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Abstract

Longitudinal data often occur in a long-term study where each individual is

measured repeatedly at distinct time points rather than continuous times and also

the observation times and censoring times may vary from subject to subject. Many

researchers have considered the analysis of such longitudinal data under the as-

sumption that observation process is independent of response process completely

or conditional on covariates, which may not be true in practice. This thesis inves-

tigates semiparametric analysis of longitudinal data when the response process is

correlated with the observation times.

We develop a new class of semiparametric mean models for longitudinal data

which allows for the interaction between the observation history and covariates,

leaving patterns of the observation process to be arbitrary. Although panel count

data is a special case of longitudinal data, it has particular features which can not

be described by general longitudinal models. Thus, to analyze the panel count

data, we propose a new class of flexible semiparametric regression models by in-

corporating the interaction between the observation history and some covariates to

the mean model of the recurrent event process, without any formation restriction

on the informative observation process. For inference on the regression parame-

ters and the unknown baseline functions involved in both longtidunial data and

panel count data models, spline-based least square estimation approachs are pro-

posed, respectively, and asymptotic properties including the consistency, rate of

convergence and asymptotic normality of the proposed estimators are established

for both models. Simulation studies demonstrate that the proposed inference pro-
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cedures perform well for both models. The analyses of a bladder tumor data are

presented to illustrate the proposed methods.

Furthermore, it would be desirable to develop estimation procedures for panel

count data with informative observation times, and also with time-dependent co-

variates and informative censoring times. Thus we extend the joint frailty models

proposed by Zhao and Tong (2011) to panel count data with the time-dependent

covariates and informative observation and censoring times. A novel estimating

equation approach that does not depend on the distribution of frailty variables

and the link function is proposed for estimation of parameters, and the asymp-

totic properties of the proposed estimators are established. The performance of

proposed inference procedure are demonstrated by some simulation studies and

illustrated by the analysis of a bladder tumor data.

Key Words Asymptotic normality; B-splines; Empirical process; Estimating

equation; Informative observation process; Longitudinal data; Panel count data;

Time-dependent covariates.
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Chapter 1

Introduction and Literature Review

In this chapter, we focus on introducing the motivations of our research and

reviewing the related literature. In our research, we mainly discuss three different

semiparametric analysis procedures for longitudinal data with informative obser-

vation times.

1.1 Motivation

The bladder cancer study conducted by the Veterans Administration Coop-

erative Urological Research Group (VACURG), which will be considered in this

dissertation, is described in this section to illustrate that what applications have

motivated us to do analysis about longitudinal data with informative observation

times.

1.1.1 Bladder Cancer Study

A bladder cancer follow-up study conducted by the VACURG of USA ex-

tracted from Andrews and Herzberg (1985, pp.253-260) was first studied by Byar

(1980). In the study, 116 subjects had superficial bladder tumors when they en-

tered the study and these tumors were removed transurethrally and then patients

were randomly allocated to one of the three treatments, placebo (47), thiotepa (38)
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and pyridoxine (31). Many patients had multiple recurrences of new tumors during

the study. The follow-up times vary from 1 week to 64 weeks. In the study, the

patients periodically visited the clinical centers and at each visit, the numbers of

bladder new tumors since the last visit were recorded and the new tumors were re-

moved transurethrally and then the treatment was continued. For many patients,

more than one bladder new tumors were recorded between two visits, however,

times for each tumor occurred were not exactly known. Furthermore, different

patients had different visiting times since they had not visited the clinical centers

at the scheduled times because of some personal reasons, that is, the observation

times and the censoring times vary from patient to patient. Thus only panel count

data are available. For each patient, the observed information includes clinical

visit times, the numbers of recurrent tumors between clinical visits, two baseline

covariates that are the number of initial tumors and the size of the largest initial

tumor, and also the type of treatment for the patient. The full data set can be

located at http://www.blackwellpublishers.co.uk/rss/, and the data for the

placebo and thiotepa groups can be found in Hu et al. (2003) and Appendix of

Sun (2006).

As indicated in Byar (1980) and Andrews and Herzberg (1985), one of the

main objectives of the study is to evaluate the effect of the treatment on the rate of

tumor recurrence. The data have been analyzed by Sun and Wei (2000); Wellner

and Zhang (2000); Zhang (2002); Wellner and Zhang (2007) among others, where

the observation times were assumed to be noninformative.

However, the appearance that some patients in the study had significantly
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more clinical visits than others indicates that the number of clinical visits may

contain some information about the tumor occurrence rate. Thus an important

question is how to take into account or make use of this information for inference

about the tumor recurrence rate. For the analysis of rate of tumor recurrence

with informative observation times, Huang et al. (2006), Li et al. (2010), Zhao

and Tong (2011), and Deng (2012) among others have developed different analysis

procedures.

Furthermore, by comparing the data in the placebo group with that in the

thiotepa group, it is noticeable that the subjects in the thiotepa group tended to

visit the clinics more often than those in the placebo group, which may be explained

by the reason that the patients in the thiotepa needed to visit the clinics more in

order to have their thiotepa installed. The different patterns of observation times

should be taken into account in the analysis. Hu et al. (2003), Sun et al. (2005), Li

et al. (2010),and Zhao and Tong (2011) have gave some analysis about this data

based on the nonhomogeneous Poisson process assumption about the observation

times. A nonstationary Poisson process with frailty (Sun et al., 2007; Zhao et al.,

2012), a conditional intensity model (Liang et al., 2009) and a marginal rate model

(Song et al., 2012) for the observation times have also been proposed. One problem

behind all these model assumptions about observation times is how to assess the

adequacy of these models.

In addition, the natural logarithm of the total number of observed tumors

within the last 3 months plus 1 taken as a time-dependent covariate was used to

assess the effect of the dependence among tumor recurrence on the tumor recur-
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rence rate by Sun et al. (2011).

Motivated by the bladder cancer data, we develop marginal conditional models

for longitudinal data and panel count data with informative observation times,

without any restriction on the pattern of the observation times in Chapter 2 and

3, respectively. Also a class of joint frailty models of panel count data with time-

dependent covariates and informative information times is proposed in Chapter

4.

The detailed application discussions on the bladder cancer data are presented

in the application parts of Chapters 2 - 4.

1.2 Literature Review

1.2.1 Longitudinal Data

In many longitudinal studies, each individual may experience the same event

repeatedly at distinct time points during a relatively long follow-up time. These

data may occur frequently in a wide variety of settings, including epidemiology,

clinical trials, and economic applications and so on. Examples of longitudinal data

include the bladder cancer data (Byar, 1980), a cost-accrual process of chronic

heart failure patients from the clinical data repository (CDR) at the University

of Virginia Health System (Liu et al., 2008), available online at http://cdr.

virginia.edu/cdr, seizures counts for epileptic patients (Thall and Vail, 1990; Al-

bert, 1991), a chemotherapy cardiotoxic outcome data for the Acute Lymphoblastic

Leukemia (ALL) (Lipshultz et al., 1995; Lipsitz et al., 2002), a medical cost data

for the childhood Acute Myeloid Leukemia (AML) trial (Rubnitz et al., 2010; Zhu
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et al., 2011), the air pollution data (Leitenstorfer and Tutz, 2007), whose original

database can be found at http://www.ime.usp.br/~jmsinger/Polatm9497.zip

and so on. The main characteristic of such data is that the observations are in-

dependent between different subjects and may be correlated within each subject.

However, in Chapters 2 - 4, we just considered “population-averaged” (PA) models

(Zeger et al., 1988), which modelled the population-averaged response as a func-

tion of covariates without explicitly accounting for within subject heterogeneity,

and thus the effects of the covariates have interpretation for the population rather

than for any subject.

For the analysis of longitudinal data, parametric regression analysis has been

studied by Laird and Ware (1982) and Liang and Zeger (1986) among others. Dig-

gle et al. (1994) provided an excellent review of frequently used methods including

both estimating equation and random effect model approaches and Verbeke and

Molenberghs (2000) given a comprehensive review of linear mixed model proce-

dures. In order to avoid the possible modeling biases in parametric analysis, var-

ious more flexible nonparametric models have been proposed by several authors

including Hoover et al. (1998), Wang (1998), Zhang et al. (1998), and Huang et al.

(2004) among others. By composing the parametric and nonparametric models, a

number of semiparametric models with nice features have been considered for lon-

gitudinal data. Zeger and Diggle (1994) proposed a semiparametric mixed model

for longitudinal data and suggested a backfitting procedure for inference. Lin

and Ying (2001) developed a novel and simple semiparametric and nonparametric

method for the regression analysis of irregularly spaced longitudinal data by for-
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mulating the observation times within the framework of counting processes. He

et al. (2002) considered an extended M-estimators for analyzing longitudinal data

with unspecified dependence structure.

In the longitudinal data analysis, there are two important processes – the

response process and the observation process to be considered. A basic assumption

behind all the methods mentioned above is that observation times are independent

of response variable, completely or given covariates. However, this assumption

may be violated in many applications, such as the longitudinal data arising from

the bladder cancer follow-up study conducted by the VACURG (Byar, 1980) as

mentioned in Section 1.1.1. In the Acute Lymphoblastic Leukemia (ALL) data

(Lipsitz et al., 2002), a patient with an abnormally low wall-thickness measurement

may demand more frequent echocardiograms and visit times. In the AML trial

data (Zhu et al., 2011), patients in a severe disease stage visit the hospital more

often than those in a mild disease stage. We call these response-dependent visit

times as informative observation times. Thus it is very necessary to determine

the relationship between the response process and the observation process so as to

take into account or make use of this information for inference about the effect of

the covariates on the response process.

For the longitudinal data analysis with informative observation times, two

methods have been developed. One is the conditional modeling approach pro-

posed by Lin et al. (2004) and Sun et al. (2005). Lin et al. (2004) constructed

their conditional model based on the sequential ignorability assumption (Robins

and Rotnitzky, 1992) that the decision to visit at time t did not depend on the
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current response given the past history, and developed a class of inverse intensity-

of-visit process-weighted estimators. Sun et al. (2005) generalized the marginal

model given by Lin and Ying (2001) to a conditional model, which obviously char-

acterized the dependence of the response process and the observation times and

proposed estimating equation approaches. Another one is the frailty-based ap-

proach proposed by Sun et al. (2007), Liang et al. (2009), Zhao et al. (2012), Song

et al. (2012) among others. For example, Sun et al. (2007) used a shared latent

variable or frailty to characterize the correlations between the response process

and the observation times with informative censoring times. Liang et al. (2009)

modeled the longitudinal data with informative observation times via two differ-

ent latent variables that satisfied a linear relationship and some external covariates

and the distribution assumption for a latent variable is required. Zhao et al. (2012)

considered more general joint models using a completely unspecified link function

and a latent variable to characterize the correlations between the response process

and the observation process, and developed estimating equation approaches.

As discussed in Section 1.1.1, the different patterns of observation times should

also be taken into account in the analysis. The vast majority of research mentioned

above were based on a common and key assumption that the observation process

follows a Poisson or mixed Poisson with the proportional intensity function (Sun

et al., 2005, 2007; Liang et al., 2009; Zhao et al., 2012). However, the fit of the

Poisson model may be inadequate when the observation process displays under-

dispersion or over-dispersion. Based on such consideration, Song et al. (2012)

proposed a new more flexible joint modelling approach for the longitudinal data
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with informative times via two different latent variables, where the response pro-

cess was assumed to follow a marginal mean model and the observation process

follows a marginal rate model which does not rely on the assumption of a nonho-

mogeneous Poisson process.

In addition, the relation between the observation and response processes may

vary with some covariates. For example, in the bladder cancer study, patients

who received the thiotepa treatment may have less superficial bladder tumors,

and thus may visit the doctor less often than those in the placebo group, which

means that the correlation between the observation times and the tumor recurrent

process may be different for different treatment groups. Earlier researchers have

not considered this situation, however, ignoring this fact may result in magnify

biased estimators. Motivated by the discussions mentioned above, we will develop

a new class of semiparametric mean models for the correlated response process and

the observation process, which allows for the interaction between the observation

history and covariates, leaving patterns of the observation process to be arbitrary

in Chapter 2 and also discuss the estimation approach for the models.

1.2.2 Panel Count data

In some longitudinal follow-up studies, each subject may be observed at sev-

eral distinct times and only the numbers of events between two adjacent times

are available. It may be impossible to record the exact event times because of

too expensive examination cost or too frequent occurrence of the events for their

exact times to be recorded and so on. Moreover, the set of observation times

may vary from subject to subject. Such data are called panel count data. For
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this data, important information including the observation times, the counts of

recurrent events, the censoring or follow-up times and the covariates related to the

study are recorded for each study subject. Clearly, panel count data is a special

case of longitudinal data in which the underlying counting process for recurrent

events of interest is regarded as the response process and covariate effects on the

underlying recurrent process are often the study of interest. The applications of

panel count data including the bladder cancer data mentioned in Section 1.1.1

(Byar, 1980), the incidence of nausea of patients with gallstone disease from the

National Cooperative Gallstone Study (NCGS) (Thall and Lachin, 1988; Sun and

Kalbleisch, 1995), reliability of nuclear plants (Gaver and O’Muircheartaigh, 1987;

Sun and Kalbleisch, 1995) and so on. In panel count data, a special case exists

when only one observation is taken for every subject and the survival time of inter-

est is known only to be either less or greater than the observation time. Such data

is called current status data (Case 1 interval-censored data). A typical example of

current status data can be found in the tumorigenicity experiments (Dewanji and

Kalbfleisch, 1986), in which only the death time of animals at study and the status

of tumor onset at the death time are observed. Multivariate panel count data arise

if more then one kind of recurrent events are to be considered and individuals are

only observed repeatedly at intermittent times. In tumorigenicity experiments,

this data are commonly exist when several types of tumors occur together. Chen

et al. (2005) gave an example of an advanced breast cancer study, in which three

types of metastatic bone lesions and related covariates are recorded at distinct

examination times for each patient. He et al. (2008) analyzed a cohort study of
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psoriatic arthritis patients at the University of Toronto Psoriatic Arthritis Clinic,

where two types of joint damages (radiologically and functionally joint damage)

were considered. Another form related with panel data is the multistate panel

data, in which the observations consist of a finite number of states occupied by the

individuals under study at a sequence of discrete, irregularly spaced time points,

with no information about the exact transition times. These data commonly exist

in applications, such as, a study of the smoking habits of school children with

three possible “smoking status” for each child (Kalbfleisch and Lawless, 1985), a

hepatocellular carcinoma study (Kay, 1986) with three states of the serum alphafe-

toprotein (AFP) level, a cytomegalovirus (CMV) retinitis clinical trial with five

stages of toxicity of the treatments for the Acquired Immune Deficiency Syndrome

(AIDS) patients (Lee and Kim, 1998).

A majority of researchers have investigated the analysis of panel count data

under the assumption that the observation process is independent of the underly-

ing recurrent event process completely or conditional on covariates. For estimation

of the mean function of the underlying recurrent process, many nonparametric

methods have been developed. Sun and Kalbleisch (1995) presented a consistent

estimator of the mean function based on isotonic regression (Barlow et al., 1972;

Robertson et al., 1988), while Wellner and Zhang (2000) derived a nonparametric

maximum pseudo-likelihood estimator (NPMPLE) and the nonparametric max-

imum likelihood estimator (NPMLE) under a nonhomogeneous Poisson process

assumption for the underlying recurrent process. Zhang and Jamshidian (2003)

introduced the gamma frailty model for the intracorrelated panel counts and con-
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structed an NPMPLE proposed in Wellner and Zhang (2000) with the frailty.

Lu et al. (2007) proposed a monotone B-splines-based nonparametric likelihood

estimator for the mean function. Hu et al. (2009a) discussed a nonparametric

generalized weighted least squares estimator the Sun-Kalbfleisch’s estimator and

Wellner-Zhang’s NPMLE as special cases. Hu et al. (2009b) developed two types of

self-consistent estimating equation procedures for the mean function of the underly

recurrent process with a Poisson assumption.

In consideration of the covariates effect on the underlying recurrent process,

semiparametric analysis of panel count data have drawn considerable attention

in survival literatures. Sun and Wei (2000) constructed a proportional means

model proposed in Lin et al. (2000) for the underlying recurrent event process

with the observation times and follow-up time independent or dependent of the

covariates. Under the proportional means model assumption for the underlying

recurrent event process, Hu et al. (2003) proposed estimation equation approaches

for a general observation process without model restriction and a proportion rate

model for observation process, respectively. Zhang (2002) proposed a semipara-

metric pseudolikelihood estimation method based on a nonhomogeneous Poisson

process assumption for the proportional means model. Furthermore, Wellner and

Zhang (2007) studied both the semiparametric maximum pseudo-likelihood and

maximum likelihood estimators for the proportion means model. Iterative al-

gorithm proposed via profile likelihood approach was used in Zhang (2002) and

Wellner and Zhang (2007) to obtain their estimators, however, this algorithm is

not efficient, especially for the maximum likelihood estimation method. Thus, an
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easy implemented generalized Rosen algorithm proposed by Zhang and Jamshid-

ian (2004) was used by Lu et al. (2009) to compute their estimators. Tong et al.

(2009) was the first one to consider the variable selection problem in the panel

count data, and they developed a non-concave penalized estimating function ap-

proach that could select variables and estimate the regression coefficients for the

proportional mean model simultaneously. Then Wu and He (2012) explored a

fast coordinate ascent algorithm to select relevant predictors for the underlying

recurrent event process under a proportional mean model, when the number of

predictors far exceeds the number of subjects. Bayesian analysis for panel count

data with dependent termination time was proposed by Sinha and Maiti (2004),

where they constructed semiparamatric joint models for the underlying recurrent

events and the termination time via a frailty and used Markov chain Monte Carlo

algorithm to estimate the regression parameters and the unknown function.

When the panel count data consist of independent samples randomly drawn

from k(k ≥ 2) populations or groups, one important thing is to handle the treat-

ment comparison. Thall and Lachin (1988) suggested to transform the problem to

a multivariate comparison problem and then apply a multivariate Wilcoxon-type

rank test, while Sun and Fang (2003) proposed a nonparametric approach under

the assumption that treatment indicators can be regarded as independent and

identically distributed random variables. Also Park et al. (2007) gave a class of

nonparametric two-sample tests based on the isotonic regression estimator of the

mean function of the underlying recurrent counting process, while Zhang (2006)

and Balakrishnan and Zhao (2011) developed some multi-sample nonparametric
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procedures by using nonparametric maximum pseudo-likelihood (isotonic regres-

sion) approach. Furthermore, Balakrishnan and Zhao (2009, 2010) proposed new

class of test statistics by using the nonparametric maximum likelihood estimator.

Recently, Zhao and Sun (2011) presented nonparametric tests for the comparison

of several treatment groups with different observation schemes. In addition, Zhao

et al. (2011) provide a relatively complete discussion for the analysis of panel count

data wherein more references can be found.

All the references mentioned above are for the univariate panel count data.

Other different forms of the panel count data have also attracted a lot of re-

searchers to study them. For the multivariate panel count data analysis, He et al.

(2008) presented a class of marginal mean models, leaving the dependence struc-

tures of related types of recurrent events completely unspecified. For the current

status data analysis, Diamond et al. (1986) extended the proportion hazards model

(Cox, 1972) to current status data. Sun and Kalbfleisch (1993) proposed a point

process technique to test the equality of mean functions of point processes. Xue

et al. (2004) developed a partial linear model for the current status data and pro-

posed a sieve maximum likelihood estimation method. For multistate panel data,

Kalbfleisch and Lawless (1985) discussed the fitting of Markov model with homo-

geneous transition intensities to multistate panel data. Kay (1986) developed a

Markov model to assess the dependence of risk of death on disease states. Lee and

Kim (1998) proposed a procedure assuming each multistate process marginally to

follow a time-homogeneous Markov Model allowing for covariates. These inferences

are all based on Markov models, however, in many applications, the Markov as-

13



sumption is not suitable when the transition intensities depend on the elapsed time

in the current state. For this, Kang and Lagakos (2007) developed likelihood-based

procedures for multistate panel data from a semi-Markov process, where transition

intensities depend on the duration of time in the current state.

In many situations, the underlying recurrent process and the observation pro-

cess are still related even given covariates, such as an example given by a set of

panel count data arising from the bladder cancer follow-up study mentioned in

Section 1.1.1. As stated in Section 1.2.1, the number of clinical visits may contain

some information about the tumor occurrence rate (Sun and Wei, 2000; Hu et al.,

2003; Li et al., 2010; Zhao and Tong, 2011). Another example can be seen in a spe-

cial case of panel count – current status data in tumorigenicity experiments, where

tumor onset time and the death time are usually of interest. If the tumors are

lethal, meaning that the tumor onset kills animals instantly, thus the death time

may depend on the tumor onset time (Zhang et al., 2005). They developed some

statistical analysis of current status data with informative observation times by a

random effect to determine the correlation. For the analysis of panel count data

with informative observation times, limited research exists. A class of semipara-

metric transformation models for the recurrent event process was constructed by

Li et al. (2010), by incorporating the observation history to the mean model of the

recurrent event process to reflect the correlation between these two processes, with

a nonhomogeneous Poisson process assumption for the observation times. Zhao

and Tong (2011) proposed a joint modeling approach that used an unobserved

frailty variable and a completely unspecified link function to characterize the cor-
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relation between the recurrent event process and the observation times assuming

the observation process to be a nonhomogeneous Poisson process with frailty.

However, just as we have stated for longitudinal data, the inadequacy of the

fitting of the Poisson model for the observation process may be yet existed in

panel count data when the observation process displays under-dispersion or over-

dispersion. Neglecting this under-dispersion or over-dispersion may result in biased

estimates and loss of estimation efficiency. Hu et al. (2009a) verified by simula-

tion that Weller-Zhang’s MLE is no longer efficient if the over-dispersion exist

in the panel count data. Few researchers have considered this under-dispersion

or over-dispersion problem in the panel count data. Huang et al. (2006) stud-

ied nonparametric and semiparametric models that allow the observation times

to be correlated with the event process, where the correlation is induced by a

frailty variable and the distributions of the observation times and the frailty were

considered as nuisance parameters. Hua and Zhang (2011) established a propor-

tional mean model without any stochastic assumption for the underlying recurrent

event process, and developed a spline-based semiparametric projected generalized

estimating equation (GEE) method through incorporating a working covariance

matrix which accounts for over-dispersion into the GEE so as to improve the esti-

mation efficiency and the variance estimation accuracy.

In the analysis of panel count data with informative observation times, the

same situation that the relation between the observation and the recurrent event

processes may vary with some covariates may exist as in the analysis of longitudinal

data discussed in Section 1.2.1.
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In view of these three problems discussed in the previous three paragraphs, in

Chapter 3, we will develop a new class of more flexible semiparametric regression

models by incorporating the interaction between the observation history and some

covariates to the mean model of the recurrent event process, while leaving the

patterns of the observation times to be arbitrary. For inference, a B-spline based

least square estimation procedure is proposed there.

In addition, in some applications, it would be desirable to develop estimation

procedures for panel count data with informative observation times, and also with

time-dependent covariates and informative censoring times. For example, in or-

der to assess the effect of the dependence among tumor recurrence on the tumor

recurrence rate, Sun et al. (2011) took the natural logarithm of the total number

of observed tumors within the last 3 months plus 1 as a time-dependent covari-

ate in their analysis. The underlying recurrent event processes with informative

censoring time exist especially in situations where a correlated failure event could

potentially terminate the further observation of the recurrent events. Hence, in

Chapter 4, we will consider the same models for the underlying recurrent events

and the observation times as given in Zhao and Tong (2011) except replacing

the time-independent covariates with the time-dependent covariates and removing

the assumption of noninformative censoring, and present an estimating equation

procedure there.

1.2.3 B-Splines in Survival Analysis

B-splines is a very popular type of polynominal splines in statistical applica-

tions, mainly because of their flexibility and numerical properties (de Boor, 1978;
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Schumaker, 1981). The definition and fundamental properties of B-splines are pre-

sented in Appendix A. Here we just review some references about the applications

of B-splines to a variety of aspects in survival analysis.

First of all, B-splines approximation can be used to estimate different nonpara-

metric smooth functions in a variety of survival models. We will summariz some

of them here. Whittemore and Keller (1986); Etezadi-Amoli and Ciampi (1987);

Rosenberg (1995); Kooperberg et al. (1995); Cai and Betensky (2003) have investi-

gated use of the fixed knots and quadratic or cubic linear splines or B-splines to es-

timate the hazard function or baseline hazard function of their respective censored

survival models. Also, when linear-effect on the log-hazard of the proportional

hazards model (Cox, 1972) was not hold, flexible relative risk form (Sleeper and

Harrington, 1990; Huang and Liu, 2006) and partially linear single-index (Gray,

1992; Sun et al., 2008) were suggested, where the nonparametric functions in-

volved in these models were estimated by B-splines. Giorgi et al. (2003) proposed

to use quadratic B-splines with fixed number of knots to model the hazard ratio

for their relative survival regression model proposed by Esteve et al. (1990). More

recently, Amorim et al. (2008) used cubic B-splines with fixed number of knots to

estimate the time-varying coefficients in the rates model for recurrent event data.

A Bayesian estimation procedure that used B-splines for a proportional hazards

frailty models was presented in Sharef et al. (2010). Zhang et al. (2010) developed a

spline-based semiparametric maximum likelihood method to study the Cox model

with interval-censored data. Most of these papers delivered above showed that

in moderate and heavily censored samples, the spline-based approaches not only
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have advantages in rate of computing, but also in accuracy by some simulations

or real data analysis.

Furthermore, when the function to be estimated is monotone, isotonic regres-

sion estimator (Barlow et al., 1972; Robertson et al., 1988; Wellner and Zhang,

2000), which can be viewed as a special case of monotone I-splines with order

one and knots positioned at the distinct data points, was proposed. However,

as described in Wellner and Zhang (2000), the computation of the estimator in-

volved the iterative convex minorant algorithm proposed by Jongbloed (1998),

which could be computationally demanding when the sample size is large. There-

fore, many researchers have developed the monotone B-splines estimation proce-

dure because of the following two reasons. Firstly, it is convenient to impose the

monotone constraints on the coefficients of the B-splines bases as B-splines pos-

sess the same monotonicity as the coefficients because of the variation-diminishing

properties (Schumaker, 1981). Secondly, the splines estimators are less compu-

tationally demanding since the number of the B-splines basis functions is often

chosen much smaller than the sample size. For example, Ramsay (1988) defined

monotone I-splines, and the merits of these monotone splines were showed through

a number of statistical applications, including response variable transformation in

nonlinear regression and modelling a dose-response function by monotone splines.

Kelly and Rice (1990) proposed to use nonparametric smoothing instead of non-

adequate parametric modeling procedure to study the dose-response curves under

monotonicity constraints. Shen (1998) introduced a spline-based sieve maximum

likelihood estimation method to estimate the nondecreasing baseline function and
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regression parameter in proportional odds model with right-censored and Case 2

interval-censored data. Leitenstorfer and Tutz (2007) developed a fitting procedure

based on the monotone B-splines for generalized additive models to investigate the

effect of the air pollutant on respiratory mortality. Lu (2010) proposed a monotone

B-splines-based sieve maximum likelihood estimator which can be computed by

the generalized Rosen algorithm in Jamshidian (2004) for a partly linear model.

