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Abstract 

 

Direct expansion (DX) air conditioning (A/C) systems have been increasingly used 

over the recent decades in buildings, especially in small to medium scaled buildings. 

This is because they are more energy efficient and more flexible in installation, but 

cost less to own and to maintain, as compared to large chilled water based central 

A/C systems. Conventional DX A/C units equipped with single-speed compressor 

and fan rely on on-off cycling of compressor to maintain the indoor dry-bulb 

temperature, leading to either a space overcooling or an uncontrolled equilibrium 

indoor air humidity, and resulting in a reduced level of thermal comfort for 

occupants and low energy efficiency. With the development of variable-speed drive 

technology, it becomes possible for DX A/C units to have the speeds of their 

compressors and supply fans varied, so as to achieve simultaneous control over both 

indoor air temperature and relative humidity (RH). 

 

On the other hand, artificial neural network (ANN) has been proven to be powerful 

in modeling the dynamic operating performance of a nonlinear multivariable system, 

because ANN has a powerful ability in recognizing accurately the inherent 

relationship between any set of inputs and outputs without requiring a physical 

model. This ability is essentially independent of the system complexity such as 

nonlinearity, multiple variables, coupling, with noise and uncertainty. An ANN-based 

control strategy which could deal with a nonlinear multivariable complex system, 
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such as a DX A/C system, can then be developed. As an intelligent nonlinear 

dynamic control method, an ANN-based control strategy offers a viable solution to 

the control over complex systems.  

 

This Thesis reports on a study of developing a multi-input multi-output (MIMO) 

control strategy that can simultaneously control indoor air temperature and humidity 

by varying speeds of both compressor and supply fan in a DX A/C system, using 

ANN-based modeling and control approaches. The Thesis starts with reporting the 

development of a two-in two-out ANN-based steady-state model for an experimental 

variable speed DX A/C system. The model can be used for simulating the 

steady-state total output cooling capacity (TCC) and Equipment Sensible Heat Ratio 

(SHR) of the DX A/C system under different combinations of compressor and 

supply fan speeds. Extensive experiments were carried out to collect data for ANN 

training and testing, as well as for validating the ANN-based steady-state model 

developed. The ANN-based steady-state model has been validated experimentally by 

comparing the measured results of TCC and SHR using the experimental DX A/C 

system with the predicted results using the ANN-based steady-state model developed. 

The ANN-based model developed can be used to predict the steady-state operating 

performance of the experimental DX A/C system with a higher accuracy. 

 

Secondly, the Thesis presents the development of an ANN-based dynamic model for 

the experimental DX A/C system, linking the indoor air temperature and humidity 
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controlled by the DX A/C system with the variations of compressor and supply fan 

speeds. The ANN-based dynamic model has been validated experimentally by 

comparing the measured results of indoor air dry-bulb and wet-bulb temperatures 

under different compressor speed and/or supply fan speed using the experimental 

DX A/C system, with the predicted results using the ANN-based dynamic model 

developed. The calculated values of average relative error (ARE) and maximum 

relative error (MRE) when experimentally validating the ANN-based dynamic model 

developed indicated the high accuracy of the ANN-based dynamic model developed.  

 

Thirdly, using the ANN-based dynamic model developed, an ANN-based controller 

for controlling simultaneously the indoor air temperature and humidity by varying 

the compressor speed and supply fan speed in a space served by the experimental 

DX A/C system was developed. This ANN-based controller was designed using the 

direct inverse control (DIC) strategy. The controllability tests including command 

following test and disturbance rejection test were carried out using the experimental 

DX A/C system, and the test results showed that the ANN-based controller 

developed was able to track the changes in setpoints and to resist the disturbances, 

with adequate control accuracy and sensitivity. 

 

Finally, to further address the problem of limited controllable range for the 

ANN-based controller, which is common to all controllers developed based on 

system identification, an ANN-based on-line adaptive controller has been developed 
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and is presented. The ANN-based on-line adaptive controller was able to control 

indoor air temperature and humidity simultaneously within the entire expected 

operational range by varying compressor and supply fan speeds. The controllability 

tests for the controller were carried out using also the experimental DX A/C system. 

The test results showed that the ANN-based on-line adaptive controller developed 

was able to control indoor air dry-bulb and wet-bulb temperatures both near and 

away from the operating condition at which the ANN-based dynamic model in the 

ANN-based on-line adaptive controller was initially trained, but within the entire 

range of operating conditions, with a high control accuracy. 
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Chapter 1 

Introduction 

 

Direct expansion (DX) air conditioning (A/C) has been widely used in small- to 

medium-scaled buildings. A DX A/C system consists of a DX refrigeration plant and 

an air-distribution sub-system. The DX refrigeration plant is mainly composed of a 

DX evaporator, a condenser, an expansion valve and a compressor. The evaporator in 

the DX refrigeration plant is used as a DX air cooling coil in the air-distribution 

sub-system to simultaneously cool and dehumidify the air passing through the coil. 

The conditioned air is then supplied to a conditioned space through an air 

distribution ductwork by a supply fan.   

 

DX A/C systems are more advantageous than conventional chilled water based A/C 

systems. These include higher energy efficiency and lower cost to own and maintain 

the systems. However, it is difficult to satisfy both the indoor air temperature control 

and humidity control simultaneously using a DX A/C system with a single speed 

compressor and a single speed supply fan. This may hinder the wider use of DX A/C 

systems.  

 

The traditional method for indoor air humidity control for central A/C systems is via 

reheating cooled air. This method is costly and energy inefficient since it uses a great 

deal of energy to overcool the air, and then more energy to reheat the air to a suitable 
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supply temperature. The use of reheating is however uncommon for DX A/C systems, 

and controlling indoor humidity at an appropriate level while also maintaining 

suitable indoor air temperature using a DX A/C system is difficult, since the cooling 

coil in a DX A/C system must perform both air cooling and dehumidification 

simultaneously. Most DX A/C systems are currently however equipped with a 

single-speed compressor and supply fan, relying on on-off cycling compressor as a 

low-cost approach to maintain only indoor air dry-bulb temperature. This results in 

either space overcooling or an uncontrolled equilibrium indoor relative humidity 

(RH) level. 

 

The advancement of variable speed drive (VSD) technology offers tremendous 

opportunities for improving indoor thermal control and energy efficiency when using 

DX A/C systems. Compressor speed can be continuously varied to modulate the 

output cooling capacity to match the space actual thermal load. The supply fan speed 

can be also altered to affect both sensible heat and latent heat transfer rates across a 

heat exchanger. Therefore it is possible to simultaneously control indoor air 

temperature and humidity by varying speeds of both compressor and supply fan in a 

DX A/C system.  

 

Although there are limited reported studies on simultaneous control of indoor air 

temperature and humidity in open literatures, most of them treated indoor air 

temperature control and humidity control separately and ignored the nonlinearity of a 
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DX A/C system and coupling effect of the system’s operating parameters, resulting 

in poor control performance. On the other hand, artificial neural network (ANN) has 

been proven to be a useful tool in modeling and controlling the dynamic operating 

performance of a nonlinear multivariable system. This is because it has been shown 

that ANN has a powerful ability in recognizing accurately the inherent relationship 

between any set of inputs and outputs without requiring a physical model. This 

ability is essentially independent of the system complexity such as nonlinearity, 

multiple variables, coupling, with noise and uncertainty. An ANN-based control 

strategy which could deal with a nonlinear multi-input multi-output (MIMO) 

complex system, based on an ANN-based dynamic model, can then be developed. As 

an intelligent nonlinear dynamic control method, an ANN-based control strategy 

offers a viable solution to the control over complex systems. However, no previously 

related research work on controlling indoor air temperature and humidity 

simultaneously using a DX A/C system through a control strategy developed using 

ANN can be indentified in open literatures. Therefore it is necessary to fill the gap 

and embark on a study on developing an ANN-based control strategy that can 

simultaneously control indoor air temperature and humidity by varying the speeds of 

both compressor and supply fan in a DX A/C system, through ANN-based modeling. 

 

In this thesis, to begin with, Chapter 2 reports a detailed literature review on various 

issues related to the modeling and control of DX A/C systems. An extensive 

literature review on studies related to the sources of indoor moisture and the effects 
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of air humidity on human thermal comfort is firstly presented. Then, a review of the 

modeling and control of DX A/C systems is reported. This is followed by 

introducing ANN, covering its fundamental concepts, its research history, and its 

applications to the modeling and control of Heating, Ventilation and Air 

Conditioning (HVAC) systems. Finally, the rationale to use ANN to model and 

control DX A/C systems is given. 

 

Chapter 3 presents the research proposal which covers the background, project title, 

aims and objectives and research methodologies employed for the research work 

reported in this thesis.  

 

Chapter 4 describes an experimental DX A/C system available to facilitate the 

research work reported in this thesis. Detailed descriptions of the experimental DX 

A/C system and its major components are firstly given. This is followed by 

describing the computerized measuring devices and a data acquisition system (DAS). 

A computer supervisory program used to operate and control the experimental DX 

A/C system is also detailed. The availability of the experimental system has been 

expected to be helpful in successfully carrying out the research work proposed in 

Chapter 3. 

 

Chapter 5 reports on the development of an ANN-based steady-state model for the 

experimental DX A/C system. This two-in two-out ANN-based steady-state model 
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links both its totally output cooling capacity (TCC) and Equipment sensible heat 

ratio (SHR) with different combinations of compressor and supply air fan speeds, at 

a fixed inlet air temperature and RH to the system. In this Chapter, the related 

steady-state experimental conditions are firstly described. The training algorithm 

used for the steady-state modeling of the DX A/C system is secondly reported. 

Thirdly, the development of the ANN-based steady-state model is presented. 

Fourthly, the validation of the ANN-based steady-state model developed by 

comparing the predicted results using the ANN-based steady-state model developed 

with the experimental data is reported. Finally, a comparison for the prediction 

accuracy using the ANN-based steady-state model developed, a steady-state 

physical-based model and a numerical analysis using bilinear interpolation is 

presented. 

 

Chapter 6 reports on the development of an ANN-based dynamic model for the 

experimental DX A/C system, linking its output air dry-bulb temperature and 

wet-bulb temperature with the variation of its compressor and supply fan speeds at a 

fixed indoor sensible and latent load. In this Chapter, firstly, the related experimental 

conditions are specified. Secondly, the development of the ANN-based dynamic 

model is presented. Finally, the experimental validation of the ANN-based dynamic 

model developed by comparing the measured open-loop responses for the 

experimental DX A/C system after being subject to step changes in compressor and 

supply fan speeds, with the corresponding predicted results using the ANN-based 
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dynamic model developed is presented. 

 

Chapter 7 presents the development of an ANN-based controller to simultaneous 

control indoor air temperature and humidity by varying compressor speed and 

supply fan speed for the experimental DX A/C system, based on the dynamic model 

reported in Chapter 6. In this Chapter, the ANN training algorithm used in 

developing the ANN-based controller is firstly introduced. Secondly, the 

development of the ANN-based controller for the experimental DX A/C system is 

detailed. Finally, the validation of the ANN-based controller developed by carrying 

out the controllability tests using the experimental DX A/C system is presented. 

 

In Chapter 8, to address the problem of limited control range experienced by the 

ANN-based controller reported in Chapter 7, the development of an ANN-based 

on-line adaptive controller and the results of its controllability tests are presented. 

Firstly, the development of the ANN-based on-line adaptive controller is detailed. 

Secondly, the results of controllability tests for the ANN-based on-line adaptive 

controller including initial start-up stage test, command following test, disturbance 

rejection test and commanding following with disturbances test using the 

experimental DX A/C system are presented. Finally, a discussion on related issues in 

the development of the ANN-based on-line adaptive controller for the experimental 

DX A/C system is detailed. 
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Finally, the conclusions of this thesis and the proposed future work are presented in 

Chapter 9. 



 8 

Chapter 2 

Literature Review 

 

2.1 Introduction 

 

HVAC systems have been widely used in almost all types of buildings, such as 

industrial, commercial and residential buildings for different purposes. In residential 

buildings, the most commonly used A/C systems are of DX type [Bordick and 

Gilbride 2002, Zhang 2002]. In order to improve the indoor thermal comfort in 

buildings, in particular in those located in hot and humid climates, served by DX 

A/C units, it is necessary to improve indoor air temperature and humidity control. 

 

The DX A/C systems have been widely used in buildings, particularly in small- to 

medium-scaled buildings. Compared to chilled-water based central A/C systems, the 

use of DX A/C systems is more advantageous because they are simpler, more energy 

efficient and generally cost less to own and maintain. In a DX A/C system, its DX 

evaporator is used directly as a cooling coil to simultaneously cool and dehumidify 

the air passing through it. This distinguishes itself from a conventional central 

chilled-water based A/C system where chilled water is used for cooling and 

dehumidifying air. Given their simplicity in structure and flexibility in installation, 

DX A/C systems are widely used in residential buildings. For example, in Hong 

Kong the annual total sale of DX residential air conditioners was around 400,000 

units in 2000 [Zhang 2002]. Air-conditioning is the largest single 

electricity-consuming end-use accounting for on average 36.8% of the total 

residential electricity use in Hong Kong [Lam 1996]. According to Department of 
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Energy in USA, packaged rooftop DX A/C units consumed approximately 60% of 

the total energy used for cooling [Bordick and Gilbride 2002]. 

 

Controlling indoor humidity at an appropriate level in a space is important since it 

directly affects indoor thermal comfort and indoor air quality (IAQ) [Fanger 2001, 

Mazzei et al. 2005]. As pointed out in ASHRAE Standard 62.1-2005, indoor RH 

level should be controlled within a relatively narrow range at between 30% and 60%. 

However, for most applications where DX air conditioners such as window units or 

split-type units are used, indoor air temperature is often controlled by on-off cycling 

the compressor in a DX air conditioner. Hence while indoor sensible load is satisfied 

through altering the length of on-off period, air dehumidification is only a 

by-product of removing the indoor sensible load. Therefore indoor humidity is not 

directly controlled and may fluctuate as a result of changing the match between the 

output sensible and latent capacities of a DX A/C unit and the space sensible and 

latent loads. When the output latent capacity is inadequate to meet the space latent 

load, indoor humidity would increase. In order to improve the indoor thermal 

environmental control in buildings, in particular in those located in hot and humid 

climates, it is therefore essential to develop new control strategies that enable the 

simultaneous control over indoor air temperature and humidity in spaces served by 

DX A/C systems.  

 

This Chapter presents a literature review on various issues related to the modeling 

and control for DX A/C systems. An extensive literature review on studies related to 

the sources of indoor humidity and effects of humidity on human thermal comfort is 

firstly presented. Then, a review of the modeling and control of DX A/C systems is 
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reported. This is followed by the introduction of ANN, covering its fundamental 

concepts, its research history, and its applications to HVAC systems. Finally the 

rationale to use ANN to model and control DX A/C system is given. 

 

2.2 Fundamental issues for indoor humidity control 

 

For indoor humidity control, it is important to look at the sources of indoor moisture, 

since the amount of moisture to be removed from an indoor space should be equal to 

the amount introduced into the space from both externally and internally, to maintain 

a steady indoor humidity level.  

