion, 

Eq. (4-25) is approximated as 

  
 

1

p

m m m

T T p

m s s s
τ




      
     
       

Λ I Γ z 0

0Γ Γ Λ Γ
 (4-27) 

Resolving τ  from the second line of Eq. (4-27) and substituting it into the first line, 

one obtains 

        
1

1
p T p T

m m s s s m m m


 
  

 
Λ Γ Γ Λ Γ Γ z z

 

(4-28) 
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The final standard form of the eigenequation is thus expressed as 

     m mΨ z z
 

(4-29) 

where   
1

1
p T p T

m m s s s m




 Ψ Λ Γ Γ Λ Γ Γ  ,    
1 1 T

T p p p p T

s s s s s s

 

   Γ Λ Γ CΦ Λ Φ C . 

 

 
1 T

p p p

s s s



  Φ Λ Φ  is regarded as the first-order residual flexibility, which can be 

acquired as 
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(4-30) 

Therefore, the primitive form of the first-order residual flexibility can be constructed 

from the stiffness matrices and the master modes of substructures as 
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
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             

Φ Λ Φ

K Φ Λ Φ K Φ Λ Φ  
(4-31) 

If the jth substructure is free after partition, the rigid body components should be 

included to construct the residual flexibility matrix. Calculation of the residual 

flexibility matrix for a free substructure can be found in Appendix D. 

 

Subsequently, the reduced eigenequation (Eq. (4-29)) can be solved with the standard 
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Subspace Iteration or Lanczos method. The expanded eigenvectors of the global 

structure can be recovered by 

  p

m mΦ Φ z
 

(4-32) 

where {zm} can be viewed as the mode participation factor while the master 

eigenvectors of the substructures act as the modal space. Finally, the eigenvectors of 

the global structure Φ  can be directly obtained after discarding the identical values 

at the interface points in Φ . 

 

In this section, the eigensolutions of the global structure is represented by a few 

master modes of the substructures, while the contribution of the slave modes is 

compensated by the first-order residual flexibility matrix. In consequence, the 

eigenequation is reduced to the size of p

mN  p

mN , which is much smaller than the 

original one ( N
P
   N

P
 ). This substructuring method is entitled as First order 

Residual Flexibility based Substructuring (FRFS) method.  

 

4.3.2 Error Quantification 

In the FRFS method, the approximation is introduced by replacing  
1

p

s 


Λ I  with 

 
1

p

s



Λ . Consequently, the error due to this approximation is 
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(4-33) 

And the relative error is 

 Relative error=
   

 
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Diag Diag
1

p p

s si i

p
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p
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
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   
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Λ Λ

Λ

Λ

 (4-34)

 

  ( i = 1, 2, …, p

sN ) 

It means that the largest relative error is determined by 
 min p

s



Λ
. If the required 

eigenvalues   are much smaller than the minimum value of p

sΛ , the error 

introduced will be insignificant. Therefore, the minimum eigenvalue of the 

substructures controls the accuracy of the FRFS method. In practice, the 

substructures have larger natural frequencies than the global structure has. The 

number of the master modes in the substructures is usually suggested to be 2 ~ 3 

times the modes required for a large-scale structure to ensure   is much smaller 

than  min p

sΛ . If the eigenvalues of interest become large, the results may be not 

always accurate enough using the FRFS method. In this case, the second item of 

Taylor expansion (Eq. (4-26)) should be retained, which result in the second-order 

residual flexibility substructuring method as described in the next section.  
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4.4 Second-order Residual Flexibility Based Modal Truncation 

4.4.1 Method Description 

If the first two items of the Taylor expansion in Eq. (4-26) are retained, Eq. (4-27) 

becomes 

  
    1 2

p

m m
m

T T p T p

m s s s s s s
τ




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       
 
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(4-35) 

After arranging Eq. (4-35), the standard form of the eigenequation can be expressed 

as 
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where  
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(4-37) 
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

  Φ Λ Φ  is the second-order residual flexibility. The primitive form of the 

second-order residual flexibility can also be obtained by the diagonal assembly of the 

system matrices and master modes of the substructures as 
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   (4-38)
 

Calculation of the second-order residual flexibility is given in the Appendix D. With 

both the first- and second- order residual flexibility, the eigensolutions of the global 

structure are obtained similarly to the FRFS method. 
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As compared with the FRFS procedure introduced previously, this Second-order 

Residual Flexibility based Substructuring method (SRFS) will achieve much more 

accurate results as it includes the contribution of the second item in the Taylor 

expansion. However, this high precision is achieved at the cost of computational load 

in terms of two aspects:  

i) The SRFS method spends some additional effort to calculate the second-order 

residual flexibility matrix  
2 T

p p p

s s s



  Φ Λ Φ . 

ii) The size of the eigenequation in the SRFS method (Eq. (4-36)), which contains the 

„misfit‟ displacements at the interface points, is a little larger than that in the FRFS 

method. 

 

4.4.2 Error Quantification 

Similar to the FRFS method, the error in the SRFS method is introduced by the 

truncation of Taylor expansion, which is evaluated as 

Error=      
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Relative error=
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  ( i=1, 2, …, p

sN  ) 
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Therefore, the relative error in the SRFS method is dependent on 
 

2

min p

s

 
 
 
 

Λ
. The 

minimum value of p

sΛ  controls the accuracy of the SRFS method, similar to the 

FRFS method. Because   is usually much smaller than the values in  p

sΛ , the 

SRFS method is more accurate than the FRFS method. This will be demonstrated in 

the following numerical examples.  

 

4.5 Case Studies 

4.5.1 Three-span Frame Structure 

The three-span frame structure described in Chapter 3 is used here to demonstrate the 

procedure and accuracy of the substructuring method in calculation of eigensolutions. 

 

For comparison, the frame is analyzed with five approaches to extract the first 20 

eigensolutions of the global structure. First, the entire structure is analyzed with the 

conventional Lanczos method on the global structure. In the second approach, the 

frame is analyzed by the original Kron‟s substructuring method, in which the 

complete eigensolutions of all substructures are calculated to assemble the primitive 

matrices. The primitive matrices p
Λ  and p

Φ  have the size of 432432 and are 

solved with the standard Lanczos eigensolver. Because the contribution of the 

complete modes in each substructure is considered and there is no approximation 

during the whole process, the obtained eigensolutions can be regarded as accurate. 

 

In the third approach, the first 50 modes of each substructure are retained to assemble 

the global structure, while the residual high modes are discarded directly without any 
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compensation. The eigenequation has the size of 150150. 

 

Afterwards, the frame is analyzed by the proposed FRFS method. The first 50 modes 

in each substructure are chosen as „master‟, while the higher modes are compensated 

by the first-order residual flexibility. The procedure consists of the following steps. 

1) Divide the global structure into three substructures. Each substructure is regarded 

as an independent structure, and the nodes and elements are labeled individually.  

2) Obtain the first 50 eigensolutions of the three substructures, and calculate the 

first-order residual flexibility of each substructure.  

3) Assemble the primitive form of the master eigensolutions p

mΛ  
and p

mΦ
 
with 

the master modes of the three substructures. p

mΛ  and p

mΦ  have the size of 

150150 and 150432, respectively. 

4) Establish the connection matrix C. Eight interface points (each has 3 DOFs) 

result in 24 connections to assemble the global structure. Consequently, the 

connection matrix has the size of 24432. 

5) Form the matrix Ψ  of order 150150 in Eq. (4-29), and solve the reduced 

eigenequation with the standard Lanczos method to calculate the first 20 

eigenpairs (  and 
mz ). 

6) Calculate the expanded eigenvectors with p

m mΦ Φ z  and recover the 

eigenvectors of the global structure by discarding the identical coordinates in the 

expanded eigenvectors Φ . 

 

Finally, the frame is analyzed with the SRFS method. Likewise, the first 50 modes in 

each substructure are chosen as the master modes. The process is similar to the FRFS 

method except Step 5, where the eigenequation (Eq. (4-36)) contains the „misfit‟ 
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displacement and has the size of 174174.  

 

The first 20 frequencies of the global structure are obtained from the 

above-mentioned five approaches and listed in Table 4-1 for comparison. In this table, 

„Lanczos‟, „Original‟, „Original-Partial‟, „FRFS‟ and „SRFS‟ denote the 

aforementioned five methods respectively. The second line of Table 4-1 gives the 

computation time (in second) consumed by the central processing unit (CPU) in 

obtaining the first 20 eigensolutions of the global structure with the corresponding 

methods on a personal computer (PC) with 1.86 GHz Intel Core 2 Duo processor and 

2 GB memory.  

 

In the Table 4-1, two indices are utilized to evaluate the accuracy of the eigenvector 

accuracy obtained with different approaches. The first index is the MAC value, 

indicating the similarity of two sets of mode shapes as 

      
   
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


 
 

(4-41) 

where  i  is the ith eigenvector obtained from the Lanczos method on the global 

structure, and is taken as the accurate for reference.  i  represents the ith 

eigenvector by the other four substructuring methods. An MAC value of identity 

implies that the two vectors are identical, whereas a value of 0 indicates that the two 

vectors are perpendicular. 
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Table 4-1: Frequencies and Modal Shapes of the Frame Structure Obtained with Different Methods 

 Lanczos Original Original-Partial FRFS SRFS 

CPU time 

(second) 
0.1703 0.5640 0.1671 0.1978 0.2413 

Mode 

index 

Freq. 

(Hz) 

Freq. 

(Hz) 

Freq. 

(Hz) 

Relative 

error 

Freq. 

(Hz) 

Relative 

error 

Mode shape error 
Freq. 

(Hz) 

Relative 

error 

Mode shape error 

(1-MAC) 
Difference 

Norm 
(1-MAC) 

Difference 

Norm 

1 1.7843  1.7843  1.7898 0.341% 1.7843  0.000% 0.000% 0.000% 1.7843  0.000% 0.000% 0.000% 

2 5.5365  5.5365  5.5495 0.539% 5.5365  0.000% 0.000% 0.000% 5.5365  0.000% 0.000% 0.000% 

3 9.8198  9.8198  9.7959 0.582% 9.8199  0.001% 0.003% 0.006% 9.8198  0.000% 0.003% 0.005% 

4 14.6864  14.6864  14.5231 0.415% 14.6865  0.001% 0.002% 0.003% 14.6864  0.000% 0.002% 0.002% 

5 16.6188  16.6188  18.8166 13.396% 16.6223  0.034% 0.081% 0.000% 16.6188  0.000% 0.081% 0.000% 

6 18.8074  18.8074  19.8156 5.997% 18.8122  0.060% 0.130% 0.018% 18.8075  0.001% 0.130% 0.021% 

7 20.1977  20.1977  21.1509 7.214% 20.1979  0.003% 0.006% 0.018% 20.1977  0.000% 0.006% 0.018% 

8 22.6170  22.6170  25.0778 12.328% 22.6235  0.111% 0.236% 0.029% 22.6172  0.002% 0.236% 0.028% 

9 25.4704  25.4704  25.4569 2.184% 25.4753  0.040% 0.099% 0.085% 25.4705  0.001% 0.094% 0.040% 

10 26.1799  26.1799  27.0610 6.533% 26.1808  0.018% 0.058% 0.019% 26.1799  0.000% 0.044% 0.011% 

11 28.0818  28.0818  27.6134 3.494% 28.0839  0.008% 0.016% 0.062% 28.0818  0.000% 0.015% 0.062% 

12 29.7843  29.7843  28.5257 1.047% 29.7877  0.017% 0.043% 0.109% 29.7843  0.000% 0.043% 0.108% 

13 30.9747  30.9747  29.8720 1.632% 30.9789  0.032% 0.069% 0.141% 30.9748  0.001% 0.068% 0.139% 

14 31.4907  31.4907  30.1980 0.303% 31.4924  0.004% 0.009% 0.020% 31.4907  0.000% 0.009% 0.019% 

15 32.3470  32.3470  30.8539 0.410% 32.3492  0.006% 0.007% 0.047% 32.3470  0.000% 0.007% 0.046% 

16 32.3574  32.3574  31.0906 0.635% 32.3604  0.012% 0.023% 0.047% 32.3574  0.000% 0.023% 0.039% 

17 33.5952  33.5952  32.0649 0.379% 33.5979  0.007% 0.019% 0.067% 33.5952  0.000% 0.018% 0.066% 

18 33.8409  33.8409  32.3354 0.693% 33.8432  0.014% 0.034% 0.039% 33.8409  0.000% 0.033% 0.033% 

19 34.4871  34.4871  33.0881 0.760% 34.4924  0.015% 0.037% 0.085% 34.4873  0.001% 0.034% 0.084% 

20 34.5654  34.5654  33.1796 1.036% 34.5690  0.025% 0.051% 0.048% 34.5657  0.001% 0.048% 0.041% 
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Difference Norm, the second index, is applied to evaluate the relative error of mode 

shapes as 

  
    

  
i i

i

norm
Difference Norm

norm

 








 

(4-42) 

 

From Table 4-1, one can find that, 

1) As compared with the global Lanczos method, the original Kron‟s substructuring 

method takes much longer time. 

2) Discarding the slave mode directly without compensation introduces a significant 

error. Since the substructures are connected based on the principle of virtual work, 

completely discarding the energy contribution of the higher modes results in 

error.  

3) Using the proposed substructuring method in which the higher modes are taken 

into consideration via residual flexibility, the accuracy of the eigenvalues is 

improved significantly. For example, the relative errors of the first 20 frequencies 

are less than 0.1% with the FRFS method, and less than 0.002% with the SRFS 

method. The accuracy is sufficient for usual engineering applications. As 

compared with the traditional Kron‟s substructuring method, the proposed 

method reduces the computational loads significantly. 

4) The SRFS method achieves a higher precision, but costs a little more 

computation time and memory than the FRFS method. 

5) The proposed method can achieve not only high precision eigenvalues but also 

good eigenvector results.  

6) The proposed substructuring method takes a little longer time than the global 

Lanczos method. This is because the analyses of each substructure, especially 

calculation of the residual flexibility, costs a lot of computation effort. These 
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interim results will be re-used in calculation of the eigensensitivity, which will be 

introduced in the next chapter. If the proposed substructuring method is applied 

to model updating or damage identification, the calculation of eigensolutions and 

sensitivity matrix are required for the concerned substructures only. Besides, the 

eigenequation size of the proposed method is much smaller than that of the 

global Lanczos method and the original Kron‟s substructuring method, as listed 

in Table 4-2. This is an attractive merit for model updating process, which will be 

demonstrated in the subsequent chapters. 

 

Table 4-2: Size of the Eigenequation with Various Methods 

 
Lanczos 

method 

Original Kron‟s 

method 
FRFS SRFS 

Sub 1   153×153 50×50 50×50 

Sub 2   165×165 50×50 50×50 

Sub 3   142×142 50×50 50×50 

Global structure 408×408 432×432 150×150 174×174 

 

This example indicates that the proposed substructuring method can reduce the 

computation load significantly while remain a high precision. Although the accuracy 

of the FRFS method is not as good as that of the SRFS method, it can satisfy most of 

the engineering applications and cost much less computational resource. Therefore, 

the FRFS method might be preferable in practice. In the next example, only the 

FRFS method will be utilized. 

 

4.5.2 The Balla Balla River Bridge 

The analytical model of the Balla Balla River Bridge described in Chapter 3 is 

adopted to demonstrate the computational efficiency of the substructuring method in 
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calculation of eigensolutions. In addition, the influence of the master modes and the 

division formation of the substructures on the computation accuracy and efficiency 

are investigated. 

 

The global structure is divided into five substructures respectively at 10 m, 20 m, 30 

m and 40 m along the longitudinal direction as shown in Figure 4-1. The detailed 

information of the five substructures is listed in Table 4-3.  

 

Table 4-3: Division Formation with Five Substructures 

Index of substructures  Sub 1   Sub 2    Sub 3   Sub 4   Sub 5 

Geometric range (m)* 0~10   10~20   20~30   30~40   40~54 

No. of elements 187   182   132   182   224 

No. of nodes 205   212   161   212   251 

No. of DOFs 1095   1260   966   1260   1371 

No. of interface nodes   23   23   23   23   

Note:* in longitudinal direction. 

 

 

 

Figure 4-1: FE Model of the Balla Balla River Bridge with Five Substructures 
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Table 4-4: Frequencies of the Balla Balla Bridge with Different Master Modes 

 Exact Original 40 master modes 60 master modes 90 master modes 

CPU time 
(second) 

8.0253 238.8509 10.3725 10.9643 13.0231 

Mode 
index 

Frequency 
(Hz) 

Frequency 
(Hz) 

Frequency 
(Hz) 

Relative 
error 

Frequency 
(Hz) 

Relative 
error 

Frequency 
(Hz) 

Relative 
error 

1 5.8232 5.8232 5.8288 0.097% 5.8281 0.084% 5.8269 0.063% 

2 5.9998 5.9998 6.0028 0.051% 6.0028 0.051% 6.0028 0.051% 

3 6.0007 6.0007 6.0038 0.052% 6.0038 0.051% 6.0037 0.051% 

4 6.2635 6.2635 6.2691 0.089% 6.2677 0.066% 6.2669 0.053% 

5 6.8621 6.8621 6.8656 0.051% 6.8655 0.051% 6.8655 0.051% 

6 6.8987 6.8987 6.9023 0.052% 6.9023 0.052% 6.9022 0.051% 

7 6.9975 6.9975 7.0034 0.084% 7.0022 0.067% 7.0012 0.052% 

8 7.7391 7.7391 7.7465 0.095% 7.7449 0.075% 7.7432 0.053% 

9 8.6063 8.6063 8.6142 0.092% 8.6128 0.075% 8.6109 0.053% 

10 8.7145 8.7145 8.7205 0.069% 8.7197 0.059% 8.7191 0.052% 

11 9.4460 9.4460 9.4535 0.079% 9.4525 0.068% 9.4510 0.053% 

12 10.9814 10.9814 10.9870 0.051% 10.9870 0.051% 10.9870 0.051% 

13 10.9816 10.9816 10.9872 0.051% 10.9872 0.051% 10.9872 0.051% 

14 12.1302 12.1302 12.1511 0.172% 12.1417 0.094% 12.1375 0.059% 

15 13.0048 13.0048 13.0227 0.137% 13.0167 0.091% 13.0122 0.057% 

16 13.2693 13.2693 13.2868 0.132% 13.2810 0.088% 13.2767 0.056% 

17 14.9312 14.9312 14.9431 0.080% 14.9421 0.073% 14.9399 0.058% 

18 15.8194 15.8194 15.8880 0.434% 15.8610 0.263% 15.8337 0.090% 

19 16.9266 16.9266 16.9515 0.147% 16.9463 0.116% 16.9370 0.062% 

20 17.5480 17.5480 17.6043 0.321% 17.5646 0.095% 17.5602 0.070% 
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Figure 4-2: Accuracy of Frequencies with Different Master Modes 
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Figure 4-3: Accuracy of Eigenvectors with Different Master Modes 

 

In this example, only the FRFS method is utilized, and the first 40 modes in each 

substructure are chosen as the master modes. The first 20 eigensolutions of the global 

structure are calculated and the frequencies are listed in Table 4-4, together with the 

relative errors compared with the exact results using the global Lanczos method.  

 

The computational accuracy is certainly influenced by the master modes retained in 

each substructure. To investigate the effect of the number of master modes on the 

computational accuracy, 40 modes, 60 modes and 90 modes in each substructure are 

chosen as „master‟, respectively. The obtained 20 eigensolutions and the 

corresponding errors are listed in Table 4-4. The second line of Table 4-4 gives the 

CPU time to calculate the eigensolutions using the different master modes. The 
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relative errors of the frequencies and the MAC values of the eigenvectors are 

compared in Figure 4-2 and Figure 4-3, respectively.  

 

It is apparent that the accuracy of the frequencies and eigenvectors is improved when 

more master modes are included in each substructure, especially for the higher 

modes. At the same time, the computation time increases as more master modes are 

included. 

 

The number of master modes required in each substructure depends on the accuracy 

requirement. Based on the error analysis described previously, one should make the 

minimum value of p

sΛ  as large as possible. Sturm‟s Sequence check (Bathe 1982) 

can be employed to determine the number of eigenvalues that smaller than a 

specified value, i.e., all the smallest eigenvalue modes among all substructures are 

selected as master modes.  

   

Figure 4-4: Computation Accuracy Using Different Selection of Master Modes 

In this study, 940000 are selected as the boundary value for the Sturm‟s Sequence 

check. Accordingly, there are 61, 87, 76, 92, 84 master modes in the five 
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substructures, respectively. The relative errors of equally selecting 80 master modes 

in each substructure and using Sturm‟s Sequence check are compared in Figure 4-4. 

Figure 4-4 reports that selecting master modes with Sturm‟s Sequence check has a 

slightly better result than that of equally selecting them from each substructure. For 

the lower eigenmodes, there is almost no discrepancy among the two selecting 

strategy. In the case that the substructures are similarly divided, equally selecting 

master modes from each substructure is a convenient and realistic preference.  

 

On the other hand, division formation of the substructures also affects the accuracy 

and efficiency. From a practical point of view, one should reduce the interface joints 

for a smaller transformation matrix C. In this regard, dividing a building across the 

columns is better than through the slabs, and dividing a bridge across the slab is 

better than across the piers. 

 

To investigate the influence of the division formation of the substructures, the bridge 

is approximately averaged into 3, 5, 8, 11 substructures respectively along the 

longitudinal direction. The detailed information for the substructures with these 

division formations are given in Tables 4-5 ~ 4-7. For different division formations, 

the master modes are selected in two manners.  
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Table 4-5: Division Formation with Three Substructures 

Index of substructures  Sub 1   Sub 2    Sub 3 

Geometric range (m)* 0~16.5   16.5~34.5   34.5~54 

No. of elements 275   292   340 

No. of nodes 394   327   371 

No. of interface nodes   23   23   

  Note:* in longitudinal direction. 

 

Table 4-6: Division Formation with Eight Substructures 

Substructure Index Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 

Geometric range (m)* 0~7 7~14 14~21 21~27 27~34 35~41 41~47 47~54 

No. of elements 143 110 116 88 110 116 88 136 

No. of nodes 159 138 143 115 138 143 115 159 

No. of interface nodes    23      23      23     23     23     23      23 

Note:* in longitudinal direction. 

 

Table 4-7: Division Formation with 11 Substructures 

Substructure 

Index 

Sub 

1 

Sub 

2  

Sub 

3 

Sub 

4 

Sub 

5 

Sub 

6 

Sub 

7 

Sub 

8 

Sub 

9 

Sub 

10 

Sub 

11 

Geometric range 

(m) 
0~5 

5~ 

10 

10~1

5 

15~2

0 

20~2

5 

25~3

0 

30~3

5 

35~4

0 

40~4

5 

45~ 

50 

50~ 

54 

No. of elements 99 88 66 116 66 66 66 116 66 66 99 

No. of nodes 113 115 92 143 92 92 92 143 92 92 113 

No. of interface 

nodes 
23    23    23    23    23    23   23    23    23    23 

Note:* in longitudinal direction. 

 

In the first scheme, the first 80 modes in each substructure are chosen as master 

modes. The master modes in each substructure and the size of the reduced 

eigenequation are listed in Table 4-8, together with the corresponding CPU time in 

calculation of the first 40 eigensolutions of the global structure. The relative errors of 

the frequencies are compared in Figure 4-5. 

 

It can be found that, except dividing the global structure into 3 substructures, other 

three division formations achieve similar accuracy, and more substructures result in a 
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slightly better accuracy. 

 

The division formations of three substructures and 11 substructures cost more 

computation time than that of the five substructures and eight substructures as listed 

in Table 4-8. If a structure is divided into a small quantity of substructures, the 

independent substructure has a large amount of elements and nodes. Correspondingly, 

calculation of the eigensolutions and the residual flexibility matrix of each 

substructure will cost more CPU resource. On the other hand, when the global 

structure is divided into a large quantity of substructures, many substructures need to 

be analyzed. In addition, the global eigenequation has a larger size. Comparison of 

these four division formations shows that dividing the global structure into much 

excessive substructures or too few ones are both inefficient. In this example, dividing 

the global structure into five substructures can not only reach the high precision but 

also save the computational resource. 

 

In the second scheme, the total number of master modes is selected around 400 as 

listed in Table 4-8. In this case, the reduced eigenequation will have similar size for 

different division formations, but the divided substructures have distinct master 

modes. The CPU time cost in calculation of the first 40 eigensolutions of the global 

structure with these four division formations are listed in Table 4-8, and the relative 

errors of the frequencies are compared in Figure 4-6. 

 

Figure 4-6 shows that, if the total number of the master modes among all 

substructures is similar, the division with more substructures results in lower 

precision. This is because it has less master modes in each substructure, and thus 

 min p

sΛ  decreases. In contrast, the division with fewer substructures achieves a 

higher precision, since it includes more master modes in each substructure. However, 

the latter costs much CPU time in calculating the eigensolutions and the residual 

flexibility matrix for the large-size substructures. Furthermore, when applying the 
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substructuring method in model updating, the calculation of the sensitivity matrix in 

each substructure will be heavier, and the substructuring technology may lose its 

promising advantages. In practice, a few trials may be helpful to determine the 

optimized number of substructures before model updating is employed. 

 

Table 4-8: The Matrix Size and Computation Time with Different Division 

Formations 

No. substructures 3 5 8 11 

Scheme 1 

No. of master modes 

 in each substructure 
80 80 80 80 

Size of the  

global eigenequation 
240 400 640 880 

CPU time (second) 20.8 12.8 16.7 26.1 

Scheme 2 

No. of master modes  

in each substructure 
133 80 50 37 

Size of the  

global eigenequation 
399 400 400 407 

CPU time (second) 24.9 12.8 13.4 22.7 

 

The advantages of the present substructuring method in model updating can be also 

found from the eigenequation size. If the bridge is divided into 5 substructures, the 

eigenequation size can be heavily reduced with the proposed FRFS method as listed 

in Table 4-9. This is helpful for model updating process, in which the eigenequation 

is repeatedly constructed and solved.  

 

Table 4-9: The Size of Eigenequation with Various Master Modes 

 Lanczos 
40 master 

modes 

60 master 

modes 

90 master 

modes 

Each substructure   40×40 60×60 90×90 

Global structure 5400×5400 200×200 300×300 450×450 
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Figure 4-5: Relative Errors of Frequencies with Various Substructure Division 

Formations (Scheme 1) 
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Figure 4-6: Relative Errors of Frequencies with Various Substructure Division 

Formations (Scheme 2) 

 

4.6 Summary 

A substructuring method is proposed in this chapter to calculate some lowest 

eigensolutions of large-scale structures. A modal truncation approximation is 

developed to reduce the computational load of the original Kron‟s substructuring 

method. With the compensation of the residual flexibility, only a few eigensolutions 
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of the substructures are retained to assemble the global structure, while the higher 

modes are compensated with the first-order residual flexibility and second-order 

residual flexibility, respectively. The utilization of the second-order residual 

flexibility achieves much better results than that of the first-order residual flexibility, 

whereas increases the computation effort. The division formation needs to trade off 

the number of the substructures and the number of master modes in each substructure. 

Divisions with much excessive or insufficient number of substructures are both 

undesirable. 
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CHAPTER FIVE 

EIGENSENSITIVITY WITH SUBSTRUCTURING 

METHOD 

5.1 Introduction 

Methods for computing the derivatives of eigenvalues and eigenvectors with respect 

to elemental parameters (eigensensitivity) have been studied by many researchers in 

the past thirty years. In model updating, the eigensensitivity is usually used to 

estimate the most sensitive design parameters that contribute to the discrepancy of the 

analytical model and practical testing, and thus accelerate the convergence of the 

optimization process. The cost of calculating the eigensensitivity is always the 

dominant contributor to the total cost in many optimization procedures. As many 

practical engineering structures today are large-scale in nature, efficient computation 

of the eigensensitivity with respect to various design parameters is a key requirement 

in the model updating analysis. The substructuring technology can be a promising 

solution to accelerate the calculation of eigensensitivity for a large-scale structure. 

With the substructuring concept, the substructures are analyzed independently and 

then be assembled to obtain the properties of the global structure by imposing 

constraints at the interfaces of the adjacent substructures. To calculate the 

eigensensitivity with respect to one parameter, the substructural derivative matrices 

are required in only one substructure while those in other substructures are zeros. The 

substructural derivative matrices are then assembled to acquire the eigensensitivity of 

the global structure. Since the substructure has a much smaller size than the entire 

structure, the computation efficiency can be improved. 