As for the nonparametric function estimation in the semiparametric analysis

of longitudinal data and panel count data discussed here, monotone B-splines are

also widely used. For example, for panel count data, Lu et al. (2007) obtained a

monotone I-spline likelihood-based estimator for the mean function of the recurrent

event process with panel count data by a generalized Rosen algorithm (Jamshid-

ian, 2004) Then Lu et al. (2009) studied semiparametric likelihood-based method

for panel count data by using generalized Rosen algorithm to compute the regres-

sion parameters and the underlying mean function approximated by monotone

B-splines simultaneously. Hua and Zhang (2011) proposed a proportional mean

model without any assumptions for the underlying recurrent counting process and

the natural logarithm of the baseline mean function was approximated by a mono-

tone cubic B-spline function, whose coefficients along with regression parameters

were obtained by a projected generalized estimating equation method with the

working covariance matrix that accounts for overdispersion incorporated. When

considering the possible within-cluster heterogeneity existence in panel count data,

Nielsen and Dean (2008) assumed that the counts for each individual were gen-

erated by mixtures of nonhomogeneous Poisson processes with intensity functions
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approximated by cubic B-splines. For longitudinal data, Lin and Zhang (1999)

developed smoothing spline-based statistical inference in a class of generalized ad-

ditive mixed models. Huang et al. (2004) proposed to approximate each coefficient

function by a polynomial spline and employed a least square method for estima-

tion.

Three components involved in B-splines approximation are the degree of

splines, the number of knots and the location of knots. In general, cubic or

quadratic splines are sufficient to fit the unknown smooth function well. The

number of knots determines the flexibility of the fitted splines since reducing or

increasing the number of knots which means reducing or increasing the density

of knots in different regions of the observation times will result in reducing or

increasing the flexibility within those regions. One way for choosing the number

of knots is to let it vary in a relatively large range and define the final number

to be the one that maximized the Akaike information criterion (AIC) (Akaike,

1973) or Bayesian information criterion (BIC) as given in Rosenberg (1995) and

Huang and Liu (2006). Another way for choosing the number of knots is to set

the number of interior knots to be mn = O(nν) with 0 < ν < 1/2 and n being the

sample size or the number of the distinct observation times as in Lu et al. (2007,

2009) and Hua and Zhang (2011). Given the number of knots, the location of

the knots which determines the shapes of the basis splines thus in turn the shape

of the fitted splines is obviously an important problem to be considered. There

are mainly two data-driven methods for determining locations of knots – uniform

partitions (Lu et al., 2007; Lu, 2010) and partitions according to quantiles of the
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data (Rosenberg, 1995; Lu et al., 2009; Hua and Zhang, 2011). Given number

of the interior knots mn, for the uniform partitions, the equally spaced knots are

given by tmin + k(tmax − tmin)/(mn + 1), k = 0, 1, · · · ,mn + 1, with tmin and tmax

being the respective minimum and maximum values of distinct observation times.

For the partitions according to quantiles of the data, the k/(mn + 1) quantiles

(k = 0, 1, · · · ,mn+1) of the distinct observation times are chosen to be the knots.

However, it is showed that the estimation results are rather robust with respect

to the number of knots and the location of the knots (Ramsay, 1988; Cai and

Betensky, 2003; Lu et al., 2009). The last point which is worth pointing out is

that splines composed of linear combinations of exponential, trigonometric, Dirac

delta function and some other form of functions are also possible (de Boor, 1978;

Schumaker, 1981; Whittemore and Keller, 1986).

1.3 Outline of Thesis

The reminder of this thesis is organized as follows. For correlated response

process and observation process in longitudinal data, a new class of semiparamet-

ric mean models which allows for the interaction between the observation history

and covariates, leaving patterns of the observation process to be arbitrary are de-

veloped in Chapter 2. For inference on the regression parameters and the baseline

mean function, a spline-based least square estimation approach is proposed, and

the consistency, rate of convergence and asymptotic normality of the proposed

estimators are established. Simulation studies demonstrate that the proposed in-

ference procedure performs well. Some graphical and numerical techniques are
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presented to check the adequacy of the fitted model. The analysis of the bladder

tumor data is presented to illustrate the proposed method.

Similar to Chapter 2, Chapter 3 presents a new class of semiparametric re-

gression models by incorporating the observation history to the mean model of

the recurrent event process, while leaving the patterns of the observation times to

be arbitrary. A monotone B-spline-based least-square estimation approach is also

proposed to make inference about the regression parameters and the baseline mean

function, and asymptotic properties including consistency, rate of convergence and

asymptotic normality of the proposed estimators are established. Numerical re-

sults including simulation studies and the analysis of the bladder tumor data are

also provided.

Chapter 4 extends the joint frailty models proposed by Zhao and Tong (2011)

to panel count data with time-dependent covariates and informative observation

and censoring times. A novel estimating equation approach that does not depend

on distributions of frailty variables and the link function is proposed for estimation

of parameters, and the asymptotic properties of the proposed estimators are es-

tablished. The performance of the proposed inference procedure is demonstrated

by some simulation studies and illustrated by the analysis of the bladder tumor

data.

In Chapter 5, some conclusions and related future research are presented.
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Chapter 2

Longitudinal Data Analysis Using B-Splines

Semiparametric regression analysis of longitudinal data with informative ob-

servation times using B-splines is developed in this chapter.

2.1 Introduction

As mentioned in Section 1.2.1, it is desireble to analyze longitudinal data when

observation times contain information on the reponse process even given covari-

ates, and overcome the inadequacy of the fitting of the Poisson model assumption

for the observation process. In this chapter, motivated by the conditional mean

model of the response process given in Sun et al. (2005), we propose a new class

of semiparametric regression models which allows for the interaction between the

observation history and some covariates, while leaving the patterns of the observa-

tion times to be arbitrary. For the nonparametric estimation of the baseline mean

function, a B-spline approximation will be used following Lu et al. (2007, 2009).

The remainder of this chapter is organized as follows. We begin in Section

2.2 by introducing some notation and describing our models for longitudinal data.

In Section 2.3, a spline-based least square method is proposed for estimation of

regression parameters and the baseline unknown mean function invovled in our

models. Section 2.4 presents the asymptotic properties of the proposed estimators,
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including consistency, rate of convergence and asymptotic normality. In order

to assess the finite-sample performance of the proposed inference procedure, we

present some results obtained from simulation studies in Section 2.5. In Section

2.6, the proposed approaches are illustrated through the analysis of a data set from

a bladder tumor study.

2.2 Statistical model

Consider a longitudinal study that consists of a random sample of n subjects.

For subject i, let Yi(t) denote the response variable and Xi denote a p-dimensional

vector of covariates, i = 1, . . . , n. Suppose that Yi(t) is observed at distinct time

points TKi,1 < TKi,2 < . . . < TKi,Ki
, where Ki is the total number of observations

on subject i. In the following, we regard these observation times arising from

an underlying counting process H(t) characterized by Hi(t) =
∑Ki

j=1 I (TKi,j ≤ t) ,

where I(·) is the indicator function, and define H̃i(t) = Hi(min(t, Ci)), where Ci is

the follow-up or censoring time for subject i, i = 1, . . . , n. Then, the process Yi(t)

is observed only at the time points where H̃i(t) jumps.

Define Fit = {Hi(s), 0 ≤ s < t} as the observation history just before t. For

semiparametric analysis of longitudinal data with informative observation times,

Sun et al. (2005) was the first one to propose a conditional modelling approach,

and our works in Chapter 2 and Chapter 3 are motivated by their models. Thus,

let’s first introduce their models.

They assumed that Yi(t) follows the marginal model

E{Yi(t)|Xi,Fit} = μ0(t) + β′
0Xi + α′

0h(Fit), (2.1)

24



where μ0(t) is an unspecified smooth function of t, β0 is a p-dimension covariate

effect on the response process, α0 is a q-dimension regression coefficients, which

determines the correlation between the response process and the observation pro-

cess, and h(·) is a q-dimensional vector of known function. Also H(t) is assumed

to follow a nonhomogeneous Poisson process with

E{dH(t)|Xi} = eγ
′XidΛ0(t). (2.2)

where γ0 is a p-dimensional vector of regression parameters, and Λ0(t) =
∫ t

0
λ0(s)ds

is the mean cumulative number of observations by time t.

However, as discussed in Section 1.2.1, the fit of the Poisson model for ob-

servation process may not be inadequate when the observation process displays

under-dispersion or over-dispersion. In addition, some covariates may influence

the relation between the observation and response processes. Thus, by leaving the

patterns of the observation times to be arbitrary, we assume that Yi(t) follows the

marginal model

E{Yi(t)|Xi,Wi,Fit} = μ0(t) + β′Xi + α′h(Fit,Wi), (2.3)

given Xi, Fit and the covariate Wi, which may be a component of the vector Xi

or may be other variables different from Xi, where μ0(t) is an unspecified smooth

function of t, β is a p-dimensional vector of unknown regression parameters, α

is a q-dimensional vector of regression coefficients, and h(·) is a vector of known

functions of the counting process Hi(·) up to t− and the covariate Wi, representing

the interaction between the observation history and some covariates. Especially,
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when in some clinical studies with many different treatments, Wi are defined as the

group indicators, then h(·) represents the different group effects on the observation

times. The main purpose here is to estimate the regression coefficients α, β and

the smooth baseline mean function μ0(t).

Model (2.3) specifies that the process Yi(t) depends on the observation process

Hi(t) through function h, which can be chosen according to situations. Follow-

ing the discussion in Sun et al. (2005), a natural and simple choice for h may be

h(Fit,Wi) = Hi(t−)Wi, which means that Yi(t) and Fit are related through or all

information about Yi(t) in Fit is given by the total number of observations. An al-

ternative is that Yi(t) depends on Fit only through a recent number of observations,

say, in u time units, and this corresponds to h(Fit,Wi) = (Hi(t−)−Hi(t− u))Wi.

One could define h as a vector given by the forgoing two choices if both the total

and recent numbers of observations may contain information about Hi(t).

In addition, we assume that

E{Yi(t)|Xi, Hi(s), 0 ≤ s ≤ t, Ci} = E{Yi(t)|Xi,Fit, Ci}, (2.4)

which means that conditional on the covariates X′
is and C ′

is, the mean of response

variable at time point t is only related to the observation history before t. The

observation for each individual consists of O = (K, T̄K , ȲK , H̄K , X, C), with T̄K =

(TK,1, · · · , TK,K), ȲK = (Y (TK,1), · · · , Y (TK,K)), H̄K = (H(TK,1), · · · , H(TK,K)).

Throughout this chapter, we will assume that we observe n i.i.d. copies,O1, · · · ,On

of O.
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2.3 Inference procedure

For inference about model (2.3), a B-splines based least sqaure estimation

procedure is developed here.

Firstly, define

Ln(β, α, μ) =
n∑

i=1

Ki∑
j=1

[
Yi(TKi,j)− μ(TKi,j)− β′Xi − α′h(FiTKi,j

,Wi)
]2

ξi(TKi,j)

=
n∑

i=1

∫ τ

0

{Yi(t)− μ(t)− β′Xi − α′h(Fit,Wi)}2 dH̃i(t),

(2.5)

where ξi(t) = I(Ci ≥ t).

We propose to use B-splines to approximate μ0(t). For a finite closed interval

[0, τ ], let I = {ti}mn+2l
1 , with

0 = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ

be a sequence of knots that partition [0, τ ] into mn + 1 subintervals and mn =

O(nν), for 0 < ν < 1/2. Let {Bil, 1 ≤ i ≤ qn} denote the B-spline basis functions

with qn = mn+ l. Let Ψl,I (with order l and knots I) be the class linearly spanned

by the B-spline functions, that is,

Ψl,I =

{
qn∑
i=1

θiBil : θi ∈ R, i = 1, · · · , qn
}
.

Assume that μ0(t) ∈ Fr ≡ {μ : [0,∞) −→ R

∣∣∣|μ(k)(s)−μ(k)(t)| ≤ M |s− t|ς}, where

k is a nonnegative integer, ς ∈ (0, 1] such that r = k + ς > 0.5, M is a positive

constant and f (k) is the kth derivative of function f . According to Lemma 5 in
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Stone (1985) sketched in Appendix A, there exists a smooth spline μn(t) ∈ Ψl,I ,

with order l ≥ k+1 such that ‖ μn−μ0 ‖∞= supu∈[0,τ ] |μn(u)−μ0(u)| = O(n−νr).

Denote μn(t) = θ′Bl(t), where θ = (θ1, . . . , θqn)
′ and Bl(t) = (B1l(t), . . . , Bqnl(t))

′.

Ln(β, α, μ) in (2.5) is approximate to

Ln(β, α, θ) =
n∑

i=1

∫ τ

0

{Yi(t)− θ′Bl(t)− β′Xi − α′h(Fit,Wi)}2 dH̃i(t).

The resulting estimating function for β, α and θ has the form

U(β, α, θ) =
n∑

i=1

∫ τ

0

⎛
⎜⎜⎜⎜⎜⎜⎝

Xi

h(Fit,Wi)

Bl(t)

⎞
⎟⎟⎟⎟⎟⎟⎠
×{Yi(t)− θ′Bl(t)− β′Xi − α′h(Fit,Wi)} dH̃i(t),

The solution to U(β, α, θ) = 0 has a closed form

⎛
⎜⎜⎜⎜⎜⎜⎝

β̂n

α̂n

θ̂n

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

∫ τ

0

⎛
⎜⎜⎜⎜⎜⎜⎝

Xi

h(Fit,Wi)

Bl(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗
2

dH̃i(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

∫ τ

0

⎛
⎜⎜⎜⎜⎜⎜⎝

Xi

h(Fit,Wi)

Bl(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

Yi(t) dH̃i(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then the resulting estimator for μ0(t) is μ̂n(t) ≡
∑qn

i=1 θ̂niBil(t).

2.4 Asymptotic theory

To establish the asymptotic properties of the estimators, we need the following

regularity conditions.

C1 The maximum spacing of the knots satisfies 
 = maxl+1<i<mn+l+1 | ti −

ti−1 |= O(n−v).
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C2 The parameter spaces of (β′, α′)′, R is bounded and convex on Rp+q, and

the true parameter (β0, α0, μ0) ∈ R◦ ×Fr, where R◦ is the interior of R.

C3 P (‖X‖ ≤ M1) = 1 for a positive constant M1, that is, the covariate vector

is uniformly bounded.

C4 There exists a positive integer M2 such that P (K ≤ M2) = 1, that is, the

number of the observation is finite.

C5 If with probability 1, h′
1X + h′

2h(Ft,W ) + h3(t) = 0 for some deterministic

function h3, and h1 ∈ Rp and h2 ∈ Rq, then h1 = 0, h2 = 0, h3(t) = 0.

Next, we introduce more notation. Let Bp and B denote the collection of Borel sets

in Rp and R, respectively, and let B[0,τ ] = {B∩ [0, τ ] : B ∈ B}. We define measures

ν on (Rp × [0, τ ],Bp ×B[0,τ ]) and ν1 on ([0, τ ],B[0,τ ]), as follows: for B ∈ B[0,τ ], and

A ∈ Bp,

ν(A× B) =

∫
A×[0,τ ]

∞∑
k=1

P (K = k|X = x, C = c))

×
k∑

j=1

P (Tk,j ∈ B ∩ [0, c]
∣∣K = k,X = x, C = c)dF (x, c)

=

∫
A×[0,τ ]

E

{
K∑
j=1

IB∩[0,c](TK,j)|X = x, C = c

}
dF (x, c),

and ν1(B) = ν(Rp × B), where F is the joint distribution function of X and C.

Then ν1 and ν are finite measures under condition C4. Let

L2(ν1) =

{
f : [0,∞) −→ R

∣∣∣ ||f ||L2(ν1) ≡
[∫

|f(t)|2dν1(t)
]1/2

< ∞
}
.
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Clearly,

‖f‖L2(ν1) =

[
E

{
K∑
j=1

|f(TK,j)|2ξ(TK,j)

}]1/2

=

[
E

{∫ τ

0

|f(t)|2ξ(t)dH(t)

}]1/2
.

Let Z = {Z(t,W ) ≡ h(Ft,W ), 0 ≤ t ≤ τ} represent a q-dimensional bounded

random process indexed by t. Here, without loss of generality, we assume that W

is one-dimensional. Define G ≡ {z(t, w) : [0, τ ]× [−M1,M1] −→ M} , where M is

a bounded set on Rq, and for function f( x, z, t) : [−M1,M1]
p × G × [0, τ ] −→ R,

define

‖f‖2 ≡
[
E

{
K∑
j=1

|f(X, Z(TK,j,W ), TK,j)|2ξ(TK,j)

}]1/2

.

Set Mn(g) = n−1Ln(β, α, μ) = Pnmg(O), where g(x, z, t) = β′x + α′z(t, w) +

μ(t),mg(O) =
∑K

j=1[Y (TK,j)−g(X, Z(TK,j,W ), TK,j)]
2ξ(TK,j), andM(g) = Pmg(O),

where Pf and Pnf represent
∫
fdP and n−1

∑n
i=1 f(Oi), respectively.

Since L2(ν1) is a Hilbert space, and Fr ⊂ L2(ν1), by the Hilbert Projection

Theorem (Stakgold, 1998, p. 288), for xj ∈ L2(ν1), there is a unique a∗j ∈ Fr, s.t.

(xj − a∗j) ⊥ Fr, for j = 1, · · · , p. Let zl(t, w) be the lth component of h(Ft, w), l =

1, · · · , q. Then for zl(t, w) ∈ L2(ν1), there is a unique b
∗
l (t) ∈ Fr, s.t. (zl−b∗l ) ⊥ Fr,

for l = 1, · · · , q. Let a∗ = (a∗1, · · · , a∗p)′ and b∗ = (b∗1, · · · , b∗q)′. Furthermore, we

need the following condition.

C6 E

⎡
⎢⎢⎢⎣∫ τ

0

⎛
⎜⎜⎝ X− a∗

h(Ft,W )− b∗(t)

⎞
⎟⎟⎠

⊗
2

dH̃(t)

⎤
⎥⎥⎥⎦ is nonsingular.

In practice, C1 is similar to those required by Stone (1986) and Zhou et al.

(1998). C2 is a common assumption in the nonparametric smoothing estimation

problem. C3 and C4 are mild conditions. C5 is needed to establish the identifiabil-
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ity of the model. C6 is a technical condition. The asymptotic properties including

consistency, rate of convergence and asymptotic normality of the estimators are

summarized as follows.

Theorem 2.1 (Consisitency). Under conditions C1 - C4 and C6 , ‖β̂n−β0‖ →

0, ‖α̂n − α0‖ → 0, ‖μ̂n − μ0‖L2(ν1) → 0, almost surely.

Proof of Theorem 2.1.

Let μn(t) be the B-spline function approximation of μ0(t) with ||μn−μ0||∞ =

O(n−vr), gn(x, z, t) = β′
0x+α′

0z(t, w)+μn(t), ĝn(x, z, t) = β̂′
nx+ α̂′

nz(t, w)+ μ̂n(t),

and g0(x, z, t) = β′
0x + α′

0z(t, w) + μ0(t). Without loss of generality, we assume

that μn > μ0. Thus gn > g0, and ‖gn − g0‖∞ = O(n−vr). Choose a φn ∈ Ψl,I and

b1 and b2, such that hn ≡ b1
′x + b2

′z + φn, and ‖hn‖22 = O(n−vr + n− 1−v
2 ). Then

for any λ > 0, ‖gn − g0 + λhn‖22 = O(n−vr + n− 1−v
2 ). Let

Jn(λ) ≡ Mn(gn + λhn)

=
1

n

n∑
i=1

Ki∑
j=1

[Yi(TKi,j)− (gn + λhn)(Xi, Zi(TKi,j,Wi), TKi,j)]
2ξi(TKi,j),

then

J ′
n(λ) =

2

n

n∑
i=1

Ki∑
j=1

[(gn + λhn)(Xi, Zi(TKi,j,Wi), TKi,j)− Yi(TKi,j)]

× hn(Xi, Zi(TKi,j,Wi), TKi,j)ξi(TKi,j),

and

Jn
′′(λ) =

2

n

n∑
i=1

Ki∑
j=1

h2
n(Xi, Zi(TKi,j,Wi), TKi,j)ξi(TKi,j) ≥ 0.
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Thus, J ′
n(λ) is a nondecreasing function. Therefore, to prove the convergence

of ĝn to g0, it is sufficient to show that ∀λ0 > 0, J ′
n(λ0) > 0 and J ′

n(−λ0) < 0

except on an event with probability converging to zero. Then ĝn must be between

gn − λ0hn and gn + λ0hn, and so ‖ĝn − gn‖22 ≤ λ2
0‖hn‖22 = O(n−vr + n− 1−v

2 ).

Next, we show that J ′
n(λ0) > 0. Define Gn = (Pn − P ), and

1

2
J ′
n(λ0)

=Gn

K∑
j=1

[(gn + λ0hn)(X, Z(TK,j,W ), TK,j)− Y (TK,j)]hn(X, Z(TK,j,W ), TK,j)ξ(TK,j)

+P
K∑
j=1

[(gn + λ0hn)(X, Z(TK,j,W ), TK,j)− Y (TK,j)]hn(X, Z(TK,j,W ), TK,j)ξ(TK,j)

≡I1n + I2n.

By the calculation of Shen and Wong (1994, P. 597), for η > 0 and any ε ≤ η,

logN[](ε,Ψl,I , L2(ν1)) ≤ c1qn log(η/ε),

where qn = mn+ l is the number of spline basis functions and c1 is a constant.Then

J[](η,Mη, L2(υ1)) =

∫ η

0

{logN[](ε,Mη, L2(υ1))}1/2dε

≤
∫ η

0

{c1qn log η/ε}1/2dε

= −ηue
−u2

c1qn

∣∣∣∞
0
+ η

∫ ∞

0

e
−u2

c1qn du ({c1qn log η/ε}1/2 = u)

≤ η

∫ ∞

−∞

1√
2π
√

c1qn
2

e
− u2

2(

√
c1qn

2 )2 du
√
2π

√
c1qn
2

≤ η
√
c1π

√
qn ≤ c2q

1/2
n η,
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for a constant c2. Thus, by Theorem 2.5.2 of Van der Vaart and Wellner (1996, P.

127) (Theorem C.3), Ψl,I is a Donsker class. Then given gn defined before,

Gη ≡
{ K∑

j=1

[h(X, Z(TK,j,W ), TK,j)− Y (TK,j)](h− gn)(X, Z(TK,j,W ), TK,j)ξ(TK,j) :

h(x, z, t) = β′x+ α′z(t, w) + φ(t), φ ∈ Ψl,I , ‖h− gn‖2 ≤ η
}

is a Donsker class. Thus, I1n = Op(n
−1/2).

I2n = E
[ ∫ τ

0

(gn + λ0hn)(X, Z(t,W ), t)hn(X, Z(t,W ), t)ξ(t)dH(t)
]

− E
[ ∫ τ

0

Y (t)hn(X, Z(t,W ), t)ξ(t)dH(t)
]

= E
[ ∫ τ

0

(λ0hn + gn − g0)(X, Z(t,W ), t)hn(X, Z(t,W ), t)ξ(t)dH(t)
]

≥ E
[ ∫ τ

0

λ0h
2
n(X, Z(t,W ), t)ξ(t)dH(t)

]
= λ0‖hn‖22.

The second equality in the above formation is satisfied since

E
[ ∫ τ

0

Y (t)hn(X, Z(t,W ), t)ξ(t)dH(t)
]

= E
[ ∫ τ

0

hn(X, Z(t,W ), t)E{ξ(t)Y (t)dH(t)|X, C,Ft}
]

= E
[ ∫ τ

0

hn(X, Z(t,W ), t)g0(X, Z(t,W ), t)ξ(t)E{dH(t)|X, C,Ft}
]

= E
[ ∫ τ

0

hn(X, Z(t,W ), t)g0(X, Z(t,W ), t)ξ(t)dH(t)
]

under the assumption (2.4). Thus, 1
2
J ′
n(λ0) ≥ Op(n

−1/2) + λ0‖hn‖22 > 0, since

‖hn‖22 = O(p−1
n ) with p−1

n ≡ n−vr + n− 1−v
2 ≥ n− r

1+2r > n−1/2 for 0 < v < 1/2.
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For J ′
n(−λ0),

1

2
J ′
n(−λ0)

=Gn

K∑
j=1

[(gn − λ0hn)(X, Z(TK,j,W ), TK,j)− Y (TK,j)]hn(X, Z(TK,j,W ), TK,j)ξ(TK,j)

+P
K∑
j=1

[(gn − λ0hn)(X, Z(TK,j,W ), TK,j)− Y (TK,j)]hn(X, Z(TK,j,W ), TK,j)ξ(TK,j)

≡I∗1n + I∗2n.

Using the same arguments as for J ′
n(λ0), I

∗
1n = OP (n

−1/2).

I∗2n = E

[∫ τ

0

(gn − λ0hn)(X, Z(t,W ), t)hn(X, Z(t,W ), t)ξ(t)dH(t)

]

− E

[∫ τ

0

hn(X, Z(t,W ), t)ξ(t)Y (t)dH(t)

]

= E

[∫ τ

0

(−λ0hn + gn − g0)(X, Z(t,W ), t)hn(X, Z(t,W ), t)ξ(t)dH(t)

]

= −λ0E

[∫ τ

0

h2
n(X, Z(t,W ), t)ξ(t)dH(t)

]

+ E

[∫ τ

0

(gn − g0)(X, Z(t,W ), t)hn(X, Z(t,W ), t)ξ(t)dH(t)

]

≤ −λ0‖hn‖22 + ‖gn − g0‖2‖hn‖2

≤ −c3p
−1
n ,

for a positive constant c3. Thus,
1
2
J ′
n(−λ0) ≤ O(n−1/2)− c3p

−1
n < 0.
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Then we have ‖ĝn − g0‖2 ≤ ‖ĝn − gn‖2 + ‖gn − g0‖2 = O(p
−1/2
n ), and

‖ĝn − g0‖2 = ‖(β̂n − β0)
′x+ (α̂n − α0)

′z + (μ̂n − μ0)‖2

= ‖(β̂n − β0)
′(x− a∗) + (α̂n − α0)

′(z − b∗)

+ (β̂n − β0)
′a∗ + (α̂n − α0)

′b∗ + (μ̂n − μ0)‖2

= ‖(β̂n − β0)
′(x− a∗) + (α̂n − α0)

′(z − b∗)‖2

+ ‖(β̂n − β0)
′a∗ + (α̂n − α0)

′b∗ + (μ̂n − μ0)‖2.

By C6, we can get ‖β̂n − β0‖ −→ 0 and ‖α̂n − α0‖ −→ 0 almost surely from the

first term of the right hand side of the above equality and thus it follows that

‖μ̂n − μ0‖L2(ν1) −→ 0. This completes the proof of the theorem.

Theorem 2.2 (Rate of Convergence). Suppose that C1 - C6 hold, then

‖β̂n − β0‖ = OP (n
− 1−v

2 ), ‖α̂n − α0‖ = OP (n
− 1−v

2 ), ‖μ̂n − μ0‖L2(ν1) = OP (n
− 1−v

2 ).

Remark 2.1. When v = 1/(1 + 2r), n− 1−v
2 = n− r

1+2r , we conclude from Stone

(1980, 1982) that the rate of convergence of the estimator μ̂n is the optimal rate

in nonparametric regression.