 

2.2.1 Sources of indoor moisture 

 

The sources of indoor moisture can be categorized into external and internal. The 

external sources could be further classified into three types. The first and the most 

important is the outdoor air ventilated through A/C systems. In ASHRAE Standard 

62.2P, Ventilation and Acceptable IAQ in Low-rise Residential Buildings, there is a 

special consideration that the moisture from outdoor air is of particular concern in 

hot and humid climates [Sherman 1999]. For a conditioned space, it is obvious that 

the latent cooling load from ventilation air is greater than all other latent cooling 

loads combined [Brandemuehl and Katejanekarn 2004]. Most residential buildings 

require the ASHRAE-recommended minimum ventilation rate to ensure IAQ and 

occupants’ thermal comfort [McGahey 1998]. During occupied hours, both sensible 

and latent cooling loads from ventilation air are continuous. Furthermore, if the 

latent cooling load from ventilation air is allowed to blend into that of return air 
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stream, a simple constant-air volume DX A/C unit would have a very difficult time 

to remove it [Berbari 1998, Harriman Ⅲ and Judge 2002]. In particular during part 

load conditions in hot and humid subtropics, the latent cooling load from ventilation 

air would have greater influences on indoor humidity than that at full load conditions, 

and therefore should receive more attentions. Assuming that the minimum outdoor 

air intake at all time is 20% of the supply airflow rate at design/full load, at half load 

operation, the ratio of outdoor air would increase to 40% of the supply airflow rate. 

In other words, ventilation requirement dictates the increased portion of outdoor air 

during part load operations. At the same time, outdoor air dry-bulb temperature is 

lower, close to indoor air dry-bulb temperature, but its dew point temperature is 

higher than that at design condition. Therefore, space sensible cooling load is 

reduced but space latent cooling load is increased [Shaw and Luxton 1988]. The 

higher the moisture content of outdoor air, the higher the space latent cooling load a 

DX A/C unit would have to deal with. 

 

The second is through the infiltration of outdoor air. The amount of moisture 

accumulated inside a conditioned space as a result of air infiltration is a function of 

infiltrated air mass flow rate, moisture content difference between incoming air and 

indoor air. Although the infiltration through a building enclosure is intermittent and 

unintentional, it has been emphasized that its effects on indoor RH level cannot be 

overlooked [Straube 2002]. Henderson et al. [1992] concluded that infiltration would 

have a great impact on space latent cooling load by simulating a typical building in 

both Miami and Atlanta. At a constant indoor air dry-bulb temperature of 25.5°C, the 

space latent cooling load would increase from at 11% of the total space cooling at an 
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average infiltration rate of 0.54 air change per hour to at 17% of the total at that of 

1.08 air change per hour. 

 

The third is by water vapor diffusion through building envelope from outdoors. 

Moisture migrates from a place of high vapor concentration to a place of lower vapor 

concentration by diffusion through materials. The moisture flowing as a result of 

diffusion is a function of the difference in vapor pressure between the two sides of a 

supporting wall in a building, the permeability of construction materials, and the 

exposed surface area [Shakun 1992]. However, this type of moisture gains cannot be 

easily determined [Barringer and McGugan 1989].  

 

On the other hand, internal sources for indoor moisture load mainly include the 

moisture gains from occupants and other indoor activities, such as washing and 

cooking, etc. ASHRAE Handbook of HVAC Systems and Equipment 2000 correctly 

points out that the moisture load contributed by human occupancy depends on the 

number of occupants and the level of their physical activity, and recommends an 

average rate of moisture generation of 320 g/h for a family of four [ASHRAE 2000]. 

 

One source for indoor moisture is related to the operation of a DX A/C system. In 

most buildings served by a DX A/C system, the supply fan in the DX A/C system is 

normally run continuously regardless its compressor’s operating status. When the 

compressor is on, moisture is condensed over cooling coil surface and collects in a 

drain pan. However, if the supply fan is still on when the compressor cycles off, 

moisture on the wet cooling coil and drain pan may be reintroduced into air stream 

due to constant air circulation, resulting in an increased RH level in the conditioned 
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space [Amrane et al. 2003, Shirey and Henderson 2004]. The amount of moisture 

re-evaporated depends on physical characteristics of the evaporator coil and drain 

pan, such as fin spacing, pan slope, etc., the thermostat cycling rate and the time 

constant of air conditioner latent performance at compressor start-up [Henderson 

1998]. 

 

Part of the moisture from both the internal and external sources becomes directly 

part of space latent cooling load, while others would be absorbed by internal 

building envelope and indoor furnishings, which may be regarded as “moisture 

capacitors”, such as wall paper, furniture and carpet, etc., before a dynamic 

equilibrium of moisture transfer is achieved between indoor air and these capacitors 

[Rode et al. 2004]. A number of investigations on improving the prediction accuracy 

of internal humidity level have been undertaken [Lu 2003, Lu and Viljanen 2009, 

Mustafaraj et al. 2010]. The study undertaken by Lucas and Miranville [2004] took 

into account the moisture transfer between walls and the air inside a space, and 

improved the forecast accuracy of the amount of water condensed on an internal wall 

surface.  

 

2.2.2 Effects of indoor humidity level on human thermal comfort 

 

It was found in previous studies [Toftum and Fanger 1999, Miro 2005] that the level 

of indoor humidity could affect human thermal comfort. These studies showed that 

indoor air RH levels influenced the occupants’ thermal comfort in different ways, 

both directly and indirectly. 
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On one hand, high levels of indoor air RH may cause comfort and health problems 

for occupants. The primary biological health problems related to higher levels of RH 

are due to the growth of contaminated aerosols produced by spray humidification 

systems [Arens and Baughman 1996]. Health-related agents in connection with 

indoor RH level include dust mites, fungi, bacteria, viruses and nonbiological 

pollutants in general [Arens and Baughman 1996]. It has been shown that an indoor 

RH level above 50% would help increase dust mite population. An indoor RH level 

above 70% would provide an excellent environment for the growth of fungi. Fungi 

and dust mites found inside residences have been identified as the main causes of 

asthma and hay fever [Arens and Baughman 1996]. All the agents affect human 

health, primarily through their inhalation of indoor air, although some of them have 

lesser effects through the skin. The discomfort caused by the uncomfortably high 

levels of insufficient cooling of the mucous membranes in upper respiratory tract by 

inhalation of humid and warm air would increase the risk of individuals with 

allergies [Toftum and Fanger 1999]. In addition, the effects of high RH levels on 

chemical substances include increased off-gassing of formaldehyde from building 

and furnishing materials; combination with sulphur dioxide to form aerosols, salts 

and acids including sulphuric acid and sulphate salts; and increased irritative effects 

of odor, particles and vapors such as acrolein [Sterling et al. 1985]. Furthermore, 

from the viewpoint of IAQ, decreasing air RH level results in an improved 

perception of IAQ; air is fresher, less stale and more acceptable. Therefore, within 

the comfort zone suggested by ASHRAE, it is recommended to keep moderately low 

levels of temperature and RH to improve the perceived air quality. This may even 

help decrease the amount of ventilation required for acceptable perceived air quality. 

It has been shown that people would perceive the indoor air quality better at 20°C 



 15 

and 40% RH at a small ventilation rate of 3.5 L/s/person than at 23°C and 50% RH 

at a ventilation rate of 10 L/s/person [Fanger 2001]. Meanwhile, from the viewpoint 

of human perception, at a given temperature setpoint, a decreased RH level results in 

occupants feeling cooler, drier and more comfortable. Also, at lower RH levels, 

fabrics, clothing and textiles would appear more smooth and pleasant. 

 

On the other hand, a low level of indoor air RH would also have comfort and health 

impacts on occupants. Firstly, it can lead to the drying of skin and mucous surfaces, 

promoting the accumulation of electrostatic charges in fabric and others materials in 

buildings. On respiratory surfaces, drying can concentrate mucous to the extent that 

ciliary clearance and phagocytic activities will be reduced. Therefore, comfort 

complaints about dry nose, throat, eyes and skin often occur in low RH conditions, 

typically when the dew point is less than 0°C. A low RH level can also increase the 

susceptibility to respiratory disease as well as discomfort, such as asthma. 

Individuals with allergies, newborns and elderly are more susceptible to respiratory 

infections [Berglund 1998]. Secondly, a low RH level enhances the formation of 

ozone indoors. Very high ozone levels, in combination with poorly ventilated 

equipment, will also produce an irritation effect on the mucous membrane of eyes, 

nose, throat and respiratory tract. Finally, low RH levels are well known as a general 

catalyst of chemical interactions resulting in a large variety of irritants and toxic 

substances commonly referred to as “smog”. Indoor smog could well be responsible 

for a large proportion of similar symptoms of ozone. The smog is commonly 

associated with tight building syndrome occurring in office and commercial 

buildings [Sterling et al. 1985]. 
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The problem of having an unsatisfactory level of indoor humidity can be found in 

different types of buildings, such as office buildings, supermarkets, libraries, hotels, 

as well as residential buildings, etc. Very often a building A/C system is unable to 

properly deal with the thermal load imposed when its latent part is high. The 

mismatch between space latent cooling load and equipment output latent cooling 

capacity can result in an inappropriate level of indoor humidity, degrading occupants’ 

comfort and productivity. In buildings, it has been recommended that the suitable 

range for indoor relative humidity be between 30% and 60%, and the upper limit be 

set at 60% RH [ASHRAE 2000]. 

 

2.3 Modeling of DX A/C systems 

 

Mathematical modeling based studies have gained growing recognition because they 

could not only save the study cost, but also help easily understand the operating 

characteristics of a physical system under study over its entire operating range. In the 

field of HVAC and Refrigeration Engineering, system models have been developed 

and used in predicting the operational performances, design and optimization, 

developing control strategies, and detecting and diagnosing operating faults, etc.   

 

Mathematical models developed to simulate system characteristics could be 

classified into steady-state and dynamic models. Steady-state modeling should be 

sufficiently accurate for most long-term system simulations or for design 

optimization. However, it is not suitable for control application where it is necessary 

to investigate system’s transient responses to a sudden disturbance. Dynamic 

modeling is required when carrying out research work related to controlling a 
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physical system.  

 

On the other hand, mathematical models could also be classified into two broad 

categories: physical and empirical models. A physical model is based on detailed 

information of each component in a physical system and derived from physics laws. 

Two modeling approaches can be used to develop a physical model: lumped- and 

distributed-parameter modeling. However, for an empirical model, one tries to 

estimate the functional form of the relationships amongst variables and their 

numerical values without requiring detailed information of system components. 

Examples of empirical modeling include regression analysis, polynomial curve fits 

and artificial neural networks. Given the difficulty to characterize accurately all the 

components in an HVAC or refrigeration system and the known general good 

behavior in time response and accuracy for empirical models, empirical approaches 

are widely used for modeling HVAC and refrigeration systems [Navarro-Esbri et al. 

2007].  

 

A DX A/C system may be considered as consisting of four basic components and a 

conditioned space. Therefore the models of various components in a DX A/C system 

are separately reviewed as follows.    

 

2.3.1 Compressor modeling 

 

A compressor is often the most complex component in refrigeration systems [Ndiaye 

and Bernier 2010]. It turns the low pressure vapor refrigerant into high pressure 

vapor refrigerant such that it can condense in a condenser to reject heat to a second 
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fluid, and a refrigeration cycle can go on. There are several types of compressors for 

air conditioning applications, such as reciprocating compressor, scroll compressor, 

centrifugal compressor and rotary screw compressor.  

 

Many different models with different degrees of complexity for reciprocating 

compressors can be found in the literature. There were models of reciprocating 

compressors in which a compressor was divided into several control volumes for 

compressor elements such as compression chamber and valves, etc. These models 

required input data either very difficult to obtain or only known to the manufacturer 

of a compressor. The space volumes of different elements and the effective surface 

areas of valves were also required. The transient fluid conservation equations (mass, 

momentum and energy) were integrated over the entire compressor domain and the 

energy balance for the refrigerant inside the cylinder was computed for each time 

step of an operating cycle [Perez-Segarra et al. 2003, Rigola et al. 2003]. The latest 

studies on modeling reciprocating compressors include those carried out by Ndiaye 

and Bernier [2010], Link and Deschamps [2011], Negrao et al. [2011], etc. 

 

Modeling scroll compressors [Chen et al. 2002a, 2002b, Winandy et al. 2002] 

required the knowledge of pocket volumes and perimeters for every six degrees of 

rotation, the height, thickness and pitch of scrolls that were quite difficult to obtain. 

In those models, the whole compressor was divided into control volumes and the 

compression process in every gas pocket was simulated. It required the evaluation of 

areas, volume, pressure, temperature and specific volume for every crank angle. 

Mass and energy conservation equations were developed for control volumes. 
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There have been also many investigations concerning the analysis and modeling of 

centrifugal compressors and rotary screw compressors, such as Jiang et al. [2006], 

Seshaiah et al. [2007], Galindo et al. [2008] and Krichel and Sawodny [2011]. 

 

Compressor models could be classified into two general categories: steady-state 

models and dynamic models. Steady-state compressor models included those 

developed by Cavallini et al. [1996], Winandy et al. [2002], Navarro et al. [2007], 

etc, which were all simplified steady-state models. However, more complex 

steady-state models needed very specific proprietary data only available from 

manufacturers.  

 

Dynamic modeling for compressor was also carried out since a dynamic model could 

capture the dynamic behavior of a refrigeration system and may be applied to the 

development of advanced control strategies. Jiang et al. [2006] developed a dynamic 

model for a centrifugal compressor. The model developed could be used to predict 

the compressor performance from its geometric information. In their study, the 

dynamic model for the compressor was programmed into a virtual test bed 

computational environment as a component of an electrical system, from which the 

performance curves of the compressor such as outlet pressure, efficiency and losses 

could be predicted. This model provided an available tool for evaluating the system 

performance as a function of various operating parameters. In addition, the dynamic 

characteristics of a variable speed compressor could be predicted by a transient 

simulation model [Park 2010]. Using the model developed, re-expansion loss, 

friction loss, mass flow loss and heat transfer loss were estimated as a function of the 

crankshaft speed in a variable speed compressor. A semi-empirical dynamic 
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mathematical model to simulate the transient behavior of mass flow rate and input 

power of reciprocating compressors was developed by Negrao et al. [2011]. In 

developing this dynamic model, curve fitting method was used based on thirteen 

calorimeter data sets of two compressors having different capacities, and good 

agreement between measured and simulated results were found in either cycling or 

start-up tests. 

 

2.3.2 Heat exchangers modeling 

  

Research work on modeling heat exchangers has always been significant in the 

studies for HVAC and Refrigeration systems. A number of approaches have been 

employed to establish the models for evaporators and condensers. The models of 

heat exchangers can generally be classified into two types: distributed parameter 

models and lumped parameter models. 

 

Distributed parameter models are those that best fit to the nature of heat exchangers, 

because variations of the states that are concerned take place not only in time but 

also in space. Such models are represented by a set of partial differential equations 

[Zavala-Rio and Santiesteban-Cos 2007]. It has a higher accuracy than a lumped 

parameter model, but the time needed for simulation becomes longer. A lumped 

parameter model divides however a heat exchanger into a finite number of control 

volumes and the parameters in each control volume are lumped. Such a modeling 

approach is simple but its accuracy may be compromised. 
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Many investigations on modeling heat exchangers using distributed-parameter 

models have been carried out. Wang and Touber [1991] suggested that distributed 

parameter models provided the most complete information and best insight into the 

dynamic behavior of an evaporator. Jia et al. [1995] presented a distributed 

parameter model for predicting the transient performance of a DX air cooling 

evaporator. The model was capable of predicting the distributions of the refrigerant 

velocity, void fraction, temperature, tube wall temperature, air temperature and 

humidity, in both location and time domains. The dynamic behaviors of the 

evaporator were investigated with a response to a step change in the inlet refrigerant 

flow rate. Simulation results were compared with the experimentally measured data 

from a commercial evaporator using refrigerant R134a as the working fluid. The 

comparison results indicated that the model provided a reasonable accurate 

estimation of the dynamic response of the evaporator. Porkhial et al. [2004] 

developed a distributed parameter model for predicting the transient performance of 

an evaporator. The model was capable of predicting the refrigerant temperature 

distribution, tube wall temperature, inventory mass of refrigerant as a function of 

location and time. 

