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Abstract

Longitudinal data often occur in a long-term study where each individual is
measured repeatedly at distinct time points rather than continuous times and also
the observation times and censoring times may vary from subject to subject. Many
researchers have considered the analysis of such longitudinal data under the as-
sumption that observation process is independent of response process completely
or conditional on covariates, which may not be true in practice. This thesis inves-
tigates semiparametric analysis of longitudinal data when the response process is
correlated with the observation times.

We develop a new class of semiparametric mean models for longitudinal data
which allows for the interaction between the observation history and covariates,
leaving patterns of the observation process to be arbitrary. Although panel count
data is a special case of longitudinal data, it has particular features which can not
be described by general longitudinal models. Thus, to analyze the panel count
data, we propose a new class of flexible semiparametric regression models by in-
corporating the interaction between the observation history and some covariates to
the mean model of the recurrent event process, without any formation restriction
on the informative observation process. For inference on the regression parame-
ters and the unknown baseline functions involved in both longtidunial data and
panel count data models, spline-based least square estimation approachs are pro-
posed, respectively, and asymptotic properties including the consistency, rate of
convergence and asymptotic normality of the proposed estimators are established

for both models. Simulation studies demonstrate that the proposed inference pro-



cedures perform well for both models. The analyses of a bladder tumor data are
presented to illustrate the proposed methods.

Furthermore, it would be desirable to develop estimation procedures for panel
count data with informative observation times, and also with time-dependent co-
variates and informative censoring times. Thus we extend the joint frailty models
proposed by Zhao and Tong (2011) to panel count data with the time-dependent
covariates and informative observation and censoring times. A novel estimating
equation approach that does not depend on the distribution of frailty variables
and the link function is proposed for estimation of parameters, and the asymp-
totic properties of the proposed estimators are established. The performance of
proposed inference procedure are demonstrated by some simulation studies and

illustrated by the analysis of a bladder tumor data.

Key Words Asymptotic normality; B-splines; Empirical process; Estimating
equation; Informative observation process; Longitudinal data; Panel count data;

Time-dependent covariates.
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Chapter 1

Introduction and Literature Review

In this chapter, we focus on introducing the motivations of our research and
reviewing the related literature. In our research, we mainly discuss three different
semiparametric analysis procedures for longitudinal data with informative obser-

vation times.

1.1 Motivation

The bladder cancer study conducted by the Veterans Administration Coop-
erative Urological Research Group (VACURG), which will be considered in this
dissertation, is described in this section to illustrate that what applications have
motivated us to do analysis about longitudinal data with informative observation

times.

1.1.1 Bladder Cancer Study

A bladder cancer follow-up study conducted by the VACURG of USA ex-
tracted from Andrews and Herzberg (1985, pp.253-260) was first studied by Byar
(1980). In the study, 116 subjects had superficial bladder tumors when they en-
tered the study and these tumors were removed transurethrally and then patients
were randomly allocated to one of the three treatments, placebo (47), thiotepa (38)
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and pyridoxine (31). Many patients had multiple recurrences of new tumors during
the study. The follow-up times vary from 1 week to 64 weeks. In the study, the
patients periodically visited the clinical centers and at each visit, the numbers of
bladder new tumors since the last visit were recorded and the new tumors were re-
moved transurethrally and then the treatment was continued. For many patients,
more than one bladder new tumors were recorded between two visits, however,
times for each tumor occurred were not exactly known. Furthermore, different
patients had different visiting times since they had not visited the clinical centers
at the scheduled times because of some personal reasons, that is, the observation
times and the censoring times vary from patient to patient. Thus only panel count
data are available. For each patient, the observed information includes clinical
visit times, the numbers of recurrent tumors between clinical visits, two baseline
covariates that are the number of initial tumors and the size of the largest initial
tumor, and also the type of treatment for the patient. The full data set can be
located at http://www.blackwellpublishers.co.uk/rss/, and the data for the
placebo and thiotepa groups can be found in Hu et al. (2003) and Appendix of
Sun (2006).

As indicated in Byar (1980) and Andrews and Herzberg (1985), one of the
main objectives of the study is to evaluate the effect of the treatment on the rate of
tumor recurrence. The data have been analyzed by Sun and Wei (2000); Wellner
and Zhang (2000); Zhang (2002); Wellner and Zhang (2007) among others, where
the observation times were assumed to be noninformative.

However, the appearance that some patients in the study had significantly



more clinical visits than others indicates that the number of clinical visits may
contain some information about the tumor occurrence rate. Thus an important
question is how to take into account or make use of this information for inference
about the tumor recurrence rate. For the analysis of rate of tumor recurrence
with informative observation times, Huang et al. (2006), Li et al. (2010), Zhao
and Tong (2011), and Deng (2012) among others have developed different analysis
procedures.

Furthermore, by comparing the data in the placebo group with that in the
thiotepa group, it is noticeable that the subjects in the thiotepa group tended to
visit the clinics more often than those in the placebo group, which may be explained
by the reason that the patients in the thiotepa needed to visit the clinics more in
order to have their thiotepa installed. The different patterns of observation times
should be taken into account in the analysis. Hu et al. (2003), Sun et al. (2005), Li
et al. (2010),and Zhao and Tong (2011) have gave some analysis about this data
based on the nonhomogeneous Poisson process assumption about the observation
times. A nonstationary Poisson process with frailty (Sun et al., 2007; Zhao et al.,
2012), a conditional intensity model (Liang et al., 2009) and a marginal rate model
(Song et al., 2012) for the observation times have also been proposed. One problem
behind all these model assumptions about observation times is how to assess the
adequacy of these models.

In addition, the natural logarithm of the total number of observed tumors
within the last 3 months plus 1 taken as a time-dependent covariate was used to

assess the effect of the dependence among tumor recurrence on the tumor recur-



rence rate by Sun et al. (2011).

Motivated by the bladder cancer data, we develop marginal conditional models
for longitudinal data and panel count data with informative observation times,
without any restriction on the pattern of the observation times in Chapter 2 and
3, respectively. Also a class of joint frailty models of panel count data with time-
dependent covariates and informative information times is proposed in Chapter
4.

The detailed application discussions on the bladder cancer data are presented

in the application parts of Chapters 2 - 4.

1.2 Literature Review

1.2.1 Longitudinal Data

In many longitudinal studies, each individual may experience the same event
repeatedly at distinct time points during a relatively long follow-up time. These
data may occur frequently in a wide variety of settings, including epidemiology,
clinical trials, and economic applications and so on. Examples of longitudinal data
include the bladder cancer data (Byar, 1980), a cost-accrual process of chronic
heart failure patients from the clinical data repository (CDR) at the University
of Virginia Health System (Liu et al., 2008), available online at http://cdr.
virginia.edu/cdr, seizures counts for epileptic patients (Thall and Vail, 1990; Al-
bert, 1991), a chemotherapy cardiotoxic outcome data for the Acute Lymphoblastic
Leukemia (ALL) (Lipshultz et al., 1995; Lipsitz et al., 2002), a medical cost data
for the childhood Acute Myeloid Leukemia (AML) trial (Rubnitz et al., 2010; Zhu
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et al., 2011), the air pollution data (Leitenstorfer and Tutz, 2007), whose original
database can be found at http://www.ime.usp.br/~jmsinger/Polatm9497.zip
and so on. The main characteristic of such data is that the observations are in-
dependent between different subjects and may be correlated within each subject.
However, in Chapters 2 - 4, we just considered “population-averaged” (PA) models
(Zeger et al., 1988), which modelled the population-averaged response as a func-
tion of covariates without explicitly accounting for within subject heterogeneity,
and thus the effects of the covariates have interpretation for the population rather
than for any subject.

For the analysis of longitudinal data, parametric regression analysis has been
studied by Laird and Ware (1982) and Liang and Zeger (1986) among others. Dig-
gle et al. (1994) provided an excellent review of frequently used methods including
both estimating equation and random effect model approaches and Verbeke and
Molenberghs (2000) given a comprehensive review of linear mixed model proce-
dures. In order to avoid the possible modeling biases in parametric analysis, var-
ious more flexible nonparametric models have been proposed by several authors
including Hoover et al. (1998), Wang (1998), Zhang et al. (1998), and Huang et al.
(2004) among others. By composing the parametric and nonparametric models, a
number of semiparametric models with nice features have been considered for lon-
gitudinal data. Zeger and Diggle (1994) proposed a semiparametric mixed model
for longitudinal data and suggested a backfitting procedure for inference. Lin
and Ying (2001) developed a novel and simple semiparametric and nonparametric

method for the regression analysis of irregularly spaced longitudinal data by for-



mulating the observation times within the framework of counting processes. He
et al. (2002) considered an extended M-estimators for analyzing longitudinal data
with unspecified dependence structure.

In the longitudinal data analysis, there are two important processes — the
response process and the observation process to be considered. A basic assumption
behind all the methods mentioned above is that observation times are independent
of response variable, completely or given covariates. However, this assumption
may be violated in many applications, such as the longitudinal data arising from
the bladder cancer follow-up study conducted by the VACURG (Byar, 1980) as
mentioned in Section 1.1.1. In the Acute Lymphoblastic Leukemia (ALL) data
(Lipsitz et al., 2002), a patient with an abnormally low wall-thickness measurement
may demand more frequent echocardiograms and visit times. In the AML trial
data (Zhu et al., 2011), patients in a severe disease stage visit the hospital more
often than those in a mild disease stage. We call these response-dependent visit
times as informative observation times. Thus it is very necessary to determine
the relationship between the response process and the observation process so as to
take into account or make use of this information for inference about the effect of
the covariates on the response process.

For the longitudinal data analysis with informative observation times, two
methods have been developed. One is the conditional modeling approach pro-
posed by Lin et al. (2004) and Sun et al. (2005). Lin et al. (2004) constructed
their conditional model based on the sequential ignorability assumption (Robins

and Rotnitzky, 1992) that the decision to visit at time ¢ did not depend on the



current response given the past history, and developed a class of inverse intensity-
of-visit process-weighted estimators. Sun et al. (2005) generalized the marginal
model given by Lin and Ying (2001) to a conditional model, which obviously char-
acterized the dependence of the response process and the observation times and
proposed estimating equation approaches. Another one is the frailty-based ap-
proach proposed by Sun et al. (2007), Liang et al. (2009), Zhao et al. (2012), Song
et al. (2012) among others. For example, Sun et al. (2007) used a shared latent
variable or frailty to characterize the correlations between the response process
and the observation times with informative censoring times. Liang et al. (2009)
modeled the longitudinal data with informative observation times via two differ-
ent latent variables that satisfied a linear relationship and some external covariates
and the distribution assumption for a latent variable is required. Zhao et al. (2012)
considered more general joint models using a completely unspecified link function
and a latent variable to characterize the correlations between the response process
and the observation process, and developed estimating equation approaches.

As discussed in Section 1.1.1, the different patterns of observation times should
also be taken into account in the analysis. The vast majority of research mentioned
above were based on a common and key assumption that the observation process
follows a Poisson or mixed Poisson with the proportional intensity function (Sun
et al., 2005, 2007; Liang et al., 2009; Zhao et al., 2012). However, the fit of the
Poisson model may be inadequate when the observation process displays under-
dispersion or over-dispersion. Based on such consideration, Song et al. (2012)

proposed a new more flexible joint modelling approach for the longitudinal data



with informative times via two different latent variables, where the response pro-
cess was assumed to follow a marginal mean model and the observation process
follows a marginal rate model which does not rely on the assumption of a nonho-
mogeneous Poisson process.

In addition, the relation between the observation and response processes may
vary with some covariates. For example, in the bladder cancer study, patients
who received the thiotepa treatment may have less superficial bladder tumors,
and thus may visit the doctor less often than those in the placebo group, which
means that the correlation between the observation times and the tumor recurrent
process may be different for different treatment groups. Earlier researchers have
not considered this situation, however, ignoring this fact may result in magnify
biased estimators. Motivated by the discussions mentioned above, we will develop
a new class of semiparametric mean models for the correlated response process and
the observation process, which allows for the interaction between the observation
history and covariates, leaving patterns of the observation process to be arbitrary

in Chapter 2 and also discuss the estimation approach for the models.

1.2.2 Panel Count data

In some longitudinal follow-up studies, each subject may be observed at sev-
eral distinct times and only the numbers of events between two adjacent times
are available. It may be impossible to record the exact event times because of
too expensive examination cost or too frequent occurrence of the events for their
exact times to be recorded and so on. Moreover, the set of observation times

may vary from subject to subject. Such data are called panel count data. For



this data, important information including the observation times, the counts of
recurrent events, the censoring or follow-up times and the covariates related to the
study are recorded for each study subject. Clearly, panel count data is a special
case of longitudinal data in which the underlying counting process for recurrent
events of interest is regarded as the response process and covariate effects on the
underlying recurrent process are often the study of interest. The applications of
panel count data including the bladder cancer data mentioned in Section 1.1.1
(Byar, 1980), the incidence of nausea of patients with gallstone disease from the
National Cooperative Gallstone Study (NCGS) (Thall and Lachin, 1988; Sun and
Kalbleisch, 1995), reliability of nuclear plants (Gaver and O’Muircheartaigh, 1987;
Sun and Kalbleisch, 1995) and so on. In panel count data, a special case exists
when only one observation is taken for every subject and the survival time of inter-
est is known only to be either less or greater than the observation time. Such data
is called current status data (Case 1 interval-censored data). A typical example of
current status data can be found in the tumorigenicity experiments (Dewanji and
Kalbfleisch, 1986), in which only the death time of animals at study and the status
of tumor onset at the death time are observed. Multivariate panel count data arise
if more then one kind of recurrent events are to be considered and individuals are
only observed repeatedly at intermittent times. In tumorigenicity experiments,
this data are commonly exist when several types of tumors occur together. Chen
et al. (2005) gave an example of an advanced breast cancer study, in which three
types of metastatic bone lesions and related covariates are recorded at distinct

examination times for each patient. He et al. (2008) analyzed a cohort study of



psoriatic arthritis patients at the University of Toronto Psoriatic Arthritis Clinic,
where two types of joint damages (radiologically and functionally joint damage)
were considered. Another form related with panel data is the multistate panel
data, in which the observations consist of a finite number of states occupied by the
individuals under study at a sequence of discrete, irregularly spaced time points,
with no information about the exact transition times. These data commonly exist
in applications, such as, a study of the smoking habits of school children with
three possible “smoking status” for each child (Kalbfleisch and Lawless, 1985), a
hepatocellular carcinoma study (Kay, 1986) with three states of the serum alphafe-
toprotein (AFP) level, a cytomegalovirus (CMV) retinitis clinical trial with five
stages of toxicity of the treatments for the Acquired Immune Deficiency Syndrome
(AIDS) patients (Lee and Kim, 1998).

A majority of researchers have investigated the analysis of panel count data
under the assumption that the observation process is independent of the underly-
ing recurrent event process completely or conditional on covariates. For estimation
of the mean function of the underlying recurrent process, many nonparametric
methods have been developed. Sun and Kalbleisch (1995) presented a consistent
estimator of the mean function based on isotonic regression (Barlow et al., 1972;
Robertson et al., 1988), while Wellner and Zhang (2000) derived a nonparametric
maximum pseudo-likelihood estimator (NPMPLE) and the nonparametric max-
imum likelihood estimator (NPMLE) under a nonhomogeneous Poisson process
assumption for the underlying recurrent process. Zhang and Jamshidian (2003)

introduced the gamma frailty model for the intracorrelated panel counts and con-
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structed an NPMPLE proposed in Wellner and Zhang (2000) with the frailty.
Lu et al. (2007) proposed a monotone B-splines-based nonparametric likelihood
estimator for the mean function. Hu et al. (2009a) discussed a nonparametric
generalized weighted least squares estimator the Sun-Kalbfleisch’s estimator and
Wellner-Zhang’s NPMLE as special cases. Hu et al. (2009b) developed two types of
self-consistent estimating equation procedures for the mean function of the underly
recurrent process with a Poisson assumption.

In consideration of the covariates effect on the underlying recurrent process,
semiparametric analysis of panel count data have drawn considerable attention
in survival literatures. Sun and Wei (2000) constructed a proportional means
model proposed in Lin et al. (2000) for the underlying recurrent event process
with the observation times and follow-up time independent or dependent of the
covariates. Under the proportional means model assumption for the underlying
recurrent event process, Hu et al. (2003) proposed estimation equation approaches
for a general observation process without model restriction and a proportion rate
model for observation process, respectively. Zhang (2002) proposed a semipara-
metric pseudolikelihood estimation method based on a nonhomogeneous Poisson
process assumption for the proportional means model. Furthermore, Wellner and
Zhang (2007) studied both the semiparametric maximum pseudo-likelihood and
maximum likelihood estimators for the proportion means model. Iterative al-
gorithm proposed via profile likelihood approach was used in Zhang (2002) and
Wellner and Zhang (2007) to obtain their estimators, however, this algorithm is

not efficient, especially for the maximum likelihood estimation method. Thus, an
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easy implemented generalized Rosen algorithm proposed by Zhang and Jamshid-
ian (2004) was used by Lu et al. (2009) to compute their estimators. Tong et al.
(2009) was the first one to consider the variable selection problem in the panel
count data, and they developed a non-concave penalized estimating function ap-
proach that could select variables and estimate the regression coefficients for the
proportional mean model simultaneously. Then Wu and He (2012) explored a
fast coordinate ascent algorithm to select relevant predictors for the underlying
recurrent event process under a proportional mean model, when the number of
predictors far exceeds the number of subjects. Bayesian analysis for panel count
data with dependent termination time was proposed by Sinha and Maiti (2004),
where they constructed semiparamatric joint models for the underlying recurrent
events and the termination time via a frailty and used Markov chain Monte Carlo
algorithm to estimate the regression parameters and the unknown function.
When the panel count data consist of independent samples randomly drawn
from k(k > 2) populations or groups, one important thing is to handle the treat-
ment comparison. Thall and Lachin (1988) suggested to transform the problem to
a multivariate comparison problem and then apply a multivariate Wilcoxon-type
rank test, while Sun and Fang (2003) proposed a nonparametric approach under
the assumption that treatment indicators can be regarded as independent and
identically distributed random variables. Also Park et al. (2007) gave a class of
nonparametric two-sample tests based on the isotonic regression estimator of the
mean function of the underlying recurrent counting process, while Zhang (2006)

and Balakrishnan and Zhao (2011) developed some multi-sample nonparametric
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procedures by using nonparametric maximum pseudo-likelihood (isotonic regres-
sion) approach. Furthermore, Balakrishnan and Zhao (2009, 2010) proposed new
class of test statistics by using the nonparametric maximum likelihood estimator.
Recently, Zhao and Sun (2011) presented nonparametric tests for the comparison
of several treatment groups with different observation schemes. In addition, Zhao
et al. (2011) provide a relatively complete discussion for the analysis of panel count
data wherein more references can be found.

All the references mentioned above are for the univariate panel count data.
Other different forms of the panel count data have also attracted a lot of re-
searchers to study them. For the multivariate panel count data analysis, He et al.
(2008) presented a class of marginal mean models, leaving the dependence struc-
tures of related types of recurrent events completely unspecified. For the current
status data analysis, Diamond et al. (1986) extended the proportion hazards model
(Cox, 1972) to current status data. Sun and Kalbfleisch (1993) proposed a point
process technique to test the equality of mean functions of point processes. Xue
et al. (2004) developed a partial linear model for the current status data and pro-
posed a sieve maximum likelihood estimation method. For multistate panel data,
Kalbfleisch and Lawless (1985) discussed the fitting of Markov model with homo-
geneous transition intensities to multistate panel data. Kay (1986) developed a
Markov model to assess the dependence of risk of death on disease states. Lee and
Kim (1998) proposed a procedure assuming each multistate process marginally to
follow a time-homogeneous Markov Model allowing for covariates. These inferences

are all based on Markov models, however, in many applications, the Markov as-
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sumption is not suitable when the transition intensities depend on the elapsed time
in the current state. For this, Kang and Lagakos (2007) developed likelihood-based
procedures for multistate panel data from a semi-Markov process, where transition
intensities depend on the duration of time in the current state.

In many situations, the underlying recurrent process and the observation pro-
cess are still related even given covariates, such as an example given by a set of
panel count data arising from the bladder cancer follow-up study mentioned in
Section 1.1.1. As stated in Section 1.2.1, the number of clinical visits may contain
some information about the tumor occurrence rate (Sun and Wei, 2000; Hu et al.,
2003; Li et al., 2010; Zhao and Tong, 2011). Another example can be seen in a spe-
cial case of panel count — current status data in tumorigenicity experiments, where
tumor onset time and the death time are usually of interest. If the tumors are
lethal, meaning that the tumor onset kills animals instantly, thus the death time
may depend on the tumor onset time (Zhang et al., 2005). They developed some
statistical analysis of current status data with informative observation times by a
random effect to determine the correlation. For the analysis of panel count data
with informative observation times, limited research exists. A class of semipara-
metric transformation models for the recurrent event process was constructed by
Li et al. (2010), by incorporating the observation history to the mean model of the
recurrent event process to reflect the correlation between these two processes, with
a nonhomogeneous Poisson process assumption for the observation times. Zhao
and Tong (2011) proposed a joint modeling approach that used an unobserved

frailty variable and a completely unspecified link function to characterize the cor-
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relation between the recurrent event process and the observation times assuming
the observation process to be a nonhomogeneous Poisson process with frailty.

However, just as we have stated for longitudinal data, the inadequacy of the
fitting of the Poisson model for the observation process may be yet existed in
panel count data when the observation process displays under-dispersion or over-
dispersion. Neglecting this under-dispersion or over-dispersion may result in biased
estimates and loss of estimation efficiency. Hu et al. (2009a) verified by simula-
tion that Weller-Zhang’s MLE is no longer efficient if the over-dispersion exist
in the panel count data. Few researchers have considered this under-dispersion
or over-dispersion problem in the panel count data. Huang et al. (2006) stud-
ied nonparametric and semiparametric models that allow the observation times
to be correlated with the event process, where the correlation is induced by a
frailty variable and the distributions of the observation times and the frailty were
considered as nuisance parameters. Hua and Zhang (2011) established a propor-
tional mean model without any stochastic assumption for the underlying recurrent
event process, and developed a spline-based semiparametric projected generalized
estimating equation (GEE) method through incorporating a working covariance
matrix which accounts for over-dispersion into the GEE so as to improve the esti-
mation efficiency and the variance estimation accuracy.

