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ABSTRACT 

 

 
The piezoelectric tube actuator is a compact device, which realizes three 

dimensional nano-scale scanning on the sample in Atomic Force Microscope 

(AFM). However, nonlinearities, including creep and hysteresis, together with 

coupling effect significantly limit the accuracy of AFM. The main goal of this 

research is to design a controller to minimize the tracking error due to coupling 

effect, creep and hysteresis, and also increase the stability for the piezoelectric tube 

actuator with electrode dislocation. 

 

An accurate model of piezoelectric tube actuator which can fully describe the 

dynamic properties and nonlinear phenomena is a pre-requisite for model-based 

controller design. The first objective is to develop a reduced order nonlinear finite 

element (FE) model for controller design and computer simulation. The key point 

for developing a nonlinear model is to implement Prandtl-Ishlinskii hysteresis 

operators and Kelvin-Voigt creep operators into constitutive equations. The order of 

the nonlinear FE model in state space form is reduced by the balanced model 

truncation via Schur method in order that the model is feasible for controller design 

and computer simulation. 

 

The working operation of the piezoelectric tube actuator is simulated in such a 

way that the cantilever is desired to scan the sample surface in a raster pattern. The 

simulation results of the open loop nonlinear system reveal that coupling effect, 



v 

creep and hysteresis can lead to significant tracking errors. Simulations on the 

closed loop nonlinear system with electrode dislocation using the 

proportional-integral (PI) controller and the output feedback controller (OFC) show 

that creep cannot be compensated and the tracking errors in Y direction diverge. 

 

The second objective is to develop an adaptive sliding mode controller (ASMC) 

for the piezoelectric tube actuator. The piezoelectric tube actuator is characterized 

as a multiple-input-multiple-output (MIMO) nonlinear time-varying system. The 

design of controller is based on the reduced order nonlinear FE model. A 

continuous-time dynamic model assists the design process such that part of 

hysteresis can be extracted as known design information. The remaining part of 

hysteresis together with coupling effect and creep are considered as uncertainties. 

Walcott Zak observer is adopted to estimate the unmeasurable states. Lyapunov 

criterion is stated to guarantee the theoretical stability of the closed loop system. 

Adaptive scheme is used to search for the unknown controller gains. 

 

The simulation of the piezoelectric tube actuator using the ASMC is performed. 

It shows that the ASMC can reduce more tracking error due to adverse effects and 

is relatively more stable than the PI controller and the OFC. The performance of 

the ASMC with the same settings is further investigated in piezoelectric tube 

actuator with different creep properties and hysteresis properties in addition to 

electrode dislocation. The results are evident that the proposed ASMC can tolerate 

certain changes of nonlinearity properties. The ASMC is the best candidate for 

AFM among the controllers investigated in this research. 
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CHAPTER 1  

 

INTRODUCTION 

 

 

1.1 BACKGROUND 

 

 Piezoelectric tube actuator, which is a compact smart device, is well-known 

for realizing nano-scale positioning and fabrication for Atomic Force Microscope 

(AFM). Afterward imaging technology of AFM is extended to the application of 

data storage. The storage instrument, using this technology, called 

Micro-electro-mechanical-system (MEMS)-based scanning-probe data-storage 

device has advantages over its peers with ultra-high density (1 Tb/in
2
) and low 

access time (Pantazi et al., 2007). Getting back to AFM, it was developed by 

Binnig et al. (1986) based on scanning tunneling microscope, which has extremely 

high resolution (between several 100 μm to 10 pm). AFM can provide information 

about three dimensional configurations as well as crystal structures of 

macromolecules. The packing order of molecular adsorption on a surface of metals 

or minerals can be investigated, thus, the types of forces can be determined. 

Moreover, AFM is so versatile that it possesses different features when equipped 

with specific cantilevers (probes) such as detecting light (fluorescence, infrared, 

ultraviolet and visible light), current, magnetic field and pressure. With 

appreciation of the high resolution and the attractive functions, AFM is widely 

adopted in the fields of biology (biomolecules, biosensors, cell tracking, DNA 
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analysis and enzyme activities), chemistry (chromatography), industry (contact lens 

manufacturing, lithography, lubrication, microelectronics, microfabrication 

techniques, nanoetching, nanomachining and production of semiconductor 

integrated circuits), material science (ceramic or metal surface investigation, 

mineral surface morphology and single-molecule studies) and medicine (peptides, 

vaccines and virus) (Birdi, 2003). 

 

AFM is eminent in various aspects in microscopy. The conventional optical 

microscope obtains the image of the sample surface by receiving the reflected light 

through lenses. The basic problem is the interaction of the probe, a photon, with the 

sample. The resolution is restricted by diffraction limit, which is not better than 250 

nm. Although adjustment of the shape or index of refraction of the lens can achieve 

improvement, it can cause large changes in the instrument response. Unlike the 

optical microscope, AFM uses the interaction force to image a sample surface. 

Therefore, diffraction limit is not the restriction for AFM. It explains that AFM has 

higher resolution than optical microscope. Scanning Electron Microscope (SEM), 

which is an advanced instrument for metrology, has insignificant diffraction effect. 

Its resolution is comparable to AFM. However, the incident beam may be 

uncontrollably deflected if the sample potential changes through charging. Also, 

sample must be put in vacuum. Regarding to the cost, SEM is more expensive than 

AFM by double. Moreover, for both the optical microscope and SEM, high 

resolution cannot be achieved in all three dimensions simultaneously. The special 

imaging method allows AFM overcoming those drawbacks of optical microscope 

and SEM. 
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The schematic diagram of the scanning module of AFM in sample-on-actuator 

design is shown in Fig. 1-1 (Magonov and Whangbo, 1996). The characteristic of 

this design is that the sample is placed on the top of the piezoelectric tube actuator, 

and the cantilever is fixed. Alternatively, AFM can be in the cantilever-on-actuator 

design for which the cantilever is attached to the piezoelectric tube actuator, and 

the sample is fixed (El Rifai and Youcef-Toumi, 2003). The discussion throughout 

the thesis is based on the former design. In general, an AFM has two main 

operating modes, namely, contact (El Rifai and Youcef-Toumi, 1999) and tapping 

(Sebastian et al., 2007). For contact mode, a cantilever scans the sample surface by 

exerting a vertical force on the sample surface by cantilever sharp tip, keeping the 

force constant at a very close separation and dragging across the sample surface in 

raster pattern. Usually, the interaction forces between the cantilever tip and the 

sample surface (repulsive force and Van der Waals‟ forces described by the 

Lennard-Jones type behavior (Agarwal and Salapaka, 2008)) is kept between 0.5 

and 0.1 nN for the cantilever with the force constant 0.06 N/m. The interaction 

force causes the cantilever to deflect. The resulting deflection is detected by 

emitting a laser beam to the back of the cantilever and then reflected to the optical 

sensor. For tracking improvement, capacitive sensors can be implemented to 

independently measure the actuator tip position or the sample position for feedback. 

Alternatively, instead of using a pair of electrodes for actuation (double-actuation), 

it is a possible way to sacrifice one of the actuating electrodes to act as a sensor 

(single-actuation) (Moheimani and Yong, 2008). Sample position measurement can 

be realized by detecting the voltage existing on the sensing electrode. 

Single-actuation can overcome the problem of capacitive sensors which is 

significantly influenced by noise at high scanning frequency. But this method 
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reduces the operating range by half and causes the piezoelectric tube not driving 

symmetrically. In this thesis, double-actuation is considered. For tapping mode, the 

cantilever is kept vibrating at the resonant frequency. The separation between the 

cantilever tip and the sample surface is kept constant by measuring the vibration of 

the cantilever with the fact that the vibration is damped as the sample comes closer 

to the cantilever tip. The necessary information can be obtained by determining 

amplitude, phase or frequency of the response of the cantilever. Tapping mode 

enables AFM scanning a matter in liquid phase such as actin, cells, DNA and 

lysozyme (Colton et al., 1998), which is not possibly performed in contact mode. 

In contrary, the advantage of contact mode over the tapping mode is that the force 

constant of the cantilever used in contact mode is much smaller than that used in 

tapping mode, hence, the cantilever tip drags across the sample surface with less 

damage. 

 

 

Figure 1-1.  Scanning Module of AFM 
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AFM being an outstanding metrology tool is attributed to beneficial 

characteristics of the piezoelectric tube actuator including fast response, good 

mechanical durability, high resolution, large output force and low power 

consumption (Haertling, 1999; and Niezrechi et al., 2001). Piezoelectric tube 

actuator was invented by Binnig and Smith (1986). The merit of this actuator 

design is that the piezoelectric tube actuator is fabricated by just a single material 

for application of three dimensional scanning; therefore, complicated structures or 

components are avoided. The physical object of piezoelectric tube actuator is 

shown in Fig. 1-2. It is made of outward polarized piezoelectric material in 

cylindrical shape attached with copper made quartered outer electrodes and a 

copper made inner electrode. When voltage is applied to the electrodes, a potential 

difference exists between the outer electrode and the inner electrode. Due to 

converse piezoelectric effect, the piezoelectric tube actuator deforms and bends 

accordingly. Therefore, the lateral and longitudinal movements of the sample can 

be controlled by input voltage on appropriate electrodes in order that the cantilever 

can scan across the sample surface. Since feedback control of longitudinal 

movement involves interaction of piezoelectric tube actuator and cantilever, it is 

preferred to separate controller design of longitudinal movement from lateral 

movements to reduce the complexity of controller. In this thesis, the controller 

design for lateral movements is considered. A number of previous researchers have 

contributed to the control of longitudinal movement with different types of 

controller such as robust controller (Hsu and Fu, 1999) and adaptive regulator (Li 

et al., 2009). The control of longitudinal movement is out of the scope of this 

research. 
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Figure 1-2.  Physical Object of Piezoelectric Tube Actuator 

 

1.2 MOTIVATION FOR RESEARCH 

 

There are numerous factors for degrading accuracy of AFM regarding 

cantilever, piezoelectric tube actuator, sample and sensor. Frictional force between 

the cantilever tip and the sample surface not only causes cantilever tip to flex but 

also hinders the movement of tip of piezoelectric tube actuator especially in contact 

mode. Some nonideal characteristics such as cantilever tip-shape artifacts, 

cantilever tip contamination and sample damage exist due to careless handling and 

repeatedly use (Barrett and Quate, 1991a). Sensor noise which disturbs the 

measured signal is unavoidably present in any kind of sensor. Imperfectly 

constructed capacitive sensor on the tip of the actuator or bending of the 

piezoelectric tube actuator during scanning cause nonlinear behavior in 
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measurement because two plates of the capacitive sensor are not in parallel but 

forming a relative tilt (Griffith and Grigg, 1993). Directly proportion between the 

output voltage and the capacitor spacing is no longer valid. Moreover, the 

properties of the piezoelectric material change gradually with time after 

polarization in manufacturing process. In other words, the piezoelectric material 

exhibits aging. Most of the undesired effects mentioned before can be avoided by 

either good maintenance or advanced instrument. The nonlinearities of the 

piezoelectric material including creep and hysteresis also limit the accuracy of 

AFM significantly. The piezoelectric tube actuator scans in forward and backward 

directions giving different position outputs on the same scanning path. The 

maximum error that hysteresis can create is as large as 15% of the total 

displacement range (Mokaberi and Requicha, 2008). It is quite a large error for 

nanopositioning and nanomanipulation. Creep happens obviously in such a way 

that when a step input is applied to the piezoelectric tube actuator, the displacement 

increases with time even the step input is steady. The accuracy is reduced with 

increase in scanning time. Since most of AFM are operating at a moderately low 

speed, its adverse effect on the accuracy is noticeable (Moheimani, 2008; and 

Mokaberi and Requicha, 2008). Lastly, coupling effect, which is caused by 

abnormal size of electrodes, cross-coupling deformation, dislocated electrodes and 

eccentricity, cannot be overlooked (Maess et al., 2008a; 2008b). Coupling effect 

happens in such a way that an input or a displacement of one axis reluctantly 

induces unnecessary motions in another axis. In this research, the coupling effect 

due to electrode dislocation is the interest. Machining imperfection in the 

manufacturing process is an inevitable cause of electrode dislocation. Electrode 

dislocation of piezoelectric tube actuator can be different from each other. 
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Therefore, coupling effect due to electrode dislocation can be considered as 

uncertainties of the system. It is an interesting and challenging topic of 

compensation of nonlinearities and coupling effect for piezoelectric tube actuator. 

 

Approaches which tackle the problems of piezoelectric tube actuator in AFM 

can be classified into four categories including calibration of the actuator, 

linearization by charge input, postimaging software image correction and real time 

correction via control system (Tamer and Dahleh, 1994). Calibration is a 

compulsory and fundamental method carried out by manufacturer but it cannot 

solve the repeatability problems such as creep. Post-imaging software image 

correction achieves limited improvement of imaging (Barrett and Quate, 1991b). 

This approach allows fast imaging; however, it has the following drawbacks. First, 

large number of data is required to be collected and stored. Second, there is a delay 

between scanning and image display during the correcting software running. 

Therefore, it is not applicable to real time application such as manipulation since 

correction is performed after scanning. Charge input has been proven that it does 

not induce nonlinearities significantly (Fleming and Moheimani, 2005; 2006; 

Bhikkaji et al., 2007; and Ashley et al., 2008). This approach can work with 

controller jointly (Clayton et al., 2008). However, the necessary instrument, charge 

amplifier which converts the input signal into the charge input, is costly. On the 

contrary, the benefits of implementation of feedback controller are real time 

compensation of creep, hysteresis, thermal drift and vibrations. It is also easy to 

perform implementation, maintenance and modification since most of control 

applications are based on computer (digital control). 
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There are a number of works done by previous researchers on control of 

piezoelectric devices (Croft et al., 2001; Tien et al. 2005; Shakir et al., 2007; 

Payam and Abdel-Rahman, 2008; and Berghuis et al., 1993). Their works are 

reviewed in Chapter 2 in detail. Although the previously proposed controllers are 

good choices for tracking error minimization of the piezoelectric tube actuator, the 

current literature related to this area have the following gaps: (i) a mathematical 

model which demonstrates not only dynamic responses but also coupling effect, 

creep and hysteresis has not yet been developed for simulation and controller 

design purposes; (ii) tasks related to controller design only concerns one or two of 

the adverse effects including coupling effect, creep or hysteresis but not a 

combination of them. The controllers proposed by former researchers have not yet 

shown to compensate all the adverse effects simultaneously; (iii) comparison 

between the performance of the previously proposed controllers and the controller 

currently used in AFM has not yet been made. 

 

In order to bridge the gaps, this thesis proposes a reduced order nonlinear 

finite element (FE) model and a robust controller. It is remarked that a nonlinear 

model or a nonlinear system means that a model or a system exhibits creep and 

hysteresis. FE method is chosen because its formulation process can be handled by 

computer automatically and systematically. By implementing creep and hysteresis 

models to the FE formulation, the proposed FE model can exhibit creep and 

hysteresis in simulation. Based on the proposed FE model, an adaptive sliding 

mode controller (ASMC) is designed. The sliding mode controller is a practical 

version of the variable structure control which was found to be insensitive to 

parameter perturbations and uncertainties (Utkin, 1977). It can force the tracking 
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error of the piezoelectric tube actuator with coupling effect, creep and hysteresis to 

converge to zero. Lyapunov equation is formulated to state the theoretical stability 

of the closed loop nonlinear system with electrode dislocation. The performance of 

the ASMC, including error minimization ability and stability improvement ability, 

is examined and compared with that of typical controllers including the 

proportional-integral (PI) controller and the output feedback controller (OFC). 

They are chosen as comparison candidates because PI controller is commercially 

used in piezoelectric tube actuator in AFM (Abramovitch et al., 2007). OFC which 

contains coupling control gains can reduce the tracking error caused by coupling 

effect. 

 

1.3 RESEARCH OBJECTIVE 

 

The main objective of this research is to propose a controller for the 

piezoelectric tube actuator to minimize error due to coupling effect, creep and 

hysteresis, and enhance stability when tracking a scanning trajectory of AFM (a 

raster pattern). It is remarked that the studies are based on simulation results only. It 

is outside the scope of this research to conduct the experimental verification. 

 

In order to achieve the objective mentioned above, the following major tasks 

have been accomplished and listed below: 
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(1) To establish a nonlinear FE model of piezoelectric tube actuator 

 

An accurate model which is not only able to characterize the dynamic 

properties but also exhibit creep and hysteresis phenomena is indispensable 

for both simulation and controller design. The Kelvin-Voigt creep operator and 

the Prandtl-Ishlinskii hysteresis operator are implemented in the FE model 

formulation process to enable the FE model to exhibit nonlinearities. The 

order of the nonlinear FE model is reduced so that simulation and controller 

design are feasible. Parameters of the nonlinear operators are identified. The 

simulated responses of the full and reduced nonlinear FE models are 

compared with the experiment result obtained from other literature for 

validation. 

 

(2) To develop an ASMC for the piezoelectric tube actuator 

 

An ASMC is chosen because it has an advantage that it is insensitive to 

coupling effect, creep and hysteresis. The ASMC is developed in such a way 

that the reduced order nonlinear FE model is used for developing the observer 

and the controller, and a continuous-time dynamic model of backlash-like 

hysteresis is utilized in the controller design in order that the performance on 

the compensation of hysteresis can be improved. The sliding mode observer is 

designed for estimating the unmeasurable states. Lyapunov criterion is stated 

to guarantee the stability of the closed loop system theoretically. 

 

 



12 

(3) To investigate the performance of the ASMC 

 

The controller commands the system to track a raster pattern. Raster 

pattern is a standard trajectory used in scanning operation of AFM. The output 

responses of the closed loop nonlinear system with electrode dislocation using 

the ASMC are obtained by simulations. By investigating the results, the 

performance including error minimization ability and stability improvement 

ability is assessed. The performance of closed loop nonlinear system with 

electrode dislocation using the ASMC is compared to that of the open loop 

nonlinear system with electrode dislocation, and the closed loop nonlinear 

system with electrode dislocation using the PI controller and the OFC. Open 

loop system means a system without implementation of controller. 

 

(4) To evaluate the effects of different creep properties and different hysteresis 

properties on the controller performance 

 

The reason for evaluation is to assess the ability of the controllers on 

enduring biases of the creep properties and the hysteresis properties. Because 

of bias measure of hysteresis properties, rate dependent hysteresis properties 

(Yu et al., 2002), thermal dependent creep properties (Motamedi et al., 2009), 

and changes of hysteresis properties and creep properties due to different 

treatments on the piezoelectric tube actuator, creep and hysteresis parameters 

can be different from those original values considered in controller design. 

Performance comparisons are made between the ASMC, the PI controller and 

the OFC. 
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1.4 THESIS ORGANIZATION 

 

This thesis consists of seven chapters: 

 

Chapter 1 contains background information, motivation for research and research 

objective. 

 

Chapter 2 presents a comprehensive literature review. 

 

Chapter 3 demonstrates the formulation of full and reduced order nonlinear FE 

models. The parameters identification and the validation are performed. 

 

Chapter 4 shows the effects of coupling, creep and hysteresis on the open loop 

system. Then, the performance of typical controllers on the piezoelectric tube 

actuator with electrode dislocation is investigated. 

 

Chapter 5 presents the formulation of the ASMC. The performance of the ASMC 

on the piezoelectric tube actuator with electrode dislocation is studied and 

compared to that of typical controllers. 

 

Chapter 6 studies the controllers‟ ability of tolerating the biases of creep and 

hysteresis properties. 

 

Chapter 7 discusses and concludes the work done in this thesis, and gives 

suggestions for the future work.  
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CHAPTER 2  

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

 In recent years, the control problems of piezoelectric tube actuator have 

received much attention, and a number of controllers have been proposed. In this 

chapter, the related literature are reviewed in detail, which provide necessary 

information, ingenious theory and remarkable discussion for inspiration of the 

work in this thesis. According to the main objective of this research, the review is 

separated in two sections, namely, mathematical modelling and controller design. 

 

2.2 MATHEMATICAL MODELLING 

 

A mathematical model of a piezoelectric tube actuator which can simulate the 

response accurately is important for studying the effect of nonlinearities and the 

performance of the controllers. For model-based controller, a mathematical model 

is a pre-requisite in controller design process. Some researchers have developed 

model for piezoelectric devices by analytical formulation. Low and Guo (1995) 

formulated a nonlinear analytical model with hysteresis for piezoelectric bimorph 
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beam. The structure of the piezoelectric bimorph beam consists of a metal shim 

sandwiched in between two piezoelectric plates. A hysteresis model described by a 

differential equation was implemented in the analytical model as an external 

excitation. By the proposed model, the vertical displacement of piezoelectric 

bimorph beam can be calculated. Royston and Houston (1998) developed a 

nonlinear analytical model for 1-3 piezoelectric ceramic composite sandwiched by 

two plexiglass layers. 1-3 piezoelectric ceramic composite is a number of vertical 

piezoelectric rods embedded in the polymer. Maxwell resistive capacitor model 

was used for approximating the hysteresis occurring between electric field and 

electric displacement of 1-3 piezoelectric ceramic composite. The displacement of 

the plexiglass layer can be calculated by the dynamic equation of the plexiglass 

layer with the nonlinear deformation of 1-3 piezoelectric ceramic composite. Wu et 

al. (2006; 2007) proposed a model which provides three-dimensional solutions for 

the static analysis of multilayered piezoelectric tube actuator. The procedures of 

model formulation are nondimensionlization, asymptotic expansion and successive 

integration in sequence. It is remarked that this proposed model does not take the 

nonlinear behaviors in account. The benefit of analytical formulation is that 

accurate solution can be obtained. However, the weakness of this method is that it 

is not applicable to the system with complicated shape or structure. Also, difficulty 

of mathematical formulation is high. By the way, the literature in this paragraph 

give ideas of nonlinear model implementation and three-dimensional model 

formulation. 

 

To overcome the problems of analytical formulation, the FE method, which is 

a type of the numerical formulation, is a good choice. FE method is better than 
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finite difference (FD) method because FE method can handle objects with complex 

geometry and has higher accuracy. Although model obtained by FE method 

provides approximate solution, the formulation is unrestricted by shape of object 

because discretization is performed at the initial stage. The formulation process 

which can be handled by computer is also an attractive advantage. Lim et al. (1997) 

developed a three-dimensional linear FE model of piezoelectric ceramic sensors 

embedded in a micro-cantilever for transient analysis. It is remarked that a linear 

model or a linear system means that a model or a system does not exhibit creep and 

hysteresis. Afterward, Lim et al. (1999) applied similar FE method to model a 

smart structure which is an aluminum plate with discrete piezoelectric sensors and 

actuators attached. A multi-input-multi-output (MIMO) linear quadratic controller, 

which is a type of optimal controller, was designed based on the FE model, and its 

performances on vibration and noise control of the system were studied in 

simulation. Hau and Fung (2004) proposed a reduced order FE model for a 

clamp-free beam with partial active constrained layer damping (ACLD). In ACLD, 

patches consisting of piezoelectric layer and viscoelastic material (VEM) layer 

were attached on the beam for active damping and passive damping respectively. 

The Golla-Hughes-McTavish (GHM) method was adopted to FE formulation to 

account for the frequency dependent characteristic of VEM. The effect of different 

ACLD treatment configuration on the frequency response was investigated. For 

piezoelectric tubes, Carr (1988) first constructed a linear model by FE method. The 

magnitudes of the three-dimensional motion were investigated with different tube 

materials and tube dimensions. Berg et al. (2004) proposed a linear FE model for 

piezoelectric thin-walled cylindrical shell with shell theory. In this theory, only 

dielectric displacements in the radial direction were considered. Admittance, axial 
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displacements and eigenmodes of the piezoelectric shell were investigated in 

simulation. The advantage of approximating a tube as a shell is that the complexity 

of FE formulation is reduced but the accuracy decreases. Santos et al. (2008) 

further extends the FE formulation with shell theory for piezoelectric tube in 

axisymmetric case. The development of this model is further simplified; however, 

analysis of bending and free vibrations is limited to axisymmetric excitation. 

Kumar et al. (2008) applied FE method with shell theory to the formulation of 

laminated composite (graphite epoxy) shell with piezoelectric patches including 

actuators and sensors attached. This model can simulate the responses of the 

laminated shell subjected to electrical, mechanical and thermal loadings. A negative 

velocity feedback control was applied and simulation showed that location of 

piezoelectric patches affected the performance of controller. In the review of this 

paragraph, the formulations of linear FE model of piezoelectric plate and tube are 

studied. 

 

Nonlinear modelling is in fact an essential area of study because piezoelectric 

material exhibits nonlinear behaviors in reality. Concerning hysteresis, the physical 

models called thermodynamically consistent models (Kamlah and Bhle, 2001; and 

Landis, 2004) can describe the underlying physics of hysteresis but are still in 

development. Thermodynamically consistent models are based on a macroscopic 

view to describe microscopic phenomena. However, they suffer from 

computational inefficiency and cumbersome mathematics for controller design. In 

contrary, the mathematical models, which are usually formulated by dynamics of a 

combination of mechanical components, are conceptually simpler and more 

mathematically elegant. A classical Preisach model (Mayergoyz, 1991) is the most 
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popular one for modelling hysteresis because of its accuracy. Its applications, not 

limited to modelling, extend to feedforward control for piezoelectric actuator (Ge 

and Jouaneh, 1996; and Galinaitis and Rogers, 1998). Prandtl-Ishlinskii hysteresis 

operator is simpler than Preisach model and can easily extend to include creep 

model (Krejci and Kuhnen, 2001; and Mokaberi and Requicha, 2008). Concerning 

creep, there are no physical models but only mathematical models available in the 

current literature. One of creep models is expressed in logarithmic function (Jung 

and Gweon, 2000). Its expression is rather simple but its accuracy on modelling 

creep behavior of piezoelectric material receiving a signal other than step input has 

never been investigated, therefore, it is not guaranteed. A creep operator which is 

modelled by superposition of parallel connections of a damper and a spring called 

Kelvin-Voigt operators (expressed in the form of first order differential equation) 

was validated together with superposition of Prandtl-Ishlinskii hysteresis operators 

when the piezoelectric actuator is receiving an irregular input signal (Krejci and 

Kuhnen, 2001). The two nonlinear operators, i.e. Prandtl-Ishlinskii hysteresis 

operator and Kelvin-Voigt creep operator, are adopted in nonlinear modelling for 

simulation purpose in this research. 