 

In this chapter, the eigensensitivity is calculated based on the reduced eigenequation 
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of the substructuring method proposed in Chapter 4. The first-order derivatives of 

eigensolutions are formulated firstly, followed by the second-order derivatives and 

the general high-order derivatives. 

 

5.2 First-order Eigensolution Derivatives with Substructuring 

Method 

5.2.1 Eigenvalue Derivatives 

The reduced eigenequation (Eq. (4-29)) is rewritten for the ith mode as 

  

  i i Ψ I z 0  

    
1

1
p T p T

m m s s s m




 Ψ Λ Γ Γ Λ Γ Γ
 

(5-1)
 

The eigenvalue 
i  and eigenvector  iz  have been solved in Chapter 4. Eq. (5-1) 

is differentiated with respect to a designed parameter r as follows. 

  
 

 
   

ii
i i

r r




  
   

  

Ψ Iz
Ψ I z 0

 

(5-2) 

Here r is an elemental parameter of the global structure, for example bending rigidity. 

 

Pre-multiplying  
T

iz  on both sides of Eq. (5-2) gives the following. 
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(5-3) 

Due to the symmetry of  iΨ I , the first item on the left-hand side of Eq. (5-3) is 

zero. By arranging Eq. (5-3), the derivative of eigenvalue 
i  with respect to the 

designed parameter r is 

  
   

Ti
i i

r r

 


 

Ψ
z z

 
(5-4) 

where
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(5-5) 

In Eq. (5-5), 
p

m

r





Λ
 is the diagonal assembly of the eigenvalue derivatives of the 

master modes of the substructures, 

T
p

m Tm

r r

   
 

ΦΓ
C  is associated with the 

diagonal assembly of the master eigenvector derivatives of the substructures, and 

  
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T p

s s s
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
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

Γ Λ Γ

 is associated with the derivative matrices of the first-order 

residual flexibility of the substructures and can be obtained from the derivative of 

master modes as 
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where  
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(5-7) 

As the substructures are independent, the derivative matrices of the eigenvalues, the 

eigenvectors, and the residual flexibility are calculated only in a particular 

substructure (for example, the rth substructure) that contains the elemental parameter 

r. These quantities in the other substructures are zero, i.e., 
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(5-8) 

By treating the rth substructure as an independent structure, the eigenvalue 

derivatives and eigenvector derivatives can be obtained using traditional global 

methods, such as Nelson‟s method (Nelson 1976). The detailed procedure in 

calculation of the residual flexibility matrix and its first-order derivative can be found 

in the Appendix E. 

 

It can be found that, the eigenvalue derivatives of the global structure with respect to 

the elemental parameter rely solely on the particular substructure (the rth 

substructure), not on the other substructures. As the substructures are always smaller 

in size than the global structure, computational efficiency is improved. This merits 

significant advantage when applied to the iterative model updating methods. The 

substructuring method requires only the modified substructures to be re-analyzed, 

leaving the other substructures untouched.  

 

5.2.2 Eigenvector Derivatives 

As the ith eigenvector of the global structure can be recovered by 

   p

i m iΦ Φ z
 

(5-9) 

the eigenvector derivative of the ith mode to the structural parameter r can be 

differentiated as 

  
 

p
pi m i

i m
r r r

   
   

   

Φ Φ z
z Φ

 
(5-10) 

where p

mΦ  represents the eigenvectors of the master modes in the substructures, 

p

m

r





Φ
 the associated eigenvector derivatives of the master modes of the rth 
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substructure, and  iz  the eigenvector of the reduced eigenequation. Once i

r

 
 
 

z
 

is available, the eigenvector derivative of the ith mode of the global structure can be 

obtained. 

 

Similar to Nelson‟s method, i

r

 
 
 

z
 is separated into the sum of a particular part and 

a homogeneous part as 

  
   i

i i ic
r

 
  

 

z
v z

 
(5-11) 

where ci is a participation factor. Substituting Eq. (5-11) into Eq. (5-2) gives the 

following. 

  

      
 

 
i

i i i i ic
r




 
   



Ψ I
Ψ I v z z

 

(5-12) 

Given that     i i Ψ I z 0 , Eq. (5-12) can be simplified to 

  

    i i i Ψ I v Y

 

(5-13) 

where 

  

 
 

 
i

i i
r

 
 



Ψ I
Y z  

All of the items in Ψ  and {Yi} were obtained during the calculation of the 

eigenvalue derivatives presented in the previous section.  

 

If there are no repeated frequencies, the reduced system matrix Ψ  takes size p

mN  

and rank ( p

mN -1). To solve Eq. (5-13), the kth row and column of Ψ  and kth item of 

 iY  are set to zero. The full rank equation is 

  

11 13 1 1

31 33 3 3

1 0

i i

ik

i i

     
    

    
         

Ψ 0 Ψ v Y

0 0 v

Ψ 0 Ψ v Y
 

(5-14) 
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where the pivot, k, is chosen at the maximum entry in  iz . In consequence, the 

vector  iv  can be solved from Eq. (5-14).  

 

The solution of ci requires the orthogonal condition of the eigenvector 

  
    1

T

i i z z
 

(5-15) 

Differentiating Eq. (5-15) with respect to r gives 

  

 
   

 
0

T

Ti i

i i
r r

 
 

 

z z
z z

 
(5-16) 

Substituting Eq. (5-11) into Eq. (5-16) results in 

  
             0

T T T

i i i i i i i ic c   v z z z v z
 

(5-17) 

Participation factor ci is thus obtained as 

  
        1

2

T T

i i i i ic   v z z v
 

(5-18) 

Finally, the first-order derivative of  iz  with respect to the structural parameter r is 

  
           

1

2

T Ti
i i i i i i

r

 
   

 

z
v v z z v z

 
(5-19) 

 

As far as Eq. (5-10) is concerned, the eigenvector derivatives of the global structure 

can be regarded as the combination of the eigenvectors p

mΦ  and eigenvector 

derivatives 
p

m

r





Φ
 of the substructures, and i

r

 
 
 

z
 and z act as the weights. Similar 

to the calculation of the eigenvalue derivatives, that of the eigenvector derivatives of 

the global structure is equivalent to analyzing the rth substructure and a reduced 

eigenequation. This is a significant merit of the substructuring method, since 

calculation of eigensensitivity consumes dominant computation resource in usual 

model updating process. The procedures and advantages of the proposed 

substructuring method are demonstrated through two numerical examples in the 

following. 
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5.2.3 Case Studies 

1) The Three-span Frame Structure 

The three-span frame with three substructures described in Chapter 3, serves to 

illustrate the procedure of calculating the eigensensitivity using the proposed 

substructuring method. The influence of the master modes on the computational 

accuracy is also investigated.  
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Figure 5-1: The Three-span Frame and the Designated Parameter r1 

 

Without losing generality, the Young‟s modulus of one element in Substructure 2 is 

arbitrarily chosen as the design parameter and denoted as r1 in Figure 5-1. The first 30 

modes of each substructure are chosen as the master modes to calculate the 

eigensensitivity of the first 10 modes of the global structure with respect to r1, which 

can be achieved with the proposed substructuring method as follows. 

r1 
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(1) Calculate the eigensolutions of each substructure: 
 1

mΛ , 
 2

mΛ , 
 3

mΛ , 
 1

mΦ , 
 2

mΦ , 

and 
 3

mΦ  (m = 1, 2, …, 30), obtain the eigensolutions of the global structure 

with the reduced eigenequation Eq. (5-1) as 
i  and  iz , and recover the 

eigenvector of the global structure through  p

i m iΦ Φ z  ( i = 1, 2, …, 10 ).  

(2) Compute the eigenvalue and eigenvector derivatives of the first 30 modes of 

Substructure 2 with respect to parameter r1: 
   2 2

1 1

,m m

r r

 

 

Λ Φ
, and calculate the 

derivative of the residual flexibility with respect to r1: 

       
1

2 2 2

1

T

s s s

r



 
 



Φ Λ Φ

. 

Since Substructure 2 is free after partition, the rigid body modes are taken into 

account to calculate the derivative of the residual flexibility matrix as described 

in Appendix E. 

(3) Set the derivatives of the eigensolutions and residual flexibility of the other two 

substructures to zeros: 
 

 
1

j

m

r






Λ
0 , 

 

 
1

j

m

r






Φ
0 , 

       
 

1

1

T
j j j

s s s

r



 
 




Φ Λ Φ

0 , 

(j = 1, 3), and then construct the primitive form of the derivative matrices as 

  

 2

1 1

p

m m

r r

 
      
  
 
  

0 0 0

Λ Λ
0 0

0 0 0

, 
 2

1 1

p

m m

r r

 
      
  
 
  

0 0 0

Φ Φ
0 0

0 0 0

, 

  

          
11 2 2 2

1 1

TT
p p p

s s ss s s

r r



 
 

              
  
 
 
  

0 0 0

Φ Λ ΦΦ Λ Φ

0 0

0 0 0

.

 

(4) Obtain the first-order eigenvalue derivatives of the global structure: 
1

i

r




 ( i = 1, 

2, …, 10 ), using Eq. (5-4).  
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(5) Calculate the first-order derivatives of  iz  with respect to parameter r1: 

1

i

r

 
 
 

z
, using Eq. (5-19). 

(6) Form the eigenvector derivatives of the global structure with respect to parameter 

r1 using Eq. (5-10) and then eliminate the identical values of i

r





Φ
 at the 

interfaces of the substructures. 

 

To verify the accuracy of the proposed substructuring method in calculation of the 

eigensensitivity, the traditional Nelson‟s method is employed to calculate the 

eigensensitivity of the global structure directly, that is, without division into 

individual substructures. The results from the proposed substructuring method and the 

global method are compared in Table 5-1. The relative errors of the eigenvalue 

derivatives are less than 3%, which is sufficient for most practical engineering 

applications.  

 

Following MAC, the similarity of the eigenvector derivatives obtained with the 

global method and the proposed substructuring method is denoted as the Correlation 

of Eigenvector Derivatives (COED), and is given by 

  

2

1 1

1 1

1 1 1 1

COED ,

T

i i

i i

TT

i i i i

r r

r r

r r r r

 

 

   

   
   
         

                        
         

              





 
 

(5-20) 

where 
1

i

r

 
 
 

 represents the eigenvector derivative obtained with the global method, 

and 
1

i

r

 
 
 


 that with the substructuring method. In this example, the COED values 

for most modes are above 0.99 as shown in Table 5-1, which indicates that the 

proposed method can achieve good accuracy eigenvector derivative calculation.  
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Table 5-1: Comparison of Eigensensitivity with Respect to r1 

Mode 

Eigenvalue derivatives Correlation of 

eigenvector 

derivatives 

(COED)  

Nelson's 

method 

Substructuring 

method 

Difference 

(%) 

1 0.876  0.876  0.00% 0.999  

2 3.621  3.622  0.02% 0.999  

3 3.431  3.433  0.07% 0.992  

4 49.478  49.567  0.18% 0.997  

5 72.918  73.650  1.00% 0.997  

6 292.125  294.986  0.98% 0.995  

7 219.068  220.354  0.59% 0.999  

8 742.183  756.540  1.93% 0.995  

9 675.675  689.697  2.08% 0.987  

10 526.273  535.207  1.70% 0.981  

 

The master modes retained in the substructures undoubtedly affect the accuracy of the 

calculated eigensensitivity. Herein, 10 master modes and 50 master modes are 

additionally employed for each substructure to calculate the eigensensitivity. Figure 

5-2 reports the relative errors of the eigenvalue derivatives using 10, 30 and 50 master 

modes, respectively. The accuracy of eigenvector derivatives are compared in Figure 

5-3 in terms of COED values. It can be found that, as expected, the use of more 

master modes improves the accuracy of the eigensolution derivatives, especially for 

the higher modes. The master modes retained in each substructure are usually 2~3 

times that of the interest modes of the global structure. Too few master modes may 

result in undesirable results. Retaining 50 master modes in each substructure slightly 

improves the results from 30 master modes in terms of accuracy, while consumes 

more computation time. The computational efficiency of the proposed method will be 

investigated using a relatively large structure in the next section. 
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Figure 5-2: Accuracy of the Eigenvalue Derivatives with Different Master Modes 
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Figure 5-3: Accuracy of the Eigenvector Derivatives with Different Master Modes 

 

2) The Balla Balla River Bridge 

The Balla Balla River Bridge with 11 substructures as shown in Figure 5-4 is 

employed to investigate the accuracy and efficiency of the present substructuring 

method for eigensensitivity. Details of these 11 substructures are provided in Table 

4-7. 50 master modes are retained in each substructure to assemble the global 

structure.  



130 

 

 

 

 

Figure 5-4: FE Model of the Balla Balla River Bridge and the Designated Parameters 

 

The designed elemental parameters refer to the Young‟s moduli of the four shell 

elements denoted as r1~r4 in Figure 5-4. The elemental parameters are intentionally 

located in different substructures, within both the free substructures and fixed 

substructures. Using the proposed substructuring method, the eigensensitivities of the 

first 20 modes of the global structure with respect to the four elemental parameters 

are calculated and shown in Table 5-2. Those eigensensitivities with the global 

method are directly calculated using the traditional Nelson‟s method for comparison 

purpose. It can be seen from the table that, when the global structure is divided into 

11 substructures and the first 50 modes are retained as the master modes in each, most 

of errors of the first 20 eigenvalue derivatives are less than 0.1%, and the COED 

values are greater than 0.99, which is acceptable in most engineering applications, 

such as model updating. 

 

r1 

r2 
r3 

r4 

r5 
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Table 5-2: Eigensensitivity with Respect to the Four Designed Structural Parameters 

  
r1 r2 r3 r4 

Eigenvalue derivatives 

COED 

Eigenvalue derivatives 

COED 

Eigenvalue derivatives 

COED 

Eigenvalue derivatives 

COED 
Mode 

Global 

method 

(10-2) 

Present 

method 

(10-2) 

Relative 

error (%) 

Global 

method 

(10-2) 

Present 

method 

(10-2) 

Relative 

error (%) 

Global 

method 

(10-2) 

Present 

method 

(10-2) 

Relative 

error (%) 

Global 

method 

(10-2) 

Present 

method 

(10-2) 

Relative 

error (%) 

1 121.13 121.24 0.09% 0.989 223.79 223.99 0.09% 0.995 188.36 188.20 0.10% 0.997 378.76 378.89 0.03% 0.998 

2 0.67 0.67 0.00% 1.000 0.18 0.18 0.00% 1.000 0.05 0.05 0.00% 1.000 0.02 0.02 0.00% 1.000 

3 2.43 2.43 0.00% 1.000 7.35 7.34 0.14% 1.000 5.85 5.84 0.11% 1.000 6.91 6.89 0.28% 1.000 

4 120.99 121.02 0.03% 0.973 329.45 329.46 0.00% 0.990 247.13 247.21 0.03% 0.997 374.17 373.96 0.06% 0.998 

5 0.16 0.16 0.00% 0.997 0.48 0.48 0.00% 0.999 0.33 0.33 0.00% 0.999 0.37 0.37 0.00% 0.999 

6 5.19 5.20 0.26% 0.995 9.17 9.19 0.26% 0.999 5.43 5.43 0.00% 0.999 14.31 14.33 0.14% 0.999 

7 241.73 241.75 0.01% 0.960 140.42 140.44 0.02% 0.992 39.40 39.38 0.05% 0.997 4.21 4.20 0.26% 0.998 

8 112.24 112.26 0.02% 0.976 468.14 468.18 0.02% 0.995 155.04 155.04 0.00% 0.999 1193.00 1194.77 0.15% 0.999 

9 321.56 321.59 0.01% 0.990 566.79 566.83 0.01% 0.999 121.18 121.08 0.08% 0.999 8.72 8.73 0.13% 0.999 

10 140.96 141.00 0.02% 0.997 23.86 23.84 0.09% 0.999 43.89 43.89 0.00% 0.999 559.87 559.77 0.02% 0.999 

11 151.98 152.01 0.02% 0.969 73.59 73.62 0.03% 0.995 66.51 66.51 0.00% 0.999 314.84 314.73 0.03% 0.999 

12 0.05 0.05 0.00% 1.000 0.06 0.06 0.00% 1.000 0.03 0.03 0.00% 1.000 0.00 0.00 0.00% 1.000 

13 0.03 0.03 0.00% 1.000 0.05 0.05 0.00% 1.000 0.02 0.02 0.00% 1.000 0.18 0.18 0.00% 1.000 

14 238.87 239.01 0.06% 0.993 179.95 179.80 0.22% 0.992 241.79 241.09 0.03% 0.996 754.21 745.73 1.12% 0.990 

15 805.96 805.98 0.00% 0.998 874.12 873.25 0.10% 0.998 1090.01 1088.32 0.02% 0.998 76.32 76.66 0.39% 0.997 

16 566.15 567.23 0.19% 0.998 760.02 760.64 0.08% 0.998 894.03 898.99 0.05% 0.999 227.23 226.81 0.02% 0.998 

17 48.60 48.57 0.06% 0.970 678.54 677.02 0.22% 0.954 572.98 573.61 0.11% 0.948 4.78 4.74 0.82% 0.984 

18 611.82 611.41 0.06% 0.979 1498.32 1496.84 0.11% 0.963 655.92 639.04 2.57% 0.969 1277.09 1281.57 0.36% 0.971 

19 589.08 590.99 0.32% 0.984 11.90 11.77 1.06% 0.976 41.22 41.49 0.66% 0.997 170.75 169.89 0.51% 0.986 

20 649.76 651.47 0.26% 0.987 792.71 790.86 0.29% 0.993 1265.73 1260.49 0.45% 0.996 3364.71 3360.68 0.16% 0.982 
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Table 5-3: Division Formation with 15 Substructures 

Substructure 

 Index 

Sub 

1 

Sub 

2 

Sub 

3 

Sub 

4 

Sub 

5 

Sub 

6 

Sub 

7 

Sub 

8 

Sub 

9 

Sub 

10 

Sub 

11 

Sub 

12 

Sub 

13 

Sub 

14 

Sub 

15 

Geometric  

range (m)* 
0~3 

3~ 

7.5 

7.5~ 

10.5 

10.5~ 

13.5 

13.5~ 

16.5 

16.5~ 

19.5 

19.5~ 

22.5 

22.5~ 

27 

27~ 

30 

30~ 

34.5 

34.5~ 

37.5 

37.5~ 

40.5 

40.5~ 

45 

45~ 

49.5 

49.5~ 

54 

No. of  

elements 
77 66 44 44 44 72 44 66 44 66 72 44 66 66 92 

No. of  

nodes 
90 92 69 69 69 97 69 92 69 92 97 69 92 92 113 

No. of  

interface nodes 
   23    23     23      23     23     23     23    23     23    23      23     23     23     23 

Note:* in longitudinal direction. 

 

Here, the computational efficiency is evaluated in terms of the computation time in 

calculation of the eigensensitivities with respect to the four designed elemental 

parameters. The computational efficiency is affected by the division formation of the 

substructures. To investigate the effects of the division formation, the bridge is also 

divided into 5, 8, and 15 substructures, respectively. Details of the different division 

formations are provided in Table 4-3, Table 4-6, and Table 5-3.  

 

 

Figure 5-5: Computation Time with Different Division Formations 
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Selection of different master modes for the four division formations results in 

different levels of precision. Therefore, the relative errors of the first 20 eigenvalue 

derivatives of the global structure are set to less than 3% as compared with the 

conventional global method. Based on this criterion, 80 master modes are required in 

each substructure with the division formation of five substructures, 60 master modes 

in eight substructures, 50 master modes in 11 substructures, and 50 master modes in 

15 substructures. The computation time required for the eigensensitivity calculation 

using the conventional global method and the proposed substructuring method with 

the four division schemes is compared in Figure 5-5, from which the following can be 

observed. 

(1) Relative to the traditional global method, the proposed substructuring method 

reduces the computation time because only a particular substructure and the 

reduced eigenequation need to analyze when forming the eigensensitivity of the 

global structure.  

(2) The computational efficiency of the proposed method is heavily dependent on the 

substructure division. For example, dividing the global structure into five or eight 

substructures requires greater computational time than does dividing it into 11 

because large substructures take longer to handle than smaller ones. However, 

dividing it into 15 substructures is less efficient than dividing it into 11 because 

an excessive number of substructures lead to a large connection matrix C and 

large primitive matrices of the substructures, which renders the transformations 

among these matrices more computationally expensive. This phenomenon has 

also been observed in calculation of the eigensolutions in Chapter 4. The 

trade-off between the number of substructures and the size of each deserves 

caution, and the division formation can be tested prior to applying the proposed 

method to a model updating process. 

 

5.3 High-Order Eigensolution Derivatives 

The first-order eigensensitivities are usually calculated by researchers, and they are 
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estimated in previous sections with substructuring manner. The second- and 

high-order derivatives of the eigenpairs are particularly important to the case when 

large variations in design parameters exist or the natural frequencies are closely 

spaced. For the case of large changes in design parameters, the linear approximation 

inherent in the use of first-order derivatives may be inadequate for the 

sensitivity-based model updating, and the high-order derivatives need to be taken 

account. The eigensensitivity with repeated or close eigenvalues usually requires the 

second-order derivatives, or even high-order derivatives. 

 

Due to the symmetric property and simple form of the reduced eigenequation (Eq. 

(5-1)), it is easy to derive the high-order derivatives of the eigensolutions by directly 

re-differentiating this reduced eigenequation. In this section, the second-order 

eigenvalue and eigenvector derivatives are formulated with the substructuring 

method, which can be easily extended to the high-order eigensensitivity. 

 

5.3.1 Eigenvalue Derivative 

Without losing generality, Eq. (5-1) is differentiated with respect to two design 

variables rj and rk as  

 
 

       
 

 
2 2

i i ii i i

i i

j k j k k j j kr r r r r r r r

  


       
    

       

Ψ I Ψ I Ψ Iz z z
z Ψ I 0 (5-21) 

Premultiplying  T

iz  on both sides of Eq. (5-21) gives the second-order eigenvalue 

derivative 

  
     

   
 

   2 2
i ii iT T Ti

i i i i

j k j k j k k jr r r r r r r r

       
  

       

Ψ I Ψ Iz zΨ
z z z z

 

(5-22) 

In Eq. (5-22), the second-order eigenvalue derivative comprises two parts: the 

component of the second-order derivative 
2

j kr r



 

Ψ
, and the multiplication of the 

first-order derivative matrix. The latter could be obtained from the previous section, 
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while the former 
2

j kr r



 

Ψ
 is calculated as follows. 

 

2

j kr r



 

Ψ
 is contributed by the second-order eigenvalue derivatives, eigenvector 

derivatives and residual flexibility derivatives of the substructures as 

2

j kr r




 

Ψ
  

1
1

2 p T p T

m m s s s m

j kr r


 

  
 

 
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1
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m
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
 

     
   

Γ Γ Λ Γ Γ
Λ

 

 

  (5-23) 

Concerning Eq. (5-5), the second-order derivative of   
1

1
T p T

m s s s m




Γ Γ Λ Γ Γ  gives 

  
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1
2 T p T

m s s s m
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
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 (5-24) 

In Eq. (5-24), the second-order derivative matrix of the inversion of the residual 

flexibility is given by 

  
1

1
T p

s s s

j kr r


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
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Γ Λ Γ
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3
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2

T p T p
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 




 


 

Γ Λ Γ Γ Λ Γ
Γ Λ Γ  (5-25) 
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where 
  1 T

p p p

m m m

j kr r



   

 

Φ Λ Φ
 can be obtained from the derivatives of the master 

modes of the substructures as 

  1 T
p p p

m m m
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

   
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ΛΦ Φ ΦΦ
Λ Φ Φ Λ  (5-26) 

 

It is seen that, the derivative matrix 
2

j kr r



 

Ψ

  

is contributed by two kinds of 

derivative matrices. The first group is the second-order derivative matrices of the 

substructures, such as 
2 p

m

j kr r



 

Λ
, 

2 T

m

j kr r



 

Γ
 and 
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1
2 T p

s s s
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
 

  
 

 

Γ Λ Γ

. The second 

group is the multiplication of the first-order derivative matrices, for example, the 

multiplication of 
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1
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s s s
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  
 
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 and 
T

m

kr





Γ
, and the multiplication involved 

T

m

jr





Γ
 and 

T

m

kr





Γ
. 

 

In the former group, 
2 p

m

j kr r



 

Λ
, 

2 T

m

j kr r



 

Γ
 are respectively the second-order eigenvalue 

derivatives and eigenvector derivatives of the master modes in substructures, and 
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1
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s s s
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
 

  
 
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 are associated with the second-order derivatives of the 
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substructural residual flexibility. If rj and rk are located in the same substructure (for 

example, the rth substructure), the three items are calculated for the rth substructure 

solely, while those corresponding to the other substructures are zero, i.e.,  

  

 2 2 rp

m m

j k j kr r r r

 
 
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(5-27) 

In case that rj and rk are located in different substructures, the second-order 

derivative matrices 
2 p

m

j kr r



 

Λ
, 

2 T

m

j kr r



 

Γ
 and 

  1
2 T p

s s s

j kr r





 

Γ Λ Γ
 are zero-matrix. 

 

In the latter group, the primitive form of the first-order derivative matrices of the 

residual flexibility and eigenvectors: 
  1

T p

s s s

jr







Γ Λ Γ
 and 

T

m

kr





Γ
, are diagonal 

assembly of the derivative matrices of the substructures. They are non-zeros only in 

the sub-block corresponding to the substructures which include the parameters rj or 

rk as stated in Section 5.2. Therefore, if rj and rk are located in different substructures, 

the multiplication of them gives zero-matrix as well.  

 

To conclude, if the designed variables rj and rk are located in different substructures, 

all items in 
2

j kr r



 

Ψ
 are zeros, i.e., 
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(5-28) 

In this case, the second-order derivative of the eigenvalue is simplified into 
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(5-29)
 

 

If the design variables rj and rk are located in the same substructure (for example the 

rth substructure). Items 
2 p

m

j kr r



 

Λ
, 

2 T

m

j kr r



 

Γ
 and 

  1
2 T p

s s s

j kr r





 

Γ Λ Γ
 are assembled 

using the derivative matrices of the rth substructure solely. 
2 p

m

j kr r



 

Λ
 and 

T

m

j kr r



 

Γ
 can 

be calculated with the traditional method addressed in Appendix B, by treating the rth 

substructure as an independent structure. Subsequently, 
2

j kr r



 

Ψ
 can be formed by the 

second-order derivative matrices and the multiplication of the first-order derivative 

matrices within the rth substructure. 

 

In the proposed substructuring method, the second-order eigenvalue derivative can be 

expressed by the first-order derivative matrices of the substructural eigensolutions 

and residual flexibility, if the two parameters rj and rk are located in different 

substructures. In case that the two parameters rj and rk are located in the same 

substructure, the first- and second-order derivative matrices of the master 

eigensolutions and residual flexibility of only one substructure are required. 

 

5.3.2 Eigenvector Derivative 

The ith eigenvector of the global structure can be recovered by 
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   p

i m iΦ Φ z
 

(5-30) 

The second-order eigenvector derivative of the ith mode with respect to the two 

parameters rj and rk is acquired as 
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(5-31) 

All items are available based on the previous analysis, except 
2

i

j kr r



 

z
. 

 

The double-differentiated eigenequation (Eq. (5-21)) is rewritten as 
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where 
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 (5-33) 

  ,i j k
Y  can be obtained directly using the interim results when calculating the 

eigenvalue derivatives. 

 

As before, 
 2

i

j kr r



 

z
 is expressed as the sum of a particular part and a homogeneous 

part as 
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where 
  ,i j k

v  is not unique but may be calculated by substituting Eq. (5-34) into 

Eq. (5-32) as 
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(5-35) 

  

 

The following orthogonality property is satisfied 

  
    1

T

i i z z
 

(5-36) 



140 

Differentiating Eq. (5-36) with respect to rj and rk , and substituting Eq. (5-34) into it 

gives 

  

   
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The participation factor ci(j,k) is obtained as  
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(5-37) 

 

Given {vi(j,k)} and ci(j,k), the second-order eigenvector derivative can be recovered 

from Eq. (5-31) and Eq. (5-34). It is seen that, the second-order eigenvector 

derivative is obtained by solving the reduced eigenequation solely. As the calculation 

of eigenvector derivatives usually consumes dominant computation resource in the 

common global method, this substructuring method improves the computational 

efficiency significantly, which will be demonstrated by a numerical example.  

