

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

Write-Activity-Aware NAND Flash Memory

Management for PCM-based Embedded Systems

By

DUO LIU

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

November 2011

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

ABSTRACT

Due to its properties of high density, in-place update, and low standby power, phase change

memory (PCM) becomes a promising main memory alternative inembedded systems, and

is recently introduced to embedded system designs. However, the endurance of PCM keeps

drifting down and greatly limits the lifetime of the whole system. On the other hand, NAND

flash memory is widely used as a secondary storage and has beenintegrated into PCM-based

embedded systems. So this thesis targets at an embedded system with PCM and NAND

flash memory. Since both NAND flash memory and PCM have limitedlifetime, how to

effectively manage NAND flash memory while considering PCM endurance is a challenge

issue for PCM-based embedded systems.

To manage NAND flash memory, flash translation layer (FTL) is designed to emulate

NAND flash memory as a disk drive, by mapping logical addresses to physical addresses in

NAND flash memory at a granularity of page-level or block-level [37, 51]. Corresponding-

ly, most of the proposed FTL techniques are mainly categorized into page-level or block-

level based on the granularity of mapping unit [19]. As PCM-based main memory exhibits

non-volatility feature, to obtain high access performance, FTL mapping table can be kept

into PCM permanently without considering power failure. However, the frequently updated

FTL mapping table imposes a large number of write activitiesin PCM, and may lead to a

shortened PCM lifetime. Therefore, effective management techniques are needed to explore

traditional page-level or block-level FTL designs and makethem write activity aware, for

enhancing the lifetime of the PCM-based embedded systems.

In this thesis, we focus on exploring the challenge issues imposed by the management

of NAND flash memory in PCM-based embedded systems. Corresponds to the existing

page-level and block-level FTL designs, we present for the first time three write-activity-

iii

aware flash memory management techniques, to effectively manage NAND flash memory

and enhance the lifetime of PCM-based embedded systems. To the best of our knowledge,

this is the first work to study how to effectively manage NAND flash memory in PCM-based

embedded systems by considering the endurance issue of PCM.We hope this work can

serve as a first step towards the design of write-activity-aware flash memory management for

PCM-based embedded systems.

Keywords: Phase change memory, PCM-based embedded system, NAND flash memory,

flash translation layer, write activity, endurance.

iv

PUBLICATIONS

Journal Papers

1. Duo Liu , Yi Wang, Zili Shao, Minyi Guo, Jingling Xue, “Optimally Maximizing

Iteration-Level Loop Parallelism”, IEEE Transactions on Parallel and Distributed Sys-

tems (TPDS), Vol. 23, No. 3, pp. 564-572, March 2012.

2. Duo Liu , Yi Wang, Zhiwei Qin, Zili Shao, Yong Guan, “A Space Reuse Strategy for

Flash Translation Layers in SLC NAND Flash Memory Storage Systems”, Accepted

in IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 2011.

3. Yi Wang, Duo Liu , Zhiwei Qin, Zili Shao, “Optimally Removing Inter-Core Com-

munication Overhead for Streaming Applications on MPSoCs”, Accepted in IEEE

Transactions on Computers (TC), 2011.

4. Miao Liu, Duo Liu , Yi Wang, Meng Wang, Zili Shao, “On Improving Real-Time In-

terrupt Latencies of Hybrid Operating Systems with Two-Level Hardware Interrupts”,

IEEE Transactions on Computers (TC), Volume 60, Number 7, pp. 978-991, July

2011.

5. Yi Wang, Hui Liu,Duo Liu , Zhiwei Qin, Zili Shao, E. H.-M. Sha, “Overhead-Aware

Energy Optimization for Real-Time Streaming Applicationson Multiprocessor System-

on-Chip”, ACM Transactions on Design Automation of Electronic Systems (TODAES),

Volume 16, Issue 2, pp. 14:1-14:32, March 2011.

6. Meng Wang, Yi Wang,Duo Liu , Zhiwei Qin, Zili Shao, “Compiler-Assisted Leakage-

Aware Loop Scheduling for Embedded VLIW DSP Processors”, Elsevier Journal of

Systems and Software (JSS), Volume 83, Issue 5, pp. 772-785,May 2010.

v

Conference Papers

1. Duo Liu , Tianzheng Wang, Yi Wang, Zhiwei Qin, Zili Shao, “A Block-Level Flash

Memory Management Scheme for Reducing Write Activities in PCM-based Embed-

ded Systems”, in the 15th Design, Automation and Test in Europe (DATE 2012),

March 2012, Dresden, Germany.

2. Duo Liu , Tianzheng Wang, Yi Wang, Zhiwei Qin, Zili Shao, “PCM-FTL: AWrite-

Activity-Aware NAND Flash Memory Management Scheme for PCM-based Embed-

ded Systems”, in the 32nd IEEE Real-Time Systems Symposium (RTSS 2011), Vien-

na, Austria, Nov. 29-Dec. 2, 2011.

3. Duo Liu , Zili Shao, Meng Wang, Minyi Guo, Jingling Xue, ”Optimal Loop Paral-

lelization for Maximizing Iteration-Level Parallelism”,in International Conference

on Compilers, Architecture, and Synthesis for Embedded Systems (CASES 2009),

Grenoble, France, Oct. 2009.

4. Zhiwei Qin, Yi Wang,Duo Liu and Zili Shao, ”Real-Time Flash Translation Layer

for NAND Flash Memory Storage Systems”, 18th IEEE Real-Timeand Embedded

Technology and Applications Symposium (RTAS2012) in conjunction with Cyber-

Physical Systems Week (CPSWEEK 2012), Beijing, China, April 16-19, 2012.

5. Tianzheng Wang,Duo Liu , Zili Shao, Chengmo Yang, “Write-Activity-Aware Page

Table Management for PCM-based Embedded Systems”, in the 17th Asia South Pa-

cific Design Automation Conference (ASP-DAC 2012), Sydney,Australia , Jan. 30-

Feb. 2, 2012.

6. Yi Wang,Duo Liu , Zhiwei Qin, Zili Shao, “An Endurance-Enhanced Flash Translation

Layer via Reuse for NAND Flash Memory Storage Systems”, in the 14th Design,

Automation and Test in Europe (DATE 2011), pp. 14-20, March 2011, Grenoble,

France.

vi

7. Yi Wang,Duo Liu , Zhiwei Qin, Zili Shao, “Memory-Aware Optimal Scheduling with

Communication Overhead Minimization for Streaming Applications on Chip Multi-

processors”, in the 31st IEEE Real-Time Systems Symposium (RTSS 2010), pp. 350-

359, November 2010, San Diego, CA, USA.

8. Yi Wang, Duo Liu , Meng Wang, Zhiwei Qin, Zili Shao, “Optimal Task Schedul-

ing by Removing Inter-core Communication Overhead for Streaming Applications on

MPSoC”, in the 16th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS 2010), pp. 195-204, April 2010, Stockholm,Sweden.

9. Yi Wang, Duo Liu , Meng Wang, Zhiwei Qin, Zili Shao, Yong Guan, “RNFTL: A

Reuse-Aware NAND Flash Translation Layer for Flash Memory”, in ACM SIGPLAN/

SIGBED Conference on Languages, Compilers and Tools for Embedded Systems

(LCTES 2010), pp. 163-172, April 2010, Stockholm, Sweden.

10. Zhiwei Qin, Yi Wang,Duo Liu , Zili Shao, Yong Guan, “MNFTL: An Efficient Flash

Translation Layer for MLC NAND Flash Memory Storage Systems”, in the 48th

IEEE/ACM Design Automation Conference (DAC 2011), pp. 12-18, June 2011, San

Diego, CA, USA.

11. Zhiwei Qin, Yi Wang,Duo Liu , Zili Shao, “A Two-Level Caching Mechanism for

Demand-Based Page-Level Address Mapping in NAND Flash Memory Storage Sys-

tems”, in the 17th IEEE Real-Time and Embedded Technology and Applications Sym-

posium (RTAS 2011), pp. 157-166, April 2011, Chicago, IL, USA.

12. Zhiwei Qin, Yi Wang,Duo Liu , Zili Shao, “Demand-Based Block-Level Address

Mapping in Large-Scale NAND Flash Storage Systems”, in the 8th IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System Synthesis (CODES

+ISSS 2010), pp. 173-182, October 2010, Scottsdale, Arizona, USA.

13. Meng Wang, Yi Wang,Duo Liu , Zili Shao, “Improving the Reliability of Embedded

Systems with Cache and SPM”, in the 2009 IEEE International Symposium on Trust,

vii

Security and Privacy for Pervasive Applications in conjunction with the 2009 IEEE

International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2009), pp.

825-830, October 2009, Macau.

14. Meng Wang,Duo Liu , Yi Wang, Zili Shao, “Loop Scheduling with Memory Access

Reduction under Register Constraints for DSP Applications”, in the 2009 IEEE Work-

shop on Signal Processing Systems (SiPS 2009), pp. 139-144,October 2009, Tampere,

Finland.

viii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Zili Shao, who offered

me the opportunity to pursue my PhD study with a group of talented and energetic people.

I am really impressed by his vast knowledge and skill in many areas and his professional

supervision. His expertise, thoughtfulness, and endless patience, added considerably to my

research experience. It is my great pleasure to be a student of Dr. Shao in my life, and I

would like to thank him for providing me a platform to conductindependent research, and

training me to be a good researcher over years. I greatly appreciate his advice on research,

writing, teaching and presentation. Without his encouragement and help during the difficult

times in my PhD study, this body of work would not have been possible.

I would like to thank the other members of Dr. Shao’s researchgroup - Yi Wang,

Zhiwei Qin, Tianzheng Wang, Meng Wang, Guohui Wang, and Chunjing Mao - not only for

their kindly help and corporation during these years, but also for the friendly and relaxing

working environment created by them. I will never forget thedays and nights we work and

discuss together. A special thank you to Yi Wang who was always willing and ready to help

me at any time. I am also deeply indebted to Tianzheng Wang whospent countless hours

for assisting me on the collection of experimental results.I appreciate Zhiwei Qin, Guohui

Wang and Chunjing Mao for their constructive suggestions onresearch ideas during my PhD

study. I wish to them all the success.

I also would like to thank all my teachers from whom I learned so much in my long

journey of formal education. Specially thanks go to Prof. Jiannong Cao, Dr. Zhijun Wang,

Dr. Bin Xiao, Dr. Yan Liu, Dr. Lei Zhang, and Dr. Alvin Chan at the Hong Kong Polytechnic

University.

I would like to thank all the visitors who share their research experiences and com-

ix

ment our research work when they visited our research group.I have had a deeper under-

standing of research thanks to their suggestions. Especially thanks to Prof. Tei-wei Kuo,

Prof. Jingling Xue, Prof. Nikil Dutt, Dr. Yiran Chen, and Prof. Lui Sha. They broaden

my scientific outlook by providing me with multiple new ideasand research philosophy. I

will not forget the seminar presented by Prof. Kuo, who first time introduced the research of

flash memory management to our group. I also deeply thank to Prof. Xue for his help and

guidance on the research of loop parallelization. I would like to acknowledge Prof. Dutt for

his constructive comments on my research work. Thanks go to Dr. Chen for his introduction

of the emerging memory technologies in our group, especially the phase change memory.

I appreciate Prof. Sha for his extent of knowledge and experience by sharing the research

philosophy with us.

Also, I wish to acknowledge my appreciation to Yufei Wang, SZETO Chi Cheong,

Haomian Zheng, Guobin Liu, Jin Xie, Qingjun Xiao, Jiaqing Luo, Xiaopeng Fan, Dongmin

Guo, Xiaocui Sun, Jinjiang Yu and Baozhuang Niu who exhibited their friendship and shared

with me the pleasure of the Ph.D. study at the Hong Kong Polytechnic University.

Special thanks to my wife, Liang Liang, who witnesses the joys and sorrows of my

PhD study miles away. Though we are separated by mountains and rivers, I am grateful for

her endless love, patience, understanding and support, without which I could not have an

enjoyable research life.

Finally, but most significantly, I deeply thank my family fortheir long-term caring

and encouragement through my entire life, for letting me pursue my dream for so long and

so far away from home, and for giving me the motivation to finish this thesis.

x

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY. .. ii

ABSTRACT .. iii

PUBLICATIONS .. v

ACKNOWLEDGEMENTS ix

LIST OF FIGURES .. xiv

LIST OF TABLES .. xvi

CHAPTER 1. INTRODUCTION. 1

1.1 Related Work .. 4

1.1.1 PCM-based Embedded Systems 4

1.1.2 Write Activity Reduction for PCM 7

1.1.3 FTL Schemes .. 10

1.2 The Unified Research Framework .. 12

1.3 Contributions .. 15

1.4 Thesis Organization .. 17

CHAPTER 2. BACKGROUND 19

2.1 Phase Change Memory .. 19

2.1.1 PCM Cell .. 20

2.1.2 PCM Write Operation .. 21

2.1.3 PCM Lifetime .. 22

2.1.4 Comparison of Memory Technologies 23

2.2 NAND Flash Memory .. 24

2.3 Flash Translation Layer .. 25

2.4 Summary .. 28

xi

CHAPTER 3. WAP-FTL: A PAGE-LEVEL PCM-AWARED
FLASH MEMORY MANAGEMENT TECHNIQUE 29

3.1 Overview .. 29

3.2 Background and Motivation .. 32

3.2.1 PCM-based Embedded Systems 32

3.2.2 Motivational Example .. 33

3.2.3 Motivation .. 36

3.3 WAP-FTL: PCM-Awared Page-Level FTL 36

3.3.1 Overview of WAP-FTL .. 37

3.3.2 Write-Activity-Aware Strategy 38

3.3.3 WAP-FTL Description .. 39

3.4 Evaluation .. 42

3.4.1 Experimental Setup .. 42

3.4.2 Results and Discussion .. 45

3.5 Summary .. 51

CHAPTER 4. PCM-FTL: A TWO-LEVEL PCM-AWARED
FLASH MEMORY MANAGEMENT TECHNIQUE 52

4.1 Overview .. 52

4.2 Motivation and Background. .. 54

4.2.1 Motivation .. 54

4.2.2 PCM-Based Embedded Systems. 55

4.3 PCM-FTL: PCM-Awared Two-Level FTL 55

4.3.1 Overview of PCM-FTL .. 56

4.3.2 PCM-FTL Description .. 57

4.3.3 PCM-FTL Wear Leveling Scheme 63

4.4 Evaluation .. 65

4.4.1 Experimental Setup .. 66

4.4.2 Results and Discussion .. 66

4.5 Summary .. 76

CHAPTER 5. WAB-FTL: A BLOCK-LEVEL PCM-AWARED
FLASH MEMORY MANAGEMENT TECHNIQUE 77

5.1 Overview .. 77

5.2 Background and Motivation .. 80

5.2.1 PCM-Based Embedded Systems. 80

xii

5.2.2 The Baseline Scheme .. 81

5.2.3 Motivation .. 83

5.3 WAB-FTL: PCM-Awared Block-Level FTL 83

5.3.1 Overview of WAB-FTL .. 83

5.3.2 WAB-FTL with Lazy-Merge Strategy. 85

5.3.3 WAB-FTL with Cooling-Pool .. 86

5.3.4 WAB-FTL Wear Leveling Scheme. 89

5.3.5 The Analysis of WAB-FTL 93

5.4 Evaluation .. 94

5.4.1 Experimental Setup .. 95

5.4.2 Metrics .. 96

5.4.3 Results and Discussion .. 96

5.5 Summary .. 101

CHAPTER 6. CONCLUSION AND FUTURE WORK. 102

6.1 Conclusion .. 102

6.2 Future Work .. 104

REFERENCES .. 106

xiii

LIST OF FIGURES

1.1 PCM-based Embedded Systems. .. 5

1.2 A typical management architecture of NAND flash memory with flash trans-
lation layer. .. 6

1.3 The Unified Research Framework. .. 13

2.1 The distribution of PCM related publications and approved US patents from
1990 to 2010. The reports are collected by searching the US patents, IEEE
journals and conference proceedings with the keywords: phase change mem-
ory, PCM, PCRAM and PRAM. 20

2.2 A typical PCM cell. (a) The phase change material is heated to different
resistance levels by ejecting electrical current between the heater and top
electrode. (b) RESET and SET pulses are performed to obtain specific levels
of resistance in the PCM cell. 21

2.3 A typical structure of NAND flash memory. 24

2.4 An illustration of page-level FTL mapping scheme. 26

2.5 An illustration of block-Level FTL mapping scheme. 27

2.6 An illustration of hybrid-level FTL mapping scheme. 27

3.1 PCM-based embedded systems with the proposed write-activity-aware page-
level WAP-FTL technique. .. 33

3.2 Motivational example. (a) I/O access sequence. (b) The status variation of
blocks in NAND flash memory. (c) The status variation of FTL page-level
mapping table in PCM. 35

3.3 The evaluation results ofhFTL in terms of the maximum and total number
of bit flips in PCM cells over different I/O traces. 37

3.4 The write-activity-aware strategy of WAP-FTL. 38

3.5 An example of WAP-FTL. (a) I/O access sequence used by themotivational
example in Figure 3.2. (b) The status variation of blocks in NAND flash
memory. (c) The status variation of FTL page-level mapping table in PCM. . . 41

3.6 The framework of simulation platform for evaluating theproposed WAP-
FTL technique. .. 45

4.1 PCM-based embedded system with the proposed write-activity-aware two-
level PCM-FTL technique.. .. 56

4.2 Illustration of PCM-FTL write-activity-aware two-level mapping mechanism. 58

4.3 Illustration of PCM-FTL. (a) The status variation of blocks in NAND flash
memory according to the access sequence in Figure 3.2. (b) The status vari-
ation of FTL page-level mapping table and block-level mapping table buffer
in PCM. .. 62

xiv

4.4 Illustration of the wear leveling method adopted by PCM-FTL. (a) The initial
status of the two-level mapping table with uneven distribution of write activ-
ities. (b) Move block-level mapping table buffer across thewhole page-level
mapping table to achieve wear leveling. (c) Write activities are evenly dis-
tribute among the two-level mapping table after moving block-level mapping
table buffer. .. 64

4.5 The framework of simulation platform for evaluating theproposed PCM-
FTL technique. .. 67

4.6 The maximum number of bit flips obtained from the PCM-based embed-
ded systems with 1GB NAND flash memory for PCM-FTL with different
parameter combinations. .. 68

4.7 The total number of bit flips obtained from the PCM-based embedded sys-
tems with 4GB NAND flash memory for PCM-FTL with different parameter
combinations. .. 69

4.8 The wear leveling comparison ofhFTL and PCM-FTL in a PCM-based em-
bedded system with 1GB NAND flash memory over four realistic DiskMon
traces. .. 74

4.9 The wear leveling comparison ofhFTL and PCM-FTL in a PCM-based em-
bedded system with 1GB NAND flash memory over four realistic Google
AndroidTMtraces. 75

5.1 PCM-based embedded system with the proposed write-activity-aware block-
level flash memory management technique. 81

5.2 Motivational example. (a) I/O access requests. (b) The status variation of
blocks in NAND flash memory. (c) The bit flips caused by the update of
block-level mapping table in PCM. 84

5.3 Example of WAB-FTL. (a) I/O access requests. (b) The status variation of
blocks in NAND flash memory. (c) The bit flips caused by the update of
block-level mapping table in PCM. 87

5.4 WAB-FTL Management. .. 89

5.5 Illustration of the wear leveling scheme adopted by WAB-FTL. (a) The initial
status of the Cooling-Pool and block-level mapping table with uneven dis-
tribution of write activities. (b) Move Cooling-Pool across the whole block-
level mapping table region to evenly distribute write activities. (c) Write
activities are evenly distribute among the Cooling-Pool and the block-level
mapping table after moving Cooling-Pool. 91

5.6 The framework of simulation platform for evaluating theproposed block-
level WAB-FTL technique. 95

5.7 The wear leveling comparison of BL-FTL and WAB-FTL in a PCM-based
embedded system with 1GB NAND flash memory over four traces collected
by DiskMon. .. 99

5.8 The wear leveling comparison of BL-FTL and WAB-FTL in a PCM-based
embedded system with 1GB NAND flash memory over four traces collected
by Android. .. 100

xv

LIST OF TABLES

2.1 A Comparison of PCM with DRAM and NAND flash memory. 23

3.1 Experimental Setup. .. 43

3.2 Android Trace Applications. .. 44

3.3 WAP-FTL versushFTL in terms of the maximum number of bit flips in PCM
cells. (1GB NAND flash memory) 46

3.4 WAP-FTL versushFTL in terms of the total number of bit flips in PCM cells.
(1GB NAND flash memory) 47

3.5 WAP-FTL versushFTL in terms of the maximum number of bit flips in PCM
cells. (4GB NAND flash memory) 48

3.6 WAP-FTL versushFTL in terms of the total number of bit flips in PCM cells.
(4GB NAND flash memory) 49

4.1 PCM-FTL versushFTL in terms of the total and maximum number of bit
flips in PCM cells. (1GB NAND flash memory, threshold = 8, buffer size =
5%) .. 71

4.2 PCM-FTL versushFTL in terms of the total and maximum number of bit
flips in PCM cells. (4GB NAND flash memory, threshold = 8, buffer size =
5%) .. 72

5.1 The Performance Comparison of WAB-FTL and BL-FTL. 94

5.2 WAB-FTL versushFTL and BL-FTL in terms of the maximum number of
bit flips in PCM cells. (1GB NAND flash memory) 97

5.3 WAB-FTL versushFTL and BL-FTL in terms of the total number of bit flips
in PCM cells. (1GB NAND flash memory) 98

xvi

CHAPTER 1

INTRODUCTION

In the last decade, various emerging non-volatile memory technologies, such as phase change

memory (PCM), spin torque transfer RAM (STT-RAM), magneticRAM (MRAM), and fer-

roelectric RAM (FRAM), have been developed and considered as a replacement for DRAM.

Among them, PCM is known to be one of the most promising technologies, due to its high

density, in-place update, and low standby power. Therefore, PCM is considered as a lead al-

ternative of DRAM (dynamic random access memory), and has been used as a main memory

with a small-sized DRAM cache in embedded systems [21,26,77,96]. However, compared to

DRAM, PCM can only sustain limited write operations (106 to 108 bit flips per cell) [38]. As

main memory is a frequently accessed component, it is necessary to reduce redundant write

activities in PCM to enhance the reliability of PCM-based embedded systems. On the other

hand, with the advantages of small size, shock resistance, and low power, NAND flash mem-

ory is widely used as a secondary storage and has been integrated into PCM-based embedded

systems [48,68,87]. How to avoid a fast worn-out of such emerging embedded systems and

effectively manage NAND flash memory should be taken into account. Therefore, this thesis

focuses on exploring a write-activity-aware NAND flash memory management scheme in

PCM-based embedded systems to enhance the lifetime of the entire system.

Several techniques have been recently proposed to enhance the lifetime of PCM at

architectural/hardware level. In [52, 101], Zhou et al. propose a redundant bit removal tech-

nique, by which a write to PCM is ignored if its designated PCMcell holds the same value.

In [77], Qureshi et al. propose Start-Gap to evenly distribute write activities among all PCM

cells for enhancing the lifetime of PCM-based main memory. In [21], Dhiman et al. in-

troduce a scheme wherein a page manager is developed to allocate pages across PCM and

DRAM for improving PCM lifetime. In [87], Sun et al. propose ahybrid storage archi-

1

tecture, wherein PCM lifetime is prolonged by inserting released log sectors to the list of

free sectors based on its number of writes recorded. In [43],Joo et al. propose an energy-

and endurance-aware PCM cache design which reduces write activities by read-before-write

and data inverting techniques. In [88], Sun et al. reduce write intensity in PCM by storing

frequently written values in compressed form.

On the other hand, some software level techniques have also been developed, such as

the code optimization techniques [33] and write-aware scheduling techniques [34] proposed

by Hu et al. Similarly, Ferreira et al. [26] propose three schemes, i.e., write minimization,

unnecessary writes reduction, and a wear-leveling scheme,to increase the lifetime of PCM-

based main memory. However, most of the hardware/software techniques do not consider the

write activities caused by the management procedure of other devices, such as NAND flash

memory. As NAND flash memory has already been used in PCM-based embedded system-

s [48,68,87], some redundant write activities during the management process of NAND flash

memory can lead to a lifetime degradation of PCM-based main memory. Therefore, unlike

previous work, the work proposed in this thesis can make the NAND flash memory man-

agement scheme write activity aware, for enhancing the lifetime of PCM-based embedded

systems.

In PCM-based embedded systems, to use NAND flash memory, flashtranslation layer

(FTL) is designed to emulate NAND flash memory as a disk drive,and logical addresses

are mapped to physical addresses in NAND flash memory at a granularity of page-level or

block-level [37, 51]. Following I/O requests, an FTL mapping table is employed to keep

track of the continually updated mapping records. Many FTL schemes have been proposed

[5, 6, 18, 29, 93], and most of them are mainly categorized into page-level scheme or block-

level scheme according to the granularity of mapping unit [19]. To provide fast lookup and

high data access performance, FTL mapping table is usually loaded into main memory after

system is booted, and put back to NAND flash memory once the system is shut down. In

traditional DRAM-based main memory, the most-updated FTL mapping table can be lost

due to power failure. However, as PCM is non-volatile, FTL mapping table can be kept into

PCM-based main memory permanently without considering power failure. Therefore, Kim

2

et al. [48] propose a page-level FTL, namelyhFTL, in which page-level FTL mapping table

is kept in PCM and user data is stored in NAND flash memory. Nevertheless,hFTL does

not consider redundant write activities occurred in PCM because of the frequently updated

FTL mapping table, which may lead to a shortened PCM lifetime. As the lifetime of PCM

is mainly determined by the maximum number of bit flips in eachPCM cell, it is important

to reduce the maximum number of bit flips in each PCM cell to enhance the reliability of

the entire system. New techniques, therefore, are needed toexplore traditional page-level or

block-level FTL designs and make them write activity aware,for reducing unnecessary write

activities and enhancing the lifetime of the PCM-based embedded systems.

In this thesis, we focus on exploring the challenge issues imposed by the manage-

ment of NAND flash memory in PCM-based embedded systems. Corresponds to the existing

page-level and block-level FTL designs, we propose three write-activity-aware NAND flash

memory management techniques for reducing write activities in PCM during the manage-

ment procedure of NAND flash memory and, at the same time, to enhance the lifetime of

the PCM-based embedded systems, with the advantage that no changes are required to the

file system, and hardware implementation of the NAND/PCM chip. Note that the mapping

records inside FTL mapping table are represented in a binaryform in PCM. Therefore, the

objective is to preserve each bit in FTL mapping table, i.e.,each bit in PCM cell, from being

inverted frequently, during the update process of FTL mapping table, such that the maximum

number of bit flips in each PCM cell is reduced and the lifetimeof PCM is enhanced. To

the best of our knowledge, this is the first work to study how toeffectively manage NAND

flash memory in PCM-based embedded systems by considering the endurance issue of PCM.

