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ABSTRACT

Due to its properties of high density, in-place update, amddtandby power, phase change
memory (PCM) becomes a promising main memory alternativembedded systems, and
is recently introduced to embedded system designs. Howeeendurance of PCM keeps
drifting down and greatly limits the lifetime of the wholestgm. On the other hand, NAND
flash memory is widely used as a secondary storage and hagbegrated into PCM-based
embedded systems. So this thesis targets at an embeddethsygh PCM and NAND
flash memory. Since both NAND flash memory and PCM have limiifetime, how to
effectively manage NAND flash memory while considering POMi@ance is a challenge

issue for PCM-based embedded systems.

To manage NAND flash memory, flash translation layer (FTLesigned to emulate
NAND flash memory as a disk drive, by mapping logical addressehysical addresses in
NAND flash memory at a granularity of page-level or blockdej7,51]. Corresponding-
ly, most of the proposed FTL techniques are mainly categdrinto page-level or block-
level based on the granularity of mapping unit [19]. As PCa&&d main memory exhibits
non-volatility feature, to obtain high access performarf€EL mapping table can be kept
into PCM permanently without considering power failure wéwer, the frequently updated
FTL mapping table imposes a large number of write activitieBCM, and may lead to a
shortened PCM lifetime. Therefore, effective managemesiirtiques are needed to explore
traditional page-level or block-level FTL designs and m#kem write activity aware, for

enhancing the lifetime of the PCM-based embedded systems.

In this thesis, we focus on exploring the challenge issug®gad by the management
of NAND flash memory in PCM-based embedded systems. Comelspto the existing

page-level and block-level FTL designs, we present for tte¢ fime three write-activity-



aware flash memory management techniques, to effectivehageaNAND flash memory
and enhance the lifetime of PCM-based embedded system#$eTeest of our knowledge,
this is the first work to study how to effectively manage NAN&sth memory in PCM-based
embedded systems by considering the endurance issue of @Mope this work can
serve as a first step towards the design of write-activitgravflash memory management for

PCM-based embedded systems.

Keywords: Phase change memory, PCM-based embedded system, NAND feasbry

flash translation layer, write activity, endurance.
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CHAPTER 1
INTRODUCTION

In the last decade, various emerging non-volatile mematyrtelogies, such as phase change
memory (PCM), spin torque transfer RAM (STT-RAM), magn&®i&M (MRAM), and fer-
roelectric RAM (FRAM), have been developed and considesaalr@placement for DRAM.
Among them, PCM is known to be one of the most promising teldgies, due to its high
density, in-place update, and low standby power. Theref@M is considered as a lead al-
ternative of DRAM (dynamic random access memory), and has beed as a main memory
with a small-sized DRAM cache in embedded systems [21,286].7However, compared to
DRAM, PCM can only sustain limited write operation$§ to 10® bit flips per cell) [38]. As
main memory is a frequently accessed component, it is negessreduce redundant write
activities in PCM to enhance the reliability of PCM-basedbenided systems. On the other
hand, with the advantages of small size, shock resistanddoa power, NAND flash mem-
ory is widely used as a secondary storage and has been ie@greo PCM-based embedded
systems [48, 68, 87]. How to avoid a fast worn-out of such gmgrembedded systems and
effectively manage NAND flash memory should be taken int@ant Therefore, this thesis
focuses on exploring a write-activity-aware NAND flash meynmanagement scheme in

PCM-based embedded systems to enhance the lifetime of tine gystem.

Several techniques have been recently proposed to enhamdiéetime of PCM at
architectural/hardware level. In [52,101], Zhou et al.goee a redundant bit removal tech-
nigue, by which a write to PCM is ignored if its designated PE3 holds the same value.
In [77], Qureshi et al. propose Start-Gap to evenly distelwrite activities among all PCM
cells for enhancing the lifetime of PCM-based main memory.[21], Dhiman et al. in-
troduce a scheme wherein a page manager is developed tataljpgges across PCM and

DRAM for improving PCM lifetime. In [87], Sun et al. proposehgbrid storage archi-



tecture, wherein PCM lifetime is prolonged by insertingeesded log sectors to the list of
free sectors based on its number of writes recorded. In 4R],et al. propose an energy-
and endurance-aware PCM cache design which reduces wiitgies by read-before-write
and data inverting techniques. In [88], Sun et al. reducgéevimtensity in PCM by storing

frequently written values in compressed form.

On the other hand, some software level techniques have aésodeveloped, such as
the code optimization techniques [33] and write-aware dahieg techniques [34] proposed
by Hu et al. Similarly, Ferreira et al. [26] propose threeesubs, i.e., write minimization,
unnecessary writes reduction, and a wear-leveling schienmecrease the lifetime of PCM-
based main memory. However, most of the hardware/softwatatques do not consider the
write activities caused by the management procedure of dihgces, such as NAND flash
memory. As NAND flash memory has already been used in PCMebasdedded system-
s [48,68,87], some redundant write activities during th@agegment process of NAND flash
memory can lead to a lifetime degradation of PCM-based ma&many. Therefore, unlike
previous work, the work proposed in this thesis can make tABDI flash memory man-
agement scheme write activity aware, for enhancing thérte of PCM-based embedded

systems.

In PCM-based embedded systems, to use NAND flash memorytftasiation layer
(FTL) is designed to emulate NAND flash memory as a disk drarel logical addresses
are mapped to physical addresses in NAND flash memory at allgréy of page-level or
block-level [37,51]. Following I/O requests, an FTL mappitable is employed to keep
track of the continually updated mapping records. Many Fahesnes have been proposed
[5, 6,18, 29, 93], and most of them are mainly categorizea patge-level scheme or block-
level scheme according to the granularity of mapping ur8l}.[To provide fast lookup and
high data access performance, FTL mapping table is uswaljeld into main memory after
system is booted, and put back to NAND flash memory once thersys shut down. In
traditional DRAM-based main memory, the most-updated FTdpping table can be lost
due to power failure. However, as PCM is non-volatile, FTLpmiag table can be kept into

PCM-based main memory permanently without consideringgodailure. Therefore, Kim



et al. [48] propose a page-level FTL, nambRKTL, in which page-level FTL mapping table
is kept in PCM and user data is stored in NAND flash memory. NbetkesshFTL does
not consider redundant write activities occurred in PCMdose of the frequently updated
FTL mapping table, which may lead to a shortened PCM lifetide the lifetime of PCM
is mainly determined by the maximum number of bit flips in eRE&M cell, it is important
to reduce the maximum number of bit flips in each PCM cell toaswe the reliability of
the entire system. New techniques, therefore, are needegtore traditional page-level or
block-level FTL designs and make them write activity awésereducing unnecessary write

activities and enhancing the lifetime of the PCM-based eidbd systems.

In this thesis, we focus on exploring the challenge issugmsad by the manage-
ment of NAND flash memory in PCM-based embedded systemse§monds to the existing
page-level and block-level FTL designs, we propose threesactivity-aware NAND flash
memory management techniques for reducing write acts/inePCM during the manage-
ment procedure of NAND flash memory and, at the same time, haree the lifetime of
the PCM-based embedded systems, with the advantage thhtnges are required to the
file system, and hardware implementation of the NAND/PCMcliNote that the mapping
records inside FTL mapping table are represented in a biioany in PCM. Therefore, the
objective is to preserve each bit in FTL mapping table, @ach bitin PCM cell, from being
inverted frequently, during the update process of FTL m@agable, such that the maximum
number of bit flips in each PCM cell is reduced and the lifetiohd®CM is enhanced. To
the best of our knowledge, this is the first work to study howffectively manage NAND
flash memory in PCM-based embedded systems by considegmgtturance issue of PCM.
We hope this work can serve as a first step towards the desmgntefactivity-aware flash

memory management for PCM-based embedded systems.

The rest of this chapter is organized as follows: Sectionptekents the related
work. Section 1.2 presents the unified research framewodcti@ 1.3 summarizes the

contributions of this thesis. Section 1.4 gives the ousliokthe thesis.



1.1 Related Work

In this section, we outline previous approaches related@M®ased embedded system-
S, write activity reduction for PCM, and some related FTLesoles. We briefly describe
these approaches, and detailed comparisons with repag¢isertechniques are presented in

respective chapters.

1.1.1 PCM-based Embedded Systems

As an emerging non-volatile memory, PCM is considered aom@ing candidate of tra-
ditional memories at various levels in current memory higng. Compared to DRAM,
the read/write latency and power consumption of PCM areh8ligvorse than those of
DRAM [38]. However, PCM provides a significant density oveRAM, which means more
memory capacity and lower price per memory cell within thmeahip area. Besides, PCM
offers negligible idle power than that of DRAM. On the othemid, unlike NAND flash
memory, PCM supports in-place-update regardless of theedyafore-write constraint of
NAND flash memory. The read/write latency of PCM is much betiban that of NAND
flash memory. In addition, the lifetime of PCM is three ordafrsnagnitude longer than that

of NAND flash memory.

Therefore, because of its attractive advantages, PCM igbecorporated into em-
bedded systems [24], e.g., Samsung GT-E2550 GSM mobilesk&n{b0, 81, 86], and is
considered as a replacement of DRAM to achieve larger mamangecapacity [20, 53, 78].
Even though PCM is sightly slower than DRAM and is constrdibg its limited lifetime,
with clever optimizations at software/hardware level,lsaes buffering frequently accessed
data by a small-sized DRAM cache, it is feasible to use PCkktanain memory in em-

bedded systems [21, 26,69, 77,78, 96].

Figure 1.1 shows a typical PCM-based embedded system, wbiddists of a hybrid
PCM-based main memory and a NAND flash memory proposed by [A8Jpbtain a best

capacity and latency, the hybrid main memory adopts a laiged PCM and a small-sized



DRAM cache. PCM acts as a main memory for maintaining fretjyerccessed OS pages
and the FTL mapping table, while the DRAM acts as a cache addédxs the gap between
PCM and the processor to improve performance and PCM ligetim the system, NAND

flash memory is employed as a secondary storage for storgrgdasa that are accessed by

file systems.
Main Memory Secondary Storage
DRAM Cache NAND Flash Memory
PCM

CPU H Logical address|Phsical address H

FTL Mapping Table User Data

Figure 1.1. PCM-based Embedded Systems.

To conceal the unfavorable characteristics of NAND flash wmman intermediate
software module called flash translation layer (FTL) is esgpt to emulate NAND flash
memory as a block device [37]. The main role of FTL is to rectitegical addresses from
the file systems of a host into physical addresses in NAND ftasmory, and maintains a
mapping table to keep track of the mapping information. FDt only supports address
translation but also provides other useful components asaarbage collector and wear-
leveler that are used to optimize the space utilization aathtain the same level of wear
for each block in NAND flash memory. Following I/O requests\dND flash memory, the
mapping from logical address to physical address will beatgudl continually in FTL map-
ping table. So the FTL mapping table is the most heavily wigdiabmponent in PCM and
may shorten PCM lifetime if some unnecessary write acésiaire performed. Therefore, to
avoid the lifetime degradation of PCM, it is necessary to enBKL scheme write activity

aware in PCM-based embedded systems.



Figure 1.2 shows a software-level architecture of the ipomated flash translation
layer module [51]. In this architecture, flash translatiapdr provides three components:
address translator [6], garbage collector [10], and weagter [12]. In FTL, address transla-
tor maintains an FTL mapping table, which usually locatechain memory could translate
addresses between logical address and physical addrebaggacollector reclaims space
by erasing obsolete blocks in which there exists invalichdatear-leveler is an optional
component that distributes erase operations evenly aalidsi®cks, so as to extend the life-
time of NAND flash memory. This thesis focuses on improving tilanagement of address
translator in flash translation layer, to reduce write atgis in the PCM-based embedded

systems.

Application 1 Application2 | - Application n

! { {

Operating System

File System (e.g., Ext2, Ext3, FAT, NTFS)

! {

PCM-based Main Memory Flash Translation Layer (FTL)
Logical Address|Phsical Address 777777777777777777777 | 777777777777777777777
=) Address | | Wear | Garbage
- Translator | Leveler | | Collector
FTL Mapping Table Memory Technology Device (MTD) Layer

) )
T T T T

NAND Flash Memory

Figure 1.2. A typical management architecture of NAND flaghmory with flash translation

layer.



1.1.2 Write Activity Reduction for PCM

To incorporate PCM into main memory hierarchy, one most irtgyd challenge is that PCM
can only suffer limited write cycles, and thus may wear ouli@athan DRAM-based main
memory. Therefore, to mitigate this limitation, extenswerk recently has been done to
reduce write activities for PCM-based embedded systems. r@&earch of reducing write
activities in PCM can be mainly classified into two categsriarchitectural/hardware level

and software level.

The Architectural/Hardware Level

At the architectural/hardware level, to extend PCM lifeginvarious techniques have been

proposed to reduce PCM write activities and perform weaeliey.

To reduce write activities, several techniques have beepgsed including differ-
ential write [101], Compression [88, 99], Flip-N-Write [[L&nd row-buffer locality-aware
data placement [98]. In [52,101], Zhou et al. propose a duiierarchical techniques: re-
dundant bit-write removal, row shifting, and segment svilagpto improve the lifetime of
PCM-based main memory. Write activity reduction is accasi@d mainly based on the
idea of data-comparison write (DCW), by which a write to PGMgnored if its designat-
ed PCM cell holds the same value. For example, only the rigidtrit ‘0’ is written into
PCM if a value of ‘1010’ to be written into a PCM destinationtwi1l011’. In [77, 78],
Qureshi et al. introduce a PCM-based hybrid memory arditecvherein PCM is em-
ployed as a main memory while a small-sized DRAM is employed aache buffer. Based
on this architecture, Start-Gap is proposed to evenlyidige write operations across all
PCM cells, and a line-level write scheme is developed toenwitly the dirty lines in the
cache buffer into the PCM, for improving wear leveling anti@mncing the lifetime of PCM-
based main memory. In [21], Dhiman et al. explore the chgksrafter incorporating PCM
into the hybrid main memory hierarchy with DRAM. To improvestPCM lifetime, a book
keeping hardware technique is proposed to store write &ecpinformation into PCM at a

page level granularity. In [16], by extending idea of dabaparison write technique pro-



posed by [101], Cho et al. propose a simple architecturainigcie to replace a PCM write
operation with a more efficient read-modify-write operatfor reducing redundant bit pro-
gramming. In [87], Sun et al. propose a hybrid solid storagéitecture that uses PCM as
a log area, wherein PCM lifetime is prolonged by insertingased log sectors to the list of
free sectors based on its number of writes recorded. In 48],et al. propose an energy-
and endurance-aware PCM cache design which reduces wiitgies by read-before-write
and data inverting techniques. In [88], Sun et al. proposequent-value based data storage
architecture, wherein write intensity in PCM is reduced toyiag frequently written values

in compressed (encoded) form.

The wear leveling techniques that evenly distribute writgvities have been pro-
posed including hot/cold line shifting and segment swappi01], randomized mapping
such as Start-Gap [77] and Security Refresh [83], and adaptear leveling with online
attack detector [75]. To defend against malicious attaitlesyandomized approaches have
been proposed to randomly distribute writes [75, 77, 83, 8Bf the wear-leveling-aware

encryption techniques have been proposed in [14,49].

To deal with process variation, a scheme with process{vami@ware current provi-
sion, adaptive page-level data comparison writes, ang-dathe-line compression is pro-
posed in [99], and a fine-grained current provision and geltapscalling scheme is pro-
posed in [39]. To solve the problems caused by resistantte skveral schemes have been
proposed including adaptive data inversion/rotation sehéased on different resistance-
drift-sensitive patterns and resistance-drift-aware SILCC reconfiguration [100], and drift-
tolerant coding based on modulation coding by utilizingitigk order of resistance levels in

a codeword [66].

The Software Level

On the other hand, to enhance PCM lifetime, some technigaxs dlso been developed at
the software level. In [33], an embedded chip multiproces§GMPs) system with scratch

pad memory (SPM) and PCM-based main memory is explored. idrsttstem, a data mi-



gration and code optimization techniques are proposeddin awrite-backs of shared data,
for extending the lifetime of PCM-based main memory. In [34ll et al. propose two op-
timization techniques, write-aware scheduling and reqmatation, to schedule the tasks in
the program with the consideration of write activities inimaemory, for minimizing write
activities in non-volatile memories such as PCM. Similanty[26], Ferreira et al. develop
three schemes, i.e., write minimization, unnecessaryewrieduction, and a wear leveling
scheme, to improve the lifetime of PCM-based main memorgidss, in [27], they propose
a page partitioning technique and a clean-preferred pggacement algorithm to reduce
the number of write-back data to PCM, for enhancing PCMiliet In [21], based on the
hybrid main memory and the hardware book keeping techniQhénan et al. introduce
an efficient OS-level page manager to evenly allocate pages®PCM and DRAM for im-
proving PCM wear leveling. In [22], Dong et al. study the erahce variation of PCM cells,
and propose a variant of wear leveling mechanism, throughkiphal address re-mapping and
data swapping, to balance wear rates of PCM cells acrossttbeewCM chip. In [8], Bock
et al. introduce the concept of useless write-back dataishabt used again by the pro-
gram, and develop an analytical framework to determine timelrer of useless write-backs,

to improve the lifetime of the PCM-based main memory.

However, most of the previous hardware/software techmsigiee not consider the
write activities caused by the management procedure of dehaces in the PCM-based em-
bedded systems, such as NAND flash memory. As NAND flash metmasyalready been
used in PCM-based embedded systems as a secondary st@Ba6@, B¥], some redundant
write activities during the management process of NAND flasmory can lead to a life-
time degradation of PCM-based main memory. Thereforekergrevious work, the work
proposed in this thesis can make the NAND flash memory managienrite activity aware,

for enhancing the lifetime of PCM-based embedded systems.



1.1.3 FTL Schemes

NAND flash memory has been widely used in various applicatiof lot of designs and
implementations of NAND flash memory management have begpoged in the literature.
As FTL plays a critical role in NAND flash memory managemerffedent FTL schemes
have been proposed and can be categorized into three mpgs: typage-level mapping,
block-level mapping, and hybrid-level mapping. HybrigdeFTL overcomes the shortcom-
ings of page-level mapping and block-level mapping, andipies a balance between space
overheads and flexibility. Therefore, hybrid-level FTL Heesen widely adopted in NAND
flash memory designs and implementations, especially fgetacale flash storage system-
s [11]. In particular, Wu and Kuo [93] describe an adaptiverigrlevel approach that can
dynamically and adaptively switch between page-level dodkblevel in the mapping of
logical block addresses into physical block addressesu@ari and Givargis [17] employ
a lookup table and page cache method into the translati@n tayspeedup address transla-
tion and improve read and write throughput. Wu et al. [94] asearch-tree-like caching
mechanism and a replacement strategy for efficient addeassation. Park et al. [67] apply
a flash translation layer architectural framework to decidiéch configuration of address

mapping parameters yields the best performance.

In recent studies, several schemes have been proposedyfblock-based hybrid-
level FTL schemes. In log-block-based FTL schemes, a lomiember of log blocks are
provided for all data blocks to store updated data. Kim ef4al] proposed a hybrid-level
scheme, called log-block-based FTL (BAST), in which alladbtocks share a set of log
blocks for update operations. Based on BAST, several logksbased FTL schemes have
been proposed to explore the block associativity of eactblogk. Lee et al. proposed a
fully-associative mapping scheme called FAST [58]. Moreergly, Cho et al. propose a
K-Associate log-block-based scheme called KAST [15], Wwhgan limit the maximum log

block associativity.