 

Using similar procedures, the high-order eigensensitivity can be derived with this 

substructuring method easily, by further differentiating the eigenequation Eq. (5-21). 

They are not addressed here. 

 

5.3.3 Case Study 

The Balla Balla River Bridge (Figure 5-4) is also employed to illustrate the accuracy 

and efficiency of the proposed substructuring method in calculation of the 

second-order eigensensitivity.  

 

The second-order eigensensitivities with respect to the parameter pairs (r5, r5), (r5, r1), 

and (r5, r2) shown in Figure 5-4 are calculated. First, the second-order eigenvalue and 

eigenvector derivatives of the first 20 modes are calculated using the global method 

addressed in Appendix B, and are regarded as the accurate results for comparison. 

Afterwards, they are calculated by the proposed substructuring method. The global 
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structure is divided into 11 substructures and each retains the first 50 modes as master. 

The second-order eigensensitivities using the present substructuring method are 

compared with the exact results in Table 5-4.  

 

In this table, the second-order eigensolution derivatives with respect to the parameter 

pair (r5, r5) represent the case that the two elemental parameters are identical. The 

eigensolution derivatives with respect to (r5, r1) gives the results with respect to two 

different parameters in the same substructure, while parameter pair of (r5, r2) the case 

that the two parameters in different substructures. Table 5-4 demonstrates that the 

relative differences in the second-order eigenvalue derivatives using the proposed 

substructuring method and the global method are less than 3% for most modes.  

 

Following the previous first-order eigenvector derivative, the accuracy of the 

second-order eigenvector derivative is denoted by COED as well, and is given by 
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(5-38) 

where 
2

i

j kr r

  
 
   

 represents the second-order eigenvector derivative from the global 

method, and 
2

i

j kr r

  
 
   


 from the substructuring method. Table 5-4 reports the COED 

values of most modes are above 0.95, indicating a good accuracy of the second-order 

eigenvector derivatives.  
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Table 5-4: Comparison of Second-order Eigenvalue Derivatives and Eigenvector Derivatives 

Mode 

2

5 5r r



  ,

 2

5 5r r



 
 

2

5 1r r



  ,

 2

5 1r r



 
 

2

5 2r r



  ,

 2

5 2r r



 
 

Eigenvalue derivative 

COED 

Eigenvalue derivative 

COED 

Eigenvalue derivative 

COED Global 
method 

Substructuring 
method 

Relative 
error (%) 

Global 
method 

Substructuring 
method 

Relative 
error (%) 

Global 
method 

Substructuring 
method 

Relative 
error (%) 

1 -0.7010 -0.7012 0.03% 0.998 -0.0730 -0.0729 0.12% 0.996 -0.0295 -0.0296 0.21% 0.996 

2 -0.0016 -0.0016 0.00% 0.999 0.0001 0.0001 0.00% 0.998 -0.0003 -0.0003 0.00% 0.993 

3 -0.0030 -0.0031 0.66% 0.990 0.0008 0.0008 0.00% 0.983 0.0003 0.0003 0.00% 0.995 

4 -0.1537 -0.1536 0.02% 0.985 0.0339 0.0340 0.29% 0.995 0.0036 0.0035 1.07% 0.990 

5 -0.0008 -0.0008 0.00% 0.992 -0.0001 -0.0001 0.00% 0.994 0.0000 0.0000 0.00% 0.988 

6 -0.0258 -0.0259 0.23% 0.992 -0.0025 -0.0025 0.00% 0.991 -0.0012 -0.0012 0.00% 0.994 

7 -0.4020 -0.4022 0.05% 0.981 0.0938 0.0937 0.12% 0.986 0.0231 0.0230 0.55% 0.982 

8 -0.0643 -0.0643 0.00% 0.987 0.0014 0.0014 0.00% 0.986 -0.0010 -0.0010 0.00% 0.985 

9 -0.2160 -0.2168 0.36% 0.996 0.0161 0.0159 1.42% 0.985 -0.0062 -0.0065 4.90% 0.982 

10 -0.1997 -0.1999 0.10% 0.974 0.0610 0.0609 0.16% 0.986 0.0502 0.0502 0.00% 0.992 

11 -0.1860 -0.1864 0.22% 0.988 -0.0063 -0.0062 0.03% 0.985 0.0051 0.0053 3.22% 0.978 

12 -0.0002 -0.0002 0.00% 0.981 0.0000 0.0000 0.00% 0.974 0.0000 0.0000 0.00% 0.969 

13 -0.0001 -0.0001 0.00% 0.993 0.0000 0.0000 0.00% 0.970 0.0000 0.0000 0.00% 0.975 

14 -1.1484 -1.1497 0.11% 0.991 -0.2129 -0.2139 0.48% 0.971 -0.1031 -0.1037 0.59% 0.985 

15 -3.9496 -3.9901 1.03% 0.985 -0.7531 -0.7539 0.11% 0.980 -0.3398 -0.3401 0.08% 0.985 

16 -2.4723 -2.4320 1.63% 0.986 -0.2371 -0.2343 1.17% 0.973 0.0102 0.0105 2.74% 0.987 

17 -0.5327 -0.5337 0.20% 0.982 0.0462 0.0455 1.34% 0.977 -0.0066 -0.0065 1.67% 0.990 

18 -4.9578 -4.9587 0.02% 0.977 -0.6186 -0.6166 0.32% 0.981 -0.1997 -0.1996 0.07% 0.980 

19 -0.9347 -0.9247 1.07% 0.985 0.1271 0.1231 3.16% 0.983 -0.0093 -0.0094 1.15% 0.979 

20 -1.3160 -1.3274 0.86% 0.988 -0.5541 -0.5642 1.82% 0.975 -0.3337 -0.3346 0.27% 0.974 
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The computational efficiency of the substructuring method is evaluated in terms of 

the computation time to calculate the second-order eigensensitivities with respect to 

the slab elements in the first substructure and all of the slab elements. That is, the first 

elemental parameters rj are designated to the Young‟s moduli of the 24 slab element 

in the first substructure, and the second elemental parameters rk are the Young‟s 

moduli of all 288 slab elements across the whole structure. Among the 288 

parameters of rk, 24 parameters are located in the first substructure, and the 

remainders are in the other substructures as listed in Table 5-5.  

 

It is noted that, computation time cost by the second-order eigensensitivity 

encompasses those in calculation of the first-order eigensensitivity for both the global 

method and the substructuring method. The computation time is shown in Table 5-5. 

The global method totally takes up 13,427 seconds to calculate the second-order 

eigensensitivities with respect to the 24 parameters rj and the 288 parameters rk, 

whereas the substructuring method takes 3,594 seconds. In particular, if parameters rj 

and parameters rk are both located in the first substructure, calculating the 

second-order eigensensitivities with respect to the 24 parameters of rj and 24 

parameters of rk takes 434.4 seconds. In the case that parameters rj and rk are located 

in different substructures, for example the parameters rj are located in first 

substructure and the parameters rk are located in the third, five, six, seven or nine 

substructure ( The third, five, six, seven and nine substructures have 24 parameters rk 

as well, and they have similar size with the first substructure ), calculating the 

second-order eigensensitivity costs about 280 seconds. As expected, the parameters rj 

and rk located in the same substructure takes longer time than they are in different 

substructures, since the former requires the item 
2

j kr r



 

Ψ

 

 which is zero in the latter. 

Similar to the calculation of the first-order eigensensitivity, the number of the master 

modes and the division formation of the substructures affect the computational 

accuracy and efficiency, which deserves several trials before application. 
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Table 5-5: Computation Time of the Global and Substructuring Methods 

  
Global 

method 

Substructuring method 

Location of parameter rk 

Sub 

1 

Sub 

2 

Sub 

3 

Sub 

4 

Sub 

5 

Sub 

6 

Sub 

7 

Sub 

8 

Sub 

9 

Sub 

10 

Sub 

11 

No. of  

elements 
288 24 32 24 32 24 24 24 32 24 32 16 

Time  

(Second) 
13427 

434.4  382.3  286.3  398.7  286.7  283.6  283.0  390.3  282.9  377.6  188.8  

3594 

 

5.4 Summary 

In the first part of this chapter, the first-order eigenvalue derivatives and eigenvector 

derivatives are derived based on the reduced eigenequation of the improved 

substructuring method developed in Chapter 4. The eigensensitivity formula of a 

global structure is assembled from the eigensensitivity matrices of a particular 

substructure and the derivative matrix of a reduced eigenequation by emulating 

Nelson‟s method. Two numerical examples demonstrate that the proposed method can 

achieve a good degree of accuracy when proper master modes are retained. The 

division formation of the substructures also affects the accuracy. A trade-off needs to 

be made between the number of substructures and the size of each. Retaining more 

master modes in the substructures can achieve better accuracy, but result in greater 

computational expense.  

 

In the second part, the second-order eigensensitivity with respect to two parameters is 

derived by further differentiating the reduced eigenequation. If the two parameters are 

located in different substructures, the first-order derivative matrices of two 

substructures that contain the two parameters are calculated to assemble the 

second-order sensitivity matrix of the global structure. In the case that the two 

parameters are in the same substructure, the second-order derivative matrices are 

solely required in the focused substructure. The high accuracy and efficiency of the 

substructuring method for the second-order eigensensitivity are illustrated with a 
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bridge structure. This substructuring method can be generalized to calculate the 

high-order eigensensitivity, by further differentiating the reduced eigenequation. The 

high-order eigensensitivity of the global structure are determined by the derivative 

matrix of particular substructures that contain the designated parameters. The 

substructuring method in calculation of eigensensitivity will be applied to model 

updating process in the following chapter. 
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CHAPTER SIX 

 SUBSTRUCTURING-BASED MODEL UPDATING 

6.1 Introduction 

Due to the uncertainties in geometry, material properties and boundary conditions, the 

dynamic responses of a structure predicted from a highly idealized numerical model 

usually differ from the practical measurements. An effective and efficient model 

updating is necessary to obtain a more accurate FE model to be used for various 

purposes.  

 

Model updating methods are usually classified into one-step methods and iterative 

methods (Brownjohn et al. 2001). The one-step methods directly reconstruct the 

stiffness matrix and mass matrix of the analytical model, while the iterative methods 

modify the physical parameters of the FE model repeatedly to minimize the 

discrepancy between the analytical and experimental modal properties. The latter 

approach allows for the physical interpretation of the predicted parameters and the 

preservation of the symmetry, positive-definiteness and sparseness in the updated 

matrices. As a result, the iterative model updating method is adopted in this research. 

In the iterative model updating methods, the eigensolutions are required to construct 

the objective function, while the eigensensitivities serve to indicate the searching 

direction in each optimization step (Bakir et al. 2007).  

 

The objective function combining the modal properties of the frequencies and mode 

shapes is usually denoted as 
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   
     

 

2 2

2 2

max

A AE E

i i ji ji

i iE E
i i ji i

r r
J r W W 

   

 

    
    
   
   

    (6-1) 

In Eq. (6-1), the eigenvalue and the maximum value of the associated mode shape are 

scaled to unity for the ith mode; E

i  represents the ith experimental eigenvalue 

which is the square of natural frequency, and E

ji  is the associated mode shape at 

the jth point; A

i  and A

ji  denote the ith eigenvalue and mode shape of the 

analytical FE model, which are expressed as the function of the uncertain physical 

parameters  r , and 
iW  and iW  are the weight coefficients considering the 

different accuracy of the measured frequencies and mode shapes (Brownjohn et al. 

2001; Bakir et al. 2007). 

 

The objective function is minimized by adjusting continuously the parameters  r  

of the analytical model through optimization searching techniques. To find the 

optimal searching direction, the derivative matrices of the eigenvalues and mode 

shapes with respect to parameter r can be formulated as 

  

 
 r

S r
r




   

,  
 r

S r
r




    

 

(6-2) 

Using the substructuring approach, the eigenvalues, mode shapes, and their sensitivity 

matrices are calculated by the methods developed in Chapter 4 and Chapter 5. 

 

The elemental stiffness reduction factor (SRF), pi, is employed to indicate the change 

ratio of the updated parameter to the initial value before updating  

  
U O

i i i
i O

i i

r r r
p

r r

 
   (6-3) 

where i = 1, 2, …, m is the uncertain parameters. The superscript „O‟ represents the 

original parameters before updating and the superscript „U‟ represents the updated 
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values after updating. A negative SRF indicates that the updated parameter is weaker 

than the original one and a positive SRF indicates that the updated parameter is 

stronger. 

The lower and upper bounds are imposed during the updating procedure. For 

different purposes, the bounds differ. For example, in updating an initial model in the 

undamaged state, the bounds are set to 

  0.5 0.5ip    (6-4) 

In the damage detection, the damaged elements are usually assumed to be weaker 

than the undamaged state. Consequently, the bounds are set to 

  1 0ip    (6-5) 

A negative SRF indicates the location of the damage and the magnitude quantifies the 

damage severity. 

 

6.2 The Numerical Three-span Frame Structure 

The three-span frame structure described in Chapter 3 is utilized here to demonstrate 

the effectiveness of the proposed substructuring-based model updating process. The 

„experimental‟ frequencies and mode shapes are generated with Lanczos method on 

the global structure, by intentionally introducing a discrepancy on the bending 

rigidity of some elements. Three scenarios are considered as listed in Table 6-1. 

Table 6-1: Simulated Discrepancy in the Elements 

 Case 0 Case 1 Case 2 

Assumed 

discrepancy of 

bending rigidity 

No  

discrepancy 

Element 147(-30%) 

Element 148(-30%) 

Element 147(-30%) 

Element 148(-30%) 

Element 139(-20%) 

Element 140(-20%) 

It is assumed that the first 10 modes are available, and the measurements are obtained 

at the points and directions denoted in Figure 6-1. The mode shapes have been 
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normalized to the mass matrix. The objective function is the discrepancies of both the 

frequencies and mode shapes between the experimental and analytical model. The 

weight coefficients are set to 1.0 for the frequencies and 0.1 for the mode shapes 

(Brownjohn et al. 2001; Bakir et al. 2007). 
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Figure 6-1: Measured DOFs and Simulated Damaged Elements of the Three-Span 

Frame Structure (Unit: m) 

In each iteration, the eigensolutions and the eigensensitivities are calculated with the 

FRFS method proposed in Chapter 4 and Chapter 5. The frame is disassembled into 

three substructures (NS = 3) at 8 nodes (Figure 3-3). Using the substructuring method, 

the first 30 modes are retained as master modes in each substructure to calculate the 

first 10 eigensolutions and eigensensitivities of the full-DOF global structure. The 

eigenmodes and eigensensitivities at the measured points are then singled out to 

match the „experimental‟ modal data for model updating purpose. The bending 

rigidity of all column elements is assumed to be uncertain parameters. Accordingly, 

there are 64 updating parameters in total.  

  : Measurement 
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The optimization is processed with the trust-region method provided by the Matlab 

Optimization Toolbox (Zhang 2003; Bakir et al. 2007). The algorithm can 

automatically select the steps and the searching directions according to the objective 

function and the provided eigensensitivity matrices. The model updating process 

stops when the pre-defined tolerance of the objective function or the maximum 

number of iterations is reached.  

 

The FRFS method introduces some slight errors in calculation of the eigensolutions 

and eigensensitivities, which is regarded as methodology error (Xia 2002). This 

methodology error is first investigated by generating the experimental data without 

introducing any discrepancy on the elemental parameters, as denoted Case 0 in Table 

6-1. The analytical eigensolutions are calculated using the substructuring method and 

are compared with the experimental modal data which is generated using the 

traditional global method in Table 6-2. Some minor differences are found in Table 6-2, 

as expected. To investigate the influence of these slight differences on model updating 

results, model updating is conducted to find out the change in the elemental bending 

rigidity due to the methodology error. The identified relative change in the bending 

rigidity before and after updating is shown in Figure 6-2(a). It verifies that the 

methodology error in calculation of the eigensolutions and eigensensitivities has a 

negligible effect on the model updating results.  

 

The experimental modal data is then generated by introducing certain known 

discrepancies in the bending rigidity of some elements, which are given in Table 6-1. 

In Case 1, the bending rigidity of a column in the first substructure is reduced by 30%. 

The frequencies and model shapes before and after updating are compared in Table 

6-3, which demonstrates that the analytical modal data closely match the simulated 

experimental data after updating. The identified change in the elemental parameters is 

plotted in Figure 6-2(b), which coincides with the assumed one. 
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Table 6-2: Frequencies and Mode Shapes of the Frame with the Proposed 

Substructuring Method (Case 0) 

Modes 

Experimental 

frequencies 

(Hz) 

Analytical 

frequencies 

(Hz) 

Diff. 

(%) 
MAC 

1 1.7843 1.7843 0.000% 1.0000 

2 5.5365 5.5365 0.000% 1.0000 

3 9.8198 9.8199 0.001% 0.9999 

4 14.6864 14.6867 0.002% 0.9999 

5 16.6188 16.6485 0.179% 0.9967 

6 18.8074 18.8420 0.184% 0.9958 

7 20.1977 20.1983 0.003% 0.9999 

8 22.6170 22.6690 0.230% 0.9949 

9 25.4704 25.5241 0.211% 0.9941 

10 26.1799 26.1862 0.024% 0.9986 

 

Without losing generality, the elements located in different substructures are assumed 

to have some known discrepancy as well. In Case 2, the bending rigidity of two 

columns, which are located in different substructures, is reduced by 30% and 20%, 

respectively. The frequencies and mode shapes before and after updating are 

compared in Table 6-4, and the identified change in bending rigidity is shown in 

Figure 6-2(c). After updating, the frequencies and mode shapes of the analytical 

model reproduce the simulated experimental modal data accurately, and the identified 

change in the elemental parameters agrees with the assumed one very well. 

 

Both Case 1 and Case 2 verify that, using the proposed substructuring method, the 

location and severity of the assumed discrepancy in elemental parameters can be 

successfully identified after updating. The proposed substructuring method is 

effective to be applied in model updating process. It again proves that the influence of 

the errors due to FRFS method is insignificant, when proper size of the master modes 

is retained. One can improve the accuracy of the eigensolutions and eigensensitivities 

by including more master modes in the substructures as demonstrated in Chapter 4 

and Chapter 5. 
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Table 6-3: Frequencies and Mode Shapes of the Frame Structure Before and After 

Updating (Case 1) 

Modes 

Experimental 

frequencies 

(Hz) 

Before updating After updating 

Analytical 

frequencies 

(Hz) 

Diff. 

 (%) 
MAC 

Analytical 

frequencies 

(Hz) 

Diff. 

(%) 
MAC 

1 1.7800  1.7843  0.24% 1.0000  1.7803  0.01% 1.0000  

2 5.5263  5.5365  0.18% 1.0000  5.5274  0.02% 1.0000  

3 9.8055  9.8199  0.15% 0.9999  9.8048  0.01% 1.0000  

4 14.6566  14.6867  0.21% 0.9998  14.6572  0.00% 1.0000  

5 16.5682  16.6485  0.49% 0.9934  16.5633  0.03% 1.0000  

6 18.6379  18.8420  1.10% 0.9897  18.6339  0.02% 1.0000  

7 20.1435  20.1983  0.27% 0.9995  20.1453  0.01% 1.0000  

8 22.2818  22.6690  1.74% 0.9838  22.2844  0.01% 1.0000  

9 25.2257  25.5241  1.18% 0.9791  25.2280  0.01% 0.9999  

10 26.0476  26.1862  0.53% 0.9934  26.0457  0.01% 1.0000  

 

Table 6-4: Frequencies and Mode Shapes of the Frame Structure Before and After 

Updating (Case 2) 

Modes 

Experimental 

frequencies 

(Hz) 

Before updating After updating 

Analytical 

frequencies 

(Hz) 

Diff. 

(%) 
MAC 

Analytical 

frequencies  

(Hz) 

Diff. 

(%) 
MAC 

1 1.7783  1.7843  0.34% 1.0000  1.7786  0.02% 1.0000  

2 5.5089  5.5365  0.50% 1.0000  5.5100  0.02% 1.0000  

3 9.7976  9.8199  0.23% 0.9998  9.7971  0.01% 1.0000  

4 14.6183  14.6867  0.47% 0.9997  14.6243  0.04% 1.0000  

5 16.5153  16.6485  0.81% 0.9927  16.5212  0.04% 1.0000  

6 18.6042  18.8420  1.28% 0.9875  18.6008  0.02% 1.0000  

7 20.0675  20.1983  0.65% 0.9987  20.0755  0.04% 1.0000  

8 22.2570  22.6690  1.85% 0.9816  22.2602  0.01% 1.0000  

9 25.1976  25.5241  1.30% 0.9775  25.1877  0.04% 0.9999  

10 26.0313  26.1862  0.60% 0.9936  26.0383  0.03% 0.9999  
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(a) Case 0 
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(b) Case 1 
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(c) Case 2 

Figure 6-2: Location and Severity of Elemental Stiffness Reduction for Different 

Damage Configurations 
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6.3 The Experimental Frame Structure 

In this section, the substructuring-based model updating approach is applied to the 

laboratory-tested frame structure. The frame structure is first updated using the 

measured modal data in the undamaged state, and the refined model is subsequently 

used for damage identification. The experimental set-ups and the results are provided 

in Chapter 3. 

 

The frame is modelled by 44 nodes and 45 two-dimensional elements as shown in 

Figure 6-3, and each element is 100 mm in length. In experimental testing, the 

accelerometers are arranged at the nodes to measure the translational vibration.  

 

The Young‟s moduli of all 45 elements are updated, with the initial values setting to 

210
11

 Pa. The analytical model is separated into three substructures, as shown in 

Figure 6-3. Accordingly, three are 17 updating parameters in the first substructure, 15 

in the second and 13 in the third. The first 30 modes in each substructure are chosen 

as the master modes to calculate the first 25 eigensolutions and eigensensitivities of 

the global structure. It is noted that in the range of 0 ~ 400Hz only 14 modes were 

measured in the experiment and some modes may be missed. The eigensolutions are 

calculated using the FRFS method proposed in Chapter 4 and the eigensensitivity are 

calculated employing the substructuring method proposed in Chapter 5. Concerning 

this relatively small structure, inclusion of 30 master modes in each substructure can 

provide sufficient accurate results since an independent substructure has about 50 

eigenmodes in total.  

 

Using the eigensolutions and eigensensitivities calculated with the substructirng 

method, the analytical model is tuned to match the 14 frequencies and mode shapes 

measured in the experiment (Figure 3-19) through an optimization process. The 
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weight coefficients are set to 1.0 for the frequencies and 0.1 for the mode shapes. The 

frequencies and MAC values of mode shapes before and after updating are compared 

with the measured data in Table 6-5, which reveals that the updated model is better at 

representing the real frame structure. Figure 6-4 reports the SRF values of the three 

substructures after updating. It is noted that the change in bending rigidity of all 

elements are less than 10%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3: Analytical Model of the Laboratory Frame Structure and the Updating 

Substructures
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Afterwards, the model improved in the undamaged state is used for damage 

identification. Two damage configurations were introduced artificially. The mass loss 

due to the cuts is ignored in the analytical model. In the first damage configuration, 

the cut is located in the first substructure. In consequence, only the 17 elemental 

parameters in Substructure 1 are adjusted to ensure the analytical modal data match 

the measured modal data, whereas Substructure 2 and Substructure 3 are used directly 

without change. As before, the first 30 modes are retained in each substructure to 

calculate the first 25 eigensolutions and eigensensitivities of the global structure, 

which are compared with the 14 eigenmodes measured in the experiment through the 

optimization process. In each iteration, only the first substructure is re-analyzed, and 

is then assembled together with the second and third substructures that remain 

unchanged through the whole process to calculate the eigensolutions of global 

structure. The substructural eigensensitivity matrices with respect to the 17 

parameters are calculated for the first substructure solely whereas those in the second 

and third substructures are zero-matrix. The substructural eigensensitivity matrices 

are then assembled to obtain the eigensensitivity of the global structure. 

 

The identified SRF values are shown in Figure 6-5, and the frequencies and mode 

shapes before and after updating are compared in Table 6-6. It is seen that, Element 2 

has an obvious reduction in stiffness, which agrees with the location of the cut in the 

experiment. Other undamaged elements are incorrectly identified with small SRFs, 

which may due to the measurement noise, methodology errors and modelling errors. 

 

It should be noted that the magnitude of SRF indicates the damage severity of the 

element. Here Element 2 has an SRF of about 20%. This, however, represents the 

overall equivalent reduction in the elemental bending rigidity due to the local cut with 

60% decrease in width. It is difficult to use one single global parameter to quantify 

the local damage. 
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In the second damage configuration, the two cuts are located in the first and second 

substructures, respectively. Consequently, the first and second substructures are 

updated, while the third substructure remains unchanged. The SRF values are 

demonstrated in Figure 6-6. The frequencies and mode shapes after updating match 

better with the measured ones than those before updating as compared in Table 6-7.  

 

In Figure 6-6, Element 2 in the first substructure and Element 2 in the second 

substructure are found with significant SRFs. The identified locations coincide with 

the cuts in the experiment. The SRF of Element 2 in the first storey is about -23%, 

similar to that identified in the first damage configuration, because the cut is 

unchanged in the two damage configurations.  

 

Table 6-5: Frequencies and Mode Shapes Before and After Updating (Undamaged 

State) 

Mode 
Analytical 

modes 

Measured 

frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Diff. 

(%) 
MAC 

Frequency 

(Hz) 

Diff. 

(%) 
MAC 

1 1 3.12 3.16 1.27% 0.993 3.11 -0.22% 0.997 

2 2 9.11 9.23 1.27% 0.976 9.15 0.45% 0.997 

3 3 14.34 14.04 -2.13% 0.989 14.32 -0.20% 0.998 

4 4 52.46 50.42 -3.88% 0.981 52.51 0.09% 0.989 

5 5 58.18 56.51 -2.87% 0.980 58.50 0.55% 0.988 

6 6 66.80 64.34 -3.68% 0.871 66.86 0.09% 0.972 

7 7 71.65 70.80 -1.18% 0.928 71.49 -0.23% 0.994 

8 8 82.14 82.51 0.45% 0.877 82.13 -0.01% 0.938 

9 9 82.87 80.98 -2.29% 0.885 83.36 0.59% 0.989 

10 16 200.13 211.12 5.49% 0.919 204.83 2.35% 0.963 

11 17 222.36 215.91 -2.90% 0.920 218.88 -1.56% 0.984 

12 18 226.55 220.37 -2.73% 0.913 225.15 -0.62% 0.965 

13 19 236.58 230.60 -2.53% 0.905 235.49 -0.46% 0.975 

14 22 383.33 395.44 3.16% 0.903 385.19 0.48% 0.964 

average    2.56% 0.932  0.56% 0.980 

a
 Average of absolute value. 
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Table 6-6: Frequencies and Mode Shapes Before and After Updating (Damaged State 1) 

Mode 
Analytical 

modes 

Measured 

frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Diff. 

(%) 
MAC 

Frequency 

(Hz) 

Diff. 

(%) 
MAC 

1 1 3.11 3.11 0.00% 0.991 3.11 -0.00% 0.992 

2 2 9.09 9.15 0.65% 0.994 9.12 0.27% 0.996 

3 3 14.34 14.32 -0.17% 0.993 14.32 -0.13% 0.996 

4 4 52.24 52.51 0.51% 0.998 52.42 0.34% 0.994 

5 5 57.72 58.50 1.34% 0.982 58.08 0.62% 0.983 

6 6 66.73 66.86 0.20% 0.973 66.65 -0.11% 0.983 

7 7 71.28 71.49 0.29% 0.989 71.15 -0.18% 0.990 

8 8 81.60 82.13 0.65% 0.872 81.90 0.37% 0.939 

9 9 82.19 83.36 1.43% 0.870 82.07 -0.14% 0.945 

10 16 199.70 204.83 2.57% 0.934 201.02 0.66% 0.952 

11 17 220.93 218.88 -0.93% 0.876 221.51 0.26% 0.944 

12 18 224.97 225.15 0.08% 0.854 224.92 -0.02% 0.932 

13 19 234.78 235.49 0.30% 0.954 235.18 0.17% 0.953 

14 22 382.50 385.19 0.70% 0.927 381.05 -0.38% 0.967 

Average    0.71% 0.943  0.27% 0.969 

a
 Average of absolute value. 