 

It is a good idea to fuse the nonlinear operators into FE formulation in order to 

take advantages of both of them. However, seldom literature are related to 

formulate nonlinear FE model in this way. Kusculuoglu and Royston (2008) 

developed a nonlinear FE model for piezoeletric laminated plates using Mindlin 

plate theory. The piezoeletric laminated plates arranged as a piezoelectric patch 

were bonded to the aluminum plate. Ishlinskii hysteresis operator was implemented 

into FE formulation in such a way that it models hysteresis behavior existing 
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between electric field and electric displacement. However, the state space form of 

this nonlinear FE model has a nonlinear term embedded in the system matrix and 

this nonlinear term is hard to be separated out. This makes the existing numerical 

solvers difficult to compute the solution. Also, it is not available for controller 

design. 

 

In this section, the advantages and the disadvantages of different mathematical 

models are reviewed. It is pointed out that a mathematical model which can 

demonstrate coupling effect, creep and hysteresis has not been developed. It is also 

found that implementing the mathematical nonlinear operators into FE formulation 

is a relatively convenient and simple way to formulate an accurate nonlinear model 

for piezoelectric tube actuator for controller design and simulation purposes. By 

adopting a continuous-time dynamic model of backlash-like hysteresis (Su et al., 

2000), the nonlinear FE model becomes available for designing an ASMC design 

with enhanced ability in compensation of hysteresis, which will be discussed in 

Chapter 5. 

 

2.3 CONTROLLER DESIGN 

 

As discussed in Chapter 1, feedback control has numerous advantages so it is 

chosen for error minimization and stability improvement of piezoelectric tube 

actuator. In this section, various kinds of controllers used for piezoelectric devices 

in current literatures are reviewed to study their advantages and disadvantages. 

Many researchers have worked on design of inverse feedforward controllers. The 
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inverse feedforward controller constructed by inversing creep or hysteresis model 

releases an input signal to cancel the effect of the corresponding nonlinear behavior. 

Croft et al. (2001) inversed the creep dynamics, the Preisach hysteresis model and 

the vibration dynamics to compensate corresponding adverse effects of 

piezoelectric tube actuator. The performance of the controller was tested in AFM 

for imaging. Janocha and Kuhnen (2000) used inverse of Kelvin-Voigt creep 

operator and inverse of Prandtl-Ishlinskii hysteresis operator while Krejci and 

Kuhnen (2001) used Kelvin-Voigt creep operator and inverse of Prandtl-Ishlinskii 

hysteresis operator to create the inverse feedforward controller. The performances 

of the proposed controllers were examined in piezoelectric stage and the tracking 

error is reduced by approximately one order of magnitude. Mokaberi and Requicha 

(2008) assessed the performance of the controller proposed by Krejci and Kuhnen 

(2001) on AFM for manipulation. Among the literature, their differences are on the 

types of creep or hysteresis model used for inverse feedforward controller design. 

 

The inverse feedforward controller has the following advantages. First, 

additional sensor for the output is not necessary for compensation purposes of the 

pure feedforward controller so the complexity and the cost of the control setup are 

reduced (Krejci and Kuhnen, 2001). Second, this controller is available for 

combining with the feedback controller to provide further improvement for the 

performance of the closed loop system. However, the creep operator-based 

feedforward controller has the disadvantage that the sensitivity to unconsidered 

external disturbances is introduced (Krejci and Kuhnen, 2001). For instance, the 

creep is thermal dependent. The step response exhibits creep 15% more when the 

temperature increases from 25 ˚C to 49 ˚C (Motamedi et al., 2009). The thermal 
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dependent property of creep is not characterized in the Kelvin-Voigt creep operator. 

The error of the system using feedforward controller may even larger than that 

without using it when the temperature change is large. 

 

Iterative control is a digital control method, which generates a control signal 

based on the information of the control signal and the error at the last time step. Its 

benefits are that the control law is rather simple and no intensive calculations are 

needed for computer. The stability of iterative control is higher than feedforward 

control. Tien et al. (2005) proposed iterative control for compensation of coupling 

effect between lateral axis and longitudinal axis. Wu and Zou (2007) based on the 

work of Tien et al. (2005) combines a Preisach hysteresis model and vibration 

dynamics with iterative control to enable the controller to compensate the 

corresponding effects. Ashley et al. (2008) proposed inversed Preisach hysteresis 

model combined with iterative control to allow compensation of hysteresis. All of 

the works, Tien et al. (2005), Wu and Zou (2007), and Ashley et al. (2008), 

demonstrated the performance of the proposed controllers on compensation of 

coupling effect, hysteresis or vibration by performing experiment on AFM. The 

disadvantage of the iterative control is that the iteration can be influenced by 

disturbances and uncertainties. 

 

Other controllers such as optimal PI controller (Shakir et al., 2007) and 

proportional derivative fuzzy controller (Payam and Abdel-Rahman, 2008) were 

developed. The former one was proposed for the experimental study of the 

piezoelectric positioning system while the latter one was proposed for the 

simulation study of the AFM. The advantage of the optimal PI controller is ease of 



22 

selection of controller parameters while the advantage of the proportional 

derivative fuzzy controller is that it is not necessary to understand the model of the 

system clearly. Maess et al. (2008c) developed a MIMO feedforward feedback 

controller for a piezoelectric tube actuator. The feedforward controller was 

designed by FE model to compensate vibration and the feedback controller was 

used for compensation of coupling effect due to tube eccentricity. The simulation 

was carried out to track a raster pattern to assess the performance of the controller 

on AFM. 

 

As discussed in Chapter 1, ASMC, which belongs to the class of robust 

control, is chosen for achieving the objective of this research, i.e. minimizing error 

due to coupling effect, creep and hysteresis, and enhancing stability for 

piezoelectric tube actuator, because it is insensitive to parameter perturbations and 

uncertainties. In the past two decades, the robust adaptive controller is popular in 

researches (Berghuis et al., 1993; Chiu et al., 2004; and Li et al., 2007; 2008a; 

2008b) for robot motion control to tackle disturbances and modelling errors. For 

application of piezoelectric devices, Sabanovic et al (2006), and Zhong and Yao 

(2008) proposed a MIMO and a single-input-single-output (SISO) adaptive robust 

controller respectively for piezoelectric stack actuator. The proposed controllers 

were shown to be effective in dealing with unknown model parameters and 

compensating hysteresis. 

 

After reviewing the controllers proposed in previous research, the following 

deficiencies are identified. First, the researchers concerned only one or two of the 

adverse effects of piezoelectric tube actuator including coupling effect, creep and 
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hysteresis. However, the outputs of the overall system with the controllers proposed 

by previous researchers can be undesirable when all of the adverse effects exist 

simultaneously. Hence, it is necessary to develop a controller which demonstrates 

its effectiveness in compensating all the adverse effects. Second, the performances 

of the controllers proposed by previous researchers were seldom compared with 

typical controllers, especially the one used in current AFM, the PI controller. 

Through the comparison, the value of the proposed controller in this thesis applied 

to AFM can be clarified. The reviewed literature provide a full picture of control of 

piezoelectric tube actuator and give directions to carry out the present research. 
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CHAPTER 3  

 

DYNAMIC MODEL DEVELOPMENT OF 

PIEZOELECTRIC TUBE ACTUATOR 

 

 

3.1 INTRODUCTION 

 

 The formulation procedures of the nonlinear FE model of piezoelectric tube 

actuator are presented in this chapter. The FE method is chosen for modelling 

because the algorithm of FE discretization, dynamic equation formulation and 

global assembly can be executed by computer. First of all, the piezoelectric tube 

actuator is discretized into isoparametric elements in cylindrical coordinates. Next, 

Kelvin-Voigt creep operators and Prandtl-Ishlinskii hysteresis operators are 

introduced into the constitutive equations of the piezoelectric material. Then, the 

nonlinear FE model is formulated by energy approach and Hamilton‟s Principle. 

Finally, the balanced model truncation via Schur method is adopted to reduce the 

order of the FE model. Thus, simulation and controller design are feasible with the 

reduced order nonlinear FE model. The damping matrix, the parameters of the 

Kelvin-Voigt creep operators and the parameters of the Prandtl-Ishlinskii hysteresis 

operators are identified by matching the simulation results and experimental results 

of the other research (Leang and Devasia, 2007). Hence, the full nonlinear FE 

model and the reduced order nonlinear FE models are validated by comparing the 
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simulation results with the experiment results of other research (Leang and Devasia, 

2007). 

 

3.2 ASSUMPTIONS AND CONDITIONS 

 

The FE model is developed based on the following assumptions: 

(1) The charges supplied by the input voltage are uniform throughout the 

electrode. 

(2) The charges on the electrodes induced by the piezoelectric material are much 

less than those supplied by the external voltage. 

(3) Energy loss of motion of the piezoelectric tube actuator is negligible. 

(4) The physical properties are uniform over the whole tube. 

(5) The electrode is so thin that its dynamics is negligible. 

 

The FE model is developed based on the following conditions: 

(1) The inner electrode is grounded. 

(2) The bottom of the piezoelectric tube actuator is firmly fixed to the stationary 

support. 

(3) The sample is placed on top of the piezoelectric tube actuator during scanning 

in actual application. The effect of the sample on the piezoelectric tube 

actuator is not considered in simulation. 
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3.3 FINITE ELEMENT FORMULATION 

 

The piezoelectric tube actuator used in AFM is radially outward polarized 

with evenly quartered outer electrodes (+X electrode, –X electrode, +Y electrode 

and –Y electrode) and a complete inner electrode (Z electrode). In this thesis, the 

FE model is built based on the piezoelectric tube actuator used by Leang and 

Devasia (2007). In addition, Leang and Devasia (2007) referred the sectored 

lead-zirconate-titanate (PZT) piezoelectric tube actuator used in their experiment to 

Chen (1992). According to Chen (1992), the piezoelectric tube actuator is made of 

PZT-4, and the length, outer diameter and wall thickness are 25.4 mm, 12.7 mm 

and 0.5 mm respectively. The material properties of the piezoelectric material 

PZT-4 are shown in Table 3-1 (Sridhar et al., 1999). The schematic diagram of the 

piezoelectric tube actuator is shown in Fig. 3-1. +X electrode and –X electrode 

belong to X-pair electrodes. Similarly, +Y electrode and –Y electrode belong to 

Y-pair electrodes. In this research, piezoelectric tube actuator actuated by a pair of 

electrodes (double-actuation) is considered. Double-actuation means that when a 

voltage is applied on the +X electrode, the same magnitude but opposite sign of 

voltage is applied on the –X electrode. Similarly, when a voltage is applied on the 

+Y electrode, the same magnitude but opposite sign of voltage is applied on the –Y 

electrode. Due to the converse piezoelectric effect, the voltages applied to the 

X-pair electrodes ( EXV ) and Y-pair electrodes ( EYV ) control the bendings of the 

piezoelectric tube actuator in the X direction and Y direction respectively. Hence, 

the displacements in X direction and Y direction of the sample can be controlled. 

The displacement of the sample in Z direction which is controlled by voltage 

applied on Z electrode is not the focus in the current research and will be 
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considered in the future development. The voltage applied on the Z electrode is 

always equal to zero in this research (Chapter 3 Condition 1). 

 

 

Table 3-1.  Material Properties of Piezoelectric Material PZT-4 (Sridhar et al., 

1999) 

11,Ec (Pa) 1.3910
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3
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Figure 3-1.  Schematic Diagram of Piezoelectric Tube Actuator 
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3.3.1 Finite Element Discretization 

 
 The piezoelectric tube actuator is discretized into 192 elements for FE analysis 

which is shown in Fig. 3-2. An isoparametric element is used for FE discretization 

in cylindrical coordinates (Danielson and Noor, 1997). 8-node brick type element is 

chosen. Therefore, there are totally 336 nodes in the discretized piezoelectric tube 

actuator. The global node number (1-336) is labeled starting from the node marked 

“*” shown in Fig. 3-2. The labeling sequence is in counter-clockwise direction, 

from outer round to inner round, from lower layer to upper layer. A shape function 

is used for interpolation of displacement, interpolation of electric potential and 

interpolation of position. The following shape function is adopted (Chandrupatla 

and Belegundu, 2002): 

)1)(1)(1(
8

1
 iiiiN  , (3.1) 

where  ,   and  are the coordinates of an arbitrary point in the local 

coordinate system which are analogue to position variables r ,  , z  in the 

global cylindrical coordinate system. i , i  and i  denote the coordinates of 

i -th node respectively. Each node of an element has local node number 1-8. A 

labeled element is shown in Fig. 3-3. 
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Figure 3-2.  Discretized Piezoelectric Tube Actuator 

 

 

 

Figure 3-3.  Local Node Number of Element 
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Each node has four degrees of freedom which are nodal displacements and 

nodal electric potential. Nodal displacements are expressed as: 

   Tziiri

n
qqqq   (3.2) 

and nodal electric potential is given by: 

i

n  . (3.3) 

The superscript „ n ‟ denotes the nodal vector.   3
n

q  denotes the nodal 

displacements. 
n  denotes the nodal electric potential. riq , iq  and ziq

 
denote 

the nodal displacements of i -th node in r ,   and z  directions respectively. 

i  denotes the nodal electric potential of i -th node. 

 

The nodal displacements of an element are expressed as: 

   Tzrzrzr

e
qqqqqqqqqq 888222111    (3.4a) 

 Tqqqqqqqqq 242322654321  . (3.4b) 

The superscript „ e ‟ denotes the elemental vector.   24
e

q  denotes the nodal 

displacements of an element. The number „ i ‟ in the subscripts of riq , iq  and 

ziq  in Eq. (3.4a) specifies the node. The subscripts of Eq. (3.4a) are rewritten as 

Eq. (3.4b) for convenience. Displacements at an arbitrary point are defined 

(Danielson and Noor, 1997): 

   Tzr

e
uuuu  , (3.5a) 

where: 

228734211 qNqNqNqNur   (3.5b) 

238835221 qNqNqNqNu 

 

(3.5c) 
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248936231 qNqNqNqNuz  ,

 

(3.5d) 

where   3
e

u  denotes the displacements at an arbitrary point. ru , u  and 

zu
 
denote displacement of an arbitrary point in r ,   and z  directions 

respectively. Eq. (3.5a) can be rearranged as: 

     eee
qNu  , (3.5e) 
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  243
e

N  denotes assembly of shape functions for interpolation of 

displacements. Strains of an element are given (Santos et al., 2008): 
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 111 , (3.6b) 

where   6
e

  denotes the strains of an element. r ,   and z  denote the 

tensile strain in r ,   and z  directions respectively. r , zr  and  z  denote 

the shear strain in r , zr  and z  directions respectively. By relating Eq. (3.5e) 

and Eq. (3.6b) and using Jacobian matrix, the relation between the nodal 

displacements of an element  eq  and the strains of an element  e  is obtained: 

     eee
qA , (3.6c) 

where   246
e

A  which is function of  ,   and   denotes the connection 

matrix. The detail of derivation of Eq. (3.6c) is shown in Appendix A. 
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Similarly, the nodal electric potential of an element can be expressed as: 

   Te

87654321  , (3.7) 

where   8
e

 denotes the nodal electric potential of an element. Electric 

potential at an arbitrary point is defined as: 

88332211  NNNNe , (3.8a) 

where 
e  denotes the electric potential at an arbitrary point. Eq. (3.8a) can be 

rearranged as: 

   eee n  , (3.8b) 

where 

   87654321 NNNNNNNNn
e
 . (3.8c) 

  8
e

n  denotes assembly of shape functions for interpolation of electric 

potentials. Electric fields of an element are given (Santos et al., 2008): 

   Trz

e
EEEE   (3.9a) 
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(3.9b) 

where   3
e

E  denotes the electric fields of an element. rE , E  and zE  

denote the electric fields in r ,   and z  directions respectively. By relating Eq. 

(3.8b) and Eq. (3.9b) and using Jacobian matrix, the relation between the nodal 

electric potential of an element  e  and the electric fields of an element  eE  is 

obtained: 

     eee
BE  , (3.9c) 

where   83
e

B  which is function of  ,   and   denotes the connection 
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matrix. The detail of derivation of Eq. (3.9c) is shown in Appendix A. 

 

3.3.2 Kelvin-Voigt Creep Operator 

 

 In order to allow the FE model exhibiting creep phenomenon, it is necessary 

to implement the creep operator in the FE formulation. In this section, the 

Kelvin-Voigt creep operator is introduced. It is represented by a linear first order 

differential equation (Krejci and Kuhnen, 2001; and Mokaberi and Requicha, 

2008): 

)()()(
1

tutxtx
w

cff

f

 , (3.10a) 

where cu  denotes the input of the creep operator, fx  denotes the state of f -th 

creep operator, t  denotes the time variable and 
fw  denotes the weighting factor 

of f -th Kelvin-Voigt creep operator. By solving Eq. (3.10a) for the state of f -th 

Kelvin-Voigt creep operator 
fw , the explicit integral formula is obtained (Krejci 

and Kuhnen, 2001): 
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The state of the operator fx  is function of time t  and input cu . The discrete 

form of the Kelvin-Voigt creep operator is used for computation. By rectangular 

approximation, Eq. (3.10b) is expressed as below (Krejci and Kuhnen, 2001; and 

Mokaberi and Requicha, 2008): 

)1()1()1()( 
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, (3.11) 

where sT  denotes the sampling period and k
 
denotes discrete time. 
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The creep strain is given below (Krejci and Kuhnen, 2001; and Mokaberi and 

Requicha, 2008): 

)()(
1

kxak f

N

f

fc

F




 , (3.12) 

where c  denotes the strain due to creep and fa  is the proportional constant for 

the Kelvin-Voigt creep operator. FN  denotes total number of Kelvin-Voigt creep 

operators. The purpose of using superposition of Kelvin-Voigt creep operators is to 

improve modelling of the creep. The input of the Kelvin-Voigt creep operator is 

given below: 

Ec Vu  , (3.13) 

where EV  denotes the potential difference between the outer electrode and the 

inner electrode and divided by number of rounds of elements across the both 

electrodes. It is remarked that voltage is defined as positive when the potential at 

the outer electrode is higher than inner electrode. When a positive voltage EV  is 

applied, the portion of the piezoelectric material covered by the electrode will 

contract since the poling direction is radially outward. Positive EV  gives negative 

creep strain c . Therefore, fa  is negative. The total strain t  
is given by: 

clt   , (3.14a) 

where l  denotes the strain due to mechanical stress or piezoelectric effect. 

Rearranging Eq. (3.14a): 

ctl   . (3.14b) 
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3.3.3 Prandtl-Ishlinskii Hysteresis Operator 

 

 The hysteresis phenomenon of the piezoelectric material has backlash-like 

property (Bashash and Jalili, 2009) which can be modelled by Prandtl-Ishlinskii 

hysteresis operator. It is implemented into the FE formulation to allow the FE 

model exhibiting hysteresis phenomenon. In this section, the Prandtl-Ishlinskii 

hysteresis operator is introduced. The Prandtl-Ishlinskii hysteresis operator consists 

of three regions (Krejci and Kuhnen, 2001): 

)()( tuth hj
  ,

 

jjh thtu  )()(

 

(3.15a) 
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(3.15b) 

)()( tuth hj
  , 

jjh thtu  )()( , (3.15c) 

where jh  denotes the output of the hysteresis operator, hu  denotes the input of 

the hysteresis operator and j
 
denotes threshold of the hysteresis operator. The 

threshold determines the backlash-distance of the hysteresis phenomenon. The 

characteristic of the Prandtl-Ishlinskii hysteresis operator is shown in Fig. 3-4. The 

output jh  is function of time t  and input hu . The equivalent discrete form of 

the Prandtl-Ishlinskii hysteresis operator is given (Krejci and Kuhnen, 2001): 

jhj kukh  )()( ,

 

jjh khku  )1()(

 

(3.16a) 

)1()(  khkh jj
,

 

jjhjj khkukh   )1()()1(  (3.16b) 

jhj kukh  )()( , 
jjh khku  )1()( . (3.16c) 
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Figure 3-4.  Characteristic of Prandtl-Ishlinskii Hysteresis Operator 

 

The remnant polarization p  (C/m
2
), sometimes called irreversible 

polarization, exhibits hysteresis when a voltage is applied. The remnant 

polarization p  can be modelled by the superposition of Prandtl-Ishlinskii 

hysteresis operators with different threshold j  and proportional constant jb
 

(Krejci and Kuhnen, 2001; and Mokaberi and Requicha, 2008): 

)()(
1

khbkp j

N

j

j

J




 , (3.17) 

where jb  denotes the proportional constant for the Prandtl-Ishlinskii hysteresis 

operator. JN  denotes total number of Prandtl-Ishlinskii hysteresis operators. 

Superposition of Prandtl-Ishlinskii hysteresis operators can improve modelling. 

The input of the Prandtl-Ishlinskii hysteresis operator is given below: 

Eh Vu  . (3.18) 

When a positive EV  is applied, the remnant polarization will point to the negative 

r  direction. Therefore, the proportional constant jb  is negative. It is remarked 
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that the sum of the proportional constants for the Kelvin-Voigt creep operator fa  

and the sum of the proportional constants for the Prandtl-Ishlinskii hysteresis 

operator jb  are not necessary equal to one (Krejci and Kuhnen, 2001). 

 

3.3.4 Constitutive Equations 

 

The linear constitutive equations of piezoelectric material are expressed in Eq. 

(3.19a) and Eq. (3.20a): 
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 (3.19b) 

and 

         eee
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where   66
e

Ec  is elastic modulus (N/m
2
),   63

e
e  is piezoelectric 

coefficients (C/m
2
),   33

e
  is dielectric coefficients (F/m),   6

e
  is 

stress (N/m
2
),   6

e

l  is strain due to mechanical stress and piezoelectric effect, 

  3
e

D  is electric displacement (C/m
2
) and   3

e
E  is electric field (NC

-1
). 

 

The nonlinear constitutive equations of piezoelectric material are developed by 

substituting Eq. (3.14b) into linear constitutive equations Eq. (3.19a) and Eq. 

(3.20a) and adding remnant polarization p  to Eq. (3.20a): 
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(3.21b) 

and 
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 (3.22b) 

where   6
e

c  is creep strain,   6
e

t  is total strain and   3
e

P  is 
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remnant polarization vector (C/m
2
). 

 

Because the electrodes locate at the circumferences of the piezoelectric tube 

actuator, input voltage is only applied across the piezoelectric tube actuator in r  

direction. Therefore, there are no strains due to creep and no remnant polarizations 

due to hysteresis in   and z  directions: 

0)()()()()(    zczrcrcczc  (3.23) 

and 

0 ppz . (3.24) 

 

3.3.5 Energy Approach 

 

 By the energy approach, the Lagrangian is obtained (Preumont, 2006): 

KEWPEL e  , (3.25) 

where L  is the Lagrangian, PE is the potential energy, We is the electrical energy 

and KE is the kinetic energy. 

        dVfudVPE
e

V

Te

V

eTe

  
2

1
 (3.26) 

   
V

eTe

e dVDEW
2

1

 
(3.27) 

         eeTee
Te

V
qMqdVuuKE 

2

1

2

1
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(3.28) 
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For the linear case which does not consider creep and hysteresis, by 

substituting Eq. (3.19a) into Eq. (3.26), the potential energy can be expressed: 

               
V

eTee

l

T

V

eeTe
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1

 
(3.29a) 

                dVfudVeEdVc
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1
. (3.29b) 

By substituting Eq. (3.6c) and Eq. (3.9c) into Eq. (3.29b), the following equation is 

obtained: 
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1
. (3.29c) 

By substituting Eq. (3.20a) into Eq. (3.27), the electrical energy can be obtained: 
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(3.30a) 

By substituting Eq. (3.6c) and Eq. (3.9c) into Eq. (3.30a), the following equation is 

obtained: 
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Therefore, by Eq. (3.25), the Lagrangian can be expressed: 
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(3.31) 

     eeTe
qMq 

2

1
 ,

 

where the matrices   2424
e

qqK ,   248

 
e

qK ,   88

 
e

K ,   24
e

F and 

  2424
e

M  are constant. 
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For the nonlinear case with both creep and hysteresis, by substituting Eq. 

(3.21a) into Eq. (3.26), the potential energy can be expressed: 
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By substituting Eq. (3.6c) and Eq. (3.9c) into Eq. (3.32b), the following equation is 

obtained:
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By substituting Eq. (3.22a) into Eq. (3.27), the electrical energy can be expressed: 
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(3.33a) 
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By substituting Eq. (3.6c) and Eq. (3.9c) into Eq. (3.33a), the following equation is 

obtained: 
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Therefore, the Lagrangian can be expressed: 
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(3.34) 
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where the matrix which relates to hysteresis operator is   8
e

hN  and the 

matrices which relate to creep operator are   24

1 
e

CN  and   8

2 
e

CN . 
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 ehN ,  eCN 1  and
 
 eCN 2  are nonlinear terms. Two-point Gaussian Quadrature 

is adopted for numerical integration. 

 

3.3.6 Hamilton’s Principle 

 

The dynamic equations of the piezoelectric tube actuator are formulated by 

Hamilton‟s Principle. Hamilton‟s Principle for mechanical coordinates and 

electrical coordinates are shown in Eq. (3.35) and Eq. (3.36) respectively 

(Preumont, 2006): 
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(3.36) 

where   8
e

  is called electric flux linkage and    ee
 .   8

e

qI  

denotes current. 

 

For the linear case, by differentiating Eq. (3.31) according to Eq. (3.35) and Eq. 