In the analysis of panel count data with informative observation times, the
same situation that the relation between the observation and the recurrent event
processes may vary with some covariates may exist as in the analysis of longitudinal

data discussed in Section 1.2.1.
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In view of these three problems discussed in the previous three paragraphs, in
Chapter 3, we will develop a new class of more flexible semiparametric regression
models by incorporating the interaction between the observation history and some
covariates to the mean model of the recurrent event process, while leaving the
patterns of the observation times to be arbitrary. For inference, a B-spline based
least square estimation procedure is proposed there.

In addition, in some applications, it would be desirable to develop estimation
procedures for panel count data with informative observation times, and also with
time-dependent covariates and informative censoring times. For example, in or-
der to assess the effect of the dependence among tumor recurrence on the tumor
recurrence rate, Sun et al. (2011) took the natural logarithm of the total number
of observed tumors within the last 3 months plus 1 as a time-dependent covari-
ate in their analysis. The underlying recurrent event processes with informative
censoring time exist especially in situations where a correlated failure event could
potentially terminate the further observation of the recurrent events. Hence, in
Chapter 4, we will consider the same models for the underlying recurrent events
and the observation times as given in Zhao and Tong (2011) except replacing
the time-independent covariates with the time-dependent covariates and removing
the assumption of noninformative censoring, and present an estimating equation

procedure there.

1.2.3 B-Splines in Survival Analysis

B-splines is a very popular type of polynominal splines in statistical applica-
tions, mainly because of their flexibility and numerical properties (de Boor, 1978;
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Schumaker, 1981). The definition and fundamental properties of B-splines are pre-
sented in Appendix A. Here we just review some references about the applications
of B-splines to a variety of aspects in survival analysis.

First of all, B-splines approximation can be used to estimate different nonpara-
metric smooth functions in a variety of survival models. We will summariz some
of them here. Whittemore and Keller (1986); Etezadi-Amoli and Ciampi (1987);
Rosenberg (1995); Kooperberg et al. (1995); Cai and Betensky (2003) have investi-
gated use of the fixed knots and quadratic or cubic linear splines or B-splines to es-
timate the hazard function or baseline hazard function of their respective censored
survival models. Also, when linear-effect on the log-hazard of the proportional
hazards model (Cox, 1972) was not hold, flexible relative risk form (Sleeper and
Harrington, 1990; Huang and Liu, 2006) and partially linear single-index (Gray,
1992; Sun et al., 2008) were suggested, where the nonparametric functions in-
volved in these models were estimated by B-splines. Giorgi et al. (2003) proposed
to use quadratic B-splines with fixed number of knots to model the hazard ratio
for their relative survival regression model proposed by Esteve et al. (1990). More
recently, Amorim et al. (2008) used cubic B-splines with fixed number of knots to
estimate the time-varying coefficients in the rates model for recurrent event data.
A Bayesian estimation procedure that used B-splines for a proportional hazards
frailty models was presented in Sharef et al. (2010). Zhang et al. (2010) developed a
spline-based semiparametric maximum likelihood method to study the Cox model
with interval-censored data. Most of these papers delivered above showed that

in moderate and heavily censored samples, the spline-based approaches not only
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have advantages in rate of computing, but also in accuracy by some simulations
or real data analysis.

Furthermore, when the function to be estimated is monotone, isotonic regres-
sion estimator (Barlow et al., 1972; Robertson et al., 1988; Wellner and Zhang,
2000), which can be viewed as a special case of monotone I-splines with order
one and knots positioned at the distinct data points, was proposed. However,
as described in Wellner and Zhang (2000), the computation of the estimator in-
volved the iterative convex minorant algorithm proposed by Jongbloed (1998),
which could be computationally demanding when the sample size is large. There-
fore, many researchers have developed the monotone B-splines estimation proce-
dure because of the following two reasons. Firstly, it is convenient to impose the
monotone constraints on the coefficients of the B-splines bases as B-splines pos-
sess the same monotonicity as the coefficients because of the variation-diminishing
properties (Schumaker, 1981). Secondly, the splines estimators are less compu-
tationally demanding since the number of the B-splines basis functions is often
chosen much smaller than the sample size. For example, Ramsay (1988) defined
monotone I-splines, and the merits of these monotone splines were showed through
a number of statistical applications, including response variable transformation in
nonlinear regression and modelling a dose-response function by monotone splines.
Kelly and Rice (1990) proposed to use nonparametric smoothing instead of non-
adequate parametric modeling procedure to study the dose-response curves under
monotonicity constraints. Shen (1998) introduced a spline-based sieve maximum

likelihood estimation method to estimate the nondecreasing baseline function and
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regression parameter in proportional odds model with right-censored and Case 2
interval-censored data. Leitenstorfer and Tutz (2007) developed a fitting procedure
based on the monotone B-splines for generalized additive models to investigate the
effect of the air pollutant on respiratory mortality. Lu (2010) proposed a monotone
B-splines-based sieve maximum likelihood estimator which can be computed by
the generalized Rosen algorithm in Jamshidian (2004) for a partly linear model.
As for the nonparametric function estimation in the semiparametric analysis
of longitudinal data and panel count data discussed here, monotone B-splines are
also widely used. For example, for panel count data, Lu et al. (2007) obtained a
monotone I-spline likelihood-based estimator for the mean function of the recurrent
event process with panel count data by a generalized Rosen algorithm (Jamshid-
ian, 2004) Then Lu et al. (2009) studied semiparametric likelihood-based method
for panel count data by using generalized Rosen algorithm to compute the regres-
sion parameters and the underlying mean function approximated by monotone
B-splines simultaneously. Hua and Zhang (2011) proposed a proportional mean
model without any assumptions for the underlying recurrent counting process and
the natural logarithm of the baseline mean function was approximated by a mono-
tone cubic B-spline function, whose coefficients along with regression parameters
were obtained by a projected generalized estimating equation method with the
working covariance matrix that accounts for overdispersion incorporated. When
considering the possible within-cluster heterogeneity existence in panel count data,
Nielsen and Dean (2008) assumed that the counts for each individual were gen-

erated by mixtures of nonhomogeneous Poisson processes with intensity functions
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approximated by cubic B-splines. For longitudinal data, Lin and Zhang (1999)
developed smoothing spline-based statistical inference in a class of generalized ad-
ditive mixed models. Huang et al. (2004) proposed to approximate each coefficient
function by a polynomial spline and employed a least square method for estima-
tion.

Three components involved in B-splines approximation are the degree of
splines, the number of knots and the location of knots. In general, cubic or
quadratic splines are sufficient to fit the unknown smooth function well. The
number of knots determines the flexibility of the fitted splines since reducing or
increasing the number of knots which means reducing or increasing the density
of knots in different regions of the observation times will result in reducing or
increasing the flexibility within those regions. One way for choosing the number
of knots is to let it vary in a relatively large range and define the final number
to be the one that maximized the Akaike information criterion (AIC) (Akaike,
1973) or Bayesian information criterion (BIC) as given in Rosenberg (1995) and
Huang and Liu (2006). Another way for choosing the number of knots is to set
the number of interior knots to be m,, = O(n”) with 0 < v < 1/2 and n being the
sample size or the number of the distinct observation times as in Lu et al. (2007,
2009) and Hua and Zhang (2011). Given the number of knots, the location of
the knots which determines the shapes of the basis splines thus in turn the shape
of the fitted splines is obviously an important problem to be considered. There
are mainly two data-driven methods for determining locations of knots — uniform

partitions (Lu et al., 2007; Lu, 2010) and partitions according to quantiles of the
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data (Rosenberg, 1995; Lu et al., 2009; Hua and Zhang, 2011). Given number
of the interior knots m,,, for the uniform partitions, the equally spaced knots are
given by tomin + k(tmax — tmin)/(Mmn + 1),k = 0,1, m,, + 1, with ¢, and ¢«
being the respective minimum and maximum values of distinct observation times.
For the partitions according to quantiles of the data, the k/(m, + 1) quantiles
(k=0,1,---,my,+1) of the distinct observation times are chosen to be the knots.
However, it is showed that the estimation results are rather robust with respect
to the number of knots and the location of the knots (Ramsay, 1988; Cai and
Betensky, 2003; Lu et al., 2009). The last point which is worth pointing out is
that splines composed of linear combinations of exponential, trigonometric, Dirac
delta function and some other form of functions are also possible (de Boor, 1978;

Schumaker, 1981; Whittemore and Keller, 1986).

1.3 Outline of Thesis

The reminder of this thesis is organized as follows. For correlated response
process and observation process in longitudinal data, a new class of semiparamet-
ric mean models which allows for the interaction between the observation history
and covariates, leaving patterns of the observation process to be arbitrary are de-
veloped in Chapter 2. For inference on the regression parameters and the baseline
mean function, a spline-based least square estimation approach is proposed, and
the consistency, rate of convergence and asymptotic normality of the proposed
estimators are established. Simulation studies demonstrate that the proposed in-
ference procedure performs well. Some graphical and numerical techniques are
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presented to check the adequacy of the fitted model. The analysis of the bladder
tumor data is presented to illustrate the proposed method.

Similar to Chapter 2, Chapter 3 presents a new class of semiparametric re-
gression models by incorporating the observation history to the mean model of
the recurrent event process, while leaving the patterns of the observation times to
be arbitrary. A monotone B-spline-based least-square estimation approach is also
proposed to make inference about the regression parameters and the baseline mean
function, and asymptotic properties including consistency, rate of convergence and
asymptotic normality of the proposed estimators are established. Numerical re-
sults including simulation studies and the analysis of the bladder tumor data are
also provided.

Chapter 4 extends the joint frailty models proposed by Zhao and Tong (2011)
to panel count data with time-dependent covariates and informative observation
and censoring times. A novel estimating equation approach that does not depend
on distributions of frailty variables and the link function is proposed for estimation
of parameters, and the asymptotic properties of the proposed estimators are es-
tablished. The performance of the proposed inference procedure is demonstrated
by some simulation studies and illustrated by the analysis of the bladder tumor
data.

In Chapter 5, some conclusions and related future research are presented.
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Chapter 2

Longitudinal Data Analysis Using B-Splines

Semiparametric regression analysis of longitudinal data with informative ob-

servation times using B-splines is developed in this chapter.

2.1 Introduction

As mentioned in Section 1.2.1, it is desireble to analyze longitudinal data when
observation times contain information on the reponse process even given covari-
ates, and overcome the inadequacy of the fitting of the Poisson model assumption
for the observation process. In this chapter, motivated by the conditional mean
model of the response process given in Sun et al. (2005), we propose a new class
of semiparametric regression models which allows for the interaction between the
observation history and some covariates, while leaving the patterns of the observa-
tion times to be arbitrary. For the nonparametric estimation of the baseline mean
function, a B-spline approximation will be used following Lu et al. (2007, 2009).

The remainder of this chapter is organized as follows. We begin in Section
2.2 by introducing some notation and describing our models for longitudinal data.
In Section 2.3, a spline-based least square method is proposed for estimation of
regression parameters and the baseline unknown mean function invovled in our
models. Section 2.4 presents the asymptotic properties of the proposed estimators,
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including consistency, rate of convergence and asymptotic normality. In order
to assess the finite-sample performance of the proposed inference procedure, we
present some results obtained from simulation studies in Section 2.5. In Section
2.6, the proposed approaches are illustrated through the analysis of a data set from

a bladder tumor study.

2.2 Statistical model

Consider a longitudinal study that consists of a random sample of n subjects.
For subject i, let Y;(t) denote the response variable and X; denote a p-dimensional
vector of covariates, ¢ = 1,...,n. Suppose that Y;(¢) is observed at distinct time
points Tk, 1 < Tk, 2 < ... < Tk, k,, where K is the total number of observations
on subject i. In the following, we regard these observation times arising from
an underlying counting process H(t) characterized by H;(t) = Z]K:ZI I(Tk,; <t),
where I(-) is the indicator function, and define H;(t) = H,(min(t, C})), where C; is
the follow-up or censoring time for subject i, i = 1,...,n. Then, the process Y;(t)
is observed only at the time points where H;(t) jumps.

Define F;; = {H;(s),0 < s < t} as the observation history just before t. For
semiparametric analysis of longitudinal data with informative observation times,
Sun et al. (2005) was the first one to propose a conditional modelling approach,
and our works in Chapter 2 and Chapter 3 are motivated by their models. Thus,
let’s first introduce their models.

They assumed that Y;(¢) follows the marginal model

E{Y;(t)| X5, Firy = po(t) + BoXi + aph(Fi), (2.1)
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where 11(t) is an unspecified smooth function of ¢, 3y is a p-dimension covariate
effect on the response process, o is a g-dimension regression coefficients, which
determines the correlation between the response process and the observation pro-
cess, and h(-) is a g-dimensional vector of known function. Also H(t) is assumed

to follow a nonhomogeneous Poisson process with
E{dH(t)|X;} = " XidAy(2). (2.2)

where 7y is a p-dimensional vector of regression parameters, and Ag(t) = fot Xo(s)ds
is the mean cumulative number of observations by time t.

However, as discussed in Section 1.2.1, the fit of the Poisson model for ob-
servation process may not be inadequate when the observation process displays
under-dispersion or over-dispersion. In addition, some covariates may influence
the relation between the observation and response processes. Thus, by leaving the
patterns of the observation times to be arbitrary, we assume that Y;(¢) follows the

marginal model

given X;, F;; and the covariate W;, which may be a component of the vector X;
or may be other variables different from X;, where po(t) is an unspecified smooth
function of ¢, § is a p-dimensional vector of unknown regression parameters, «
is a g-dimensional vector of regression coefficients, and h(-) is a vector of known
functions of the counting process H;(-) up to t— and the covariate W;, representing

the interaction between the observation history and some covariates. Especially,
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when in some clinical studies with many different treatments, W; are defined as the
group indicators, then h(-) represents the different group effects on the observation
times. The main purpose here is to estimate the regression coefficients «, § and
the smooth baseline mean function p(t).

Model (2.3) specifies that the process Y;(t) depends on the observation process
H;(t) through function h, which can be chosen according to situations. Follow-
ing the discussion in Sun et al. (2005), a natural and simple choice for h may be
h(Fi, W;) = H;(t—)W;, which means that Y;(t) and F;; are related through or all
information about Y;(t) in F;; is given by the total number of observations. An al-
ternative is that Y;(¢) depends on F;; only through a recent number of observations,
say, in w time units, and this corresponds to h(Fy, W;) = (H;(t—) — Hi(t —u))W;.
One could define h as a vector given by the forgoing two choices if both the total
and recent numbers of observations may contain information about H;(t).

In addition, we assume that

E{Yi(1)|Xy, Hi(s),0 < s < t,C;} = E{Y;(t)|Xy, Fit, Ci}, (2.4)

which means that conditional on the covariates X's and C/s, the mean of response
variable at time point ¢ is only related to the observation history before ¢. The
observation for each individual consists of O = (K, Tk, Y, Hx, X,C), with Ty =
(T, Teg)s Yo = (Y (Twp), - Y(Tkk)), He = (H(Twp), - H(Tk k).
Throughout this chapter, we will assume that we observe n i.i.d. copies, O¢,---, 0,

of O.
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2.3 Inference procedure

For inference about model (2.3), a B-splines based least sqaure estimation
procedure is developed here.

Firstly, define

W(Bya, 1) ZZ [YilTx.s) — (T ) — % — o' h(Firy W] (T )

—2/ [Yit) = lt) — BX, — ' h(Fa, W)Y dHL (1),
(2.5)

where &;(t) = I(C; > t).
We propose to use B-splines to approximate po(t). For a finite closed interval

[0,7], let T = {t;}7" with
O=ti = =<ty < <ty <lmppiy1 =" =tmyu =T

be a sequence of knots that partition [0, 7] into m,, + 1 subintervals and m,, =
O(n”), for 0 < v < 1/2. Let {B;,1 <i < g,} denote the B-spline basis functions
with ¢, = m,,+(. Let U; 7 (with order [ and knots Z) be the class linearly spanned
by the B-spline functions, that is,

qn

W= {ZezBﬂ 0 ER =1, ,qn} :

i=1
Assume that uo(t) € F. = {p:[0,00) — IR‘W(’“)(S) — B ()| < M|s—t|}, where
k is a nonnegative integer, ¢ € (0, 1] such that r = k + ¢ > 0.5, M is a positive
constant and f*) is the kth derivative of function f. According to Lemma 5 in
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Stone (1985) sketched in Appendix A, there exists a smooth spline 1, (t) € ¥, 7,

with order [ > k +1 such that || p,

Denote p,(t) = 0'B,(t), where 0 = (64, ...,

L,(B8,c, ) in (2.5) is approximate to

Qqn)/ and Bl(t) =

— o [Joo= SUDPye(0,7] | 1n (1) — pao

(u)| =
(Bu(t),. .-,

O(n="").

By(t))'.

Lu(Bo8) = Y [ 000 = 0 Bit) = X, — (o WY ).

The resulting estimating function for 8, a and 6 has the form

3, 0) Z/

zta W

By(t)

The solution to U(8, a, ) = 0 has a closed form

X2
Br
dn = Z/ zt7
0, Bi(t)

2.4 Asymptotic theory

x{Yi(t)

—OB(1)

-1

- 5,Xz' - O/h( ity

Wi)} dH(1),

To establish the asymptotic properties of the estimators, we need the following

regularity conditions.

C1 The maximum spacing of the knots satisfies A = max; 1<jcm, 141 | ti —

O(n™").

tic1 |=
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C2 The parameter spaces of (4';a’)’, R is bounded and convex on RP™? and

the true parameter (Sy, oo, ttg) € R° x F,., where R° is the interior of R.

C3 P(||X]|| < My) =1 for a positive constant M, that is, the covariate vector

is uniformly bounded.

C4 There exists a positive integer M, such that P(K < M) = 1, that is, the

number of the observation is finite.

C5 If with probability 1, hiX + hyh(F;, W) + hs(t) = 0 for some deterministic

function hs, and h; € R” and hy € R?, then hy =0, hy = 0, h3(t) = 0.

Next, we introduce more notation. Let B, and B denote the collection of Borel sets
in R” and R, respectively, and let Bjy;; = {BN[0,7] : B € B}. We define measures
v on (R? x [0, 7], B, x Bjg.-)) and v1 on ([0, 7], Bjo,-), as follows: for B € By ,), and

A€ B,

V(A x B) / ZP — kX =x,C0=0¢)

Ax|0, T]
k
x Y P(Ty; € BN[0,d|K = kX =x,C = ¢)dF(x,c)
j=1
K
:/ E {Z Ipro.g(Tr )| X = x,C = c} dF(x, c),
Ax0,7] j=1

and v1(B) = v(RP x B), where F is the joint distribution function of X and C.

Then v, and v are finite measures under condition C4. Let

1/2
Lo(n) = {f - 10,00) — R [/ 1leaon = [ / |f<t>|2du1<t>} < oo}.
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Clearly,

1/2

1 fll o) =

{ [(Iroreoano | "

Let Z = {Z(t,W) = h(F,W),0 < t < 7} represent a g-dimensional bounded

E {Z |f(TK,j)|2§<TKJ)}

J=1

random process indexed by ¢. Here, without loss of generality, we assume that W
is one-dimensional. Define G = {z(t,w) : [0, 7] x [-My, M;] — M}, where M is
a bounded set on R?, and for function f( x,z,t) : [-M;y, Mh]P x G x [0, 7] — R,
define

1/2

1fll2 =

FE {Z |f<Xa Z(TKJ» W)’ TKJ)|2§(TKJ)}

Set M,(g) = n 'L, (B, a, ) = P,my(O), where g(x, z,t) = 8'x + o/2(t,w) +
ult), mg(O) = S5, [V (T )= 9(X, Z(Tic W), T )P€(Tic ), and M (g) = Pmy(O),
where Pf and P, f represent [ fdP and n'3 " | f(O;), respectively.

Since Ly(1y) is a Hilbert space, and F,. C Lo(1y), by the Hilbert Projection
Theorem (Stakgold, 1998, p. 288), for x; € Ly(11), there is a unique aj € F,, s.t.
(xj—aj) L F, for j=1,---,p. Let z(t,w) be the [th component of h(F;, w),l =
1,-+-,q. Then for z(t,w) € Ly(1y), there is a unique b; (t) € F,, s.t. (z—b) L F,,
for i =1,---,q Let a* = (aj,--- ,a}) and b* = (b},---,b;)". Furthermore, we

need the following condition.
®:2
X —a* ~
C6 E|[) dH(t)| is nonsingular.
h(Fe, W) — b (1)
In practice, C1 is similar to those required by Stone (1986) and Zhou et al.
(1998). C2 is a common assumption in the nonparametric smoothing estimation

problem. C3 and C4 are mild conditions. C5 is needed to establish the identifiabil-
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ity of the model. C6 is a technical condition. The asymptotic properties including
consistency, rate of convergence and asymptotic normality of the estimators are

summarized as follows.

Theorem 2.1 (Consisitency). Under conditions C1 - C4 and C6 , ||3n— ol —

0, ||dn - Oéo” — 0, ||ﬂn - MO||L2(V1) — 0, almost SUT@ly,

Proof of Theorem 2.1.

Let p,(t) be the B-spline function approximation of p(t) with ||z, — fio]]eo =
(™), gu(3%, 2,1) = B+ alya(t, ) pin(8), (3, 2,8) = Bl 8, 2(0 0) + (1),
and go(x, z,t) = [ix + ajz(t,w) + po(t). Without loss of generality, we assume
that g, > po. Thus g, > go, and ||g, — go/lc = O(n™""). Choose a ¢,, € V; 7 and
by and by, such that h, = by'x + by'z + ¢, and ||h,]|3 = O(n™"" + n‘l%v). Then

for any A > 0, ||gn — go + M2 = O(n™" +n~2"). Let

n K;
1 1
:EZZ (Tie.3) = (g + M) (Xi, Zi(Tie, 3 W), Toe, ) 66T, ).
i=1 j=1
then
2 n K;
E Z Z gn + )\h Xia Zi(TKz‘Ja VVZ)> TKi,j) - }/i(TKz‘,j)]
=1 j=1
X ho(Xi, Zi(Tk, 5, Wi), Tk, 5)6(Tk, )
and
2 n K;
Jn//()‘) - E Zzh XZ> Z TKM? I/Vi)7TKiJ)5i(TKz‘J) > 0.
i=1 j=1
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Thus, J/,(\) is a nondecreasing function. Therefore, to prove the convergence
of g, to go, it is sufficient to show that Y\q > 0,J/(X\g) > 0 and J/(=Xg) < 0
except on an event with probability converging to zero. Then g, must be between
Gn — Mol and g, + Aohn, and 50 [|gn — gall2 < A2||h,||2 = O(n™" +n20).