To balance the trade-off between page-level FTL and bleek!IFTL, some recent

studies consider configurable or demand-based mappingscteereduce the size of map-
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ping table and provide the flexibility of mapping scheme. ugt al. propose a demand-
based caching scheme, called DFTL [29], to reduce pagé-delress mapping table. Y-
ongsoo Joo et al. [41, 42] propose an online demand pagirgrselthat can fully exploit
the eXecution-in-Place (XIP) capability of OneNAND flash.oi recently, Qin et al. [70]
propose a demand-based block-level address mapping sahdarge-scale NAND flash
storage systems. Chang and Kuo [13] propose a commitmeetlmanagement strategy to
improve the reliability of NAND flash memory. A three-leveldress translation architecture
with an adaptive block mapping scheme is proposed. The pezptchnique can accelerate
the address translation process with the consideratiotieedimited RAM space. Hsieh et
al. [32] propose a configurable mapping scheme that can-otidee main-memory over-
head and the system performance. In their scheme, the ntgipgiween the virtual address
to the physical address provides the flexibility to preveblack from being used by any

fixed physical block.

Some studies consider the system requirements and pratigess for application
specific flash memory management designs. Chu et al. [18ppeop set-based mapping
strategy that can utilize thrown-away flash memory chips ddwngraded products. Yong-
so00 Joo et al. [40,42] discovered programming energy vanaf MLC NOR flash memory,
and proposed an energy-aware data compression methoditoig@rhe flash programming
energy. Wu et al. [95] propose a file-system-aware flash laias layer, in which a filter
mechanism is adopted to analyze the access requests amdted¢pa metadata of file sys-
tem and the ordinary files. Huang et al. [35] analyze the biehand access pattern of flash
memory storage system. Li et al. [59] propose a StableBsfitrtion for flash devices that
exploit write patterns of flash devices to optimize the peniance of DBMS applications.
Lee and Alex [56,57] propose highly effective applicatipesific embedded systems using
NAND flash as primary memory and low latency instruction @cl®On et al. [63] study
the buffer management for flash-based databases, with a éocaddressing the read-write
asymmetry and workload dynamics, and propose FD-Buffarati@matically adapts to the
flash disk characteristics and the runtime workload. Hstedl.§31] propose a new archi-

tecture that utilizes the flash memory as a cache layer f@sdcssave energy consumption.
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The above work presents excellent designs for differenli@n specific architectures.

Most of the previous work provides good solution and impsotiee performance of
FTL. However, no work targets at the emerging PCM-based dddgk systems, wherein
the NAND flash memory is used as a secondary storage. ThougleKal. [48] propose a
page-level FTL, namelFTL, and focuses on the PCM-based embedded systems, in which
page-level FTL mapping table is kept in PCM-based main mgrand user data is stored
in NAND flash memory. BuhFTL does not consider redundant write activities occurred i
PCM because of the frequently updated FTL mapping table;hvimay lead to a shortened
PCM lifetime. Considering the lifetime limitation of PCM drhe frequently accessed FTL
mapping table in the PCM-based main memory, it is importargtudy the write activity
of FTL schemes for the emerging PCM-based embedded systéraefore, different from
the previous work, this thesis targets at the PCM-based éddaesystems, and takes a first
step to propose techniques for making the basic FTL desiggeftevel and block-level
scheme) write activity aware, such that the lifetime of PG&ed embedded systems can be

enhanced.

1.2 The Unified Research Framework

In this section, we present the unified research framewarth®proposed techniques. Fig-

ure 1.3 illustrates the sketch of our research framework.

In this thesis, we target at the PCM-based embedded systenesein the PCM-
based main memory with a small-sized DRAM cache is used fantaaing frequently
accessed OS pages and the FTL mapping table, and a NAND flasbmnés adopted as a

secondary storage for storing user data accessed by fikensyst

In this thesis, three flash memory management techniquesdasmg write activity
reduction for PCM are presented to improve the lifetime agrdggmance of the PCM-based
embedded systems, in terms of the granularity of FTL mappmg As shown in Fig-

ure 1.3, the traditional FTL design is redesigned by the psed techniques in PCM-based
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embedded systems. Each of the proposed write-activityeaWwaL techniques maintains
a corresponding FTL mapping table in PCM-based main memboyeffectively manage
NAND flash memory while reducing write activities for the cesponding FTL mapping ta-
ble in PCM, three write-activity-aware flash memory managentechniques are proposed

in this thesis.

e For the first technique, in Chapter 3, we first propos# dte-Activity-aware Page-
level FTL mapping technique, named WAP-FTL. In the WAP-FTL, we coessit
reduce write activities for a page-level FTL mapping tabl®CM. To achieve this, a
write-activity-aware strategy is employed to prevent ebitiin page-level FTL map-
ping table that hosted by PCM from being inverted frequen@ynce a write request
arrives in NAND flash memory, unlike the traditional pagedTL design [5,48], the
proposed page-level FTL technique, WAP-FTL, can activélgase a physical page
whose physical address effects the minimum number of b# flipFTL page-level
mapping table, so as to effectively reduce write activinesPCM cells. However,
the proposed WAP-FTL does not consider the access behavl@® sequests, and
the evaluation results also show that write activity in PCM imcrease due to extra

overhead of page copy introduced by the garbage collection.

e For the second technique, in Chapter 4, by extension theatl@&AP-FTL, we fur-
ther propose a two-level FTL mapping technique, named PQM-Rhich not only
focuses on minimizing the write activities of PCM but alsmslering the access be-
havior of I/O requests. To achieve this, in PCM-based maimorg, we propose a
page-level FTL mapping table to handle not frequently updaandom requests, and
allocate a tiny mapping buffer of block-level FTL mappinpl&ato record most fre-
guently updated sequential requests. Similar to that of WAR, to further minimize
write activities in PCM, PCM-FTL actively chooses a physigiack in NAND flash

memory whose physical block number incurs minimum numbéitdfips.

e For the third technique, in Chapter 5, we presekl ate-Activity-awareBlock-level

FTL mapping technique, named WAB-FTL, to effectively manageNiAflash mem-
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ory while reducing write activities of the PCM-based embetidystems. Unlike
WAP-FTL and PCM-FTL which require significant capacity in Gor storing the
larger page-level FTL mapping table, WAB-FTL is motivatéehtt block-level FTL
with much less memory requirement is more applicable for Péaged embedded
systems, as the capacity of current PCM prototype chipsrig simall and may not
be practical for storing large table [61]. Therefore, in WA&BL, a block-level FTL
mapping mechanism with write activity consideration isgmeed. To reduce redun-
dant write activities for PCM, a new merge strategy is adope/NAB-FTL to delay
the mapping table update, and a tiny mapping buffer is useddohing frequently

updated mapping records.

In this thesis, we evaluate the proposed techniques WAP-PTIM-FTL and WAB-
FTL using a variety of realistic I/O traces, which reflect thalistic workloads of the system
in accessing the secondary storage for daily use. Seveddlifeetraces are obtained from
DiskMon [1] running on the notebook with an Intel Pentium DGare 2GHz processor, a
200GB hard disk, and a 2GB DRAM. Besides, some other tragesaliected from Google
Android™2.3 [28] with Android Emulator (included in Android SDK). Waodified the
Linux kernel shipped with Android to record I/O requestsystem log. Traces are gathered
by Android Debug Bridgen Android SDK from the emulator to host computer. In order
to reveal the actual impacts of the experimental schemegpllected traces under heavy-
loaded environment by usinglonkey which is an automatic stress test tool provided by
Android SDK. With applications specified, it generates @ndvents for them and send the
events to the emulator for execution. The evaluation is ootedl by a trace-driven simula-
tion. We have developed a simulator, which simulates a P@set embedded systems with
1GB/4GB NAND flash memory, to evaluate our write-activityaae flash memory manage-

ment techniques against with the representative baselihalEsigns.

1.3 Contributions

The contributions of this thesis are summarized as follows.
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e The major contribution of this thesis is the idea of consitgwrite activity of NAND
flash memory management schemes in PCM-based embeddemhsysie reduce
write activities of FTL mapping table and extend PCM lifegijtthis thesis presents
for the first time three write-activity-aware flash memorymagement techniques. For
these techniques, the idea of reducing write activities actively find physical pages
or blocks whose page number or block number incurs the mimmumber of bit
flips in PCM during the update process of page- or block-I&#l mapping table.
Moreover, WAP-FTL demonstrates that write activities ofNP€annot be reduced
by merely actively finding physical pages without considgithe behavior of 1/0 re-
guests. Based on this observation, by carefully studyied/th request behavior, the
other two techniqgues PCM-FTL and WAB-FTL provide good perfance for reduc-

ing write activities in the PCM-based embedded systems.

e We propose a write-activity-aware page-level flash memoapagement technique,
WAP-FTL to reduce write activities on a page-level FTL maggpiable in PCM. WAP-
FTL is mainly based on the idea of actively choosing a phygiage whose physical
page number causes the minimum number of bit flips in PCM. §hdhe evaluation
results of WAP-FTL finally show that write activities in PCMillMncrease during
garbage collection, WAP-FTL provides the potential resealirection and suggests

that the behavior of 1/0 requests must be taken into account.

e We present for the first time a write-activity-aware twodeflash management tech-
niqgue, PCM-FTL, which not only extends the work of WAP-FTLtlalso considers
the access behavior of I/0 requests. In PCM-FTL, a tiny mappuffer of block-level
FTL mapping table is allocated to record most frequentlyated sequential requests,
while a page-level FTL mapping table is used to handle nguieatly updated random
requests. Compared with a representative FTL scheme, pgegimental results show
that PCM-FTL can achieve an average reduction of 93.10% amakamum reduction
of 98.98% in the maximum number of bit flips for a PCM-based edued system
with 1GB NAND flash memory. In addition, the results also shimat PCM-FTL
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can achieve an even distribution of bit flips in PCM in compani with the baseline

scheme.

e We present for the first time a write-activity-aware bloekél flash memory manage-
ment technique, WAB-FTL, to effectively manage NAND flashmmey while reduc-
ing write activities of the PCM-based embedded systemdh W& advantage of much
less memory requirement, in WAB-FTL, a new merge strateg@zytMerge) and an
additional tiny buffer (Cooling-Pool) are proposed, to makir approach write activi-
ty aware, such that the PCM lifetime is enhanced. Compar#dtive previous work,
experimental results show that our technique could effelstireduce write activities
in PCM-based embedded systems. Moreover, the experinrestats also show that
WAB-FTL can achieve an even distribution of bit flips in PCMIsa@n comparison

with the baseline scheme.

e A trace-driven simulation framework is implemented, toleate the proposed write-
activity-aware flash memory management schemes in the P&debembedded sys-
tems. We conducted experiments and compared with repegsenETL schemes.
Experimental results prove the effectiveness of the pregp@Ehemes using a set of

realistic I/0 workloads.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

e In Chapter 2, we briefly introduce the background knowledgehase change memo-

ry, NAND flash memory and flash translation layer.

e In Chapter 3, we present our write-activity-aware pagelléash memory manage-
ment technique, WAP-FTL, and demonstrate its limitatiomite activity reduction

for PCM-based embedded systems.
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¢ In Chapter 4, we present our write-activity-aware two-lésh memory management
technique, PCM-FTL, to extend the work of WAP-FTL. We alsowlthat PCM-FTL

can effectively reduce write activities for PCM-based eddsz systems.

¢ In Chapter 5, we present our write-activity-aware blockeldlash memory manage-
ment technique, WAB-FTL, and show that WAB-FTL with muchd@semory require-

ment can also effectively reduce write activities for PChséd embedded systems.

¢ In Chapter 6, we present conclusions and discuss posstblefdirections of research

arising from this work.
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CHAPTER 2

BACKGROUND

In this chapter, we first present the background knowledgghete change memory. Then
we briefly introduce the characteristics of NAND flash memdipally, we discuss different
types of flash translation layer that used for managing NANBHImemory in embedded

systems.

2.1 Phase Change Memory

Phase change memory (PCM), also known as PCRAM, PRAM or Ggafide RAM, is a
type of no-volatile memory techniques. PCM was first demmastl in 1960s, it stores data
by programming the resistance of chalcography alloy [64965 Due to material quality,
power consumption and manufacture cost issues, the deweltpf PCM technology is s-
low during the past decades. However, after adopting thepiase change material, such as
GeaSbhyTes (GST) [97], PCM technology exhibits attractive advantagfdsit-addressability,
superior scalability, high density, low standby power, an@lace update, and is considered
as a promising candidate for main memory or data storageinghr future [38]. As reported
in Figure 2.1, PCM related publications and approved USntateave grown exponentially
in recent years, which indicates that PCM technology rdgdrats renewed the interests of
researcher and industry. Moreover, IBM, Samsung, Hitadidron and Intel have already

issued their own PCM prototype chips [3, 30,46, 55, 66, 7P, 84
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Figure 2.1. The distribution of PCM related publicationd approved US patents from 1990
to 2010. The reports are collected by searching the US mi&iE journals and conference

proceedings with the keywords: phase change memory, PCRARCand PRAM.

2.1.1 PCMCell

Figure 2.2(a) shows a typical structure of PCM cell, whicmiginly made up of the phase
change material(ze; SbyTes (GST), that is sandwiched by a top electrode and a bottom
electrode. As shown, by heating up the phase change matgheapecific electrical pulses,

it can switch between two different states, crystalline ansbrphous, representing low and
high resistance, respectively. Therefore, binary bit ‘4'G can be stored in PCM cell by
changing the resistance level to either of these two stdtkes.resistance contrast between
the crystalline and amorphous state is very large. For sdrasgpchange materials, it can be

up to five orders of magnitude [80].

The earlier PCM prototype chips are single-level cell (SPCM, in which each cell
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Figure 2.2. A typical PCM cell. (a) The phase change matesibkated to different resis-
tance levels by ejecting electrical current between théeheand top electrode. (b) RESET

and SET pulses are performed to obtain specific levels dftegse in the PCM cell.

can only store one binary bit. However, the large resistanograst between crystalline and
amorphous states provides the opportunity to store melbgk in one PCM cell. Recent-
ly, the multiple-level cell (MLC) PCM is proposed, whereimetphase change material is
reported to achieve more intermediate resistance dift@®between crystalline and amor-
phous by carefully controlling the electrical pulses, timugltiple binary bits per cell can
be represented and effectively double PCM capacity [7,6R, BM has demonstrated a
multiple-level cell (MLC) PCM [66], in which each cell canosé multiple binary bits, such
as ‘00, ‘01", ‘10, or ‘11'. Though we only focus on singlevel cell (SLC) PCM in this

thesis, the proposed methods can also be extended to MLC PCM.

2.1.2 PCM Write Operation

In order to write the data into SLC PCM cells, there are twoey/pf write operations in
PCM: RESET operation and SET operation. A RESET operatiamstthe phase change

material into the amorphous state, while a SET operatiamsttite phase change material
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into the crystalline state. As shown in Figure 2.2(b), totevbinary ‘0’ in a PCM cell, the
RESET operation is performed to place the PCM cell into theraimous state, by heating the
phase change material above the melting temperdtuyg (over 600C) with a high power
but short duration pulse; To write binary ‘1’ in a PCM celletBET operation is conducted
to place the PCM cell into the crystalline state, by heathmgpghase change material above
the crystallization temperatut, s (over 300C but below the melting temperature) with a
moderate power but long duration pulse. On the other hanghagram the MLC PCM, an
iterative programming and verifying method is employedwatch the PCM cell into four
or more distinct resistance levels [23], by iteratively gpm SET/RESET operation and
checking whether the expected resistance is placed intpuareel range, such that multiple
binary bits can be stored in a single PCM cell. Due to theftiteravrite-and-verify program
method, the write operation of MLC PCM is much slower than t¢i&LC PCM. Moreover,

the binary bits stored in PCM can be read out by sensing tietaese level of the PCM cell.

2.1.3 PCM Lifetime

As shown in Figure 2.2(b), both RESET and SET operations tleademperature in PCM
cell changes to specific level$,,,,. ( 610°C) andT.,,, ( 300°C), respectively. To reach
the melting temperaturg,,,...,, more energy is needed for accomplishing RESET operation,
which also introduces higher thermal dissipation at theesame. Therefore, repeated heat
stress to PCM cells leads to the effect that a PCM cell can sumégain a limited number

of RESET or SET operations. In other words, a PCM cell will bemwvout after a limited
number of bit flips. For example, a single cell of Micron PSQMP€an only sustain 0°
write cycles [61], and the expected PCM lifetime will achéaw® to 10° in the future [4, 38,
45]. Therefore, limited write endurance is one major chmgkeissue for the management of
PCM-based embedded systems. To enhance PCM lifetime, @itivatidea is through the

reduction of bit flips in each PCM cell.
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2.1.4 Comparison of Memory Technologies

Table 2.1 shows the characteristics of DRAM, PCM and NANDHlagemory, which are
mainly gathered from [25, 38]. Compared to DRAM and NAND flambmory, PCM ex-
hibits many attractive features, such as non-volatilify,aoldressability, and low standby
power. As shown, the read/write latency and power consummre slightly worse than
those of DRAM, but much better than those of NAND flash memaiyus, the distinctive
advantages of PCM make it a very promising candidate foracépyy DRAM-based main
memory. However, the endurance of PCM is much worse tharoff@RAM, so the write
activities in PCM-based main memory must be considereddhipit the PCM from being

wear out faster.

Table 2.1. A Comparison of PCM with DRAM and NAND flash memory.

DRAM PCM NAND Flash
Non-Volatile NO YES YES
Erase Unit Bit Bit Block
Software Simple Simple Complex
Power ~W/GB 100-500mW/die| ~100mW/die
Write Latency <10ns 50-120ns ~100us
Write Operating Voltage 2.5V 15V 3V
Read Latency 50ns 50-100ns 10-25us
Read Operating Voltage 1.8V <3V 2V
Endurance >1016 106 — 108 10%-10°
Retention Time 64ms >10 years >10 years




2.2 NAND Flash Memory

Recently, NAND flash memory is widely used as a secondarnagemn embedded systems.
As shown in Figure 2.3, a typical NAND flash memory is partigd into blocks and each
block is further divided into 32 or 64 pages. Each page costail2Bytes or 2KB for data,
and 32Bytes or 64Bytes for OOB (Out Of Band) area. The OOB @reamarily used to
store the Error Correction Code (ECC) of the correspondagg@nd other information such
as logical page number. There are three basic operationsahde performed on a NAND
flash memorygrase, writeandread A block is the smallest unit of erase operations, while
a page is the minimum unit of read/write operations. In NAN&fl memory, data must be
written to free pages, which could lead to out of space afteuraber of write operations.
Thus, a reclaim operation known as garbage collection [@hvoked to regenerate free

space for NAND flash memory.

NAND Flash Memory

NAND Block
data oob
oy b | data oob
o 1 |
& One Page
o
o | data | oob data | oob g

Blocks

Figure 2.3. A typical structure of NAND flash memory.

As a non-volatile storage device, NAND flash memory has aflaidvantages such
as small size, shock resistance and low power. However, NAlREh memory also has
some constraints that impose challenges for its managenkérst, NAND flash memory
suffers from out-of-place updates. An update (re-writedxtisting data on a given physical
location (known as a page) should be preceded by an erasatiopeon a larger region

(known as a block). Second, a block has a limited erasenitetiFor example, one block
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in SAMSUNG K9F1G08UOC SLC (Single-Level Cell) NAND flash HEROK erase counts,
while the one in SAMSUNG K9G4G08UOA MLC (Multi-Level Cell)AND flash has only
5K erase counts. A block becomes worn-out if its erase coeath the limit [82]. Third, for
some NAND flash memory management schemes, not all block&\MINflash get erased
at the same rate, so the lifetime of specific blocks may dseré&ster which would affect
the usefulness of the entire flash memory. To overcome tloesgraints, it is very important
to guarantee that erase or write operations be evenlylaiséid across all blocks (known as

wear-leveling).