 

The lumped parameter model by Deng [2000] used a different approach where for 

example a condenser was divided into three zones, i.e., two-phase, superheated and 

sub-cooling. Three zones were modeled separately based on the different heat 

transfer and fluid flow characteristics. This approach can adequately represent the 

overall thermal characteristics in a heat exchanger in operation to carry out research 

work related to control, and its simulation stability and computational speed may 

well be ensured. He et al. [1997] developed a lumped parameter model for a 
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two-phase flow heat exchanger, which was described mathematically by a set of 

complex, coupled and nonlinear partial differential equations based on the principles 

of mass and energy conservation, with the assumptions that the heat exchanger was a 

long, thin horizontal tube, and that the refrigerant flowing through the heat 

exchanger tube was one-dimensional. Other studies on lumped parameter models for 

heat exchangers were also carried out [Vargas and Parise 1995, Zhang and Zhang 

2006].  

 

It is well known that the key operating parameters of a DX cooling coil, such as 

evaporating temperature, refrigerant mass flow rate, coil face velocity and inlet air 

temperature, would have significant influence on its performance. Liang et al. [1999] 

developed a lumped simulation model for a DX cooling coil in which there were 

three heat transfer zones on its refrigerant side, and two zones on its air side, e.g., 

dry-cooling zone and wet-cooling zone. The model used a numerical method to 

calculate the partially wet and totally wet fin efficiency. On the basis of this model, a 

number of parameters which reflected the characteristics of air cooling coils used in 

diverse humid environments were analyzed. It was found that the performance of a 

coil was significantly affected by levels of indoor air relative humidity, which was a 

very significant parameter in determining the energy requirement and the quality of 

space cooling in a humid environment. A high humid environment would imply a 

higher cooling load and hence a higher energy requirement compared to a low humid 

environment. 

 

 

 



 23 

2.3.3 Expansion valve modeling    

 

The expansion device in a refrigeration system controls the refrigerant mass flow 

and balances the system pressure. Various expansion devices such as a capillary 

tube, a short tube orifice and a thermostatic expansion valve (TEV) are used in small 

refrigeration systems, such as air-conditioners and heat pumps. Even though 

capillary tubes and short tube orifices have the advantages of simplicity, low cost 

and low starting torque for a compressor, they are not appropriate for use in a system 

that requires precise flow control over a wide range of operating conditions. A TEV 

adopts a mechanical control method to maintain a constant degree of superheat at 

evaporator outlet. Therefore, the response time of a TEV is relatively slow, and this 

slowness may cause an unstable operating condition. However, an electronic 

expansion valve (EEV) has the advantages of rapid response owing to electronic 

signal transmission, zero activating degree of superheat, nearly linear valve 

characteristic, a wide range of flow rates and easy realization of programmed 

control, etc. It is expected that an EEV would gain a wider future application in DX 

A/C systems. Therefore, an EEV is indispensable if the advantages of a DX A/C 

system having a variable-speed compressor are to be maximized. As an essential 

component in a DX A/C system, an EEV acts as a throttling device where the 

expansion of refrigerant takes place, and usually regulates the refrigerant flow rate 

such that a desired degree of superheat at the exit of an evaporator can be 

maintained.  

 

Commonly, an expansion valve can be represented by a steady-state model due to its 

very small thermal inertia. Refrigerant expansion is generally treated as an 
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isenthalpic process when modeling an expansion valve. Refrigerant mass flow 

passing through an expansion valve is usually calculated by using an empirical 

correlation. Deng [2000] presented a relatively simple model for an expansion valve. 

The model simply considered the refrigerant mass flow rate proportional to the 

degree of refrigerant super heat. However, the actual fluid-flow characteristic in an 

expansion valve was hard to be represented by the model. Park et al. [2007] 

developed an empirical correlation for predicting the mass flow rate passing through 

an EEV by modifying a single-phase orifice equation with consideration of EEV’s 

geometries and operating conditions. Geometric parameters that were included in the 

empirical correlation were orifice diameter, orifice length and the EEV’s opening. 

One representative model for an expansion valve was developed by Damasceno and 

Rooke [1990], based on the specifications given by value manufacturer and the 

empirical fitting for one set of distributor nozzle and tube size.  

 

2.3.4 Supply fan modeling  

 

A model of a constant-speed supply fan that can account for the influence of its inlet 

vane angle on its operating parameters was established by Carrado and Mazza 

[1991]. The model normalized the air flow rate, fan total pressure rise and fan power 

consumption respectively. Fan performance law was directly applied by fitting two 

polynomials of normalized air flow rate and fan pitch angle. As to a variable speed 

supply fan, its pressure-volume flow characteristics can be described, in general, by 

a family of constant-speed curves for pressure rise versus volumetric flow rate. 

According to the first fan performance law [ASHRAE 2000], for fans operating at 

similar dynamic conditions, their volumetric flow rates at different speeds are 
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proportional to the change of fan speed; their fan pressure rises are proportional to 

the square of, and their fan power consumptions to the cubic of the change of fan 

speed, respectively. Hence, using the performance data from a fan manufacturer and 

the well-known least-square curve-fitting technique, the fan characteristics at 

different speeds can be developed based on the performance data at its rated speed 

and expressed by a set of polynomials. 

 

The dynamics of a fan-motor system lies in the electromagnetic and mechanical 

inertia of the system. When a varying voltage is supplied to a fan motor to change 

fan speed, the fan speed does not immediately reach its steady-state regime mainly 

due to the electro-motive force induced to the armature of the motor. Therefore when 

carrying out a control strategy analysis, the dynamics of the fan whose speed is 

controlled by varying supply voltage, should be taken into consideration. Mei and 

Levermore [2002] used a first-order differential equation with different time 

constants in different operational areas to describe the dynamics of a fan-motor 

system. For a fan whose speed is controlled by varying frequency using variable 

frequency drive, its dynamics can be neglected due to the fact that the speed of a 

standard squirrel-cage motor is direct proportional to the input power frequency and 

fan speed change can reach its steady-state regime in a fraction of second. 

 

2.4 Control of DX A/C systems 

 

The main objective of controlling an A/C system is to ensure that the desired air 

temperature and/or humidity in a conditioned space served by the A/C system are 

maintained. If A/C systems were always operated with constant loads, little or no 
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capacity control would be needed. However, most A/C systems are designed to meet 

the demands under the hottest or coldest climate conditions, thus for most of time 

they are operated at part-load condition. Therefore, all DX A/C systems need to be 

appropriately controlled with regards to their output cooling capacity when operated 

at different part load conditions. 

 

2.4.1 Control issues for DX A/C system 

 

Two specific issues related to the control of DX A/C systems, capacity control and 

indoor air humidity control, are discussed in this section. 

 

2.4.1.1 Capacity control 

 

Building heating or cooling loads do not stay unchanged but vary with time. It is 

therefore important to implement certain capacity control schemes to continuously 

adjust the output capacity of a DX A/C system to match the varying building loads. 

Several methods of capacity control have been applied to DX A/C systems.  

 

Firstly, the most commonly used method in small sized residential DX A/C systems 

is intermittent running of compressor, e.g., on/off cycling. The disadvantage of this 

method is that it imposes wear and tear on the compressor and hence reduces its life. 

In addition, it is difficult to maintain a steady indoor air temperature within a suitable 

range. 
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Secondly, capacity control can be achieved by using suction-gas throttling, hot-gas 

by-pass or cylinder-unloading, etc. In the hot-gas by-pass control method, the 

refrigerant is by-passed from compressor and injected back into the suction line to 

decrease the cooling capacity, whereas in the cylinder-unloading scheme, one or 

more cylinders are unloaded to decrease the refrigerant mass flow rate being 

circulated, hence the cooling capacity. However, with suction gas throttling, the 

suction gas throttled occupies a large volume at compressor inlet and thus decreases 

the refrigerant mass flow rate, and hence the system’s capacity. A numerical 

investigation on the above three capacity control methods for HFC-134a 

refrigeration systems was carried out by Yaqub and Zubair [2001]. The study results 

showed that the cylinder-unloading method was mostly suitable because of a high 

coefficient of performance (COP) in comparison with the other two methods. 

However, the capacity reduction was restricted to about 25%, 50%, or 75% of the 

total for a 4-cylinder compressor. On the other hand, the hot-gas by-pass scheme will 

lead to the lowest COP. Moreover, it was not suitable from the thermodynamic point 

of view. In addition, a very high compressor discharge temperature will restrict the 

capacity reduction down to around 50%. For the suction-gas throttling method, 

precise indoor air temperature and humidity control may be achieved and the COP 

was at between those by the other two methods. Furthermore, the compressor 

discharge temperature was the lowest, and a wide range of capacity reduction was 

possible with this method, depending upon the degree of throttling at compressor 

inlet.   

 

Finally, capacity control may be realized by varying the flow of refrigerant by using 

variable speed compressors in DX A/C systems. The use of variable speed 
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compressor coupled with EEV in a variable refrigerant volume (VRV) A/C system 

can modulate precisely the refrigerant flow rate and hence system’s cooling capacity, 

making the accurate matching between output cooling capacity and varying thermal 

load possible. It was reported that through the modulation of compressor speed, the 

output cooling capacity from a residential split-type DX A/C system could be varied 

between 50 and 100% of its full capacity in proportion to the change in room 

temperature [Yamamoto et al. 1982]. Currently with the advancement of variable 

speed compressor and EEV technologies, inverter-aided DX A/C systems can vary 

their cooling outputs between 20% and 100% of the full load. The use of variable 

speed compressor for capacity control may offer as well the potential for greater 

energy savings during part load operations. On the other hand, the energy 

performance of a conventional DX A/C system with a single speed compressor at 

part load condition was degraded dramatically [Silver et al. 1990]. During part load 

operation, the condensing and evaporating pressures/temperatures in a DX A/C 

system will respectively decrease and increase with a lower compressor speed, 

which would substantially increase its COP [Scalabrin and Bianco 1994]. Yang and 

Lee [1991] presented an analysis for an inverter-driven variable speed air 

conditioning system used in a hot and humid region. The results indicated that the 

use of variable-speed compressor could provide an annual energy saving of 20%. 

Furthermore, it can be expected that the pull-down time needed for a DX A/C system 

to reach a temperature setting during start-up can be reduced because a compressor 

can operate initially at its highest speed. The energy could be saved on a seasonal 

basis because the system would operate more efficiently at lower capacity, due to the 

reduced frictional losses in the compressor and the reduced pressure ratio imposed 

on the compressor.  
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In the past, variable speed compressors were generally regarded to be suitable only 

for use in small-scale A/C systems, but not in medium- or large-scaled A/C systems 

due to the lack of sufficient development and component integration. Fortunately, in 

recent years medium- to large-scaled variable speed compressors have gained great 

improvement in various aspects and been widely used in medium-capacity 

multi-evaporator A/C systems [Youn et al. 2002]. In order to demonstrate the benefit 

and feasibility of variable speed technology used in large-scale centrifugal chiller 

systems, Lenarduzzi and Yap [1998] established a demonstration installation of 

variable speed compressor in retrofitting a chilled-water based A/C system. The 

system was monitored for one cooling season and the results showed that variable 

speed drive technology could also work successfully in large-scale A/C systems. It 

was estimated that approximately 41% of energy saving could be achieved for this 

particular site and the power quality and total harmonic distortion problem induced 

could be neglected. Therefore, the VRV technology featured with variable speed 

compressor and EEV has been proven to be an energy efficient and practical way to 

realize capacity control in medium- or large-scaled A/C systems. Qureshi and 

Tassou [1996] made theoretical and practical comparisons of various capacity 

control methods at full- and part-load conditions, and the results showed that a 

variable speed operation was the most energy efficient technique for capacity control 

in A/C systems. 

 

2.4.1.2 Humidity control  

 

In many residential and commercial buildings, humidity control was found to be 



 30 

inadequate and unsatisfactory. The traditional principal method for indoor humidity 

control used in large central HVAC systems is to overcool air to remove more 

moisture and then to reheat it to a suitable supply temperature. This strategy is 

inherently costly and inefficient since it uses a great deal of energy to overcool air 

and then more energy to reheat it. However, reheating is uncommon in DX A/C units, 

thus the problem of indoor humidity control is often encountered in spaces served by 

DX A/C units. In a DX A/C unit, dehumidification is less straightforward since a DX 

A/C unit removes moisture only when cooling the air passing through it. 

Dehumidification is effected through condensation at a cooling coil. The cooling coil 

has also a role to play in temperature control, thus this dual role of cooling and 

dehumidification for the cooling coil makes the controlled variables of temperature 

and humidity to become coupled. The current trend in designing a DX A/C unit is to 

have a smaller moisture removal capacity, in an attempt to boost its 

energy-efficiency rating and COP [Kittler 1996]. One of the methods used to 

improve efficiency is to increase the heat exchanger surface area. Such a strategy 

allows a DX A/C unit to run at a higher refrigerant temperature in its evaporator and 

a lower refrigerant temperature in its condenser, resulting in a lower latent capacity 

of the unit. Furthermore, when a DX A/C unit is operated at part load conditions, 

indoor humidity control problem could worsen with on-off cycling its compressor. 

The compressor will remove the sensible load with very little run-time to easily 

satisfy the thermostat setpoint and cycle off long before moisture removal can be 

affected [Hourahan 2004]. Indoor RH would hence rise to above the design level 

[Shirey and Henderson 2004]. 

 

Studies have been carried out on developing control methodologies for reducing high 
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indoor air humidity during part-load conditions. Chua et al. [2007] compared the 

following three control strategies for indoor air humidity control using large central 

chilled water based A/C systems: chilled water flow control, bypass air control and 

variable air volume control. Simulation results indicated that the use of chilled water 

flow control strategy resulted in the highest indoor humidity throughout the range of 

outdoor air conditions studied. The use of variable air volume control could however 

maintain the indoor humidity at a low and acceptable value as compared to the use of 

the other two control strategies but there were two distinct disadvantages. One was 

that the problem of stuffiness and stillness of air in a space may arise as the supply 

air flow rate dropped during part-load operations. The other was that the supply air 

flow rate may be reduced to a low value that it cannot provide the required minimum 

ventilation rate. 

 

Several enhanced dehumidification technologies may be applied to DX A/C systems. 

These include thermally activated desiccant systems [Nagaya et al. 2006], heat pipe 

technology [Yau 2007] and dual-path systems that pre-treat ventilation air, etc. Kosar 

[2006] compared three enhanced dehumidification components in a conventional DX 

A/C system: a wraparound heat pipe heat exchanger, a desiccant dehumidifier in a 

wraparound configuration and a post-coil desiccant dehumidifier regenerated by 

using condenser waste heat. These integrated systems provided the ability to reduce 

SHR levels for DX A/C systems at ARI-rating conditions of 0.75 to below 0.50 in 

certain enhanced dehumidification systems while limiting losses in their COP and 

capacity. 

 

For the selection of a humidity control method, it may depend on the application of 
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HVAC systems, which defines the load characteristics, operating conditions and 

system constraints. For example, a lightly populated small office will have thermal 

loads dominated by envelope heat gains. With a light occupancy, it will have a small 

ventilation requirement, and thus cooling and dehumidification loads could be met in 

most climates by a conventional DX A/C system. By contrast, a large lecture hall 

may have few windows and a very high ventilation demand, resulting in a large 

dehumidification load relative to sensible cooling load. In such an application, it may 

make sense to directly condition the ventilation air or use desiccant dehumidification 

technology.  

 

2.4.2 Indoor thermal environment control using variable speed DX A/C systems 

 

An experimental study by Chuah et al. [1998] concluded that for dehumidification 

control, airflow rate was of the prime concern. Previous field studies have 

demonstrated that lowering the airflow across a cooling coil and lowering evaporator 

coil surface temperature can enhance dehumidification efficiency [Shaw and Luxton 

1988, Shirey and Henderson 2004, Hourahan 2004]. Implementing this strategy 

would lower space humidity level by 10% to 15% RH. The reduction in energy costs 

associated with various type of A/C units used, would cover the full range of 

climates, but is the mostly significant in humid and tropical climates [Shaw and 

Luxton 1988].  