Next, we show that J/ (\g) > 0. Define G,, = (P,, — P), and

1 !
§Jn(>\o)

K

=G > _[(gn + Mohn)(X, Z(Ti j, W), Tic j) = Y (T )1 hn(X, Z(Tie 5, W), Tic )€(Tc )
j=1
K

+P Z Gn + Xohn) X, Z(Tk ;, W), Tk ;) — Y (Tr )| hn (X, Z(Tr j, W), Tk ;)6(Tk ;)

7j=1

Elln + Ign.
By the calculation of Shen and Wong (1994, P. 597), for n > 0 and any ¢ < 7,

log Nj(e, V;7, La(1n)) < c1gnlog(n/e),
where ¢, = m,,+1[ is the number of spline basis functions and ¢; is a constant.Then

n
J[](?’],MW,LQ(Ul)):/ {logN[](g,MU,LQ('Ul))}l/QdE
0

n
< / {c1g, logn/e}*de
0

2

—u

= —nuecn

oo o2
+n / cFmdu ({c1gnlogn/e}Y? = u)
0 0

2

oo 1 T Jams 14
< ———€ « 2 ) dU\/27T
o 77/_oo \/QW\/% 2

<1/ Gn < 02q1/2
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for a constant ¢. Thus, by Theorem 2.5.2 of Van der Vaart and Wellner (1996, P.

127) (Theorem C.3), ¥, 7 is a Donsker class. Then given g,, defined before,
K
G, ={ I(X, Z(Tics, W), Ticy) = Y (Tic) )b = 9u)(X, Z(Ticy, W), T, )€ (Tic)
7j=1
h(x. 1) = B+ al2(tw) + 6(0).6 € Uiz, b~ galla <}

is a Donsker class. Thus, Iy, = O,(n"1/2).

Ly = E| / (g + Mha) (X, Z(6, W), ) (X, Z(£, W), DE(AH ()|

- 5| /0 Y ()ha(X, Z( W), DEn)a ()]

B| /O b+ 9o — 90) (X, Z(, W), 0)ha(X, Z(1, W), DE(AH ()|

= / Nh2(X Z(8. W), 0EWAH(0)] = ollh 3

The second equality in the above formation is satisfied since

B [ /T Y ()b (X, Z(t, W), 1)&(t)dH (t)
= E/T ha(X, Z(t, W), t) E{£(1)Y (t)dH (t)| X, C,J-"t}}

= FE '/T ho(X, Z(t, W), 1) g0(X, Z(t, W), )E(t) E{dH (t)|X, C, E}}

- 5[ (X, Z (W), 000(X. Z( W), DE(0)dH (1]

under the assumption (2.4). Thus, 2J(Xg) > O,(n™Y2) + \o||hn||2 > 0, since

s 9Yn

1hall3 = O(p,t) with p,t =0~ +n~ 7" > n =% >n Y2 for 0 < v < 1/2.
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For J/ (=)o),

1

!/
ST (A
K
*Gn = Xohn)(X, Z(Tk 5, W), Tr ) = Y (T j)|ha(X, Z(Tk 3, W), T 5)6(Tk )
K
+PZ = 20hn) (X, Z(Trw 5, W), T j) = Y (Tie )1 (X, Z (T i, W), T )6 (T )
=I7,+ 15,
Using the same arguments as for J/,(A\o), I}, = Op(n~'/?).

L, —E [ /0 (g0 — Dol (X, Z (8, W), )ha(X, Z(t, W), t)f(t)dH(t)]
_E [ /0 Cha(X, Z(E W), t)ﬁ(t)Y(t)dH(t)]
_E [ /0 (“Aohn + gu— g0) (X, Z(6, W), D)o (X, Z(£, W), t)g(t)dH(t)}
W [ /0 R(X, Z(t,W),t)g(t)dH(t)}
+ 8| [ (00 = @)X, Z0.9).08,(X, 200, W), () (1)
< o)l + llgn — gollalPnll2

—1
S _C3pn )

for a positive constant cz. Thus, 2.J/ (=) < O(n~Y?) — c3p;t < 0.

) 29n
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Then we have [|g, = golla < [|gn = gull> + 92 — goll2 = O(p="?), and

190 — goll2 = 1(Ba — Bo)'x + (G — 0)'z + (1 — 110)]]2

A

= [|(8n — Bo) (x — a") + (Gn — a)'(z — b)

+ (B = Bo)'a” + (@ — a0)'b™ + (jtn — 10|

= [1(Bn = Bo)'(x —a") + (4n — a0)'(z = bY) |2

+ 1[(Br = Bo)'a” + (é — o)D" + (fin = j10) -

By C6, we can get HBH — Bol| — 0 and ||&;,, — ap|| — 0 almost surely from the
first term of the right hand side of the above equality and thus it follows that

|t — 110l Loy — 0. This completes the proof of the theorem.

Theorem 2.2 (Rate of Convergence). Suppose that C1 - C6 hold, then

1—v

. vy .
2 )sllan = aoll = Op(n™"2"), llfin = ol Lon) = Or(n

1—v

2),

182 = Boll = Op(n~

Remark 2.1. When v = 1/(1+2r), n= 2" = n 7%, we conclude from Stone
(1980, 1982) that the rate of convergence of the estimator fi, is the optimal rate

m nonparametric regression.

Proof of Theorem 2.2.

For any n > 0, let

Fo={g=0x+a"z+p: |B—0Foll < lla—aol <nop € Uiz, |[1— ol o) < 0}

Similar to Lemma A.2 in Huang (1999, P. 1557) given in Appendix A, for any
e <, log Ny(e, Fo, || - [|2) < cagnlog(n/e) for a constant c¢s. Thus, for € > 0, there
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exists a set of brackets {[¢},g/],i = 1,--- , (2)e} such that, for each g € F,,
there is a [¢}, g7, s.t. gL(x,2,t) < g(x,2,t) < g7(x, z,t), for all x, t € [0,7] and
z€G, and [|lg; — gifff < €

By Theorem 2.1, g, € F,, for any n > 0 and sufficiently large n.

Next, consider the class M,, = {m,(0) —m, (O) : g € F,}, where

K
Z (Ti ;) — 9(X, Z(Tk j, W), T )}

Fori=1,---,(2)%% define

K
= > {2V (Tie)00 (X, 2(Te s, W), Ticy) = 63X, Z(Tic s W), Tic)

j=1

+ min{]g;(X, Z(Trw;, W), Ticj), |97 (X, Z(Tie j, W), Tie ) |12
= 2Y (T j {9 (X, Z(Tk j; W), Tre j) 1 (Y = 0)

+6i(X, Z(Tr j, W), Tre )1 (Y < 0)}}5(TK,J‘),

K
m;(0)=>" {QY(TKJ)QO(X, Z(Tk j, W), Ticj) — 95(X, Z(Tk 5, W), Tk ;)

j=1
+ [max{|g}(X, Z(Tx ;, W), Tic ;)\, 197 (X, Z(Tic j, W), T ) }]?
= 2Y Tk j){9i(X, Z(Tk 5, W), T ;) L(Y > 0)

+ 90X, Z(Tics, W), Tie JI(Y < 0)} e (Tic)
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It is easy to show that P|m!(O) — ml(O)|* < cse? with a constant c5. In fact,

PlmI(0) — mi(O)[?
=m4Y@mmm%4@wwm%u¢—¢ﬂﬂuy<m—uyzmwﬁ@|
gPAWMﬂ”%dP+A@@I—dM%ﬁ@>
:PAWO%HﬁdM@ﬂ—mm+w@@:—¢n%ﬁa>

<esllgf — ghll3 < ese?.

where a V b = min{a,b} and a A b = max{a,b}, and M; is a constant. Thus
((O)],i=1,---,(2)%%} is the set of brackets for M,, which implies
that log Nj(e, M,;, La2(P)) < cagyn log(n/e).

Moreover, by some calculations, we can verify that P|m,(O)—mg,(O)[* < cen?
for any g € F, by C4. Therefore, by Lemma 3.4.2 of Van der Vaart and Wellner

(1996) (Lemma C.5), we obtain

Jy(n, My, La(P))
n2nl/?

En'2(P = P)||m, < crJy(n, My, Lo(P)) {1 + Mg} . (26)

where Ms is a constant and [|[n'/?(P — P)|| 7 = sup;cz [n'/*(P — P) f|, and

~ n
T, My La(P)) = [ {1+ 108 Ny(e, M, La(P)} de
0

n
< / {1+ c4g, logn/e}?de
0

1—u2
= —nue “4in

00 g2
+ n/ eemdu {1+ cagnlogn/e}? = u)
1 1

u

2
€44n 2 Cq
e VT2 duN27 _2%61/(;4%

|
<+ Y
n+n /_ o VI

<+ nveamy/amet < csgl/*n.
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The right hand side of (2.6) yields ¢, (1) = co(qy/*n + ¢./n'/?). Tt is easy to
see that ¢, (n)/n is decreasing in 7, and

1
Tison(r ) = 1agy® + 1ig,/nt? < 2012,

n

1—wv

forr, =n"2 and 0 < v < 1/2.

Note that

ng ) ngo(o)
—P[/{ ) — 9(X, Z(LW),0)° — (Y (t) — go(X, Z(t, W), 1)} E(5)AH (1)

= £ { [ - wPx 2w 050000}

0

= llg — 9oll2.

Thus, by Theorem 3.2.5 of Van der Vaart and Wellner (1996) (Theorem C.4),
72 ||Gn — goll2 = O,(1). Therefore by the similar arguments as those in the proof
of consistency of Bn, Qn, and fi,, we can get the rate of convergence of Bn, Qs
and fi,,, as stated in the Theorem. The choice of v = 1/(1 + 2r) yields the rate of

convergence of r/(1 4 2r), which completes the proof.

Theorem 2.3 (Asymptotic Normality). Suppose that conditions C1 - C6 hold.
Let H = {(h1, hp,h3) : (b b)) € Rohg € Fpy bl < 1 |[hofl < 1, [hslle < 1}

Then for any (hy, hy, hs) € H,

BB — o) + Bov/m(@n — a0) + / i — o) () dha(2)

2

converges in distribution to N(0,0?), where o? is given in (2.7).
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Since fi,(t) = >, éniBil(t), for estimation of the covariance matrix of
(Bn, Oy, én), we propose to use the following simple bootstrap procedure (Efron,

1979). Let L denote a prespecified positive integer. For each [, where 1 <[ < L,

draw a simple random sample of size n,

O 0
={K; TK(l) e TK(l) KO

)

1) ((l ! l 0 .
H‘()(ng?l)l) H()(T((l) (z)) XE),C’Z-(),Zzl,--- Y
with replacement from the observed data

0= {K’L7 TKi,17 e 7TK¢,K1‘7 }/i(TKi,l)a T 7K(TKZ-,K¢)7

Hi(TKi,1)7' o 7Hi(TKi,Ki)7Xiaci7i = 1,' s ,n}.

Let ( 30 ,ozn), i) ) be the proposed estimate of (y, ap,fy) based on the data set
0" defined above. Then according to Appendix D, a natural estimate of the

covariance matrix of (3, &y, 6,) is given by

( \ ®2
0 50
1 & 1 &
Y NOE - ~(1
ZL_L_lz ay LZ ay)
=1 =1
§o 40
\ " J

Denote the upper left (p 4 ¢) x (p + ¢) submatrix of 3, by 31 6.0, Which is the
Bn - BO

consistent estimator for the covariance matrix of v/n

dn_QO
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Proof of Theorem 2.3.
We define a sequence of maps S, mapping a neighborhood of (S, v, fo),

denoted by U, in the parameter space for (3, a, 1) into [*°(H) as :

Sn(ﬁ7 Q, :u)[hh h27 h‘3]

d
n_ld—Ln(ﬁ +chy, a + chy, p + €hg)
19 e=0

22 > / V() — B — o h(Fa, W) — (0]

x [h] X; + hoh(Fi, W;) + hs(t)|dH;(t)

= in(ﬁaamu)[hb h27 h’3]

Correspondingly, we define the limit map S : U — [*°(H) as S(5, «, ) [hy, h, hs),
where [*°(H) is the space of bounded functionals on H under the supermum norm

[flloo = suppes | £(R)]

To derive the asymptotic normality of the estimators (Bn, Qs [l ), motivated
by the proof of Theorem 3.3.1 of Van der Vaart and Wellner (1996, p. 310), we
first need to verify the following five conditions.

(1) /1 (Sn = ) (B @ns fin) = /(S = S) (B, 0, t10) = 0p(1).

(il) v/n(S,—S) (5o, v, o) converges in distribution to a tight Gaussian process
on [*°(H).

(iii) S(Bo, 0, o) = 0 and Sy, (B, i, fin) = 0,(n"1/2).

(iv) (B, a, ) — S(B, a, ) is Fréchet-differentiable at (5, oo, t1o) with a con-
tinuously invertible derivative S(8o, a, o).

(v) ﬁ(S(Bm Gin, fin) =S (Bo, o, Mo)) —\/55(60, o, Ho) ((an Gin, fin )= (Bo, o, Mo))
= 0,(1).
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Note that

\/E(Sn - S)(Bm Qi ﬂn) - \/E(Sn - S)(ﬁo, Q, NO)

= (P, — P)(W(Bn, G, fin)[B1, Do, hg] — (B0, o, o) [, ha, ha)).

Define

1/2
p((Br, 00, 1), (Ba, 1)) = {181 = Ball? + llow — ol |* + [l — pallZ, 000 }

and for § > 0,

Fs ={w(ﬁ,a,u>[hl, hy, hs] — ¥(Bo, o, pio) [, ha, hs)

p((ﬁ,@,,&) - (5070407#0)) < 57 (hla h27h3) € H}

It is easy to see that F,. C C"[0, 7] is a Donsker class from Van der Vaart and Well-
ner (1996, p157), thus #H is a Donsker class and (5, «r, 1) is a bounded Lipschitz

functional with respect to H, thus Fj is a Donsker class for some 6 > 0. And

2

P|[0(81 a1, 1) = (B, 2, )] [, iz,

=P|2 [ (51~ B2 X~ (01 = a2 hFLW) = 1 = ) 0]
x [y X+ WGh(F, W) + hy())dA ()]

SCPQ((ﬁla g, Ml) - (ﬁ% a2, :u2))

for a constant ¢. Thus condition (i) holds by Kosorok (2008, Lemma 13.3) (Lemma

C.6).
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Condition (ii) is also satisfied since {¢(f5o, a, po)[h1, ho, hs] = (hy, ha, h3) €
H} is a Donsker class.
Clearly, S(Bo, o, 0) = 0. For hy € F,, let hg, be the B-spline function

approximation of hg with ||hs, — hs||ec = O(n™""), then we have

S (Gin, By fin) [y, g, Bigy] = 0.

Thus, for (hy, hy, hs) € H,

2 S (B G, i) 11, g, hg]
= 13 |Su(Bas G 1n)ar, B, ] = (G B ) [ o, ]|
= 3By = P) [ (B, s ) s, g, hs] = (Bo, 0, o), b ]
=1 (B = P) |3, G in)s, B, Byl = (B, 0, o)y, i ]
+ 1Py [1(Bo, a0, ) B, ha, hs] = (Bo, o, pio) [, b, B
15 P B G i)ty Doy h] = (B, s o), g, )|

= an - QQn + Q3n + Q4n~

It follows from (i) that both @1, and Q2, are o,(1). Qs, is also o0,(1) since

P [)(Bo, o, pro)[h1, ha, hs] — ¢(Bo, o, pro)[h1, ha, hs,])?
= P [ 000 = X~ hFL ) = of0)} (s — he) (0

< cllhgn — |3 — 0
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for a constant c¢. Furthermore,

|Q4n|

_ ‘ _ znép/OT Y (1) = BX — Gh(F W) = fun(t)} (s — h3n>dﬁ(t)’

A ~

- ‘27@% P /0 T[(ﬁn — Bo)'X + (G — o) h(Fe, W) + (fin — p10)(t)] (hs — hgn)dH(t)‘
< enzp((B,a, 1) — (Bo, a0, 110)) |hsn — hsloo

1—v

<n20(n 7). 0(n")

for a constant ¢. Thus, S, (B, n, fin) = op(n’%).

For the proof of (iv), by the smoothness of S(3, , 1), the Fréchet differentia-
bility holds and the derivative of S(f3, a, i) at (5o, a, f1o), denoted by S(BO, Qp, o),

is a map from the space {(8 — B, @ — g, 1t — o) : (58, c, ;1) € U} to I*°(H) and

5(507 Qo, MO)(/B - 507 & — Qo, b — IUO)[hb hQa h3]

_ %S(ﬂo + (B = Bo), ap + (o — ), o + (it — pio)) [y, ha, hs)

e=
T

= 01(h17 h,, h3)/(5 - 50) + Uz(hh h,, h3)/(04 - 040) + / (M - Mo)das(hb h,, h3),
0

where

o1 (hy, hy, hg) — 2p/ W, X + Wyh(Fo, W) + hs(£)]XdH (1),
0

ol b ) = 2P [ X+ WAL W) + 0] W)AR ()
0

and

O'3(h1, hg, hg)(t) =2P /t[hll X+ héh(./rs; W) + hg(S)}dﬁ(S)
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It remains to show that the linear map S (Bo, a, fto) is continuously invertible
on its range. Following the proof of Theorem 2 in Zeng et al. (2005), we only need to
show that for h € H, if o(h) = (01(h), 02(h),03(h)) = 0 almost surely, then h = 0.
Suppose that o(h) = 0, a.s., then oy(h)'hy + o9(h)'hy + [ hs(t)dos(h)(t) = 0, i

C.
0=2P /O T[h’l X + hyh(F, W) + ha(t)]X'dH (t)h,
+ 2P /0 ' (b, X + hih(F,, W) + hs(t)]h(F,, W) dH (t)hy
+ 2P /0 T[h’l X + hhh(F, W) + hs(t)] hs(t)dH (t)
= 2P /OT[h’1 X + hoh(F, W) + hs(t)]2dH (t),
which implies that h} X+hjh(F;, W)+hs(t) = 0,a.s. Hence, hy = 0,hy = 0, hy =

0,a.s. by C5.

Moreover, condition (v) holds since
(S(B: s in) = S(Bo, 0, 10) ) I, B, g
_ _9p / Y (1) — 31X — QLh(Fe, W) — funl [l X+ Wyh(Fr, W) + hy(£)]dE (1)
0

= 2P /0 T[(Bn — B0)' X + (G, — ) W(F, W) + (fin — p20)(t)]

x [h} X + hyh(F, W) + ha(t)|dH(t).
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Therefore, by (i)-(v), we have

VS(Bo, o, 10) (Bn — Bos G — 0, fin — p0) 1, Dy, hig]
= 01(h17 hy, h3)/\/ﬁ(5n - 50) + 02(111, hy, h3)/\/ﬁ(é% - 040)
[ Vit = o) (0ol e ) )
= —V/n(S, — 5)(Bo, @, p1o) [y, hy, hs] + 0,(1),
uniformly in h;, hy and hs, and for each (hy, hy, hy) € H, there exists unique

(i, hi, h%) € Hsuch that o (hi, b3, h3) = hy,oa(hl i, hE) = ho,oy(h], hi, 2%) =

hs. Thus, we have

W, v/(By — fo) + hyy/m / V(i — o) (£)ds (1)
= \/55(50, aOa/”'O)(Bn — Bo, &y, — i, flyy, — Mo)[hfa h;, h;]

= - \/E(Sn - S)(ﬁo; aOnUJO)[h’lﬁa h;, h:’;] + OP(1>

— Z in distribution,

where Z follows N (0, 0?) with

o? = EY*(Bo, ag, po) [, b3, 3. (2.7)
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Find hi, h}, b} from oq(h], h3, h3) = hy,09(h], hi, h3) = hy, o3(h], hi, h3) = hs.

Solution. Find (h, h3, 23) from the following three equations

o1 (b0, b, BS) — 2P / by X by Z(t, W) + BOIXdAE) = by (2.8)
0

s (I, 15, ) = 2P / Y X+ b Z(6, W) + B3(0))Z(6, W)H (1) = hof2.9)
0

os(hi, hi, hi)(t) = 2P / t[h’{' X +hi Z(s, W) + hi(s)|dH(s) = hs(t),(2.10)

where Z(t, W) = h(F, W).
Define

Ayyp = 2P / XX'dH (t),
0
Byxq = 2P/ Z(t, W)Z'(t, W)dH (1),
0
Dpyq = 2P / XZ'(t, W)dH(t),
0
t ~
a(t)1., — 2P / X'dF(s),
0

and b(t)1x, = 2P [} Z'(s,W)dH (s). We can rewrite (2.8), (2.9) and (2.10) as the

following three equations,

Ah} + Dhj + ZP/ Xhi(t)dH (t) = hy (2.11)
0
D'ht + Bh + 2P / Z(6, W) (H)dE (t) = by (2.12)
0
t
a(t)hi 4+ b(t)h} + 2P / hi(s)dH (s) = hs(t), (2.13)
0

By (2.11),

hi = A7'[h; — 2P / Xhi(t)dH (t) — Dhj).
0
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Substitute it into (2.12), we get

D'A7'hy, — 2P / Xhi(t)dH (t) — Dh}] + Bhj + 2P / Z(t, W)hi(t)dH (t) = hy
0 0

Then

h=F {h2 —2P /0 Z(t, W)hi(t)dH(t) — D'A" [hy — 2P /0 Xh;(t)dﬁ[(t)]} :
(2.14)
where F = [B— D'A~' D]~ Thus
b= A~ [n, 2P /0 " Xhi (A (1)
— DF{h, —2P /0 Z(t, W)hi(t)dH(t) — D'A ' [hy — 2P /O Xh;(t)dﬁ](t)}}].
(2.15)

Finally, substitute hi and hj into (2.13),

{Y(#)FD'A™ —d()A™ —d () A'DFD' A7} 2P /O ' Xhi(t)dH (t)
+ {d()A"'DF — (t)F) 2P /0 " 20, WO (t) + 2P /O e (s)di (s)
={V(t)FD'A™' —d (t) A7 —d (t)AT'DFD'A™ ' } Iy

+ {d'(t)A"'DF — ¥/ (t)F} hy. + hi(t).
Let A* (t)1,p = V' (1) FD' A7 —d/ (1) A~ —a/ (1) A\ DF D' A", B (t)14g = d/(t) A" DF —
b (t)F. Then the above equation becomes

r i r i ¢ )
A (t)2P /0 Xhi(t)dH (t) + B* (t)2P /0 Z(t, W)hi(t)dH (t) + 2P /O hi(s)dH (s)

=A" (t)hy + B (t)hy + hi(t).
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Thus we can find A3 from this equation, then hj and hj can be obtained from

(2.14) and (2.15) respectively.