Table 6-7: Frequencies and Mode Shapes Before and After Updating (Damaged State 2) 

Mode 
Analytical 

modes 

Measured 

frequency 

(Hz) 

Before updating After updating 

Frequency 

 (Hz) 

Diff. 

(%) 
MAC 

Frequency 

 (Hz) 

Diff. 

(%) 
MAC 

1 1 3.11 3.11 0.00% 0.996 3.11 0.00% 0.995 

2 2 9.09 9.15 0.68% 0.994 9.09 -0.07% 0.995 

3 3 14.33 14.32 -0.13% 0.993 14.26 -0.53% 0.996 

4 4 51.88 52.51 1.20% 0.989 52.32 0.84% 0.990 

5 5 57.41 58.50 1.90% 0.946 57.04 -0.64% 0.973 

6 6 66.48 66.86 0.57% 0.906 66.40 -0.13% 0.972 

7 7 70.73 71.49 1.08% 0.954 70.47 -0.37% 0.970 

8 8 80.99 82.13 1.41% 0.862 81.64 0.80% 0.946 

9 9 81.98 83.36 1.69% 0.850 82.08 0.13% 0.944 

10 16 199.11 204.83 2.87% 0.928 200.78 0.84% 0.972 

11 17 220.03 218.88 -0.52% 0.925 219.36 -0.31% 0.972 

12 18 224.14 225.15 0.45% 0.872 224.42 0.12% 0.959 

13 19 233.50 235.49 0.85% 0.904 233.97 0.20% 0.948 

14 22 376.49 385.19 2.31% 0.911 378.78 0.61% 0.961 

Average    1.14% 0.931  0.41% 0.971 

a
 Average of absolute value. 
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(a) First Substructure 
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(b) Second Substructure 
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(c) Third Substructure 

Figure 6-4: SRF Values of the Three Substructures in the Undamaged State 
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Figure 6-5: SRF Values of the First Damage Configuration (First Substructure) 
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(b) Second Substructure 

Figure 6-6: SRF Values of the Second Damage Configuration 
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The SRF of Element 2 in the second substructure is identified to have -35%. The 

reduction ratio is larger than the damage that in the first substructure, although the 

two cuts have the same depth and width. This is because the cuts are at different 

locations of the elements. In particular, the cut in the first substructure is 80 mm away 

from the bottom of the element while that in the second substructure is 50 mm away 

from the bottom of the element. The SRF value represents the overall equivalent 

reduction in the elemental stiffness due to the local cut. A cut in different location of 

an element has different effect on the equivalent stiffness reduction of that element. 

Nevertheless, the present method can locate damage correctly.  

 

6.4 The Balla Balla River Bridge 

The Balla Balla River Bridge is employed here, to illustrate the feasibility and 

computational efficiency of the proposed substructuring method in real structures. A 

field vibration test was conducted to extract the first 10 natural frequencies and mode 

shapes at 133 points on the bridge deck (Xia et al. 2008). An FE model based on 

design drawings was established. Here the analytical model will be updated using 

both the traditional global method and the proposed substructuring method to 

investigate the effectiveness and efficiency of the substructuring method in practical 

model updating. 

 

There are 1289 physical parameters selected as updating candidates, which include 

the Young‟s modulus (E) of diaphragms, girders, slabs, and the axial rigidty (EA) and 

bending rigidity (EIxx, EIyy) of the shear connectors. The objective function in this 

example combines the differences in the frequencies and mode shapes between the 

experimental data and the analytical model. The weight coefficients are set to be 0.1 

for the mode shapes and 1.0 for the frequencies.  

 

Using the traditional model updating method, the eigensolutions and 
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eigensensitivities are calculated based on the system matrices of the global structure 

employing the Lanczos method and the Nelson‟s method. The first 30 global 

eigenmodes are extracted from the FE model to match the 10 experimental modes. 

The model updating process is terminated after 69 iterations, which costs about 86.16 

hours on an ordinary personal computer and one iteration takes about 1.26 hours. The 

convergence process in terms of the norm of the objective function is demonstrated in 

Figure 6-7. The updating details and results can be found in Xia et al. (2008).  
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Figure 6-7: Convergence of the Model Updating Process with the Substructuring 

Method and the Global Method 

 

Afterwards, the substructuring method is employed to calculate the eigensolutions 

and eigensensitivities of the global structure for model updating. The optimization 

algorithm, updating parameters, and convergence criterion are the same as those used 

in the previous traditional model updating. In Chapter 5, it was proved that dividing 

the bridge structure into 11 substructures could achieve higher computational 

efficiency than other division formations in calculation of the eigensensitivity. Since 

the eigensensitivities usually consume dominant computation time in model updating 

process, the global structure is thus divided into 11 substructures along the 

longitudinal direction. Division of substructures can be referred to Figure 5-4 and 

Table 4-7.  

40 
master 
modes 

60 
master 
modes 

80 
master 
modes 

90 
master 
modes 
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As stated in Chapter 4 and Chapter 5, size of master modes retained in the 

substructures influences the accuracy of the eigensolutions and eigensensitivities, and 

thus affects the convergence of the model updating process. To balance the accuracy 

and efficiency, different number of master modes is retained in the substructures 

according to the progress of the model updating. At the beginning, the first 40 modes 

of each substructure are retained as master modes to calculate the first 30 

eigensolutions and eigensensitivities of the global structure. The number of master 

modes retained in the substructures then increases gradually as the convergence slows 

down. At the final several steps, 90 modes are retained in each substructure to 

improve the accuracy of the eigensolutions and eigensensitivities. With this adaptive 

scheme, the substructuring-based model updating process is completed within 76 

iterations and the convergence process is plotted in Figure 6-7. The computation time 

spent on different stages is listed in Table 6-8 and totals about 48.07 hours, which is 

about 56% of that using the global model updating. 

 

Table 6-8: Computation Time and Number of Iterations with the Different Master 

Modes 

  
Global 

method  

Substructuring method 

40 master 

 modes 

60 master 

modes 

80 master 

modes 

90 master 

modes 

Time for each 

iteration (Hour) 
1.26 0.43 0.57 0.69 0.84 

No. of iterations 69 16 18 31 11 

Total for the updating 

process (Hour) 
86.16 48.07 

 

The frequencies and mode shapes of the updated structure are compared with those 

values before updating as listed in Table 6-9. It is observed that the substructuring 

method can achieve similar results as the global method. In particular, the averaged 
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difference in frequencies between the updated model and the experimental 

measurement is less than 1%. The MAC values are improved from 0.85 to 0.93. 

Therefore, even for the practical structure with a large number of updating parameters, 

the proposed substructuring-based model updating method is computationally 

efficient and accurate.  

 

Table 6-9: The Frequencies and Mode Shapes of the Bridge Before and After 

Updating 

Mode 

Measured 

Freq. 

(Hz) 

Before updating 
After updating 

Global method Substructuring method 

Freq. 

(Hz) 

Diff. 

(%) 
MAC 

Freq. 

(Hz) 

Diff. 

(%) 
MAC 

Freq. 

(Hz) 

Diff. 

(%) 
MAC 

1 6.76 6.26 -7.34% 0.93 6.53 -3.47% 0.95 6.55 -3.17% 0.95 

2 7.95 7.74 -0.27% 0.96 7.93 -0.27% 0.99 7.92 -0.33% 0.99 

3 10.06 8.71 -13.37% 0.71 10.02 -0.42% 0.94 10.02 -0.39% 0.94 

4 10.75 12.13 12.84% 0.80 11.01 2.42% 0.89 11.03 2.60% 0.89 

5 11.03 9.45 -14.36% 0.76 10.86 -1.56% 0.82 10.85 -1.60% 0.81 

6 12.64 13.27 4.98% 0.85 12.58 -0.45% 0.97 12.59 -0.38% 0.96 

7 14.71 17.55 19.29% 0.92 14.77 0.38% 0.90 14.78 0.45% 0.90 

8 15.76 18.52 17.49% 0.88 15.77 0.06% 0.93 15.77 0.06% 0.94 

9 16.39 18.74 14.35% 0.82 16.38 -0.07% 0.95 16.39 0.00% 0.95 

10 20.18 24.91 23.42% 0.86 20.23 0.24% 0.92 20.28 0.50% 0.93 

Averaged 12.77% 0.85  0.93% 0.93  0.95% 0.93 

 

6.5 Summary 

This chapter presents a substructuring-based model updating procedure, in which the 

eigensolutions and the eigensensitivities are calculated with the substructuring 

method presented in Chapter 4 and Chapter 5.  

 

The effectiveness of the substructuring-based model updating method was verified by 

a numerical three-span frame structure. Although the substructuring method 

introduces some slight errors in calculating the eigensolutions and eigensensitivities, 
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their effects on the model updating are negligible.  

 

Afterwards, the substructuring method is applied to update a laboratory-tested frame 

structure. With the refined model improved in the undamaged state, the 

substructuring-based model updating method can identify the artificial damages in the 

structure successfully by adjusting a part of the elemental parameters within one or 

more substructures.  

 

Finally, application to a practical bridge demonstrates that the proposed 

substructuring-based method is more efficient in updating large-scale structures with 

a large number of design parameters than the global-based method, subject to the 

same accuracy.  

 

A successful model updating process depends on many aspects, such as high-quality 

experimental data, a validated FE model, a proper optimization algorithm, and the 

experience of the analyst. In the proposed substructuring-based model updating 

process, special attention should be paid to the division formation of the substructures 

and the number of master modes retained in each substructure. One may try a few 

times to obtain the optimised number of substructures and number of master modes 

before updating.  
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CHAPTER SEVEN 

AN ITERATIVE SUBSTRUCTURING METHOD FOR 

EIGENSOLUTION AND EIGENSENSITIVITY 

7.1 Introduction 

In the previous chapters, the master modes in the substructures are assembled to 

represent the eigensolutions and eigensensitivities of the global structure. The 

reduced eigenequation is obtained by approximating a non-linear item with the 

truncation of the Taylor expansion. Consequently, it results in some slight errors in 

the eigensolutions and associated eigensensitivities, which may not be desirable in 

some applications. For example, during an optimization process, accurate 

eigensolutions and eigensensitivities are required when the results are close to the 

optimum, as even small errors may lead to a wrong search direction thus hindering 

the convergence of solution. To achieve higher accuracy, one way is to include more 

master modes in the substructures, which results in two difficulties: first, extracting 

more master modes from the substructures may be computationally expensive, 

specifically when the individual substructures are large in size; second, including 

more master modes increases the size of the reduced eigenequation. These two 

difficulties may decrease the efficiency of the substructuring method. 

 

In this chapter, a new iterative substructuring method is proposed to accurately obtain 

the eigensolutions and eigensensitivities of a structure. Similar to the FRFS and SRFS 

methods proposed in the previous chapters, only a few of the lowest modes are 

retained in each substructure, and a residual flexibility matrix serves to compensate 

the contribution of the higher modes. Nevertheless, using this new approach, the 
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higher modes contribute to the reduced eigenequation in an iterated form, from which 

the eigenvalues can be obtained accurately. The eigenvalue derivatives can also be 

derived based on this iterative eigenequation. The eigenvectors and the eigenvector 

derivatives can be calculated upon the reduced eigenequation directly without 

iteration.  

 

Other than the FRFS and SRFS method by including more master modes, this 

iterative method achieves high accuracy with an iterative scheme using a few master 

modes. Therefore, the computation cost in extracting the master eigensolutions from 

the independent substructures is reduced. In addition, this method keeps the reduced 

eigenequation in small size. Upon convergence, the iterative scheme reproduces the 

eigensolutions and eigensensitivities of the original structure accurately.  

 

7.2. Eigensolutions with the Iterative Substructuring Method 

As described in Chapter 4, the eigenequation (Eq. (4-17)) of the original global 

structure is constructed as 

  
p

T τ

      
    

     

z 0Λ I Γ

0Γ 0
 (7-1) 

Dividing the eigenmodes of the substructures into the master and slave parts, the 

primitive eigenequation (Eq. (7-1)) is disassembled into 

  

p

m m m

p

s s s

T T

m s τ





      
     

      
          

Λ I 0 Γ z 0

0 Λ I Γ z 0

Γ Γ 0 0
 

(7-2)

 

From the second line of Eq. (7-2), one has  

         
1

p

s s s τ = τ


 z Λ I Γ t
 

(7-3)
 

which gives 

  
 

1
p

s s =


Λ I Γ t
 

(7-4)
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Eq. (7-4) can be re-written as 

  
   

1 1
p p

s s s= 
 

t Λ Γ Λ t
 

(7-5) 

 

The complete eigenvector of the eigenequation (Eq. (7-2)) is therefore expressed as  

  1

m

m m

s
τ τ

τ

   
      

       
         

z I 0
z z

z 0 t T

0 I
 

(7-6)

 

Substituting Eq. (7-6) into Eq. (7-2) and pre-multiplying 
1T  on both sides of Eq. 

(7-2) reduces the eigenequation to  

  
p

mm m m

T T

m s
τ

      
    

      

z 0Λ I Γ

0Γ Γ t
 

(7-7) 

The second line of Eq. (7-7) gives 

     
1

T T

s m mτ


  Γ t Γ z  (7-8) 

Accordingly, the eigenvector of the reduced eigenequation (Eq. (7-7)) is expressed as 

  
 

1 2

m

m mT T

s m
τ



  
   
    

Iz
z T z

Γ t Γ
 (7-9) 

Substituting Eq. (7-9) into Eq. (7-7) and pre-multiplying 
2T  on both sides of Eq. 

(7-7) gives 

       
1

p T T

m m m s m m
   

  
Λ I Γ Γ t Γ z 0  (7-10) 

As T p

s s=Γ t CΦ t  and C is a constant matrix, p

sΦ t  is required to solve the reduced 

eigenequation. Pre-multiplying p

sΦ  on both sides of Eq. (7-5) gives  

  
   

1 1T
p p p p T p p

s s s s s s= = 
 

   Φ t Φ Λ Φ C Φ Λ t
 

(7-11) 

Due to the orthogonality p
s

T
p p p

s s N
   Φ M Φ I , it has 

 
   

1 -1T T
p p p p T p p p p p

s s s s s s s s= = 


      Φ t Φ Λ Φ C Φ Λ Φ M Φ t  

 p T p p  G C G M  
 

(7-12) 
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in which  
1 T

p p p p

s s s



   G Φ Λ Φ  is the primitive form of the residual flexibility and 

given by the diagonal assembly of the residual flexibility matrices of the independent 

substructures as 

 

         

         

1 1
1 1 1 1

1

1 1
s S S S

T

m m m

T
p p p

s s s

T
N N N N

m m m

 



 

  
  

      
     

K Φ Λ Φ

Φ Λ Φ

K Φ Λ Φ



   
(7-13) 

 

Finally, the reduced eigenequation Eq. (7-10) can be expressed in a simple form as  

  
    d m mK z z  (7-14) 

where  
1p T

d m m m
  

 
K Λ Γ C Γ . 

 

As   includes unknown  , an iterative process is required to solve Eq. (7-14). 

From Eq. (7-12), the iteration starts with 
 1

  as  

  
 1 p T= G C  (7-15) 

where the number in the square bracket indicates the iteration step. With the initial 

value 
 1

 , the eigensolutions can be calculated simultaneously for all interested 

modes by  

           
1 1 1 1p p T T

m m m m m
  

  
Λ Γ CG C Γ z z  (7-16) 

 

From Eq. (7-12), the iteration formulae can be established (k ≥ 2) as follows. 

1)      1 1k k kp T p p  
 

 G C G M . 
 

(7-17) 

2)     
1

k kp T

d m m m


 K Λ Γ C Γ .  (7-18) 

3) Calculate the eigenvalue 
 k

  in the kth iteration by conventional eigensolvers 
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such as QR algorithm or the Cholesky factorization (Bathe 1982).  

When the eigenvalue in the kth iteration reaches the required accuracy, the 

eigenequation 
       k k k k

d m mK z z  is solved to estimate both 
 k

  and 
 k

mz . The 

eigenvector of the global structure is then recovered by calculating  kp

m mΦ Φ z . 

 

It is noted that, the initial eigenequation of Eq. (7-16) is equivalent to the FRFS 

method, and the second iteration is equivalent to the SRFS method proposed in 

Chapter 4.  

 

In Eq. (7-17),      1 1k k kp T p p  
 

 G C G M  is calculated at the substructure level. 

In other words, 
  

            
 1

1
k k

kj j j j jT  



 G C G M  is calculated for the jth 

substructure ( j=1, 2, …, NS ) independently, and then the individual substructures are 

assembled in the diagonal form. 

 

Eq. (7-12) reveals that   depends on  , which varies for different modes. The 

iteration needs to be performed mode by mode. In practice, the eigensolutions of the 

lower modes generally converge faster than those of the higher modes.  

 

During the iteration process, only the item   needs to be re-calculated, while other 

items, such as p

mΛ  and 
mΓ , remain unchanged. Furthermore, the reduced system 

matrix 
dK  is equal in size to the number of master modes of the substructures, and 

thus the iteration process does not require much additional computational power. This 

will be explained in more detail in the discussion of the numerical examples.  
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7.3. Eigensensitivities with the Iterative Substructuring Method 

This section presents the method for deriving the first-order derivatives of the 

eigenvalues and eigenvectors with respect to an elemental parameter. As before, the 

elemental parameter is denoted by r in the rth substructure, which could be the 

bending rigidity or axial rigidity of an element.  

 

The reduced eigenequation (Eq. (7-14)) can be rewritten for the ith mode as  

  
       

1p T

m i m m m i 
   

 
Λ I Γ C Γ z 0

 
(7-19) 

Eq. (7-19) is differentiated with respect to r as  

 
   

     
   

1

1

p T

m i m m m
ip T

m i m m m i
r r

 
 




         

   

Λ I Γ C Γz
Λ I Γ C Γ z 0

   
(7-20) 

 

7.3.1 Eigenvalue Derivatives 

Pre-multiplying  
T

iz  on both sides of Eq. (7-20) gives 

     
 

 
   

   

1

1

p T

m i m m mT Tip T

i m i m m m i i
r r

 
 




         

   

Λ I Γ C Γz
z Λ I Γ C Γ z z 0

   
(7-21) 

Given Eq. (7-19), Eq. (7-21) can be transformed into 

   
  

 

1 T
p

m mTi m
i i

r r r


    

   
  

Γ C ΓΛ
z z  (7-22) 

in which 

  
   

 
   

1

1 1 1 1

T
T

m m
T Tm m
m m m m

r r r r

 
   



   
  

  
   

Γ C Γ CΓ Γ
C Γ Γ C C Γ Γ C  
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 rp

m m

r r

 
 

  
  
 
  

0 0 0

Λ Λ
0 0

0 0 0

, 
 rT p

m m m

r r r

 
 

    
   
 
  

0 0 0

Γ Φ Φ
C C 0 0

0 0 0

 

where 
mΓ ,  iz , and  

1



C  were obtained during the calculation of the 

eigensolutions, 
p

m

r





Λ
 and 

T

m

r





Γ
 are associated with the eigensolution derivatives of 

the master modes of the substructures which are zeros except for those in the rth 

substructure, and 
 r

m

r





Λ
 and 

 r

m

r





Φ
 can be calculated using traditional approaches 

such as Nelson‟s method by treating the rth substructure as an independent structure. 

 
r





C
 is thus required to calculate the first-order derivatives of the eigenvalues. 

 

According to Eq. (7-12),   is differentiated as 

  
p p

T p p p p p

r r r r r

  
  
     

    
     

G G
C M G M G M  (7-23) 

The derivative matrix of the first-order residual flexibility 
p

G  with respect to 

parameter r can be represented by the derivative of the residual flexibility of the rth 

substructure as  

  
 rp

r r

 
 

  
  
 
  

0 0 0

G G
0 0

0 0 0

 (7-24) 

where 

 
          

  
     

       
1 1 1

1 1

T T
r r r r r r rr

r m m m m m m
r r

r r r r

  

 
        

   
   

K Φ Λ Φ Φ Λ ΦKG
K K

 

Iteration is required to achieve an accurate 
r




. In the first round, 
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 1 p
T

r r

  
 

  

G
C . Afterwards, 

r




 in the kth iteration is expressed as  

     11 kk kp p
T p p p p p

r r r r r

  
  

          
                    

G G
C M G M G M  (7-25) 

and the eigenvalue derivative in the kth step is obtained as 

 k

i

r

 
 

 

     
 

     
1 1 1 1

kp T
T T Tm m m

i m m m m i
r r r r


   

   
    

    
      

Λ Γ Γ
z C Γ Γ C C C Γ Γ C z

   (7-26) 

The eigensensitivities can be calculated for all modes simultaneously in the initial 

iteration. Thereafter, the iteration is performed mode by mode. In each iteration, only 

r




 needs to be re-calculated and the other items remain unchanged. 

 

7.3.2 Eigenvector Derivatives 

The ith eigenvector of the global structure can be recovered by calculating 

   p

i m iΦ Φ z
 

(7-27) 

Differentiating Eq. (7-27) with respect to parameter r gives  

  
 

p
pi m i

i m
r r r

   
   

   

Φ Φ z
z Φ

 
(7-28) 

In Eq. (7-28),  iz  and p

mΦ  are already known, and 
p

m

r





Φ
 are the eigenvector 

derivatives of the substructures, which are non-zero only for the rth substructure. 

i

r

 
 
 

z
 can be calculated directly from Eq. (7-20) by applying Nelson‟s method to 

the reduced eigenequation. The procedure is similar to that described in Section 5.2.2, 

which is not shown here for simplification. Therefore, calculation of the eigenvector 
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derivatives of the global structure does not need any iteration. This is a major 

advantage of the proposed approach, because calculation of the eigenvector 

derivatives usually costs a great deal more in computation time and resources than the 

calculation of the eigensolutions and eigenvalue derivatives. The computational 

accuracy and efficiency of the proposed method is investigated through two 

numerical examples in the following section. 

 

7.4 Case Studies 

7.4.1 The Three-span Frame Structure 

The three-span frame structure with three substructures shown in Figure 7-1 is 

utilized here to verify the accuracy of the iterative substructuring method for 

calculating the eigensolutions and eigensensitivities.  

 

The traditional Lanczos method is first employed to calculate the first 10 

eigensolutions of the global structure. The results are treated as exact for comparison, 

and are listed in Table 7-1. The proposed iterative substructuring method is then 

utilized to calculate the first 10 eigensolutions of the global structure, by choosing the 

first 20 modes as the master modes in each substructure.  

 

The convergence criterion is set to Tol = 1×10
-6

, which means that the iteration stops 

when the relative difference in the frequencies from two consecutive iterations is less 

than 10
-6

. The convergence of the first 10 frequencies is listed in Table 7-1. The initial 

step in Table 7-1 denotes the results of the substructuring method without iteration, 

which is equivalent to the FRFS method presented in Chapter 4.  

 

Table 7-1 shows that the frequencies in the absence of iteration are insufficiently 

accurate except for the lowest modes, when only 20 master modes are retained in 
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each substructure. With a few iterations, however, the predefined tolerance of 10
-6

 can 

be achieved for all modes. Table 7-1 also compares the MAC values of the 

eigenvectors obtained using the substructuring method with those using the global 

method. The results show that the MAC values of the eigenvectors are about 0.99 in 

the initial step, but are improved to greater than 0.999 after a few iterations.  

 

Substructure 2

Substructure 1

Substructure 3

Tear 1

Tear 2

 

Figure 7-1: Substructures of the Frame Structure 

 

r1 

r2 
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Table 7-1: Convergence of the Natural Frequencies of the Frame Structure 

Iteration 
Natural frequencies (Hz) 

1 2 3 4 5 6 7 8 9 10 

1 1.784275 5.537789 9.821755 14.703893 16.659498 18.895124 20.219286 22.755837 25.636194 26.306896 

2 1.784265 5.536539 9.819860 14.687199 16.619370 18.810203 20.198991 22.622879 25.477829 26.197063 

3 1.784265 5.536531 9.819823 14.686449 16.618857 18.807554 20.197700 22.617502 25.471004 26.180333 

4  5.536530 9.819822 14.686413 16.618847 18.807393 20.197692 22.617051 25.470426 26.179965 

5    14.686411 16.618844 18.807380 20.197691 22.617043 25.470418 26.179903 

6      18.807379  22.617036 25.470416 26.179893 

7          26.179891 

           

Global method 

(Exact) 
1.784265 5.536529 9.819822 14.686408 16.618843 18.807372 20.197690 22.617033 25.470405 26.179880 

Relative error 8.19E-08 2.09E-07 8.14E-08 1.78E-07 4.64E-08 3.86E-07 7.35E-08 1.40E-07 4.39E-07 4.09E-07 

MAC 

(Initial step) 
0.9999 0.9990 0.9995 0.9933 0.9945 0.9951 0.9974 0.9941 0.9919 0.9936 

MAC 

(Iterative scheme) 
1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9999 0.9998 0.9999 0.9997 
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Table 7-2: Convergence of the Eigenvalue Derivatives with Respect to Parameter r1 

Iteration 
Eigenvalue derivative with respect to r1 

1 2 3 4 5 6 7 8 9 10 

1 2.889566 25.885745 78.778372 169.073194 77.206903 319.175632 291.612678 809.410739 733.017479 429.545360 

2 2.889565 25.885211 78.423707 168.926074 76.883478 313.653135 286.556056 796.980672 715.498553 429.101623 

3 2.889564 25.885055 78.422759 168.892020 76.880538 313.311088 286.486862 795.869119 714.101445 428.126404 

4  25.885043 78.422694 168.889373 76.880283 313.286574 286.478940 795.750097 713.963480 427.836827 

5    168.889206 76.880270 313.284245 286.478034 795.732809 713.945252 427.816851 

6      313.284000 286.477813 795.732174 713.942276 427.816473 

7         713.941645  

           

Global  

method  

(Exact) 

2.889564 25.884992 78.422680 168.889156 76.879949 313.281242 286.477777 795.729988 713.940620 427.815117 

Relative 

error 
9.40E-08 1.97E-06 1.81E-07 3.01E-07 4.17E-06 8.81E-06 1.25E-07 2.75E-06 1.44E-06 3.17E-06 
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Table 7-3: Eigensensitivity of the Frame Structure with Respect to Parameter r2 

Mode 

Global method 
Substructuring method 

without iterations 
 

Substructuring method 

with iterations 
 

Eigenvalue 

derivative 

Eigenvalue 

derivative 

Relative 

error 

Eigenvector 

derivative 

(COED) 

 
Eigenvalue 

derivative 

Relative 

error 

Eigenvector 

derivative 

(COED) 

 

1 0.876335 0.876339 3.95E-06 1.000  0.876335 0.00E+00 1.000  

2 3.635904 3.636177 7.52E-05 0.999  3.635905 1.48E-07 1.000  

3 3.442241 3.443368 3.27E-04 0.988  3.442242 1.59E-07 0.999  

4 49.031834 49.038606 1.38E-04 0.999  49.031836 5.07E-08 0.999  

5 72.316067 72.037396 3.85E-03 0.997  72.315913 2.13E-06 0.999  

6 292.043804 295.245299 1.10E-02 0.996  292.044391 2.01E-06 0.998  

7 215.692368 216.031321 1.57E-03 0.999  215.692429 2.83E-07 1.000  

8 748.426540 765.470734 2.28E-02 0.995  748.427627 1.45E-06 0.999  

9 671.580079 686.289966 2.19E-02 0.984  671.584254 6.22E-06 0.999  

10 528.853542 538.692678 1.86E-02 0.980   528.854851 2.48E-06 0.998   
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The first 10 eigenvalue derivatives and eigenvector derivatives of the global structure 

with respect to r1 (see Figure 7-1) are then calculated. The convergence process of the 

eigenvalue derivatives is detailed in Table 7-2, where the global method refers to 

Nelson‟s method at the global structural level and can be treated as exact. It can be 

observed that the eigenvalue derivatives achieve high precision in just a few runs. It 

should be noted that the precision of the eigenvalue derivatives depends on the 

eigensolutions (   and Φ ), 
r




, and  . It is reasonable that the eigenvalue 

derivatives are usually not as accurate as the eigenvalues.  