 

While much available open literature focused solely on reducing airflow rate with 

multi- or variable-speed supply fans, which itself is an improvement for A/C units, 

there has been relatively little research work looking into varying the speeds of both 
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the supply fan and the compressor in a DX A/C unit for better indoor environmental 

control. 

 

For a DX A/C unit, the sensible and latent components of its total output cooling 

capacity may be altered by varying its supply fan speed and compressor speed 

simultaneously. One available strategy is to control the space temperature by varying 

compressor speed and the space RH level by varying supply fan speed, separately. 

Variation of the two speeds enables variation of the sensible and latent components 

of the total output cooling capacity of a DX A/C unit [Krakow et al. 1995].  

 

An experimental verification for the feasibility of such a control strategy was carried 

out by Krakow et al. [1995]. The conditioned space was a 76.5 m3 room on the 

ground floor of a large building in Canada. The experimental results illustrated that 

the space temperature and RH were maintained within ±0.3°C and ±2.5% RH, 

respectively, of their setpoint values. The sensible and latent components of the A/C 

unit’s output cooling capacity appeared to respond to the variations of the applied 

and transmitted space cooling loads. The applied space cooling load on the A/C unit 

consisted of the heat outputs from electrical-resistance space heaters and a 

humidifier. The transmitted space cooling load consisted of indeterminate amounts 

of heat conducted through external and internal envelope, etc. A numerical 

simulation model incorporating Proportional-Integral-Differential (PID) control was 

also developed. The experimental and simulation results confirmed the feasibility of 

this control strategy. However, in their study, only simple comparisons and analysis 

were given. Detailed temperature and RH data and the related energy consumption 

were not indicated. Moreover, it was further observed from the experimental results 
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presented that the transient behaviors were poor, as it took approximately 2 hours for 

indoor RH to return to its original level after increasing the power input to the 

humidifier. 

 

In addition, in the simulation study carried out by Andrade et al. [2002], a detailed, 

physically based A/C simulation model was augmented by adding load equations 

describing space sensible and latent cooling loads experienced by a typical 

residential building. The simulation results showed that the use of a variable-speed 

compressor and a variable-speed supply fan can help prevent short on-off cycling 

and improve indoor humidity control while possibly increasing system efficiency by 

having different combinations of compressor and fan speeds at the expanse of 

running a DX A/C unit longer. However, it was a simulation based study and no 

actual experimental validation was carried out. Also, the compressor was on-off 

cycled, without continuous control over the condensing unit in the DX A/C unit. 

 

Various control strategies aiming at simultaneously controlling indoor air 

temperature and humidity by varying the speeds of both compressor and supply fan 

have been designed for, and employed in DX A/C systems, in addition to the 

traditional proportional-integral (PI) or PID control strategies [Krakow et al. 1995]. 

Li and Deng [2007b, 2007c] developed a novel direct digital control (DDC)-based 

capacity controller for a variable speed DX A/C system to control indoor air 

temperature and humidity simultaneously. The development of the controller was 

based on a numerical calculation algorithm using a number of real-time measured 

system operating parameters. However, using this control strategy, it would take 

time for the controller to obtain the information required if the space cooling loads 
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were changed, leading to an unacceptable control sensitivity. Besides, the 

controller’s disturbance rejection ability was also poor because there was no any 

feedback loop to reflect the controlled process. Xu et al. [2008] developed a new 

control algorithm, the so-called H-L control strategy, for a variable speed DX A/C 

system to enable both compressor and supply air fan to operate at high speeds when 

the indoor air dry-bulb temperature setting was not satisfied and at low speeds 

otherwise. This control strategy would achieve an improved indoor humidity level 

and a higher energy efficiency when compared to the use of the traditional on-off 

control. Qi and Deng [2009] developed a MIMO control strategy for simultaneously 

controlling the indoor air temperature and humidity by regulating the speeds of 

compressor and supply fan in an experimental DX A/C system. This MIMO 

controller took into account the coupling effects among multiple variables of the DX 

A/C system, based on a dynamic mathematical model for the DX A/C system which 

was developed using system identification [Qi and Deng 2008]. This MIMO 

controller can however only perform as expected near the operating point where the 

governing equations in the model were linearized. 

 

2.5 The application of ANN to the modeling and control of HVAC systems 

 

2.5.1 Fundamental concepts of ANN 

 

Human brain is made up of a vast network of computing elements called neurons. A 

neuron is a special cell that conducts an electrical signal. There are about 10 billion 

neurons in a human brain. Neurons interact through contacts called synapses. Brain 

organizes this huge number of neurons, each with weak computing power, into a 
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massively parallel complex network, where these neurons interact with each other 

dynamically to produce a powerful information processor [Haykin 1999]. A brain, at 

birth, has a great structure and the ability to build up its own rules through 

"experience". Indeed, experience is built up overtime, with the most dramatic 

development of a human brain taking place during the first two years from birth, but 

the development continues well beyond that stage. This plasticity of a neuron 

permits the developing nervous system to adapt to its surrounding environment 

[Gurney 1997, Haykin 1999]. 

 

Recognizing that a human brain operates in an entirely different way from a 

conventional digital computer motivate research work on ANN. The brain is a highly 

complex, nonlinear and parallel information-processing system. It has the capacity to 

organize the neurons to perform certain computations. Haykin [1999] in his book 

pointed out that the speed of computations for human brains can be many times 

faster than the fastest digital computer. For example, the human brain could 

recognize a familiar face embedded in an unfamiliar scene in approximately 100-200 

ms, whereas the same task may take days by a conventional computer [Haykin 

1999].  

 

An ANN is a massively parallel distributed processor made up of simple processing 

units, which has a natural propensity for storing experiential knowledge and making 

it available for subsequent use. It resembles a human brain in two respects: the 

knowledge is acquired by the network from its environment through a learning 

process, and interneuron connection strengths known as synaptic weights (weights in 

short form) are used to store the acquired knowledge [Schalkoff 1997, Haykin 1999]. 
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The procedure used to perform a learning process is called a learning algorithm, 

whose function is to modify the weights of an ANN to attain a desired design 

objective [Gurney 1997, Haykin 1999].  

 

The following description and equations are essentially that of Haykin [1999]. A 

neuron is an information-processing unit that is fundamental to the operation of an 

ANN. The diagram of the model of a neuron is shown in Fig. 2.1. There are three 

basic elements of the neuron model: 

 

• A set of synapses each of which is characterized by a weight of its own. Unlike a 

synapse in the brain, the synaptic weights of an artificial neuron may lie in a range 

that includes positive as well as negative values. 

 

• An adder for summing the input signals, weighted by the respective weights of 

the neurons. The operations described here constitute a linear combiner. 

 

• An activation function for limiting the amplitude of the output of a neuron. The 

activation function may limit the permissible amplitude range of the output signal to 

some finite value. 
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Fig. 2.1 Model of a neuron 

 

In this figure, x1, x2, …, xJ are the inputs; Wk1, Wk2, …, WkJ, the weights of neuron k; 

bk, the bias of neuron k; φ(·), the activation function, and yk, the output from neuron 

k. Input signal xj (1 ≤ j ≤ J) was inputted to the neuron k with the weight Wkj (1 ≤ j ≤ 

J), and all inputs weighted by their respective weight were summed and then added 

by bk as the activation potential of neuron k, vk, as shown below: 
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J

j
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 (2.1) 

 

The bias has the effect of increasing or lowering the input to the activation function, 

depending on whether it is positive or negative. The activation function used in this 

paper could be written as: 
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This is the logistic sigmoid function which possesses continuous derivatives and is 
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highly nonlinear. The activation potential of neuron k, vk, is imported into an 

activation function φ to derive the output from neuron k, yk.  

 

 )()(
1
∑
=

+==
J

j
jkjk xWbvy kk ϕϕ  (2.3) 

 

The input-to-output operation of a neuron described above can be formulized 

mathematically as follows: 
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Eqs. (2.3) and (2.4) indicate that the bias bk can be regarded as a new input, x0, with 

its weight to neuron k valued bk, as shown in Fig. 2.1, which means that Wk0 = bk. 

 

The neurons as introduced above can then be structured into different patterns of an 

ANN linking with different learning algorithms used to train the ANN. The ANN 

structure used and the learning algorithms applied to train the ANN would be 

introduced in detail when they are applied respectively in Chapters 5 to 8. 

 

2.5.2 Brief history of ANN related research work 

 

An overview of the historical background of the development of ANN is available 

from Mehrotra et al. [1996], NG [1997] and Haykin [1999]. The modern era of ANN 

began with the pioneering work of McCulloch, a psychiatrist and neuroanatomist, 

and Walter Pitts, a mathematical prodigy, in 1943 [Haykin 1999]. McCulloch and 
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Pitts [1943] described a logical calculus of neural networks that united the studies of 

neurophysiology and mathematical logic. They showed that, with a sufficient 

number of such simple units, synaptic connections set properly and operating 

synchronously, a network so constituted would, in principle, compute any 

computable function. This was of great significance and with it, it is generally agreed 

that the disciplines of both ANN and artificial intelligence were born. The basic 

models of ANN ever existed in history are briefly introduced below [Haykin 1999, 

Huang et al. 2004, Graupe 2007]: 

 

(1) McCulloch-Pitts model. The first mathematical model of a single idealized 

biological neuron was proposed by Warren McCulloch and Walter Pitts, known as 

the McCulloch-Pitts model [McCulloch and Pitts 1943]; 

 

(2) Perceptron. Historically, the earliest ANN was the Perceptron, proposed by a 

psychologist called Frank Rosenblatt [Rosenblatt 1958]. It was the simplest form of 

a neural network needed for the classification of a special type of patterns said to be 

linearly separable. Basically, it consisted of a single neuron with adjustable weights 

and bias [Haykin 1999, Huang et al. 2004]; 

 

(3) Adaline (adaptive linear neuron) and Madaline (multiple-Adaline). The 

difference between the Perceptron and the Adaline [Widrow and Hoff 1960] was the 

training procedure. One of the earliest trainable layered neural networks with 

multiple adaptive elements was the Madaline proposed by Widrow and his students 

[Widrow 1962]; 
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(4) Hopfield neural network. In this kind of neural network, proposed by John 

Hopfield [Hopfield 1982], there was no self-connections and it was a fully recurrent 

network. The Hopfield networks were usually not used for applications involving 

classification and regression, but were used as associative memories [Huang et al. 

2004];  

 

(5) Self-organizing neural network. Kohonen [1982] published his paper on 

self-organizing maps using a one- or two-dimensional lattice structure. As compared 

to the ANN using supervised learning, a self-organizing neural network using the 

unsupervised learning resembled more closely the structures of their biological 

counterparts. Self-organizing neural networks had simple, one-layered structures; 

 

(6) Multilayer Feedforward neural network. This kind of ANNs had no feedback 

connections from the outputs back to the inputs. The multilayer feedforward neural 

network, which also known as multilayer perceptron or back-propagation network, 

had a number of hidden layers between the input and output layer [Rumelhart et al. 

1986]. Multilayer feedforward ANNs have very quickly become the most widely 

encountered ANN, particularly within the area of system modeling and control 

[Narendra and Parthasarathy 1990]; 

 

(7) Radial Basis Function (RBF) neural network. Broomhead and Lowe [1988] 

described a procedure for the design of layered feedforward networks using RBF, 

which provided an alternative to the multilayer feedforward networks. A key feature 

of RBF networks was that the output layer was merely a linear combination of the 

hidden layer signal, there being only one hidden layer; 
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(8) Cascade-correlation neural network. This ANN attempted to solve 

step-by-step problems and moving target problems during back-propagation learning. 

Its structure and weights may be changed during a supervised type learning 

[Fahlman and Lebiere 1990];  

 

(9) Modular and Hierarchical neural network. A modular neural network [Jacobs 

et al. 1991] decomposed the computation into two or more modules that operated on 

distinct inputs. The outputs of these individual modules were then combined by an 

integrating unit to give the output of a system. Another alternative form of 

combinatorial network was the Hierarchical neural network [Jordan and Jacobs 

1993]. 

 

2.5.3 Applications of ANN to modeling and control of HVAC systems 

 

Since 1990s, there has been an explosion of interest in ANN, together with a change 

in paradigm: there was a greater interest in using ANN as a problem solving method 

than in developing it as an accurate representation of the human neural system. 

Accordingly, there have been even wider ranges of problem domains as diverse as 

Finance [McNelis 2005], Business [Hayashi et al. 2010], Medicine [Lin et al. 2008], 

transportation [Karlaftis and Vlahogianni 2011], Chemistry [Marini et al. 2008], 

engineering [Ao and Palade 2011], Astronomy [Friedrich et al. 2008], Agriculture 

[Huang et al. 2010], etc. 

 

In recent years, studies related to developing intelligent HVAC systems have become 
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more popular due to the rising concern about indoor environment. In this section, the 

applications of ANN to modeling and control of HVAC systems will be reviewed.  

 

2.5.3.1 ANN-based modeling for HVAC systems 

 

The applications of ANN to modeling HVAC systems generally covered the 

following four major aspects: 

 

1) Modeling performances of HVAC system components  

2) Modeling performances of HVAC systems 

3) Evaluating building thermal loads and energy consumption 

4) Analyzing properties of refrigerants  

 

Of all the applications, firstly, the most important one dealt with HVAC system 

components and their operating performance with a great variety of geometry and at 

different operational conditions. As a critical component in HVAC systems, heat 

exchangers have been widely studied using ANN. Yang [2008] introduced the 

commonly used ANN-based modeling and control methods and reviewed the 

applications of ANN in the field of thermal science and engineering. In his study, 

different fin-tube heat exchangers used as evaporators in refrigeration systems were 

chosen as examples to illustrate the use of ANN for steady-state and dynamic 

modeling and dynamic control. A series of experiments were carried out under both 

steady-state and dynamic operational conditions to collect data to train ANNs. 

ANN-based models were then developed and used for predicting the steady-state and 

dynamic operating performances of the heat exchangers. In addition, the studies on 
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dynamic modeling and control of heat exchangers using ANN with genetic 

algorithms were reviewed [Sen and Yang 2000, Yang and Sen 2000]. Diaz et al. 

[1996, 1999, 2001a] studied heat exchangers using ANN. In their studies, 

performances of a single-row fin-tube heat exchanger were firstly simulated using an 

ANN-based steady-state model to predict its heat transfer rates under different 

operational conditions [Diaz et al. 1996, 1999]. Then the time-dependent dynamic 

behaviors of the heat exchanger were also studied using an ANN-based dynamic 

model [Diaz et al. 2001a]. Yigit and Ertunc [2006] developed an ANN-based model 

to predict the air temperature and humidity at the outlet of a wire-on-tube type 

cooling coil. Ertunc and Hosoz [2008] predicted the performances of an evaporative 

condenser using both ANN and adaptive neuro-fuzzy inference system techniques. In 

their study, ANN-based models were developed to predict the heat rejection rate, 

outlet temperature of refrigerant along with dry-bulb and wet-bulb temperatures of 

the leaving air using experimental data acquired in steady-state operations. There 

were also a number of previous studies applying ANN to deal with heat transfer 

analysis and performance prediction of different structured heat exchangers, 

including a fin-tube heat exchanger [Ding et al. 2002, Ding et al. 2004, 

Pacheco-Vega et al. 2001a, 2001b, Zhao and Zhang 2010], a wire-on-tube heat 

exchanger [Yigit and Ertunc 2006, Hayati et al. 2009], a shell-and-tube heat 

exchanger [Wang et al. 2006, Xie et al. 2007], and a non-adiabatic capillary tube heat 

exchanger [Islamoglu et al. 2005], etc.  