We hope this work can serve as a first step towards the design ofwrite-activity-aware flash

memory management for PCM-based embedded systems.

The rest of this chapter is organized as follows: Section 1.1presents the related

work. Section 1.2 presents the unified research framework. Section 1.3 summarizes the

contributions of this thesis. Section 1.4 gives the outlines of the thesis.

3

1.1 Related Work

In this section, we outline previous approaches related to PCM-based embedded system-

s, write activity reduction for PCM, and some related FTL schemes. We briefly describe

these approaches, and detailed comparisons with representative techniques are presented in

respective chapters.

1.1.1 PCM-based Embedded Systems

As an emerging non-volatile memory, PCM is considered as a promising candidate of tra-

ditional memories at various levels in current memory hierarchy. Compared to DRAM,

the read/write latency and power consumption of PCM are slightly worse than those of

DRAM [38]. However, PCM provides a significant density over DRAM, which means more

memory capacity and lower price per memory cell within the same chip area. Besides, PCM

offers negligible idle power than that of DRAM. On the other hand, unlike NAND flash

memory, PCM supports in-place-update regardless of the erase-before-write constraint of

NAND flash memory. The read/write latency of PCM is much better than that of NAND

flash memory. In addition, the lifetime of PCM is three ordersof magnitude longer than that

of NAND flash memory.

Therefore, because of its attractive advantages, PCM is being incorporated into em-

bedded systems [24], e.g., Samsung GT-E2550 GSM mobile handsets [50, 81, 86], and is

considered as a replacement of DRAM to achieve larger main memory capacity [20,53,78].

Even though PCM is sightly slower than DRAM and is constrained by its limited lifetime,

with clever optimizations at software/hardware level, such as buffering frequently accessed

data by a small-sized DRAM cache, it is feasible to use PCM-based main memory in em-

bedded systems [21,26,69,77,78,96].

Figure 1.1 shows a typical PCM-based embedded system, whichconsists of a hybrid

PCM-based main memory and a NAND flash memory proposed by [48]. To obtain a best

capacity and latency, the hybrid main memory adopts a large-sized PCM and a small-sized

4

DRAM cache. PCM acts as a main memory for maintaining frequently accessed OS pages

and the FTL mapping table, while the DRAM acts as a cache and bridges the gap between

PCM and the processor to improve performance and PCM lifetime. In the system, NAND

flash memory is employed as a secondary storage for storing user data that are accessed by

file systems.

Main Memory

DRAM Cache

CPU

Secondary Storage

NAND Flash Memory

User Data
FTL Mapping Table

PCM

Phsical address …
…

…
…

…
…

…
…

…
Logical address

… …

Figure 1.1. PCM-based Embedded Systems.

To conceal the unfavorable characteristics of NAND flash memory, an intermediate

software module called flash translation layer (FTL) is employed to emulate NAND flash

memory as a block device [37]. The main role of FTL is to redirect logical addresses from

the file systems of a host into physical addresses in NAND flashmemory, and maintains a

mapping table to keep track of the mapping information. FTL not only supports address

translation but also provides other useful components suchas garbage collector and wear-

leveler that are used to optimize the space utilization and maintain the same level of wear

for each block in NAND flash memory. Following I/O requests toNAND flash memory, the

mapping from logical address to physical address will be updated continually in FTL map-

ping table. So the FTL mapping table is the most heavily updated component in PCM and

may shorten PCM lifetime if some unnecessary write activities are performed. Therefore, to

avoid the lifetime degradation of PCM, it is necessary to make FTL scheme write activity

aware in PCM-based embedded systems.

5

Figure 1.2 shows a software-level architecture of the incorporated flash translation

layer module [51]. In this architecture, flash translation layer provides three components:

address translator [6], garbage collector [10], and wear-leveler [12]. In FTL, address transla-

tor maintains an FTL mapping table, which usually located inmain memory could translate

addresses between logical address and physical address; garbage collector reclaims space

by erasing obsolete blocks in which there exists invalid data; wear-leveler is an optional

component that distributes erase operations evenly acrossall blocks, so as to extend the life-

time of NAND flash memory. This thesis focuses on improving the management of address

translator in flash translation layer, to reduce write activities in the PCM-based embedded

systems.

……

File System (e.g., Ext2, Ext3, FAT, NTFS)

Address

Translator

Memory Technology Device (MTD) Layer

Application n

Operating System

Flash Translation Layer (FTL)

Garbage

Collector

Wear

Leveler

Phsical Address

FTL Mapping Table

Application 2

Logical Address

PCM-based Main Memory
…

NAND Flash Memory

…

Application 1

Figure 1.2. A typical management architecture of NAND flash memory with flash translation

layer.

6

1.1.2 Write Activity Reduction for PCM

To incorporate PCM into main memory hierarchy, one most important challenge is that PCM

can only suffer limited write cycles, and thus may wear out earlier than DRAM-based main

memory. Therefore, to mitigate this limitation, extensivework recently has been done to

reduce write activities for PCM-based embedded systems. The research of reducing write

activities in PCM can be mainly classified into two categories: architectural/hardware level

and software level.

The Architectural/Hardware Level

At the architectural/hardware level, to extend PCM lifetime, various techniques have been

proposed to reduce PCM write activities and perform wear leveling.

To reduce write activities, several techniques have been proposed including differ-

ential write [101], Compression [88, 99], Flip-N-Write [16], and row-buffer locality-aware

data placement [98]. In [52, 101], Zhou et al. propose a suit of hierarchical techniques: re-

dundant bit-write removal, row shifting, and segment swapping, to improve the lifetime of

PCM-based main memory. Write activity reduction is accomplished mainly based on the

idea of data-comparison write (DCW), by which a write to PCM is ignored if its designat-

ed PCM cell holds the same value. For example, only the right most bit ‘0’ is written into

PCM if a value of ‘1010’ to be written into a PCM destination with ‘1011’. In [77, 78],

Qureshi et al. introduce a PCM-based hybrid memory architecture wherein PCM is em-

ployed as a main memory while a small-sized DRAM is employed as a cache buffer. Based

on this architecture, Start-Gap is proposed to evenly distribute write operations across all

PCM cells, and a line-level write scheme is developed to write only the dirty lines in the

cache buffer into the PCM, for improving wear leveling and enhancing the lifetime of PCM-

based main memory. In [21], Dhiman et al. explore the challenges after incorporating PCM

into the hybrid main memory hierarchy with DRAM. To improve the PCM lifetime, a book

keeping hardware technique is proposed to store write frequency information into PCM at a

page level granularity. In [16], by extending idea of data-comparison write technique pro-

7

posed by [101], Cho et al. propose a simple architectural technique to replace a PCM write

operation with a more efficient read-modify-write operation for reducing redundant bit pro-

gramming. In [87], Sun et al. propose a hybrid solid storage architecture that uses PCM as

a log area, wherein PCM lifetime is prolonged by inserting released log sectors to the list of

free sectors based on its number of writes recorded. In [43],Joo et al. propose an energy-

and endurance-aware PCM cache design which reduces write activities by read-before-write

and data inverting techniques. In [88], Sun et al. propose a frequent-value based data storage

architecture, wherein write intensity in PCM is reduced by storing frequently written values

in compressed (encoded) form.

The wear leveling techniques that evenly distribute write activities have been pro-

posed including hot/cold line shifting and segment swapping [101], randomized mapping

such as Start-Gap [77] and Security Refresh [83], and adaptive wear leveling with online

attack detector [75]. To defend against malicious attacks,the randomized approaches have

been proposed to randomly distribute writes [75, 77, 83, 85], and the wear-leveling-aware

encryption techniques have been proposed in [14,49].

To deal with process variation, a scheme with process-variation-aware current provi-

sion, adaptive page-level data comparison writes, and dirty-cache-line compression is pro-

posed in [99], and a fine-grained current provision and voltage upscalling scheme is pro-

posed in [39]. To solve the problems caused by resistance drift, several schemes have been

proposed including adaptive data inversion/rotation scheme based on different resistance-

drift-sensitive patterns and resistance-drift-aware SLC/MLC reconfiguration [100], and drift-

tolerant coding based on modulation coding by utilizing relative order of resistance levels in

a codeword [66].

The Software Level

On the other hand, to enhance PCM lifetime, some techniques have also been developed at

the software level. In [33], an embedded chip multiprocessors (CMPs) system with scratch

pad memory (SPM) and PCM-based main memory is explored. In this system, a data mi-

8

gration and code optimization techniques are proposed to avoid write-backs of shared data,

for extending the lifetime of PCM-based main memory. In [34], Hu et al. propose two op-

timization techniques, write-aware scheduling and re-computation, to schedule the tasks in

the program with the consideration of write activities in main memory, for minimizing write

activities in non-volatile memories such as PCM. Similarly, in [26], Ferreira et al. develop

three schemes, i.e., write minimization, unnecessary writes reduction, and a wear leveling

scheme, to improve the lifetime of PCM-based main memory. Besides, in [27], they propose

a page partitioning technique and a clean-preferred page replacement algorithm to reduce

the number of write-back data to PCM, for enhancing PCM lifetime. In [21], based on the

hybrid main memory and the hardware book keeping technique,Dhiman et al. introduce

an efficient OS-level page manager to evenly allocate pages across PCM and DRAM for im-

proving PCM wear leveling. In [22], Dong et al. study the endurance variation of PCM cells,

and propose a variant of wear leveling mechanism, through physical address re-mapping and

data swapping, to balance wear rates of PCM cells across the whole PCM chip. In [8], Bock

et al. introduce the concept of useless write-back data thatis not used again by the pro-

gram, and develop an analytical framework to determine the number of useless write-backs,

to improve the lifetime of the PCM-based main memory.

However, most of the previous hardware/software techniques do not consider the

write activities caused by the management procedure of other devices in the PCM-based em-

bedded systems, such as NAND flash memory. As NAND flash memoryhas already been

used in PCM-based embedded systems as a secondary storage [48, 68, 87], some redundant

write activities during the management process of NAND flashmemory can lead to a life-

time degradation of PCM-based main memory. Therefore, unlike previous work, the work

proposed in this thesis can make the NAND flash memory management write activity aware,

for enhancing the lifetime of PCM-based embedded systems.

9

1.1.3 FTL Schemes

NAND flash memory has been widely used in various applications. A lot of designs and

implementations of NAND flash memory management have been proposed in the literature.

As FTL plays a critical role in NAND flash memory management, different FTL schemes

have been proposed and can be categorized into three major types: page-level mapping,

block-level mapping, and hybrid-level mapping. Hybrid-level FTL overcomes the shortcom-

ings of page-level mapping and block-level mapping, and provides a balance between space

overheads and flexibility. Therefore, hybrid-level FTL hasbeen widely adopted in NAND

flash memory designs and implementations, especially for large-scale flash storage system-

s [11]. In particular, Wu and Kuo [93] describe an adaptive hybrid-level approach that can

dynamically and adaptively switch between page-level and block-level in the mapping of

logical block addresses into physical block addresses. Choudhuri and Givargis [17] employ

a lookup table and page cache method into the translation layer to speedup address transla-

tion and improve read and write throughput. Wu et al. [94] usea search-tree-like caching

mechanism and a replacement strategy for efficient address translation. Park et al. [67] apply

a flash translation layer architectural framework to decidewhich configuration of address

mapping parameters yields the best performance.

In recent studies, several schemes have been proposed for log-block-based hybrid-

level FTL schemes. In log-block-based FTL schemes, a limited number of log blocks are

provided for all data blocks to store updated data. Kim et al.[47] proposed a hybrid-level

scheme, called log-block-based FTL (BAST), in which all data blocks share a set of log

blocks for update operations. Based on BAST, several log-block-based FTL schemes have

been proposed to explore the block associativity of each logblock. Lee et al. proposed a

fully-associative mapping scheme called FAST [58]. More recently, Cho et al. propose a

K-Associate log-block-based scheme called KAST [15], which can limit the maximum log

block associativity.

To balance the trade-off between page-level FTL and block-level FTL, some recent

studies consider configurable or demand-based mapping scheme to reduce the size of map-

10

ping table and provide the flexibility of mapping scheme. Gupta et al. propose a demand-

based caching scheme, called DFTL [29], to reduce page-level address mapping table. Y-

ongsoo Joo et al. [41, 42] propose an online demand paging scheme that can fully exploit

the eXecution-in-Place (XIP) capability of OneNAND flash. More recently, Qin et al. [70]

propose a demand-based block-level address mapping schemein large-scale NAND flash

storage systems. Chang and Kuo [13] propose a commitment-based management strategy to

improve the reliability of NAND flash memory. A three-level address translation architecture

with an adaptive block mapping scheme is proposed. The proposed technique can accelerate

the address translation process with the considerations ofthe limited RAM space. Hsieh et

al. [32] propose a configurable mapping scheme that can trade-off the main-memory over-

head and the system performance. In their scheme, the mapping between the virtual address

to the physical address provides the flexibility to prevent ablock from being used by any

fixed physical block.

Some studies consider the system requirements and provide solutions for application

specific flash memory management designs. Chu et al. [18] propose a set-based mapping

strategy that can utilize thrown-away flash memory chips into downgraded products. Yong-

soo Joo et al. [40,42] discovered programming energy variation of MLC NOR flash memory,

and proposed an energy-aware data compression method to minimize the flash programming

energy. Wu et al. [95] propose a file-system-aware flash translation layer, in which a filter

mechanism is adopted to analyze the access requests and separate the metadata of file sys-

tem and the ordinary files. Huang et al. [35] analyze the behavior and access pattern of flash

memory storage system. Li et al. [59] propose a StableBuffersolution for flash devices that

exploit write patterns of flash devices to optimize the performance of DBMS applications.

Lee and Alex [56,57] propose highly effective application specific embedded systems using

NAND flash as primary memory and low latency instruction cache. On et al. [63] study

the buffer management for flash-based databases, with a focus on addressing the read-write

asymmetry and workload dynamics, and propose FD-Buffer that automatically adapts to the

flash disk characteristics and the runtime workload. Hsieh et al. [31] propose a new archi-

tecture that utilizes the flash memory as a cache layer for disks to save energy consumption.

11

The above work presents excellent designs for different application specific architectures.

Most of the previous work provides good solution and improves the performance of

FTL. However, no work targets at the emerging PCM-based embedded systems, wherein

the NAND flash memory is used as a secondary storage. Though Kim et al. [48] propose a

page-level FTL, namelyhFTL, and focuses on the PCM-based embedded systems, in which

page-level FTL mapping table is kept in PCM-based main memory and user data is stored

in NAND flash memory. ButhFTL does not consider redundant write activities occurred in

PCM because of the frequently updated FTL mapping table, which may lead to a shortened

PCM lifetime. Considering the lifetime limitation of PCM and the frequently accessed FTL

mapping table in the PCM-based main memory, it is important to study the write activity

of FTL schemes for the emerging PCM-based embedded systems.Therefore, different from

the previous work, this thesis targets at the PCM-based embedded systems, and takes a first

step to propose techniques for making the basic FTL design (page-level and block-level

scheme) write activity aware, such that the lifetime of PCM-based embedded systems can be

enhanced.

1.2 The Unified Research Framework

In this section, we present the unified research framework for the proposed techniques. Fig-

ure 1.3 illustrates the sketch of our research framework.

In this thesis, we target at the PCM-based embedded systems,wherein the PCM-

based main memory with a small-sized DRAM cache is used for maintaining frequently

accessed OS pages and the FTL mapping table, and a NAND flash memory is adopted as a

secondary storage for storing user data accessed by file systems.

In this thesis, three flash memory management techniques considering write activity

reduction for PCM are presented to improve the lifetime and performance of the PCM-based

embedded systems, in terms of the granularity of FTL mappingunit. As shown in Fig-

ure 1.3, the traditional FTL design is redesigned by the proposed techniques in PCM-based

12

CHAPTER 5

M
a
k
e
 F

T
L
 W

ri
te

 A
c
ti
v
it
y
 A

w
a
re

 f
o
r

E
n
h
a
n
c
in

g
 P

C
M

 L
if
e
ti
m

e

Page-Level FTL
Mapping Table

PCM-Based Main Memory

WAP-FTL

Write-Activity-Aware Page-Level

Flash Translation Layer

……

File System (e.g., Ext2, Ext3, FAT, NTFS)

Address

Translator

Memory Technology Device (MTD) Layer

Application n

Operating System

Flash Translation Layer (FTL)

Garbage

Collector

Wear

Leveler

Phsical Address

FTL Mapping Table

Application 2

Logical Address

PCM-based Main Memory

…
NAND Flash Memory

…

Application 1

Two-Level FTL
Mapping Table

PCM-Based Main Memory

PCM-FTL

Write-Activity-Aware Two-Level

Flash Translation Layer

Block-Level FTL
Mapping Table

PCM-Based Main Memory

WAB-FTL

Write-Activity-Aware Block-Level

Flash Translation Layer

CHAPTER 4

CHAPTER 3

Figure 1.3. The Unified Research Framework.

13

embedded systems. Each of the proposed write-activity-aware FTL techniques maintains

a corresponding FTL mapping table in PCM-based main memory.To effectively manage

NAND flash memory while reducing write activities for the corresponding FTL mapping ta-

ble in PCM, three write-activity-aware flash memory management techniques are proposed

in this thesis.

• For the first technique, in Chapter 3, we first propose aWrite-Activity-awarePage-

level FTL mapping technique, named WAP-FTL. In the WAP-FTL, we consider to

reduce write activities for a page-level FTL mapping table in PCM. To achieve this, a

write-activity-aware strategy is employed to prevent eachbit in page-level FTL map-

ping table that hosted by PCM from being inverted frequently. Once a write request

arrives in NAND flash memory, unlike the traditional page-level FTL design [5,48], the

proposed page-level FTL technique, WAP-FTL, can actively choose a physical page

whose physical address effects the minimum number of bit flips in FTL page-level

mapping table, so as to effectively reduce write activitieson PCM cells. However,

the proposed WAP-FTL does not consider the access behavior of I/O requests, and

the evaluation results also show that write activity in PCM will increase due to extra

overhead of page copy introduced by the garbage collection.

• For the second technique, in Chapter 4, by extension the ideaof WAP-FTL, we fur-

ther propose a two-level FTL mapping technique, named PCM-FTL, which not only

focuses on minimizing the write activities of PCM but also considering the access be-

havior of I/O requests. To achieve this, in PCM-based main memory, we propose a

page-level FTL mapping table to handle not frequently updated random requests, and

allocate a tiny mapping buffer of block-level FTL mapping table to record most fre-

quently updated sequential requests. Similar to that of WAP-FTL, to further minimize

write activities in PCM, PCM-FTL actively chooses a physical block in NAND flash

memory whose physical block number incurs minimum number ofbit flips.

• For the third technique, in Chapter 5, we present aWrite-Activity-awareBlock-level

FTL mapping technique, named WAB-FTL, to effectively manage NAND flash mem-

14

ory while reducing write activities of the PCM-based embedded systems. Unlike

WAP-FTL and PCM-FTL which require significant capacity in PCM for storing the

larger page-level FTL mapping table, WAB-FTL is motivated that block-level FTL

with much less memory requirement is more applicable for PCM-based embedded

systems, as the capacity of current PCM prototype chips is very small and may not

be practical for storing large table [61]. Therefore, in WAB-FTL, a block-level FTL

mapping mechanism with write activity consideration is proposed. To reduce redun-

dant write activities for PCM, a new merge strategy is adopted in WAB-FTL to delay

the mapping table update, and a tiny mapping buffer is used for caching frequently

updated mapping records.

In this thesis, we evaluate the proposed techniques WAP-FTL, PCM-FTL and WAB-

FTL using a variety of realistic I/O traces, which reflect therealistic workloads of the system

in accessing the secondary storage for daily use. Several real-life traces are obtained from

DiskMon [1] running on the notebook with an Intel Pentium Dual Core 2GHz processor, a

200GB hard disk, and a 2GB DRAM. Besides, some other traces are collected from Google

AndroidTM2.3 [28] with Android Emulator (included in Android SDK). Wemodified the

Linux kernel shipped with Android to record I/O requests in system log. Traces are gathered

by Android Debug Bridgein Android SDK from the emulator to host computer. In order

to reveal the actual impacts of the experimental schemes, wecollected traces under heavy-

loaded environment by usingMonkey, which is an automatic stress test tool provided by

Android SDK. With applications specified, it generates random events for them and send the

events to the emulator for execution. The evaluation is conducted by a trace-driven simula-

tion. We have developed a simulator, which simulates a PCM-based embedded systems with

1GB/4GB NAND flash memory, to evaluate our write-activity-aware flash memory manage-

ment techniques against with the representative baseline FTL designs.

1.3 Contributions

The contributions of this thesis are summarized as follows.

15

• The major contribution of this thesis is the idea of considering write activity of NAND

flash memory management schemes in PCM-based embedded systems. To reduce

write activities of FTL mapping table and extend PCM lifetime, this thesis presents

for the first time three write-activity-aware flash memory management techniques. For

these techniques, the idea of reducing write activities is to actively find physical pages

or blocks whose page number or block number incurs the minimum number of bit

flips in PCM during the update process of page- or block-levelFTL mapping table.

Moreover, WAP-FTL demonstrates that write activities of PCM cannot be reduced

by merely actively finding physical pages without considering the behavior of I/O re-

quests. Based on this observation, by carefully studying the I/O request behavior, the

other two techniques PCM-FTL and WAB-FTL provide good performance for reduc-

ing write activities in the PCM-based embedded systems.

• We propose a write-activity-aware page-level flash memory management technique,

WAP-FTL to reduce write activities on a page-level FTL mapping table in PCM. WAP-

FTL is mainly based on the idea of actively choosing a physical page whose physical

page number causes the minimum number of bit flips in PCM. Though the evaluation

results of WAP-FTL finally show that write activities in PCM will increase during

garbage collection, WAP-FTL provides the potential research direction and suggests

that the behavior of I/O requests must be taken into account.

• We present for the first time a write-activity-aware two-level flash management tech-

nique, PCM-FTL, which not only extends the work of WAP-FTL but also considers

the access behavior of I/O requests. In PCM-FTL, a tiny mapping buffer of block-level

FTL mapping table is allocated to record most frequently updated sequential requests,

while a page-level FTL mapping table is used to handle not frequently updated random

requests. Compared with a representative FTL scheme, the experimental results show

that PCM-FTL can achieve an average reduction of 93.10% and amaximum reduction

of 98.98% in the maximum number of bit flips for a PCM-based embedded system

with 1GB NAND flash memory. In addition, the results also showthat PCM-FTL

16

can achieve an even distribution of bit flips in PCM in comparison with the baseline

scheme.

• We present for the first time a write-activity-aware block-level flash memory manage-

ment technique, WAB-FTL, to effectively manage NAND flash memory while reduc-

ing write activities of the PCM-based embedded systems. With the advantage of much

less memory requirement, in WAB-FTL, a new merge strategy (Lazy-Merge) and an

additional tiny buffer (Cooling-Pool) are proposed, to make our approach write activi-

ty aware, such that the PCM lifetime is enhanced. Compared with the previous work,

experimental results show that our technique could effectively reduce write activities

in PCM-based embedded systems. Moreover, the experimentalresults also show that

WAB-FTL can achieve an even distribution of bit flips in PCM cells in comparison

with the baseline scheme.

• A trace-driven simulation framework is implemented, to evaluate the proposed write-

activity-aware flash memory management schemes in the PCM-based embedded sys-

tems. We conducted experiments and compared with representative FTL schemes.

Experimental results prove the effectiveness of the proposed schemes using a set of

realistic I/O workloads.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we briefly introduce the background knowledge of phase change memo-

ry, NAND flash memory and flash translation layer.

• In Chapter 3, we present our write-activity-aware page-level flash memory manage-

ment technique, WAP-FTL, and demonstrate its limitation inwrite activity reduction

for PCM-based embedded systems.

17

• In Chapter 4, we present our write-activity-aware two-level flash memory management

technique, PCM-FTL, to extend the work of WAP-FTL. We also show that PCM-FTL

can effectively reduce write activities for PCM-based embedded systems.

• In Chapter 5, we present our write-activity-aware block-level flash memory manage-

ment technique, WAB-FTL, and show that WAB-FTL with much less memory require-

ment can also effectively reduce write activities for PCM-based embedded systems.

• In Chapter 6, we present conclusions and discuss possible future directions of research

arising from this work.

18

CHAPTER 2

BACKGROUND

In this chapter, we first present the background knowledge ofphase change memory. Then

we briefly introduce the characteristics of NAND flash memory. Finally, we discuss different

types of flash translation layer that used for managing NAND flash memory in embedded

systems.

2.1 Phase Change Memory

Phase change memory (PCM), also known as PCRAM, PRAM or Chalcogenide RAM, is a

type of no-volatile memory techniques. PCM was first demonstrated in 1960s, it stores data

by programming the resistance of chalcography alloy [64, 65, 96]. Due to material quality,

power consumption and manufacture cost issues, the development of PCM technology is s-

low during the past decades. However, after adopting the newphase change material, such as

Ge2Sb2Te5 (GST) [97], PCM technology exhibits attractive advantagesof bit-addressability,

superior scalability, high density, low standby power, andin-place update, and is considered

as a promising candidate for main memory or data storage in the near future [38]. As reported

in Figure 2.1, PCM related publications and approved US patents have grown exponentially

in recent years, which indicates that PCM technology recently has renewed the interests of

researcher and industry. Moreover, IBM, Samsung, Hitachi,Micron and Intel have already

issued their own PCM prototype chips [3,30,46,55,66,79,84].

19

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

0

20

40

60

80

100

120

140

160

180

Year

 Number of approved PCM Patents in US
 Number of Publications

Figure 2.1. The distribution of PCM related publications and approved US patents from 1990

to 2010. The reports are collected by searching the US patents, IEEE journals and conference

proceedings with the keywords: phase change memory, PCM, PCRAM and PRAM.

2.1.1 PCM Cell

Figure 2.2(a) shows a typical structure of PCM cell, which ismainly made up of the phase

change material,Ge2Sb2Te5 (GST), that is sandwiched by a top electrode and a bottom

electrode. As shown, by heating up the phase change materialwith specific electrical pulses,

it can switch between two different states, crystalline andamorphous, representing low and

high resistance, respectively. Therefore, binary bit ‘1’ or ‘0’ can be stored in PCM cell by

changing the resistance level to either of these two states.The resistance contrast between

the crystalline and amorphous state is very large. For some phase change materials, it can be

up to five orders of magnitude [80].

