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Abstract  

Cell adhesion under blood flow conditions is a common and very important 

phenomenon in microcirculation. In this thesis, the fluid dynamics was solved by 

the lattice Boltzmann method (LBM), the cells dynamics was implemented by the 

Newton’s law of translation and rotation, and the adhesive dynamics models were 

involved to take into account the effect of receptor-ligand bonds on cell adhesion.  

Firstly, the effects of vessel curvature and cell-cell interaction on cell 

adhesion in both the straight and curved micro-vessels were numerically studied. 

The results indicated that the curved vessels would increase the simultaneous 

bonds number, and the probability of cell adhesion is increased consequently. In 

addition, the cell-cell interactions would also affect the cell adhesion greatly. For 

two-cell case, the simultaneous bonds number of the rear cell is increased 

significantly in both the straight and curved vessels. The results would be helpful 

to explain the mechanical mechanism of the strange biological phenomena why 

the circulating blood cells and tumor cells are more easily gathering near the bent 

of vessels. 

Secondly, the effects of wall shear stress/gradient on tumor cell adhesion in 

the curved micro-vessels were investigated both experimentally and numerically. 

Our in vivo experiments revealed that the tumor cells preferred to adhere to the 

curved vessels and initiated at the inner side of the curved vessels. In simulation 

cases, two refined adhesive dynamics models were developed to consider the 

effects of wall shear stress/gradient on receptor-ligand bindings. The numerical 
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results indicated that the wall shear stress/gradient, over a threshold, had 

significant contribution to tumor cell adhesion by activating or inactivating cell 

adhesion molecules. This work not only would help us to understand the 

quantitative relationship between wall shear stress and tumor cell adhesion, but 

also elucidate why the tumor cell adhesion always occurs at the inner side of the 

curved vessels.  

Finally, the effects of divalent cations on neutrophil adhesion in both the 

straight and curved micro-vessels were computationally investigated. The LFA-

1/ICAM-1 adhesion in Mg2+ plus EGTA and the VLA-4/VCAM-1 adhesion in 

Mg2+ plus EGTA, Mn2+ and Ca2+ were simulated under flow conditions. The 

results suggested that the LFA-1/ICAM-1 adhesion acted as a primary role in 

neutrophils adhesion. For VLA-4/VCAM-1 adhesion, it was found the affinity 

state of VLA-4 for endothelial ligand VCAM-1 was highest in Mn2+, higher in 

Ca2+, and lowest in Mg2+ plus EGTA. This would help us to understand the 

mechanical mechanisms of integrin-mediated neutrophils adhesion in the presence 

of different divalent cations under dynamic flow conditions.  

Key Words: cell adhesion, lattice Boltzmann method, vessel curvature, cell-cell 

interaction, wall shear stress/gradient, divalent cations  
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Chapter 1  Introduction to Cell Adhesion 

Cell adhesion under blood flow conditions is a very common and important 

phenomenon in the microcirculation, such as leukocytes adhesion for the immune 

functions, platelets adhesion for the wound-healing functions, and tumor cells 

adhesion during cancer metastasis. Cell adhesion is also a fascinating process in 

many biological systems. Firstly, it plays a pivotal role in many situations of 

biological and medical interest. Secondly, it is likely the best cell function to be 

considered for biophysical modeling from the micrometer down to the molecular 

level. Thirdly, studying the biophysical aspects of cell adhesion leads to face 

many important problems of physics, physical chemistry and cell physiology. 

Therefore, it is of significant importance to study the mechanical mechanisms of 

cell adhesion under hydrodynamic conditions. In this chapter, the backgrounds of 

leukocytes adhesion, neutrophils adhesion and tumor cells adhesion in the 

microcirculation are introduced in detail. Besides, the objectives and the 

organization of the present thesis are also arranged in this chapter.  

1.1  Leukocytes Adhesion 

The leukocytes (also known as the white blood cells) are the cells of immune 

system which defend the body against both infectious disease and foreign 

materials. They are usually made by bone marrow and found throughout the body, 

including the blood system and lymphatic system. The appearance of a leukocyte 

is shown in Fig. 1.1. Normally, the leukocytes circulate in the blood vessel 
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unattached. But if the body is suffered a disease, the inflammatory stimuli will 

trigger the leukocytes to move into tissue towards the foreign invader. This 

process is very interesting and really complex. 

 

Figure 1.1  Appearance of the leukocyte 

(http://healthinfoispower.files.wordpress.com/2008/07/leukocyte1.jpg) 

It has been reported that leukocytes adhesion to the surface of endothelial 

cells (ECs) plays a crucial role in the inflammatory response (King and Hammer 

2001a). This process has been intensively studied and referred to as the leukocyte 

adhesion cascade (Butcher 1991; Springer 1994). Figure 1.2 shows the schematic 

view of leukocyte adhesion cascade. It is a sequence of adhesion and activation 

events that ends with the extravasation of leukocyte into tissue, whereby the 

leukocyte exerts its effects on the inflamed sites. At least five steps are involved 

in this immune response, which has been defined as capture, rolling, slow rolling, 

firm adhesion and transmigration. Each of these steps appears to be necessary for 

the effective leukocyte recruitment, because blocking any of the steps can 

severely reduce leukocyte accumulation in the inflamed tissues. These five steps 

are not phases of inflammation, but represent the sequence of events from the 



 3

perspective of each leukocyte. At any given moment, these five steps all happen 

in parallel, involving different leukocytes in the same micro-vessels.  

 

Figure 1.2  Leukocyte adhesion cascade 

(http://www.mpi-muenster.mpg.de/nvz/wilde.shtml) 

Leukocytes adhesion is primary caused by the strong interactions between 

leukocytes and ECs. Figure 1.3 shows the structure of ECs. An individual EC has 

a central nucleus, and it is very flat. A large number of ECs make up the lining of 

blood vessels. The intercellular junctions between ECs overlap helps to make a 

tight seal in the vessel wall. Recently, significant advances have been made in cell 

adhesion, with which a major conceptual development is the recognition that cell 

adhesion is often mediated via a surprisingly small number of receptor-ligand 

bonds (Zhu et al. 2000). The receptors and ligands are various cell adhesion 

molecules on the tips of microvilli that located on the surfaces of ECs and 

leukocytes. Usually, the adhesion molecules on the ECs surface play roles as 

ligands and these on the leukocyte surface act as receptors. The strong interactions 
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between receptors and ligands provide a chance to form receptor-ligand bonds by 

a stochastic process. The formed bonds enable the leukocyte to overcome the 

shear forces of the surrounding blood and firmly adhere to the ECs surface.  

 

 Figure 1.3  Structure of the endothelial cells  

(Fu B.M., "Micro-vessel permeability", Encyclopedia of Biomedical Engineering, 

Editor: Metin Akay, Wiley-Interscience, 2006, ISBN0-471-24967-X) 

Leukocyte adhesion is mediated by different adhesion molecules. The types 

of adhesion molecules and their functioning range have been sketched in Fig. 1.2. 

Firstly, the leukocyte is captured to the blood vessel wall and rolling on the 

activated endothelium by selectins. The selectins are thought to serve at least two 

purposes, one being to reduce the velocity of leukocyte, and the second to bring 

leukocyte and ECs into close proximity to allow for chemical mediators to be 
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picked up by the leukocyte. Secondly, the chemical mediators that called 

‘chemokines’ on the ECs surface lead to the activation of leukocytes and 

leukocyte integrins. Finally, the leukocyte integrins bind tightly with their 

endothelial ligands, whereby the leukocyte migrates through the EC layer and 

basal lamina to reach the underlying tissue.  

Up to date, many in vitro experimental studies have been performed on 

leukocyte adhesion by using dilute cell suspension in flow chambers formed by 

two parallel plates (King and Hammer 2001b). These experiments identified that 

the adhesion molecules on the leukocytes and endothelium govern leukocytes 

adhesion and migration under flow conditions. Dong et al. (1999) investigated the 

mechanics of leukocyte deformation and adhesion to the ECs in shear flow by in 

vivo measurement and a 2-D model which consists of an elastic ring adhered to a 

surface under fluid stresses. Several computational studies of leukocyte adhesion 

and erythrocyte-leukocyte interactions have also been implemented. Migliorini et 

al. (2002) quantified the forces that exerted on rolling leukocyte by flowing 

erythrocytes, they reported that the erythrocytes would augment leukocyte binding 

in a virtual blood vessel. Sun et al. (2003) & Sun and Munn (2006) analyzed the 

interactions of erythrocytes and leukocytes as the cells all flowed from a capillary 

into a post-capillary venule by a lattice Boltzmann approach. Caputo and Hammer 

(2005) explored the effect of microvillus deformability on leukocyte adhesion by 

using the adhesive dynamics simulations and found four leukocyte adhesion 

states, such as no adhesion, rolling, landing and firm adhesion. Most of the 
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previous researches on leukocyte adhesion were carried out in the straight 

chambers or micro-vessels due to the simplicity in these situations. Despite 

significant studies have been carried out in leukocytes adhesion, the precise 

mechanical mechanism by which cells are recruited into adhesive interactions 

with the blood vessel wall is not yet well understood, owing to the complexities of 

blood dynamics, micro-vessel structures, and cell-surface interactions involved.  

1.2  Neutrophils Adhesion 

Neutrophils are the most common and abundant type of leukocytes in humans, 

comprising about 50-70% of all the leukocytes. They are the first immune cells to 

arrive at a site of infection and form an essential part of the innate immune system. 

The mature neutrophil has a segmented nucleus while the immature neutrophil has 

band-shape nucleus, as shown in Fig. 1.4. Neutrophils are the main component of 

pus and responsible for its whitish color. They are present in the bloodstream until 

signaled to a site of infection by chemical cues in the body. Usually, they mediate 

the inflammatory response by phagocytosing pathogens like bacteria.  

 

Figure 1.4  Immature neutrophil (left) and mature neutrophil (right). 

(http://www.nku.edu/~dempseyd/BLOOD_GOOD.jpg) 
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Neutrophils adhesion to the ECs surfaces is a crucial, regulated step in the 

body’s response to infection. This interaction is primary mediated concomitantly 

or sequentially by the adhesion molecules in the integrins family. There are many 

types of integrin and many cells have multiple types of integrins. The integrins are 

of vital importance to all animals and have been found in all animals, from 

sponges to mammals. They are obligate heterodimers containing two distinct 

chains called α and β subunits, which have been extensively studied and 

characterized as eighteen α and eight β subunits in humans (Lawrence et al. 1990; 

Darrell 2005). Figure 1.5 shows the integrin subunits and their heterodimeric 

pairings in humans. The integrins form several subfamilies sharing common β 

subunits that associate with different α subunits. α and β subunits each contain 

two separate tails, both of which penetrate the plasma membrane and possess 

small cytoplasmic domains. 
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Figure 1.5  Eighteen α and eight β integrin subunits and their 

heterodimeric pairings in humans  
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The integrin-mediated neutrophils adhesion has been proved to play a 

significant role in embryonic development, inflammation, thrombosis, and cancer 

metastasis (Ruoslahti et al. 1994). To date, most studies of neutrophils adhesion 

have focused on the β2 integrins family (Lawrence et al. 1990; Lum et al. 2002), 

because this subgroup of integrins is exclusively expressed on the neutrophils 

surface. An important member of the β2 integrins family is the leukocyte function-

associated antigen-1 (LFA-1, αLβ2), whose principal endothelial ligands are the 

intercellular cell adhesion molecules-1 (ICAM-1). The interactions between LFA-

1 and ICAM-1 are of great interest in the studies of neutrophils adhesion. 

In recent years, the role that members in the β1 integrins family play in 

neutrophils adhesion has also received great attention (Osborn et al. 1989; Rice 

and Bevilacqua 1989). The most important member of the β1 integrins family on 

the neutrophils surface is the very late antigen-4 (VLA-4, α4β1), whose principal 

counter-receptor is the vascular cell adhesion molecule-1 (VCAM-1). VLA-4 

binds to VCAM-1 and is chiefly responsible for lymphocyte and monocyte 

adhesions to vascular endothelium as well as neutrophils recruitment to the 

inflamed tissue sites (Luscinskas et al. 1994; Alon et al. 1995; Darrell 2005). 

However, the role of VLA-4/VCAM-1 bonds in mediating neutrophils adhesion 

under blood flow conditions has not been clearly understood, although there is 

obvious evidence that these bonds can regulate neutrophils adhesion to 

endothelium in the microcirculation (Reinhardt et al. 1997; Reinhardt and Kubes 

1998).  
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An important step for integrin-mediated neutrophils adhesion is the 

activation of integrins to their high affinity for their endothelial ligands (Lollo et 

al. 1993; Woodside et al. 2001). In the natural state, this integrins activation is 

caused by the intracellular signaling events in response to inflammatory stimuli 

(Hogg et al. 1993). The integrins contain binding sites for different divalent 

cations, which are necessary for their adhesive functions. It has been reported that 

the affinity conformation of many integrins can be influenced by different 

divalent cations in extracelluar medium (Masumoto and Hemler 1993; Bazzoni et 

al. 1998). This feature provides an opportunity to explore the particular 

importance of integrins activation for neutrophils adhesion in the absence of 

general activation of the cells (Lomakina and Waugh 2004).  

The response to divalent cations is different among integrins. It has been 

reported that Mg2+ plus calcium chelator EGTA induces a high affinity of LFA-1 

for ICAM-1, but this effect is inhibited by the presence of millimolar Ca2+ 

(Dransfield et al. 1992; Labadia et al. 1998). The effect on the affinity state of 

Mac-1 is also different from that of LFA-1, although they are in the same β2 

integrin family. For examples, Mg2+ plus EGTA causes the activation of LFA-1, 

but it has little effect on Mac-1 (αMβ2). On the contrary, Mn2+ induces the higher 

affinity form of Mac-1 than that of LFA-1 (Altieri 1991; Diamond and Springer 

1993). In the β1 integrin-mediated adhesion, it has been reported that the affinity 

conformation of VLA-4 to VCAM-1 is higher in Mg2+ than that in Ca2+, and 

highest in Mn2+ (Chigaev et al. 2003; Lomakina and Waugh 2009). In contrast, 
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VLA-4 is thought to be unique in the β1 integrins family in which is active in the 

presence of Ca2+ (Bazzoni et al. 1998) and initiates neutrophils adhesion under 

physiological conditions without further activation (Yednock et al. 1995).  

While aforementioned studies have led to a better understanding of 

neutrophils adhesion, our understanding is still poor for the roles of LFA-

1/ICAM-1 and VLA-4/VCAM-1 bindings in mediating neutrophils adhesion. 

Therefore, the contribution of LFA-1/ICAM-1 adhesion and VLA-4/VCAM-1 

bonds to the neutrophils adhesion in different divalent cations under flow 

conditions is one of the topics of discussion in this thesis.  

1.3  Tumor Cells Adhesion 

Cancer is the second leading cause of death in the world, exceeded only by the 

heart disease. Currently, more than 7 million people now die each year from 

cancer. The main reason that cancer is difficult to cure is its ability to metastasize 

to another part of body from where it starts. Indeed, metastasis represents the most 

significant and elaborate hurdle to overcome in the search for a cure for cancer.  

Cancer cells initially group together to form a primary tumor. Once the tumor 

is formed, the cells may begin to break off from this tumor and invade either the 

circulatory or the lymph system, which will carry them to a new location, and 

establish themselves in the new sites. This is a very complicated process by which 

still has not been completely understood.  

A common way for tumor cells metastasis is the bloodstream, since blood 

vessels are often nearby. Figure 1.6 shows the process of cancer metastasis in the 
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blood vessel. When the cancer cell spreads through the bloodstream, it first 

becomes detached from the primary tumor, and then it burrows through the wall 

of blood vessel to get into the bloodstream. This is the first step called as 

“intravasation”. Once the tumor cell arrives in the bloodstream, it will be swept 

along by the circulating blood until they get stuck somewhere, usually in a very 

small blood vessel called a capillary or micro-vessel. This cell adhesion step is 

realized by the interactions of adhesion molecules on the surfaces of tumor cell 

and ECs. The interactions between adhesion molecules will accordingly increase 

the permeability of endothelium, and therefore the tumor cell will burrow through 

the wall of blood vessel and get into the tissue of the organ where they find 

themselves in. There they start to multiply to grow a new tumor.  

 

Figure 1.6  The process of cancer metastasis in the blood vessel. 

(Unpublished picture, personal communication with Prof. Fu B.M. at  

the City University of New York) 

Generally speaking, the majority of circulating cancer cells delivered to 

various target organs are trapped and rapidly damaged in the microvasculature, 
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resulting in cells death and “metastatic inefficiency” (Weiss 1990). It was found 

that fewer than 1 in 10,000 cancer cells could survive circulation to create a new 

tumor. To survive the circulating tumor cells must adhere to the vessel walls of 

distant host organs, and eventually penetrate the vascular wall to avoid blood 

shear forces and host defense mechanisms.  

Tumor cells adhesion to the surfaces of ECs under flow conditions plays a 

pivotal role in cancer metastasis (Pauli et al. 1990; Rice and Bevilacqua 1989; 

Hammer and Apte 1992). Many researches have been executed to study tumor 

cells adhesion under flow conditions. Dong et al. (2005) studied human melanoma 

cell adhesion and migration under dynamic flow conditions by using a modified 

Boyden chamber. Haier and Nicolson (2001) reviewed the tumor cell adhesion 

under conditions of fluid flow, and indicated that tumor cell adhesion to the 

microvasculature was a complex process involving various types of cell adhesion 

molecules. Compared to leukocytes adhesion, it is difficult to observe tumor cells 

adhesion in a straight chamber. However, a recent in vivo study has indicated that 

the tumor cells would aggregate near the bend of micro-vessels (Lv et al. 2007).  

Figure 1.7 shows the experimental observations of tumor cells adhesion in 

different curvature of micro-vessels. They are in vivo experimental results that 

used with the permission of Prof. Fu B.M., who is our experimental collaborator 

from the Department of Biomedical Engineering, The City University of New 

York. The experiments were performed on rat mesentery that infected by cancer. 

From Fig. 1.7, we can find that tumor cell adhesion is greatly influenced by the 
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vessel curvature. At the low curvature sites, one can hardly observes tumor cells 

accumulation. However, with the increase of vessel curvature, more tumor cells 

are found at the curved segments. Therefore, we can conclude that tumor cells are 

easier to be arrested by the curved micro-vessels than the straight ones. The 

experimental results are clear, but the precise behavior and mechanical 

mechanism of this phenomenon are not yet completed understood.  

In addition to tumor cells, the similar phenomenon has been found for the 

circulating blood cells in the curved micro-vessels, which is shown in Fig. 1.8. 

The in vivo experimental results were also used with the permission of Prof. Fu 

B.M. Figs. 1.8(A)-(C) are the experimental observations for thrombosis of 

circulating blood cells in the non-injured but curved/stretched micro-vessels of rat 

mesentery. Figures on the top were images taken in the experiments, and the ones 

on the bottom were the corresponding sketches. Figure 1.8 (A) shows the vessel 

was bent/stretched by a restraining glass micropipette (pointed by the arrow) in 

the nearby tissue at t = 0, Fig. 1.8 (B) shows the circulating blood cells 

accumulated at two positive curvature sites at about t = 3 min, and Fig. 1.8 (C) 

illustrates the vessel was completely blocked by the blood cells at about t = 10 

min. It was found that the thrombi were formed more than 30% (19 out of 61) at 

the bent sites. More interestingly, nearly all the thrombi were initiated from the 

positive curvature segments. Nevertheless, the precise behavior and mechanical 

mechanism of this strange phenomenon is either not clearly understood yet.  
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Figure 1.7  Tumor cells adhesion in different curvature micro-vessels.  

(Shen et al. 2010, "Vascular endothelial growth factor enhances mammary cancer 

cell adhesion to endothelium in vivo”, J. Exp. Physiology, 95, 369-379) 
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Figure 1.8  Circulating blood cells adhesion in the curved micro-vessels.  

(Liu et al. 2008, “Mechanical mechanisms of thrombosis in bent micro-vessels 

of rat mesentery”, J. Biomech., 41, 12, 2726-2734) 
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From the above discussions, one can find that cell adhesion for both the 

blood cells and tumor cells in the curved micro-vessels is different from that in the 

straight ones. However, almost all the capillaries/micro-vessels are bent in the real 

physiological situations. Therefore, it is of great importance to explore the 

mechanical mechanisms of cell adhesion in the curved micro-vessels. A 

comprehensive biophysical description of cell adhesion in the microcirculation 

may eventually provide a rational basis for the development of novel therapeutic 

strategies for many diseases, such as thrombosis, arthritis, atherosclerosis, and 

cancer. 

1.4  Objectives of This Thesis 

Cell adhesion to the surface of ECs has been proved to play a vital role in many 

biological systems. It is a fascinating biological process and has been received 

great attention by the researchers. Although previous studies have led to a better 

understanding of cell adhesion, our knowledge is still limited for the mechanical 

mechanism of cell adhesion in the curved micro-vessels, such as why the 

circulating blood cells and tumor cells are prone to be arrested by the curved 

vessels than the straight ones; what is the quantitative relationship between wall 

shear stresses and cell adhesion in the curved vessels; and how do the divalent 

cations affect the affinity conformation of integrins for their endothelial ligands 

under blood flow conditions in neutrophils adhesion.  

Simulation that can explain cell adhesion under complex flow conditions in 

microcirculation would be of great help in understanding the mechanical 
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mechanism of these strange biological phenomena. Lattice Boltzmann method 

(LBM) has been a promising tool to effectively connect macroscopic and 

microscopic scales, and thereby suitable to solve these multi-scale simulations. 

The primary objectives of the present thesis research are: 

(1) To develop a numerical scheme that is capable of simulating cell adhesion in 

the complex micro-vessels.  