 

ANN was also applied to studying other HVAC components including compressor, 

capillary tube, cooling tower and boiler, etc. Yang et al. [2009] developed two 

ANN-based models to predict the volumetric and isentropic efficiency of both single 
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and variable speed compressors. A steady-state ANN-based model for a rotary vane 

compressor was developed by Sanaye et al. [2011] to predict its operating 

parameters such as refrigerant mass flow rate and compressor power consumption. 

ANN-based studies for compressors mainly focused on the analysis and prediction of 

the performances of different kinds of compressors, including reciprocating 

compressors [Yang et al. 2005, Yang et al. 2009], rotary compressor [Yang et al. 

2009, Sanaye et al. 2011], screw compressor [Bao et al. 2006, Yang et al. 2009], 

centrifugal compressor [Bao et al. 2006, Tirnovan et al. 2008] and scroll compressor 

[Blunier et al. 2009], etc. Furthermore, ANN has also been used to predict the mass 

flow rate of refrigerants through capillary tube. A generalized correlation method for 

predicting the mass flow rate of refrigerant through adiabatic capillary tubes was 

developed using ANN by Zhang [2005]. Following this work, a generalized 

ANN-based model has been developed to predict refrigerant mass flow rate through 

adiabatic capillary tubes and short tube orifices by Zhao et al. [2007]. Other similar 

work included that by Vins and Vacek [2009]. Hosoz et al. [2007] presented a study 

on applying ANN to predicting the performance of a cooling tower under a wide 

range of operating conditions. Gao et al. [2009] predicted the thermal performance 

of a natural draft counter-flow wet-cooling tower under cross-wind conditions. Wu et 

al. [2011] applied ANN to predicting the performance characteristics of a reversibly 

used cooling tower under cross flow conditions for a heat pump heating system in 

winter. Sainlez and Heyen [2011] applied two types of ANN, a static multilayer 

perceptron and a dynamic Elman's recurrent neural network, to predicting the high 

pressure steam flow rate from a heat recovery boiler.  

 

Secondly, ANN has been used to model different HVAC systems for different 
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purposes. The most widely studied HVAC systems using ANN included refrigeration 

and heat pump systems, air conditioning and heating systems, etc. 

 

The applications of ANN to modeling refrigeration systems (covering absorption 

refrigeration systems and vapor compression refrigeration systems) mainly aimed at 

predicting their operational performances. Sozen and Akcayol [2004] predicted the 

performances of a solar-driven ejector-absorption refrigeration system with an 

aqua/ammonia working fluid using ANN. Sencan [2006, 2007] applied ANN to 

predicting the performances of ammonia-water absorption refrigeration systems. 

Hosoz and Ertunc [2006a] investigated the applicability of ANN to a cascade vapor 

compression refrigeration system to predict its various performance parameters. 

Similarly, the performances of a refrigeration system with an evaporative condenser, 

in terms of its condenser heat rejection rate, refrigerant mass flow rate, electric 

power input to the compressor motor and coefficient of performance, were predicted 

using ANN [Ertunc and Hosoz 2006]. Saidur et al. [2006] predicted the energy 

consumption of a household refrigerator/freezer using ANN. From the work done by 

Sahin [2011], ANN was successfully applied to estimating the COP values of a 

single-stage vapor compression refrigeration system working with R134a, R404a 

and R407c. ANN has also been used to model the thermodynamic performance of 

refrigeration systems driven by variable speed compressor [Navarro-Esbri et al. 2007, 

Kizilkan 2011].  

 

ANN was also applied to modeling heat pumps. Bacthler et al. [2001] used ANN to 

model the steady-state performance of a vapor compression liquid heat pump. The 

performance analysis of an ejector absorption heat pump using ozone-safe fluid pair 
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was achieved using ANN by Sozen et al. [2004a]. Arcaklioglu et al. [2004] predicted 

the performance of a vapor compression heat pump with different ratios of R12/R22 

refrigerant mixtures using ANN. In the studies of Esen and others, the performance 

of ground coupled heat pump systems, including horizontal ground coupled heat 

pumps [Esen et al. 2008a, 2008b, 2008c] and vertical ground coupled heat pumps 

[Esen and Inalli 2009], were modeled using ANN. Mohanraj et al. [2009a, 2009b, 

2010] applied ANN to a direct expansion solar assisted heat pump system to predict 

its performances including power consumption, heating capacity, energy 

performance ratio and compressor discharge temperature [Mohanraj et al. 2009a] 

and the exergy destruction and exergy efficiency of the system at different solar 

intensities and ambient temperatures [Mohanraj et al. 2009b, 2010]. 

 

Chiller systems have also been studied using ANN. ANN was used as new approach 

to modeling the steady-state and dynamic operational performances of vapor 

compression liquid chillers [Swider et al. 2001, Bechtler et al. 2001]. Manohar et al. 

[2006] presented a steady-state model for a double effect absorption chiller with 

steam as heat input using ANN. The model developed was used to predict the chiller 

performance based on the chilled water inlet and outlet temperatures, cooling water 

inlet and outlet temperatures and steam pressure. Chang [2007] developed an 

ANN-based chiller power consumption model to determine optimal chiller 

sequencing without the requirement to measure the chilled water flow rates for the 

chillers used in a semiconductor factory. The chilled water supply temperatures were 

determined through employing ANN to solve the optimal chiller loading problem 

[Chang and Chen 2009].  
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ANN was also applied to air conditioning systems to study their operating and 

control performances. Yang et al. [2003] used ANN to predict the optimal starting 

time for a heating system in a building. Hosoz and Ertunc [2006b] used ANN to 

predict various performance parameters of an automotive air conditioning system 

using HFC134a as refrigerant. An automobile air conditioning system model was 

also developed by Atik et al. [2010] using ANN to predict system performance under 

different amounts of refrigerant charge and compressor revolution speeds. Rosiek 

and Batlles [2010, 2011] modeled a solar-assisted air conditioning system using 

ANN to predict its operational performance. Furthermore, ANN was applied to 

studying indoor environment. Lu et al. [2004] developed an ANN-based model for 

forecasting outdoor air pollutant trends in Mong Kok, Hong Kong. ANN-based 

evaluation models for indoor thermal comfort were developed [Atthajariyakul and 

Leephakpreeda 2005, Liu et al. 2007]. Sofuoglu [2008] used ANN to predict the 

prevalence of building related symptoms of office building occupants. The thermal 

behaviors in different functioned spaces, in particular indoor air temperature and 

humidity, have been modeled using ANN [Mustafaraj et al. 2010, Mustafaraj et al. 

2011]. Forecasting air-conditioning load using ANN has been undertaken by Hou et 

al. [2006] and Yao et al. [2006].  

 

Thirdly, ANN was used for the estimation of building thermal loads and the 

evaluation of building energy consumption. Kusiak et al. [2010] built an ANN-based 

model to predict the daily steam load in a building using weather data. Kwok et al. 

[2011] developed an ANN-based model to simulate the total building cooling load in 

an office building in Hong Kong, in which building occupancy rate was used as an 

input parameter and played a critical role in building cooling load prediction. Other 
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studies on predicting or forecasting building thermal loads included those by Ekici 

and Aksoy [2009] and Li et al. [2009]. ANN was widely used on the evaluation of 

building energy consumption [Neto and Fiorelli 2008, Wong et al. 2010, 

Escriva-Escriva et al. 2011]. In the work done by Wong et al. [2010], an ANN-based 

model was developed for office buildings using day lights under subtropical climates, 

linking external weather conditions, building envelope designs and day type (i.e. 

weekdays, Saturdays and Sundays) with the daily electricity use for cooling, heating, 

electric lighting and for the entire building. Escriva-Escriva et al. [2011] presented 

an ANN-based method for short-term prediction of the total energy consumption in 

buildings. 

 

Finally, ANN has been applied to dealing with the thermodynamic property analysis 

and determination of refrigerants. Arcaklioglu et al. [2004] investigated different 

possible ratios of refrigerant mixtures, e.g., HFC and HC, and their corresponding 

performances by using ANN, with the purpose of reducing the use of CFCs by 

finding a drop-in replacement for pure refrigerants used in domestic and industrial 

appliances. ANN has been successfully applied to predicting the thermodynamic 

properties, such as specific volume, enthalpy and entropy in both saturated 

liquid-vapor region and superheated vapor region of three refrigerant mixtures, 

R404A, R407C and R508A, by Sozen et al. [2007, 2009, 2010]. Other studies 

applying ANN to predicting the thermodynamic properties of different refrigerants 

included those by Kurt and Kayfeci [2009] and Sencan et al. [2011]. Sozen [2004b, 

2005] predicted the thermodynamic properties of two alternative 

refrigerant/absorbent pair, methanol-LiBr and methanol-LiCl, using ANN. 
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2.5.3.2 ANN-based control for HVAC systems 

 

The applications of ANN to the control of HVAC systems covered generally the 

following three major aspects: 

 

1) Control performances of HVAC system components 

2) Control performances of HVAC systems 

3) Control thermal environment and energy consumption 

 

Firstly, for all HVAC system components, heat exchangers were most widely studied 

using ANN for control purposes. Diaz et al. [2001a] controlled the temperature of the 

air passing through a heat exchanger system using an ANN-based internal model 

control (IMC) strategy. Comparing with a standard PI or PID controller, the 

ANN-based controller developed had less oscillatory behavior, allowing the heat 

exchanger to reach steady-state operating conditions in the regions where the PI or 

PID controller cannot perform well. Following this, an adaptive ANN-based 

controller was developed in which the weights of the ANN could be on-line updated 

according to different performance criteria such as stability or energy consumption. 

It has been shown that this adaptive controller was able to both adapt to major 

structure changes in the system, and to simultaneously minimize the amount of 

energy used [Diaz et al. 2001b]. To improve the ANN-based controller developed, a 

modified back-propagation training method was then developed to simultaneously 

minimize the target error and increase the dynamic stability of the system [Diaz et al. 

2004]. In the study by Nanayakkara et al. [2002], a novel ANN architecture 

characterized by activation functions with dynamic synaptic units was adopted in 
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controlling an ammonia evaporator. Abbassi and Bahar [2005] modeled an 

evaporative condenser under both steady state and transient state conditions for 

controlling its thermal capacity using an ANN-based controller which could better 

minimize the process error than PID controllers. Varshney and Panigrahi [2005] 

applied an ANN-based IMC strategy to controlling the temperature inside a test 

section of a test facility by varying air flow rate over heat exchanger tube surface and 

water flow inside the heat exchanger tube. Yang [2008] applied the ANN-based IMC 

strategy to controlling outlet air temperature from a heat exchanger by varying air 

flow rate. Vasickaninova et al. [2011] applied the ANN-based predictive control to a 

heat exchanger to maintain the temperature of heated outlet stream at a desired value 

and to minimize energy consumption. 

 

Other HVAC components have also been studied using ANN for control purpose. 

For example, the determination of optimal experimental input parameters for a 

compressor was studied by Cortes et al. [2009] using an ANN-based inverse model. 

Moghaddam et al. [2011] proposed a decoupled sliding-mode ANN-based 

variable-bound control system to control rotating stall and surge for compressors. An 

ANN-based adaptive control scheme for unknown dynamics of a nonlinear plant 

without using a model was incorporated. In the work done by Ekren et al. [2010], 

three different control algorithms, i.e., PID control, fuzzy logic control and 

ANN-based control, were applied to the variable speed compressor and EEV in a 

chiller system. The comparison results showed that the ANN-based controller helped 

achieve a lower energy consumption than both PID and Fuzzy controllers. Soyguder 

[2011] controlled fan speed in a HVAC system to reduce the energy consumption 

using a wavelet packet decomposition ANN, which confirmed to be more accurate 
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than a PID controller. 

 

Various HVAC systems, such as refrigeration systems, chilling systems, heating 

systems and air conditioning systems, were controlled using ANN-based techniques. 

Tian et al. [2008] designed a fuzzy neural controller, which integrated ANN with 

fuzzy logics to extract control rules from given data generated online, to control the 

degree of refrigerant superheat and evaporating pressure of an air cooled 

refrigeration system. Palau et al. [1999] controlled a gas/solid sorption chilling 

machine using ANN and expert systems. Chow et al. [2002] achieved the optimal 

control of an absorption chiller system using ANN and genetic algorithm, where 

ANN was used to model the system characteristics. To select the parameters for the 

optimal performance of an absorption chiller and for achieving the required cooling 

capacity, Labus et al. [2012] developed a control strategy using an inverse ANN on 

the basis of an ANN-based model developed for a small-scale absorption chiller. 

Jeannette et al. [1998] improved the performance of an air-handling unit by applying 

a predictive neural network controller. An ANN-based controller for a hydronic 

heating system was developed for energy savings while maintaining thermal comfort 

by Argiriou et al. [2004]. Fargus and Chapman [1998] developed a hybrid PI-ANN 

controller, in which the ANN could be automatically commissioned, for the control 

of building services plants. Khayyam et al. [2011] developed an adaptive ANN tuned 

PID controller to control a vehicle air conditioning system to optimize its energy 

consumption. 

 

In addition, thermal environment and energy consumption were the targets of 

applying ANN-based control. Egilegor et al. [1997] implemented a neuro-fuzzy 
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control strategy, in which ANN was used to adapt the fuzzy control, to maintain the 

thermal comfort in a dwelling by setting air flow rates of fan coil units in three zones 

of the dwelling. Zones temperature and humidity were the input variables from 

which the value of Fanger’s thermal comfort index, predicted mean vote (PMV), was 

calculated and used as a comfort variable. Rock and Wu [1998] developed a CO2 

demand-controlled ventilation scheme using an ANN-based control strategy. 

Kanarachos and Geramanis [1998] controlled the air temperature in a zone served by 

a hydronic heating system and the temperature of hot water to be below a maximum 

value using an ANN-based predictive controller. In the work done by Argiriou et al. 

[2000], the indoor air temperature of a building served by an electrical heating 

system was controlled using an ANN-based controller. Argiriou et al. [2004] further 

developed this controller based on its original concept and applied it to controlling a 

hydronic heating system. Morel et al. [2001] developed a predictive and adaptive 

heating controller using ANN to allow the adaptation of the control model to the real 

conditions, i.e., climate, building characteristics and user’s behavior. In the study of 

Ben-Nakhi and Mahmoud [2002], ANNs were designed and trained using general 

regression to investigate HVAC system set back control, focusing on energy 

conservation in air conditioning of public buildings.  

 

2.6 The rationale of choosing ANN in the modeling and control of DX A/C 

systems 

 

A number of mathematical models have been developed for modeling the operating 

performances of DX A/C systems by Deng [2000], Chen and Deng [2006], Xia et al. 

[2008] and Qi and Deng [2008], etc. It can be seen that all these previous models 
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were constructed by integrating sub-models for the key components in a DX A/C 

system, which described mathematically the physical processes taking place in these 

components. Therefore, all these models were considered to be physical-based. To 

establish a physical-based model, however, all underlying physical processes should 

be known, requiring a large number of related physical parameters. Very often, the 

physical processes to be modeled were too complicated to be understood or some of 

the physical parameters were not readily available, especially for complicated 

processes. For example, for the above mentioned steady-state physical-based model 

of a DX air cooling and humidifying coil developed by Xia et al. [2008], a 

cross-flow DX cooling coil where heat and mass transfer can be much more 

complicated was simplified to a counter-flow heat exchanger. In addition, previous 

researchers have also demonstrated the complexity in simulating heat and mass 

transfer processes when using commercial computational software [Yang 2008]. 

Even when a complicated physical based model may be established, to find its 

numerical solution, a trial-and-error approach would be usually needed, inevitably 

requiring more computational effort and time. In addition, physical-based models 

can often only describe approximately what actually happened in the real world 

[Kim et al. 2010]. When developing a physical-based model for a heat exchanger, a 

number of simplifications would have to be made, for example, constant thermal or 

fluid coefficients and/or properties and greatly simplified geometrical parameters 

[Yang 2008]. 