The earlier PCM prototype chips are single-level cell (SLC)PCM, in which each cell

20

Top Electrode

Bottom Electrode

H
e
a

te
r

Phase Change Material

(GST)

Programable

Volume

T
e
m

p
e
ra

tu
re

Time

Tcrys

Tamor

SET Pulse

RESET Pulse

(a) (b)

Figure 2.2. A typical PCM cell. (a) The phase change materialis heated to different resis-

tance levels by ejecting electrical current between the heater and top electrode. (b) RESET

and SET pulses are performed to obtain specific levels of resistance in the PCM cell.

can only store one binary bit. However, the large resistancecontrast between crystalline and

amorphous states provides the opportunity to store multiple bits in one PCM cell. Recent-

ly, the multiple-level cell (MLC) PCM is proposed, wherein the phase change material is

reported to achieve more intermediate resistance differences between crystalline and amor-

phous by carefully controlling the electrical pulses, thusmultiple binary bits per cell can

be represented and effectively double PCM capacity [7, 62, 76]. IBM has demonstrated a

multiple-level cell (MLC) PCM [66], in which each cell can store multiple binary bits, such

as ‘00’, ‘01’, ‘10’, or ‘11’. Though we only focus on single-level cell (SLC) PCM in this

thesis, the proposed methods can also be extended to MLC PCM.

2.1.2 PCM Write Operation

In order to write the data into SLC PCM cells, there are two types of write operations in

PCM: RESET operation and SET operation. A RESET operation turns the phase change

material into the amorphous state, while a SET operation turns the phase change material

21

into the crystalline state. As shown in Figure 2.2(b), to write binary ‘0’ in a PCM cell, the

RESET operation is performed to place the PCM cell into the amorphous state, by heating the

phase change material above the melting temperatureTamor (over 600◦C) with a high power

but short duration pulse; To write binary ‘1’ in a PCM cell, the SET operation is conducted

to place the PCM cell into the crystalline state, by heating the phase change material above

the crystallization temperatureTcrys (over 300◦C but below the melting temperature) with a

moderate power but long duration pulse. On the other hand, toprogram the MLC PCM, an

iterative programming and verifying method is employed to switch the PCM cell into four

or more distinct resistance levels [23], by iteratively applying SET/RESET operation and

checking whether the expected resistance is placed into a required range, such that multiple

binary bits can be stored in a single PCM cell. Due to the iterative write-and-verify program

method, the write operation of MLC PCM is much slower than that of SLC PCM. Moreover,

the binary bits stored in PCM can be read out by sensing the resistance level of the PCM cell.

2.1.3 PCM Lifetime

As shown in Figure 2.2(b), both RESET and SET operations leadthe temperature in PCM

cell changes to specific levels,Tamor (610◦C) andTcrys (300◦C), respectively. To reach

the melting temperatureTamor, more energy is needed for accomplishing RESET operation,

which also introduces higher thermal dissipation at the same time. Therefore, repeated heat

stress to PCM cells leads to the effect that a PCM cell can onlysustain a limited number

of RESET or SET operations. In other words, a PCM cell will be worn-out after a limited

number of bit flips. For example, a single cell of Micron P5Q PCM can only sustain106

write cycles [61], and the expected PCM lifetime will achieve108 to 109 in the future [4,38,

45]. Therefore, limited write endurance is one major challenge issue for the management of

PCM-based embedded systems. To enhance PCM lifetime, an intuitive idea is through the

reduction of bit flips in each PCM cell.

22

2.1.4 Comparison of Memory Technologies

Table 2.1 shows the characteristics of DRAM, PCM and NAND flash memory, which are

mainly gathered from [25, 38]. Compared to DRAM and NAND flashmemory, PCM ex-

hibits many attractive features, such as non-volatility, bit addressability, and low standby

power. As shown, the read/write latency and power consumption are slightly worse than

those of DRAM, but much better than those of NAND flash memory.Thus, the distinctive

advantages of PCM make it a very promising candidate for replacing DRAM-based main

memory. However, the endurance of PCM is much worse than thatof DRAM, so the write

activities in PCM-based main memory must be considered to prohibit the PCM from being

wear out faster.

Table 2.1. A Comparison of PCM with DRAM and NAND flash memory.

DRAM PCM NAND Flash

Non-Volatile NO YES YES

Erase Unit Bit Bit Block

Software Simple Simple Complex

Power ∼W/GB 100-500mW/die ∼100mW/die

Write Latency <10ns 50-120ns ∼100µs

Write Operating Voltage 2.5V 15V 3V

Read Latency 50ns 50-100ns 10-25µs

Read Operating Voltage 1.8V <3V 2V

Endurance >1016 106 − 108 104-105

Retention Time 64ms >10 years >10 years

23

2.2 NAND Flash Memory

Recently, NAND flash memory is widely used as a secondary storage in embedded systems.

As shown in Figure 2.3, a typical NAND flash memory is partitioned into blocks and each

block is further divided into 32 or 64 pages. Each page contains 512Bytes or 2KB for data,

and 32Bytes or 64Bytes for OOB (Out Of Band) area. The OOB areais primarily used to

store the Error Correction Code (ECC) of the corresponding page and other information such

as logical page number. There are three basic operations that can be performed on a NAND

flash memory,erase, write,andread. A block is the smallest unit of erase operations, while

a page is the minimum unit of read/write operations. In NAND flash memory, data must be

written to free pages, which could lead to out of space after anumber of write operations.

Thus, a reclaim operation known as garbage collection [10] is invoked to regenerate free

space for NAND flash memory.

Blocks

P
a

g
e

s

NAND Flash Memory

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…
…

…

…

…

…

NAND Block

data oob

data

data oob

data oob

… …

oob

One Page

Figure 2.3. A typical structure of NAND flash memory.

As a non-volatile storage device, NAND flash memory has a lot of advantages such

as small size, shock resistance and low power. However, NANDflash memory also has

some constraints that impose challenges for its management. First, NAND flash memory

suffers from out-of-place updates. An update (re-write) toexisting data on a given physical

location (known as a page) should be preceded by an erase operation on a larger region

(known as a block). Second, a block has a limited erase lifetime. For example, one block

24

in SAMSUNG K9F1G08U0C SLC (Single-Level Cell) NAND flash has100K erase counts,

while the one in SAMSUNG K9G4G08U0A MLC (Multi-Level Cell) NAND flash has only

5K erase counts. A block becomes worn-out if its erase countsreach the limit [82]. Third, for

some NAND flash memory management schemes, not all blocks in NAND flash get erased

at the same rate, so the lifetime of specific blocks may decrease faster which would affect

the usefulness of the entire flash memory. To overcome these constraints, it is very important

to guarantee that erase or write operations be evenly distributed across all blocks (known as

wear-leveling).

2.3 Flash Translation Layer

Since FTL plays an important role in NAND flash memory management, many studies for

FTL have been conducted. A lot of work focuses on the address mapping of FTL [5, 6,

29, 60, 71–73, 89–92], while the other work concerns about the garbage collection [10] and

wear-leveling [9, 12, 44]. According to the granularity of mapping unit, FTL designs can be

mainly categorized into three types [19]: page-level mapping [5], block-level mapping [2,6],

and hybrid-level mapping [47].

As shown in Figure 2.4, in page-level FTL mapping scheme [5],each logical page

number (LPN) is mapped to a corresponding physical page (PPN) in NAND flash memory.

Therefore, if the file system contains n logical page units, the corresponding page-level FTL

mapping table should also has n rows. As shown in the example,16 mapping entries are

allocated in the page-level FTL mapping table for the corresponding LPN to PPN mapping.

With the simple mapping table, page-level FTL mapping scheme could provide efficient

address translation time, less garbage collection overhead, and high space utilization but

with significant memory requirement.

On the contrary, in block-level FTL mapping scheme [2,6], one logical block (LBN)

is mapped to at least one physical block (PBN) , and thus much less mapping information is

needed. Figure 2.5 illustrates an example of block-level FTL mapping scheme. As shown,

the logical page number 8 is divided by the number of pages in ablock, to obtain the logi-

25

0 2

1 3

2 4

3 0

4 5

5 8

6 9

7 11

8 12

9 13

10 15

11 14

12 10

13 1

14 7

15 6

Figure 2.4. An illustration of page-level FTL mapping scheme.

cal block number 2 and the page offset 0. Then the logical block number 2 is mapped to a

physical block #1 which consists of the requested page, while the page offset 0 is used as

an offset to locate the page in the corresponding block #1. Inblock-level FTL scheme, as

the number of mapping entries in block-level FTL mapping table only equals to the block

number, the mapping table size can be reduced significantly.However, in block-level FTL,

a logical page can only be written to a physical page with the designated page offset within

a physical block. Thus, block-level FTL is not as good as page-level FTL in terms of the

flexibility and performance. To achieve a trade-off betweenRAM cost and system perfor-

mance, hybrid-level FTL mapping scheme is proposed as a compromise between page-level

FTL mapping scheme and block-level FTL mapping scheme [47].

Hybrid-level FTL has been widely used, in the previous work,many studies have

been conducted on hybrid-level FTL mapping schemes [17, 93,94], especially for large-

scale flash storage systems [11]. In addition, most hybrid-level FTL mapping schemes adopt

log-block-based mapping mechanism for storing updates [15,47,54,58,67]. In these hybrid

26

0 2

1 3

2 1

3 0

Figure 2.5. An illustration of block-Level FTL mapping scheme.

Write to
LPN: 8

L
B

N
=

8
/4

=
2

O
ff
s
e
t=

8
%

4
=

0

0 2

1 3

2 1

LBN PBN

FTL Block-Level
Mapping Table
in Main Memory

3 0

B
lo

c
k

#
0

B
lo

c
k

#
1

OOBDATA

0
1
2
3
4
5
6
7

PPN

NAND Flash
Memory

B
lo

c
k

#
2

8
9

10
11

B
lo

c
k

#
3

12
13
14
15

2 32

LBN PPN

Log-Block-Based
Mapping Table
(Page-Level)

B
lo

c
k

#
8

32
33
34
35

B
lo

c
k

#
9

36
37
38
39

Log Blocks

OOBDATAPPN

INVALID

Figure 2.6. An illustration of hybrid-level FTL mapping scheme.

schemes, the blocks of NAND flash memory are divided into datablocks for new data and

log blocks for the updated data. Figure 2.6 shows an example of hybrid-level FTL mapping

scheme. As shown, a block-level mapping table is arranged for the mapping of data blocks,

27

and a page-level mapping table is used for recording the updates in the log blocks. For an

update request with LBN 2 and offset 0, the fresh data is written to the first page in log block

#8 instead of being stored in the original location (the firstpage of data block #1). Hybrid-

level FTL mapping schemes have great improvement on the performance and flexibility of

FTL. However, most of them need to reclaim log blocks by a merge operation which may

introduce extra overhead, and the mapping table size of hybrid-level FTL mapping schemes

tends to be larger than that of block-level FTL schemes. As a first step for exploring the

NAND flash memory management in PCM-based embedded systems,in this thesis, we focus

our work on the basic page-level and block-level FTL designs.

2.4 Summary

In this chapter, we introduced the background knowledge of phase change memory. Then we

briefly discussed the characteristics of NAND flash memory. Finally, we presented different

types of flash translation layers that are used for managing NAND flash memory in embedded

systems.

28

CHAPTER 3

WAP-FTL: A PAGE-LEVEL PCM-AWARED

FLASH MEMORY MANAGEMENT TECHNIQUE

3.1 Overview

As an emerging non-volatile memory, phase change memory (PCM) exhibits its potential

of being incorporated into current memory hierarchies, andseveral studies so far show that

the advantages of PCM make it an ideal replacement for DRAM inmain memory [21, 26,

52, 53, 74, 77, 78, 101]. Unfortunately, compared to DRAM, PCM suffers from a limited

number of write cycles, i.e., a cell of PCM can only sustain106 to 108 writes before worn-

out [38], which imposes challenge for it to store frequentlyupdated data. For example,

Micron OmneoTMP5Q PCM has only106 write cycles per cell [61]. As main memory is a

heavily accessed component, it is therefore important to reduce write activities in PCM for

improving the lifetime of PCM-based main memory. Several techniques recently have been

developed to reduce write activities in PCM at architecture/software level [16,26,27,33,34,

52,74,88,101].

Most of the previous work provide good solution and improve the performance.

However, none of them targets at the emerging PCM-based embedded systems, wherein

PCM is used as main memory while NAND flash memory is used as a secondary storage.

The management process of NAND flash memory could impose significant write activities

in PCM-based main memory, and as a result degrade the PCM lifetime. Therefore, unlike

previous work, we target at the hybrid embedded systems withPCM and NAND flash mem-

ory, and propose a write-activity-aware page-level flash memory management technique to

29

reduce write activities for PCM, such that the lifetime of PCM-based embedded systems is

enhanced.

As shown in Figure 1.2, to access NAND flash memory in the PCM-based embed-

ded systems, flash translation layer (FTL) is adopted to emulate NAND flash memory as

a disk drive by mapping logical addresses to physical addresses in NAND flash memory

at a granularity of page-level or block-level [37, 51]. Among the proposed FTL schemes

[5,6,18,19,29,93], FTL mapping table is employed to keep track of the continually updated

mapping records, in terms of the I/O requests. To provide fast lookup, FTL mapping table is

usually loaded into main memory after system is booted, and put back to NAND flash mem-

ory once the system is shut down. However, the most-updated FTL mapping table can be

lost due to power failure in DRAM-based main memory. In PCM-based embedded systems,

to utilize the non-volatile feature of PCM, FTL mapping table can be kept into PCM-based

main memory permanently without considering power failure.

Recently, Kim et al. [48] targets at the PCM-based embedded systems, and propose a

page-level FTL, namelyhFTL, in which page-level FTL mapping table is kept in PCM and

user data is stored in NAND flash memory. Nevertheless,hFTL does not consider redundant

write activities occurred in PCM because of the frequently updated FTL mapping table,

which may lead to a shortened PCM lifetime. As the lifetime ofPCM is mainly determined

by the maximum number of bit flips in each PCM cell, it is important to reduce the maximum

number of bit flips in each PCM cell to enhance the reliabilityof the entire system. New

techniques, therefore, are needed to reduce unnecessary write activities that may increase

the maximum number of bit flips in PCM due to the update processof FTL mapping table,

such that the lifetime of the PCM-based embedded systems is enhanced.

In this chapter, we propose aWrite-Activity-awarePage-levelFTL technique, called

WAP-FTL , to reduce write activities in PCM during the management process of NAND

flash memory and, at the same time, to enhance the lifetime of the PCM-based embedded

systems, with the advantage that no changes are required to the file system, and hardware

implementation of the NAND/PCM chip. Note that mapping records inside FTL mapping

30

table are represented in a binary form in PCM. Different fromthe redundant write avoidance

method mentioned by most of the previous work [27,33,43,101], we employ a write-activity-

aware strategy in flash translation layer. Our basic idea is to preserve each bit in page-level

FTL mapping table hosted by PCM, i.e., each bit in PCM cell, from being inverted frequently,

during the update process of FTL mapping table, such that themaximum number of bit flips

in each PCM cell is reduced and the lifetime of PCM is enhanced. Once a write request

arrives in NAND flash memory, unlike the traditional page-level FTL scheme [5, 48], the

proposed page-level FTL technique, WAP-FTL can actively choose a physical page whose

physical address could effect the minimum number of bit flipsin FTL page-level mapping

table, so as to effectively reduce write activities on PCM cells.

We conduct a series of experiments on a set of realistic I/O traces collected from

notebook and Google Android platform. We applied our write-activity-aware strategy to

a representative techniquehFTL [48], and compared withhFTL in terms of the total and

maximum number of bit flips in each PCM cell with various configurations. The experimen-

tal results show that the proposed technique can effectively reduce write activities in PCM,

however, the number of bit flips in PCM will increase after garbage collection happens. We

analyze that WAP-FTL does not consider the access behavior of I/O requests, which consists

of random and sequential requests, and the proposed write-activity-aware strategy introduces

extra overhead, i.e., valid page copy during garbage collection leads to significant bit flips in

FTL mapping table.

This chapter makes the following contributions:

• We present for the first time a write-activity-aware page-level flash memory manage-

ment technique to reduce write activities in PCM-based embedded systems for enhanc-

ing the PCM lifetime.

• We demonstrate the limitation of the proposed page-level flash memory managemen-

t by comparing with representative technique using a set of realistic I/O workloads

collected from notebook by DiskMon [1].

31

The rest of this chapter is organized as follows. Section 3.2introduces the PCM-

based embedded systems, and the representative FTL implementations for hybrid architec-

ture. Section 3.3 presents our WAP-FTL technique. Section 3.4 presents the experimental

results. Section 3.5 concludes the chapter.

3.2 Background and Motivation

In this section, we first introduce the targeted PCM-based embedded systems, and then de-

scribe the motivational example. Finally, we present the motivation of this chapter.

3.2.1 PCM-based Embedded Systems

In this chapter, we target at the PCM-based embedded system with page-level flash memory

management scheme. As shown in Figure 3.1, a typical PCM-based embedded system con-

sists of a PCM-based main memory and a NAND flash memory. PCM acts as a main memory

for maintaining frequently accessed OS pages and the FTL mapping table, and NAND flash

memory is employed as a secondary storage for storing user data that are accessed by file

systems.

Thanks to the page-level flash translation layer, write requests from file systems to

NAND flash memory is handled transparently, and the mapping from logical address (log-

ical page number) to physical address (physical page number) will be updated continually

in FTL mapping table hosted by PCM. As influenced by the I/O requests, the page-level

FTL mapping table is the most heavily updated component in PCM and may shorten PCM

lifetime. To avoid the lifetime degradation of PCM, it is necessary to make the page-level

FTL scheme write activity aware in the PCM-based embedded system. Therefore, in this

chapter, we propose a write-activity-aware page-level FTLscheme, WAP-FTL, for reducing

write activities in the PCM-based embedded systems.

32

……

File System (e.g., Ext2, Ext3, FAT, NTFS)

Memory Technology Device (MTD) Layer

Application n

Operating System

WAP-FTL

Write-Activity-Aware Page-Level

Flash Translation Layer

PPN

Page-Level FTL

Mapping Table

Application 2

LPN

PCM-based Main Memory

…

NAND Flash Memory

…

Application 1

Figure 3.1. PCM-based embedded systems with the proposed write-activity-aware page-

level WAP-FTL technique.

3.2.2 Motivational Example

In this section, we briefly revisit thehFTL scheme which is currently the only one FTL

scheme proposed for managing NAND flash memory in PCM-based embedded systems [48].

hFTL is based on page-level mapping scheme [5], but it is optimized for PCM-based

embedded systems.hFTL stores metadata such as FTL mapping table, physical pagein-

formation, and physical block information in PCM. NAND flashmemory is only used for

storing user data from the file system, and the blocks in NAND flash memory are categorized

into three types, i.e., garbage blocks, data blocks, and a buffer block. Different from the con-

ventional page-level mapping FTL,hFTL uses a buffer block to store the newly arrived data.

When the buffer block runs out of free pages, it is put into thedata block list and another

empty buffer block is allocated from the garbage block list.If there is not enough number

33

of garbage blocks, a garbage collection operation is performed to reclaim a block from the

data blocks. InhFTL, a page-level mapping table in PCM keeps track of mappings between

logical page number (LPN) and physical page number (PPN), interms of the I/O requests.

Consequently, the mapping table is updated frequently and thus imposes the endurance issue

for PCM. A motivational example is illustrated in Figure 3.2.

In the example, there are four blocks in NAND flash memory, andeach block has 8

pages. Therefore, a page-level mapping table in PCM has 32 entries to record the mapping

information. To facilitate the comparison ofhFTL and our PCM-FTL scheme, the physical

page number (PPN), physical block number (PBN), and the offset of each block are repre-

sented by binary number. We assume that each entry of the mapping table is empty at the

beginning, and the binary number in an entry is the updated PPNs to reflect the updates of

mapping. The I/O access requests of write operations (w) arelisted in Figure 3.2(a). Accord-

ing to the given I/O requests, the status variation of the blocks in NAND flash memory is

shown in Figure 3.2(b). ForhFTL, when a write operation is performed, the corresponding

content is first written to a free page of the current buffer block in a sequence order.

As shown, the first request is written to LPN (#18). A new buffer block (PBN #00) is

allocated from the garbage block list, and the contentA with the corresponding LPN (#18)

are stored in the first page of current buffer block (PBN #00).Meanwhile, the mapping

information of LPN (#18) and PPN (#00000) is stored into the mapping table shown in

Figure 3.2(c). Note that PPN is the combination of PBN and theblock offset. After serving

the eighth request, buffer block (PBN #00) is full and becomes a data block. Likewise, the

remaining garbage blocks (PBN #01, PBN #10, and PBN #11) are allocated as a buffer block

respectively, to serve the following write operations. Finally, when the content ofN2 with

the corresponding LPN (#29) are written into the last page ofbuffer block (PBN #11), all

garbage blocks become data blocks and some entries of the mapping table have been updated

by new PPNs for several times.

34

(a)

26

w

12

I1

25

w

11

H1

1

w

18

A

I/O Requests

Command

LPN

Content

2

w

25

B

3

w

21

C

4

w

3

D

5

w

8

E

6

w

9

F

7

w

10

G

8

w

11

H

9

w

12

I

10

w

13

J

11

w

14

K

12

w

15

L

13

w

18

A1

14

w

25

B1

23

w

9

F1

24

w

10

G1

22

w

8

E1

21

w

29

N1

15

w

25

B2

16

w

18

A2

17

w

27

M

27

w

13

J1

18

w

29

N

19

w

3

D1

28

w

14

K1

29

w

15

L1

30

w

27

M1

31

w

23

O1

32

w

29

N2

20

w

23

O

(b)

LPN PPN LOG

FTL Page-level Mapping

Table in PCM

(c)

BF

LPN: Logical Page Number
PPN: Physical Page Number
BF: Bit Flips

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

00011 10010

00100 10101

00101 10110

00110 10111

00111 11000

01000 11001

01001 11010

01010 11011

01011 11100

00000 01100 01111

00010

10011 11110

00001 01101 01110

10000 11101

10001 10100 11111

0

2

0

0

0

0

2

3

2

5

2

3

2

4

0

0

4

0

0

0

0

3

0

4

0

3

0

5

0

0

0

32 0

Invalid pageFree page Valid page

Garbage
Block List

Buffer
Block 00

01

10

11

Physical Block
Number (PBN)

Data
Block List

Physical Block
Number (PBN)

000
001
010
011

data oob

Garbage Block
PBN #01

100
101
110
111

000
001
010
011

data oob

Garbage Block
PBN #10

100
101
110
111

000
001
010
011

data oob

Garbage Block
PBN #11

100
101
110
111

I/O
 1

 -
8

A000 18
001
010
011

data oob

Buffer Block
PBN #00

H 11

100
101
110
111

B 25
C 21
D 3
E 8
F 9
G 10

Garbage
Block List

Buffer
Block 01

10

11

Physical Block
Number (PBN)

Data
Block List

00

Physical Block
Number (PBN)

000
001
010
011

data oob

Garbage Block
PBN #10

100
101
110
111

000
001
010
011

data oob

Garbage Block
PBN #11

100
101
110
111

I/O
 9

 -
1

6

000
001
010
011

data oob

Data Block
PBN #00

100
101
110
111

I000 12
001
010
011

data oob

A2 18

100
101
110
111

J 13
K 14
L 15

A1 18
B1 25
B2 25

Buffer Block
PBN #01

A 18

H 11

B 25
C 21
D 3
E 8
F 9
G 10

000
001
010
011

data oob

Data Block
PBN #00

100
101
110
111

Garbage
Block List

Buffer
Block 10

11

Physical Block
Number (PBN)

Data
Block List

00

01

Physical Block
Number (PBN)

000
001
010
011

data oob

Garbage Block
PBN #11

100
101
110
111

I/O
 1

7
 -

2
4

000
001
010
011

data oob

100
101
110
111

Data Block
PBN #01

M000 27
001
010
011

data oob

G1 10

100
101
110
111

N 29
D1 3
O 23

N1 29
E1 8
F1 9

Buffer Block
PBN #10

I 12

A2 18

J 13
K 14
L 15

A1 18
B1 25
B2 25

A 18

H 11

B 25
C 21
D 3
E 8
F 9
G 10

Data
Block List

00

01

10

Physical Block
Number (PBN)

Garbage
Block List

Buffer
Block 11

Physical Block
Number (PBN)

I/O
 2

4
 -

3
2

000
001
010
011

data oob

Data Block
PBN #00

100
101
110
111

000
001
010
011

data oob

100
101
110
111

Data Block
PBN #01

000
001
010
011

data oob

100
101
110
111

Data Block
PBN #10

H1000 11
001
010
011

data oob

N2 29

100
101
110
111

I1 12
J1 13
K1 14
L1 15
M1 27
O1 23

Buffer Block
PBN #11

A 18

H 11

B 25
C 21
D 3
E 8
F 9
G 10

I 12

A2 18

J 13
K 14
L 15

A1 18
B1 25
B2 25

M 27

G1 10

N 29
D1 3
O 23

N1 29
E1 8
F1 9

000
001
010
011

data oob

100
101
110
111

Data Block
PBN #10

000
001
010
011

data oob

100
101
110
111

Data Block
PBN #01

000
001
010
011

data oob

Data Block
PBN #00

100
101
110
111

Garbage
Block List

Physical Block
Number (PBN)

Data
Block List

00

01

10

11

Physical Block
Number (PBN)

000
001
010
011

data oob

100
101
110
111

Data Block
PBN #11

A 18

H 11

B 25
C 21
D 3
E 8
F 9
G 10

I 12

A2 18

J 13
K 14
L 15

A1 18
B1 25
B2 25

M 27

G1 10

N 29
D1 3
O 23
N1 29
E1 8
F1 9

H1 11

N2 29

I1 12
J1 13
K1 14
L1 15
M1 27
O1 23

Figure 3.2. Motivational example. (a) I/O access sequence.(b) The status variation of blocks

in NAND flash memory. (c) The status variation of FTL page-level mapping table in PCM.

35

3.2.3 Motivation

In the motivational example, several update operations areperformed in the FTL page-level

mapping table. For instance, the 13th request updates the old content in the 1st page of data

block (PBN #00) by setting that page invalid, and writes the new content to the current buffer

block (PBN #01). Meanwhile, the corresponding mapping information in the mapping table

is updated as well. In Figure 3.2(c), we use the bit flips (BF),shown on the right side of

the mapping table, to reflect the update frequency of each entry in the mapping table. As

shown, the 11th and 29th entries have the maximum number of bit flips 5. Since PCM cell

can only sustain limited number of write cycles, frequent update operations in mapping table

will lead to the fast worn out of PCM. In addition,hFTL is further evaluated with a variety of

realistic I/O traces in Section 3.4, and a part of the evaluation results is shown in Figure 3.3.