(3.36), the following equations are obtained: 

 
   ee

e
qM

q

L








 (3.37a) 

 
   ee

e
qM

q

L

dt

d






















 
(3.37b) 
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(3.40) 

By substituting Eq. (3.37b) and Eq. (3.38) into Eq. (3.35) and adding damping term, 

the following equation is obtained: 

                 eeTe

q

ee

qq

eeee
FKqKqCqM  

 , (3.41) 

where   2424
e

C  denotes damping matrix. The damping matrix is obtained 

(Maess et al., 2008b): 

     eqq

ee
KMC   , (3.42) 

where   and   are the Rayleigh constants. By substituting Eq. (3.39) and Eq. 

(3.40) into Eq. (3.36), the following equations are obtained:

 

          eq

ee

q

ee
IqKK

dt

d
    (3.43a) 

         eE

eeee

q QKqK   .
 

(3.43b) 

Eq. (3.41) and Eq. (3.43b) are the local linear dynamic equations.   8
e

EQ  

denotes the charge input vector. The detail of formulation of  eEQ  is shown in 

Appendix B. 

 

For the nonlinear case with both creep and hysteresis, by differentiating Eq. 

(3.34) according to Eq. (3.35) and Eq. (3.36), the following equation are obtained: 

 
   ee

e
qM

q

L



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


 (3.44a) 
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(3.44b) 
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(3.45) 
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(3.47) 

By substituting Eq. (3.44b) and Eq. (3.45) into Eq. (3.35) and adding damping 

matrix  eC , the following equation is obtained: 

                   eC

eeTe

q

ee

qq

eeee
NFKqKqCqM 1 

 . (3.48) 

By substituting Eq.(3.46) and Eq. (3.47) into Eq. (3.36), the following equations 

are obtained: 

              eq

e

h

e

C

ee

q
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INNqKK

dt

d
  2  (3.49a) 

             eh
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E
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q NNQKqK   2 .
 

(3.49b) 

Eq. (3.48) and Eq. (3.49b) are the local nonlinear dynamic equations with both 

creep and hysteresis. The local nonlinear dynamic equations have three terms more 

than the local linear dynamic equations. They are the nonlinear terms  ehN , 

 eCN 1  and
 
 eCN 2 . 

 

 The local dynamic equations in linear case and nonlinear case are assembled 

to global form according to the local node number and the global node number 

(Chandrupatla and Belegundu, 2002). The global matrices and vectors are 

identified by a superscript „g‟. For the linear FE model, the global dynamic 



45 

equations are given: 

                 ggTg
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(3.51) 

For the nonlinear FE model with both creep and hysteresis, the global dynamic 

equations are given: 
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(3.53) 

The electrical and mechanical boundary conditions are applied by elimination 

approach. 

 

3.3.7 State Space Equation 

 

 The state space equation is compatible to numerical solvers provided by 

computer software. It is a benefit to express the dynamic equation in state space 

form. For the nonlinear FE model, Eq. (3.53) is substituted into Eq. (3.52) and the 

following equation is obtained: 
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      g
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g
fFpRpR  65 , (3.54b) 

where 
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 (3.54c) 

and gf  is the gravitational force. In Eq. (3.54b),  g

EQ ,  g

CN 1 ,  g

CN 2  
and 

 ghN  are divided into constant parts and variable parts. Moreover, they are 

separated into two groups, one has variable part which is function of EXV  and the 

another group has variable part which is function of EYV . cVX
 
and cVY  are 

 
rc  due to EXV  and EYV  respectively. VXp  and VYp  are rp  due to EXV  

and EYV  respectively. It is remarked that the terms   cVX

g
R 3 ,   cVY

g
R 4 , 

  VX

g
pR5  and   VY

g
pR6  are zero for linear model. Eq. (3.54b) is expressed in 

state space form. For the linear model, the state equation is given: 
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For the nonlinear model, the state equation is given: 
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(3.56) 

Since the nodal displacements of 241-th node and 245-th node in r  direction are 

equivalent to the horizontal motions of the sample in X direction and Y direction 
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respectively, the output equation is formed for both linear model and nonlinear 

model: 
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. (3.57) 

For convenience, Xq  and Yq  which denote horizontal motions of sample in X 

direction and Y direction respectively are simply called X displacement and Y 

displacement respectively. 

 

3.3.8 Reduction Method 

 

The order of the state space model shown in Eq. (3.56) and Eq. (3.57) is too 

high for computer simulation and controller design because the dynamic equations 

are formulated by FE method. It is necessary to perform model order reduction. 

The reduction method which is called the balanced model truncation via Schur 

method (Safonov and Chiang, 1989) is chosen and the detail is given in Appendix 

C. By the reduction method, the reduced order model can be obtained: 

      BIGRs

T

BIGL SASA ,,  (3.58) 

     s

T

BIGLn BSB ,  (3.59) 

    BIGRs SCC ,  (3.60) 

     0 sDD , (3.61) 

where   nfo

BIGLS ,  and   nfo

BIGRS ,  denote left and right transformations 

for reduced order model respectively.   nnA   denotes the reduced order 

system matrix.   7 n

nB  denotes the reduced order input matrix with nonlinear 
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distribution.   nC  2
 denotes the reduced order output matrix.   72D  

denotes the reduced order feedforward matrix. The reduced order model Eq. 

(3.58)-(3.61) can be rearranged so that nonlinearities are expressed explicitly: 

             ggE fBGuBxAx    (3.62a) 

            gE KGuBxAx  
 

(3.62b) 

    xCy  ,
 

(3.63) 

where 

        gn BGBB   (3.64a) 
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(3.64d) 

  nx   is the state vector,   2Eu  is the input vector,   2y  is the output 

vector and   n

gK   is the constant term due to gravity.   2 nB  denotes the 

reduced order input matrix.   4 nG  denotes the nonlinear distribution matrix. 

  n

gB   denotes the gravitational force distribution matrix. For convenience, the 

voltages applied to the X-pair electrodes ( EXV ) and Y-pair electrodes ( EYV ) are 

simply called X input and Y input respectively. The reduced order nonlinear model 

shown in Eq. (3.62b) and Eq. (3.63) is available for computer simulation and 

controller design if appropriate order „ n ‟ is selected. It is remarked that the 

reduced order linear model does not contain the term „   G ‟ in Eq. (3.62b). 

Therefore: 
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         gE KuBxAx  .
 

(3.65) 

 

3.4 PROGRAM DEVELOPMENT 

 

 The codes for building the full linear FE model (Eq. (3.55) and Eq. (3.57)) and 

the full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) of the piezoelectric tube 

actuator are programmed by the engineering software MATLAB R2010a. The 

Hankel singular values of the full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) is 

determined by MATLAB command “hankelsv”. The order reduction is then 

performed by MATLAB command “schurmr”, and the reduced order linear FE 

model (Eq. (3.63) and Eq. (3.65)) and the reduced order nonlinear FE model (Eq. 

(3.62b) and Eq. (3.63)) are obtained. The simulation is carried out by 

MATLAB/SIMULINK 7.5. The connection of the blocks of the plant model is 

shown in Fig G-1 in Appendix F. For simulation of reduced order nonlinear FE 

model, Eq. (3.62a) and Eq. (3.63) are implemented into “State-Space” block. Eq. 

(3.16a)-(3.16c) and Eq. (3.17) are implemented into “Hysteresis” block. Eq. (3.11) 

and Eq. (3.12) are implemented into “Creep” Block. The fifth order ode15s solver 

(Shampine and Reichelt, 1997) which is a code of numerical differentiation 

formulas with backwards differences is chosen. It is efficient to solve stiff model. 

 

Stiff model means the difference between the maximum and the minimum 

value of the absolute of the real part of the eigenvalue of the system is large. In the 

FE model developed in the thesis, the difference is up to a magnitude of 510  times. 
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If a solver not specifically tackling stiff system is used, for example, all the fixed 

step solvers, the time required for the simulation is very long. 

 

The step size of the ode15s solver is variable and the minimum step size is set 

as 0.1 μs. This setting can increase simulation speed and does not cause numerical 

instability. However, the sampling time of an experiment can be larger than the 

step size in simulation. For example, the maximum settling time of the D/A 

converter of dSPACE PCI Controller Card DS1104 is 10 μs. The sampling time is 

limited by this maximum settling time (if the computational time is short enough). 

Since the sampling time (10 μs) is larger than the minimum step size (0.1 μs) in the 

simulation (numerical instability may occur when the minimum step size is set as 

10 μs), the controller performs less effectively in the experiment than in the 

simulation. Larger errors and lower stability may be observed in the experiment. 

 

3.5 PARAMETER IDENTIFICATION AND 

VALIDATION 

 

In this section, the Rayleigh constants, the parameters of the Kelvin-Voigt 

creep operators and the parameters of the Prandtl-Ishlinskii hysteresis operators are 

identified by choosing appropriate values of parameters in order that the simulation 

results were close to the experimental results. The experimental results are obtained 

from the literature (Leang and Devasia, 2007). It is remarked that single input (X 

input) and single output (X displacement) are used only for parameter identification 

and validation. 
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3.5.1 Rayleigh Constants 

 

 The step response of the full linear FE model (Eq. (3.55) and Eq. (3.57)) 

shows fairly good agreement with the experimental result obtained from Leang and 

Devasia (2007) as shown in Fig. 3-5 when Rayleigh constants are selected as 

8.1  and 
7106  . The reason for using linear FE model to identify the 

Rayleigh constants is that the parameters of the Kelvin-Voigt creep operators and 

the parameters of the Prandtl-Ishlinskii hysteresis operators are not yet identified. 

The creep and hysteresis phenomena are not dominant with step input in short time. 

 

 

Figure 3-5.  Step Response of Linear FE Model in Short Time 
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3.5.2 Parameters of Kelvin-Voigt Creep Operator 

 

The static gain of the full linear FE model (Eq. (3.55) and Eq. (3.57)) is 

determined as 3.37 nm/V by step response. The block diagram of the open loop 

system is shown in Fig. 3-6. The input signal is given: 

  




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




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
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


ffY

ffX

EY

EX

E kr

kr

V

V
u , (3.66) 

where Xr  and Yr  denote the desired X displacement and the desired Y 

displacement respectively. ffk  denotes feedforward gain of the open loop system. 

ffk
 
= 1/3.37 = 0.30 V/nm. It is remarked that the block diagram shown in Fig. 3-6 

is for MIMO system. For SISO system, Yr  is simply set to zero. 

 

 

Figure 3-6.  Block Diagram of Open Loop System 

 

The simulation of full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) is 

performed with step input in extended time. In extended time, creep is dominant. It 

is reasonable to set the undetermined parameters of Prandtl-Ishlinskii hysteresis 

operators to zero. Superposition of three Kelvin-Voigt creep operators is adopted in 

the simulation. It is shown in Fig. 3-7 that the simulation result matches with the 

experimental one obtained from Leang and Devasia (2007). The proportional 
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constants of creep operator fa  and the weighting factors of creep operator fw  

adopted in the simulation are shown in Table 3-2. 

 

Table 3-2.  Parameters of Kelvin-Voigt Creep Operators 

1w  0.15
 

1a  -1.7810
-6

 

2w  5.0010
-3 

2a  -8.5710
-7 

3w  3.8010
-4 

3a  -1.7010
-6 

 

 

Figure 3-7.  Step Response of Nonlinear FE Model in Extended Time 

 

The analytic static gain of a piezoelectric tube actuator with double-actuation 

can be calculated by the following equation (Chen, 1992): 

wallinnerEX

x

o
tr

hd

V

q
k



2

312
 , (3.67) 

where ok  denotes the analytic static gain (m/V). h  and wallt  denote the height 

and the wall thickness of the piezoelectric tube actuator respectively (m). 31d
 

denotes the piezoelectric coefficient of r  direction to z  direction relation (m/V). 
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31d
 
is equivalent to 31e

 
shown in Eq. (3.20b) but they are in different units. By 

experiment, 31d
 
is found as 1.0510

-10
 m/V (Chen, 1992). Therefore, the static 

gain ok
 
is calculated as 4.99 nm/V by experiment result. It is fairly agreed with 

the static gain of the full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) which is 

found as 4.51 nm/V by the step response shown in Fig. 3-7. It is remarked that the 

static gain of full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) varies with time 

and 4.51 nm/V is determined by its maximum value. 

 

3.5.3 Parameters of Prandtl-Ishlinskii Hysteresis Operators 

 

The simulation of the full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) is 

performed with periodic input. Hysteresis is dominant with periodic input. 

Superposition of eight Prandtl-Ishlinskii hysteresis operators is adopted in the 

simulation. Superposition of three Kelvin-Voigt creep operators with parameters 

determined in Section 3.5.2 is also adopted in the simulation. It is shown in Fig. 3-8 

that the simulation result matches with the experimental one obtained from Leang 

and Devasia (2007). The threshold values
 j

 
and the proportional constants of 

Prandtl-Ishlinskii hysteresis operators jb  adopted in the simulation are shown in 

Table 3-3. 
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Table 3-3. Parameters of Prandtl-Ishlinskii Hysteresis Operators 

1  700 5  3892 

2  1498 6  4690 

3  2296 7  5488 

4  3094 8  6300 

1b  to 8b  -1.9410
-6 

 
 

 

 

 

 

 

Figure 3-8.  Response of Nonlinear FE Model with Periodic Input 
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3.5.4 FULL MODEL VALIDATION 

 

For validation, the root-mean-square error (RMSE) between the displacement 

of the full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) and the experimental 

result obtained from Leang and Devasia (2007) is determined as 0.362 μm. The 

RMSE is defined as: 


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1

1

2

, (3.68) 

where 
ene  denotes error at the en -th time step, 

enk  denotes the time interval of 

the en -th time step and eN  denotes total number of time step. For comparison, 

the simulation result of the full linear FE model (Eq. (3.55) and Eq. (3.57)) is also 

plotted in Fig. 3-8. It is observed that the simulation result of the full nonlinear FE 

model (Eq. (3.56) and Eq. (3.57)) is closer to the simulation result obtained from 

Leang and Devasia (2007) than that of the full linear FE model (Eq. (3.55) and Eq. 

(3.57)). The RMSE of the full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) 

(0.362 μm) is much smaller than that of the full linear FE model (Eq. (3.55) and Eq. 

(3.57)) (4.021 μm). It reveals that the full nonlinear FE model (Eq. (3.56) and Eq. 

(3.57)) is more accurate than the full linear FE model (Eq. (3.55) and Eq. (3.57)). 
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3.6 MODEL REDUCTION 

 

The full FE nonlinear model (Eq. (3.56) and Eq. (3.57)) has 1728 states in 

state space form. It is necessary to reduce its order so that it is available for 

controller design and simulation purposes. 

 

3.6.1 PROCEDURES 

 

The first step of the model reduction process is to find the Hankel singular 

value of each state of the state space model. It can be performed by the MATLAB 

command “hankelsv”. The singular values of the states of the full nonlinear FE 

model (Eq. (3.56) and Eq. (3.57)) are plotted in Fig. 3-9 (1-st – 106-th states are 

shown only). Discarding a state with large Hankel singular value causes large 

modelling error. By observing the Hankel singular values (Fig. 3-9), it is safe to 

retain 40 states (1688 states discarded) in order that the modelling error is kept 

small. The second step is to use the balanced model truncation via Schur method to 

reduce the order of the state space model. It can be performed by the MATLAB 

command “schurmr”. 
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Figure 3-9.  Hankel Singular Values of Full Nonlinear FE Model 

 

3.6.2 REDUCED ORDER MODEL VALIDATION 

 

Totally, seven different retained sizes, 10, 15, 20, 25, 30, 35 and 40, were tried. 

The displacement of the reduced order nonlinear FE models (Eq. (3.62b) and Eq. 

(3.63)) with different number of retained states and the displacement of the full 

nonlinear FE model (Eq. (3.56) and Eq. (3.57)) are plotted in Fig. 3-10a and Fig. 

3-10b for comparison. For validation, the RMSEs between the displacement of the 

reduced order nonlinear FE models (Eq. (3.62b) and Eq. (3.63)) with different 

number of retained states and that of the full order nonlinear FE model (Eq. (3.56) 

and Eq. (3.57)) are shown in Table 3-4. It is observed that the reduced order 

nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) with 35 retained states has the 

smallest RMSE (0.044 μm) and the reduced order nonlinear FE model (Eq. (3.62b) 
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and Eq. (3.63)) with 20 retained states has the second smallest RMSE (0.099 μm). 

Hence, the reduced order nonlinear FE models (Eq. (3.62b) and Eq. (3.63)) with 20 

or 35 retained states are accurate enough for simulation and controller design. 

 

 

Table 3-4.  RMSE of Reduced Order Nonlinear FE Models with Different 

Number of Retained States 

No. of States 

Retained 
10 15 20 25 30 35 40 

RMSE (μm) 0.259 0.940 0.099 0.540 0.170 0.044 0.125 

 

 

 

 

Figure 3-10a.  Simulations of Reduced Order Nonlinear FE Models with 

Different Number of Retained States (10 States – 25 States) 
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Figure 3-10b.  Simulations of Reduced Order Nonlinear FE Models with  

Different Number of Retained States (30 States – 40 States) 

 

In the Table 3-4, there is a big difference between the reduced order system 

with 30 states and 35 states. According to the balanced model truncation via Schur 

method (Safonov and Chiang, 1989), the error between the full order transfer 

function and the reduced order transfer function   22GE  is bounded such that: 

       



fo

n

orieigtransfertransferG QPGGE
1

,2
~

 , (3.69a) 

where 

            sssstransfer BAsICDG
1

  (3.69b) 

            ntransfer BAsICDG
1~ 

  (3.69c) 

  0, orieig QP .
 

(3.69d) 

  22transferG  denotes the full order transfer function.   22~ transferG  denotes 

the reduced order transfer function. Eq. (3.69a) shows that the bound is larger with 

smaller order of the reduced order system n . Since the norm of the error  GE  
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can be any value within the bound, an extreme case may exist such that for the 

reduced order system with an order 1n , the norm of the error  GE  is close to the 

bound while for the other reduced order system with order 2n  which 12 nn  , the 

norm of the error  GE  is close to the zero. This reason accounts for the big 

difference observed in Table 3-4. 

 

As a remark, the magnitude of the inputs used in the simulations should be 

correct since the comparisons indicate that both the static gain (Section 3.5.2) and 

the displacement output (Section 3.5.4 and Section 3.6.2) of the nonlinear FE 

model are close to the experimental results from other researchers (Chen, 1992; and 

Leang and Devasia, 2007). 

 

3.7 SUMMARY 

 

The works of this chapter are summarized as follows: 

(i) A nonlinear FE model has been developed through discretization, 

implementation of the Kelvin-Voigt creep operators and the Prandtl-Ishlinskii 

hysteresis operators, energy approach, Hamilton‟s principle and globalization 

in sequence. 

(ii) The Rayleigh constants, the parameters of Kelvin-Voigt creep operators and 

the parameters of the Prandtl-Ishlinskii hysteresis operators are identified by 

comparing the simulation result with the experimental one obtained from 

Leang and Devasia (2007). 
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(iii) The full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) is validated by means 

of a periodic input. The RMSE between the response of full nonlinear FE 

model (Eq. (3.56) and Eq. (3.57)) and the experimental result obtained from 

Leang and Devasia (2007) is 0.362 μm. 

(iv) The reduced order nonlinear FE models (Eq. (3.62b) and Eq. (3.63)) are 

obtained by the balanced model truncation via Schur method. Again, they are 

validated using a periodic input. The RMSE between the simulation result of 

the full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) and the simulation 

result of the reduced order nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) 

with 20 retained states is 0.099 μm. The RMSE between the full nonlinear FE 

model (Eq. (3.56) and Eq. (3.57)) and the reduced order nonlinear FE model 

(Eq. (3.62b) and Eq. (3.63)) with 35 retained states is 0.044 μm. These 

reduced order nonlinear FE models (Eq. (3.62b) and Eq. (3.63)) are accurate 

enough for controller design and simulation purposes. 
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CHAPTER 4  

 

PERFORMANCE OF TYPICAL 

CONTROLLERS 

 

 

4.1 INTRODUCTION 

 

 It has been discussed that coupling effect, creep and hysteresis of the 

piezoelectric tube actuator induce tracking error, hence, image distortion occurs. 

Since AFMs are originally not equipped with controller, it is important to 

investigate open loop error caused by coupling effect, creep and hysteresis in the 

scanning operation of the piezoelectric tube actuator in AFM. For several models of 

AFM (e.g. Dimension Icon Atomic Force Microscope manufactured by Veeco), 

typical controller (e.g. The NanoScope V-PI controller manufactured by Veeco) is 

served as an add-in component for tracking improvement. Controller can modify 

the dynamic properties of a closed loop system in order that the output response of 

the closed loop system can be altered. The typical controllers which are PI 

controller and OFC applied on the piezoelectric tube actuator with coupling effect, 

creep and hysteresis are chosen for performance investigation in this research. 

Their performance will be compared with the performance of the ASMC in Chapter 

5 to determine which controller is most suitable for AFM. 
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4.2 SIMULATION CONDITIONS 

 

In AFM, the piezoelectric tube actuator scans a sample surface in raster 

pattern by running a zigzag path (Moheimani, 2008). The desired X displacement 

and the desired Y displacement should be a triangular pattern (Fig. 4-1) and a 

pseudo-step (Fig. 4-2) respectively in order that the piezoelectric tube actuator 

scans in zigzag path. In the simulation, the piezoelectric tube actuator scans a 

sample surface area 24 μm  24 μm with a moderate frequency 1 Hz normally used 

in practice. It is remarked that only first ten periods are simulated. The reduced 

order nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) with 35 retained states is 

used for the plant model in simulation. The term, covering angle, should be stated 

to represent the degree of electrode dislocation. The covering angle is defined as 

the angle which the outer electrode covers the circumference of the piezoelectric 

tube actuator. It is illustrated in Fig. 4-3. X , X , Y  and Y  are the 

covering angle of +X, –X, +Y and –Y electrode respectively. It is noted that the 

simulations are based on the assumptions and conditions stated in Chapter 3. 

 

Figure 4-1.  Desired X Displacement 
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Figure 4-2.  Desired Y Displacement 

 

 

 

 

Figure 4-3.  Illustration of Covering Angles 
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4.3 SIMULATION RESULTS OF OPEN LOOP 

SYSTEM 

 

4.3.1 Effect of Creep and Hysteresis 

 

In this section, the effects of creep and hysteresis on scanning operation of the 

open loop piezoelectric tube actuator without electrode dislocation (covering angles 

X  = 90˚, X  = 90˚, Y  = 90˚ and Y  = 90˚) are investigated. The block 

diagram of the open loop system is shown in Fig. 3-7. 

 

The X input and the Y input to the open loop nonlinear system without 

electrode dislocation are shown in Fig. 4-4 and Fig. 4-5 respectively. The X 

displacement and the Y displacement of the open loop nonlinear system without 

electrode dislocation are shown in Fig. 4-6 and Fig. 4-7 respectively. The tracking 

error of the open loop nonlinear system without electrode dislocation in X direction 

(X error) and in Y direction (Y error) are shown in Fig. 4-8 and Fig. 4-9 

respectively. The RMSE in X direction (X RMSE) and in Y direction (Y RMSE) 

are shown in Table 4-1. For convenience, the tracking error in X direction is simply 

called X error and the tracking error in Y direction is simply called Y error. The 

RMSE in X direction is simply called X RMSE and the RMSE in Y direction is 

simply called Y RMSE. 
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Table 4-1.  RMSE of Open Loop Nonlinear System 

 X RMSE (μm) Y RMSE (μm) 

Open Loop Nonlinear System 

without Electrode Dislocation 
5.693 0.259 

Open Loop Nonlinear System 

with Electrode Dislocation 
5.619 0.678 

 

 

Figure 4-4.  X Input to Open Loop Nonlinear System 

 

 

Figure 4-5.  Y Input to Open Loop Nonlinear System 
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Figure 4-6.  X Displacements of Open Loop Nonlinear System 

 

 

 

 

 

Figure 4-7.  Y Displacements of Open Loop Nonlinear System 
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Figure 4-8.  X Errors of Open Loop Nonlinear System 

 

 

 

 

 

Figure 4-9.  Y Errors of Open Loop Nonlinear System 
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 Hysteresis is dominated in periodic input. In Fig. 4-6, it is observed that the X 

displacement of the open loop nonlinear system without electrode dislocation is 

larger than the desired X displacement due to hysteresis. In Fig. 4-8, it is observed 

that the X error of the open loop nonlinear system without electrode dislocation is 

in wave pattern. It implies that the X displacement of the open loop nonlinear 

system without electrode dislocation is distorted to wave pattern which is also due 

to hysteresis. Therefore, hysteresis causes the system gain to become larger and 

varying. In Table 4-1, the X RMSE of the open loop nonlinear system without 

electrode dislocation is 5.693 μm which is mainly due to hysteresis. 

 

 In Fig. 4-7, it is observed that the trajectory of the open loop nonlinear system 

without electrode dislocation in Y direction goes away from the desired Y 

displacement. Therefore, in Fig. 4-9, it is observed that the Y error of the open loop 

nonlinear system without electrode dislocation increases with time. The observed 

phenomenon is due to creep. Creep causes the system gain increases with time. In 

Table 4-1, the Y RMSE of the open loop nonlinear system without electrode 

dislocation is 0.259 μm which is mainly caused by creep. Although the Y RMSE is 

not large, the tracking error is significant when the scanning lasts long because 

creep causes the Y error of the open loop nonlinear system without electrode 

dislocation to increase in positive direction as shown in Fig. 4-9. 

 

In Fig. 4-8, it is observed that the X error of the open loop nonlinear system 

without electrode dislocation diverges. In addition, it is observed from Fig. 4-9 that 

the Y error of the open loop nonlinear system without electrode dislocation 

increases in positive direction due to creep as mentioned before. It is revealed that 
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the open loop nonlinear system without electrode dislocation is unstable in both X 

direction and Y direction. 