 

Without loss of generality, the eigensensitivities with respect to the parameter r2, 

which is located in the second substructure of Figure 7-1, are calculated. In Table 7-3, 

the eigensensitivities obtained from the three approaches (the global method, the 

substructuring method without iteration, and the substructuring method with iteration) 

are compared. The similarity of the eigenvector derivatives obtained using the global 

method and the proposed substructuring method is denoted by the value of COED 

given in Eq. (5-20). Table 7-3 again shows that the proposed iterative approach 

improves the accuracy of eigensensitivities significantly.  

 

7.4.2 The Guangzhou New Television Tower 

The Guangzhou New TV Tower (described in Chapter 3) is utilized here to 

investigate the computation efficiency of the iterative substructuring method in 

calculation of the eigensolutions and eigensensitivities of a large-scale structure. The 

FE analytical model (Figure 3-5(b)) of the structure includes 8,738 three-dimensional 

elements, 3,671 nodes, and 21,690 DOFs in total. The global structure is divided into 

10 substructures along the vertical direction as shown in Figure 3-5(c). The nodes and 

elements included in each substructure are listed in Table 3-1. Using the proposed 
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substructuring method, the first 20 modes are retained as the master modes in each 

substructure to calculate the first 10 eigensolutions and eigensensitivities of the global 

structure. Again, the convergence criterion is set to Tol = 1×10
-6

. To evaluate the 

accuracy of the results and the computational efficiency of the proposed method, 

global methods without substructuring are also employed for comparison and the 

results are treated as exact. Lanczos method is employed as the global method to 

calculate the eigensolutions, and Nelson‟s method is employed as the global method 

to calculate the eigensensitivities. The detailed algorithms of the Lanczos method and 

the Nelson‟s method are respectively presented in the Appendix A and Appendix B. 

 

Figure 7-2 illustrates the relative errors of the frequencies using the iterative 

substructuring method in each iteration, as compared with the exact ones using the 

global method. Figure 7-3 shows the relative errors of the eigenvalue derivatives with 

respect to a randomly selected elemental parameter. For clarity, only the first and the 

tenth modes are plotted in Figure 7-2 and Figure 7-3. The two figures show that the 

first natural frequency and eigenvalue derivative have a high accuracy
 
at the initial 

step, whereas those of mode 10 have relatively larger error, as expected. After a few 

iterations, the accuracy of the tenth mode is improved significantly. 
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Figure 7-2: Convergence of the Frequencies 
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Figure 7-3: Convergence of the Eigenvalue Derivatives 

 

The computation time cost of calculating the first 10 eigensolutions and the 

eigensensitivities is presented in Table 7-4. The global method takes 11.6 seconds to 

calculate the first 10 eigensolutions of the global structure. Using the iterative 

substructuring method, the initial step takes about 34.7 seconds and each subsequent 

iteration adds about 3.0 seconds. In total, 32 iterations are required to satisfy the 

predefined accuracy, which takes about 131.0 seconds. Although the iterative 

substructuring method takes longer than the global method for eigensolutions, it 

contributes to the calculation of the eigensensitivities, which is the more 

time-consuming process. 

 

In Table 7-4, the global method takes about 197.6 seconds to calculate the first 10 

eigensensitivities with respect to one parameter. The proposed substructuring method 

takes about 13.2 seconds to perform the initialization step, and each subsequent 

iteration adds just 2.6 seconds to the computation time. Moreover, the calculation of 

the eigenvector derivatives, which usually takes up the majority of the computation 

time in the global eigensensitivity method, takes only 0.8 seconds using the present 

substructuring method. This is because the eigenvector is calculated based on the 
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reduced eigenequation, which has the size of 200 × 200 and is much smaller than 

that of the global structure ( 21,690 × 21,690 ). In this case study, 39 iterations are 

required to achieve the predefined accuracy for the eigensensitivities of the 10 modes, 

which takes about 115.4 seconds in total. This improvement in computational 

efficiency is significant when applied to a practical model updating process, as actual 

structures always include a large number of uncertain parameters. For example, in 

this TV Tower structure, the columns of the steel outer tube are composed of 1,104 

three-dimensional beam elements. If the 1,104 elements are chosen as updated 

candidates, the global method requires 51.9 hours to calculate the eigensensitivities of 

the first 10 modes, whereas the iterative substructuring method requires only 32.4 

hours. Given the time needed to calculate the eigensensitivities, the time spent in 

deriving the eigensolutions is negligible. 

 

The substructuring method also reduces the computational memory required. For 

example, the global method needs to handle the global stiffness and mass matrices, 

which are 21,690 × 21,690 in size. Even if the matrices are sparse, up to 2,151 MB 

of memory is needed to acquire the eigensolutions and eigensensitivities. However, 

with the substructuring method, only 10 substructures are handled, each of a size of 

about 2,200 × 2,200 and a half-bandwidth of about 600. Furthermore, the reduced 

eigenequation is only 200 × 200 in size, upon which the iteration is performed. The 

substructuring method thus requires only 338 MB of computer memory to estimate 

the eigensolutions and eigensensitivities as listed in Table 7-4. These findings indicate 

that the proposed substructuring method will be very useful for large-size structures.  
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Table 7-4: Comparison of Computation Time and Storage Memory Required by the Substructuring and Global Methods 

  

  

  

  

CPU time (Second) 

Memory  

(MB) 

Eigensolution Eigensensitivity 

Eigenvalue 

Eigenvector Total 

Eigenvalue derivative 
Eigenvector 

derivative 
Total 

Initialization Iteration Initialization Iteration 

Substructuring 

method 
34.7 3.0×32 0.3 131.0 13.2 2.6×39 0.8 115.4 338 

Global method       11.6 1.8 195.8 197.6 2151 

FRFS method 

(500 master modes) 
416.6  6.7 423.3 209.6 (207.2+2.4) 16.8 226.4 304 
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It should be noted that, although using only a few master modes can achieve highly 

accurate eigensolutions and eigensensitivities with the iterative scheme, the number 

of master modes retained is usually 2 ~ 3 times of the interested modes in the global 

structure. Neither decreasing the master modes, nor increasing the master modes is 

always helpful for the computation efficiency. If more master modes are retained in 

each substructure, the iterations might converge to the predefined tolerance in fewer 

steps. But analysis of the master modes in each substructure consumes more 

computation time, and the size of the reduced eigenequation is enlarged. As the 

master modes become huge, the computation effort saved by the reduced steps might 

not compensate the cost on the analysis of master modes in the substructures. On the 

other hand, retaining too few master modes may hinder the convergence of the 

iteration scheme, although this may reduce the endeavor in extracting the master 

modes from the substructures. Similar to the previous study, the division formation of 

the substructures and the master modes that are retained in each substructure both 

affect the convergence and accuracy. Dividing a structure into either an excessive or 

an insufficient number of substructures is undesirable. The division formations thus 

need to trade off between the number of substructures and the number of master 

modes in each substructure.  

 

In Chapter 4 and Chapter 5, more master modes are included to improve the 

computation accuracy of the eigensolutions and eigensensitivities in FRFS method. 

Although inclusion of more master modes can also improve the accuracy of the 

results using the FRFS method, the cost of computation time for this precision 

improvement is luxurious. To demonstrate this, the master modes retained in each 

substructure are increased from 50 to 500 gradually. The computation accuracy and 

computation time for the first 10 eigensolutions and eigensensitivities with respect to 

the number of master modes are illustrated in Figure 7-4 and Figure 7-5. For clarity, 

only the first mode and the tenth mode are plotted. 
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Figure 7-4: Accuracy and Computation Time of Eigensolutions with Respect to the 

Number of Master Modes 
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Figure 7-5 Accuracy and Computation Time of Eigensensitivities with Respect to the 

Number of Master Modes 

 

Figure 7-4 and Figure 7-5 reveal that, to achieve the accuracy with the relative error 

of 10
-6

, at least 500 master modes need to be retained in the substructures for the 

FRFS method. It implies that, 500 master modes need to be extracted from each 

substructure. In addition, the resulting reduced eigenequation has the size of 5000×

5000. It is noted that, inclusion of more master modes improves the accuracy slightly, 

but increases the computation time heavily. In this regard, the FRFS method is not 
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efficient to acquire highly accurate eigensolutions and eigensensitivities.  

 

The consumed computation time and memory for the FRFS method and the iterative 

method are compared in Table 7-4, both satisfying the tolerance of 10
-6

. It can be 

found that, comparing with the FRFS method, the iterative substructuring method 

requires a little more computer memory, since it has to retain some interim results for 

iteration. However, the iterative method takes much shorter computation time, mainly 

due to two reasons: 1) the iterative method needs to extract only 20 master modes of 

the 10 independent substructures, other than 500 master modes required by the FRFS 

method; 2) the reduced eigenequation of the iterative method takes the size of 200×

200, which is much smaller than that of the FRFS method in size of 5000×5000. In 

this example, the FRFS method needs about 416.6 seconds to extract the 500 master 

eigenmodes and residual flexibility matrix from the each independent substructures, 

and 6.7 seconds to solve the eigenequation in size of 5000×5000. The FRFS method 

consumes 207.2 seconds to compute the eigensolution derivatives for the 500 master 

modes, 2.4 seconds to assemble the eigenvalue derivatives and 16.8 seconds to solve 

the derivative of the reduced eigenequation, which takes much longer time than the 

proposed iterative method. Based on the above observation, the iterative method is 

preferable to the FRFS method, when the high-accuracy eigensolutions and 

eigensensitivities are required. 

 

The shortcoming of the iterative substructuring method is that the eigensolutions and 

eigensensitivities are computed one by one rather than all required are calculated 

simultaneously. Since the lowest eigenpairs converge very fast, the present method is 

effective when a few lowest eigenpairs are required as it is a usual case in practice. 

When more modes need to be computed, the efficiency may decrease. The developed 

method that handles all eigensolutions and eigensensitivities simultaneously deserves 

future research. 
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7.5 Model Updating with the Iterative Substructuring Method 

The substructuring method is preferable in model updating because only one or more 

substructures instead of the large-size global structure are involved in the repeatedly 

estimation of eigensolutions and eigensensitivities. The iterative substructuring 

method can achieve high accuracy in calculation of eigensolutions and 

eigensensitivities which is competitive with the conventional global method, and can 

save much computation time and storage memory. Therefore, it is promising to be 

applied in model updating process.  

 

Application of the substructuring method in model updating is first advantageous in 

assembling the system matrices, which is required in each iteration. Taking the TV 

tower structure as an example, the global method spends 122.16 seconds to 

re-assemble the stiffness and mass matrices for each iteration of model updating 

(Table 7-5), while the substructuring method only costs about 11 seconds to assemble 

the system matrices for the 10 substructures. Since the assembly of system matrices is 

required repeatedly during model updating process, this saving is prominent. 

Moreover, because much smaller matrices are involved in computation, the 

substructuring method also saves the computer memory.  

 

Table 7-5: Computation Time in Assembling the System Matrix 

  Global method Substructuring method 

Size of system matrix 21690×21690 2200×2200 

Time in assembly of 

 system matrix (second) 
122.16 1.10×10 
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The substructuring method is also advantageous in calculation of eigensolutions and 

eigensensitivities for model updating purpose. This will be demonstrated by a model 

updating procedure simulated on the TV tower structure. The „experimental‟ 

frequencies and mode shapes are generated with the Lanczos method on the global 

structure, by intentionally reducing the bending rigidity of the 48 column elements of 

the outer tube in the second substructure by 20%. All elements of the outer tube in the 

second substructure are chosen as the updating parameters, and accordingly, there are 

144 updating candidates in total. It is assumed that the first 10 modes are available, 

and the measurements are obtained at the translational directions of nodes. The mode 

shapes have been normalized to the mass matrix. The objective function combines the 

differences in the frequencies and mode shapes between the generated „experimental‟ 

data and the analytical model. The weight coefficients are set to 0.1 for the mode 

shapes and 1.0 for the frequencies.  

 

Three model updating approaches are employed for comparison. First, the traditional 

global method is applied, that is, the first 10 eigensolutions are calculated with the 

Lanczos method, and the associated eigensensitivities are calculated with the 

Nelson‟s method. Figure 7-6 reports the optimization process before the norm of 

objective function is less than 2×10
-7

. Since the experimental eigenmodes are 

generated numerically without considering the noise, the updated frequencies and 

mode shapes recover the experimental counterparts exactly as listed in Table 7-6. The 

global method takes about 76.24 hours to achieve the convergence criterion through 

15 iterations. Each iteration takes about 5.43 hours.  

 

Second, the iterative substructuring method presented in this chapter is utilized to 

calculate the eigensolutions and eigensensitivities for the model updating process. 

The first 20 eigenmodes are retained as master modes in each substructure to extract 

the first 10 modes of the global structure. The iteration in searching the eigensolutions 
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stops when the relative difference in the frequencies from two consecutive iterations 

is less than 10
-6

, and the iteration of eigensensitivities terminates when the relative 

difference in the eigenvalue derivatives from two consecutive iterations is less than 

10
-6

. Using the eigensolutions and eigensensitivities calculated with the iterative 

substructuring method, the optimization process is demonstrated in Figure 7-6. The 

iterative substructuring method can achieve competitive accurate results as the exact 

global method in each step, and it also takes 15 iterations to achieve the predefined 

convergence criterion. The whole procedure lasts 50.87 hours, and each iteration 

takes about 3.62 hours. The computation time is about 66.7% of that using the 

traditional global method. The updated frequencies and mode shapes are listed in 

Table 7-7, and they match the experimental ones very well. It can be observed that, 

the frequencies and MAC values of mode shapes in this table are quite similar to 

those in Table 7-6 for both before updating and after updating, which again proves 

that the iterative substructuring method can achieve high accuracy in eigensolutions 

and eigensensitivities. 
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Figure 7-6: Model Updating Process with Three Methods 
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Table 7-6: Frequencies and Model Shapes Before and After Updating with the Global 

Method 

Mode 

Measured 

Frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Difference 

 (%) 
MAC 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

1 0.111  0.112  0.76% 1.0000  0.111  0.00% 1.0000  

2 0.162  0.163  0.95% 1.0000  0.162  0.00% 1.0000  

3 0.344  0.344  0.09% 0.9999  0.344  0.00% 1.0000  

4 0.373  0.376  0.84% 0.9990  0.373  0.00% 0.9999  

5 0.406  0.406  0.11% 0.9999  0.406  0.00% 1.0000  

6 0.429  0.431  0.32% 0.9997  0.429  0.00% 1.0000  

7 0.493  0.496  0.71% 0.9994  0.493  0.00% 1.0000  

8 0.694  0.697  0.42% 0.9998  0.694  0.00% 1.0000  

9 0.817  0.818  0.13% 0.9999  0.817  0.00% 1.0000  

10 0.868  0.869  0.14% 0.9995  0.868  0.00% 1.0000  

 

Table 7-7: Frequencies and Model Shapes Before and After Updating with the 

Iterative Substructuring Method 

Mode 

Measured 

Frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

1 0.111  0.112  0.76% 1.0000  0.111  0.00% 1.0000  

2 0.162  0.163  0.95% 1.0000  0.162  0.00% 1.0000  

3 0.344  0.344  0.09% 0.9999  0.344  0.00% 1.0000  

4 0.373  0.376  0.84% 0.9991  0.373  0.00% 0.9999  

5 0.406  0.406  0.11% 0.9999  0.406  0.00% 1.0000  

6 0.429  0.431  0.32% 0.9997  0.429  0.00% 1.0000  

7 0.493  0.496  0.71% 0.9994  0.493  0.00% 0.9999  

8 0.694  0.697  0.42% 0.9998  0.694  0.00% 1.0000  

9 0.817  0.818  0.13% 0.9998  0.817  0.00% 1.0000  

10 0.868  0.869  0.14% 0.9993  0.868  0.00% 1.0000  
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Table 7-8: Frequencies and Model Shapes Before and After Updating with 

Combination of the FRFS Method and the Iterative Substructuring Method 

Mode 

Measured 

Frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

1 0.111  0.112  0.76% 0.9999  0.111  0.00% 1.0000  

2 0.162  0.163  0.95% 0.9999  0.162  0.00% 1.0000  

3 0.344  0.345  0.15% 0.9989  0.344  0.00% 0.9999  

4 0.373  0.376  0.88% 0.9988  0.373  0.00% 0.9999  

5 0.406  0.406  0.12% 0.9998  0.406  0.00% 1.0000  

6 0.429  0.431  0.35% 0.9995  0.429  0.00% 0.9999  

7 0.493  0.496  0.79% 0.9987  0.493  0.00% 1.0000  

8 0.694  0.698  0.58% 0.9982  0.694  0.00% 1.0000  

9 0.817  0.820  0.31% 0.9991  0.817  0.00% 0.9999  

10 0.868  0.870  0.23% 0.9985  0.868  0.00% 1.0000  

 

Finally, the FRFS method and the iterative substructuring are combined to be used in 

the model updating process, according to the optimization procedure. The FRFS 

method is computationally efficient in calculation of the eigensolutions and 

eigensensitivities with lower accuracy, whereas it is not competitive in obtaining the 

highly accurate eigensolutions and eigensensitivities, as compared with the iterative 

substructuring method. In the first 11 iterations, the FRFS method is adopted to 

calculate the first 10 eigensolutions and eigensensitivities, using the first 30 modes in 

each substructure. When the updated parameters approach to the optimized solutions, 

the convergence process is sensitive to the methodology error of the FRFS method. In 

the last few steps, the iterative substructuring method is adopted with 20 master 

modes retained in each substructure. The whole process converges within 17 

iterations. The updated frequencies and mode shapes are listed Table 7-8. The FRFS 

method takes about 1.58 hours for each iteration, while the iterative method requires 

3.62 hours. The whole procedure consumes 39.18 hours as shown in Figure 7-6. In 

Table 7-8, the frequencies and mode shapes before updating are a little different from 

those of the former two cases in Table 7-6 and Table 7-7, because the FRFS method 

inherently involves some errors in calculation of eigensolutions. This methodology 
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error may mask the real discrepancy of the analytical model and experimental data, 

thus hinder the convergence of optimization. That‟s why the highly accurate method 

needs to be used in the last steps of model updating. The combination of the FRFS 

method and the iterative method can achieve highly accurate results efficiently for 

model updating process. 

 

7.6 Summary 

This chapter proposes a new iterative substructuring method to calculate the accurate 

eigensolutions and eigensensitivities for large-size structures. The method retains the 

contribution of the higher modes using the residual flexibility matrix in an iterative 

form. Consequently, it can predict the eigensolutions and eigensensitivities accurately 

in just a few iterations. The iterative process is mainly performed on two items (  

and 
r




) at the substructure level, which adds only a small amount of extra 

computation time. The method is thus computationally efficient, especially for large 

structural systems.  

 

Other than the substructuring methods proposed in previous chapters which improve 

the accuracy by enlarging the number of the retained master modes, this iterative 

substructuring method can achieve high accuracy using only few master modes by an 

iterative scheme upon a reduced eigenequation. Since the high accuracy is achieved 

without enlarging the size of the master modes retained in the substructures, the 

computation effort in analyzing the independent substructures is saved. Subsequently, 

the proposed method can keep the reduced eigenequation in small size, based on 

which the iteration is performed.  

 

Application of the method to two examples demonstrates its ability to predict the 

eigensolutions and eigensensitivities with a high level of accuracy. The lower modes 
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converge faster than the higher modes, as expected. As compared with the global 

method, the present method may require more computation time to calculate the 

eigensolutions, but makes significant savings in the time needed to compute the 

eigensensitivities. As the calculation of eigensensitivities usually takes up much more 

computation time, this method shows promise for use in the sensitivity-based model 

updating process. Furthermore, it not only improves on computational efficiency, but 

also saves on computer storage memory. 

 

The FRFS method described in previous chapters and the present iterative 

substructuring method are compared in this chapter. The former method is efficient 

with relatively lower accuracy. To achieve high accuracy, the FRFS method requires 

more effort extracting a large amount of master modes from the substructures, and 

hence handling a large-size eigenequation. The latter method, which is proposed in 

this chapter, improves the accuracy by an iterative scheme using only few master 

modes, and it keeps the reduced eigenequation in small size. Comparison of the two 

methods based upon the TV tower structure demonstrates that, if highly accurate 

eigensolutions and eigensensitivities are required, the iterative substructuring method 

is preferable. Combination of the FRFS method and iterative method in model 

updating process are beneficial to achieve both high accuracy and efficiency.  
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CHAPTER EIGHT 

MODEL UPDATING USING SUBSTRUCTURAL MODAL 

DATA 

8.1 Introduction 

In the substructuring-based model updating approach described in previous chapters, 

the substructural eigensolutions and their derivatives of the independent substructures 

are assembled to recover the eigensolutions and eigensensitivities of the global 

structure. The eigenproperties of the global structure are then compared with those 

measured through model updating procedure. 

 

In the approach described in this chapter, the substructural flexibility matrices are 

instead extracted from the measured global modal data. Consequently, the 

substructures are treated as independent structures and are updated using the common 

global model updating process. In each iteration, the eigensolutions of the 

substructures are compared with the extracted substructural flexibility matrices. 

 

8.2 Extraction of the Substructural Flexibility Matrices 

To explain the specific details of the new substructuring approach, the global 

structure with N DOFs is divided into Substructure A and Substructure B by NB 

interface DOFs as illustrated in Figure 8-1.  

 

The global structure before partition comprises three parts: the inner part of 

Substructure A 
  A

g
I

 , the inner part of Substructure B 
  B

g
I

 , and the interface 

area  g B
  shared by Substructure A and Substructure B. 
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(a) Global Structure 

 

 

 

 

 

 

(b) Divided Substructures 

Figure 8-1: Configuration of a Structure with Two Substructures 

 

After partition, Substructure A is composed of two parts: the inner part 
 A

I  and the 

interface boundary 
 A

B . Likewise, Substructure B comprises an inner part 
 B

I  

and an interface boundary 
 B

B . The superscripts „A‟ and „B‟ in bracket respectively 

represent the variables belong to Substructure A and Substructure B. The subscripts „I‟ 

and „B‟ hereinafter indicate the inner part and the interface boundary, respectively. 

The subscript „g‟ represents the variables in the original global structure before 

disassembly. 

 

The DOFs of the four domains 
 A

I , 
 A

B , 
 B

I , and 
 B

B  take the size of 
 A

IN , 

 A

BN , 
 B

IN  and 
 B

IN , respectively, which satisfy 

  
     A A A

B IN N N   

  
     B B B

B IN N N   

  B

g
I

  
  A

g
I

  

 g B
  

NB interface points 

 B

I  
 A

I  

 B

B  

 A

B  
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   A B

B B BN N N   

  
   A B

I I BN N N N    

  
       A A B BP

I B I BN N N N N     (8-1) 

where N
P
 denotes the DOFs of all the substructures. 

 

The stiffness and flexibility matrices of Substructure A and Substructure B are 

   
   

   

A A

A II IB

A A

BI BB

 
  
  

K K
K

K K
,  

   

   

A A

A II IB

A A

BI BB

 
  
  

F F
F

F F
 

   
   

   

B B

B II IB

B B

BI BB

 
  
  

K K
K

K K
,  

   

   

B B

B II IB

B B

BI BB

 
  
  

F F
F

F F

 

(8-2) 

The stiffness and flexibility matrices of the independent substructures are assembled 

in the following primitive form: 

 

   

   

   

   

A A

II IB

A A

BI BBp

B B

BB BI

B B

IB II

 
 
 

  
 
 
 

K K

K K
K

K K

K K , 

   

   

   

   

A A

II IB

A A

BI BBp

B B

BB BI

B B

IB II

 
 
 

  
 
 
 

F F

F F
F

F F

F F  

(8-3) 

 

Let {xg} denote the nodal displacement vector of the global structure and {fg} the 

external force vector. The primitive forms of the substructural displacements and 

forces are 

   

 

 

 

 

A

I

A

Bp

B

B

B

I

x

x
x

x

x

 
 
 

  
 
 
 

,  

 

 

 

 

A

I

A

Bp

B

B

B

I

f

f
f

f

f

 
 
 

  
 
 
 

 (8-4) 

The size of the vectors  px  and  pf  is N
P 
× 1. They are associated with the 

global displacement vector and force as 

     p p

gx x L  (8-5) 

     
T

p p

gf f   L  (8-6) 
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where p
L  is the geometric operator with a size of N

P
 × N and is determined by the 

geometric relation between the substructures and the global structure. For example, if 

the jth DOF of the global structure corresponds to the ith DOF in the separated 

substructures, then 1p

ij L . Accordingly, Eq. (8-5) is expanded as 

  

 

 

 

 

 

 

 

 

  
 

  

A A
A

I I
g

IA A

B B

gB B B

B B
B

B B g
II I

x x

x
x

x
x

x

     
     
     

    
    
    

    

L 0 0

0 L 0

0 L 0

0 0 L

 (8-7) 

and Eq. (8-6) is expanded as 

  

 

   

 

 

 

 

 

  
 

  

T AA A
II g

IA
T T

A B B

B B gB B

B
T BA

B gI II

f f

f
f

f
f

f

      
      
                 
     
      

      

L 0 0 0

0 L L 0

0 0 0 L

 (8-8) 

 

The structural equilibrium satisfies 

            
T T T

p p p p p p p p

g g g gx x f f x             L K L L K L K  (8-9) 

In consequence, the global stiffness matrix and the primitive form of the substructural 

stiffness matrices have the relation 

  
T

p p p

g
   L K L K  (8-10) 

 

The displacement of a substructure can be written as a superposition of its 

deformational and rigid body motions. The displacement vector of Substructure A is 

composed of 

  
                  A A A A A A A

d Rx x x f    F R  (8-11) 

Likewise, the displacement vector of Substructure B can be expressed as 

  
                  B B B B B B B

d Rx x x f    F R  (8-12) 

where 
 A

F  and 
 B

F  are the substructural flexibility matrices, 
  A

f  and 
  B

f  
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are the forces imposed on Substructure A and Substructure B, respectively, 
 A

R  and 

 B
R  are the orthogonal rigid body modes of the two substructures, and 

  A
  and 

  B
  act as the modal participation factors of 

 A
R  and 

 B
R . 

 

Eq. (8-11) and Eq. (8-12) give the primitive displacement vector in the form of 

   
 

 

 

 

 

 

 

 

 

 

A A A A A

p

B B B B B

x f
x

x f





              
          

                 

F R

F R
 (8-13) 

i.e., 

       p p p p px f  F R  (8-14) 

Without losing generality, Substructure A is a fixed structure after partition and 

Substructure B is a free structure. Therefore, the rigid body components of 

Substructure A vanish and 
 A

R 0  in this example. Theoretically, the flexibility 

matrix of a free structure does not exist. The flexibility matrix described in this 

chapter denotes the contributions made by the deformational motions and does not 

include those made by the rigid body motions. Appendix C describes the flexibility 

matrix of a free substructure in detail. 

 

For Substructure B, 
 B

R  satisfies the substructural static force equilibrium (Alvin 

and Park 1999)  

  
      

T
B B

f  
 
R 0  (8-15) 

In general, the primitive matrices of the rigid body modes and the forces in the 

substructures satisfy the force equilibrium compatibility equation 

     
T

p pf   R 0  (8-16) 

 

As an independent structure, a substructure is loaded by the external force and the 

connecting force from the adjacent substructures. The forces exerted on Substructure 

A and Substructure B are respectively composed of 
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       A A

gf f    (8-17) 

  
       B B

gf f    (8-18) 

where 
  A

gf  and 
  B

gf  represent the external forces applied to Substructure A 

and Substructure B, respectively, and   , the Lagrange multiplier, represents the 

connecting force along the boundaries of the substructures. 

 

In consequence, the primitive form of the substructural forces  pf  is expressed as 

the superposition of the external and interface forces 

             
T

p p

g gf f f 


     L C C  (8-19) 

where        
T

p p

g g gf f f


   L L  ,  T
p p



   L L is the generalized inverse of 

T
p  L  and matrix C implicitly defines the general connection between Substructure 

A and Substructure B as formulated in Chapter 4. From the physical point of view, the 

null-space of matrix C bears the displacement compatibility (Sehmi 1989)  

  
   T px C 0

 
(8-20) 

i.e., 

   

 

 

 

 

 

A

I

A

B

B

B

B

I

x

x

x

x

 
 
 

  
 
 
 

0 I I 0 0  (8-21) 

 

Substitution of Eq. (8-19) into Eq. (8-14) gives 

              p p p p p p p p

gx f f      F R F C R  (8-22) 

As for Eq. (8-5), the global displacement can be expressed by the substructural 

variables as 

            
T T

p p p p p p p

g gx x f  


            L L F C L R   (8-23) 

If the two variables    and  p  are known, the global displacement  gx  and 
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the external force  gf  can be related by the substructural flexibility matrix p
F , 

taking the place of the global flexibility matrix Fg. 