2.5 Simulation study

In this section, a simulation study was conducted to assess the finite sample
properties of the proposed estimators. We generated the response variable from

the following random-effects model:

Yi(t) = po(t) + 51X + BoXo + aH;(t—)W; + €(2),

where X1; and Xo; were generated from Bernoulli distribution with success proba-
bility 0.5 and the standard normal distribution, €;(¢)’s were independent standard
normal variables, and W; = Xy; or Xy;. The follow-up time C; was generated from
the uniform distribution over interval (7/2,7) with 7 = 6. The total number of
real observation times for subject 7, m;, was assumed to follow the discrete uniform
distribution over {1,2,3,4,5,6} and the observation times (T, 1, ..., Ty, m,) Were
taken to be the order statistics of a random sample of size m; from the uniform
distribution over (0, C;) given Cj.

The true parameter values used in our simulation studies are 3y = (19, 520) =
(=1,1), and ap = —1.5,—1,0,1 or 1.5. The smooth function p(t) was taken as
sin(t/2) or log(t + 1). To estimate po(t), we considered cubic B-splines and took
my, = n’ with v = 1/10, 1/3 or 2/5. For a given number of interior knots m,,
we consider two data-driven methods for determing locations of knots. One is
the equally spaced knots, which are given by Tinin + k(Timax — Twin)/(mn + 1),k =
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0,1,---,m,+1, with Tp,;, and T, being the respective minimum and maximum
values of distinct observation times. Another is the partitions according to quan-
tiles of the observation times, i. e., the k/(m, + 1) quantiles (k =0,1,--- ,m, +1)
of the distinct observation times are chosen to be the knots. We have done sim-
ulation for the six combinations of the number and placement of knots and il-
lustrate the estimation results for different combinations with W = X, a = 1,
to(t) = log(t + 1) and n = 50 in Table 2.1. From this table, we find that the
estimation results are very similar and not sensitive to the selection of number
and placement of knots. Thus in the following, we present the overall results with

/10 and equally spaced knots.

number of interior knots chosen to be n

Tables 2.2 and 2.3 present the simulation results on estimation of [y and
ag with the sample size n = 50 or 100 and W = X;, while Tables 2.4 and 2.5
present those with W = X,. In the tables, we compare the proposed method
with a competing method developed by Sun et al. (2005) (SPSZ), to demonstrate
the robustness of the proposed method. All the tables include the estimated bias
(BIAS) given by the average of the estimates minus the true value, the bootstrap
standard errors of the estimates (BSE), the sample standard deviation of the es-
timates (SSE), and thebootstrap 95% coverage probabilities (CP) obtained from
1000 independent runs. Here, we used 200 replications in bootstrap to estimate
the standard errors.

Figure 2.1 shows the estimation results of po(t) = log(t + 1) for observation

processes with a = 1 and h(F;, W) = H(t—) X, where the sample size n was taken

as 50 or 100, respectively. In the figure, the solid line represents the real curve of
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to(t), and the point line represents the B-splines based estimation curve of pio(t).

Based on our simulation results, we have the following findings: (i) For the
case of & = 0, both the proposed estimators and the estimators based on SPSZ’s
method are approximately unbiased, and the former are not worse than the latter.
(ii) For the case of a # 0, the proposed estimators are approximately unbiased
while the estimators based on SPSZ’s method yield biased estimates and the biases
could be larger as « diverges from 0. In other words, the proposed estimation
procedure seems to be more robust. The possible reason is that our estimation
method is model-free for the observation process, while their estimation procedure
replies on the model assumption about the observation process. (iii) The estimated
curve of po(t) is close to its real curve with the moderate sample size, indicating
that the B-splines estimator for 10(t) works well. (iv) The sample standard errors
and the bootstrap standard errors of the proposed estimators are close to each
other. Also, the bootstrap 95% coverage rates are close to the nominal level,
that is, the proposed spline based semiparametric bootstrap procedure provides

reasonable estimates and the normal approximation seems to be appropriate.
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2.6 Application

This section presents an analysis of the bladder cancer data by applying our
proposed methods. There were 116 subjects with superficial bladder tumors ran-
domized into one of three treatment groups: placebo, thiotepa, and pyridoxine. In
the following, we restrict our attention to the placebo and thiotepa groups with re-
spective sizes of 47 and 38 as it has been shown that the pyridoxine treatment had
no effect on the recurrence of the bladder tumors (Zhang, 2002). For each patient,
the observed information includes times when he or she made clinical visits and
the numbers of recurrent tumors between clinical visits. Two baseline covariates
were observed and they are the number of initial tumors and the size of the largest
initial tumor.

To analyze the data, for patient i, define zy; to be equal to 1 if the ¢th
patient was given the thiotepa treatment and 0 otherwise, zo; the number of initial
tumors and x3; the size of the largest initial tumor, ¢+ = 1,...,85. We define the
response Y;(t) to be the natural logarithm of the cumulated new tumor numbers
of patient i up to time t plus 1 to avoid 0. Let H;(-) represent the accumulated
observation numbers of patient ¢ over the study period. Assume that {Y;(¢)} can be
described by model (2.3) with h(F;, W;) = H;(t—)X1;, meaning that the relation
between recurrence rate of bladder tumors and the observation times may vary

with different treatments, i.e.,

E{Y; ()| X1i, Xoi, Xai, Fir} = po(t) + 51X + 85X0 + 05X + o Hi(t—) X1,
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Figure 2.1. Estimates of ug(t) = log (¢t + 1) for simulated longitudinal data with
non-Poisson observation process, h(F, W) = H(t—)X; and a =1
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Here, we took the last visit time of patient ¢ as C; in the analysis. For estimation
of po(t), we use the cubic B-spline approximation by taking the number of interior
knots m,, as n” with v = 0.1.

The application of the estimation procedure proposed in the previous sec-
tions gave 31 = —0.3445, B, = 0.1730, B3 = —0.0325, and & = —0.0288 with the
bootstrap standard errors being 0.1369, 0.0450, 0.0470, and 0.0109, which corre-
spond to p-values of 0.0118, 0.0001, 0.4888, and 0.0079, respectively, based on the
asymptotic results of the estimators. Here Bl, Bg and Bg represent the estimated
regression coefficients corresponding to the treatment indicator, the number of
initial tumors, and the size of the largest initial tumor, respectively, while & repre-
sents the estimated effect of the interaction between the observation process and
the treatment indicator on the tumor recurrence rate. These results indicate that
the response process and the interaction between the observation process and the
treatment indicator are significantly negatively correlated. Just as explained in
Sun et al. (2005), there are two reasons for this finding. One is that the more
often the patient visited the clinic, had tumors removed and received treatment,
the lower the tumor recurrence rate; another one is that more visits means less
time for tumor growth. Furthermore, the thiotepa treatment significantly reduces
the occurrence rate of the bladder tumors, and the number of initial tumors has a
significant positive effect on the tumor recurrence rate. However, the occurrence
rate of the bladder tumors do not seem to be significantly related to the size of the
largest initial tumor. These conclusions are consistent with those presented in Sun

et al. (2005), Sun et al. (2007) and Liang et al. (2009). Compared to the models in

o8



Sun et al. (2005), Sun et al. (2007) and Liang et al. (2009), our fitted model may
provide more information about the correlation between the tumor recurrence rate
and observation times over treatment groups and also could be useful to estimate

the future recurrence rate based on the observation history.
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Chapter 3

Panel Count Data Analysis Using Mono-

tone B-Splines

Semiparametric analysis of panel count data with informative observation

times using monotone B-splines is presented in this chapter.

3.1 Introduction

As discussed with the bladder cancer data in Section 1.3.1, the underlying
recurrent process and the observation process of panel count data may be de-
pendent even given covariates, and the relation between these two processes may
be influenced by some covariates in the study. Also the commonly used Poisson
assumption about the observation process may not be true. In this chapter, by
generalizing the conditional mean model (2.1) of the response process in Sun et al.
(2005) to the underlying recurrent event process, we will develop a new flexible
class of semiparametric regression models by incorporating the interaction between
the observation history and some covariates to the mean model of the recurrent
event process, while leaving the patterns of the observation times to be arbitrary.
This weak distributional assumption can provide robustness to model misspecifi-
cation. For nonparametric estimation of the baseline unknown function, a B-spline
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approximation will be used following Lu et al. (2007, 2009).

The remainder of this chapter is organized as follows. In Section 3.2, some
notation and models for panel count data are presented. For estimation of regres-
sion parameters and the unknown baseline function, a spline-based least square
method is proposed in Section 3.3. Then the asymptotic properties of the pro-
posed estimators, including the consistency, rate of convergence, and asymptotic
normality, are established in Section 3.4. Some simulation results are given in Sec-
tion 3.5 in order to assess the finite-sample performance of the proposed inference
procedure. Finally, by the analysis of a data set from the bladder tumor study,

proposed approaches are illustrated in Section 3.6.

3.2 Statistical Models

Consider a study involving n subjects who may experience some recurrent
events and suppose that each subject in the study gives rise to a counting pro-
cess N; (t) , denoting the total number of occurrences of the event of interest up to
time ¢,0< t <7, where 7 isaknown constant time point, ¢ = 1,--- ,n. Also
suppose that for each subject i, NV; (t) is observed only at discrete time points
0 <Tg,1 <Tk,2 < -+ < Tk, k,;, where the total number of observations K; is
an integer-valued random variable. In general, not every subject can be followed
until 7 and there exists a follow-up time C; for subject ¢ .That is, N;(Tk, ;) is
observed only if Tg,; < C; < 7. Define ﬁz(t) = H; (t N C;) ,where
H(t) = Zj{; I(Tx,; <t)and I(-)is the indicator function,i =1,--- ,n and

a A'b = min(a,b). That is, H;(t) is a counting process characterizing the ith
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subject’s observation process and having jumps only at the observation times. Let
X; = (X1, -+ ,X;p) denote a p-dimensional vector of covariates that may not
depend on t,i = 1,---,n. Define F;; = {H;(s) : 0 < s < t} as the observation
history just before ¢.

According to the analysis of the panel count data arising from the bladder
tumor data in Section 1.2.2, the relation between the observation and the recurrent
event processes may be influenced by some covariates in the study. Thus, by
relaxing the distributional assumption on the observation process, we assume that
given X;, F;; and the covariate W;, which may be a component of the vector X;
or may be other variables different from X;, the mean function of NN; (¢) has the
form

wi(t) = exp{uo(t) + B'X; + &' h(Fi, W)}, (3.1)

where po(t) is an unspecified smooth, nondecreasing function of t, § is a p-
dimensional vector of unknown regression coefficients, and h(-) is a ¢-dimensional
vector of known functions of the counting process H; up to time t— and the co-
variates W;, representing the interaction between the observation history and some
covariates, and « is a ¢-dimensional vector of unknown regression coefficients.
Especially, when in some clinical studies with many different treatments, W, are
defined as the group indicators, then h(-) represents the different group effects on
the observation times. Here, the right hand side of (3.1) as a whole function of
t should be nondecreasing since N (t) is a counting process. The main interest of
this paper is to estimate the smooth function po(¢) and the regression parameters

f and a. In fact, we can see that if we take po(t) = log fig(t), where fip(t) is also
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an unspecified smooth, increasing, positive function of ¢, then (3.1) becomes

pi(t) = fio(t) exp{S'X; + o' h(Fir, Wi)},

which is the standard form of the proportional means model for panel count data
with informative observation times.

Model (3.1) specifies that the process N;(t) depends on the process H;(t)
through the function A, which can be chosen according to situations. Following
the discussion in Sun et al. (2005), a natural and simple choice for h may be
W Fu, W) = H;(t—)W;, which means that N;(¢) and F;; are related through or
all information about N;(t) in Fj; is given by the total number of observations.
An alternative is that N;(t) depends on Fj only through a recent number of
observations, say, in u time units, and this corresponds to h(F;, W;) = (H;(t—) —
H;(t — u))W;. One could define h as a vector given by the forgoing two choices if
both the total and recent numbers of observations may contain information about
N;(t). If a = 0, then model (3.1) reduces to the model considered by Sun and
Wei (2000), Zhang (2002), and Wellner and Zhang (2007) for regression analysis
of panel count data.

In addition, we assume that

E{N;(t)|X;, Hi(s),0 < s <t,C;} = E{N;(t)| X;, Fir, Ci }, (3.2)

which means that conditional on the covariates X}s and C/s, the number of events
at time point ¢ is only related to the observation history before ¢t. The obser-

vation for each individual comsists of O = (K, Tk, Nk, Hr, X,C), with Tx =
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(Tka, - Tr)s Nk = (N(Tgp), -+ \N(Tgk)), Hxe = (H(Tkp), -+, H(Tk x))-
Throughout this paper, we will assume that we observe n i.i.d. copies, O, ---, 0O,

of O.

3.3 Estimation Procedure

Denote

L,(B,a,pu) = Z /OT [N;(t) — exp{p(t) + 'X; + o' h(Fi, Wl)}]2 dH(t)  (3.3)

In this paper, we propose to use B-splines to approximate p(t). For a finite

closed interval [0, 7], let Z = {t;}7"" with
O=ti=- =<ty < <ttt <lmptt41 =" =tmqa =7

be a sequence of knots that partition [0, 7] into m,, + 1 subintervals and m,, =
O(n”), for 0 < v < 1/2. Let {By,1 <i < ¢,} denote the B-spline basis functions
with ¢, = m,,+1. Let U, 7 (with order [ and knots Z) be the class linearly spanned
by the B-splines functions, that is,

qn

Uiz ={) mBu:m€eRi=1--- g}

i=1
We now define a subclass of ¥, 7, as ¢z = {D /", By :m < --- <n,,}. Accord-
ing to the variation-diminishing properties in Schumaker (1981) which has been
sketched in Appendix A, ¢, 7 is a class of monotone nondecreasing splines on [0, 7]
since the monotonicity of the B-splines is guaranteed by the nondecreasing order
of coefficients. For estimation of p specified in (3.1), we approximate the space
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of py by a subspace of ¢; 7, defined as
qn qn
Uz = {ZmBu gy < --- <, and an < 67 for some constant & } .
i=1 i=1
Then, we approximate the smooth monotone function po(t) by > I, n;By(t) and
estimate the coefficients ; < --- <), and regression parameters 3, and «a jointly
through minimizing the approximated expression L, (3, a, i) subject to nonde-

creasing constraints.

Since p(t) can be approximated by > " 7;B;(t), equation (3.3) becomes
Ln (B, 0,m) = Z/ [Ni(t) — exp{n' Bi(t) + B'X; + o/ h(Fiu, W)} dH (1), (3.4)
i=1 70

where n = (n1,--- ,n,,), and By(t) = (By(t), -+, Bgu(t))"

Let Bn, o, Np be the values that minimize

2
=> [Ni(TKi,j) —exp{n/ Bi(Tk, ;) + B'Xi + o' M Firye Wz’)}] (T, ),
(3.5)
under constraints 1y < --- < 7, . where §;(t) = I(C; > t). Then the monotone
splines estimator for po(t) is fi,,(t) = > i, i Ba(t).
The estimation problem is equivalent to a nonlinear programming problem

subject to linear inequality constraints. Specifically, the spline estimation problem

can be formulated as the linear inequality constrained minimization problem

min L, (0), (3.6)

OERPTIXO,
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where 0 = (8, a/,7) withn € ©, = {n:m <--- <n,, }. Jamshidian (2004) pro-
posed a generalized gradient projection algorithm (GP) for optimizing a nonlinear
objective function with linear inequality constraints, based on the generalized Eu-
clidean metric ||z|| = 27 Wz with W being a positive definite matrix and possibly
varying from iteration to iteration. Zhang and Jamshidian (2004) applied the GP
algorithm to large-scale nonparametric maximum likelihood estimation problems
by choosing W = Dy, the matrix containing only the diagonal elements of the
negative Hessian matrix H, in order to avoid the storage problem in updating H.
However, this will increase the number of iterations and thereby the computing
time. Lu et al. (2007) and Lu et al. (2009) used the GP algorithm utilized in Zhang
and Jamshidian (2004) with W = H directly because the dimension of unknown
parameter space is usually small in their applications due to the use of polynomial
splines, which would also substantially reduce the number of iterations. Here we
consider the same monotone polynomial splines estimation as that in Lu et al.
(2007, 2009), expect that we are solving a constrained minimizing problem and W
is not equal to the negative Hessian matrix H here.

Let VL, (0) be the negative gradient of L, () with respect to 6 and

W = Z /OT exp{0 Z,;(t)} Z22(t)dH (1),

which is a positive definite matrix with Z;(t) = (X}, h(F, W;)', Bj(t))'. Let A =
{i1,42,- -+ ,im} denote the index set of active constraints, i.e. 7, = 7,41, for
j=1,---,m, during the numerical computation. A is allowed to be empty when

m = 0. We define a m by ¢, + p + ¢ working matrix corresponding to this set,
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given as follows:

0 00 ~11--- 0 0 0 0
A= o 00 0 0 ~11 00|
0 00 00---00 “11

i.e., the jth row (j = 1,---,m) consists of the unit vector with its (p + ¢ + ¢;)th
and (p + ¢ +4; + 1)th elements equal to —1 and 1 respectively and the remaining
components zero. The generalized gradient projection algorithm is implemented
in the following steps.
The generalized gradient projection algorithm

Start with a feasible initial value § € RP*? x ©,, and cycle through the

following steps until convergence.

S0: (Computing the feasible search direction)
d=(I-WTA" AW AT TTA) WV L, (),
when there is no active constraint, take d = W'V L, (6).

S1: (Forcing the updated 6 fulfill the constraints) If the resulted direction

d is not nondecreasing in its components, compute

. Ni+1 — 1
= min ——)
i¢¢4,di>d¢+1 dz‘+1 — dz

Doing so guarantees that 7;.1 + vyd; 11 > n; +vd;, for i =1,--- | q,.
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S2: (Step-Halving line search) Find a smallest integer k starting from 0 such
that

L,(0+ (1/2)fd) < L,(6).

S3: (Updating the Solution) If v > (1/2)*, replace 6 by § = 6 + (1/2)*d and

check the stopping criterion (S5).

S4: (Updating the active constraint set) If v < (1/2)*, in addition to replace
0 by 6 = +~d, modify A by adding indexes of all the newly active constraints

to A and accordingly modify the working matrix A.

S5: (Checking the stopping criterion) If ||d|| > ¢ for a small € > 0, go to S0.
Otherwise, compute the Lagrange multipliers A = (AW ~1AT) AW -1L(#).
(i). If \; < 0 for all i € A, set 6 = 6 and stop.
(ii). If at least one \; > 0, for i € A, remove the index corresponding to the

largest \; from A, and update A and go to SO.

To initialize the algorithm, we choose n = (1,2,---,¢,)", 8 and « were all

generated from the uniform distribution over interval (—0.5,0.5).

3.4 Asymptotic Theory

To establish the asymptotic properties of the estimators, we need the following

conditions.

C1 The maximum spacing of the knots satisfies A = max; 1<jcm, 1141 | ti —
ti,1 ’: O(n_”).
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C2

C3

C4

C5

The parameter spaces of (8',a’)’, R is bounded and convex on R, and

the true parameter (o, ag, to) € R° x F,., where R° is the interior of R, and

Fr={p:[0,00) — R|u is monotone and [u® (s) — ) (t)| < M|s —t|*},

where k is a nonnegative integer, ¢ € (0, 1] such that r = k+¢ > 0.5, M is

a positive constant and f*) is the kth derivative of function f.

Ni(t)(i = 1,--+,n) are bounded by a constant, and there exist a positive
integer M, such that P(||X]|| < M;) = 1, that is, the covariate vector is

uniformly bounded.

There exists a positive integer M, such that P(K < M,) = 1, that is, the

number of the observation is finite.

If with probability 1, h}X + hih(F;, W) + hz(t) = 0 for hy € R?, hy € R?

and some deterministic function hsz, then hy =0, hy =0, hy = 0.

Next, we introduce more notations. Let B, and B denote the collection of

Borel sets in R? and R, respectively, and let By, = {BN[0,7] : B € B}. We

define measures v on (R? x [0, 7], B, X Bjy;) and vy on ([0, 7], Bjo-), as follows:

v(A x B) / ZP — kX =x,C=0¢)

Ax(0,00)

Z P(Ty; € BN[0,d|K =k, X =x,C = ¢)dF(x,c)
j=1
K

= / E{Z[BO[O,C]<TK,j)’XzX70:C} dF(X,C),
Ax(0,00)

Jj=1
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and v1(B) = v(R? x B), for B € By, and A € B, set, where I is the joint
distribution function of X and C. Then v; and v are finite measures under con-
dition C4. Let Ly(v1) = {f : [0,00] — R[||f||a0n) = [J 1F(6)2din(t)]? < oo},
Clearly,

1/2

K 1/2 B}
s = | EX AT PeTicp| = | [ pewa

Let Z = {Z(t,W) = h(F,W),0 < t < 7} represent a ¢g-dimensional bounded

random process indexed by t. Define
G ={z(t,w) : [0, 7] x [-My, M| — M},

where M is a bounded set on RY, and for function f( x,z,t): [—=M;, M;]P x G x
[0, 7] — R, define
K 1/2
Ifllz = [ B IF(X, Z(Tk ;. W), Tie j)PE(Ti )
j=1

Define M, (g) = n 'L,(8,a,u) = P,my(0O), where g(x,2,t) = exp{f'x +
Q'2(tw) + (1)}, my(0) = YL [N (Ths) — (X, Z(Tis, W), T )PE(Tc ), and
M(g) = Pmy(O), where Pf and P,f represent [ fdP and n~'> " | f(O;), re-
spectively.

Since Ly(vq) is a Hilbert space, and F,. C Lo(vy), by the Hilbert Projection
Theorem (Stakgold, 1998, P. 288), for x; € La(v1), there is a unique a} € F,, s.t.
(xj—aj;) L F, for j=1,---,p. Let z(t,w) be the [th component of h(F;, w),l =
1,---,q. Then for z(t,w) € Ly(vy), there is a unique b;(t) € F,, s.t. (z—b) L F.,

for ! =1,---,q. Let a* = (aj,--- ,a}) and b* = (b7, --- ,b})".

70



Then we need another condition

®2
X —a* B
C6 E | [/ dH(t)| is nonsingular.

0

In practice, C1 is similar to those required by Stone (1986) and Zhou et al.
(1998). C2 is a common assumption in nonparametric smoothing estimation prob-
lems. C3 and C4 are mild and easily justified in many applications. C5 is need
to establish the identifiability of the model. C6 is a technical condition. The

asymptotic properties of the estimators are summarized as follows.