 

4.3.2 Coupling Effect 

 

In this section, the coupling effect during scanning operation of the open loop 

piezoelectric tube actuator in AFM is investigated. The simulation is performed 

based on the open loop nonlinear model with electrode dislocation ( X  = 100˚, 

X  = 90˚, Y  = 90˚ and Y  = 80˚). 

 

The simulation results are plotted together with the desired outputs and the 

output responses of the open loop nonlinear system without electrode dislocation 

for comparison. The simulation in this section applies the same inputs used in 

Section 4.2.1 (the X input and the Y input shown in Fig. 4-4 and Fig. 4-5 

respectively) to the open loop nonlinear model with electrode dislocation. The X 

displacement and the Y displacement of the open loop nonlinear system with 

electrode dislocation are shown in Fig. 4-6 and Fig. 4-7 respectively. The X error 

and the Y error of the open loop nonlinear system with electrode dislocation are 

shown in Fig. 4-8 and Fig. 4-9 respectively. The X RMSE and the Y RMSE of the 

open loop nonlinear system with electrode dislocation are shown in Table 4-1. 

 

In Fig. 4-6, it is observed that the X displacement of the open loop nonlinear 

system with electrode dislocation is similar to that of the open loop nonlinear 

system without electrode dislocation. In Table 4-1, the X RMSE of the open loop 
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nonlinear system with electrode dislocation (5.619 μm) is close to that of the open 

loop nonlinear system without electrode dislocation (5.693 μm). In Fig. 4-7, it is 

observed that the Y displacement of the open loop nonlinear system with electrode 

dislocation exhibits triangular pattern which is due to coupling effect. In Fig. 4-11, 

it is observed that the peak-to-peak amplitude of the triangular pattern of the Y 

error of the open loop nonlinear system with electrode dislocation (2.3 μm) is 

larger than that of the open loop nonlinear system without electrode dislocation 

(0.4 μm). It is shown that the coupling effect from Y-axis to X-axis is unobvious 

but that from X-axis to Y-axis is significant. It is because the magnitude of the X 

input is about an order of magnitude larger than that of the Y input. In Table 4-1, 

the Y RMSE of the open loop nonlinear system with electrode dislocation (0.678 

μm) is larger than that of the open loop nonlinear system without electrode 

dislocation (0.259 μm). 

 

In Fig. 4-8, it is observed that the X error of the open loop nonlinear system 

with electrode dislocation diverges. In addition, it is observed from Fig. 4-9 that the 

Y error of the open loop nonlinear system with electrode dislocation increases in 

the positive direction. Therefore, the open loop nonlinear system with electrode 

dislocation is unstable in both X direction and Y direction. As a remark, it is 

observed in Fig. 4-7 that the Y displacement of the open loop nonlinear system 

without electrode dislocation also exhibits triangular pattern but the amplitude is 

smaller than that of the open loop nonlinear system with electrode dislocation. The 

coupling effect exhibiting in the open loop nonlinear system without electrode 

dislocation is due to deformation of the piezoelectric tube actuator. Based on the 

significant errors and instability in both X direction and Y direction, it is concluded 
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that the performance of the open loop nonlinear system is unsatisfactory. 

 

4.4 SIMULATION RESULTS OF CLOSED LOOP 

SYSTEM USING TYPICAL CONTROLLERS 

 

4.4.1 Proportional-Integral Controller 

 

In this section, the performance of the PI controller on the piezoelectric tube 

actuator with electrode dislocation is assessed. The control law of the PI controller 

is given (Ogata, 2001): 


t

XXXXEX deIePV
0

 , (4.1a) 

where 

XXX qre  , (4.1b) 

and 


t

YYYYEY deIePV
0

 ,

 

(4.2a) 

where 

YYY qre  , (4.2b) 

where XP  and YP  are the proportional gains of the PI controller for tracking in X 

direction and Y direction respectively. XI  and YI  are the integral gains of the PI 

controller for tracking in X direction and Y direction respectively. Xe  and Ye  are 

X error and Y error respectively. The block diagram of the PI controller is shown in 

Fig. 4-10. The proportional term of the proportional-integral controller allows 
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changing the location of the closed loop system poles in order that the closed loop 

system dynamics can be modified. The integral term of the proportional-integral 

controller improves the steady state error. The derivative term is not implemented 

into the proportional-integral controller because the desired X displacement is in 

triangular pattern. Differentiating at the sharp corner induces very high input which 

causes large vibration, excites unmodelled dynamics and may even cause instability. 

Because different piezoelectric tube actuator has various covering angle and 

covering angle is considered as unknown, it is objective to tune the PI controller 

based on the reduced order nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) 

without electrode dislocation. The PI controller gains are tuned by trial-and-error 

method. Then the PI controller with fine tuned gains is applied to the reduced order 

nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) with electrode dislocation for 

investigation. 

 

 

Figure 4-10.  Block Diagram of Closed Loop System using PI Controller 

 

Six sets of different PI controller gains (Set 1 – 6) and corresponding X RMSE 

and Y RMSE of the closed loop nonlinear model without electrode dislocation 

using the PI controller are shown in Table 4-2. The X inputs and the Y inputs to the 



75 

closed loop nonlinear system without electrode dislocation using the PI controller 

generated by Eq. (4.1a) and Eq. (4.2a) are shown in Fig. 4-11 and Fig. 4-12 

respectively. The X displacements and the Y displacements of the closed loop 

nonlinear system without electrode dislocation using the PI controller are shown in 

Fig. 4-13 and Fig. 4-14 respectively. The X errors and the Y errors of the closed 

loop nonlinear system without electrode dislocation using the PI controller are 

shown in Fig. 4-15 and Fig. 4-16 respectively. 

 

Table 4-2.  Settings of PI Controller and Corresponding RMSEs of Closed Loop 

Nonlinear System without Electrode Dislocation 

Set XP  ×10
6
 XI  ×10

3
 YP  ×10

6
 YI  ×10

3
 

X RMSE 

(μm) 

Y RMSE 

(μm) 

1 50 1 50 1 11.437 1.581 

2 80 1 80 1 10.110 1.446 

3 100 1 100 1 9.560 1.350 

4 300 1 300 1 6.087 0.874 

5 600 1 600 1 3.882 0.572 

6 1000 1 1000 1 2.587 0.391 

 

 

Figure 4-11.  X Inputs of Closed Loop Nonlinear System without Electrode 

Dislocation using PI Controller 
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Figure 4-12.  Y Inputs of Closed Loop Nonlinear System without Electrode 

Dislocation using PI Controller 

 

 

 

 

 

Figure 4-13.  X Displacements of Closed Loop Nonlinear System without 

Electrode Dislocation using PI Controller 
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Figure 4-14.  Y Displacements of Closed Loop Nonlinear System without 

Electrode Dislocation using PI Controller 

 

 

 

 

Figure 4-15.  X Errors of Closed Loop Nonlinear System without Electrode 

Dislocation using PI Controller 
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Figure 4-16.  Y Errors of Closed Loop Nonlinear System without Electrode 

Dislocation using PI Controller 

 

In Fig. 4-13 and Fig. 4-14, it is observed that the X displacement and the Y 

displacement of the closed loop nonlinear system without electrode dislocation 

using the PI controller are closer to the desired X displacement and the desired Y 

displacement respectively with larger proportional gains of the PI controller. 

Therefore, it can be observed in Fig. 4-15 and Fig. 4-16 that the X error and the Y 

error of the closed loop nonlinear system without electrode dislocation using the PI 

controller are smaller with larger proportional gains of the PI controller. In Table 

4-2, the X RMSE and the Y RMSE of the closed loop nonlinear system without 

electrode dislocation using the PI controller are smaller with larger proportional 

gains of the PI controller. It implies that larger proportional gains of the PI 

controller are preferred. However, by observing the trend of the X RMSEs and the 

Y RMSEs of the closed loop nonlinear system without electrode dislocation using 

the PI controller in Fig. 4-17, the X RMSEs and the Y RMSEs converge to some 

values. The reductions of the X RMSE and the Y RMSE are not significantly 

improved by further increasing the proportional gains of the PI controller. Also, 
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large proportional gain of PI controller is not suggested because it may cause 

saturation of actuator or voltage amplifier, and instability in practice. Therefore, the 

PI controller gains (the Set 6), which give RMSEs close to the converged values, is 

used to investigate the performance of the PI controller on the piezoelectric tube 

actuator with electrode dislocation. 

 

 

Figure 4-17.  RMSEs of Closed Loop Nonlinear System without Electrode 

Dislocation using PI Controller 

 

The Set 6 controller gains are used in the PI controller to investigate the case 

that the piezoelectric tube actuator has electrode dislocation. The X input and the Y 

input to the closed loop nonlinear system with electrode dislocation using the PI 

controller generated by Eq. (4.1a) and Eq. (4.2a) are shown in Fig. 4-18 and Fig. 

4-19 respectively. The X displacement and the Y displacement of the closed loop 

nonlinear system with electrode dislocation using the PI controller gains are shown 

in Fig. 4-20 and Fig. 4-21 respectively. The X error and the Y error of the closed 

loop nonlinear system with electrode dislocation using the PI controller are shown 

in Fig. 4-22 and Fig. 4-23 respectively. The X RMSE and the Y RMSE of the 
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closed loop nonlinear system with electrode dislocation using the PI controller are 

shown in Table 4-3. 

 

 

Table 4-3.  RMSEs of Closed Loop Nonlinear System with Electrode Dislocation 

 X RMSE (μm) Y RMSE (μm) 

PI Controller 2.908 0.409 

OFC 2.003 0.465 

 

 

 

 

 

Figure 4-18.  X Input of Closed Loop Nonlinear System with Electrode 

Dislocation using PI Controller 
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Figure 4-19.  Y Input of Closed Loop Nonlinear System with Electrode 

Dislocation using PI Controller 

 

 

 

 

Figure 4-20.  X Displacement of Closed Loop Nonlinear System with 

Electrode Dislocation using PI Controller 
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Figure 4-21.  Y Displacement of Closed Loop Nonlinear System with 

Electrode Dislocation using PI Controller 

 

 

 

 

Figure 4-22.  X Error of Closed Loop Nonlinear System with Electrode 

Dislocation using PI Controller 
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Figure 4-23.  Y Error of Closed Loop Nonlinear System with Electrode 

Dislocation using PI Controller 

 

In Fig. 4-20, it is observed that the amplitude of the X displacement of the 

closed loop nonlinear system with electrode dislocation using the PI controller is 

reduced and it is smaller than that of the open loop nonlinear system with electrode 

dislocation shown in Fig. 4-6. The X RMSE of the closed loop nonlinear system 

with electrode dislocation using the PI controller (2.908 μm in Table 4-3) is smaller 

than that of the open loop nonlinear system with electrode dislocation (5.619 μm in 

Table 4-1). In Fig. 4-21, it is observed that the amplitude of the triangular pattern 

due to coupling effect exhibited in the Y displacement of the closed loop nonlinear 

system with electrode dislocation using the PI controller is smaller than that of the 

open loop nonlinear system with electrode dislocation shown in Fig. 4-7. Therefore, 

it is observed in Fig. 4-9 and Fig. 4-23 that the peak-to-peak amplitude of the 

triangular pattern of the Y error of the closed loop nonlinear system with electrode 

dislocation using the PI controller (0.6 μm) is smaller than that of the open loop 

nonlinear system with electrode dislocation (2.3 μm). It is concluded that the PI 

controller can reduce the tracking error induced by coupling effect and hysteresis. 
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In Table 4-1 and Table 4-3, it is shown that comparing to the open loop nonlinear 

system with electrode dislocation, the X RMSE of the closed loop nonlinear system 

with electrode dislocation using the PI controller reduced from 5.619 μm to 2.908 

μm and the Y RMSE of the closed loop nonlinear system with electrode dislocation 

using the PI controller reduced from 0.678 μm to 0.409 μm. In Fig. 4-22, the X 

error of the closed loop nonlinear system with electrode dislocation using the PI 

controller slightly converges. Therefore, the closed loop nonlinear system with 

electrode dislocation using the PI controller is more stable than the open loop 

system with electrode dislocation. Overall, the PI controller improves the stability 

and reduces the error caused by coupling effect and hysteresis. 

 

4.4.2 Output Feedback Controller 

 

In this section, the performance of the OFC on the piezoelectric tube actuator 

with electrode dislocation is assessed. The control law of the OFC is given (Jairath, 

2008): 

       ykrNu fbffE  , (4.3a) 

where 
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  22ffN  and   22fbk  denotes the feedforward gain and feedback gain of 

the OFC respectively. XXN , XYN , YXN  and YYN  are the components of  ffN . 

XXk , XYk , YXk  and YYk  are the components of  fbk .   2r  is the desired 

output vector. The block diagram of the OFC is shown in Fig. 4-24. The 

feedforward gain allows modification of the magnitude of the feedforward signal. 

The feedback gain allows change of location of the closed loop poles in order that 

the closed loop system dynamics can be modified. With the same reason as the PI 

controller, the OFC is tuned based on the reduced order nonlinear FE model (Eq. 

(3.62b) and Eq. (3.63)) without electrode dislocation. The controller gains of the 

OFC are also tuned by trial-and-error method. Then the OFC with tuned gains is 

applied to the reduced order nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) with 

electrode dislocation for investigation. 

 

 

Figure 4-24.  Block Diagram of Closed Loop System using OFC 

 

Ten sets of different OFC gains (Set A – Set J) and corresponding X RMSE 

and Y RMSE of the closed loop nonlinear system without electrode dislocation 

using the OFC are shown in Table 4-4. The X inputs to the closed loop nonlinear 
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system without electrode dislocation using the OFC generated by Eq. (4.3a) are 

shown in Fig. 4-25a – Fig. 4-25c. The Y inputs to the closed loop nonlinear system 

without electrode dislocation using the OFC generated by Eq. (4.3a) are shown in 

Fig. 4-26a – Fig. 4-26c. The X displacements of the closed loop nonlinear system 

without electrode dislocation using the OFC are shown in Fig. 4-27a – Fig. 4-27c. 

The Y displacements of the closed loop nonlinear system without electrode 

dislocation using the OFC are shown in Fig. 4-28a – Fig. 4-28c. The X errors of the 

closed loop nonlinear system without electrode dislocation using the OFC are 

shown in Fig. 4-29a – Fig. 4-29c. The Y errors of the closed loop nonlinear system 

without electrode dislocation using the OFC are shown in Fig. 4-30a – Fig. 4-30c. 

 

Table 4-4.  Settings of OFC and Corresponding RMSEs of Closed Loop 

                Nonlinear System without Electrode Dislocation 

Set XXN  

×10
6
 

XYN  

×10
6
 

YXN  

×10
6
 

YYN  

×10
6
 

XXk  

×10
6
 

XYk  

×10
6
 

YXk  

×10
6
 

YYk  

×10
6
 

X 

RMSE 

(μm) 

Y 

RMSE 

(μm) 

A 400 0 0 200 10 -10 -10 10 12.303 1.219 

B 200 0 0 400 10 -10 -10 10 2.767 0.980 

C 300 -50 50 300 10 -10 -10 10 5.145 3.301 

D 300 50 -50 300 10 -10 -10 10 4.807 1.739 

E 297 0 0 297 10 -10 -10 10 4.733 0.772 

F 297 0 0 297 100 -10 -10 10 1.720 0.539 

G 297 0 0 297 10 -0.5 -10 10 4.733 0.772 

H 297 0 0 297 10 -10 10 10 4.657 0.559 

I 297 0 0 297 10 -10 -10 80 4.725 0.676 

J 297 0 0 297 70 -1 0 20 1.190 0.118 
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Figure 4-25a.  X Inputs of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set A – Set C) 

 

 

 

Figure 4-25b.  X Inputs of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set D – Set F) 
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Figure 4-25c.  X Inputs of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set G – Set J) 

 

 

 

Figure 4-26a.  Y Inputs of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set A – Set C) 
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Figure 4-26b.  Y Inputs of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set D – Set F) 

 

 

 

Figure 4-26c.  Y Inputs of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set G – Set J) 
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Figure 4-27a.  X Displacements of Closed Loop Nonlinear System without  

Electrode Dislocation using OFC (Set A – Set C) 

 

 

 

Figure 4-27b.  X Displacements of Closed Loop Nonlinear System without  

Electrode Dislocation using OFC (Set D – Set F) 
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Figure 4-27c.  X Displacements of Closed Loop Nonlinear System without  

Electrode Dislocation using OFC (Set G – Set J) 

 

 

 

Figure 4-28a.  Y Displacements of Closed Loop Nonlinear System without  

Electrode Dislocation using OFC (Set A – Set C) 
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Figure 4-28b.  Y Displacements of Closed Loop Nonlinear System without  

Electrode Dislocation using OFC (Set D – Set F) 

 

 

 

Figure 4-28c.  Y Displacements of Closed Loop Nonlinear System without  

Electrode Dislocation using OFC (Set G – Set J) 
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Figure 4-29a.  X Errors of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set A – Set C) 

 

 

 

Figure 4-29b.  X Errors of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set D – Set F) 
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Figure 4-29c.  X Errors of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set G – Set J) 

 

 

 

Figure 4-30a.  Y Errors of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set A – Set C) 
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Figure 4-30b.  Y Errors of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set D – Set F) 

 

 

 

Figure 4-30c.  Y Errors of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set G – Set J) 

 

The tuning procedures involve trial-and-error method followed by 

interpolation and the tuned gains construct the Set J. First, in Fig. 4-27b, it is 

observed from the X displacement of the closed loop nonlinear system without 
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electrode dislocation using the controller gains (the Set E and the Set F) that when 

XXk  increases from 61010  to 610100 , the amplitude of the ninth tip of the 

triangular pattern decreases from about 31 μm to about 21 μm. By interpolating 

XXk  of the Set E and the Set F, the amplitudes of the ninth peak and the desired 

amplitude (24 μm), XXk  of the Set J is calculated as 61073  and the 

approximated value 61070  is taken. Second, XYk  determines the monotonic 

increase rate of X displacement theoretically. However, in Fig. 4-27b and Fig. 

4-27c, it is observed from the X displacement of the closed loop nonlinear system 

without electrode dislocation using the controller gains (the Set E and the Set G) 

that the effect of change of XYk  from 61010  to 6105.0   is not significant. 

There is no monotonic increase rate observed using 61010XYk  and 

6105.0 XYk . Therefore, a value in between which is 6101XYk  is chosen. 

Third, in Fig. 4-28b and Fig. 4-28c, it is observed from the Y displacement of the 

closed loop nonlinear system without electrode dislocation using the controller 

gains (the Set E and the Set H) that when YXk  increase from 61010  to 

61010 , the amplitude of the ninth tip of the triangular pattern decreases from 

about 2.3 μm to about 0.25 μm. Since the desired Y displacement at that moment is 

1.25μm which is about mid-way of 2.3 μm and 0.25 μm, 0YXk  is set in Set J. 

Fourth, in Fig. 4-28b and Fig. 4-28c, it is observed from the Y displacement of the 

closed loop nonlinear system without electrode dislocation using the controller 

gains (the Set E and the Set I) that YYk  determines the monotonic increase rate of 

the Y displacement. It is obvious that using the controller gains (the Set E and the 

Set I), the Y displacement decreases from about 3.5 μm to about 2.75 μm at 10 s 

when YYk  increases from 61010  to 61080 . By interpolating YYk  of the Set E 



97 

and the Set I, the Y displacements of the closed loop nonlinear system without 

electrode dislocation using the OFC at 10 s (the Set E and the Set H) and the 

desired amplitude at 10 s (3.375 μm), YYk  of the Set J is calculated as 61022  

and the approximated value 61020  is taken. The feedback gains of the Set J are 

constructed by the interpolated feedback gains. Change of  ffN
 

and change of 

 fbk  have similar effect on the X displacement and the Y displacement of the 

closed loop nonlinear system without electrode dislocation using the OFC. Since 

 fbk  has been tuned, the values of  ffN  used in the Set E to the Set I are 

adopted in the Set J. As a remark, the difference of change of  ffN
 
and change of 

 fbk
 
is that  ffN  which determines the feedforward signal affects the shape and 

the amplitude of the X displacement and the Y displacement while  fbk  which 

determines the feedback signal affects the dynamics of the closed loop system such 

as the tracking error convergence rate and the stability. Finally, in Fig. 4-31, it is 

observed from the X errors of the closed loop nonlinear system without electrode 

dislocation using the OFC with the Set A – Set J controller gains that all the X 

errors curves meet at the red crosses which are located at about 1 μm. The OFC 

with any feedforward and feedback controller gains cannot reduce the amplitude of 

the X error of the closed loop nonlinear system without electrode dislocation less 

than 1 μm. It is the limitation of the OFC on the system without electrode 

dislocation. In Fig. 4-29c, it is shown that XXk , XYk , XXN  and XYN  of the Set J 

can reduce the X error to about this level and no further tuning on XXN  and XYN  

is required. Therefore, the Set J of the OFC gains is chosen for performance 
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investigation in the closed loop nonlinear system with electrode dislocation. 

 

 

Figure 4-31.  X Errors of Closed Loop Nonlinear System without Electrode 

Dislocation using OFC (Set A – Set J) 

 

The Set J controller gains are used in the OFC to investigate the case that the 

piezoelectric tube actuator has electrode dislocation. The X input and the Y input to 

the closed loop nonlinear system with electrode dislocation using the OFC 

generated by Eq. (4.3a) are shown in Fig. 4-32 and Fig. 4-33 respectively. The X 

displacement and the Y displacement of the closed loop nonlinear system with 

electrode dislocation using the OFC are shown in Fig. 4-34 and Fig. 4-35 

respectively. The X error and the Y error of the closed loop nonlinear system with 

electrode dislocation using the OFC are shown in Fig. 4-36 and Fig. 4-37 

respectively. The X RMSE and the Y RMSE of the closed loop nonlinear system 

with electrode dislocation using the OFC are shown in Table 4-3. 
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Figure 4-32.  X Input of Closed Loop Nonlinear System with Electrode 

Dislocation using OFC 

 

 

 

 

Figure 4-33.  Y Input of Closed Loop Nonlinear System with Electrode 

Dislocation using OFC 
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Figure 4-34.  X Displacement of Closed Loop Nonlinear System with Electrode 

Dislocation using OFC 

 

 

 

 

Figure 4-35.  Y Displacement of Closed Loop Nonlinear System with Electrode 

Dislocation using OFC 
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Figure 4-36.  X Error of Closed Loop Nonlinear System with Electrode 

Dislocation using OFC 

 

 

 

Figure 4-37.  Y Error of Closed Loop Nonlinear System with Electrode 

Dislocation using OFC 

 

In Fig. 4-34, it is observed that the amplitude of the X displacement of the 

closed loop nonlinear system with electrode dislocation using the OFC is reduced 

and it is smaller than that of the open loop nonlinear system with electrode 

dislocation shown in Fig. 4-6. The X RMSE of the closed loop nonlinear system 
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with electrode dislocation using the OFC (2.003 μm in Table 4-3) is smaller than 

that of the open loop nonlinear system with electrode dislocation (5.619 μm in 

Table 4-1). In Fig. 4-35, it is observed that the amplitude of the triangular pattern 

due to coupling effect exhibited in the Y displacement of the closed loop nonlinear 

system with electrode dislocation using the OFC is smaller than that of the open 

loop nonlinear system with electrode dislocation shown in Fig. 4-7. Therefore, it is 

observed in Fig. 4-9 and Fig. 4-37 that the peak-to-peak amplitude of the triangular 

pattern of the Y error of the closed loop nonlinear system with electrode dislocation 

using the OFC controller (1.5 μm) is smaller than that of the open loop nonlinear 

system with electrode dislocation (2.3 μm). It is concluded that the OFC can reduce 

the tracking error induced by coupling effect and hysteresis. In Table 4-1 and Table 

4-3, it is shown that comparing to the open loop nonlinear system with electrode 

dislocation, the X RMSE of the closed loop nonlinear system with electrode 

dislocation using the OFC reduced from 5.619 μm to 2.003 μm and the Y RMSE of 

the closed loop nonlinear system with electrode dislocation using the OFC reduced 

from 0.678 μm to 0.465 μm. In Fig. 4-36, the X error of the closed loop nonlinear 

system with electrode dislocation using the OFC converges. Therefore, the closed 

loop nonlinear system with electrode dislocation using the OFC is more stable than 

the open loop system with electrode dislocation. Overall, the OFC improves the 

stability and reduces the error induced by coupling effect and hysteresis. 

 

In Fig. 4-22 and Fig. 4-36, it is observed that the amplitude of the X error of 

the closed loop nonlinear system with electrode dislocation using the OFC is 

smaller than that of the closed loop nonlinear system with electrode dislocation 

using the PI controller. In Table 4-3, the X RMSE of the closed loop nonlinear 
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system with electrode dislocation using the OFC (2.003 μm) is smaller than that of 

the closed loop nonlinear system with electrode dislocation using the PI controller 

(2.908 μm). It shows that the OFC has a better ability of reducing the tracking error 

caused by hysteresis. In Fig. 4-21 and Fig. 4-35, it is observed that the triangular 

pattern of the Y displacement of the closed loop nonlinear system with electrode 

dislocation using the PI controller is smaller than that of the closed loop nonlinear 

system with electrode dislocation using the OFC. Therefore, it is observed in Fig. 

4-23 and Fig. 4-37 that the peak-to-peak amplitude of the triangular pattern the Y 

error of the closed loop nonlinear system with electrode dislocation using the PI 

controller (0.6 μm) is smaller than that of the closed loop nonlinear system with 

electrode dislocation using the OFC controller (1.5 μm). It is demonstrated that the 

PI controller has a better ability of reducing the tracking error caused by coupling 

effect. However, it is observed in Fig. 4-23 and Fig. 4-37 that the Y error of the 

closed loop nonlinear system with electrode dislocation using the PI controller 

increases in negative direction and the Y error of the closed loop nonlinear system 

with electrode dislocation using the OFC diverges. 