 

The force compatibility Eq. (8-16) and the displacement compatibility Eq. (8-20) are 

employed to solve the two variables    and  p . Substitution of Eq. (8-19) into 

Eq. (8-16) yields 

       0
T

p

gf     R C  (8-24) 

Substituting Eq. (8-22) into Eq. (8-20) leads to  

           T p p p

gf    C F C R 0  (8-25) 

From Eq. (8-25),    is expressed as 

        1 T p p

C g Cf   F C F R  (8-26) 

where 

  T p

C F C F C , T p

C R C R
 

(8-27) 

Substitution of Eq. (8-26) into Eq. (8-24) gives 

      1 1
T

p p T T p

R C C gf     K R R F C F   (8-28) 

where 1T

R C C C

K R F R . 

 

Substituting Eq. (8-28) into Eq. (8-26),    is solved as 

        1 1 1 1T p T T p T

C g C C R C C gf f       F C F F R K R F C F R   (8-29) 

 

As long as    and  p  are solved, Eq. (8-23) is expressed as 

    
T

p p p p p p p p p p

g C C R C C R R C R gx f        L F F K F F K F K F F K F F K F F HF F 

    
T

p p p p p T T p p

C R R C R gf      L F F HF F K F F K F F L   (8-30) 

in which 

  C C R C H K K F K , 1 T

C C

K CF C , 



201 

   
1

T T
p p p p

R C



       F R R K R R
 

(8-31) 

 

The displacement  gx  and force  gf  of the global structure are basically related 

to the global flexibility matrix as 

     g g gx f F  (8-32) 

Concerning Eq. (8-30) and Eq. (8-32), the global flexibility matrix is related to the 

substructural flexibility matrix by 

   
T

p p p T T p p p p

g C R R C R
      F L F F K F F K F F HF F L 

 
(8-33) 

which is rearranged as 

  
T

p p p p T T p p p

g C R R C R
       L F L F F K F F K F F HF F  (8-34) 

 

In Eq. (8-34), the substructural flexibility matrix F
p
 contributes to the global 

flexibility matrix Fg in a complicated manner. It is difficult to express F
p
 in terms of 

Fg in an explicit form. An iterative scheme is required to obtain the substructural 

flexibility matrix F
p
 as follows. 

1) The global flexibility matrix with size N is expanded to the dimension of N
P
 by 

the geometric operator p
L  

   
T

p p

g g
   F L F L  (8-35) 

 Consequently, the items of the global flexibility matrix are rearranged according 

to the order of the DOFs in the separated substructures A and B.  

2) The initial substructural flexibility matrix p
F  is estimated from the diagonal 

sub-block of the global flexibility matrix gF  corresponding to Substructure A 

and Substructure B, i.e., 

   

 

    
      

0
1: 1:

1 : 1 :

A A

g
p

A AP P

g

N N

N N N N

 
      

   

F

F
F

(8-36) 

3) The substructural flexibility matrix is extracted in an iterated form based on Eq. 
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(8-34). The kth iteration (k = 1, 2, …) has 

 
       1 1 1k k k kp p

g C R

  
       F F F K F   

  
             1 1 11 1 1 1

T T k k kk k k kp p p

R C R

                        
F K F F H F F  (8-37) 

4) The diagonal sub-blocks of 
 k

p  F  corresponding to Substructure A and 

Substructure B are retained to keep the block-diagonal property of 
 k

p  F , i.e., 

  
 

      
        

1: 1:

1 : 1 :

k A Ap

k
p

k A Ap P P

N N

N N N N

    
     

      

F 0
F

0 F

   (8-38) 

As Substructure B is free, the extracted substructural flexibility matrix should be 

orthogonal to the rigid-body modes. This can be achieved by multiplying a projector 

as 

  
       B B B B

F P F P  (8-39) 

Appendix C gives the formulation of the projector 
 B

P , which is obtained from the 

rigid body modes as 

  
     

T
B B B  

 
P I R R  (8-40) 

 

8.3 Extraction of the Substructural Flexibility Matrices in the 

Reduced DOFs 

In practice, it is difficult to measure the target structure at all DOFs. Reduction of the 

full model to the desired DOFs is required.  

 

The force compatibility Eq. (8-24) and the displacement compatibility Eq. (8-25) are 

disassembled according to the master DOFs and the slave DOFs as 

  
 

 
 

T
p

g
a aa

p
bb g

b

f

f


  
           

     
  

CR
0

CR




 (8-41) 
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 

 
   

T p p p
g

aa a paa ab a

p p p
b bba bb bg

b

f

f
 

   
                    

         
   

C CF F R
0

C CF F R




 (8-42) 

where the subscript „a‟ represents the rows or columns corresponding to the measured 

DOFs, which are usually denoted as the master DOFs, and the subscript „b‟ represents 

those of the slave DOFs. 

 

   is solved from Eq. (8-42) as 

 
 

 
 

1
T T Tp p p p p

g
aa a a a paa ab aa ab a

p p p p p
b b b bba bb ba bb bg

b

f

f
 

                                                      

C C C CF F F F R

C C C CF F F F R




 

   

 (8-43) 

If the external forces are imposed on the master DOFs and the interface DOFs are 

always selected as the master DOFs, i.e.,  g
b

f  0 , 
b C 0  and 

       
T

p p

g aa g aa ga aa
f f f



   L L  , then Eq. (8-43) is equivalent to 

        1 T p T p p

Ca a aa g a a
a

f   F C F C R  (8-44) 

where T

Ca a aa aF C F C . 

 

Substituting Eq. (8-44) into Eq. (8-41) leads to 

      1 1 0
T T T

p p T p p T p p

a g a a Ca a aa g a a Ca a a
a a

f f              R R C F C F R C F C R   (8-45) 

From Eq. (8-45),  p  can be solved as 

      1 1
T T

p p p T p

Ra a a a Ca a aa g
a

f         K R R C F C F   (8-46) 

and    is therefore solved from Eq. (8-44) as 

  

      1 1 1
T T

T p T p p p p

Ca a aa g Ca a a Ra a Ca aa a g
a a

f f             F C F F C R K R K F R   (8-47) 

where 1 T

Ca a Ca a

K C F C , and 1
T T

p p p T p

Ra a Ca a a a Ca a a

       K R K R R C F C R . 

 

The displacement vector in Eq. (8-23) is partitioned according to the master and slave 
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DOFs as 

 

 

 

 
   

T T
p p pp p

gg a a a paa ab aaa aa

p p pp p
bba bb bbb bbg gb b

fx

x f
 

                            
               

CF F RL L

CF F RL L

 

 
 

   (8-48) 

The displacements at the master DOFs are expressed as 

          
T

p p p p

g aa aa g a aa a
x f      L F C R  (8-49) 

Given the solution of  p  in Eq. (8-46) and that of    in Eq. (8-47), the 

displacement vector (Eq. (8-49)) of the global structure is thereby expressed as 

  

  1 1 1

T
p p p p p p

g aa aa aa Ca aa aa Ca Ra Ca aaa

T T T
p p p p p p p p

aa Ca a Ra a a Ra a Ca aa a Ra a aa g a

x

f  

    

            

L F F K F F K F K F

F K R K R R K R K F R K R L




 

   

(8-50) 

 

In the global structure, the displacements and external forces are related by the global 

flexibility as 

  

 

 

   

   

 

 

gg g ga aa ab a

g

g g g gb ba bb b

fx
x

x f

    
        

         

F F

F F
 (8-51) 

Basically, the flexibility matrix corresponding to the master DOFs is defined as the 

displacement response due to a unit force applied at the master DOFs, whereas the 

forces at other DOFs are zero, i.e.,  g b
f  0 . Therefore, the displacements at the 

master DOFs relate to the external forces by 

       g g ga aa a
x f F  (8-52) 

 

Concerning Eq. (8-50) and Eq. (8-52), the substructural flexibility matrix and global 

flexibility matrix at the master DOFs are related by 

 
T

p p p p p p p

aa g aa aa aa Ca aa aa Ca Ra Ca aaaa
     L F L F F K F F K F K F

 

  
1 1 1

T T T
p p p p p p p

aa Ca a Ra a a Ra a Ca aa a Ra a

              F K R K R R K R K F R K R  (8-53) 
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i.e., 

   
T

p p p p p p p

aa g aa aa aa aa aa aa Ca Ra Ra Ca aa Raaa
       L F L F F H F F K F F K F F

 
(8-54) 

where 1
T

p

Ra a Ra a

    F R K R  and 
aa Ca Ca Ra Ca H K K F K . Similar to the procedure 

described in Section 8.2, the substructural flexibility matrix can be obtained using an 

iterative scheme. For a free substructure, the substructural flexibility matrix obtained 

needs to be normalized with the condensed projector PR detailed in Appendix C.  

 

In some instances, the uncertain parameters are localized within a substructure. It is 

preferable to extract only the substructural properties of that substructure to save on 

computational resources and experimental instruments. In consequence, the 

substructure of interest is chosen as the master DOFs and the other parts are the slave 

DOFs. 

 

For example, Substructure A is known and Substructure B needs to be determined 

from the experimental global flexibility matrix. As regards Figure 8-1(a), the master 

DOFs of the global structure are selected as those in the domain 

     B

g g BI
a   . After partition, the master DOFs include the area 

      A B B

B B Ia      of Figure 8-1(b), while the slave DOFs include 
 A

I .  

 

Given the analytical model of Substructure A, the substructural flexibility matrix of 

Substructure B can be extracted according to the following procedure. 

1) The global flexibility matrix  
E

g aa
F  is obtained from the measurement at the 

master DOFs      B

g g BI
a   .  

E

g aa
F  has the size of 

 B

a I BN N N  . 

Superscript „E‟ denotes the variables from the experiment and Superscript „A‟ 

represents the variables of the analytical model. 

2) The global flexibility matrix  
E

g aa
F  is expanded to  

E

g aa
F  by the geometric 

operator p

aaL :  
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     
TE E

p p

g aa g aaaa aa
   F L F L  (8-55) 

where  
E

g aa
F  takes the size of 

     A B BP

a B I BN N N N   . 

3) The initial 
 0

p

aa
  F  includes two parts: the substructural flexibility matrix of 

Substructure A at the boundary DOFs 
  

A
A

BF  and the global flexibility matrix 

corresponding to the points in Substructure B: 

  

 
 

 

  
  

0

A
A

A
B

Bp

aa EB
B

g

 
   

       
    

 

FF
F

F F

 

(8-56) 

where 
  

A
A

BF  takes the size of 
 A

BN , and   
E

B

gF  takes the size of N
(B)

 and is 

given by  

             1 : 1 :
E EB A AP P

g g B a B aaa
N N N N  F F  (8-57) 

4) Based on Eq. (8-54), the substructural flexibility matrix is extracted using an 

iterative scheme. In the kth iteration, 

 
 

                   1 1 1 11 1 1 1 1 1k k k k kE k k k k k kp p p p p

aa g aa aa aa aa Ca Ra Ra Ca aa Raaa

        
                      F F F H F F K F F K F F

 
 (8-58) 

5) To keep the block-diagonal property of the substructural flexibility matrices, the 

sub-block of 
 k

p

aa
  F  corresponding to Substructure B is used in the next 

iteration. The part corresponding to the boundary of Substructure A is filled with 

those from the analytical model of Substructure A: 

  
 

  
   

A
A

Bk
p

aa k
B

 
 

     
    

F
F

F

 (8-59) 

where             1 : 1 :
k kB A Ap P P

aa B a B aN N N N       
F F  . 

The projector 
 B

RP  as described in Appendix C is subsequently constructed to 

normalize the 
   k
B 

 
F  obtained to be used for model updating. 

 

In practice, it is more convenient to construct the flexibility matrix or stiffness matrix 
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by using dynamic testing rather than static testing. Dynamic testing can extract 

basically the same modal information as the static measurement, but with less 

excitation and more economic process. The flexibility matrix can be assembled using 

a few of the lowest modes with sufficient accuracy (Duan et al. 2005). Pandey and 

Biswas (1994) showed that the flexibility matrix estimated from just the first two 

measured modes of a structure was accurate enough for damage condition assessment. 

Many researchers (Wu and Law 2004; Jaishi and Ren 2006; Perera and Ruiz 2008) 

have confirmed that the flexibility matrix is more sensitive to a local change in a 

structure than are other modal data such as frequencies and mode shapes. 

 

The flexibility matrix determined through dynamic testing is usually denoted as 

modal flexibility, to which the mass-normalized deformational modes 

 
1 T

E E E

d d d



  Φ Λ Φ  contribute. The mass-normalized deformational modes can be 

obtained in an experiment when one sensor-actuator pair exists (Alvin and Park 1994). 

In the present substructuring method, a projector associated with the mass-normalized 

mode shapes is constructed as described in Appendix C to ensure that the 

substructural flexibility matrix extracted is mass-normalized and is orthogonal to the 

rigid body modes.  

 

It is noted that the interface DOFs should always be selected as the master DOFs. 

This is the limitation of the present substructuring method. The unmeasured 

components of the interface nodes can be estimated using either the analytical model 

or the curve fitting approach (Ng‟andu et al. 1995). Future work is needed to 

overcome this shortcoming (Koh and Shankar 2003). 

 

8.4 The Spring-mass Example 

For a statically indeterminate structure, the iterative procedure described in Sections 

8.2 and 8.3 is followed to extract the substructural flexibility matrices. For a 
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determinate structure, the substructural flexibility matrices can be obtained directly 

without iteration. The 6-DOF spring-mass model introduced in Chapter 3 is used to 

demonstrate this rule. 

 

 

 

 

Figure 8-2: The Spring-mass Model with Six DOFs 

 

The frequencies Ef  and mode shapes E
Φ  of the global structure (Figure 8-2) are 

    
2

2 Diag 0.4198 4.9812 13.8865 23.4349 33.7875 43.4901E Ef Λ  

  

0.1208 0.3639 0.2840 0.8735 0.0842 0.0458

0.2366 0.5466 0.1736 0.3001 0.1161 0.1077

0.3325 0.1847 0.4190 0.0673 0.4682 0.6753

0.3735 0.0422 0.4244 0.1279 0.0306 0.4017

0.3988 0.2481 0.1595 0.0234 0.4260 0.2682

0.4073

E



 

  


  





Φ

0.3304 0.5219 0.1360 0.6180 0.2284

 
 
 
 
 
 
 
 

   

 (8-60) 

As a result, the flexibility matrix of the global structure E

gF  is determined as 

   
1

0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.2 0.2 0.2 0.2 0.2

0.1 0.2 0.3 0.3 0.3 0.3

0.1 0.2 0.3 0.35 0.35 0.35

0.1 0.2 0.3 0.35 0.4 0.4

0.1 0.2 0.3 0.35 0.4 0.45

T
E E E E

g



 
 
 
 

  
 


   


 
 

F Φ Λ Φ  (8-61) 

 

The global flexibility matrix corresponding to the first substructure is 

     

0.1 0.1 0.1

1: 3 1: 3 0.1 0.2 0.2

0.1 0.2 0.3

E
E

gg aa

 
 

 
 
  

F F  (8-62) 

Because the first substructure is fixed-free, its substructural flexibility matrix can be 

obtained directly as 

Sub 1 Sub 2 

k1 k2 k3 k4 k5 k6 

1 2 3 

 

6 

 

5 4 
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    1

0.1 0.1 0.1

0.1 0.2 0.2

0.1 0.2 0.3

E E

g aa

 
 

 
 
  

F F
 

(8-63) 

The global flexibility matrix corresponding to the second substructure is 

     

0.3 0.3 0.3 0.3

0.3 0.35 0.35 0.35
3: 6 3: 6

0.3 0.35 0.4 0.4

0.3 0.35 0.4 0.45

g

E

g aa

E

 
 
  
 
 
 

F F  (8-64) 

Given that the second substructure is free-free, the mass-normalized rigid body 

modes and projector are constructed according to Appendix C as 

 
 2

0.4082

0.4082

0.4082

0.4082

 
 
 
 
 
 

R , 
 2

0.8333 0.2357 0.2357 0.1667

0.2357 0.6667 0.3333 0.2357

0.2357 0.3333 0.6667 0.2357

0.1667 0.2357 0.2357 0.8333

   
 
  
 
   
 
   

P  (8-65) 

The substructural flexibility matrix of the second substructure is therefore estimated 

with 

  
                    

1 1 1 1

2 2 2 2 2 2 22 2 2 2
E E

g aa

 

F M P M F M P M  

  

0.0486 0.0069 0.0181 0.0264

0.0069 0.0153 0.0097 0.0181

0.0181 0.0097 0.0153 0.0069

0.0264 0.0181 0.0069 0.0486

  
 

 
 
  
 
  

 (8-66) 

In Chapter 3, the two substructures were analyzed independently, and the real 

substructural flexibility matrices of the independent substructures are 

 
  1

0.1 0.1 0.1

0.1 0.2 0.2

0.1 0.2 0.3

A
 
 


 
  

F ,   2

0.0486 0.0069 0.0181 0.0264

0.0069 0.0153 0.0097 0.0181

0.0181 0.0097 0.0153 0.0069

0.0264 0.0181 0.0069 0.0486

A

  
 

 
 
  
 
  

F

   (8-67) 

The substructural flexibility matrices 
  1

E

F  and 
  2

E

F  extracted from the global 

modal data exactly reconstruct those calculated from the independent analytical 

models of the substructures 
      1 2

and
A A

F F  without iteration.  
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8.5 The Experimental Cantilever Beam 

In this section, the proposed substructuring method is applied to the experimental 

cantilever beam structure. The detailed experimental set-up and modal data are 

provided in Chapter 3.  

 

The beam is tested in five states: an undamaged state and four damaged scenarios. 

The mass loss due to the cuts is ignored in the analysis. The measured frequencies 

and mode shapes are employed to calculate the global mass-normalized flexibility as 

   
1 T

E E E E

g



   F Φ Λ Φ  (8-68) 

The beam is measured in the vertical direction at the 10 points shown in Figure 8-3. 

Consequently, the global flexibility matrix takes the size of 1010.  

 

 

Figure 8-3: FE Model of the Cantilever Beam 

 

 

 

 

 

(a) The First Substructure              (b) The Second Substructure 

Figure 8-4: FE Model of the Partitioned Substructures 

 

 1   2    3    4    5     6     7    8     9   10    11 

10  75 = 750 mm 

1 2 3 4 5 6 7 8 9 10 

Sub 1 Sub 2 

6  75 = 450 mm 

1 2 3 4 5 6 

1    2     3    4    5    6     7 

4  75 = 300 mm 

 1   2    3    4   5 

1 2 3 4 

: Measured direction 
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The beam is modeled using 10 two-dimensional beam elements and 11 nodes and is 

divided into two substructures at Node 5 as shown in Figure 8-3. After partition, the 

first substructure is fixed-free, while the second one is free-free. The sub-models of 

the two substructures are constructed independently as illustrated in Figure 8-4.  

 

In all of the five states, the substructural flexibility matrices of the two substructures 

are extracted from the measured global modal data. The undamaged substructural 

flexibility matrices are used to update the two sub-models. Young‟s moduli of all 

elements are chosen as the updating parameters and are initially set to 210
11

 Pa. 

There are four updating parameters in the first substructure and six in the second. The 

refined sub-models of the two substructures are subsequently used for damage 

identification.  

 

In each state, the two sub-models are tuned independently as follows. 

1) Construct the projector PR according to Appendix C. The condensed stiffness 

matrix 
 2

RK , the condensed mass matrix 
 2

RM , and the rigid body modes 
 2

aR  are 

formed from the analytical model of the second substructure. The mass-normalized 

projector 
 2

RP  is then constructed. 

2) Extract the substructural flexibility matrices from the global flexibility matrix 

E

gF . The cantilever beam is a statically determinate structure and hence the 

substructural flexibility matrices can be extracted without iteration. The first 

substructural flexibility matrix is obtained directly from the corresponding rows and 

columns of the global flexibility matrix as 

  
    1

1: 4 1: 4
E

E

R gF F  (8-69) 

The second substructural flexibility matrix is extracted from the global flexibility 

matrix  

  
   2

4 :10 4 :10E

g gF F  

and is normalized as 
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             2 2 2

1
2

2

1

2
\R R R M M MP P ,      2 2

2 1

T

R RP P , 

            2 2 2 2

1 2

E

R R g RF P F P  (8-70) 

where 
 2

RM  is the condensed mass matrix of the second substructure and is 

decomposed by QR algorithm as 
     

1 2

2 2 2

R M M M . 

3) Update the two substructures independently. The substructures are treated as 

independent structures and are updated using the conventional global model updating 

method. For the first substructure, the substructural flexibility matrix 
  1

A

F  is 

calculated and condensed to the measured points 
  1

A

RF  in each iteration to 

reproduce the extracted flexibility matrix 
  1

E

RF . For the second substructure, the 

condensed substructural flexibility matrix 
  2

A

RF  obtained from the analytical 

model needs to be normalized with the projector 
 2

RP  by 

             2 2 2 2

1 2

A A

R R R RF P F P  (8-71) 

The second substructure is similarly updated as an independent structure so that 

  2
A

RF  matches 
  2

E

RF  throughout the optimization process. 

 

The SRF values of the first substructure in the aforementioned five states are shown 

in Figure 8-5. Element 2 is found to have noticeable SRF values in the four damaged 

states (Cases 1 to 4), whereas the SRF values of the other elements are close to zero. 

The identified Element 2 coincides with the location of the artificial cut made in the 

experiment. As the depth of the cut increases progressively with d = 5 mm (Case 1), 

10 mm (Case 2), and 15 mm (Case 3 and Case 4), the magnitude of SRF increase as 

expected. As explained in Chapter 6, the SRF value quantifies the overall equivalent 

change in the elemental parameter due to a local cut. As a result, Element 2 is 

believed to be damaged with the equivalent stiffness reductions of about 10% (Case 

1), 14% (Case 2), and 22% (Case 3 and Case 4), respectively.  
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(b) Case 1                 (c) Case 2 
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(d) Case 3                 (e) Case 4 

Figure 8-5: SRF Values of Substructure 1 in the Five States 

 

The six elemental parameters of the second substructure are updated similarly in each 

of the five states. The SRF values are given in Figure 8-6.  

 

In Cases 1 to 3, small SRF values are observed in some elements. No artificial cut 

was introduced within the second substructure in any of these three cases. The 

non-zero SRF values are due to the inevitable measurement noise and methodology 

errors. In Case 4, the SRF value of Element 3 (Element 7 of the global structure) is 

remarkably identified with -16%, as shown in Figure 8-6(e). This agrees with the 

location of the cut introduced in the experiment. 

Actual damage location Actual damage location 

Actual damage location Actual damage location 
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The updated parameters are then used in the global FE model to calculate the 

frequencies and mode shapes of the global structure and compare them with the 

measured ones, as listed in Tables 8-1 to 8-5. In all of the five states, the frequencies 

and mode shapes of the updated structure agree better with the measured ones than do 

those obtained before the model was updated. 
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(b) Case 1 (No damage)                 (c) Case 2 (No damage) 
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(d) Case 3 (No damage)                 (e) Case 4 

Figure 8-6: SRF Values of Substructure 2 in the Five States 

 

Actual damage location 
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Table 8-1: Frequencies and Mode Shapes Before and After Updating (Case 0) 

Modes 

Experimental 

 Frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Diff. 

 (%) 
MAC 

Frequency 

(Hz) 

Diff. 

 (%) 
MAC 

1 3.50  3.47  -0.93% 0.9941  3.50  0.00% 0.9945 

2 21.85  20.91  -4.29% 0.9975  21.85  0.00% 0.9982 

3 60.29  57.60  -4.46% 0.9983  60.32  0.05% 0.9989 

4 118.82  113.81  -4.21% 0.9985  118.63  -0.16% 0.9996 

5 194.71  187.76  -3.57% 0.9958  192.82  -0.97% 0.9971 

6 306.11  306.19  0.03% 0.9903  308.16  0.67% 0.9953 

Average a   2.92% 0.9958   0.34% 0.9973 
a
 Average of absolute value. 

 

Table 8-2: Frequencies and Mode Shapes Before and After Updating (Case 1) 

Modes 

Experimental 

Frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

1 3.44 3.50 1.94% 0.9921 3.45 0.45% 0.9929 

2 21.85 21.85 0.00% 0.9980 21.84 -0.03% 0.9981 

3 60.28 60.32 0.07% 0.9986 60.27 -0.02% 0.9983 

4 118.68 118.63 -0.04% 0.9910 118.66 -0.02% 0.9957 

5 193.71 192.82 -0.46% 0.9926 193.49 -0.12% 0.9950 

6 304.32 308.16 1.26% 0.9891 306.02 0.56% 0.9987 

Average a   0.63% 0.9935  0.20% 0.9965 

a
 Average of absolute value. 

 

Table 8-3: Frequencies and Mode Shapes Before and After Updating (Case 2) 

Modes 

Experimental 

Frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

1 3.50 3.50 0.00% 0.9920 3.49 -0.22% 0.9926 

2 21.52 21.85 1.54% 0.9970 21.58 0.27% 0.9960 

3 59.58 60.32 1.24% 0.9973 59.61 0.04% 0.9927 

4 117.40 118.63 1.05% 0.9822 117.00 -0.34% 0.9868 

5 190.25 192.82 1.35% 0.9833 189.24 -0.53% 0.9865 

6 299.23 308.16 2.98% 0.9271 300.65 0.47% 0.9568 

Average a   1.38% 0.9798  0.31% 0.9852 

a
 Average of absolute value. 
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Table 8-4: Frequencies and Mode Shapes Before and After Updating (Case 3) 

Modes 

Experimental 

Frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

1 3.43 3.50 2.30% 0.9976 3.43 0.00% 0.9981 

2 21.50 21.85 1.63% 0.9981 21.52 0.10% 0.9988 

3 59.67 60.32 1.09% 0.9990 59.59 -0.13% 0.9966 

4 116.82 118.63 1.56% 0.9881 116.47 -0.29% 0.9909 

5 188.43 192.82 2.33% 0.9813 187.62 -0.43% 0.9946 

6 295.67 308.16 4.22% 0.9601 296.93 0.43% 0.9822 

Average a   2.19% 0.9873  0.24% 0.9935 

a
 Average of absolute value. 

 

Table 8-5: Frequencies and Mode Shapes Before and After Updating (Case 4) 

Modes 

Experimental 

Frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

Frequency 

(Hz) 

Difference 

(%) 
MAC 

1 3.42 3.50 2.43% 0.9993 3.42 -0.08% 0.9992 

2 21.20 21.85 3.05% 0.9968 21.24 0.19% 0.9978 

3 59.00 60.32 2.23% 0.9936 58.93 -0.12% 0.9891 

4 116.61 118.63 1.73% 0.9617 116.16 -0.39% 0.9717 

5 187.29 192.82 2.95% 0.9714 186.92 -0.19% 0.9755 

6 294.38 308.16 4.68% 0.9715 295.32 0.32% 0.9868 

Average a   2.85% 0.9823  0.22% 0.9867 
a
 Average of absolute value. 

 

The beam is also updated according to the traditional global method using the same 

measurement data and updating parameters. The difference between the measured 

modal flexibility and the analytical modal flexibility is minimized by adjusting the 10 

elemental stiffness parameters. The initial model is updated in the undamaged state 

and the refined model is then employed for damage identification. The SRF values 

identified in the five states are illustrated in Figure 8-7. 

 

In Cases 1 to 4, the SRF values identified are consistent with those observed using the 

previous substructuring-based model updating method, and the results from both 

methods reveal the real locations and severity of the artificial cuts made in the 
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experiment. This again proves that the present substructuring method is effective in 

model updating and damage identification. 
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(a) Case 0 (No Damage) 
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(b) Case 1                 (c) Case 2 
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(d) Case 3                 (e) Case 4 

Figure 8-7: SRF Values of the Structure Using the Global Model Updating Method 

 

8.6 The Experimental Frame Structure 

The effectiveness of the substructuring method described in this chapter is examined 

further by using the portal frame, a statically indeterminate structure in which an 

iterative procedure is required to extract the substructural flexibility matrix from the 

global modal data. The accuracy of the extracted substructural flexibility matrix is 

first investigated via a numerical analysis. The substructuring-based model updating 

method is then applied to the laboratory-tested frame structure.  