(2) To numerically study the effects of vessel curvature and cell-cell interaction 

on cell adhesion in both the straight and curved micro-vessels.   

(3) To computationally investigate the effects of vessel wall shear stress and its 

gradient on tumor cell adhesion in the curved micro-vessels.  

(4) To numerically study the effects of different divalent cations on neutrophils 

adhesion in both the straight and curved micro-vessels.  

1.5  Organization of This Thesis   

The present thesis is organized in the following manner. Chapter 2 introduces the 

mathematical models of cell adhesion, including three adhesive dynamics models 

of reaction rates law for receptor-ligand bonds and a stochastic Monte Carlo 

approach for determining the adhesive bindings. The theory of LBM, which is 

used to solve the fluid dynamics, is discussed in Chapter 3. In this chapter, the 

Navier-Stokes equations, the lattice Boltzmann equation, the derivation of lattice 

Boltzmann equation from the Boltzmann equation, the recovery of Navier-Stokes 

equations from the lattice Boltzmann equation, and three boundary condition 

treatments in LBM are all included. Chapter 4 mainly evaluates three forces (i.e. 
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hydrodynamic force, repulsive van der Waals force, and spring force) that govern 

cell adhesion and migration under flow conditions. Then, the cell dynamics and 

the dimensional transformation between real physical quantities and lattice 

quantities are also presented. In Chapter 5, the effects of vessel curvature and cell-

cell interaction on cell adhesion with one cell and double cells in either the 

straight or curved micro-vessels are discussed in detail. The effect of wall shear 

stress and its gradient on tumor cell adhesion in the curved micro-vessels is 

elaborated in Chapter 6. In this chapter, we develop two novel adhesive dynamics 

models that coupled the effects of wall shear stress and its gradient on tumor cell 

adhesion in the curved micro-vessels. Both the cases of the cell that released near 

the upper and bottom walls are detailedly discussed. Chapter 7 presents the effects 

of three different divalent cations on cell adhesion between human neutrophil and 

endothelial ligand VCAM-1. Mainly, the LFA-1/ICAM-1 adhesion in the 

presence of Mg2+ plus EGTA and VLA-4/VCAM-1 adhesion under the effects of 

Mg2+ plus EGTA, Ca2+, and Mn2+ are analyzed. Chapter 8 summaries the 

contributions of this thesis with the recommendations for the future work.   
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Chapter 2  Mathematical Models of Cell Adhesion 

Mathematical modeling of cell adhesion provides a powerful tool to quantify 

experimental observations and to integrate them into a unified sequence of cell 

adhesion events. Using basic physical, biological, and chemical principles, the 

mathematical expressions of cell adhesion are derived. These models not only 

help to include some hypotheses suggested by experimental observations, but also 

to gain insights about the mechanisms of cell adhesion being investigated. Once 

the model has been properly validated, it can be used to extrapolate parameters 

that cannot be measured, and predict the behavior of the system under different 

physiological conditions, and can even lead to the design of other useful 

experiments (Agresar 1996). In this chapter, the mathematical models of cell 

adhesion, including three adhesive dynamics models of the reaction rates law for 

adhesive receptor-ligand bonds and a stochastic Monte Carlo approach for 

determining the adhesive bindings, are presented in detail. 

2.1  Adhesive Dynamics Models   

Mathematical models of cell adhesion were generated from the conceptual 

developments and experimental improvements in cell adhesion. Up to date, 

significant advances have been made in cell adhesion, with which a major 

conceptual development is the recognition that cell adhesion is often mediated via 

a surprisingly small number of receptor-ligand bonds (Zhu et al. 2000). Many 

experimental improvements in cell adhesion have been established. It was found 
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that, when the moving cells interact with a stationary surface in the flow chamber, 

the cell velocities are highly fluctuated and the cell motions experience “stop-and-

go” jerky type (Kaplanski et al. 1993; Alon et al. 1995). Weiss (1992) indicated 

that successful cell arrest was dependent on the balance between adhesive and 

anti-adhesive forces as well as the rate at which adhesive interactions were broken. 

Zhu (2000) and Zhu et al. (2000) presented a detailed review of the progress in the 

experimental methods that enabled quantification of the relevant kinetic and 

mechanical parameters, the fundamental concepts that underlaid the physics of the 

biological phenomena, and the mathematical models that related functions to the 

intrinsic properties of cell adhesion molecules. Experimental work at the 

nanoscale level to determine the lifetime, interaction distance and strain responses 

of adhesion receptor-ligand bonds has been spurred by the advent of atomic force 

microscopy and biomolecular force probes (Marshall et al. 2003), although our 

current knowledge in this area is far from complete. Marshall et al. (2005) studied 

the force history dependence of receptor-ligand dissociation using atomic force 

microscopy that provided a new paradigm for understanding how force regulated 

receptor-ligand interactions. By measuring the change in thermal fluctuations of 

the atomic force microscope cantilever tip, Marshall et al. (2006) demonstrated 

the new measurement method of the molecular elasticity.  

The extensive studies on biophysical experiments of cell adhesion have led 

to the development of a number of mathematical models. The construction and 

application of these models have demonstrated that it is possible to analyze certain 
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cellular processes by highly quantitative approaches (Zhu et al. 2000). Up to date, 

many mathematical models have been proposed to describe different important 

events in cell adhesion. Hammer and Apte (1992) firstly proposed a mathematical 

model to simulate the interaction of a single cell with a ligand-coated surface 

under flow condition. This model can simulate the effect of many parameters on 

cell adhesion, such as the number of receptors on microvilli tips, the density of 

ligand, the rates of reaction between receptor and ligand, the stiffness of receptor-

ligand springs, the response of springs to strain, and the magnitude of the bulk 

hydrodynamic stresses. The model can successfully recreate the entire range of 

expected and observed adhesive phenomena, from completely unencumbered 

motion, to rolling, to transient attachment, to firm adhesion. Moreover, this model 

can generate meaningful statistical measures of adhesion, including the mean and 

variance in velocity, rate constants for cell attachment and detachment, and the 

frequency of adhesion. King and Hammer (2001a) used the completed double-

layer boundary integral equation method to study the adhesive interactions 

between multiple rigid particles and a planar boundary in a viscous fluid. The 

simulation results revealed a mechanism for the capture of free-stream cells once 

an initial cell has adhered to provide a nucleation site. Wang et al. (2006) 

developed a population balance model for cell aggregation and adhesion process 

in a non-uniform shear flow and carried out Monte Carlo simulation based on the 

model for the heterotypic cell-cell collision and adhesion to a substrate under 

dynamic shear forces. Shao and Xu (2007) numerically studied the adhesion 
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between a microvillus-bearing cell and a ligand-coated substrate by using Monte 

Carlo method. They found that most of the adhesion was mediated by a single 

bond if the total adhesion frequency was less than 20%.  

 

 

 

 

 

 

Figure 2.1  Adhesive dynamics model 

Mathematical models of cell adhesion relate the forward and reverse reaction 

rates for receptor-ligand bonds. These reaction rates laws have been defined as 

‘adhesive dynamics models’, which can be used to couple the effect of receptor-

ligand bonds on cell adhesion. Fig. 2.1 shows the schematic view of adhesive 

dynamics model for the cell. In this model, the cell adhesion molecules on the 

surface of circulating cell are defined as receptors, and these on the surface of ECs 

are defined as ligands. Once the distance between a receptor and a ligand is 

smaller than a critical length Hc, it has the chance to form receptor-ligand bonds. 

Interactions between receptors and ligands are realized by the ideal adhesive 

springs, and the spring forces are calculated via the compression or expansion of 

these springs. This dynamic process relates the bond association and dissociation 

rate of adhesive dynamics models. In the next sections, three typical adhesive 

dynamics models will be discussed among various models. 
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2.1.1  Bell’s Model 

It is intuitively expected that the receptor-ligand bonds are usually subjected to a 

dislodging force that tends to alter the rate of dissociation. A variety of reverse 

reaction rate laws are available to characterize the coupling of applied force and 

bond dissociation. Among them, a seminal work was done by Bell (1978), which 

was validated to be a good approximation for different states of cell adhesion in 

the straight micro-vessels, such as no adhesion, rolling, landing, and firm 

adhesion (Caputo and Hammer 2005).  

Generally speaking, the association rate of the bond is 84 s-1, which is a 

reasonable value that extensive simulations have shown can properly recreate 

experimental values for velocity and dynamics of rolling in the straight micro-

vessels (Chang et al. 2000). As to the bond dissociation rate, Bell (1978) adapted 

the kinetic theory of the strength of solids and proposed a constitutive relation 

between dissociation rate and force. Therefore, the bond association rate fk  and 

bond dissociation rate rk  can be expressed as,  

84fk                                                         (2.1) 

0 expr r
b

f
k k

k T

 
  

 
                                              (2.2) 

where bk  is the Boltzmann constant, T  the is temperature, 0
rk  is the unstressed 

dissociation rate,   is the reactive compliance that describes the degree to which 

force facilitates bond breakage, both 0
rk  and   are the functional properties of cell 

adhesion molecules. f  is the spring force of each bond which can be obtained 

according to the Hooke’s law:  



 24

( ) f                                                    (2.3) 

where   is the spring constant,   is the distance between the end points of 

receptor and ligand, and   is the equilibrium bond length.  

2.1.2  Dembo et al.’s Model 

Dembo et al. (1988) modeled a piece of membrane with immobile discrete bonds 

and allowed the membrane to detach. They did this by letting the applied tension 

exceed the bond stress. This model can be used to predict the critical membrane 

tension required for detachment, and the resulting peeling velocities of the 

membrane. The main contribution of the model is the expression for the rate 

constants as a function of distance between the membranes. Dembo et al. (1988) 

demonstrated the reasonable, thermodynamically consistent rate expressions 

relating the bond association rate fk  and bond dissociation rate rk  to   as, 
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where 0
fk  and 0

rk  are the reaction rate constants when the spring is at its 

equilibrium length, and   and ts  is the spring constant and “transition state” 

spring constant, respectively.  

Once the forward/reverse association rates of the bond are known, the 

appropriate expressions for the probability of formation and breakage of the bond 

tethers in a time step dt can be obtained by (Chang and Hammer 1996), 
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 1 expf fP k dt                                              (2.6) 

 1 expr rP k dt                                               (2.7) 

where fP  is the probability of forming a bond, and rP  is the probability of 

breaking a bond in a time interval dt.  

2.1.3  Waugh and Lomakina’s Model 

In neutrophil adhesion, the chemical reaction between LFA-1 and ICAM-1 

involves a single step reversible reaction of receptors binding to ligands (Chesla et 

al. 1998; Lomakina and Waugh 2004). Therefore, forming or breaking a LFA-

1/ICAM-1 bond is the same as the general models, such as the Bell’s model and 

the Dembo et al.’s model. As to the VLA-4/VCAM-1 adhesion, there exist two 

steps leading to the formation of bonds (Waugh and Lomakina 2009; Lomakina 

and Waugh 2009). The first step involves the formation of a reaction zone, and the 

second step is the binding reaction itself. The chemical reaction process for VLA-

4/VCAM-1 adhesion is much more complex than that of the general models. The 

adhesive dynamics model for VLA-4/VCAM-1 adhesion and the chemical 

reaction equations for both the LFA-1/ICAM-1 and VLA-4/VCAM-1 adhesions 

are displayed in Fig. 2.2.  

The novel adhesive dynamics model involves three zones: potential reaction 

zone (PRZ), reaction zone (RZ), and bonded zone (ZB). The RZ is defined to be a 

region where the neutrophil membrane is in proximity to the substrate and contain 

an unbound VLA-4 in its high affinity state. The ZB is defined as a region when 
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the VLA-4 binds to its ligand VCAM-1 on the substrate. The PRZ is thought to be 

not forming bonds but can become RZ by one or a combination of three 

mechanisms which are also illustrated in Fig. 2.2. Figure 2.2 (a) shows a region 

containing a high affinity that is not in close contact can move into close contact, 

Fig. 2.2 (b) shows an integrin in close contact which is in a low affinity state can 

undergo a conformational change to a high affinity state, and Fig. 2.2 (c) indicates 

an integrin in the high affinity state can diffuse into a region of close contact that 

does not initially contain one. This novel model does not distinguish between 

these different mechanisms but treats the transition from PRZ to RZ as a single 

kinetic step.  
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Figure 2.2  Adhesive dynamics model for VLA-4/VCAM-1 adhesion 
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In this novel model, the kinetics of binding involves five coefficients: k and 

k   govern the formation of RZ from PRZ; fk  and rk  represent the kinetics of 

forming or breaking a bond with a RZ; and BIk   characterizes the transition of a 

bond to the inactive zone. Here, SUB represents the density of ligand on the ECs 

surfaces. Like the general models, the probabilities of formation and breakage a 

VLA-4/VCAM-1 bond from RZ to ZB in a time step dt are calculated by 

equations (2.6)-(2.7). The probabilities of other three coefficients are governed by,    

 1 expP k dt                                               (2.8) 

 1 expP k dt                                               (2.9) 

 1 expBI BIP k dt
                                            (2.10) 

where  P and P  are the probability of forming or breaking a RZ from PRZ in a 

time interval dt, respectively. BIP   is the probability of breaking a bound binding 

from ZB to be an inactive zone in a time interval dt. 

2.2  Stochastic Monte Carlo Approach    

In the simulations, the bonds are checked for formation and breakage according to 

their respective probabilities given by equations (2.6)-(2.7). When checking for 

bond formation, only the receptors of a reasonable proximity to the reactive 

surface are considered. For the receptors outside of the contact area, the 

probability of bond formation is vanishingly small, so it is assumed to be zero and 

not checked. At each time step, the unbound receptors on all microvilli in the 

contact area are tested for bond formation. Any free receptors on bound microvilli, 
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which may be outside of the contact area, are checked as well. Also, all the bound 

receptor-ligand bindings are tested for bond breakage. The positions of only the 

bound microvilli are stored from step to step, saving memory and computational 

time. The positions of unbound microvilli in contact area are randomly assigned 

to check for bond formation at each time step.  

The stochastic Monte Carlo technique is used to determine the formation and 

breakage of each free and binding molecule during each time step. The procedure 

for updating the status of receptor-ligand bonds is as follows: the bond status at 

time t is checked first for each receptor on the circulating cell. If the receptor is 

bound to a ligand on the endothelial substrate at time t, a random number is 

generated between 0 and 1. If the random number is inferior to rP  determined by 

equation (2.7), the receptor will disengage at the next time step; otherwise, it will 

remain bound. If the receptor is free at time t and the receptor distance from the 

wall is inferior to Hc, a random number is also generated between 0 and 1. If the 

random number is inferior to fP  determined by equation (2.6), the receptor will 

bind to a ligand on the endothelial wall at the next time step; otherwise, it will 

remain free. In checking for bond formation and breakage, the time step dt  

required for accuracy in the results is 10-6 s.  

As to the VLA-4/VCAM-1 adhesion, the probabilities of transitions follow 

equations (2.6)-(2.10). The stochastic Monte Carlo approaches for the transitions 

from PRZ to RZ, from RZ to ZB, and from ZB to PRZ are very similar to that of 

the general models that discussed above. The procedures for updating the status of 
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these three zones are carried out by comparing the probabilities of forward and 

reverse reactions rates given by equations (2.6)-(2.10) with the chosen random 

numbers between 0 and 1. If the random numbers are less than the probabilities, 

then the events will happen at the next time step; otherwise, the zones will keep 

the old state at the next time step. By these steps, the Monte Carlo approach 

simulates the stochastic process of cell adhesion in microcirculation.  

2.3  Summary 

In this chapter, the mathematical models of cell adhesion are introduced in detail. 

Two typical adhesive dynamics models for general cell adhesion are the Bell’s 

model and Dembo et al.’s model, and a special adhesive dynamics model for 

VLA-4/VCAM-1 adhesion is the Waugh and Lomakina’s model. All of the three 

models are respectively coupled in the simulations to calculate the effect of 

receptor-ligand bindings on cell adhesion under different physiological situations. 

Cell adhesion in microcirculation is actually a stochastic process, and therefore  

the stochastic Monte Carlo technique should be applied. The stochastic Monte 

Carlo approach is used to determine which receptor will bind to endothelial ligand 

or still keep free, and which bound binding will break at the next time step or still 

remain its bound state. The applications of these three adhesive dynamics models 

and the stochastic Monte Carlo approach will be embodied in Chapter 5, Chapter 

6 and Chapter 7, respectively.  
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Chapter 3  Lattice Boltzmann Method 

In this chapter, the research methodology is discussed in detail. The lattice 

Boltzmann method (LBM) is used to simulate the fluid dynamics. First of all, the 

Navier-Stokes equations and the lattice Boltzmann equation (LBE) are introduced. 

Secondly, the relationship between LBE and Boltzmann equation, and the 

relationship between LBE and Navier-Stokes equations are both derived. At last, 

three different boundary condition treatments in LBM are presented.     

3.1  Navier-Stokes Equations 

The Navier-Stokes equations are the governing equations for describing the 

motion of fluid substances. They are derived by invoking the continuum 

hypothesis, where the various fluid properties such as the density and velocity are 

assumed to be continuous functions of position with characteristic volume scale of 

10-9 cm3 (Batchelor 1970). Therefore, when given a specified volume, the fluid 

should follow the conservation of mass and momentum equations since all the 

scale quantities should be continuous. The conservation equations for an 

incompressible flow of Newtonian fluid can be expressed as,  

0u 


                                                      (3.1) 
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                                      (3.2) 

where u


 is the fluid velocity,   is the fluid density, p  is the pressure,   is the 

fluid viscosity, and t is the time. The blood is a concentrated suspension of formed 

elements that includes red blood cells, leukocytes and platelets. The two-phase 
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nature of blood and the interactions between blood cells result in non-Newtonian 

dynamics for blood and the nonlinear relationship between stress and strain for 

blood flow. However, the plasma is Newtonian fluid, and the cellular components 

are suspended in plasma which also generally follows Newtonian dynamics (Sun 

and Munn 2005). Consequently, the Navier-Stokes equations (3.1)-(3.2) are still 

valid for our simulation system which describes few cells suspended in plasma. In 

order to simulate the fluid dynamics, an important work is that we should find an 

effective numerical method to solve these rigorous Navier-Stokes equations. 

3.2  Lattice Boltzmann Equation  

The LBM has been a promising numerical tool to effectively model complex 

physics in computational fluid dynamics (CFD). To date, the LBM has been 

successfully applied to various complex fluid flow systems, such as multiphase 

flows, magnetic fluids, fluid flows in porous media, reaction-diffusion systems, 

particles suspension flows, blood flows and other flow systems. A comprehensive 

review can be found in the paper of Chen and Doolen (1998).  

The most distinctive feature of LBM is that it is based on a discretization of 

the Boltzmann equation, rather than on a discretization of the Navier-Stokes 

equations, like the conventional or traditional CFD methods. Compared to the 

conventional CFD solvers, the LBM has simple formulations, efficient parallel 

computing and can be easily to introduce complex boundary conditions. The 

fundamental idea of LBM is to construct simplified kinetic models that 

incorporate the essential physics of microscopic or mesoscopic processes so that 
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the macroscopic averaged properties obey the desired macroscopic equations. In 

this method, the fluid is described by the evolution of microscopic fluid particles 

or the particle distribution functions. The particle populations conserve mass and 

momentum during the collision and streaming, and the interactions between 

particles only depend on local information. 

LBM was historically originated from the lattice gas cellular automata 

(LGCA) method, a discrete particle kinetics utilizing a discrete lattice and discrete 

time. The evolution equation of LGCA method is, 

   ( , 1) ( , ) ( , )   
   

i i i iN x e t N x t N x t               (3.3) 

where ie

 is the local particle velocity, ),( txNi


 is a set of Boolean variables 

describing the particle occupation, and  ( , )


i N x t  is the collision function. 

McNamara and Zametti (1988) proposed the first LBE based on the LGCA 

method. They replaced the Boolean variables Ni in the LGCA by a single particle 

distribution function if , which is continuous variable ranging in the interval [0, 1]. 

Then, equation (3.3) can be written as,   

 ( , ) ( , ) ( , )     
   

i i i i if x e t t t f x t f x t                           (3.4) 

where ( , )if x t


 is the distribution function for the particle with velocity ie


 at 

position x


 and time t, and t  is the time increment.  ( , )


i if x t  is the collision 

operator that represents the rate of change of if  resulting from collision. The 

collision term should be true to conserve mass and momentum at each lattice,  

   ( , ) 0i if x t  
                                               (3.5) 
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     ( , ) 0i i ie f x t   
                                            (3.6) 

The LBE retains the advantages of locality in the kinetic approach, which is 

essential to parallelism in the LGCA method. Moreover, it successfully eliminates 

statistical noise and accurately predicts the behavior of sound waves. 

Since the usual aim of the LBM is to simulate macroscopic dynamics, the 

“exact” collision operator is unnecessarily complex and therefore numerically 

inefficient. At the beginning of 90th, Qian (1990) and Chen et al. (1991) did 

revolutionary work in the term of collision operator. Two groups nearly 

simultaneously suggested that the collision operator should be approximated by a 

single time relaxation in which relaxation towards some local equilibrium 

distribution function occurs at some constant rate, and the simplified collision 

term is expressed as,   

    1
( , ) ( , ) ( , )     
  eq

i i i if x t f x t f x t


                               (3.7) 

where   is the relaxation time, and ( , )eq
if x t


 is the equilibrium distribution 

function. ( , )eq
if x t


 depends on the local fluid variables and should be chosen 

appropriately to recover the macroscopic Navier-Stokes equations (Qian et al. 