Proof of Theorem 2.2.

For any η > 0, let

Fη ≡ {g = β′x+α′z+μ : ‖β−β0‖ ≤ η, ‖α−α0‖ ≤ η, μ ∈ Ψl,I , ‖μ−μ0‖L2(υ1) ≤ η}.

Similar to Lemma A.2 in Huang (1999, P. 1557) given in Appendix A, for any

ε ≤ η, logN[](ε,Fη, ‖ · ‖2) ≤ c4qn log(η/ε) for a constant c4. Thus, for ε > 0, there
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exists a set of brackets {[gli, gri ], i = 1, · · · , (η
ε
)c4qn} such that, for each g ∈ Fη,

there is a [gls, g
r
s ], s.t. gls(x, z, t) ≤ g(x, z, t) ≤ grs(x, z, t), for all x, t ∈ [0, τ ] and

z ∈ G, and ‖grs − gls‖22 ≤ ε2.

By Theorem 2.1, ĝn ∈ Fη, for any η > 0 and sufficiently large n.

Next, consider the class Mη ≡ {mg(O)−mg0(O) : g ∈ Fη}, where

mg(O) =
K∑
j=1

{Y (TK,j)− g(X, Z(TK,j,W ), TK,j)}2 .

For i = 1, · · · , (η
ε
)c4qn , define

ml
i(O) =

K∑
j=1

{
2Y (TK,j)g0(X, Z(TK,j,W ), TK,j)− g20(X, Z(TK,j,W ), TK,j)

+ [min{|gli(X, Z(TK,j,W )|, TK,j), |gri (X, Z(TK,j,W ), TK,j)|}]2

− 2Y (TK,j){gri (X, Z(TK,j,W ), TK,j)I(Y ≥ 0)

+ gli(X, Z(TK,j,W ), TK,j)I(Y < 0)}
}
ξ(TK,j),

mr
i (O) =

K∑
j=1

{
2Y (TK,j)g0(X, Z(TK,j,W ), TK,j)− g20(X, Z(TK,j,W ), TK,j)

+ [max{|gli(X, Z(TK,j,W ), TK,j)|, |gri (X, Z(TK,j,W ), TK,j)|}]2

− 2Y (TK,j){gli(X, Z(TK,j,W ), TK,j)I(Y ≥ 0)

+ gri (X, Z(TK,j,W ), TK,j)I(Y < 0)}
}
ξ(TK,j)
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It is easy to show that P |mr
i (O)−ml

i(O)|2 ≤ c5ε
2 with a constant c5. In fact,

P |mr
i (O)−ml

i(O)|2

=P |
∫ τ

0

(|gli| ∧ |gri |)2 − (|gli| ∨ |gri |)2 + (gri − gli)2Y [I(Y < 0)− I(Y ≥ 0)]dH̃(t)|

≤P

∫ τ

0

∣∣|gri |2 − |gli|2 +M3(g
r
i − gli)

∣∣2dH̃(t)

=P

∫ τ

0

∣∣(|gri |+ |gli|)(|gri | − |gli|) +M3(g
r
i − gli)

∣∣2dH̃(t)

≤c5‖grs − gls‖22 ≤ c5ε
2.

where a ∨ b = min{a, b} and a ∧ b = max{a, b}, and M3 is a constant. Thus

{[ml
i(O),mr

i (O)], i = 1, · · · , (η
ε
)c4qn} is the set of brackets for Mη, which implies

that logN[](ε,Mη, L2(P )) ≤ c4qn log(η/ε).

Moreover, by some calculations, we can verify that P |mg(O)−mg0(O)|2 ≤ c6η
2

for any g ∈ Fη by C4. Therefore, by Lemma 3.4.2 of Van der Vaart and Wellner

(1996) (Lemma C.5), we obtain

E‖n1/2(P− P )‖Mη ≤ c7J[](η,Mη, L2(P ))

{
1 +

J[](η,Mη, L2(P ))

η2n1/2
M3

}
, (2.6)

where M3 is a constant and ‖n1/2(P− P )‖F = supf∈F |n1/2(P− P )f |, and

J̃[](η,Mη, L2(P )) =

∫ η

0

{1 + logN[](ε,Mη, L2(P ))}1/2dε

≤
∫ η

0

{1 + c4qn log η/ε}1/2dε

= −ηue
1−u2

c4qn

∣∣∣∞
1
+ η

∫ ∞

1

e
1−u2

c4qn du ({1 + c4qn log η/ε}1/2 = u)

≤ η + η

∫ ∞

−∞

1√
2π
√

c4qn
2

e
− u2

2(

√
c4qn

2 )2 du
√
2π

√
c4qn
2

e1/c4qn

≤ η + η
√
c4π

√
qne

1 ≤ c8q
1/2
n η.
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The right hand side of (2.6) yields ϕn(η) = c9(q
1/2
n η + qn/n

1/2). It is easy to

see that ϕn(η)/η is decreasing in η, and

r2nϕn(
1

rn
) = rnq

1/2
n + r2nqn/n

1/2 ≤ 2n1/2,

for rn = n
1−v
2 and 0 < v < 1/2.

Note that

Pmg(O)− Pmg0(O)

= P

[∫ τ

0

{
(Y (t)− g(X, Z(t,W ), t))2 − (Y (t)− g0(X, Z(t,W ), t))2

}
ξ(t)dH(t)

]

= E

{∫ τ

0

(g − g0)
2(X, Z(t,W ), t)ξ(t)dH(t)

}

= ‖g − g0‖22.

Thus, by Theorem 3.2.5 of Van der Vaart and Wellner (1996) (Theorem C.4),

n
1−v
2 ‖ĝn − g0‖2 = Op(1). Therefore by the similar arguments as those in the proof

of consistency of β̂n, α̂n, and μ̂n, we can get the rate of convergence of β̂n, α̂n,

and μ̂n, as stated in the Theorem. The choice of v = 1/(1 + 2r) yields the rate of

convergence of r/(1 + 2r), which completes the proof.

Theorem 2.3 (Asymptotic Normality). Suppose that conditions C1 - C6 hold.

Let H ≡ {(h1, h2, h3) : (h
′
1,h

′
2)

′ ∈ R, h3 ∈ Fr, ‖h1‖ ≤ 1, ‖h2‖ ≤ 1, ‖h3‖∞ ≤ 1}.

Then for any (h1,h2, h3) ∈ H,

h′
1

√
n(β̂n − β0) + h′

2

√
n(α̂n − α0) +

∫ τ

0

√
n(μ̂n − μ0)(t)dh3(t)

converges in distribution to N(0, σ2), where σ2 is given in (2.7).
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Since μ̂n(t) =
∑qn

i=1 θ̂niBil(t), for estimation of the covariance matrix of

(β̂n, α̂n, θ̂n), we propose to use the following simple bootstrap procedure (Efron,

1979). Let L denote a prespecified positive integer. For each l, where 1 ≤ l ≤ L,

draw a simple random sample of size n,

O(l) = {K(l)
i , T

(l)

K
(l)
i ,1

, · · · , T (l)

K
(l)
i ,K

(l)
i

, Y
(l)
i (T

(l)

K
(l)
i ,1

), · · · , Y (l)
i (T

(l)

K
(l)
i ,K

(l)
i

),

H
(l)
i (T

(l)

K
(l)
i ,1

), · · · , H(l)
i (T

(l)

K
(l)
i ,K

(l)
i

),X
(l)
i , C

(l)
i , i = 1, · · · , n}

with replacement from the observed data

O = {Ki, TKi,1, · · · , TKi,Ki
, Yi(TKi,1), · · · , Yi(TKi,Ki

),

Hi(TKi,1), · · · , Hi(TKi,Ki
),Xi, Ci, i = 1, · · · , n}.

Let (β̂
(l)
n , α̂

(l)
n , θ̂

(l)
n ) be the proposed estimate of (β0, α0, θ0) based on the data set

O(l) defined above. Then according to Appendix D, a natural estimate of the

covariance matrix of (β̂n, α̂n, θ̂n) is given by

Σ̂L =
1

L− 1

L∑
l=1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

β̂
(l)
n

α̂
(l)
n

θ̂
(l)
n

⎞
⎟⎟⎟⎟⎟⎟⎠

− 1

L

L∑
l=1

⎛
⎜⎜⎜⎜⎜⎜⎝

β̂
(l)
n

α̂
(l)
n

θ̂
(l)
n

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⊗2

.

Denote the upper left (p + q) × (p + q) submatrix of Σ̂L by Σ̂L,β,α, which is the

consistent estimator for the covariance matrix of
√
n

⎛
⎜⎜⎝β̂n − β0

α̂n − α0

⎞
⎟⎟⎠.
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Proof of Theorem 2.3.

We define a sequence of maps Sn mapping a neighborhood of (β0, α0, μ0),

denoted by U , in the parameter space for (β, α, μ) into l∞(H) as :

Sn(β, α, μ)[h1,h2, h3]

≡ n−1 d

dε
Ln(β + εh1, α + εh2, μ+ εh3)

∣∣∣
ε=0

= − 2

n

n∑
i=1

∫ τ

0

[Yi(t)− β′Xi − α′h(Fit,Wi)− μ(t)]

× [h′
1 Xi + h′

2h(Fit,Wi) + h3(t)]dH̃i(t)

≡ Pnψ(β, α, μ)[h1, h2, h3].

Correspondingly, we define the limit map S : U −→ l∞(H) as S(β, α, μ)[h1, h2, h3],

where l∞(H) is the space of bounded functionals on H under the supermum norm

‖f‖∞ = suph∈H |f(h)|.

To derive the asymptotic normality of the estimators (β̂n, α̂n, μ̂n), motivated

by the proof of Theorem 3.3.1 of Van der Vaart and Wellner (1996, p. 310), we

first need to verify the following five conditions.

(i)
√
n(Sn − S)(β̂n, α̂n, μ̂n)−

√
n(Sn − S)(β0, α0, μ0) = op(1).

(ii)
√
n(Sn−S)(β0, α0, μ0) converges in distribution to a tight Gaussian process

on l∞(H).

(iii) S(β0, α0, μ0) = 0 and Sn(β̂n, α̂n, μ̂n) = op(n
−1/2).

(iv) (β, α, μ) �−→ S(β, α, μ) is Fréchet-differentiable at (β0, α0, μ0) with a con-

tinuously invertible derivative Ṡ(β0, α0, μ0).

(v)
√
n
(
S(β̂n, α̂n, μ̂n)−S(β0, α0, μ0)

)
−√

nṠ(β0, α0, μ0)
(
(β̂n, α̂n, μ̂n)−(β0, α0, μ0)

)
= op(1).
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Note that

√
n(Sn − S)(β̂n, α̂n, μ̂n)−

√
n(Sn − S)(β0, α0, μ0)

=
√
n(Pn − P )(ψ(β̂n, α̂n, μ̂n)[h1, h2, h3]− ψ(β0, α0, μ0)[h1, h2, h3]).

Define

ρ((β1, α1, μ1), (β2, α2, μ2)) =
{||β1 − β2||2 + ||α1 − α2||2 + ||μ1 − μ2||2L2(ν1)

}1/2

and for δ > 0,

Fδ =
{
ψ(β, α, μ)[h1, h2, h3]− ψ(β0, α0, μ0)[h1, h2, h3] :

ρ
(
(β, α, μ)− (β0, α0, μ0)

)
< δ, (h1, h2, h3) ∈ H

}
.

It is easy to see that Fr ⊆ Cr[0, τ ] is a Donsker class from Van der Vaart and Well-

ner (1996, p157), thus H is a Donsker class and ψ(β, α, μ) is a bounded Lipschitz

functional with respect to H, thus Fδ is a Donsker class for some δ > 0. And

P
∣∣∣[ψ(β1, α1, μ1)− ψ(β2, α2, μ2)

]
[h1, h2, h3]

∣∣∣2
=P

∣∣∣2 ∫ τ

0

[
(β1 − β2)

′ X− (α1 − α2)
′h(Ft,W )− (μ1 − μ2)(t)

]
× [h′

1 X+ h′
2h(Ft,W ) + h3(t)]dH̃(t)

∣∣∣2
≤cρ2

(
(β1, α1, μ1)− (β2, α2, μ2)

)

for a constant c. Thus condition (i) holds by Kosorok (2008, Lemma 13.3) (Lemma

C.6).
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Condition (ii) is also satisfied since {ψ(β0, α0, μ0)[h1, h2, h3] : (h1, h2, h3) ∈

H} is a Donsker class.

Clearly, S(β0, α0, μ0) = 0. For h3 ∈ Fr, let h3n be the B-spline function

approximation of h3 with ||h3n − h3||∞ = O(n−vr), then we have

Sn(α̂n, β̂n, μ̂n)[h1,h2, h3n] = 0.

Thus, for (h1,h2, h3) ∈ H,

n
1
2Sn(β̂n, α̂n, μ̂n)[h1,h2, h3]

= n
1
2

[
Sn(β̂n, α̂n, μ̂n)[h1,h2, h3]− Sn(α̂n, β̂n, μ̂n)[h1,h2, h3n]

]

= n
1
2 (Pn − P )

[
ψ(β̂n, α̂n, μ̂n)[h1, h2, h3]− ψ(β0, α0, μ0)[h1, h2, h3]

]

− n
1
2 (Pn − P )

[
ψ(β̂n, α̂n, μ̂n)[h1, h2, h3n]− ψ(β0, α0, μ0)[h1, h2, h3n]

]

+ n
1
2Pn [ψ(β0, α0, μ0)[h1, h2, h3]− ψ(β0, α0, μ0)[h1, h2, h3n]]

+ n
1
2P

[
ψ(β̂n, α̂n, μ̂n)[h1, h2, h3]− ψ(β̂n, α̂n, μ̂n)[h1, h2, h3n]

]

≡ Q1n −Q2n +Q3n +Q4n.

It follows from (i) that both Q1n and Q2n are op(1). Q3n is also op(1) since

P [ψ(β0, α0, μ0)[h1, h2, h3]− ψ(β0, α0, μ0)[h1, h2, h3n]]
2

= P

[
2

∫ τ

0

{Y (t)− β′
0X− α′

0h(Ft,W )− μ0(t)} (h3n − h3)dH̃(t)

]2

≤ c‖h3n − h3‖2∞ −→ 0
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for a constant c. Furthermore,

|Q4n|

=
∣∣∣− 2n

1
2P

∫ τ

0

{
Y (t)− β̂′

nX− α̂′
nh(Ft,W )− μ̂n(t)

}
(h3 − h3n)dH̃(t)

∣∣∣
=
∣∣∣2n 1

2P

∫ τ

0

[(β̂n − β0)
′X+ (α̂n − α0)

′h(Ft,W ) + (μ̂n − μ0)(t)](h3 − h3n)dH̃(t)
∣∣∣

≤ cn
1
2ρ((β̂, α̂, μ̂)− (β0, α0, μ0))‖h3n − h3‖∞

≤ n
1
2O(n− 1−v

2 ) ·O(n−vr)

= op(1),

for a constant c. Thus, Sn(β̂n, α̂n, μ̂n) = op(n
− 1

2 ).

For the proof of (iv), by the smoothness of S(β, α, μ), the Fréchet differentia-

bility holds and the derivative of S(β, α, μ) at (β0, α0, μ0), denoted by Ṡ(β0, α0, μ0),

is a map from the space {(β − β0, α− α0, μ− μ0) : (β, α, μ) ∈ U} to l∞(H) and

Ṡ(β0, α0, μ0)(β − β0, α− α0, μ− μ0)[h1,h2, h3]

=
d

dε
S(β0 + ε(β − β0), α0 + ε(α− α0), μ0 + ε(μ− μ0))[h1,h2, h3]

∣∣∣
ε=0

≡ σ1(h1,h2, h3)
′(β − β0) + σ2(h1,h2, h3)

′(α− α0) +

∫ τ

0

(μ− μ0)dσ3(h1,h2, h3),

where

σ1(h1,h2, h3) = 2P

∫ τ

0

[h′
1 X+ h′

2h(Ft,W ) + h3(t)]XdH̃(t),

σ2(h1,h2, h3) = 2P

∫ τ

0

[h′
1 X+ h′

2h(Ft,W ) + h3(t)]h(Ft,W )dH̃(t),

and

σ3(h1,h2, h3)(t) = 2P

∫ t

0

[h′
1 X+ h′

2h(Fs,W ) + h3(s)]dH̃(s).
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It remains to show that the linear map Ṡ(β0, α0, μ0) is continuously invertible

on its range. Following the proof of Theorem 2 in Zeng et al. (2005), we only need to

show that for h ∈ H, if σ(h) = (σ1(h), σ2(h), σ3(h)) = 0 almost surely, then h = 0.

Suppose that σ(h) = 0, a.s., then σ1(h)
′h1 + σ2(h)

′h2 +
∫ τ

0
h3(t)dσ3(h)(t) = 0, i.

e.

0 = 2P

∫ τ

0

[h′
1 X+ h′

2h(Ft,W ) + h3(t)]X
′dH̃(t)h1

+ 2P

∫ τ

0

[h′
1 X+ h′

2h(Ft,W ) + h3(t)]h(Ft,W )′dH̃(t)h2

+ 2P

∫ τ

0

[h′
1 X+ h′

2h(Ft,W ) + h3(t)]h3(t)dH̃(t)

= 2P

∫ τ

0

[h′
1 X+ h′

2h(Ft,W ) + h3(t)]
2dH̃(t),

which implies that h′
1 X+h′

2h(Ft,W )+h3(t) = 0, a.s. Hence, h1 = 0,h2 = 0, h3 =

0, a.s. by C5.

Moreover, condition (v) holds since

(
S(β̂n, α̂n, μ̂n)− S(β0, α0, μ0)

)
[h1,h2, h3]

= − 2P

∫ τ

0

[Y (t)− β̂′
nX− α̂′

nh(Ft,W )− μ̂n][h
′
1 X+ h′

2h(Ft,W ) + h3(t)]dH̃(t)

= 2P

∫ τ

0

[(β̂n − β0)
′X+ (α̂n − α0)

′h(Ft,W ) + (μ̂n − μ0)(t)]

× [h′
1 X+ h′

2h(Ft,W ) + h3(t)]dH̃(t).
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Therefore, by (i)-(v), we have

√
nṠ(β0, α0, μ0)(β̂n − β0, α̂n − α0, μ̂n − μ0)[h1,h2, h3]

= σ1(h1,h2, h3)
′√n(β̂n − β0) + σ2(h1,h2, h3)

′√n(α̂n − α0)

+

∫ τ

0

√
n(μ̂n − μ0)(t)dσ3(h1,h2, h3)(t)

= −√
n(Sn − S)(β0, α0, μ0)[h1,h2, h3] + op(1),

uniformly in h1, h2 and h3, and for each (h1,h2, h3) ∈ H, there exists unique

(h∗
1,h

∗
2, h

∗
3) ∈ H such that σ1(h

∗
1,h

∗
2, h

∗
3) = h1, σ2(h

∗
1,h

∗
2, h

∗
3) = h2, σ3(h

∗
1,h

∗
2, h

∗
3) =

h3. Thus, we have

h′
1

√
n(β̂n − β0) + h′

2

√
n(α̂n − α0) +

∫ τ

0

√
n(μ̂n − μ0)(t)dh3(t)

=
√
nṠ(β0, α0, μ0)(β̂n − β0, α̂n − α0, μ̂n − μ0)[h

∗
1,h

∗
2, h

∗
3]

= −√
n(Sn − S)(β0, α0, μ0)[h

∗
1,h

∗
2, h

∗
3] + op(1)

→ Z in distribution,

where Z follows N(0, σ2) with

σ2 = Eψ2(β0, α0, μ0)[h
∗
1,h

∗
2, h

∗
3]. (2.7)
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Find h∗
1,h

∗
2, h

∗
3 from σ1(h

∗
1,h

∗
2, h

∗
3) = h1, σ2(h

∗
1,h

∗
2, h

∗
3) = h2, σ3(h

∗
1,h

∗
2, h

∗
3) = h3.

Solution. Find (h∗
1,h

∗
2, h

∗
3) from the following three equations

σ1(h
∗
1,h

∗
2, h

∗
3) = 2P

∫ τ

0

[h∗′
1 X+ h∗′

2 Z(t,W ) + h∗
3(t)]XdH̃(t) = h1 (2.8)

σ2(h
∗
1,h

∗
2, h

∗
3) = 2P

∫ τ

0

[h∗′
1 X+ h∗′

2 Z(t,W ) + h∗
3(t)]Z(t,W )dH̃(t) = h2(2.9)

σ3(h
∗
1,h

∗
2, h

∗
3)(t) = 2P

∫ t

0

[h∗′
1 X+ h∗′

2 Z(s,W ) + h∗
3(s)]dH̃(s) = h3(t), (2.10)

where Z(t,W ) = h(Ft,W ).

Define

Ap×p = 2P

∫ τ

0

XX′dH̃(t),

Bq×q = 2P

∫ τ

0

Z(t,W )Z ′(t,W )dH̃(t),

Dp×q = 2P

∫ τ

0

XZ ′(t,W )dH̃(t),

a(t)1×p = 2P

∫ t

0

X′dH̃(s),

and b(t)1×q = 2P
∫ t

0
Z ′(s,W )dH̃(s). We can rewrite (2.8), (2.9) and (2.10) as the

following three equations,

Ah∗
1 +Dh∗

2 + 2P

∫ τ

0

Xh∗
3(t)dH̃(t) = h1 (2.11)

D′h∗
1 +Bh∗

2 + 2P

∫ τ

0

Z(t,W )h∗
3(t)dH̃(t) = h2 (2.12)

a(t)h∗
1 + b(t)h∗

2 + 2P

∫ t

0

h∗
3(s)dH̃(s) = h3(t), (2.13)

By (2.11),

h∗
1 = A−1[h1 − 2P

∫ τ

0

Xh∗
3(t)dH̃(t)−Dh∗

2].
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Substitute it into (2.12), we get

D′A−1[h1 − 2P

∫ τ

0

Xh∗
3(t)dH̃(t)−Dh∗

2] + Bh∗
2 + 2P

∫ τ

0

Z(t,W )h∗
3(t)dH̃(t) = h2

Then

h∗
2 = F

{
h2 − 2P

∫ τ

0

Z(t,W )h∗
3(t)dH̃(t)−D′A−1[h1 − 2P

∫ τ

0

Xh∗
3(t)dH̃(t)]

}
,

(2.14)

where F = [B −D′A−1D]−1. Thus

h∗
1 = A−1

[
h1 − 2P

∫ τ

0

Xh∗
3(t)dH̃(t)

−DF
{
h2 − 2P

∫ τ

0

Z(t,W )h∗
3(t)dH̃(t)−D′A−1[h1 − 2P

∫ τ

0

Xh∗
3(t)dH̃(t)]

}]
.

(2.15)

Finally, substitute h∗
1 and h∗

2 into (2.13),

{
b′(t)FD′A−1 − a′(t)A−1 − a′(t)A−1DFD′A−1

}
2P

∫ τ

0

Xh∗
3(t)dH̃(t)

+
{
a′(t)A−1DF − b′(t)F

}
2P

∫ τ

0

Z(t,W )h∗
3(t)dH̃(t) + 2P

∫ t

0

h∗
3(s)dH̃(s)

=
{
b′(t)FD′A−1 − a′(t)A−1 − a′(t)A−1DFD′A−1

}
h1

+
{
a′(t)A−1DF − b′(t)F

}
h2.+ h∗

3(t).

LetA∗′(t)1×p = b′(t)FD′A−1−a′(t)A−1−a′(t)A−1DFD′A−1, B∗′(t)1×q = a′(t)A−1DF−

b′(t)F . Then the above equation becomes

A∗′(t)2P
∫ τ

0

Xh∗
3(t)dH̃(t) + B∗′(t)2P

∫ τ

0

Z(t,W )h∗
3(t)dH̃(t) + 2P

∫ t

0

h∗
3(s)dH̃(s)

=A∗′(t)h1 +B∗′(t)h2 + h∗
3(t).
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Thus we can find h∗
3 from this equation, then h∗

1 and h∗
2 can be obtained from

(2.14) and (2.15) respectively.

2.5 Simulation study

In this section, a simulation study was conducted to assess the finite sample

properties of the proposed estimators. We generated the response variable from

the following random-effects model:

Yi(t) = μ0(t) + β1X1i + β2X2i + αHi(t−)Wi + εi(t),

where X1i and X2i were generated from Bernoulli distribution with success proba-

bility 0.5 and the standard normal distribution, εi(t)’s were independent standard

normal variables, and Wi = X1i or X2i. The follow-up time Ci was generated from

the uniform distribution over interval (τ/2, τ) with τ = 6. The total number of

real observation times for subject i, mi, was assumed to follow the discrete uniform

distribution over {1, 2, 3, 4, 5, 6} and the observation times (Tmi,1, . . . , Tmi,mi
) were

taken to be the order statistics of a random sample of size mi from the uniform

distribution over (0, Ci) given Ci.

The true parameter values used in our simulation studies are β0 = (β10, β20)
′ =

(−1, 1)′, and α0 = −1.5,−1, 0, 1 or 1.5. The smooth function μ0(t) was taken as

sin(t/2) or log(t + 1). To estimate μ0(t), we considered cubic B-splines and took

mn = nν with ν = 1/10, 1/3 or 2/5. For a given number of interior knots mn,

we consider two data-driven methods for determing locations of knots. One is

the equally spaced knots, which are given by Tmin + k(Tmax − Tmin)/(mn + 1), k =
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0, 1, · · · ,mn+1, with Tmin and Tmax being the respective minimum and maximum

values of distinct observation times. Another is the partitions according to quan-

tiles of the observation times, i. e., the k/(mn+1) quantiles (k = 0, 1, · · · ,mn+1)

of the distinct observation times are chosen to be the knots. We have done sim-

ulation for the six combinations of the number and placement of knots and il-

lustrate the estimation results for different combinations with W = X1, α = 1,

μ0(t) = log(t + 1) and n = 50 in Table 2.1. From this table, we find that the

estimation results are very similar and not sensitive to the selection of number

and placement of knots. Thus in the following, we present the overall results with

number of interior knots chosen to be n1/10 and equally spaced knots.

Tables 2.2 and 2.3 present the simulation results on estimation of β0 and

α0 with the sample size n = 50 or 100 and W = X1, while Tables 2.4 and 2.5

present those with W = X2. In the tables, we compare the proposed method

with a competing method developed by Sun et al. (2005) (SPSZ), to demonstrate

the robustness of the proposed method. All the tables include the estimated bias

(BIAS) given by the average of the estimates minus the true value, the bootstrap

standard errors of the estimates (BSE), the sample standard deviation of the es-

timates (SSE), and thebootstrap 95% coverage probabilities (CP) obtained from

1000 independent runs. Here, we used 200 replications in bootstrap to estimate

the standard errors.

Figure 2.1 shows the estimation results of μ0(t) = log(t + 1) for observation

processes with α = 1 and h(Ft,W ) = H(t−)X1, where the sample size n was taken

as 50 or 100, respectively. In the figure, the solid line represents the real curve of
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μ0(t), and the point line represents the B-splines based estimation curve of μ0(t).

Based on our simulation results, we have the following findings: (i) For the

case of α = 0, both the proposed estimators and the estimators based on SPSZ’s

method are approximately unbiased, and the former are not worse than the latter.