 

It is concluded that both the typical controllers can compensate coupling effect 

and hysteresis, and improve the stability of the piezoelectric tube actuator with 

electrode dislocation. According to compensation of hysteresis, the OFC is better 

than the PI controller. According to compensation of coupling effect, the PI 

controller is better than the OFC. However, the typical controllers cannot 

compensate creep. Although they can improve the stability of the piezoelectric tube 

actuator with electrode dislocation in X direction, the Y errors of the closed loop 

nonlinear system using the typical controllers diverge. Therefore, the PI controller 



104 

and the OFC are not perfect controllers. 

 

Other than the PI controller and the OFC, the feedforward plus PI controller is 

an alternative choice. The structure of the feedforward plus PI controller is similar 

to the OFC. The difference is that the former one does not have the coupling term 

and the latter one does not have the integral term. It is deduced that the feedforward 

term allows the PI controller to perform similar to the OFC. In other words, it can 

improve the performance of the PI controller on mitigating the error caused by 

creep and hysteresis but degrade the performance on mitigating the error caused by 

coupling effect. 

 

4.5 SUMMARY 

 

The above findings can be summarized as follows: 

(i) The X displacement is distorted in wave pattern due to hysteresis. Hysteresis 

causes the system gain to be larger and varying. The X RMSE of the open 

loop nonlinear system without electrode dislocation is 5.693 μm. 

(ii) The Y error increases with time due to creep. Creep causes the system gain to 

increase with time. 

(iii) When electrode dislocation exists, the X input affects the Y displacement 

significantly due to coupling effect. The peak-to-peak amplitude of the 

triangular pattern of the Y error of the open loop nonlinear system with 

electrode dislocation (2.3 μm) is larger than that of the open loop nonlinear 

system without electrode dislocation (0.4 μm). 
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(iv) The open loop nonlinear system is unstable in both X direction and Y 

direction. The performance of the open loop nonlinear system is 

unsatisfactory. 

(v) Both the PI controller and the OFC can compensate hysteresis. The X RMSE 

of the closed loop nonlinear system with electrode dislocation using the PI 

controller is 2.908 μm and that of the closed loop nonlinear system with 

electrode dislocation using the OFC is 2.003 μm. Both of them are smaller 

than that of the open loop nonlinear system with electrode dislocation which is 

5.619 μm. The data also show that the OFC is better than the PI controller 

regarding the compensation of hysteresis. 

(vi) Both the PI controller and the OFC can compensate coupling effect. The 

peak-to-peak amplitude of triangular pattern of the Y error of the closed loop 

nonlinear system with electrode dislocation using the PI controller is 0.6 μm 

and that of the closed loop nonlinear system with electrode dislocation using 

the OFC is 1.5 μm. Both of them are smaller than that of the open loop 

nonlinear system with electrode dislocation which is 2.3 μm. The data also 

show that the PI is better than the OFC controller regarding the compensation 

of coupling effect. 

(vii) Both of the PI controller and the OFC can improve the stability of the system 

in X direction. However, the Y error of the closed loop nonlinear system with 

electrode dislocation using the PI controller and the OFC diverge. Also, both 

of them cannot compensate creep. The PI controller and the OFC are not 

perfect. 
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CHAPTER 5  

 

DEVELOPMENT AND PERFORMANCE OF 

ADAPTIVE SLIDING MODE 

CONTROLLER 

 

 

5.1 INTRODUCTION 

 

 In the previous chapter, the performance of the PI controller and the OFC has 

been discussed. In this chapter, an advanced controller called the ASMC is 

developed. Since the piezoelectric tube actuator is influenced by coupling effect, 

creep and hysteresis, it can be characterized as a MIMO nonlinear time-varying 

system with uncertainty. In this thesis, it is simply called a nonlinear system 

because of convenience. The performance of the proposed sliding mode controller 

on forcing the error to converge to zero for such system is investigated in this 

chapter. Unlike the PI controller and the OFC, the ASMC belongs to the class of 

nonlinear controller. The structure of the sliding mode controller changes according 

to the sliding surface. Therefore, the performance of the ASMC is expected to be 

better than that of the PI controller and the OFC when it is adopted in the 

piezoelectric tube actuator. 
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 The ASMC is designed based on the reduced order nonlinear FE model in 

state space form (Eq. (3.62b) and Eq. (3.63)) derived in Chapter 3. A 

continuous-time dynamic model of backlash-like hysteresis is adopted in the 

controller design process in order to enhance the performance on compensation of 

hysteresis. The reference model is established by optimal control for track 

following. The reference model is built because it provides more information for 

controller design. The PI sliding surface is stated on which the ASMC is insensitive 

to the matched uncertainty. The control law is then developed by unit vector 

nonlinear control together with equivalent control. The unit vector nonlinear 

control drives the system onto the sliding surface. The equivalent control forces the 

error to converge to zero when the system is on the sliding surface. A sliding mode 

observer called Walcott Zak observer is applied to estimate the unmeasurable states. 

Therefore, the degree of freedom of the ASMC is free to be chosen. Lyapunov 

criterion is stated to guarantee the stability of the closed loop system theoretically. 

The adaptive laws which can search appropriate controller gains automatically are 

also developed in the Lyapunov criterion. The initial controller gains are calculated 

by known information of the reduced order nonlinear FE model (Eq. (5.4l)) instead 

of a guess in order to reduce the initial difference between the initial value and the 

true value. The responses of the closed loop nonlinear system with electrode 

dislocation using the ASMC are simulated and compared with those of the closed 

loop nonlinear system with electrode dislocation using the PI controller and the 

OFC which have been obtained in Chapter 4. The error minimization ability and 

the stability improvement ability of those controllers are discussed. 
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5.2 ASSUMPTIONS AND CONDITIONS 

 

The ASMC is developed based on the following assumptions: 

(1) The bounded time varying nonlinear uncertainty  1D  can match with the 

true modified input matrix 
 1B  such that     mDBD 111  . 

(2) The overall uncertainty  2D  can match with the modified input matrix for 

controller design  1B  such that     mDBD 212  . 

(3) The system of the piezoelectric tube actuator is reachable. It means that some 

eigenvalues of      mKBA   can be changed. The unchangeable 

eigenvalues are in the negative-half of the complex plane. 

(4) The system of the piezoelectric tube actuator is detectable. It means that some 

eigenvalues of      CLA o  can be changed. The unchangeable 

eigenvalues are in the negative-half of the complex plane. 

 

The following conditions should be satisfied: 

(1) The design matrix for the reference states  mQ , the design matrix for the 

input to the reference model  mR , Lyapunov matrix for estimation errors of 

control gains of equivalent control  1M , 
 2M ,  3M  and the design matrix 

for the observer  Q
 are positive definite. 

(2)      CLA o  is Hurwitz by tuning the observer gain
 
 oL . The observer 

error  o  
converges to zero with this condition being satisfied. 
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5.3 CONTROLLER DESIGN 

 

5.3.1 Hysteresis Model for Controller Design 

 

The method of implementing the Prandtl-Ishlinskii hysteresis model into the 

ASMC design process has been proposed by Su et al. (2005). The Prandtl-Ishlinskii 

hysteresis model is fused in the control law aiming to release a signal to cancel the 

creep and the hysteresis influencing the error dynamics. The control gain of the 

Prandtl-Ishlinskii hysteresis model is adapted through the Prandtl-Ishlinskii 

hysteresis model itself and the sliding surface. Another method for enhancing the 

ability of the controller in hysteresis compensation has been developed by Su et al. 

(2000). A continuous-time dynamic model of backlash-like hysteresis which can 

model the backlash-like hysteresis such as the type of hysteresis exhibiting in 

piezoelectric material (Bashash et al., 2009) has been proposed. According to this 

model, the hysteresis can be approximated by dividing it into a linear part and a 

bounded time-varying uncertain part which is shown in Eq. (5.1a). The error 

caused by the bounded time-varying uncertain part of hysteresis will converge to 

zero when the system reaches the sliding surface. Comparing these two methods, 

the benefit of the method proposed in Su et al. (2005) is that since the hysteresis is 

not considered as an uncertainty, the controller reaching gain c  and the observer 

reaching gain o  are smaller. It reduces the amplitude of the high frequency unit 

vector control signal; hence, the risk of exciting high frequency dynamics is 

reduced. The benefit of the method proposed in Su et al. (2000) is that the full 

knowledge of the parameters of the hysteresis model proposed by Su et al. (2000) 
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shown in Eq. (5.1b) in the thesis are not required. The necessary known 

information is the slope of the linear part hk  and the uniform bound of the 

bounded time-varying uncertain part  hh ud  in order to determine the settings of 

the controller reaching gain c  and the observer reaching gain o . Also, online 

computation of the outputs of the hysteresis models is not required so the 

computational effort is reduced. 

 

The method proposed by Su et al. (2000) is adopted in the controller design of 

this thesis. The continuous-time dynamic model of backlash-like hysteresis is given 

(Su et al., 2000): 

)()()( hhhh udtuktH  , (5.1a) 

where 
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)(tH , hk  and )( hh ud  denote the output, the slope of the linear part and the 

bounded time-varying uncertain part of the continuous-time dynamic model 

respectively. h  
denotes threshold of the continuous-time dynamic model. h

 

denotes switching rate of the continuous-time dynamic model. Since (Su et al., 

2000): 
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)( hh ud  is shown to be bounded. )(tH  switches between 
h

hhk



 )( 
 and 

h

hhk



 )( 
  with the switching rate h . The backlash-distance is determined by 

h

hhk



 )( 
. Changing h  can alter the backlash distance. hh k  should be 

satisfied. The slope of the linear part of the continuous-time dynamic model
 hk  is 

equivalent to the proportional constant for the Prandtl-Ishlinskii hysteresis operator 

jb . Superposition of a number of the Prandtl-Ishlinskii operators is adopted in 

simulation, therefore: 





JN

j

jh bk
1

. (5.3) 

In practice, the value of hk  is obtained by observing the slope of the hysteresis 

loop with periodic input. 

 

5.3.2 Adaptive Sliding Mode Controller 

 

First of all, the controller is designed based on the nonlinear state space 

equation of the piezoelectric tube actuator developed in Chapter 3. Recall the state 

equation of the state space model given by Eq. (3.62b): 

            gE KGuBxAx   .
 

(5.4a) 
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Eq. (5.1a) is substituted into Eq. (5.4a): 
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(5.4b) 

Since the remnant polarization due to voltage at X-pair electrodes VXp  exhibits 

hysteresis with periodic input, it can be modelled by the continuous-time dynamic 

model. In contrary, the Y input is a dominant pseudo-step. The remnant polarization 

due to voltage at Y-pair electrodes VYp  can be ignored ( 0VYp ). The linear part 

and the bounded time-varying uncertain part are separated (Su et al., 2000): 

               g

hVX

cVY

cVX

E

h

E K
d

Gu
k

GuBxAx 

































































000

0

00

00






 

(5.4c) 

           gE KDuBxAx  11
 ,

 

(5.4d) 

where 

     





















00

0

00

00

1

hk
GBB

 (5.4e) 

    ThVXcVYcVX dGD 01  .

 

(5.4f) 

  2

1

 nB  denotes the true modified input matrix.   nD 1  denotes the 

bounded time varying nonlinear uncertainty. hVXd  denotes the bounded time 

varying nonlinear uncertainty of the continuous-time dynamic model due to voltage 

at X-pair electrode. It is assumed that the bounded time varying nonlinear 

uncertainty  1D  can match with the true modified input matrix 
 1B  (Chapter 5 
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Assumption 1) such that (Perruquetti and Barbot, 2002): 

    mDBD 111  ,

 

(5.4g) 

where   2

1 mD  denotes the matched bounded time varying nonlinear 

uncertainty. Therefore, Eq. (5.4d) becomes: 

            gmE KDBuBxAx  111
 .

 

(5.4h) 

Due to the electrode dislocation, there is a difference between the true modified 

input matrix of  1B  and the modified input matrix for controller design 

  2

1

 nB . The perturbation for the modified input matrix   2

1

 nB  is 

introduced to the state equation Eq. (5.4d). The perturbation for the constant term 

due to gravity   n

gK   is also introduced to Eq. (5.4d) for bias estimation 

such that: 

     111 BBB 

 

(5.4i) 

     ggg KKK  , 
(5.4j) 

where   n
gK   is the constant term due to gravity for controller design. Eq. 

(5.4i) and Eq. (5.4j) are substituted into Eq. (5.4d): 

                ggEE KKDuBuBxAx  111


 

(5.4k) 

           gE KDuBxAx  21
 ,

 
(5.4l) 

where   nD 2  denotes the overall uncertainty: 

        gE KDuBD  112 .

 

(5.4m) 

It is assumed that the overall uncertainty  2D  can match with the modified input 
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matrix for controller design  1B  (Chapter 5 Assumption 2) (Perruquetti and 

Barbot, 2002): 

    mDBD 212  ,

 

(5.4n) 

where   2

2 mD  is the matched overall uncertainties. Therefore, Eq. (5.4l) 

becomes: 

            gmE KDBuBxAx  211
 .

 

(5.4o) 

Concerning the matching conditions shown in Eq. (5.4g) and Eq. (5.4n), it is 

pointed out that the terms   EuB1  and  gK  are matched with  1B  and the 

nonlinear uncertainty  1D  is matched with both  1B  and  1B . 

 

 The reference model is developed for track following. The objective of the 

ASMC is to force the states of the closed loop system to track the reference states 

instead of the desired output. The benefit of using reference model is that more 

information is available for controller design. The reference model is given as: 

       rBxAx mmmm 

 

(5.5a) 

    mm xCy  , (5.5b) 

where   nn

mA   denotes the reference system matrix and   2 n

mB  

denotes the reference input matrix.   n

mx   and   2my  are the reference 

state vector and the reference output vector respectively. The best way to design the 

reference system matrix  mA  and the reference input matrix  mB  is making use 

of the reduced order linear FE model (Eq. (3.63) and Eq. (3.65)) without the 

constant term due to gravity  gK
 
of the piezoelectric tube actuator shown in Eq. 
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(3.65). However, the reference output  my
 
may be unsatisfactory. It is necessary 

to apply the optimal control to tune the reference model and the detail is shown in 

Appendix D. 

 

 The state error vector is defined: 

     ms xxe  ,

 

(5.6) 

where   n

se   denotes the state error vector. The error dynamic equation is 

derived by subtracting Eq. (5.5a) from Eq. (5.4h): 

                  rBxAKDBuBxAe mmmgmEs  111


 

(5.7a) 

                   rBxAAKDBuBeA mmgmEsm  111 .
 

(5.7b) 

The sliding surface is defined as (Fei and Batur, 2009): 

        
t

smsss deAKeKs
0

 ,

 

(5.8) 

where   2s  is the sliding surface and   n

sK  2  is the sliding mode matrix. 

The derivative of the sliding surface is given: 

        smsss eAKeKs  

 

(5.9a) 

               msEsms DBKuBKxAAK 111 
 

 

      rBKKK msgs  .
 

(5.9b) 

The equivalent control is derived by setting    0s
 (Perruquetti and Barbot, 

2002): 

                     rBKBKxAAKBKu mssmsseq

1

1

1

1




 

(5.10a) 

        mgss DKKBK 1

1

1 

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         mDKrKxK 1321  ,
 

(5.10b) 

where 

            AAKBKK mss 
1

11

 

(5.10c) 

        mss BKBKK
1

12




 
(5.10d) 

        gss KKBKK
1

13


 .

 
(5.10e) 

  2equ  is the equivalent control. The values of the true control gains of the 

equivalent control   nK  2

1 ,   22

2

K  and   2

3 K  can be estimated 

through adaptive laws. The development of the adaptive laws will be shown in 

Section 5.3.4. By substituting Eq. (5.10a) into Eq. (5.7b) and using Eq. (5.10c) – 

Eq. (5.10e), the error dynamics on the sliding surface can be expressed as: 

    sms eAe  .

 

(5.11) 

The detail of derivation of Eq. (5.11) is shown in Appendix E. The error dynamics 

in Eq. (5.11) implies that the error converges to zero on the sliding surface though 

the matched uncertainty exists. It is noted that the error dynamics of the closed loop 

system is still affected by matched uncertainty in the reaching phase. Reaching 

phase means that the sliding surface is not yet reached. Therefore,    0s . 

 

The control signal of the ASMC is given: 

           cE wKrKxKu  321
ˆˆˆ ,

 

(5.12a) 

where 

 
 
 s
s

w cc  ,

 

   0s

 

(5.12b) 
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   0cw ,

 

otherwise.

 

(5.12c) 

0c  is the controller reaching gain.   nK  2

1
ˆ ,   22

2
ˆ K  and 

  2

3
ˆ K  are the estimates of the control gains of equivalent control  1K , 

 2K  and  3K  respectively. The overall control signal consists of two parts, the 

equivalent control and the unit vector nonlinear control   2cw . The unit vector 

nonlinear control takes action to force the system to enter onto the sliding surface 

when it is still in reaching phase    0s . The equivalent control is responsible to 

force the error to converge to zero (Eq. (5.11)) when the system is on the sliding 

surface of the controller    0s . Therefore, the error can be ensured to converge 

to zero with the combination of the equivalent control and the unit vector nonlinear 

control. 

 

5.3.3 Sliding Mode Observer 

 

 Simple Luenberger observer is influenced by coupling effect, creep and 

hysteresis so it cannot function properly in the application of piezoelectric tube 

actuator. Instead, a Walcott Zak observer is implemented for observing the 

unmeasureable states in order that the degree of freedom of the controller can be 

increased and chosen freely by designer (Chen and Saif, 2006; and Fei and Batur, 

2008). The sliding surface and the control signal are restated based on the estimated 

states. 
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 The dynamics of the sliding mode observer is given as: 

                    ogoE wBKyxCLuBxAx 11
ˆˆˆ  ,

 

(5.13a) 

where 

 
   
   oo

oo
oo

CF

CF
w




 ,

 

     0oo CF 

 

(5.13b) 

   0ow ,

 

otherwise,

 

(5.13c) 

and   n

o   denotes the observer error which is defined as: 

     xxo  ˆ .

 

(5.14) 

  nx ˆ  denotes the estimated state vector.   2 n

oL  denotes the observer 

gain which determines the convergence rate of the observer error  o . 0o  is 

the observer reaching gain.   22oF  is the observer sliding surface design 

matrix.   2ow  denotes the unit vector dynamics of the sliding mode observer 

which forces the system on the sliding surface of the observer. By subtracting Eq. 

(5.4o) from Eq. (5.13a), the observer error dynamics is derived as: 

              moooo DBwBCLA 211   .

 

(5.15) 

The system of the piezoelectric tube actuator is required to be detectable (Chapter 5 

Assumption 4).      CLA o  is Hurwitz by tuning the observer gain
 
 oL . The 

observer error  o  
converges to zero with this condition satisfied (Chapter 5 

Condition 2) and the convergence of the observer error  o  is proven in Section 

5.3.4. The estimated error is given: 

     ms xxe  ˆˆ ,

 

(5.16) 

where   n

se ˆ  is the estimated state error vector. Once the observer error  o  
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converges, the estimated error dynamic equation has the same structure as the error 

dynamic equation shown in Eq. (5.7b). The following estimated sliding surface can 

be adopted: 

        
t

smsss deAKeKs
0

ˆˆˆ  ,

 

(5.17) 

where   2ˆ s
 denotes the estimated sliding surface. By following the same 

derivation from Eq. (5.8)-(5.11), the same conclusion in Section 5.3.2 is made such 

that the estimated error converges to zero on the estimated sliding surface of sliding 

mode controller. The control signal is restated: 

           cE wKrKxKu ˆˆˆˆˆ
321  ,

 

(5.18a) 

where   2ˆ cw  is the estimated unit vector nonlinear control given by: 

 
 
 s
s

w cc
ˆ

ˆ
ˆ  ,

 

   0ˆ s

 

(5.18b) 

   0ˆ cw ,

 

otherwise.

 

(5.18c) 

By substituting Eq. (5.18a) into Eq. (5.13a), the following equation is obtained: 

                     ooc CLwKrKxKBxAx  ˆˆˆˆˆˆˆ
3211



 

(5.19) 

    og wBK 1 . 

Define: 

     111
ˆ~

KKK 

 

(5.20a) 

     222
ˆ~

KKK   
(5.20b) 

     333
ˆ~

KKK  , 
(5.20c) 

where   nK  2

1

~
,   22

2

~ K  and   2

3

~
K  denote the estimation errors of 
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the control gains of equivalent control  1K ,  2K  and  3K  respectively. By 

substituting Eq. (5.4j), Eq. (5.10c) – Eq. (5.10e) and Eq. (5.20a) – Eq. (5.20c) into 

Eq. (5.19), the following equation can be derived: 

                    rKBrKBxKBxKBxAx 21211111

~
ˆˆ

~
ˆˆ 

 
(5.21a)                









 32113131
ˆˆˆˆ~

KrKxKBKBKB
 

           ogooc wBKCLwB 11
ˆ    

     rBxA mm  ˆ
 

(5.21b) 

               











3

1

22

1

21

1

2

~~
ˆ

~
KKrKKxKKBm  

                oc wBwBKrKxKB 113211
ˆˆˆˆˆ 

 

     goo KCL   .
 

The estimated error dynamic equation becomes: 

                     3

1

22

1

21

1

2

~~
ˆ

~
ˆˆ KKrKKxKKBeAe msms




 
(5.22)                oc wBwBKrKxKB 113211

ˆˆˆˆˆ 









 

     goo KCL   . 

The derivative of the estimated sliding surface becomes: 

        smsss eAKeKs ˆˆˆ  
 

(5.23a) 

                











3

1

22

1

21

1

2

~~
ˆ

~
KKrKKxKKBK ms
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                  oscss wBKwBKKrKxKBK 113211
ˆˆˆˆˆ 










 

(5.23b) 

       gsoos KKCLK   . 

 

5.3.4 Lyapunov Criterion 

 

 Lyapunov equation is developed for exhibiting the theoretical stability of the 

proposed ASMC. Moreover, the adaptive laws for estimating the controller gains of 

the control signal are established. 

 

 The Lyapunov candidate is selected as: 

                 2

1

221

1

11

~~

2

1~~

2

1
ˆˆ

2

1
KMKtrKMKtrssV

TTT

L




 
(5.24a) 

            0
2

1~~

2

1
3

1

33 


oo

T

o

T

PKMKtr  , 

where 

    121 CKM 

 

(5.24b) 

    222 CKM   (5.24c) 

    323 CKM  . (5.24d) 

LV  is Lyapunov function.   22

1

C ,   22

2

C  and   22

3

C  are the 

adaptive gains to suit the adaptation speed of  1K ,  2K  and  3K  respectively. 