Theorem 3.1 (Consisitency). Under conditions C1 - C4 and C6 , || 5, — Bol| —

0, |6 — aol| = 0, [|ftn = o]l Lo(wy) — O, almost surely.

Proof of Theorem 3.1.

According to Lemma 5 in Stone (1985) we have sketched in Appendix A,
for o € F,, there exist a p, € ;7 with order [ > k£ + 1 and knots Z such
that [ty — iolle = O™™7). Tet galx, 51) = exp{fx + ahe(t, w) + pm(B)},
Gu%, 2,1) = exp{Bx -+ &y 2(t,10) + (1)}, and go(x, 7, 1) = exp{Bx + () +
po(t)}. Without loss of generality, we assume that p, > po, thus g, > go, and
19 — gollee = O(n™""). Choose a ¢,, € 7 and by and by, s.t h, = exp{b;'x +
by 2+ ¢n}, and || h,||3 = O(n™" +n_kTV). Then for any A > 0, ||g, — go + A, ||3 =

O(n™" +n="2"). Let

In(A) = My, (gn + Ahy)

n Ki

1
== D> WNilTis) = (9o + M) (Xs, Zi(Tic o W), T, )6 (T, ),

i=1 j=1
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then

n K;

2
JT,L(/\) :E Z Z[(gn + /\hn)(XH Zi<TKi7j’ VVZ)ﬁ TK@'J) - Ni(Tsz,j)]
i=1 j=1
X ho(Xi, Zi(Tk, . Wi), Tk, )& Tk, 5)
and
9 n K
J”n(/\) - n Z Z hi<X27 Zi(TKi,ﬁ W), TKi,j)gi(TKi,j) 2 0.
i=1 j=1

Thus, J),(\) is a nondecreasing function. Therefore, to prove the convergence
of g, to go, it is sufficient to show that Y\qg > 0,J/(X\g) > 0 and J/(—=Xg) < 0
except on an event with probability converging to zero. Then g, must be between

G = ol and g, + Aohn, 50 |G = gull3 < A[1Bnl3 = O(n™" + 077",

Next, we'll show that J! (\g) > 0.

1 !
5‘]71(/\0)

K
=G > _[(gn + Mohn)(X, Z(Tx 3, W), T ;) = N(Tie j)|hn(X, Z(Tic 5, W), Tie j)&(Tic )
j=1
K
+P Y [(gn + Aohn) (X, Z(Tic 5, W), Tiej) = N(Tic )] hn(X, Z(Tie 5, W), Ti )E(Tk )
j=1
EIln + [2n~

By the calculation of Shen and Wong (1994, p. 597), for n > 0 and any ¢ < 7,

log Ny(e, ¥z, La(v1)) < c1gqlog(n/e), Jy(n, iz, La(v1)) < g/,

where ¢, = m,, + [ is the number of spline basis functions, and ¢; and ¢, are finite

constants.
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By Theorem 2.5.2 of Van der Vaart and Wellner (1996, p. 127) (Theorem

C.3), ¢z is a Donsker class. Then given g, defined before,
K
Gy ={ Y IM(X, Z (T3, W), Ticy) = N(Tre))(h = 90) (X, Z (T W), Tre (T ) :
7j=1
hix, 1) = exp{Fx + a'z(t,w) + 6(1)}, ¢ € iz, |h = gulls < n}
is a Donsker class. Thus, I, = Op(n~'/?),

Loy = E[ / (g M) (X, Z(5 W), ) (X, Z(1 W), t)f(t)dH(t)]

5 / N(t)ha(X., Z(6, W), DE()AH ()|

B[ [ b+ g = 00) (X, 200, W) (X, 208, W) DE() (1)
0
> B[ [ Mah2(X, Z(,W), 00 (0)] = ol
0
Thus, %J;(Ao) > Op(n™Y2) + Xo||hnll2 > 0, since ||h,]|2 = O(p;!) with pit =

N4 > e > V2 for 0 < v < 1/2.

For J;z(—)\o),

1 !
— A
2Jn( 0)
K
=Gn > _[(9n WX, Z(Tk 3, W), T j) = N(Tr )] ha (X, Z(Ti j; W), T 3)E (T 5)
7=1
K
+P Y [(gn )X, Z(Tw s W), T j) — N(Tr ) hn (X, Z(The j; W), T )E (T 5)
7=1
=17, + 13,
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Using the same arguments as for J/,(A\o), I}, = Op(n~'/?).

L, = E[/OT(gn—)\ohn)(X, Z(t, W), t)h (X, Z(t, W), t)E(t)dH (t)]
_F /0 (X, Z(t, W), € (N (£)AH(1)]
— B /O (Nolon 4 g — 9o) (X, Z(6, W), D) (X, Z(t, W), O () dH (1)]
= —\E] /0 ' he (X, Z(t, W), )E(t)dH (t)]
1B /O (g — 90)(X, Z(L W), Oho(X, Z(t, W), O () dH (1)
< = ollhnllz + 11gn — goll2llBnll

—1
S —C3p,

for a positive constant cz. Thus, 2.J! (—Xg) < O(n~2) — esp;! < 0.

» 29Yn

Then we have [|gu — goll2 < |G — gullz + llgn = goll2 = O(pa""?), and log 3, -

log go = =+ (Gn—90), With g* = (1-§)go+£7n, 0 < £ < 1. Hence || log g, —log goll> =

O(pﬁl/z) — 0. Also,

[1og G — log golla = (B — Bo)'x + (Gn — )z + (jin — f10)]]2

~

=[(Bn = Bo)'(x —a") + (&n — ao)'(z — b7)

~

+ (Bn — Bo)'a” + (G — )’ b* 4 (fin — 10)]]2

~

=[(Bn = fo)'(x = a") + (&n — a0)'(z = bY) |2

~

1B — Bo)a* + (G — ag)'b* + (fin — 10)|2-

By C6, we can get || 3, — fo|| — 0, and [|éy, — || — 0 from the first term of the
right hand side of the above equality, and thus it follows that ||, — fto]| £, (w) — 0.

This completes the proof of the theorem.
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Theorem 3.2 (Rate of Convergence). Suppose that conditions C' 1 - C 6 hold,

then

—v 1—v

5 I E A vy .
180 = Boll = Op(n™"2"), [|an = aoll = Op(n™"2"), lftn = piol Loy = Op(n™"2).

Remark 3.1. When v = 1/(1+2r), n= 2" = n" 7%, we conclude from Stone
(1980, 1982) that the rate of convergence of the estimator fi, is the optimal rate

im nonparametric regression.

Proof of Theorem 3.2.

For any n > 0, let

Fy ={9=exp{B'x+a'z+u} : |5l <n, la—aol <n, 1€ iz, |p—roll o) < 1}

Similar to Lemma A.2 in Huang (1999, p. 1557) given in Appendix A, for any
e <, log Ny(e, Fy, || - [|2) < cagnlog(n/e), for a constant ¢s. Thus, for € > 0, there
exists a set of brackets {[g},¢7],i = 1,---, (%)%} such that, for each g € F,,
there is a [¢, ¢7] with ¢l(x, 2,t) < g(x, 2,t) < g7(x, 2,1), for all x, t € [0, 7] and
z€G, and [lg] — gi5 < €.

Then, by Theorem 3.1, g, € F,, for any > 0 and sufficiently large n.

Next, consider the class M, = {m,(O) —m,(O) : g € F,}, where m,(0) =
S [N (Tky) = 9(X, Z(Tie W), T )T )-

Fori=1,---,(2)%% define

K
mj(0) = [{\gﬁ\ VIgIE (X, Z(Tk, W), Ticj) — 2N (T )9 (X, Z(Tre s, W), Tk )

Jj=1

+ 2N (Tx ;) 90(X, Z(Tr 5. W), T j) — 95(X, Z(Tie j, W), Tic ) | (T ).
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K
m;(0) = 37 [{lghl A g7} (X. Z(Tiess W), Ticg) = 2N (Tie ) gh(X, Z(Tics W), Tic)

J=1

+ 2N (Tx ;) 90(X, Z(Tr 5, W), T j) — 95(X, Z(Tie j, W), T ) | (T ).

where a V b = min{a, b} and a A b = max{a,b}. Then, m{(O) < mI(O) and it is
easy to show that P|lm!(O) — ml(O)|* < cse? with a positive constant c;. Thus
{[mi(0),m;(0)],i =1,---,(2)“} is the set of brackets for M

n» Which implies

log Nﬂ (6, Mn, LQ(P> < c4qn 103;(77/5)-

Moreover, by some calculations, we can verify that P|m,(O) — mg (0)|*> < cen?
for any g € F,, by C4. Therefore, by Lemma 3.4.2 of Van der Vaart and Wellner

(1996) (Lemma C.5), we obtain

Ji(n, M, Ly(P
Emmm—mmM<wmmMmmw»ﬁ+[mngmﬂ)U@} (3.7)

where Ms is a constant and [|[n'/2(P — P)| 7 = sup;cz [n'/*(P — P) f|, and
5 n
(. My, Lo(P)) =/ {1 +log Ny(e, My, La(P))}!?de < csq/*n.
0

The right hand side of (3.7) yields ¢, (n) = 09(q71/277 + g,/n'/?). Tt is easy to see
that ¢, (n)/n is decreasing in 7, and
2 1 /2 | 2 1/2 1/2
Tn@(_) = THQn + ann/n S 2n )

n

forr, =n2" and 0 < v < 1/2.
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Note that

= P| | {ING) = g(X, Z(L, W), ) = [N(2) = 90(X, Z(t, W), )2} E()aH (1)

-J0

=E :/07(90 —9) (X, Z(t, W), )[2N(t) = (9 + go)(X, Z(t, W), t)]g(t)dH(t)]

= B[ [ o= wrx. 20 W) newa o

= ||9 - 90||§-

Thus, by Theorem 3.2.5 of Van der Vaart and Wellner (1996) (Theorem C.4),
n 2 ||gn — goll2 = O,(1). Therefore by the similar arguments as those in the proof
of consistency of Bm a, and fi,, we can get the rate of convergence of fi,, Bn and
&, as stated in the Theorem. The choice of v = 1/(1 + 2r) yields the rate of

convergence of r/(1 4 2r), which completes the proof.

Theorem 3.3 (Asymptotic Normality). Suppose that conditions C 1 - C 6

hold. Let

H={(h, ho,hs): (B, By) € Rohs € Fp [l < 1, o] < 1, [|R2flo < 1}

Then for any (hy, hy, h3) € H,

BB — Bo) + By (G — 00) + / i — 1) (6)dhs (1)

2

converges in distribution N(0,0?), where o* is given in (3.8).

The similar bootstrap covariance matrix estimator for \/n can be

obtained as in Section 2.4.
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Proof of Theorem 3.3.
We define a sequence of maps S, mapping a neighborhood of (ag, B, to),

denoted by U, in the parameter space for (3, a, 1) into [*°(H) as :

Sn(57 «, ,u)[hh h27 h3]
L d
= —L n(B+ehy, a+ chy, u+ chs) »

= —= Z / e{ﬁlxi+a,h('}—it7Wi)+”(t)}]6{5/Xi+0/h(]'—it,wi)+,u(t)}
X [h’l X; + hhh(Fir, Wi) + ha(t))dH,(t)

= in(ﬁ7aau)[h17 h27h3]’

Correspondingly, we define the limit map S : U — [*°(H) as S(5, o, 1) [hy, hy, hs),
where [*°(H) is the space of bounded functionals on H under the supermum norm

IF1] = supnes |f(h)]

To derive the asymptotic normality of the estimators (Bn, Qi fbn), motivated
by the proof of Theorem 3.3.1 of Van der Vaart and Wellner (1996, p. 310), we
first need to verify the following five conditions.

(1) V(S = 8)(Brs s fin) — /(S — S) (B, @, 1) = 0p(1).

(i) v/n(Sn—15)(Bo, co, f10) converges in distribution to a tight Gaussian process
on [*(H).

(iii) S(Bo, o, o) = 0 and Sy (B, G, fin) = 0,(n"1/?%).

(iv) (B, a, p) — S(B, a, ) is Fréchet-differentiable at (S, v, f10) with a con-
tinuously invertible derivative S (Bo, o, fho);

() V(S B G 1) =S (B0 0, 10) ) = VS (B @0 10) (B 1) = (Bo 0, 10))

= 0,(1).
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Note that
V(Sy = 8)(Bas s fin) — V(S — S)(Bos 0, o)
=By = P)((B, s fin)ls, bz, hg] = (8o, a0, o)y, ha, hg]).
Define

1/2
p((Br, a1, 1) — (Ba, @, pi2)) = {1181 = Boll® + llar — aoll® + [l — p2ll7 00 }

and for § > 0,

Fs z{w(ﬁ,a,u)[hl, hy, hs] — ¥(Bo, ao, po) [, ho, hs]

p((ﬂaaau) - (BO?CYOMMO)) < 67 (hb h2, hs) € H}

It is easy to see that F,. C C"[0,7] is a Donsker class from Van der Vaart and

Wellner (1996, p157), thus H is a Donsker class and

‘¢(B7 a, :u) [hla h27 h3]|
:y_?/%N@)_gHXMMEmewqgﬁxmwﬁmew}
0

x [h} X + hyh(F, W) + hs(t)]dH (t)|

<M || P || + Ma||hel| 4+ Ms||hs][ oo,
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for constants Mj, My, M3, which means that (5, «, 1) is a bounded Lipschitz

functional with respect to H, thus Fj is a Donsker class for some § > 0. And
2
P‘@b(ﬁlaal?ﬂl)[hl; hy, hs] — (B2, g, p12) [y, ha, hs]‘

-2 / ' [V (2) {lAXFH I 0 (0) _ (53X afhb a0
0

+ {2 REI ) i (0)} 6{2(6§X+a’2h(ft7W)+u2(t))}}}

2

x [h} X + hyh(F, W) + hy(t)]dH (t)

2

:P‘Q/T [N(t)e{f} + 26{2f}] (f1 = fo)[h) X+ hoh(F, W) + h3(t)]dﬁ(t)

<crop? ((Br, a1, 1) — (B2, a2, p12)),

for a constant ¢;9. The second from the last equation is satisfied since e/t — ef? =
ef (fr=fo), and =2 = 227 (fy— o), for f = BX 4 h(Fe W) + (D), fo =
BX 4 ayh(Fo, W) + pap(t), and f = (1 — &) f1 +Efo, 0 < € < 1. Thus condition (i)
holds by Kosorok (2008, Lemma 13.3) (Lemma C.6).

Condition (ii) is also satisfied since {1 (o, v, to)[h1, ho, hs] @ (hy, hy, hs) €
H} is a Donsker class.

Clearly, S(Bo, o, 0) = 0. For hy € F,, let hg, be the B-spline function

approximation of hs with ||hs, — hsl|c = O(n™""), then we have

Sn(ém é‘m /ln)[hlu h27 hSn] = 0.
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Thus, for (hy, hy, h3) € H,

128, (B, Gin, fin) [y, Dy, hig]

= n%{Sn(Bn,dn,ﬂn)[hbh% ha] =SB, G, fin) [11, Dy, ]}

= n2 (P, — P)O(Bn, A, fin)[h1, o, his] — n2 (P, — P)(Bo, v, 1) [h1, i, Fis]
_ {n

+n2P, {1(Bo, o, po) [, o, hs] — ¢ (Bo, v, po) [, ho, hsy,}

N

(Pn - P)@Z}(an dm ,&n>[h1> th hi’m] - n%(Pn - P)¢(507 Q, MO)[hb h27 h3n]}

13 P {e(Bu, s i) 1, B, hs] = (B, o, i) B, B, ] |

= an - QQn + QSn + Q4n-

It follows from (i) that both @y, and @2, are o,(1). And

|Q4n|

:lgnép/T[e{B;xw;h(ﬂ,W)mn(t)} N (t)]e PR XA BT+ O, hgn)dﬁ(t>‘
0

<cq

nip / [P RLEIV i (0) _ ABX A 40O (s — B VAFL(F)
0

=C11

néP/T L — ol (hs — hgn)dﬁl(t)‘
0

<c12n2 (B, i, fin) — (Bo, @0, t10)) + ln — sl
Sn%O(n_l_TV) -O(n™"")

=0,(1).

for constants c¢;; and c19, where fy = BiX + ajh(Fy, W) + po(t), fo = B;LX +

& h(Fo, W) =+ fin(t), and f* = (1 — &) fo + &fn with 0 < € < 1. Furthermore, Qs,,
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is also 0,(1) since

P[¢(ﬁo7aoaﬂo)[h1, hz,hs] _¢(507a07ﬂ0)[h17 h2,h3n]]2

b [2 /‘r {N(t) B 6{56X+a6h(}},W)+,uo(t)}]e{ﬁéXJraéh(]:t,W)Jr,uo(t)}(h3n . h3)<t)d}~[<t> 2
0

<cizl|han — h3l|2, — 0,

for a constant c3. Thus Sy (B, G, fin) = 0,(n"1/%).
For the proof of (iv), by the smoothness of S(3, «, 11), the Fréchet differentia-
bility holds and the derivative of S(3, a, ) at (3o, ao, 1), denoted by (o, v, i)

is a map from the space {(8 — By, @ — g, o — o) : (B, , ) € U} to I°°(H) and
p pace {( o= p

S(Bo, a0, 110) (B — Bo, @ — ag, 1 — pig) [hy, hy, R

_ IS (Bo +e(B — o), a0 + el — ag), o + (i — pio)) [, g, hs]
85 e=0

—9p /T[2€{ﬂ6X+a{)h(}},W)+uo(t)} _ N(t)]e{/ﬂ’(')XJr%h(]:t,W)Jruo(t)}
0

x [(B = Bo) X + (o — ag) h(Fy, W) + (1t — pto)]
x [0 X 4 hhh(F, W) + hs(t)|dH (t)
=P / ' 2B XA aph(FeW)+no DI (3 — 50)'X + (or — o) B(Fo, W) + (10 — pio)]
0

x [0} X + hyh(F;, W) + hs(t)|dH (t)

= Ul(hla h,, h3),(5 - 50) + Uz(hl, h,, hs)/(a - CYo) + / (M - Mo)d03(h1, h,, hs)a
0

where

T

01(h1,h27 hs) = 2P{

S—

0o(X. Z(t, W), £} X + Wyh(F W) + h3<t>]Xdﬁ<t>},

T

02(h1, hy, hs) = 2P{

S—
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and
o3(hy, hy, h3)(t) = 2P {/t 90(X, Z(s, W), 5)* [} X +hyh(F,, W) + h3(8)]dﬁ(8)} :

with go(X, Z(t, W), t) = elfoX+eoZ(tW)+uo(t)}

It remains to show that the linear map S (Bo, v, f10) is continuously invertible
on its range. Following the proof of Theorem 2 in Zeng et al. (2005), we only need
to show that for h € H, if o(h) = (01(h),09(h),03(h)) = 0 almost surely, then

h = 0. Suppose that o(h) = 0, a.s., then o1 (h)'hy+09(h) ho+ [ hs(t)dos(h)(t) = 0,

/0 90(X, Z(t, W), t)*[h} X + hih(F, W) + hy(t)|X'dH (t)h,

+2P /O "o, Z(6 W), 02, X+ Woh(Fo, W) + ha(8)]h(Fs, WY dH (£)hy
/0 G0(X, Z(6, W), £)2[0, X + Woh(Fy, W) + ha(t)]hs(6)dEL (1)

— 2P /0 ' 90(X, Z(t, W), t)?[h} X + hhh(F,, W) + hy(t))dH (t)

which implies that h} X + hih(F, W) + hz(t) = 0,a.s.. Hence, hy = 0,hy =

0,hs = 0 by C5.
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Moreover, condition (v) holds since

‘\/E[S(Bna OA‘mﬂn) - S(@o; 0507,[1/0)_
— S(Bo. o, p10) (B — Bo, d — 0xg, fin — Mo)} [hy, ho, h3]‘
—|ov/nP ’ fo _ Jfoyefn _ o2f0 fo—
2P [ {(eh = e =g, — o))
X By X+ Byh(F,, W) + hy (0} (1)

=[2viP / { e~ fo)+ o

= o+ op{(f — Sl - (G o)

x [0}, X + hyh(F, W) + hg(t)]dﬁ(t)‘

€2f0 N

9 (fn - f0)2 + Op((fn - fO)Q)]efn}

v [{en (G- |
x [W, X + hoh(F, W) + hg(t)]dﬁ(t)‘

<c

2y/nP /OT[(fn — fo)” + 0p((fo = f0)?)][0} X +hoh(F, W) + h3(t)]dﬁ(t)’
<evi/n |0 (B G 1) = (B0, €0, 120)) + 05 (9 ((Bis s fn) = (Bos 0, 10) )|

=0,(n2~ 1)) 4 0, (n3~07)) = 0,(1),

for a constant cy4.

Therefore, by (i) - (v), we have

\/59(507 Qp, ﬂO)(Bn - 507 O}n — O, ﬂn - /LO)[hlﬁ h27 h3]
= 01(hy, hy, h3),\/ﬁ(/én — Bo) + oa(hy, hy, hy)'v/n(dy, — a)
4 [ Vil ) (@)t b )
0

S \/H(Sn —8)(Bo, s o) 1, ho, hs] 4+ 0,(1),
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uniformly in h;, hy and hs, and for each (hy, hy, hs) € H, there exists unique
(i, b, h%) € H, such that oy (b, b, h3) = hy, ou(hi, b, h) = hy, oq(hl, b3, hZ) =

hs. Thus, we have

By v/2(By — o) + Byv/A(Gn — a0) + / (i — o) () (1)
= \/53(50, 0607/10)(511 — Bo, G, — Qg, fln — Mo)[h; h;, hj;,]

= — /1S, — ) (Bo, ao, po) [hi, h, h3] + 0,(1)

— Z in distribution,

where Z follows N (0,0?) with

o = EY*(Bo, ap, o) [0, b, h). (3.8)

3.5 Simulation study

We conducted a simulation study to assess the finite sample properties of the
proposed estimators. We considered the situation where there were two covariates
and for each subject 7, X1;’s and X5;’s were generated from Bernoulli distribution
with success probability 0.5 and the standard normal distribution. The follow-up
time C; was from the uniform distribution over interval (7/2,7) with 7 = 6. Given
the covariate X; = (X4, Xo;)', two set-ups for the observation process H;(t) were
considered as follows:

(a). The number of observation times m; was assumed to follow the Poisson
distribution with mean 2C; /7 exp(7'X;) and the observation times (Tj1, ..., Tin,)
were taken to be the order statistics of a random sample of size m; from the uniform
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distribution over (0, C}).