As shown, the maximum number of bit flips in PCM cells from almost half of the traces

achieves the PCM endurance limit, if a PCM cell can only sustain 106 write operations (e.g.,

Micro P5Q PCM [61]). Besides, the total number of bit flips in PCM cells is significantly

higher, which can also influence the power efficiency of PCM. These observations motivate

us to propose a write-activity-aware FTL to effectively manage NAND flash memory and, at

the same time, to improve the endurance of PCM-based embedded systems.

As mentioned above, several hardware optimization techniques for PCM have been

proposed [52,101], to tackle the redundant write activities by eliminating a write if its desig-

nated memory cell holds the same value. Then through utilizing such a fine-grained hardware

feature, the technique proposed in this chapter could actively choose mapping information

(e.g., PBN) which is almost the same as the mapping to be updated in the page-level FTL

mapping table, such that the number of write activities in PCM is reduced.

3.3 WAP-FTL: PCM-Awared Page-Level FTL

In this section, we introduce our WAP-FTL, a write-activity-aware page-level FTL, that can

reduce write activities in PCM. We first present an overview of WAP-FTL in Section 3.3.1.

We then provide a detailed description of WAP-FTL in Section3.3.3.

36

Figure 3.3. The evaluation results ofhFTL in terms of the maximum and total number of bit

flips in PCM cells over different I/O traces.

3.3.1 Overview of WAP-FTL

The objective of WAP-FTL is to reduce write activities in PCM-based embedded systems.

Therefore, the basic idea of WAP-FTL is to preserve each bit in FTL mapping table hosted

by PCM from being inverted frequently, e.g., 0→1→0, during the update process of FTL

mapping table, such that the maximum number of bit flips in each PCM cell is reduced

and the PCM lifetime is enhanced. Thus, in WAP-FTL, we develop a write-activity-aware

strategy technique, which could actively find physical pages for write requests issued into

NAND flash memory. The reason behind this idea is that the physical page number of the

physical page should be updated in the page-level FTL mapping table in PCM following the

write requests, thus write activity reduction can be obtained by carefully select the physical

page whose page number incurs the minimum number of bit flips in PCM cells.

37

3.3.2 Write-Activity-Aware Strategy

Figure 3.4 shows the proposed write-activity-aware strategy. As shown, for the write request-

s, the traditional page-level FTL scheme, e.g.,hFTL, allocates physical pages consecutively

and updates mapping table with the corresponding physical page number without consid-

ering write activities. In this example,hFTL selects the first available physical page and

introduces 5 bit flips in PCM. However, unlike the traditional page-level FTL, our write-

activity-aware strategy first checks the corresponding mapping record in FTL mapping table

(‘0111011011011’), and then actively selects an availablephysical page whose physical page

number has the minimum Hamming distance with the original mapping record. In this figure,

a physical page ‘0111011010011’ is found since it incurs only 1 bit flip in PCM during the

update process of FTL mapping table. It can be seen that the proposed write-activity-aware

strategy can effectively reduce the number of bit flips in PCM.

0 0 1 0 1 1 0 0 1 1 1 0 1

Physical Page Number

to be Updated in FTL

Page-Level Mapping Table

0 1 1 1 0 1 1 0 1 1 0 1 1

Physical Page Number of

Available Physical Pages in

NAND Flash Memory

0 1 1 1 0 1 1 0 1 0 0 1 1

Without Considering of
Write-Activity-Aware in hFTL

Write-Activity-Aware
Strategy of WAP-FTL

Bit Flips: 5

Bit Flips: 1

0 1 0 1 0 0 1 1 0 1 1 1 1

0 1 1 1 0 0 0 0 0 1 0 0 1

0 1 0 1 0 0 1 1 0 1 1 1 1

0 1 1 1 0 1 1 0 1 0 0 1 1

Figure 3.4. The write-activity-aware strategy of WAP-FTL.

38

3.3.3 WAP-FTL Description

In WAP-FTL, based on the write-activity-aware strategy, weactively choose a physical page

according to the write requests, and the PPN of the selected physical page must cause the

minimum number of bit flips when comparing with the original PPN in the mapping table.

By applying WAP-FTL, the number of bit flips is reduced when the page mapping table is

updated. Consequently, the endurance of PCM can be enhanced.

Algorithm 3.3.1 shows how WAP-FTL actively finds a particular physical page whose

PPN incurs minimum number of bit flips in the FTL page-level mapping table. As shown,

when an write request arrives, we first get the old PPN and old PBN (lines 1-2). If the

corresponding entry in the mapping table is empty, i.e., theold PPN is NULL, then we ran-

domly find a block with free pages and use its PBN as a temporaryPBN (TmpPBN) for

further checking (lines 4-5); Otherwise, the LPN has already been mapped, i.e., the old PPN

is not NULL, then assign the old PBN to the temporary PBN, and invalid the old content

in the page #OldPPN (lines 6-8). Then get the PPN of the current free page of the block

#Tmp PBN, and assign it to TmpPPN (line 9). If the bit flips (BF) between TmpPPN and

Old PPN equals to 0 or 1, which means that we find a physical page whose PPN causes the

minimum number of bit flips in the FTL page-level mapping table, thus we get the new PPN

and update the FTL page-level mapping table (lines 11-12, line 24). However, if the BF is

greater than 1, then change one bit in TmpPBN, so we can get the other PBNs, and thus the

block #TmpPBN and the blocks whose PBN with one bit difference with #TmpPBN forms

a current block set (lines 13-14). In the current block set, we find a physical page whose PPN

causes the minimum number of bit flips when comparing with OldPPN (lines 15-16). If a

physical page is found, then get the new PPN and update the FTLpage-level mapping table

(lines 17-18, line 24); Otherwise, a physical page is selected from a block not in the current

block set, then get the new PPN and update the mapping table (lines 19-20, line 24).

An example of WAP-FTL is shown in Figure 3.5. This example is based on the

access sequence and the assumptions of NAND flash memory for the motivational example

shown in Figure 3.2. As shown, for the 4th request with LPN (#3), we random assign a

39

Algorithm 3.3.1 The algorithm of WAP-FTL
Input: Logical Page Number (LPN), page number of a block (BlkPgNum).

Output: New Physical Page Number (NewPPN).

1: Old PPN = MapTab[LPN].

2: Old PBN = Old PPN / BlkPgNum.

3: if Old PPN == NULL then

4: Tmp PBN← randomly find a block with free pages.

5: else

6: Tmp PBN = Old PBN.

7: Invalid the old content in the page #OldPPN.

8: end if

9: Tmp PPN← PPN of the current free page in block #TmpPBN.

10: BF← Bit Flips between TmpPPN and OldPPN.

11: if BF equals 0 or 1then

12: NewPPN = TmpPPN.

13: else

14: The block #TmpPBN, and the blocks whose PBN has only one bit difference withTmp PBN forms a

current block set.

15: for all blocks in current block setdo

16: Find a physical page whose PPN incurs the minimum number of bit flips when comparing with

Old PPN.

17: if Successthen

18: NewPPN← PPN of the selected physical page.

19: else

20: NewPPN← PPN of the page in a block not in the current block set.

21: end if

22: end for

23: end if

24: Return NewPPN, write the new content into the page #NewPPN and update the mapping table with

New PPN.

40

(b)

FTL Page-Level Mapping Table in PCM

(c)

LPN: Logical Page Number

PBN: Physical Block Number

PPN: Physical Page Number

BF: Bit Flips

1

LPN PPN LOG BF

0

(a)

26

w

12

I1

25

w

11

H1

1

w

18

A

I/O Requests

Command

LPN

Content

2

w

25

B

3

w

21

C

4

w

3

D

5

w

8

E

6

w

9

F

7

w

10

G

8

w

11

H

9

w

12

I

10

w

13

J

11

w

14

K

12

w

15

L

13

w

18

A1

14

w

25

B1

23

w

9

F1

24

w

10

G1

22

w

8

E1

21

w

29

N1

15

w

25

B2

16

w

18

A2

17

w

27

M

27

w

13

J1

18

w

29

N

19

w

3

D1

28

w

14

K1

29

w

15

L1

30

w

27

M1

31

w

23

O1

32

w

29

N2

20

w

23

O

2 0

3 11000 11010 1

4 0

5 0

6 0

7 0

8 00001 10011 2

9 00010 10100 3

10 01010 01111 2

11 10001 10101 2

12 01010 11011 2

13 00011 10110 3

14 10010 10111 3

15 00100 11100 2

16 0

17

LPN PPN LOG BF

0

18 01000 01011 11001 4

19 0

20 0

21 10000 0

22 0

23 01101 11110 3

24 0

25 00000 00101 00110 4

26 0

27 01100 11101 2

28 0

29 00111 01110 11111 4

30 0

31 0

32 0

Free page Valid page Invalid page

Data Block
PBN #00

000
001
010
011

data oob

100
101
110
111

B 25
E 8
F 9
J 13
L 15

B1 25
B2 25
N 29

000
001
010
011

data oob

100
101
110
111

A 18
G 10
I 12

A1 18
M 27
O 23
N1 29
G1 10

Data Block
PBN #01

000
001
010
011

data oob

100
101
110
111

C 21
H 11
K 14
E1 8
F1 9
H1 11
J1 13
K1 14

Data Block
PBN #10

000
001
010
011

data oob

100
101
110
111

D 3
A2 18
D1 3
I1 12
L1 15
M1 27
O1 23
N2 29

Data Block
PBN #11

Figure 3.5. An example of WAP-FTL. (a) I/O access sequence used by the motivational

example in Figure 3.2. (b) The status variation of blocks in NAND flash memory. (c) The

status variation of FTL page-level mapping table in PCM.

block (PBN #11) since the corresponding entry for this LPN isempty, and the contentD

is written into the current free page (#11000) of block (PBN #11). For this request, there

is no bit flip when updating the FTL page-level mapping table in PCM. It can be seen that

D is updated by a new contentD1 in the 19th request, andD1 is written into the physical

page (#11010) according to our write activity-aware strategy. When the 19th request arrives,

we use the LPN (#3) to get the old PPN (#11000) from the mappingtable. Then we know

the old contentD of this LPN (#3) is stored in the page PPN (#11000), thus this page is set

invalid. According to the old PPN (#11000), the corresponding PBN can be obtained (#11),

and the PPN of the current free page in this block is #11010. Next, comparing #11010 with

41

the old PPN #11000, the number of bit flips is only 1. Therefore, in terms of our algorithm,

we do not need to find other physical pages, the new contentD1 can be directly written

into the physical page (#11010). By using WAP-FTL, we only need to write one reversed

bit in the mapping table for this update operation. By contrast, two reversed bits have to be

written into the mapping table according tohFTL. After processing all requests, we found

that the total number of bit flips are 37 by our WAP-FTL, while the total number of bit flips

in PCM is 44 byhFTL. Our scheme achieves a reduction of 15% in total number ofbit flips,

which confirms that our write-activity-aware strategy can effectively reduce write activities

in PCM. The experimental results in Section 3.4 also show that our scheme can effectively

reduce the total number of bit flips.

3.4 Evaluation

To evaluate the proposed WAP-FTL scheme, we conducted a series of experiments and

present the experimental results with analysis in this section. Below, we first introduce the

experimental setup. Then, based on our simulation framework, we present the experimen-

tal results and discussion for WAP-FTL. Finally, we analyzeextra overhead caused by the

write-activity-aware strategy adopted by WAP-FTL.

In this chapter, we assume that the FTL page-level mapping table is stored in a single-

level cell (SLC) PCM, and the user data is stored in a multi-level cell (MLC) NAND flash

memory, which is widely used in embedded systems.

3.4.1 Experimental Setup

Table 3.1 summarizes the setup configurations of our evaluation. The evaluation is conducted

through a trace-driven simulation framework, in which a simulator is designed to evaluate

WAP-FTL andhFTL using a variety of realistic I/O traces collected from notebook and

Android platform. The I/O traces reflect the realistic workloads of the system in accessing

the secondary storage for daily use.

42

Table 3.1. Experimental Setup.

Notebook

Configuration

CPU Intel Dual Core 2GHz

Disk Space 200GB

RAM 2GB

DiskMon Traces
CopyFiles, DownFiles

Office, P2P

Android Emulator

Configuration

CPU ARM926EJ-S

OS Kernel Linux 2.6.29

I/O Scheduler NOOP

Android Version 2.3

Android Traces
Communications, Internet

MixedApps, Multimedia

Simulation

Environment

OS Kernel Linux 3.0

Flash Size 1GB & 4GB

PCM Size 128Mb

In the notebook platform with an Intel Dual Core 2GHz processor, a 200GB hard

disk, and a 2GB DRAM, the I/O traces of four applications frequently used in daily life are

gathered by DiskMon [1]. Among these traces, CopyFiles is a trace collected by copying

files from hard disk to an external hard drive; DownFiles represents a trace collected by

downloading files from a network server; Office represents a trace collected by running some

office related applications; P2P represents a trace collected by running a P2P file-sharing

application on an external hard drive. For each trace, to mapthe address of the disk space

into the address of the NAND flash space, we adopt a module operation, i.e., section number

in HDD address mod total page number of NAND flash. The statistics of each trace are listed

below:

• Copyfiles: I/O requests - 13608439, write ratio - 78%

43

• DownFiles: I/O requests - 26588711, write ratio - 72%

• Office: I/O requests - 85297213, write ratio - 77%

• P2P: I/O requests - 251789825, write ratio - 29%

Besides, to fully evaluate the proposed FTL scheme in the embedded environment,

some Google Android traces are collected from Google AndroidTM2.3 with Android Emu-

lator (included in Android SDK). We modified the Linux kernelshipped with Android to

record I/O requests in system log.NOOP scheduler in Linux is selected as NAND flash

memory is truly random-access and does not need optimization for “seeking” operations

found in traditional hard disks. Traces are gathered byAndroid Debug Bridgein Android

SDK from the emulator to host computer. In order to reveal theactual impacts of the ex-

perimental schemes, we collected traces under heavy-loaded environment by usingMonkey,

which is a automatic stress test tool provided by Android SDK. With applications specified,

it generates random events for them and send the events to theemulator for execution. Four

traces are collected, as shown in Table 3.2. Each trace is collected by running the appli-

cations specified by the second column in Table 3.2.Internet focuses on online activities;

Multimediaconsists of a set of frequently used multimedia applications;Communicationin-

cludes applications that will be frequently used when the user is trying to connect the rest of

the world. In order to represent the randomness of user behavior, we collectedMixedApps,

which are both mixes of applications across different application domains.

Table 3.2. Android Trace Applications

Trace Applications

Internet Web Browser, EMail, Search, Settings

Multimedia Music, Camera, Gallery, Settings

Communications Phone, Contacts, Messaging, Voice Dialer

MixedApps Browser, EMail, Music, Contacts, Settings

44

The simulation framework of our simulation platform is shown in Figure 3.6. This

simulation framework simulates our WAP-FTL scheme over thePCM-based embedded sys-

tems, which consists of a NAND flash memory and a PCM for storing page-level FTL map-

ping table. In our experiments, the traces along with various parameters of NAND flash

memory, such as block size, page size, etc, are fed into our simulator. The page size, number

of pages in a block, and size of the OOB for each page are set as 2KB, 64, and 64 Bytes,

respectively. To fully evaluate our technique, we conduct the experiments on a PCM-based

embedded system with 1GB and 4GB NAND flash memory, respectively.

Input

Parameters

Trace Collector

Trace

WAP-FTL

PCM-based

Embedded

System

With

NAND Flash

Results

Figure 3.6. The framework of simulation platform for evaluating the proposed WAP-FTL

technique.

3.4.2 Results and Discussion

In this section, we compare and evaluate our proposed WAP-FTL technique over the rep-

resentative page-level FTL scheme,hFTL [48] in terms of two performance metrics: the

maximum and total number of bit flips in PCM. Experiments are conducted based on our

PCM-based embedded system simulator with 1GB and 4GB NAND flash memory over eight

distinct traces gathered from notebook and Google AndroidTMplatform.

PCM Endurance

Table 3.3 and Table 3.4 show the experimental results for themaximum and total number of

bit flips of our proposed scheme WAP-FTL and the representative page-level FTL scheme

45

Table 3.3. WAP-FTL versushFTL in terms of the maximum number of bit flips in PCM

cells. (1GB NAND flash memory)

Trace Name

hFTL

% of page usage in NAND flash memory

Finish

20% 40% 60% 80% 100%

CopyFiles 188 325 326 326 328 9977

DownFiles 106 186 187 188 190 21945

Office 12 13 14 41 43 9385

P2P 35 118 194 228 276 74540

Communications 88 164 254 340 402 158029

Internet 70 151 231 319 378 134281

MixedApps 93 183 267 352 441 139241

Multimedia 93 151 154 155 156 95621

WAP-FTL

% of page usage in NAND flash memory

Finish

20% 40% 60% 80% 100%

CopyFiles 134 239 239 239 239 14209

DownFiles 75 111 111 112 112 135775

Office 7 9 10 25 25 163538

P2P 25 65 115 127 155 261351

Communications 77 126 183 232 259 157907

Internet 64 121 167 215 243 134263

MixedApps 82 139 183 249 297 139243

Multimedia 87 128 128 128 128 95632

46

Table 3.4. WAP-FTL versushFTL in terms of the total number of bit flips in PCM cells.

(1GB NAND flash memory)

Trace Name

hFTL

% of page usage in NAND flash memory

Finish

20% 40% 60% 80% 100%

CopyFiles 983057 2174684 3303546 4583374 5857110 559496658

DownFiles 1003343 2105436 3210454 4524334 5837597 1756464372

Office 985871 2085896 3276887 4539453 5842018 7520028995

P2P 992452 2115462 3334764 4647266 5970250 6929967624

Communications 1002453 2074710 3118356 4178193 5228922 9883730134

Internet 1031781 2077305 3124603 4139189 5186971 9555187107

MixedApps 977832 2013718 3055599 4093552 5119704 6591084832

Multimedia 982136 2046396 3083667 4111219 5153549 8347917692

WAP-FTL

% of page usage in NAND flash memory

Finish

20% 40% 60% 80% 100%

CopyFiles 622096 1058139 1976801 2937719 3765586 1324170182

DownFiles 708192 1209301 1722262 2226636 3327637 4917431792

Office 697521 1479747 2156464 2655455 3255932 23639132918

P2P 765204 1479963 2118783 2777092 3376001 22401489990

Communications 202182 384743 562976 737703 913180 4810126773

Internet 213625 392223 581538 751353 931305 4650348064

MixedApps 198253 379117 556384 728511 918594 3159769242

Multimedia 200650 476399 689614 862226 1069147 4301343004

47

Table 3.5. WAP-FTL versushFTL in terms of the maximum number of bit flips in PCM

cells. (4GB NAND flash memory)

Trace Name

hFTL

% of page usage in NAND flash memory

Finish

20% 40% 60% 80% 100%

CopyFiles 323 328 358 1208 1659 10461

DownFiles 188 196 466 1753 2135 20857

Office 41 58 69 72 76 36667

P2P 228 723 1110 1308 1339 86383

Communications 342 411 457 537 670 158029

Internet 324 452 507 567 698 134281

MixedApps 354 497 513 544 817 149439

Multimedia 155 290 433 436 499 95846

WAP-FTL

% of page usage in NAND flash memory

Finish

20% 40% 60% 80% 100%

CopyFiles 347 349 369 1244 1650 10880

DownFiles 191 191 423 1527 1837 36920

Office 23 30 37 38 39 172509

P2P 145 515 831 969 985 228553

Communications 318 383 459 520 567 157541

Internet 313 417 482 525 572 134125

MixedApps 359 470 478 535 687 138895

Multimedia 161 293 414 415 425 95510

48

Table 3.6. WAP-FTL versushFTL in terms of the total number of bit flips in PCM cells.

(4GB NAND flash memory)

Trace Name

hFTL

% of page usage in NAND flash memory

Finish

20% 40% 60% 80% 100%

CopyFiles 4494710 9327633 14815454 20314533 25833983 122605530

DownFiles 4357898 9200422 14593255 19767278 25266362 842401436

Office 4435404 9558630 15000280 20751651 26342930 6981790260

P2P 4424885 9439670 14574473 20019491 25736434 15269865958

Communications 4214731 8444464 12641676 16788274 21043933 10305765684

Internet 4166898 8363191 12509433 16635517 20747378 9988536600

MixedApps 4129671 8313322 12505355 16723162 20913638 5130339159

Multimedia 4144192 8417270 12728467 17077552 21224068 8654772875

WAP-FTL

% of page usage in NAND flash memory

Finish

20% 40% 60% 80% 100%

CopyFiles 3086425 6958867 8872671 10392954 11917754 156287827

DownFiles 3452515 7227272 9498394 11215494 12852766 1209891021

Office 3214941 5533978 7811282 9724357 11747696 12500791348

P2P 3269436 6406322 9266073 11719374 14284551 22148554910

Communications 694663 1338881 2001803 2644835 3352860 4801121525

Internet 702007 1344439 1996640 2641505 3346537 4640901865

MixedApps 684108 1327512 1978781 2622322 3312456 3150978018

Multimedia 769244 1435469 2122868 2799786 3494992 4290735847

49

hFTL, over a simulator of PCM-based embedded system with 1GB NAND flash memory,

respectively. In each table, columns 2-6 present the maximum/total number of bit flips in

PCM cells when a specific percentage of page usage in NAND flashmemory is achieved.

And the last column of each table present the maximum/total number of bit flips in PCM

cells when all write requests of a trace are served. In Table 3.3, we observe that WAP-FTL

reduces the maximum number of bit flips a lot thanhFTL before all pages are allocated for

write requests over different traces. However, for the lastcolumn, we find that the maximum

number of bit flips obtained by WAP-FTL is almost the same as that ofhFTL, or even worse

than that ofhFTL (e.g., DownFiles and P2P), after all write requests of a trace are served

over different traces. This means that the write-activity-aware strategy in WAP-FTL cannot

always effectively reduce write activities in PCM cells. The similar scenario is also found in

Table 3.4. As shown, though WAP-FTL can significantly reducethe total number of bit flips

before all pages are full, it cannot reduce activities in PCMfinally for all traces.

To verify the above observation, we further extend the volume of NAND flash mem-

ory to 4GB in our simulator and evaluate our technique. Table3.5 and Table 3.6 report

the similar results for the maximum and total number of bit flips in PCM cells obtained by

WAP-FTL andhFTL, respectively. Therefore, these results demonstrate that WAP-FTL may

not be a better solution for reducing write activities in PCM-based embedded systems. The

reason of the above scenarios is caused by extra valid page copy during garbage collection

in our write-activity-aware strategy.

Overhead

As mentioned before, to reduce write activities during the update process of FTL mapping

table, our scheme will actively find an available physical page whose page number incurs

the minimum number of bit flips in PCM. Therefore, unlike the traditional page-level FTL

scheme, such ashFTL, which allocates physical pages consecutively for incoming write

requests, our WAP-FTL actively selects available physicalpage among all blocks. Though

our method could reduce write activities in PCM at an earlierstage of I/O requests. However,

50

for the later sequential update requests, it will invalidate some updated pages across multiple

blocks that also contain some valid pages. Once these blocksare full and garbage collection

is triggered to reclaim free space, the valid pages in these blocks should be copied into some

free blocks and their mapping records in the mapping table are updated accordingly. Thus,

extra bit flips are induced during the valid page copy in garbage collection. In contrast, in

hFTL, all pages in a block may be invalidated consecutively following the sequential update

requests, and thus no extra page copy is needed during the garbage collection. So it can be

seen that the results of WAP-FTL are similar to or worse than that ofhFTL once all pages

are used in NAND flash memory.

3.5 Summary

In this chapter, we have proposed a write-activity-aware page-level flash memory manage-

ment scheme, named WAP-FTL, to exploit the advantages of thewell-known FTL imple-

mentations in order to reduce write activities in PCM for enhancing lifetime of the PCM-

based embedded systems. In our WAP-FTL, the write activity reduction is achieved by

preserving each bit in page-level FTL mapping table that hosted by PCM from being invert-

ed frequently. Unlike the traditional page-level FTL scheme [48], WAP-FTL can actively

choose a physical page whose physical address incurs the minimum number of bit flips in

FTL page-level mapping table hosted by PCM, so as to effectively reduce write activities in

PCM cells. However, with a set of real-life workloads, the experimental results show that our

WAP-FTL technique cannot fully reduce write activities compared to the baseline scheme

hFTL, especially after garbage collection happens. The reason is analyzed and we concluded

that WAP-FTL does not consider the behavior of I/O requests,sequential or random, may

introduce extra valid page copy overhead in garbage collection. These observations motivate

us to further extend this work for reducing write activitiesin PCM-based embedded systems.

51

CHAPTER 4

PCM-FTL: A TWO-LEVEL PCM-AWARED

FLASH MEMORY MANAGEMENT TECHNIQUE

4.1 Overview

Phase change memory (PCM) is considered as DRAM replacementfor designing main mem-

ory in embedded systems [21, 26, 52, 77, 78, 101]. However, compared to DRAM, PCM can

only endure106 to 108 writes per cell [38]. As main memory is one of the most heavily

accessed components in embedded systems, the limited endurance of PCM leads to a short-

ened memory lifetime especially for write-intensive requests. It is therefore necessary to

eliminate redundant write activities in PCM-based embedded systems. On the other hand,

with the advantages of small size, shock resistance, and lowpower, NAND flash memory

is widely used as a secondary storage and has been integratedinto PCM-based embedded

systems [48,68,87]. As a result, how to effectively manage NAND flash memory and avoid

a fast worn-out of PCM-based embedded systems should be taken into account. Therefore,

this chapter focuses on exploring the management of NAND flash memory in a PCM-based

embedded system, while considering write activities in PCMto increase the reliability of the

system.

In Chapter 3, we proposed a write-activity-aware page-level flash management tech-

nique, WAP-FTL, for reducing write activities in PCM-basedembedded systems. However,

the experimental results show that our WAP-FTL technique cannot fully reduce write ac-

tivities compared to the baseline scheme, especially aftergarbage collection happens. The

reason is that WAP-FTL does not consider the access behaviorof I/O requests, which mainly

consists of sequential and random requests. In WAP-FTL, extra page copy is introduced in

52

garbage collection and causes significant bit flips in FTL mapping table. Therefore, these ob-

servations motivate us to further extend the proposed write-activity-aware strategy in WAP-

FTL for effectively reducing write activities in PCM-basedembedded systems.

In this chapter, we propose a write-activity-aware two-level flash memory manage-

ment technique, namedPCM-FTL , to effectively manage NAND flash memory and en-

hance the endurance of PCM-based embedded systems meanwhile, with the advantage that

no changes are required to the file system, or hardware implementation of the NAND/PCM

chip. Our basic idea is to preserve each bit in FTL mapping table, which is stored in PCM,

from being inverted frequently, i.e., we focus on reducing the number of bit flips in a PCM

cell when updating the FTL mapping table. Unlike WAP-FTL proposed in Chapter 3, PCM-

FTL employs a two-level mapping mechanism, which not only focuses on reducing write

activities of PCM but also considers the access behavior of I/O requests.