2.3 Flash Translation Layer

Since FTL plays an important role in NAND flash memory managetihmany studies for
FTL have been conducted. A lot of work focuses on the addregspmg of FTL [5, 6,
29,60, 71-73, 89-92], while the other work concerns abaigtrbage collection [10] and
wear-leveling [9, 12, 44]. According to the granularity odpping unit, FTL designs can be
mainly categorized into three types [19]: page-level magb], block-level mapping [2, 6],
and hybrid-level mapping [47].

As shown in Figure 2.4, in page-level FTL mapping schemed&th logical page
number (LPN) is mapped to a corresponding physical page YHPNAND flash memory.
Therefore, if the file system contains n logical page units,dorresponding page-level FTL
mapping table should also has n rows. As shown in the exartiflepapping entries are
allocated in the page-level FTL mapping table for the cqoasling LPN to PPN mapping.
With the simple mapping table, page-level FTL mapping sche@would provide efficient
address translation time, less garbage collection ovdrherad high space utilization but

with significant memory requirement.

On the contrary, in block-level FTL mapping scheme [2, 6k @rgical block (LBN)
is mapped to at least one physical block (PBN) , and thus messhrhapping information is
needed. Figure 2.5 illustrates an example of block-level FiRpping scheme. As shown,

the logical page number 8 is divided by the number of pageshilonek, to obtain the logi-
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Figure 2.4. An illustration of page-level FTL mapping scleem

cal block number 2 and the page offset 0. Then the logicalkdhagnber 2 is mapped to a
physical block #1 which consists of the requested page,ewhi page offset O is used as
an offset to locate the page in the corresponding block #bldok-level FTL scheme, as
the number of mapping entries in block-level FTL mappindedainly equals to the block
number, the mapping table size can be reduced significadtdwever, in block-level FTL,

a logical page can only be written to a physical page with gsghated page offset within
a physical block. Thus, block-level FTL is not as good as gagel FTL in terms of the
flexibility and performance. To achieve a trade-off betw&&M cost and system perfor-
mance, hybrid-level FTL mapping scheme is proposed as ammmge between page-level

FTL mapping scheme and block-level FTL mapping scheme [47].

Hybrid-level FTL has been widely used, in the previous warlgny studies have
been conducted on hybrid-level FTL mapping schemes [1R4)3,especially for large-
scale flash storage systems [11]. In addition, most hylewetlFTL mapping schemes adopt

log-block-based mapping mechanism for storing updategia,%4, 58, 67]. In these hybrid
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Figure 2.5. An illustration of block-Level FTL mapping sche.

LBN PBN PPN DATA OOB LBN PPN PPN DATA OOB
0 2 0 32 o
1 3 1 33 S
2 1 2 34 5 +*
3 0 3 35
7 FTL Block-Level 4 1 I N I
] o . 5 37 Qo>
N ‘Mapping Table 6 38 %*t
% % in Main Memory g 39
=z ‘3)'5 9 X Log-Block-Based Log Blocks
a2 10 S  Mapping Table
o ‘_Q_.; 11 Q (Page-Level)
Write to 1% x
LPN: 8 3
14 o
15
NAND Flash
Memory

Figure 2.6. An illustration of hybrid-level FTL mapping sghe.

schemes, the blocks of NAND flash memory are divided into dadeks for new data and
log blocks for the updated data. Figure 2.6 shows an exaniighoid-level FTL mapping

scheme. As shown, a block-level mapping table is arrangetthéomapping of data blocks,
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and a page-level mapping table is used for recording thetapdia the log blocks. For an
update request with LBN 2 and offset 0, the fresh data is@vritd the first page in log block
#8 instead of being stored in the original location (the fiatie of data block #1). Hybrid-
level FTL mapping schemes have great improvement on thenpeahce and flexibility of

FTL. However, most of them need to reclaim log blocks by a mapgeration which may
introduce extra overhead, and the mapping table size ofdwéwvel FTL mapping schemes
tends to be larger than that of block-level FTL schemes. Assadgtep for exploring the
NAND flash memory managementin PCM-based embedded systethnis, thesis, we focus

our work on the basic page-level and block-level FTL designs

2.4 Summary

In this chapter, we introduced the background knowledgénaép change memory. Then we
briefly discussed the characteristics of NAND flash memonyalfy, we presented different
types of flash translation layers that are used for managhigflash memory in embedded

systems.
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CHAPTER 3

WAP-FTL: A PAGE-LEVEL PCM-AWARED

FLASH MEMORY MANAGEMENT TECHNIQUE

3.1 Overview

As an emerging non-volatile memory, phase change memorijRRhibits its potential
of being incorporated into current memory hierarchies, segeral studies so far show that
the advantages of PCM make it an ideal replacement for DRARM&M memory [21, 26,
52,53,74,77,78,101]. Unfortunately, compared to DRAMMPS8uUffers from a limited
number of write cycles, i.e., a cell of PCM can only sustdifito 10® writes before worn-
out [38], which imposes challenge for it to store frequentpdated data. For example,
Micron Omned“P5Q PCM has only0° write cycles per cell [61]. As main memory is a
heavily accessed component, it is therefore importantdaae write activities in PCM for
improving the lifetime of PCM-based main memory. Severahteques recently have been
developed to reduce write activities in PCM at architedsofware level [16, 26,27, 33, 34,

52,74,88,101].

Most of the previous work provide good solution and improkie performance.
However, none of them targets at the emerging PCM-based darbesystems, wherein
PCM is used as main memory while NAND flash memory is used as@nsary storage.
The management process of NAND flash memory could imposéfisamt write activities
in PCM-based main memory, and as a result degrade the PCiinkfe Therefore, unlike
previous work, we target at the hybrid embedded systemsR@ik and NAND flash mem-

ory, and propose a write-activity-aware page-level flasmonry management technique to
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reduce write activities for PCM, such that the lifetime ofM®ased embedded systems is

enhanced.

As shown in Figure 1.2, to access NAND flash memory in the PGged embed-
ded systems, flash translation layer (FTL) is adopted to amWMAND flash memory as
a disk drive by mapping logical addresses to physical addseegn NAND flash memory
at a granularity of page-level or block-level [37,51]. Angotihe proposed FTL schemes
[5,6,18,19,29,93], FTL mapping table is employed to keapkof the continually updated
mapping records, in terms of the I/O requests. To providdda&up, FTL mapping table is
usually loaded into main memory after system is booted, amtgck to NAND flash mem-
ory once the system is shut down. However, the most-updaledapping table can be
lost due to power failure in DRAM-based main memory. In PCadséd embedded systems,
to utilize the non-volatile feature of PCM, FTL mapping t&lsln be kept into PCM-based

main memory permanently without considering power failure

Recently, Kim et al. [48] targets at the PCM-based embedgsigss, and propose a
page-level FTL, namelfpFTL, in which page-level FTL mapping table is kept in PCM and
user data is stored in NAND flash memory. NeverthelbB$L does not consider redundant
write activities occurred in PCM because of the frequenttglated FTL mapping table,
which may lead to a shortened PCM lifetime. As the lifetimdé@M is mainly determined
by the maximum number of bit flips in each PCM cell, it is im@ortto reduce the maximum
number of bit flips in each PCM cell to enhance the reliabiiifythe entire system. New
techniques, therefore, are needed to reduce unnecessgeyaetivities that may increase
the maximum number of bit flips in PCM due to the update proo&$sTL mapping table,

such that the lifetime of the PCM-based embedded systenmhaneed.

In this chapter, we proposé/rite-Activity-awarePage-leveFTL technique, called
WAP-FTL, to reduce write activities in PCM during the managementess of NAND
flash memory and, at the same time, to enhance the lifetimeeoPCM-based embedded
systems, with the advantage that no changes are requiréeé fide system, and hardware

implementation of the NAND/PCM chip. Note that mapping meisoinside FTL mapping
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table are represented in a binary form in PCM. Different ftbimredundant write avoidance
method mentioned by most of the previous work [27,33,43,M04 employ a write-activity-
aware strategy in flash translation layer. Our basic idea péserve each bit in page-level
FTL mapping table hosted by PCM, i.e., each bitin PCM cedinfibeing inverted frequently,
during the update process of FTL mapping table, such thahtemum number of bit flips
in each PCM cell is reduced and the lifetime of PCM is enhand@dce a write request
arrives in NAND flash memory, unlike the traditional pagedeFTL scheme [5, 48], the
proposed page-level FTL technique, WAP-FTL can activelyose a physical page whose
physical address could effect the minimum number of bit fiipETL page-level mapping

table, so as to effectively reduce write activities on PCliisce

We conduct a series of experiments on a set of realistic #et collected from
notebook and Google Android platform. We applied our wabtivity-aware strategy to
a representative techniqun&TL [48], and compared withFTL in terms of the total and
maximum number of bit flips in each PCM cell with various coaf@fions. The experimen-
tal results show that the proposed technique can effegtreeluce write activities in PCM,
however, the number of bit flips in PCM will increase aftertggge collection happens. We
analyze that WAP-FTL does not consider the access behait® cequests, which consists
of random and sequential requests, and the proposed wtitétgaware strategy introduces
extra overhead, i.e., valid page copy during garbage daleteads to significant bit flips in

FTL mapping table.

This chapter makes the following contributions:

e We present for the first time a write-activity-aware pageeldlash memory manage-
ment technique to reduce write activities in PCM-based eldbé systems for enhanc-

ing the PCM lifetime.

e \We demonstrate the limitation of the proposed page-levehflfaemory managemen-
t by comparing with representative technique using a seealistic 1/0 workloads

collected from notebook by DiskMon [1].
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The rest of this chapter is organized as follows. Sectionirgrdduces the PCM-
based embedded systems, and the representative FTL inmibkgioas for hybrid architec-
ture. Section 3.3 presents our WAP-FTL technique. SectidrpBsents the experimental

results. Section 3.5 concludes the chapter.

3.2 Background and Motivation

In this section, we first introduce the targeted PCM-baseblegltled systems, and then de-

scribe the motivational example. Finally, we present théwaton of this chapter.

3.2.1 PCM-based Embedded Systems

In this chapter, we target at the PCM-based embedded systémage-level flash memory
management scheme. As shown in Figure 3.1, a typical PCMdbambedded system con-
sists of a PCM-based main memory and a NAND flash memory. P@%/&3@ main memory
for maintaining frequently accessed OS pages and the FTlpimgpable, and NAND flash
memory is employed as a secondary storage for storing usaititat are accessed by file

systems.

Thanks to the page-level flash translation layer, write estgifrom file systems to
NAND flash memory is handled transparently, and the mappima fogical address (log-
ical page number) to physical address (physical page nymbkibe updated continually
in FTL mapping table hosted by PCM. As influenced by the I/Quests, the page-level
FTL mapping table is the most heavily updated component iMR&d may shorten PCM
lifetime. To avoid the lifetime degradation of PCM, it is messary to make the page-level
FTL scheme write activity aware in the PCM-based embeddstesy. Therefore, in this
chapter, we propose a write-activity-aware page-level Edlheme, WAP-FTL, for reducing

write activities in the PCM-based embedded systems.
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Figure 3.1. PCM-based embedded systems with the proposestagtivity-aware page-

level WAP-FTL technique.

3.2.2 Motivational Example

In this section, we briefly revisit theBFTL scheme which is currently the only one FTL

scheme proposed for managing NAND flash memory in PCM-basdgdded systems [48].

hFTL is based on page-level mapping scheme [5], but it is dpgchfor PCM-based
embedded system$iFTL stores metadata such as FTL mapping table, physical page
formation, and physical block information in PCM. NAND flastemory is only used for
storing user data from the file system, and the blocks in NAMBHimemory are categorized
into three types, i.e., garbage blocks, data blocks, andferlnlock. Different from the con-
ventional page-level mapping FThETL uses a buffer block to store the newly arrived data.
When the buffer block runs out of free pages, it is put intodha& block list and another

empty buffer block is allocated from the garbage block listhere is not enough number
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of garbage blocks, a garbage collection operation is pedrto reclaim a block from the
data blocks. IhFTL, a page-level mapping table in PCM keeps track of mappbeiween
logical page number (LPN) and physical page number (PPNgrims of the I/O requests.
Consequently, the mapping table is updated frequentlylamlitnposes the endurance issue

for PCM. A motivational example is illustrated in Figure 3.2

In the example, there are four blocks in NAND flash memory, @ach block has 8
pages. Therefore, a page-level mapping table in PCM hastg2<®to record the mapping
information. To facilitate the comparison bFTL and our PCM-FTL scheme, the physical
page number (PPN), physical block number (PBN), and thebffseach block are repre-
sented by binary number. We assume that each entry of theinggiable is empty at the
beginning, and the binary number in an entry is the updatédsRe reflect the updates of
mapping. The I/O access requests of write operations (Wjsteel in Figure 3.2(a). Accord-
ing to the given I/O requests, the status variation of thekdan NAND flash memory is
shown in Figure 3.2(b). FATFTL, when a write operation is performed, the corresponding

content is first written to a free page of the current buffecklin a sequence order.

As shown, the first request is written to LPN (#18). A new bufffieck (PBN #00) is
allocated from the garbage block list, and the conténtith the corresponding LPN (#18)
are stored in the first page of current buffer block (PBN #0B)eanwhile, the mapping
information of LPN (#18) and PPN (#00000) is stored into thapping table shown in
Figure 3.2(c). Note that PPN is the combination of PBN andotbek offset. After serving
the eighth request, buffer block (PBN #00) is full and becsmaelata block. Likewise, the
remaining garbage blocks (PBN #01, PBN #10, and PBN #11)lmeated as a buffer block
respectively, to serve the following write operations. dHiyy when the content aiV2 with
the corresponding LPN (#29) are written into the last pagbuffier block (PBN #11), all
garbage blocks become data blocks and some entries of th@mgdpble have been updated

by new PPNs for several times.
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Figure 3.2. Motivational example. (a) I/O access sequefmd.he status variation of blocks

in NAND flash memory. (c) The status variation of FTL pageelemapping table in PCM.
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3.2.3 Motivation

In the motivational example, several update operationpar®rmed in the FTL page-level
mapping table. For instance, the 13th request updatesdieatent in the 1st page of data
block (PBN #00) by setting that page invalid, and writes te@ ©ontent to the current buffer
block (PBN #01). Meanwhile, the corresponding mappingrmi@tion in the mapping table
is updated as well. In Figure 3.2(c), we use the bit flips (BRpwn on the right side of
the mapping table, to reflect the update frequency of eaaly anthe mapping table. As
shown, the 11th and 29th entries have the maximum numbet @igs 5. Since PCM cell
can only sustain limited number of write cycles, frequerdatp operations in mapping table
will lead to the fast worn out of PCM. In additiohFTL is further evaluated with a variety of
realistic I/0 traces in Section 3.4, and a part of the evadnaesults is shown in Figure 3.3.
As shown, the maximum number of bit flips in PCM cells from aghbalf of the traces
achieves the PCM endurance limit, if a PCM cell can only snsitaf write operations (e.g.,
Micro P5Q PCM [61]). Besides, the total number of bit flips IBN? cells is significantly
higher, which can also influence the power efficiency of PCkegde observations motivate
us to propose a write-activity-aware FTL to effectively raga NAND flash memory and, at

the same time, to improve the endurance of PCM-based embsgde=ms.

As mentioned above, several hardware optimization tectasidor PCM have been
proposed [52,101], to tackle the redundant write actigibig eliminating a write if its desig-
nated memory cell holds the same value. Then through wiijiguch a fine-grained hardware
feature, the technique proposed in this chapter couldelgtshoose mapping information
(e.g., PBN) which is almost the same as the mapping to be egdathe page-level FTL

mapping table, such that the number of write activities ilVA€ reduced.

3.3 WAP-FTL: PCM-Awared Page-Level FTL

In this section, we introduce our WAP-FTL, a write-activéyare page-level FTL, that can
reduce write activities in PCM. We first present an overviéWAP-FTL in Section 3.3.1.

We then provide a detailed description of WAP-FTL in Sect3o8.3.
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Figure 3.3. The evaluation resultsitF TL in terms of the maximum and total number of bit

flips in PCM cells over different I/O traces.

3.3.1 Overview of WAP-FTL

The objective of WAP-FTL is to reduce write activities in PaMsed embedded systems.
Therefore, the basic idea of WAP-FTL is to preserve eachlTiL mapping table hosted
by PCM from being inverted frequently, e.g-~A—0, during the update process of FTL
mapping table, such that the maximum number of bit flips irheREM cell is reduced
and the PCM lifetime is enhanced. Thus, in WAP-FTL, we dgvelavrite-activity-aware
strategy technique, which could actively find physical gafpe write requests issued into
NAND flash memory. The reason behind this idea is that theiphlypage number of the
physical page should be updated in the page-level FTL mggplyie in PCM following the
write requests, thus write activity reduction can be olgdihy carefully select the physical

page whose page number incurs the minimum number of bit flipx0M cells.
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3.3.2 Write-Activity-Aware Strategy

Figure 3.4 shows the proposed write-activity-aware sgratAs shown, for the write request-
s, the traditional page-level FTL scheme, eh§TL, allocates physical pages consecutively
and updates mapping table with the corresponding physag mumber without consid-
ering write activities. In this exampldFTL selects the first available physical page and
introduces 5 bit flips in PCM. However, unlike the traditibpage-level FTL, our write-
activity-aware strategy first checks the correspondingpmagprecord in FTL mapping table
('0111011011011"), and then actively selects an availpbigsical page whose physical page
number has the minimum Hamming distance with the origingdpimag record. In this figure,

a physical page ‘0111011010011’ is found since it incury dnbit flip in PCM during the
update process of FTL mapping table. It can be seen that dpmped write-activity-aware

strategy can effectively reduce the number of bit flips in RCM

~
Physical Page Number
to be Updated in FTL
Page-Level Mapping Table Without Consideri .
ithout Considering o
0111011011011 ‘ Write-Activity-Aware in hFTL
| o1@1o@ARE11 |
} Bit Flips: 5
| o1@1o@AREA1TT | \
| 011101101011 | \
Write-Activity-Aware
‘ 01110@E0M1 0@ ‘ Strategy of WAP-FTL
| omvmdEor 1@t | | _o011101101@o11 |
Physical Page Number of R
Available Physical Pages in Bit Flips: 1
NAND Flash Memory
/

Figure 3.4. The write-activity-aware strategy of WAP-FTL.
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3.3.3 WAP-FTL Description

In WAP-FTL, based on the write-activity-aware strategy,agévely choose a physical page
according to the write requests, and the PPN of the selettgsiqal page must cause the
minimum number of bit flips when comparing with the origind&®N in the mapping table.