1992; Chen et al. 1992). The simplified LBE can be written as, 

1
( , ) ( , ) ( , ) ( , )        
    eq

i i i i if x e t t t f x t f x t f x t 


                  (3.8) 

Equation (3.8) makes the computations more efficient and allows flexibility of the 

transport coefficients. 
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Figure 3.1  D2Q9 lattice Boltzmann model 

Without losing generality, we take the D2Q9 model as an example, and the 

D2Q9 lattice Boltzmann model is shown in Fig. 3.1. To derive the macroscopic 

Navier-Stokes equations, an appropriate form of equilibrium distribution function 

can be chosen in a polynomial form as (Qian et al. 1992), 

2 2
2 4 2

3 9 3
( , ) 1 ( ) ( )

2 2
        

    eq
i i i if x t w e u e u u

c c c
                   (3.9) 

where c is the lattice speed which is defined as txc  / . x  is the length of 

lattice, and iw  is the weight coefficients that obtained by,  

4 9, 0.

1 9, 1, 2,3, 4.

1 36, 5,6,7,8.

i

i

w i

i

 
 

 

                                        (3.10) 

Once the particle distribution function is known, the macroscopic fluid 

density   and velocity u


 are calculated by, 

     ( , ) ( , )eq
i if x t f x t    

                                    (3.11) 

  ( , ) ( , )eq
i i i iu e f x t e f x t         

                             (3.12) 
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The evolution of LBM can be divided into two steps: (1) Collision, which 

occurs when particles arriving at a node interact and change their velocity 

directions according to scattering rules. 

( )1
( , ) ( , ) ( , ) ( , )     
    eq

i i i if x t f x t f x t f x t


                       (3.13) 

(2) Streaming, in which each particle moves to the nearest node in the direction of 

its velocity. 

   ( , ) ( , )i i if x e t t t f x t    
                                      (3.14) 

where ( , )if x t


 and ( , )if x t
  are the particle distribution function before and after 

collision, relatively.   

3.3  Derivation of Lattice Boltzmann Equation from Boltzmann Equation 

There are several ways to obtain the LBE from either discrete velocity models or 

the Boltzmann equation. The LBM is a derivation of the LGCA method, and we 

have introduced the LBE from the discrete kinetic equation of LGCA in Section 

3.2. However, He and Luo (1997) demonstrated that the LBE is theoretically 

independent of LGCA, and they directly derived the LBE from the continuous 

Boltzmann equation. In this section, we briefly derive the LBE from the 

Boltzmann equation. 

Based on the non-equilibrium statistics mechanics, the Boltzmann kinetic 

equation that considered the influence of collision on particle distribution function 

can be written as, 

 1 1 1

( , , )
( , , ) ( , , ) ( , , ) ( , , ) ( , , )

f x v t
v f x v t f x v t f x v t f x v t f x v t d d

t
       

 
 

          
    (3.15) 
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where ),,( tvxf


 is the single particle distribution function, v


, 1v


 and ,v


1v 


 are the 

velocities before and after collision, respectively, and 1d  is the velocity interval. 

   dnvvdd


1
2 , where d  is the particle diameter, n


 is the direction along 

exterior normal, and d  is the solid angle. The velocities v 


 and 1v 


 are totally 

determined by the elastic collision. The Boltzmann equation can be simplified as, 

 )(),,(
),,(

ftvxfv
t

tvxf



 


                                (3.16) 

where )( f  is the collision operator.  

Bhathager, Gross and Krook (1954) firstly introduced a relaxation time 

approximation to simplify the collision operator. They indicated that when the 

particle distribution function f deviates from the local equilibrium distribution 

function ( )eqf  with ( )eqf f , the rate of change of particle distribution function 

f t  resulting from particles collision varies directly with ( )eqf f , that is, 

( )1
( ) ( )eqf f f


                                            (3.17) 

This equation is also known as the BGK collision operator. Here,   is the 

relaxation time and usually is the function of velocity. In most situations,   is a 

constant by which approximately applying its average value. Now, the Boltzmann 

equation can be rewritten as, 

( )1
( )eqf

v f f f
t 


    




                                   (3.18) 

where )(eq
if is the Maxwell-Boltzmann equilibrium distribution function which 

can be expressed as,  

2
( )

2

( )
exp

(2 ) 2
eq

D

v u
f

RT RT




 
  

 

 
                             (3.19) 
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where T is the temperature, R is the ordinary gas constant, D is the spatial 

dimension, and u


 is the flow velocity. The macroscopic variables are obtained by 

taking various moments of the particle distribution function, 

fdv  


                                                   (3.20) 

u fvdv  
  

                                                 (3.21) 

It is noticed that equation (3.18) is a partial differential equation, so we can 

use any known numerical methods to solve it. Discretizing the velocity in 

equation (3.18), then the Boltzmann equation can be expressed as, 

( )1
( )eqi

i i i i

f
e f f f

t 


    



                                   (3.22) 

where ie


 is the microscopic particle velocity in the ith direction. In the D2Q9 

lattice Boltzmann model, the nine-bit velocities set are,  

 

0, 0.

1 1
cos ,sin , 1, 2,3, 4.

2 2

2 1 2 1
2 cos ,sin , 5,6,7,8.

4 4

i

i

i i
e i

i i
i

 


                  


                 


              (3.23) 

We continue to discretize equation (3.22) in both time and space. If we apply 

the first order finite difference scheme in time, then the first order upwind 

discretization for the convective term can be given as,  

   

( )

( , ) ( , ) ( , ) ( , )

1
( , ) ( , )

i i i i i

eq
i i

t
f x t t f x t f x e t t t f x t t

x

f x t f x t

   




       

    

    

 
          (3.24) 
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where x  and t  are the length of lattice and time increment, respectively. If 

choosing 1t x   , equation (3.24) becomes the standard LBE (3.8), which gives 

the second order accuracy for the macroscopic variable in both time and space.  

Up to now, we have derived the LBE from the Boltzmann equation by using 

a relaxation time approximation proposed by Bhathager, Gross and Krook (1954). 

Therefore, the single relaxation time lattice Boltzmann model is also called as the 

BGK model. The BGK model is the simplest LBM model. Due to its extreme 

simplicity, the BGK has become the most popular LBM model.  

3.4  Recovery of Navier-Stokes Equations from Lattice Boltzmann Equation 

There are also many methods to derive the macroscopic Navier-Stokes equations 

from the LBE (He and Luo 1997; Chen and Doolen 1998). The main technique 

applied in the derivation is the Chapman-Enskog multiscale expansion (Frish et al. 

1987). In this section, we will briefly present the recovery of the macroscopic 

Navier-Stokes equations for incompressible flows from the discrete LBE via an 

example of D2Q9 lattice Boltzmann model.  

Introducing the Taylor expansion, 

       
0

( , ) ( , )
!

n
n

i i t i
n

f x e t t t D f x t
n

 




     
                               (3.25) 

where   is the Knudsen number, and )(  it etD


.  

From equation (3.8), we can easily get,  

1

( ) ( ) ( )
nn

i i i i i
n k

f x e t,t δt f x,t e f x,t
n! t x






  
        

    
               (3.26)  
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where k =1 and 2, which represents the x,  y direction, respectively.  

        Preserving equation (3.26) with second order )( 2O , and we can obtain the 

following equation from equation (3.8),  

22
3

( )

( , ) ( , ) ( )
2

1
( , ) ( , )

i i i i
k k

eq
i i

e f x t e f x t O
t x t x

f x t f x t

 



      
            

    

   

 

              (3.27) 

Introducing two time scales, 0t  and 1t , where tt 0  and tt 1 . Employing the 

Chapman-Enskog multiscale expansion technique (Frish et al. 1987) gives, 













10 ttt
                                           (3.28) 

Equation (3.28) assumes that time scale 1t  is much smaller than the time scale 0t . 

Likewise, the particle distribution function if  can be expanded by the local 

equilibrium distribution function )(eq
if ,  

( ) ( )( , ) ( , ) ( , )eq neq
i i if x t f x t f x t  
  

                                  (3.29) 

where ( ) ( , )neq
if x t


 depends on the local macroscopic variables (   and 


u ) and 

should satisfy the equations (3.11)-(3.12), and ( ) (1) (1)( , ) ( , ) ( , )neq
i i if x t f x t f x t 

  
 

(2) 2( , ) ( )if x t O   


 is the non-equilibrium distribution function which has the 

following constrains, 

                                
( )

( , ) 0, 1, 2.
k

i
i

f x t k  
                                       (3.30) 

    
( )

( , ) 0, 1, 2.
k

i i
i

e f x t k    
                                    (3.31) 

Substituting equations (3.28) and (3.29) into equation (3.27) gives, 
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 
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        

  

   

   

 

          (3.32) 

From equation (3.32), we can obtain the following equation,  

( ) (1)

0

1
( , ) ( , )eq

i i i
k

e f x t f x t
t x 

  
     

  
                             (3.33) 

to the first order  , and 

2

( ) (1) ( )

1 0 0

(1)

1
( , ) ( , ) ( , )

2

1
( , )

eq eq
i i i i i

k k

i

f x t e f x t e f x t
t t x t x

f x t


       
             

 
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

       (3.34) 

to the second order 2 . Using equation (3.33) and some algebra, we can rewrite 

the second order 2  of equation (3.34) as, 

( ) (1) (2)

1 0

1 1
( , ) 1 ( , ) ( , )

2
eq

i i i i
k

f x t e f x t f x t
t t x 

                

   
         (3.35) 

Combining with equations (3.11)-(3.12) and (3.30)-(3.31), we can derive the 

following equations from equation (3.33) and (3.35), 

0



u
t

                                                (3.36) 

0



u
t

                                               (3.37) 

Equations (3.36)-(3.37) are the continuity equation and momentum equation in 

fluid mechanics, which are also accurate to second order in   for equation (3.8). 

Here, the momentum flux tensor   is defined as, 
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 ( ) (1)1
( ) ( ) 1 ( , )

2
eq

i i i i
i

e e f f x t   


       
  

   
                    (3.38) 

where )( ie


 is the component of velocity vector ie


 in the  -coordinate direction.  

        To specify the detailed form of  , the lattice structure and corresponding 

equilibrium distribution function have to be specified. For simplicity and without 

losing generality, we also consider the D2Q9 lattice Boltzmann model. Noting 

that the Navier-Stokes equations have a second order nonlinearity, an appropriate 

form of equilibrium distribution function with a second order approximation has 

been obtained analytically (Qian et al. 1992) and has been given in equation (3.9), 

which is valid only for small velocities or small Mach number sCu , where 

1 3sC   is the sound speed. Inserting equation (3.9) into equation (3.38) yields, 

( ) ( )( ) ( ) ( , )eq eq
i i ie e f x t p u u     



       
                     (3.39) 

 (1) (1)1
( ) ( ) 1 ( , ) ( ) ( )

2i i i
i

e e f x t u u         


       
 

     
       (3.40) 

where 2 / 3sp C    is the pressure, and   is the kinematic viscosity which is 

defined as, 

 
1

(2 1)
6

                                                    (3.41) 

The resulting momentum equation is, 

 ( ) ( )
u

u u p u u
t


           
        


   

                (3.42) 

Equation (3.42) is exactly the same as the Navier-Stokes equation (3.2) if the 

density variation   is small enough.  

From the above discussion, it can be easily concluded that the Navier-Stokes 
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equations can be recovered from the LBE under the incompressible limitation. 

Therefore, we can use the LBM to study the fluid behavior in both time and space. 

It should be noted that the LBM must be carried out under three constrains: (1) 

Mach number: Ma<<1; (2) density variation:  <<1; and (3) Knudsen number   

is small enough. Otherwise, the calculation will be diverging, and cannot obtain 

reliable results.  

3.5  Boundary Conditions in Lattice Boltzmann Method 

Boundary condition plays an extremely important role in the lattice Boltzmann 

simulations. It will greatly influence the accuracy and stability of the numerical 

results. Achieving self-consistent boundary conditions with a given accuracy and 

stability is as important as developing the lattice Boltzmann models themselves. 

In recent years, many researchers have proposed various boundary conditions to 

improve the accuracy and stability in LBM simulations. In this section, we will 

introduce several frequently used boundary conditions treatments, i.e., bounce 

back boundary scheme, pressure and velocity boundary scheme, and curved 

moving boundary scheme, all of which will be adopted in our simulations. 

3.5.1  Bounce Back Boundary Scheme 

The most popular boundary condition for LBM is the bounce back scheme. The 

so-called standard bounce back scheme means that when a particle reaches a wall 

node, the particle will reflect back to the fluid nodes along its incoming direction 

in the next streaming step. 
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Figure 3.2  Bounce back and half-way bounce back boundary scheme 

As shown in Fig. 3.2, assuming A is in the physical boundary, B, C and D 

are the nearest interior fluid nodes, and the fluid particle can flow from B, C, and 

D to A. When a particle moves from B to A with velocity 8, there will be a 

corresponding particle flows from A to B with velocity 6 in the next streaming 

step. The particle moving from C and D to A is the same as that from B to A. 

Therefore, the bounce back scheme can lead to a mass conservation and “zero” 

velocity condition on the wall. It may be a preferable method for modeling no-slip 

boundaries, which also supports the idea that the LBM is ideal for modeling fluid 

flows in complicated geometries. Up to now, the bounce back boundary condition 

has been widely used in the LBM simulations (Ziegler 1993; Noble et al. 1995; 

Gallivan et al. 1997). 

However, it was noticed that the bounce back scheme is only first order in 

numerical accuracy of boundary that degrades the LBM, since the accuracy of 

LBM in the interior nodes is second order (Cornubert et al. 1991; Ginzbourg and 

Adler 1994). This motivated the researchers to develop new boundary treatments 

to achieve second order accuracy for no-slip velocity boundary condition. Among 
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them, a typical work was reported by Ziegler (1993). Ziegler noticed that if the 

boundary was shifted into fluid by a half mesh unit, i.e. placing the non-slip 

condition between nodes (half-way bounce back scheme), then the bounce back 

scheme will give second order accuracy. The half-way bounce back rule inherits 

the advantage of bounce back rule that is very easy to be implemented in 

computer codes. When the boundary is in parallel with lattices, and locates in the 

middle of nodes, the no-slip boundary condition can be easily carried out. 

However, it cannot realize the no-slip boundary condition in the inclined or 

curved boundaries. Therefore, the half-way bounce back scheme is usually 

applied in LBM to solve the flat boundary conditions.    

3.5.2  Pressure and Velocity Boundary Scheme 

In many practical flow systems, a flow is always driven by pressure difference or 

pressure gradient. In this situation, the boundary conditions such as prescribed 

pressure or velocity on flow boundaries are needed. Zou and He (1997) proposed 

a new way to specify pressure or velocity on flow boundaries based on the idea of 

bounce back rule of the non-equilibrium distribution function.  

Inlet 1

2

3

4

56

7 8

0 Outlet

 

Figure 3.3  Pressure and velocity boundary scheme 
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The schematic view of pressure and velocity boundary scheme is shown in 

Fig. 3.3. In the inlet, the distribution functions 1f , 5f  and 8f  are unknown after 

streaming. Similarly, in the outlet, the distribution functions 3f , 6f  and 7f  are 

unknown after streaming. Our objective is to get their values under a specific 

pressure or velocity. According to the mass and velocity definition equations 

(3.11)-(3.12), we can easily get 

           876543210 fffffffff                        (3.43) 

             xuffffff  756831                                  (3.44) 

             yuffffff  867542                                  (3.45) 

(1) Pressure boundary scheme 

In the LBM, the specification of pressure difference amounts to the specification 

of a density difference, since there is a formula describing the relationship 

between pressure and density as 3/2   sCp . That is to say, the pressure in 

the boundary can be specified if the density is given. 

In the inlet, assuming the density is in  , and the y direction velocity yu  

is specified as 0, but the x-direction velocity xu  is unknown. After streaming, 0 ,f  

2f , 3f , 4f , 6f  and 7f  are known in addition to in   and yu =0, but 1f , 5f  and 

8f  are still unknown. So we need to determine 1f , 5f , 8f  and xu  four unknowns. 

Consistent with equations (3.43)-(3.45), we can get xu  as follows, 

          0 2 4 3 6 72( )
1x

in

f f f f f f
u

    
 


                             (3.46) 

There are only three equations for four unknowns, so we need to find one more 
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equation. We assume that the bounce back rule is still valid for the non-

equilibrium part of distribution function which is normal to the boundary. Here, 

since 1f  is normal to the inlet boundary, then 

( ) ( )
1 1 3 3

eq eqf f f f                                              (3.47) 

Substituting the local equilibrium distribution function into equation (3.47) gives,  

           ( ) ( )
1 3 1 3 3 1( ) 6eq eq

in xf f f f f w u                                  (3.48) 

Inserting equation (3.48) into equations (3.44) and (3.45) yields, 

             xinuwffff )3
2

1
()(

2

1
14275                             (3.49) 

      xinuwffff )3
2

1
()(

2

1
14268                             (3.50) 

In the outlet, assuming that the density is out  , and the velocity yu  is 

specified as 0, but the velocity xu  is still unknown. After streaming, 0f , 1f , 2f , 

4f , 5f  and 8f  are known in addition to out   and yu = 0, but 3f , 6f  and 7f  are 

still unknown. So we need to determine 3f , 6f , 7f  and xu  four unknowns. From 

equations (3.43)-(3.45), we can also get xu ,  

          
out

x

ffffff
u


)(2

1 851420 
                            (3.51) 

Similarly, the left three unknown distribution functions are calculated by, 

xout uwff 113 6                                              (3.52) 

xoutuwffff )3
2

1
()(

2

1
14286                            (3.53) 

xoutuwffff )3
2

1
()(

2

1
14257                            (3.54) 
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(2) Velocity boundary scheme 

Now, let us turn to the velocity flow boundary condition. Actually, the derivation 

of unknowns here is very similar with the pressure boundary condition mentioned 

above. Firstly, we get the density from equations (3.43)-(3.45). Secondly, we 

calculate the distribution function which is normal to the boundary. Finally, we 

obtain the left unknown distribution functions.  

In the inlet, assuming the velocity at the inlet is ( xu , yu ), but the density   

here is unknown. After streaming, 0f , 1f , 2f , 4f , 5f  and 8f  are known, and 3f ,  

6f  and 7f  are unknown. Firstly, we get the density, 

0 2 4 3 6 72( )
1

1 x

f f f f f f

u
     
 


                                (3.55) 

Secondly, we get the normal distribution function, 

xuwff 131 6                                                (3.56) 

Finally, the left unknown distribution functions are obtained by, 

xy uwuffff  )3
2

1
(

2

1
)(

2

1
14275                           (3.57) 

xy uwuffff  )3
2

1
(

2

1
)(

2

1
14268                          (3.58) 

Similarly, in the outlet, all the unknowns can be obtained by, 

0 2 4 1 5 82( )

1 x

f f f f f f

u
     



                                     (3.59) 

3 1 16 xf f w u                                                  (3.60) 

6 8 2 4 1

1 1 1
( ) ( 3 )

2 2 2y xf f f f u w u                                 (3.61) 

7 5 2 4 1

1 1 1
( ) ( 3 )

2 2 2y xf f f f u w u                                 (3.62) 
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3.5.3  Curved Moving Boundary Scheme 

The above treatments of boundary are fully competent for the flat stationary 

boundaries. However, the boundaries of many fluid systems are not only curved 

but also mobile. A usual and typical example is the boundary of a moving particle. 

Many researchers have done important work in developing the curved moving 

boundary conditions. Filippova and Hänel (1997) proposed a boundary fitting 

conditions based on the fictitious equilibrium distribution function. However, it 

was found the numerical results are strongly instable when the relaxation time   

is close to 0.5. To overcome this shortcoming, Mei et al. (1999) improved an 

alternative scheme, which is second order accuracy in boundary condition. 

However, the instability is still in existence due to the dependence of weighting 

factor that controls the linear interpolation on the relaxation time. Bouzidi et al. 

(2001) put forward another treatment for arbitrary geometry moving boundaries 

according to the intuitive notion of “bounce back” and interpolations. Lallemand 

and Luo (2003) applied the interpolations differently for before and after collision. 

The method inherits the advantage of the bounce back scheme which is very easy 

to be implemented. Besides, an extrapolation method for curved and moving 

boundary condition was developed by Guo et al. (2002). This treatment of 

boundary condition is very easy in code and has been proved to be of second 

order accuracy and has well-behaved stability characteristics. In the next, we 

present this extrapolation method, which is also applied in our simulations for 

solving the boundaries of stationary curved micro-vessel wall and moving cells. 
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Figure 3.4  Curved moving boundary scheme. 

Fig. 3.4 shows the schematic view of the curved moving boundary scheme. 

x  is the length of lattice, fx


 is the fluid node, bx


 is the boundary node, a 

physical boundary wx


 is intersected between the fluid node fx


 and boundary node 

bx


. Here, f b i xx x e 
  

, ff f i xx x e 
  

, and iie e 
 

. The fraction of intersected 

link in the fluid region is:  

,  0 1
f w

f b

x x

x x
 


  



 

                                          (3.63) 

After collision, the distribution function ( , )i ff x t
  at the node fx


 is known. 

However, we should know the distribution function ( , )bif x t
  that moves from the 

boundary node bx


 to the fluid node fx


 in the streaming step. The so-called 

boundary condition here is to calculate ( , )bif x t
 . 