To achieve this, in PCM-FTL, we use a page-level mapping table to handle not fre-

quently updated random requests, and allocate a tiny bufferof block-level mapping table to

record most frequently updated sequential requests. Similarly, by utilizing the fine-grained

hardware optimization technique for eliminating a write ifits designated PCM cell holds the

same value [52, 101], PCM-FTL actively chooses a physical block in NAND flash memory

whose physical block number incurs minimum number of bit flips in PCM cells so as to write

the different bit into PCM. Consequently, the write activities are reduced and the lifetime of

PCM-based embedded systems is enhanced. To the best of our knowledge, PCM-FTL is the

first effective technique proposed for managing NAND flash memory in PCM-based embed-

ded systems with the consideration of write activities.

Similar as WAP-FTL, we conduct experiments with the same setof realistic I/O

traces collected from notebook and Google AndroidTMplatform. A representative FTL de-

sign hFTL [48] for PCM-based embedded systems is selected as a baseline scheme. The

proposed PCM-FTL is compared withhFTL in terms of the maximum and total number of

bit flips in PCM cells with various configurations. For the DiskMon traces collected from

notebook, the experimental results show that PCM-FTL reduces the maximum number of bit

53

flips among PCM cells by 93.10% (83.10%) on average, and reduces the total number of bit

flips of all PCM cells by 64.00% (70.90%) on average in a PCM-based embedded system

with 1GB (4GB) NAND flash memory. For the Google AndroidTMtraces, the experimental

results show that PCM-FTL reduces the maximum number of bit flips among PCM cells by

99.82% (99.86%) on average, and reduces the total number of bit flips of all PCM cells by

93.10% (98.17%) on average in a PCM-based embedded system with 1GB (4GB) NAND

flash memory.

This chapter makes the following contributions:

• We present for the first time a write-activity-aware two-level flash memory manage-

ment technique to effectively manage NAND flash memory and enhance the lifetime

of PCM-based embedded systems by reducing redundant write activities.

• We demonstrate the effectiveness of our technique by comparing with a representative

FTL using a set of realistic I/O workloads.

The rest of this chapter is organized as follows. Section 4.2discusses the background

of system architecture and motivation. Section 4.3 presents our proposed PCM-FTL tech-

nique. Section 4.4 presents the experimental results. Finally, we conclude the chapter in

Section 4.5

4.2 Motivation and Background

In this section, we first introduce the motivation of our work. Then we present the back-

ground knowledge of PCM-based embedded systems studied by this chapter.

4.2.1 Motivation

As depicted in Chapter 3,hFTL [48], a page-level mapping FTL scheme designed for the

PCM-based embedded systems, does not consider the write activities in PCM and impose

54

lifetime issue for the PCM-based embedded systems. Though WAP-FTL with a write-

activity-aware strategy is proposed to minimize bit flips during the update process of page-

level mapping table each time, it does not consider the access behavior of I/O requests and

also induce extra valid page copy overhead when garbage collection happens. The exper-

imental results reported that WAP-FTL cannot fully reduce write activities for all realistic

I/O traces. Since PCM cell can only sustain limited number ofwrite cycles, frequent update

operations in mapping table will lead to the fast worn out of PCM. Therefore, these observa-

tions motivate us to propose a new technique that can effectively reduce write activities and

enhance the lifetime of PCM-based embedded systems as well.

4.2.2 PCM-Based Embedded Systems

In this chapter, we target at the PCM-based embedded system with the proposed write-

activity-aware two-level flash memory management technique. As shown in Figure 4.1, a

two-level mapping table with a block-level mapping table buffer and a page-level mapping

table is maintained by the PCM-based main memory. For reducing write activities of the

mapping table in PCM, the proposed PCM-FTL scheme is integrated into the PCM-based

embedded system to replace the original flash translation layer. For the coming read re-

quests, PCM-FTL checks the two-level mapping table in PCM and obtain the corresponding

physical page in NAND flash memory for reading. For the comingwrite requests, PCM-

FTL serves the requests by allocating free pages in NAND flashmemory and updates the

corresponding mapping records of the physical pages in the two-level FTL mapping table in

PCM.

4.3 PCM-FTL: PCM-Awared Two-Level FTL

In this section, we present the details of our PCM-FTL, a write-activity-aware two-level flash

memory management technique, that can effectively enhancethe endurance of the PCM-

based embedded systems. We first present an overview of PCM-FTL in Section 4.3.1. We

55

Block-Level FTL
Mapping Table Buffer

Page-Level FTL
Mapping Table

……

File System (e.g., Ext2, Ext3, FAT, NTFS)

Memory Technology Device (MTD) Layer

Application n

Operating System

PCM-FTL

Write-Activity-Aware Two-Level

Flash Translation Layer

Application 2

PCM-based Main Memory

NAND Flash Memory

Application 1

Figure 4.1. PCM-based embedded system with the proposed write-activity-aware two-level

PCM-FTL technique.

then provide a detailed description of PCM-FTL in Section 4.3.2. Finally, a wear leveling

method of PCM-FTL is presented in Section 4.3.3.

4.3.1 Overview of PCM-FTL

The objective of PCM-FTL is to reduce write activities in PCM-based embedded systems,

and therefore, the endurance of PCM is enhanced. So the basicidea of PCM-FTL is to pre-

serve each bit in FTL mapping table, which is stored in PCM, from being inverted frequently,

i.e., we focus on reducing the maximum number of bit flips in a PCM cell when updating the

FTL mapping table in PCM. Different from the previous work [48], our PCM-FTL adopts

a two-level mapping mechanism, which not only focuses on minimizing write activities in

56

PCM but also considers the access behavior of I/O requests. PCM-FTL uses a page-level

mapping table to record the mapping of random write requestsnot frequently updated, and

allocates a tiny buffer of block-level mapping table to cache the mapping records of those

most frequently updated sequential write requests. With the consideration of write activities,

once a block is needed for incoming write requests, PCM-FTL actively chooses a physical

block in NAND flash memory whose physical block number incursminimum number of

bit flips in PCM cells. By applying PCM-FTL, the number of bit flips is reduced, and thus

the number of write activities in PCM is minimized. Consequently, the endurance of the

PCM-based embedded system is enhanced.

4.3.2 PCM-FTL Description

In general, a realistic I/O workload is a mixture of random and sequential requests. By

separating the random requests from the sequential requests, we can not only obtain the ac-

cess behavior but also handle those frequently updated sequential write requests. Otherwise,

without considering the access behavior of I/O workload, wecan not effectively manage

NAND flash memory and may waste lots of blocks in garbage collection due to frequent

update operations. Therefore, in PCM-FTL, we design a behavior detector to separate the

I/O workload into random and sequential requests, according to the length of each request in

the I/O workload. The length is a user defined threshold, which is determined by observing

performance gains with different threshold values (e.g., 8, 16, 32) in the experiments. For

example, if the length of a request is smaller than 8, then this request is treated as a random

request; otherwise, if the length of a request is greater than or equal to 8, then it is treated as

a sequential request.

Figure 4.2 shows the structure of the proposed PCM-FTL. As shown, PCM-FTL

first separates the I/O workload into random requests and sequential requests in terms of

the predefined threshold. Then PCM-FTL adopts a two-level FTL mapping mechanism to

handle these two cases as follows:

• For random requests: PCM-FTL consecutively allocates physical pages from the first

57

I/O Requests

Random Requests

Behavior Detector

Sequential Requests

Page-Level

Mapping Table

Block-Level

Mapping Table Buffer

PCM

Physical Page
Number (PPN)

Physical Block
Number (PBN)

Logical Page
Number (LPN)

Logical Block
Number (LBN)

LBN LPN

PCM-FTL
Mapping Machanism

NAND Flash Memory

Mapping
Transfer

Figure 4.2. Illustration of PCM-FTL write-activity-awaretwo-level mapping mechanism.

page of a physical block in NAND flash memory, so that all pagesin blocks are fully u-

tilized. Accordingly, PCM-FTL adds LPN to PPN mapping record of random requests

into the page-level mapping table in PCM.

• For sequential requests: PCM-FTL allocates physical pagesof a physical block based

on block offset as most sequential requests usually occupy awhole block, so that all

pages in blocks are fully utilized as well. Similarly, PCM-FTL adds an LBN to PBN

mapping record of sequential requests into the block-levelmapping table buffer in

PCM.

In PCM-FTL, we only allocate a tiny buffer for tentatively storing a part of the block-

level mapping table. For example, the size of this block-level mapping table buffer can be set

58

as 5%, 10% or 20% of the size of the original block-level mapping table, in order to achieve

an acceptable space overhead. Therefore, a replacement policy should be considered when

the buffer is full. Similar as a cache, we only kick out the mapping of those not frequent-

ly updated blocks, while maintaining the mapping of frequent updated blocks. The kicked

out mapping record of LBN to PBN is first expanded to the corresponding LPNs to PPNs

mapping records, and then these page-level mapping recordsare put back into the page-level

mapping table. If a block in NAND flash memory hasNp valid pages, and its corresponding

block-level mapping is kicked out to page-level mapping table, soNp entries in page-level

mapping table should be filled with the correspondingNP LPN to PPN mapping records for

each page in the block. On the contrary, the page-level mapping of a block can be re-added

into the block-level mapping table buffer, once the block isupdated again by sequential write

requests. Therefore, by observing the frequently updated requests, our technique can dynam-

ically adjust the block-level mapping table buffer and the page-level mapping table, such that

write activities of frequently updated requests are only buffered in the block-level mapping

table buffer which only contributes a small number of bit flips in PCM. The experimental

results in Section 4.4 confirm this fact.

To further reduce write activities in PCM-based embedded systems, we adopt the

similar write-activity-aware strategy used in WAP-FTL. Inour PCM-FTL, to allocate a new

block for the write/update requests, the corresponding original physical block number (PBN)

is first obtained from page-level mapping table (by dividingPPN with the number of pages

in a block), or from block-level mapping table buffer with the requested logical page number

(LBN). Then according to the original PBN, we actively select a physical block in NAND

flash memory whose PBN has the minimum number of Hamming distance with the original

PBN, i.e., we try to find a new PBN to achieve a minimum number ofbit flips if the original

PBN is updated by the new PBN in the mapping table. As a result,a large number of

redundant bit flips can be reduced, and the endurance of PCM isenhanced.

Algorithm 4.3.1 shows the process of a write operation of PCM-FTL. PCM-FTL first

divides the incoming I/O requests into random writes or/andsequential writes according

to a predefined threshold. Then the random and sequential write requests are processed

59

Algorithm 4.3.1 The algorithm of PCM-FTL
Input: I/O requests with random request or/and sequential request.
Output: Allocate pages for the I/O request.

1: Divide the I/O request into random writes or/and sequential writes according to a predefined threshold.
2: if Random write request arrivesthen
3: Obtain theLBN andLPN of the random write request.
4: if LBN ’s mapping is not in block-level mapping table buffer orLPN ’s mapping is not in page-level

mapping tablethen
5: This is a new write, allocate a new blockPBN , and write the contents into the block sequentially

from the first page.
6: Add the mapping of (LPN , PPN) into the page-level mapping table.
7: end if
8: if LBN ’s mapping exists in block-level mapping table buffer orLPN ’s mapping exists in page-level

mapping tablethen
9: This is an update, obtain thePBN of the updated block.

10: if There exists enough space in thePBN block for the update requestthen
11: Write the update contents in the left space of thePBN block sequentially, and invalid the old

pages in the same block.
12: else
13: Actively find a new block whose block number is almost the same asPBN , write the update

contents in the new block sequentially, and invalid the old pages inPBN block.
14: end if
15: Update block-level mapping table buffer or page-level mapping table.
16: end if
17: end if
18: if Sequential write request arrivesthen
19: Obtain theLBN andLPN of the sequential write request.
20: if LBN ’s mapping is not in block-level mapping table buffer orLPN ’s mapping is not in page-level

mapping tablethen
21: This is a new write, allocate a new blockPBN , and write the contents of the request into the block

based on block offset.
22: if The block-level mapping table buffer is fullthen
23: Kick out least frequently used entry, add the kicked out mappings into page-level mapping table.
24: end if
25: Add the mapping of (LBN , PBN) into the block-level mapping table buffer.
26: end if
27: if LBN ’s mapping exists in block-level mapping table buffer orLPN ’s mapping exists in page-level

mapping tablethen
28: This is an update, obtain thePBN of the updated block.
29: if There exists enough space in thePBN block for the update requestthen
30: Write the update contents in the left space of thePBN block based on block offset, and invalid

the old pages in the same block.
31: else
32: Actively find a new block whose block number is almost the same asPBN , write the update

contents in the new block based on block offset, and invalid the old pages inPBN block.
33: end if
34: Update block-level mapping table buffer or page-level mapping table.
35: end if
36: end if

60

separately. For random write request (lines 2-17), if it is anew write, i.e., we cannot find its

correspondingLBN orLPN mapping in the block-level mapping table buffer or page-level

mapping table. So PCM-FTL finds a new blockPBN , and write the contents of the random

write request into the allocated new block sequentially from the first page. After that, we add

the (LPN , PPN) mapping into the page-level mapping table. If the random write request is

an update, and there exists enough space in the updated block, then write the update contents

into the left space of the block sequentially, and invalid the old pages in the same block.

Otherwise, there does not exist enough space in the updated block, PCM-FTL will actively

find a new block whose block number is almost the same asPBN , and then write the update

contents in the new block based on block offset. At last, we update the corresponding block-

level mapping table buffer or page-level mapping table. Forsequential write request (lines

18-36), we process it in the similar way as that for processing random write request.

An example of PCM-FTL is shown in Figure 4.3. This example is based on the I/O

requests and the NAND flash memory assumptions for the motivational example shown in

Figure 3.2. As shown, for the first random request with LPN (#18), we find a new block

(PBN #00), and the contentA is written consecutively into the first page (#00000) of block

(PBN #00). For this request, there is no bit flip when updatingthe mapping table as we

assume the mapping table is empty at the beginning. It can be seen thatA is updated by

a new contentA1 in the 13th request, andA1 is written into the physical page (#00010)

according to the update policy of PCM-FTL. When the 13th request arrives, we use the LPN

(#18) to get the corresponding LBN (#10). Then we find the LBN (#10) is already in the

block-level mapping table buffer, so the 13th request is an update to the old page in the

block (PBN #00), then by checking the block (PBN #00), we knowthe old contentA of this

LPN (#18) is stored in the page PPN (#00000), thus this page isset as invalid. Since there

exists enough space in block (PBN #00), the new update content A1 of LPN (#18) is written

consecutively into this block.

It is noticed that the 5th to 12th requests form a sequential write in a block, then we

allocate a new block (PBN #11) for this request, and write thecontents into each page of

the block based on block offset. The corresponding LBN to PBNmapping (01, 11) is added

61

FTL Block-Level Mapping Table Buffer FTL Page-Level Mapping Table in PCM

(d)

LPN: Logical Page Numberr LBN: Logical Block Number PBN: Physical Block Number

PPN: Physical Page Number LRU: Least Recently Updated BF: Bit Flips

1

LPN PPN LOG BF

0

(a)

26

w

12

I1

25

w

11

H1

1

w

18

A

I/O Requests

Command

LPN

Content

2

w

25

B

3

w

21

C

4

w

3

D

5

w

8

E

6

w

9

F

7

w

10

G

8

w

11

H

9

w

12

I

10

w

13

J

11

w

14

K

12

w

15

L

13

w

18

A1

14

w

25

B1

23

w

9

F1

24

w

10

G1

22

w

8

E1

21

w

29

N1

15

w

25

B2

16

w

18

A2

17

w

27

M

27

w

13

J1

18

w

29

N

19

w

3

D1

28

w

14

K1

29

w

15

L1

30

w

27

M1

31

w

23

O1

32

w

29

N2

20

w

23

O

2 0

3 10000 10001 1

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

15 0

16 0

17

LPN PPN LOG BF

0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 01000 01001 01010 3

26 0

27 01011 01110 2

28 0

29 01100 01101 01111 4

30 0

31 0

32 0

000
001
010
011

data oob

100
101
110
111

E1 8
F1 9
G1 10
H1 11
I1 12
J1 13
K1 14
L1 15

Data Block
PBN #11

000
001
010
011

data oob

100
101
110
111

B 25
B1 25
B2 25
M 27
N 29
N1 29
M1 27
N2 29

Data Block
PBN #01

Data Block
PBN #00

000
001
010
011

data oob

100
101
110
111

A 18
C 21
A1 18
A2 18
O 23

O1 23

000
001
010
011

data oob

100
101
110
111

D 3
D1 3

Data Block
PBN #10

(b)

BF

0

11

LBN PBNLRU

201

10 00

1

5

I/O Requests

1, 3, 13

16, 23, 31

5-12, 22-29

BF

0

10

LBN PBNLRU

400

10 00

1

2

I/O Requests

1, 3

4

BF

0

01

LBN PBNLRU

011

10 00

1

2

I/O Requests

1, 3

2

Replacement

Replacement

(c)

Free page Valid page Invalid page

Figure 4.3. Illustration of PCM-FTL. (a) The status variation of blocks in NAND flash

memory according to the access sequence in Figure 3.2. (b) The status variation of FTL

page-level mapping table and block-level mapping table buffer in PCM.

62

into the block-level mapping table buffer. Later, when the following 22th to 29th sequential

update requests arrive, then the old pages in the block (PBN #11) are invalidated. Since we

cannot find free block, the block (PBN #11) is erased for reclaiming free pages, and the new

update data E1 to L1 is written into this block based on block offset. Finally, we update the

block-level mapping table buffer, and the value of corresponding LRU is updated as well.

After processing all requests, we find that the total number of bit flips in PCM is 16

by our PCM-FTL, while the total number of bit flips in PCM is 44 by hFTL. Our scheme

achieves a reduction of 63.6% in the total number of bit flips,which confirms that our ap-

proach can effectively reduce write activities in PCM. The experimental results in Section 4.4

also show that our scheme can effectively reduce the total number of bit flips in PCM cells.

4.3.3 PCM-FTL Wear Leveling Scheme

Note that the block-level mapping table buffer is updated frequently by sequential

write requests, so it may become very hot and lead to an unevendistribution of bit flips among

all PCM cells. To avoid this scenario and enhance PCM endurance, a wear leveling method is

integrated into PCM-FTL. Figure 4.4 demonstrates the process of our wear leveling method.

As shown Figure 4.4(a), the block-level mapping table buffer becomes hot after buffering

the frequently updated sequential write requests. However, the page-level mapping table is

cold as it only serves the infrequently updated random writerequests. Therefore, as shown

in Figure 4.4(b), during a period of time (e.g., every 2000 I/O requests), the block-level

mapping table buffer is moved across the whole page-level mapping table region in PCM

chip. Since the migration of the block-level mapping table buffer is infrequent, the number of

copy operations of mapping records is acceptable. Finally,in Figure 4.4(b), we can see that

the even distribution of write activities (i.e., bit flips) across the whole two-level mapping

table region in PCM is obtained. The detailed description ofour wear leveling scheme is

shown in Algorithm 4.3.2. The experimental results in Section 4.4 confirm the effectiveness

of our scheme, and also show that our PCM-FTL can achieve better wear leveling over

different traces.

63

Page-Level Mapping Table

Block-Level

Mapping Table

Buffer
……

Page-Level Mapping Table

……

Block-Level

Mapping Table

Buffer

Page-Level Mapping Table

Block-Level

Mapping Table

Buffer
……

HOT COLDMedium

Move Buffer

Achieve

Wear Leveling

(c)

(b)

(a)

Figure 4.4. Illustration of the wear leveling method adopted by PCM-FTL. (a) The initial

status of the two-level mapping table with uneven distribution of write activities. (b) Move

block-level mapping table buffer across the whole page-level mapping table to achieve wear

leveling. (c) Write activities are evenly distribute amongthe two-level mapping table after

moving block-level mapping table buffer.

64

Algorithm 4.3.2 The algorithm of wear leveling in PCM-FTL
Input: The number of writes conducted in PCM cells so far, the allowed number of writes in PCM cells before

triggering wear leveling operations.

Output: Next position of the first PCM entry of block buffer.

1: WEAR LEVELING THRESHOLD← The allowed number of writes in PCM cells before triggering wear

leveling operations.

2: WL Counter← The number of writes conducted in PCM cells so far.

3: CurrentOffset← Current position of the first PCM entry of block buffer.

4: Next offset← Next position of the first PCM entry of block buffer.

5: PTE← PCM entry of page-level mapping table.

6: BTE← PCM entry of block buffer.

7: if WL Counter< WEAR LEVELING THRESHOLDthen

8: WL Counter++.

9: RETURN.

10: else

11: NextOffset = (CurrentOffset + block buffer length)%(Total PCM length - block buffer length).

12: PTE← First PCM entry of the page-level mapping table starting from Next Offset.

13: BTE← First PCM entry of block buffer starting from CurrentOffset.

14: for each PCM entry in block bufferdo

15: Exchange the content of PTE and BTE.

16: PTE← Next PCM entry of the page-level mapping table.

17: BTE← Next PCM entry of the block buffer.

18: end for

19: Reset WLCounter to 0.

20: RETURN NextOffset.

21: end if

4.4 Evaluation

To evaluate the effectiveness of the proposed PCM-FTL, we conduct a series of experiments

and present the experimental results with analysis in this section. We compare and evaluate

our proposed PCM-FTL scheme over the representative page-level FTL scheme,hFTL [48],

65

based on the maximum and total number of bit flips in PCM cells.We also compare the wear

leveling results of PCM-FTL andhFTL.

In this chapter, we assume that the FTL mapping table is stored in a single-level cell

(SLC) PCM (i.e., a PCM cell holds only one bit), and the user data is stored in a multi-level

cell (MLC) NAND flash memory, which is widely used in embeddedsystems.

4.4.1 Experimental Setup

In this chapter, we adopt the same experimental setup configuration as that given by Ta-

ble 3.1 in Chapter 3. The evaluation is also conducted through a trace-driven simulation

framework, in which a simulator is designed to evaluate PCM-FTL andhFTL using a variety

of realistic I/O traces collected from notebook and Google Android platform, respectively.

These realistic I/O traces, i.e., CopyFiles, DownFiles, Office, P2P, Communications, Inter-

net, MixedApps, and Multimedia, are introduced in detail inChapter 3. We use these eight

I/O traces to evaluate our PCM-FTL below.

The framework of our simulation platform is shown in Figure 3.6. This simulation

framework simulates our PCM-FTL management scheme over thePCM-based embedded

systems, which consists of a NAND flash memory and a PCM for storing our two-level

mapping table. In our experiments, the traces along with various parameters of NAND flash

memory, such as block size, page size, etc, are fed into our simulator. The page size, number

of pages in a block, and size of the OOB for each page are set as 2KB, 64, and 64 Bytes,

respectively. To fully evaluate our technique, we conduct the experiments on a PCM-based

embedded system with 1GB and 4GB NAND flash memory, respectively.

4.4.2 Results and Discussion

In this section, we present the experimental results of the proposed PCM-FTL and the base-

line scheme with analysis. We first present the experimentalresults of PCM-FTL with vari-

ous parameter configurations. Then we present the endurancecomparison of PCM-FTL and

66

Input

Parameters

Trace Collector

Trace

PCM-FTL

PCM-based

Embedded

System

With

NAND Flash

Results

Figure 4.5. The framework of simulation platform for evaluating the proposed PCM-FTL

technique.

hFTL. Finally, we present the wear leveling comparison of PCM-FTL andhFTL. Experi-

ments are conducted based on our PCM-based embedded system simulator with 1GB and

4GB NAND flash memory over eight distinct traces gathered from notebook and Google

AndroidTMplatform.

Impact of Threshold and Buffer Size

In PCM-FTL, there are mainly two parameters predefined for achieving write activity reduc-

tion with limited overhead. These two parameters are the threshold and the buffer size. The

threshold is used for determining whether a request is random or sequential by comparing

the request length with the threshold value, and the buffer size is used for determining the

size of the block-level mapping table buffer.

In order to show how the maximum and total number of bit flips inPCM cells are

influenced by different combinations of threshold value andbuffer size, and to find a suitable

combination of these two parameters for the following evaluations, we first conduct experi-

ments by varying the above parameters with different values. The candidate threshold values

are set as 8, 16 and 32, while the candidate buffer size is set as 5%, 10%, 15% and 20% of

the original size of block-level mapping table. Physically, in PCM-based main memory, the

block-level mapping table buffer follows the page-level mapping table. For each threshold

value, we run experiments over the eight traces by combiningone of the three candidates of

buffer size. We collect the maximum number of bit flips in eachPCM cell and total number

67

(a) CopyFiles (b) DownFiles

(c) Office (d) P2P

(e) Communications (f) Internet

(g) MixedApps (h) Multimedia

Figure 4.6. The maximum number of bit flips obtained from the PCM-based embedded sys-

tems with 1GB NAND flash memory for PCM-FTL with different parameter combinations.

68

(a) CopyFiles (b) DownFiles

(c) Office (d) P2P

(e) Communications (f) Internet

(g) MixedApps (h) Multimedia

Figure 4.7. The total number of bit flips obtained from the PCM-based embedded systems

with 4GB NAND flash memory for PCM-FTL with different parameter combinations.

69

of bit flips across the whole mapping table region in PCM chip.The buffer size is triggered

to move across the whole page-level mapping table region in the PCM chip for every 2800

writes to PCM cells.

The results are shown in Figure 4.6 and Figure 4.7 for PCM-FTLwith different com-

binations of threshold values and buffer sizes over eight realistic I/O traces in the PCM-based

embedded systems with 1GB NAND flash memory. In Figure 4.6 andFigure 4.7, we can

see that for each trace, the similar trends are obtained for both results of the maximum and

total number of bit flips. Although the plots for different traces are different, most of them

show the same trend: the maximum and total number of bit flips is not changed a lot when

the threshold varies in a range (from 8 to 32), and then shows slightly increase with the in-

crease of the threshold value, except for Figure 4.6 (c), Figure 4.6(h), and Figure 4.7(h). The

difference of these three sub-figures maybe caused by the access pattern of the correspond-

ing trace. In Figure 4.6, for all traces, we can see that a smaller number of the maximum

number of bit flips can be achieved when the threshold value isset as 8 and the buffer size

is set as 5%. In Figure 4.7, for all traces, we can also find thata smaller number of the total

number of bit flips can be achieved if the threshold value is set as 8 and the buffer size is

set as 5%. Since the buffer size is only 5% of the original sizeof the block-level mapping

table, which is also very small compared to page-level mapping table, so the space overhead

of our PCM-FTL is negligible. Therefore, we set the threshold value as 8 and the buffer size

as 5% in the following experiments. The experimental results obtained from the PCM-based

embedded systems with 4GB NAND flash memory show the similar trend, so we ignore the

results here.