  22

1

M ,   22

2

M  and   22

3

M  denote the Lyapunov matrix for the 

estimation errors of control gains of equivalent control  1

~
K ,  2

~
K  and  3

~
K  
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respectively. The adaptive gains  1C ,  2C  and  3C
 
should be designed to 

satisfy the condition that  1M ,  2M  and  3M  are positive definite (Chapter 5 

Condition 1).   nn

oP   denotes the Lyapunov matrix for the observer error 

 o .  oP  is positive definite and it is solved by Eq. (5.27). The derivative of 

Lyapunov equation is shown: 

                 2

1

221

1

11

~~~~
ˆˆ KMKtrKMKtrssV

TTT

L

 


 

(5.25) 
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T

ooo
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T

PPKMKtr  
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3

1

33 , 

where  tr  denotes trace. By using Eq. (5.15), the last term of Eq. (5.25) can be 

expressed as follows: 

                mo

T

ooo

T

oo

T

o DBPwBPQ 211
2

1
  ,

 

(5.26) 

where the design matrix for the observer   nnQ   is expressed: 

                  o

T

ooo PCLACLAPQ  .

 

(5.27) 

The design matrix for the observer  Q  should be designed to be positive definite 

(Chapter 5 Condition 1). The Lyapunov matrix for the observer error  oP  is 

solved out and only the positive definite solution is selected. By differentiating Eq. 

(5.20a) – Eq. (5.20c), the following relations are obtained: 


















11

ˆ~
KK


 

(5.28a) 


















22

ˆ~
KK


 (5.28b) 



123 


















33

ˆ~
KK


. 
(5.28c) 

By using Eq. (5.23b), Eq. (5.24b) – Eq. (5.24d), Eq. (5.26) and Eq. (5.28a) – Eq. 

(5.28c), Eq. (5.25) can be expressed: 
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The following adaptive laws are selected: 
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(5.30c) 

By using Eq. (5.13b), Eq. (5.18b) and Eq. (5.30a) – Eq. (5.30c), Eq. (5.29) can be 

reduced: 

         
 
 s
s

BKsQV s

T

co

T

oL
ˆ

ˆ
ˆ

2

1
1 

 

 



124 

        
   

           gs

T

oos

T

oo

oo
s

T

o KKsCLKs
CF

CF
BKs  ˆˆˆ

1 





 

(5.31) 
                     

   oo

ooo

T

o

os

T

CF

CFBP
KrKxKBKs




 1

3211
ˆˆˆˆˆ 

 

     mo

T

o DBP 21 ,

 

where   denotes Euclidean norm.  oF  is chosen to satisfy the following 

relation: 

      o

T

o PBCF 1 .

 

(5.32) 

By using the inequality property of norm and Eq. (5.32), the following relation is 

established: 
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where  min  denotes the eigenvalue with minimum real part. The following 

property is used: 
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(5.34) 

Finally, the following inequality is obtained: 
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where the design scalar   should satisfy: 

   1min BK s  .

 

(5.36) 

To ensure 0LV , the following conditions should be satisfied: 

  0Q

 

(5.37a) 

 mo D2  (5.37b) 

                  xKBKKKCLK sgsoosoc
ˆˆ

11   

(5.37c) 

              3121
ˆˆ KBKrKBK ss  .

 

LV  is positive definite and LV  is negative semi-definite implies that  ŝ ,  1

~
K , 

 2

~
K ,  3

~
K  and  o  are all bounded in the sense of Lyapunov stability (Ioannou 

and Sun, 1996). According to Barbălat‟s lemma (Ioannou and Sun, 1996),  ŝ  and 

 o  converge to zero. According to the persistent excitation theory (Ioannou and 

Sun, 1996), the estimates of control gains of equivalent control  1K̂  and  2K̂  

converge to the true value if the estimated state vector  x̂  and the desired output 

vector  r  are persistent excitation signals in the Eq. (5.30a) and Eq. (5.30b). Both 

of the patterns of the estimated state vector  x̂  (Fig. F-1 – Fig. F-4) and the 

desired output vector  r  (Fig. 5-8 and Fig. 5-9) show shape angles which actually 

is the sum of sine waves with different frequencies. Hence, the signals contain 

enough information for adaptation. 

 

In practice, most of the signals in the control system are discrete. The adaptive 

law shown in Eq. (5.30a) requires current value of  x̂  but only the past value is 
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available. This may affect the adaptation and the degree of the effect depends on 

the computational speed. In addition, 
c  and 

o  should be large enough to 

satisfy Eq. (5.37b) and Eq. (5.37c) to ensure stability. However, 
c  and 

o  

should not be too large otherwise the input amplifier may saturate. 

 

The actual motion on the sliding surface can be regarded as the superposition 

of a slow motion along the surface and a fast motion perpendicular to the surface. 

Such phenomenon is called chattering effect (Perruquetti and Barbot, 2002). 

Chattering effect may excite unmodelled high frequency modes which cause 

instability. The following modified input which is based on the one used by Fei and 

Batur (2009) establishes a neighborhood boundary near the sliding surface to 

provide a soft switching for eliminating the chattering effect: 

           
  c

cE
s

s
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



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ˆ

ˆˆˆˆˆ
321 ,

 

(5.38) 

where c  is the chattering constant for the controller. The observer can be 

modified as follows (Chen and Saif, 2006): 
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where o  is the chattering constant for the observer. However, the soft switching 

mechanism causes  se  and  o  to reduce to some small values rather than 

zero (Bashash and Jalili, 2009). The block diagram of the closed system is shown 

in Fig. 5-1. 
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Figure 5-1.  Block Diagram of Closed Loop System using ASMC 

 

5.4 PROGRAM DEVELOPMENT 

 

The simulation of the closed loop system using the ASMC is performed by 

MATLAB/SIMULINK 7.5. The connection of the blocks of the closed loop system 

using the ASMC is shown in Fig G-2 in Appendix F. The block connection of the 

plant model shown in Fig. G-1 is implemented into “Plant” block in Fig. G-2. The 

reference model (Eq. (5.5a) and Eq. (5.5b)) is implemented into “Reference Model” 

block. The estimated sliding surface (Eq. (5.17)) is implemented into “Sliding 

Surface” block. The adaptive laws (Eq. (5.30a) – Eq. (5.30c)) are implemented into 

“Adaptive Law 1” block, “Adaptive Law 2” block and “Adaptive Law 3” block 

respectively. The fourth term of the modified control law (Eq. (5.38)) is 

implemented into “Unit Vector Nonlinear Control” block. The modified sliding 
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mode observer (Eq. (5.39)) is implemented into “Observer” block. The block 

connection inside the “Observer” block is shown in Fig. G-3. 

 

5.5 SIMULATION RESULTS OF CLOSED LOOP 

SYSTEM WITH ADAPTIVE SLIDING MODE 

CONTROLLER 

 

In this section, the error minimization ability and the stability improvement 

ability of the ASMC on the reduced order nonlinear FE model (Eq. (3.62b) and Eq. 

(3.63)) with electrode dislocation are assessed. The performance of the ASMC is 

compared with that of the PI controller and the OFC. The simulations are based on 

the assumptions and conditions stated in Chapter 3 and the controller design of 

ASMC is based on the assumptions and the conditions stated in this chapter. 

 

In practice, the dynamics of the model for controller design is an 

approximation of the real plant. Therefore, it is necessary to construct a controller 

with an order lower than that of the FE model of the plant in simulation. Referring 

to Chapter 3 Section 3.7, the reduced order nonlinear FE model (Eq. (3.62b) and 

Eq. (3.63)) with 35 retained states has the smallest RMSE (0.044 μm) and the 

reduced order nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) with 20 retained 

states has the second smallest RMSE (0.099 μm). The reduced order nonlinear FE 

model (Eq. (3.62b) and Eq. (3.63)) with 20 retained states is used for controller 

design and the reduced order nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) with 

35 retained states is used as a plant in simulation. 
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The reduced order system matrix  A , the reduced order input matrix  B , the 

reduced order output matrix  C , the nonlinear distribution matrix  G  and the 

constant term due to gravity  gK  which can be found in the reduced order 

nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) with 20 retained states are the 

known information for controller design. In addition, the slope of the linear part of 

the continuous-time dynamic model of backlash-like hysteresis hk  which can be 

obtained by observing the slope of the hysteresis loop with periodic input 

practically is also assumed to be known. Moreover, the reduced order input matrix 

 B , the nonlinear distribution matrix  G  and the slope of the linear part of the 

continuous-time dynamic model of backlash-like hysteresis hk  constitute the 

modified input matrix by Eq. (5.4e). Since it is assumed that the ASMC is designed 

based on the piezoelectric tube actuator without electrode dislocation, the reduced 

order input matrix  B  should be obtained from the nonlinear FE model without 

electrode dislocation so the modified input matrix obtained by Eq. (5.4e) is the 

modified input matrix for controller design  1B  which is not the true one. Also, 

the constant term due to gravity for controller design  gK  adopts the constant 

term due to gravity  gK  obtained from the nonlinear FE model. Therefore, the 

modified input matrix for controller design  1B  and the constant term due to 

gravity for controller design  gK  are the known information. The values of the 

reduced order system matrix  A , the modified input matrix for controller design 

 1B , the constant term due to gravity for controller design  gK , the reduced 

order output matrix  C  and the slope of the linear part of the continuous-time 

dynamic model of backlash-like hysteresis hk  are given in Table 5-1. 
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Table 5-1.  Model Parameters for Controller Design 

 A  













































































25.846.1089.125.188.044.468.494.275.035.0

41.131.046.872.279.050.145.044.236.000.1

71.1458.663.403.914.810.031.1068.214.049.1

43.691.522.640.1118.648.1006.372.230.230.0

83.234.1042.001.638.459.128.276.476.037.0

78.335.105.782.621.1083.518.1138.384.166.0

43.1781.318.937.965.191.550.160.061.204.1

18.798.669.2014.614.374.722.290.4080.0

31.993.096.1383.1305.1166.049.1338.313.242.0

67.1745.845.284.657.540.370.1137.626.015.3

98.2246.2793.2155.195.801.691.1641.665.116.0

21.1103.1211.423.979.692.056.1291.139.368.1

08.584.252.3315.1062.306.621.1581.587.196.3

83.4166.3499.3910.676.1575.855.3786.951.562.2

47.2915.4886.4971.1215.2902.425.7397.1642.505.1

79.4692.8499.372.653.3645.1189.3369.563.559.2

49.3118.1589.6965.068.229.915.2396.531.637.5

88.1612.1722.2102.1236.7918.3115.10489.3096.2038.6

73.6308.4206.17563.6908.10879.1590.11336.1194.2408.16

33.13081.8884.319.1049.6695.6931.3889.1050.877.9

 

410

22.771.2115.1946.184.596.2661.385.2845.208.8

40.1780.1026.1076.126.2982.923.043.1385.1572.13

20.1057.2540.882.607.704.1325.1872.1533.249.6

73.603.576.200.1113.383.1356.1119.2367.917.3

64.581.6959.898.323.745.1947.374.274.651.4

33.3516.1598.1225.838.277.2011.1554.826.1217.20

33.659.443.2045.1711.243.2621.1739.1957.1532.19

84.386.4148.3687.4324.301.030.1922.233.2400.1

31.1611.163.3782.1041.1364.1575.3303.1764.1098.9

27.2457.7645.3101.3106.902.1703.4763.327.000.4

72.1321.947.4493.909.310.447.2393.053.411.8

03.1289.008.923.1245.440.084.119.583.973.7

34.341.2509.1862.1059.087.916.914.1070.1517.3

23.896.2472.3076.304.633.1785.1887.1457.4472.18

63.1242.2956.830.1722.2719.1694.585.013.681.14

84.3216.4417.836.536.599.3198.2101.2568.1870.21

50.133.1390.479.1062.3144.375.366.1923.008.21

93.2484.352.439.1037.3941.2044.823.1831.4540.82

18.1667.331.3997.953.546.1797.2616.2106.2593.48

85.746.156.2622.1372.1958.3383.1432.8137.6426.37
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


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






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 1B  



































































































74.129.309

68.149.531

48.9871.181

19.20799.331

51.13210.183

67.6565.343

50.13324.611

88.8474.550

72.14119.778

86.3244.823

19.8810.606

19.6044.108

97.3828.2

53.15206.358

72.15462.241

94.17799.152

07.29991.109

23.50114.98

77.18516.164

43.8843.90

 

 C  610

28.192.0

35.176.1

91.409.0

55.090.1

36.116.0

61.126.3

45.014.1

29.291.4

51.317.6

21.124.2

10.274.6

00.907.14

07.1773.6

68.503.1

41.1837.3

00.408.1

95.1805.12

51.328.3

05.455.1

25.164.0
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
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
































T

 

 G
 

610

61.142.1069.2865.15

92.187.1741.2213.89

69.310.628.8246.18

85.717.1151.2671.119

31.315.643.1589.166

26.358.1126.4354.67

28.658.2020.6154.238

54.453.1885.1522.226

25.720.2636.1286.25

38.271.2701.3207.314

45.440.2037.084.91

02.265.327.324.72

33.108.019.604.116

47.304.1238.467.20

63.615.823.1011.41

08.412.517.4118.59

74.1071.313.1239.53

26.1628.357.192.30

36.555.554.2598.0

63.206.383.3499.18
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 gK

 

610

71.77

88.60

78.124

36.153

81.29

38.185

69.1

41.82

12.16

88.543

39.261

09.88

11.177

37.879

06.530

17.870

11.349

22.34

94.56

06.243


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
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


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





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









 

hk  51055.1   

 

The control objective of the ASMC is to command the X and the Y 

displacements  y  to track the reference X and the reference Y outputs  my  

shown in Fig. 5-2 and Fig. 5-3 respectively. Due to the dynamics of the reference 
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model, the reference displacement  my  is different from the desired 

displacement  r . The error between  my  and  r  should be minimized as 

much as possible by appropriate design for control gains of the reference model. 

The control parameters and the RMSEs for the reference model are shown in Table 

5-2. It is shown in Fig. 5-2 and Fig. 5-3 that  my  and  r  are close to each 

other using the control parameters shown in Table 5-1. The feedback gain for the 

reference model
 
 mK  in Eq. (D.16) can be calculated by MATLAB command 

“lqr”. The X RMSE and the Y RMSE for the reference model (2.004 nm and 0.021 

nm respectively) are small enough for tracking reference. 

 

Table 5-2.  Control Parameters and RMSEs for Reference Model 

 mQ    2020I  

 mK  210

30.324.1

22.191.5

78.1024.4

42.1063.4

01.864.8

31.512.5

82.713.7

28.982.9

10.106.3

26.278.5

75.540.4

62.1645.7

97.690.37

41.371.11

58.585.24

61.333.9

73.1047.11

18.1098.1

34.957.3

85.109.0
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
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
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





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





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
T

 

 mR  








1.00

01.0
 

 mN  











86

78

1063.21062.9

108.11088.3
 

X RMSE 

(nm) 
004.2

 

Y RMSE 

(nm) 
021.0
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Figure 5-2.  Desired and Reference X Displacements 

 

 

 
Figure 5-3.  Desired and Reference Y Displacements 

 

The settings of the ASMC and the Walcott Zak observer are shown in Table 

5-3. The Lyapunov matrix for the observer error  oP  in Eq. (5.27) can be solved 

by MATLAB command “lyap”. Since the dimension of  oP  is large, its values 
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are not given in this thesis. The initial estimates of control gains   n

initial
K  2

1
ˆ , 

  22

2
ˆ 

initial
K  and   2

3
ˆ 

initial
K  are calculated based on the information of 

the reduced order FE model (Eq. (5.4l)): 

            mssinitial
AAKBKK 

1

11
ˆ

 

(5.40a) 

        mssinitial
BKBKK

1

12
ˆ 


 

(5.40b) 

        gssinitial
KKBKK

1

13
ˆ 

 . 
(5.40c) 

These choices of initial values allow the adaptation of the control gains starting at 

available values close to the true ones which are expressed in Eq. (5.10c) – Eq. 

(5.10e). This helps the estimated control gains to take less time to converge; hence, 

the transient response of the closed loop system is improved. The initial estimates 

of control gains are shown in Table 5-4.  
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Table 5-3.  Settings for ASMC and Walcott Zak Observer 

 sK  310

22.146.3

26.298.0

19.215.0

74.022.3

67.360.7

02.026.0

81.018.1

93.052.1

54.075.0

05.237.1

11.267.1

72.387.4

90.190.0

55.207.1

75.631.4

07.514.0

52.005.3

90.117.3

94.159.2

29.264.2
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
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
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




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


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

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

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 oL  





































































01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

01.001.0

 

 1C  
510

9.31.2

2.21.4









  Q

   2020I
 

 2C  
710

9.31.2

2.21.4









  oF

 
310

88.118.4

86.204.0










 

 3C  
710

9.31.2

2.21.4









 

c  
41025

 

c  
2105 

 

o  
3101  

o  
2105 
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Table 5-4.  Initial Estimates of Control Gains 

 
initial

K1
ˆ

 

310

29.3205.8

42.1521.38

50.10540.27

70.10696.29

72.8488.55

85.5513.33

02.8215.46

53.8752.63

63.1281.19

45.1938.37

91.5948.28

17.16219.48

32.4813.245

76.2772.75

42.4272.160

09.3137.60

44.11317.74

75.10082.12

52.1912.23

56.1859.0
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


























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 
initial

K 2
ˆ  

810
64.211.0

12.051.2












 

 
initial

K3
ˆ  









35.2

51.0
 

 

The X input and the Y input of the closed loop nonlinear system with 

electrode dislocation using the ASMC generated by Eq. (5.38) are shown in Fig. 

5-4 and Fig. 5-5 respectively. The estimated sliding surfaces which are expressed in 

Eq. (5.17) are shown in Fig. 5-6. The (1,1) elements of estimates of the control 

gains of equivalent control  1K̂ ,  2K̂  and  3K̂  generated by Eq. (5.30a) – Eq. 

(5.30c) are shown in Fig. 5-7a – Fig. 5-7c. Since the dimensions of  1K̂ ,  2K̂  

and  3K̂  are large, only their (1,1) elements are shown. The X displacement and 

the Y displacement of the closed loop nonlinear system with electrode dislocation 

using the ASMC are shown in Fig. 5-8 and Fig. 5-9. For comparison, the X error 

and the Y error of the open loop nonlinear system with electrode dislocation, and 

the closed loop nonlinear system with electrode dislocation using the ASMC, the PI 
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controller and the OFC are plotted together in Fig. 5-10 and Fig. 5-11 respectively. 

The X RMSE and the Y RMSE of the closed loop nonlinear system with electrode 

dislocation using the ASMC are shown in Table 5-5. 

 

 

Table 5-5.  RMSEs of Open Loop Nonlinear System and Closed Loop Nonlinear 

System with Electrode Dislocation 

 X RMSE (μm) Y RMSE (μm) 

Open Loop 5.619 0.678 

ASMC 1.762 0.420 

PI Controller 2.908 0.409 

OFC 2.003 0.465 

 

 

 

 
Figure 5-4.  X Input of Closed Loop Nonlinear System with Electrode 

                  Dislocation using ASMC 
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Figure 5-5.  Y Input of Closed Loop Nonlinear System with Electrode  

Dislocation using ASMC 

 

 

 

 

 
Figure 5-6.  Estimated Sliding Surfaces of ASMC 
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Figure 5-7a  (1,1) Element of Estimates of Control Gains of Equivalent Control 

 1K̂  

 

 

 

 

 
Figure 5-7b  (1,1) Element of Estimates of Control Gains of Equivalent Control 

 2K̂  
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Figure 5-7c  (1,1) Element of Estimates of Control Gains of Equivalent Control 

 3K̂  

 

 

 

 

 
Figure 5-8.  X Displacement of Closed Loop Nonlinear System with Electrode 

Dislocation using ASMC 
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Figure 5-9.  Y Displacement of Closed Loop Nonlinear System with Electrode 

            Dislocation using ASMC 

 

 

 

 

 
Figure 5-10.  X Error of Open Loop and Closed Loop Nonlinear System with 

                Electrode Dislocation 
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Figure 5-11.  Y Error of Open Loop and Closed Loop Nonlinear System with 

               Electrode Dislocation 
 

 

As depicted in Fig. 5-8, the amplitude of the X displacement of the closed 

loop nonlinear system with electrode dislocation using the ASMC is reduced 

comparing to that of the open loop nonlinear system with electrode dislocation 

shown in Fig. 4-6. In Table 5-5, the X RMSE of the closed loop nonlinear system 

with electrode dislocation using the ASMC (1.762 μm) is smaller than that of the 

open loop nonlinear system with electrode dislocation (5.619 μm). It implies that 

the ASMC can reduce the tracking error due to hysteresis. Also, as depicted in Fig. 

5-10, the peak-to-peak amplitude of the wave pattern of the X error of the closed 

loop nonlinear system with electrode dislocation using the ASMC (4 μm at steady 

state) is significantly smaller than that of the closed loop nonlinear system with 

electrode dislocation using the PI controller (10 μm) and is slightly smaller than 

that of the closed loop nonlinear system with electrode dislocation using the OFC 

(4.5 μm at steady state). In Table 5-5, the X RMSE of the closed loop nonlinear 

system with electrode dislocation using the ASMC (1.762 μm) is smallest. It is 

revealed the ability of the ASMC to reduce tracking error caused by hysteresis is 
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the best among the controller candidates. 

 

As shown in Fig. 5-11, the peak-to-peak amplitude of the wave pattern of the 

Y error of the closed loop nonlinear system with electrode dislocation using the 

ASMC (1.1 μm) is smaller than that of the triangular pattern of the Y error of the 

open loop nonlinear system with electrode dislocation (2.3 μm). It implies that the 

ASMC can reduce the tracking error due to coupling effect. Also, as depicted in Fig. 

5-11, the peak-to-peak amplitude of the wave pattern of the Y error of the closed 

loop nonlinear system with electrode dislocation using the ASMC (1.1 μm) is 

smaller than that of the triangular pattern of the Y error of the closed loop nonlinear 

system with electrode dislocation using the OFC (1.5 μm). It is revealed that the 

ability of the ASMC to reduce tracking error caused by coupling effect is better 

than that of the OFC. In Fig. 5-11, the peak-to-peak amplitude of the triangular 

pattern of the Y error of the closed loop nonlinear system with electrode dislocation 

using the PI controller (0.6 μm) is smaller than that of the wave pattern of the Y 

error of the closed loop nonlinear system with electrode dislocation using the 

ASMC (1.1 μm). It is revealed that the ability of the PI controller to reduce 

tracking error caused by coupling effect is better than that of the ASMC. In Table 

5-5, the Y RMSE of the closed loop nonlinear system with electrode dislocation 

using the ASMC is 0.420 μm. 

 

In Fig. 5-11, the Y error of the closed loop nonlinear system with electrode 

dislocation using the ASMC increases slower than that of the open loop nonlinear 

system with electrode dislocation in positive direction. It is revealed that the ASMC 

can reduce the tracking error caused by creep. In Fig. 5-7a – Fig. 5.7c, it is 
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observed that the (1,1) elements of estimates of the control gains of equivalent 

control  1K̂ ,  2K̂  and  3K̂  are varying because the tracking error is not steady 

due to creep. 

 

It is observed in Fig. 5-10 that the X error of the closed loop nonlinear system 

with electrode dislocation using the ASMC converges while that of the open loop 

nonlinear system with electrode dislocation diverges. Also, the convergence rate of 

the X error of the closed loop nonlinear system with electrode dislocation using the 

ASMC is highest among the controller candidates. In Fig. 5-11, it is observed that 

the increase rate of the Y error of the closed loop nonlinear system with electrode 

dislocation using the ASMC is lower than that of the open loop nonlinear system 

with electrode dislocation. The Y error of the closed loop nonlinear system with 

electrode dislocation using the OFC diverges quickly and that of the closed loop 

nonlinear system with electrode dislocation using the PI controller increases in 

negative direction quickly comparing to increase rate of the Y error of the closed 

loop nonlinear system with electrode dislocation using the ASMC. It implies that 

the relative stability of the piezoelectric tube actuator with electrode dislocation is 

improved by the ASMC. Also, the stability improvement ability of the ASMC is 

best among the controller candidates. 

 

It is observed in Fig. 5-10 and Fig. 5-11 that the X error and the Y error of the 

closed loop nonlinear system with electrode dislocation using the ASMC do not 

converge to zero because the soft switching mechanism is adopted and the 

unmatched uncertainties is present. 
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It is concluded that the overall performance of the ASMC is better than those 

of the PI controller and the OFC because creep and hysteresis compensation ability, 

and stability improvement ability of the ASMC are the best among the controller 

candidates. However, coupling effect compensation ability of the ASMC is not as 

good as that of the PI controller. 

 

5.6 SUMMARY 

 

The works of this chapter can be summarized as follows: 

(i) The ASMC has been successfully developed for the piezoelectric tube actuator. 

The theoretical stability of the closed loop nonlinear system with electrode 

dislocation using this controller is stated by the Lyapunov criterion. 

(ii) The ASMC can minimize the tracking error of the piezoelectric tube actuator 

with electrode dislocation due to coupling effect. The peak-to-peak amplitude 

of the wave pattern of the Y error of the piezoelectric tube actuator with 

electrode dislocation is reduced from 2.3 μm to 1.1 μm. It can also minimize 

the tracking error of the piezoelectric tube actuator with electrode dislocation 

due to creep. The Y error of the piezoelectric tube actuator with electrode 

dislocation increases slower in positive direction. Also, it can minimize the 

tracking error of the piezoelectric tube actuator with electrode dislocation due 

to hysteresis. The X RMSE of the piezoelectric tube actuator with electrode 

dislocation is reduced from 5.619 μm to 1.762 μm. The ASMC can improve 

the stability of the piezoelectric tube actuator with electrode dislocation. The 

X error of the piezoelectric tube actuator with electrode dislocation converges 
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and the Y error of the piezoelectric tube actuator with electrode dislocation 

increases slower in positive direction. 

(iii) The overall performance of the ASMC is the best among the controller 

candidates chosen in this research according to creep and hysteresis 

compensation ability, and stability improvement ability. The peak-to-peak 

amplitude of the wave pattern of the X error of the closed loop nonlinear 

system with electrode dislocation using the ASMC (4 μm at steady state) is 

significantly smaller than that of the closed loop nonlinear system with 

electrode dislocation using the PI controller (10 μm) and is slightly smaller 

than that of the closed loop nonlinear system with electrode dislocation using 

the OFC (4.5 μm at steady state). The convergence rate of the X error of the 

closed loop nonlinear system with electrode dislocation using the ASMC is 

higher than those of the closed loop nonlinear system with electrode 

dislocation using the PI controller and the OFC, and the Y error of the closed 

loop nonlinear system with electrode dislocation using the PI controller 

increases in negative direction quickly and that of the closed loop nonlinear 

system with electrode dislocation using the OFC diverges quickly comparing 

to increase rate of the Y error of the closed loop nonlinear system with 

electrode dislocation using the ASMC. 