The basic idea of the extrapolation method is to decompose the distribution 

at the boundary node into two parts, i.e., the equilibrium part and the non-

equilibrium part. The equilibrium part is determined by a fictitious equilibrium 
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distribution, and the non-equilibrium part is approximated by that of the 

neighboring fluid node along the link. So the distribution function at bx


 is, 

1
( , ) ( , ) (1 ) ( , )eq ne

b b bi i if x t f x t f x t


  
                                (3.64) 

where the equilibrium distribution function ( , ) ( , , )eq eq
b b bi if x t f u t


 and is 

approximated by, 

2 2
0 2 4 2

3 9 3
( , ) ( ) ( )

2 2
eq

b b b b bi i i if x t w e u e u u
c c c

            

    
         (3.65) 

where ( )b fx  
 is an approximation of ( )b bx  

, bu


 is an approximation of  

( )b bu u x
  

, and they are chosen as, 

                                                   b f                                                      (3.66) 
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
                                   (3.67) 

where wu


 is the velocity of the wall. wu


 is zero for the stationary boundary and 

non-zero for the moving boundary. The non-equilibrium part ( , )ne
bif x t


 can be 

approximated by the non-equilibrium part of distribution function at the fluid 

node fx


 and ffx


 with second order accuracy,  

   

( , ) ( , ),
( , )

( , ) ( , ) (1 ) ( , ) ( , ) ,

eq
f i fi

ne
bi

eq eq
f f ff ffi i i i

f x t f x t A
f x t

f x t f x t f x t f x t A

   

      

 


   
  (3.68) 

Now, ( , )eq
bif x t


 and ( , )ne
bif x t


 are known, so the ( , )bif x t
  can be also obtained by 

equation (3.64), where (0,1)A . 



 51

Chapter 4  Forces Evaluation 

In this thesis, the cell dynamics is governed by the Newton’s law of translation 

and rotation. In order to solve the cell dynamics, we should know how many 

forces acting on the cell. There are mainly three forces governing the cell 

adhesion and migration under flow condition. They are hydrodynamic force 

which is induced by the surrounding blood, repulsive van der Waals force which 

is provided by the endothelial wall, and spring force that caused by the stochastic 

receptor-ligand bindings. The accurate evaluation of these three forces plays a key 

role on the analysis of cell adhesion behavior. In this chapter, we mainly focus on 

the derivation and computation of these three forces, and then we carry out the 

cell dynamics under the governing of these forces.  

 

 


 

 

Figure 4.1  Force analysis in cell adhesion 

The schematic view of forces analysis during cell adhesion is illustrated in 

Fig. 4.1. hF


 is the hydrodynamic force, vF


 is the repulsive van der Waals force, 
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and sF


 is the spring force. hT  and sT  are the torques that provided by 

hydrodynamic force and spring force, respectively. Since vF


 is normal to the 

interaction interface, there is no torque induced by the repulsive van der Waals 

force. In the next, we will discuss the evaluation of these three forces. 

4.1  Hydrodynamic Force    

The accurate evaluation of the fluid dynamic force involving curved boundaries is 

crucial to the study of fluid-structure interaction. There are mainly two methods 

can be used to determine the hydrodynamic force on a curved body in the context 

of LBM: (1) stress integration, and (2) momentum exchange. Many researches 

carried out studies on both two methods. He and Doolen (1997) evaluated the 

fluid force by integrating the total stress on the surface of cylinder, and the 

components of the stress tensor were obtained by taking respective velocity 

gradients. Ladd (1994) proposed the momentum exchange method to compute the 

fluid force on a sphere in particles suspension flow by the LBM. Aidun et al. 

(1998) continued to extend the Ladd’s approach to any solid-to-fluid density ratio, 

which also adopted the momentum exchange method to evaluate fluid force. A 

comprehensive review of these two methods can be found in the paper of Mei et 

al. (2002). Compared to the stress integration method, the momentum exchange 

method is much easier to be implemented computationally. Therefore, it has been 

widely applied in solving the curved moving boundary in the LBM simulations. In 

this thesis, we also adopt the momentum exchange method to calculate the 

hydrodynamic force. 
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4.1.1  Momentum Exchange Method 

As shown in Fig. 3.4, after the collision step, the particle distribution function 

( , )i ff x t
  at the fluid node fx


 will move along ie


 to the boundary node bx


 in the 

streaming step. So the momentum increment at the boundary node bx


 is 

( , )i i fe f x t
  . On the other hand, the calculated particle distribution function 

( , )bif x t
  at the boundary node bx


 will stream along ie


 to the fluid node fx


 in the 

streaming step. So the momentum decrement at the boundary node bx


 is 

( , )bi ie f x t
  . So the force that acted by the fluid node fx


 on the boundary node bx


 

can be obtained by the net momentum increment at the boundary node bx


,   

 ( ) ( , ) ( , )b i i f bi iF x e f x t e f x t   
                                           (4.1) 

Because of ii ee


 , then  

( ) ( , ) ( , )    
     

b i i f biF x e f x t f x t                                      (4.2) 

So the total fluid dynamic force is the sum of ( )bF x
 

, that is   

    ( ) ( , ) ( , )      
      
T b i i f biF F x e f x t f x t                            (4.3) 

Then, the total torque can be obtained by, 

0 0( ) ( ) ( ) ( , ) ( , )T b b b i i f biT x x F x x x e f x t f x t          
                   (4.4)   

where 0x


 generally is the center of mass of the solid particle.  

4.1.2  Lubrication Theory    

When the distance between circulating cells or between a circulating cell and 

endothelial wall is superior to one lattice spacing, the momentum exchange 

method are completely competent for the calculation of hydrodynamic force. 
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However, when two surfaces come within one lattice spacing, the fluid nodes are 

excluded from the regions between solid surfaces, leading to a loss of mass 

conservation. In our simulations, three cases of losing lattice nodes should be 

considered, which are all shown in Fig. 4.2. Case 1: surfaces between a circulating 

cell and a straight vessel wall; Case 2: surfaces between two circulating cells or 

between a circulating cell and a stationary positive curvature vessel wall; and 

Case 3: surfaces between a circulating cell and a stationary negative curvature 

vessel wall. In the next, we should find an approach to calculate the losing forces, 

and add them to the hydrodynamic forces. 

Case 1 Case 2 Case 3  

Figure 4.2  Three cases of losing lattice nodes 

According to the lubrication theory (Durlofsky et al. 1987), when two solid 

surfaces approach each other, there will be a strong repulsive force caused by 

fluid being squeezed out of the gap between solid surfaces. Moreover, this kind of 

lubrication flow will generate very high pressure in the gap. However, the 

pressure will reduce to be much smaller due to the loss of lattices nodes between 

two solid surfaces, which is in contradiction with the lubrication theory. To our 

best knowledge, there are two methods can be used to resolve this problem: (1) 
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using adaptive meshes technique; and (2) adding normal lubrication force between 

two surfaces. Compared to the adaptive meshes technique, the second approach is 

much tractable in computer code. When the distance between two solid surfaces is 

within a critical value (i.e., the distance is within one lattice spacing), we should 

introduce a lubrication force to compensate the loss of fluid pressure. The 

lubrication theory has been widely employed in the LBM simulations since it was 

firstly incorporated into LBM in simulating particles suspensions (Ladd 1997). 
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Figure 4.3  Geometry of two equal disks at near distance 

As shown in Fig. 4.3, an analytical solution of lubrication force between two 

same disks was firstly obtained by Yuan and Ball (1994). They found that the 

normal squeezing force could be given by,  

 lub

0 0

3

2
a a

N a b

R R
F v v

h h
                                        (4.5) 
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where aR  is the radius of disk, 0h  is the fringe-to-fringe gap between two disks, 

  is kinetic viscosity, av  and bv  are the velocities along the normal direction of 

the two disks, respectively.  

An extension of lubrication force for two non-equal disks was derived by Li 

et al. (2004), and they gave the formula of lubrication force as, 

 lub

0 0

2 23 1 1

2
a b a b

N a b
a b a b

R R R R
F v v

h R R h R R
  

 
                         (4.6) 

where aR  and bR  are the radii of two non-equal disks, respectively. If one of the 

solid surfaces is stationary (assuming disk “b” is stationary), then its velocity 

should be set as zero, and equation (4.6) becomes,   

lub

0 0

2 23 1 1

2
a b a b

N a
a b a b

R R R R
F v

h R R h R R
 

 
                              (4.7) 

Equations (4.6) and (4.7) are available for dealing with the lubrication force for 

case 2. If we set bR  , then equation (4.7) reduces to,  

lub

0 0

2 23

2
a a

N a

R R
F v

h h
                                          (4.8) 

It is the lubrication force between a moving disk and a straight stationary wall, 

which is suitable for solving case 1. Now, we know the expression of lubrication 

force for case 1 and case 2. However, there is no available formula of lubrication 

force for case 3. In the next, we will derive the lubrication force for case 3.  

The geometry of two non-equal disks at near distance for case 3 is shown in 

Fig. 4.4. We assume 0 a bh R R  , the Reynolds number here is negligible, and 

the flow between two disks may be approximated as a Stokes flow. In a Stokes 
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flow, the analytical solution of lubrication force may be obtained by solving a 

simple Stokes equation,  

2

2

dp u

dx y
 




                                                  (4.9) 

If the velocity is decomposed into (u, v), where u  is horizontal velocity, v  is the 

vertical velocity, the boundary conditions can be written as, 
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Figure 4.4  Geometry of two non-equal disks at near distance 

For the incompressible flow of Newtonian fluid, the energy dissipation rate   is 

simply defined as, 

ˆ ˆ2 :D D                                                  (4.11) 

where D̂  is the deformation rate tensor of fluid element, and D̂ u 


.                          
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The Rayleigh’s dissipation function  , which is defined as one-half of the rate of 

energy dissipation in the fluid region V, may be obtained by integration of the 

local dissipation rate over individual fluid region V’ ,  
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The lubrication force may be obtained by the straightforward derivative of 

Rayleigh’s dissipation function,  

i iF v                                                   (4.14) 

To get the lubrication force, the most important step is to get u y  . In the next, 

we aim at obtaining u y   by equations (4.9)-(4.10). From the geometry, we can 

get the gap h by using the Taylor’s expansion in second order,  
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   (4.15)                  

By integrating on the Stokes equation (4.9), and substituting the boundary 

conditions equation (4.10) into the result, we can get the horizontal velocity u  as,  
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where 
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Then the fluid flux can be calculated by, 
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1
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a

b

h
h

hh

cdp
Q udy udy h h

dx 
                               (4.17) 

On the other hand, since there is a relative velocity between disks, the gap h  can 

also be expressed as a function of time t , that is 
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   2 2 2 2
0a a a b bh v t h R R x R R x                           (4.18) 

Therefore, the volume of fluid between two solid interfaces from 0 to x is, 

 2 2 2 2
00 0

( ) ( )
x x

a a b a bV t hdx v tx h x R R x R x R x dx                (4.19)               

The Stokes equation (4.9) is linear, so the relationship between fluid velocity and 

fluid flux is also linear, and the fluid flux can be obtained by,  

0( ) ( , )a a aQ V t t v x Q u                                      (4.20) 

By comparing equation (4.17) with equation (4.20), we can get dp dx , and then 

insert dp dx  into equation (4.16), we can finally get u y   as follows,  
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v c Q y c

y h h h h
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                        (4.21) 

By inserting equation (4.21) into equation (4.13), we can get 

2

2

2

2 2 2
1 1 0 0 2

0 0 0 0

1 1

2 2

2 21 1 1 9 1 3 1
4 3

2 2 2

h

h

V

a b a b
a

b a b a

u
dv dx dy

y

R R R R
c c Q Q v

h R R h h h R R

 





 

       

 
      

  
        (4.22) 

From equation (4.14), the normal lubrication force is obtained, that is 

   lub

0 0

2 23 1 1

2
a b a b

N a
a b a b a

R R R R
F v

v h R R h R R


   
  

                      (4.23) 

Equation (4.23) is the formula of lubrication force for disk in case 3. If bR  , 

this equation also reduces to the lubrication force for case 1. Up to now, we have 

known that equations (4.8), (4.5)-(4.7), and (4.23) are the expressions of 

lubrication force for case 1, case 2, and case 3, respectively. We rearrange these 

lubrication force equations as follows, 
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3 2

lub 23

2
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N relative

R
F v


 

   
 

                                 (4.24) 

where   is the distance between two surfaces, effectiveR  is the effective radius, and 

relativev  is the relative velocity between two surfaces. Here, for the case between a 

circulating cell and a stationary flat vessel, effective cR R  and relative cv v ; for the 

case between two equal moving cells, 2effective cR R  and 1 2relative c cv v v  ; for the 

case between a circulating cell and a stationary positive curvature vessel, 

1 2 1 2( )effective c c c cR R R R R   and relative cv v ; and for the case between a moving 

cell and a stationary negative curvature vessel, 1 2 1 2( )effective c c c cR R R R R   

(assuming 1 2c cR R ) and relative cv v , where cR  is the radius of circulating cell, 

and cv  is the velocity of cell. “1” refers to cell-1, and “2” refers to cell-2. 

Ladd (1994) suggested that 1   should be replaced by  1 1 c   , where 

c  is the cutoff spacing for the lubrication force. If c   , then lub 0NF  . If 

c   , then the lubrication force should be calculated and added to the 

hydrodynamic force. Therefore, equation (4.24) can be rewritten as,  
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       
N effective relative

c

F R v                          (4.25) 

where 1c   is adopt in our simulations which also suggested by Ladd.   

4.2  Repulsive van der Waals Force 

There are colloidal nonspecific interactions between particle and substrate. In this 

thesis, we mainly consider the repulsive van der Waals force, which plays a 

central role in all phenomena involving intermolecular forces. In our simulations, 
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the repulsive van der Waals force is applied to prevent the boundaries of cell-cell 

and cell-substrate from overlapping. To quantitatively incorporate the van der 

Waals force into our simulations, we use the simple expression for this force that 

proposed by Bongrand and Bell (1984). In this model, the interaction potentials 

per area are given as mathematical functions of the separation distance. These 

expressions were originally derived for the case of two parallel surfaces. In our 

system, we should apply these expressions for several cases, including a cylinder 

and a flat surface, two equal cylinders, a cylinder and a positive curvature surface, 

and a cylinder and a negative curvature surface. We apply the Deryaguin 

approximation to integrate the potential over the cylinder surface and express 

these interactions as body forces (Israelachvili 1992). Since the separation 

distance is smaller than the radius of circulating cell and the interactions decay 

rapidly with distance, the Deryaguin approximation is valid in our cases.  

The repulsive van der Waals interaction free energies between bodies of 

different geometries were calculated on the basis of Hamaker summation method 

(Hamaker 1937). A typical case is that the repulsive van der Waals interaction 

free energy between two parallel cylinders which is sketched in Fig. 4.5. The 

interaction free energy ( )W   for two parallel cylinders is,  

1 2

3 2
( )

12
c

c

R RAL
W

R R



 

   
                                    (4.26) 

where R  and cR  are the radii of two cylinders, L is the height of cylinders,   is 

the separation distance between two surfaces, and A is the Hamaker constant.    
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Figure 4.5  Van der Waals interaction energy between two cylinders 

So far we have known the interaction free energy between two parallel 

cylinders. Now, it is desirable to relate the force law between two curved surfaces. 

From the expression of interaction free energy ( )W  , the force ( )F   can be 

obtained by taking the derivative of ( )W  , i.e. ( )vF W    


. Therefore, the 

repulsive van der Waals force can be expressed as,  
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F



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

                                      (4.27) 

where effectiveR  is the effective radius, and thicknessL  is the thickness of the cell. 

Equation (4.27) can be extended to other geometries: (1) for the case between a 

circulating cell and a straight vessel, effective cR R , where cR  is the radius of cell; 

(2) for the case between two equal cells, 2effective cR R ; (3) for the case between 

a circulating cell and a positive curvature vessel, ( )effective c cR R R R R   , where 

R  is the radius of curved vessel; and (4) for the case between a circulating cell 

and a negative curvature vessel, ( )effective c cR R R R R    (assume cR R ).  

Although the formula of repulsive van der Waals force is similar to that of 

lubrication force, the fundamental principles of these two forces are totally 
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different. The lubrication force occurs only when the distance between two 

surfaces is within one lattice spacing. Only in this situation, it should be 

calculated and added to the hydrodynamic force to make up the lost force. 

However, the repulsive van der Waals force is always present, and it is the 

colloidal nonspecific interaction force between solid surfaces. 

4.3  Spring Force   

The spring force is induced by the adhesive springs which are idealized from the 

receptor-ligand bonds. In cell adhesion, the adhesive dynamics models and the 

stochastic Monte Carlo method play important roles in determining whether a 

bond is formed or not and whether a bond is broken or still keep bound. Once the 

bound bonds are known, the spring force can be calculated via the compression 

and expansion of bonds. The adhesive dynamics models and the stochastic Monte 

Carlo approach have been introduced in chapter 2. In the next, we will present 

how to get the spring force at each time step based on the knowledge in chapter 2. 

The following steps should be performed: 

Firstly, we calculate the association and dissociation rates of the bond 

according to equations (2.1) (2.2) or (2.4) (2.5).  

Secondly, we compute the probability of forming a bond and the probability 

of breaking a bond in a time interval based on equations (2.6) (2.7) or equations 

(2.8) (2.9) (2.10).  

Thirdly, we carry out the stochastic Monte Carlo calculation, and compare 

the random numbers with the formation and breakage probabilities. If the chosen 
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random numbers are inferior to the probabilities, then the events of forming or 

breaking a bond will happen at the next time step.  

Finally, we calculate the forces of every individual bond according to 

equation (2.3), and then obtain the total spring force by the summation of all these 

forces. The formula of the total spring force is expressed as follows,  

 
1

 
 n

s i
i

F                                               (4.28) 

where n is the total number of bonds at each time step.  

4.4  Cell Dynamics  

The technique used for cell dynamics is based on the approach of Aidun et al. 

(1998) for impermeable particle suspensions with inertia and any solid-to-fluid 

density ratio, which is an improvement over the original algorithm proposed by 

Ladd (1994). This method solves the LBE for the fluid phase and couples with the 

Newtonian rotation and translation of solid particles suspended in the fluid 

through solid-fluid interactions. In cell adhesion, the circulating cell also follows 

Newton’s law of rotation and translation,  

c cdu F

dt m



;  c cd T

dt I


                                           (4.29) 

where cu


 is the velocity of the cell, c  is the angular velocity, cF


 is the total 

force, cT  is the total torque, m  is the mass, I  is the inertia, dt  is the time step. 

c h v sF F F F  
   

, where hF


 is the hydrodynamic force, vF


 is the repulsive van der 

Waals force, and sF


 is the total spring force. c h sT T T  , where hT  and sT  are the 
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torques induced by the hydrodynamic force and spring force, respectively. At 

each iteration, the position cx


 and rotational angle c  of cell are determined by,   

c
c

dx
u

dt





;  c
c

d

dt

                                             (4.30) 

For the purpose of computation stability, a “leap-frog” algorithm, which has 

been widely applied in molecular dynamics (MD) and proved to be of second 

order accuracy (Allen and Tildesley 1987), is adopted to update the position, 

velocity, angular velocity and angle of the cell with the increment of time,  
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I
                                    (4.34) 

where t  is the time step in Newtonian motion.  

In simulating moving cell, on the one hand, some fluid nodes can be covered 

by the moving cell (solid nodes), so the fluids at these solid nodes must be 

removed from the fluid system. On the other hand, when a fluid node previously 

occupied by a cell (solid node) and now is recovered, the fluid density at this 

newly created node should be included in the fluid system again. The distribution 

function at these new fluid nodes is assumed the average of the extrapolated 

values from a second order extrapolation scheme of all the possible directions to 

approximately satisfy the mass conservation at boundaries (Chen and Martinez 
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1996). For example, assuming bx


 is changed from solid node to fluid node, the 

distribution function at bx


 can be calculated by the extrapolation scheme, that is 

 2 ( ) ( 2 )

( )
i b j i b j

j
i b

f x e f x e

f x
N

  

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
                            (4.35) 

where ( )b jx e
 

 and ( 2 )b jx e
 

 are usually the fluid nodes. In some special 

situation, i.e., ( )b jx e
 

 is the fluid node, but ( 2 )b jx e
 

 is the solid node, the 

distribution function at bx


 is not extrapolated but directly replaced by the 

distribution function at ( )b jx e
 

. Here, N is the number of sum. 

4.5  Dimensional Transformation    

In lattice Boltzmann simulation, we should know the transformation between the 

real physical quantities and the discrete lattice quantities, and this process is called 

as dimensional transformation. Assuming the letters with superscript represent the 

lattice quantities and these without superscript stands for the real physical 

quantities. We assume 'L , 'T , and 'G  are the lattice length, evolution time, and 

mass; and L, T, and G are the real physical length, time, and mass, respectively. If 

we set the cell diameter as D, the fluid viscosity as  ,  and the fluid density as  , 

then we can get,  

'D D L ;  
2

'
L

T
  ;  

3
'
G

L
                                  (4.36) 

where 'D  is the lattice cell diameter, '  is the lattice fluid viscosity, and '  is the 

lattice fluid density. From equation (4.36), we can obtain the basic mechanical 

quantities in international unit by, 
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                          (4.37) 

For example, 10D m , ' 20D  ,   1.2 10-6 m2/s, ' 1 12  , 1.05 g/cm3, 

' 1  . From equation (4.37), we can get: 60.5 10 L m, 81.74 10 T s, and 

161.31 10 G kg. It means that the every lattice length is 60.5 10 m , every time 

step in lattice is 81.74 10 s , and one mass unit in lattice is 161.31 10 kg. Based 

on equation (4.37), we can know all the transformations between real physical 

quantities and lattice quantities, such as,  
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Pressure:                         
2 2
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Fluid flux:                              
3
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 
L D

Q Q Q
T D




                                       (4.45) 

It is worth mentioning that the lattice fluid viscosity '  in the D2Q9 lattice 

Boltzmann model is  1
' 2 1

6
   , where   is the non-dimension relaxation 

time. In our simulations, we choose   as 0.75.                             
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4.6  Summary 

In this chapter, we mainly focus on the evaluation of hydrodynamic force, 

repulsive van der Waals force, and spring force. These forces act on the cell and 

govern the cell adhesion and migration under blood flow condition. Once these 

forces are known, the calculation of cell dynamics can be carried out based on the 

Newton’s law of translation and rotation. We also present the dimensional 

transformation between the real physical quantities and the lattice quantities in the 

simulations.  