(b). The number of observation times m; was assumed to follow the uniform
distribution over {1,2,3,4,5,6} and the observation times (T}, ..., Ty, ) were gen-
erated in the same way as in set-up (a).

Then, given X;, m; and the observation times (75,1, - , T, m,), We gen-
erated recurrent event counts N, = (N;(Tjn.1), - » Ni(Tin, m,)) from a Poisson
process by taking N;(T5,, ;) = Ni(Tm, 1) H{Ni(Tony 2) = Ni(Lon 1) b+ - +H{Ni(Ton, ) —

Ni(Tmi,jfl)}a where

N;(t) — N;i(s) ~ Poisson(exp{po(t) + 5,X; + aoH;(t—)X1:}

— exp{po(s) + BX; + ao Hi(s—) X1i}).

Set po(t) = v/t or up(t) = log(t + 1), ap = 0,0.3, or 0.5, representing the
different correlations between the panel count process and the observation process,
and [y = (—0.5,0.5), representing the different effects of the covariate X on the
recurrent event counts. To estimate the smooth function pug(t), we considered
cubic B-splines and took m, = n” with v = 1/10, 1/3 or 2/5. For a given
number of interior knots m,,, we consider two data-driven methods for determing
locations of knots. One is the equally spaced knots, which are given by Ti,i, +
kE(Twax — Twin)/(mp + 1),k = 0,1,-+- ;m, + 1, with Ty, and T, being the
respective minimum and maximum values of distinct observation times. Another
is the partitions according to quantiles of the observation times, i. e., the k/(m,+1)
quantiles (k= 0,1,--- ,m, + 1) of the distinct observation times are chosen to be

the knots. We have done simulation for the six combinations of the number and

86



placement of knots and illustrate the estimation results for different combinations
with W = X, a = 0.3, po(t) = log(t + 1) and n = 100 in Table 3.1. From this
table, we find that the estimation results are very similar and not sensitive to the
selection of number and placement of knots. Thus in the following, we present
the overall results with number of interior knots chosen to be n'/3 and the equally
spaced knots.

Tables 3.2 and 3.3 present the simulation results on estimation of Sy and «y
for Poisson and non-Poisson observation processes with sample size n = 100 or
200 and po(t) = v/t and log (t + 1), respectively. The tables include the estimated
bias (BIAS) given by the average of the estimates minus the true value, the sample
standard deviation error of estimates (SSE), the mean of the bootstrap standard
errors of the estimates (BSE), and the bootstrap 95% coverage probability (CP)
obtained from 1000 independent runs. Here we used 100 replications in bootstrap
to estimate the standard errors. It can be seen from the tables that the proposed
estimators are unbiased for different situations considered, which means that our
estimation approach does not rely on the Poisson distributional assumption about
the observation process, thus it is more robust than the previous analysis of panel
count data with informative observation process under the Poisson assumption,
such as Hu et al. (2003), Li et al. (2010) and Zhao and Tong (2011). Also, the
SSE and the BSE are quite close to each other and smaller as the sample size
increases, which indicates that proposed bootstrap variance estimation procedure
provides reasonable estimates. In addition, the 95% bootstrap CP are consistent

with the nominal level, which suggests that the normal approximation seems to
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be appropriate.

Figures 3.1 and 3.2 show the estimation results of uo(t) = v/t and po(t) =
log (t + 1), respectively, for simulated panel count data with Possion and Non-
Poisson observation processes, h(F;, W) = H(t—)X; and a = 0.5. In the figures,
the solid line represents the real curve of ug(t), and the point line and the dotted
line represent the B-spline based estimation curves of pg(t) for the sample size
n = 100 and n = 200, respectively. Based on the figures, we have the finding
that the B-spline based estimation curve of () is close to its real curve with
the moderate sample size and especially closer as the sample size increase in all
different situations, indicating that the B-spline estimator for (t) works well.

Note that our simulation results for estimation of the regression parameters
and the nonparametric function are all reasonable with the moderate sample size
even when « diverges far from 0, which is superior to the results in Li et al. (2010),
where they proposed a semiparametric transformation model for the underlying
recurrent event process, but with a nonhomogeneous Poisson restriction on the in-
formative observation times. Thus, our proposed models and estimation procedure

are more flexible and robust.
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3.6 Application

This section presents an analysis of the bladder cancer data by applying our
proposed methods. There were 116 subjects with superficial bladder tumors ran-
domized into one of three treatment groups: placebo, thiotepa, and pyridoxine. In
the following, we restrict our attention to the placebo and thiotepa groups with re-
spective sizes of 47 and 38 as it has been shown that the pyridoxine treatment had
no effect on the recurrence of the bladder tumors (Zhang, 2002). For each patient,
the observed information includes times when he or she made clinical visits and
the numbers of recurrent tumors between clinical visits. Two baseline covariates
were observed and they are the number of initial tumors and the size of the largest
initial tumor.

To analyze the data, for patient ¢, define x1; to be equal to 1 if the ith patient
was given the thiotepa treatment and 0 otherwise, zo; the number of initial tumors
and x3; the size of the largest initial tumor, i = 1,...,85. We define the response
N;(t) to be the cumulated new tumor numbers of patient i up to time ¢. Let H;(+)
represent the accumulated observation numbers of patient ¢ over the study period.
Assume that {N;(t)} can be described by model (3.1) with A(F;) = H;(t—) X1,
meaning that the relation between recurrence rate of bladder tumors and the

observation times are related through the total number of observations., i.e.,

E{N;(t)| X1, Xoi, X34, Fir} = exp{uo(t) + 01 X1 + 53 Xo; + B5X3 + o Hy(t—) X1}

Here, we took the last visit time of patient ¢ as C; in the analysis. For estimation
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Figure 3.1. Estimates of po(t) = v/t for simulated panel count data with Poisson
and non-Poisson observation processes, h(Fy, W) = H(t—)X; and a = 0.5
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of 1p(t), we use the cubic B-spline approximation by taking the number of interior
knots m,, as n” with v = 1/3 and the equally spaced knots.

The application of the estimation procedure proposed in the previous sec-
tions gave 31 = —0.9006, By = 0.1980, B3 = —0.0658, and & = —0.4076 with the
bootstrap standard errors being 0.5051, 0.1009, 0.2054, and 0.1510, which corre-
spond to p-values of 0.0746, 0.0497, 0.7486, and 0.0069, respectively, based on the
asymptotic results of the estimators. Here Bl, Bg and Bg represent the estimated
regression coefficients corresponding to the treatment indicator, the number of
initial tumors, and the size of the largest initial tumor, respectively, while & repre-
sents the estimated effect of the interaction between the observation process and
the treatment indicator on the tumor recurrence rate.

These results indicate that the recurrent event process and the interaction
between the observation process and the treatment indicator are significantly neg-
atively correlated, which is consistent with the analysis results in Sun et al. (2005)
and Section 2.6. Furthermore, the thiotepa treatment significantly reduces the
occurrence rate of the bladder tumors, and the number of initial tumors has a
significant positive effect on the tumor recurrence rate. However, the occurrence
rate of the bladder tumors do not seem to be significantly related to the size of
the largest initial tumor. These conclusions are roughly consistent with those pre-
sented in Li et al. (2010), and Zhao and Tong (2011). Compared to the models
in Li et al. (2010), and Zhao and Tong (2011), our proposed procedure could be

useful to estimate the future recurrence rate based on the observation history.

95



Chapter 4

Panel Count Data Analysis with Time-

Dependent Covariates

In this chapter, we consider some semiparametric regression analysis of panel
count data with time-dependent covariates and information observation and cen-

soring times.

4.1 Introduction

In many situations, the underlying recurrent process and the observation pro-
cess are still dependent even given covariates. For this, Zhao and Tong (2011)
proposed a joint modeling approach that used an unobserved frailty variable and
a completely unspecified link function to characterize the correlation between the
recurrent event process and the observation times with time-independent covari-
ates. However, in some applications, panel count data with informative observation
times, and also with time-dependent covariates and informative censoring times
may exist, when a failure time is correlated to the censoring mechanismand some
associated covariates vary with time. Thus it is desirable to develop estimation
procedures for panel count data with informative observation and censoring times,
and also with time-dependent covariates. For this, we considered the same models
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for the underlying recurrent events and the observation times as given in Zhao
and Tong (2011) except replacing the time-independent covariates with the time-
dependent covariates and removing the assumption of noninformative censoring.
The remainder of this chapter is organized as follows. We begin in Section
4.2 by introducing some notation and describing statistical models for the under-
lying recurrent event process and the observation process. In Section 4.3, a novel
estimation procedure that does not depend on the distribution of frailty variables
and the link function is proposed for estimation of regression parameters and the
asymptotic properties including consistency and asymptotic normality of the pro-
posed estimators are established in Section 4.4. In order to assess the finite-sample
properties of the proposed inference procedure, we present some results obtained
from simulation studies in Section 4.5. In Section 4.6, the proposed approaches

are illustrated through the analysis of a data set from the bladder tumor study.

4.2 Statistical Models

Consider a recurrent event study that consists of n independent subjects,
and let NV;(t) denote the number of occurrences of the recurrent event of interest
before or at time t for subjects ¢. Suppose that for each subject, there exist a
p-dimensional possibly time-dependent covariates, denoted by X;(¢), and Z; is an
unobserved positive random variable that is independent of the covariates. Then,
for subject 7, given X;(¢) and Z;, the mean function of N;(t) is assumed to have
the form

E{N:i(t)|Xi(t), Zi} = po(t)g(Z:) exp{X;(t) 5o}, (4.1)
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where pi(+) is a completely unknown continuous baseline mean function, [y is
a vector of unknown regression parameters, and ¢g(-) is a completely unspecified
function with F(g(Z)) = 1. Since N;(t) is a counting process, the choice of time-
dependent covariates should be constrained by the fact that E{N;(t)|X;(t), Z;} is
a nondecreasing function of time. Also the covariate histories {X;(¢) : 0 < ¢ <
Ci}(i=1,---,n) are assumed to be observed.
For subject i, suppose that N;(-) is observed only at finite time points T;; <
- < Tik,, where K; denotes the potential number of observation times, i =
1,---,n. That is, only the values of N;(t) at these observation times are known
and we have panel count data on the N;(t)’s. Let C; be the censoring time and
thus NV;(t) is observed only at these Tj;’s with 7;; < Cj, @ = 1,---,n. Define
Hi(t) = Hy{min(t, C;)}, where Hy(t) = S0 I{Tj; < t},i=1,--- ,n,and I(-) is a
indicator function. Then I:[,() is a point process characterizing the ith subject’s
observation process and jumps only at the observation times.
In the following, we assume that given X;(¢) and Z;, H;(-) is a nonhomoge-

neous Poisson process with the intensity function
At [X(t), Zi) = No(t) Zi exp{X(t)0}, (4.2)

where Ag(+) is a completely unknown continuous baseline intensity function and
7o denotes a vector of regression parameters. Here, we assume that E(Z) = 1
for identifiability. Let Ao(t) = fot Ao(s)ds. In addition, we assume that conditional
on the covariates X;(t)’s and Z;’s, N;’s, H;’s and C;’s are mutually independent,

and {H;(t), N;(t),X;(t),Cy, Z;,0 < t < 7},i = 1,--- ,n, are independent and
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identically distributed, where 7 is the length of study.

The special cases of models (4.1) and (4.2) have been studied individually by
earlier researchers. For example, model (4.1) with g(Z;) = 1 and time-independent
covariates was considered by Sun and Wei (2000), Zhang (2002), and Wellner and
Zhang (2007) for regression analysis of panel count data; Huang et al. (2010) con-
sidered model (4.2) with time-dependent and time-independent covariates, and
Wang et al. (2001) and Huang and Wang (2004) considered model (4.2) with
time-independent covariates for recurrent event data; Furthermore, Zhao and Tong
(2011) developed the joint analysis of the two models with time-independent co-
variates.

In the following, we study the joint analysis of the two models together. The
proposed models allow the underlying recurrent event process and the observation
process to be correlated through their connections with the link function of the
frailty; moreover, both the link function and the distribution of the frailty are
considered as nuisance parameters. Our main goal here is to make inference about
B. Toward this end, we develop a novel estimation procedure that depends neither
on the form of the link function nor on the distribution of the frailty in the next

section.

4.3 Estimation Procedure

For estimation of (3, along with other parameters, define N;(t) = fot Ni(s)dH,(s),
then this newly defined process only has possible jumps at the observation time
points {T;; ANC; : j =1,---, K;} with respective jump sizes N;(T};),i =1,--- ,n.
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Thus we have

E{dNi(t)|Xi(1), Ci}
= E{&GM)EIN:(D)dH;(8)Xi(t), Ci, ][ X (t), Ci}
= E{&(O)EIN:(1)[Xi(1), 2, E[dH; (1) X (t), ]| Xa(t), Ciy
= E{&(t)no(t)9(Zi) exp{X;(t) o} Zs exp{Xi(t)v0 Ao (1) X(t), Ci}
= exp{Xi(t)(Bo + 70) }E[g(Z:) Zi]&i(t) o (1) do(2)

= exp{X}(t)0o}&i(t)deo(t).

where 6y = By + 70, &(t) = 1(C; > t) and ¢o(t) = [, E[g(Z)Z]uo(s)dAo(s).
Similar to Hu et al. (2003), borrowing the structure of the Cox partial likeli-
hood score function of the Andersen-Gill proportional intensity model (Andersen
and Gill, 1982), which is also asymptotically unbised for a more general non-
Poisson process (Lawless and Nadeau, 1995), we construct an estimating equation

of 0o in the form of
00N = [T WO - X (60N 0 =0
=1
where X(t;6) = SW(t;0)/SO(t;0), and
S®(t;0) =n! i DX ()P exp{X/ ()0},  k=0,1,2,
P

where a®® = 1,a®! = a,a®? = ad’ for a vector a .

It can be shown that this estimating equation U (0} N ) = 0 is unbiased for
6 (i.e., E[U(6y; N)] = 0). Solving the estimating equation provides us with an
estimator of 6y, denoted by é, and thus, given vy, By can be estimated by 6 — Y-
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But 7 is unknown, we need to find an estimator for it.

Since

E{dH;()|Xi(t)} = E{E[dH(t)|Xi(t), Zi]|Xi(t)}

= exp{Xj(t)y0}dAo(t)

and C;’s are independent of (N;, H;)’s conditional on covariate and the frailty, as in
Liang et al. (2009), the methods proposed by Lin et al. (2000) for the proportional
rate model can be used to consistently estimate vy and Ag(-). To be specific, 7o

can be consistently estimated from the following estimating equation
Z/{X X(t57)}aF() = O
where X(t;7) = SW(t;7) /50 (t;7), and
§0(1:9) =0 Y EOXOF e Xi(0), k=0, L 2

The resulting estimator is denoted by 4. In addition, A¢(f) can be consistently

estimated by the Aalen-Breslow-type estimator Ag(t) = Ag(t;4), where

Z/ nS()S )

4.4 Asymptotic Theory

Let

s (1) = Tim S (1 1) = By (1) exp{ XL ()X (7], k=0, 1, 2,
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and define x(t; 1) = si(t; 1) /51" (t; ).

To establish the asymptotic properties of 0, we need the following regularity
conditions.
(C.1.) P(C>T1)>0.
(C.2.) X;(t),i=1,---,nhave bounded total variations, i.e. |X;;(0)|+ [, | X;i(t)] <
My forall j =1,--- ,pand ¢ = 1,--- ,n, where Xj; is the jth component of X,
and M, is a constant.
(C.3.) Ao(7) < My, po(1) < My, where My, My are constants.
(C4.) Ni(7) (i =1,---,n) are bounded by a constant and the K;’s are bounded;
W (-) is nonnegative and have bounded total variations with W(-) — w(-), as

n — oQ.

(C.5.)

Aly) = I [ / "W)X (1) — x(5:0)) 26, (1) exp{Xa<t>eo}d¢o<t>} 7

and

A0) = B { / "1X4 () — %(t70) 16 () exp{x’lam}dAo(t)]

are positive definite.

In practice, condition (C.1) can be enforced simple by not choosing 7 to be
greater than the maximum observation time. The boundedness conditions in (C.2),
(C.3) and (C.4) simplify the derivation of the asymptotic results. Condition (C.5)
can be interpreted that the sample covariance is asymptotically non-singular. The

asymptotic properties are summarized as follows.

Theorem 4.1 (Consistency of 0). Under conditions (C.1 — C.5), 0 — 6y, a.s.
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Proof of Theorem /.1.
By the strong law of large numbers, for each ¢ € [0,7], S®(¢;6) converges

almost surely to s*)(¢;6), for every 0, k =0, 1, 2. Define
Y, (0) =n! Zn: /O ' W (t) [(0 — 00)Xi(t) — log{ S (t;0) /S (t; 60)}] dN;(t)
i=1

and

Y(O)=E {/OTw(t) (0 — 0p) X1 (1) — log{s O (t;0) /5 (t;00)}] dN1 (1) | -
We can see that Y,,(#) converges almost surely to Y(6), for every 6 and

dY,,(0)/00 = n~'U(6; N).
Note that

0*Y,,(0) /0006

nooar _ n N,
-ty [Twsoesconix) —X““)”@d[ S (ﬂ]

= —1219(9)

is negative semidefinite. Thus, Y,,(#) is concave, which implies that the convergence
of Y,,(0) to Y () is uniform on any compact set of  (Rockafellar, 1970, Th 10.8). In

particular, letting A.(0y) = {0 :]| 0 — 6y ||< £}, we have

SWPge A.(g0) || Yn(0) = V(0) [[— 0 (4.3)
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almost surely. It is easy to show that 0)(6y)/00 = 0 and

0*V(00)/0000" = —Ay(6y),

where Ay(6y) is positive definite (condition C.5). Thus )Y(f) has a unique maxi-
mizer 6.

In particular, supgesa, )V (0) < V(0o), where

OA(0) ={0:]| 6 — 0y ||= <}

This fact, together with (4.3) implies that Y,,(0) < Y,,(6) for all # € 0.A.(6y) and
all large n. Therefore, there must be a maximizer of Y,,(0), i.e., a solution to
3Y,(0)/00 = 0, say 0, in the interior of A (0o).

On the other hand, 9?Y,,(0)/00060" converges almost surely to 92)(6y)/06006'.
This along with the fact that 9°Y,,(0)/0006'00" is bounded ensures existence of ¢,
such that 9?Y,,(0)/0000" is negative definitive for § € A.(6y), when n is large
enough. Thus the fact that 82Y,,(6)/0000' is negative definitive implies that 6 is
the unique global maximizer of Y, (#) in A(fy), i.e., the unique solution to U (#; N) =
0.

Finally, since € can be chosen arbitrarily small, 6 must converge to 6, almost
surely, as n — oo.

Since ¥ is consistent as in Lin et al. (2000), then B=0- 4 is a consistent

estimator of .

A consistent Aalen-Breslow-type estimator for ¢g(¢) can be obtained as fol-
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lows,

g g [ D dN(s)

ity = i) = [ ZafRE e

To establish the asymptotic normality of B , define

M (t; ) / &(s) exp(X}(s)0)deo(s),
NE(t:4) = / £:(s) exp{X!(s)7}dAo(s).

~

Ag = Ag(0) =" Z /OT W ()& (1) exp(X(1)0) X (1) — X (¢ 0)]**ddo (1),

~

A=A (5) =nt Z /OT{Xz‘(t) X (t;4) 1226 (t) exp{X[(t)7 Ao (1),

d= At [ WOX() — X(5:0)]dNL (5 ),
b= A [ [Xu(t) — X(6: AN (1),

Y

>

and él = CAll — bl

Theorem 4.2 (Asymptotic normality of (). Under conditions (C.1 — C.5),
nl/Q(B — Bo) is asymptotically zero-mean normal, with covariance matriz Yz =
E[c?], which can be consistently estimated by

n
—1 ®2
’L )
i=1

25 =n
where ¢y is given in the proof of this theorem.

Proof of Theorem 4.2.

Notice that

- /0 CWE{XA(t) — X (8 0) AN (),
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where

V(10 /@ ) exp(X,(1)0)do(s).

Similar to the arguments of Lin and Wei (1989), we can show that
— Jo

By the Taylor expansion,

n'’2(6 — 6,)
- [_nlazf(e; N) /39‘9_%] B [n’mU((‘)g; M| + 0,(1)
= Ay(0 1/22/ Wt — x(t;00) }dM;(t; 60) + 0,(1)

n

=n /2 Z a; + o,(1).

i=1

By (A.5) of Lin et al. (2000),

n'2(§ —y9) = 1/22/ {Xi(t) = x(t;70) FM;(t; 0) + 0p(1)
= n—l/QZbi+op(1)

where A, (7o) is given in (C.5) and

Thus,
n'?( — By) = n/? ch- + 0,(1)
i=1
where ¢; = a; — b;,2 = 1,--- ,n. Then, by the multivariate central limit theorem,
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we conclude that n'/? (B — Bo) is asymptotically zero-mean normal with covariance
matrix Y5 = E[c]?].

Next, we’ll verify that >3 can be consistently estimated by f]g as defined in
Theorem 4.2.

By the uniform strong law of large numbers (Pollard, 1990, p. 4), n=* Y27, Ny(t)

converges almost surely to E{Ny(¢)} uniformly in ¢ and S©(¢;§) converges almost

surely to s (¢; ) uniformly in ¢ and 6. This entails the uniform convergence of

[T, ),
0

bo(t;0) = o nSO(s;0) s (s;0)

under models (4.1) and (4.2). The derivative of ¢y(t;6) with respect to 0 is uni-
formly bounded in t for all large n and 6 in a bounded region. Therefore, the
strong consistency of @ implies that Qgg(t) = éo(t;é) converges almost surely to
¢o(t) uniformly in .

Since we have shown that Ag(f,) converges almost surely to Ag(f), then by
the strong consistency of  and the continuity of Ag(') with respect to 6, we can
obtain the almost surely convergence of Ag(6) to A(6y). Then, @; is the consistent
estimator of q;.