PCM Endurance

The objective of this chapter is to reduce write activities to enhance the lifetime of PCM-

based embedded systems. Therefore, the lifetime of PCM is one of the most important

factors in analyzing the reliability of PCM-based embeddedsystems. As mentioned before,

PCM lifetime is mainly influenced by the maximum number of bitflips in a PCM cell,

70

Table 4.1. PCM-FTL versushFTL in terms of the total and maximum number of bit flips in

PCM cells. (1GB NAND flash memory, threshold = 8, buffer size =5%)

Trace

Name

Total Num. of Bit Flips Maximum Num. of Bit Flips

hFTL PCM-FTL
PCM-FTL

overhFTL
hFTL PCM-FTL

PCM-FTL

overhFTL

CopyFiles 559496658 293866292 47.48% 9977 519 94.80%

DownFiles 1756464372 568987257 67.61% 21945 567 97.42%

Office 7520028995 2576892175 65.73% 9385 1762 81.23%

P2P 6929967624 1718812456 75.20% 74540 762 98.98%

Average 64.00% 93.10%

Communications 9883730134 125943263 98.73% 158029 230 99.85%

Internet 9555187107 137866567 98.56% 134281 240 99.82%

MixedApps 6591084832 69012523 98.95% 139241 220 99.84%

Multimedia 8347917692 240771631 97.12% 95621 224 99.77%

Average 98.34% 99.82%

i.e., the maximum number of bit flips in a PCM cell determines the lifetime of PCM. For

example, if PCM can only sustain106 write cycles, then a PCM cell is worn-out if it suffers

from more than106 bit flips. So our technique not only focuses on reducing writeactivities

(total number of bit flips) in PCM cells but also reducing the maximum number of bit flips

for each PCM cell. Table 4.1 and Table 4.2 report the experimental results of PCM-FTL and

the baseline schemehFTL over eight realistic I/O traces in terms of the maximum and total

number of bit flips among all PCM cells in PCM-based embedded systems with 1GB NAND

flash memory and 4GB NAND flash memory, respectively.

We observe that PCM-FTL can significantly reduce write activities in PCM cells in

comparison with the baseline schemehFTL. As shown in Table 4.1, compared tohFTL over

71

Table 4.2. PCM-FTL versushFTL in terms of the total and maximum number of bit flips in

PCM cells. (4GB NAND flash memory, threshold = 8, buffer size =5%)

Trace

Name

Total Num. of Bit Flips Maximum Num. of Bit Flips

hFTL PCM-FTL
PCM-FTL

overhFTL
hFTL PCM-FTL

PCM-FTL

overhFTL

CopyFiles 122605530 93456325 23.77% 10461 2076 80.15%

DownFiles 842401436 191579924 77.26% 20857 3923 81.19%

Office 6981790260 919567590 86.83% 36667 7377 79.88%

P2P 15269865958 650611634 95.74% 86383 7623 91.18%

Average 70.90% 83.10%

Communications 10305765684 127165676 98.77% 158029 182 99.88%

Internet 9988536600 138654167 98.61% 134281 176 99.87%

MixedApps 5130339159 69580586 98.64% 149439 174 99.88%

Multimedia 8654772875 288691259 96.66% 95846 186 99.81%

Average 98.17% 99.86%

the first four DiskMon traces, PCM-FTL can achieve an averagereduction of 93.10% and

a maximum reduction of 98.98% in the maximum number of bit flips in the PCM-based

embedded system with 1GB NAND flash memory. Moreover, PCM-FTL can achieve an

average reduction of 64% and a maximum reduction of 75.2% in terms of the total number

of bit flips. For the Google AndroidTMtraces, we can see that PCM-FTL can achieve more

reduction of the maximum and total number of bit flips. An average reduction of 99.82%

(98.34%) and a maximum reduction of 99.85% (98.95%) in the maximum (total) number of

bit flips are obtained.

Table 4.2 shows the similar results for the comparison of PCM-FTL andhFTL in the

PCM-based embedded system with 4GB NAND flash memory. For thefirst four DiskMon

72

traces, PCM-FTL can achieve an average reduction of 83.10% and a maximum reduction of

91.18% in the maximum number of bit flips. In terms of the totalnumber of bit flips, PCM-

FTL can achieve an average reduction of 70.90% and a maximum reduction of 95.74%. For

the Google AndroidTMtraces, we can see that PCM-FTL can an achieve average reduction

of 99.86% (98.17%) and a maximum reduction of 99.88% (98.77%) in the maximum (total)

number of bit flips. As shown, the above experimental resultsshow that our PCM-FTL

significantly reduces write activities in PCM cells. Therefore, in the PCM-based embedded

systems, by applying PCM-FTL, the lifetime of PCM can be enhanced.

PCM Wear Leveling

Wear leveling is another one of the most important factors that influence the lifetime of the

PCM-based embedded systems. Figure 4.8 and Figure 4.9 show the distribution of the maxi-

mum number of bit flips among all mapping table entries in a PCM-based embedded system

with 1GB NAND flash memory over the DiskMon traces and Google AndroidTMtraces, re-

spectively. For each sub-figure, the x-axis shows the total number of mapping entries inside

the page-level mapping table and block-level mapping tablebuffer in PCM, and the y-axis

shows the maximum number of bit flips extracted from each mapping entry of the page-level

mapping table and the block-level mapping table buffer. To present the distributions clearly,

we restrict the maximum number of bit flips on y-axis to 2,000.

As shown in Figure 4.8, forhFTL scheme, we observe that the distribution of the

maximum number of bit flips varies a lot, and this may impose a fast worn-out of PCM cells.

Compared withhFTL, by adopting our wear leveling method described in Section 4.3.2,

PCM-FTL distributes the maximum number of bit flips more evenly among all PCM cells.

Though the distribution of the maximum of bit flips obtained over the trace Office is not

so even, it is still better than that ofhFTL, and we can further obtain better distribution

by tune the parameters of PCM-FTL. In Figure 4.9, we can see that the write activities of

hFTL are mapped to a specific region in PCM due to access patternof I/O requests, and the

maximum number of bit flips is greater than 2,000. In contrast, PCM-FTL achieves an even

73

(a) hFTL / CopyFiles (b) PCM-FTL / CopyFiles

(c) hFTL / DownFiles (d) PCM-FTL / DownFiles

(e) hFTL / Office (f) PCM-FTL / Office

(g) hFTL / P2P (h) PCM-FTL / P2P

Figure 4.8. The wear leveling comparison ofhFTL and PCM-FTL in a PCM-based embed-

ded system with 1GB NAND flash memory over four realistic DiskMon traces.

74

(a) hFTL / Communications (b) PCM-FTL / Communications

(c) hFTL / Internet (d) PCM-FTL / Internet

(e) hFTL / MixedApps (f) PCM-FTL / MixedApps

(g) hFTL / Multimedia (h) PCM-FTL / Multimedia

Figure 4.9. The wear leveling comparison ofhFTL and PCM-FTL in a PCM-based embed-

ded system with 1GB NAND flash memory over four realistic Google AndroidTMtraces.

75

distribution of the maximum number of bit flips for the GoogleAndroidTMtraces, and almost

all of them are below 400. In summary, PCM-FTL delivers dramatically better reliability

than the baseline scheme.

4.5 Summary

In this chapter, we have proposed a write-activity-aware two-level flash memory manage-

ment technique, named PCM-FTL, which takes the first step to significantly reduce write

activities in PCM-based embedded systems with NAND flash memory. In our PCM-FTL,

the performance improvement is achieved by preserving a bitin a PCM cell from being

inverted frequently. Through a two-level mapping mechanism and a write-activity-aware

strategy, unnecessary write activities in PCM are directlyreduced. We conducted experi-

ments on a set of realistic I/O workload collected by DiskMonand Google AndroidTM. For

the DiskMon traces, the experimental results show that the maximum number of bit flips

among PCM cells can be reduced by 93.10% (83.10%) on average,and the total number of

bit flips of all PCM cells can be reduced by 64.00% (70.90%) on average in a PCM-based

embedded system with 1GB (4GB) NAND flash memory. For the Google AndroidTMtraces,

the experimental results show that the maximum number of bitflips among PCM cells can

be reduced by 99.82% (99.86%) on average, and the total number of bit flips of all PCM cell-

s can be reduced by 93.10% (98.17%) on average in a PCM-based embedded system with

1GB (4GB) NAND flash memory. Furthermore, the results show that PCM-FTL can evenly

distribute write activities among all PCM cells in comparison with a representative baseline

FTL scheme.

76

CHAPTER 5

WAB-FTL: A BLOCK-LEVEL PCM-AWARED

FLASH MEMORY MANAGEMENT TECHNIQUE

5.1 Overview

As discussed in previous chapters, phase change memory (PCM) is considered as a DRAM

alternative and has been used as a main memory with a small-sized DRAM cache in embed-

ded systems [21, 26, 77, 96]. However, compared to DRAM, PCM can only sustain limited

write operations (106 to 108 bit flips per cell) [38]. As main memory is a frequently accessed

component, it is necessary to reduce redundant write activities in PCM to enhance the reli-

ability of PCM-based embedded systems. On the other hand, with the advantages of small

size, shock resistance, and low power, NAND flash memory is widely used as a secondary

storage and has been integrated into PCM-based embedded systems [48, 68, 87]. How to

avoid a fast worn-out of such emerging embedded systems and effectively manage NAND

flash memory should be taken into account. Therefore, this chapter focuses on exploring

a write-activity-aware NAND flash memory management schemein PCM-based embedded

systems to enhance the lifetime of the entire system.

To use NAND flash memory, flash translation layer (FTL) is designed to emulate

NAND flash memory as a disk drive, and logical addresses are mapped to physical addresses

in NAND flash memory at a granularity of page-level or block-level [37,51]. Following I/O

requests, an FTL mapping table is employed to keep track of the continually updated map-

ping records. Many FTL schemes have been proposed [5,6,18,29,93], and most of them are

mainly categorized into page-level scheme or block-level scheme according to the granular-

ity of mapping unit [19]. To provide fast lookup, FTL mappingtable is usually loaded into

77

main memory after system is booted, and put back to NAND flash memory once the system

is shut down. In traditional DRAM-based main memory, the most-updated FTL mapping

table can be lost due to power failure. However, as PCM is non-volatile, FTL mapping table

can be kept into PCM-based main memory permanently without considering power failure.

Therefore, Kim et al. [48] propose a page-level FTL, namelyhFTL, in which page-level FTL

mapping table is kept in PCM and user data is stored in NAND flash memory. Nevertheless,

hFTL does not consider write activities imposed in PCM because of the frequently updated

FTL mapping table, which may lead to a shortened PCM lifetime.

In Chapter 3 and Chapter 4, a write-activity-aware page-level and a write-activity-

aware two-level flash memory management techniques have been proposed. However, page-

level FTL scheme provides high performance but with significant memory requirement, so it

may not be applicable for current PCM chips whose capacity isreported as 128Mb [61], e.g.,

the page-level mapping table of a 1GB flash memory occupies approximately 12.5% space

of the 128Mb Micron P5Q PCM. Thus block-level FTL with much less memory requirement

is more applicable for PCM-based embedded systems [6, 93]. For the example above, the

memory requirement is only 0.3%. Though several block-level FTL schemes are proposed,

none of them considers redundant write activities of block-level mapping table in PCM,

either. Since the lifetime of PCM is mainly determined by themaximum number of bit flips

in each PCM cell, no matter how smaller the block-level mapping table is, it is important

to reduce the maximum number of bit flips in each PCM cell to enhance the reliability of

the entire system. These observations motivate us to propose a block-level flash memory

management technique to reduce write activities in PCM, such that the lifetime of the entire

PCM-based embedded systems is enhanced.

In this chapter, we propose aWrite-Activity-awareBlock-levelFTL design, called

WAB-FTL , to reduce write activities in PCM during the management procedure of NAND

flash memory and, at the same time, to enhance the lifetime of the PCM-based embedded

systems, with the advantage that no changes are required to the file system, and hardware

implementation of the NAND/PCM chip. Note that mapping records inside FTL mapping

table are represented in a binary form in PCM. Our basic idea is to preserve each bit in FTL

78

mapping table, i.e., each bit in PCM cell, from being inverted frequently, during the update

process of FTL mapping table, such that the maximum number ofbit flips in each PCM cell

is reduced and the lifetime of PCM is enhanced.

To achieve this, we design a new merge strategy, called Lazy-Merge, to make our

WAB-FTL scheme write activity aware. With Lazy-Merge strategy, the primary block is

preserved from being erased in each merge operation. So the corresponding mapping record

of the primary block in PCM remains unchanged. Its update is delayed until the correspond-

ing primary block is erased in garbage collection for reclaiming more free blocks. On the

other hand, the mapping record of the replacement block can be updated more frequently

than that of the primary block, so in WAB-FTL, we further propose an additional tiny buffer,

named Cooling-Pool, with multiple candidate mapping slotsin PCM for caching the fre-

quently updated mapping records to further reduce write activities in PCM. As mentioned

in the previous chapters, several hardware optimization techniques for PCM have been de-

veloped [52,101], to tackle redundant write activities by eliminating a write if its designated

PCM cell holds the same value. Then by utilizing such a fine-grained hardware feature, in

Cooling-Pool, WAB-FTL can actively choose a destination mapping slot, wherein the old

mapping record has the minimum Hamming distance to the new mapping record, and then

only update (flip) the bits distinct from that in the new mapping record. Therefore, by using

WAB-FTL, a large number of unnecessary write activities in PCM can be avoided. To the

best of our knowledge, WAB-FTL is the first block-level flash memory management scheme

proposed for reducing write activities in PCM-based embedded systems.

Based on the same simulation platform adopted by WAP-FTL andPCM-FTL, we

conduct a series of experiments on a set of realistic I/O traces collected from notebook and

Google AndroidTMplatform. A block-level FTL scheme [93] (denoted by BL-FTL here-

inafter) and a page-level FTL schemehFTL [48] are selected as baseline for comparison.

The proposed WAB-FTL is compared with BL-FTL andhFTL in terms of the total and max-

imum number of bit flips in each PCM cell with various configurations. Compared with BL-

FTL, experimental results show that our WAB-FTL reduces almost half of write activities in

PCM, and achieves an average reduction of 80.76% and a maximum reduction of 82.61%

79

in the maximum number of bit flips. When compared withhFTL, experimental results al-

so demonstrate the advantage of our technique in write activities reduction for PCM-based

embedded systems.

This chapter makes the following contributions:

• We present for the first time a write-activity-aware block-level flash memory manage-

ment technique to reduce write activities in PCM-based embedded systems for enhanc-

ing the PCM lifetime.

• We demonstrate the effectiveness of our technique by comparing with representative

page-level and block-level FTL schemes using a set of realistic I/O workloads collected

from notebook and Google AndroidTM2.3.

The rest of this chapter is organized as follows. Section 5.2introduces the back-

ground of system architecture and motivation. Section 5.3 presents our proposed WAB-FTL

technique. Section 5.4 reports the experimental results. Finally, we conclude this chapter in

Section 5.5.

5.2 Background and Motivation

In this section, we first introduce the architecture of the PCM-based embedded systems.

Then we describe the issues of a block-level FTL scheme. Finally, we present the motivation

of our work.

5.2.1 PCM-Based Embedded Systems

In this chapter, we target at the PCM-based embedded system with the proposed write-

activity-aware block-level flash memory management scheme. As shown in Figure 5.1, a

block-level mapping table is maintained by the PCM-based main memory. For reducing

write activities of the mapping table in PCM, the proposed WAB-FTL scheme is integrated

80

Cooling Pool

Block-Level FTL
Mapping Table

……

File System (e.g., Ext2, Ext3, FAT, NTFS)

Memory Technology Device (MTD) Layer

Application n

Operating System

WAB-FTL

Write-Activity-Aware Block-Level

Flash Translation Layer

Application 2

PCM-based Main Memory

NAND Flash Memory

Application 1

Figure 5.1. PCM-based embedded system with the proposed write-activity-aware block-level

flash memory management technique.

into the PCM-based embedded system to replace the original flash translation layer. For the

coming read requests, WAB-FTL checks the block-level FTL mapping table in PCM and

obtain the corresponding physical page in NAND flash memory for reading. For the coming

write requests, WAB-FTL serves the requests by allocating free pages in NAND flash mem-

ory and updates the corresponding mapping records of the physical pages in the block-level

mapping table in PCM.

5.2.2 The Baseline Scheme

In this section, we briefly revisit a well-known block-levelFTL scheme, BL-FTL, which

is widely used in embedded systems [93]. In BL-FTL, a logicalpage number (LPN) is

divided by the number of pages in a block to obtain its logicalblock number (LBN) and

81

block offset, where the LBN is the quotient, and the block offset is the remainder of the

division. A block-level mapping table redirects the write operations on logical block (LBN)

to a physical primary block (PPBN). For each primary block, only one physical replacement

block (PRBN) is allocated to handle subsequent update operations. A write operation to an

LPN is mapped to a page in a primary block first based on block offset, and subsequent

update operations to the same LPN are written into the corresponding replacement block

consecutively. Therefore, the most-updated content can befound by reading the replacement

block backwards. If a replacement block is full, a merge operation (denoted by Full-Merge

hereinafter) is evoked to reclaim the replacement block andits associated primary block, and

all valid pages in the two blocks are copied into a new primaryblock.

An example of BL-FTL is shown in Figure 5.2. To simplify the example, we assume

each block has eight pages, and there are only two free blocksin the free block list. The

address of pages/blocks is represented by binary number to demonstrate bit flips in mapping

table. The I/O requests of write operations (w) are listed inFigure 5.2(a). According to the

I/O requests, Figure 5.2(b) shows the status variation of the blocks in NAND flash memory,

and Figure 5.2(c) shows the bit flips occurred due to the update of block-level mapping

table in PCM. As shown, for the first 12 requests, a primary block (PPBN #010) and its

replacement block (PRBN #001) are allocated, so the corresponding mapping (010, 001) is

recorded into the block-level mapping table. Once the replacement block (PRBN #001) is

full, both of these two blocks (PPBN #010 and PRBN #001) are erased together and the valid

pages are copied into a newly allocated primary block (PPBN #101). Meanwhile, the eased

primary and replacement blocks are put into free block list for further use. For the remaining

requests (13-20), they are served in a similar way. Finally,as shown in Figure 5.2(c), the total

number of bit flips caused by the update of mapping table is 12,and the maximum number

of bit flips in each PCM cell is 2.

82

5.2.3 Motivation

In the motivational example, it is noticed that each bit usedto represent the mapping record

is inverted in a round trip (0→1→0) due to the update of mapping table. If this bit-flip

pattern continually happens in realistic applications, then the lifetime of PCM will decrease

faster. In addition, as the lifetime of PCM is mainly determined by the maximum number of

bit flips in each cell, it is important to avoid unnecessary bit flips during the update of FTL

mapping table. Once the maximum number of bit flips in each PCMcell is reduced, then the

lifetime of PCM is enhanced. These observations motivate usto propose a write-activity-

aware block-level FTL to reduce the maximum number of bit flips in PCM, such that the

lifetime of the entire PCM-based embedded systems is improved.

5.3 WAB-FTL: PCM-Awared Block-Level FTL

In this section, we present the details of our WAB-FTL. We first present an overview of

WAB-FTL in Section 5.3.1. We then provide a detailed description of WAB-FTL with Lazy-

Merge strategy and Cooling-Pool in Section 5.3.2 and Section 5.3.3, respectively. A wear

leveling method of WAB-FTL is presented in Section 5.3.4. Finally, we analyze the proposed

WAB-FTL in Section 5.3.5.

5.3.1 Overview of WAB-FTL

The basic idea of WAB-FTL is to preserve each bit in FTL mapping table hosted by PCM

from being inverted frequently, e.g., 0→1→0, during the update process of FTL mapping

table, such that the maximum number of bit flips in each PCM cell is reduced and the PCM

lifetime is enhanced. Thus, to make WAB-FTL write activity aware, we develop the follow-

ing techniques:

• A new merge strategy, namely Lazy-Merge, is proposed to delay the update of mapping

records in FTL mapping table, such that bit flips in PCM are reduced. With Lazy-

83

(a)

1

w

17

A

Requests

Command

LPN

Content

2

w

19

B

3

w

20

C

4

w

23

D

5

w

17

A1

6

w

17

A2

7

w

17

A3

8

w

19

B1

9

w

19

B2

10

w

19

B3

11

w

19

B4

12

w

20

C1

13

w

17

A4

14

w

17

A5

15

w

20

C2

16

w

20

C3

17

w

20

C4

18

w

23

D1

19

w

23

D2

20

w

23

D3

(b)

Primary Block
PPBN #010

000
001
010
011

data oob

100
101
110
111 D 23

C 20
B 19

A 17

Replacement Block
PRBN #001

000
001
010
011

data oob

100
101
110
111

B4 19
C1 20

B2 19
B3 19

A3 17
B1 19

A1 17
A2 17

Primary Block
PPBN #101

000
001
010
011

data oob

100
101
110
111 D 23

C1 20
B4 19

A3 17

Merge

Valid Page

Copy

R
e

q
u

e
s
ts

 1
-1

2

Before Merge After Merge

TailHead

Free Block List

#110#101 …

TailHead

Free Block List

#010#110 #001 …

Primary Block
PPBN #101

000
001
010
011

data oob

100
101
110
111 D 23

C 20
B4 19

A 17

Replacement Block
PRBN #110

000
001
010
011

data oob

100
101
110
111

D2 23
D3 23

C4 20
D1 23

C2 20
C3 20

A4 17
A5 17

Primary Block
PPBN #010

000
001
010
011

data oob

100
101
110
111 D3 23

C4 20
B4 19

A5 17

TailHead

Free Block List

#001#010 …

TailHead

Free Block List

#101#001 #110 …

Merge

Valid Page
Copy

R
e
q
u
e
s
ts

 1
3

-2
0

PPBN PRBNLBN

01

00

0 1 0 0 0 1

…

10

… …

PPBN PRBNLBN

01

00

1 0 1 1 1 0

…

10

… …

PPBN PRBNLBN

01

00

0 1 0 0 0 1

…

10

… …

Mapping Table
Update

Bit Flips: 6

Mapping Table
Update

Bit Flips: 6

(c)

Free page Valid page Invalid page

LBN: Logical Block Number

PPBN: Phsical Primary Block Number

PRBN: Phsical Replacement Block Number

LPN: Logical Page Number

Figure 5.2. Motivational example. (a) I/O access requests.(b) The status variation of blocks

in NAND flash memory. (c) The bit flips caused by the update of block-level mapping table

in PCM.

84

Merge, a replacement block will be erased if it is full, but its associated primary block

with corresponding mapping record is preserved until no free blocks is left.

• A tiny buffer, namely Cooling-Pool, is proposed to reduce write activities in block-

level mapping table. As the mapping record of the replacement block is updated more

frequently than that of primary block in the block-level mapping table, Cooling-Pool

is employed in PCM for caching the frequently updated mapping records to further

reduce redundant bit flips in PCM.

5.3.2 WAB-FTL with Lazy-Merge Strategy

In WAB-FTL, Lazy-Merge strategy is a simple yet effective technique to reduce write activ-

ities occurred during the update process of block-level mapping table. As mentioned above,

in BL-FTL, pages are written consecutively in a replacementblock for updated requests, and

when it is full, Full-Merge operation will be evoked to eraseboth the replacement and prima-

ry blocks. Then a new primary block is allocated to receive valid pages from the two erased

blocks, and the mapping records of the erased blocks in mapping table are updated with the

new one. As replacement blocks are always full for handling updated requests, they cannot

be used further and have to be erased in merge operation. However, during Full-Merge, the

corresponding primary block may not be full, and some free pages can be written by other

new write requests later. Therefore, unlike Full-Merge, wepropose Lazy-Merge strategy, by

which we only erase the replacement block and preserve its associated primary block from

being erased. It is noticed that an update to the mapping record of the primary block is avoid-

ed, such that some write activities to PCM are reduced. Moreover, the block erase counts

can also be reduced if the primary block is preserved in a merge operation.

In our Lazy-Merge strategy, when a replacement block is erased, all valid pages in

the old replacement block will be copied into a new allocatedreplacement block, and the

corresponding mapping record of the old replacement block will be updated by the new one.

For the associated primary block, its corresponding mapping record in mapping table remains

unchanged until the primary block is erased in a garbage collection for reclaiming more free

85

blocks. Therefore, with Lazy-Merge strategy, lots of updates to the mapping records of the

primary blocks are eliminated, and thus bit flips in each PCM cell are effectively reduced.

An example is illustrated in Figure 5.3. To make the example more understandable,

the Cooling-Pool is ignored. Based on the same I/O requests and assumptions in Figure 5.2,

for the first 12 requests, the status variation of blocks and mapping table in Figure 5.3 is

exactly the same as that in motivational example. However, by adopting our Lazy-Merge

strategy, we only erase replacement block (PRBN #001) and preserve the primary block

(PPBN #010), and at the same time, copy the valid pages from the old replacement block

(PRBN #001) to a new allocated replacement block (PRBN #101)in a consecutive order.

Correspondingly, the PRBN in mapping table is updated with only one bit flip occurred.

Then the new replacement block (PRBN #101) can be used to serve the rest requests (13-

17). With our Lazy-Merge strategy, the remaining requests are served in a similar way.

Finally, as shown in Figure 5.3(c), the total number of bit flips caused by the update of

mapping table is only 3, and the maximum number of bit flips is 1. This example shows

that our technique achieves a reduction of 75.00% (50.00%) in the total (maximum) number

of bit flips compared to the motivational example. The example may not reflect realistic

applications, however, the experimental results with realistic I/O traces in Section 5.4 show

that our approach can significantly reduce write activitiesin PCM.