Up to now, the research methodologies, including the adhesive dynamics 

models (chapter 2), blood dynamics (chapter 3), and cell dynamics (chapter 4), are 

all introduced in detail. Now, let us briefly summarize the computational steps in 

performing cell adhesion and motion at each time step.     

Step 1. Calculate the external forces that acting on the cell.  

Step 2. Check for the formation and breakage of the bonds. 

Step 3. Update the position and angle of the cell in blood flow. 

Step 4. Update the lengths of the bound microvilli. 

With the end of step 4, the time is updated and the process is repeated until the 

end of the simulation.  
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Chapter 5  

Effects of Curvature and Cell-Cell Interaction on Cell 

Adhesion in Micro-vessels 

It has been found that both the circulating blood cells and tumor cells are more 

likely adherent to the curved micro-vessels than the straight ones (Liu et al. 2008; 

Lv et al. 2007). This inspired us that the vessel curvature could influence cell 

adhesion in the curved vessels. Since the blood flow always involves multiple 

circulating cells, it is understandable that the interaction of cells would also affect 

cell adhesion and migration in the blood vessels. In this chapter, we aim at 

numerically studying the effects of vessel curvature and cell-cell interaction on 

cell adhesion in micro-vessels. In this study, the fluid dynamics was solved by the 

LBM, the cells dynamics was governed by the Newton’s law of translation and 

rotation, and the adhesive dynamics model with the Dembo et al.’s model of 

forward/reverse reaction rates was involved to take into account the effect of 

receptor-ligand bonds on cell adhesion. Firstly, a single cell suspension in a 2-D 

symmetric stenotic micro-vessel was carried out to validate the accuracy of 

numerical scheme, and then both the single cell adhesion and double cells 

adhesion in either the straight or curved micro-vessels were studied in detail.  

5.1  Cell Suspension in the Symmetric Stenotic Micro-vessel  

To evaluate the accuracy of present numerical scheme, a cell suspension flow with 

the curved geometries is firstly carried out in a 2-D stenotic micro-vessel. This 
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kind of cell suspension flows through stenosis vessels are of great interest in 

medical science. There are many papers on the study of pulsatile flow in a mildly 

or severely stenotic vessel. A typical work has been numerically done by Li et al. 

(2004) by using the LBM.  
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Figure 5.1  The geometry of stenotic vessel and the snapshots of positions and 

rotation angles of the circulating cell 

As shown in Fig. 5.1, the geometry of the stenotic micro-vessel is designed 

as a 2-D planar blood vessel with the length 32 288L d  m  and the height 

8 72H d  m , where 2 cd R  is the diameter of the moving cell. We also use 

a cell of radius cR = 4.5 m , a typical size of the circulating leukocytes and tumor 

cells in the blood vessel. The stenosis is established by adding two symmetric 

protuberances inside the vessel. The protuberance is a semicircle with the radius 

determined by the width of stenosis throat b, where 1.75b d . The cell is initially 

placed in the left of stenosis throat at (8d, 6d), and it will move through the 

stenosis throat towards the outlet due to the force and torque acting on it. The 

pressure difference ∆p between the inlet and outlet is set as 400 Pa.  
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The snapshots of positions and rotation angles of the cell with respect to the 

traveling time and x-axis are also illustrated in Fig. 5.1. It can be seen that the cell 

moves towards the centerline when it gets near and across the protuberance, but it 

never arrives at the centerline of the vessel. After passing the stenosis, the cell 

migrates up to the same height of the initial position, of which 2d  above the 

centerline. This result is consistent with the Segre´-Silberberg effect (Segre´ and 

Silberberg 1961) observed in the flat pipe flow that neutrally buoyant cylinders 

migrate laterally away from both the wall and the centerline and reach a certain 

lateral equilibrium position.  
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Figure 5.2  The velocity and angular velocity of the circulating cell 

against the traveling time and x-axis 

Fig. 5.2 shows the x, y component of velocity and angular velocity of the 

circulating cell with respect to the traveling time and x-axis value (inset figure). 

The x component velocity at the stenosis throat reaches a peak, with which the 
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amplitude is almost five times of that in the straight part of the vessel. The y 

component velocity changes its direction at the stenosis throat. The trend of 

angular velocity is similar to that of x component velocity. It shows that the cell 

rotates more quickly at the stenosis throat than that in the flat vessel. All the 

observations are the same as that reported by Li et al. (2004).  

In this cell suspension flow, the hydrodynamic force and repulsive van der 

Waals force govern cell motion in the whole journey. Generally speaking, the 

critical length for bond formation is only 40 nm. Since the distance between the 

circulating cell and vessel wall is superior to the critical length, there is no spring 

force involved in this cell migration. Therefore, this cell suspension flow can be 

used to validate the cell migration without cell adhesion under flow condition.  

5.2  Effect of Vessel Curvature  on Cell Adhesion in Micro-vessels  

To evaluate the effect of vessel curvature on cell adhesion, the adhesion of single 

cell in both the straight and curved micro-vessels is carried out. The schematic 

views of the 2-D straight and curved micro-vessels are shown in Fig. 5.3(a)-(b), 

respectively. The length of the straight micro-vessel is L 224 m  and the height 

is D 14 m . The curved micro-vessel is design as follows: the curved vessel of 

diameter D  14 m  starts with a straight segment and then a negatively bent 

segment of / 3  bending angle, with the inner curvature radius of 28 m  and the 

outer radius of 42 m , following with a positively curved segment with the inner 

and outer radii of 42 m  and 56 m , respectively. The right half of the vessel is 

symmetric to the left half with the total vessel length of L 224 m . The radius 
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of the circulating cell is set as cR = 4.5 m . The ratio of the cell diameter to the 

vessel diameter is about 0.64. The cell is initially placed near the inlet, and driven 

by a pressure difference ∆p between the inlet and the outlet. The parameters and 

their values are tabulated in Table 5.1. Here, three different time-steps are 

involved in the simulations: (1) the time-step of 610 s  is applied to check the 

bond formation and breakage in the adhesive dynamics model; (2) the lattice 

Boltzmann relaxation time τ is 1, corresponding to a time-step of 83.6 10 s  is 

used to update the flow filed; and (3) the time-step of 91.2 10 s  is adopted to 

update the cell migration in the Newtonian motion. The use of these three time-

steps maintains the accuracy in the program while also permitting shorter run 

times. Since the flow speed in the capillaries or micro-vessels is very low (in the 

order of 1.0 mm/s), the effect of pulsating blood flow on cell adhesion would be 

very inconspicuous, and therefore it is neglected in our simulations.   
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Figure 5.3  Schematic views of the straight vessel (a) and curved vessel (b). 
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Table 5.1  Simulation parameters and values 

Ref. [1]: Brunk et al. 1997  

Ref. [2]: Chang et al. 2000 

Ref. [3]: Skalak and Chien 1987 

Ref. [4]: Chang and Hammer 1996 

Ref. [5]: Dembo et al. 1988 

 

 

Parameter Definition Value (Reference) 

cR  

cH  

f  

T  

  

  

  

bk  

0
fk  

0
rk  

ts  

rN  

cell radius 

critical length for bond formation 

plasma density 

Temperature 

equilibrium bond length 

plasma kinetic viscosity 

spring constant  

Boltzmann constant 

intrinsic forward reaction rate 

intrinsic reverse reaction rate 

transition state spring constant 

receptor density 

4.5 m (Ref.[1]) 

40 nm (Ref.[2]) 

1.03 g/cm3 (Ref. [3]) 

310 K (Ref. [2]) 

20 nm (Ref. [2]) 

1.210-6 m2/s (Ref. [3]) 

47/ 2m  (Ref. [4]) 

1.3810-23 J/K 

10-2 /s (Ref. [5]) 

10-2 2m / s  (Ref. [5]) 

10-3 N / m  (Ref. [5]) 

210-3 N / m  (Ref. [4]) 
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5.2.1  Single Cell Adhesion in the Straight Micro-vessel  

To further validate the accuracy of numerical scheme that coupled the adhesive 

dynamics model into the LBM, the adhesion of single cell in the straight micro-

vessel is firstly examined. The validation problem is similar to that of Migliorini 

et al. (2002), but the pressure drop is set as 1.5 Pa. Then, the statistics of 

hydrodynamic normal force, tangential force, torque, and cell rolling velocity 

between the present result and other available data are tabulated in Table 5.2. 

From the table, it can be found that our calculation is within the range of other 

available results. 

To study the influence of vessel curvature on cell adhesion, the single cell 

adhesion is carried out in the straight micro-vessel (as shown in Fig. 5.3(a)). To 

form receptor-ligand bonds easily, the cell is arranged near the wall of the vessel 

at the entrance. Once the distance between the end points of a receptor and a 

ligand is within the critical length cH , the cell movement would be influenced by 

the stochastic interactions between receptors and ligands. Here, the pressure 

difference p  between the inlet and outlet is set as 11.2 Pa (0.05 Pa / m ).  

Fig. 5.4 shows the history of single cell location and movement in the 

straight vessel with adhesion ( 0


sF ) and without adhesion ( 0


sF ). Fig. 5.4(a) 

shows the trajectory of the cell, which indicates a rolling effect of the cell due to 

cell adhesion. Figs. 5.4(b)-(c) show the velocity and angular velocity of the 

circulating cell, respectively. Compared to the velocity of non-adhesion case, the 

adhesion effect is obvious. At the entrance, the cell moves in the vessel with a 
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constant velocity at about 940 m / s , a normal velocity in this type of vessels, 

indicating that the cell in this period is unattached. Then the velocity suddenly 

drops down to 800 m / s , suggesting that the bond is being formed. After that 

point, the velocity experiences several fluctuations between 800 and 850 m / s  

and keeps almost stationary fluctuating. The variation of angular velocity is very 

similar to that of the velocity. The angular velocity without adhesion is about 8.5 

rad/s clockwise. For the adhesion case, it fluctuates between 60 and 80 rad/s 

clockwise. Therefore, the adhesion enhances the cell rolling.  

Figure 5.4(d) shows the history of how many bonds formed during the cell 

migration process. The higher number of bonds means there is higher opportunity 

for a cell to be caught by the vessel wall. After off and on interactions between the 

circulating cell and ECs, the steady bonds are formed throughout the journey, 

which are represented by the black band in the figure. Most of the bonds number 

fluctuates between 1 and 8 and very few reaches up to 10. These receptor-ligand 

bonds result in the velocity and angular velocity oscillation as described in Figs. 

5.4(b)-(c).   
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Table 5.2  Validation results  

Physical quantity Present result Literature data (reference) 

Normal force/(pN) 0.32 0.27-1.8 (Ref. [1, 2]) 

Tangential force/(pN) 65.23 45-450 (Ref. [3, 4, 5]) 

Torque/(pN m ) 207.9 140-180 (Ref. [2, 3, 5]) 

Pressure drop/(Pa) 1.5 1.2-4.5 (Ref. [2, 4, 5]) 

Cell velocity/( m / s ) 163.65 25-225 (Ref. [2, 6]) 

 Ref. [1]: Blackshear et al. 1991 

 Ref. [2]: Migliorini et al. 2002 

 Ref. [3]: Goldman et al. 1967 

 Ref. [4]: Chapman and Cokelet 1997 

 Ref. [5]: Graver and Kute 1998 

 Ref. [6]: Munn et al. 1996 
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Figure 5.4  The history of single cell with adhesion and non-adhesion in the 

straight micro-vessel: (a) trajectory, (b) velocity, (c) angular velocity, and 

(d) number of bonds 
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5.2.2  Single Cell Adhesion in a Curved Micro-vessel     

For a single cell travels in the curved micro-vessel, the initial position of cell is set 

the same as that in the straight vessel. The pressure drop p  between the inlet and 

outlet is set as 12.75 Pa  (0.05 Pa / m ), i.e., the same pressure drop per unit 

length as that in a straight micro-vessel.  

The history of cell motion with both adhesion and non-adhesion in the 

curved vessel is illustrated in Fig. 5.5. From Fig. 5.5(a), one can find that the cell 

translates and rotates around the curvature, and the total rotation angle is more 

than 4 , almost the same as that in the straight vessel. Figs. 5.5(b)-(c) show that 

the effect of adhesion on velocity and angular velocity is not as significant as that 

in the straight vessel. The velocity is averaged over 20 s  using a moving average 

algorithm. Compared to the case of without adhesion, both the velocity and 

angular velocity profiles with adhesion generally follow that of non-adhesion at 

the entrance of a curved vessel, but they are lower and fluctuating strongly due to 

the cell adhesion effect in the negative curvature vessel.  

Fig. 5.5(d) shows the history of bonds number in the whole journey. It is 

clearly shown that the bonds start to form at the entrance of the straight part of 

curved vessel, and all the bonds are broken up at about x = 70 m , at which the 

fluid has brought the cell off the vessel wall. At the same location, the cell 

velocities of both with and without adhesion jump up as shown in Fig. 5.5(b), 

indicating that the hydrodynamic force is dominant. During the binding period, 

the number of bonds fluctuates between 1 and 9, and a few reaches up to 10. 
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Moreover, the cell adhesion only takes place at the entrance of the straight and 

negative curvature vessel, once leaving the negative curvature vessel, the cell 

moves as a free cell, and there is no cell adhesion in the positive curvature vessel 

at all. Therefore, it can be concluded that the vessel curvature has significant 

influence on cell adhesion.  

To compare the probability of cell adhesion between the straight and curved 

micro-vessels, the statistics of bonds number are calculated, and the probability of 

each bond number occurring and the ratio of these two probabilities are presented 

in Fig. 5.6. It can be found that, for the smaller bonds number, the probability in 

the straight vessel is larger than that in the curved vessel, and the turning point is 

at bonds number being 5 with the probability of 25.5%. For the larger bonds 

number, i.e. the bonds number larger than 5, the probability in the curved vessel is 

obviously higher than that in the straight vessel, and the larger the bonds number, 

the higher the probability in the curved vessel. It is understandable that the final 

cell adhesion depends on the number of bonds, the more the simultaneous bonds 

form, the higher probability the cell is adhered to the vessel wall.  

Since we use the stochastic Monte Carlo method to calculate the receptor-

ligand binding to evaluate the statistical significance, we calculate three cases for 

the curved micro-vessel under the same conditions. It is found that the relative 

discrepancy is within 5%, as shown in Fig. 5.7. 
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Figure 5.5  The history of single cell with adhesion and non-adhesion in the 

curved micro-vessel: (a) trajectory, (b) velocity, (c) angular velocity, and 

(d) number of bonds  
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Figure 5.6   Comparison of bond formation probabilities and the ratio 

of these probabilities between the straight and curved micro-vessel. 
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Figure 5.7  Comparison of bond formation probabilities in the curved 

micro-vessel under the same condition.  
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5.3  Effect of Cell-Cell Interaction on Cell Adhesion in Micro-vessels  

The blood flow always involves multiple cells, and the interaction of the cells 

would affect the cell adhesion and migration. For simplicity, we investigate two 

cells motion in both the straight and curved vessels. Here, cell-1 is initially placed 

in the same position as the single cell, and cell-2 is placed 0.5 cR  behind the cell-1, 

both of which have been displayed in Fig. 5.3.  

5.3.1  Adhesion and Interaction of Two Cells in the Straight Micro-vessel 

First of all, the effect of cell-cell interaction on cell adhesion is implemented in 

the straight vessel. The pressure drop p  is set as 11.2 Pa (0.05 Pa / m ), the 

same as that of a single cell in the straight vessel.  

The history of the two cells’ motion in the straight vessel is displayed in Fig. 

5.8. The relative position of these two cells at different time is shown in Fig. 

5.8(a). The spacing between two cells becomes bigger and bigger, and the 

variation of the spacing with time is shown in the inset figure. The history of 

vertical spacing between the center of cell and wall is shown in Fig. 5.8(b). The 

cell-1 moves away from the critical length, therefore it is difficult for cell-1 to 

form bonds during the journey. However, the spacing between cell-2 and the wall 

becomes smaller and smaller, and cell adhesion is expected to occur. Fig. 5.8(c) 

shows the history of velocity for both cells. The cell-1 moves in an almost 

constant velocity, but the velocity of cell-2 decreases and fluctuates due to the 

adhesion effect. Figs. 5.8(d)-(e) clearly show the cell rotations and adhesion 

effects. The rotation speed of cell-1 is almost flat since there is no adhesion 



 84

occurring. For cell-2, the angular velocity fluctuates apparently due to the cell 

adhesion effect. Generally, the cell-1 would travel away from the wall under the 

interaction of cell-2, instead, cell-2 would experience significant adhesive 

processes.  

Fig. 5.8(f) shows the history of bonds number of cell-2. Due to the 

interaction with cell-1, the bonds number of cell-2 is obviously larger than that of 

a single cell, and the maximum bonds number can reach up to 22, more than twice 

the number of bond in the single cell case. Unlike that in the single cell adhesion, 

the bonds number of cell-2 experience an unstable variation, and then reach a 

steady bonds number state. To further elaborate on this phenomenon, the relative 

flow vectors around each cell are plotted in Figs. 5.8(g)-(h). The cells not only 

translate but also rotate, and the relative vectors are actually relative to the 

translation only. Around cell-2, the fluid moves faster than the cell and the flow 

vectors are close and clockwise around the cell. In contrast, the relative flow 

vectors are very small around cell-1, indicating the speed of cell-1 is almost the 

same as that of surrounding fluid. Fig. 5.8(i) plots the total perpendicular force of 

each cell along the vessel where the negative sign indicates toward the wall 

(wallward). The wallward force on cell-2 is much larger than that on cell-1, which 

pushes cell-2 to the wall, resulting in much more receptor-ligand bindings than 

cell-1. 
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Figure 5.8  The history of two cells adhesion and interaction in the straight micro-

vessel: (a) trajectory and spacing, (b) trajectory, (c) velocity, (d) angular 

velocity, (e) rotation angle, (f) number of bonds for cell-2, (g) relative 

flow vectors around cell-1 (frame is fixed on cell-1), (h) relative flow 

vectors around cell-2 (frame is fixed on cell-2), and (i) distribution of total 

perpendicular force along the vessel wall. 
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5.3.2  Adhesion and Interaction of Two Cells in the Curved Micro-vessel 

Furthermore, we also study two cells adhesion and interaction in a curved vessel. 

Here, the initial place of both cell-1 and cell-2 is the same as that of two cells in 

the straight vessel. The pressure drop p  is also set as 12.75 Pa  (0.05 Pa / m ), 

the same as that of single cell adhesion in the curved vessel.  

Fig. 5.9 shows the history of two-cell adhesion and interaction in the curved 

vessel. Similar to the single cell case, the cell speed is averaged over 20 µs. Fig. 

5.9(a) shows the relative position of the two cells at different times, the spacing 

between the two cells is almost constant in the bend and becomes larger out of the 

bend. The speed of both cells experiences significant fluctuations due to the 

adhesion and curvature effect, as indicated in Fig. 5.9(b). The speed of cell-1 

firstly drops from 1,030 to 800 µm/s due to the cell adhesion effect, then the cell-1 

moves like a free cell, and its velocity increases and experiences several 

fluctuations. However, the speed of cell-2 experiences two valleys, the 

distribution is almost symmetric and follows the curved geometry, indicating that 

the adhesion occurs at both the entrance and exit of the curved vessel. Fig. 5.9(c) 

shows a strong oscillation of the angular velocity due to the coupled effect of 

adhesion and cell-cell interaction. It is interesting to note that the rotating angle of 

the two cells is almost the same as shown in Fig. 5.9(d), even the adhesion status 

and the flow field of each cell are quite different.  

The number of bonds in cell-1 and cell-2 are illustrated in Figs. 5.9(e) and (f), 

respectively. Compared to the single cell adhesion in the curved vessel, the 
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number of bonds of cell-1 is much smaller, and the adhesive length is much 

shorter. There is nearly no adhesion for cell-1. However, the bonds number of 

cell-2 increases significantly, the highest bonds number reaches 23, and the 

adhesion occurs at both the entrance and exit of the curved vessel. The bonds 

number of cell-2 changes dramatically during the whole process. Firstly, the cell 

rolls as a free cell, since there is no bond formed from the initial position to about 

x = 22 µm. Then the bonds number increases from 1 to 7 in the straight part of the 

vessel. Once entering the curved part of the vessel, the bonds number augments 

quickly. Then there is a sharp drop in the bonds number at about x = 59 µm. A 

possible explanation for this is that, with the increment of bonds formed, the 

distance between the moving cell and ECs at the wall is so close that the repulsive 

van der Waals force is big enough to expel the cell always from the vessel wall. 

When the cell moves into the positive curvature vessel, there is no bond found in 

that domain at all. In contrast, like the situation in the negative curvature vessel 

near the inlet, there are many bonds formed with the same peak and similar 

average value in the negative curvature vessel near the outlet. To further 

investigate the effect of curvature on receptor-ligand binding, the relative flow 

vectors around each cell are plotted in Figs. 5.9(g) and (h), respectively.  

Figure 5.9(i) shows the distribution of total perpendicular force along the 

vessel wall. Similar to that in the straight vessel, the perpendicular force also 

exhibits the oscillatory pattern in the curved vessel; the oscillating amplitude of 

cell-2 is much larger than that of cell-1. Specifically, the magnitude of the 
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wallward force on cell-2 in the curved vessel is about 1.6 times of that in the 

straight mciro-vessel. This explains why cell-2 generates more receptor-ligand 

bonds in the curved vessel than that in the straight one. From above analysis, we 

can conclude that cell adhesion is strongly dependent on local geometry of the 

vessel and the interaction with other cells.  