 

Actual damage location Actual damage location 

Actual damage location Actual damage location 
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8.6.1 Numerical Analysis 

The analytical model of the frame is composed of 44 nodes and 45 elements and is 

separated into three substructures as shown in Figure 8-8. In the numerical analysis, 

the substructural flexibility matrix of a substructure is extracted from the global 

modal data and compared with the real matrix obtained from the independent 

analytical model of the same substructure.  

 

It is first necessary to extract the substructural flexibility matrix of the first 

substructure 
  1

E

RF  from the global modal data, while the analytical sub-models of 

the second and third substructures are assumed to be known in advance. In this case, 

the frequencies and mode shapes corresponding to the first substructure are required 

to construct  
E

g aa
F , i.e., the global structure is measured at Nodes 1 to 18 in the 

directions illustrated in Figure 8-8. 

 

The substructural flexibility matrix 
  1

E

RF  is extracted using the global flexibility 

matrix  
E

g aa
F  by an iterative scheme. 

  1
E

RF  is recorded in each iteration and 

compared with the actual flexibility matrix 
  1

A

RF  calculated from the analytical 

sub-model of the first substructure. 

   

      
   

1 1

1

E A

R R

A

R

norm

Diff

norm





F F

F

F

 


 (8-72) 

where norm(·) gives the Frobenius norm of a matrix hereinafter, and  Diff F  is 

employed here to assess the accuracy of the extracted flexibility matrix. The values of 

 Diff F  are less than Tol = 110
-6

 after 32 iterations, as illustrated in Figure 8-9. 

This indicates that the extracted substructural flexibility matrix 
  1

E

RF  can 

accurately reproduce the actual flexibility matrix 
  1

A

RF .
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                                  : Measured direction 

Figure 8-8: Configuration of the Frame Structure 

 

Next, the substructural flexibility matrix of the second substructure is extracted from 

the global modal data, while the sub-models of the first and third substructures are 

assumed to be available. The global structure is measured at the second substructure 

to assemble  
E

g aa
F , including the measurements at Node 7 and Nodes 18 to 32. 
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The substructural flexibility matrix 
  2

E

RF  is extracted from the global flexibility 

matrix  
E

g aa
F  by an iterative process. Because the second substructure is free after 

partition, 
  2

E

RF  is normalized via 
         2 2 2 2

E E

R R R RF P F P . For comparison, the 

real substructural flexibility matrix 
  2

A

RF  is calculated from the analytical 

sub-model of the second substructure and is also normalized with 

         2 2 2 2
A A

R R R RF P F P . The difference between 
  2

E

RF  and  
  2

A

RF  is 

calculated by Eq. (8-72) in each iteration. Setting the tolerance to Tol=110
-6

 again, 

the norm of difference is demonstrated in Figure 8-10. 

 

Finally, the accuracy of the extracted substructural flexibility matrix of the third 

substructure is investigated. In this case, the sub-models of the first and second 

substructures are assumed to be known and the global structure is measured at the 

points corresponding to the third substructure, i.e., at Node 23 and Nodes 33 to 44.  

 

 

Figure 8-9: Convergence of the Substructural Flexibility Matrix of the First 

Substructure 
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Figure 8-10: Convergence of the Substructural Flexibility Matrix of the Second 

Substructure 
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Figure 8-11: Convergence of the Substructural Flexibility Matrix of the Third 

Substructure 

 

Similar to the previous steps, the normalized substructural flexibility matrix of the 

third substructure 
  3

E

RF  is extracted in each iteration and compared with the 

normalized 
  3

A

RF  calculated from the analytical sub-model. The value of Diff (F) 

in each iteration is illustrated in Figure 8-11 under the tolerance of Tol = 110
-6

. 

 

Figures 8-9 to 8-11 reveal that the substructural flexibility matrices extracted from the 
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global modal data accurately reproduce the actual flexibility matrices of the 

independent substructures for all of the three substructures. The substructural 

flexibility matrix of the first substructure converges much more rapidly than do those 

of the other two substructures. It is noted that the first substructure is fixed, whereas 

the other two substructures are free after partition. The reason for this is not clear and 

merits further investigation. 

 

8.6.2 Experimental Study 

In consequence, this substructuring method is applied to the laboratory-tested frame 

structure. The test set-up and results are provided in Chapter 3. The global structure is 

also modeled using 45 two-dimensional beam elements and 44 nodes as shown in 

Figure 8-8. The analytical model is divided into three substructures as displayed in 

Figures 8-12 to 8-14. The substructural flexibility matrices of the three substructures 

are extracted from the measurement data in the undamaged states and are used as the 

basis for updating the three sub-models. The three refined sub-models are 

subsequently used for damage identification.  

 

In the undamaged state, the mass-normalized flexibility matrix is obtained from the 

measured frequencies and mode shapes as 

   
1 T

E E E E

g



   F Φ Λ Φ  (8-73) 

In the experiment, the interfaces at Node 7, Node 18, Node 23, and Node 32 are 

measured in the horizontal direction only. The unmeasured components (the Y 

direction and rotation) of the interfaces are estimated by the initial analytical model. 



223 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-12: Analytical Model of the First Substructure 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-13: Analytical Model of the Second Substructure 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-14: Analytical Model of the Third Substructure 
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Young‟s moduli of the 45 elements are updated in the undamaged state in which the 

initial values are set to 210
11

 Pa. Accordingly, there are 17 updating parameters in 

the first substructure, 15 in the second, and 13 in the third. The three sub-models are 

tuned according to the following procedure.  

1) Construct the projector 
RP  for the second and third substructures. For the 

second substructure, the condensed stiffness matrix 
 2

RK , the condensed mass 

matrix 
 2

RM , and the rigid body modes 
 2

aR  at the measured points are formed 

from the analytical model. The projector 
 2

RP  is subsequently created according to 

Appendix C. 
 3

RP  is similarly created for the third substructure. 

2) Extract the substructural flexibility matrices from the measured global flexibility 

matrix E

gF . Following the procedure described in Section 8.2, use an iterative 

scheme to obtain the primitive matrix  
E

p

RF  from which the substructural 

flexibility matrices of the three substructures (
 1

RF , 
 2

RF , and 
 3

RF ) are extracted 

simultaneously. The iterative procedure terminates when the relative difference in the 

Frobenius norm of the primitive flexibility matrix  
E

p

RF  from two consecutive 

iterations is less than Tol=110
-6

, i.e.,  

  

 
 

 
 

 
 

1

610

k k
E E

p p

R R

k
E

p

R

norm

Tol

norm



    
      

  
    


 
  

F F

F

 (8-74) 

3) Normalize the extracted substructural flexibility matrices. For the second 

substructure, the normalized substructural flexibility matrix is obtained by  

  
          2 2 2 2 2

1 1 2\R RP M MM P , 
            2 2 2 2 2 2

2 1 2 1 /
T

R R  
 

P P M M MP , 

  
         2 2 2 2

1 2

E E

R RF FP P  (8-75) 

where 
     2 2 2

1 2R M M M . The normalized substructural flexibility matrix of the third 

substructure 
 3

RF  can be obtained in a similar way.  
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4) Update the analytical sub-models of the three substructures. The three 

substructures are treated as independent structures and are updated using the 

conventional global approach. Taking the second substructure as an example, the 

substructural flexibility matrix 
  2

A

RF  corresponding to the measured DOFs is 

estimated by the analytical model in each iteration and is normalized with 

         2 2 2 2

1 2

A A

R RF FP P . The 15 elemental parameters in the second substructure are 

adjusted to minimize the difference between the normalized 
  2

A

RF  and 
  2

E

RF , 

i.e., minimize 
      2 2

E A

R Rnorm  F F F  . The sub-models of the first and third 

substructures are updated in a similar manner.  

 

Figure 8-15 reports the SRF values of the three substructures after updating their 

respective sub-models according to the above procedure. The frequencies and MAC 

values of the mode shapes before and after updating are compared with their 

measured counterparts in Table 8-6, which shows that the updated model is better at 

representing the real structure. 

 

In the next step, the refined sub-models of the three substructures are used for damage 

identification. In the first damage configuration, the 17 elemental parameters in the 

first substructure are adjusted, whereas the sub-models of the second and third 

substructures remain unchanged. In the experiment, only the first substructure, i.e., 

Nodes 1 to 18 of Figure 8-8, was measured. At the Node 7 and Node 18 interfaces, 

vibration in the X direction was measured and the unmeasured components (the Y 

direction and rotation) are estimated by the previously refined analytical model.  

 

The substructural flexibility matrix 
  1

E

RF  of the first substructure is extracted from 

the measured global flexibility matrix  
E

g aa
F  using the proposed iterative scheme. It 

is noted that the refined second and third substructures are combined into one 

substructure to assemble the primitive matrix p

aaF  in Eq. (8-56). This is because the 
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interface points need to be always selected as master DOFs. If the second and third 

substructures are integrated into one substructure, Node 23 and Node 32 need not be 

selected as master DOFs and their measurements are therefore saved. The iterative 

procedure terminates when the relative difference in the norm of the substructural 

flexibility matrix from two consecutive iterations is less than Tol=110
-6

, i.e.,  

  

  
 

  
 

  
 

1
1 1

6

1

10

k k
E E

R R

k
E

R

norm

T

norm

ol 



   
      

  
  

 
 
 









 

F F

F

 


 (8-76) 

 

Similar to the approach taken for the undamaged state, the first substructure (Figure 

8-12) is updated independently. Figure 8-16 shows the SRF values of the 17 

elemental parameters after updating. It can be seen that the SRF of Element 2 is -23%, 

although small SRF values ranging from 0 to -10% exist in some other elements. The 

modal data of the updated model match their experimental counterparts reported in 

Table 8-7 more closely than the original data. 

 

In the second damage configuration, two artificial cuts are located in different 

substructures. The frequencies and mode shapes measured in the first and second 

substructures are used to form the global flexibility matrix  
E

g aa
F . The normalized 

substructural flexibility matrices of the first substructure 
  1

E

RF  and the second 

substructure 
  2

E

RF  are extracted from  
E

g aa
F  simultaneously. The analytical 

sub-models of the first and second substructures are subsequently updated to recover 

  1
E

RF  and 
  2

E

RF , respectively. 

 

Figure 8-17 (a) shows that after updating, the SRF value of Element 2 in the first 

substructure is about -20% and the SRF value of Element 2 in the second substructure 

(Element 19 of the global structure) is -25%. The figure also reports some negligible 

values for some of the other elements. 
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(a) First Substructure 
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(b) Second Substructure 
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(c) Third Substructure 

Figure 8-15: SRF Values of the Three Substructures in the Undamaged State 



228 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

-0.5

-0.4

-0.3

-0.2

-0.1

0

Element

S
R

F

 

Figure 8-16: SRF Values of the First Damage Configuration (First Substructure) 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

-0.5

-0.4

-0.3

-0.2

-0.1

0

Element

S
R

F

 

(a) First Substructure 
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(b) Second Substructure 

 

Figure 8-17: SRF Values of the Second Damage Configuration 
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Table 8-6: Frequencies and Mode Shapes Before and After Updating (Undamaged 

State) 

Mode 
Analytical 

mode 

Measured 

frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Diff. 

(%) 
MAC 

Frequency 

(Hz) 

Diff. 

(%) 
MAC 

1 1 3.12 3.16 1.27% 0.993 3.13 0.32% 0.997 

2 2 9.11 9.23 1.27% 0.976 9.15 0.44% 0.996 

3 3 14.34 14.04 -2.13% 0.989 14.40 0.39% 0.993 

4 4 52.46 50.42 -3.88% 0.981 51.90 -1.07% 0.997 

5 5 58.18 56.51 -2.87% 0.980 57.74 -0.75% 0.989 

6 6 66.80 64.34 -3.68% 0.871 66.84 0.06% 0.951 

7 7 71.65 70.80 -1.18% 0.928 72.00 0.49% 0.970 

8 8 82.14 82.51 0.45% 0.877 81.78 -0.43% 0.933 

9 9 82.87 80.98 -2.29% 0.885 82.41 -0.55% 0.975 

10 16 200.13 211.12 5.49% 0.919 205.54 2.70% 0.957 

11 17 222.36 215.91 -2.90% 0.920 224.62 1.02% 0.965 

12 18 226.55 220.37 -2.73% 0.913 226.13 -0.18% 0.959 

13 19 236.58 230.60 -2.53% 0.905 235.17 -0.60% 0.959 

14 22 383.33 395.44 3.16% 0.903 389.95 1.73% 0.951 

Average a    2.56% 0.932  0.77% 0.971 
a
 Average of absolute value. 

 

Table 8-7: Frequencies and Mode Shapes Before and After Updating (Damaged State 1) 

Mode 
Analytical 

mode 

Measured 

frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Diff. 

(%) 
MAC 

Frequency 

(Hz) 

Diff. 

(%) 
MAC 

1 1 3.11 3.13 0.62% 0.992 3.11 -0.10% 0.992 

2 2 9.09 9.15 0.64% 0.996 9.18 0.94% 0.997 

3 3 14.34 14.40 0.42% 0.997 14.14 -1.39% 0.997 

4 4 52.24 51.90 -0.65% 0.986 52.26 0.04% 0.985 

5 5 57.72 57.74 0.03% 0.991 57.85 0.22% 0.992 

6 6 66.73 66.84 0.18% 0.916 66.76 0.05% 0.949 

7 7 71.28 72.00 1.01% 0.970 71.13 -0.21% 0.980 

8 8 81.60 81.78 0.22% 0.860 81.67 0.09% 0.919 

9 9 82.19 82.41 0.28% 0.859 82.29 0.13% 0.917 

10 16 199.70 205.54 2.93% 0.932 200.90 0.60% 0.944 

11 17 220.93 224.62 1.67% 0.847 221.47 0.24% 0.915 

12 18 224.97 226.13 0.52% 0.840 225.07 0.04% 0.927 

13 19 234.78 235.17 0.16% 0.947 233.58 -0.51% 0.973 

14 22 382.50 389.95 1.95% 0.926 387.54 1.32% 0.949 

Average a       0.81% 0.933    0.42% 0.960  
a
 Average of absolute value.
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Table 8-8: Frequencies and Mode Shapes Before and After Updating (Damaged State 2) 

Mode 
Analytical 

mode 

Measured 

frequency 

(Hz) 

Before updating After updating 

Frequency 

(Hz) 

Diff. 

(%) 
MAC 

Frequency 

(Hz) 

Diff. 

(%) 
MAC 

1 1 3.11  3.13  0.77% 0.992  3.10  -0.36% 0.996  

2 2 9.09  9.15  0.67% 0.996  9.11  0.21% 0.998  

3 3 14.33  14.40  0.46% 0.997  14.29  -0.33% 0.997  

4 4 51.88  51.90  0.04% 0.988  51.47  -0.80% 0.985  

5 5 57.41  57.54  0.23% 0.989  57.56  0.27% 0.986  

6 6 66.48  66.84  0.54% 0.924  65.84  -0.97% 0.938  

7 7 70.73  72.00  1.80% 0.961  70.88  0.21% 0.978  

8 8 80.99  81.78  0.98% 0.838  81.17  0.23% 0.933  

9 9 81.98  82.41  0.54% 0.889  82.20  0.27% 0.916  

10 16 199.11  205.54  3.23% 0.912  200.51  0.70% 0.933  

11 17 220.03  224.62  2.08% 0.839  220.95  0.42% 0.922  

12 18 224.14  226.13  0.89% 0.819  223.33  -0.36% 0.926  

13 19 233.50  235.17  0.71% 0.934  230.65  -1.22% 0.952  

14 22 376.49  389.95  3.58% 0.859  382.54  1.61% 0.941  

Average a       1.18% 0.924    0.57% 0.957  
a
 Average of absolute value. 

 

In the two damage configurations, the damaged elements identified coincide with the 

locations of the artificial cuts made in the experiment and the equivalent reduction of 

elemental stiffness identified is consistent with that obtained in Chapter 6. 

 

Both the substructuring method developed in Chapter 6 and the present substructuring 

method can be used successfully to identify the artificial cuts with consistent SRF 

values. The substructuring methods described correct only a part of the uncertain 

parameters at a time. This benefits the convergence of the optimization procedure. In 

particular, the substructuring method proposed in Chapter 6 re-analyzes one 

substructure in each iteration and then brings it together with the other unchanged 

substructures to obtain the modal properties of the global structure. Accordingly, the 

experimental measurement points are distributed across the whole structure to enable 

measurement of the global modal information. In the method described in this chapter, 

the experimental substructural flexibility matrix is extracted from the measured 

modal data. The sub-model of one substructure is updated directly without calculating 
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the eigenproperties of the global structure. As a result, the amount of computation 

work involved in optimization is reduced. Experimental measurements can also be 

concentrated on a local area.  

 

In the final step, the frame is updated using the traditional global method based on the 

same measured modal data. Likewise, the difference in the flexibility matrices of the 

analytical model and the experimental measurements is chosen as the objective 

function used to adjust the 45 elemental parameters simultaneously. The initial model 

is first updated with the modal data measured in the undamaged state. The SRF 

values of the elemental parameters after updating are shown in Figure 8-18. The 

refined model is subsequently used for damage identification.  

 

The SRF values from the two damage configurations are illustrated in Figure 8-19 

and Figure 8-20, respectively. Element 2 is observed to have a clearly negative SRF 

value in both damage configurations. The SRF value of Element 19 is about -30% in 

the second damage configuration. These observations are consistent with those made 

for the two substructuring-based model updating methods described earlier (Figures 

6-5 and 6-6, Figures 8-16 and 8-17).  

 

The laboratory tested frame structure has been analyzed using three model updating 

methods — two substructuring-based model updating methods and the traditional 

global-based method — and the same set of experimental data. All three methods can 

be used successfully to locate artificial cuts and obtain consistent results on 

reductions in elemental stiffness, although there are some small discrepancies among 

them. This demonstrates that the two substructuring methods proposed in this thesis 

are effective in model updating and damage identification. 
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Figure 8-18: SRF Values of the Frame Structure in the Undamaged State (Global 

Method) 
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Figure 8-19: SRF Values of the First Damage Configuration (Global Method) 
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Figure 8-20: SRF Values of the Second Damage Configuration (Global Method) 
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8.7 Summary 

In this chapter, a substructural flexibility matrix is extracted from global modal data 

under the constraints of force compatibility and displacement compatibility. The 

extracted substructural flexibility matrix is employed as a reference and the 

sub-model of the substructure is updated independently using the conventional 

global-based model updating approach. In consequence, the size of the analytical 

model and the uncertain parameters involved in model updating are reduced, which 

benefit the convergence of model updating. 

 

As compared to the forward substructuring approach discussed in previous chapters, 

this inverse substructuring method is advantageous in two aspects: a) Only one 

substructure is independently involved in model updating without assembling the 

substructures. The inverse method is more efficient when conducting optimization 

process. b) The inverse method requires measuring the local area of a structure, to 

avoid the measurement of the entire structure.  

 

Nevertheless, the inverse substructuring method requires a relatively complicated 

process to disassemble the global modal data into substructure level. The 

measurement noise can be accumulated or propagated. This inverse method can be 

possibly improved in the disassembly procedure in future work.  
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CHAPTER NINE 

CONCLUSIONS AND FUTURE RESEARCH 

9.1 Conclusions 

Two substructuring-based model updating approaches are developed in this thesis: a 

forward approach and an inverse approach. In the forward approach, the 

eigensolutions and eigensensitivities of substructures are calculated and assembled to 

obtain the eigenproperties of the global structure, which are used to update the 

analytical model of the global structure. The second approach is an inverse scheme 

designed to extract the substructural flexibility matrix from the measured global 

modal data. The independent substructure is then updated to reproduce the extracted 

substructural flexibility matrix. Three numerical examples and three experimental 

structures are studied in detail to investigate the effectiveness and efficiency of the 

proposed substructuring-based model updating methods. The results and findings are 

summarized as follows.  

 

A concise-form and efficient substructuring-based model updating method is 

developed on the basis of the forward substructuring approach. 

1. Kron‟s substructuring method is developed by using a modal truncation 

technique to calculate the eigensolutions of the global structure in which the 

contribution of the complete eigenmodes of the substructures to the global structure is 

replaced by a few master modes and a residual flexibility matrix (the FRFS method or 

SRFS method). This improvement benefits computational efficiency in two respects: 

first, the computational work required in extracting the eigenmodes of the 

substructures is reduced; second, the assembled eigenequation is much smaller than 

that of the Kron‟s original substructuring method; 
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2. The FRFS method for eigensolutions is extended to calculate the associated 

first-order eigensensitivity. The eigensensitivity with respect to an elemental 

parameter of the global structure is recovered by the derivative matrix of a 

substructure contains the element and derivative of a reduced eigenequation, thus 

significantly reducing computational cost;  

3. The procedure for calculating the second-order eigensensitivity with respect to 

two elemental parameters is developed using the FRFS method. The formula can be 

generalized to calculate the high-order eigensensitivity easily by further 

differentiating the reduced eigenequation. In a manner similar to that used for the 

first-order eigensensitivity, only substructures that include the elemental parameters 

are analyzed to recover the high-order eigensensitivity of the global structure; 

4. The influences of master modes and the divisional formation of substructures on 

computational efficiency and accuracy are investigated, with extensive examples 

given. Retaining more master modes in the substructures can lead to better accuracy, 

but result in greater computational expense. To balance computational accuracy and 

efficiency, it is necessary to make a trade-off between the number of substructures 

and the size of each substructure; 

5. The eigensolutions and eigensensitivities calculated using the FRFS method are 

successfully applied to the sensitivity-based model updating process. Errors made in 

calculating the eigensolutions and eigensensitivities have a negligible influence on 

the model updating results when appropriate master modes are retained in each 

substructure;  

6. Although the inclusion of more master modes can improve the accuracy of the 

FRFS method, the computational effort required in extracting a large number of 

master modes makes it expensive to achieve highly accurate results. An iterative 

scheme is proposed for calculating accurate eigensolutions and eigensensitivities 

using only a few master modes. This iterative method is profitable when accurate 
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eigensolutions and eigensensitivities are required, such as in the final steps of model 

updating when the results are close to the optimum. A combination of the FRFS 

method and the iterative method can further improve computational efficiency in 

updating models of large-scale structures. 

The inverse scheme proposed can be used to extract substructural flexibility matrices 

from global modal data and thereby directly update the model for an independent 

substructure. 

1. The substructural flexibility matrices are extracted from the global flexibility 

matrix under the constraints of displacement compatibility and force compatibility. 

This substructuring approach employs dynamic modal flexibility rather than static 

flexibility. A projector is constructed to ensure that the extracted substructural 

flexibility matrix is normalized with respect to the mass matrix and is orthogonal to 

the rigid body modes. These improvements make the substructuring approach 

valuable in real large-scale structures; 

2. A model condensation technique is utilized in this substructuring method. If parts 

of a structure are uncertain or damaged, only the local focused substructures need to 

be measured in the experiment. As a result, the requirement to measure the entire 

structure is avoided; 

3. Under the proposed substructuring approach, because each substructure is 

updated independently to reproduce the extracted substructural flexibility, the amount 

of computation work involved in optimization is reduced. Moreover, the number of 

parameters that require updating in the substructures is significantly lower than the 

number of such parameters in the global structure, which further benefits the 

convergence of optimization. 
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9.2 Future Research 

The substructuring methods developed in this thesis can be improved and extended in 

several respects to realize an automatic, robust, and generally applicable 

substructuring-based model updating procedure: 

1. The automated selection of master modes and the divisional formation of 

substructures require further study to implement the substructuring-based model 

updating approach in real structures; 

2. The iterative method (Chapter 7) proposed in this thesis calculates accurate 

eigensolutions and eigensensitivities mode by mode. It could be more efficient if all 

of the modes of interest were calculated simultaneously; 

3. The present research developed a deterministic method without considering the 

modelling error and measurement noise. In practice, the measured vibration data and 

initial FE model inevitably contain uncertainties. The substructuring methods 

discussed in this thesis also introduce some slight errors during the disassembly and 

assembly procedures. The accumulation and propagation of these uncertainties 

deserve quantification. 

4. The proposed substructuring method is potential to be applied to the 

in-construction health monitoring, where the analytical model can be updated at 

stages beginning from a substructure and progressively to more substructures until 

the whole structure, according to the different construction stage. The refined 

substructures in the previous stages can be kept unchanged in the later stages, and 

updating is performed solely on the new constructed component by treating it as 

another substructure. Additionally, for the in-service health monitoring, only the local 

area with high-probability of damage needs to be measured and updated by treating 

that area as an independent substructure.
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APPENDIX A 

BASIC METHODS IN CALCULATING 

EIGENSOLUTIONS OF LARGE-SCALE STRUCTURES 

The classical eigenequation for a structure with N DOFs has the form of 

     i i i  K M
 

(A-1) 

where K and M are the N×N symmetric stiffness and mass matrices, respectively, and 

i  and  i  represents the ith eigenvalue and the corresponding mode shape. The 

eigenvalue problem has been studied for centuries since the middle of last century. 

Special algorithms have been developed for large-scale problems, in which the 

Subspace Iteration Method and the Lanczos method are two powerful methods. 

 

A.1 Subspace Iteration Method 

Subspace iteration method extracts the partial solutions of a large-size eigenproblem 

by projecting them onto an approximated subspace to reduce the computational cost. 

As solving the complete eigensolutions is expensive and usually not necessary for the 

large-scale structures, the approximated solution in searching the lowest eigenpairs 

are favorable. Figure A-1 demonstrates the general procedure of Subspace Iteration 

method. 
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Figure A-1: Basic Subspace Iteration Method 

 

A.2 Lanczos Method 

The Lanczos algorithm was first proposed in 1950 for reducing a symmetric matrix to 

the tridiagonal form (Lanczos 1950). The Lanczos algorithm has been developed 

continuously as a powerful tool to extract a number of eigenvalues of a real 

symmetric matrix. The Lanczos algorithm involves the transformation of a 

generalized N-dimension eigenproblem into a standard tridiagonal matrix with 

smaller dimension m (Parlett 1987), as described in Figure A-2.  

 

The Lanczos algorithm constructs an orthogonal basis for the Krylov subspace as 

         1
1 1

1 1 1

m

m span q q q


 Q K M K M  1 2 mspan q q q  (A-2) 

{q1} is an arbitrary starting vector, and {qj} is a Lanczos vector orthogonal to the 

previous {qj−1} Lanczos vectors with respect to M, and m is the dimension of the 

Krylov subspace. 

Yes 

k=k+1 

1 1k k Y MX , 
1

1k k



X K Y  

Rayleigh-Ritz analysis: 

1

T

k k kK X Y , 
1

T

k k kM X MX  

Solve the projected eigenproblem: 

k k k k kK Q M Q Λ  

k k kX X Q  

Converged? 

Starting X0 

,k k Λ Λ Φ X  

No 
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Figure A-2: Basic Lanczos Algorithm 

 

The tridiagonal matrix in Figure A-2 is formulated by 

  

1 2

2 2 3

3m

m

m m

 

  





 

 
 
 
 
 
 
  

T  

 

 

(A-3) 

Block version of Lanczos method is more powerful, which naturally produces a block 

tridiagonal matrix 
mT . As compared with the Subspace Iteration method, the 

Lanczos method is preferable to compute a large number of eigenpairs for very large 

sparse matrices (Nour-Omid et al. 1983). 

Yes 

k=k+1 

     1 1 1 M
q q q , 

0 0   

Lanczos Loop: 

    1

j jp qK M ,     T

j j jp q  M ,  

       1 1j j j j j jr p q q      ,  j j
M

r     1j j jq r    

Solve the reduced eigenproblem: 

   m s sT  

Converged? 