5.3.3 WAB-FTL with Cooling-Pool

In WAB-FTL, by adopting Lazy-Merge, the mapping records of replacement blocks are up-

dated more frequently than that of primary blocks. This motivates the design of Cooling-Pool

for caching the frequently updated mapping records, to prohibit the PCM area with frequent-

ly updated mapping records from being wear out earlier. Figure 5.4 shows the structure of

WAB-FTL. As shown, in addition to the block-level mapping table (main mapping table),

WAB-FTL employs a Cooling-Pool, in which multiple candidate mapping slots for primary

blocks (Pri. Slots) and replacement blocks (Rep. Slot) are allocated, for caching the map-

ping records of frequently updated requests. In WAB-FTL, all new mapping records are first

86

0 1 0

PPBN PRBNLBN

01

00

…

10

… …

1 0 10 1 0

(a)

1

w

17

A

Requests

Command

LPN

Content

2

w

19

B

3

w

20

C

4

w

23

D

5

w

17

A1

6

w

17

A2

7

w

17

A3

8

w

19

B1

9

w

19

B2

10

w

19

B3

11

w

19

B4

12

w

20

C1

13

w

17

A4

14

w

17

A5

15

w

20

C2

16

w

20

C3

17

w

20

C4

18

w

23

D1

19

w

23

D2

20

w

23

D3

(b)

Primary Block
PPBN #010

000
001
010
011

data oob

100
101
110
111 D 23

C 20
B 19

A 17

Replacement Block
PRBN #001

000
001
010
011

data oob

100
101
110
111

B4 19
C1 20

B2 19
B3 19

A3 17
B1 19

A1 17
A2 17

Replacement Block
PRBN #101

000
001
010
011

data oob

100
101
110
111

C1 20

A3 17
B4 19

Valid Page

Copy

R
e

q
u

e
s
ts

 1
-1

2

Before Rep. Block Full After Rep. Block Full

TailHead

Free Block List

#110#101 …

TailHead

Free Block List

#001#110 …

Primary Block
PPBN #010

000
001
010
011

data oob

100
101
110
111 D 23

C 20
B 19

A 17

Replacement Block
PRBN #101

000
001
010
011

data oob

100
101
110
111

C3 20
C4 20

A5 17
C2 20

C1 20
A4 17

A3 17
B4 19

Replacement Block
PRBN #110

000
001
010
011

data oob

100
101
110
111

C4 20

B4 19
A5 17

TailHead

Free Block List

#001#110 …

TailHead

Free Block List

#101#001 …

Free
Rep. Block

Valid Page
Copy

R
e
q
u
e
s
ts

 1
3

-1
7

PPBN PRBNLBN

01

00

0 1 0 0 0 1

…

10

… …

PPBN PRBNLBN

01

00

…

10

… …

Mapping Table
Update

Bit Flips: 1

Mapping Table
Update

Bit Flips: 2

(c)

Free page Valid page Invalid page

LBN: Logical Block Number

PPBN: Phsical Primary Block Number

PRBN: Phsical Replacement Block Number

LPN: Logical Page Number

1 1 0

Figure 5.3. Example of WAB-FTL. (a) I/O access requests. (b)The status variation of blocks

in NAND flash memory. (c) The bit flips caused by the update of block-level mapping table

in PCM.

87

written into the main mapping table, and the following updated mapping records are written

into the Cooling-Pool.

Algorithm 5.3.1 shows the detailed process of WAB-FTL management. When the I/O

requests arrive, WAB-FTL first checks if the correspondingLBN is mapped to aPPBN

in the main mapping table. If no mapping record is found, it means that this is a new write.

WAB-FTL will allocate a new primary block and set the (LBN , PPBN) mapping in main

mapping table. Otherwise, it will further check whether there isPRBN mapped for the

incomingLBN . If so, and the replacement block is not full, updates will bewritten to

the replacement block consecutively. If the replacement block is full, a new replacement

block will be allocated, and a new (LBN , PRBN) mapping record will be added into the

Cooling-Pool.

We assume that the target PCM-based main memory in this chapter has adopted the

hardware feature proposed by [52,101], such that a write is performed in a PCM cell only if

the value to be written differs from its original value. So inCooling-Pool, multiple primary

/ replacement mapping slots are allocated for comparison between the old mapping records

and the new mapping records during mapping table update, to reduce the number of PCM

bit flips. For example, as shown in Figure 5.4, an updated mapping record is first written

into Pri. Slot #1 and Rep. Slot #1, then the next updated mapping record can be put into

Pri./Rep. Slot #2 and the old mapping record in Pri./Rep. slot #1 is invalidated without

bits clearance. Therefore, for the following updated mapping records, WAB-FTL actively

chooses a destination mapping slot in Cooling-Pool, wherein an old mapping record has

a minimum number of Hamming distance with the newly to be updated mapping record.

Therefore, in Cooling-Pool, a mapping slot who incurs the minimum number of bit flips will

be selected for accommodating the newPRBN value. As a result, the number of bit flips in

Cooling-Pool is minimized.

In case that no replacement block is allocated for theLBN , WAB-FTL will allocate

a new replacement block, and thePRBN will be written to the replacement block slot in

main mapping table. When the Cooling-Pool is full, an entry that is not frequently updated

88

Write requests

Mapping slot in Main

Mapping Table is empty

Check existing mapping

Mapping Tables in PCM

Main Mapping Table Cooling-Pool

Yes: Set mapping

in Main Mapping Table
No: Set mapping

in Cooling-Pool

Pri. Slot #1LBN Pri. Slot #2 Rep. Slot #1 Rep. Slot #2

… … … … …

PPBNLBN PRBN

… … …
Rep.: Replacement Block Number

PPBN: Phsical Primary Block Number

PRBN: Phsical Replacement Block Number

Pri.: Primary Block Number

Figure 5.4. WAB-FTL Management.

will be selected as a victim for replacement, and the corresponding mapping records will

be moved to the main mapping table. Note that the Cooling-Pool is extremely small, and

its size is merely 1% of the main mapping table size. Therefore, the capacity overhead

introduced by Cooling-Pool is acceptable when compared to its contribution of the write

activities reduction in PCM.

5.3.4 WAB-FTL Wear Leveling Scheme

In WAB-FTL, as the Cooling-Pool is designed for caching the frequently updated

mapping records, so it may become very hot and lead to an uneven distribution of bit flips

among all PCM cells. To evenly distribute write activities and enhance PCM endurance, a

wear leveling scheme is incorporated into WAB-FTL. Figure 5.5 demonstrates the process

of our wear leveling scheme. As shown Figure 5.5(a), the Cooling-Pool becomes hot after

89

Algorithm 5.3.1 The algorithm of WAB-FTL
Input: I/O requests.

Output: MapLBN toPBN .

1: Check current mapping state.

2: if There exists no (LBN , PPBN) mapping in main mapping table or Cooling-Poolthen

3: This is a new write, allocate a new primary blockPPBN , and write the contents based on block offset.

4: Add (LBN , PPBN) mapping into main mapping table.

5: end if

6: if There exists (LBN , PPBN) mapping in main mapping table or Cooling-Poolthen

7: This is an update.

8: if There exists (LBN , PRBN) mapping in main mapping table or Cooling-Poolthen

9: if The number of free pages in replacement block≤ number of update pages to be writtenthen

10: Allocate one new replacement block.

11: if The (LBN , PRBN) mapping resides in main mapping tablethen

12: Allocate one entry in Cooling-Pool.

13: else

14: Get (LBN , PRBN) entry in Cooling-Pool.

15: end if

16: Update (LBN , PRBN) mapping in the Cooling-Pool entry.

17: end if

18: Write the new contents to replacement block.

19: Invalidate original pages that are updated in primary block (if any) or replacement block (if any).

20: else

21: Allocate one new replacement block and write the new contents.

22: Add (LBN , PRBN) mapping into the replacement slot of Cooling-Pool.

23: end if

24: end if

90

……

Block-Level Mapping Table

Cooling

Pool

Block-Level Mapping Table

……
Cooling

Pool

Block-Level Mapping Table

Cooling

Pool
……

HOT COLDMedium

Move Buffer

Achieve

Wear Leveling

(c)

(b)

(a)

Figure 5.5. Illustration of the wear leveling scheme adopted by WAB-FTL. (a) The initial

status of the Cooling-Pool and block-level mapping table with uneven distribution of write

activities. (b) Move Cooling-Pool across the whole block-level mapping table region to

evenly distribute write activities. (c) Write activities are evenly distribute among the Cooling-

Pool and the block-level mapping table after moving Cooling-Pool.

91

Algorithm 5.3.2 The algorithm of wear leveling in WAB-FTL
Input: The number of writes conducted in PCM cells so far, the allowed number of writes in PCM cells before

triggering wear leveling operations.

Output: Next position of the first PCM entry of Cooling-Pool.

1: WEAR LEVELING THRESHOLD← The allowed number of writes in PCM cells before triggering wear

leveling operations.

2: WL Counter← The number of writes conducted in PCM cells so far.

3: CurrentOffset← Current position of the first PCM entry of Cooling-Pool.

4: Next offset← Next position of the first PCM entry of Cooling-Pool.

5: BTE← PCM entry of Block-level mapping table.

6: CTE← PCM entry of Cooling-Pool.

7: if WL Counter< WEAR LEVELING THRESHOLDthen

8: WL Counter++.

9: RETURN.

10: else

11: NextOffset = (CurrentOffset + CoolingPool length)%(Total PCM length - Cooling-Pool length).

12: BTE← First PCM entry of the block-level mapping table starting from NextOffset.

13: CTE← First PCM entry of Cooling-Pool starting from CurrentOffset.

14: for each PCM entry in Cooling-Pooldo

15: Exchange the content of CTE and BTE.

16: BTE← Next PCM entry of the block-level mapping table.

17: CTE← Next PCM entry of the Cooling-Pool.

18: end for

19: Reset WLCounter to 0.

20: RETURN NextOffset.

21: end if

buffering the frequently updated mapping records. However, the block-level mapping table

is not so hot as it only serves the infrequently updated mapping records. Therefore, as shown

in Figure 5.5(b), during a period of time (e.g., every 2000 I/O requests), the Cooling-Pool

is moved across the whole block-level mapping table region in PCM chip. Since the migra-

tion of the Cooling-Pool is infrequent, the number of copy operations of mapping records is

92

acceptable. Finally, in Figure 5.5(b), we can see that the even distribution of write activities

(i.e., bit flips) across the whole block-level mapping tableregion in PCM is obtained. The

detailed description of our wear leveling scheme is shown inAlgorithm 5.3.2. The experi-

mental results in Section 5.4 confirm the effectiveness of our scheme, and also show that our

WAB-FTL can achieve better wear leveling over different traces.

5.3.5 The Analysis of WAB-FTL

We analyze the performance of WAB-FTL over BL-FTL for two extreme cases of write

requests, the frequent-update case and the sequential-write case. Given a number of write

requests to a NAND flash memory, letNwr be the total number of the write requests. The

frequent-update case is used to denote that all write requests are with the same LPN (logical

address). Therefore, the content of this LPN will be updatedfor Nwr times. On the contrary,

the sequential-write case is used to denote that each of theNwr write requests is with different

LPNs. In other words, for the sequential-write case,Nwr requests write toNwr distinct pages,

and thus no update is needed. In real applications, all the write requests for a NAND flash

memory are either one of the two cases or their combination.

Table 5.1 shows the performance analysis of WAB-FTL and BL-FTL over the two

extreme cases. In this table,Np denotes the number of pages in a block;Nwr denotes the

number of write requests;Nblk denotes the number of blocks needed forNwr write requests;

Nallblk denotes the total number of blocks in NAND flash (Nwr ≫ Nallblk); BFmax denotes

the estimated maximum number of bit flips in a PCM cell.ERmax denotes the estimated

maximum number of block erase counts. Assume that there are two mapping slots for re-

placement block in Cooling-Pool and one slot in main mappingtable. For frequent-update

case, during each one of theNwr/Np merge operations, onlylogNallblk

2
/3 bit flips occur in

WAB-FTL. For BL-FTL, as it will update the mapping records ofboth primary and replace-

ment blocks, then2 logNallblk

2
bit flips occur in each merge operation. For sequential-write

case, as the sequential write requests do not trigger updateoperations, no replacement block

is needed. In such case, these two schemes achieve the same results. As mentioned earlier,

93

Table 5.1. The Performance Comparison of WAB-FTL and BL-FTL.

Frequent-Update

BL-FTL WAB-FTL

Nblk ⌈(Nwr − 1)/Np⌉ × 2 ⌈(Nwr − 1)/Np⌉+ 1

BFmax ⌊(Nwr/Np)× 2 logNallblk

2
⌋ ⌊(Nwr/Np)× (logNallblk

2
/3)⌋

ERmax ⌊(Nwr × 2)/(Nallblk × (Np + 1))⌋ ⌊Nwr/(Nallblk × (Np + 1))⌋

Sequential-Write

BL-FTL WAB-FTL

Nblk ⌈Nwr/Np⌉ ⌈Nwr/Np⌉

BFmax ⌊(Nwr/Np)× logNallblk

2
⌋ ⌊(Nwr/Np)× logNallblk

2
⌋

ERmax ⌊Nwr/(Nallblk ×Np)⌋ ⌊Nwr/(Nallblk ×Np)⌋

write requests in real applications are a mix of frequent update and sequential write opera-

tions. In most cases, the probability of frequent update operations is much higher than that of

sequential write operations [36]. Therefore, WAB-FTL can achieve significant improvement

over BL-FTL in terms of the maximum number of bit flips and the maximum number of

block erase counts. The experimental results in Section 5.4depict this fact.

5.4 Evaluation

To evaluate the effectiveness of the proposed WAB-FTL, we conduct a series of experiments

and present the experimental results with analysis in this section. We compare and evaluate

our proposed WAB-FTL scheme over a well-known block-level FTL scheme (BL-FTL), and

a page-level FTL scheme (hFTL), in terms of the maximum and total number of bit flips in

PCM cells. Besides, the evaluation for wear leveling is alsoconducted for WAB-FTL and

BL-FTL.

94

In this chapter, we assume that the FTL mapping tables are stored in a single-level

cell (SLC) PCM, and the user data is stored in a multi-level cell (MLC) NAND flash memory,

which is widely used in embedded systems.

5.4.1 Experimental Setup

In this chapter, we use the same experimental setup configuration as that given by Table 3.1 in

Chapter 3. The evaluation is also conducted through a trace-driven simulation framework, in

which a simulator is designed to evaluate WAB-FTL and BL-FTLusing a variety of realistic

I/O traces collected from notebook and Android platform, respectively. These realistic I/O

traces, i.e., CopyFiles, DownFiles, Office, P2P, Communications, Internet, MixedApps, and

Multimedia, are introduced in detail in Chapter 3. We will use these eight I/O traces to

evaluate our WAB-FTL below.

The simulation framework is shown in Figure 3.6. This simulation framework sim-

ulates WAB-FTL management scheme over the PCM-based embedded systems, which con-

sists of a NAND flash memory and a PCM for storing our block-level mapping table. In

our experiments, the traces along with various parameters of NAND flash memory, such as

block size, page size, etc, are fed into our simulator. The page size, number of pages in a

block, and size of the OOB for each page are set as 2KB, 64, and 64 Bytes, respectively. To

evaluate our technique, we conduct the experiments on a PCM-based embedded system with

1GB NAND flash memory.

Input

Parameters

Trace Collector

Trace

WAB-FTL

PCM-based

Embedded

System

With

NAND Flash

Results

Figure 5.6. The framework of simulation platform for evaluating the proposed block-level

WAB-FTL technique.

95

5.4.2 Metrics

The lifetime of PCM is mainly affected by the worst case of bitflips in a PCM cell, i.e., the

maximum number of write operations with different source and destination values in a PCM

cell determines the lifetime of PCM. For example, assume that a single PCM cell can sustain

at most106 bit flips, then it will wear out if more than106 bit flips occur. Hence for each

experiment, we collect both the total and maximum number of bit flips in each PCM cell for

each FTL scheme.

5.4.3 Results and Discussion

Based on the above experimental setup and metrics, we present the experimental results with

analysis in this section. Impacts on lifetime of both PCM andNAND flash memory are

discussed for BL-FTL,hFTL [48] and WAB-FTL. Table 5.2 and Table 5.3 summarize the

experimental results, which include the maximum and total number of bit flips in PCM cells.

We also conduct the wear leveling comparison for WAB-FTL andBL-FTL. Experiments

are conducted based on our PCM-based embedded system simulator with 1GB NAND flash

memory over eight distinct traces gathered from notebook and Google AndroidTMplatform.

PCM Endurance

In Table 5.2, we observe that WAB-FTL can significantly reduce write activities in PCM in

comparison with BL-FTL andhFTL. Compared with BL-FTL, WAB-FTL can achieve an

average reduction of 83.49% and a maximum reduction of 96.61% in the maximum number

of bit flips over the first four DiskMon traces. For Google AndroidTMtraces, WAB-FTL can

achieve an average reduction of 65.06% and a maximum reduction of 83.7% in the maximum

number of bit flips. Compared withhFTL, WAB-FTL can achieve an average reduction of

83.25% and a maximum reduction of 96.34% in the maximum number of bit flips over the

first four DiskMon traces. For Google AndroidTMtraces, WAB-FTL can achieve an average

reduction of 96.13% and a maximum reduction of 98.84% in the maximum number of bit

96

Table 5.2. WAB-FTL versushFTL and BL-FTL in terms of the maximum number of bit flips

in PCM cells. (1GB NAND flash memory)

Trace

Name
hFTL BL-FTL WAB-FTL

WAB-FTL

overhFTL

WAB-FTL

over BL-FTL

CopyFiles 9977 11079 2953 70.40% 73.35%

DownFiles 21945 23038 2955 86.53% 87.17%

Office 9385 8211 1902 79.73% 76.84%

P2P 74540 80393 2729 96.34% 96.61%

Average 83.25% 83.49%

Communications 158029 16302 3976 97.48% 75.61%

Internet 134281 19548 3449 97.43% 82.36%

MixedApps 139241 9900 1614 98.84% 83.70%

Multimedia 95621 10850 8834 90.76% 18.58%

Average 96.13% 65.06%

flips. As shown, WAB-FTL significantly reduces write activities in PCM.

For the total number of bit flips, shown in Table 5.3, WAB-FTL reduces 16.31% bit

flips on average, with a maximum reduction of 17.71% over DiskMon traces, and WAB-FTL

reduces 20.14% bit flips on average, with a maximum reductionof 22.15% over Android

traces. The write activity reduction is limited as block-level mapping table is small and

the write activities are not so high as that of page-level mapping table inhFTL. This is

confirmed by comparing withhFTL, more than 98% of the total number of bit flips are

reduced by WAB-FTL for both DiskMon and Android traces. The reason is that page-level

mapping table used byhFTL is much bigger than block-level mapping table in WAB-FTL,

and a series of I/O requests in NAND flash memory may result in one entry update in block-

level mapping table while multiple entries update in page-level mapping table. Therefore,

97

Table 5.3. WAB-FTL versushFTL and BL-FTL in terms of the total number of bit flips in

PCM cells. (1GB NAND flash memory)

Trace

Name
hFTL BL-FTL WAB-FTL

WAB-FTL

overhFTL

WAB-FTL

over BL-FTL

CopyFiles 559496658 12963959 10976883 98.04% 15.33%

DownFiles 1756464372 26485707 21796406 98.76% 17.71%

Office 7520028995 91019666 76453444 98.98% 16.00%

P2P 6929967624 98103753 82223776 98.81% 16.19%

Average 98.65% 16.31%

Communications 9883730134 147743017 118227997 98.80% 19.98%

Internet 9555187107 145098438 114409247 98.80% 21.15%

MixedApps 6591084832 99759148 77663514 98.82% 22.15%

Multimedia 8347917692 133167616 110145808 98.68% 17.29%

Average 98.78% 20.14%

WAB-FTL is more applicable in PCM-based embedded systems. By adopting WAB-FTL,

the lifetime of PCM can be prolonged.

PCM Wear Leveling

Figure 5.7 and Figure 5.8 show the distribution of the maximum number of bit flips among

all mapping table entries in a PCM-based embedded system with 1GB NAND flash memory

over the DiskMon traces and Google AndroidTMtraces, respectively. For each sub-figure,

the x-axis shows the total number of mapping entries inside the block-level mapping table

and Cooling-Pool in PCM, and the y-axis shows the maximum number of bit flips extracted

from each mapping entry of the block-level mapping table andCooling-Pool. To present the

distributions clearly, we restrict the maximum number of bit flips on y-axis to 10,000.

98

(a) BL-FTL / CopyFiles (b) WAB-FTL / CopyFiles

(c) BL-FTL / DownFiles (d) WAB-FTL / DownFiles

(e) BL-FTL / Office (f) WAB-FTL / Office

(g) BL-FTL / P2P (h) WAB-FTL / P2P

Figure 5.7. The wear leveling comparison of BL-FTL and WAB-FTL in a PCM-based em-

bedded system with 1GB NAND flash memory over four traces collected by DiskMon.

99

(a) BL-FTL / Communications (b) WAB-FTL / Communications

(c) BL-FTL / Internet (d) WAB-FTL / Internet

(e) BL-FTL / MixedApps (f) WAB-FTL / MixedApps

(g) BL-FTL / Multimedia (h) WAB-FTL / Multimedia

Figure 5.8. The wear leveling comparison of BL-FTL and WAB-FTL in a PCM-based em-

bedded system with 1GB NAND flash memory over four traces collected by Android.

100

As shown in Figure 5.7, for BL-FTL scheme, we observe that thedistribution of the

maximum number of bit flips varies a lot, and this may impose a fast worn-out of PCM cells.

Compared with BL-FTL, by adopting our wear leveling scheme described in Section 5.3.4,

WAB-FTL distributes the maximum number of bit flips more evenly among all PCM cells.

In Figure 5.8, we can see that the write activities of BL-FTL are mapped to a specific region

in PCM due to access pattern of I/O requests, and the maximum number of bit flips in most

entries is greater than 10,000. On the contrary, WAB-FTL evenly distributes the maximum

number of bit flips across PCM chip for the Google AndroidTMtraces, and almost all of them

are below 2,000. In summary, WAB-FTL delivers dramaticallybetter reliability than the

baseline scheme.

5.5 Summary

In this chapter, we proposed a write-activity-aware block-level flash memory management

technique, WAB-FTL, which can effectively reduce write activities in PCM-based embed-

ded systems. In WAB-FTL, the performance improvement is achieved by preserving a bit

in a PCM cell from being inverted frequently. Through the proposed Lazy-Merge strategy

and Cooling-Pool in PCM, unnecessary write activities to PCM-based embedded systems

are directly reduced. We conducted experiments on a set of realistic I/O traces collected

from notebook and Google AndroidTM2.3. Experimental results show that our technique

significantly reduces write activities in PCM, and achievesan average reduction of 83.49%

(65.06%) and a maximum reduction of 96.61% (83.7%) in the maximum number of bit flips

in comparison with a well-known block-level FTL scheme overDiskMon traces (Android

traces). In addition, we also demonstrate the advantage of WAB-FTL in write activity reduc-

tion when compared with a page-level FTL scheme.

101

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

PCM has been used in embedded systems, so effective management schemes are needed to

explore its advantages and solve the existing problems. This thesis studied the PCM-based

embedded systems with NAND flash memory. To the best of our knowledge, this is the first

work to study how to effectively manage NAND flash memory while enhancing the lifetime

of PCM at software-level. We hope this work can serve as a firststep towards the design

of write-activity-aware FTL for the PCM-based embedded systems via simple and feasible

modifications.

As the traditional flash memory management techniques impose significant write

activities in PCM-based main memory, it is necessary to redesign the flash memory man-

agement technique for PCM-based embedded systems. Therefore, in this thesis, three write-

activity-aware flash memory management techniques are presented to improve the lifetime

and performance of the PCM-based embedded systems.

• First, we have proposed a write-activity-aware page-levelflash memory management

technique, named WAP-FTL, to exploit the advantages of the well-known FTL im-

plementations in order to reduce write activities in PCM forenhancing lifetime of

the PCM-based embedded systems. In our WAP-FTL, the write activity reduction is

achieved by preserving each bit in page-level FTL mapping table that hosted by PCM

from being inverted frequently. Unlike the traditional page-level FTL scheme [48],

WAP-FTL can actively choose a physical page whose physical address incurs the min-

102

imum number of bit flips in FTL page-level mapping table hosted by PCM, so as to

effectively reduce write activities in PCM cells. However,with a set of real-life work-

loads, the experimental results show that our WAP-FTL technique cannot fully reduce

write activities compared to the baseline schemehFTL, especially after garbage col-

lection happens. The reason is that WAP-FTL does not consider the behavior of I/O

requests, which are mixed with sequential and random requests, and write-activity-

aware strategy may introduce extra valid page copy overheadin garbage collection.

These observations motivate us to further extend this work for reducing write activi-

ties in PCM-based embedded systems.

• Second, we have proposed a write-activity-aware two-levelflash memory managemen-

t technique, named PCM-FTL, which takes the first step to significantly reduce write

activities in PCM-based embedded systems with NAND flash memory. In our PCM-

FTL, the performance improvement is achieved by preservinga bit in a PCM cell

from being inverted frequently. Through a two-level mapping mechanism and a write-

activity-aware strategy, unnecessary write activities inPCM are directly reduced. We

conducted experiments on a set of realistic I/O workload collected by DiskMon and

Google Android. For the DiskMon traces, the experimental results show that the max-

imum number of bit flips among PCM cells can be reduced by 93.10% (83.10%) on

average, and the total number of bit flips of all PCM cells can be reduced by 64.00%

(70.90%) on average in a PCM-based embedded system with 1GB (4GB) NAND flash

memory. For the Google Android traces, the experimental results show that the max-

imum number of bit flips among PCM cells can be reduced by 99.82% (99.86%) on

average, and the total number of bit flips of all PCM cells can be reduced by 93.10%

(98.17%) on average in a PCM-based embedded system with 1GB (4GB) NAND flash

memory. Furthermore, the results show that PCM-FTL can evenly distribute write ac-

tivities among all PCM cells in comparison with a representative baseline FTL scheme.

• Third, we have proposed a write-activity-aware block-level flash memory management

technique, WAB-FTL, which can effectively reduce write activities in PCM-based em-

103

bedded systems. In WAB-FTL, the performance improvement isachieved by preserv-

ing a bit in a PCM cell from being inverted frequently. Through the proposed Lazy-

Merge strategy and Cooling-Pool in PCM, unnecessary write activities to PCM-based

embedded systems are directly reduced. We conducted experiments on a set of realistic

I/O traces collected from notebook and Google AndroidTM2.3. Experimental results

show that our technique significantly reduces write activities in PCM, and achieves an

average reduction of 83.49% (65.06%) and a maximum reduction of 96.61% (83.7%)

in the maximum number of bit flips in comparison with a well-known block-level FTL

scheme over DiskMon traces (Android traces). In addition, we also demonstrate the

advantage of WAB-FTL in write activity reduction when compared with a page-level

FTL scheme.

6.2 Future Work

The work presented in this thesis can be extended in different directions in the future.

• First, energy and thermal issues of PCM are not studied in this thesis. However, our

proposed techniques could significantly reduce the total number of write activities

which is related to the energy consumption and thermal dissipation in PCM. Therefore,

we will investigate the energy consumption and thermal issues of PCM to design an

energy- or thermal-aware scheme to improve the performanceand reliability of PCM-

based embedded systems.

• Second, currently our approach is based on the single-levelcell (SLC) PCM. Com-

pared to SLC PCM, MLC PCM can provide bigger capacity by storing more than

one bit information per cell. However, as the resistance margin between two adja-

cent states in MLC PCM becomes smaller, its states are vulnerable to be changed by

various factors such as process variation, resistance drift, and the thermal disturbance

from vicinity reads/writes. Therefore, we will extend our approach to MLC PCM and

propose schemes that can handle the issues of MLC PCM.