By applying WAP-FTL, the number of bit flips is reduced whee ffage mapping table is

updated. Consequently, the endurance of PCM can be enhanced

Algorithm 3.3.1 shows how WAP-FTL actively finds a partiaythysical page whose
PPN incurs minimum number of bit flips in the FTL page-levelppiag table. As shown,
when an write request arrives, we first get the old PPN and BN Rines 1-2). If the
corresponding entry in the mapping table is empty, i.e.ptdd?PN is NULL, then we ran-
domly find a block with free pages and use its PBN as a tempd?Biy (Tmp.PBN) for
further checking (lines 4-5); Otherwise, the LPN has alydagen mapped, i.e., the old PPN
is not NULL, then assign the old PBN to the temporary PBN, analid the old content
in the page #OIdPPN (lines 6-8). Then get the PPN of the current free pageeoblbck
#Tmp.PBN, and assign it to TmPPN (line 9). If the bit flips (BF) between TmPPN and
OId_PPN equals to 0 or 1, which means that we find a physical pageeMABN causes the
minimum number of bit flips in the FTL page-level mapping &glthus we get the new PPN
and update the FTL page-level mapping table (lines 11-h2,24). However, if the BF is
greater than 1, then change one bit in TRPN, so we can get the other PBNs, and thus the
block #TmpPBN and the blocks whose PBN with one bit difference with #TiRiN forms
a current block set (lines 13-14). In the current block setfind a physical page whose PPN
causes the minimum number of bit flips when comparing with-PRN (lines 15-16). If a
physical page is found, then get the new PPN and update the&gé-level mapping table
(lines 17-18, line 24); Otherwise, a physical page is setb@tom a block not in the current

block set, then get the new PPN and update the mapping taids 19-20, line 24).

An example of WAP-FTL is shown in Figure 3.5. This example &sdd on the
access sequence and the assumptions of NAND flash memohgefandtivational example

shown in Figure 3.2. As shown, for the 4th request with LPN),(#& random assign a
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Algorithm 3.3.1 The algorithm of WAP-FTL
Input: Logical Page Number (LPN), page number of a block (BlkPgNum)

Output: New Physical Page Number (NeRPN).

=

: Old_PPN = MapTab[LPN].

N

: Old_PBN = OId PPN / BIkPgNum.
. if Old_PPN == NULLthen

3
4:  TmpPBN « randomly find a block with free pages.

a

else

6: TmpPBN = OIdPBN.

N

Invalid the old content in the page #QRPN.

(o¢]

cendif

©

: Tmp. PPN« PPN of the current free page in block #TRBN.

10: BF+« Bit Flips between Tm@PPN and OIdPPN.

11: if BF equals O or then

12: New PPN = TmpPPN.

13: else

14:  The block #Tm@dPBN, and the blocks whose PBN has only one bit difference Witip_PBN forms a
current block set.

15: for all blocks in current block se&to

16: Find a physical page whose PPN incurs the minimum numbbit dlips when comparing with
Old_PPN.

17: if Successhen

18: New PPN+« PPN of the selected physical page.

19: else

20: New PPN+« PPN of the page in a block not in the current block set.

21: end if

22:  end for

23: end if

24: Return NewPPN, write the new content into the page #NERN and update the mapping table with

New_PPN.
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Figure 3.5. An example of WAP-FTL. (a) 1/0 access sequenee by the motivational
example in Figure 3.2. (b) The status variation of blocks AN flash memory. (c) The

status variation of FTL page-level mapping table in PCM.

block (PBN #11) since the corresponding entry for this LPNnspty, and the conter®

is written into the current free page (#11000) of block (PBNLY For this request, there
is no bit flip when updating the FTL page-level mapping tabl®CM. It can be seen that
D is updated by a new contentl in the 19th request, anB1 is written into the physical
page (#11010) according to our write activity-aware sgat&/hen the 19th request arrives,
we use the LPN (#3) to get the old PPN (#11000) from the mapiaiblg. Then we know
the old contentD of this LPN (#3) is stored in the page PPN (#11000), thus thgeps set
invalid. According to the old PPN (#11000), the correspagd?BN can be obtained (#11),

and the PPN of the current free page in this block is #1101@t,emparing #11010 with
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the old PPN #11000, the number of bit flips is only 1. Thereforéerms of our algorithm,
we do not need to find other physical pages, the new cordbdntan be directly written
into the physical page (#11010). By using WAP-FTL, we onlgché¢o write one reversed
bit in the mapping table for this update operation. By castirawo reversed bits have to be
written into the mapping table accordingh&TL. After processing all requests, we found
that the total number of bit flips are 37 by our WAP-FTL, white total number of bit flips
in PCM is 44 byhFTL. Our scheme achieves a reduction of 15% in total numbbitdiips,
which confirms that our write-activity-aware strategy c#fiecively reduce write activities
in PCM. The experimental results in Section 3.4 also showdbascheme can effectively

reduce the total number of bit flips.

3.4 Evaluation

To evaluate the proposed WAP-FTL scheme, we conducted assefiexperiments and
present the experimental results with analysis in thisi@ecBelow, we first introduce the
experimental setup. Then, based on our simulation framewee present the experimen-
tal results and discussion for WAP-FTL. Finally, we analgzéra overhead caused by the

write-activity-aware strategy adopted by WAP-FTL.

In this chapter, we assume that the FTL page-level mappbig isstored in a single-
level cell (SLC) PCM, and the user data is stored in a multeleell (MLC) NAND flash

memory, which is widely used in embedded systems.

3.4.1 Experimental Setup

Table 3.1 summarizes the setup configurations of our evatuakhe evaluation is conducted
through a trace-driven simulation framework, in which aliaor is designed to evaluate
WAP-FTL andhFTL using a variety of realistic 1/0O traces collected fromtetmook and

Android platform. The I/O traces reflect the realistic waikdls of the system in accessing

the secondary storage for daily use.
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Table 3.1. Experimental Setup.

CPU Intel Dual Core 2GHz
Notebook Disk Space 200GB
Configuration RAM 2GB

CopyFiles, DownFiles
DiskMon Traces

Office, P2P
CPU ARM926EJ-S
OS Kernel Linux 2.6.29
Android Emulator I/0 Scheduler NOOP
Configuration Android Version 2.3

Communications, Internet

Android Traces
MixedApps, Multimedia

OS Kernel Linux 3.0
Simulation

Flash Size 1GB & 4GB
Environment

PCM Size 128Mb

In the notebook platform with an Intel Dual Core 2GHz procesa 200GB hard
disk, and a 2GB DRAM, the 1/O traces of four applications treqtly used in daily life are
gathered by DiskMon [1]. Among these traces, CopyFiles imeet collected by copying
files from hard disk to an external hard drive; DownFiles espents a trace collected by
downloading files from a network server; Office representa@etcollected by running some
office related applications; P2P represents a trace cetlday running a P2P file-sharing
application on an external hard drive. For each trace, to th@@ddress of the disk space
into the address of the NAND flash space, we adopt a modulabpeyi.e., section number
in HDD address mod total page number of NAND flash. The siesisff each trace are listed

below:

e Copyfiles: I/O requests - 13608439, write ratio - 78%
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e DownFiles: 1/0 requests - 26588711, write ratio - 72%

e Office: 1/0 requests - 85297213, write ratio - 77%

e P2P: 1/O requests - 251789825, write ratio - 29%

Besides, to fully evaluate the proposed FTL scheme in theseddd environment,
some Google Android traces are collected from Google Anidi#.3 with Android Emu-
lator (included in Android SDK). We modified the Linux kerr&hipped with Android to
record 1/0O requests in system logfNOOP scheduler in Linux is selected as NAND flash
memory is truly random-access and does not need optimizé&dio“seeking” operations
found in traditional hard disks. Traces are gatheredibgroid Debug Bridgen Android
SDK from the emulator to host computer. In order to revealatieial impacts of the ex-
perimental schemes, we collected traces under heavydaadaronment by usiniylonkey
which is a automatic stress test tool provided by Android SKh applications specified,
it generates random events for them and send the events ¢ontlator for execution. Four
traces are collected, as shown in Table 3.2. Each trace lscted by running the appli-
cations specified by the second column in Table 3m2ernetfocuses on online activities;
Multimediaconsists of a set of frequently used multimedia applicati@ommunicationn-
cludes applications that will be frequently used when thex isstrying to connect the rest of
the world. In order to represent the randomness of user mhaxe collectedVixedApps

which are both mixes of applications across different ajgpion domains.

Table 3.2. Android Trace Applications

Trace Applications
Internet Web Browser, EMail, Search, Settings
Multimedia Music, Camera, Gallery, Settings
Communications Phone, Contacts, Messaging, Voice Dialer
MixedApps Browser, EMail, Music, Contacts, Settings
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The simulation framework of our simulation platform is shoim Figure 3.6. This
simulation framework simulates our WAP-FTL scheme oveRlidM-based embedded sys-
tems, which consists of a NAND flash memory and a PCM for sgppiage-level FTL map-
ping table. In our experiments, the traces along with variparameters of NAND flash
memory, such as block size, page size, etc, are fed into mul&tor. The page size, number
of pages in a block, and size of the OOB for each page are séBs62, and 64 Bytes,
respectively. To fully evaluate our technique, we condbetéxperiments on a PCM-based

embedded system with 1GB and 4GB NAND flash memory, respygtiv

Input
Parameters q PCM-based

Embedded

Trace Collector WAP-FTL H System q Results

With

Trace NAND Flash

Figure 3.6. The framework of simulation platform for evdlog the proposed WAP-FTL

technique.

3.4.2 Results and Discussion

In this section, we compare and evaluate our proposed WAPtEGhnique over the rep-
resentative page-level FTL schen&TL [48] in terms of two performance metrics: the
maximum and total number of bit flips in PCM. Experiments avaducted based on our
PCM-based embedded system simulator with 1GB and 4GB NAND flsemory over eight

distinct traces gathered from notebook and Google AndV¥gtatform.

PCM Endurance

Table 3.3 and Table 3.4 show the experimental results fomidzamum and total number of

bit flips of our proposed scheme WAP-FTL and the represemst@age-level FTL scheme
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Table 3.3. WAP-FTL versubFTL in terms of the maximum number of bit flips in PCM

cells. (LGB NAND flash memory)

hFTL
Trace Name % of page usage in NAND flash memory
Finish
20% 40% 60% 80% 100%

CopyFiles 188 325 326 326 328 9977
DownFiles 106 186 187 188 190 21945

Office 12 13 14 41 43 9385
P2P 35 118 194 228 276 74540
Communicationg 88 164 254 340 402 158029
Internet 70 151 231 319 378 134281
MixedApps 93 183 267 352 441 139241
Multimedia 93 151 154 155 156 95621

WAP-FTL
% of page usage in NAND flash memory
Finish
20% 40% 60% 80% 100%

CopyFiles 134 239 239 239 239 14209
DownFiles 75 111 111 112 112 135775
Office 7 9 10 25 25 163538
P2P 25 65 115 127 155 261351
Communications 77 126 183 232 259 157907
Internet 64 121 167 215 243 134263
MixedApps 82 139 183 249 297 139243
Multimedia 87 128 128 128 128 95632
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Table 3.4. WAP-FTL versubFTL in terms of the total number of bit flips in PCM cells.

(1GB NAND flash memory)

hFTL
Trace Name % of page usage in NAND flash memory
Finish
20% 40% 60% 80% 100%

CopyFiles 983057 2174684 3303546 4583374 5857110 559496658
DownFiles 1003343 2105436 3210454 4524334 5837597 1756464372
Office 985871 2085896 3276887 4539453 5842018 7520028995
P2P 992452 2115462 3334764 4647266 5970250 6929967624

Communicationg| 1002453 | 2074710 3118356 4178193 5228922 9883730134

Internet 1031781 | 2077305 | 3124603 | 4139189 | 5186971 || 9555187107
MixedApps 977832 | 2013718 | 3055599 | 4093552 | 5119704 || 6591084832
Multimedia 982136 | 2046396 | 3083667 | 4111219 | 5153549 || 8347917692

WAP-FTL

% of page usage in NAND flash memory

Finish
20% 40% 60% 80% 100%
CopyFiles 622096 1058139 1976801 2937719 3765586 1324170182
DownFiles 708192 1209301 1722262 2226636 3327637 4917431792
Office 697521 1479747 2156464 2655455 3255932 || 23639132918
P2P 765204 1479963 2118783 2777092 3376001 || 22401489990

Communicationg| 202182 384743 562976 737703 913180 4810126773

Internet 213625 392223 581538 751353 931305 4650348064
MixedApps 198253 379117 556384 728511 918594 3159769242
Multimedia 200650 476399 689614 862226 1069147 4301343004
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Table 3.5. WAP-FTL versuBFTL in terms of the maximum number of bit flips in PCM

cells. (4GB NAND flash memory)

hFTL
Trace Name % of page usage in NAND flash memory
Finish
20% 40% 60% 80% 100%

CopyFiles 323 328 358 1208 1659 10461
DownFiles 188 196 466 1753 2135 20857
Office 41 58 69 72 76 36667
P2P 228 723 1110 1308 1339 86383
Communications 342 411 457 537 670 158029
Internet 324 452 507 567 698 134281
MixedApps 354 497 513 544 817 149439
Multimedia 155 290 433 436 499 95846

WAP-FTL
% of page usage in NAND flash memory
Finish
20% 40% 60% 80% 100%

CopyFiles 347 349 369 1244 1650 10880
DownFiles 191 191 423 1527 1837 36920
Office 23 30 37 38 39 172509
P2P 145 515 831 969 985 228553
Communications 318 383 459 520 567 157541
Internet 313 417 482 525 572 134125
MixedApps 359 470 478 535 687 138895
Multimedia 161 293 414 415 425 95510
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Table 3.6. WAP-FTL versubFTL in terms of the total number of bit flips in PCM cells.

(4GB NAND flash memory)

hFTL
Trace Name % of page usage in NAND flash memory
Finish
20% 40% 60% 80% 100%

CopyFiles 4494710 9327633 14815454 20314533 25833983 122605530

DownFiles 4357898 9200422 14593255 19767278 25266362 842401436
Office 4435404 9558630 15000280 20751651 26342930 6981790260
P2P 4424885 9439670 14574473 20019491 25736434 || 15269865958

Communications| 4214731 8444464 12641676 16788274 21043933 || 10305765684

Internet 4166898 | 8363191 | 12509433 | 16635517 | 20747378 || 9988536600
MixedApps 4129671 | 8313322 | 12505355 | 16723162 | 20913638 || 5130339159
Multimedia 4144192 | 8417270 | 12728467 | 17077552 | 21224068 || 8654772875

WAP-FTL

% of page usage in NAND flash memory

Finish
20% 40% 60% 80% 100%
CopyFiles 3086425 | 6958867 8872671 10392954 | 11917754 156287827
DownFiles 3452515 | 7227272 9498394 11215494 | 12852766 || 1209891021
Office 3214941 | 5533978 7811282 9724357 11747696 || 12500791348
P2pP 3269436 | 6406322 9266073 11719374 | 14284551 || 2214855491(Q

Communications| 694663 1338881 2001803 2644835 3352860 4801121525

Internet 702007 1344439 1996640 2641505 3346537 4640901865
MixedApps 684108 1327512 1978781 2622322 3312456 3150978018
Multimedia 769244 1435469 2122868 2799786 3494992 4290735847
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hFTL, over a simulator of PCM-based embedded system with 1@BIDI flash memaory,
respectively. In each table, columns 2-6 present the maxittaal number of bit flips in
PCM cells when a specific percentage of page usage in NAND fteshory is achieved.
And the last column of each table present the maximum/tatailver of bit flips in PCM
cells when all write requests of a trace are served. In Talllev observe that WAP-FTL
reduces the maximum number of bit flips a lot th&TL before all pages are allocated for
write requests over different traces. However, for thedatitmn, we find that the maximum
number of bit flips obtained by WAP-FTL is almost the same as ®hhFTL, or even worse
than that ofhFTL (e.g., DownFiles and P2P), after all write requests afaad are served
over different traces. This means that the write-actieityare strategy in WAP-FTL cannot
always effectively reduce write activities in PCM cells.el$imilar scenario is also found in
Table 3.4. As shown, though WAP-FTL can significantly redilneetotal number of bit flips

before all pages are full, it cannot reduce activities in Piidlly for all traces.

To verify the above observation, we further extend the vawhNAND flash mem-
ory to 4GB in our simulator and evaluate our technique. Tabteand Table 3.6 report
the similar results for the maximum and total number of btsflin PCM cells obtained by
WAP-FTL andhFTL, respectively. Therefore, these results demonstnateV/AP-FTL may
not be a better solution for reducing write activities in POElsed embedded systems. The
reason of the above scenarios is caused by extra valid payedewing garbage collection

in our write-activity-aware strategy.

Overhead

As mentioned before, to reduce write activities during tpdate process of FTL mapping
table, our scheme will actively find an available physicajgpavhose page number incurs
the minimum number of bit flips in PCM. Therefore, unlike tihaditional page-level FTL
scheme, such asFTL, which allocates physical pages consecutively for mioca write
requests, our WAP-FTL actively selects available physiegje among all blocks. Though

our method could reduce write activities in PCM at an easliage of /0 requests. However,
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for the later sequential update requests, it will invakdsdme updated pages across multiple
blocks that also contain some valid pages. Once these béweKlsill and garbage collection
is triggered to reclaim free space, the valid pages in thkssk$ should be copied into some
free blocks and their mapping records in the mapping taldaipdated accordingly. Thus,
extra bit flips are induced during the valid page copy in ggebeollection. In contrast, in
hFTL, all pages in a block may be invalidated consecutivellpfang the sequential update
requests, and thus no extra page copy is needed during thaggacollection. So it can be
seen that the results of WAP-FTL are similar to or worse tlet 6f hFTL once all pages

are used in NAND flash memory.

3.5 Summary

In this chapter, we have proposed a write-activity-awaigepavel flash memory manage-
ment scheme, named WAP-FTL, to exploit the advantages ofvileknown FTL imple-
mentations in order to reduce write activities in PCM for @mting lifetime of the PCM-
based embedded systems. In our WAP-FTL, the write actiatuction is achieved by
preserving each bit in page-level FTL mapping table thatdtbsy PCM from being invert-
ed frequently. Unlike the traditional page-level FTL scleef#8], WAP-FTL can actively
choose a physical page whose physical address incurs theammnumber of bit flips in
FTL page-level mapping table hosted by PCM, so as to effelgtieduce write activities in
PCM cells. However, with a set of real-life workloads, th@esimental results show that our
WAP-FTL technique cannot fully reduce write activities quemed to the baseline scheme
hFTL, especially after garbage collection happens. Theoressanalyzed and we concluded
that WAP-FTL does not consider the behavior of 1/O requestguential or random, may
introduce extra valid page copy overhead in garbage calecthese observations motivate

us to further extend this work for reducing write activitisd?CM-based embedded systems.
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CHAPTER 4

PCM-FTL: A TWO-LEVEL PCM-AWARED

FLASH MEMORY MANAGEMENT TECHNIQUE

4.1 Overview

Phase change memory (PCM) is considered as DRAM replacdarel@signing main mem-
ory in embedded systems [21,26,52,77,78,101]. Howeverpeoed to DRAM, PCM can
only endure10° to 10® writes per cell [38]. As main memory is one of the most heavily
accessed components in embedded systems, the limitecaacdusf PCM leads to a short-
ened memory lifetime especially for write-intensive resfge It is therefore necessary to
eliminate redundant write activities in PCM-based embddsestems. On the other hand,
with the advantages of small size, shock resistance, angp¢over, NAND flash memory
is widely used as a secondary storage and has been integraid@lCM-based embedded
systems [48, 68,87]. As a result, how to effectively manag®&lN flash memory and avoid
a fast worn-out of PCM-based embedded systems should be itstkeaccount. Therefore,
this chapter focuses on exploring the management of NAND fiasmory in a PCM-based
embedded system, while considering write activities in PGlhcrease the reliability of the

system.