(iv) Due to the soft switching mechanism and the unmatched uncertainties, the 

tracking error of the piezoelectric tube actuator with electrode dislocation 

using the ASMC does not converge to zero. 
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CHAPTER 6  

 

PERFORMANCE OF CONTROLLERS 

UNDER VARIOUS NONLINEARITY 

PROPERTIES 

 

 

6.1 INTRODUCTION 

 

 In the previous chapter, the performance of the ASMC applied on the 

piezoelectric tube actuator with electrode dislocation has been investigated. In this 

chapter, the simulations on the closed loop system with altered creep and hysteresis 

properties using the ASMC are performed aiming to explore the ASMC‟s tolerance 

of various nonlinearity properties. The reasons for investigation are given as 

follows. Firstly, it probably has a bias measure of the hysteresis slope hk  in reality. 

hk  is important information for the proposed ASMC design in this thesis. 

Secondly, hysteresis is rate dependent. Hysteresis slope can decrease by 9% and the 

backlash distance can increase by 10% when the operating frequency increases 

from 1 Hz to 20 Hz (Yu et al., 2002). Thirdly, creep is thermal dependent. The step 

response exhibits creep 15% more when the temperature increases from 25˚C to 

49˚C (Motamedi et al., 2009). Lastly, piezoelectric tube actuator having different 

treatment may have different creep and hysteresis properties. Therefore, it is 
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important to study the effect of various creep and hysteresis properties on the 

closed loop nonlinear system. Although it is shown in Chapter 5 that the overall 

performance of the ASMC is better than that of the typical controllers, the 

influences of altered creep and hysteresis properties on the responses of the closed 

loop nonlinear system with electrode dislocation using the typical controllers are 

also given in the chapter for comparison and reference to demonstrate whether the 

performance of the ASMC is still better than that of the typical controllers. 

 

6.2 SIMULATION CONDITIONS 

 

The simulations of the closed loop nonlinear system with electrode dislocation 

using the ASMC, the PI controller and the OFC are performed with the same 

controller settings adopted in previous chapters. The simulations are based on the 

assumptions and the conditions stated in Chapter 3 and the controller design of the 

ASMC is based on the assumptions and the conditions stated in Chapter 5. In order 

to characterize the system with changed hysteresis slope and changed hysteresis 

backlash-distance in simulation, the proportional constant for the Prandtl-Ishlinskii 

hysteresis operator jb  in Eq. (3.17) and threshold j  in Eq. (3.16a) – Eq. 

(3.16c) should be changed respectively. In order to characterize the system with 

altered creep effect in simulation, the weighting factor of Kelvin-Voigt creep 

operator 
fw  in Eq. (3.11) and the proportional constant for the Kelvin-Voigt 

creep operator fa  in Eq. (3.12) should be changed. 
fw  and fa  are regarded 

as creep properties in this study. 
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6.3 SIMULATION RESULTS OF SYSTEMS WITH 

VARIOUS HYSTERESIS PROPERTIES 

 

The performance of the controllers has been investigated for the input 

frequency of 1 Hz in the previous chapters. In this section, the simulations of the 

closed loop nonlinear system with electrode dislocation are performed at 10 Hz and 

20 Hz.  

 

 When the input frequency is increased from 1 Hz to 10 Hz, the hysteresis 

slope is decreased by 8%. With the change, the X input and the Y input of the 

closed loop nonlinear system with electrode dislocation using the ASMC generated 

by Eq. (5.38), the PI controller generated by Eq. (4.1a) and Eq. (4.2a), and the OFC 

generated by Eq. (4.3a) are shown in Fig. 6-1 and Fig. 6-2 respectively. The X error 

and the Y error of the closed loop nonlinear system with electrode dislocation are 

shown in Fig. 6-3 and Fig. 6-4 respectively. The X RMSE and the Y RMSE of the 

open loop nonlinear system and the closed loop nonlinear systems with electrode 

dislocation are shown in Table 6-1. 

 

Table 6-1.  RMSEs of Open Loop Nonlinear System and Closed Loop Nonlinear  

System with Electrode Dislocation (Hysteresis Slope decreased by  

8%) 

 X RMSE (μm) Y RMSE (μm) 

Open Loop 4.566 0.635 

ASMC 2.381 0.507 

PI Controller 3.090 0.432 

OFC 2.635 0.393 
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Figure 6-1.  X Input of Closed Loop Nonlinear System with Electrode 

Dislocation (Hysteresis Slope decreased by 8%) 

 

 

 

 

Figure 6-2.  Y Input of Closed Loop Nonlinear System with Electrode 

Dislocation (Hysteresis Slope decreased by 8%) 
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Figure 6-3.  X Error of Closed Loop Nonlinear System with Electrode 

Dislocation (Hysteresis Slope decreased by 8%) 

 

 

 

Figure 6-4.  Y Error of Closed Loop Nonlinear System with Electrode 

Dislocation (Hysteresis Slope decreased by 8%) 

 

When the input frequency is increased from 1 Hz to 20 Hz, hysteresis slope is 

decreased by 9% and the hysteresis backlash-distance is increased by 10%. With 

the change, the X input and the Y input of the closed loop nonlinear system with 
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electrode dislocation using the ASMC generated by Eq. (5.38) and the PI controller 

generated by Eq. (4.1a) and Eq. (4.2a), and the OFC generated by Eq. (4.3a), are 

shown in Fig. 6-5 and Fig. 6-6 respectively. The X error and the Y error of the 

closed loop nonlinear system with electrode dislocation are shown in Fig. 6-7 and 

Fig. 6-8 respectively. The X RMSE and the Y RMSE of the closed loop nonlinear 

system with electrode dislocation are shown in Table 6-2. 

 

Table 6-2.  RMSEs of Open Loop Nonlinear System and Closed Loop Nonlinear  

System with Electrode Dislocation (Hysteresis Slope decreased by  

9% and Hysteresis Backlash-distance increased by 10%) 

 X RMSE (μm) Y RMSE (μm) 

Open Loop 4.070 0.622 

ASMC 2.535 0.536 

PI Controller 3.113 0.434 

OFC 2.786 0.383 

 

 

Figure 6-5.  X Input of Closed Loop Nonlinear System with Electrode 

Dislocation (Hysteresis Slope decreased by 9% and  

Hysteresis Backlash-distance increased by 10%) 
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Figure 6-6.  Y Input of Closed Loop Nonlinear System with Electrode 

Dislocation (Hysteresis Slope decreased by 9% and  

Hysteresis Backlash-distance increased by 10%) 

 

 

 

 

Figure 6-7.  X Error of Closed Loop Nonlinear System with Electrode 

Dislocation (Hysteresis Slope decreased by 9% and  

Hysteresis Backlash-distance increased by 10%) 
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Figure 6-8.  Y Error of Closed Loop Nonlinear System with Electrode 

Dislocation (Hysteresis Slope decreased by 9% and  

Hysteresis Backlash-distance increased by 10%) 

 

 As depicted in Fig. 6-3 and Fig. 6-7, the peak-to-peak amplitudes of the wave 

pattern of the X error of the closed loop nonlinear system with electrode dislocation 

using the ASMC (7 μm at 10 Hz and 20 Hz), the PI controller (11 μm at 10 Hz and 

20 Hz) and the OFC (8 μm at 10 Hz and 9 μm at 20 Hz) are smaller than those of 

the open loop nonlinear system (13 μm at 10 Hz and 12 μm at 20 Hz). In Table 6-1, 

the X RMSEs of the closed loop nonlinear system with electrode dislocation using 

the ASMC (2.381 μm at 10 Hz and 2.535 μm at 20 Hz), using the PI controller 

(3.090 μm at 10 Hz and 3.113 μm at 20 Hz) and using the OFC (2.635 μm at 10 Hz 

and 2.786 μm at 20 Hz) are smaller than that of the open loop nonlinear system 

with electrode dislocation (4.566 μm at 10 Hz and 4.070 μm at 20 Hz). It implies 

that all controllers can compensate the error caused by hysteresis when hysteresis 

properties are changed. It is also shown that the peak-to-peak amplitudes of the 

wave pattern of the X error of the closed loop nonlinear system with electrode 

dislocation using the ASMC at 10 Hz and 20 Hz are smaller than those of closed 
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loop nonlinear system with electrode dislocation using the PI controller and the 

OFC. It reveals that the hysteresis compensation ability of the ASMC with 

hysteresis properties at 10 Hz and 20 Hz is the best among the controller 

candidates. 

 

In Fig. 6-3, it is observed that the X error of the open loop nonlinear system 

with electrode dislocation diverges while those of the closed loop nonlinear system 

with electrode dislocation using the ASMC, the PI controller and the OFC converge 

at 10 Hz. In Fig. 6-7, it is observed that the X error of the open loop nonlinear 

system with electrode dislocation diverges at 20 Hz. The X errors of the closed 

loop nonlinear system with electrode dislocation using the PI controller and the 

OFC remain fluctuating without convergence and divergence at 20 Hz. The X error 

of the closed loop nonlinear system with electrode dislocation using the ASMC 

converges at 20 Hz. It is shown that the stability of the piezoelectric tube actuator 

with electrode dislocation can be improved by the ASMC, the PI controller and the 

OFC at 10 Hz and can be only improved by the ASMC at 20 Hz. Also, the 

convergence rate of the X errors of the closed loop nonlinear system with electrode 

dislocation using the ASMC is highest among the controller candidates at 10 Hz 

and 20 Hz. It reveals that the closed loop nonlinear system with electrode 

dislocation using the ASMC is most stable at 10 Hz and 20 Hz. 

 

The maximum scanning frequency of AFM is 10 Hz which is covered in this 

simulation. Overall, the performance of the ASMC in tolerating the change of 

hysteresis properties is the best among the controller candidates in the operational 

frequency range of AFM. 
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6.4 SIMULATION RESULTS OF SYSTEMS WITH 

VARIOUS CREEP PROPERTIES 

 

In this section, the simulations of the closed loop nonlinear system with 

electrode dislocation are performed with different creep effects. There are two 

cases investigated in this section: creep properties increased by 10% and by 25%. 

 

For the case of creep properties increased by 10%, the X input and the Y input 

of the closed loop nonlinear system with electrode dislocation using the ASMC 

generated by Eq. (5.38), the PI controller generated by Eq. (4.1a) and Eq. (4.2a), 

and the OFC generated by Eq. (4.3a) are shown in Fig. 6-9 and Fig. 6-10 

respectively. The X error and the Y error of the closed loop nonlinear system with 

electrode dislocation are shown in Fig. 6-11 and Fig. 6-12 respectively. The X 

RMSE and the Y RMSE of the closed loop nonlinear system with electrode 

dislocation are shown in Table 6-3. 

 

Table 6-3.  RMSEs of Open Loop Nonlinear System and Closed Loop Nonlinear  

System with Electrode Dislocation (Creep Parameters increased by  

10%) 

 X RMSE (μm) Y RMSE (μm) 

Open Loop 5.755 0.688 

ASMC 1.705 0.424 

PI Controller 2.778 0.406 

OFC 1.905 0.482 
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Figure 6-9.  X Input of Closed Loop Nonlinear System with Electrode 

Dislocation (Creep Parameters increased by 10%) 

 

 

 

 

Figure 6-10.  Y Input of Closed Loop Nonlinear System with Electrode 

Dislocation (Creep Parameters increased by 10%) 
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Figure 6-11.  X Error of Closed Loop Nonlinear System with Electrode 

Dislocation (Creep Parameters increased by 10%) 

 

 

 

Figure 6-12.  Y Error of Closed Loop Nonlinear System with Electrode 

Dislocation (Creep Parameters increased by 10%) 

 

For the case of creep properties increased by 25%, the X input and the Y input 

of the closed loop nonlinear system with electrode dislocation using the ASMC 

generated by Eq. (5.38), the PI controller generated by Eq. (4.1a) and Eq. (4.2a), 
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and the OFC generated by Eq. (4.3a) are shown in Fig. 6-13 and Fig. 6-14 

respectively. The X error and the Y error of the closed loop nonlinear system with 

electrode dislocation are shown in Fig. 6-15 and Fig. 6-16 respectively. The X 

RMSE and the Y RMSE of the closed loop nonlinear system with electrode 

dislocation are shown in Table 6-4. 

 

 

Table 6-4.  RMSEs of Open Loop Nonlinear System and Closed Loop Nonlinear  

System with Electrode Dislocation (Creep Parameters increased by  

25%) 

 X RMSE (μm) Y RMSE (μm) 

Open Loop 5.975 0.709 

ASMC 1.651 0.446 

PI Controller 2.711 0.399 

OFC 1.761 0.510 

 

 

 

Figure 6-13.  X Input of Closed Loop Nonlinear System with Electrode 

Dislocation (Creep Parameters increased by 25%) 
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Figure 6-14.  Y Input of Closed Loop Nonlinear System with Electrode 

Dislocation (Creep Parameters increased by 25%) 

 

 

 

 

Figure 6-15.  X Error of Closed Loop Nonlinear System with Electrode 

Dislocation (Creep Parameters increased by 25%) 
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Figure 6-16.  Y Error of Closed Loop Nonlinear System with Electrode 

Dislocation (Creep Parameters increased by 25%) 

 

As depicted in Fig. 6-12, the increasing rate (in positive direction) of the Y 

error of the closed loop nonlinear system with electrode dislocation using the 

ASMC is smaller than that of the open loop nonlinear system with electrode 

dislocation. It implies that the error due to creep can be reduced by the ASMC 

when the creep properties increased by 10%. Also, it is observed in Fig. 6-12 that 

the Y error of the open loop nonlinear system with electrode dislocation and the 

closed loop nonlinear system with electrode dislocation using the OFC diverge 

quickly and the Y error of the closed loop nonlinear system with electrode 

dislocation using the PI controller increases quickly in the negative direction 

comparing to the increase rate of the Y error of the closed loop nonlinear system 

using the ASMC. It reveals that the closed loop nonlinear system with electrode 

dislocation using the ASMC is more stable than the open loop nonlinear system 

with electrode dislocation and the closed loop nonlinear system using the typical 

controllers when the creep properties are increased by 10%. It is implied that only 

the ASMC can tolerate the change of creep properties when creep properties are 
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increased by 10%. 

 

As depicted in Fig. 6-16, the amplitude of the Y error of the closed loop 

nonlinear system with the ASMC diverges. It implies that the ASMC can no longer 

tolerate the creep effect when the increase of creep properties is 25%. 

 

In Fig. 6-4, Fig. 6-8 and Fig. 6-12, it is observed that the peak-to-peak 

amplitude of the wave pattern of the Y error of the closed loop nonlinear system 

with electrode dislocation using the ASMC is larger than that using the PI 

controller and that using the OFC. It implies that the coupling effect is a main 

factor causing the ASMC not having the best results in the y direction. 

 

For the ASMC, the error caused by coupling effect is reduced but still exists in 

the closed loop nonlinear system with electrode dislocation because the disturbance 

term related to the coupling effect   EuB1  may not match with  B  all the time. 

Therefore, the error caused by coupling effect cannot be fully eliminated by unit 

vector control. 

 

In addition, it is observed that the monotonic increase rate of the Y error of the 

closed loop nonlinear system with electrode dislocation using the ASMC is smaller 

than that using the PI controller. This implies that the RMSE of the closed loop 

nonlinear system with electrode dislocation using the ASMC will be smaller than 

that using the PI controller when the scanning time is extended. 

 

 



163 

It is concluded that the ASMC can tolerate the changes of the hysteresis 

properties at 10 Hz and 20 Hz because it can reduce the peak-to-peak amplitude of 

the wave pattern of the X error and improve the relative stability of the 

piezoelectric tube actuator with electrode dislocation. The frequency range covers 

the maximum scanning frequency of AFM. Also, it is concluded that the ASMC 

can tolerate the changes of the creep properties when the increase of the creep 

properties is 10% because it can reduce the increasing rate (in positive direction) of 

the Y error and improve the relative stability of the piezoelectric tube actuator with 

electrode dislocation. The ASMC is not able to tolerate the creep effect when the 

increase of the creep properties is 25% since the amplitude of the Y error of the 

piezoelectric tube actuator with electrode dislocation diverges. By observing the 

performance of the controllers, the ASMC has a better tolerance of the changes of 

the creep properties and the hysteresis properties than the typical controllers. 

 

6.5 SUMMARY 

 

The above findings can be summarized as follows: 

(i) The ASMC can reduce the peak-to-peak amplitudes of the wave pattern of the 

X error of the piezoelectric tube actuator with electrode dislocation from 13 

μm to 7 μm at 10 Hz, and from 12 μm to 7 μm at 20 Hz. The ASMC can also 

improve the stability of the piezoelectric tube actuator with electrode 

dislocation at 10 Hz and 20 Hz. Therefore, the ASMC can tolerate the changes 

of the hysteresis properties at 10 Hz and 20 Hz. 

(ii) The ASMC can reduce the increasing rate (in positive direction) of the Y error 

of the piezoelectric tube actuator with electrode dislocation when the increase 
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of the creep properties is 10%. It implies that the ASMC can still compensate 

creep effect. Therefore, the ASMC can tolerate the creep properties with this 

change. 

(iii) The ASMC has a better tolerance of the changes of the creep properties and 

the hysteresis properties than the typical controllers because the ASMC shows 

better creep and hysteresis compensation abilities, and stability improvement 

ability than the typical controllers when the hysteresis exhibits at 10 Hz and 

20 Hz, or the creep properties are increased by 10%. 
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CHAPTER 7  

 

DISCUSSIONS AND CONCLUSIONS 

 

 

7.1 DISCUSSIONS 

 

 In this thesis, an ASMC which can reduce the error caused by coupling effect, 

creep and hysteresis, and increase stability of the piezoelectric tube actuator with 

electrode dislocation was designed. Simulation results show that the ASMC 

performs better than the typical controllers. Therefore, ASMC can be a good 

candidate applied to the AFM. The main objective of this research is achieved. The 

major works done in this thesis are discussed below. 

 

(i) In order to predict the dynamic behavior of the piezoelectric tube actuator, a 

mathematical model was built by FE method with implementation of 

superposition of Kelvin-Voigt creep operators and superposition of 

Prandtl-Ishlinskii hysteresis operators. The RMSE between the response of the 

full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) and the simulation result 

obtained by Leang and Devasia (2007) was 0.362 μm. The order of the model 

was then reduced, and the model was expressed in state space form. The 

RMSE between the full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) and 

the reduced order nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) with 35 

retained states was 0.044 μm. The RMSE between the full nonlinear FE model 
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(Eq. (3.56) and Eq. (3.57)) and the reduced order nonlinear FE model (Eq. 

(3.62b) and Eq. (3.63)) with 20 retained states was 0.099 μm. The 

comparisons reveal that the reduced order nonlinear FE models (Eq. (3.62b) 

and Eq. (3.63)) of 20 and 35 retained states were accurate enough for 

controller design and simulation purposes respectively. 

 

(ii) The simulations of the open loop nonlinear system show that coupling effect, 

creep and hysteresis caused significant tracking error of the piezoelectric tube 

actuator. Hysteresis can distort the triangular pattern (the X displacement) and 

can increase the amplitude of the triangular pattern. The X RMSE of the open 

loop nonlinear system without electrode dislocation was 5.693 μm. Creep can 

cause the Y error to increase with time. Therefore, the system gain also 

increased with time. Due to coupling effect, the Y displacement also exhibited 

triangular pattern because the X input adversely affected the Y displacement. 

The peak-to-peak amplitude of the triangular pattern of the Y error of the open 

loop nonlinear system with electrode dislocation (2.3 μm) was larger than that 

of the open loop nonlinear system without electrode dislocation (0.4 μm). The 

X RMSE and the Y RMSE of the open loop nonlinear system with electrode 

dislocation were 5.619 μm and 0.678 μm respectively. The open loop 

nonlinear system was unstable in both X direction and Y direction. It was 

deduced that the accuracy of the AFM without controller implementation was 

not satisfactory. 

 

(iii) Since the performance of the open loop nonlinear system with electrode 

dislocation was poor, typical controllers were adopted to the piezoelectric tube 



167 

actuator with electrode dislocation to investigate their improvement. Based on 

the nonlinear system without electrode dislocation, intensive tunings on the 

controller gains of the typical controllers were carried out. The simulations of 

the closed loop nonlinear system with electrode dislocation using the typical 

controllers with tuned controller gains were performed. Both the PI controller 

and the OFC can compensate hysteresis. The X RMSE of the closed loop 

nonlinear system with electrode dislocation using the PI controller was 2.908 

μm and that of the closed loop nonlinear system with electrode dislocation 

using the OFC was 2.003 μm. Both of them were smaller than that of the open 

loop nonlinear system with electrode dislocation which was 5.619 μm. The 

data also show that the OFC was better than the PI controller regarding the 

compensation of hysteresis. Both the PI controller and the OFC can 

compensate coupling effect. The peak-to-peak amplitude of triangular pattern 

of the Y error of the closed loop nonlinear system with electrode dislocation 

using the PI controller was 0.6 μm and that of the closed loop nonlinear 

system with electrode dislocation using the OFC was 1.5 μm. Both of them 

were smaller than that of the open loop nonlinear system with electrode 

dislocation which was 2.3 μm. The data also show that the PI was better than 

the OFC controller regarding the compensation of coupling effect. Both of the 

PI controller and the OFC can improve the stability of the system in X 

direction. However, the Y error of the closed loop nonlinear system with 

electrode dislocation using the PI controller and the OFC diverged quickly. 

Also, both of them cannot compensate creep. The PI controller and the OFC 

were not perfect. There are two advantages for typical controllers: a) they can 

reduce the error induced by coupling effect and hysteresis; b) their structures 



168 

are simple so that it is easy to implement them in application. However, they 

also have disadvantages: a) the tuning process is time consuming and tedious; 

b) the theoretical stability of the closed loop system cannot be guaranteed due 

to the presence of coupling effect, creep and hysteresis; c) the controller gains 

found in the tuning process without electrode dislocation are not suitable for 

the controllers used in system with electrode dislocation; d) they cannot 

compensate creep. 

 

(iv) An ASMC was developed for the piezoelectric tube actuator. The simulation 

of the closed loop nonlinear system with electrode dislocation using the 

ASMC was performed. Using the ASMC, the peak-to-peak amplitude of the 

wave pattern of the Y error of the piezoelectric tube actuator with electrode 

dislocation was reduced from 2.3 μm to 1.1 μm. The X error of the 

piezoelectric tube actuator with electrode dislocation converges and the Y 

error of the piezoelectric tube actuator with electrode dislocation increased 

slower in positive direction. The X RMSE of the piezoelectric tube actuator 

with electrode dislocation was reduced from 5.619 μm to 1.762 μm. It is 

evident that the ASMC can reduce error induced by coupling effect, creep and 

hysteresis, and improve the stability. 

 

(v) The performance of the ASMC, the PI controller and the OFC was compared 

based on coupling effect, creep and hysteresis compensation ability, and the 

stability improvement ability. The peak-to-peak amplitude of the wave pattern 

of the X error of the closed loop nonlinear system with electrode dislocation 

using the ASMC (4 μm at steady state) was significantly smaller than that of 

the closed loop nonlinear system with electrode dislocation using the PI 
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controller (10 μm) and was slightly smaller than that of the closed loop 

nonlinear system with electrode dislocation using the OFC (4.5 μm at steady 

state). The peak-to-peak amplitude of the wave pattern of the Y error of the 

closed loop nonlinear system with electrode dislocation using the ASMC (1.1 

μm) was smaller than that of the triangular pattern of the Y error of the closed 

loop nonlinear system with electrode dislocation using the OFC (1.5 μm) but 

larger than that of the closed loop nonlinear system with electrode dislocation 

using the PI controller (0.6 μm). The convergence rate of the X error of the 

closed loop nonlinear system with electrode dislocation using the ASMC was 

higher than those of the closed loop nonlinear system with electrode 

dislocation using the PI controller and the OFC. The Y error of the closed loop 

nonlinear system with electrode dislocation using the OFC diverged quickly 

and that of the closed loop nonlinear system with electrode dislocation using 

the PI controller increased in negative direction quickly comparing to increase 

rate of the Y error of the closed loop nonlinear system with electrode 

dislocation using the ASMC. It is concluded that: a) the performance of the PI 

controller on reducing the tracking error due to coupling effect was the best 

among the candidates; however, the performance on compensation of other 

adverse effects and stability improvement was poor; b) the performance of the 

OFC on reducing tracking error due to hysteresis was better than the PI 

controller and was nearly as good as that of the ASMC; however, the 

performance of creep compensation and stability improvement was poor. The 

OFC was quite sensitive to coupling effect due to electrode dislocation; c) the 

performance of the ASMC on reducing tracking errors due to creep and 

hysteresis, and stability improvement was the best among the controller 
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candidates. It is concluded that the ASMC can be a good candidate applied to 

AFM among the controllers in the research. The ASMC proposed in this thesis 

has the following advantages: a) hysteresis compensation is enhanced by 

implementing a continuous-time dynamic model of backlash-like hysteresis; b) 

with the observer, the order of the controller can be decided by the designer. 

Larger order of the controller improves the performance since the degree of 

the freedom is increased. Lower order of the controller allows shorter 

computation time of the control signal. Insufficient high computational speed 

can lead to instability. It is a trade-off; c) Lyapunov equation can be developed 

to state the theoretical stability of the ASMC influenced by coupling effect, 

creep and hysteresis; d) controller gains can be adapted automatically. 

However, the ASMC has the following disadvantages: a) a set of conditions 

should be satisfied in controller design process. Advanced engineering 

software such as MATLAB is necessary to solve some numerical problems 

such as Lyapunov equation, matrix inverse and division, and Riccati equation; 

b) the errors of the closed loop nonlinear system cannot be reduced to zero 

which is partly due to the soft switching mechanism and partly due to the 

unmatched uncertainties; c) the tracking error due to creep is reduced but not 

eliminated. Although the increasing rate (positive direction) of the Y error was 

reduced in the simulation, it was still present. The closed loop system cannot 

be regarded as a stable system as observed in the simulation result. 

 

(vi) Further simulations were performed with different creep and hysteresis 

properties. The ASMC can reduce the peak-to-peak amplitudes of the wave 

pattern of the X error of the piezoelectric tube actuator with electrode 
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dislocation from 13 μm to 7 μm at 10 Hz, and from 12 μm to 7 μm at 20 Hz. 