According to the argument in the A.3 of Lin et al. (2000), we can see that

b; is a consistent estimator for b;, and thus ¢; is consistent, which ensures the

consistency of f]g. This completes the proof.
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4.5 Simulation Study

We conducted Monte Carlo simulation studies to evaluate the finite-sample
properties of the proposed estimators. To generate the simulated data, we first gen-
erated z; from the gamma distribution with mean 1 and variance o2, and let g(z;) =
2&. We assume that the time-dependent covariate x;(t) takes the form w;log(t),
where u; has a uniform distribution over [0, 0.5], and the follow-up times C;’s were
generated from the uniform distribution over (7/2,7) with 7 = 18. Here the sym-
bol of o characterizes the relationship between the observation process and the
recurrent event process. When a > 0, a subject with more frequent observations
would have a higher occurrence rate of the recurrent event and the two processes
are positively correlated; when o = 0, the two processes have no correlation given
the covariates; when o < 0, a subject with more frequent observations would have
a lower occurrence rate of the recurrent event and the two processes are negatively
correlated.

For observation process, we assume that H; is a homogeneous Poisson process
with A\o(t) = 1 . Then, given x;,C;, z;, K = &(C;)H;(C;), the total number of

real observation times for subjects i, follows the Poisson distribution with mean

C; C%"YOJrl
Ao (Cy | x4, 2 :/ z; expix;(t Ao(t)dt = z;———,
o(Ci | ) i p{zi(t)70}Ao(t) |
i = 1,---,n. In this case, the observation times (Tj,---,Tix+) are the or-

der statistics of a random sample of size K; from the uniform distribution
over (0,C;). Finally, given K and (Tjy, - - - , Tix+), we generate N;(7T;;)'s by taking
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Ni(Tig) = Ni(Ta) + {Ni(Ti2) = Ni(Tia)} + -+ + {Ni(Tyy) — Ni(Ty1)}, where

Ni(t) — Ni(s) ~ Poisson(0.5t%g(z;) exp{z;(t)Bo} — 0.55%g(z;) exp{xi(s)5o}),

j=1,--- Kfi=1,---,n.

Set v = 1 and By = —1, 0, 1, representing the different effect of the co-
variate z(¢) on the panel counts. On one hand, in order to check the effect
of the estimators with time-independent covariates, we performed Monte Carlo
studies when the time-independent covariate z; follows a Bernoulli distribution
with success probability 0.5. On the other hand, we also considered the situation
that the observation process H; follows a nonhomogeneous Poisson process with
Xo(t) = (t+1)/(7/2 + 1) to verify that whether the different forms of the observa-
tion process H; will affect the estimation of 5 or not. For each setting, we consider
the sample size n = 100. All the results reported here are based on 500 Monte
Carlo replications using R software.

Tables 4.1 presents the simulation results on estimation of f with time-
independent and time-dependent covariates respectively under the homogeneous
poisson observation process with n = 100, while Table 4.2 presents those under the
nonhomogeneous poisson observation process. The tables include the bias (Bias)
given by the sample means of the point estimates B minus the true values, the
sample standard deviations of the estimates (SSD), the means of the estimated
standard deviations (ESD), and the empirical 95% coverage probabilities (CP)
for 5. These results indicate that the estimate B seems to be unbiased and the

proposed variance estimation procedure provides reasonable estimates. Also the
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results on the empirical coverage probabilities indicate that the normal approxi-
mation seems to be appropriate.

In addition, one can see from Tables 4.1 and 4.2 that the biases of the es-
timators of 8, the SSD and ESD of the estimators of § with time-independent
covariates are smaller than those with time-dependent covariates, which means
that estimators with time-independent covariates are more precise and more stable
than those with time-dependent covariates since there are more nondeterminacy
with the time-varying covariates. Furthermore, one can see that the effect of the
estimators with time-dependent covariates worsens rapidly as the variance of the
frailty increases as discussed in Lin et al. (2000).

Table 4.3 shows the results of the estimators of § under the homogeneous
and nonhomogeneous poisson observation process respectively with n = 200 and
time-independent covariates. Compared with the corresponding results in Tables
4.1 and 4.2, we can see that the SSD and ESD of the estimators decreases when
the sample size increases. As shown in Tables 4.1 and 4.2, the variance seems
underestimated; a possible reason is that the simulated data were generated from
the joint model including random effects, and the estimating equation only involves
the means of random effects. The results in Table 4.3 indicate that this does not

seem to be a problem for large sample size.
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Table 4.1. Estimation of § with time-independent and time-dependent covariates
respectively and n = 100 under the homogeneous Poisson observation process

a = —0.5: H and N are negatively correlated
Bo 1 0 -1 1 0 -1

Time-indep covariates Time-dep covariates
Bias, 0.0022 -0.0040 0.0021 -0.0339 -0.0222 -0.0293
SSD  0.0746  0.0775  0.1031 0.1226  0.1079  0.1262
ESD  0.0738 0.0744  0.0963 0.1148 0.1044  0.1247
CP 0.9380  0.9300  0.9260 0.9100 0.9440  0.9480

a = 0: H and N have no correlation

Bo 1 0 -1 1 0 -1

Time-indep covariates Time-dep covariates
Bias; 0.0002 0.0048  0.0016 -0.0292 -0.0239 -0.0207
SSD  0.0614  0.0665  0.0714 0.1117 0.0843  0.1103
ESD  0.0605 0.0622  0.0668 0.1008 0.0801  0.1012
Cp 0.9380 0.9160 0.9220 0.9000 0.9280  0.9360

a = 0.5: H and N are positively correlated
Bo 1 0 -1 1 0 -1

Time-indep covariates Time-dep covariates
Bias; -0.0039 0.0035 -0.0051 -0.0249 -0.0321 - 0.0239
SSD  0.1006  0.0991  0.0800 0.1791  0.1354  0.1473
ESD  0.0927 0.0932 0.0793 0.1649 0.1234  0.1379
CP 0.9280 0.9280 0.9340 0.9160 0.9100  0.9360
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Table 4.2. Estimation of § with time-independent and time-dependent covariates
respectively and n = 100 under the nonhomogeneous Poisson observation process

a = —0.5: H and N are negatively correlated
Bo 1 0 -1 1 0 -1

Time-indep covariates Time-dep covariates
Bias; 0.0036 0.0004  0.0062 -0.0305 -0.0411 -0.0262
SSD  0.0811 0.0798  0.0844 0.1232  0.1253  0.1395
ESD  0.0777 0.0786  0.0833 0.1202 0.1176  0.1324
CP 0.9500 0.9260  0.9240 0.9240  0.9200  0.9320

a =0: H and N have no correlation

B 1 0 1 1 0 1

time-indep covariates time-dep covariates
Bias; 0.0060 0.0025  0.0049 -0.0324 -0.0337 -0.0315
SSD  0.0669 0.0714  0.0746 0.1138  0.0905 0.1113
ESD  0.0638 0.0657 0.0706 0.1041 0.0814  0.1065
CPp 0.9280 0.9240 0.9280 0.9160 0.9080  0.9120

a = 0.5: H and N are positively correlated
Bo 1 0 -1 1 0 -1

Time-indep covariates Time-dep covariates
Bias; 0.0072 -0.0021 -0.0047 -0.0349 -0.0330 - 0.0290
SSD  0.1011  0.0995 0.1161 0.1847 0.1452  0.1611
ESD  0.0974 0.0953 0.1022 0.1642 0.1281  0.1412
CP 0.9380 0.9280 0.9160 0.8740  0.8900  0.9220
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Table 4.3. Estimation of 5 under the homogeneous and nonhomogeneous Poisson
observation process respectively with n=200 and time-independent covariates

a = —0.5: H and N are negatively correlated
Bo 1 0 -1 1 0 -1

Homogeneous Nonhomogeneous
Bias; 0.0001 0.00391 0.0042 0.0080 0.0048 0.0028
SSD  0.0553  0.0527  0.0558 0.0555 0.0564 0.0585
ESD  0.0525 0.0534  0.0562 0.0554 0.0562 0.0591
CP 0.9460  0.9440 0.9420 0.9420 0.9500 0.9540

i

a = 0: H and N have no correlation

Bo 1 0 -1 1 0 -1

Homogeneous Nonhomogeneous
Bias; 0.0009 -0.0004 0.0002 0.0043 0.0008 -0.0005
SSD  0.0449  0.0471  0.0502 0.0468 0.0483 0.0507
ESD  0.0436  0.0451  0.0486 0.0459 0.0472 0.0513
CPp 0.9440  0.9360  0.9420 0.9380 0.9440 0.9440

=

a = 0.5: H and N are positively correlated
Bo 1 0 -1 1 0 -1

Homogeneous Nonhomogeneous
Bias; -0.0023 0.0078 -0.0007 0.0057 0.0049 0.0056
SSD  0.0703  0.0766  0.0755 0.0747 0.0744  0.0775
ESD  0.0667 0.0684 0.0711 0.0722 0.0722 0.0749
CP 0.9420 0.9120  0.9380 0.9320 0.9440 0.9420
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4.6 An Application

This section presents an analysis of the bladder cancer data by applying our
proposed methods. There were 121 subjects with superficial bladder tumors ran-
domized into one of three treatment groups: placebo, thiotepa, and pyridoxine. In
the following, we restrict our attention to the placebo and thiotepa groups with re-
spective sizes of 47 and 38 as it has been shown that the pyridoxine treatment had
no effect on the recurrence of the bladder tumors (Zhang, 2002). For each patient,
the observed information includes times when he or she made clinical visits and
the numbers of recurrent tumors between clinical visits. Two baseline covariates
were observed and they are the number of initial tumors and the size of the largest
initial tumor.

To analysis the data, for patient 7, define x;; to be equal to 1 if the ith patient
was given the thiotepa treatment and 0 otherwise, ;5 to be the number of initial
tumors and x;3 to be the size of the largest initial tumor, ¢ = 1,--- ,85. Assume
that the occurrence process of the bladder tumors and the clinical visit process can
be described by joint models (4.1) and (4.2). Let N;(-) represent the accumulated
new tumor numbers of patient ¢ over study period. We took the last visit time of
the subject to approximate C; in the analysis.

The application of the estimation procedure proposed in the previous sections
gave 41 = 0.5071,%9, = —0.0049,95 = 0.0321,3; = —1.4905, B, = 0.2867, B3 =
—0.0821 with the estimated standard errors being 0.1175, 0.0343, 0.0359, 0.3287,
0.0615 and 0.1056, which correspond to p-values of 1.5905e-05, 0.8864, 0.3712, 5.7732¢-
06, 3.1347e-06 and 0.4369, respectively based on the asymptotic results of the
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estimators. Here v, and 1, 7o and S, and 3 and (3 represent regression coef-
ficients corresponding to the treatment indicator, the number of initial tumors,
and the size of the largest initial tumor, respectively. These results indicate that
the thiotepa treatment significantly reduces the occurrence rate of the bladder
tumors and the number of initial tumors has a significant positive effect on the
tumor recurrence rate but no significant effect on the visit process. However, both
the occurrence rate of the bladder tumors and the visit times do not seem to be
significantly related to the size of the largest initial tumor. These conclusions are
consistent with the analysis results presented in Sun and Wei (2000), Hu et al.
(2003) and Zhao and Tong (2011). Furthermore, one can see that our proposed
approach yields the smallest standard deviations except that the standard devi-
ation of Bg is slightly higher than that of Zhao and Tong (2011), which suggests

that our approach works well in applications.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In Chapter 2, for the statistical analysis of longitudinal data, we have pro-
posed a new semiparametric model for the situations where the observation times
may be correlated with the response process even given the covariates, including
Sun et al. (2005)’s conditional model as a special case. The new model allows
for the interaction between the observation history and some components of the
covariates and is different from Sun et al. (2007)’s and Liang et al. (2009)’s joint
models through latent variables to characterize the correlation between the re-
sponse process and the observation times. For inference about model parameters,
a spline-based least square estimation procedure has been proposed. Another key
difference between the approach developed here and those presented in Sun et al.
(2005), Sun et al. (2007) and Liang et al. (2009) is that the patterns of the obser-
vation times are left arbitrary in our method, whereas their estimation procedures
rely on the model specification for observation processes. As demonstrated in the
simulation analysis, the proposed approaches are more flexible and robust.

Time-varying coefficient models with longitudinal data have been considered
by many authors, such as Wu et al. (1998), Hoover et al. (1998), and Lin and Ying
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(2001) among others. Motivated by these models, we can also extend our model

to a class of conditional time-varying coefficient models as follows:

E{Y;()1Xi, Wi, Fiy = po(t) + B(t) X + aft) h(Fi, Wy).

For inference about the above model, B-spline function approximations can be
used to estimate the time-varying coefficients and the smooth baseline mean func-
tion simultaneously, and then the asymptotic properties of spline-based estimators
could be established by using the similar arguments.

Chapter 3 considered a marginal conditional model for the underlying recur-
rent event process of the panel count data which allows for the interaction between
the informative observation times and covariates, leaving the distributional form
of the observation process to be arbitrary and proposed to use the easy imple-
mented B-splines based method to estimate the regression parameters and the
unknown smooth monotone function in the model simultaneously. As demon-
strated by simulation and application that our proposed model and procedure are
more flexible, robust and applicative since they can overcome the under-dispersion
or over-dispersion problem resulting from the model specification for the observa-
tion process. We established the asymptotical results including consistency, rate
of convergence for the estimators of the regression parameters and the unknown
monotone function and asymptotic normality for the estimators of the regression
parameters in Section 3.4. However, the asymptotic normality for the unknown
function has not been obtained, which may be reserved as a problem to be solved

in the future.
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In some longitudinal studies, informative observation times and a dependent
terminal event such as death that stops the follow-up may simultaneously exist.
For example, in the bladder cancer study we have mentioned in Section 1.1.1, fur-
ther observation of a patient during a particular clinic visit would be terminated
probably because of his/her clinically significant improvement in the disease symp-
toms. If a patient who is very prone to superficial bladder tumors will visit the
doctors more often to install the treatment (thiotepa) in the bladder, thus he/she
would take longer than usual time to termination. Motivated by this fact, it is
desirable to investigate the analysis of panel count data with informative obser-
vation times and dependent termination such as Liu et al. (2008) wherein a joint
random effects model of longitudinal data with informative observation times and
a dependent terminal event was considered.

Motivated by Li et al. (2010), our proposed models can also be extended to a

class of transformation models as follows,

E{N;(t)|Xi, Wi, Fiu} = g{po(t) + X, + ' h(Fau, Wi) },

with a given monotone smooth function g. Then for inference of the models,
the same algorithm as in Chapter 3 can be used to obtain the estimators for the
regression parameters § and « and B-splines approximation with monotone non-
decreasing estimated coefficients for the nonparametric monotone function pg(t),
and the asymptotic properties of the spline-based estimators could be established
by using the similar arguments.

In Chapter 4, we have generalized Zhao and Tong (2011)’s joint modeling
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approach for the analysis of panel count data to the situations where the covariates
are time-dependent and the observation and censoring times are informative. For
estimation of the covariate effect on the underlying recurrent process, we have
developed a novel estimating equation-based procedure, which depends on neither
the form of the link function of the frailty nor the distribution of the frailty, and
established the consistency and asymptotic normality of the resulting estimates.

By using the approach proposed by Huang et al. (2010), one can obtain the
estimators of the parameter v and Ag(-) in model (4.2), which are different from
the approach proposed in Lin et al. (2000). Then, by replacing 4 and 5\0(-) with
those given in Huang et al. (2010), one can get another estimator for 3y, which
is different from our proposed estimator. Thus, it is desirable to compute the
efficiency of these two different estimators.

In practice, it is important to predict the mean of panel counts. However, it is
hard to estimate the baseline mean function po(¢) in the current setting. Further
research is needed to address this issue.

Just as Zhao and Tong (2011) mentioned, the time-dependent frailty, the

non-poisson observation process are also important issues to be studied.

5.2 Further Research

5.2.1 Proportional partial linear intensity model for recurrent event

data

During some relatively long follow-up studies, each individual may experience
the same event repeatedly. The events are called recurrent events in survival anal-
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ysis. One main difference between recurrent event data and panel count data is
that the former posseses a observation process in the whole follow-up, while the
later involves a sequence of consecutive observation. It is natural and convenient
to represent the recurrent event times as a counting process. The most popular
counting-process model is the proportional intensity model studied by Andersen
and Gill (1982). Let N*(¢) denote the number of events that the subjects has
experienced by time ¢, and let X(¢) be a vector of possibly time-dependent co-
variates. The proportional intensity model specifies that the intensity function for

N*(t) associated with X takes the form

A(tIX) = Xo(t) exp{ "X (1)}, (5.1)

where A\o(t) is an unspecified baseline intensity function and /5 is a vector of un-
known regression parameters.

Much research had been studied based on this model, where the covariate
effects on the logarithm of the hazard function are assumed to be linear. However,
true covariate effects may be more complex than the log-linear effect and studying
nonlinear effects is a challenging problem. Huang (1999) considered a partly linear
additive Cox model with right-censored data and proposed the maximum partial
likelihood estimators by using polynomial splines to approximate the nonparamet-
ric component. Fan et al. (2006) extended the proportional hazards model by
adding a nonlinear term in the logarithm of the hazard function for lifetime data
and proposed a local partial-likelihood technique to estimate the nonlinear term

and also established its asymptotic properties. Cai et al. (2007) put forward a par-
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tially linear hazard regression model for multivariate survival data and proposed
a profile pseudo-partial likelihood estimation method under the marginal hazard
model framework. In addition, the additive hazards model and the accelerated
failure time model had been extended by researchers through adding nonlinear
covariate terms, such as Yin et al. (2008), Lu and Zhang (2010), among others.
To our knowledge, no partial linear covariate effect on the logarithm of intensity
function of the recurrent counting process have been considered to handle recur-
rent event data. Thus, we propose a proportional partial linear intensity model as
follows:

X, Z) = Mo(t) exp{B"X(t) + 9(Z(1))}, (5.2)

where g is an unknown smooth function with ¢g(0) = 0, Z is an univariate covariate
whose effects on the logarithm of the intensity function is non-linear.

Recurrent event times are commonly subject to right censoring. Let C' denote
the censoring time. We assume that there are n subjects, and the data consist of
{X:(), Z:(4), N;(+),Yi() },i =1, -+ ,n, where N;(t) = NF(tNC),Y;(t) = 1(C; > t),
and /(-) is the indicator function. Ag(t) = fot Ao(s)ds is the baseline cumulative
intensity function. Let 7 denote the terminal time of the study, we assume that the
conditional probability of C' > ¢ given {X(s), Z(s), N*(s),s € [0, 7]} is noninfor-
mative about (Ao, 5, ¢). In addition, we assume that the conditional distribution
of {X(t), Z(t)} given {X(s), Z(s),N(s),Y (s);s € [0,7]} is noninformative about

()\07679)'

Assume that Z takes values in [a, b], where a and b are finite numbers . Let
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T = {&} ¥, with

a=& = =§ <1 < <Emutl <Emptir1 = = Empru = b,

be a sequence of knots that partition [a, b] into m,,+1 subintervals J; = [§44, §hi1],7 =
0,---,my. Denote by ;7 the class of polynomial splines of order [ > 1 with the
knot sequence Z. For each s € ¥, 7, s is a polynomial of order [ in J; for 0 < ¢ < m,,,
and s is I’ times continuously differentiable on [a, ], for [ > 2, and 0 < ' <[ — 2.
(Schumaker, 1981, p.108, Def 4.1).

For any g € ¥, 7, there exist o, -+, a, such that

g(z) = i: a; By (z),

where {B;;,1 < i < g,} with ¢, = m,, + [ is the B-spline basis functions of U, 7.
(Schumaker, 1981, P.117 Corollary 4.10).

Thus, replacing g(-) by its B-spline approximation in the model (5.2), we have
A(tX, Z) = Xo(t) exp{8"X(t) + a]l B, (Z (1))},

where a,, = (aq, - ,ozqn)T, and Bn(z) = (Byu(z), -+, By(2)T.

) dn

Then, the estimates of the parameters (3, cv,,) are obtained by maximizing the

following log-partial likelihood:

18,00 =3 [ {BTXi0) + al BulZi(0) ~ loginS OB }N(0) (53

where S©(8, a,,t) = ' 321 Vi(t) exp{ 87 X;(t) + ol B, (Z;(t))} and dN;(t) de-

notes the numbers of events in a small time interval [¢,¢ + dt).
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Let G, = (&1, a9, ,d,,)T and 3, be the estimators. Then we denote the
spline estimator of g(-) by §.(-) = 3%, @& Bi(-) = &L B,(-). Our main purpose is
to find out the consistency and convergency of the estimators Bn and §,(+), which

may be verified by using the empirical process theory in Van der Vaart and Wellner

(1996), Huang (1999), Lu et al. (2007) and Lu et al. (2009).

Remark 5.1. Proof of (5.3): According to Cook and Lawless (2007), p.77,

(3.25), the partial likelihood is

o) = T exp { [87 Xi(T3;) + ol Bo(Z:(T)))] }
Hew) }_[1}_[1 Sov Yi(Ty) exp{BTXi(Ty) + ol B (Z(T;))}

= [T TTexe { [ Xu(T) + af Bu(Zi(T3)) | ~ 10g[nS (8, e, Ti)] }

i=1j=1

= Hexp {/OT{BTXZ-(t) +al'B,(Zi(t)) —log[nS© (g, an,t)]}dNi(t)l :

where {T;;,7 =1,--- ,ni;i =1,--- ,n} are the observed event times and n; is the

number of observed events on the ith subject.

5.2.2 New nonparametric tests for panel count data

In the analysis of panel count data, we assume that each subject in the study
gives rise to a point process N (t), denoting the total number of occurrences of the
event of interest up to time ¢, and the data consist of independent samples of panel
count data randomly drawn from k(k > 2) populations or groups. A;(t) = E(N(t))
is the mean function of N(t) corresponding to the Ith group for [ = 1,--- k.
As noted in Section 1.2.2, many researchers have studied the testing problem on
the hypothesis Hy : Ai(t) = --+ = Ag(t), such as Thall and Lachin (1988), Sun
and Fang (2003), Zhang (2006), Park et al. (2007), and Balakrishnan and Zhao
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(2009, 2010, 2011). Among them, Sun and Fang (2003), Park et al. (2007), and
Balakrishnan and Zhao (2011) proposed the tests based on the isotonic regression
estimator of the mean functions (Sun and Kalbleisch, 1995; Wellner and Zhang,
2000), which will be recounted here for our use.

Suppose there are n independent subjects and n; in the (th group with ny +
-+ ++ny = n. Let N;(t) denote the point process arising from subjecti (i = 1,--+ ,n
and each subject be observed only at discrete time points 0 < 75 ; < -+ < T} g,.
Let n; ; = N;(7; ;) be the observed value of N; at T} ;,7 =1,--- , K;,i=1,--- ,n.