Figure 5.10 shows the statistical comparison of bonds number for cell-2 

between the straight and curved vessels. Similar to the single cell case, at lower 

bond numbers, the straight vessel has higher probability to form the bonds. The 

turning point is at the bond number of 8. When the bond number is larger than 8, 

the curved vessel has more chances to form bonds between cell-2 and the 

endothelial cells at the vessel wall. At higher bonds number, e.g. bonds number of 

21 or more, the bond forming probability of the curved vessel can be five times 

that of the straight vessel. As discussed earlier, the final cell adhesion is actually 

dependent on the simultaneous bond forming. The higher the bonds number, the 

more likely cell adhesion occurs. Therefore, the cell, particularly under the 

interaction of other cells, has higher probability to adhere to the endothelial cells 

in the curved vessel than in the straight vessel. 
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Figure 5.9  The history of two cells adhesion and interaction in the curved micro-

vessel: (a) trajectory and spacing, (b) velocity, (c) angular velocity, (d) 

rotation angle, (e) number of bond for cell-1, (f) number of bond for cell-2, 

(g) relative flow vectors around cell-1 (frame is fixed on cell-1), (h) 

relative flow vectors around cell-2 (frame is fixed on cell-2), and (i) 

distribution of total perpendicular force along the vessel wall. 
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Figure 5.10  Comparison of bond formation probabilities and the ratio of these 

probabilities between the straight and curved micro-vessels. 
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5.4  Summary 

The effects of the vessel curvature and the cell-cell interaction on cell adhesion in 

the micro-vessels have been numerically studied by using the LBM. The cell 

adhesive dynamics is modeled by adhesive receptor-ligand bond which is based 

on the Dembo et al.’s model of reaction rates law. Both the single cell and double 

cells in either the straight or the curved micro-vessel have been investigated. The 

simulation results lead to the following conclusions: 

(1) The local geometry or the curvature has significant influence on bond 

formation between the traveling cells and endothelium at the vessel wall. 

Usually, the simultaneous number of bond would increase in a curved vessel, 

and consequently the probability of cell adhesion is increased as well. 

(2) The interaction between the traveling cells is significant, and the cell-2 (rear) 

would experience higher wallward force, which would enhance the receptor-

ligand binding, therefore, this interaction would increase the cell adhesion 

probabilities. 

(3) From a physiological point of view, most of the micro-vessels are either 

curved or bifurcated and there are always multiple cells traveling in the same 

micro-vessel. The above conclusions indicate that the study of the single cell 

adhesion in a straight vessel may underestimate the capability of cell 

adhesion in the micro-vessels under real physiological and pathological 

conditions. 
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Chapter 6  

Effects of Wall Shear Stress and its Gradient on Tumor 

Cell Adhesion in Curved Micro-vessels 

It has been reported that the blood cells and tumor cells are more easily arrested 

by the curved micro-vessels than the straight ones (Liu et al. 2008; Lv et al. 2007). 

Our previous study in chapter 5 indicates that the vessel curvature and cell-cell 

interaction would significantly enhance this preferential cell adhesion in the 

curved vessels (Yan et al. 2010a). At the curved sites, there are rather complicated 

distributions of wall shear stress, which appears to render these sites to be prone 

to catch cells. However, the mechanical mechanism of the blood cells and tumor 

cells accumulating at curved sites and the quantitative relationship between the 

wall shear stress variation and cell adhesion are not yet completely understood. 

This motivates us to experimentally and computationally study the effects of wall 

shear stress and its gradient on tumor cell adhesion in the curved micro-vessels.  

Our in vivo experiments were performed on the micro-vessels (post-capillary 

venules, 30-50 µm diameter) of rat mesentery. A straight or curved vessel was 

cannulated and perfused with tumor cells by a glass micropipette at a velocity of 

about 1.0 mm/s. At less than 10 minutes after perfusion, there was a significant 

difference in cell adhesion to the straight and curved vessel walls. In 60 minutes, 

the averaged adhesion rate in curved vessels was about 1.5 fold of that in straight 

vessels. In the curved segments, 45% of cell adhesion was initiated at the inner 

side, 15% at outer side and 30% at both sides of the curved vessels. 
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We also performed the computational study of tumor cells adhesion in the 

curved micro-vessels. The numerical methods adopted in this study are the same 

as those in our previous study (Yan et al. 2010a). The fluid dynamics was carried 

out by the LBM, and the cell dynamics was solved by the Newton’s law of 

translation and rotation. However, the adhesive dynamics model adopted here was 

newly modified based on the Bell’s model of forward/reverse reaction rates to 

consider the influence of wall shear stress and its gradient on receptor-ligand 

bonds, in which the positive shear stress/gradient jump would stimulate cell 

adhesion while the negative shear stress/gradient jump would weaken cell 

adhesion. It is found that the wall shear stress/gradient, over a threshold, have 

significant contribution to the cell adhesion by activating or inactivating cell 

adhesion molecules. Our results can elucidate why the tumor cell adhesion always 

occurs at the positive curvature in the curved vessels with very low Reynolds 

number laminar flow (in the order of 10-2).  

6.1  Adhesion Behavior States in the Straight Micro-vessel 

To validate the present numerical scheme which coupled with the Bell’s model 

into the LBM, cell adhesion with different values of the Bell’s model parameter is 

implemented first in the straight vessel. The length of the straight vessel is 

480 m , and the diameter of the vessel is 40 m . The pressure difference p  

between the inlet and outlet is set as 10.0 Pa. Except for the unstressed 

dissociation rate 0
rk  and microvillus reactive compliance  , the values of the 

other simulation parameters are listed in Table 6.1.  
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Table 6.1  Simulation parameters and values 

Ref. [1]: Brunk et al. 1997 

Ref. [2]: Chang et al. 2000 

Ref. [3]: Skalak and Chien 1987 

Ref. [4]: Chang and Hammer 1996 

Ref. [5]: Bell 1978 

 

 

 

 

Parameter Definition Value (reference) 

cR  

cH  

f  

  

T  

  

bk  

  

n
fk  

0
rk  

  

rN  

cell radius 

cut-off length for bond formation 

plasma density 

plasma kinetic viscosity 

temperature 

equilibrium bond length 

Boltzmann constant 

spring constant 

normal association rate 

unstressed dissociation rate 

reactive compliance 

receptor density 

5.0 m (Ref. [1])  

40 nm (Ref. [2]) 

1.03 g/cm3 (Ref. [3]) 

1.210-6 m2/s (Ref. [2]) 

310 K (Ref. [2]) 

20 nm (Ref. [2]) 

1.3810-23 J/K 

210-3 N/m (Ref. [4]) 

84 s-1 (Ref. [2]) 

200 s-1 (Ref. [5]) 

0.75
o

A ( Ref. [5]) 

47 2/ m (Ref. [4]) 
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By setting the Bell’s model parameters:   = 0.5
o

A and 0
rk = 200 1s , the 

simultaneous number of bonds for a representative rolling cell is shown in Fig. 6.1. 

After a short traveling, the total number of bonds of the cell fluctuates from 1 to 

15 with an average of about 9, never falling below one bond, so the cell is always 

bound to the surface of endothelial wall. These stretched bonds, which provides a 

large component of spring forces to act in a direction to resist the hydrodynamic 

shear force, would also reduce the instantaneous cell velocity and angular velocity 

due to adhesion effect, which has been discussed in chapter 5. 
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  Figure 6.1  Number of bonds of the representative rolling cell. 

The Bell’s model parameters are 
o

0.5A   and 0 1
rk 200s  

It has been reported that these dynamics states of cell adhesion are governed 

by the Bell’s model parameters of dissociation rate and reactive compliance 

(Chang et al. 2000). By using the parameters that tabulated in Table 6.1, we 

simulate a series of cells with different unstressed dissociation rates and 

microvillus reactive compliances. In the simulations, we choose   and 0
rk  as: (A) 
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0.5
o

A and 1000 1s , (B) 0.5
o

A and 200 1s , (C) 0.75
o

A and 20 1s , and (D) 0.5
o

A and 

20 1s , respectively. The representative trajectories of four adhesion behavior 

states are shown in Fig. 6.2.  
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Figure 6.2  Representative trajectories of adhesion behavior states in the straight 

vessel. The Bell’s model parameters   and 0
rk are: (A) 0.5

o

A and 1000 1s ,  

(B) 0.5
o

A and 200 1s , (C) 0.75
o

A and 20 1s , and (D) 0.5
o

A and 20 1s  

The average velocities of the cells for the no adhesion, cell rolling and firm 

adhesion case are approximately 40%Vh, 6.5%Vh and 0.9%Vh, respectively. Here, 

Vh is the hydrodynamic free-stream velocity. For the cell landing case, the cell 

firstly circulates with a high velocity and suddenly firmly adheres to the vessel 

wall at about t = 0.3 s. It can be found that our numerical results agree well with 

the definition of adhesion behavior states (Evans 1997; Caputo and Hammer 

2005), suggesting our present numerical scheme is available for simulating 

different dynamics states of cell adhesion in the straight vessels. Moreover, one 

can find that the unstressed dissociation rate 0
rk  has greatly influence on cell 
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adhesion under the same association rate fk  (where fk = 84 s-1). The larger 

unstressed dissociation rate the more obvious the cell adhesion effect will be. 

6.2 Experimental Study 

Before carrying out the numerical studies, the in vivo experimental observation of 

tumor cells adhesion in the curved micro-vessels is presented. Up to date, the 

circulating blood cells adhesion in the curved micro-vessels has been studied 

experimentally by performing on rat mesentery (Liu et al. 2008). These 

experimental observations suggested that the circulating blood cells were likely to 

gather together initially from the positive curvature segments (inner curved sites) 

in the curved micro-vessels. To further explore these strange phenomena of cell 

adhesion, the circulating tumor cells adhesion is also experimentally carried out in 

the curved micro-vessels. 

6.2.1 Experimental Methods 

The experiments were finished by our partners Prof. Fu Bingmei and Dr. Cai Bin, 

who are both at the Department of Biomedical Engineering, The City College of 

the City University of New York. Experiments were performed on rat mesentery. 

All procedures have been approved by the Animal care and Use Committees at 

the City College of the City University of New York. Female Sprague-Dawley 

rats (250-300 g) were supplied by Hilltop Laboratory Animals (Scottdale, PA). 

Rats were anesthetized with pentobarbital sodium given subcutaneously at the 

initial dosage 65 mg/kg and additional 3 mg/dose as needed. After a rat was 
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anesthetized, a midline surgical incision (2-3 cm) was made in the abdominal wall. 

The mesentery was gently taken out from the abdominal cavity and spread on a 

glass coverslip, which formed the base of the observation platform as previously 

described (Fu et al. 2005). The gut was gently pinned out against a silicon elastomer 

barrier to maintain the spread of the mesentery. The upper surface of the mesentery 

was continuously superfused by a dripper with mammalian Ringer solution at 35-

37C, which was regulated by a controlled water bath and monitored regularly by 

a thermometer probe (Fu and Shen 2004; He et al. 1998). The micro-vessels 

chosen for the study were straight or curved post-capillary venules, with diameters 

of 30-50 m. All vessels had brisk blood flow immediately before cannulation 

and had no marginating white cells.  

The detailed method for cell adhesion experiment was described in Shen et al. 

(2010). Briefly, a single post-capillary venule was cannulated with a glass 

micropipette (~30 m tip diameter, WPI Inc., Florida) and perfused with the 1% 

BSA rat Ringer solution with Calcein AM-labeled human breast cancer cells 

MDA-MB-231 at a mean flow velocity of ~1mm/s, which is the normal blood 

circulation velocity in this type of vessels. For this perfusion velocity, there were 

~50 cells/min out of the micropipette tip if the cell concentration in the pipette 

was 4 million/ml. A Nikon Eclipse TE-2000 inverted microscope with a 20X 

objective lens (NA 0.75, super, Nikon) was used to observe the adhesion process 

and pictured by a high performance digital 12 bit CCD camera (SensiCam QE, 

Cooke Corp., Romulus, MI) using InCyt Im 1 software. Adherent cells were 
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counted offline in a vessel segment of 300-400 m length and expressed as the 

number of adherent cells per 5000 μm2 plane area of the vessel segment. The 

measuring area was set at least 150 μm downstream from the cannulation site of 

the vessel to avoid entrance flow effects.  

6.2.2 Experimental Results 

The experimental installation is shown in Fig. 6.3 (a), and Fig. 6.3 (b) shows a 

typical photomicrograph for tumor cell adhesion in a curved micro-vessel. Figure 

6.3(c) summarizes the cell adhesion in 14 curved vessels and 19 straight vessels. 

Overall, in less than 10 minutes, tumor cells adhered significantly more in the 

curved vessels than in the straight ones. For a 60 minutes period, the averaged 

adhering rate of tumor cells in the curved vessels was ~1.5 fold of that in the 

straight vessels (p < 0.03).  

Figure 6.3 (d) presents the distribution of adhering sites as a function of the 

vessel diameter and the curve angle in the curved vessels. Figure 6.3 (e) compares 

the adhesion initiation times at different sites and in the curved and straight 

vessels. Cell adhesion started at the inner side (positive curvature) of the curved 

sites in 23 out of 51 curved segments (45%) and with the shortest initiation time 

of 4.5 ± 0.7 (mean ± SE) minutes; started at both sides in 15 out 51 curved 

segments (30%) with an insignificantly longer initiation time of 5.2 ± 0.7 minutes; 

started at the outer side in 13 out of 51 curved segments (25%) with the longest 

initiation time of 8.9 ± 1.9 minutes (p < 0.05). Compared to the straight vessels 

with the initiation time of 7.0 ± 0.7 minutes, the initiation time at the inner side 
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(negative curvature) of the curved vessels was significantly shorter. Our results 

indicate that tumor cells have preference in adhering to the wall of the curved 

vessels and initiate at the inner side of the curved segments. Although there was 

no preference in cell adhesion in the size of the post-capillary venules in our range 

(30-50 m diameter), there was a preference in the curve angle. Cell adhesion 

tended to initiate in the inner or both sides of the curved segments if the curve 

angle is in the middle zone of 50-150 degrees (see Fig. 6.4 for the definition of the 

curve angle  ). In contrast, cell adhesion tended to initiate at the outer side when 

the curve angle was either small or large.   
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Figure 6.3  (a) Experimental installation. (b) Photomicrograph of cancer cell 

adhesion to a curved micro-vessel of diameter ~40 m after ~30 minutes 

perfusion. The bright spots are adherent tumor cells. Flow was from left to 

right. (c) Comparison of tumor cell adhesion in the straight and curved 

vessels. Data presented are mean ± SE. *, p < 0.03. (d) Location of initial 

tumor cell adhesion in the curved vessels as a function of curve angles and 

vessel diameters. (e) Comparison of initiation times for tumor cell adhesion 

in the straight vessels, at inner, outer and both sides of curved vessels. Data 

presented are mean ± SE. *, p < 0.05; #, p < 0.01. 
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6.3  Modified Adhesive Dynamics Models 

The adhesive dynamics model is coupled into the fluid dynamics and cell 

dynamics to take into account the effect of receptor-ligand bonds on tumor cell 

adhesion. The interactions between receptors and ligands are realized via the 

compression and expansion of the ideal adhesive springs, and the kinetic 

expressions for receptor-ligand bonds relate the bond association and dissociation 

rates. The normal bonds association and dissociation rates have been introduced in 

chapter 2, they are  

84n
fk                                                      (6.1) 

0 expn
r r

b

f
k k

k T

 
   

 
                                           (6.2) 

where 84n
fk s-1 is a reasonable value that extensive simulations have shown can 

properly recreate experimental values for velocity and dynamics of rolling in the 

straight micro-vessels (Chang et al. 2000),  bk  is the Boltzmann constant, T  is the 

temperature, 0
rk  is the unstressed dissociation rate,   is the reactive compliance, 

and f  is the spring force of each bond calculated from the Hooke’s law: 

( ) f    , where   is the spring constant,   is the distance between receptor 

and ligand, and   is the equilibrium bond length.  

From the analysis of above experiments, it is found that the tumor cell 

adhesion usually occurs at the conjunction of curvatures in which the wall shear 

stress and its gradient vary significantly. That more cell adhesion occurs at the 

conjunction indicates that more ligands are activated there, i.e., the wall shear 
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stress and its gradient would promote the activation of ligands by increasing the 

bond association rate and decreasing the dissociation rate. Therefore, we modify 

the Bell’s model and take into account the effect of wall shear stress on bond 

association/dissociation rates:  

1

0

k

n
f fk k



 

  
 

                                                (6.3) 

2

0

k

n
r rk k



 

  
    

                                              (6.4) 

and the effect of wall shear stress gradient on bond association/dissociation rates:   

3expn
f f

d
k k k

dl

    
 

                                           (6.5) 

4expn
r r

d
k k k

dl

    
 

                                           (6.6) 

where   and 0  are the wall shear stress along the curved vessel and along the 

straight part of curved vessel, and d dl  is the wall shear stress gradient along the 

curved vessel. 1k , 2k  and 3k , 4k  are coefficients that represent the sensitivity of 

wall shear stress and its gradient to bond association/dissociation rates, 

respectively. The modified two adhesive dynamics models can reduce to the 

Bell’s model at 1 2 0k k   and 3 4 0k k   which mean that the bond reaction 

rates have no dependence on wall shear stress and its gradient, of which has been 

studied in our previous work (Yan et al. 2010a). In the current simulations, we 

assume 1k , 2k  and 3k , 4k  to be 1.0, -5.0 and 1.0 m/Pa, -50.0 m/Pa, respectively, 

to match the experimental observations. 

In this modified model, we consider three cases: 
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Case 1: The association/dissociation rates of the receptor-ligand bonds follow 

equations (6.3)-(6.4), which continuously vary with the ratio of wall shear 

stresses 0  ; 

Case 2: The association/dissociation rates of the receptor-ligand binding follow 

equations (6.5)-(6.6), which continuously change with the wall shear stress 

gradient d dl ; 

Case 3: Only the jumps or drops in the wall shear stress gradient can trigger the 

change of bond association/dissociation rates. Once triggered, the bond 

association/dissociation rates will keep the maximum/minimum value as 

calculated by equations (6.5)-(6.6) until the next wall shear stress gradient 

jump or drop occurs.   

If the numerical results that based on these two modified adhesive dynamics 

models agree well with the in vivo experimental observations, we can deem our 

assumptions that the dependences of tumor cell adhesion on local wall shear stress 

and its gradient in the curved vessels are rational in the real biophysical situations. 

6.4   Wall Shear Stress Distributions in the Curved Micro-vessel 

From our new experiments described above, we can find that tumor cells 

preferred to adhere to the curved vessels and initiate at the inner side of the curved 

sites. To explore the mechanics of this phenomenon, a curved micro-vessel with 

both positive and negative curvature is designed. Fig. 6.4 shows the schematic 

view of the 2-D curved vessel, which is similar to our previous model geometry in 

chapter 5 (Yan et al. 2010a) except different dimensions. The vessel of diameter 
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D  40 m  starts with a straight segment and then a negatively bent segment of 

/ 3    bending angle, with the inner curvature radius of 80 m  and the outer 

radius of 120 m , following with a positively curved segment with the inner and 

outer radii of 50 and 90 m , respectively. The right half of the vessel is 

symmetric to the left half with the total vessel length 420L  m . Here, we used 

a cell of radius 5cR  m , a typical size of a circulating leukocyte or tumor cell. 

Au, Bu, Cu, Du and Ab, Bb, Cb, Db are the conjunction of positive and negative 

segments, respectively. The cell is driven by a pressure difference p  between 

the inlet and outlet, and the simulation parameters and their values have been 

listed in Table 6.1. 
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Figure 6.4  Schematic view of the curved micro-vessel 

In our modified adhesive dynamics models, the wall shear stress and its 

gradient are the stimulus for changing the bond association/dissociation rates, 

therefore it is crucial to quantify the wall shear stress distribution. The flow field 

is firstly simulated to get the distributions of wall shear stress and their gradients. 



 109

Here, the pressure drop p  is set as 10 Pa. Fig 6.5 (a) shows the wall shear stress 

distribution along both the upper and bottom vessel walls, and Figs. 6.5(b)-(c) 

show the corresponding shear stress gradient distributions, which are almost 

symmetric to x  = 210 m . There are jumps (sudden increase) and drops (sudden 

decrease) in the wall shear stress and shear stress gradient at the conjunctions of 

the curved parts. Compares to the shear stress in the straight part of the curved 

vessel, the wall shear stress jumps occur at [Au, Bu] and [Cu, Du] while the drop 

occurs between Bu and Cu along the upper wall; along the bottom wall, the jump 

occurs between Bb and Cb while the drops happen at [Ab, Bb] and [Cb, Db]. As to 

the wall shear stress gradient, the jumps occur at Au and Cu while the drops occur 

at Bu and Du along the upper wall, and the jumps occur at Bb and Db while the 

drops occur at Au and Cu along the bottom wall. The wall shear stress gradient 

jump is quite high at Cu of upper wall and at Bb of bottom wall, where the 

preferred locations of tumor cell adhesion observed in our above experiments. If 

the modified adhesive dynamics models are capable of describing the effect of the 

wall shear stress, the calculated tumor cell adhesion would most likely occur at 

these two locations. 
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Figure 6.5  Wall shear stress distributions in the curved micro-vessel: (a) shear 

stress distributions along the upper/bottom walls, (b) shear stress gradient 

along upper wall, and (c) shear stress gradient along bottom wall 
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6.5   Modified Adhesive Dynamics Model: case 1 

Firstly, the tumor cell adhesion with the modified adhesive dynamics model under 

the assumptions of case 1 is carried out by the LBM. Since the curvature would 

affect the trajectory of the cell, to assure the cell would roll over the conjunctions, 

the cell is released near either the upper or the bottom wall at the entrance.  