(ii) For the case of α �= 0, the proposed estimators are approximately unbiased

while the estimators based on SPSZ’s method yield biased estimates and the biases

could be larger as α diverges from 0. In other words, the proposed estimation

procedure seems to be more robust. The possible reason is that our estimation

method is model-free for the observation process, while their estimation procedure

replies on the model assumption about the observation process. (iii) The estimated

curve of μ0(t) is close to its real curve with the moderate sample size, indicating

that the B-splines estimator for μ0(t) works well. (iv) The sample standard errors

and the bootstrap standard errors of the proposed estimators are close to each

other. Also, the bootstrap 95% coverage rates are close to the nominal level,

that is, the proposed spline based semiparametric bootstrap procedure provides

reasonable estimates and the normal approximation seems to be appropriate.
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2.6 Application

This section presents an analysis of the bladder cancer data by applying our

proposed methods. There were 116 subjects with superficial bladder tumors ran-

domized into one of three treatment groups: placebo, thiotepa, and pyridoxine. In

the following, we restrict our attention to the placebo and thiotepa groups with re-

spective sizes of 47 and 38 as it has been shown that the pyridoxine treatment had

no effect on the recurrence of the bladder tumors (Zhang, 2002). For each patient,

the observed information includes times when he or she made clinical visits and

the numbers of recurrent tumors between clinical visits. Two baseline covariates

were observed and they are the number of initial tumors and the size of the largest

initial tumor.

To analyze the data, for patient i, define x1i to be equal to 1 if the ith

patient was given the thiotepa treatment and 0 otherwise, x2i the number of initial

tumors and x3i the size of the largest initial tumor, i = 1, . . . , 85. We define the

response Yi(t) to be the natural logarithm of the cumulated new tumor numbers

of patient i up to time t plus 1 to avoid 0. Let Hi(·) represent the accumulated

observation numbers of patient i over the study period. Assume that {Yi(t)} can be

described by model (2.3) with h(Fit,Wi) = Hi(t−)X1i, meaning that the relation

between recurrence rate of bladder tumors and the observation times may vary

with different treatments, i.e.,

E{Yi(t)|X1i, X2i, X3i,Fit} = μ0(t) + β′
1X1i + β′

2X2i + β′
3X3i + α′Hi(t−)X1i.
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(a) Sample size n = 50

(b) Sample size n = 100

Figure 2.1. Estimates of μ0(t) = log (t+ 1) for simulated longitudinal data with
non-Poisson observation process, h(Ft,W ) = H(t−)X1 and α = 1
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Here, we took the last visit time of patient i as Ci in the analysis. For estimation

of μ0(t), we use the cubic B-spline approximation by taking the number of interior

knots mn as nv with v = 0.1.

The application of the estimation procedure proposed in the previous sec-

tions gave β̂1 = −0.3445, β̂2 = 0.1730, β̂3 = −0.0325, and α̂ = −0.0288 with the

bootstrap standard errors being 0.1369, 0.0450, 0.0470, and 0.0109, which corre-

spond to p-values of 0.0118, 0.0001, 0.4888, and 0.0079, respectively, based on the

asymptotic results of the estimators. Here β̂1, β̂2 and β̂3 represent the estimated

regression coefficients corresponding to the treatment indicator, the number of

initial tumors, and the size of the largest initial tumor, respectively, while α̂ repre-

sents the estimated effect of the interaction between the observation process and

the treatment indicator on the tumor recurrence rate. These results indicate that

the response process and the interaction between the observation process and the

treatment indicator are significantly negatively correlated. Just as explained in

Sun et al. (2005), there are two reasons for this finding. One is that the more

often the patient visited the clinic, had tumors removed and received treatment,

the lower the tumor recurrence rate; another one is that more visits means less

time for tumor growth. Furthermore, the thiotepa treatment significantly reduces

the occurrence rate of the bladder tumors, and the number of initial tumors has a

significant positive effect on the tumor recurrence rate. However, the occurrence

rate of the bladder tumors do not seem to be significantly related to the size of the

largest initial tumor. These conclusions are consistent with those presented in Sun

et al. (2005), Sun et al. (2007) and Liang et al. (2009). Compared to the models in
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Sun et al. (2005), Sun et al. (2007) and Liang et al. (2009), our fitted model may

provide more information about the correlation between the tumor recurrence rate

and observation times over treatment groups and also could be useful to estimate

the future recurrence rate based on the observation history.
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Chapter 3

Panel Count Data Analysis Using Mono-

tone B-Splines

Semiparametric analysis of panel count data with informative observation

times using monotone B-splines is presented in this chapter.

3.1 Introduction

As discussed with the bladder cancer data in Section 1.3.1, the underlying

recurrent process and the observation process of panel count data may be de-

pendent even given covariates, and the relation between these two processes may

be influenced by some covariates in the study. Also the commonly used Poisson

assumption about the observation process may not be true. In this chapter, by

generalizing the conditional mean model (2.1) of the response process in Sun et al.

(2005) to the underlying recurrent event process, we will develop a new flexible

class of semiparametric regression models by incorporating the interaction between

the observation history and some covariates to the mean model of the recurrent

event process, while leaving the patterns of the observation times to be arbitrary.

This weak distributional assumption can provide robustness to model misspecifi-

cation. For nonparametric estimation of the baseline unknown function, a B-spline
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approximation will be used following Lu et al. (2007, 2009).

The remainder of this chapter is organized as follows. In Section 3.2, some

notation and models for panel count data are presented. For estimation of regres-

sion parameters and the unknown baseline function, a spline-based least square

method is proposed in Section 3.3. Then the asymptotic properties of the pro-

posed estimators, including the consistency, rate of convergence, and asymptotic

normality, are established in Section 3.4. Some simulation results are given in Sec-

tion 3.5 in order to assess the finite-sample performance of the proposed inference

procedure. Finally, by the analysis of a data set from the bladder tumor study,

proposed approaches are illustrated in Section 3.6.

3.2 Statistical Models

Consider a study involving n subjects who may experience some recurrent

events and suppose that each subject in the study gives rise to a counting pro-

cess Ni (t) , denoting the total number of occurrences of the event of interest up to

time t , 0 ≤ t ≤ τ , where τ is a known constant time point, i = 1, · · · , n. Also

suppose that for each subject i, Ni (t) is observed only at discrete time points

0 < TKi,1 < TKi,2 < · · · < TKi,Ki
, where the total number of observations Ki is

an integer-valued random variable. In general, not every subject can be followed

until τ and there exists a follow-up time Ci for subject i .That is, Ni(TKi,j) is

observed only if TKi,j ≤ Ci ≤ τ. Define H̃i(t) = Hi (t ∧ Ci) ,where

Hi(t) =
∑Ki

j = 1 I(TKi,j ≤ t) and I(·) is the indicator function, i = 1, · · · , n and

a ∧ b = min(a, b). That is, H̃i(t) is a counting process characterizing the ith
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subject’s observation process and having jumps only at the observation times. Let

Xi = (Xi1, · · · , Xip)
′ denote a p-dimensional vector of covariates that may not

depend on t, i = 1, · · · , n. Define Fit = {Hi(s) : 0 ≤ s < t} as the observation

history just before t.

According to the analysis of the panel count data arising from the bladder

tumor data in Section 1.2.2, the relation between the observation and the recurrent

event processes may be influenced by some covariates in the study. Thus, by

relaxing the distributional assumption on the observation process, we assume that

given Xi, Fit and the covariate Wi, which may be a component of the vector Xi

or may be other variables different from Xi, the mean function of Ni (t) has the

form

μi(t) = exp{μ0(t) + β′Xi + α′h(Fit,Wi)}, (3.1)

where μ0(t) is an unspecified smooth, nondecreasing function of t, β is a p-

dimensional vector of unknown regression coefficients, and h(·) is a q-dimensional

vector of known functions of the counting process Hi up to time t− and the co-

variates Wi, representing the interaction between the observation history and some

covariates, and α is a q-dimensional vector of unknown regression coefficients.

Especially, when in some clinical studies with many different treatments, Wi are

defined as the group indicators, then h(·) represents the different group effects on

the observation times. Here, the right hand side of (3.1) as a whole function of

t should be nondecreasing since N(t) is a counting process. The main interest of

this paper is to estimate the smooth function μ0(t) and the regression parameters

β and α. In fact, we can see that if we take μ0(t) = log μ̃0(t), where μ̃0(t) is also
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an unspecified smooth, increasing, positive function of t, then (3.1) becomes

μi(t) = μ̃0(t) exp{β′Xi + α′h(Fit,Wi)},

which is the standard form of the proportional means model for panel count data

with informative observation times.

Model (3.1) specifies that the process Ni(t) depends on the process Hi(t)

through the function h, which can be chosen according to situations. Following

the discussion in Sun et al. (2005), a natural and simple choice for h may be

h(Fit,Wi) = Hi(t−)Wi, which means that Ni(t) and Fit are related through or

all information about Ni(t) in Fit is given by the total number of observations.

An alternative is that Ni(t) depends on Fit only through a recent number of

observations, say, in u time units, and this corresponds to h(Fit,Wi) = (Hi(t−)−

Hi(t− u))Wi. One could define h as a vector given by the forgoing two choices if

both the total and recent numbers of observations may contain information about

Ni(t). If α = 0, then model (3.1) reduces to the model considered by Sun and

Wei (2000), Zhang (2002), and Wellner and Zhang (2007) for regression analysis

of panel count data.

In addition, we assume that

E{Ni(t)|Xi, Hi(s), 0 ≤ s ≤ t, Ci} = E{Ni(t)|Xi,Fit, Ci}, (3.2)

which means that conditional on the covariates X′
is and C ′

is, the number of events

at time point t is only related to the observation history before t. The obser-

vation for each individual consists of O = (K, T̄K , N̄K , H̄K , X, C), with T̄K =
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(TK,1, · · · , TK,K), N̄K = (N(TK,1), · · · , N(TK,K)), H̄K = (H(TK,1), · · · , H(TK,K)).

Throughout this paper, we will assume that we observe n i.i.d. copies, O1, · · · ,On

of O.

3.3 Estimation Procedure

Denote

Ln(β, α, μ) =
n∑

i=1

∫ τ

0

[Ni(t)− exp{μ(t) + β′Xi + α′h(Fit,Wi)}]2 dH̃(t) (3.3)

In this paper, we propose to use B-splines to approximate μ(t). For a finite

closed interval [0, τ ], let I = {ti}mn+2l
1 , with

0 = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ

be a sequence of knots that partition [0, τ ] into mn + 1 subintervals and mn =

O(nν), for 0 < ν < 1/2. Let {Bil, 1 ≤ i ≤ qn} denote the B-spline basis functions

with qn = mn+ l. Let Ψl,I (with order l and knots I) be the class linearly spanned

by the B-splines functions, that is,

Ψl,I = {
qn∑
i=1

ηiBil : ηi ∈ R, i = 1, · · · , qn}.

We now define a subclass of Ψl,I , as φl,I = {∑qn
i=1 ηiBil : η1 ≤ · · · ≤ ηqn} . Accord-

ing to the variation-diminishing properties in Schumaker (1981) which has been

sketched in Appendix A, φl,I is a class of monotone nondecreasing splines on [0, τ ]

since the monotonicity of the B-splines is guaranteed by the nondecreasing order

of coefficients. For estimation of μ0 specified in (3.1), we approximate the space

64



of μ0 by a subspace of φl,I , defined as

ψl,I =

{
qn∑
i=1

ηiBil : η1 ≤ · · · ≤ ηqn and

qn∑
i=1

η2i ≤ δ2 for some constant δ

}
.

Then, we approximate the smooth monotone function μ0(t) by
∑qn

i=1 ηiBil(t) and

estimate the coefficients η1 ≤ · · · ≤ ηqn and regression parameters β, and α jointly

through minimizing the approximated expression Ln(β, α, μ) subject to nonde-

creasing constraints.

Since μ(t) can be approximated by
∑qn

i=1 ηiBil(t), equation (3.3) becomes

Ln(β, α, η) =
n∑

i=1

∫ τ

0

[Ni(t)− exp{η′Bl(t) + β′Xi + α′h(Fit,Wi)}]2 dH̃(t), (3.4)

where η = (η1, · · · , ηqn)′, and Bl(t) = (B1l(t), · · · , Bqnl(t))
′.

Let β̂n, α̂n, η̂n be the values that minimize

Ln(β, α, η)

=
n∑

i=1

Ki∑
j=1

[
Ni(TKi,j)− exp{η′Bl(TKi,j) + β′Xi + α′h(FiTKi,j

,Wi)}
]2

ξi(TKi,j),

(3.5)

under constraints η1 ≤ · · · ≤ ηqn , where ξi(t) = I(Ci ≥ t). Then the monotone

splines estimator for μ0(t) is μ̂n(t) =
∑qn

i=1 η̂niBil(t).

The estimation problem is equivalent to a nonlinear programming problem

subject to linear inequality constraints. Specifically, the spline estimation problem

can be formulated as the linear inequality constrained minimization problem

min
θ∈Rp+q×Θη

Ln(θ), (3.6)
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where θ = (β′, α′, η′)′ with η ∈ Θη = {η : η1 ≤ · · · ≤ ηqn}. Jamshidian (2004) pro-

posed a generalized gradient projection algorithm (GP) for optimizing a nonlinear

objective function with linear inequality constraints, based on the generalized Eu-

clidean metric ‖x‖ = xTWx with W being a positive definite matrix and possibly

varying from iteration to iteration. Zhang and Jamshidian (2004) applied the GP

algorithm to large-scale nonparametric maximum likelihood estimation problems

by choosing W = DH , the matrix containing only the diagonal elements of the

negative Hessian matrix H, in order to avoid the storage problem in updating H.

However, this will increase the number of iterations and thereby the computing

time. Lu et al. (2007) and Lu et al. (2009) used the GP algorithm utilized in Zhang

and Jamshidian (2004) with W = H directly because the dimension of unknown

parameter space is usually small in their applications due to the use of polynomial

splines, which would also substantially reduce the number of iterations. Here we

consider the same monotone polynomial splines estimation as that in Lu et al.

(2007, 2009), expect that we are solving a constrained minimizing problem and W

is not equal to the negative Hessian matrix H here.

Let ∇Ln(θ) be the negative gradient of Ln(θ) with respect to θ and

W =
n∑

i=1

∫ τ

0

exp{θ′Zli(t)}Z⊗2
li (t)dH̃(t),

which is a positive definite matrix with Zli(t) = (X′
i, h(Fit,Wi)

′, B′
l(t))

′. Let A =

{i1, i2, · · · , im} denote the index set of active constraints, i.e. ηij = ηij+1, for

j = 1, · · · ,m, during the numerical computation. A is allowed to be empty when

m = 0. We define a m by qn + p + q working matrix corresponding to this set,
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given as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 · · · −1 1 · · · 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 0 · · · −1 1 · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e., the jth row (j = 1, · · · ,m) consists of the unit vector with its (p + q + ij)th

and (p+ q + ij + 1)th elements equal to −1 and 1 respectively and the remaining

components zero. The generalized gradient projection algorithm is implemented

in the following steps.

The generalized gradient projection algorithm

Start with a feasible initial value θ ∈ Rp+q × Θη, and cycle through the

following steps until convergence.

S0: (Computing the feasible search direction)

d =
(
I −W−1AT (AW−1AT )−1A

)
W−1∇Ln(θ),

when there is no active constraint, take d = W−1∇Ln(θ).

S1: (Forcing the updated θ fulfill the constraints) If the resulted direction

d is not nondecreasing in its components, compute

γ = min
i/∈A,di>di+1

(−ηi+1 − ηi
di+1 − di

).

Doing so guarantees that ηi+1 + γdi+1 ≥ ηi + γdi, for i = 1, · · · , qn.
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S2: (Step-Halving line search) Find a smallest integer k starting from 0 such

that

Ln(θ + (1/2)kd) < Ln(θ).

S3: (Updating the Solution) If γ > (1/2)k, replace θ by θ̃ = θ + (1/2)kd and

check the stopping criterion (S5).

S4: (Updating the active constraint set) If γ ≤ (1/2)k, in addition to replace

θ by θ̃ = θ+γd, modifyA by adding indexes of all the newly active constraints

to A and accordingly modify the working matrix A.

S5: (Checking the stopping criterion) If ‖d‖ ≥ ε for a small ε > 0, go to S0.

Otherwise, compute the Lagrange multipliers λ = (AW−1AT )
−1
AW−1L̇(θ).

(i). If λi ≤ 0 for all i ∈ A, set θ̂ = θ and stop.

(ii). If at least one λi > 0, for i ∈ A, remove the index corresponding to the

largest λi from A, and update A and go to S0.

To initialize the algorithm, we choose η = (1, 2, · · · , qn)′, β and α were all

generated from the uniform distribution over interval (−0.5, 0.5).

3.4 Asymptotic Theory

To establish the asymptotic properties of the estimators, we need the following

conditions.

C1 The maximum spacing of the knots satisfies 
 = maxl+1<i<mn+l+1 | ti −

ti−1 |= O(n−ν).
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C2 The parameter spaces of (β′, α′)′, R is bounded and convex on Rp+q, and

the true parameter (β0, α0, μ0) ∈ R◦×Fr, where R◦ is the interior of R, and

Fr ≡ {μ : [0,∞) −→ R

∣∣∣μ is monotone and |μ(k)(s)− μ(k)(t)| ≤ M |s− t|ς},

where k is a nonnegative integer, ς ∈ (0, 1] such that r = k + ς > 0.5, M is

a positive constant and f (k) is the kth derivative of function f .

C3 Ni(τ)(i = 1, · · · , n) are bounded by a constant, and there exist a positive

integer M1, such that P (‖X‖ ≤ M1) = 1, that is, the covariate vector is

uniformly bounded.

C4 There exists a positive integer M2 such that P (K ≤ M2) = 1, that is, the

number of the observation is finite.

C5 If with probability 1, h′
1X + h′

2h(Ft,W ) + h3(t) = 0 for h1 ∈ Rp, h2 ∈ Rq

and some deterministic function h3, then h1 = 0, h2 = 0, h3 = 0.

Next, we introduce more notations. Let Bp and B denote the collection of

Borel sets in Rp and R, respectively, and let B[0,τ ] = {B ∩ [0, τ ] : B ∈ B}. We

define measures υ on (Rp × [0, τ ],Bp × B[0,τ ]) and υ1 on ([0, τ ],B[0,τ ]), as follows:

υ(A× B) =

∫
A×(0,∞)

∞∑
k=1

P (K = k|X = x, C = c))

k∑
j=1

P (Tk,j ∈ B ∩ [0, c]
∣∣K = k,X = x, C = c)dF (x, c)

=

∫
A×(0,∞)

E

{
K∑
j=1

IB∩[0,c](TK,j)|X = x, C = c

}
dF (x, c),
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and υ1(B) = υ(Rp × B), for B ∈ B[0,τ ], and A ∈ Bp set, where F is the joint

distribution function of X and C. Then υ1 and υ are finite measures under con-

dition C4. Let L2(υ1) ≡ {f : [0,∞] −→ R
∣∣||f ||L2(ν1) ≡

[∫ |f(t)|2dν1(t)
]1/2

< ∞}.

Clearly,

‖f‖L2(υ1) =

[
E

K∑
j=1

|f(TK,j)|2ξ(TK,j)

]1/2

=

[
E

∫ τ

0

|f(t)|2ξ(t)dH(t)

]1/2
.

Let Z = {Z(t,W ) ≡ h(Ft,W ), 0 ≤ t ≤ τ} represent a q-dimensional bounded

random process indexed by t. Define

G ≡ {z(t, w) : [0, τ ]× [−M1,M1] −→ M} ,

where M is a bounded set on Rq, and for function f( x, z, t) : [−M1,M1]
p × G ×

[0, τ ] −→ R, define

‖f‖2 ≡
[
E

K∑
j=1

|f(X, Z(TK,j,W ), TK,j)|2ξ(TK,j)

]1/2

.

Define Mn(g) = n−1Ln(β, α, μ) = Pnmg(O), where g(x, z, t) = exp{β′x +

α′z(t, w) + μ(t)}, mg(O) =
∑K

j=1[N(TK,j) − g(X, Z(TK,j,W ), TK,j)]
2ξ(TK,j), and

M(g) = Pmg(O), where Pf and Pnf represent
∫
fdP and n−1

∑n
i=1 f(Oi), re-

spectively.

Since L2(υ1) is a Hilbert space, and Fr ⊂ L2(υ1), by the Hilbert Projection

Theorem (Stakgold, 1998, P. 288), for xj ∈ L2(υ1), there is a unique a∗j ∈ Fr, s.t.

(xj − a∗j) ⊥ Fr, for j = 1, · · · , p. Let zl(t, w) be the lth component of h(Ft, w), l =

1, · · · , q. Then for zl(t, w) ∈ L2(υ1), there is a unique b
∗
l (t) ∈ Fr, s.t. (zl−b∗l ) ⊥ Fr,

for l = 1, · · · , q. Let a∗ = (a∗1, · · · , a∗p)′ and b∗ = (b∗1, · · · , b∗q)′.

70



Then we need another condition

C6 E

⎡
⎢⎢⎢⎣∫ τ

0

⎛
⎜⎜⎝ X− a∗

h(Ft,W )− b∗(t)

⎞
⎟⎟⎠

⊗
2

dH̃(t)

⎤
⎥⎥⎥⎦ is nonsingular.

In practice, C1 is similar to those required by Stone (1986) and Zhou et al.

(1998). C2 is a common assumption in nonparametric smoothing estimation prob-

lems. C3 and C4 are mild and easily justified in many applications. C5 is need

to establish the identifiability of the model. C6 is a technical condition. The

asymptotic properties of the estimators are summarized as follows.

Theorem 3.1 (Consisitency). Under conditions C1 - C4 and C6 , ‖β̂n−β0‖ →

0, ‖α̂n − α0‖ → 0, ‖μ̂n − μ0‖L2(υ1) → 0, almost surely.

Proof of Theorem 3.1.

According to Lemma 5 in Stone (1985) we have sketched in Appendix A,

for μ0 ∈ Fr, there exist a μn ∈ ψl,I with order l ≥ k + 1 and knots I such

that ‖μn − μ0‖∞ = O(n−vr). Let gn(x, z, t) = exp{β′
0x + α′

0z(t, w) + μn(t)},

ĝn(x, z, t) = exp{β̂′
nx+ α̂′

nz(t, w) + μ̂n(t)}, and g0(x, z, t) = exp{β′
0x+α′

0z(t, w) +

μ0(t)}. Without loss of generality, we assume that μn > μ0, thus gn > g0, and

‖gn − g0‖∞ = O(n−νr). Choose a φn ∈ ψl,I and b1 and b2, s.t hn ≡ exp{b1′x +

b2
′z+φn}, and ‖hn‖22 = O(n−νr +n− 1−ν

2 ). Then for any λ > 0, ‖gn − g0 +λhn‖22 =

O(n−νr + n− 1−ν
2 ). Let

Jn(λ) ≡ Mn(gn + λhn)

=
1

n

n∑
i=1

Ki∑
j=1

[Ni(TKi,j)− (gn + λhn)(Xi, Zi(TKi,j,Wi), TKi,j)]
2ξi(TKi,j),
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then

J ′
n(λ) =

2

n

n∑
i=1

Ki∑
j=1

[(gn + λhn)(Xi, Zi(TKi,j,Wi), TKi,j)−Ni(TKi,j)]

× hn(Xi, Zi(TKi,j,Wi), TKi,j)ξi(TKi,j),

and

J ′′
n(λ) =

2

n

n∑
i=1

Ki∑
j=1

h2
n(Xi, Zi(TKi,j,Wi), TKi,j)ξi(TKi,j) ≥ 0.

Thus, J ′
n(λ) is a nondecreasing function. Therefore, to prove the convergence

of ĝn to g0, it is sufficient to show that ∀λ0 > 0, J ′
n(λ0) > 0 and J ′

n(−λ0) < 0

except on an event with probability converging to zero. Then ĝn must be between

gn − λ0hn and gn + λ0hn, so ‖ĝn − gn‖22 ≤ λ2
0‖hn‖22 = O(n−νr + n− 1−ν

2 ).

Next, we’ll show that J ′
n(λ0) > 0.

1

2
J ′
n(λ0)

=Gn

K∑
j=1

[(gn + λ0hn)(X, Z(TK,j,W ), TK,j)−N(TK,j)]hn(X, Z(TK,j,W ), TK,j)ξ(TK,j)

+P
K∑
j=1

[(gn + λ0hn)(X, Z(TK,j,W ), TK,j)−N(TK,j)]hn(X, Z(TK,j,W ), TK,j)ξ(TK,j)

≡I1n + I2n.

By the calculation of Shen and Wong (1994, p. 597), for η > 0 and any ε ≤ η,

logN[](ε, ψl,I , L2(υ1)) ≤ c1qn log(η/ε), J[](η, ψl,I , L2(υ1)) ≤ c2q
1/2
n η,

where qn = mn + l is the number of spline basis functions, and c1 and c2 are finite

constants.
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By Theorem 2.5.2 of Van der Vaart and Wellner (1996, p. 127) (Theorem

C.3), ψl,I is a Donsker class. Then given gn defined before,

Gη ≡
{ K∑

j=1

[h(X, Z(TK,j,W ), TK,j)−N(TK,j)](h− gn)(X, Z(TK,j,W ), TK,j)ξ(TK,j) :

h(x, z, t) = exp{β′x+ α′z(t, w) + φ(t)}, φ ∈ ψl,I , ‖h− gn‖2 ≤ η
}

is a Donsker class. Thus, I1n = OP (n
−1/2).

I2n = E
[ ∫ τ

0

(gn + λ0hn)(X, Z(t,W ), t)hn(X, Z(t,W ), t)ξ(t)dH(t)
]

− E
[ ∫ τ

0

N(t)hn(X, Z(t,W ), t)ξ(t)dH(t)
]

= E
[ ∫ τ

0

(λ0hn + gn − g0)(X, Z(t,W ), t)hn(X, Z(t,W ), t)ξ(t)dH(t)
]

≥ E
[ ∫ τ

0

λ0h
2
n(X, Z(t,W ), t)ξ(t)dH(t)

]
= λ0‖hn‖22

Thus, 1
2
J ′
n(λ0) > OP (n

−1/2) + λ0‖hn‖22 > 0, since ‖hn‖22 = O(p−1
n ) with p−1

n ≡

n−νr + n− 1−ν
2 ≥ n− r

1+2r > n−1/2 for 0 < ν < 1/2.

For J ′
n(−λ0),

1

2
J ′
n(−λ0)

=Gn

K∑
j=1

[(gn − λ0hn)(X, Z(TK,j,W ), TK,j)−N(TK,j)]hn(X, Z(TK,j,W ), TK,j)ξ(TK,j)

+P
K∑
j=1

[(gn − λ0hn)(X, Z(TK,j,W ), TK,j)−N(TK,j)]hn(X, Z(TK,j,W ), TK,j)ξ(TK,j)

≡I∗1n + I∗2n.
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Using the same arguments as for J ′
n(λ0), I

∗
1n = OP (n

−1/2).