 

In addition, various control strategies have been designed for, and employed in DX 

A/C systems. These include the traditional PI or PID control [Krakow et al. 1995] 

and other advanced control strategies, such as DDC-based control [Li and Deng 
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2007b, Li and Deng 2007c], H-L control [Xu et al. 2008], MIMO control [Qi and 

Deng 2009], etc. However, for PI or PID control strategies, the coupling effect 

between the output air temperature and humidity from a DX A/C system can only be 

dealt with by using two decoupled feedback control loops. Hence, the transient 

control performance of the two decoupled feedback control loops was inherently 

poor due to the strong cross-coupling between air temperature and humidity 

[Krakow et al. 1995, Qi and Deng 2008]. For the steady-state DDC-based controller 

developed by Li and Deng [2007a, 2007b, 2007c], it would take time for the 

controller to obtain the information required if the space cooling loads were changed, 

leading to an unacceptable control sensitivity. In addition, the controller’s 

disturbance rejection ability was also poor because there was no any feedback loop 

to reflect the controlled process. On the other hand, the dynamic MIMO controller 

developed by Qi and Deng [2009] can only perform as expected near the operating 

point where the governing equations of the model was linearized.  

 

It has been challenging to model and control a DX A/C system because of its 

complexity. A DX A/C system is complex. Although there is currently no universally 

accepted definition of a complex system, many researchers have agreed on many of 

the characteristics that make a system complex [Loannou and Pitsillides 2008]. 

Firstly, complex systems are typically composed of several interconnected 

subsystems which mutually influence one another [Amaral and Ottino 2004]. A DX 

A/C system consists of many subsystems, such as a DX evaporator, condenser, EEV, 

compressor and air distribution, each of which will influence, and be influenced by, 

the others. Actually, even a single component in a DX A/C system may be 

considered to be complicated and could be categorized as a complex system, for 
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example, a DX evaporator [Diaz et al. 2004]. Secondly, the presence of nonlinear 

dynamics in a plant or a process to be controlled would be one significant 

characteristic of a complex system [Loannou and Pitsillides 2008]. The nonlinearity 

of a DX A/C system would become more obvious when both indoor air temperature 

and humidity are controlled simultaneously [Qi and Deng 2009]. Thirdly, other 

characteristic of complex system would include MIMO, which is still a difficult 

control problem [Mahmoud and Alajmi 2010, Wong et al. 2010], and uncertainties 

and time variations [Loannou and Pitsillides 2008]. Therefore, effective and 

intelligent control strategies for DX A/C systems have been thus studied for decades 

to satisfy the increasing demands for improved indoor thermal comfort. 

 

On the other hand, computer-based algorithm in a study area known as soft 

computing has been well developed for the past three decades [Yang 2008]. Soft 

computing became a formal computer science area of study in the early 1990's 

[Zadeh 1994]. It is a collection of methodologies, including Fuzzy Systems, Neural 

Networks and Genetic Algorithms, etc, that exploit tolerance for imprecision, 

uncertainty and partial truth to achieve tractability, robustness and low solution cost 

[Zadeh 1996]. Such algorithms generally have the characteristics of very simple 

computational steps and often need a very large number of repeated computational 

cycles [Yang 2008]. This is very different from conventional hard computing, which 

are usually more straightforward in analyzing system performance, with more 

predictable behavior and higher stability [Ovaska 2004].  

 

ANN is now unquestionably the leading soft computing methodology for general 

thermal problems [Yang 2008] and appears to be the most popular data-driven 
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method [Kim et al. 2010]. There are several reasons for this. Firstly, ANN has a 

powerful ability to recognize accurately the inherent relationship between any set of 

input and output without requiring a physical model. Meanwhile, ANN results do 

account for all the physics relating the output to the input [Haykin 1999]. This ability 

is essentially independent of system complexities, such as nonlinearity, multiple 

variables, coupling, noise existence and uncertainty. This ability is known as pattern 

recognition as the results of learning [Yang 2008]. Secondly, ANN has a built-in 

capability to adapt its synaptic weights to changes in the surrounding environment. 

Moreover, when an ANN is operating in a changing environment, it can be designed 

to real time change its weights. Such adaptive capability of ANN makes it a useful 

tool in dynamic modeling and adaptive control [Haykin 1999, Norgaard et al. 2000]. 

Thirdly, the ANN-based method is inherently fault tolerant due to the distributed 

nature of information stored in the network [Yang 2008, Haykin 1999]. Finally, a 

number of ANN-based control strategies have been developed [Norgaard et al. 2000], 

such as the inverse-model-based control which included IMC method and direct 

inverse control (DIC) method [Daosud et al. 2005, Deng et al. 2009], model 

predictive control [Aggelogiannaki et al. 2007, Kittisupakorn et al. 2009] and 

optimal control [Becerikli et al. 2003], etc. However, these were developed when the 

input and output data were available. Therefore, the ANN-based control may be 

applied when the physical processes to be modeled and/or controlled were complex 

but the operating data were available or easy to be collected. 

 

Therefore, the use of ANN can offer a viable solution to the modeling and control for 

DX A/C systems. While the ANN-based modeling and control has been widely used 

in HVAC systems, no previously reported studies on applying ANN to the modeling 
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of and the simultaneous control of indoor air temperature and humidity, using a DX 

A/C system may be identified. Moreover, a DX A/C system appears to be an ideal 

venue where ANN-based modeling and control techniques may be applied to, 

because of its nonlinear and MIMO characteristics. 

 

2.7 Conclusions 

 

More and more attentions have been paid to improving thermal environmental 

control in spaces using A/C systems, due to the pursuing for high quality living and 

comfortable working environments. DX A/C systems have been widely used in 

small- to medium- scaled buildings in recent decades. Compared to large central 

chilled water-based A/C installations, DX A/C systems are simpler, more energy 

efficient and cost less to own and maintain. However, most DX A/C systems are 

currently equipped with single-speed compressors and supply fans relying on on-off 

cycling compressors to maintain only indoor dry-bulb temperature, resulting in either 

space overcooling or an uncontrolled equilibrium indoor RH level.  

 

A great number of previous studies on the impacts of humidity on human thermal 

comfort and indoor environmental control indicated that indoor air RH levels 

influenced the occupants' thermal comfort in different ways both directly and 

indirectly. Therefore, indoor relative humidity should be controlled within a suitable 

range for thermal comfort. Indoor moisture which can cause high indoor relative 

humidity problem may come from both external and internal sources.  

 

Dynamic modeling was of great importance in carrying out research work related to 
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the control of DX A/C systems. A considerable number of previous investigations 

have focused on the modeling of DX A/C systems. The dual role of cooling and 

dehumidification for the cooling coil in a DX A/C system makes the controlled 

variables of air temperature and humidity to become coupled. Therefore it is 

necessary to develop a dynamic model for a DX A/C system, which takes the 

coupling effect between temperature and humidity into account and could be used in 

the implementation of any new control strategy to be developed. 

 

One of the major issues hindering the wider use of DX A/C systems is the mismatch 

between their output sensible and latent cooling capacities and the varying sensible 

and latent cooling loads in the conditioned spaces they serve, leading to possible 

poor indoor humidity control. Previous studies indicated that capacity control for DX 

A/C systems can be realized by the intermittent running of a compressor, i.e., on/off 

cycling compressor. The cooling capacity of DX A/C systems may also be controlled 

by using suction-gas throttling, hot-gas by-pass or cylinder-unloading. However, the 

previous studies suggested that varying refrigerant flow using variable speed 

compressors was the most energy efficient way for capacity control in DX A/C 

systems. 

 

Previous related studies have also demonstrated that ANN has the ability to 

recognize accurately the inherent relationship between any set of input and output 

without requiring a physical model and to account for all the physics relating the 

output to the input. Furthermore, a number of ANN-based control strategies have 

been developed and widely used in the field of HVAC engineering. Therefore, the 

use of ANN offers a viable solution to the modeling and control for DX A/C systems. 



 60 

While the ANN-based modeling and control has been widely used in HVAC systems 

as reviewed above, no previously reported studies on applying the ANN-based 

methods to the modeling and simultaneous control of indoor air temperature and 

humidity using a DX A/C system may be identified in open literature. Therefore, it is 

necessary to develop an ANN-based control strategy to simultaneously control the 

indoor air temperature and humidity in a space conditioned by a DX A/C system, 

through extensive modeling using ANN. This is to be the target of investigation 

reported in this thesis.  
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Chapter 3 

Proposition 

 

3.1 Background 

 

From the literature review presented in Chapter 2, it is evident that DX A/C systems 

are widely used in small- to medium-scaled buildings due to their advantages of 

simple configuration, a higher energy efficiency and a low cost to own and maintain. 

When a DX A/C system is however equipped with a single-speed compressor and 

single-speed supply fan, only indoor air dry-bulb temperature is normally controlled 

by on-off cycling compressor, resulting in either space overcooling or an 

uncontrolled equilibrium indoor RH level, thus reducing indoor thermal comfort. 

This is particular true for buildings located in hot and humid subtropics. Therefore, 

developing an appropriate indoor thermal environmental control strategy for DX A/C 

systems has attracted a lot of research attention. 

  

With the fast development of VSD technology in recent years, many DX A/C 

systems are currently equipped with a variable speed compressor and variable speed 

supply fan. Previous related investigations suggested that indoor air temperature and 

humidity may be simultaneously controlled by simultaneously varying compressor 

speed and supply fan speed.  

 

On the other hand, ANN has been widely used in the field of HVAC engineering for 

modeling and control purposes, as presented in Chapter 2. ANN is powerful in 

recognizing accurately the inherent relationship between any set of input and output 



 62 

without requiring a physical model regardless of the complexity of the underlying 

physical relation such as nonlinearity, multiple variables, coupling, noise existence 

and uncertainty. Therefore, a number of control strategies have been developed 

based on the ANN-based techniques to control nonlinear MIMO complex systems. 

Consequently, the use of ANN offers a viable solution to the modeling and control of 

DX A/C systems. While ANN-based modeling and control has been widely used in 

HVAC systems, no previously reported studies on applying ANN-based techniques 

to the modeling and simultaneous control of indoor air temperature and humidity 

using a DX A/C system may be identified in open literature. It was therefore 

considered necessary to apply ANN to modeling and control of DX A/C systems, 

with an emphasis on developing an ANN-based control strategy to simultaneously 

control indoor air temperature and humidity using a variable speed DX A/C system. 

 

3.2 Project title 

 

The thesis focuses on the following major issues related to the modeling and control 

of an experimental DX A/C system: (1) establishing an ANN-based steady-state 

model for the DX A/C system, and experimentally validating the ANN-based 

steady-state model developed; (2) establishing an ANN-based dynamic model for the 

DX A/C system, and experimentally validating the ANN-based dynamic model 

developed; (3) designing an ANN-based controller for the DX A/C system based on 

the ANN-based dynamic model developed, and carrying out controllability tests to 

validate the ANN-based controller developed; (4) designing an ANN-based on-line 

adaptive controller for the DX A/C system based on the ANN-based controller 

developed to solve the problem of limited controllable range, and carrying out 
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controllability tests to validate the ANN-based on-line adaptive controller developed. 

The proposed research project is therefore entitled “Artificial neural network based 

modeling and control of a direct expansion air conditioning system”. 

 

3.3 Aims and objectives 

 

The objectives of the research work reported in this thesis are as follows: 

 

(1)  To develop an ANN-based steady-state model to simulate the steady-state 

operating performance of the experimental DX A/C system, and to validate the 

ANN-based steady-state model developed by comparing the predicted and 

experimentally measured results of TCC and equipment SHR of the DX A/C 

system under different combinations of compressor and supply fan speeds. 

(2)  To develop an ANN-based dynamic model to simulate the dynamic operating 

performance of the experimental DX A/C system, and to validate the 

ANN-based dynamic model developed by comparing the predicted and 

experimentally measured results of the open loop dynamic responses of the DX 

A/C system. 

(3)  To design an ANN-based controller for the experimental DX A/C system based 

on the ANN-based dynamic model developed to simultaneously control indoor 

air temperature and humidity in a space served by the experimental DX A/C 

system through varying compressor speed and supply fan speed; and to carry out 

controllability tests for the ANN-based controller developed to evaluate its 

effectiveness and performances. 
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(4)  To design an ANN-based on-line adaptive controller for the experimental DX 

A/C system to address the issue of limited controllable range for the previously 

developed ANN-based controller, which is common to all controllers developed 

based on system identification; and to carry out controllability tests for the 

ANN-based on-line adaptive controller developed to evaluate its effectiveness 

and performances. 

 

3.4 Research methodologies 

 

The ANN-based steady-state model for the DX A/C system will be developed by 

training and testing a multilayer feedforward ANN with the BP learning algorithm, 

using the experimental data collected which could reflect the steady-state operating 

performance of the experimental DX A/C system. To validate the ANN-based 

steady-state model developed, the predicted and experimentally measured results of 

TCC and Equipment SHR of the DX A/C system will be compared. 

 

The ANN-based dynamic model for the DX A/C system will be developed by 

training and testing a recurrent ANN which using the previous/present outputs of the 

system, together with the previous/present inputs to the system, as inputs to the ANN 

at the current time step using the experimental data collected which could reflect the 

dynamic characteristics of the experimental DX A/C system. The ANN-based 

dynamic model developed will be experimentally validated by comparing the 

predicted and experimentally measured results of indoor air dry-bulb temperature 

and wet-bulb temperature under different combinations of compressor and supply 

fan speeds of the DX A/C system. 
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The ANN-based controller will be designed using the ANN-based DIC strategy, in 

which the ANN-based dynamic model previously developed is used to reflect the 

dynamic operating performance of the system controlled, and an ANN-based inverse 

model is to be developed and used to reduce the measured difference between the 

control references and the controlled variables by varying compressor speed and 

supply fan speed. Controllability tests for the ANN-based controller will be carried 

out with respect to disturbance rejection and command following, respectively, after 

being subjected to either heat load disturbance in a conditioned space or the changes 

in indoor air dry-bulb temperature and wet-bulb temperature settings. These tests are 

to ascertain whether the ANN-based controller developed could behave as expected 

in simultaneously controlling indoor air dry-bulb and wet-bulb temperatures in the 

space served by the experimental DX A/C system.  

 

To solve the problem of limited controllable range of the ANN-based controller, an 

ANN-based on-line adaptive controller for the DX A/C system will be further 

developed. The ANN-based adaptive algorithms will be applied to on-line 

training/updating of the ANN-based dynamic model and the ANN-based inverse 

model in the ANN-based controller to develop the ANN-based on-line adaptive 

controller. Controllability tests including the initial start-up stage test, command 

following test, disturbance rejection test and command following with disturbances 

test for the ANN-based on-line adaptive controller will be carried out to validate the 

control performances of the ANN-based on-line adaptive controller developed. 
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Chapter 4 

Description of the Experimental rig of DX A/C System 

 

4.1 Introduction 

 

An experimental DX A/C system is available in the HVAC Laboratory of 

Department of Building Services Engineering in the Hong Kong Polytechnic 

University. The primary purpose of having the experimental station is to facilitate 

carrying out the research work related to DX A/C technology. 

 

Advanced technologies such as variable-speed compressor and supply fan, EEV, as 

well as a computerized data measuring, logging and control system have been 

incorporated into the experimental DX A/C system.       

 

This Section presents firstly detailed descriptions of the experimental DX A/C 

system and its major components. This is followed by describing the computerized 

instrumentation and a data acquisition system (DAS). Finally, a computer 

supervisory program used to operate and control the experimental DX A/C system is 

detailed.          
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4.2 Detailed description of the experimental system and its major components 

 

The experimental DX A/C system is mainly composed of two parts, i.e., a DX 

refrigeration plant (refrigerant side) and an air-distribution sub-system (air side). The 

schematic diagrams of both the complete experimental DX A/C system and the DX 

refrigeration plant are shown in Fig. 4.1 and Fig. 4.2, respectively. 