Fig. 6.6 shows the history of tumor cell adhesion and migration when the cell 

is released near bottom wall. Fig. 6.6(a) shows the cell trajectory with constant 

time step. The denser trajectory occurs between Ab and Bb due to the centrifugal 

effect (Yan et al. 2010a); and the coarser trajectory happens between Cb and Db, 

indicating a faster cell motion there due to the decrease in fk  and increase in rk , 

both of which result from the drop of wall shear stress there. From Fig. 6.6(a), it 

can be found that the cell not only translates but also rotates, with which the 

rotation angle is about 20  clockwise in whole the journey. The corresponding 

cell velocity and angular velocity are illustrated in Figs. 6.6(b)-(c), respectively. 

The cell speed fluctuates between 50 and 750 m/s from t = 0 to 1.3 s, and it 

suddenly increases from 750 to more than 1200 m/s when the cell passes Db and 

enters into the straight part of the curved vessel. The angular velocity of the cell 

mostly vibrates between -75 and -10 rad/s, and it fluctuates more strongly in the 

positive curvature vessel between Bb and Cb, which varies between -105 and -25 

rad/s. Fig. 6.6(d) shows the history of bonds number at each location. The higher 

number of bonds means the larger opportunity of the cell arrested at the vessel 

wall. From Ab to Bb, the number of bonds fluctuates between 0 and 14, and the 
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number of bonds becomes less at [Bb, Cb], where the most bond number fluctuates 

between 0 and 8, although there is an increase in fk  and decrease in rk  that 

resulted from the jump of shear stress, which indicating that not the shear stress 

but the curvature effect on cell adhesion is dominant in this positive curvature 

vessel. Since x  ≈ 288.0 m, the number of bonds stay zero, which suggesting that 

there is no cell adhesion at all and the cell moves freely in the curved vessel. 

When the tumor cell is released near the upper wall, the cell trajectory is 

shown in Fig. 6.7(a). It can be found that the denser trajectory happens between 

Cu and Du, indicating that there is stronger cell adhesion in the positive curvature 

where the local wall shear stress significantly increase. This can further be proved 

by the number of bonds which is displayed in Fig. 6.7(d). The number of bonds 

between Cu and Du increases rapidly, and it fluctuates between 6 and 24, much 

larger than that of any other locations where the bonds number only oscillates 

between 0 and 16. Figs. 6.6 and 6.7 indicate that under the assumptions of case 1 

that the bond association and dissociation rates continuously change with the wall 

shear stress, the most likely locations for tumor cell adhesion are between Cu and 

Du, where the jump in the wall shear stress occurs. However, the shear stress 

effect on tumor cell adhesion is not as significant as that seen in the experiments 

in the positive curvature between Bb and Cb. 
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6.6   Modified Adhesive Dynamics Model: case 2 

Now, the tumor cell adhesion with the refined adhesive dynamics model whose 

bond association/dissociation rates significantly depends on the wall shear stress 

gradient is carried out in the curved micro-vessel.  

Fig. 6.8 shows the history of tumor cell motion when the cell is released near 

bottom wall. From the cell trajectory in Fig. 6.8(a), the denser trajectory occurs 

near the conjunction Bb ( x  ≈ 163.0 m), indicating a slower cell motion there due 

to the stronger adhesive effect caused by the large jump in the wall shear stress 

gradient at Bb. Another denser trajectory happens near the conjunction Cb ( x  ≈ 

256.0 m) where the shear stress gradient has a sudden drop. This slower cell 

motion is not due to the adhesive effect but due to the centrifugal effect (Yan et al. 

2010a). The coarser trajectory exists in the positive curvature vessel (between Bb 

and Cb), indicating a faster cell motion due to the centrifugal effect. The 

corresponding velocity history can be found in Fig. 6.8(b). As shown in Fig. 

6.8(c), the variation of angular velocity is very similar to that of velocity. It 

fluctuates between -20 and -90 rad/s with an average value of about -40 rad/s, and 

it is larger in the positive curvature vessel than that at other locations. During the 

journey, the cell rotates more than 25  as shown in Fig. 6.8(a). The history of 

bonds number at each location is shown in Fig. 6.8(d). The maximum bonds 

number occurs near the conjunction Bb, although it is not distinctively higher than 

that at other locations.  

When the tumor cell is released near the upper wall, as shown in Fig. 6.9(d), 



 114

the number of bonds near the conjunction Cu also increases but the increase is not 

as high as that near Bb because the jump in the wall shear stress gradient near Cu 

is less than that near Bb (Figs. 6.5(b)-(c)). Figs. 6.8 and 6.9 indicate that under the 

assumptions in case 2 that the association/dissociation rates of receptor-ligand 

binding continuously change with the wall shear stress gradient, the most likely 

locations for tumor cell adhesion are near Bb and Cu where the jumps in the wall 

shear stress gradient occur, although this shear effect is not as significant as seen 

in the experiments.  

6.7 Modified Adhesive Dynamics Model: case 3 

Under real physiological conditions, the association/dissociation rates of binding 

may not alter instantaneously with the variation of wall shear stress gradient. Most 

likely the wall shear stress gradient jump or drop, over certain threshold, is a 

stimulus for triggering the change in the association and dissociation rates of 

binding. Once triggered, these rates will stay the same values until the next jump 

or drop occurs. Under the assumptions of case 3, the effect of local shear stress 

gradient on tumor cell adhesion in a curved vessel is predicted. 

Fig. 6.10 shows the cell trajectory, velocities and number of bonds when the 

cell is released near the bottom wall. When the cell approaches to the conjunction 

Bb (x ≈ 166.7 m ), the cell moves slower and slower, representing by a black 

band in the cell trajectory (in Fig. 6.10(a)), a flat plateau in displacement (in Fig. 

6.10(b)) and a low and weak oscillation in the velocity (in Fig. 6.10(c)), which 

eventually goes to zero. The rotational velocity experiences the similar process. 
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When approaching to the conjunction Bb, the cell rolls slower and slower and 

eventually it stops, as shown in Figs. 6.10(d)-(e). Due to the change in the 

association and dissociation rates, the number of bonds increases significantly 

near the conjunction Bb (in Fig. 6.10 (f)). 

When the tumor cell is released near the upper wall, more bonds are formed 

from conjunction Au to Bu, and the number of bonds decreases from Bu to Cu (in 

Fig. 6.11(f)). Consequently, the cell moves/rolls slower from Au to Bu, and then 

moves/rolls faster from Bu to Cu, as shown in Figs. 6.11(a)-(e). When the cell is 

approaching to conjunction Cu, the number of bonds increases suddenly, and 

consequently the cell slows down and eventually stops, indicating that the strong 

tumor cell adhesion occurs near Cu. Figs. 6.10-6.11 suggest that under the 

assumptions in case 3 that the bond association/dissociation rates vary with the 

jumps or drops of wall shear stress gradient, the firm adhesion of tumor cell 

occurs at positive curvature in both the upper and bottom vessel walls, which is in 

agreement with the in vivo experimental observation.        

We have presented the tumor cell adhesion with two modified adhesive 

dynamics models under the assumptions of three different cases. In case 1, the 

bond reaction rates are assumed to continuously vary with the wall shear stress. 

When the tumor cell is released near the bottom wall, the larger adhesion 

probabilities take place between the conjunctions Ab and Bb at the outer side of 

vessel with a curved angle θ = 60 degree, which agree unanimously with the 

experimental results in Fig. 6.3(d) that tumor cell adhesion prefer to occur at the 
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outer side when the curved angle is about 60 degree. When the tumor cell is 

released near the upper wall, the most likely locations for tumor cell adhesion is 

found between Cu and Du at the inner side of curved vessel, owing to the 

signficant increase of wall shear stress there. This result approximates the 

obervastion in Fig. 6.3(b) (location 2), as well as that in Fig. 6.3(d) when θ is 

about 70 degree.  

Under the assumptions in case 2 that the bond association/dissociation rates 

continuously change with the wall shear stress gradient, the larger adhesion 

probabilities are found near Bb and Cu where the jumps of wall shear stress 

gradient occur, nevertheless, this influence is quite weak, indicating that the effect 

of transient shear stress gradient on tumor cell adhesion can be neglected unless 

the wall shear stress gradient is over a critical value in the curved vessels. The 

tendencies of simulation results in this case are similar to the in vivo observations 

at locations 1 and 2 in Fig. 6.3(b).   

As far as case 3 is concerned, the association/dissociation rates of receptor-

ligand binding alter with the jumps or drops of wall shear stress gradient. In this 

case, the tumor cell is found to be firmly arrested by the vessel wall at the inner 

side of curved vessels when the tumor cell is released from both the bottom and 

upper walls. When the tumor cell is released near bottom wall, the tumor cell 

finally stops in the middle zones of [Bb, Cb], which are the most typical adhesion 

locations that seen in the experiments when the curved angle of vessel is around 

120 degree. When the tumor cell is released near upper wall, the tumor cell is 
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eventually caught by the curved vessel in the middle zones of [Cu, Du]. The 

predications of tumor cell adhesion along bottom and upper walls under the 

assumptions of case 3 are identical to the experimental observations in Fig. 6.3(b), 

in which the firm adhesion occurred at locations 1 and 2. It is realized that only 

the firm adhesion of tumor cells can effectively contribute to cancer metastasis in 

the microcirculation.  

In all three simulation cases corresponding to the in vivo single vessel tumor 

cell perfusion experiments, we have demonstrated that tumor cells adhere more 

easily in the curved vessel than in the straight vessel, which is in agreement with 

the experimental observations summarized in Fig. 6.3. Overall, the present revised 

models are capable of simulating the tumor cell adhesion phenomena in the 

curved micro-vessel by activating or inactivating cell adhesion molecules that 

located at the surfaces of tumor cells and endothelial cells to form receptor-ligand 

bonds, whose association/disassociation rates would be enhanced or weakened by 

the shear stresses/gradients along the vessel walls. However, to simplify the 

conditions, we neither considered the contribution from the circulating blood cells 

in the simulation, nor in the experiment. We will incorporate the effect of 

circulating blood cells on tumor cell adhesion in the future study. 
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Figure 6.6  Case 1: the history of the cell released near the bottom wall: (a) 

trajectory, (b) velocity, (c) angular velocity, and (d) number of bonds. 
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Figure 6.7 Case 1: the history of the cell released near the upper wall: (a) 

trajectory, (b) velocity, (c) angular velocity, and (d) number of bonds. 
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Figure 6.8  Case 2: the history of the cell released near the bottom wall: (a) 

trajectory, (b) velocity, (c) angular velocity, and (d) number of bonds 
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Figure 6.9  Case 2: the history of cell released near the upper wall: (a) trajectory, 

(b) velocity, (c) angular velocity, and (d) number of bonds. 
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Figure 6.10  Case 3: the history of cell released near the bottom wall: (a) 

trajectory, (b) displacement, (c) velocity, (d) angular velocity, (e) angle, and 

(f) number of bonds 
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Figure 6.11  Case 3: the history of cell released near the upper wall. (a) trajectory, 

(b) displacement, (c) velocity, (d) angular velocity, (e) angle, and (f) number 

of bonds 

6.8  Summary 

The effects of the local wall shear stress and its gradient on tumor cell adhesion in 

the curved micro-vessel has been numerically studied by the LBM. A modified 

adhesive dynamics model was proposed to take into the consideration of the wall 

shear stress and its gradient in the receptor-ligand binding. Both cases when the 

tumor cell is released near the bottom wall and near the upper wall in a curved 

micro-vessel have been investigated. Combined with the observations from the in 

vivo tumor cell adhesion experiments which satisfied the simulation conditions 
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(e.g., negligible cell-cell interaction between tumor cells due to a controlled tumor 

cell perfusion rate of about one cell per second in the vessel), the simulation 

results lead to the following conclusions: 

(1) The present numerical scheme that coupled the adhesive dynamics model into 

the LBM is capable of simulating different adhesion behavior states of the cell 

in the straight micro-vessels.  

 (2) The tumor cell adhesion requires a critical wall shear stress and its gradient in 

the curved micro-vessel. Once the wall shear stress and its gradient are 

superior to the critical value, it would trigger the bond association/dissociation 

rates to change; otherwise, the effect of wall shear stress/gradient on tumor 

cell adhesion can be neglected. 

(3) The present revised models are capable of simulating the tumor cell adhesion 

phenomenon in the curved micro-vessel. From a physiological point of view, 

it can be deemed that the binding affinity of cell adhesion molecules would be 

enhanced or weakened by the variation of wall shear stress. If the wall shear 

stress and its gradient are positive and reach some threshold, the ECs lining 

the vessel wall and tumor cells would be activated to form more adhesive 

bonds. On the contrary, they would be inactivated by the negative wall shear 

stress and its gradient to weaken the capability of bond formation or accelerate 

the breakage of the previously formed bonds.  
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Chapter 7  

Effect of Divalent Cations on Cell Adhesion between 

Human Neutrophil and Endothelial Ligand VCAM-1 

The circulating blood cells, including neutrophils, are more likely adherent to the 

curved micro-vessels than the straight ones (Liu et al. 2008). Our previous work, 

which has been introduced in chapter 5 and chapter 6, indicated that the vessel 

curvature, cell-cell interaction, and wall shear stress/gradient would greatly affect 

this preferential adhesion in the curved micro-vessels. In addition, it has been 

found that the conformation affinity of integrins on neutrophils surfaces would be 

influenced by different divalent cations in extracelluar medium (Masumoto and 

Hemler 1993; Bazzoni et al. 1998), which provides an opportunity to explore the 

particular importance of integrins activation for neutrophils adhesion. In this 

chapter, we aim at numerically studying the effect of divalent cations, i.e. Mn2+, 

Mg2+ plus EGTA, and Ca2+, on VLA-4/VCAM-1 adhesion under blood flow 

conditions in both the straight and curved micro-vessels by the LBM.  

In this work, the length of the straight micro-vessel is L = 420 m  and the 

width is D = 40 m . The dimensions of the curved vessel are designed to be the 

same as that in chapter 6 (see Fig. 6.4). Where A, B, C and D (corresponding to 

Ab, Bb, Cb and Db in Fig. 6.4) are the conjunctions of positive and negative 

curvatures. The simulation methods adopted here are the same as those in our 

previous studies (Yan et al. 2010ab). Likewise, the fluid dynamics was carried out 

by the LBM, and the cell dynamics was governed by the Newton’s law of 
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translation and rotation. However, a special and complex adhesive dynamics 

model was used to consider the effect of VLA-4/VCAM-1 bonds on cell adhesion. 

This new model also involved the influence of wall shear stress gradient on 

receptor-ligand bonds based on the Dembo et al.’s model (1988) and the Bell’s 

model (1978) of forward/reverse reaction rates. Here, we also used the cell of 

radius cR  5.0 m , a typical size of a traveling neutrophil in the blood vessels. 

The cell was driven by a pressure difference 8.75p  Pa for the straight vessel 

and 10.0p Pa for the curved vessel, with which the pressure drop of both 

cases was about 0.02 Pa / m . The simulation parameters and their values are 

tabulated in Table 7.1.  

7.1  Neutrophil Adhesive Dynamics Models 

An important contribution of integrins is their ability to mediate the adhesive 

states of neutrophils (Dustin and Springer 1991; Diamond and Springer 1994). In 

this study, we mainly consider two types of integrin-mediated neutrophil adhesion: 

(1) LFA-1/ICAM-1 adhesion; and (2) VLA-4/VCAM-1 adhesion. The chemical 

reaction between LFA-1 and ICAM-1 is the same as the general cell adhesion, 

which involves a single step reversible reaction of integrin binding to ICAM-1 

(Chesla et al. 1998; Lomakina and Waugh 2004). However, there exists two steps 

leading to the formation of bonds for VLA-4/VCAM-1 adhesion (Waugh and 

Lomakina 2009; Lomakina and Waugh 2009). The first step involves the 

formation of a reaction zone, and the second step is the binding reaction itself. 

The adhesion process of VLA-4/VCAM-1 bonds is much more complex than that 
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of LFA-1/ICAM-1 bonds, which has been shown in Fig. 2.2 and discussed 

detailedly in chapter 2.   

The adhesive dynamics models are integrated to take into account the effect 

of stochastic bonds on neutrophil adhesion. In adhesive dynamics models, the 

integrins on neutrophil surface are defined as receptors, and the adhesion 

molecules on endothelial substrate are defined as ligands. Once the distance 

between a receptor and an endothelial ligand ICAM-1 or VCAM-1 is smaller than 

the critical length Hc, there is a chance to form receptor-ligand bonds. In VLA-

4/VCAM-1 adhesion, the kinetics of binding involves five coefficients: k  and 

k   govern the formation of reaction zones from potential reaction zones, fk  and 

rk  represent the kinetics of forming or breaking a bond with a reaction zone, and 

BIk   characterizes the transition of a bond to the inactive zone. Based on the 

Dembo et al.’s model (1988) and Bell’s model (1978), the refined reaction rates 

fk  and rk  that considered the wall shear stress gradient effect on neutrophils 

adhesion in the curved micro-vessels (Yan et al. 2010b) are,  
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where 0
fk  and 0

rk  are the unstressed association and dissociation rates, 

respectively.   and ts  are the spring constant and transition state spring constant, 

respectively. bk  is the Boltzmann constant, T is the temperature,   is the reactive 
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compliance,   is the distance between a receptor and a ligand, and   is the 

equilibrium bond length. d dl  is the wall shear stress gradient, and 1k  and 2k  

are two parameters that represent the sensitivity of wall shear stress gradient to 

bond association and dissociation rates, respectively. This improved adhesive 

dynamics model reduces to the general Dembo et al.’s model and Bell’s model in 

the straight vessels at d dl  0. In addition, k , k  and BIk   would also be 

regulated by the wall shear stress gradient in the curved vessels, 

 0 1exp
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k k k
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where 0k  , 0k   and 0BIk   are the kinetic coefficients in the straight vessels. 

Equations (7.3)-(7.5) mean that the wall shear stress gradient has sensitivity to the 

affinity state of integrin and the breakage of receptor-ligand bonds in the curved 

vessels. We assume that only the jumps or drops in the wall shear stress gradient 

can trigger the change of the kinetic coefficients. Once triggered, the reaction 

rates will keep the maximum/minimum value as calculated by equations (7.1)-(7.5) 

until the next wall shear stress gradient jump or drop occurs. The probabilities 

fP , rP , P , P  and BIP  for reaction rates fk  , rk , k , k   and BIk   follows 

equations (2.6)-(2.10), respectively.  
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Table 7.1  Simulation parameters and their values  

Ref. [1]: Chang et al. 2000 

Ref. [2]: Skalak and Chien 1987 

Ref. [3]:  Bell 1978 

Ref. [4]: Chang and Hammer 1996 

Ref. [5]: Lomakina and Waugh 2004. 

Ref. [6]: Waugh and Lomakina 2009. 

Ref. [7]: Yan et al. 2010b 

Parameter Definition Value (reference) 

cH  

f  

  

  

  

ts  

  

bk  

T  

1LFA   

4VLA   

1ICAM   

1VCAM   

1k  

 

2k  

Critical  length for formation 

Plasma density 

Plasma kinetic viscosity 

Reactive compliance 

Spring constant 

Transition state spring constant 

Equilibrium bond length  

Boltzmann constant 

Temperature 

Density of LFA-1  

Density of VLA-4 

Density of ICAM-1  

Density of VCAM-1 

Sensitivity of wall shear stress 

gradient  to association rate  

Sensitivity of wall shear stress 

gradient  to dissociation rate  

40 nm (Ref. [1]) 

1.03 g/cm3 (Ref. [2]) 

1.210-6 m2/s (Ref. [2])) 

4.0
o

A (Ref. [3]) 

210-3 N/m (Ref. [4]) 

110-3 N/m (Ref. [4])  

20 nm (Ref. [4])  

1.3810-23 J/K 

310 K (Ref. [4]) 

50.0 2/ m (Ref. [5]) 

5.0 2/ m (Ref. [6]) 

290 2/ m (Ref. [5]) 

200 2/ m (Ref. [6]) 

1.0 m /Pa (Ref. [7]) 

 

50.0 m /Pa (Ref. [7]) 

 



 131

7.2   LFA-1/ICAM-1 Adhesion in Mg2+ in the Straight Micro-vessel 

The experimental studies of cell adhesion on immobilized neutrophils and 

endothelial substrate provide only part of what is needed to understand the 

dynamics and regulation of the adhesiveness of the cells for substrate. Therefore, 

we aim at studying adhesion between a circulating neutrophil and immobilized 

endothelial substrate. Since LFA-1 is the primary integrin on neutrophils surface 

and the fundamental endothelial ligand of LFA-1 is ICAM-1, we firstly simulate 

the LFA-1/ICAM-1 adhesion in the presence of Mg2+ plus EGTA under flow 

conditions. The choice of using Mg2+ plus EGTA to stimulate the high affinity 

form of LFA-1 is based on the fact that LFA-1 but not Mac-1 undergoes a marked 

increase in affinity for ICAM-1 under this condition (Altieri 1991; Diamond and 

Springer 1993). The forward and reverse reaction rates of LFA-1/ICAM-1 

adhesion in Mg2+ plus EGTA have been quantified to be ' 0
fk = 6 2 13.4 10 m s    

and 0
rk = 10.07s  (Lomakina and Waugh 2004), and the unstressed association 

rate can be obtained by 0
fk = ' 0

fk  [SUB], where SUB is the density of ligand on 

the endothelial substrate. To observe LFA-1/ICAM-1 adhesion clearly, 0
fk  was 

normalized to be 84 1s , which is a reasonable value that can properly recreate 

experimental values for velocity and dynamics of rolling (Chang et al. 2000). The 

LFA-1/ICAM-1 adhesion in Mg2+ plus EGTA is carried out in the straight micro-

vessel.  