I∗2n = E
[ ∫ τ

0

(gn − λ0hn)(X, Z(t,W ), t)hn(X, Z(t,W ), t)ξ(t)dH(t)
]

− E
[ ∫ τ

0

hn(X, Z(t,W ), t)ξ(t)N(t)dH(t)
]

= E
[ ∫ τ

0

(−λ0hn + gn − g0)(X, Z(t,W ), t)hn(X, Z(t,W ), t)ξ(t)dH(t)
]

= −λ0E
[ ∫ τ

0

h2
n(X, Z(t,W ), t)ξ(t)dH(t)

]
+ E

[ ∫ τ

0

(gn − g0)(X, Z(t,W ), t)hn(X, Z(t,W ), t)ξ(t)dH(t)
]

≤ −λ0‖hn‖22 + ‖gn − g0‖2‖hn‖2

≤ −c3p
−1
n ,

for a positive constant c3. Thus,
1
2
J ′
n(−λ0) ≤ O(n−1/2)− c3p

−1
n < 0.

Then we have ‖ĝn − g0‖2 ≤ ‖ĝn − gn‖2 + ‖gn − g0‖2 = O(p
−1/2
n ), and log ĝn −

log g0 =
1
g∗ (ĝn−g0), with g∗ = (1−ξ)g0+ξĝn, 0 ≤ ξ ≤ 1. Hence ‖ log ĝn−log g0‖2 =

O(p
−1/2
n ) −→ 0. Also,

‖ log ĝn − log g0‖2 =‖(β̂n − β0)
′x+ (α̂n − α0)

′z + (μ̂n − μ0)‖2

=‖(β̂n − β0)
′(x− a∗) + (α̂n − α0)

′(z − b∗)

+ (β̂n − β0)
′a∗ + (α̂n − α0)

′b∗ + (μ̂n − μ0)‖2

=‖(β̂n − β0)
′(x− a∗) + (α̂n − α0)

′(z − b∗)‖2

+ ‖(β̂n − β0)
′a∗ + (α̂n − α0)

′b∗ + (μ̂n − μ0)‖2.

By C6, we can get ‖β̂n−β0‖ −→ 0, and ‖α̂n−α0‖ −→ 0 from the first term of the

right hand side of the above equality, and thus it follows that ‖μ̂n−μ0‖L2(υ1) −→ 0.

This completes the proof of the theorem.
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Theorem 3.2 (Rate of Convergence). Suppose that conditions C 1 - C 6 hold,

then

‖β̂n − β0‖ = OP (n
− 1−ν

2 ), ‖α̂n − α0‖ = OP (n
− 1−ν

2 ), ‖μ̂n − μ0‖L2(υ1) = OP (n
− 1−ν

2 ).

Remark 3.1. When ν = 1/(1 + 2r), n− 1−ν
2 = n− r

1+2r , we conclude from Stone

(1980, 1982) that the rate of convergence of the estimator μ̂n is the optimal rate

in nonparametric regression.

Proof of Theorem 3.2.

For any η > 0, let

Fη ≡ {g = exp{β′x+α′z+μ} : ‖β−β0‖ ≤ η, ‖α−α0‖ ≤ η, μ ∈ ψl,I , ‖μ−μ0‖L2(υ1) ≤ η}.

Similar to Lemma A.2 in Huang (1999, p. 1557) given in Appendix A, for any

ε ≤ η, logN[](ε,Fη, ‖ · ‖2) ≤ c4qn log(η/ε), for a constant c4. Thus, for ε > 0, there

exists a set of brackets {[gli, gri ], i = 1, · · · , (η
ε
)c4qn} such that, for each g ∈ Fη,

there is a [gls, g
r
s ] with gls(x, z, t) ≤ g(x, z, t) ≤ grs(x, z, t), for all x, t ∈ [0, τ ] and

z ∈ G, and ‖grs − gls‖22 ≤ ε2.

Then, by Theorem 3.1, ĝn ∈ Fη, for any η > 0 and sufficiently large n.

Next, consider the class Mη ≡ {mg(O)−mg0(O) : g ∈ Fη}, where mg(O) =

∑K
j=1[N(TK,j)− g(X, Z(TK,j,W ), TK,j)]

2ξ(TK,j).

For i = 1, · · · , (η
ε
)c4qn , define

ml
i(O) =

K∑
j=1

[
{|gli| ∨ |gri |}2(X, Z(TK,j,W ), TK,j)− 2N(TK,j)g

r
i (X, Z(TK,j,W ), TK,j)

+ 2N(TK,j)g0(X, Z(TK,j,W ), TK,j)− g20(X, Z(TK,j,W ), TK,j)
]
ξ(TK,j),
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mr
i (O) =

K∑
j=1

[
{|gli| ∧ |gri |}2(X, Z(TK,j,W ), TK,j)− 2N(TK,j)g

l
i(X, Z(TK,j,W ), TK,j)

+ 2N(TK,j)g0(X, Z(TK,j,W ), TK,j)− g20(X, Z(TK,j,W ), TK,j)
]
ξ(TK,j),

where a ∨ b = min{a, b} and a ∧ b = max{a, b}. Then, ml
i(O) ≤ mr

i (O) and it is

easy to show that P |mr
i (O) − ml

i(O)|2 ≤ c5ε
2 with a positive constant c5. Thus

{[ml
i(O),mr

i (O)], i = 1, · · · , (η
ε
)c4qn} is the set of brackets for Mη, which implies

that

logN[](ε,Mη, L2(P ) ≤ c4qn log(η/ε).

Moreover, by some calculations, we can verify that P‖mg(O) −mg0(O)‖2 ≤ c6η
2

for any g ∈ Fη by C4. Therefore, by Lemma 3.4.2 of Van der Vaart and Wellner

(1996) (Lemma C.5), we obtain

E‖n1/2(P− P )‖Mη ≤ c7J[](η,Mη, L2(P ))

{
1 +

J[](η,Mη, L2(P ))

η2n1/2
M3

}
, (3.7)

where M3 is a constant and ‖n1/2(P− P )‖F = supf∈F |n1/2(P− P )f |, and

J̃[](η,Mη, L2(P )) =

∫ η

0

{1 + logN[](ε,Mη, L2(P ))}1/2dε ≤ c8q
1/2
n η.

The right hand side of (3.7) yields ϕn(η) = c9(q
1/2
n η + qn/n

1/2). It is easy to see

that ϕn(η)/η is decreasing in η, and

r2nϕ(
1

rn
) = rnq

1/2
n + r2nqn/n

1/2 ≤ 2n1/2,

for rn = n
1−ν
2 and 0 < ν < 1/2.
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Note that

P [mg(O)−mg0(O)]

= P
[ ∫ τ

0

{
[N(t)− g(X, Z(t,W ), t)]2 − [N(t)− g0(X, Z(t,W ), t)]2

}
ξ(t)dH(t)

]

= E
[ ∫ τ

0

(g0 − g)(X, Z(t,W ), t)[2N(t)− (g + g0)(X, Z(t,W ), t)]ξ(t)dH(t)
]

= E
[ ∫ τ

0

(g − g0)
2(X, Z(t,W ), t)ξ(t)dH(t)

]

= ‖g − g0‖22.

Thus, by Theorem 3.2.5 of Van der Vaart and Wellner (1996) (Theorem C.4),

n
1−ν
2 ‖ĝn − g0‖2 = Op(1). Therefore by the similar arguments as those in the proof

of consistency of β̂n, α̂n and μ̂n, we can get the rate of convergence of μ̂n, β̂n and

α̂n as stated in the Theorem. The choice of ν = 1/(1 + 2r) yields the rate of

convergence of r/(1 + 2r), which completes the proof.

Theorem 3.3 (Asymptotic Normality). Suppose that conditions C 1 - C 6

hold. Let

H ≡ {(h1, h2, h3) : (h
′
1,h

′
2)

′ ∈ R, h3 ∈ Fr, ‖h1‖ ≤ 1, ‖h2‖ ≤ 1, ‖h2‖∞ ≤ 1}.

Then for any (h1,h2, h3) ∈ H,

h′
1

√
n(β̂n − β0) + h′

2

√
n(α̂n − α0) +

∫ τ

0

√
n(μ̂n − μ0)(t)dh3(t)

converges in distribution N(0, σ2), where σ2 is given in (3.8).

The similar bootstrap covariance matrix estimator for
√
n

⎛
⎜⎜⎝β̂n − β0

α̂n − α0

⎞
⎟⎟⎠ can be

obtained as in Section 2.4.
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Proof of Theorem 3.3.

We define a sequence of maps Sn mapping a neighborhood of (α0, β0, μ0),

denoted by U , in the parameter space for (β, α, μ) into l∞(H) as :

Sn(β, α, μ)[h1,h2, h3]

≡ n−1 d

dε
Ln(β + εh1, α + εh2, μ+ εh3)

∣∣∣
ε=0

= − 2

n

n∑
i=1

∫ τ

0

[Ni(t)− e{β
′Xi+α′h(Fit,Wi)+μ(t)}]e{β

′Xi+α′h(Fit,Wi)+μ(t)}

×[h′
1 Xi + h′

2h(Fit,Wi) + h3(t)]dH̃i(t)

≡ Pnψ(β, α, μ)[h1, h2, h3],

Correspondingly, we define the limit map S : U −→ l∞(H) as S(β, α, μ)[h1, h2, h3],

where l∞(H) is the space of bounded functionals on H under the supermum norm

‖f‖ = suph∈H |f(h)|.

To derive the asymptotic normality of the estimators (β̂n, α̂n, μ̂n), motivated

by the proof of Theorem 3.3.1 of Van der Vaart and Wellner (1996, p. 310), we

first need to verify the following five conditions.

(i)
√
n(Sn − S)(β̂n, α̂n, μ̂n)−

√
n(Sn − S)(β0, α0, μ0) = op(1).

(ii)
√
n(Sn−S)(β0, α0, μ0) converges in distribution to a tight Gaussian process

on l∞(H).

(iii) S(β0, α0, μ0) = 0 and Sn(β̂n, α̂n, μ̂n) = op(n
−1/2).

(iv) (β, α, μ) �−→ S(β, α, μ) is Fréchet-differentiable at (β0, α0, μ0) with a con-

tinuously invertible derivative Ṡ(β0, α0, μ0);

(v)
√
n
(
S(β̂n, α̂n, μ̂n)−S(β0, α0, μ0)

)
−√

nṠ(β0, α0, μ0)
(
(β̂n, α̂n, μ̂n)−(β0, α0, μ0)

)
= op(1).
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Note that

√
n(Sn − S)(β̂n, α̂n, μ̂n)−

√
n(Sn − S)(β0, α0, μ0)

=
√
n(Pn − P )

(
ψ(β̂n, α̂n, μ̂n)[h1, h2, h3]− ψ(β0, α0, μ0)[h1, h2, h3]

)
.

Define

ρ
(
(β1, α1, μ1)− (β2, α2, μ2)

)
=
{‖β1 − β2‖2 + ‖α1 − α2‖2 + ‖μ1 − μ2‖2L2(υ1)

}1/2

and for δ > 0,

Fδ =
{
ψ(β, α, μ)[h1, h2, h3]− ψ(β0, α0, μ0)[h1, h2, h3] :

ρ
(
(β, α, μ)− (β0, α0, μ0)

)
< δ, (h1, h2, h3) ∈ H

}
.

It is easy to see that Fr ⊆ Cr[0, τ ] is a Donsker class from Van der Vaart and

Wellner (1996, p157), thus H is a Donsker class and

∣∣ψ(β, α, μ)[h1, h2, h3]
∣∣

=
∣∣− 2

∫ τ

0

[N(t)− e{β
′X+α′h(Ft,W )+μ(t)}]e{β

′X+α′h(Ft,W )+μ(t)}

× [h′
1 X+ h′

2h(Ft,W ) + h3(t)]dH̃(t)
∣∣

≤M1‖h1‖+M2‖h2‖+M3‖h3‖∞,
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for constants M1,M2,M3, which means that ψ(β, α, μ) is a bounded Lipschitz

functional with respect to H, thus Fδ is a Donsker class for some δ > 0. And

P
∣∣∣ψ(β1, α1, μ1)[h1, h2, h3]− ψ(β2, α2, μ2)[h1, h2, h3]

∣∣∣2
=P

∣∣∣2 ∫ τ

0

[
N(t)

{
e{β

′
1X+α′

1h(Ft,W )+μ1(t)} − e{β
′
2X+α′

2h(Ft,W )+μ2(t)}}
+
{
e{2(β

′
1X+α′

1h(Ft,W )+μ1(t))} − e{2(β
′
2X+α′

2h(Ft,W )+μ2(t))}}]

× [h′
1 X+ h′

2h(Ft,W ) + h3(t)]dH̃(t)
∣∣∣2

=P
∣∣∣2 ∫ τ

0

[
N(t)e{f̃} + 2e{2f̃}

]
(f1 − f2)[h

′
1 X+ h′

2h(Ft,W ) + h3(t)]dH̃(t)
∣∣∣2

≤c10ρ
2
(
(β1, α1, μ1)− (β2, α2, μ2)

)
,

for a constant c10. The second from the last equation is satisfied since ef1 − ef2 =

ef̃ (f1−f2), and e2f1 −e2f2 = 2e2f̃ (f1−f2), for f1 = β′
1X+α′

1h(Ft,W )+μ1(t), f2 =

β′
2X+ α′

2h(Ft,W ) + μ2(t), and f̃ = (1− ξ)f1 + ξf2, 0 ≤ ξ ≤ 1. Thus condition (i)

holds by Kosorok (2008, Lemma 13.3) (Lemma C.6).

Condition (ii) is also satisfied since {ψ(β0, α0, μ0)[h1, h2, h3] : (h1, h2, h3) ∈

H} is a Donsker class.

Clearly, S(β0, α0, μ0) = 0. For h3 ∈ Fr, let h3n be the B-spline function

approximation of h3 with ‖h3n − h3‖∞ = O(n−νr), then we have

Sn(β̂n, α̂n, μ̂n)[h1,h2, h3n] = 0.
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Thus, for (h1,h2, h3) ∈ H,

n
1
2Sn(β̂n, α̂n, μ̂n)[h1,h2, h3]

= n
1
2

{
Sn(β̂n, α̂n, μ̂n)[h1,h2, h3]− Sn(β̂n, α̂n, μ̂n)[h1,h2, h3n]

}
= n

1
2 (Pn − P )ψ(β̂n, α̂n, μ̂n)[h1, h2, h3]− n

1
2 (Pn − P )ψ(β0, α0, μ0)[h1, h2, h3]

−
{
n

1
2 (Pn − P )ψ(β̂n, α̂n, μ̂n)[h1, h2, h3n]− n

1
2 (Pn − P )ψ(β0, α0, μ0)[h1, h2, h3n]

}

+ n
1
2Pn {ψ(β0, α0, μ0)[h1, h2, h3]− ψ(β0, α0, μ0)[h1, h2, h3n]}

+ n
1
2P

{
ψ(β̂n, α̂n, μ̂n)[h1, h2, h3]− ψ(β̂n, α̂n, μ̂n)[h1, h2, h3n]

}

≡ Q1n −Q2n +Q3n +Q4n.

It follows from (i) that both Q1n and Q2n are op(1). And

|Q4n|

=
∣∣∣2n 1

2P

∫ τ

0

[e{β̂
′
nX+α̂′

nh(Ft,W )+μ̂n(t)} −N(t)]e{β̂
′
nX+α̂′

nh(Ft,W )+μ̂n(t)}(h3 − h3n)dH̃(t)
∣∣∣

≤c11

∣∣∣n 1
2P

∫ τ

0

[e{β̂
′
nX+α̂′

nh(Ft,W )+μ̂n(t)} − e{β
′
0X+α′

0h(Ft,W )+μ0(t)}](h3 − h3n)dH̃(t)
∣∣∣

=c11

∣∣∣n 1
2P

∫ τ

0

ef
∗{f̂n − f0}(h3 − h3n)dH̃(t)

∣∣∣
≤c12n

1
2ρ
(
(β̂n, α̂n, μ̂n)− (β0, α0, μ0)

) · ‖h3n − h3‖∞

≤n
1
2O(n− 1−ν

2 ) ·O(n−νr)

=op(1).

for constants c11 and c12, where f0 = β′
0X + α′

0h(Ft,W ) + μ0(t), f̂n = β̂′
nX +

α̂′
nh(Ft,W ) + μ̂n(t), and f ∗ = (1 − ξ)f0 + ξf̂n with 0 ≤ ξ ≤ 1. Furthermore, Q3n
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is also op(1) since

P [ψ(β0, α0, μ0)[h1, h2, h3]− ψ(β0, α0, μ0)[h1, h2, h3n]]
2

=P
[
2

∫ τ

0

[N(t)− e{β
′
0X+α′

0h(Ft,W )+μ0(t)}]e{β
′
0X+α′

0h(Ft,W )+μ0(t)}(h3n − h3)(t)dH̃(t)
]2

≤c13‖h3n − h3‖2∞ −→ 0,

for a constant c13. Thus Sn(β̂n, α̂n, μ̂n) = op(n
−1/2).

For the proof of (iv), by the smoothness of S(β, α, μ), the Fréchet differentia-

bility holds and the derivative of S(β, α, μ) at (β0, α0, μ0), denoted by Ṡ(β0, α0, μ0)

is a map from the space {(β − β0, α− α0, μ− μ0) : (β, α, μ) ∈ U} to l∞(H) and

Ṡ(β0, α0, μ0)(β − β0, α− α0, μ− μ0)[h1,h2, h3]

=
∂S(β0 + ε(β − β0), α0 + ε(α− α0), μ+ ε(μ− μ0))[h1, h2, h3]

∂ε

∣∣∣
ε=0

=2P

∫ τ

0

[2e{β
′
0X+α′

0h(Ft,W )+μ0(t)} −N(t)]e{β
′
0X+α′

0h(Ft,W )+μ0(t)}

× [(β − β0)
′X+ (α− α0)

′h(Ft,W ) + (μ− μ0)]

× [h′
1 X+ h′

2h(Ft,W ) + h3(t)]dH̃(t)

=2P

∫ τ

0

e{2(β
′
0X+α′

0h(Ft,W )+μ0(t))}[(β − β0)
′X+ (α− α0)

′h(Ft,W ) + (μ− μ0)]

× [h′
1 X+ h′

2h(Ft,W ) + h3(t)]dH̃(t)

≡ σ1(h1,h2, h3)
′(β − β0) + σ2(h1,h2, h3)

′(α− α0) +

∫ τ

0

(μ− μ0)dσ3(h1,h2, h3),

where

σ1(h1,h2, h3) = 2P

{∫ τ

0

g0(X,Z(t,W ), t)2[h′
1 X+ h′

2h(Ft,W ) + h3(t)]XdH̃(t)

}
,

σ2(h1,h2, h3) = 2P

{∫ τ

0

g0(X,Z(t,W ), t)2[h′
1 X+ h′

2h(Ft,W ) + h3(t)]h(Ft,W )dH̃(t)

}
,
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and

σ3(h1,h2, h3)(t) = 2P

{∫ t

0

g0(X,Z(s,W ), s)2[h′
1 X+ h′

2h(Fs,W ) + h3(s)]dH̃(s)

}
,

with g0(X, Z(t,W ), t) = e{β
′
0X+α′

0Z(t,W )+μ0(t)}.

It remains to show that the linear map Ṡ(β0, α0, μ0) is continuously invertible

on its range. Following the proof of Theorem 2 in Zeng et al. (2005), we only need

to show that for h ∈ H, if σ(h) = (σ1(h), σ2(h), σ3(h)) = 0 almost surely, then

h = 0. Suppose that σ(h) = 0, a.s., then σ1(h)
′h1+σ2(h)

′h2+
∫ τ

0
h3(t)dσ3(h)(t) = 0,

i. e.

0 =2P

∫ τ

0

g0(X,Z(t,W ), t)2[h′
1 X+ h′

2h(Ft,W ) + h3(t)]X
′dH̃(t)h1

+2P

∫ τ

0

g0(X,Z(t,W ), t)2[h′
1 X+ h′

2h(Ft,W ) + h3(t)]h(Ft,W )′dH̃(t)h2

+2P

∫ τ

0

g0(X,Z(t,W ), t)2[h′
1 X+ h′

2h(Ft,W ) + h3(t)]h3(t)dH̃(t)

= 2P

∫ τ

0

g0(X,Z(t,W ), t)2[h′
1 X+ h′

2h(Ft,W ) + h3(t)]
2dH̃(t)

which implies that h′
1 X + h′

2h(Ft,W ) + h3(t) = 0, a.s.. Hence, h1 = 0,h2 =

0, h3 = 0 by C5.
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Moreover, condition (v) holds since

∣∣∣√n
[
S(β̂n, α̂n, μ̂n)− S(β0, α0, μ0)−

− Ṡ(β0, α0, μ0)(β̂n − β0, α̂n − α0, μ̂n − μ0)
]
[h1,h2, h3]

∣∣∣
=
∣∣∣2√nP

∫ τ

0

{
(ef̂n − ef0)ef̂n − e2f0(f̂n − f0)

}

× [h′
1 X+ h′

2h(Ft,W ) + h3(t)]dH̃(t)
∣∣∣

=
∣∣∣2√nP

∫ τ

0

{[
ef0(f̂n − f0) +

e2f0

2
(f̂n − f0)

2 + op
(
(f̂n − f0)

2
)]
ef̂n − e2f0(f̂n − f0)

}

× [h′
1 X+ h′

2h(Ft,W ) + h3(t)]dH̃(t)
∣∣∣

=
∣∣∣2√nP

∫ τ

0

{
ef0+f∗

(f̂n − f0)
2 +

[e2f0
2

(f̂n − f0)
2 + op

(
(f̂n − f0)

2
)]
ef̂n
}

× [h′
1 X+ h′

2h(Ft,W ) + h3(t)]dH̃(t)
∣∣∣

≤c
∣∣∣2√nP

∫ τ

0

[(f̂n − f0)
2 + op

(
(f̂n − f0)

2
)
][h′

1 X+ h′
2h(Ft,W ) + h3(t)]dH̃(t)

∣∣∣
≤c14

√
n
[
ρ2
(
(β̂n, α̂n, μ̂n)− (β0, α0, μ0)

)
+ op

(
ρ2
(
(β̂n, α̂n, μ̂n)− (β0, α0, μ0)

))]

=Op(n
1
2
−(1−ν)) + op(n

1
2
−(1−ν)) = op(1),

for a constant c14.

Therefore, by (i) - (v), we have

√
nṠ(β0, α0, μ0)(β̂n − β0, α̂n − α0, μ̂n − μ0)[h1,h2, h3]

= σ1(h1,h2, h3)
′√n(β̂n − β0) + σ2(h1,h2, h3)

′√n(α̂n − α0)

+

∫ τ

0

√
n(μ̂n − μ0)(t)dσ3(h1,h2, h3)

= −√
n(Sn − S)(β0, α0, μ0)[h1,h2, h3] + op(1),
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uniformly in h1, h2 and h3, and for each (h1,h2, h3) ∈ H, there exists unique

(h∗
1,h

∗
2, h

∗
3) ∈ H, such that σ1(h

∗
1,h

∗
2, h

∗
3) = h1, σ2(h

∗
1,h

∗
2, h

∗
3) = h2, σ3(h

∗
1,h

∗
2, h

∗
3) =

h3. Thus, we have

h′
1

√
n(β̂n − β0) + h′

2

√
n(α̂n − α0) +

∫ τ

0

√
n(μ̂n − μ0)(t)dh3(t)

=
√
nṠ(β0, α0, μ0)(β̂n − β0, α̂n − α0, μ̂n − μ0)[h

∗
1,h

∗
2, h

∗
3]

= −√
n(Sn − S)(β0, α0, μ0)[h

∗
1,h

∗
2, h

∗
3] + op(1)

−→ Z in distribution,

where Z follows N(0, σ2) with

σ2 ≡ Eψ2(β0, α0, μ0)[h
∗
1,h

∗
2, h

∗
3]. (3.8)

3.5 Simulation study

We conducted a simulation study to assess the finite sample properties of the

proposed estimators. We considered the situation where there were two covariates

and for each subject i, X1i’s and X2i’s were generated from Bernoulli distribution

with success probability 0.5 and the standard normal distribution. The follow-up

time Ci was from the uniform distribution over interval (τ/2, τ) with τ = 6. Given

the covariate Xi = (X1i, X2i)
′, two set-ups for the observation process Hi(t) were

considered as follows:

(a). The number of observation times mi was assumed to follow the Poisson

distribution with mean 2Ci/τ exp(γ
′Xi) and the observation times (Ti1, . . . , Timi

)

were taken to be the order statistics of a random sample of sizemi from the uniform
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distribution over (0, Ci).

(b). The number of observation times mi was assumed to follow the uniform

distribution over {1, 2, 3, 4, 5, 6} and the observation times (Ti1, . . . , Timi
) were gen-

erated in the same way as in set-up (a).

Then, given Xi, mi and the observation times (Tmi,1, · · · , Tmi,mi
), we gen-

erated recurrent event counts Ñmi
= (Ni(Tmi,1), · · · , Ni(Tmi,mi

)) from a Poisson

process by takingNi(Tmi,j) = Ni(Tmi,1)+{Ni(Tmi,2)−Ni(Tmi,1)}+· · ·+{Ni(Tmi,j)−

Ni(Tmi,j−1)}, where

Ni(t)−Ni(s) ∼ Poisson(exp{μ0(t) + β′
0Xi + α0Hi(t−)X1i}

− exp{μ0(s) + β′
0Xi + α0Hi(s−)X1i}).

Set μ0(t) =
√
t or μ0(t) = log(t + 1), α0 = 0, 0.3, or 0.5, representing the

different correlations between the panel count process and the observation process,

and β0 = (−0.5, 0.5), representing the different effects of the covariate X on the

recurrent event counts. To estimate the smooth function μ0(t), we considered

cubic B-splines and took mn = nν with ν = 1/10, 1/3 or 2/5. For a given

number of interior knots mn, we consider two data-driven methods for determing

locations of knots. One is the equally spaced knots, which are given by Tmin +

k(Tmax − Tmin)/(mn + 1), k = 0, 1, · · · ,mn + 1, with Tmin and Tmax being the

respective minimum and maximum values of distinct observation times. Another

is the partitions according to quantiles of the observation times, i. e., the k/(mn+1)

quantiles (k = 0, 1, · · · ,mn + 1) of the distinct observation times are chosen to be

the knots. We have done simulation for the six combinations of the number and
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placement of knots and illustrate the estimation results for different combinations

with W = X1, α = 0.3, μ0(t) = log(t + 1) and n = 100 in Table 3.1. From this

table, we find that the estimation results are very similar and not sensitive to the

selection of number and placement of knots. Thus in the following, we present

the overall results with number of interior knots chosen to be n1/3 and the equally

spaced knots.

Tables 3.2 and 3.3 present the simulation results on estimation of β0 and α0

for Poisson and non-Poisson observation processes with sample size n = 100 or

200 and μ0(t) =
√
t and log (t+ 1), respectively. The tables include the estimated

bias (BIAS) given by the average of the estimates minus the true value, the sample

standard deviation error of estimates (SSE), the mean of the bootstrap standard

errors of the estimates (BSE), and the bootstrap 95% coverage probability (CP)

obtained from 1000 independent runs. Here we used 100 replications in bootstrap

to estimate the standard errors. It can be seen from the tables that the proposed

estimators are unbiased for different situations considered, which means that our

estimation approach does not rely on the Poisson distributional assumption about

the observation process, thus it is more robust than the previous analysis of panel

count data with informative observation process under the Poisson assumption,

such as Hu et al. (2003), Li et al. (2010) and Zhao and Tong (2011). Also, the

SSE and the BSE are quite close to each other and smaller as the sample size

increases, which indicates that proposed bootstrap variance estimation procedure

provides reasonable estimates. In addition, the 95% bootstrap CP are consistent

with the nominal level, which suggests that the normal approximation seems to
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be appropriate.