 

4.2.1 The DX refrigeration plant 

 

As shown in Fig. 4.2, the major components in the DX refrigeration plant include a 

variable-speed rotor compressor, an EEV, a high-efficiency tube-louver-finned DX 

evaporator and an air-cooled tube-plate-finned condenser. The evaporator is placed 

inside the supply air duct to work as a DX air cooling coil whose details are shown 

in Fig. 4.3. The evaporator’s louver fins are made of aluminum and tubes made of 

copper. A water collecting pan is installed under the evaporator to collect and weight 

the mass of condensate drained of the cooling coil. The design air face velocity for 

the DX cooling coil is 2.5 m/s. The nominal output cooling capacity from the DX 

refrigeration plant is 9.9 kW. The actual output cooling capacity from the DX 

refrigeration plant can however be modulated from 15% to 110% of the nominal 

capacity. Other details of the compressor can be found in Table 4.1. The compressor 

is driven by a VSD. The EEV includes a throttling needle valve, a step motor and a 

pulse generator. It is used to maintain the degree of refrigerant superheat at the 
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evaporator exit. The working fluid of the plant is refrigerant R22, with a total charge 

of 5.3 kg.  

 

 

 

Fig. 4.1 The diagram of the complete experimental DX A/C system 

 

In addition, two three-way connectors and two flexible joints, whose locations are 

indicated in Fig. 4.2, are reserved in the refrigerant pipeline for the purpose of 

possibly modifying the system for other related studies. A condenser air duct, which 

is not normally required in real applications, is used to duct the condenser cooling air 
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carrying the rejected heat from the condenser away to outside the Laboratory. The 

condenser fan, housed inside the condenser air duct, can also be variable-speed 

operated. An electrical heater controlled by a solid state relay (SSR) is used to adjust 

the temperature of the cooling air entering the condenser for various experimental 

purposes. A refrigerant mass flow meter is installed upstream of the EEV. Other 

necessary accessories and control devices, such as an oil separator, a refrigerant 

receiver, a sight glass and safety devices, are provided in the refrigeration plant to 

ensure its normal and safe operation. 

 

 

 

Fig. 4.2 The schematic diagram of the DX refrigeration plant 
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Fig. 4.3 The details of the DX air cooling and dehumidifying coil used in the 

experimental DX A/C system 

 

 Table 4.1 Details of the variable speed rotor compressor 

Model HITACHI THS20MC6-Y 

Allowable Frequency range 15~110 Hz 

Rated Capacity  9900 W at 90 Hz 

Displacement 3.04 ml/rev 

 

4.2.2 The air-distribution sub-system 

 

The air-distribution sub-system in the experimental DX A/C system is schematically 

shown in Fig. 4.1. It includes an air-distribution ductwork with return and outdoor 

air dampers, a variable-speed centrifugal supply fan with its motor placed outside the 

duct, and a conditioned space. The supply fan is driven by a VSD. The details of the 
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supply fan are given in Table 4.2.  

 

The air conditioned space measures 7.6 m (L)×3.8 m (W)×2.8 m (H). Inside the 

space, there are sensible heat and moisture load generating units (LGUs). The units 

are intended to simulate the cooling load in the conditioned space. Its heat and 

moisture generation rate as regulated by SSR may be varied manually or 

automatically with a pre-set pattern through operator’s programming. In addition, 

leakage outlets with residual-pressure relief dampers are installed in the space so that 

a positive internal pressure of not more than 20 Pa can be maintained at all time. In 

the air-distribution sub-system of the experimental DX A/C system, return air from 

the space mixes with outdoor air in a plenum box upstream of an air filter. The 

mixed air is filtrated and then cooled and dehumidified by the DX cooling coil. 

Afterwards, the cooled and dehumidified air passes through the supply fan, to be 

supplied to the space to deal with the cooling load from LGUs.  

 

Table 4.2 Details of the variable speed supply fan 

Model KRUGER BSB 31 
Nominal flow rate 1700 m3/h (0.47 m3/s) 
Total pressure head 1100 Pa 

  

4.3 Computerized instrumentation and DAS  

 

The computerized instrumentation for the experimental DX A/C system is also 
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shown in both Fig. 4.1 and Fig. 4.2. The system is fully instrumented for measuring 

all of its operating parameters, which may be classified into three types, i.e., 

temperature, pressure and flow rate. Since all measurements are computerized, all 

sensors and measuring devices are able to output direct current signal of 4-20 mA or 

1-5 V, which are transferred to a DAS for logging and recording.           

   

4.3.1 Sensors/measuring devices for temperatures, pressures and flow rates 

 

The room temperatures (dry-bulb temperature and wet-bulb temperature) are 

fundamental parameters in development of the ANN-based modeling and control 

strategy and the definition of the room temperatures is therefore very important in this 

study. In the study of Davies [3], the definition of room temperature is given in terms 

of heat transfer that the loss of heat from a room to ambient at T0 is normally taken to 

be proportional to (Ti-T0), and the index Ti is the room temperature. This room 

temperature could be obtained through the measures of convective and radiant transfer, 

which could be combined with various measurable temperatures of the surfaces and 

the air, possibly with the considerations of heat input. In the current study, in order to 

simplify the experimental measurement, the air temperature before evaporator was 

measured and used as the room temperature approximately. 

 

Five sets of air temperature and humidity measuring sensors are located in the 

air-distribution sub-system of the experimental DX system. Air RH is indirectly 



 73 

measured via measuring air dry-bulb and wet-bulb temperatures. As shown in Fig. 

4.2, there are six temperature sensors for measuring refrigerant temperatures in the 

DX refrigeration plant. To ensure fast response of the sensors for facilitating the 

study of transient behaviors of the DX refrigeration plant, these temperature sensors 

are inserted into the refrigerant circuit, and are thus in direct contact with the 

refrigerant. The temperature sensors for air and refrigerant are of platinum resistance 

temperature device type, using three-wire Wheatstone bridge connection and with a 

pre-calibrated accuracy of ±0.1℃. The specifications of the resistance temperature 

devices are: CHINO Pt100/0℃-3W, Class A, SUSΦ3.2-150L.  

 

Refrigerant pressures in various locations in the DX refrigeration plant are measured 

using pressure transmitters with an accuracy of ±0.13% of full scale reading (Model: 

SETRA C206). The atmospheric pressure is measured with a barometer having an 

accuracy of ±0.05kPa (Model: VAISALA PTB-101B).  

 

There are two sets of air flow rate measuring apparatus (FRMA) in the 

air-distribution system. One set of FRMA is used to measure the total supply airflow 

rate, i.e., the airflow rate passing through the DX cooling coil. The other is for 

measuring the airflow rate passing through the condenser. The two sets of FRMA are 

constructed in accordance with ANSI/ASHRAE Standard 41.2, consisting of nozzles 

of different sizes, diffusion baffles and a manometer with a measuring accuracy of 
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±0.1% of full scale reading (Model: ROSEMOUNT 3051). The number of nozzles in 

operation can be altered automatically.  

 

Outdoor airflow rate is measured using a hot-film anemometer with a reported 

accuracy of ±0.1 m/s (Model: EE70-VT62B5). The anemometer is installed 500 mm, 

which is longer than the recommended length of entrance of 200 mm by its 

manufacturer, downstream of the outdoor air inlet, to ensure the measuring accuracy 

of outdoor airflow rate. The power consumption of the variable-speed compressor is 

measured using a pulse-width-modulation digital power meter with a reported 

uncertainty of ±2% of reading (Model: EVERFINE PF9833). The refrigerant mass 

flow rate passing through the EEV is measured by a Coriolis mass flow meter with a 

reported accuracy of ±0.25% of full scale reading (Model: KROHNE 

MFM1081K+F). The supply air static pressure is measured using a manometer with 

a reported accuracy of ±0.1% of full scale reading (Model: ROSEMOUNT 3051).  

 

In order to ensure the measuring accuracy for the temperatures of the air flowing 

inside air duct, standardized air sampling devices recommended by the ISO Standard 

5151 are used in the experimental DX A/C system.   

 

4.3.2 The DAS  

 

A data acquisition unit (Model: AGLIENT 34970A/34902A) is used in this 
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experimental DX A/C system. It provides up to 48 channels for monitoring various 

types of system parameters. The direct current signal from various measuring 

devices/sensors can be scaled into their real physical values of the measured 

parameters using a logging & control (L&C) supervisory program which is 

developed using LabVIEW programming platform. The minimum data sampling 

interval is one second. It should be noted that the flow rates of both supply air and 

condenser cooling air are calculated using the air static pressure drops across their 

respective nozzles. The outdoor airflow rate is evaluated by multiplying the 

measured air velocity with the sectional area of the outdoor air duct. The output 

cooling capacity from the DX refrigerant plant is calculated based on the 

enthalpy-difference of air across the DX cooling coil.      

 

4.4 LabVIEW L&C supervisory program  

 

A computer supervisory program which is capable of performing simultaneously 

data-logging and parameter-controlling is necessary. It needs to communicate with 

not only the data acquisition unit, but also conventional standalone digital 

programmable PI controllers which are to be detailed in Section 4.5. A commercially 

available programming package, LabVIEW, provides a powerful programming and 

graphical platform for data acquisition and analysis, as well as for control 

application.    
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A data L&C supervisory program has been developed using LabVIEW, with all 

measured parameters real-time monitored, curve-data displayed, recorded and 

processed. The program can also perform the retrieval, query and trend-log graphing 

of historical data for measured parameters. The program runs on a personal computer 

(PC).  

 

The LabVIEW-based L&C supervisory program enables the PC to act as a central 

supervisory control unit for different low-level control loops, which will be also 

discussed in Section 4.5, in the experimental DX A/C system. The PC can therefore 

not only modify the control settings of those standalone microprocessor-based PI 

controllers, but also deactivate any of these controllers. The LabVIEW-based L&C 

supervisory program also provides an independent self-programming module (SPM) 

by which new control algorithms may be easily implemented through programming. 

A SPM performs in a similar manner to a central processing unit of a physical digital 

controller. The variables available from all measured parameters can be input to, and 

processed according to a specified control algorithm in a SPM to produce required 

control outputs. Once a SPM is initiated to replace a given standalone controller, the 

controller must be deactivated, but works as a digital-analog converter to receive the 

control output from the SPM. An analogue control signal is then produced by the 

controller to initiate the related actuator for necessary control action.     

 

4.5 Conventional control loops in the experimental system 
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Totally, there are ten conventional control loops in this experimental DX A/C 

system. These loops either are activated using the LabVIEW-based supervisory 

program or use PI controllers which are of digital programmable type with RS-485 

communication port (Model: YOKOGAWA UT350-1). Resetting controller’s 

proportional band, integral times and setpoints are allowed. 

 

Among the ten control loops, four are for varying heat and moisture generation rate 

of the LGUs located inside the space. Electrical power input to the LGU is regulated 

using SSR according to the instructions from their respective control loops to 

simulate the space cooling load. In addition, there is one control loop for maintaining 

the condenser inlet air temperature at its setting through regulating electrical power 

input by SSR.                         

 

The remaining five conventional PI control loops are as follows: supply air 

temperature by regulating the compressor speed; supply air static pressure by 

regulating the supply fan speed; condensing pressure by regulating the condenser fan 

speed; degree of refrigerant superheat by regulating EEV opening; outdoor airflow 

rate by jointly regulating both outdoor and return air dampers’ openings. These five 

control loops can be activated by using either the conventional physical digital PI 

controller available in the experimental DX A/C system or a SPM specifically for 

any new control algorithm to be developed.  
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The control of supply air temperature is used as an example for illustration. When 

the conventional PI controller is enabled, the controller measures the supply air 

temperature using the temperature sensor and then compares the measured with its 

setpoint. A deviation is processed in the controller according to a pre-set PI control 

algorithm and an analogue control signal of 4~20 mA is produced and sent by the PI 

controller to the VSD for compressor motor to regulate its speed. On the other hand, 

such a conventional PI controller may be replaced by a SPM to be specifically 

developed based on a new control algorithm for compressor speed control. The SPM 

may take the advantages of using simultaneously multiple input variables, e.g., 

supply air temperature and its setpoint, evaporating and condensing pressures, 

degree of refrigerant superheat, etc. Control outputs can then be created by using the 

SPM according to the new control strategy and algorithm, and communicated to the 

physical digital PI controller which works only as a digital-analog converter. An 

analog control signal is then generated and sent to the VSD of compressor for its 

speed control.  

 

4.6 Conclusions 

 

An experimental DX A/C system is available for carrying out the proposed project. 

The system consists of two parts: a DX refrigeration plant and an air-distribution 

sub-system.  
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The experimental DX A/C system has been fully instrumented using high quality 

sensors/measuring devices. Totally forty-three operating parameters in the system 

can be measured and monitored simultaneously and ten conventional PI feedback 

control loops are provided. Two sets of airflow rate measuring apparatus are 

constructed in accordance with ANSI/ASHRAE Standard 41.2. Sensors for 

measuring refrigerant properties are in direct contact with refrigerant, and a Corioli 

mass flow meter is used for measuring the refrigerant flow rate being circulated in 

the DX refrigerant plant.   

 

An L&C supervisory program has been developed specifically for this experimental 

DX A/C system using LabVIEW programming platform. All parameters can be 

real-time measured, monitored, curve-data displayed, recorded and processed by the 

L&C program. The LabVIEW-based L&C program provides an independent SPM 

by which any new control algorithms to be developed may be implemented.  

 

The availability of such an experimental DX A/C system is expected to be extremely 

useful in developing a multivariable control strategy for simultaneously controlling 

indoor air temperature and humidity in a space served by a DX A/C system having a 

variable-speed compressor and supply fan.  A multivariable control-oriented 

dynamic mathematical model for the DX A/C system can be developed and 

experimentally validated. An ANN-based controller for simultaneous control of 
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indoor air temperature and humidity can be developed, and the controllability tests 

for the ANN-based controller carried out using the experimental DX A/C system. 
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Chapter 5 

ANN-based Steady-state Modeling of the Experimental DX A/C 

System  

 

5.1 Introduction 

 

As presented in Chapter 2, a number of mathematical models have been developed 

for modeling the steady-state operating performances of DX A/C systems and their 

components. However, it can be seen that all these models were physical-based and 

were therefore complicated and often difficult to be established and solved. On the 

other hand, unlike the physical-based modeling, ANN-based approaches only use 

experimental data to identify the input-output relationships and thus are always 

simpler than the approaches used in establishing physical-based models. Therefore, 

the use of ANN should be preferred when the physical processes taking place in a 

system to be modeled are complicated. Given that an ANN-based model is able to 

reveal the inherent relationship of any set of input-output data with a higher accuracy, 

compared to a conventional physical-based model, even if there could be 

complexities involving the nonlinearity, multi-variables and uncertainty in modeling 

processes [Haykin 1999], ANN-based method has become increasingly popular in 

modeling complicated systems. 

 

Despite of the fact that DX A/C systems have been widely used, there has been a 

clear lack of using ANN-based technique to model the operational characteristics of 

DX A/C systems. As a prerequisite of designing effective strategies for 

simultaneously controlling indoor temperature and humidity, it is essential to have an 
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accurate understanding of the steady-state operating characteristics of a variable 

speed DX A/C system [Li and Deng 2007a]. These include the TCC and the 

Equipment SHR, which is defined as a ratio of the output sensible cooling capacity 

to the TCC of the DX A/C system, under different combinations of compressor speed 

and supply fan speed. 