   , 1k m k k ks   Q  

k = 1, 2, …, m 

No 

Starting vector {q} 



241 

APPENDIX B 

BASIC METHODS IN CALCULATING 

EIGENSENSITIVITY 

B.1 Eigenvalue Derivatives 

Fox and Kapoor (1968) firstly derived the eigenvalue derivatives with respect to 

elemental parameters. By differentiating Eq. (A-1) with respect to an elemental 

parameter r, the eigenequation is expressed as 

   
 

   0i i
i i i

r r r r

 
  

    
      

    

M K
K M M  (B-1) 

where i = 1, 2, …, m, and m is the number of interest modes. Pre-multiplying  T

i  

on both sides of Eq. (B-1) and noting      
T

i i  K M 0 , the first-order eigenvalue 

derivative with respect to r is  

     
Ti

i i i
r r r


  

   
   

   

M K
 (B-2) 

The stiffness matrix K and mass matrix M are assembled by the contribution of all n 

elements in the discrete FE model. In particular,  

  
1 1

n n
e

j j j

j j


 

  K K K , 
1 1

n n
e

j j j

j j


 

  M M M  (B-3) 

where Kj and Mj are the j
th

 elemental stiffness matrix and elemental mass matrix, and 

j and j are respectively the „elemental stiffness parameter‟ and „elemental mass 

parameter‟. In case r is an elemental stiffness parameter, Eq. (B-2) is further 

simplified to 

     
T ei

i j i

jr


 





K  (B-4) 

Likewise, if r is an elemental mass parameter, the eigenvalue derivative is formed as 
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     
T ei

i i j i

jr


  


 


M  (B-5) 

 

B.2 Eigenvector Derivatives 

Eq. (B-1) is rewritten as 

  
 

 i

i ir
r





Ψ Y  (B-6) 

where 

       i
ir i i i

r r r


  

   
   
   

K M
Y M  

  
i i Ψ K M

 

The eigenvector derivative 
 i

r




 can be achieved with modal method and Nelson‟s 

method, respectively. 

 

B.2.1 Modal Method 

In modal method, the eigenvector derivative is expressed as a linear combination of 

all eigenvectors  1 2 N  Φ  , i.e.,  

  
 

   
1

N
i

j ji i

j

c c
r







 


 Φ  (B-7) 

where  1 2

T

i i i Nic c c c   is the participation factors of the individual modes. 

Substituting Eq. (B-7) into Eq. (B-6) and pre-multiplying T
Φ  lead to  

       T T

i i ic Φ K M Φ Φ Y  (B-8) 

Noting T Φ MΦ I  and T Φ KΦ Λ , one has 

     T

i i ic Λ I Φ Y  (B-9) 

This leads to the (N1) equations of 

      T

j i ji j ic    Y  (B-10) 

where j = 1, 2, …, N but j  i. Therefore, the coefficient of {ci} except cii can be 
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solved with 

  
  T

j i

ji

j i

c


 




Y
 (B-11) 

 

The coefficient cii can be solved from the mass orthogonal condition of the 

eigenvectors, which satisfies 

      1T

i i  M  (B-12) 

Eq. (B-12) is differentiated with respect to r as 

   
 

   2 0
iT T

i i i
r r


  

 
 

 

M
M  (B-13) 

Due to the orthogonal property among the eigenvectors  

  
                 1 1 1

T T

i i i i i i i ic c c         MΦ M    (B-14) 

Substitution of Eq. (B-7) into Eq. (B-13) thus gives the value of cii as  

     
1

2

T

ii i ic
r

 


 


M
 (B-15) 

Eq. (B-7) indicates that the first-order derivative of the ith eigenvector requires all N 

eigenvectors to achieve the accurate results. Wang (1991) and Alvin (1997) developed 

the modified modal method to reduce the number of the required modes. 

 

B.2.2 Nelson’s Method 

In Nelson‟s method, the ith eigenvector derivative is expressed with the sum of the 

particular and homogeneous vectors as 

  
 

   i

i i ic
r





 


v  (B-16) 

where ci is a participation factor. Substituting Eq. (B-16) into Eq. (B-6) gives  

      i i i K M v Y  (B-17) 

Assuming that there are no repeated frequencies, then the rank of  iK M  is 

(N1). Setting the kth term of {vi} to zero and eliminating the kth row and column of 

 iK M  and kth term of {Yi}, the full-rank equation in solving  iv  is 

established as  
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   

   

1 111 13

3 331 33

0

0 1 0 0

0

i i i i

ik

i i i i

 

 
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     

    
          

K M K M v Y

v

K M K M v Y

 (B-18) 

where k is chosen at the maximum value in {i}.  

 

Substitution of Eq. (B-16) into the orthogonal condition in Eq. (B-13) leads to 

  
          2 0T T

i i i i i ic
r

   


  


M
M v

 
(B-19) 

Therefore, the participation factor ci can be obtained as 

         
1

2

T T

i i i i ic
r

  


  


M
M v  (B-20) 

Given the vector {vi} and the participation factor {ci}, the eigenvector derivative 

 i
r




 can be achieved accurately. 

 

B.3 High-order Eigensolution Derivatives 

B.3.1 Second-order Eigensolution Derivatives 

The second-order eigensolution derivatives can be achieved by differentiating Eq. 

(B-1) a second time. If the two parameters are denoted as rj and rk, respectively, the 

eigenequation is differentiated as 

 
           

 
2 2

0
i i i i i i

i i

j k k j j k j kr r r r r r r r

     
 

        
    
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K M K M K M
K M (B-21) 

Premultiplying  T

i  on both side of Eq. (B-21) gives the second-order derivative of 

the ith eigenvalue 

 
   

 
   
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2 2 2

i i i iT T Ti i i
i i i i i

j k k j j k j k j k j k k jr r r r r r r r r r r r r r

     
    

           
      

               

K M K M K M M M

   

(B-22) 

 

Since the second-order derivatives of K and M with respect to r are zero, Eq. (B-22) 

is simplified to 
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 
   

 
   

   
2

i i i iT T Ti i i
i i i i

j k k j j k j k k jr r r r r r r r r r

     
   

         
    

           

K M K M M M

 

   

(B-23) 

 

The second-order eigenvector derivative is calculated based Eq. (B-21) as well, which 

is rewritten as 

  

 
 

2

,

i

i i j k

j kr r




 
Ψ Y

 

(B-24)

 

and 

  
 i i Ψ K M

 

  

 

         
 

2

,

i i i i i

ii j k

k j j k j kr r r r r r

    


        
           

K M K M K M
Y

 

 

As before, the second-order eigenvector derivative can be solved with both the modal 

method and the Nelson‟s method. Since the latter is utilized in this thesis, only the 

Nelson‟s method is addressed in the following. The second-order derivative of the ith 

eigenvector can be expressed as the sum of the particular and homogeneous solutions 

as 

  
 

      
2

, ,

i

ii j k i j k

j k

c
r r





 

 
v  (B-25) 

where 
  ,i j k

v  is not unique but could be calculated from 

  
     , ,i i j k i j k

Ψ v Y

 

(B-26) 

Equivalent to the expression of Eq. (B-18), the lines and columns of 
  ,i j k

v , 
iΨ  

and 
  ,i j k

Y  corresponding to the largest magnitude in the eigenvector is set to zero, 

thus a full-rank equation is formulated to uniquely determine the vector 
  ,i j k

v .  

 

The participation factor ci(j,k) is calculated from the second-order derivative of the 
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mass orthogonal condition of Eq. (B-12) 

     
 

 
     

 
 2

2 2 2 2

T

ii i i iT T T T

i i i i i

j k j k k j k j j kr r r r r r r r r r

   
    

     
    

         

M M M
M M 0

   
(B-27) 

Substitution of Eq. (B-25) into Eq. (B-27) produces the following equation for the 

solution of the participation factor ci(j,k). 

       
 

 
     

   , ,

1

2

T

ii i iT T T T

i i i i ii j k i j k

j k j k k j k j

c
r r r r r r r r

  
    

     
      
        
 

M M M
M Mv

   
(B-28) 

 

B.3.2 General High-order Eigensolution Derivatives 

Calculation of the second-order eigensolution derivatives can be generalized to the 

higher-order eigensolution derivatives. The hth-order eigensolution derivative are 

achieved by differentiating the eigenequation (Eq. (B-1)) by h times with respect to 

the parameters r1, r2, …, rh as 

   
 

    1,2,...,

1 2 1 2

h h
i i

i i i h

h hr r r r r r

 
 

 
  

     
K M M Y

 
 (B-29) 

where the vector   1,2,...,i h
Y  contains terms involving the derivatives of order (h-1) 

and lower. Premultiplying  T

i  on both side of Eq. (B-29) gives the hth-order 

derivative of the ith eigenvalue in form of 

    1,2,...,

1 2

h

i

i h

hr r r


 

  
Y


 (B-30) 

The hth-order eigenvector derivative can be obtained following the Eqs. (B-25) ~ 

(B-28). As before, the eigenvector derivative is expressed as the sum of a particular 

and a homogeneous part as 

  
 

      
1 2 1 2, ,..., , ,...,

1 2
h h

h

i

ii r r r i r r r

h

c
r r r





 

  
v


 (B-31) 

The unique   
1 2, ,..., hi r r r

v  can be achieved using the equivalent method to Eq. (B-18) 
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and Eq. (B-26).  

 

The participation factor  1 2, ,..., hi r r r
c  can be obtained from the hth derivative of the 

mass orthogonal condition Eq. (B-12) 

   
 

 1,2,...,

1 2

h

iT

i i h

h

d
r r r







  
M


 (B-32) 

where the scalar  1,2,...,i h
d  contains terms involving derivatives of order (h-1) and 

lower. Thereby the participation factor  1 2, ,..., hi r r r
c  is achieved as 

  
        1,2,..., 1,2,..., 1,2,...,

T

ii h i h i h
c d   M v  (B-33) 
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APPENDIX C 

STIFFNESS AND MODAL FLEXIBILITY MATRICES OF 

FREE STRUCTURES 

The substructuring methods require dividing the global structure into independent 

free or fixed substructures. As a free structure includes the rigid body components, its 

stiffness matrix is rank deficient and thus cannot be inversed to obtain the flexibility 

matrix as usual. It is noted that, the flexibility matrix of a free structure does not exist 

actually. The flexibility matrix of a free structure hereby is denoted as the modal 

flexibility matrix, which is contributed by the deformational eigenmodes as 

1
T

d d d

   Φ Λ Φ . 

 

In this section, the property of a free structure is addressed. The singular stiffness 

matrix is transformed into full-rank one, from the inversion of which the modal 

flexibility is acquired. The stiffness matrix can be obtained from the inversion of the 

transformed full-rank flexibility matrix in the same way. Afterwards, the 

transformation is generalized to the case of condensed model, since the flexibility or 

stiffness matrices are usually estimated at partial DOFs in practice.  

 

C.1 Transformation of Stiffness and Modal Flexibility Matrices 

The displacement {x} of a free structure can be written as a superposition of the 

deformational and rigid body motions 

           d r dx x x q    Φ R  (C-1) 

where {xd} is the the displacement due to the deformational motion, {xr} is the 

displacement due to the rigid body components, dΦ  is the linear orthogonal 
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deformational modes satisfying T

d d Φ Φ I , R is the rigid body modes evaluated at 

the nodes and orthogonal as T R R I , and {q} and    are the corresponding 

participation factors. 

 

According to Eq. (C-1), the displacement {x} can be decoupled in the deformational 

space and rigid body space in Figure C-1. 

 

 

 

 

 

 

 

 

Figure C-1: Decoupling of Displacement of a Free Structure in Modal Space 

 

The orthogonal projector associated with R can be constructed by 

   
1

T T T


   P I R R R R I RR  (C-2) 

which has the properties 

  
2 P P , T PR R P 0  (C-3) 

 

In the modal space, the stiffness matrix K of a free structure has two kinds of 

eigenpairs: 

1) Nr zero eigenvalues pertaining to the rigid body motions. The associated 

eigenvectors span the null space of K, which contribute to the columns of R. 

2) Nd = N-Nr nonzero eigenvalues 
i  (i=1, 2, …, Nd). The associated orthogonal 

deformational eigenvectors 1 2 dd N     Φ   span the range space of K, 

which satisfy    i i i  K  and  i R 0 . 

 

In usual sense, the stiffness matrix and flexibility matrix are composed by the 

deformational eigenmodes solely as 

Deformational motion  

(Range space) 
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{xd}={x}-R{α}=(I-RR
T
){x}=P{x} 

{x} 
{xr}=RR

T
{x}=R{α} 
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  1

dN
T

i i i

i




K , 
1

1dN
T

i i

i i




F

 

(C-4) 

Mathematically, the stiffness matrix and the modal flexibility matrix formed with the 

deformational eigenmodes are singular and rank deficient for a free structure. 

 

A generalized stiffness matrix and a generalized flexibility matrix are defined as 

follows, which include the contribution made by both the rigid body modes and 

deformational modes. 

  1

dN
T T T

i i i

i




   K K RR RR , 
1

1dN
T T T

i i

i i




   F F RR RR

 

(C-5) 

The eigenvectors of  TK RR  are identical to those of K, but only the eigenvalues 

of the rigid body modes are changed from 0 to 1.  

 

The generalized stiffness matrix K  and flexibility matrix F  are full-rank, and can 

be transformed with each other by inversion of 

   
1 1

1

1 1 1 1 1

1 1
1

d d r d r drN N N N N NN
T T T T T T T T

i i i i i i i i i i i i

i i i i ii i

    
 

 
 



    

   
           

   
    K RR RR F RR

   

(C-6)

 

  
 

1

1

dN
T T T T

i i i

i






    F RR RR K RR

 

(C-7) 

Accordingly, the stiffness matrix K and the modal flexibility matrix F can be easily 

acquired from the full-rank matrices, by subtracting the item T
RR  as following. 

  
 

1
T T



  K F RR RR

 

(C-8) 

  
 

1
T T



  F K RR RR

 

(C-9) 

Alternatively, the stiffness matrix K and the modal flexibility matrix F can also be 

obtained by projecting the generalized matrices K  and F  onto the range space 

with projector P. The projector P is orthogonal to R, and can be formed by 

  
1

dN
T T T

d d i i

i




   P I RR Φ Φ
 

(C-10) 
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which leads to  

 
1 1 1 1 1 1

d d d d drN N N N NN
T T T T T T T T

i i i i i i i i i i r r i i i

i i i i r i

      
     

  
        

  
     P K RR RR K

   

(C-11) 

  

 
1 1 1

1 1d d dN N N
T T T T T

i i i i i i

i i ii i

  
   

  
      

  
  P F RR RR F

 

(C-12) 

The projector P can filter out the rigid body motions and leave only the deformational 

modes in the stiffness and flexibility matrices. To keep the symmetric property of the 

system matrices, the generalized stiffness and flexibility matrices is usually filtered as 

  
 

1
T



  F PFP P K RR P
 

(C-13) 

  
 

1
T



  FK P RRPKP P
 

(C-14) 

 

To sum up, if the rank-deficient stiffness matrix K is obtainable as usual case, the 

modal flexibility matrix F can be obtained either by subtracting the rigid body modes 

from the inversion of the full-rank stiffness matrix K  or by multiplying a projector. 

  
 

1
T T



  F K RR RR
 

(C-15) 

   
1

T


 F P K RR P
 

(C-16) 

With the former manner (Eq. (C-15)), the modal flexibility matrix F can be achieved 

from the rank-deficient stiffness matrix K by easily adding or subtracting the item 

T
RR  with high efficiency. This is adopted to calculate the residual flexibility and the 

associated derivative matrices for the free substructures in this thesis. However, 

sometimes the stiffness or flexibility matrices contain the rigid body motions in a 

random way, not exactly T
RR . As presented in Chapter 8, the substructural 

flexibility is extracted from the measured modal data. It is difficult to determine the 

participation coefficient of the rigid body motions. In that case, subtracting the item 

T
RR  from the given matrix may lead to an incorrect answer. Projecting the stiffness 

matrix or flexibility matrix onto the range space can always provide the desired 

matrices which are only contributed by the deformational modes, although it costs 
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additional computation time to construct the projector P.  

 

Since the full-rank matrices K  and F  are dual inversion of each other, they are 

responsible to transfer the stiffness and modal flexibility matrices of the free 

structures. 

 

C.2 Transformation of Mass-normalized Stiffness and Modal 

Flexibility Matrices 

In practical dynamic testing, the mass-normalized eigenmodes are obtained if both 

the input and output are measured at one point. Accordingly, the achieved modal 

flexibility matrix is mass-normalized as well. In addition, the dynamic analysis in 

modal space is usually described by the eigenproblem in form of 

  
  K M Φ 0

 
(C-17) 

As before, the eigenproblem has two kinds of eigenpairs, i.e., Nr zero eigenvalues 

associated with the rigid body modes R, and Nd nonzero eigenvalues associated with 

the deformational modes 
dΦ . They satisfy the orthogonality condition 

  
T R MR I , T

d d Φ MΦ I , T

d R MΦ 0  (C-18) 

The stiffness matrix K and modal flexibility F can be expanded by the 

mass-normalized modal modes as 
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(C-19) 
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  1

1dN
T

i i

i i




F  (C-21) 
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1dN
T T T

i i

i i



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(C-22)
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Due to the relation 

       
T TT T   K MR MR F RR KF MR MR RR T T

d d  Φ MΦ R MR I  

   (C-23) 

The generalized stiffness matrix K  and generalized flexibility matrix F  are dual 

inversion of each other 

  

   
1

T T


  K MR MR F RR

 

(C-24)

 

  
    

1 TT


  F RR K MR MR

 

(C-25) 

 

The generalized stiffness matrix K  leads to the eigenequation  

  
    T

  K MR MR M Φ 0
 

(C-26) 

which has the identical eigenvectors to those of Eq. (C-17), and only the eigenvalues 

of the rigid body modes are changed from 0 to 1.  

 

In this case, the projector P is constructed as 

  

1
1 1 1 1 1 1

2 2 2 2 2 2

T T T


           
              
            

P I M R M R M R M R I M R M R (C-27) 

  
1 1

2 2

T

d d

  
   
  

P M Φ M Φ

 

(C-28) 

and satisfy 

  
2 P P , 

1 1

2 2

T

 
   
   
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M R M RP P 0  (C-29) 

 

The modal flexibility F and the stiffness matrix K can be acquired from the full-rank 

matrices with the help of projector P as 

  
   

1 1 1 11
2 2 2 2

T
 

 K MRF M PM M PMMR  

  
 

1 1 1 1

2 2 2 2
1

T
 

 F R MRK M PM PM
 

(C-30) 

If the mass matrix is unsymmetrical or invertible, M can be decomposed by QR 
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algorithm or Cholesky factorization. The mass matrix is decomposed by 
1 2M M M , 

and the projector matrix P is constructed in the form of 

  
2 1

T
T    P I M R M R

 
(C-31) 

   2 1

T
T

d d
   P M Φ M Φ  

which satisfy 

  
2 P P ,  2 1

T
T

   M R M RP P 0  (C-32) 

Accordingly, the modal flexibility and stiffness matrices are projected onto the range 

space by 

  
       1 2

1

1 2\ /
T



 M M M K MR MR M P MF P M  

  
  1

1 1 2 2\ /T


 K M P M F RR M PM
 

(C-33) 

 

C.3 Transformation of the Condensed Stiffness and Modal 

Flexibility Matrices 

Practically, the stiffness or modal flexibility matrices are difficult to be estimated or 

measured on the full DOFs, it is necessary to construct the condensed stiffness and 

modal flexibility matrices for the free structure. 

 

If the full-DOF model is divided into the master part and the slave part, the stiffness 

matrix and the modal flexibility matrix are condensed to the master DOFs by 

  1

R aa ab bb ba

 K K K K K  (C-34) 

  
R aaF F  (C-35) 

where the subscript „a‟ represents the master DOFs, while the subscript „b‟ represents 

the slave DOFs. Different from the condensation of stiffness matrix, reducing the 

full-DOF flexibility matrix to FR is trivial and can be simply done by extracting the 

appropriate rows and columns of F. In addition, KR is singular while FR is usually 

nonsingular and well conditioned.  
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Concerning the full-DOF model described in the foregoing section, one can filter out 

the rigid body component from K  and F , either by subtracting the item T
RR  or 

by multiplying a projector P. Nevertheless, in the condensed model, the reduced rigid 

body modes Ra is not orthogonal to the condensed stiffness matrix KR and flexibility 

matrix FR any more. It is inappropriate to subtract the item T

a aR R  directly. An 

alternative is to construct a projector for the condensed matrix to filter out the rigid 

body component. 

 

The projector is formed for the reduced model as 

   
1

T T

R a a a a



 P I R R R R  (C-36) 

Ra is the rigid body modes at the master DOFs. The condensed stiffness matrix KR 

and flexibility matrix FR are not able to be related with PR directly. An interim 

variable needs to be constructed. If denoting 
R R R RF P F P , KR and 

RF  have the 

relation 

    
1

1
T T

R R R a a a a R




 K P F R R R R P  (C-37) 

    
1

1
T T

R R R a a a a R




 F P K R R R R P  (C-38) 

Eq. (C-38) indicates that, one can only obtain 
RF  on the space spanned by PR. The 

condensed stiffness matrix KR and flexibility matrix FR are both normalized to 
RF  

by the condensed projector PR. 

 

C.4 Transformation of Condensed Mass-normalized Stiffness and 

Modal Flexibility Matrices 

If the mass-normalized eigenvectors are used in the condensed model, the dynamic 

condensation are employed (Xia and Lin 2004), which has the condensed 
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eigenequation 

  
R a R aK Φ M Φ  (C-39) 

In Eq. (C-39), 1

R aa ab bb ba

 K K K K K  is the condensed stiffness matrix, while MR is 

the dynamic condensed mass matrix obtained in an iterative way. Since MR is usually 

unsymmetrical, it needs to be decomposed as 
1 2R M M M , and the condensed 

projector PR is constructed as 

  
2 1

T
T

R a a
    P I M R M R

 
(C-40)

 

In this case, the interim flexibility is formulated as 

     1 2 1 2\ /RR RR R RF P F M PM M M M M  (C-41) 

KR and 
RF  have the dual relationship 

    
1

1 1 2 2

1

\ /T T

R R a a a RaR


 

 
 

 K PM F R R R MR PM M  (C-42) 

         1 2 1

1

2\ /
T

R R R a RR R a RR



 F P K M RM M M M MM R P M  (C-43) 

The interim flexibility 
RF  can be obtained either from the reduced flexibility FR as 

Eq. (C-41), or from the reduced stiffness KR as Eq. (C-43). In Chapter 8, the modal 

flexibility matrices extracted from the measured modal data and from the analytical 

model are both normalized with the condensed projector PR for model updating 

purpose. 

 

C.5 One Example 

To illustrate the aforementioned properties of the free structure, the second 

substructure of the mass-spring model are employed here in Figure C-2.  

 

 

 

Figure C-2: 4-DOF Spring-mass Model 
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The 4-DOF model has the stiffness and mass matrices 
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K

, 

1
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2

1

 
 
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 
 
 

M

 

(C-44)

 

From the classical eigenequation, the eigenvalues and mass-normalized eigenvectors 

in modal space are obtained, which include one rigid body mode (NR = 1) and three 

deformational modes (Nd = 3) as 

 

 
     1 2 3 4Diag Diag 0 10 30 40    Λ

 
(C-45) 
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Φ  

The deformational eigenmodes give the full-DOF modal flexibility as 

  

1

0.0486 0.0069 0.0181 0.0264
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T

d d d
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(C-46) 

 

It is assumed that, the third DOF is unmeasured, i.e., the 1
st
, 2

nd
, 4

th
 DOFs are 

assumed to be the master DOFs, and the 3
rd

 DOF is slave. 
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(C-47) 

With the dynamic condensation (Xia and Lin 2004), the stiffness matrix and mass 

matrix are reduced to 



258 
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(C-48) 

And the reduced modal flexibility matrix is 

  

0.0486 0.0069 0.0264

0.0069 0.0153 0.0181

0.0264 0.0181 0.0486

R aa

 
 

  
 
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F F  (C-49) 

The rigid body mode at the master DOFs is obtained as 

  

0.4082

0.4082

0.4082

a

 
 


 
  

R  (C-50) 

 

Decomposing the unsymmetrical condensed mass matrix with 
1 2R M M M , the 

reduced projector is constructed with 

  

2 1

1 0.3015 0.1846

0 0.1818 0.5010

0 0.2969 0.8182

T
T

aR a
 

 
 

    
 
  

I M R MP R

 

(C-51)

 

Denoting projector  

   11 2\ RR M M P MP ,  12 2 /R RP PM M M  (C-52) 

the interim flexibility matrix 
RF  can be recovered from the reduced flexibility FR as 

  1 2

0.0528 0.0028 0.0306

0.0111 0.0111 0.0222

0.0222 0.0222 0.0444

R R

 
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F P F P
 

(C-53)
 

or from the reduced stiffness KR as 

    
1

1 2

T

R R R a R a



 F P K M R M R P
0.0528 0.0028 0.0306

0.0111 0.0111 0.0222

0.0222 0.0222 0.0444

 
 

 
 
   

 
(C-54) 

Eq. (C-53) and Eq. (C-54) give identical results. Although it is difficult to reproduce 

FR from the interim variable 
RF , one can relate the condensed stiffness matrix KR 

and flexibility matrix FR based on this term RF .  

 

Additionally, the condensed stiffness matrix can be exactly recovered from the 
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reduced flexibility matrix as well. 

  
1

1 1 2 2

1

\ /T T

R R a a a RaR
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 (C-55) 
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APPENDIX D 

RESIDUAL FLEXIBILITY MATRIX FOR FREE 

STRUCTURES 

Based on the aforementioned property of the stiffness and modal flexibility matrices, 

the residual flexibility matrix is derived for the free structures. The first-order residual 

flexibility matrix will be derived first, followed by the general formulae of the 

high-order residual flexibility matrices. 

 

The complete eigenmodes are divided into Nm master modes 
mΦ  and Ns slave 

modes 
sΦ . The master modes 

mΦ  include the Nr rigid body modes R and the 

(Nm-Nr) deformational master modes 
m-rΦ . The deformational modes include the 

deformational master modes 
m-rΦ  and deformational slave modes 

sΦ . The relation 

between master modes, slave modes, rigid body modes, and deformational modes is 

illustrated in Figure D-1. 

 

 

 

 

 

 

 

Figure D-1: Relationship between Different Kinds of Modal Modes 

 

The generalized stiffness matrix can be expressed by the rigid body modes, master 

modes and slave modes as 

Rigid body modes 

R 

Master deformational 

modes 
m-rΦ  

R 

Slave deformational 

modes 
sΦ  

R 

Master modes 
mΦ  Slave modes 

Deformational modes 
dΦ  
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 
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 
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 

       
Φ Φ

K RR RR Φ Λ Φ Φ Λ Φ RR (D-1) 

Therefore, the first-order residual flexibility matrix for the free structure can be 

expressed by the master modes as 

   
1

1 1T T T T

s s s m-r m-r m-r


    Φ Λ Φ K RR Φ Λ Φ RR  (D-2) 

Accordingly, the second-order residual flexibility matrix for the free structure is 

 
  2 1 1T T T

s s s s s s s s s
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 
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 

2
2T T T

m-r m-r m-r


   K RR Φ Λ Φ RR  (D-3) 

which leads to 

  2 T
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Φ Λ Φ  

2
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
   K RR Φ Λ Φ RR  (D-4) 

The general formula for the k-order residual flexibility is derived as 
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
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i.e., 

  k T

s s s


Φ Λ Φ =  

k
T k T T

m-r m-r m-r


   K RR Φ Λ Φ RR  (D-6) 

 

If the mass-normalized eigenvectors are considered, the first-order residual flexibility 

matrix for the free structure is 

     
1

1 1TT T T

s s s m-r m-r m-r


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The second-order residual flexibility matrix can be obtained with the master modes as 

 
   2 1 1T T T

s s s s s s s s s
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 
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Generally, the k-order residual flexibility is given by 
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APPENDIX E 

DERIVATIVE OF RESIDUAL FLEXIBILITY MATRIX 

Differentiating the first-order residual flexibility (Eq. (D-2)) with respect to an 

elemental parameter r, the derivative matrix has the form of 
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Accordingly, the second-order residual flexibility (Eq. (D-4)) is differentiated as 
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In general, the kth-order residual flexibility (Eq. (D-6)) has the derivative matrix  
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If considering the mass-normalized eigenmodes, the derivative matrix of the kth-order 

residual flexibility has the form of 
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