To form receptor-ligand bonds easily, the neutrophil is initially placed near 

the vessel wall with the nearest distance is 30 nm, which is within the range of 
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equilibrium bond length   and critical length Hc. Figure 7.1 shows the history of 

LFA-1/ICAM adhesion in Mg2+ plus EGTA in the straight micro-vessel. Since 

cell adhesion is a stochastic process, the trajectory of the traveling neutrophil 

vibrates between 5.016 and 5.028 m , which is illustrated in Fig. 7.1(a). It can be 

found that the cell never oscillates beyond the critical length, indicating that it 

always has the chance to create new bonds. Moreover, the cell never approaches 

to the vessel wall within 5.016 m , owing to the strong repulsive van der Waals 

force induced by two surfaces in near contact. Figs. 7.1(b)-(c) show the cell 

velocity and angular velocity, both of which oscillate strongly during cell 

migration. The cell speed fluctuates between 0 and 800 m / s , suggesting that the 

cell experiences a process with alternate “move” and “stop”. The variation of the 

angular velocity is similar to that of the velocity. The large velocity and angular 

velocity indicate that the cell is in the state of “strong rolling”. On the contrary, 

the small velocity and angular velocity mean that the cell is in the transient state 

of “firm adhesion”. The total rotation angle of the cell is more than 20   

clockwise, which is shown in Fig. 7.1(d). Figure 7.1(e) displays the history of 

bonds number of the cell during the whole journey. It can be found that the 

number of receptor-ligand bonds varies greatly with the range from 0 to 25. The 

higher number of bonds means there is higher opportunity for the cell to be 

arrested by the vessel wall. The number of bonds highly depends on the cell 

trajectory, because it is the function of distance between the LFA-1 and 

endothelial ICAM-1.  
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Figure 7.1  The history of LFA-1/ICAM adhesion in Mg2+ plus EGTA in the 

straight micro-vessel: (a) trajectory, (b) velocity, (c) angular velocity, (d) 

angle, and (e) number of bonds. 
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The adhesion between LFA-1 and ICAM-1 plays an important role in 

neutrophils adhesion. By comparing to LFA-1/ICAM-1 adhesion, we can predict 

the role of VLA-4/VCAM-1 bonds that plays in mediating neutrophils adhesion. 

In the next, we continue to discuss the effect of different divalent cations on VLA-

4/VCAM-1 adhesion in both the straight and curved micro-vessel.  

7.3  Effect of Divalent Cations on VLA-4/VCAM-1 Adhesion in the Straight 

Micro-vessel   

It has been well known that the integrins affinity behaves differently in different 

divalent cations (Masumoto and Hemler 1993; Bazzoni et al. 1998). This feature 

provides a chance to study the particular importance of integrins activation for 

neutrophils adhesion in the absence of general activation of the cells (Lomakina 

and Waugh 2004). The divalent cations of Mg2+ plus EGTA, Mn2+, and Ca2+ are 

often used to investigate neutrophils adhesion, owing to their significant abilities 

in changing integrins affinity for endothelial liangds. The mechanism for affinity 

modulation involves a conformational change of the VLA-4 receptor by the high 

concentrations of these divalent cations, and the enhanced adhesions are also 

association with the structural rearrangement of VLA-4 from a bent state (inactive 

state) to an extended conformer (active state). In the so-called switchable model, 

integrin activation augments VLA-4/VCAM-1 adhesion by increasing the 

effective density of VLA-4 on the neutrophils surface. The novel adhesive 

dynamic model for VLA-4/VCAM-1 adhesion and its kinetic coefficients in these 

divalent cations have been experimentally investigated (Waugh and Lomakina 
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2009; Lomakina and Waugh 2009). The kinetic coefficients and their values are 

tabulated in Table 7.2. Since k   in Ca2+ was too large to be measured by the 

experiments, we use a comparative large value k   11000s  in our simulations.  

The history of VLA-4/VCAM-1 adhesion in the presence of Mg2+ plus 

EGTA, Mn2+ and Ca2+ in the straight vessel is shown in Fig. 7.2. From Fig. 7.2(a), 

it can be found that the neutrophil is translating and rotating along the vessel wall 

in Mn2+, and the trajectories of cell in the other two divalent cations (not be shown) 

are similar to that in Mn2+. Figs. 7.2(b)-(c) show the velocity and angular velocity 

of the cell in different divalent cations, respectively. It can be found that the cell 

speed in Mn2+ almost oscillates between 350 and 700 m / s , and the variation in 

Ca2+ is much larger than that in Mn2+ which ranges from 350 to 1000 m / s . The 

largest change of velocity occurs in Mg2+ plus EGTA which fluctuates between 

200 and 1000 m / s . There are also fluctuations in angular velocity of the cell 

with the range from -120 to 70 rad/s in Mn2+ and from -130 to -70 rad/s in Ca2+. 

Like that in Ca2+, the most angular velocity in Mg2+ plus EGTA oscillates 

between -130 and -70 rad/s, and very few even reaches to -50 rad/s due to the 

strong cell adhesion that result from the comparatively small BIk  , which would 

significantly influence the breakage of bonds. The difference profiles in cell speed 

and angular speed are caused by the different abilities of divalent cations in 

changing affinity form of integrins for their liangds. The total rotation angle of the 

cell is illustrated in Fig. 7.2(d). For the same displacement, the cell rotation angle 

in Ca2+ and Mg2+ plus EGTA is about 16  clockwise, and the larger angle occurs 



 136

in Mn2+ with approximately 21  clockwise due to more obvious cell adhesion in 

this situation.  

The number of bonds in these divalent cations is shown in Fig. 7.2(e). It can 

be clearly found that most of the number of bonds in Mn2+ fluctuates between 0 to 

4, and few reaches up to 5. The bonds number in Ca2+ is comparatively thinner, 

and the maximum value of bonds number is only 3, owing to the larger k   and 

lower k   in Mn2+. k   and k   should be the most important coefficients that 

determine the formation of active reaction zones, which are the prerequisite for 

bond formation to occur. Compare to that in Ca+, the number of bonds in Mg2+ is 

much thinner which means the less ability in creating new bonds in this situation. 

Since the BIk   in Mg2+ is considerably less than that in Ca+, the maximum bonds 

number in Mg2+ can reach up to 4. From the above discussions, it can be 

concluded that the Mn2+ has the highest ability in changing affinity state of VLA-4 

for their endothelial ligand VCAM-1 under flow condition, and the higher integrin 

activation capability occurs in the presence of Mg2+, which is a little stronger than 

that in Ca+2.  
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Table 7.2  Kinetic coefficients of VLA-4/VCAM-1 adhesion in different divalent 

cations 

Parameter Definition 
Value (reference) 

Mn2+ Mg2+ Ca2+ 

0k   
Reaction rate 

from PRZ to RZ

2 11.3 10 s   

Ref. [1] 

3 11.2 10 s   

Ref. [1,2] 

3 12.7 10 s   

Ref. [1] 

0k   
Reaction rate 

from RZ to PRZ 

11.65 s  

Ref. [1] 

10.25 s  

Ref. [1, 2] 

too large to be 

measured. Ref.[1]

' 0
fk  

Unstressed 

association rate  

2 10.0051 m s

Ref. [1, 2] 

2 10.0051 m s

Ref. [1, 2] 

2 10.0051 m s  

Ref. [1, 2] 

0
rk  

Unstressed 

dissociation rate 

10.13 s  

Ref. [2, 3] 

10.13 s  

Ref. [2, 3] 

10.13 s  

Ref. [2, 3] 

0BIk   
Reaction rate 

from ZB to PRZ

10.30 s  

Ref. [1] 

10.066 s  

Ref. [1, 2] 

10.43 s  

Ref. [1] 

Ref. [1] Lomakina and Waugh 2009. 

Ref. [2] Waugh and Lomakina 2009. 

Ref. [3] Zhang et al. 2004. 
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Figure 7.2  The history of VLA-4/VCAM-1 adhesion in different divalent cations 

in the straight micro-vessel: (a) trajectory, (b) velocity, (c) angular velocity, 

(d) angle, and (e) number of bonds 
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7.4  Effect of Divalent Cations on VLA-4/VCAM-1 Adhesion in the Curved 

Micro-vessel   

In real physiological conditions, neutrophils adhesion always occurs in the curved 

blood vessels. The neutrophils adhesive dynamics model, which is taken into 

account the integrated effects of vessel curvature, wall shear stress gradient, and 

divalent cations, will much more comprehensive to reflect the stochastic and 

complicated biophysical process of cell adhesion in real situations. In the next, the 

influence of divalent cations on VLA-4/VCAM-1 adhesion is examined in the 

curved micro-vessel.  

Figure 7.3 shows the history of VLA-4/VCAM-1 adhesion under the effect 

of different divalent cations in the curved micro-vessel. Figure 7.3(a) illustrates 

the trajectory of neutrophil with both translation and rotation in Mn2+, from which 

one can found that the apparent cell adhesion occurs once the cell passes the 

conjunction B. More obvious cell adhesion takes place between the conjunctions 

A and B due to the great effect of vessel curvature there. The cell trajectories (not 

be shown) in other two divalent cations are roughly similar to that in Mn2+. There 

are strong oscillations in both cell velocity and angular velocity, which are shown 

in Figs. 7.3(b)-(c). In Mn2+, both of the velocity and angular velocity vary greatly 

at the conjunctions B and C, owing to the significant changes of bonds reaction 

rates there. In Ca2+, the strong vibrations occur from t = 0 to 0.08 s, and then 

following comparatively smooth velocity and angular velocity, indicating that the 

cell leaves the vessel wall and becomes a free cell. The velocity and angular 
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velocity in Mg2+ is much more complex, which firstly fluctuate strongly between 

0 and 1000 m / s  and between 0 and -100 rad/s from t = 0 to 0.65 s and then 

become much smoother since there is no cell adhesion at all. Figure 7.3(d) 

illustrates the rotation angle of the migrating cell. It can be found that the cell 

rotates approximately 10  clockwise in Ca2+, 13  clockwise in Mg2+, and 21  

clockwise in Mn2+.  

Figure 7.3(e) shows the history of bonds number of the cell in three divalent 

cations. It can be easily found that the most obvious cell adhesion occurs in Mn2+, 

and the comparative evident cell adhesion happens in Mg2+ plus EGTA, which is 

much superior to that in Ca2+. In Mn2+, the number of bonds between the 

conjunctions A and B is almost oscillating between 1 and 4, and few reaches to 5 

due to the strong vessel curvature effect there. Between B and C, lots of bonds 

number arrives at 5, suggesting that there will be very large probability of cell 

arrest caused by the great jump of wall shear stress gradient there. Once the cell 

gets to C, the number of bonds decreases and vibrates between 0 and 4, owing to 

the significant drop of wall shear stress gradient there. The cell finally becomes 

free and there is no cell adhesion. The number of bonds in Mg2+ plus EGTA 

varies between 0 and 5, and it keeps zero since x190.0 m . The cell adhesion in 

Ca2+ is rather weak, it only maintains from 40 to 90 m , and then all the old 

bonds are broken and no new bond is created. 

The statistical average physical quantities for both LFA-1/ICAM-1 and 

VLA-4/VCAM-1 adhesions in different divalent cations in both the straight and 
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curved micro-vessel are tabulated in Table 7.3. The adhesion probability is 

defined as the number of contacts for which adhesion occurred divided by the 

total number of contacts. From the data, one can found that the average bonds 

number of LFA-1/ICAM-1 adhesion is about 11.15, which is highly larger than 

that of VLA-4/VCAM-1 adhesion with 2.65 in Mn2+, 1.22 in Mg2+, and 1.15 in 

Ca2+ in the straight vessels. However, the adhesion probability of VLA-4/VCAM-

1 adhesion is 44.14% in Mn2+, 20.26% in Mg2+, and 19.13% in Ca2+, all of which 

is superior to that of VLA-4/VCAM-1 adhesion with 18.58% in Mg2+ in the 

straight micro-vessel. It can also be found that the highest affinity state of VLA-4 

to VCAM-1 occurs in Mn2+, and following that are Mg2+ plus EGTA and Ca2+ for 

both the straight and curved micro-vessels. Surprisingly, the adhesion 

probabilities in Mn2+ and Ca2+ in the curved micro-vessel are less than these in the 

straight micro-vessel, this is result from the variation of shear stress gradient 

which enforce the cell to leave the vessel wall and become a free cell without 

adhesion. 
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Figure 7.3  The history of VLA-4/VCAM-1 adhesion in different divalent cations 

in the curved micro-vessel: (a) trajectory, (b) velocity, (c) angular velocity, 

(d) angle, and (e) number of bonds 
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Table 7.3  Comparisons between LFA-1/ICAM-1 and VLA-4/VCAM-1 adhesions 

in different divalent cations in the straight/curved micro-vessels 

Average 

physical 

quantity 

LFA-1/ICAM VLA-4/VCAM-1  

Mg2+ Mn2+ Mg2+ Ca2+ 

straight straight curved straight curved straight curved

Number  

of bonds 
11.15 2.65 2.56 1.22 1.46 1.15 0.17 

Adhesion  

probability 
18.58% 44.14% 42.6% 20.26% 26.7% 19.13% 2.8% 

7.5  Summary 

The integrin-mediated neutrophils adhesion under hydrodynamic flow conditions 

has been numerically studied by the LBM. Specially, the LFA-1/ICAM-1 

adhesion in Mg2+ plus EGTA in the straight vessel and the VLA-4/VCAM-1 

adhesion in different divalent cations in both the straight and curved vessels have 

been examined. The normal dynamic model was adopted to simulate LFA-

1/ICAM-1 adhesion, and the novel dynamic model was applied to model VLA-

4/VCAM-1 adhesion. The effect of wall shear stress gradient on VLA-4/VCAM-1 

adhesion was also taken into account in the curved vessel. The simulation results 

lead to the following conclusions:  

(1) Divalent cations, i.e. Mn2+, Mg2+ plus EGTA and Ca2+, significantly influence 

the neutrophils adhesion under blood flow conditions. Among them, Mn2+ has 

the largest capability in stimulating the affinity state of VLA-4 to endothelial 
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ligand VCAM-1, and the larger ability of that occurs in Mg2+ plus EGTA, 

which is superior to that in Ca2+. This result agrees well with the experimental 

outcomes that performed on immobilized integrins of neutrophils and their 

liangds without blood flowing.  

(2)  Compare to the LFA-1/ICAM-1 adhesion, the VLA-4/VCAM-1 adhesion is 

weaker in neutrophils adhesion due to the comparative thinner distribution of 

VLA-4 on neutrophils surface. However, the adhesion probability of VLA-

4/VCAM-1 bonds, especially in the presence of Mn2+, would be larger than 

that of LFA-1/ICAM-1 bonds under blood flow conditions.  

(3)  Neutrophils adhesion is a rather complex process, which involves numerous 

factors, i.e. divalent cations, vessel curvature and wall shear stress gradient, to 

regulate its functions under flow conditions. The present results would be 

helpful to understand the neutrophils adhesion under real physiological 

situations.  
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Chapter 8  Conclusion and Future Work 

8.1  Conclusion  

Cell adhesion is one of the most fascinating aspects of cell function in the 

microcirculation of biological systems. It is of significant importance to 

investigate the mechanical mechanisms of cell adhesion under hydrodynamic 

conditions. The LBM effectively connects macroscopic and microscopic scales, 

and thereby suitable to solve the biophysical modeling of cell adhesion from the 

micrometer down to the molecular level. A comprehensive biophysical 

description of cell adhesion in microcirculation would allow development of new 

treatment strategies for many diseases, such as thrombosis, atherosclerosis, 

arthritis, and cancer. In this thesis, several critical factors, i.e. vessel curvature, 

cell-cell interaction, wall shear stress variation and divalent cations, for cell 

adhesion have been numerically studied and detailedly discussed. The fluid 

dynamics is carried out by the LBM, the cells dynamics is solved by the Newton’s 

law of translation and rotation, and the adhesive dynamics models are involved to 

consider the effects of stochastic receptor-ligand bonds on cell adhesion.  

Firstly, the effects of vessel curvature and cell-cell interaction on cell 

adhesion in both the straight and curved micro-vessels have been numerically 

studied. The numerical results lead to the following conclusions:  

(1) The local geometry or the vessel curvature has significant influence on bond 

formation between the traveling cells and endothelium at the vessel wall. 

Usually, the simultaneous bond number would increase in a curved vessel, 
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and consequently the probability of cell adhesion is increased as well. 

(2) The interaction between the traveling cells is significant, and the cell-2 (rear) 

would experience higher wallward force, which would enhance the receptor-

ligand binding, consequently, this interaction would increase the cell 

adhesion probabilities. 

(3) From a physiological point of view, most of the micro-vessels are either 

curved or bifurcated and there are always multiple cells traveling in the same 

vessel. The above conclusions indicate that the study of the single cell 

adhesion in a straight vessel may underestimate the capability of cell 

adhesion in the micro-vessels under real physiological and pathological 

conditions. 

This work would be helpful to explain the mechanical mechanism of the strange 

biological phenomena why the circulating blood cells and tumor cells are more 

easily gathering near the bent of vessels. 

Secondly, the effect of vessel wall shear stress gradient on cell adhesion in 

the curved micro-vessels with very low Reynolds number laminar flow has been 

both experimentally and numerically investigated. We also develop a novel 

adhesive dynamics model that coupled the effect of wall shear stress gradient on 

receptor-ligand bindings, in which the positive shear stress gradient jump would 

stimulate cell adhesion while the negative shear stress gradient jump would 

weaken cell adhesion. The numerical results lead to the following conclusions:  

(1) The present numerical scheme that coupled the general adhesive dynamics 
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model into the LBM is capable of simulating different adhesion behavior 

states of the cell in the straight micro-vessels.  

(2) There would be a critical wall shear stress gradient in the curved micro-vessels. 

Once the wall shear stress gradient is superior to the critical value, it would 

trigger the bonds association and dissociation rates to change; otherwise, the 

effect of wall shear stress gradient on cell adhesion can be neglected. 

(3) The present revised model is capable of simulating the cell adhesion 

phenomenon in the curved micro-vessels. From a physiological point of view, 

it can be deemed that the adhesion molecules would be stimulated or 

weakened by the variation of wall shear stress. If the wall shear stress gradient 

is positive and reaches up to some threshold, the adhesion molecules will be 

activated to prepare more receptors or ligands to form bonds. On the contrary, 

the adhesion molecules will be inactivated by the negative wall shear stress 

gradient to weaken the capability of bonds formation or accelerate the 

breakage of the previously formed bonds. 

This work not only would help us to understand the quantitative relationship 

between wall shear stress and tumor cell adhesion, but also elucidate why the 

tumor cell adhesion always occurs at the positive curvature in the curved vessels.  

Finally, the effect of divalent cations on cell adhesion between the human 

neutrophil and endothelial ligand VCAM-1 in both the straight and curved micro-

vessels has been numerically analyzed. The numerical calculations lead to the 

following conclusions:  
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(1) The divalent cations, i.e. Mn2+, Mg2+ plus EGTA and Ca2+, significantly 

influence the neutrophils adhesion under hydrodynamic conditions. Among 

them, the larger ability of stimulating the affinity state of VLA-4 to VCAM-1 

occurs in Mg2+ plus EGTA than that in Ca2+, and the largest capability occurs 

in Mn2+. This result agrees well with the experimental outcomes that 

performed on immobilized integrins of neutrophils and their ligands without 

fluid flowing.  

(2) Compare to the LFA-1/ICAM-1 adhesion, the VLA-4/VCAM-1 adhesion is 

much weaker in neutrophils adhesion due to the comparative thinner 

distribution of VLA-4 on the neutrophils surface. However, the adhesion 

probability of VLA-4/VCAM-1 bonds, especially in Mn2+, would be larger 

than that of LFA-1/ICAM-1 bonds.   

(3) Neutrophils adhesion is a rather complex process, which involves numerous 

factors, i.e. divalent cations, vessel curvature and wall shear stress gradient, to 

regulate its functions under flow conditions. The present results would be 

helpful to understand the neutrophils adhesion under real physiological 

situations.  

This would help us to understand the mechanical mechanisms of integrin-

mediated neutrophils adhesion in the presence of different divalent cations under 

dynamic flow conditions.  
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8.2  Future Work  

Cell adhesion is a rather complicated process in the microcirculation of biological 

systems. Our work is only the tip of the iceberg, which provides only part of what 

is needed to understand the comprehensive cell adhesion in the real physiological 

and pathological situations. New developments and improvements are imperative 

for studying the cell adhesion in both the experiments and numerical models. As 

to the experimental aspects, we will continue keeping good cooperation with the 

research group of Prof. Fu Bingmei, who are at the Department of Biomedical 

Engineering, The City College of the City University of New York. As to the 

numerical models, we will mainly focus on the following aspects: 

(1) To design complex bifurcated 3-D blood vessels.  

In the real physiological conditions, the blood vessels are curved, bifurcated 

and three dimensional. It has been known that the breast tumor cell prefers to 

arrest in the lung microvasculature with lots of bends and branches. Therefore, 

bifurcations would play important roles in cell adhesion, and thereby it is 

necessary to design complex 3-D blood vessels with bifurcations for studying cell 

adhesion.  

(2) To consider the effect of cell deformation on cell adhesion.  

In the real physiological conditions, both the circulating blood cells and 

tumor cells are deformable. It is a limitation in our work that we idealize the 

traveling cells to be rigid. The immersed boundary condition method will be 

adopted to solve the deformable and elastic boundary of the cells, and then take into 
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account the effect of cell deformation on cell adhesion. 

(3) To develop novel adhesive dynamics models for cell adhesion in different 

physiological and pathological situations. 

The generalized adhesive dynamics models are widely accepted and applied 

by the researchers for the general phenomena of cell adhesion. However, new 

unknown pathologies will be found, and therefore, new adhesive dynamics 

models which can precisely reflect the mechanisms of these pathologies are 

needed. For example, we recently have focused on a strange phenomenon that the 

haematopoietic stem cells release is regulated by circadian oscillations. Obviously, 

the generalized adhesive dynamics models are not available for this phenomenon 

of cell adhesion.  
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