Figures 3.1 and 3.2 show the estimation results of μ0(t) =
√
t and μ0(t) =

log (t+ 1), respectively, for simulated panel count data with Possion and Non-

Poisson observation processes, h(Ft,W ) = H(t−)X1 and α = 0.5. In the figures,

the solid line represents the real curve of μ0(t), and the point line and the dotted

line represent the B-spline based estimation curves of μ0(t) for the sample size

n = 100 and n = 200, respectively. Based on the figures, we have the finding

that the B-spline based estimation curve of μ0(t) is close to its real curve with

the moderate sample size and especially closer as the sample size increase in all

different situations, indicating that the B-spline estimator for μ0(t) works well.

Note that our simulation results for estimation of the regression parameters

and the nonparametric function are all reasonable with the moderate sample size

even when α diverges far from 0, which is superior to the results in Li et al. (2010),

where they proposed a semiparametric transformation model for the underlying

recurrent event process, but with a nonhomogeneous Poisson restriction on the in-

formative observation times. Thus, our proposed models and estimation procedure

are more flexible and robust.
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3.6 Application

This section presents an analysis of the bladder cancer data by applying our

proposed methods. There were 116 subjects with superficial bladder tumors ran-

domized into one of three treatment groups: placebo, thiotepa, and pyridoxine. In

the following, we restrict our attention to the placebo and thiotepa groups with re-

spective sizes of 47 and 38 as it has been shown that the pyridoxine treatment had

no effect on the recurrence of the bladder tumors (Zhang, 2002). For each patient,

the observed information includes times when he or she made clinical visits and

the numbers of recurrent tumors between clinical visits. Two baseline covariates

were observed and they are the number of initial tumors and the size of the largest

initial tumor.

To analyze the data, for patient i, define x1i to be equal to 1 if the ith patient

was given the thiotepa treatment and 0 otherwise, x2i the number of initial tumors

and x3i the size of the largest initial tumor, i = 1, . . . , 85. We define the response

Ni(t) to be the cumulated new tumor numbers of patient i up to time t. Let Hi(·)

represent the accumulated observation numbers of patient i over the study period.

Assume that {Ni(t)} can be described by model (3.1) with h(Fit) = Hi(t−)X1i,

meaning that the relation between recurrence rate of bladder tumors and the

observation times are related through the total number of observations., i.e.,

E{Ni(t)|X1i, X2i, X3i,Fit} = exp{μ0(t) + β′
1X1i + β′

2X2i + β′
3X3i + α′Hi(t−)X1i}.

Here, we took the last visit time of patient i as Ci in the analysis. For estimation
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(a) Poisson observation process

(b) Non-Poisson observation process

Figure 3.1. Estimates of μ0(t) =
√
t for simulated panel count data with Poisson

and non-Poisson observation processes, h(Ft,W ) = H(t−)X1 and α = 0.5
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(a) Poisson observation process

(b) Non-Poisson observation process

Figure 3.2. Estimates of μ0(t) = log (t+ 1) for simulated panel count data with
Poisson and non-Poisson observation processes, h(Ft,W ) = H(t−)X1 and α = 0.5
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of μ0(t), we use the cubic B-spline approximation by taking the number of interior

knots mn as nv with v = 1/3 and the equally spaced knots.

The application of the estimation procedure proposed in the previous sec-

tions gave β̂1 = −0.9006, β̂2 = 0.1980, β̂3 = −0.0658, and α̂ = −0.4076 with the

bootstrap standard errors being 0.5051, 0.1009, 0.2054, and 0.1510, which corre-

spond to p-values of 0.0746, 0.0497, 0.7486, and 0.0069, respectively, based on the

asymptotic results of the estimators. Here β̂1, β̂2 and β̂3 represent the estimated

regression coefficients corresponding to the treatment indicator, the number of

initial tumors, and the size of the largest initial tumor, respectively, while α̂ repre-

sents the estimated effect of the interaction between the observation process and

the treatment indicator on the tumor recurrence rate.

These results indicate that the recurrent event process and the interaction

between the observation process and the treatment indicator are significantly neg-

atively correlated, which is consistent with the analysis results in Sun et al. (2005)

and Section 2.6. Furthermore, the thiotepa treatment significantly reduces the

occurrence rate of the bladder tumors, and the number of initial tumors has a

significant positive effect on the tumor recurrence rate. However, the occurrence

rate of the bladder tumors do not seem to be significantly related to the size of

the largest initial tumor. These conclusions are roughly consistent with those pre-

sented in Li et al. (2010), and Zhao and Tong (2011). Compared to the models

in Li et al. (2010), and Zhao and Tong (2011), our proposed procedure could be

useful to estimate the future recurrence rate based on the observation history.
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Chapter 4

Panel Count Data Analysis with Time-

Dependent Covariates

In this chapter, we consider some semiparametric regression analysis of panel

count data with time-dependent covariates and information observation and cen-

soring times.

4.1 Introduction

In many situations, the underlying recurrent process and the observation pro-

cess are still dependent even given covariates. For this, Zhao and Tong (2011)

proposed a joint modeling approach that used an unobserved frailty variable and

a completely unspecified link function to characterize the correlation between the

recurrent event process and the observation times with time-independent covari-

ates. However, in some applications, panel count data with informative observation

times, and also with time-dependent covariates and informative censoring times

may exist, when a failure time is correlated to the censoring mechanismand some

associated covariates vary with time. Thus it is desirable to develop estimation

procedures for panel count data with informative observation and censoring times,

and also with time-dependent covariates. For this, we considered the same models
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for the underlying recurrent events and the observation times as given in Zhao

and Tong (2011) except replacing the time-independent covariates with the time-

dependent covariates and removing the assumption of noninformative censoring.

The remainder of this chapter is organized as follows. We begin in Section

4.2 by introducing some notation and describing statistical models for the under-

lying recurrent event process and the observation process. In Section 4.3, a novel

estimation procedure that does not depend on the distribution of frailty variables

and the link function is proposed for estimation of regression parameters and the

asymptotic properties including consistency and asymptotic normality of the pro-

posed estimators are established in Section 4.4. In order to assess the finite-sample

properties of the proposed inference procedure, we present some results obtained

from simulation studies in Section 4.5. In Section 4.6, the proposed approaches

are illustrated through the analysis of a data set from the bladder tumor study.

4.2 Statistical Models

Consider a recurrent event study that consists of n independent subjects,

and let Ni(t) denote the number of occurrences of the recurrent event of interest

before or at time t for subjects i. Suppose that for each subject, there exist a

p-dimensional possibly time-dependent covariates, denoted by Xi(t), and Zi is an

unobserved positive random variable that is independent of the covariates. Then,

for subject i, given Xi(t) and Zi, the mean function of Ni(t) is assumed to have

the form

E{Ni(t)|Xi(t), Zi} = μ0(t)g(Zi) exp{X′
i(t)β0}, (4.1)
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where μ0(·) is a completely unknown continuous baseline mean function, β0 is

a vector of unknown regression parameters, and g(·) is a completely unspecified

function with E(g(Z)) = 1. Since Ni(t) is a counting process, the choice of time-

dependent covariates should be constrained by the fact that E{Ni(t)|Xi(t), Zi} is

a nondecreasing function of time. Also the covariate histories {Xi(t) : 0 ≤ t ≤

Ci}(i = 1, · · · , n) are assumed to be observed.

For subject i, suppose that Ni(·) is observed only at finite time points Ti1 <

· · · < TiKi
, where Ki denotes the potential number of observation times, i =

1, · · · , n. That is, only the values of Ni(t) at these observation times are known

and we have panel count data on the Ni(t)’s. Let Ci be the censoring time and

thus Ni(t) is observed only at these Tij’s with Tij ≤ Ci, i = 1, · · · , n. Define

H̃i(t) = Hi{min(t, Ci)}, where Hi(t) =
∑Ki

j=1 I{Tij ≤ t}, i = 1, · · · , n, and I(·) is a

indicator function. Then H̃i(·) is a point process characterizing the ith subject’s

observation process and jumps only at the observation times.

In the following, we assume that given Xi(t) and Zi, Hi(·) is a nonhomoge-

neous Poisson process with the intensity function

λ(t |Xi(t), Zi) = λ0(t)Zi exp{X′
i(t)γ0}, (4.2)

where λ0(·) is a completely unknown continuous baseline intensity function and

γ0 denotes a vector of regression parameters. Here, we assume that E(Z) = 1

for identifiability. Let Λ0(t) =
∫ t

0
λ0(s)ds. In addition, we assume that conditional

on the covariates Xi(t)’s and Zi’s, Ni’s, Hi’s and Ci’s are mutually independent,

and {Hi(t), Ni(t),Xi(t), Ci, Zi, 0 ≤ t ≤ τ}, i = 1, · · · , n, are independent and
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identically distributed, where τ is the length of study.

The special cases of models (4.1) and (4.2) have been studied individually by

earlier researchers. For example, model (4.1) with g(Zi) = 1 and time-independent

covariates was considered by Sun and Wei (2000), Zhang (2002), and Wellner and

Zhang (2007) for regression analysis of panel count data; Huang et al. (2010) con-

sidered model (4.2) with time-dependent and time-independent covariates, and

Wang et al. (2001) and Huang and Wang (2004) considered model (4.2) with

time-independent covariates for recurrent event data; Furthermore, Zhao and Tong

(2011) developed the joint analysis of the two models with time-independent co-

variates.

In the following, we study the joint analysis of the two models together. The

proposed models allow the underlying recurrent event process and the observation

process to be correlated through their connections with the link function of the

frailty; moreover, both the link function and the distribution of the frailty are

considered as nuisance parameters. Our main goal here is to make inference about

β. Toward this end, we develop a novel estimation procedure that depends neither

on the form of the link function nor on the distribution of the frailty in the next

section.

4.3 Estimation Procedure

For estimation of β0 along with other parameters, define Ñi(t) =
∫ t

0
Ni(s)dH̃i(s),

then this newly defined process only has possible jumps at the observation time

points {Tij ∧ Ci : j = 1, · · · , Ki} with respective jump sizes Ni(Tij), i = 1, · · · , n.
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Thus we have

E{dÑi(t)|Xi(t), Ci}

= E{ξi(t)E[Ni(t)dHi(t)|Xi(t), Ci, zi]|Xi(t), Ci}

= E{ξi(t)E[Ni(t)|Xi(t), zi]E[dHi(t)|Xi(t), zi]|Xi(t), Ci}

= E{ξi(t)μ0(t)g(Zi) exp{X′
i(t)β0}Zi exp{X′

i(t)γ0}dΛ0(t)|Xi(t), Ci}

= exp{X′
i(t)(β0 + γ0)}E[g(Zi)Zi]ξi(t)μ0(t)dΛ0(t)

= exp{X′
i(t)θ0}ξi(t)dφ0(t).

where θ0 = β0 + γ0, ξi(t) = I(Ci ≥ t) and φ0(t) =
∫ t

0
E[g(Z)Z]μ0(s)dΛ0(s).

Similar to Hu et al. (2003), borrowing the structure of the Cox partial likeli-

hood score function of the Andersen-Gill proportional intensity model (Andersen

and Gill, 1982), which is also asymptotically unbised for a more general non-

Poisson process (Lawless and Nadeau, 1995), we construct an estimating equation

of θ0 in the form of

U(θ; Ñ) =
n∑

i=1

∫ τ

0

W (t){Xi(t)− X̄(t; θ)}dÑi(t) = 0

where X̄(t; θ) = S(1)(t; θ)/S(0)(t; θ), and

S(k)(t; θ) = n−1

n∑
i=1

ξi(t)Xi(t)
⊗k exp{X′

i(t)θ}, k = 0, 1, 2,

where a⊗0 = 1, a⊗1 = a, a⊗2 = aa′ for a vector a .

It can be shown that this estimating equation U(θ; Ñ) = 0 is unbiased for

θ (i.e., E[U(θ0; Ñ)] = 0). Solving the estimating equation provides us with an

estimator of θ0, denoted by θ̂, and thus, given γ0, β0 can be estimated by θ̂− γ0.
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But γ0 is unknown, we need to find an estimator for it.

Since

E{dHi(t)|Xi(t)} = E{E[dHi(t)|Xi(t), Zi]|Xi(t)}

= exp{X′
i(t)γ0}dΛ0(t)

and Ci’s are independent of (Ni, Hi)’s conditional on covariate and the frailty, as in

Liang et al. (2009), the methods proposed by Lin et al. (2000) for the proportional

rate model can be used to consistently estimate γ0 and Λ0(·). To be specific, γ0

can be consistently estimated from the following estimating equation

U2(γ; H̃) =
n∑

i=1

∫ τ

0

{Xi(t)− X̄(t; γ)}dH̃i(t) = 0,

where X̄(t; γ) = S(1)(t; γ)/S(0)(t; γ), and

S(k)(t; γ) = n−1

n∑
i=1

ξi(t)Xi(t)
⊗k exp{X′

i(t)γ}, k = 0, 1, 2.

The resulting estimator is denoted by γ̂. In addition, Λ0(t) can be consistently

estimated by the Aalen-Breslow-type estimator Λ̂0(t) = Λ̂0(t; γ̂), where

Λ̂0(t; γ) =
n∑

i=1

∫ t

0

dH̃i(s)

nS(0)(s ; γ)
.

4.4 Asymptotic Theory

Let

s(k)(t;μ) = lim
n→∞

S(k)(t;μ) = E[ξ1(t) exp{X′
1(t)μ}X1(t)

⊗k], k = 0, 1, 2,
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and define x̄(t;μ) = s
(1)
1 (t;μ)/s

(0)
1 (t;μ).

To establish the asymptotic properties of θ̂, we need the following regularity

conditions.

(C.1.) P (C ≥ τ) > 0.

(C.2.) Xi(t), i = 1, · · · , n have bounded total variations, i.e. |Xji(0)|+
∫ τ

0
|Xji(t)| ≤

M0 for all j = 1, · · · , p and i = 1, · · · , n, where Xji is the jth component of Xi

and M0 is a constant.

(C.3.) Λ0(τ) ≤ M1, μ0(τ) ≤ M2, where M1,M2 are constants.

(C.4.) Ni(τ) (i = 1, · · · , n) are bounded by a constant and the Ki’s are bounded;

W (·) is nonnegative and have bounded total variations with W (·) → w(·), as

n → ∞.

(C.5.)

Aθ(θ0) ≡ E

[∫ τ

0

w(t){X1(t)− x̄(t; θ0)}⊗2ξ1(t) exp{X′
1(t)θ0}dφ0(t)

]
,

and

Aγ(γ0) ≡ E

[∫ τ

0

{X1(t)− x̄(t; γ0)}⊗2ξ1(t) exp{X′
1(t)γ0}dΛ0(t)

]

are positive definite.

In practice, condition (C.1) can be enforced simple by not choosing τ to be

greater than the maximum observation time. The boundedness conditions in (C.2),

(C.3) and (C.4) simplify the derivation of the asymptotic results. Condition (C.5)

can be interpreted that the sample covariance is asymptotically non-singular. The

asymptotic properties are summarized as follows.

Theorem 4.1 (Consistency of θ̂). Under conditions (C.1 – C.5), θ̂ −→ θ0, a.s.
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Proof of Theorem 4.1.

By the strong law of large numbers, for each t ∈ [0, τ ], S(k)(t; θ) converges

almost surely to s(k)(t; θ), for every θ, k = 0, 1, 2. Define

Yn(θ) ≡ n−1

n∑
i=1

∫ τ

0

W (t)
[
(θ − θ0)

′Xi(t)− log{S(0)(t; θ)/S(0)(t; θ0)}
]
dÑi(t)

and

Y(θ) ≡ E

[∫ τ

0

w(t)
[
(θ − θ0)

′X1(t)− log{s(0)(t; θ)/s(0)(t; θ0)}
]
dÑ1(t)

]
.

We can see that Yn(θ) converges almost surely to Y(θ), for every θ and

∂Yn(θ)/∂θ = n−1U(θ; Ñ).

Note that

∂2Yn(θ)/∂θ∂θ
′

= −n−1

n∑
i=1

∫ τ

0

W (t)ξi(t) exp(X
′
i(t)θ)[Xi(t)− X̄(t; θ)]⊗2d

[
n−1

∑n
j=1 Ñj(t)

S(0)(t; θ)

]

≡ −Âθ(θ)

is negative semidefinite. Thus, Yn(θ) is concave, which implies that the convergence

of Yn(θ) to Y(θ) is uniform on any compact set of θ (Rockafellar, 1970, Th 10.8). In

particular, letting Aε(θ0) = {θ :‖ θ − θ0 ‖≤ ε}, we have

supθ∈ Aε(θ0) ‖ Yn(θ)− Y(θ) ‖−→ 0 (4.3)
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almost surely. It is easy to show that ∂Y(θ0)/∂θ = 0 and

∂2Y(θ0)/∂θ∂θ
′ = −Aθ(θ0),

where Aθ(θ0) is positive definite (condition C.5). Thus Y(θ) has a unique maxi-

mizer θ0.

In particular, supθ∈∂Aε(θ0)Y(θ) < Y(θ0), where

∂Aε(θ0) = {θ :‖ θ − θ0 ‖= ε}.

This fact, together with (4.3) implies that Yn(θ) < Yn(θ0) for all θ ∈ ∂Aε(θ0) and

all large n. Therefore, there must be a maximizer of Yn(θ), i.e., a solution to

∂Yn(θ)/∂θ = 0, say θ̂, in the interior of Aε(θ0).

On the other hand, ∂2Yn(θ)/∂θ∂θ
′ converges almost surely to ∂2Y(θ0)/∂θ∂θ

′.

This along with the fact that ∂3Yn(θ)/∂θ∂θ
′∂θ′ is bounded ensures existence of ε,

such that ∂2Yn(θ)/∂θ∂θ
′ is negative definitive for θ ∈ Aε(θ0), when n is large

enough. Thus the fact that ∂2Yn(θ̂)/∂θ∂θ
′ is negative definitive implies that θ̂ is

the unique global maximizer of Yn(θ) in Aε(θ0), i.e., the unique solution to U(θ; Ñ) =

0.

Finally, since ε can be chosen arbitrarily small, θ̂ must converge to θ0 almost

surely, as n −→ ∞.

Since γ̂ is consistent as in Lin et al. (2000), then β̂ = θ̂ − γ̂ is a consistent

estimator of β0.

A consistent Aalen-Breslow-type estimator for φ0(t) can be obtained as fol-

104



lows,

φ̂0(t) = φ̂0(t; θ̂) =

∫ t

0

∑n
i=1 dÑi(s)

nS(0)(s; θ̂)
, t ∈ [0, τ ].

To establish the asymptotic normality of β̂, define

ˆ̃Mi(t; θ̂) = Ñi(t)−
∫ t

0

ξi(s) exp(X
′
i(s)θ̂)dφ̂0(s),

M̂i(t; γ̂) = H̃i(t)−
∫ t

0

ξi(s) exp{X′
i(s)γ̂}dΛ̂0(s),

Âθ = Âθ(θ̂) = n−1

n∑
i=1

∫ τ

0

W (t)ξi(t) exp(X
′
i(t)θ̂)[Xi(t)− X̄(t; θ̂)]⊗2dφ̂0(t),

Âγ = Âγ(γ̂) = n−1

n∑
i=1

∫ τ

0

{Xi(t)− X̄(t; γ̂)}⊗2ξi(t) exp{X′
i(t)γ̂}dΛ̂0(t),

âi = Â−1
θ

∫ τ

0

W (t)[Xi(t)− X̄(t; θ̂)]d ˆ̃Mi(t; θ̂),

b̂i = Â−1
γ

∫ τ

0

[Xi(t)− X̄(t; γ̂)]dM̂i(t; γ̂),

and ĉi = âi − b̂i.

Theorem 4.2 (Asymptotic normality of β̂). Under conditions (C.1 – C.5),

n1/2(β̂ − β0) is asymptotically zero-mean normal, with covariance matrix Σβ =

E[c⊗2
1 ], which can be consistently estimated by

Σ̂β = n−1

n∑
i=1

ĉ⊗2
i ,

where c1 is given in the proof of this theorem.

Proof of Theorem 4.2.

Notice that

U(θ; Ñ) =
n∑

i=1

∫ τ

0

W (t){Xi(t)− X̄(t; θ)}dM̃i(t; θ),
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where

M̃i(t; θ) = Ñi(t)−
∫ t

0

ξi(s) exp(X
′
i(t)θ)dφ0(s).

Similar to the arguments of Lin and Wei (1989), we can show that

n−1/2U(θ0; Ñ) = n−1/2

n∑
i=1

∫ τ

0

W (t){Xi(t)− x̄(t; θ0)}dM̃i(t; θ0) + op(1).

By the Taylor expansion,

n1/2(θ̂ − θ0)

=

[
−n−1∂U(θ; Ñ)/∂θ

∣∣∣
θ=θ0

]−1 [
n−1/2U(θ0; Ñ)

]
+ op(1)

= Aθ(θ0)
−1n−1/2

n∑
i=1

∫ τ

0

W (t){Xi(t)− x̄(t; θ0)}dM̃i(t; θ0) + op(1)

≡ n−1/2

n∑
i=1

ai + op(1).

By (A.5) of Lin et al. (2000),

n1/2(γ̂ − γ0) = Aγ(γ0)
−1n−1/2

n∑
i=1

∫ τ

0

{Xi(t)− x̄(t; γ0)}dMi(t; γ0) + op(1)

≡ n−1/2

n∑
i=1

bi + op(1),

where Aγ(γ0) is given in (C.5) and

Mi(t; γ) = H̃i(t)−
∫ t

0

ξi(t) exp{X′
i(t)γ}dΛ0(t).

Thus,

n1/2(β̂ − β0) = n−1/2

n∑
i=1

ci + op(1).

where ci = ai − bi, i = 1, · · · , n. Then, by the multivariate central limit theorem,
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we conclude that n1/2(β̂−β0) is asymptotically zero-mean normal with covariance

matrix Σβ = E[c⊗2
1 ].

Next, we’ll verify that Σβ can be consistently estimated by Σ̂β as defined in

Theorem 4.2.

By the uniform strong law of large numbers (Pollard, 1990, p. 4), n−1
∑n

i=1 Ñi(t)

converges almost surely to E{Ñ1(t)} uniformly in t and S(0)(t; θ) converges almost

surely to s(0)(t; θ) uniformly in t and θ. This entails the uniform convergence of

φ̂0(t; θ) =

∫ t

0

∑n
i=1 dÑi(s)

nS(0)(s; θ)
to

∫ t

0

s(0)(s; θ0)

s(0)(s; θ)
dφ0(s),

under models (4.1) and (4.2). The derivative of φ̂0(t; θ) with respect to θ is uni-

formly bounded in t for all large n and θ in a bounded region. Therefore, the

strong consistency of θ̂ implies that φ̂0(t) = φ̂0(t; θ̂) converges almost surely to

φ0(t) uniformly in t.

Since we have shown that Âθ(θ0) converges almost surely to Aθ(θ0), then by

the strong consistency of θ̂ and the continuity of Âθ(·) with respect to θ, we can

obtain the almost surely convergence of Âθ(θ̂) to A(θ0). Then, âi is the consistent

estimator of ai.

According to the argument in the A.3 of Lin et al. (2000), we can see that

b̂i is a consistent estimator for bi, and thus ĉi is consistent, which ensures the

consistency of Σ̂β. This completes the proof.
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4.5 Simulation Study

We conducted Monte Carlo simulation studies to evaluate the finite-sample

properties of the proposed estimators. To generate the simulated data, we first gen-

erated zi from the gamma distribution with mean 1 and variance σ2, and let g(zi) =

zαi . We assume that the time-dependent covariate xi(t) takes the form ui log(t),

where ui has a uniform distribution over [0, 0.5], and the follow-up times Ci’s were

generated from the uniform distribution over (τ/2, τ) with τ = 18. Here the sym-

bol of α characterizes the relationship between the observation process and the

recurrent event process. When α > 0, a subject with more frequent observations

would have a higher occurrence rate of the recurrent event and the two processes

are positively correlated; when α = 0, the two processes have no correlation given

the covariates; when α < 0, a subject with more frequent observations would have

a lower occurrence rate of the recurrent event and the two processes are negatively

correlated.

For observation process, we assume that Hi is a homogeneous Poisson process

with λ0(t) = 1 . Then, given xi, Ci, zi, K
∗
i = ξi(Ci)Hi(Ci), the total number of

real observation times for subjects i, follows the Poisson distribution with mean

Λ0(Ci | xi, zi) =

∫ Ci

0

zi exp{xi(t)γ0}λ0(t)dt = zi
Cuiγ0+1

i

uiγ0 + 1
,

i = 1, · · · , n. In this case, the observation times (Ti1, · · · , TiK∗
i
) are the or-

der statistics of a random sample of size K∗
i from the uniform distribution

over (0, Ci). Finally, given K∗
i and (Ti1, · · · , TiK∗

i
), we generate Ni(Tij)

′s by taking
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Ni(Tij) = Ni(Ti1) + {Ni(Ti2)−Ni(Ti1)}+ · · ·+ {Ni(Tij)−Ni(Tij−1)}, where

Ni(t)−Ni(s) ∼ Poisson(0.5t2g(zi) exp{xi(t)β0} − 0.5s2g(zi) exp{xi(s)β0}),

j = 1, · · · , K∗
i , i = 1, · · · , n.

Set γ0 = 1 and β0 = −1, 0, 1, representing the different effect of the co-

variate x(t) on the panel counts. On one hand, in order to check the effect

of the estimators with time-independent covariates, we performed Monte Carlo

studies when the time-independent covariate xi follows a Bernoulli distribution

with success probability 0.5. On the other hand, we also considered the situation

that the observation process Hi follows a nonhomogeneous Poisson process with

λ0(t) = (t+ 1)/(τ/2 + 1) to verify that whether the different forms of the observa-

tion process Hi will affect the estimation of β or not. For each setting, we consider

the sample size n = 100. All the results reported here are based on 500 Monte

Carlo replications using R software.

Tables 4.1 presents the simulation results on estimation of β with time-

independent and time-dependent covariates respectively under the homogeneous

poisson observation process with n = 100, while Table 4.2 presents those under the

nonhomogeneous poisson observation process. The tables include the bias (Bias)

given by the sample means of the point estimates β̂ minus the true values, the

sample standard deviations of the estimates (SSD), the means of the estimated

standard deviations (ESD), and the empirical 95% coverage probabilities (CP)

for β. These results indicate that the estimate β̂ seems to be unbiased and the

proposed variance estimation procedure provides reasonable estimates. Also the
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results on the empirical coverage probabilities indicate that the normal approxi-

mation seems to be appropriate.

In addition, one can see from Tables 4.1 and 4.2 that the biases of the es-

timators of β, the SSD and ESD of the estimators of β with time-independent

covariates are smaller than those with time-dependent covariates, which means

that estimators with time-independent covariates are more precise and more stable

than those with time-dependent covariates since there are more nondeterminacy

with the time-varying covariates. Furthermore, one can see that the effect of the

estimators with time-dependent covariates worsens rapidly as the variance of the

frailty increases as discussed in Lin et al. (2000).