Therefore, it can still compensate hysteresis with hysteresis exhibiting at 10 

Hz and 20 Hz. The ASMC can also improve the stability of the piezoelectric 

tube actuator with electrode dislocation at 10 Hz and 20 Hz. It is evident that 

the ASMC can tolerate the changes of the hysteresis properties at 10 Hz and 

20 Hz. The ASMC can reduce the increasing rate (in positive direction) of the 

Y error of the piezoelectric tube actuator with electrode dislocation when the 

increase of the creep properties is 10%. Therefore, it can still compensate 

creep effect with this change. It is evident that the ASMC can tolerate the 

changes of the creep properties when the increase of the creep properties is 

10%. The ASMC has a better tolerance of the changes of the creep properties 

and the hysteresis properties than the typical controllers. The range of 

hysteresis tolerance of the ASMC was found to cover the maximum scanning 

frequency of AFM while the range of creep tolerance accounts for 10% 

change of its nominal parameter values of creep. 

 

(vii) About the noise, if the experimental setup uses the PCI controller card (Brand 

Name: dSPACE, Model: DS1104), the voltage amplifier (Brand Name: TREK, 

Model: 10/40A) and the capacitive sensor (Brand Name: Lion Precision, 

Model: CPL290) with D Type 5 mm standard probe, the error caused by 

actuating noise and by measuring noise are about 5 nm rms and  5 nm 

respectively. It is small relative to the X RMSE and the Y RMSE of the closed 

loop nonlinear system. 
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7.2 CONCLUSIONS 

 

The thesis is concluded as follows: 

 

(1) The nonlinear FE model of the piezoelectric tube actuator has been successfully 

developed. Some assumptions and conditions were made to simplify the 

complexity of the model structure. The Kelvin-Voigt creep operator and the 

Prandtl-Ishlinskii hysteresis operator were implemented into the constitutive 

equations of piezoelectric material. The mathematical model formulated in this 

way facilitates the simulation of the dynamic response of the actuator with 

inherent creep and hysteresis characteristics. The balanced model truncation via 

Schur method was adopted to reduce the order of the model. The Rayleigh 

constants, the parameters of Kelvin-Voigt creep operators and the parameters of 

Prandtl-Ishlinskii hysteresis operators were identified by comparing the 

simulation results with the experimental ones from literature (Leang and 

Devasia, 2007). The full nonlinear FE model (Eq. (3.56) and Eq. (3.57)) and the 

reduced order nonlinear FE models (Eq. (3.62b) and Eq. (3.63)) have been 

validated by comparing their responses with the experimental ones from 

literature (Leang and Devasia, 2007) to show that the reduced order nonlinear 

FE models (Eq. (3.62b) and Eq. (3.63)) are accurate for controller design and 

simulation purposes. 
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(2) The ASMC has been developed for the piezoelectric tube actuator with 

electrode dislocation based on the reduced order nonlinear FE model (Eq. 

(3.62b) and Eq. (3.63)). Since coupling effect, creep and hysteresis were 

considered as uncertainties which were not fully known in controller design 

process, the ASMC which is insensitive to perturbations was a suitable choice 

for the piezoelectric tube actuator. A continuous-time dynamic model of 

backlash-like hysteresis was adopted to enhance compensation of hysteresis 

and the reduced order nonlinear FE model (Eq. (5.4l)) was used for determining 

the initial values of controller gains in order to improve the transient response 

of the closed loop system. A Walcott Zak observer was adopted to estimate the 

unmeasurable states. Lyapunov equation ensured the theoretical stability of the 

closed loop system using the ASMC while some conditions should be satisfied. 

In addition, the adaptation laws of controller gains were developed by 

Lyapunov equation. 

 

(3) The simulations of the open loop nonlinear model, and the closed loop 

nonlinear model with electrode dislocation using the ASMC, the PI controller 

and the OFC were performed aiming to track a raster pattern. The simulation 

results show that the ASMC was able to compensate coupling effect, creep and 

hysteresis, and improve the stability of the piezoelectric tube actuator with 

electrode dislocation simultaneously. The PI controller and the OFC cannot 

compensate creep, and their stability improvement ability was poorer than the 

ASMC‟s. 
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(4) Further simulations of the closed loop nonlinear system with electrode 

dislocation were performed for the cases when the creep properties or the 

hysteresis properties are altered. Simulation results show that the ASMC can 

tolerate the 10% increase of the creep parameters, or the hysteresis 

phenomenon exhibiting at 10Hz and 20Hz. The PI controller and the OFC had 

poorer error minimization ability and stability improvement ability. 

 

7.3 CONTRIBUTIONS 

 

(i) A reduced order nonlinear FE model (Eq. (3.62b) and Eq. (3.63)) of a 

piezoelectric tube actuator, capable of exhibiting creep and hysteresis, was 

successfully built up. 

 

(ii) Effects of coupling due to electrode dislocation, creep and hysteresis on the 

responses of the open loop actuator system were investigated for tracking a 

raster pattern used in AFM. 

 

(iii) An ASMC was developed for the piezoelectric tube actuator. 

 

(iv) The performance, in terms of reduction of the tracking error induced by 

coupling effect, creep and hysteresis, and stability improvement, of the ASMC, 

the PI controller and the OFC was compared. The overall performance of the 

ASMC was found to be the best among the controller candidates. 
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(v) The performance of the ASMC using original settings for systems with altered 

creep and hysteresis properties was investigated. The controller can tolerate 

adverse effects in a certain range of biases. 

 

7.4 SUGGESTIONS FOR FUTURE RESEARCH 

 

This thesis systematically studies dynamic modelling problems and control 

problems of piezoelectric tube actuator and the simulation shows encouraging 

results for the ASMC. However, modelling and control of piezoelectric tube 

actuator are comprehensive fields and further investigation is needed. The 

problems listed below are set open. 

 

(i) Coupling effect, creep and hysteresis have already been considered in this 

thesis. Nevertheless, it does not mean all the factors affecting the accuracy of 

the AFM have been taken account. Thermal drift is caused by internal heating 

of the AFM during operation or by external ambient temperature change 

leading to the dimensional change of AFM components including 

piezoelectric tube actuator. In practice, the ambient conditions can be well 

controlled; however, it is not a perfect solution because of internal heating. In 

current literature, phase-correlation method has been adopted for drift 

measurement. Hence, the thermal drift is compensated by neural network 

(Yang et al., 2005) or gradient method (Zhan et al., 2007). Yang and 

Jagannathan (2006) proposed combining phase-correlation method and neural 

network with the proportional-derivative controller to enhance ability on error 
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minimization; however, stability is difficult to be confirmed. It is a 

challenging task to develop a single controller which can compensate all 

effects including coupling, creep, hysteresis and thermal drift. First of all, a 

mathematical model which can take into account the thermal dynamics of 

piezoelectric tube actuator in addition to creep and hysteresis is built. One 

may refer to Kumar et al. (2008). Then, a controller with temperature 

feedback is designed based on such model. The difficulty of performing such 

tasks in this thesis is that there were not enough experimental results available 

for validation of model with thermal properties. 

 

(ii) Vibration is a cause of tracking error and instability. There are a number of 

literature related to compensation of vibrations of AFM by controller design 

(Croft et al., 2001), mechatronic design (Fleming and Moheimani, 2006) and 

combination of them (Schitter et al., 2007; and Schitter, 2009). In fact, the 

operating frequency of AFM (10 Hz) is far below the first resonant frequency 

(about 850 Hz (Moheimani, 2008)) so the effect of vibration on the AFM 

operating at normal speed is not significant. The purpose of compensating 

errors due to vibration is to increase the limit of the scanning speed of AFM. 

Compensation of error due to vibration at high frequency together with 

coupling effect, creep and hysteresis is an interesting topic for research. 

 

(iii) It is valuable to examine the performance of operator-based inverse 

feedforward controller plus ASMC since this kind of controller can further 

improve the ability of the ASMC on mitigating the error caused by 

nonlinearities. 
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(iv) The performance of the controllers was investigated by simulations in this 

thesis. Since there are numerous factors affecting the responses of the closed 

loop system, the controllers may perform differently in real-life situation. 

Applying the controllers to an industrial type piezoelectric tube actuator can 

reveal the actual performance. If possible, an experimental study of the 

performance of the controllers on an actual AFM is even more challenging. 
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APPENDIX A: 

DERIVATION OF  eA  AND  eB  

 

 

This appendix shows the derivation of  eA  and  eB . The nodal r  

coordinates of an element is given as: 

   Te
rrrrrrrrR 87654321 , (A.1) 

where   8
e

R  denotes the nodal r  coordinates of an element. ir  denotes the 

nodal r  coordinate and the subscript of ir  specifies the i -th node. The r  

coordinate of an arbitrary point is given (Danielson and Noor, 1997): 

88332211 rNrNrNrNr e  , (A.2a) 

where 
er  denotes the r  coordinate of an arbitrary point. Eq. (A.2a) can be 

rearranged as: 

   eee Rnr  . (A.2b) 

The Jacobian is given (Danielson and Noor, 1997): 
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The Jacobian can be used for transformation of coordinates: 
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where “  ” is any function being partial differentiated. The following partial 

differentiations of assembly of shape functions are defined: 
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where   249

1

  and   83

2

  are the partial differentiations of assembly 

of shape functions for interpolation of displacements and electric potentials 

respectively. 

 

Each component of the strains of an element  e  in Eq. (3.6a) is given 

below: 
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Each component of the electric fields of an element  eE  in Eq. (3.9a) is 

given below: 
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Eq. (A.5c), Eq. (A.6c), Eq. (A.7c), Eq. (A.8c), Eq. (A.9c) and Eq. (A.10c) are 

assembled: 
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Eq. (A.14a) has the form shown in Eq. (3.6c): 
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Similarly, Eq. (A.11c), Eq. (A.12c) and Eq. (A.13c) are assembled: 
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Eq. (15a) has the form shown in Eq. (3.9c): 
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APPENDIX B: 

FORMULATION OF  eEQ  

 

 

This appendix shows the formulation of  eEQ . Considering an element with 

inner electrode attached, surface charges accumulate on the surface (1, 2, 5, 6) (Fig. 

(3-3)) when voltage is applied to the outer electrode. The charge supplied by the 

input voltage is uniform throughout the electrode (Chapter 3 Assumption 1). The 

elemental charge input vector  eEQ  of an element with inner electrode attached is 

expressed: 

   Tinnerinnerinnerinner

ee

E

A
Q 0000

4
 , (B.1) 

where eA
 
is the area of the electrode attached surface of an element (m

2
). inner  

is the surface charge density of the inner electrode (C/m
2
). Similarly, considering 

an element with outer electrode attached, surface charges accumulate on the surface 

(3, 4, 7, 8) (Fig. 3-3) when voltage is applied to the outer electrode. The elemental 

charge input vector  eEQ  of an element with outer electrode attached is 

expressed: 
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ee
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 , (B.2) 

where outer  is the surface charge density of the outer electrode (C/m
2
). 

 

The charges on the electrodes induced by the piezoelectric material are much 

less than those supplied by the external voltage (Chapter 3 Assumption 2). The 
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charges on the electrodes induced by the piezoelectric material are approximate 

one-fortieth of those supplied by the external voltage when piezoelectric tube 

actuator bends (Moheimani and Yong, 2008). Also, it is assumed that the 

deformation of the piezoelectric tube actuator is small so that cylindrical shape of 

the piezoelectric tube actuator does not distort seriously. Therefore, the total 

surface charge Eq  on the electrode can be calculated by charge equation of the 

capacitor in cylindrical shape: 

rvE Drhq 






2

2  (B.3a) 

rv Ehr 33 ,
 

(B.3b) 

where h  denotes height of piezoelectric tube actuator, vr  denotes radius of 

piezoelectric tube actuator and   denotes covering angle of electrode. The 

illustration of the parameters and the variables are shown in Fig. B-1. 

Fig. B-1  Illustration of innerr , outerr , vr  and   
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The potential difference of the outer electrode and the inner electrode is expressed: 
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Eq. (B.3b) is substituted into (B.4a): 
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The surface charge density of inner electrode is derived: 
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q

inner

E
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(B.5c) 

where inner  denotes the surface charge density of inner electrode and EA  

denotes the area of the electrode. Similarly, the surface charge density of outer 

electrode is derived: 




hr

q

outer

E

outer , (B.6) 

where outer  denotes the surface charge density of outer electrode. Eq. (B.5c) is 

substituted into Eq. (B.4c): 



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outer
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E
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r
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By rearranging Eq. (B.7a), the relation between the surface charge density of inner 

electrode is obtained: 

E
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inner
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inner V

r

r
nr 


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


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
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

33
 . 

(B.7b) 

Similarly, the relation between the surface charge density of outer electrode is 

obtained: 
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33
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(B.8) 

Eq. (B.7b) is substituted into Eq. (B.1). The elemental charge input vector  eEQ  

of an element with inner electrode attached is obtained: 
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(B.9) 

Similarly, Eq. (B.8) is substituted into Eq. (B.2). The elemental charge output 

vector  eEQ  of an element with outer electrode attached is obtained: 
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APPENDIX C: 

BALANCED MODEL TRUNCATION VIA 

SCHUR METHOD 

 

 
The detail of the balanced model truncation via Schur method (Safonov and 

Chiang, 1989) is given in this appendix. Solving the Lyapunov equations: 

          0
T

ss

T

srrs BBAPPA  (C.1) 

            0 s

T

so

T

sso CCQAAQ , (C.2) 

the reachability Grammian   fofo

rP   and the observability Grammian 

  fofo

oQ   can be obtained. fo  is the order of the full model. ( sA , sB , sC ) 

is the full state space model defined by Eq. (3.56) and Eq. (3.57). The orthogonal 

real transformations fofo

A

  and fofo

D

  which order the Schur forms 

in ascending and descending order respectively are calculated by the following 

equations: 
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where   fokQP ork ,,1  are the eigenvalues of orQP . Hence, A  and D  

are partitioned as follows: 

    















  n

BIGL

nfo

SMALLRA ,,  (C.5) 
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




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 nfo

SMALLL

n

BIGRD ,, , (C.6) 

where n  is the order of the reduced model. The singular value decompositions of 

   BIGR

T

BIGL ,,   which are   nn

M

  and   nn

MU   are calculated by the 

following equation: 

       TMMMBIGR

T

BIGL U  ,, , (C.7) 

where       
orneigoreigM QPQPdiag ,1,    and    orkeigorkeig QPQP ,,   . 

The left and right transformation   nfo

BIGLS ,  and   nfo

BIGRS ,  for the   

n -th reduced order model are calculated by the following equations: 

      2/1

,,


 nMBIGLBIGL US  (C.8) 

      2/1

,,


 nMBIGRBIGRS . (C.9) 

 n  is given by truncating the elements of diagonal matrix  M  from  1n -th 

to fo -th row and column. The state space form of the reduced order model is 

given: 

      BIGRs

T

BIGL SASA ,,  (C.10) 

     s

T

BIGLn BSB ,  (C.11) 

    BIGRs SCC ,  (C.12) 
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     0 sDD , (C.13) 

where   nnA   denotes reduced order system matrix.   7 n

nB  denotes 

reduced order input matrix with nonlinear distribution.   nC  2  denotes 

reduced order output matrix.   72D  denotes reduced order feedforward 

matrix. 

  



190 

APPENDIX D: 

OPTIMAL CONTROL FOR REFERENCE 

MODEL 

 

 
It has been discussed in Chapter 5 Section 5.3.2 that the reference model can 

be designed based on the reduced order linear FE model (Eq. (3.63) and Eq. (3.65)) 

without the constant term due to gravity  gK
 
of the piezoelectric tube actuator 

shown in Eq. (3.65). As a remark, if the design of reference model is not based on 

the reduced order linear FE model (Eq. (3.63) and Eq. (3.65)) but by random 

selection of system matrix and input matrix, the difference of the dynamics of the 

reference model and the plant may be large. The states of the closed loop system 

cannot track the reference states easily. 

 

First of all, the state equation of the reference model can be expressed: 

       mmm uBxAx  ,

 

(D.1) 

where   2mu  is the input to the reference model. It is remarked that  mu  is 

not a real input and it does not appear in the application. Since the dynamics of the 

linear model shown in Eq. (D.1) may not be satisfactory, optimal control is applied 

for adjustment. It is possible to focus on designing an optimal regulator first such 

that    0r
 (Ogata, 2001). The feedback gain for the reference model

 

  n

mK  2
 is determined such that the following performance index is 

minimized: 
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          dtuRuxQxJ mm

T

mmm

T

mc 



0

,

 

(D.2) 

where   nn

mQ   is the design matrix for the reference states and 

  22mR  is the design matrix for the input to the reference model.  mQ  and 

 mR  should be designed to be positive definite (Chapter 5 Condition 1). For the 

optimal regulator, the input to the reference model  mu  is selected as: 

    mmm xKu  .

 

(D.3) 

Eq. (D.3) is substituted into Eq. (D.1), the following relation is obtained: 

        mmm xKBAx  .

 

(D.4) 

Eq. (D.3) is substituted into Eq. (D.2) and the performance index becomes: 

           dtxKRKQxJ mmm

T

mm

T

mc 



0

.

 

(D.5) 

The following relation is set: 

                mm

T

mmmm

T

mm

T

m xPx
dt

d
xKRKQx  ,

 

(D.6) 

where   nn

mP 
 
denotes the Riccati matrix. Using Eq. (D.4), Eq. (D.6) can be 

modified: 

                       mm

T

mmmmm

T

m KRKQKBAPPKBA  .

 

(D.7) 

Since the design matrix for the input to the reference model  mR  is positive 

definite, it can be decomposed: 

     c

T

cm TTR  ,

 

(D.8) 

where   22cT  denotes a nonsingular matrix. Eq. (D.8) is substituted into Eq. 

(D.7) and the following equation is obtained: 
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The minimization of the performance index cJ  with respect to  mK  requires 

minimization of the following equation: 

                        mm

TT
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T

m

TT

cmc

T

m xPBTKTPBTKTx
11 

 .

 

(D.10) 

The minimum occurs when the following relation is set: 

         m

TT

cmc PBTKT
1

 .

 

(D.11) 

Hence, 

          m

TT

ccm PBTTK
11 



 

(D.12a) 

     m

T

m PBR
1

 . (D.12b) 

By substituting Eq. (D.11) into Eq. (D.9), the following reduced continuous 

algebraic Riccati equation is obtained: 

                  0
1




mm

T

mmmm

T
QPBRBPAPPA .

 

(D.13) 

In order to obtain the feedback gain for the reference model  mK , the Riccati 

matrix  mP  is solved by Eq. (D.13) first. It is noticed that it is probably that there 

are more than one solution of  mP  and only the positive definite one is selected. 

Then, the Riccati matrix  mP  is substituted into Eq. (D.12b) to solve out the 

feedback gain for the reference model  mK . 
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For tracking purpose, the input to the reference model  mu  is selected as: 

       mmmm xKrNu  ,

 

(D.14) 

where   22mN  is the feedforward gain for the reference model. The tuned 

reference model is obtained by substituting Eq. (D.14) into Eq. (D.1): 

            rNBxKBAx mmmm  .

 

(D.15) 

By comparing Eq. (D.15) with Eq. (5.5a), the reference system matrix  mA
 
and 

the reference input matrix  mB  are given: 

      mm KBAA 

 

(D.16) 

    mm NBB  .
 

(D.17) 

 mN  can be tuned by trial-and-error method until the reference output  my
 
is 

sufficiently close to the desired output  r . The system is required to be reachable 

(Chapter 5 Assumption 3).  mA
 
can be ensured to be Hurwitz as it is found by the 

optimal control. 
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APPENDIX E: 

DERIVATION OF ERROR DYNAMICS ON 

SLIDING SURFACE 

 

 
In this appendix, the detail of the derivation of the error dynamics on the 

sliding surface is shown. By substituting the equivalent control Eq. (10a) into the 

error dynamic equation Eq. (5.7b), the following equation is obtained: 

                  xAAKBKBeAe msssms 
1

11


 (E.1a)                   gssmss KKBKBrBKBKB
1

11

1

11




 

          rBxAAK mmg 
 

                  xAAKBKBIeA msssm 
1

11  
(E.1b) 

                        gssmss KKBKBIrBKBKBI
1

11

1

11


 ,

 

where  I  denotes the identity matrix in appropriate size. Eq. (5.10a) – Eq. (5.10c) 

are rearranged: 

      11 KBAA m 

 

(E.2a) 

    21 KBBm 
 

(E.2b) 

    31 KBK g  .
 

(E.2c) 
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By substituting Eq. (E.2a) – Eq. (E2c) into Eq. (E.1b), the error dynamic equation 

becomes: 

                  xKBKBKBIeAe sssms 11

1

11




 

(E.3a)              rKBKBKBI ss 21

1

11




 

            31

1

11 KBKBKBI ss


 . 

Since: 

             01

1

11 


BKBKBI ss ,

 

(E.4) 

the error dynamics of the closed loop system on the sliding surface is reduced to: 

    eAe m .

 

(E.5) 
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APPENDIX F: 

PLOTTINGS OF ESTIMATED STATES 

 

 
Figure F-1.  Estimated States (State 1 – 5) 

 

 

 

 

Figure F-2.  Estimated States (State 6 – 10) 
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Figure F-3.  Estimated States (State 11 – 15) 

 

 

 

 

 

 

 

 

Figure F-4.  Estimated States (State 16 – 20) 
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APPENDIX G: 

BLOCK CONNECTIONS IN 

MATLAB/SIMULINK 

 
Figure G-1.  Block Connection of Plant Model in MATLAB/Simulink 
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Figure G-2.  Block Connection of Closed Loop System using ASMC in 

MATLAB/Simulink 
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Figure G-3.  Block Connection of Walcott Zak Observer in MATLAB/Simulink 
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APPENDIX H: 

MAIN PROGRAM FOR FORMULATION OF 

REDUCED ORDER FINITE ELEMENT 

MODEL 

 

 
%parameters 

nel=192;  

nnel=8; 

ndof=4; 

dndof=3; 

phndof=1; 

nnode=336; 

dsdof=nnode*dndof; 

dedof=nnel*dndof; 

phsdof=nnode*phndof; 

phedof=nnel*phndof; 

 

%material properties of pzt-4 

emodulus11=1.39e11; 

emodulus12=7.7837e10; 

emodulus13=7.4284e10; 

emodulus22=1.39e11; 

emodulus23=7.4284e10; 

emodulus33=1.1541e11; 

emodulus44=2.5641e10; 

emodulus55=2.5641e10; 
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emodulus66=3.0581e10; 

emodulus=[emodulus11 emodulus12 emodulus13 0 0 0; 

emodulus12 emodulus22 emodulus23 0 0 0; 

emodulus13 emodulus23 emodulus33 0 0 0; 

0 0 0 emodulus44 0 0; 

0 0 0 0 emodulus55 0; 

0 0 0 0 0 emodulus66]; 

 

piezocoeff31=-5.2028; 

piezocoeff32=-5.2028; 

piezocoeff33=15.0804; 

piezocoeff24=12.7179; 

piezocoeff15=12.7179; 

piezocoeff=[0 0 0 0 piezocoeff15 0; 

0 0 0 piezocoeff24 0 0; 

piezocoeff31 piezocoeff32 piezocoeff33 0 0 0]; 

  

dielecoeff11=6.7515e-9; 

dielecoeff22=6.7515e-9; 

dielecoeff33=7.4215e-9; 

dielecoeff=[dielecoeff11 0 0; 0 dielecoeff22 0; 0 0 dielecoeff33]; 

 

poisson=0.34; 

density=7500; 

 

alpha=0.3*6.0416; 

beta=0.015*4.056e-5; 

 

hysteresis_weight=-3.33e-3/10000; 

P_max=1.12*5.2; 
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%dimension of the piezoelectric tube actuator 

or=(12.7e-3)/2; 

wall=0.5e-3; 

ir=or-wall; 

length=25.4e-3; 

unit_height_electrode_element=(length-2*2.8e-3)/4; 

 

degree =90; 

 

%global coordinate system 

tempa=[17 1 2 18 65 49 50 66]; 

tempb=tempa; 

for m=1:14 

    tempb=[tempb;tempa+(m*1)]; 

end 

tempb=[tempb;32 16 1 17 80 64 49 65]; 

tempb=[tempb;tempb+16]; 

glabel=tempb; 

for m =1:5 

    glabel=[glabel;tempb+(48*m)]; 

end 

clear tempa tempb; 

 

n=1; 

z=0; 

for r=0:1:2 

    for th=0:2*pi/16:15/16*2*pi 

               gcoor(n,1)=or-r*wall/2; 

          if th==pi*2/8  

               gcoor(n,2)=th+(degree-90)*pi/180; 
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          else 

               gcoor(n,2)=th; 

          end 

        gcoor(n,3)=z; 

        n=n+1; 

    end 

end 

 

for z=2.8e-3:unit_height_electrode_element:length-2.8e-3 

    for r=0:1:2 

        for th=0:2*pi/16:15/16*2*pi 

              gcoor(n,1)=or-r*wall/2; 

           if th==pi*2/8 

               gcoor(n,2)=th+(degree-90)*pi/180; 

           else 

               gcoor(n,2)=th; 

           end 

            gcoor(n,3)=z; 

            n=n+1; 

        end 

    end 

end 

 

z=length; 

for r=0:1:2 

    for th=0:2*pi/16:15/16*2*pi 

          gcoor(n,1)=or-r*wall/2; 

          if th==pi*2/8 

               gcoor(n,2)=th+(degree-90)*pi/180; 

          else 
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               gcoor(n,2)=th; 

          end 

        gcoor(n,3)=z; 

        n=n+1; 

    end 

end 

 

%formulating the dynamic equations 

Mg = createMg (glabel, gcoor, density, dsdof, dedof, nel); 

Kqqg = createKqqg (glabel, gcoor, emodulus, dsdof, dedof, nel); 

Dg=alpha.*Mg+beta.*Kqqg; 

Kqphg = createKqphg (glabel, gcoor, piezocoeff, dsdof, dedof, phsdof, 

phedof, nel); 

Kphphg = createKphphg (glabel, gcoor, dielecoeff, dielecoeff, phsdof, 

phedof, nel); 

Fg = createFg_ss (glabel,gcoor,dsdof,dedof,nel); 

[Mg Dg Kqqg Kqphg Fg Kphphg]=bc(Mg, Dg, Kqqg, Kqphg, Fg, Kphphg); 

Kg = Kqqg+(Kqphg/Kphphg)*Kqphg.'; 

 

A11=zeros(864,864); 

A12=eye(864); 

A21=-Mg\Kg; 

A22=-Mg\Dg; 

A=[A11 A12;A21 A22]; 

 

[creep1g_pos_x creep3g_pos_x creep1g_neg_x creep3g_neg_x 

creep1g_pos_y creep3g_pos_y creep1g_neg_y creep3g_neg_y] = 

createcreepg_bd (glabel, gcoor, dsdof, dedof, phedof, phsdof, emodulus, 

poisson, piezocoeff); 

[Khg_pos_x Khg_neg_x Khg_pos_y Khg_neg_y] = createKhg_bd (glabel, gcoor, 
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phedof, phsdof); 

 

B = form_B (glabel, gcoor, phsdof, phedof, ir, or, dielecoeff33, 

unit_height_electrode_element, Mg, Kqphg, Kphphg, creep1g_pos_x, 

creep3g_pos_x, creep1g_neg_x, creep3g_neg_x, creep1g_pos_y, 

creep3g_pos_y, creep1g_neg_y, creep3g_neg_y, Fg, Khg_pos_x, Khg_neg_x, 

Khg_pos_y, Khg_neg_y, degree); 

 

C=zeros(2,1728); 

C(1,721)=1; 

C(2,757)=1; 

 

D=zeros(2,11); 

 

F=B(:,11); 

 

g=ss(A,B,C,D); 

 

%order reduction 

 

order=35; 

gred=schurmr(g,order); 

[Ar,Br,Cr,Dr]=ssdata(gred); 
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