In Chapter 3, we proposed a write-activity-aware pageliéagh management tech-
nique, WAP-FTL, for reducing write activities in PCM-baseabedded systems. However,
the experimental results show that our WAP-FTL techniquenoafully reduce write ac-
tivities compared to the baseline scheme, especially glidrvage collection happens. The
reason is that WAP-FTL does not consider the access belai@ requests, which mainly

consists of sequential and random requests. In WAP-FTlagdge copy is introduced in
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garbage collection and causes significant bit flips in FTL piragptable. Therefore, these ob-
servations motivate us to further extend the proposed sadtity-aware strategy in WAP-

FTL for effectively reducing write activities in PCM-basethbedded systems.

In this chapter, we propose a write-activity-aware twaeldlash memory manage-
ment technique, namedCM-FTL , to effectively manage NAND flash memory and en-
hance the endurance of PCM-based embedded systems megmwithilthe advantage that
no changes are required to the file system, or hardware ingpitxtion of the NAND/PCM
chip. Our basic idea is to preserve each bit in FTL mappintgtathich is stored in PCM,
from being inverted frequently, i.e., we focus on reducing mumber of bit flips in a PCM
cell when updating the FTL mapping table. Unlike WAP-FTL posed in Chapter 3, PCM-
FTL employs a two-level mapping mechanism, which not onlyufes on reducing write

activities of PCM but also considers the access behavidfofdquests.

To achieve this, in PCM-FTL, we use a page-level mappingetadbhandle not fre-
quently updated random requests, and allocate a tiny bofffielock-level mapping table to
record most frequently updated sequential requests. &igmiby utilizing the fine-grained
hardware optimization technique for eliminating a writésfdesignated PCM cell holds the
same value [52,101], PCM-FTL actively chooses a physiaaibin NAND flash memory
whose physical block number incurs minimum number of bisflipPCM cells so as to write
the different bit into PCM. Consequently, the write actastare reduced and the lifetime of
PCM-based embedded systems is enhanced. To the best ofadekige, PCM-FTL is the
first effective technique proposed for managing NAND flasimuogy in PCM-based embed-

ded systems with the consideration of write activities.

Similar as WAP-FTL, we conduct experiments with the sameo$eatalistic 1/0
traces collected from notebook and Google Andjalatform. A representative FTL de-
sign hFTL [48] for PCM-based embedded systems is selected as éingaseheme. The
proposed PCM-FTL is compared willrTL in terms of the maximum and total number of
bit flips in PCM cells with various configurations. For the KiNéon traces collected from

notebook, the experimental results show that PCM-FTL redtize maximum number of bit
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flips among PCM cells by 93.10% (83.10%) on average, and e=dilhe total number of bit
flips of all PCM cells by 64.00% (70.90%) on average in a PCideobembedded system
with 1GB (4GB) NAND flash memory. For the Google Andrbidraces, the experimental
results show that PCM-FTL reduces the maximum number ofipg @mong PCM cells by
99.82% (99.86%) on average, and reduces the total numbetr fips of all PCM cells by
93.10% (98.17%) on average in a PCM-based embedded systtni@B (4GB) NAND

flash memory.

This chapter makes the following contributions:

e We present for the first time a write-activity-aware twodkflash memory manage-
ment technique to effectively manage NAND flash memory arfitheoe the lifetime

of PCM-based embedded systems by reducing redundant wiikéias.

e \We demonstrate the effectiveness of our technique by cantpaith a representative

FTL using a set of realistic I/O workloads.

The rest of this chapter is organized as follows. Sectionl&@usses the background
of system architecture and motivation. Section 4.3 praseuat proposed PCM-FTL tech-
nique. Section 4.4 presents the experimental results.|l{simege conclude the chapter in

Section 4.5

4.2 Motivation and Background

In this section, we first introduce the motivation of our workhen we present the back-

ground knowledge of PCM-based embedded systems studidusghapter.

4.2.1 Motivation

As depicted in Chapter 3)FTL [48], a page-level mapping FTL scheme designed for the

PCM-based embedded systems, does not consider the wiitgiegin PCM and impose
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lifetime issue for the PCM-based embedded systems. Thou§R-WIL with a write-
activity-aware strategy is proposed to minimize bit flipsidg the update process of page-
level mapping table each time, it does not consider the adoelsavior of 1/0 requests and
also induce extra valid page copy overhead when garbagectiolh happens. The exper-
imental results reported that WAP-FTL cannot fully redua#evactivities for all realistic
I/O traces. Since PCM cell can only sustain limited numbewafe cycles, frequent update
operations in mapping table will lead to the fast worn out GMP. Therefore, these observa-
tions motivate us to propose a new technique that can efédgtieduce write activities and

enhance the lifetime of PCM-based embedded systems as well.

4.2.2 PCM-Based Embedded Systems

In this chapter, we target at the PCM-based embedded systtnthe proposed write-

activity-aware two-level flash memory management techmiglis shown in Figure 4.1, a
two-level mapping table with a block-level mapping tabléféuand a page-level mapping
table is maintained by the PCM-based main memory. For reduerite activities of the

mapping table in PCM, the proposed PCM-FTL scheme is intedrimto the PCM-based
embedded system to replace the original flash translatiger.laFor the coming read re-
quests, PCM-FTL checks the two-level mapping table in PCMartain the corresponding
physical page in NAND flash memory for reading. For the cominige requests, PCM-

FTL serves the requests by allocating free pages in NAND flasmory and updates the
corresponding mapping records of the physical pages imtbddvel FTL mapping table in

PCM.

4.3 PCM-FTL: PCM-Awared Two-Level FTL

In this section, we present the details of our PCM-FTL, aevattivity-aware two-level flash
memory management technique, that can effectively enhtmecendurance of the PCM-

based embedded systems. We first present an overview of PKLMAFSection 4.3.1. We
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Figure 4.1. PCM-based embedded system with the proposéeladtivity-aware two-level

PCM-FTL technique.

then provide a detailed description of PCM-FTL in SectioB.2. Finally, a wear leveling

method of PCM-FTL is presented in Section 4.3.3.

4.3.1 Overview of PCM-FTL

The objective of PCM-FTL is to reduce write activities in P&Msed embedded systems,
and therefore, the endurance of PCM is enhanced. So theidaaiof PCM-FTL is to pre-
serve each bitin FTL mapping table, which is stored in PClhyfbeing inverted frequently,
i.e., we focus on reducing the maximum number of bit flips irfCd/Rcell when updating the
FTL mapping table in PCM. Different from the previous worl8][4our PCM-FTL adopts

a two-level mapping mechanism, which not only focuses onming write activities in
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PCM but also considers the access behavior of 1/0 requeSiM-PTL uses a page-level
mapping table to record the mapping of random write requestérequently updated, and
allocates a tiny buffer of block-level mapping table to acat¢he mapping records of those
most frequently updated sequential write requests. Wetttnsideration of write activities,
once a block is needed for incoming write requests, PCM-Fgilvaely chooses a physical
block in NAND flash memory whose physical block number incomsimum number of

bit flips in PCM cells. By applying PCM-FTL, the number of biip# is reduced, and thus
the number of write activities in PCM is minimized. Conseujile the endurance of the

PCM-based embedded system is enhanced.

4.3.2 PCM-FTL Description

In general, a realistic I/0O workload is a mixture of randond aequential requests. By
separating the random requests from the sequential requestan not only obtain the ac-
cess behavior but also handle those frequently update@sgauwrite requests. Otherwise,
without considering the access behavior of 1/0O workload,car not effectively manage
NAND flash memory and may waste lots of blocks in garbage ctitie due to frequent
update operations. Therefore, in PCM-FTL, we design a hehaetector to separate the
I/0 workload into random and sequential requests, accgraithe length of each request in
the 1/0 workload. The length is a user defined threshold, wlsadetermined by observing
performance gains with different threshold values (e.g1@ 32) in the experiments. For
example, if the length of a request is smaller than 8, thenrdquest is treated as a random
request; otherwise, if the length of a request is greater thaqual to 8, then it is treated as

a sequential request.

Figure 4.2 shows the structure of the proposed PCM-FTL. Asveh PCM-FTL
first separates the I/O workload into random requests andesg¢i@l requests in terms of
the predefined threshold. Then PCM-FTL adopts a two-levél Fiapping mechanism to

handle these two cases as follows:
e For random requests: PCM-FTL consecutively allocatesiphipages from the first
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Figure 4.2. lllustration of PCM-FTL write-activity-awateo-level mapping mechanism.

page of a physical block in NAND flash memory, so that all pagdsocks are fully u-
tilized. Accordingly, PCM-FTL adds LPN to PPN mapping retof random requests

into the page-level mapping table in PCM.

e For sequential requests: PCM-FTL allocates physical pabagphysical block based
on block offset as most sequential requests usually occwgyode block, so that all
pages in blocks are fully utilized as well. Similarly, PCM1Eadds an LBN to PBN
mapping record of sequential requests into the block-levabping table buffer in

PCM.

In PCM-FTL, we only allocate a tiny buffer for tentativelysing a part of the block-

level mapping table. For example, the size of this bloclelevapping table buffer can be set
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as 5%, 10% or 20% of the size of the original block-level maggable, in order to achieve
an acceptable space overhead. Therefore, a replacemeyt glwduld be considered when
the buffer is full. Similar as a cache, we only kick out the mpiag of those not frequent-
ly updated blocks, while maintaining the mapping of frequgpdated blocks. The kicked
out mapping record of LBN to PBN is first expanded to the cqoesling LPNs to PPNs
mapping records, and then these page-level mapping ream st back into the page-level
mapping table. If a block in NAND flash memory ha§ valid pages, and its corresponding
block-level mapping is kicked out to page-level mappinddabo NV, entries in page-level
mapping table should be filled with the correspondivig LPN to PPN mapping records for
each page in the block. On the contrary, the page-level mgpyia block can be re-added
into the block-level mapping table buffer, once the blockpsated again by sequential write
requests. Therefore, by observing the frequently updatgaasts, our technique can dynam-
ically adjust the block-level mapping table buffer and thgg-level mapping table, such that
write activities of frequently updated requests are onlffdvad in the block-level mapping
table buffer which only contributes a small number of bitglip PCM. The experimental

results in Section 4.4 confirm this fact.

To further reduce write activities in PCM-based embeddeslesys, we adopt the
similar write-activity-aware strategy used in WAP-FTL.dar PCM-FTL, to allocate a new
block for the write/update requests, the correspondingjrual physical block number (PBN)
is first obtained from page-level mapping table (by divid®@N with the number of pages
in a block), or from block-level mapping table buffer wittetrequested logical page number
(LBN). Then according to the original PBN, we actively sélaghysical block in NAND
flash memory whose PBN has the minimum number of Hammingrdistaith the original
PBN, i.e., we try to find a new PBN to achieve a minimum numbdaiofiips if the original
PBN is updated by the new PBN in the mapping table. As a reauldrge number of

redundant bit flips can be reduced, and the endurance of PEnh&nced.

Algorithm 4.3.1 shows the process of a write operation of PEM.. PCM-FTL first
divides the incoming I/O requests into random writes or/aaduential writes according

to a predefined threshold. Then the random and sequentitd vequests are processed
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Algorithm 4.3.1 The algorithm of PCM-FTL

Input: 1/O requests with random request or/and sequential request
Output: Allocate pages for the I/O request.

1: Divide the I/O request into random writes or/and seqamtrites according to a predefined threshold.
2: if Random write request arrivéisen

3:  ObtaintheLBN andL PN of the random write request.
4: if LBN’s mapping is not in block-level mapping table buffer P N's mapping is not in page-level
mapping tablehen
5: This is a new write, allocate a new bloékB N, and write the contents into the block sequentially
from the first page.
6: Add the mapping of [ PN, PPN) into the page-level mapping table.
7. endif
8: if LBN’s mapping exists in block-level mapping table bufferiaP N's mapping exists in page-level
mapping tablehen
9: This is an update, obtain tieB N of the updated block.
10: if There exists enough space in tA& NV block for the update requetten
11: Write the update contents in the left space of f@ N block sequentially, and invalid the old
pages in the same block.
12: else
13: Actively find a new block whose block number is almost thens asPBN, write the update
contents in the new block sequentially, and invalid the @dgs inP BN block.
14: end if
15: Update block-level mapping table buffer or page-levapping table.
16: endif
17: end if
18: if Sequential write request arriviégen
19:  ObtaintheL BN andL PN of the sequential write request.
20: if LBN’s mapping is not in block-level mapping table buffer P N’s mapping is not in page-level
mapping tablehen
21: This is a new write, allocate a new bloEK3 N, and write the contents of the request into the block
based on block offset.
22: if The block-level mapping table buffer is fulen
23: Kick out least frequently used entry, add the kicked oappings into page-level mapping table.
24: end if
25: Add the mapping of { BN, PBN) into the block-level mapping table buffer.
26: endif
27: if LBN’s mapping exists in block-level mapping table buffer/aP N's mapping exists in page-level
mapping tablehen
28: This is an update, obtain ti&B N of the updated block.
29: if There exists enough space in tA& NV block for the update requetten
30: Write the update contents in the left space of e N block based on block offset, and invalid
the old pages in the same block.
31: else
32: Actively find a new block whose block number is almost thens asPBN, write the update
contents in the new block based on block offset, and invakddald pages ii° BN block.
33: end if
34: Update block-level mapping table buffer or page-levapping table.
35  endif
36: end if
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separately. For random write request (lines 2-17), if it ieea write, i.e., we cannot find its
correspondind.BN or L PN mapping in the block-level mapping table buffer or pageslev
mapping table. So PCM-FTL finds a new bloBi3 N, and write the contents of the random
write request into the allocated new block sequentiallyftbe first page. After that, we add
the (LPN, PP N) mapping into the page-level mapping table. If the randomewequest is
an update, and there exists enough space in the updated thlenknrite the update contents
into the left space of the block sequentially, and invalid tid pages in the same block.
Otherwise, there does not exist enough space in the upditeki PCM-FTL will actively
find a new block whose block number is almost the same/a8/, and then write the update
contents in the new block based on block offset. At last, waatgthe corresponding block-
level mapping table buffer or page-level mapping table. $emuential write request (lines

18-36), we process it in the similar way as that for processamdom write request.

An example of PCM-FTL is shown in Figure 4.3. This exampleasédd on the 1/0O
requests and the NAND flash memory assumptions for the nimihal example shown in
Figure 3.2. As shown, for the first random request with LPNjj#ive find a new block
(PBN #00), and the content is written consecutively into the first page (#00000) of Bloc
(PBN #00). For this request, there is no bit flip when updathing mapping table as we
assume the mapping table is empty at the beginning. It carede thatA is updated by
a new contentd1 in the 13th request, and1 is written into the physical page (#00010)
according to the update policy of PCM-FTL. When the 13th esfjarrives, we use the LPN
(#18) to get the corresponding LBN (#10). Then we find the LEBHNIQ) is already in the
block-level mapping table buffer, so the 13th request is paiate to the old page in the
block (PBN #00), then by checking the block (PBN #00), we krtbg/old contentd of this
LPN (#18) is stored in the page PPN (#00000), thus this pagetias invalid. Since there
exists enough space in block (PBN #00), the new update codtieaf LPN (#18) is written

consecutively into this block.

It is noticed that the 5th to 12th requests form a sequentié\wn a block, then we
allocate a new block (PBN #11) for this request, and writedbetents into each page of

the block based on block offset. The corresponding LBN to RPdypping (01, 11) is added
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I/ORequests 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Command w w w w W W w w W w w w w w w W W W W W W W w w w w w w w w w w
LPN 18 25 21 3 8 9 10 11 12 13 14 15 18 25 25 18 27 29 3 23 29 8 9 10 11 12 13 14 15 27 23 29
Content A B CDEF G H I J K L A1 B1B2A2 M N DI O N1 E1T F1 G1 H1T 11 J1 K1 L1 M1 O1 N2
(a)
data oob data oob
000 000 000 E1 8
001 001 D1 8 001 F1 9
010 010 010 | Gt 10
011 011 011 H1 11
100 100 100 11 12
101 101 101 J1 13
110 110 110 K1 14
111 111 111 L1 15
Data Block Data Block Data Block Data Block
PBN #00 PBN #01 PBN #10 PBN #11
(b)
1/0 Requests LRU LBN PBN BF LPN PPN LOG BF LPN PPN LOG BF
) 1 0 17 0
2 10 00 0
2 0 18 0
1 11 01 0 310000 — 10001 1 19 0
4 0 20 0
Replacement
5 0 21 0
6 0 22 0
1/0 Requests LRU LBN PBN BF
. 7 0 23 0
2 10 00 0 8 0 24 0
4- 1 00 10 4 9 0 25101000 — 01001 — 01010| 3
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 10 0 26 0
Replacementl 1 0 27 101011 — 01110 2
12 0 28 0
1/0 Requests LRU LBN PBN BF 13 0 29 /01100 — 01101 — 01111 4
"""""" 1,313 1 0 30 0
16, 23, 31 5 10 00 0
15 0 31 0
5-12, 22-29 1 01 11 2 16 0 32 0
FTL Block-Level Mapping Table Buffer FTL Page-Level Mapping Table in PCM
(c) (d)
LPN: Logical Page Numberr LBN: Logical Block Number PBN: Physical Block Number
PPN: Physical Page Number LRU: Least Recently Updated BF: Bit Flips
[T ] Freepage [T ] Validpage I /nvalid page

Figure 4.3. lllustration of PCM-FTL. (a) The status vamatiof blocks in NAND flash
memory according to the access sequence in Figure 3.2. @)pfHEtus variation of FTL

page-level mapping table and block-level mapping tablésbufi PCM.
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into the block-level mapping table buffer. Later, when tbkoiwing 22th to 29th sequential
update requests arrive, then the old pages in the block (PBN)&e invalidated. Since we
cannot find free block, the block (PBN #11) is erased for igtlzg free pages, and the new
update data E1 to L1 is written into this block based on bldtsed. Finally, we update the

block-level mapping table buffer, and the value of corregfog LRU is updated as well.

After processing all requests, we find that the total numlibéitdlips in PCM is 16
by our PCM-FTL, while the total number of bit flips in PCM is 44 hFTL. Our scheme
achieves a reduction of 63.6% in the total number of bit flykich confirms that our ap-
proach can effectively reduce write activities in PCM. Thperimental results in Section 4.4

also show that our scheme can effectively reduce the totabeu of bit flips in PCM cells.

4.3.3 PCM-FTL Wear Leveling Scheme

Note that the block-level mapping table buffer is updatedjfiently by sequential
write requests, so it may become very hot and lead to an urigstitution of bit flips among
all PCM cells. To avoid this scenario and enhance PCM endetanwear leveling method is
integrated into PCM-FTL. Figure 4.4 demonstrates the m®oéour wear leveling method.
As shown Figure 4.4(a), the block-level mapping table buffecomes hot after buffering
the frequently updated sequential write requests. Howéverpage-level mapping table is
cold as it only serves the infrequently updated random wetgiests. Therefore, as shown
in Figure 4.4(b), during a period of time (e.g., every 200D tequests), the block-level
mapping table buffer is moved across the whole page-leveping table region in PCM
chip. Since the migration of the block-level mapping tahlédr is infrequent, the number of
copy operations of mapping records is acceptable. Finallyigure 4.4(b), we can see that
the even distribution of write activities (i.e., bit flipsgrass the whole two-level mapping
table region in PCM is obtained. The detailed descriptioowfwear leveling scheme is
shown in Algorithm 4.3.2. The experimental results in Sat#.4 confirm the effectiveness
of our scheme, and also show that our PCM-FTL can achieverbetar leveling over

different traces.
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Figure 4.4. lllustration of the wear leveling method addpby PCM-FTL. (a) The initial

COLD

status of the two-level mapping table with uneven distidgoubf write activities. (b) Move
block-level mapping table buffer across the whole pagellmapping table to achieve wear
leveling. (c) Write activities are evenly distribute amahg two-level mapping table after

moving block-level mapping table buffer.
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Algorithm 4.3.2 The algorithm of wear leveling in PCM-FTL

Input: The number of writes conducted in PCM cells so far, the altbmember of writes in PCM cells before

triggering wear leveling operations.