Table 4.3 shows the results of the estimators of β under the homogeneous

and nonhomogeneous poisson observation process respectively with n = 200 and

time-independent covariates. Compared with the corresponding results in Tables

4.1 and 4.2, we can see that the SSD and ESD of the estimators decreases when

the sample size increases. As shown in Tables 4.1 and 4.2, the variance seems

underestimated; a possible reason is that the simulated data were generated from

the joint model including random effects, and the estimating equation only involves

the means of random effects. The results in Table 4.3 indicate that this does not

seem to be a problem for large sample size.
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Table 4.1. Estimation of β with time-independent and time-dependent covariates
respectively and n = 100 under the homogeneous Poisson observation process

α = −0.5: H and N are negatively correlated

β0 1 0 -1 1 0 -1

Time-indep covariates Time-dep covariates

Biasβ̂ 0.0022 -0.0040 0.0021 -0.0339 -0.0222 -0.0293

SSD 0.0746 0.0775 0.1031 0.1226 0.1079 0.1262

ESD 0.0738 0.0744 0.0963 0.1148 0.1044 0.1247

CP 0.9380 0.9300 0.9260 0.9100 0.9440 0.9480

α = 0: H and N have no correlation

β0 1 0 -1 1 0 -1

Time-indep covariates Time-dep covariates

Biasβ̂ 0.0002 0.0048 0.0016 -0.0292 -0.0239 -0.0207

SSD 0.0614 0.0665 0.0714 0.1117 0.0843 0.1103

ESD 0.0605 0.0622 0.0668 0.1008 0.0801 0.1012

CP 0.9380 0.9160 0.9220 0.9000 0.9280 0.9360

α = 0.5: H and N are positively correlated

β0 1 0 -1 1 0 -1

Time-indep covariates Time-dep covariates

Biasβ̂ -0.0039 0.0035 -0.0051 -0.0249 -0.0321 - 0.0239

SSD 0.1006 0.0991 0.0800 0.1791 0.1354 0.1473

ESD 0.0927 0.0932 0.0793 0.1649 0.1234 0.1379

CP 0.9280 0.9280 0.9340 0.9160 0.9100 0.9360
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Table 4.2. Estimation of β with time-independent and time-dependent covariates
respectively and n = 100 under the nonhomogeneous Poisson observation process

α = −0.5: H and N are negatively correlated

β0 1 0 -1 1 0 -1

Time-indep covariates Time-dep covariates

Biasβ̂ 0.0036 0.0004 0.0062 -0.0305 -0.0411 -0.0262

SSD 0.0811 0.0798 0.0844 0.1232 0.1253 0.1395

ESD 0.0777 0.0786 0.0833 0.1202 0.1176 0.1324

CP 0.9500 0.9260 0.9240 0.9240 0.9200 0.9320

α = 0: H and N have no correlation

β0 1 0 -1 1 0 -1

time-indep covariates time-dep covariates

Biasβ̂ 0.0060 0.0025 0.0049 -0.0324 -0.0337 -0.0315

SSD 0.0669 0.0714 0.0746 0.1138 0.0905 0.1113

ESD 0.0638 0.0657 0.0706 0.1041 0.0814 0.1065

CP 0.9280 0.9240 0.9280 0.9160 0.9080 0.9120

α = 0.5: H and N are positively correlated

β0 1 0 -1 1 0 -1

Time-indep covariates Time-dep covariates

Biasβ̂ 0.0072 -0.0021 -0.0047 -0.0349 -0.0330 - 0.0290

SSD 0.1011 0.0995 0.1161 0.1847 0.1452 0.1611

ESD 0.0974 0.0953 0.1022 0.1642 0.1281 0.1412

CP 0.9380 0.9280 0.9160 0.8740 0.8900 0.9220
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Table 4.3. Estimation of β under the homogeneous and nonhomogeneous Poisson
observation process respectively with n=200 and time-independent covariates

α = −0.5: H and N are negatively correlated

β0 1 0 -1 1 0 -1

Homogeneous Nonhomogeneous

Biasβ̂ 0.0001 0.00391 0.0042 0.0080 0.0048 0.0028

SSD 0.0553 0.0527 0.0558 0.0555 0.0564 0.0585

ESD 0.0525 0.0534 0.0562 0.0554 0.0562 0.0591

CP 0.9460 0.9440 0.9420 0.9420 0.9500 0.9540

α = 0: H and N have no correlation

β0 1 0 -1 1 0 -1

Homogeneous Nonhomogeneous

Biasβ̂ 0.0009 -0.0004 0.0002 0.0043 0.0008 -0.0005

SSD 0.0449 0.0471 0.0502 0.0468 0.0483 0.0507

ESD 0.0436 0.0451 0.0486 0.0459 0.0472 0.0513

CP 0.9440 0.9360 0.9420 0.9380 0.9440 0.9440

α = 0.5: H and N are positively correlated

β0 1 0 -1 1 0 -1

Homogeneous Nonhomogeneous

Biasβ̂ -0.0023 0.0078 -0.0007 0.0057 0.0049 0.0056

SSD 0.0703 0.0766 0.0755 0.0747 0.0744 0.0775

ESD 0.0667 0.0684 0.0711 0.0722 0.0722 0.0749

CP 0.9420 0.9120 0.9380 0.9320 0.9440 0.9420
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4.6 An Application

This section presents an analysis of the bladder cancer data by applying our

proposed methods. There were 121 subjects with superficial bladder tumors ran-

domized into one of three treatment groups: placebo, thiotepa, and pyridoxine. In

the following, we restrict our attention to the placebo and thiotepa groups with re-

spective sizes of 47 and 38 as it has been shown that the pyridoxine treatment had

no effect on the recurrence of the bladder tumors (Zhang, 2002). For each patient,

the observed information includes times when he or she made clinical visits and

the numbers of recurrent tumors between clinical visits. Two baseline covariates

were observed and they are the number of initial tumors and the size of the largest

initial tumor.

To analysis the data, for patient i, define xi1 to be equal to 1 if the ith patient

was given the thiotepa treatment and 0 otherwise, xi2 to be the number of initial

tumors and xi3 to be the size of the largest initial tumor, i = 1, · · · , 85. Assume

that the occurrence process of the bladder tumors and the clinical visit process can

be described by joint models (4.1) and (4.2). Let Ni(·) represent the accumulated

new tumor numbers of patient i over study period. We took the last visit time of

the subject to approximate Ci in the analysis.

The application of the estimation procedure proposed in the previous sections

gave γ̂1 = 0.5071, γ̂2 = −0.0049, γ̂3 = 0.0321, β̂1 = −1.4905, β̂2 = 0.2867, β̂3 =

−0.0821 with the estimated standard errors being 0.1175, 0.0343, 0.0359, 0.3287,

0.0615 and 0.1056, which correspond to p-values of 1.5905e-05, 0.8864, 0.3712, 5.7732e-

06, 3.1347e-06 and 0.4369, respectively based on the asymptotic results of the
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estimators. Here γ1 and β1, γ2 and β2, and γ3 and β3 represent regression coef-

ficients corresponding to the treatment indicator, the number of initial tumors,

and the size of the largest initial tumor, respectively. These results indicate that

the thiotepa treatment significantly reduces the occurrence rate of the bladder

tumors and the number of initial tumors has a significant positive effect on the

tumor recurrence rate but no significant effect on the visit process. However, both

the occurrence rate of the bladder tumors and the visit times do not seem to be

significantly related to the size of the largest initial tumor. These conclusions are

consistent with the analysis results presented in Sun and Wei (2000), Hu et al.

(2003) and Zhao and Tong (2011). Furthermore, one can see that our proposed

approach yields the smallest standard deviations except that the standard devi-

ation of β̂3 is slightly higher than that of Zhao and Tong (2011), which suggests

that our approach works well in applications.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In Chapter 2, for the statistical analysis of longitudinal data, we have pro-

posed a new semiparametric model for the situations where the observation times

may be correlated with the response process even given the covariates, including

Sun et al. (2005)’s conditional model as a special case. The new model allows

for the interaction between the observation history and some components of the

covariates and is different from Sun et al. (2007)’s and Liang et al. (2009)’s joint

models through latent variables to characterize the correlation between the re-

sponse process and the observation times. For inference about model parameters,

a spline-based least square estimation procedure has been proposed. Another key

difference between the approach developed here and those presented in Sun et al.

(2005), Sun et al. (2007) and Liang et al. (2009) is that the patterns of the obser-

vation times are left arbitrary in our method, whereas their estimation procedures

rely on the model specification for observation processes. As demonstrated in the

simulation analysis, the proposed approaches are more flexible and robust.

Time-varying coefficient models with longitudinal data have been considered

by many authors, such as Wu et al. (1998), Hoover et al. (1998), and Lin and Ying
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(2001) among others. Motivated by these models, we can also extend our model

to a class of conditional time-varying coefficient models as follows:

E{Yi(t)|Xi,Wi,Fit} = μ0(t) + β(t)′Xi + α(t)′h(Fit,Wi).

For inference about the above model, B-spline function approximations can be

used to estimate the time-varying coefficients and the smooth baseline mean func-

tion simultaneously, and then the asymptotic properties of spline-based estimators

could be established by using the similar arguments.

Chapter 3 considered a marginal conditional model for the underlying recur-

rent event process of the panel count data which allows for the interaction between

the informative observation times and covariates, leaving the distributional form

of the observation process to be arbitrary and proposed to use the easy imple-

mented B-splines based method to estimate the regression parameters and the

unknown smooth monotone function in the model simultaneously. As demon-

strated by simulation and application that our proposed model and procedure are

more flexible, robust and applicative since they can overcome the under-dispersion

or over-dispersion problem resulting from the model specification for the observa-

tion process. We established the asymptotical results including consistency, rate

of convergence for the estimators of the regression parameters and the unknown

monotone function and asymptotic normality for the estimators of the regression

parameters in Section 3.4. However, the asymptotic normality for the unknown

function has not been obtained, which may be reserved as a problem to be solved

in the future.
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In some longitudinal studies, informative observation times and a dependent

terminal event such as death that stops the follow-up may simultaneously exist.

For example, in the bladder cancer study we have mentioned in Section 1.1.1, fur-

ther observation of a patient during a particular clinic visit would be terminated

probably because of his/her clinically significant improvement in the disease symp-

toms. If a patient who is very prone to superficial bladder tumors will visit the

doctors more often to install the treatment (thiotepa) in the bladder, thus he/she

would take longer than usual time to termination. Motivated by this fact, it is

desirable to investigate the analysis of panel count data with informative obser-

vation times and dependent termination such as Liu et al. (2008) wherein a joint

random effects model of longitudinal data with informative observation times and

a dependent terminal event was considered.

Motivated by Li et al. (2010), our proposed models can also be extended to a

class of transformation models as follows,

E{Ni(t)|Xi,Wi,Fit} = g{μ0(t) + β′Xi + α′h(Fit,Wi)},

with a given monotone smooth function g. Then for inference of the models,

the same algorithm as in Chapter 3 can be used to obtain the estimators for the

regression parameters β and α and B-splines approximation with monotone non-

decreasing estimated coefficients for the nonparametric monotone function μ0(t),

and the asymptotic properties of the spline-based estimators could be established

by using the similar arguments.

In Chapter 4, we have generalized Zhao and Tong (2011)’s joint modeling
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approach for the analysis of panel count data to the situations where the covariates

are time-dependent and the observation and censoring times are informative. For

estimation of the covariate effect on the underlying recurrent process, we have

developed a novel estimating equation-based procedure, which depends on neither

the form of the link function of the frailty nor the distribution of the frailty, and

established the consistency and asymptotic normality of the resulting estimates.

By using the approach proposed by Huang et al. (2010), one can obtain the

estimators of the parameter γ and Λ0(·) in model (4.2), which are different from

the approach proposed in Lin et al. (2000). Then, by replacing γ̂ and λ̂0(·) with

those given in Huang et al. (2010), one can get another estimator for β0, which

is different from our proposed estimator. Thus, it is desirable to compute the

efficiency of these two different estimators.

In practice, it is important to predict the mean of panel counts. However, it is

hard to estimate the baseline mean function μ0(t) in the current setting. Further

research is needed to address this issue.

Just as Zhao and Tong (2011) mentioned, the time-dependent frailty, the

non-poisson observation process are also important issues to be studied.

5.2 Further Research

5.2.1 Proportional partial linear intensity model for recurrent event

data

During some relatively long follow-up studies, each individual may experience

the same event repeatedly. The events are called recurrent events in survival anal-
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ysis. One main difference between recurrent event data and panel count data is

that the former posseses a observation process in the whole follow-up, while the

later involves a sequence of consecutive observation. It is natural and convenient

to represent the recurrent event times as a counting process. The most popular

counting-process model is the proportional intensity model studied by Andersen

and Gill (1982). Let N∗(t) denote the number of events that the subjects has

experienced by time t, and let X(t) be a vector of possibly time-dependent co-

variates. The proportional intensity model specifies that the intensity function for

N∗(t) associated with X takes the form

λ(t|X) = λ0(t) exp{βTX(t)}, (5.1)

where λ0(t) is an unspecified baseline intensity function and β is a vector of un-

known regression parameters.

Much research had been studied based on this model, where the covariate

effects on the logarithm of the hazard function are assumed to be linear. However,

true covariate effects may be more complex than the log-linear effect and studying

nonlinear effects is a challenging problem. Huang (1999) considered a partly linear

additive Cox model with right-censored data and proposed the maximum partial

likelihood estimators by using polynomial splines to approximate the nonparamet-

ric component. Fan et al. (2006) extended the proportional hazards model by

adding a nonlinear term in the logarithm of the hazard function for lifetime data

and proposed a local partial-likelihood technique to estimate the nonlinear term

and also established its asymptotic properties. Cai et al. (2007) put forward a par-
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tially linear hazard regression model for multivariate survival data and proposed

a profile pseudo-partial likelihood estimation method under the marginal hazard

model framework. In addition, the additive hazards model and the accelerated

failure time model had been extended by researchers through adding nonlinear

covariate terms, such as Yin et al. (2008), Lu and Zhang (2010), among others.

To our knowledge, no partial linear covariate effect on the logarithm of intensity

function of the recurrent counting process have been considered to handle recur-

rent event data. Thus, we propose a proportional partial linear intensity model as

follows:

λ(t|X, Z) = λ0(t) exp{βTX(t) + g(Z(t))}, (5.2)

where g is an unknown smooth function with g(0) = 0, Z is an univariate covariate

whose effects on the logarithm of the intensity function is non-linear.

Recurrent event times are commonly subject to right censoring. Let C denote

the censoring time. We assume that there are n subjects, and the data consist of

{Xi(·), Zi(·), Ni(·), Yi(·)}, i = 1, · · · , n, where Ni(t) = N∗
i (t∧Ci), Yi(t) = I(Ci ≥ t),

and I(·) is the indicator function. Λ0(t) =
∫ t

0
λ0(s)ds is the baseline cumulative

intensity function. Let τ denote the terminal time of the study, we assume that the

conditional probability of C > t given {X(s), Z(s), N∗(s), s ∈ [0, τ ]} is noninfor-

mative about (λ0, β, g). In addition, we assume that the conditional distribution

of {X(t), Z(t)} given {X(s), Z(s), N(s), Y (s); s ∈ [0, τ ]} is noninformative about

(λ0, β, g).

Assume that Z takes values in [a, b], where a and b are finite numbers . Let
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I = {ξi}mn+2l
1 , with

a = ξ1 = · · · = ξl < ξl+1 < · · · < ξmn+l < ξmn+l+1 = · · · = ξmn+2l = b,

be a sequence of knots that partition [a, b] intomn+1 subintervals Ji = [ξl+i, ξl+i+1], i =

0, · · · ,mn. Denote by Ψl,I the class of polynomial splines of order l ≥ 1 with the

knot sequence I. For each s ∈ Ψl,I , s is a polynomial of order l in Ji for 0 ≤ i ≤ mn,

and s is l′ times continuously differentiable on [a, b], for l ≥ 2, and 0 ≤ l′ ≤ l − 2.

(Schumaker, 1981, p.108, Def 4.1).

For any g ∈ Ψl,I , there exist α1, · · · , αqn such that

g(z) =

qn∑
i=1

αiBil(z),

where {Bil, 1 ≤ i ≤ qn} with qn = mn + l is the B-spline basis functions of Ψl,I .

(Schumaker, 1981, P.117 Corollary 4.10).

Thus, replacing g(·) by its B-spline approximation in the model (5.2), we have

λ(t|X, Z) = λ0(t) exp{βTX(t) + αT
n B̃n(Z(t))},

where αn = (α1, · · · , αqn)
T , and B̃n(z) = (B1l(z), · · · , Bqnl(z))

T .

Then, the estimates of the parameters (β, αn) are obtained by maximizing the

following log-partial likelihood:

l(β, αn) =
n∑

i=1

∫ τ

0

{βTXi(t) + αT
n B̃n(Zi(t))− log[nS(0)(β, αn)]}dNi(t) (5.3)

where S(0)(β, αn, t) = n−1
∑n

i=1 Yi(t) exp{βTXi(t) + αT
n B̃n(Zi(t))} and dNi(t) de-

notes the numbers of events in a small time interval [t, t+ dt).
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Let α̂n = (α̂1, α̂2, · · · , α̂qn)
T and β̂n be the estimators. Then we denote the

spline estimator of g(·) by ĝn(·) =
∑qn

i=1 α̂iBil(·) = α̂T
n B̃n(·). Our main purpose is

to find out the consistency and convergency of the estimators β̂n and ĝn(·), which

may be verified by using the empirical process theory in Van der Vaart and Wellner

(1996), Huang (1999), Lu et al. (2007) and Lu et al. (2009).

Remark 5.1. Proof of (5.3): According to Cook and Lawless (2007), p.77,

(3.25), the partial likelihood is

L(β, αn) =
n∏

i=1

ni∏
j=1

exp
{
[βTXi(Tij) + αT

n B̃n(Zi(Tij))]
}

∑n
k=1 Yk(Tij) exp{βTXk(Tij) + αT

n B̃n(Zk(Tij))}

=
n∏

i=1

ni∏
j=1

exp
{[

βTXi(Tij) + αT
n B̃n(Zi(Tij))

]
− log[nS(0)(β, αn, Tij)]

}

=
n∏

i=1

exp

[∫ τ

0

{βTXi(t) + αT
n B̃n(Zi(t))− log[nS(0)(β, αn, t)]}dNi(t)

]
.

where {Tij, j = 1, · · · , ni; i = 1, · · · , n} are the observed event times and ni is the

number of observed events on the ith subject.

5.2.2 New nonparametric tests for panel count data

In the analysis of panel count data, we assume that each subject in the study

gives rise to a point process N(t), denoting the total number of occurrences of the

event of interest up to time t, and the data consist of independent samples of panel

count data randomly drawn from k(k ≥ 2) populations or groups. Λl(t) = E(N(t))

is the mean function of N(t) corresponding to the lth group for l = 1, · · · , k.

As noted in Section 1.2.2, many researchers have studied the testing problem on

the hypothesis H0 : Λ1(t) = · · · = Λk(t), such as Thall and Lachin (1988), Sun

and Fang (2003), Zhang (2006), Park et al. (2007), and Balakrishnan and Zhao
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(2009, 2010, 2011). Among them, Sun and Fang (2003), Park et al. (2007), and

Balakrishnan and Zhao (2011) proposed the tests based on the isotonic regression

estimator of the mean functions (Sun and Kalbleisch, 1995; Wellner and Zhang,

2000), which will be recounted here for our use.

Suppose there are n independent subjects and nl in the lth group with n1 +

· · ·+nk = n. Let Ni(t) denote the point process arising from subject i (i = 1, · · · , n

and each subject be observed only at discrete time points 0 < Ti,1 < · · · < Ti,Ki
.

Let ni,j = Ni(Ti,j) be the observed value of Ni at Ti,j, j = 1, · · · , Ki, i = 1, · · · , n.

For simplicity, assume that H0 is true, and let Λ0(t) denote the common mean

function of Ni(t)’s. Further, let s1, · · · , sm denote the ordered distinct observation

times in the set {Ti,j : j = 1, · · · , Ki, i = 1, · · · , n} and ωl and n̄l be the number

and mean value, respectively, of observations made at time sl, l = 1, · · · ,m. Then

the isotonic regression estimator, denoted by Λ̂n(t), is defined as a nondecreasing

step function with possible jumps at the sl’s, and is given by

Λ̂n(sl) = max
r≤l

min
s≥l

∑s
v=r ωvn̄v∑s
v=r ωv

= min
s≥l

max
r≤l

∑s
v=r ωvn̄v∑s
v=r ωv

, l = 1, · · · ,m,

the isotonic regression of the nl’s with weights ωl’s (Robertson et al., 1988).

Let Λ̂nl
denote the isotonic regression estimate of Λl based on samples from

all the subjects in the lth group. To test the hypothesis H0, one of the two classes

of test statistics given by Balakrishnan and Zhao (2011) is as follows:

V (l)
n =

√
n

∫ τ

0

W (l)
n (t){Λ̂n1(t)− Λ̂nl

(t)}dGn(t), l = 2, · · · , k, (5.4)
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where τ is the largest observation time, W
(l)
n (t) are bounded weight processes, and

Gn(t) =
1

n

n∑
i=1

Ki∑
j=1

I{Ti,j ≤ t},

where I(·) is the indicator function.

In contrast to the above hypothesis and the corresponding tests, Cook et al.

(1996) mentioned that tests regarding the performance of certain drug combina-

tions versus others are interesting in trials with multiple arms and multiple drug

therapies. For example, if one treatment arm consists of a combination therapy of

drugs given in other arms, one might plan to investigate if the treatments prove

more beneficial in combination than individually. In such a situation, one might

specify a hypothesis of the form

H0 : L
TΛ(t) = 0, t > 0, (5.5)

where L = (L1, · · · , Lk)
T is a fixed vector of coefficients forming the contrast, and

Λ(t) = (Λ1(t), · · · ,Λk(t))
T .

For this hypothesis, we can construct more general statistics of the form

Un =
√
n

∫ τ

0

Wn(t)L
T Λ̂(t)dGn(t), (5.6)

where Λ̂(t) = (Λ̂n1(t), · · · , Λ̂nk
(t))T .

Since the above statistics are a generalization of the statistics

√
n

∫ τ

0

Wn(t){Λ̂n1(t)− Λ̂n2(t)}dGn(t),

given in Balakrishnan and Zhao (2011) for the special case k = 2, proposed for
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testing H0 : Λ1(t) = Λ2(t) t > 0, we could obtain the asymptotic distribution of

Un similar to V
(2)
n in Balakrishnan and Zhao (2011).
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Appendix A. B-Splines

B-splines, firstly introduced by de Boor (1978), are a popular type of poly-

nominal splines in statistical applications, mainly because of their flexibility and

numerical properties.

Define Pl as the space of polynomials of order l (degree (l−1)), then the basis

functions span Pl are {1, t, t2, · · · , tl−1} and an element in Pl can be written as

p(t) = a1 + a2t+ · · ·+ alt
l−1 =

∑l
j=1 ajt

j−1.

For a finite closed interval [a, b], let I = {ti}mn+2l
1 , with

a = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = b

be a sequence of knots that partition [a, b] intomn+1 subintervals Ii = [tl+i, tl+i+1),

for i = 0, 1, · · · ,mn. Denote by Ψl,I the class of polynominal splines of order l ≥ 1

with the knot sequence I, i. e.,

Ψl,I = {s ∈ C l−2[a, b] for l ≥ 2 : s|Ii ∈ Pl, i = 0, 1, · · · ,mn},

where C l−2[a, b] = {f : the (l − 2)th derivative f (l−2) is continuous on [a, b]}.

A spline for l = 4 is a piecewise-cubic polynomial with continuous second-order

derivative. As a special case, the spline with l = 1 is a step function which is

discontinuous at each knot.

In fact, the class Ψl,I is linearly spanned by the B-spline basis functions

{Bil, 1 ≤ i ≤ qn}; that is, for any s ∈ Ψl,I , there exist c1, · · · , cqn such that

s(t) =
∑qn

i=1 ciBil(t) (Schumaker, 1981), where qn = mn + l is the number of basis
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functions. An recursive relation that is very useful in practice (Schumaker, 1981)

can be summarized as follows:

Firstly,

Bi1(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, t ∈ [ti, ti+1)

0, otherwise

for i = 0, 1, · · · ,mn + 2l − 1, then

Bil(t) =
t− ti

ti+l−1 − ti
Bi(l−1)(t) +

ti+l − t

ti+l − ti+1

B(i+1)(l−1)(t),

for i = 1, · · · ,mn + 2l − l = qn. The fact that Bil(t) > 0 only when ti ≤ t < ti+qn

and is zero otherwise is a very important property. Furthermore, another property,

the variation-diminishing property (Schumaker, 1981, page 117) is

S−
(

qn∑
i=1

ciBil(t)

)
≤ S−(c1, · · · , cqn), any c1, · · · , cqn not all 0,

where S−(v) is the number of sign changes in the sequence v1, · · · , vn (zeros are

ignored) with v = (v1, · · · , vn). When the unknown function is nonnegative or

monotone, this property is very practical when using the nonnegative or monotone

B-splines estimator, since the B-splines approximation
∑qn

i=1 ciBil(t) possesses the

same nonnegative and monotonicity as ci, i = 1, · · · , qn, which can be obtained

according to Examples 4.74, 4.75, 4.76 in Schumaker (1981).

Furthermore, a monotone I-splines are proposed by Ramsay (1988), which can

be defined as

Iil(t) =

∫ t

a

Bil(s)ds,

then these I-splines have degree of l. For knots I, the I-splines can be obtain in
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the more convenient forms

Iil(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, i > j,

1
l+1

∑j
m=i (tm+l+1 − tm)Bm(l+1)(t), j − l + 1 ≤ i ≤ j,

1, i < j − l + 1.

for tj ≤ t < tj+1.

Finally, here we’ll summarize two useful lemmas used in the proof of consis-

tency and rate of convergence in Chapters 2 and 3, which are the following Lemma

5 in Stone (1985) and Lemma A.2 in Huang (1999).

Lemma 5 in Stone (1985) For each h ∈ Fr, and n ≥ 1, there is an s ∈ Ψl,I

with

‖s− h‖∞ ≤ Mmr
n,

here M is some fixed positive constant, mn is the number of interior knots and Fr

is defined in Section 2.

Lemma A.2 in Huang (1999) For any η > 0, let

Θn = {x′β + φ : ‖β − β0‖ ≤ η, φ ∈ Ψl,I , ‖φ− φ0‖∞ ≤ η}.

Then for any ε ≤ η,

logN[](ε,Θn, L2(P )) ≤ cqn log(η/ε).

where qn = mn + l is the number of spline basis functions and N[](ε,Θn, L2(P )) is

the bracketing number we will introduce in Appendix C.
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Appendix B. Generalized Gradient Projected Algorithm

Consider the problem (A1)

Maximize : l(θ)

Subject to : a′
iθ = bi, i ∈ I1, a′

iθ ≤ bi, i ∈ I2,

where l(θ) is a sufficiently smooth objective function, ai is a given p× 1 vector, bi

is a given scalar, and equality constraints and inequality constraints are indexed

by index sets I1 and I2 respectively.