104

• Third, this work only focuses on reducing write activities of FTL mapping table in

PCM. However, in realistic systems, some metadata and code may also be stored into

PCM. The access pattern of these information and mapping table may vary a lot, so

it is also interesting to develop techniques to effectivelymanage different types of in-

formation in PCM and evenly distribute writes across these information for enhancing

PCM lifetime.

• Fourth, the techniques proposed in this thesis mainly corresponds to the page-level and

block-level FTL designs, and we can further explore the possibility of making some

hybrid-level FTL designs write activity aware for PCM-based embedded systems.

• Finally, the existing FTL schemes are originally designed for a DRAM-based main

memory with NAND flash memory, and they do not consider the distinct feature of

PCM, so a possible research direction is to propose a light-weight translation layer

that is specially designed for PCM-based embedded systems.

105

REFERENCES

[1] DiskMon for Windows. http://technet.microsoft.com/en-

us/sysinternals/bb896646.aspx.

[2] Memory technology device (MTD) subsystem for linux. http://www.linux-

mtd.infradead.org/, 2009.

[3] S.J. Ahn, Y.J. Song, C.W. Jeong, J.M. Shin, Y. Fai, Y.N. Hwang, S.H. Lee, K.C. Ryoo,

S.Y. Lee, J.H. Park, H. Horii, Y.H. Ha, J.H. Yi, B.J. Kuh, G.H.Koh, G.T. Jeong, H.S.

Jeong, Kinam Kim, and B.I. Ryu. Highly manufacturable high density phase change

memory of 64Mb and beyond. In2004 IEEE International Electron Devices Meeting

(IEDM ’04), pages 907–910, December 2004.

[4] S.J. Ahn, Y.J. Song, C.W. Jeong, J.M. Shin, Y. Fai, Y.N. Hwang, S.H. Lee, K.C. Ryoo,

S.Y. Lee, J.H. Park, H. Horii, Y.H. Ha, J.H. Yi, B.J. Kuh, G.H.Koh, G.T. Jeong, H.S.

Jeong, Kinam Kim, and B.I. Ryu. Highly manufacturable high density phase change

memory of 64Mb and beyond. InIEEE International Electron Devices Meeting 2004

(IEDM ’04), pages 907–910, December 2004.

[5] Amir Ban. Flash file system.US patent 5,404,485, April 1995.

[6] Amir Ban. Flash file system optimized for page-mode flash technologies.US patent

5,937,425, August 1999.

[7] F. Bedeschi, R. Fackenthal, C. Resta, E.M. Donze, M. Jagasivamani, E. Buda, F. Pel-

lizzer, D. Chow, A. Cabrini, G.M.A. Calvi, R. Faravelli, A. Fantini, G. Torelli, Duane

Mills, R. Gastaldi, and G. Casagrande. A multi-level-cell bipolar-selected phase-

106

change memory. In2008 IEEE International Solid-State Circuits Conference (ISSCC

’08), pages 428–625, February 2008.

[8] S. Bock, B. Childers, R. Melhem, D. Mosse and, and Youtao Zhang. Analyzing the

impact of useless write-backs on the endurance and energy consumption of PCM main

memory. In2011 IEEE International Symposium on Performance Analysisof Systems

and Software (ISPASS ’11), pages 56–65, April 2011.

[9] Li-Pin Chang. On efficient wear leveling for large-scaleflash-memory storage sys-

tems. InProceedings of the 2007 ACM Symposium on Applied Computing (SAC ’07),

pages 1126–1130, 2007.

[10] Li-Pin Chang and Tei-Wei Kuo. A Real-Time garbage collection mechanism for

flash-memory storage systems in embedded systems. InProceedings of the 8th In-

ternational Conference on Real-Time Computing Systems andApplications (RTCSA

’02), March 2002.

[11] Li-Pin Chang and Tei-Wei Kuo. An efficient management scheme for large-scale

flash-memory storage systems. InProceedings of the 2004 ACM Symposium on Ap-

plied Computing (SAC ’04), pages 862–868, 2004.

[12] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. Endurance enhancement of flash-

memory storage systems: an efficient static wear leveling design. InProceedings of

the 44th Annual Conference on Design Automation (DAC ’07), pages 212–217, 2007.

[13] Yuan-Hao Chang and Tei-Wei Kuo. A commitment-based management strategy for

the performance and reliability enhancement of flash-memory storage systems. In

Proceedings of the 46th Annual Design Automation Conference (DAC ’09), pages

858–863, 2009.

[14] Siddhartha Chhabra and Yan Solihin. i-NVMM: a secure non-volatile main memory

system with incremental encryption. InProceeding of the 38th annual international

symposium on Computer architecture (ISCA ’11), pages 177–188, 2011.

107

[15] Hyunjin Cho, Dongkun Shin, and Young Ik Eom. KAST: K-associative sector transla-

tion for NAND flash memory in Real-Time systems. InProceedings of the Conference

on Design, Automation and Test in Europe (DATE ’09), pages 507–512, 2009.

[16] Sangyeun Cho and Hyunjin Lee. Flip-n-write: a simple deterministic technique to im-

prove pram write performance, energy and endurance. InProceedings of the 42nd An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO ’09), pages

347–357, 2009.

[17] Siddharth Choudhuri and Tony Givargis. Performance improvement of block based

NAND flash translation layer. InProceedings of the 5th IEEE/ACM International

Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS

’07), pages 257–262, 2007.

[18] Yuan-Sheng Chu, Jen-Wei Hsieh, Yuan-Hao Chang, and Tei-Wei Kuo. A set-based

mapping strategy for flash-memory reliability enhancement. In Proceedings of the

Conference on Design, Automation and Test in Europe (DATE ’09), pages 405–410,

2009.

[19] Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-Won Lee, and

Ha-Joo Song. A survey of flash translation layer.Journal of Systems Architecture,

55(5-6):332–343, 2009.

[20] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin

Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable, per-

sistent memory. InProceedings of the ACM SIGOPS 22nd symposium on Operating

systems principles (SOSP ’09), pages 133–146, 2009.

[21] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. PDRAM: a hybrid PRAM and

DRAM main memory system. InProceedings of the 46th Annual Design Automation

Conference (DAC ’09), pages 664–469, 2009.

[22] Jianbo Dong, Lei Zhang, Yinhe Han, Ying Wang, and Xiaowei Li. Wear rate lev-

eling: Lifetime enhancement of PRAM with endurance variation. In 2011 48th

108

ACM/EDAC/IEEE Design Automation Conference (DAC ’11), pages 972–977, June

2011.

[23] Xiangyu Dong and Yuan Xie. AdaMS: Adaptive MLC/SLC phase-change memory

design for file storage. InDesign Automation Conference (ASP-DAC), 2011 16th Asia

and South Pacific, pages 31–36, January 2011.

[24] S. Eilert, M. Leinwander, and G. Crisenza. Phase changememory: A new memory

enables new memory usage models. InIEEE International Memory Workshop (IMW

’09), pages 1–2, May 2009.

[25] S. Eilert, M. Leinwander, and G. Crisenza. Phase changememory: A new memory

enables new memory usage models. InIEEE International Memory Workshop (IMW

’09), pages 1–2, May 2009.

[26] Alexandre P. Ferreira, Miao Zhou, Santiago Bock, BruceChilders, Rami Melhem,

and Daniel Mossé. Increasing PCM main memory lifetime. InProceedings of the

Conference on Design, Automation and Test in Europe (DATE ’10), pages 914–919,

2010.

[27] A.P. Ferreira, B. Childers, R. Melhem, D. Mosse, and M. Yousif. Using PCM in

next-generation embedded space applications. In2010 16th IEEE Real-Time and Em-

bedded Technology and Applications Symposium (RTAS ’10), pages 153–162, April

2010.

[28] Google Corporation. Google Android.http://www.android.com, 2011.

[29] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a flash translation

layer employing demand-based selective caching of page-level address mappings. In

Proceeding of the 14th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS ’09), pages 229–240, 2009.

[30] S. Hanzawa, N. Kitai, K. Osada, A. Kotabe, Y. Matsui, N. Matsuzaki, N. Takau-

ra, M. Moniwa, and T. Kawahara. A 512kB embedded phase changememory with

109

416kB/s write throughput at 100µA cell write current. In2007 IEEE International

Solid-State Circuits Conference (ISSCC ’07), pages 474–616, February 2007.

[31] Jen-Wei Hsieh, Tei-Wei Kuo, Po-Liang Wu, and Yu-Chung Huang. Energy-efficient

and performance-enhanced disks using flash-memory cache. In Proceedings of the

2007 International Symposium on Low Power Electronics and Design (ISLPED ’07),

pages 334–339, 2007.

[32] Jen-Wei Hsieh, Yi-Lin Tsai, Tei-Wei Kuo, and Tzao-Lin Lee. Configurable flash-

memory management: Performance versus overheads.IEEE Transactions on Com-

puters, 57(11):1571–1583, November 2008.

[33] Jingtong Hu, Chun Jason Xue, Wei-Che Tseng, Yi He, Meikang Qiu, and Edwin H.-

M. Sha. Reducing write activities on non-volatile memoriesin embedded CMPs via

data migration and recomputation. InProceedings of the 47th Design Automation

Conference (DAC ’10), pages 350–355, 2010.

[34] Jingtong Hu, Chun Jason Xue, Wei-Che Tseng, Qingfeng Zhuge, and Edwin H.-M.

Sha. Minimizing write activities to non-volatile memory via scheduling and recom-

putation. InProceedings of the 2010 IEEE Symposium on Application Specific Pro-

cessors (SASP ’10), 2010.

[35] Po-Chun Huang, Yuan-Hao Chang, Tei-Wei Kuo, Jen-Wei Hsieh, and Miller Lin. The

behavior analysis of flash-memory storage systems. InProceedings of the 11th IEEE

Symposium on Object Oriented Real-Time Distributed Computing (ISORC ’08), pages

529–534, 2008.

[36] Po-Chun Huang, Yuan-Hao Chang, Tei-Wei Kuo, Jen-Wei Hsieh, and Miller Lin. The

behavior analysis of flash-memory storage systems. InProceedings of the 11th IEEE

Symposium on Object Oriented Real-Time Distributed Computing (ISORC ’08), pages

529–534, 2008.

[37] Intel Corporation. Understanding the flash translation layer (FTL) specification.

http://developer.intel.com, 2009.

110

[38] ITRS. International technology roadmap for semiconductors (2009 edition).

http://www.itrs.net, 2009.

[39] Lei Jiang, Youtao Zhang, and Jun Yang. Enhancing phase change memory lifetime

through fine-grained current regulation and voltage upscaling. In Proceedings of

the 17th IEEE/ACM international symposium on Low-power electronics and design

(ISLPED ’11), pages 127–132, 2011.

[40] Yongsoo Joo, Youngjin Cho, Naehyuck Chang, and DonghwaShin. Energy-aware

data compression for multi-level cell (MLC) flash memory. InProceedings of the

Annual Conference on Design Automation (DAC ’07), pages 716–719, June 2007.

[41] Yongsoo Joo, Yongseok Choi, Chanik park, Sung Woo Chung, Eui-Young Chung,

and Naehyuck Chang. Demand paging for OneNAND flash eXecute-In-Place. In

Proceedings of the 4th IEEE/ACM International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS ’06), pages 229–234, October 2006.

[42] Yongsoo Joo, Yongseok Choi, Jaehyun Park, Chanik park,Sung Woo Chung, Eui-

Young Chung, and Naehyuck Chang. Energy and performance optimization of de-

mand paging with OneNAND flash.IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 27(11):1969–1982, November 2008.

[43] Yongsoo Joo, Dimin Niu, Xiangyu Dong, Guangyu Sun, Naehyuck Chang, and Yuan

Xie. Energy- and endurance-aware design of phase change memory caches. InPro-

ceedings of the Conference on Design, Automation and Test inEurope (DATE ’10),

pages 136–141, 2010.

[44] Dawoon Jung, Yoon-Hee Chae, Heeseung Jo, Jin-Soo Kim, and Joonwon Lee. A

group-based wear-leveling algorithm for large-capacity flash memory storage system-

s. In Proceedings of the 2007 International Conference on Compilers, Architecture,

and Synthesis for Embedded Systems (CASES ’07), pages 160–164, 2007.

[45] D-H. Kang, J.-H. Lee, J.H. Kong, D. Ha, J. Yu, C.Y. Um, J.H. Park, F. Yeung, J.H.

Kim, W.I. Park, Y.J. Jeon, M.K. Lee, Y.J. Song, J.H. Oh, G.T. Jeong, and H.S. Jeong.

111

Two-bit cell operation in diode-switch phase change memorycells with 90nm tech-

nology. In2008 IEEE Symposium on VLSI Technology, pages 98–99, June 2008.

[46] DerChang Kau, S. Tang, I.V. Karpov, R. Dodge, B. Klehn, J.A. Kalb, J. Strand, A. Di-

az, N. Leung, J. Wu, S. Lee, T. Langtry, Kuo wei Chang, C. Papagianni, Jinwook Lee,

J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro, and G. Spadini. A stackable cross

point phase change memory. In2009 IEEE International Electron Devices Meeting

(IEDM ’09), pages 1–4, December 2009.

[47] Jesung Kim, Jong Min Kim, S.H. Noh, Sang Lyul Min, and Yookun Cho. A space-

efficient flash translation layer for CompactFlash systems.IEEE Transactions on

Consumer Electronics, 48(2):366–375, May 2002.

[48] Jin Kyu Kim, Hyung Gyu Lee, Shinho Choi, and Kyoung Il Bahng. A PRAM and

NAND flash hybrid architecture for high-performance embedded storage subsystems.

In Proceedings of EMSOFT ’08, pages 31–40, 2008.

[49] Jingfei Kong and Huiyang Zhou. Improving privacy and lifetime of PCM-based main

memory. InProceedings of the 2010 IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN ’10), pages 333–342, July 2010.

[50] R. Krishnamurthy. Comparing samsung nor-compatible pcm with nor. 2011.

[51] Tei-Wei Kuo, Yuan-Hao Chang, Po-Chun Huang, and Che-Wei Chang. Special issues

in flash. InProceedings of the IEEE/ACM International Conference on Computer-

Aided Design (ICCAD ’08), pages 821–826, November 2008.

[52] B.C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, E. Ipek, O. Mutlu, and

D. Burger. Phase-change technology and the future of main memory. IEEE Micro,

30(1):143–143, January 2010.

[53] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase

change memory as a scalable dram alternative. InProceedings of the 36th annual

international symposium on Computer architecture (ISCA ’09), pages 2–13, 2009.

112

[54] Jongmin Lee, Sunghoon Kim, Hunki Kwon, Choulseung Hyun, Seongjun Ahn, Jong-

moo Choi, Donghee Lee, and Sam H. Noh. Block recycling schemes and their cost-

based optimization in NAND flash memory based storage system. In Proceedings

of the 7th ACM & IEEE International Conference on Embedded Software (EMSOFT

’07), pages 174–182, 2007.

[55] Kwang-Jin Lee, Beak-Hyung Cho, Woo-Yeong Cho, Sangbeom Kang, Byung-Gil

Choi, Hyung-Rok Oh, Chang-Soo Lee, Hye-Jin Kim, Joon-Min Park, Qi Wang, Mu-

Hui Park, Yu-Hwan Ro, Joon-Yong Choi, Ki-Sung Kim, Young-Ran Kim, In-Cheol

Shin, Ki-Won Lim, Ho-Keun Cho, Chang-Han Choi, Won-Ryul Chung, Du-Eung

Kim, Kwang-Suk Yu, Gi-Tae Jeong, Hong-Sik Jeong, Choong-Keun Kwak, Chang-

Hyun Kim, and Kinam Kim. A 90nm 1.8V 512Mb diode-switch PRAM with 266M-

B/s read throughput. In2007 IEEE International Solid-State Circuits Conference

(ISSCC ’07), pages 472–616, February 2007.

[56] Kwangyoon Lee and Alex Orailoglu. Application specificlow latency instruction

cache for NAND flash memory based embedded systems. InProceedings of the 2008

IEEE Symposium on Application Specific Processors (SASP ’08), pages 69–74, June

2008.

[57] Kwangyoon Lee and Alex Orailoglu. Application specificnon-volatile primary mem-

ory for embedded systems. InProceedings of the 6th IEEE/ACM/IFIP Internation-

al Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS

’08), pages 31–36, 2008.

[58] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park, and

Ha-Joo Song. A log buffer-based flash translation layer using fully-associative sector

translation.ACM Transactions on Embedded Computing Systems, 6(3):18, 2007.

[59] Yu Li, Jianliang Xu, Byron Choi, and Haibo Hu. StableBuffer: optimizing write

performance for DBMS applications on flash devices. InProceedings of the 19th

113

ACM international conference on Information and knowledgemanagement (CIKM

’10), pages 339–348, 2010.

[60] D. Liu, Y. Wang, Z. Qin, Z. Shao, and Y. Guan. A space reusestrategy for flash

translation layers in SLC NAND flash memory storage systems.IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, PP(99):1–14, 2011.

[61] Micron Technology, Inc.. Micron phase change memory.

http://www.micron.com/products/pcm/, 2011.

[62] T. Nirschl, J.B. Phipp, T.D. Happ, G.W. Burr, B. Rajendran, M.-H. Lee, A. Schrott,

M. Yang, M. Breitwisch, C.-F. Chen, E. Joseph, M. Lamorey, R.Cheek, S.-H. Chen,

S. Zaidi, S. Raoux, Y.C. Chen, Y. Zhu, R. Bergmann, H.-L. Lung, and C. Lam. Write

strategies for 2 and 4-bit multi-level phase-change memory. In 2007 IEEE Interna-

tional Electron Devices Meeting (IEDM ’07), pages 461–464, December 2007.

[63] Sai Tung On, Yinan Li, Bingsheng He, Ming Wu, Qiong Luo, and Jianliang Xu. FD-

buffer: a buffer manager for databases on flash disks. InProceedings of the 19th

ACM international conference on Information and knowledgemanagement (CIKM

’10), pages 1297–1300, 2010.

[64] Stanford R. Ovshinsky. Symmetrical current controlling device.US patent 3271591,

September 1966.

[65] Stanford R. Ovshinsky. Reversible electrical switching phenomena in disordered

structures.Physical Review Letters, 21:1450–1453, November 1968.

[66] N. Papandreou, H. Pozidis, T. Mittelholzer, G.F. Close, M. Breitwisch, C. Lam, and

E. Eleftheriou. Drift-tolerant multilevel phase-change memory. In2011 3rd IEEE

International Memory Workshop (IMW),, pages 1–4, May 2011.

[67] Chanik Park, Wonmoon Cheon, Jeonguk Kang, Kangho Roh, Wonhee Cho, and Jin-

Soo Kim. A reconfigurable FTL (flash translation layer) architecture for NAND flash-

114

based applications.ACM Transactions on Embedded Computing Systems, 7(4):1–23,

2008.

[68] Youngwoo Park and Kyu Ho Park. High-performance scalable flash file system using

virtual metadata storage with phase-change RAM.IEEE Transactions on Computers,

60(3):321–334, Mar. 2011.

[69] Youngwoo Park and Kyu Ho Park. High-performance scalable flash file system using

virtual metadata storage with phase-change ram.IEEE Transactions on Computers,

60(3):321–334, March 2011.

[70] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. Demand-based block-level address

mapping in large-scale NAND flash storage systems. InProceedings of the 8th

IEEE/ACM International Conference on Hardware/Software Codesign and System

Synthesis (CODES+ISSS ’10), 2010. (to appear).

[71] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. Demand-based block-level address

mapping in large-scale NAND flash storage systems. InProceedings of the eighth

IEEE/ACM/IFIP international conference on Hardware/software codesign and system

synthesis (CODES/ISSS ’10), pages 173–182, 2010.

[72] Zhiwei Qin, Yi Wang, Duo Liu, and Zili Shao. A two-level caching mechanism for

demand-based page-level address mapping in NAND flash memory storage systems.

In Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applica-

tions Symposium (RTAS ’11), pages 157–166, Apr. 2011.

[73] Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, and Yong Guan. MNFTL: an efficient flash

translation layer for MLC NAND flash memory storage systems.In Proceedings of

the 48th Design Automation Conference (DAC ’11), pages 17–22, Jun. 2011.

[74] M.K. Qureshi, M.M. Franceschini, and L.A. Lastras-Montano. Improving read per-

formance of phase change memories via write cancellation and write pausing. In2010

IEEE 16th International Symposium on High Performance Computer Architecture (H-

PCA ’10), pages 1 –11, January 2010.

115

[75] M.K. Qureshi, A. Seznec, L.A. Lastras, and M.M. Franceschini. Practical and se-

cure PCM systems by online detection of malicious write streams. InProceedings of

the 17th IEEE International Symposium on High Performance Computer Architecture

(HPCA ’11), pages 478–489, February 2011.

[76] Moinuddin K. Qureshi, Michele M. Franceschini, Luis A.Lastras-Montaño, and

John P. Karidis. Morphable memory system: a robust architecture for exploiting

multi-level phase change memories. InProceedings of the 37th annual international

symposium on Computer architecture (ISCA ’10), pages 153–162, 2010.

[77] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-

vasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and security of PCM-

based main memory with start-gap wear leveling. InProceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO ’09), pages 14–

23, 2009.

[78] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable high

performance main memory system using phase-change memory technology. InPro-

ceedings of the 36th annual international symposium on Computer architecture (ISCA

’09), pages 24–33, 2009.

[79] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. c. Chen, R. M. Shelby,

M. Salinga, D. Krebs, S. h. Chen, H. l. Lung, and C. H. Lam. Phase-change random

access memory: A scalable technology.IBM Journal of Research and Development,

2008.

[80] Simone Raoux, Charles T. Rettner, Jean L. Jordan-Sweet, Andrew J. Kellock, Teya

Topuria, Philip M. Rice, and Dolores C. Miller. Direct observation of amorphous to

crystalline phase transitions in nanoparticle arrays of phase change materials.Journal

of Applied Physics, 102(9):094305–094308, November 2007.

[81] Samsung. Samsung ships industrys first multi-chip package with a PRAM chip for

handsets. http://www.samsung.com/us/business/semiconductor/newsView.do?news

116

id=1149, April 2010.

[82] SAMSUNG Corporation. SAMSUNG NAND flash.

http://www.samsung.com/global/business/semiconductor, 2009.

[83] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. Security refresh: prevent

malicious wear-out and increase durability for phase-change memory with dynami-

cally randomized address mapping. InProceedings of the 37th annual international

symposium on Computer architecture (ISCA ’10), pages 383–394, 2010.

[84] G. Servalli. A 45nm generation phase change memory technology. In 2009 IEEE

International Electron Devices Meeting (IEDM ’09), pages 1–4, December 2009.

[85] A. Seznec. A phase change memory as a secure main memory.Computer Architec-

ture Letters, 9(1):5–8, January 2010.

[86] A. Shah. Samsung to put pcm for smartphones in chip package. PCWorld, 2010.

[87] Guangyu Sun, Yongsoo Joo, Yibo Chen, Dimin Niu, Yuan Xie, Yiran Chen, and Hai

Li. A hybrid solid-state storage architecture for the performance, energy consumption,

and lifetime improvement. In2010 IEEE 16th International Symposium on High

Performance Computer Architecture (HPCA ’10), pages 1–12, Jan. 2010.

[88] Guangyu Sun, Dimin Niu, Jin Ouyang, and Yuan Xie. A frequent-value based PRAM

memory architecture. InProceedings of the 2011 Conference on Asia and South Pa-

cific Design Automation (ASP-DAC ’11), pages 211–216, 2011.

[89] Yi-Lin Tsai, Jen-Wei Hsieh, and Tei-Wei Kuo. Configurable NAND flash translation

layer. In Proceedings of the IEEE International Conference on SensorNetworks,

Ubiquitous, and Trustworthy Computing -Vol 1 (SUTC’06), pages 118–127, 2006.

[90] Yi Wang, Duo Liu, Zhiwei Qin, and Zili Shao. An endurance-enhanced flash transla-

tion layer via reuse for NAND flash memory storage systems. InProceedings of the

Conference on Design, Automation and Test in Europe (DATE ’11), pages 1–6, Mar.

2011.

117

[91] Yi Wang, Duo Liu, Meng Wang, Zhiwei Qin, Zili Shao, and Yong Guan. RNFTL:

a reuse-aware NAND flash translation layer for flash memory. In Proceedings of the

ACM SIGPLAN/SIGBED 2010 conference on Languages, compilers, and tools for

embedded systems (LCTES ’10), pages 163–172, 2010.

[92] Chin-Hsien Wu, Li-Pin Chang, and Tei-Wei Kuo. An efficient B-Tree layer for flash-

memory storage systems. InProceedings of the 9th International Conference on Real-

Time and Embedded Computing Systems and Applications (RTCSA ’03), pages 409–

430, February 2003.

[93] Chin-Hsien Wu and Tei-Wei Kuo. An adaptive two-level management for the flash

translation layer in embedded systems. InProceedings of the 2006 IEEE/ACM Inter-

national Conference on Computer-Aided Design (ICCAD ’06), pages 601–606, 2006.

[94] Chin-Hsien Wu, Tei-Wei Kuo, and Chia-Lin Yang. A space-efficient caching mecha-

nism for flash-memory address translation. InProceedings of the 9th IEEE Interna-

tional Symposium on Object and Component-Oriented Real-Time Distributed Com-

puting (ISORC ’06), pages 64–71, 2006.

[95] Po-Liang Wu, Yuan-Hao Chang, and Tei-Wei Kuo. A file-system-aware FTL design

for flash-memory storage systems. InProceedings of the Conference on Design, Au-

tomation and Test in Europe (DATE ’09), pages 393–398, 2009.

[96] Yuan Xie. Modeling, architecture, and applications for emerging memory technolo-

gies. IEEE Design Test of Computers, 28(1):44–51, Jan.–Feb. 2011.

[97] Noboru Yamada, Eiji Ohno, Kenichi Nishiuchi, Nobuo Akahira, and Masatoshi Takao.

Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an

optical disk memory.Journal of Applied Physics, 69(5):2849–2856, March 1991.

[98] HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding, and Onur

Mutlu. Row buffer locality-aware data placement in hybrid memories.SAFARI Tech-

nical Report No. 2011-005, September 2011.

118

[99] Wangyuan Zhang and Tao Li. Characterizing and mitigating the impact of process

variations on phase change based memory systems. InProceedings of the 42nd An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO ’42), pages

2–13, 2009.

[100] Wangyuan Zhang and Tao Li. Helmet: A resistance drift resilient architecture for

multi-level cell phase change memory system. InProceedings of the 2011 IEEE/IFIP

41st International Conference on Dependable Systems Networks (DSN ’11), pages

197–208, June 2011.

[101] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient

main memory using phase change memory technology. InProceedings of the 36th

Annual International Symposium on Computer Architecture (ISCA ’09), pages 14–23,

2009.

119