Output: Next position of the first PCM entry of block buffer.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:

: WEARLEVELING_THRESHOLD+ The allowed number of writes in PCM cells before triggerireaw

leveling operations.

: WL_Counter+ The number of writes conducted in PCM cells so far.

: CurrentOffset«+ Current position of the first PCM entry of block buffer.

Nextoffset«+ Next position of the first PCM entry of block buffer.

: PTE«+ PCM entry of page-level mapping table.
: BTE+ PCM entry of block buffer.

. if WL_Counter< WEAR_LEVELING _THRESHOLDthen

WL_Counter++.
RETURN.
else
NextOffset = (CurrentOffset + block buffer length)%(Total PCM length - block besflength).
PTE« First PCM entry of the page-level mapping table startingnfidext Offset.
BTE « First PCM entry of block buffer starting from Curre@ffset.
for each PCM entry in block buffeto
Exchange the content of PTE and BTE.
PTE<+ Next PCM entry of the page-level mapping table.
BTE « Next PCM entry of the block buffer.
end for
Reset WLCounter to 0.
RETURN NextOffset.

end if

4.4 Evaluation

To evaluate the effectiveness of the proposed PCM-FTL, wewact a series of experiments

and present the experimental results with analysis in #aian. We compare and evaluate

our proposed PCM-FTL scheme over the representative pagéHTL schemehFTL [48],
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based on the maximum and total number of bit flips in PCM c®lis.also compare the wear

leveling results of PCM-FTL andFTL.

In this chapter, we assume that the FTL mapping table isdiara single-level cell
(SLC) PCM (i.e., a PCM cell holds only one bit), and the usaadsstored in a multi-level
cell (MLC) NAND flash memory, which is widely used in embeddsdgtems.

4.4.1 Experimental Setup

In this chapter, we adopt the same experimental setup coafign as that given by Ta-
ble 3.1 in Chapter 3. The evaluation is also conducted thraugrace-driven simulation
framework, in which a simulator is designed to evaluate PENL-andhFTL using a variety
of realistic 1/O traces collected from notebook and Googtel#id platform, respectively.
These realistic 1/O traces, i.e., CopyFiles, DownFiledjd®f P2P, Communications, Inter-
net, MixedApps, and Multimedia, are introduced in detaiCinapter 3. We use these eight

I/O traces to evaluate our PCM-FTL below.

The framework of our simulation platform is shown in Figuré.3This simulation
framework simulates our PCM-FTL management scheme oveP@M-based embedded
systems, which consists of a NAND flash memory and a PCM fairgioour two-level
mapping table. In our experiments, the traces along wittouarparameters of NAND flash
memory, such as block size, page size, etc, are fed into wuiator. The page size, number
of pages in a block, and size of the OOB for each page are sé&{Bs62, and 64 Bytes,
respectively. To fully evaluate our technique, we condbetéxperiments on a PCM-based

embedded system with 1GB and 4GB NAND flash memory, respgtiv

4.4.2 Results and Discussion

In this section, we present the experimental results of tbpgsed PCM-FTL and the base-
line scheme with analysis. We first present the experimeeasailts of PCM-FTL with vari-

ous parameter configurations. Then we present the enducanggarison of PCM-FTL and
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Figure 4.5. The framework of simulation platform for evdlog the proposed PCM-FTL

technique.

hFTL. Finally, we present the wear leveling comparison of REM. andhFTL. Experi-
ments are conducted based on our PCM-based embedded sysidiate with 1GB and
4GB NAND flash memory over eight distinct traces gatherednfrmotebook and Google

Android™platform.

Impact of Threshold and Buffer Size

In PCM-FTL, there are mainly two parameters predefined fbreadng write activity reduc-

tion with limited overhead. These two parameters are thestiold and the buffer size. The
threshold is used for determining whether a request is ranolosequential by comparing
the request length with the threshold value, and the buiteris used for determining the

size of the block-level mapping table buffer.

In order to show how the maximum and total number of bit flip®{@M cells are
influenced by different combinations of threshold value lauoffler size, and to find a suitable
combination of these two parameters for the following extbns, we first conduct experi-
ments by varying the above parameters with different valliee candidate threshold values
are set as 8, 16 and 32, while the candidate buffer size is$¥a10%, 15% and 20% of
the original size of block-level mapping table. PhysicallyPCM-based main memory, the
block-level mapping table buffer follows the page-levelppiag table. For each threshold
value, we run experiments over the eight traces by combimivggof the three candidates of

buffer size. We collect the maximum number of bit flips in e&&@M cell and total number
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Figure 4.6. The maximum number of bit flips obtained from tlkkdPbased embedded sys-

tems with 1GB NAND flash memory for PCM-FTL with different ganeter combinations.
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Figure 4.7. The total number of bit flips obtained from the R6Med embedded systems

with 4GB NAND flash memory for PCM-FTL with different paraneettombinations.
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of bit flips across the whole mapping table region in PCM cHipe buffer size is triggered
to move across the whole page-level mapping table regiomefPCM chip for every 2800

writes to PCM cells.

The results are shown in Figure 4.6 and Figure 4.7 for PCM-Wwith different com-
binations of threshold values and buffer sizes over eigdiigtec I/O traces in the PCM-based
embedded systems with 1GB NAND flash memory. In Figure 4.6Figdre 4.7, we can
see that for each trace, the similar trends are obtainedofibr lesults of the maximum and
total number of bit flips. Although the plots for differenaties are different, most of them
show the same trend: the maximum and total number of bit #ipst changed a lot when
the threshold varies in a range (from 8 to 32), and then shbglstly increase with the in-
crease of the threshold value, except for Figure 4.6 (cyreig.6(h), and Figure 4.7(h). The
difference of these three sub-figures maybe caused by tiesapattern of the correspond-
ing trace. In Figure 4.6, for all traces, we can see that alsm@aimber of the maximum
number of bit flips can be achieved when the threshold valsetisis 8 and the buffer size
is set as 5%. In Figure 4.7, for all traces, we can also findafsahaller number of the total
number of bit flips can be achieved if the threshold value isase8 and the buffer size is
set as 5%. Since the buffer size is only 5% of the original sizihe block-level mapping
table, which is also very small compared to page-level nraptable, so the space overhead
of our PCM-FTL is negligible. Therefore, we set the thresha@lue as 8 and the buffer size
as 5% in the following experiments. The experimental resulitained from the PCM-based
embedded systems with 4GB NAND flash memory show the simigaidt, so we ignore the

results here.

PCM Endurance

The objective of this chapter is to reduce write activitieshhance the lifetime of PCM-
based embedded systems. Therefore, the lifetime of PCM asobrthe most important
factors in analyzing the reliability of PCM-based embedsggstems. As mentioned before,

PCM lifetime is mainly influenced by the maximum number of tipps in a PCM cell,

70



Table 4.1. PCM-FTL versusFTL in terms of the total and maximum number of bit flips in

PCM cells. (1GB NAND flash memory, threshold = 8, buffer sizgd%)

Total Num. of Bit Flips Maximum Num. of Bit Flips
Trace

PCM-FTL PCM-FTL

Name hFTL PCM-FTL hFTL | PCM-FTL
overhFTL overhFTL
CopyFiles 559496658 | 293866292 47.48% 9977 519 94.80%
DownFiles 1756464372 568987257 67.61% 21945 567 97.42%
Office 7520028995 2576892175 65.73% 9385 1762 81.23%
P2P 6929967624 1718812456 75.20% 74540 762 98.98%
Average 64.00% 93.10%
Communicationsg| 9883730134 125943263 98.73% 158029 230 99.85%
Internet 9555187107 137866567 98.56% 134281 240 99.82%
MixedApps 6591084832 69012523 98.95% 139241 220 99.84%
Multimedia 8347917692 240771631 97.12% 95621 224 99.77%
Average 98.34% 99.82%

i.e., the maximum number of bit flips in a PCM cell determines lifetime of PCM. For
example, if PCM can only sustair®® write cycles, then a PCM cell is worn-out if it suffers
from more than0° bit flips. So our technique not only focuses on reducing vaittvities
(total number of bit flips) in PCM cells but also reducing theximum number of bit flips
for each PCM cell. Table 4.1 and Table 4.2 report the expeariateesults of PCM-FTL and
the baseline schenté-TL over eight realistic I/O traces in terms of the maximund &otal
number of bit flips among all PCM cells in PCM-based embedgstesms with 1GB NAND

flash memory and 4GB NAND flash memory, respectively.

We observe that PCM-FTL can significantly reduce write dii¢is in PCM cells in

comparison with the baseline scheht€lL. As shown in Table 4.1, comparedhiBTL over
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Table 4.2. PCM-FTL versusFTL in terms of the total and maximum number of bit flips in

PCM cells. (4GB NAND flash memory, threshold = 8, buffer siz&%)

Total Num. of Bit Flips Maximum Num. of Bit Flips
Trace

PCM-FTL PCM-FTL

Name hFTL PCM-FTL hFTL PCM-FTL
overhFTL overhFTL
CopyFiles 122605530 | 93456325 23.77% 10461 2076 80.15%
DownFiles 842401436 | 191579924 77.26% 20857 3923 81.19%
Office 6981790260| 919567590 86.83% 36667 7377 79.88%
P2P 15269865958 650611634 95.74% 86383 7623 91.18%
Average 70.90% 83.10%
Communications| 10305765684 127165676 98.77% 158029 182 99.88%
Internet 9988536600| 138654167 98.61% 134281 176 99.87%
MixedApps 5130339159| 69580586 98.64% 149439 174 99.88%
Multimedia 8654772875 288691259 96.66% 95846 186 99.81%
Average 98.17% 99.86%

the first four DiskMon traces, PCM-FTL can achieve an averagection of 93.10% and
a maximum reduction of 98.98% in the maximum number of bitsfiip the PCM-based
embedded system with 1GB NAND flash memory. Moreover, PCNI-Ed@n achieve an
average reduction of 64% and a maximum reduction of 75.2%rimg of the total number
of bit flips. For the Google Android'traces, we can see that PCM-FTL can achieve more
reduction of the maximum and total number of bit flips. An aggr reduction of 99.82%
(98.34%) and a maximum reduction of 99.85% (98.95%) in thgimam (total) number of

bit flips are obtained.

Table 4.2 shows the similar results for the comparison of M andhFTL in the

PCM-based embedded system with 4GB NAND flash memory. Faiirdtdour DiskMon
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traces, PCM-FTL can achieve an average reduction of 83.1@P&a aaximum reduction of
91.18% in the maximum number of bit flips. In terms of the totanber of bit flips, PCM-
FTL can achieve an average reduction of 70.90% and a maxiraduttion of 95.74%. For
the Google AndroifMtraces, we can see that PCM-FTL can an achieve average imduct
of 99.86% (98.17%) and a maximum reduction of 99.88% (98)/n%e maximum (total)
number of bit flips. As shown, the above experimental resshiswv that our PCM-FTL
significantly reduces write activities in PCM cells. Thenef, in the PCM-based embedded
systems, by applying PCM-FTL, the lifetime of PCM can be erteal.

PCM Wear Leveling

Wear leveling is another one of the most important factoas ithfluence the lifetime of the
PCM-based embedded systems. Figure 4.8 and Figure 4.9 Bhalistribution of the maxi-
mum number of bit flips among all mapping table entries in a Plided embedded system
with 1GB NAND flash memory over the DiskMon traces and Googtelwid™traces, re-
spectively. For each sub-figure, the x-axis shows the tatalber of mapping entries inside
the page-level mapping table and block-level mapping tabféer in PCM, and the y-axis
shows the maximum number of bit flips extracted from each nmgpgntry of the page-level
mapping table and the block-level mapping table buffer. fEsent the distributions clearly,

we restrict the maximum number of bit flips on y-axis to 2,000.

As shown in Figure 4.8, fonFTL scheme, we observe that the distribution of the
maximum number of bit flips varies a lot, and this may imposasaiorn-out of PCM cells.
Compared withhFTL, by adopting our wear leveling method described in $ect.3.2,
PCM-FTL distributes the maximum number of bit flips more dyeamong all PCM cells.
Though the distribution of the maximum of bit flips obtainecepthe trace Office is not
so even, it is still better than that &FTL, and we can further obtain better distribution
by tune the parameters of PCM-FTL. In Figure 4.9, we can saethie write activities of
hFTL are mapped to a specific region in PCM due to access pattéf@ requests, and the

maximum number of bit flips is greater than 2,000. In confl@&iM-FTL achieves an even
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Figure 4.9. The wear leveling comparisonhdiTL and PCM-FTL in a PCM-based embed-

ded system with 1GB NAND flash memory over four realistic Geondroid™traces.
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distribution of the maximum number of bit flips for the Goodledroid™traces, and almost
all of them are below 400. In summary, PCM-FTL delivers dracadly better reliability

than the baseline scheme.

4.5 Summary

In this chapter, we have proposed a write-activity-aware-tisvel flash memory manage-
ment technique, named PCM-FTL, which takes the first stepgtafecantly reduce write
activities in PCM-based embedded systems with NAND flash amgmin our PCM-FTL,
the performance improvement is achieved by preserving antat PCM cell from being
inverted frequently. Through a two-level mapping mechanad a write-activity-aware
strategy, unnecessary write activities in PCM are direatuced. We conducted experi-
ments on a set of realistic 1/0 workload collected by DiskMaml Google AndroitM. For
the DiskMon traces, the experimental results show that tArimmum number of bit flips
among PCM cells can be reduced by 93.10% (83.10%) on avemadehe total number of
bit flips of all PCM cells can be reduced by 64.00% (70.90%) werage in a PCM-based
embedded system with 1GB (4GB) NAND flash memory. For the GoAgdroidMtraces,
the experimental results show that the maximum number dfijpst among PCM cells can
be reduced by 99.82% (99.86%) on average, and the total mohbiflips of all PCM cell-

s can be reduced by 93.10% (98.17%) on average in a PCM-batsetded system with
1GB (4GB) NAND flash memory. Furthermore, the results shat BCM-FTL can evenly
distribute write activities among all PCM cells in companswith a representative baseline

FTL scheme.
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CHAPTER 5

WAB-FTL: A BLOCK-LEVEL PCM-AWARED

FLASH MEMORY MANAGEMENT TECHNIQUE

5.1 Overview

As discussed in previous chapters, phase change memory)(R@hsidered as a DRAM
alternative and has been used as a main memory with a sreadl-BiRAM cache in embed-
ded systems [21, 26, 77, 96]. However, compared to DRAM, P@Manly sustain limited
write operations¥0° to 10® bit flips per cell) [38]. As main memory is a frequently acebs
component, it is necessary to reduce redundant write aiesvin PCM to enhance the reli-
ability of PCM-based embedded systems. On the other hart tkeé advantages of small
size, shock resistance, and low power, NAND flash memory éelyiused as a secondary
storage and has been integrated into PCM-based embeddedsy48, 68, 87]. How to
avoid a fast worn-out of such emerging embedded systemsféeadieely manage NAND
flash memory should be taken into account. Therefore, trapteln focuses on exploring
a write-activity-aware NAND flash memory management schen®CM-based embedded

systems to enhance the lifetime of the entire system.

To use NAND flash memory, flash translation layer (FTL) is desd to emulate
NAND flash memory as a disk drive, and logical addresses appathio physical addresses
in NAND flash memory at a granularity of page-level or bloekél [37,51]. Following I/O
requests, an FTL mapping table is employed to keep trackeo€dmtinually updated map-
ping records. Many FTL schemes have been proposed [5, ®,18R and most of them are
mainly categorized into page-level scheme or block-legkéme according to the granular-

ity of mapping unit [19]. To provide fast lookup, FTL mappitaple is usually loaded into
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main memory after system is booted, and put back to NAND flasmary once the system
is shut down. In traditional DRAM-based main memory, the mgxlated FTL mapping
table can be lost due to power failure. However, as PCM isvadatile, FTL mapping table
can be kept into PCM-based main memory permanently withasidering power failure.
Therefore, Kim et al. [48] propose a page-level FTL, nan€lyL, in which page-level FTL
mapping table is kept in PCM and user data is stored in NANDhflaesmory. Nevertheless,
hFTL does not consider write activities imposed in PCM beeafghe frequently updated

FTL mapping table, which may lead to a shortened PCM lifetime

In Chapter 3 and Chapter 4, a write-activity-aware pagetland a write-activity-
aware two-level flash memory management techniques havepbeposed. However, page-
level FTL scheme provides high performance but with sigaiftanemory requirement, so it
may not be applicable for current PCM chips whose capaciggerted as 128Mb [61], e.g.,
the page-level mapping table of a 1GB flash memory occupipsoapnately 12.5% space
of the 128Mb Micron P5Q PCM. Thus block-level FTL with muckdanemory requirement
is more applicable for PCM-based embedded systems [6, 98]theé example above, the
memory requirement is only 0.3%. Though several block}lE¥d. schemes are proposed,
none of them considers redundant write activities of blsskel mapping table in PCM,
either. Since the lifetime of PCM is mainly determined by th@ximum number of bit flips
in each PCM cell, no matter how smaller the block-level maggable is, it is important
to reduce the maximum number of bit flips in each PCM cell toagitle the reliability of
the entire system. These observations motivate us to peopddock-level flash memory
management technique to reduce write activities in PCM, it the lifetime of the entire

PCM-based embedded systems is enhanced.

In this chapter, we propose\drite-Activity-awareBlock-level FTL design, called
WAB-FTL , to reduce write activities in PCM during the managementedorre of NAND
flash memory and, at the same time, to enhance the lifetimeeoPCM-based embedded
systems, with the advantage that no changes are requirdeé fide system, and hardware
implementation of the NAND/PCM chip. Note that mapping meisoinside FTL mapping

table are represented in a binary form in PCM. Our basic isléa preserve each bitin FTL
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mapping table, i.e., each bit in PCM cell, from being inverieequently, during the update
process of FTL mapping table, such that the maximum numbleit @fps in each PCM cell

is reduced and the lifetime of PCM is enhanced.

To achieve this, we design a new merge strategy, called Mergie, to make our
WAB-FTL scheme write activity aware. With Lazy-Merge sagy, the primary block is
preserved from being erased in each merge operation. Sottesponding mapping record
of the primary block in PCM remains unchanged. Its updatelayed until the correspond-
ing primary block is erased in garbage collection for reniag more free blocks. On the
other hand, the mapping record of the replacement block eampdated more frequently
than that of the primary block, so in WAB-FTL, we further pose an additional tiny buffer,
named Cooling-Pool, with multiple candidate mapping slot®CM for caching the fre-
quently updated mapping records to further reduce writeriies in PCM. As mentioned
in the previous chapters, several hardware optimizatiohrigues for PCM have been de-
veloped [52,101], to tackle redundant write activities bgnenating a write if its designated
PCM cell holds the same value. Then by utilizing such a fireergrd hardware feature, in
Cooling-Pool, WAB-FTL can actively choose a destinatiorpgiag slot, wherein the old
mapping record has the minimum Hamming distance to the nempmg record, and then
only update (flip) the bits distinct from that in the new maypprecord. Therefore, by using
WAB-FTL, a large number of unnecessary write activities @MPcan be avoided. To the
best of our knowledge, WAB-FTL is the first block-level flaskemory management scheme

proposed for reducing write activities in PCM-based emieelds)/stems.