For simplicity, assume that Hy is true, and let Ay(t) denote the common mean
function of N;(t)’s. Further, let s, -+ s, denote the ordered distinct observation
times in the set {7;; : j =1,--- ,K;,1 =1,--- ,n} and w; and 7, be the number
and mean value, respectively, of observations made at time s;,l = 1,--- ,m. Then
the isotonic regression estimator, denoted by An(t), is defined as a nondecreasing

step function with possible jumps at the s;’s, and is given by

S —_ S _
Ao(s) = masxmin 222220 i e S @

,m
r<l s>l EZ:er s>l r<l Eizrwv ) y 11y

the isotonic regression of the n;’s with weights w;’s (Robertson et al., 1988).
Let Anl denote the isotonic regression estimate of A; based on samples from
all the subjects in the [th group. To test the hypothesis Hy, one of the two classes

of test statistics given by Balakrishnan and Zhao (2011) is as follows:

vo — m / WO (A, () — A (DYCA (D), 1=2, k,  (5.4)
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where 7 is the largest observation time, Wél) (t) are bounded weight processes, and
1 o
Galt) =~ ZZI{T”' < t},
i=1 j=1
where [(+) is the indicator function.

In contrast to the above hypothesis and the corresponding tests, Cook et al.
(1996) mentioned that tests regarding the performance of certain drug combina-
tions versus others are interesting in trials with multiple arms and multiple drug
therapies. For example, if one treatment arm consists of a combination therapy of
drugs given in other arms, one might plan to investigate if the treatments prove
more beneficial in combination than individually. In such a situation, one might

specify a hypothesis of the form
Hy: LTA(t) =0, t >0, (5.5)

where L = (Ly,- -, L)T is a fixed vector of coefficients forming the contrast, and
A(t) = (A(t), - M)

For this hypothesis, we can construct more general statistics of the form

U,=+n /0 ' W,(LTA(t)dG, (1), (5.6)

~

where A(t) = (A, (1), , A, ()7

Since the above statistics are a generalization of the statistics

i / W) (A, (1) — Ry (1)}dGa(t).

given in Balakrishnan and Zhao (2011) for the special case k = 2, proposed for
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testing Hy : A1(t) = As(t) t > 0, we could obtain the asymptotic distribution of

U, similar to V;{* in Balakrishnan and Zhao (2011).
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Appendix A. B-Splines

B-splines, firstly introduced by de Boor (1978), are a popular type of poly-
nominal splines in statistical applications, mainly because of their flexibility and
numerical properties.

Define P, as the space of polynomials of order [ (degree (I—1)), then the basis

functions span P; are {1,¢,t2,--- #7!} and an element in P, can be written as

l

p(t) =a1+ast+ -+ Cthl_l _ ijl ajtj—l_

For a finite closed interval [a, b], let T = {t;}7"" %, with

a=t ==t <t < <t < tmrig1 = = bt = b

be a sequence of knots that partition [a, b] into m,,+1 subintervals I; = [t;4;, ti1iv1),
fori =0,1,---,m,. Denote by ¥, 7 the class of polynominal splines of order [ > 1

with the knot sequence Z, i. e.,

U7 ={s 601_2[a,b] forl>2:s|, €P,i=0,1,---,m,},

where C'~2[a,b] = {f : the (I — 2)th derivative f!~?) is continuous on [a,b]}.
A spline for [ = 4 is a piecewise-cubic polynomial with continuous second-order
derivative. As a special case, the spline with [ = 1 is a step function which is
discontinuous at each knot.

In fact, the class ¥;7 is linearly spanned by the B-spline basis functions
{Ba,1 < i < ¢,}; that is, for any s € ¥, 7, there exist ¢y,---,¢,, such that
s(t) =320 ¢;By(t) (Schumaker, 1981), where ¢, = m,, + [ is the number of basis
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functions. An recursive relation that is very useful in practice (Schumaker, 1981)

can be summarized as follows:

Firstly,
L, b€ [t tin)
0, otherwise
fort=20,1,--- ,m, + 2l — 1, then
t—t; tig —t
By(t) = —————Biq-1(t) + +—B(i+1)(l—1)(t)>
livi-1 — 1 Livi — lita

fori=1,---,m, + 2l — 1 = g, The fact that B;(t) > 0 only when ¢; <t < t;1,,
and is zero otherwise is a very important property. Furthermore, another property,
the variation-diminishing property (Schumaker, 1981, page 117) is

qn

S” (Z c,;Bil(t)> < S (e, ,¢q,), anycp,---,cq, notall 0,

i=1
where S™(v) is the number of sign changes in the sequence vy, -+, v, (zeros are
ignored) with v = (v, ,v,). When the unknown function is nonnegative or
monotone, this property is very practical when using the nonnegative or monotone
B-splines estimator, since the B-splines approximation y i", ¢; B;(t) possesses the
same nonnegative and monotonicity as ¢;,2 = 1,---,q,, which can be obtained
according to Examples 4.74, 4.75, 4.76 in Schumaker (1981).

Furthermore, a monotone I-splines are proposed by Ramsay (1988), which can

be defined as

Iil(t) = /t Bil(s)ds,

then these I-splines have degree of [. For knots Z, the I-splines can be obtain in
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the more convenient forms

;

0, i > 7,
IZl(t) - H—Ll Zinzl (tm+l+1 - tm)Bm(l+1) (t)a j -1 +1 < l < ja
1, i<j—1+1.

for tj <t< tj—i-l'
Finally, here we’ll summarize two useful lemmas used in the proof of consis-

tency and rate of convergence in Chapters 2 and 3, which are the following Lemma

5 in Stone (1985) and Lemma A.2 in Huang (1999).

Lemma 5 in Stone (1985) For each h € F,, and n > 1, there is an s € ¥,z
with

Is = hllec < Mmy,

here M is some fized positive constant, m,, is the number of interior knots and F,

is defined in Section 2.

Lemma A.2 in Huang (1999) For anyn > 0, let

@n = {xlﬁ + ¢ : HB - ﬁOH S 777¢ € \Ijl,Z7 H¢ - (bOHOO S 77}

Then for any e < n,

log Nﬂ (6, O,, L2<P)) < cGn log(ﬁ/ﬁ)-

where g, = my, + 1 is the number of spline basis functions and Npj(e, Oy, La(P)) is

the bracketing number we will introduce in Appendiz C.
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Appendix B. Generalized Gradient Projected Algorithm

Consider the problem (A1)

Maximize : [(0)
Subject to : alf =b;,i € I, alf < b;,i € Iy,

where [(0) is a sufficiently smooth objective function, a; is a given p x 1 vector, b;
is a given scalar, and equality constraints and inequality constraints are indexed
by index sets I; and I, respectively.

A well-known gradient projection algorithm was firstly proposed by Rosen
(1960) to optimizing such a nonlinear programming problem subject to linear con-
straints. Rosen’s algorithm is based on the ordinary Fuclidian metric. Jamshidian
(2004) developed a general algorithm based on the generalized Euclidian metric
|z|lw = 2’Wx, where W is a positive matrix and can vary from iteration to itera-
tion. Here we’ll sketch Jamshidian’s generalized gradient projection algorithm as
follows.

A constraints is said to be active if it holds with equality. Let A be an initial

working set of active constraints, that is,

A == {Z S ]1 U 12|a;9 = bl} 2 117

and let A be an m X p working matrix whose rows consist of a’ for all i € A,
b denote the corresponding vector of b;’'s. Rosen’s gradient projection method
is based on projecting the search direction into the subspace tangent to the ac-
tive constraints. Active set method is a procedure that determines optimal ac-
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tive constraints by moving among several working sets of potential optimal active
constraints (Fletcher, 1987). Jamshidian (2004) proposed a gradient projection -
active set algorithm.

The generalized gradient of [ in the metric ||- ||y is given by g(0) = W—1g(9) =
W=IVI(0). Start from a feasible initial point 6, € Q = {0 € RP|Af = b}, then get
a new point 0, = 0, + d, through a direction d. Then §, € Q <= de N ={d e
M|Ad = 0} with M be defined as the p dimensional Euclidean space with a norm
defined by ||z|lw = 2/Wax and N is called the space of feasible space. Gradient
projection method generates a sequence of feasible points by moving along feasible
directions that converges to a solution of (Al). The feasible direction at a point
0, € Q is obtained by projecting §(6,) onto N in the metric || |ly. Some reduction

as in Jamshidian (2004, p.139-140) can result in that

A= (AW A) 1 44(6,),

and

d=1—WAAWA) 1 45(0,),

where [ is the identity matrix. And it can verify that d is a generalized gradient

of [ in A in the metric of || - ||y since

VI(VE) = (V0,9(0))
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where Py = I — WA (AW 1A A is idempotent and self-adjoint and a pro-
jection onto N in the metric of || - ||y. Then if d # 0, a small enough step from 6,
in the direction of d results in a new feasible point 6, such that [(6,) > [(6,). In

fact, d is a steepest ascent direction with respect to [ since

(d,g) = (d, 9)w
=(d,g—d+d)w
= {d, g — d)yw + (d, d)w
> (Pwg. (I = Pw)g)w
> (Pw(I = Pw)g, g)w

> 0,

where (u,v)w = «'Wo. Then the largest step length oy is obtained by

arg maxo {6, + ad € Q}, and a new point 6, is obtained by performing the line
search arg maxo<a<a, {{(6,+ad)}, and then add indexes of newly active constraints,
if any, to the working set A, and A and Q are redefined accordingly. If d = 0,
and all components of A\ are nonnegative, then 6, satisfies the first order necessary
Karush-Kuhn-Tucker Conditions (Luenberger, 1984, Chap. 2) which can be stated

as the existence of a vector A such that
(1) A>0;
(2) \W1(A0, —b) = 0;
(3) §(6,) — WA =0

for being a constrained optimum. On the other hand, if d = 0 and at least one
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component of A is negative, then drop a constraint corresponding to this negative
A; from the working set, and calculate a new nonzero direction d which leads to a
new feasible improved point. The detailed gradient projection-active set algorithm

are summarized in Algorithm 1,

Algorithm 1 The Gradient Projection - Active Set Algorithm

Start with an initial point 0, that satisfies A8 = b, and cycle through the following
steps until convergence:

S1: Compute
d=(I-WAT(AWTAT)TA) WIVI(0),

when there is no active constraint, take d = W~'VI(9).

S2: If d = 0, compute the Lagrange multiplier A = (AW 1A")"1Ag(0,). Let \;
denote the ith component of A.

a . If \; >0 for all 1 € AN I, Stop. The current point satisfies the
Karush-Kuhn-Tucker Conditions.

b . If there is at least one negative \; for i € AN I, determine the index
corresponding to the smallest such )\;, and delete this index from A.
Modify A and b, by dropping a row from each accordingly. and go to
S1.

S3: If d # 0, obtain oy = argmax,{alf,. + ad € Q}. Then search for ay =
arg maXoca<a, {10 +ad)}. Set = f+ayd. Add indexes of new coordinates,
if any, of 6 that are newly on the boundary to the working set A. Modify A
and b, by adding new rows, accordingly.

S4: Replace 6, by 6 and go to S1.

As said in Jamshidian (2004), the sufficient condition for 0 to be a local
maximum of /(f) in Q is that H(6), the Hessian of () at 6, be negative definite
on N. Theoretically, gradient projection algorithm converges from almost any
arbitrary feasible point and for any positive definite WW. The choice of W, however,
is important because the local rate of convergence of gradient projection algorithm
depends on the ratio of the smallest to the largest eigenvalue of the Hessian of 0
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in the metric of || - ||y, i.e. WLH(#), restricted to N'. Accurately, the closer the

ratio to one, the faster the rate of convergence.

Appendix C. Empirical Process

Empirical process technique has become an increasingly important tool for
statistical inference in semiparametric or nonparametric models, which is also our
main theoretical background for inference of the asymptotic properties of our es-

timators. Thus we will sketch some commonly used conclusions here.

Glivenko-Cantelli and Donsker Classes

An empirical process is a stochastic process based on a random sample. Con-
sider a random sample Xy, ---, X, from a probability measure P on an arbitrary
measure space (X, A). The empirical measure is defined as P, = n='>."  0x,,
where ¢, is the measure which assigns mass 1 at x and zero elsewhere. Denote
P,f=n"1>", f(X;) and Pf = [ fdP, for a measurable function f: X — R.

Then an empirical process

Guf = VA(Puf — Pf) = % S IA(X) — Bef(X0)

for any class F of measurable functions f : X — R. The envelope function
F : X — R of the class F is the function such that |f(z)| < F(z) < oo for every
re X and f € F.

By the law of large numbers and the central limit theorem, for each f € F,

P, f 2% Pf and G, f > N(0, P(f — Pf)?).
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provided Pf exists and Pf? < oo, respectively, where 4 means converge in dis-
tribution.

When investigating the properties, the uniform convergence and asymptotic
normality are more desirable, which can be defined as follows. A class F of mea-

surable functions f: X — R is said to be a P-Glivenko-Cantelli class, if

sup [P, f — Pf| == 0.
feFr

And F is said to be a P-Donsker class, if the process {G, f : f € F} converges
in distribution to a tight limit processes in (*°(F), which is the space of bounded
functionals on F under the supermum norm || f|| = sup,cz | f(h)].

Whether a class of functions is a Glivenko-Cantelli or a Donsker class (here-
after, we’ll drop the P if the context is clear) is mainly determined by the “size”
of the class. A relatively simple way to measure the size of a class is in terms
of entropy including entropy with bracketing and entropy with covering. We will
mainly introduce the entropy with the L,.(P)-norm, ||f|l.p = ([ |f["dP)"/".

We need to introduce the e-bracket in L,.(P) firstly. A pair of functions {l/,u} €
L,(P) is an e-bracket if they are satisfying P(I(X) < w(X)) =1 and ||l —ul|, p < €.
A function f € F lies in the bracket {l,u} if P(I(X) < f(X) < u(X)) = 1. Then
the bracketing number Ny(e, F, L,(P)) be defined as the minimum number of e-
brackets in L,(P) needed to cover F. The logarithm of the bracketing number is
the entropy with bracketing. Here it is required that both [ and u are of finite norm

in terms of || - ||, p but need not necessarily belong to F. And the covering number

N(e, F, L.(P)) is the minimum number of L,(P) e-balls needed to cover F, where
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an L, (P) e-ball around a function g € L, (P) is theset {h € L.(P) : ||h—g||,p < €}.
Similarly, the centers of the balls to cover F are not necessary to belong to F.

The entropy (without bracketing) is the logarithm of the covering number.

Remark C.1 If f is in the e-bracket {l,u}, then it is in the €/2-ball round midpoint

(I +w)/2. Thus it follows that

N(e/2, F, L.(P)) < Ny(e, F, L,(P)).

Glivenko-Cantelli and Donsker Theorems

In the following, we’ll sketch two important theorems in modern empirical
process.

Firstly, the simplest Glivenko-Cantelli theorem based on entropy with brack-
eting is given in Van der Vaart and Wellner (1996, Th 2.4.1), which is presented

as follows,

Theorem C.2 (Glivenko-Cantelli Theorem) Let F be a class of measurable
functions such that Ny(e, F, L1(P)) < oo for every e > 0. Then F is Glivenko-
Cantells.

Donsker theorems based on entropy with bracketing require more stringent
conditions on the number of brackets needed to cover F. For most classes of
interest, the entropy goes to infinity as € | 0. The sufficient condition for a class

to be a Donsker is that the bracketing integral

é
Jy(8, F, L, (P)) = /0 Vog Ny(€, F, L,(P))de
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needs to be bounded for r = 2 and J = oo, which can be derived from Van der

Vaart and Wellner (1996, Th 2.5.2), we’ll summarize it here.

Theorem C.3 (Donsker Theorem) Let F be a class of measurable functions
with Jpy(oo, F, Ly(P)) < oco. Then F is Donsker.

The following theorem indicate that the class of uniformly bounded, monotone
functions on the real line is Donsker, which is the Van der Vaart and Wellner (1996,

Th 2.7.5)

Class of bounded monotone functions The F of monotone functions f :
R — [0, 1] satisfies
1
logNH(E>FaL7”(P)) < K( )7

€
for every probability measure P, every r > 1, and a constant K that depends on r

only.

M Estimators : Rate of Convergence

A M-estimator 6, is the approximate maximum of a data-dependent function
0 — M., (0) with 6 belongs to a semimetric space © with a semimetric d.

The rate of convergence for a estimator 0, is T, if Tn(én —0p) = O,(1).

Van der Vaart and Wellner (1996, Th 3.2.5) is commonly used to obtain the
rate of convergence for the infinite-dimensional parametric estimators, which is also
used in this thesis to deduce the rate of convergence for the regression parameters

and B-splines based nonparametric estimators, thus we will summarize it here.
Theorem C.4 (Rate of Convergence) Let M, be stochastic processes indexed
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by a semimetric space ©, and M : © — R a determinstic function, such that for

every 0 in a neighborhood of 6y,

M(0) — M(6o) < —d*(0,6).

Suppose that, for every n and sufficiently small , the centered process M,, — M

satisfies

dn(0)
su " — 0) — (M, — 0.)| < ,
Ed(e,eol))«s | (ML, — MI)(6) — (ML, — M)(6,,)]| NG

for function ¢,, such that 6 — ¢,(0)/0% is decreasing for some o < 2 (not

depending on n). Let

1
P2ou(—) <V, for everyn.
T

n

If the sequence 0, satisfies M, () > M,,(6o) —O,(r2) and converges in probability
to 6y, then Tnd(én,Qo) = O,(1). If the displayed conditions are valid for every 0
and 6, then the condition that 0, is consistent is unnecessary.
Note: The notation < means “is bounded above up to a universal constant”.
In the case of i.i.d. data and criterion functions of the form M, (0) = P,,my,
the centered and scaled process /n(M,, — M) = G, my. The second condition of
the theorem involves the suprema of the empirical process indexed by classes of

function

M§ = {mg — My, : d(9,90) < (5}

It is not unreasonable to assume that these suprema are bounded uniformly in n.

This leads to the Van der Vaart and Wellner (1996, Corollary 3.2.6) as follows.
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Corollary 3.2.6 in Van der Vaart and Wellner (1996). In the i.i.d. case

assume that, for every 6 in a neighborhood of 0y,

P(?’FL@ — mgo) < —d2(0, 90)

~

Furthermore, assume that there exists a function ¢ such that § — ¢(85)/6% is

decreasing for some a < 2 and, for every n,

ElGulm; S 0(9)-

If the sequence 0,, satisfies P.my > Pnmg, — Op(r,?) and converges in probability
to by, then r,d(0,,00) = O,(1) for every sequense r,, such that r?lgbn(%) < V/n,
for every n.

The following lemma is Van der Vaart and Wellner (1996, Lemma 3.4.2),

which is used in our thesis to prove the rate of convergence.

Lemma C.5 Let F be class of measurable functions such that Pf* < 6% and

| fllooc < M for every f in F. Then

7 Jn(8, F, La(P
ErlGlir S Jy(6, F, La(P)) <1+ 16, F, La(P)) M>,

52 /n

for a constant M, and where Jy(6, F, Lo(P)) = foé V14 Ny(e, F, La(P))de.

Z Estimators : Asymptotic Normality
A Z-estimator 6, is the approximate zero of a data-dependent function W, :
© — L, where O is a subset of a Banach space, and L is another Banach space

and ¥ : © — L is a fixed map.
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If £ is an [*°(H)-space, as can be assumed without loss of generality, the
equation U, (A,) = 0 is equivalent to the collection of (real-valued) estimating
equations W, (0,)h = 0, when h run through #.

In the case of i.i.d. observations, U, (6)h = P,y and W(0)h = Py, for
given measurable functions 1y, indexed by © and an arbitrary index set H. In
this case v/n(V,, — ¥)(0) = {G, g : h € H} is the empirical process indexed by
the class of functions {1y, : h € H}. Then the condition(i) needed for the proof

of Theorem 2.3 and Theroem 3.3 is

V(W = W)(0,) — (U, — W)(6) = 0,(1): (C3)

which can be satisfied under the sufficient conditions in the following Kosorok

(2008, Lemma 13.3).
Lemma C.6 Suppose that the class of functions
{o.n — Yog.n : |10 — 6ol < 0,h € H}
is P-Donsker for some § > 0 and that
sup P(Ypn — oon)* — 0, 0 — 0.

heH

Then, if U, (0,) = 0,(n'/?) and 0,, 2> 0, then (C3) is satisfied.
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Appendix D. The Bootstrap Estimate of Standard Error

The bootstrap was introduced in Efron (1979) as a computer-based method for
estimating the standard error of estimators. The bootstrap estimate of standard
error requires no theretical calculations, and is available no matter how mathe-
matically complicated the estimators may be.

Assume that X7, --- , X, independently sampled from an unknown probability
distribution F, an estimate for the parameter of interest 6§ is 6 = t(X), where

X = (Xi, -+, X,). The standard error of f defined as
se{0; F} = [Varp{t(X)}]'/ (D1)

is a commomly used measure of the accuracy for estimators 0. Genarate the
bootstrap sample of size n, X* = (X7, -+, X*) from the emipirical distribution
F),, which is defined as Fn(x) = %Z;;l I{X; < x}. Then substituting E, for F in

(D1) gives a reasonable estimate of the standard error for §, namely
Seboot{é*} = Se{é*; Fn} = [Varﬁn {t(X*)}]l/2>

where 0* = #(X*). If there is no explicit formula to compute sepoe{0*}, the Monte
Carlo approximation is proposed. That is, generate B independent bootstrap
samples X* ... X* iid. ~ F,. Evaluate 6% = t(X*), b = 1,--- , B. Then
estimate the standard error Se{é; F} by the sample standar deviation of the B

bootstrap samples
B

. 1/2
~ o Nxb o Nk-12
seB—{—B_lz[G 0]} ,

b=1
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where 0% = % Zle é*b, since BIi_r)nOO seg = seboot{é*} and seboot{é*} is a plug-in
estimate for se{f; F'} (The plug-in estimate of a parameter 6 = t(F) is defined to

be 6 = t(F,), Efron and Tibshirani (1993)).

Remark D.1 (1). Another way to say X* = (X7, , X)iid. ~ Fy: XF,--- X"
are a random sample of size n drawn with replacement from the polulation of n
objects X1,---,X,. Here, the points X1, ---,X,, are treated as a population, with
distribution F,. (2). Easy way to implement bootstrap sampling on the computer:

Randomly select integers iy, - -+ ,i,, each of which equals any value of 1,--- . n with

probability 1/n, then X7 = X, -+, X} = X;

in *

Remark D.2 As Efron and Tibshirani (1993) disscussed in Section 0.4, the

number B will ordinarily be in the range 25-200 for estimation a standard error.
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