A well-known gradient projection algorithm was firstly proposed by Rosen

(1960) to optimizing such a nonlinear programming problem subject to linear con-

straints. Rosen’s algorithm is based on the ordinary Euclidian metric. Jamshidian

(2004) developed a general algorithm based on the generalized Euclidian metric

‖x‖W = x′Wx, where W is a positive matrix and can vary from iteration to itera-

tion. Here we’ll sketch Jamshidian’s generalized gradient projection algorithm as

follows.

A constraints is said to be active if it holds with equality. Let A be an initial

working set of active constraints, that is,

A = {i ∈ I1 ∪ I2|a′
iθ = bi} ⊇ I1,

and let A be an m × p working matrix whose rows consist of a′ for all i ∈ A,

b denote the corresponding vector of bi’s. Rosen’s gradient projection method

is based on projecting the search direction into the subspace tangent to the ac-

tive constraints. Active set method is a procedure that determines optimal ac-
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tive constraints by moving among several working sets of potential optimal active

constraints (Fletcher, 1987). Jamshidian (2004) proposed a gradient projection -

active set algorithm.

The generalized gradient of l in the metric ‖·‖W is given by g̃(θ) = W−1g(θ) ≡

W−1∇l(θ). Start from a feasible initial point θr ∈ Ω ≡ {θ ∈ Rp|Aθ = b}, then get

a new point θ̃r = θr + d, through a direction d. Then θ̃r ∈ Ω ⇐⇒ d ∈ N ≡ {d ∈

M|Ad = 0} with M be defined as the p dimensional Euclidean space with a norm

defined by ‖x‖W = x′Wx and N is called the space of feasible space. Gradient

projection method generates a sequence of feasible points by moving along feasible

directions that converges to a solution of (A1). The feasible direction at a point

θr ∈ Ω is obtained by projecting g̃(θr) onto N in the metric ‖·‖W . Some reduction

as in Jamshidian (2004, p.139-140) can result in that

λ = (AW−1A′)−1Ag̃(θr),

and

d = I −W−1A′(AW−1A′)−1Ag̃(θr),

where I is the identity matrix. And it can verify that d is a generalized gradient

of l in N in the metric of ‖ · ‖W since

∇l(∇θ) = 〈∇θ, g(θ)〉

= 〈∇θ, g̃(θ)〉W

= 〈PW∇θ, g̃(θ)〉W

= 〈∇θ, PW g̃(θ)〉W ,
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where PW = I − W−1A′(AW−1A′)−1A is idempotent and self-adjoint and a pro-

jection onto N in the metric of ‖ · ‖W . Then if d �= 0, a small enough step from θr

in the direction of d results in a new feasible point θ̃r such that l(θ̃r) > l(θr). In

fact, d is a steepest ascent direction with respect to l since

〈d, g〉 = 〈d, g̃〉W

= 〈d, g̃ − d+ d〉W

= 〈d, g̃ − d〉W + 〈d, d〉W

> 〈PW g̃, (I − PW )g̃〉W

> 〈PW (I − PW )g̃, g̃〉W

> 0,

where 〈u, v〉W = u′Wv. Then the largest step length α1 is obtained by

argmaxα{α|θr + αd ∈ Ω}, and a new point θ̃r is obtained by performing the line

search argmax0<α≤α1{l(θr+αd)}, and then add indexes of newly active constraints,

if any, to the working set A, and A and Ω are redefined accordingly. If d = 0,

and all components of λ are nonnegative, then θ̃r satisfies the first order necessary

Karush-Kuhn-Tucker Conditions (Luenberger, 1984, Chap. 2) which can be stated

as the existence of a vector λ such that

(1) λ ≥ 0;

(2) λW−1(Aθr − b) = 0;

(3) g̃(θr)−W−1A′λ = 0

for being a constrained optimum. On the other hand, if d = 0 and at least one
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component of λ is negative, then drop a constraint corresponding to this negative

λi from the working set, and calculate a new nonzero direction d which leads to a

new feasible improved point. The detailed gradient projection-active set algorithm

are summarized in Algorithm 1,

Algorithm 1 The Gradient Projection - Active Set Algorithm

Start with an initial point θ, that satisfies Aθ = b, and cycle through the following
steps until convergence:

S1: Compute
d =

(
I −W−1AT (AW−1AT )−1A

)
W−1∇l(θ),

when there is no active constraint, take d = W−1∇l(θ).

S2: If d = 0, compute the Lagrange multiplier λ = (AW−1A′)−1Ag̃(θr). Let λi

denote the ith component of λ.

a . If λi ≥ 0 for all i ∈ A ∩ I2, Stop. The current point satisfies the
Karush-Kuhn-Tucker Conditions.

b . If there is at least one negative λi for i ∈ A ∩ I2, determine the index
corresponding to the smallest such λi, and delete this index from A.
Modify A and b, by dropping a row from each accordingly. and go to
S1.

S3: If d �= 0, obtain α1 = argmaxα{α|θr + αd ∈ Ω}. Then search for α2 =
argmax0<α≤α1{l(θr+αd)}. Set θ̃ = θ+α2d. Add indexes of new coordinates,
if any, of θ̃ that are newly on the boundary to the working set A. Modify A
and b, by adding new rows, accordingly.

S4: Replace θ, by θ̃ and go to S1.

As said in Jamshidian (2004), the sufficient condition for θ̂ to be a local

maximum of l(θ) in Ω is that H(θ̂), the Hessian of l(θ) at θ̂, be negative definite

on N . Theoretically, gradient projection algorithm converges from almost any

arbitrary feasible point and for any positive definite W . The choice of W , however,

is important because the local rate of convergence of gradient projection algorithm

depends on the ratio of the smallest to the largest eigenvalue of the Hessian of θ̂
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in the metric of ‖ · ‖W , i.e. W−1H(θ̂), restricted to N . Accurately, the closer the

ratio to one, the faster the rate of convergence.

Appendix C. Empirical Process

Empirical process technique has become an increasingly important tool for

statistical inference in semiparametric or nonparametric models, which is also our

main theoretical background for inference of the asymptotic properties of our es-

timators. Thus we will sketch some commonly used conclusions here.

Glivenko-Cantelli and Donsker Classes

An empirical process is a stochastic process based on a random sample. Con-

sider a random sample X1, · · · , Xn from a probability measure P on an arbitrary

measure space (X ,A). The empirical measure is defined as Pn = n−1
∑n

i=1 δXi
,

where δx is the measure which assigns mass 1 at x and zero elsewhere. Denote

Pnf = n−1
∑n

i=1 f(Xi) and Pf =
∫
fdP , for a measurable function f : X −→ R.

Then an empirical process

Gnf =
√
n(Pnf − Pf) =

1√
n

n∑
i=1

[f(Xi)− EPf(Xi)]

for any class F of measurable functions f : X −→ R. The envelope function

F : X −→ R of the class F is the function such that |f(x)| ≤ F (x) < ∞ for every

x ∈ X and f ∈ F .

By the law of large numbers and the central limit theorem, for each f ∈ F ,

Pnf
a.s.−−→ Pf and Gnf

d−→ N(0, P (f − Pf)2).
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provided Pf exists and Pf 2 < ∞, respectively, where
d−→ means converge in dis-

tribution.

When investigating the properties, the uniform convergence and asymptotic

normality are more desirable, which can be defined as follows. A class F of mea-

surable functions f : X −→ R is said to be a P-Glivenko-Cantelli class, if

sup
f∈F

|Pnf − Pf | a.s.−−→ 0.

And F is said to be a P-Donsker class, if the process {Gnf : f ∈ F} converges

in distribution to a tight limit processes in l∞(F), which is the space of bounded

functionals on F under the supermum norm ‖f‖ = suph∈F |f(h)|.

Whether a class of functions is a Glivenko-Cantelli or a Donsker class (here-

after, we’ll drop the P if the context is clear) is mainly determined by the “size”

of the class. A relatively simple way to measure the size of a class is in terms

of entropy including entropy with bracketing and entropy with covering. We will

mainly introduce the entropy with the Lr(P )-norm, ‖f‖r,P = (
∫ |f |rdP )1/r.

We need to introduce the ε-bracket in Lr(P ) firstly. A pair of functions {l, u} ∈

Lr(P ) is an ε-bracket if they are satisfying P (l(X) ≤ u(X)) = 1 and ‖l−u‖r,P ≤ ε.

A function f ∈ F lies in the bracket {l, u} if P (l(X) ≤ f(X) ≤ u(X)) = 1. Then

the bracketing number N[](ε,F , Lr(P )) be defined as the minimum number of ε-

brackets in Lr(P ) needed to cover F . The logarithm of the bracketing number is

the entropy with bracketing. Here it is required that both l and u are of finite norm

in terms of ‖ · ‖r,P but need not necessarily belong to F . And the covering number

N(ε,F , Lr(P )) is the minimum number of Lr(P ) ε-balls needed to cover F , where
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an Lr(P ) ε-ball around a function g ∈ Lr(P ) is the set {h ∈ Lr(P ) : ‖h−g‖r,P < ε}.

Similarly, the centers of the balls to cover F are not necessary to belong to F .

The entropy (without bracketing) is the logarithm of the covering number.

Remark C.1 If f is in the ε-bracket {l, u}, then it is in the ε/2-ball round midpoint

(l + u)/2. Thus it follows that

N(ε/2,F , Lr(P )) ≤ N[](ε,F , Lr(P )).

Glivenko-Cantelli and Donsker Theorems

In the following, we’ll sketch two important theorems in modern empirical

process.

Firstly, the simplest Glivenko-Cantelli theorem based on entropy with brack-

eting is given in Van der Vaart and Wellner (1996, Th 2.4.1), which is presented

as follows,

Theorem C.2 (Glivenko-Cantelli Theorem) Let F be a class of measurable

functions such that N[](ε,F , L1(P )) < ∞ for every ε > 0. Then F is Glivenko-

Cantelli.

Donsker theorems based on entropy with bracketing require more stringent

conditions on the number of brackets needed to cover F . For most classes of

interest, the entropy goes to infinity as ε ↓ 0. The sufficient condition for a class

to be a Donsker is that the bracketing integral

J[](δ,F , Lr(P )) ≡
∫ δ

0

√
logN[](ε,F , Lr(P ))dε
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needs to be bounded for r = 2 and δ = ∞, which can be derived from Van der

Vaart and Wellner (1996, Th 2.5.2), we’ll summarize it here.

Theorem C.3 (Donsker Theorem) Let F be a class of measurable functions

with J[](∞,F , L2(P )) < ∞. Then F is Donsker.

The following theorem indicate that the class of uniformly bounded, monotone

functions on the real line is Donsker, which is the Van der Vaart and Wellner (1996,

Th 2.7.5)

Class of bounded monotone functions The F of monotone functions f :

R −→ [0, 1] satisfies

logN[](ε,F , Lr(P )) ≤ K(
1

ε
),

for every probability measure P , every r ≥ 1, and a constant K that depends on r

only.

M Estimators : Rate of Convergence

A M-estimator θ̂n is the approximate maximum of a data-dependent function

θ �−→ Mn(θ) with θ belongs to a semimetric space Θ with a semimetric d.

The rate of convergence for a estimator θ̂n is rn, if rn(θ̂n − θ0) = Op(1).

Van der Vaart and Wellner (1996, Th 3.2.5) is commonly used to obtain the

rate of convergence for the infinite-dimensional parametric estimators, which is also

used in this thesis to deduce the rate of convergence for the regression parameters

and B-splines based nonparametric estimators, thus we will summarize it here.

Theorem C.4 (Rate of Convergence) Let Mn be stochastic processes indexed
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by a semimetric space Θ, and M : Θ −→ R a determinstic function, such that for

every θ in a neighborhood of θ0,

M(θ)−M(θ0) � −d2(θ, θ0).

Suppose that, for every n and sufficiently small δ, the centered process Mn − M

satisfies

E sup
d(θ,θ0)<δ

∣∣(Mn −M)(θ)− (Mn −M)(θn)
∣∣ � φn(δ)√

n
,

for function φn, such that δ −→ φn(δ)/δ
α is decreasing for some α < 2 (not

depending on n). Let

r2nφn(
1

rn
) ≤ √

n, for every n.

If the sequence θ̂n satisfies Mn(θ̂n) ≥ Mn(θ0)−Op(r
−2
n ) and converges in probability

to θ0, then rnd(θ̂n, θ0) = Op(1). If the displayed conditions are valid for every θ

and δ, then the condition that θ̂n is consistent is unnecessary.

Note: The notation � means “is bounded above up to a universal constant”.

In the case of i.i.d. data and criterion functions of the form Mn(θ) = Pnmθ,

the centered and scaled process
√
n(Mn −M) = Gnmθ. The second condition of

the theorem involves the suprema of the empirical process indexed by classes of

function

Mδ = {mθ −mθ0 : d(θ, θ0) < δ}.

It is not unreasonable to assume that these suprema are bounded uniformly in n.

This leads to the Van der Vaart and Wellner (1996, Corollary 3.2.6) as follows.
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Corollary 3.2.6 in Van der Vaart and Wellner (1996). In the i.i.d. case

assume that, for every θ in a neighborhood of θ0,

P (mθ −mθ0) � −d2(θ, θ0).

Furthermore, assume that there exists a function φ such that δ −→ φ(δ)/δα is

decreasing for some α < 2 and, for every n,

E‖Gn‖Mδ
� φ(δ).

If the sequence θ̂n satisfies Pnmθ̂n
≥ Pnmθ0 −Op(r

−2
n ) and converges in probability

to θ0, then rnd(θ̂n, θ0) = Op(1) for every sequense rn such that r2nφn(
1
rn
) ≤ √

n,

for every n.

The following lemma is Van der Vaart and Wellner (1996, Lemma 3.4.2),

which is used in our thesis to prove the rate of convergence.

Lemma C.5 Let F be class of measurable functions such that Pf 2 < δ2 and

‖f‖∞ ≤ M for every f in F . Then

EP‖G‖F � J̃[](δ,F , L2(P ))

(
1 +

J̃[](δ,F , L2(P ))

δ2
√
n

M

)
,

for a constant M , and where J̃[](δ,F , L2(P )) =
∫ δ

0

√
1 +N[](ε,F , L2(P ))dε.

Z Estimators : Asymptotic Normality

A Z-estimator θ̂n is the approximate zero of a data-dependent function Ψn :

Θ −→ L, where Θ is a subset of a Banach space, and L is another Banach space

and Ψ : Θ −→ L is a fixed map.
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If L is an l∞(H)-space, as can be assumed without loss of generality, the

equation Ψn(θ̂n) = 0 is equivalent to the collection of (real-valued) estimating

equations Ψn(θ̂n)h = 0, when h run through H.

In the case of i.i.d. observations, Ψn(θ)h = Pnψθ,h and Ψ(θ)h = Pψθ,h for

given measurable functions ψθ,h indexed by Θ and an arbitrary index set H. In

this case
√
n(Ψn − Ψ)(θ) = {Gnψθ,h : h ∈ H} is the empirical process indexed by

the class of functions {ψθ,h : h ∈ H}. Then the condition(i) needed for the proof

of Theorem 2.3 and Theroem 3.3 is

√
n(Ψn −Ψ)(θ̂n)−

√
n(Ψn −Ψ)(θ0) = op(1). (C3)

which can be satisfied under the sufficient conditions in the following Kosorok

(2008, Lemma 13.3).

Lemma C.6 Suppose that the class of functions

{ψθ,h − ψθ0,h : ‖θ − θ0‖ < δ, h ∈ H}

is P-Donsker for some δ > 0 and that

sup
h∈H

P (ψθ,h − ψθ0,h)
2 −→ 0, θ −→ θ0.

Then if Ψn(θ̂n) = op(n
1/2) and θ̂n

P−→ θ0 then (C3) is satisfied.
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Appendix D. The Bootstrap Estimate of Standard Error

The bootstrap was introduced in Efron (1979) as a computer-based method for

estimating the standard error of estimators. The bootstrap estimate of standard

error requires no theretical calculations, and is available no matter how mathe-

matically complicated the estimators may be.

Assume thatX1, · · · , Xn independently sampled from an unknown probability

distribution F , an estimate for the parameter of interest θ is θ̂ = t(X), where

X = (X1, · · · , Xn). The standard error of θ̂ defined as

se{θ̂;F} = [VarF{t(X)}]1/2 (D1)

is a commomly used measure of the accuracy for estimators θ̂. Genarate the

bootstrap sample of size n, X∗ = (X∗
1 , · · · , X∗

n) from the emipirical distribution

F̂n, which is defined as F̂n(x) =
1
n

∑n
i=1 I{Xi ≤ x}. Then substituting F̂n for F in

(D1) gives a reasonable estimate of the standard error for θ̂, namely

seboot{θ̂∗} ≡ se{θ̂∗; F̂n} = [VarF̂n
{t(X∗)}]1/2,

where θ̂∗ = t(X∗). If there is no explicit formula to compute seboot{θ̂∗}, the Monte

Carlo approximation is proposed. That is, generate B independent bootstrap

samples X∗b, · · · ,X∗b i.i.d. ∼ F̂n. Evaluate θ̂∗b = t(X∗b), b = 1, · · · , B. Then

estimate the standard error se{θ̂;F} by the sample standar deviation of the B

bootstrap samples

ŝeB =

{
1

B − 1

B∑
b=1

[θ̂∗b − θ̂∗·]2
}1/2

,
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where θ̂∗· = 1
B

∑B
b=1 θ̂

∗b, since lim
B−→∞

ŝeB = seboot{θ̂∗} and seboot{θ̂∗} is a plug-in

estimate for se{θ̂;F} (The plug-in estimate of a parameter θ = t(F ) is defined to

be θ̂ = t(F̂n), Efron and Tibshirani (1993)).

Remark D.1 (1). Another way to sayX∗ = (X∗
1 , · · · , X∗

n) i.i.d. ∼ F̂n: X
∗
1 , · · · , X∗

n

are a random sample of size n drawn with replacement from the polulation of n

objects X1, · · · , Xn. Here, the points X1, · · · , Xn are treated as a population, with

distribution F̂n. (2). Easy way to implement bootstrap sampling on the computer:

Randomly select integers i1, · · · , in, each of which equals any value of 1, · · · , n with

probability 1/n, then X∗
1 = Xi1 , · · · , X∗

n = Xin.

Remark D.2 As Efron and Tibshirani (1993) disscussed in Section 6.4, the

number B will ordinarily be in the range 25-200 for estimation a standard error.
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Birkhäuser.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

Rosen, J. B. (1960). The gradient projection method for nonlinear programming.

Journal of the Society for Industrial and Applied Mathematics 8, 181–217.

Rosenberg, P. S. (1995). Hazard function estimation using b-splines. Biometrics

51, 874–887.

Rubnitz, J. E., Inaba, H., Dahl, G., Ribeiro, R. C., Bowman, W. P., Taub, J.,

Pounds, S., Razzouk, B. I., Lacayo, N. J., Cao, X., Meshinchi, S., Degar,

B., Airewele, G., Raimondi, S. C., Onciu, M., Coustan-Smith, E., Downing,

J. R., Leung, W., Pui, C., and Campana, D. (2010). Minimal residual disease-

directed therapy for childhood acute myeloid leukaemia: results of the aml02

multicentre trial. The Lancet Oncology 11, 543 – 552.

152



Schumaker, L. L. (1981). Spline Functions: Basic Theory. John Wiley and Sons.

Sharef, E., Strawderman, R. L., Ruppert, D., Cowen, M., and Halasyamani, L.

(2010). Bayesian adaptive b-spline estimation in proportional hazards frailty

models. Electronic Journal of Statistics 4, 606–642.

Shen, X. (1998). Propotional odds regression and sieve maximum likelihood esti-

mation. Biometrika 85, 165–177.

Shen, X. and Wong, W. H. (1994). Convergence rate of sieve estimates. The

Annals of Statistics 22, 580–615.

Sinha, D. and Maiti, T. (2004). A bayesian approach for the analysis of panel-count

data with dependent termination. Biometrics 60, 34–40.

Sleeper, L. A. and Harrington, D. P. (1990). Regression splines in the cox model

with application to covariate effects in liver disease. Journal of the American

Statistical Association 85, 941–949.

Song, X., Mu, X., and Sun, L. (2012). Regression analysis of longitudinal data with

time-dependent covariates and informative observation times. Scandinavian

Journal of Statistics .

Stakgold, I. (1998). Green’s functions and boundary value problems. Toronto :John

Wiley, New York.

Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators.

The Annals of Statistics 8, 1348–1360.

153



Stone, C. J. (1982). Optimal globle rates of convergence for nonparametric esti-

mators. The Annals of Statistics 10, 1040–1053.

Stone, C. J. (1985). Additive regression and other nonparametric models. The

Annals of Statistics 13, 689–705.

Stone, C. J. (1986). The dimensionality reduction principle for generalized additive

models. The Annals of Statistics 14, 590–606.

Sun, J. (2006). The Statistical Analysis of Interval-censored Failure Time Data.

New York, NY : Springer Science+Business Media, Inc.

Sun, J. and Fang, H. (2003). A nonparametric test for panel count data. Biometrika

90, 199–208.

Sun, J. and Kalbfleisch, J. D. (1993). The analysis of current status data on point

processes. Journal of the American Statistical Association 88, pp. 1449–1454.

Sun, J. and Kalbleisch, J. D. (1995). Estimation of the mean function of point

processes based on panel count data. Statistica Sinca 5, 279–290.

Sun, J., Kopciuk, K. A., and Lu, X. (2008). Polynomial spline estimation of

partially linear single-index proportional hazards regression models. Compu-

tational Statistics and Data Analysis 53, 176 – 188.

Sun, J., Park, D. H., Sun, L., and Zhao, X. (2005). Semiparametric regression

analysis of longitudinal data with informative observation times. Journal of

the American Statistical Association 100, 882–889.

154



Sun, J., Sun, L., and Liu, D. (2007). Regression analysis of longitudinal data in

the presence of informative observation and censoring times. Journal of the

American Statistical Association 102, 1397–1406.

Sun, J. and Wei, L. J. (2000). Regression analysis of panel count data with

covariate-dependent observation and censoring times. Journal of the Royal

Statistical Society, Series B 62, 293–302.

Sun, L., Song, X., and Zhou, J. (2011). Regression analysis of longitudinal data

with time-dependent covariates in the presence of informative observation and

censoring times. Journal of Statistical Planning and Inference 141, 2902 –

2919.

Thall, P. F. and Lachin, J. M. (1988). Analysis of recurrent events: Nonparametric

methods for random-interval count data. Journal of the American Statistical

Association 83, 339–347.

Thall, P. F. and Vail, S. C. (1990). Some covariance models for longitudinal count

data with overdispersion. Biometrics 46, 657–671.

Tong, X., He, X., Sun, L., and Sun, J. (2009). Variable selection for panel count

data via non-concave penalized estimating function. Scandinavian Journal of

Statistics 36, 620–635.

Van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical

Processes: With Applications to Statistics. Springer.

155



Verbeke, G. and Molenberghs, G. (2000). Linear mixed models for longitudinal

data. Springer, New York.

Wang, M. C., Qin, J., and Chiang, C. T. (2001). Analyzing recurrent event data

with informative censoring. Journal of the American Statistical Association

96, 1057–1065.

Wang, Y. (1998). Mixed effects smoothing spline analysis of variance. Journal of

the Royal Statistical Society, Series B 60, 159–174.

Wellner, J. A. and Zhang, Y. (2000). Two estimators of the mean of a counting

process with panel count data. The Annals of Statistics 28, 779–814.

Wellner, J. A. and Zhang, Y. (2007). Two likelihood-based semiparametric estima-

tion methods for panel count data with covariates. The Annals of Statistics

35, 2106–2142.

Whittemore, A. S. and Keller, J. B. (1986). Survival estimation using splines.

Biometrics 42, 495–506.

Wu, C. O., Chiang, C. T., and Hoover, D. R. (1998). Asymptotic confidence

regions for kernel smoothing of a varying-coefficient model with longitudinal

data. Journal of the American Statistical Association 93, 1388–1402.

Wu, T. and He, X. (2012). Coordinate ascent for penalized semiparametric re-

gression on high-dimensional panel count data. Computational Statistics and

Data Analysis 56, 25 – 33.

156



Xue, H., Lam, K. F., and Li, G. (2004). Sieve maximum likelihood estimator for

semiparametric regression models with current status data. Journal of the

American Statistical Association 99, 346–356.

Yin, G., Li, H., and Zeng, D. (2008). Partially linear additive hazards regression

with varying coefficients. Journal of the American Statistical Association 103,

1200–1213.

Zeger, S. L. and Diggle, P. J. (1994). Semiparametric models for longitudinal data

with application to cd4 cell numbers in hiv seroconverters. Biometrics 50,

689–699.

Zeger, S. L., Liang, K. Y., and Albert, P. S. (1988). Models for longitudinal data:

A generalized estimating equation approach. Biometrics 44, 1049–1060.

Zeng, D., Lin, D. Y., and Yin, G. (2005). Maximum likelihood estimation for

the proportional odds model with random effects. Journal of the American

Statistical Association 100, 470–483.

Zhang, D., Lin, X., Raz, J., and Sowers, M. (1998). Semiparametric stochas-

tic mixed models for longitudinal data. Journal of the American Statistical

Association 93, 710–719.

Zhang, Y. (2002). A semiparametric pseudolikelihood estimation method for panel

count data. Biometrika 89, 39–48.

Zhang, Y. (2006). Nonparametric k-sample tests with panel count data. Biometrika

93, 777–790.

157



Zhang, Y., Hua, L., and Huang, J. (2010). A spline-based semiparametric maxi-

mum likelihood estimation method for the cox model with interval-censored

data. Scandinavian Journal of Statistics 37, 338–354.

Zhang, Y. and Jamshidian, M. (2003). The gamma-frailty poisson model for the

nonparametric estimation of panle count data. Biometrics 59, 1099–1106.

Zhang, Y. and Jamshidian, M. (2004). On algorithms for the nonparametric max-

imum likelihood estimator of the failure function with censored data. Journal

of Computational and Graphical Statistics 13, 123–140.

Zhang, Z., Sun, J., and Sun, L. (2005). Statistical analysis of current status data

with informative observation times. Statistics in Medicine 24, 1399–1407.

Zhao, X., Balakrishnan, N., and Sun, J. (2011). Nonparametric inference based

on panel count data. Test 20, 1–42.

Zhao, X. and Sun, J. (2011). Nonparametric comparison for panel count data with

unequal observation processes. Biometrics 67, 770–779.

Zhao, X. and Tong, X. (2011). Semiparametric regression analysis of panel count

data with informative observation times. Computational Statistics and Data

Analysis 55, 291 – 300.

Zhao, X., Tong, X., and Sun, L. (2012). Joint analysis of longitudinal data with

dependent observation times. Statistica Sinica 22, 317–336.

Zhou, S., Shen, X., and Wolfe, D. A. (1998). Local asymptotics for regression

158



splines and confidence regions. Computational Statistics and Data Analysis

26, 1760–1782.

Zhu, L., Sun, J., Tong, X., and Pounds, S. (2011). Regression analysis of longitu-

dinal data with informative observation times and application to medical cost

data. Statistics in Medicine 30, 1429–1440.

159