Based on the same simulation platform adopted by WAP-FTL RGM-FTL, we
conduct a series of experiments on a set of realistic I/Getr@ollected from notebook and
Google AndroidMplatform. A block-level FTL scheme [93] (denoted by BL-FTlerk-
inafter) and a page-level FTL schermETL [48] are selected as baseline for comparison.
The proposed WAB-FTL is compared with BL-FTL ahBTL in terms of the total and max-
imum number of bit flips in each PCM cell with various configimas. Compared with BL-
FTL, experimental results show that our WAB-FTL reducesadtinalf of write activities in

PCM, and achieves an average reduction of 80.76% and a maxneduction of 82.61%
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in the maximum number of bit flips. When compared wWithiTL, experimental results al-
so demonstrate the advantage of our technique in writeitesiveduction for PCM-based

embedded systems.

This chapter makes the following contributions:

e We present for the first time a write-activity-aware bloeké| flash memory manage-
ment technique to reduce write activities in PCM-based eltbd systems for enhanc-

ing the PCM lifetime.

¢ We demonstrate the effectiveness of our technique by cangpaiith representative
page-level and block-level FTL schemes using a set of teali® workloads collected

from notebook and Google Andrdid2.3.

The rest of this chapter is organized as follows. Sectionifirdduces the back-
ground of system architecture and motivation. Section Ee3¢nts our proposed WAB-FTL
technique. Section 5.4 reports the experimental resuitsilliz, we conclude this chapter in

Section 5.5.

5.2 Background and Motivation

In this section, we first introduce the architecture of thevPitased embedded systems.
Then we describe the issues of a block-level FTL schemell¥;ima present the motivation

of our work.

5.2.1 PCM-Based Embedded Systems

In this chapter, we target at the PCM-based embedded systdnthe proposed write-
activity-aware block-level flash memory management scheAsshown in Figure 5.1, a
block-level mapping table is maintained by the PCM-basethmemory. For reducing

write activities of the mapping table in PCM, the proposedBMATL scheme is integrated
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— T 0 =

NAND Flash Memory

Figure 5.1. PCM-based embedded system with the proposestaativity-aware block-level

flash memory management technique.

into the PCM-based embedded system to replace the origashl fianslation layer. For the
coming read requests, WAB-FTL checks the block-level FTLlpmiag table in PCM and

obtain the corresponding physical page in NAND flash memarrydading. For the coming
write requests, WAB-FTL serves the requests by allocatieg pages in NAND flash mem-
ory and updates the corresponding mapping records of th&iqaiypages in the block-level

mapping table in PCM.

5.2.2 The Baseline Scheme

In this section, we briefly revisit a well-known block-leveéTL scheme, BL-FTL, which
is widely used in embedded systems [93]. In BL-FTL, a logigage number (LPN) is

divided by the number of pages in a block to obtain its logldaktk number (LBN) and

81



block offset, where the LBN is the quotient, and the bloclseffis the remainder of the
division. A block-level mapping table redirects the wrifgesations on logical block (LBN)
to a physical primary block (PPBN). For each primary bloakyane physical replacement
block (PRBN) is allocated to handle subsequent update tipesa A write operation to an
LPN is mapped to a page in a primary block first based on blotdegfand subsequent
update operations to the same LPN are written into the quoreling replacement block
consecutively. Therefore, the most-updated content cédourel by reading the replacement
block backwards. If a replacement block is full, a merge apen (denoted by Full-Merge
hereinafter) is evoked to reclaim the replacement blockisraksociated primary block, and

all valid pages in the two blocks are copied into a new printdogk.

An example of BL-FTL is shown in Figure 5.2. To simplify theaa®ple, we assume
each block has eight pages, and there are only two free blodke free block list. The
address of pages/blocks is represented by binary numbentomktrate bit flips in mapping
table. The 1/0 requests of write operations (w) are listeBigure 5.2(a). According to the
I/0O requests, Figure 5.2(b) shows the status variationebtbcks in NAND flash memory,
and Figure 5.2(c) shows the bit flips occurred due to the @déablock-level mapping
table in PCM. As shown, for the first 12 requests, a primanchl@PPBN #010) and its
replacement block (PRBN #001) are allocated, so the casrepg mapping (010, 001) is
recorded into the block-level mapping table. Once the mspteent block (PRBN #001) is
full, both of these two blocks (PPBN #010 and PRBN #001) aasest together and the valid
pages are copied into a newly allocated primary block (PPBOL} Meanwhile, the eased
primary and replacement blocks are put into free block t¢istdirther use. For the remaining
requests (13-20), they are served in a similar way. Finad\ghown in Figure 5.2(c), the total
number of bit flips caused by the update of mapping table iaad,the maximum number

of bit flips in each PCM cell is 2.
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5.2.3 Motivation

In the motivational example, it is noticed that each bit usegepresent the mapping record
is inverted in a round trip (6:1—0) due to the update of mapping table. If this bit-flip
pattern continually happens in realistic applicationsentthe lifetime of PCM will decrease
faster. In addition, as the lifetime of PCM is mainly detemed by the maximum number of
bit flips in each cell, it is important to avoid unnecessayflips during the update of FTL
mapping table. Once the maximum number of bit flips in each R€Ns reduced, then the
lifetime of PCM is enhanced. These observations motivat® ygopose a write-activity-
aware block-level FTL to reduce the maximum number of bitsfiip PCM, such that the

lifetime of the entire PCM-based embedded systems is ingatov

5.3 WAB-FTL: PCM-Awared Block-Level FTL

In this section, we present the details of our WAB-FTL. Wetfpeesent an overview of
WAB-FTL in Section 5.3.1. We then provide a detailed deswipof WAB-FTL with Lazy-
Merge strategy and Cooling-Pool in Section 5.3.2 and Sedi8.3, respectively. A wear
leveling method of WAB-FTL is presented in Section 5.3.shdHy, we analyze the proposed
WAB-FTL in Section 5.3.5.

5.3.1 Overview of WAB-FTL

The basic idea of WAB-FTL is to preserve each bit in FTL magpable hosted by PCM
from being inverted frequently, e.g..01—0, during the update process of FTL mapping
table, such that the maximum number of bit flips in each PCMigseéduced and the PCM
lifetime is enhanced. Thus, to make WAB-FTL write activityare, we develop the follow-

ing techniques:

e Anew merge strategy, namely Lazy-Merge, is proposed tyydeaupdate of mapping

records in FTL mapping table, such that bit flips in PCM areucedi. With Lazy-
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Requests 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Command W oW W W W W W W W W W W W W W W W W W W
LPN 177 19 20 23 17 17 17 19 19 19 19 20 17 17 20 20 20 23 23 23
Content A B C D A1 A2 A3 B1 B2 B3 B4 C1 A4 A5 C2 C3 C4 D1 D2 D3
(a)
Merge
data oob Valid Page data oob
Copy 000
001 A3 17
010
> 011 B4 19
——— 100 C1 20
101 P
110 a
— 111 D [23 §
Primary Block Replacement Block Primary Block @
PPBN #010 PRBN #001 PPBN #101 -
N
Head Tail Head Tail
‘ #101 ‘ #110 ‘ ‘ ‘ ‘ ‘ #110 ‘ #010 ‘ #001 ‘ ‘ ‘
Free Block List Free Block List
%— Before Merge —ﬁd— After Merge —ﬁ
data oob data oob
000
001 A5 17
010
Merge 011 B4 |19
101 2
Valid Page 110 s
Copy 111 D3 23 %
Primary Block Primary Block N
PPBN #101 PPBN #010 @
3
Head Tail Head Tail
‘ #010 ‘ #001 ‘ ‘ ‘ ‘ ‘ #001 ‘ #101 ‘ #110 ‘ ‘ ‘
Free Block List Free Block List
(b)
LBN PPBN PRBN LBN PPBN PRBN LBN PPBN PRBN
00 00 00
01 Bit Flips: 6 01 Bit Flips: 6 01
10 010 001 Mapping Table 10 | dUA | BEY Mapping Table 10 | NAQ | OEE
Update Update . :
(c)
LPN: Logical Page Number PPBN: Phsical Primary Block Number
LBN: Logical Block Number PRBN: Phsical Replacement Block Number
[ [ ] Freepage [T ] Validpage B nvalid page

Figure 5.2. Motivational example. (a) I/O access requéb)sT he status variation of blocks
in NAND flash memory. (c) The bit flips caused by the update otkilevel mapping table

in PCM.
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Merge, a replacement block will be erased if it is full, bstaissociated primary block

with corresponding mapping record is preserved until ne biecks is left.

e A tiny buffer, namely Cooling-Pool, is proposed to reduceétevactivities in block-
level mapping table. As the mapping record of the replacé¢ileck is updated more
frequently than that of primary block in the block-level npapg table, Cooling-Pool
is employed in PCM for caching the frequently updated magppécords to further
reduce redundant bit flips in PCM.

5.3.2 WAB-FTL with Lazy-Merge Strategy

In WAB-FTL, Lazy-Merge strategy is a simple yet effectivelt@ique to reduce write activ-
ities occurred during the update process of block-levelpimaptable. As mentioned above,
in BL-FTL, pages are written consecutively in a replacenmdntk for updated requests, and
when it is full, Full-Merge operation will be evoked to erds®h the replacement and prima-
ry blocks. Then a new primary block is allocated to receiMedvaages from the two erased
blocks, and the mapping records of the erased blocks in mgpable are updated with the
new one. As replacement blocks are always full for handlipdated requests, they cannot
be used further and have to be erased in merge operation.dgwderring Full-Merge, the
corresponding primary block may not be full, and some fregepacan be written by other
new write requests later. Therefore, unlike Full-Merge pr@pose Lazy-Merge strategy, by
which we only erase the replacement block and preservestxaged primary block from
being erased. It is noticed that an update to the mappingd@édhe primary block is avoid-
ed, such that some write activities to PCM are reduced. M@eahe block erase counts

can also be reduced if the primary block is preserved in a enepgration.

In our Lazy-Merge strategy, when a replacement block isegelaall valid pages in
the old replacement block will be copied into a new allocatgalacement block, and the
corresponding mapping record of the old replacement blatke updated by the new one.
For the associated primary block, its corresponding map@oord in mapping table remains

unchanged until the primary block is erased in a garbagedadin for reclaiming more free
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blocks. Therefore, with Lazy-Merge strategy, lots of updab the mapping records of the

primary blocks are eliminated, and thus bit flips in each P@Ware effectively reduced.

An example is illustrated in Figure 5.3. To make the exampbeenunderstandable,
the Cooling-Pool is ignored. Based on the same I/O requastassumptions in Figure 5.2,
for the first 12 requests, the status variation of blocks aagping table in Figure 5.3 is
exactly the same as that in motivational example. Howewergdopting our Lazy-Merge
strategy, we only erase replacement block (PRBN #001) aeslepre the primary block
(PPBN #010), and at the same time, copy the valid pages frenolthreplacement block
(PRBN #001) to a new allocated replacement block (PRBN #1i®4) consecutive order.
Correspondingly, the PRBN in mapping table is updated witly @ne bit flip occurred.
Then the new replacement block (PRBN #101) can be used te Hegwest requests (13-
17). With our Lazy-Merge strategy, the remaining requestssarved in a similar way.
Finally, as shown in Figure 5.3(c), the total number of bpdlicaused by the update of
mapping table is only 3, and the maximum number of bit flips.isThis example shows
that our technique achieves a reduction of 75.00% (50.00%a total (maximum) number
of bit flips compared to the motivational example. The examphy not reflect realistic
applications, however, the experimental results withisgall/O traces in Section 5.4 show

that our approach can significantly reduce write activitieBCM.

5.3.3 WAB-FTL with Cooling-Pool

In WAB-FTL, by adopting Lazy-Merge, the mapping recordseflacement blocks are up-
dated more frequently than that of primary blocks. This radgs the design of Cooling-Pool
for caching the frequently updated mapping records, toiprothe PCM area with frequent-
ly updated mapping records from being wear out earlier. féigu4 shows the structure of
WAB-FTL. As shown, in addition to the block-level mappindka (main mapping table),
WAB-FTL employs a Cooling-Pool, in which multiple candidahapping slots for primary
blocks (Pri. Slots) and replacement blocks (Rep. Slot) Hoeated, for caching the map-

ping records of frequently updated requests. In WAB-FTLnaW mapping records are first
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Requests 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Command w w w w w w w w w w w w w w w w w w w w
LPN 17 19 20 23 17 17 17 19 19 19 19 20 17 17 20 20 20 23 23 23
Content A B C D A1 A2 A3 B1 B2 B3 B4 C1 A4 A5 C2 C3 C4 D1 D2 D3
(a)
data oob Valid Page data oob
Copy 000 [ A3 [17

010 C1 20

101 P
110 3
111 §
Primary Block Replacement Block Replacement Block 73
PPBN #010 PRBN #001 PRBN #101 -
]
Head Tail Head Tail
| #01 | #1110 | ] | | #10 | w001 | I |
Free Block List Free Block List
%7 Before Rep. Block Full 4*7 After Rep. Block Full 4%
data oob data oob data oob
000 000 000 B4 19
001 001 001 A5 17
010 010 Free 010 C4 |20
011 011 Rep. Block 011
100 100 q 100 3]
101 101 ] 101 2
110 110 Valid Page 110 S
111 D 23 111 Copy 111 a
Primary Block Replacement Block Replacement Block N
PPBN #010 PRBN #101 PRBN #11 @
3
Head Tail Head Tail
| #110 | #001 | ] | | #001 | #01 | I |
Free Block List Free Block List
(b)
LBN PPBN PRBN LBN PPBN PRBN LBN PPBN PRBN
00 00 00
01 Bit Flips: 1 01 Bit Flips: 2 01
10 010 001 Mapping Table 10 | 010 |Ho1 Mapping Table 10 (010 | 1HE
Update : : : Update : :
()
LPN: Logical Page Number PPBN: Phsical Primary Block Number
LBN: Logical Block Number PRBN: Phsical Replacement Block Number
[ [ ] Freepage [T ] Valid page B nvalid page

Figure 5.3. Example of WAB-FTL. (a) I/O access requestsT{i® status variation of blocks
in NAND flash memory. (c) The bit flips caused by the update otkilevel mapping table

in PCM.
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written into the main mapping table, and the following ugdathapping records are written

into the Cooling-Pool.

Algorithm 5.3.1 shows the detailed process of WAB-FTL mamagnt. When the I/O
requests arrive, WAB-FTL first checks if the correspondingN is mapped to @ PBN
in the main mapping table. If no mapping record is found, iarmmethat this is a new write.
WAB-FTL will allocate a new primary block and set the 8N, PP BN) mapping in main
mapping table. Otherwise, it will further check whetherrthes PRBN mapped for the
incoming LBN. If so, and the replacement block is not full, updates willvindtten to
the replacement block consecutively. If the replacementibls full, a new replacement
block will be allocated, and a new.3N, PRBN) mapping record will be added into the

Cooling-Pool.

We assume that the target PCM-based main memory in thisehlagé adopted the
hardware feature proposed by [52,101], such that a writeropmed in a PCM cell only if
the value to be written differs from its original value. SaGooling-Pool, multiple primary
/ replacement mapping slots are allocated for comparisbmes the old mapping records
and the new mapping records during mapping table updatediace the number of PCM
bit flips. For example, as shown in Figure 5.4, an updated magpecord is first written
into Pri. Slot #1 and Rep. Slot #1, then the next updated nmgpEcord can be put into
Pri./Rep. Slot #2 and the old mapping record in Pri./Rept #lois invalidated without
bits clearance. Therefore, for the following updated magpecords, WAB-FTL actively
chooses a destination mapping slot in Cooling-Pool, whea@i old mapping record has
a minimum number of Hamming distance with the newly to be tgalanapping record.
Therefore, in Cooling-Pool, a mapping slot who incurs theimum number of bit flips will
be selected for accommodating the nBW BN value. As a result, the number of bit flips in

Cooling-Pool is minimized.

In case that no replacement block is allocated foriila=V, WAB-FTL will allocate
a new replacement block, and thR BN will be written to the replacement block slot in

main mapping table. When the Cooling-Pool is full, an enrgttis not frequently updated
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< Write requests >

Check existing mapping

Mapping slot in Main

Mapping Table is empty
Yes: Set mapping No: Set mapping
in Main Mapping Table in Cooling-Pool
h 4
LBN PPBN PRBN LBN Pri. Slot #1 | Pri. Slot #2 |Rep. Slot #1 |Rep. Slot #2
Main Mapping Table Cooling-Pool

Mapping Tables in PCM

Pri.: Primary Block Number PPBN: Phsical Primary Block Number
Rep.: Replacement Block Number PRBN: Phsical Replacement Block Number

Figure 5.4. WAB-FTL Management.

will be selected as a victim for replacement, and the comedimg mapping records will
be moved to the main mapping table. Note that the Cooling-Boextremely small, and
its size is merely 1% of the main mapping table size. Theegftre capacity overhead
introduced by Cooling-Pool is acceptable when comparedstaantribution of the write

activities reduction in PCM.

5.3.4 WAB-FTL Wear Leveling Scheme

In WAB-FTL, as the Cooling-Pool is designed for caching thegtiently updated
mapping records, so it may become very hot and lead to an ardistibution of bit flips
among all PCM cells. To evenly distribute write activitiesdeenhance PCM endurance, a
wear leveling scheme is incorporated into WAB-FTL. Figur® 8emonstrates the process

of our wear leveling scheme. As shown Figure 5.5(a), the i@gdPool becomes hot after
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Algorithm 5.3.1 The algorithm of WAB-FTL
Input: 1/O requests.

Output: MapLBN to PBN.

1: Check current mapping state.

2: if There exists nol{BN, PP BN) mapping in main mapping table or Cooling-Ptioén

3:  Thisis a new write, allocate a new primary blael BN, and write the contents based on block offset.
4:  Add (LBN, PPBN) mapping into main mapping table.

5: end if

(2]

. if There exists{, BN, PP BN) mapping in main mapping table or Cooling-Pdlaén

7. Thisis an update.

8: if There exists{. BN, PRBN) mapping in main mapping table or Cooling-Pdu¢n
9: if The number of free pages in replacement blachumber of update pages to be writtien
10: Allocate one new replacement block.
11: if The (LBN, PRBN) mapping resides in main mapping takten
12: Allocate one entry in Cooling-Pool.
13: else
14: Get LBN, PRBN) entry in Cooling-Pool.
15: end if
16: Update { BN, PRBN) mapping in the Cooling-Pool entry.
17: end if
18: Write the new contents to replacement block.
19: Invalidate original pages that are updated in primapgk\if any) or replacement block (if any).
20: else
21: Allocate one new replacement block and write the newerdst
22: Add (LBN, PRBN) mapping into the replacement slot of Cooling-Pool.
23:  endif
24: end if

90



4 =

Cooling

(2) 2019 | A R AR

Block-Level Mapping Table

Move Buffer

(b) . . Cooling |
L aelel

Block-Level Mapping Table

Achieve
Wear Leveling

Block-Level Mapping Table

Figure 5.5. lllustration of the wear leveling scheme addfig WAB-FTL. (a) The initial

status of the Cooling-Pool and block-level mapping tabldwineven distribution of write
activities. (b) Move Cooling-Pool across the whole bloekdl mapping table region to
evenly distribute write activities. (c) Write activitiesseevenly distribute among the Cooling-

Pool and the block-level mapping table after moving Cocltupl.
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Algorithm 5.3.2 The algorithm of wear leveling in WAB-FTL

Input: The number of writes conducted in PCM cells so far, the altbmember of writes in PCM cells before

triggering wear leveling operations.

Output: Next position of the first PCM entry of Cooling-Pool.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:

: WEARLEVELING_THRESHOLD+ The allowed number of writes in PCM cells before triggerireaw

leveling operations.

: WL_Counter~— The number of writes conducted in PCM cells so far.

: CurrentOffset« Current position of the first PCM entry of Cooling-Pool.
: Nextoffset«— Next position of the first PCM entry of Cooling-Pool.

: BTE + PCM entry of Block-level mapping table.

: CTE«+ PCM entry of Cooling-Pool.

. if WL_Counter< WEAR_LEVELING _THRESHOLDthen

WL_Counter++.
RETURN.
else
NextOffset = (CurrentOffset + CoolingPool length)%(Total PCM length - Cooling-Pool length).
BTE« First PCM entry of the block-level mapping table startingnfrNextOffset.
CTE« First PCM entry of Cooling-Pool starting from Curre@ffset.
for each PCM entry in Cooling-Podb
Exchange the content of CTE and BTE.
BTE« Next PCM entry of the block-level mapping table.
CTE<+ Next PCM entry of the Cooling-Pool.
end for
Reset WLCounter to 0.
RETURN NextOffset.
end if

buffering the frequently updated mapping records. Howeberblock-level mapping table

is not so hot as it only serves the infrequently updated nmgpg@cords. Therefore, as shown

in Figure 5.5(b), during a period of time (e.g., every 200D téquests), the Cooling-Pool

is moved across the whole block-level mapping table reqid?GM chip. Since the migra-

tion of the Cooling-Pool is infrequent, the number of copgigtions of mapping records is
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acceptable. Finally, in Figure 5.5(b), we can see that tlea eNstribution of write activities
(i.e., bit flips) across the whole block-level mapping tatg@gion in PCM is obtained. The
detailed description of our wear leveling scheme is showalgorithm 5.3.2. The experi-
mental results in Section 5.4 confirm the effectiveness osoheme, and also show that our

WAB-FTL can achieve better wear leveling over differentas.

5.3.5 The Analysis of WAB-FTL

We analyze the performance of WAB-FTL over BL-FTL for two mthe cases of write
requests, the frequent-update case and the sequentialease. Given a number of write
requests to a NAND flash memory, Iat,,. be the total number of the write requests. The
frequent-update case is used to denote that all write résjass with the same LPN (logical
address). Therefore, the content of this LPN will be upd&edv,,,. times. On the contrary,
the sequential-write case is used to denote that each of therite requests is with different
LPNs. In other words, for the sequential-write caSg, requests write tav,,,. distinct pages,
and thus no update is needed. In real applications, all tite vaquests for a NAND flash

memory are either one of the two cases or their combination.

Table 5.1 shows the performance analysis of WAB-FTL and BlL-Bver the two
extreme cases. In this tabl®, denotes the number of pages in a blogk;, denotes the
number of write requestsy,;, denotes the number of blocks neededAqy,. write requests;
N denotes the total number of blocks in NAND flasW,( > N,uui); BF .. denotes
the estimated maximum number of bit flips in a PCM cdllR,,., denotes the estimated
maximum number of block erase counts. Assume that therenarentapping slots for re-
placement block in Cooling-Pool and one slot in main mappaide. For frequent-update
case, during each one of thé,, /N, merge operations, onlyg)“"** /3 bit flips occur in
WAB-FTL. For BL-FTL, as it will update the mapping recordshafth primary and replace-
ment blocks, themogéva”“k bit flips occur in each merge operation. For sequentialewrit
case, as the sequential write requests do not trigger upgatations, no replacement block

is needed. In such case, these two schemes achieve the sait® r&s mentioned eatrlier,
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Table 5.1. The Performance Comparison of WAB-FTL and BL-FTL

Frequent-Update

BL-FTL WAB-FTL
N, [(Nur — 1)/Np-| X 2 [(Nwr — 1)/Np-| +1
BF [(Nur/Np) x 2logyete | [(Nur/N,) x (logye* /3)]

E Rz [(Nwr X 2)/(Nauwie X (Np + 1) ]| [N/ (Natioix X (Np + 1)) ]

Sequential-Write

BL-FTL WAB-FTL

Nyk [ Nuwr/Np] [ Nur/Np]
BFax [(Nur /Np) x logy'=tt | [(Nur /Np) x logy«t |
E R | Nwr/ (Nattpir: X Np) ] [ Nwr/ (Nattpir X Np) |

write requests in real applications are a mix of frequentatp@nd sequential write opera-
tions. In most cases, the probability of frequent updateatjmns is much higher than that of
sequential write operations [36]. Therefore, WAB-FTL cahiave significant improvement
over BL-FTL in terms of the maximum number of bit flips and theximum number of

block erase counts. The experimental results in Sectiodépitt this fact.

5.4 Evaluation

To evaluate the effectiveness of the proposed WAB-FTL, weloot a series of experiments
and present the experimental results with analysis in #tian. We compare and evaluate
our proposed WAB-FTL scheme over a well-known block-levELIScheme (BL-FTL), and
a page-level FTL schem@RTL), in terms of the maximum and total number of bit flips in
PCM cells. Besides, the evaluation for wear leveling is asoducted for WAB-FTL and

BL-FTL.
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In this chapter, we assume that the FTL mapping tables aredsio a single-level
cell (SLC) PCM, and the user data is stored in a multi-levie{8_C) NAND flash memory,

which is widely used in embedded systems.

5.4.1 Experimental Setup

In this chapter, we use the same experimental setup configues that given by Table 3.1 in
Chapter 3. The evaluation is also conducted through a ttegen simulation framework, in
which a simulator is designed to evaluate WAB-FTL and BL-RIHing a variety of realistic
I/O traces collected from notebook and Android platfornspetively. These realistic 1/0
traces, i.e., CopyFiles, DownFiles, Office, P2P, Commuiuns, Internet, MixedApps, and
Multimedia, are introduced in detail in Chapter 3. We wilkeuhese eight I/O traces to

evaluate our WAB-FTL below.

The simulation framework is shown in Figure 3.6. This siniolaframework sim-
ulates WAB-FTL management scheme over the PCM-based erabegdtems, which con-
sists of a NAND flash memory and a PCM for storing our bloclkelanapping table. In
our experiments, the traces along with various parameteéd&\bID flash memory, such as
block size, page size, etc, are fed into our simulator. Thygemaze, number of pages in a
block, and size of the OOB for each page are set as 2KB, 64,4Byts, respectively. To
evaluate our technique, we conduct the experiments on a P&dd embedded system with

1GB NAND flash memory.

Input '
Parameters PCM-based

Embedded

Trace Collector WAB-FTL dmmp  System mmml) Results

With

Trace mup NAND Flash

Figure 5.6. The framework of simulation platform for evdlog the proposed block-level

WAB-FTL technique.
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5.4.2 Metrics

The lifetime of PCM is mainly affected by the worst case offlyits in a PCM cell, i.e., the
maximum number of write operations with different sourcd dastination values in a PCM
cell determines the lifetime of PCM. For example, assumeglisangle PCM cell can sustain
at most10° bit flips, then it will wear out if more than0° bit flips occur. Hence for each
experiment, we collect both the total and maximum numbeitdfips in each PCM cell for

each FTL scheme.

5.4.3 Results and Discussion

Based on the above experimental setup and metrics, we ptasaxperimental results with
analysis in this section. Impacts on lifetime of both PCM &®&ND flash memory are
discussed for BL-FTLhFTL [48] and WAB-FTL. Table 5.2 and Table 5.3 summarize the
experimental results, which include the maximum and tatahiber of bit flips in PCM cells.
We also conduct the wear leveling comparison for WAB-FTL &idFTL. Experiments
are conducted based on our PCM-based embedded systemtemaith 1GB NAND flash

memory over eight distinct traces gathered from notebodk@mogle Android“platform.

PCM Endurance

In Table 5.2, we observe that WAB-FTL can significantly reglugite activities in PCM in
comparison with BL-FTL andhFTL. Compared with BL-FTL, WAB-FTL can achieve an
average reduction of 83.49% and a maximum reduction of 96.81the maximum number
of bit flips over the first four DiskMon traces. For Google AaitfMtraces, WAB-FTL can
achieve an average reduction of 65.06% and a maximum reduitB3.7% in the maximum
number of bit flips. Compared withFTL, WAB-FTL can achieve an average reduction of
83.25% and a maximum reduction of 96.34% in the maximum nurabkit flips over the
first four DiskMon traces. For Google Andrdi¢traces, WAB-FTL can achieve an average

reduction of 96.13% and a maximum reduction of 98.84% in tlaimum number of bit
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Table 5.2. WAB-FTL versuBFTL and BL-FTL in terms of the maximum number of bit flips

in PCM cells. (1GB NAND flash memory)

Trace WAB-FTL WAB-FTL
hFTL BL-FTL WAB-FTL
Name overhFTL over BL-FTL

CopyFiles 9977 11079 2953 70.40% 73.35%
DownFiles 21945 23038 2955 86.53% 87.17%
Office 9385 8211 1902 79.73% 76.84%
pP2pP 74540 80393 2729 96.34% 96.61%
Average 83.25% 83.49%
Communications 158029 16302 3976 97.48% 75.61%
Internet 134281 19548 3449 97.43% 82.36%
MixedApps 139241 9900 1614 98.84% 83.70%
Multimedia 95621 10850 8834 90.76% 18.58%
Average 96.13% 65.06%

flips. As shown, WAB-FTL significantly reduces write actiet in PCM.

For the total number of bit flips, shown in Table 5.3, WAB-FTéduces 16.31% bit
flips on average, with a maximum reduction of 17.71% over Bligk traces, and WAB-FTL
reduces 20.14% bit flips on average, with a maximum reduaifa2?.15% over Android
traces. The write activity reduction is limited as blockdé mapping table is small and
the write activities are not so high as that of page-level pivap table inhFTL. This is
confirmed by comparing witlhFTL, more than 98% of the total number of bit flips are
reduced by WAB-FTL for both DiskMon and Android traces. Tkason is that page-level
mapping table used BYyFTL is much bigger than block-level mapping table in WAB-ETL
and a series of 1/0 requests in NAND flash memory may resulb@entry update in block-

level mapping table while multiple entries update in pagesl mapping table. Therefore,
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PCM cells. (1GB NAND flash memory)

Table 5.3. WAB-FTL versubFTL and BL-FTL in terms of the total number of bit flips in

Trace WAB-FTL WAB-FTL
hFTL BL-FTL WAB-FTL
Name overhFTL over BL-FTL

CopyFiles 559496658 12963959 10976883 98.04% 15.33%
DownFiles 1756464372 | 26485707 21796406 98.76% 17.71%
Office 7520028995 | 91019666 76453444 98.98% 16.00%
P2P 6929967624 | 98103753 82223776 98.81% 16.19%
Average 98.65% 16.31%
Communications| 9883730134 | 147743017 | 118227997 98.80% 19.98%
Internet 9555187107 | 145098438 | 114409247 98.80% 21.15%
MixedApps 6591084832 | 99759148 77663514 98.82% 22.15%
Multimedia 8347917692 | 133167616 | 110145808 98.68% 17.29%
Average 98.78% 20.14%

WAB-FTL is more applicable in PCM-based embedded systenysad®pting WAB-FTL,

the lifetime of PCM can be prolonged.

PCM Wear Leveling

Figure 5.7 and Figure 5.8 show the distribution of the maximmumber of bit flips among
all mapping table entries in a PCM-based embedded systemil@iB NAND flash memory
over the DiskMon traces and Google AndrBftraces, respectively. For each sub-figure,
the x-axis shows the total number of mapping entries indidebtock-level mapping table
and Cooling-Pool in PCM, and the y-axis shows the maximumbeanof bit flips extracted
from each mapping entry of the block-level mapping table @odling-Pool. To present the

distributions clearly, we restrict the maximum number afflyps on y-axis to 10,000.
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Figure 5.7. The wear leveling comparison of BL-FTL and WABLHn a PCM-based em-

bedded system with 1GB NAND flash memory over four tracesectdd by DiskMon.
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Figure 5.8. The wear leveling comparison of BL-FTL and WABLFRn a PCM-based em-

bedded system with 1GB NAND flash memory over four tracesct#d by Android.
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As shown in Figure 5.7, for BL-FTL scheme, we observe thadik&ibution of the
maximum number of bit flips varies a lot, and this may imposasaforn-out of PCM cells.
Compared with BL-FTL, by adopting our wear leveling scheraeadibed in Section 5.3.4,
WAB-FTL distributes the maximum number of bit flips more elyeamong all PCM cells.
In Figure 5.8, we can see that the write activities of BL-FTé mapped to a specific region
in PCM due to access pattern of /O requests, and the maxinwmber of bit flips in most
entries is greater than 10,000. On the contrary, WAB-FTLngvdistributes the maximum
number of bit flips across PCM chip for the Google Andréittaces, and almost all of them
are below 2,000. In summary, WAB-FTL delivers dramaticdistter reliability than the

baseline scheme.

5.5 Summary

In this chapter, we proposed a write-activity-aware bltmlkel flash memory management
technique, WAB-FTL, which can effectively reduce writeiaities in PCM-based embed-
ded systems. In WAB-FTL, the performance improvement isexeldl by preserving a bit
in a PCM cell from being inverted frequently. Through thegoeed Lazy-Merge strategy
and Cooling-Pool in PCM, unnecessary write activities tdvPiased embedded systems
are directly reduced. We conducted experiments on a setatitie I/O traces collected
from notebook and Google Andrdid2.3. Experimental results show that our technique
significantly reduces write activities in PCM, and achiesasaverage reduction of 83.49%
(65.06%) and a maximum reduction of 96.61% (83.7%) in theimasn number of bit flips
in comparison with a well-known block-level FTL scheme oieskMon traces (Android
traces). In addition, we also demonstrate the advantageA&-WIL in write activity reduc-

tion when compared with a page-level FTL scheme.

101



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

PCM has been used in embedded systems, so effective managarhemes are needed to
explore its advantages and solve the existing problemss fhiesis studied the PCM-based
embedded systems with NAND flash memory. To the best of ouvladge, this is the first
work to study how to effectively manage NAND flash memory wlghhancing the lifetime
of PCM at software-level. We hope this work can serve as adtegt towards the design
of write-activity-aware FTL for the PCM-based embeddedeays via simple and feasible

modifications.

As the traditional flash memory management techniques impamificant write
activities in PCM-based main memory, it is necessary togigaethe flash memory man-
agement technique for PCM-based embedded systems. Tiegriefthis thesis, three write-
activity-aware flash memory management techniques aremexs to improve the lifetime

and performance of the PCM-based embedded systems.

e First, we have proposed a write-activity-aware page-léash memory management
technique, named WAP-FTL, to exploit the advantages of te#-kmown FTL im-
plementations in order to reduce write activities in PCM émhancing lifetime of
the PCM-based embedded systems. In our WAP-FTL, the writeitgareduction is
achieved by preserving each bit in page-level FTL mappibtpténat hosted by PCM
from being inverted frequently. Unlike the traditional palgvel FTL scheme [48],
WAP-FTL can actively choose a physical page whose phységess incurs the min-
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imum number of bit flips in FTL page-level mapping table hddby PCM, so as to
effectively reduce write activities in PCM cells. Howewertth a set of real-life work-
loads, the experimental results show that our WAP-FTL teglercannot fully reduce
write activities compared to the baseline schéwR&L, especially after garbage col-
lection happens. The reason is that WAP-FTL does not congidebehavior of 1/0
requests, which are mixed with sequential and random resjuasd write-activity-
aware strategy may introduce extra valid page copy overhregdrbage collection.
These observations motivate us to further extend this warkdducing write activi-

ties in PCM-based embedded systems.

Second, we have proposed a write-activity-aware two-ligesh memory managemen-
t technique, named PCM-FTL, which takes the first step toisogmtly reduce write
activities in PCM-based embedded systems with NAND flash amgmin our PCM-
FTL, the performance improvement is achieved by presersirmgt in a PCM cell
from being inverted frequently. Through a two-level magpmechanism and a write-
activity-aware strategy, unnecessary write activitieB@M are directly reduced. We
conducted experiments on a set of realistic /0O workloadectéd by DiskMon and
Google Android. For the DiskMon traces, the experimentsdiits show that the max-
imum number of bit flips among PCM cells can be reduced by 98.{&8.10%) on
average, and the total number of bit flips of all PCM cells camdduced by 64.00%
(70.90%) on average in a PCM-based embedded system with4GB) NAND flash
memory. For the Google Android traces, the experimentallt®show that the max-
imum number of bit flips among PCM cells can be reduced by 39.829.86%) on
average, and the total number of bit flips of all PCM cells canddluced by 93.10%
(98.17%) on average in a PCM-based embedded system with4GB) NAND flash
memory. Furthermore, the results show that PCM-FTL canlgwdstribute write ac-

tivities among all PCM cells in comparison with a represewgbaseline FTL scheme.

Third, we have proposed a write-activity-aware block-lékash memory management

technique, WAB-FTL, which can effectively reduce writeigities in PCM-based em-

103



bedded systems. In WAB-FTL, the performance improvemestigeved by preserv-
ing a bit in a PCM cell from being inverted frequently. Thrbuipe proposed Lazy-
Merge strategy and Cooling-Pool in PCM, unnecessary witgities to PCM-based
embedded systems are directly reduced. We conducted emqres on a set of realistic
I/0 traces collected from notebook and Google Andi¥RI3. Experimental results
show that our technique significantly reduces write agéigitn PCM, and achieves an
average reduction of 83.49% (65.06%) and a maximum reducofi®6.61% (83.7%)
in the maximum number of bit flips in comparison with a wellekm block-level FTL
scheme over DiskMon traces (Android traces). In additioa,als0 demonstrate the
advantage of WAB-FTL in write activity reduction when comgeé with a page-level

FTL scheme.

6.2 Future Work

The work presented in this thesis can be extended in diffelieections in the future.

e First, energy and thermal issues of PCM are not studied mtki@sis. However, our
proposed techniques could significantly reduce the totatber of write activities
which is related to the energy consumption and thermalphsisin in PCM. Therefore,
we will investigate the energy consumption and thermaldssef PCM to design an
energy- or thermal-aware scheme to improve the performandeeliability of PCM-

based embedded systems.

e Second, currently our approach is based on the single-t&le(SLC) PCM. Com-
pared to SLC PCM, MLC PCM can provide bigger capacity by sgnnore than
one bit information per cell. However, as the resistancegimanetween two adja-
cent states in MLC PCM becomes smaller, its states are \abfeeto be changed by
various factors such as process variation, resistande and the thermal disturbance
from vicinity reads/writes. Therefore, we will extend oyopaoach to MLC PCM and

propose schemes that can handle the issues of MLC PCM.
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e Third, this work only focuses on reducing write activitieSFor'L mapping table in
PCM. However, in realistic systems, some metadata and cageatso be stored into
PCM. The access pattern of these information and mappirg taby vary a lot, so
it is also interesting to develop techniques to effectivegnage different types of in-
formation in PCM and evenly distribute writes across thesarmation for enhancing

PCM lifetime.

e Fourth, the techniques proposed in this thesis mainly spoeds to the page-level and
block-level FTL designs, and we can further explore the jbdgyg of making some

hybrid-level FTL designs write activity aware for PCM-bdsambedded systems.

e Finally, the existing FTL schemes are originally designedd DRAM-based main
memory with NAND flash memory, and they do not consider théirdis feature of
PCM, so a possible research direction is to propose a ligigtw translation layer

that is specially designed for PCM-based embedded systems.
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