 

Therefore, the objective of this Chapter is, as the first attempt to apply ANN-based 

modeling method to DX A/C systems, to develop a two-in two-out ANN-based 

steady-state model for the experimental DX A/C system detailed in Chapter 4, 

linking both its TCC and Equipment SHR with different combinations of compressor 

and supply air fan speeds, at a fixed supply air temperature and RH 24oC and 50%, 

respectively to the system. In this Chapter, the related steady-state experimental 

conditions are firstly described. The training algorithm used for the steady-state 

modeling of the DX A/C system is introduced subsequently. Thirdly, the 

development of the ANN-based steady-state model for the experimental DX A/C 

system is presented. Fourthly, the validation of the ANN-based steady-state model 

developed by comparing between the predicted results using the ANN-based 

steady-state model developed and the experimental data is reported. Finally, a 

comparison for the prediction accuracy using the ANN-based steady-state model 

developed, a steady-state physical-based model and a numerical analysis using 

bilinear interpolation is presented. 

 

5.2 Experimental conditions 

 

During experiments, a fixed inlet air state in terms of indoor air dry-bulb temperature 
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and RH to the DX cooling coil in the experimental DX A/C system was maintained 

at 24 oC and 50%, respectively, using a PID controller. In addition, during the 

experiments, no outdoor air was introduced by fully closing the outdoor air damper 

in the experimental DX A/C system so that the space cooling load was fully provided 

by the LGUs. On the other hand, the condenser cooling air flow rate was maintained 

constant at 3100 m3/h at a fixed inlet temperature 35 oC. The degree of refrigerant 

superheat was maintained constant at 6 ºC by using the EEV, which was controlled 

by a built-in conventional PID controller in the DX A/C system. 

 

Given the objective of establishing an ANN-based steady-state model linking its 

TCC and Equipment SHR at different combinations of compressor and supply fan 

speed, the two speeds were regarded as the two inputs to, and TCC and SHR as the 

two outputs from the model. 

 

The equations used to calculate the TCC and Equipment SHR were available from a 

previous related study [Li and Deng 2007a]. The uncertainties associated with the 

experimental measurements in calculating the TCC and Equipment SHR were 

evaluated. All temperatures in the experimental DX A/C system were measured 

using platinum Resistance Temperature Device type temperature sensors, with a 

reported accuracy of ±0.1 oC. The air mass flow rate was measured using a standard 

nozzle which was constructed in accordance with ANSI/ASHRAE Standard 41.2, 

with its reported accuracy of ±1.2%. 

 

Hence, the uncertainties in calculating TCC and Equipment SHR, UTCC and USHR, 

were evaluated by using the classic root-sum-square formula [Holman 1994]: 
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where Tdb,in, Twb,in, Tdb,out and Twb,out are air dry-bulb and wet-bulb temperatures both 

entering and leaving the DX A/C unit, and ma the mass flow rate of air, respectively; 

and TCCU , SHRU , 
amU , 

indbTU
,

, 
inwbTU
,

, 
outdbTU
,

, 
outwbTU

,
 are the uncertainties for 

TCC, SHR, ma, Tdb,in, Twb,in, Tdb,out and Twb,out, respectively. The calculation results 

using Equations (5.1) and (5.2) showed that the uncertainties for TCC and 

Equipment SHR, arising from the measurement errors, ranged from 1.85% to 3.89% 

and 1.64% to 4.02%, respectively. 

 

All the experimental work reported in this Chapter may be divided into two 

categories: I) for developing the ANN-based steady-state model; II) for validating 

the ANN-based steady-state model developed.  

 

Category I experiments 

 

The purpose of Category I experiments was to obtain experimental data linking the 

outputs from, with the inputs to the DX A/C system under steady-state operating 

conditions, so as to facilitate the intended ANN-based steady-state model 
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development. To ensure the greatest possible applicability of the ANN-based model 

developed for the DX A/C system, the variation of the inputs should cover their 

entire operation ranges in application [Navarro-Esbri et al. 2007]. Therefore, both 

percentage of the maximum compressor speed (PC) and percentage of the maximum 

supply fan speed (PF) were varied from 30% to 90% of their respective maximum 

speeds at a fixed increment of 5%, as shown in Table 5.1. This resulted in a total of 

169 (13×13) speed combinations. 

 

Table 5.1 Speed combinations in Category I experiments 

PC (%) 

30 35 40 45 50 55 60 

65 70 75 80 85 90  

PF (%) 

30 35 40 45 50 55 60 

65 70 75 80 85 90  
 

Experiments were carried out at the speed combinations specified in Table 5.1. A 

total of 169 sets of input-output data (i.e., PC, PF - TCC, SHR) were generated. These 

sets of input-output data were used to train and test the ANN-based steady-state 

model for the experimental DX A/C system. 

 

Category II experiments 

 

The purpose of Category II experiments was to validate the ANN-based steady-state 

model developed. These experiments were carried out independent of those in 

Category I, so as to validate independently the ANN-based steady-state model 
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developed. This part of experiments was carried out under the same experimental 

conditions but with different combinations of compressor and supply fan speeds. As 

shown in Table 5.2, 10 additional sets of experimental data in terms of Equipment 

SHR and the TCC were obtained by carrying out additional experiments, at 10 

randomly selected different combinations of compressor and supply fan speeds. As 

understood, the output TCC and Equipment SHR data at these 10 additional 

experimental combinations were not used for either ANN training or testing. 

 

Table 5.2 Speed combinations in Category II experiments 

Nos. 1 2 3 4 5 6 7 8 9 10 

PC 38  (%) 43 52 53 62 67 73 78 83 87 

PF 37  (%) 82 53 67 83 68 43 52 77 47 
 

5.3 Training algorithm in developing the ANN-based steady-state model  

 

The ANN structure chosen was a multilayer feedforword ANN, which was the most 

commonly used in engineering applications. A multilayer feedforward ANN is 

constructed by ordering neurons in layers, making each neuron in a layer only take 

the outputs from neurons in the previous layer or external inputs as input [Norgaard 

et al. 2000]. In other words, the input signal propagates though the network in 

forward direction, on a layer-by-layer basis. 

 

A multilayer feedforward ANN has three distinctive characteristics [Haykin 1999]: i) 

the model of each neuron in a multilayer feedforward ANN includes a nonlinear 

activation function, whose nonlinearity is smooth (i.e. differentiable everywhere); ii) 
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the network contains one or more layers of hidden neurons that are not part of the 

input or output of the ANN; iii) the network exhibits a high degree of connectivity, 

determined by the weights of the ANN. It is through the combination of these 

characteristics together with the ability to learn from experience through training that 

a multilayer feedforward ANN derives its computing power. A general multilayer 

feedforward ANN is shown in Fig. 5.1, where i (1 ≤ i ≤ I) refers to the layer number 

and j, the neuron number in each layer, x, input to a neuron, y, output from a neuron, 

and W, the weights of the ANN. Therefore, the jth neuron in the ith layer of the 

network is denoted as the neuron (i, j) and Ji refers to the total number of neurons in 

the ith layer. 

 

x1,1

y1,JI

… … …

…

Input 
layer

Output 
layer

First 
hidden 
layer

Last 
hidden 
layer

…

…

(i=1) (i=2) (i=I-1) (i=I)

(j=1)

(j=2)

(j=Ji)

W

yI,JI

x1,2

x1,J1

 

 

Fig. 5.1 Structure of a general multilayer feedforward ANN 

 

The training algorithm used in the current development was the feedforward 

back-propagation (BP) algorithm. The training process consisted of two passes: a 

forward pass and a backward pass. The forward pass was to perform forward 

calculations using Eqs. (5.3) to (5.4). 
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where, xi,j is the input to the neuron (i, j), bi,j the bias of the neuron (i, j), i,j
,kiW 1−  the 

weight of synaptic connecting the neuron (i−1, k) and neuron (i, j), and yi-1,j the 

output from the neuron (i−1, j). The activation function φ used was the logistic 

sigmoid function, shown in Eq. (5.5): 
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When the outputs from the ANN were obtained, the backward pass was to calculate 

the errors at neurons along the backward direction by using Eq. (5.6): 
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where Oi,j is the normalized target output. Once the local gradient, δi,j, of the output 

layer was calculated, the computation moved backward layer by layer up to layer 2. 

After all the values of δi,j were known, the changes in the weights and biases would 

be determined by using the Delta Rule [Haykin 1999], as follows: 
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where η is the learning rate used to scale down the degree of change made to the 

connector. 

 

Each time adjusting the weights and biases using Eqs. (5.3-5.7) with one set of 

training data was called a run. A cycle of training consisted of an adequate number of 

runs for obtaining weights and biases successively from all training data. The 

calculations were then repeated over many cycles and the relative error (RE) at the 

jth neuron in the output layer for the nth data set at the final cycle, 𝑅𝑅𝑅𝑅𝑗𝑗𝑛𝑛 , could be 

determined by: 
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Two further indices i.e., R, σ, were used to evaluate the performances of different 

ANN configurations during the process of testing, relative error and standard 

deviation sensitivity for all the testing data. They were evaluated by: 
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where N is the total number of the data sets used in training or testing, n
I,jO , the 

target output , and n
I,jy , the ANN outputs corresponding to OI during testing. R 

indicates the average accuracy of the prediction and σ, the degree of scatter of the 
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ANN prediction [Yang 2008]. The accuracy of the prediction increases with the 

closeness of R to unity and σ to zero. 

 

5.4 Development of the ANN-based steady-state model  

 

In the current study, 144 data sets (~85% of the totally 169 sets) which were 

randomly selected were used for training and the remaining 25 data sets (~15% of 

the totally 169 sets) for testing. It was noted that there were no exact or specific 

guidelines readily available on allocating the percentage of the total data sets for 

either training or testing, with however some earlier literatures discussing this issue. 

For example, Pacheco-Vega et al [2001b] mentioned that when more than 60% of the 

experimental data were used for training, the final results would be indifferent. 

Others used 75% [Diaz et al. 1999] and 80% [Anderson et al. 1997] of the data sets 

for training. In the current study, by reference to these previously reported studies, it 

was decided to use 85% of the total data for training and the remaining 15% for 

testing. 

 

In order to select an appropriately configured ANN when modeling the DX A/C 

system, a large number of different ANN configurations were evaluated by using the 

four evaluating indices which are explained in Table 5.3. It should be noted that the 

first two indices were obtained from the training process and the other two the 

testing process. The first two indices, i.e., average relative error (ARE) and 

maximum relative error (MRE) were evaluated by:  
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 ( )n
jREMaxMRE =  (5.12) 

 

Table 5.3 Indices used to evaluate the accuracy of different ANN configurations 

Index Definition 

ARE Average relative errors experienced at the final cycle during training 

MRE Maximum relative errors experienced at the final cycle during training 

R Mean ratios of the experimental data to the ANN outputs corresponding 
to the experimental data during testing 

σ Standard deviation of the ratios of the experimental data to the ANN 
outputs corresponding to the experimental data during testing 

 

The selection of an ANN configuration was based on accuracy of the ANN during 

both training and testing processes. An ANN configuration having the 2-6-6-2 

structure shown in Fig. 5.2 was finally selected because its ARE and MRE were each 

at their lowest value of 0.026 and 0.0046, respectively, suggesting the high accuracy 

when simulating the training data; and its σ was also at its lowest values of 0.0052 

and its R close to unit at 0.9985, respectively, suggesting a high averaged accuracy 

and low degree of scatter for the ANN-based model developed. 
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Fig. 5.2 Structure of the selected 2-6-6-2 ANN 

 

The experimental data used in the development of the ANN-based steady-state 

model are shown in Fig. 5.3 and Fig. 5.4. The 144 data sets used for training are 

represented by grid points on the two spatial surfaces, while the remaining 25 data 

sets used for testing by crosses. The calculated results of TCC and SHR under 

different combinations of PC and PF using the ANN-based model developed were 

compared with the experimental results. For the developed 2-6-6-2 ANN-based 

model, all the REs during training are shown in Fig. 5.5. As seen, most calculated 

REs were below 0.015, with only 4 values of RE being greater than 0.015, indicating 

that the developed ANN-based model for the experimental DX A/C system would be 

able to predict the operating performance with a high accuracy. 
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Fig. 5.3 Experimental data of TCC used for training and testing 
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Fig. 5.4 Experimental data of SHR used for training and testing 
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Fig. 5.5 Relative error distribution of the developed 2-6-6-2 ANN-based model 

 

5.5 Validation of the ANN-based steady-state model developed 

 

Using the ANN-based model developed, the Equipment SHR and the TCC of the DX 

A/C system could be predicted. To exam the prediction accuracy of the ANN-based 

model developed for the experimental DX A/C system, 10 additional sets of 

experimental data were obtained, detailed in Section 5.2.  

 

The predicted results using the ANN-based model developed were compared with 

the corresponding experimental results at these 10 experimental speed combinations 

to exam the prediction ability of the ANN-based model developed. As given in Table 

5.4, all the REs calculated using Eq. (4.8) were lower than 4%, with most of them 

being lower than 1%.  
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Table 5.4 REs of predicted results as compared to the experimental results 

Nos. PC 
(%) 

PF 
(%) 

RETCC 
(%) 

RESHR 
(%) 

1 38 37 0.3141 0.7913 

2 43 82 0.3686 1.6348 

3 52 53 0.6863 0.2218 

4 53 67 1.0145 0.0821 

5 62 83 1.6506 1.0782 

6 67 68 0.4714 0.3063 

7 73 43 0.6205 0.9825 

8 78 52 0.7146 0.1237 

9 83 77 3.6206 1.6342 

10 87 47 0.4266 0.6757 
 

To further prove the prediction ability of the ANN-based model developed, the 

prediction accuracies using the ANN-based model developed, a steady-state 

physical-based model and a numerical analysis based on bilinear interpolation were 

compared. 

 

A physical-based steady-state model for the experimental DX A/C system was 

previously developed [Xia et al. 2008] although it could only be used to predict 

Equipment SHR. The prediction accuracy in terms of RE for Equipment SHR using 

this physical-based steady-state model was about ±6%, which is much higher than 

the errors shown in Table 5.4, indicating the high prediction accuracy of the 

ANN-based model developed.  

 

Furthermore, it was worth noting that one more advantage of using an ANN-based 

model was its simplicity when compared to using a physical-based model which 
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focused on fundamental physical processes, where a large number of calculation 

equations were involved and many assumptions were made during its development.  

 

On the other hand, bilinear interpolation is a numerical analysis method, which 

extends linear interpolation to two dimensions. Using this method, the values of 

TCC and Equipment SHR on the ten prediction points as specified in Table 5.5 may 

also be evaluated using experimental data, and the REs between the predicted and 

the experimental results were calculated. Fig. 5.6 (a) shows the comparison of the 

REs for TCC and Fig. 5.6 (b) the comparison of REs for Equipment SHR, both 

between using the ANN-based model and bilinear interpolation. The results of the 

comparison suggested that the accuracy using the ANN-based model developed was 

acceptable when compared to using other prediction methods. Therefore, the 

ANN-based model developed can be used as a good alternative, amongst many 

others, to simulate a DX A/C system with an acceptable accuracy. 
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Figure 5.6 (a) Comparison of REs for TCC between using the ANN-based model and 

bilinear interpolation 

 

 

 

Figure 5.6 (b) Comparison of REs for Equipment SHR between using the 

ANN-based model and bilinear interpolation 
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5.6 Conclusions 

 

In this Chapter, a two-in two-out ANN-based steady-state model for an experimental 

DX A/C system has been developed using BP training algorithm linking its 

steady-state TCC and Equipment SHR with different combinations of its compressor 

and supply fan speeds at a fixed inlet air state of 24 oC and 50% RH, respectively. 

Totally 144 sets of experimental data were used for ANN training and 25 sets for 

ANN testing. The ANN-based steady-state model has been validated experimentally 

by comparing the measured results of TCC and SHR at 10 additional combinations 

of compressor and supply fan speeds using the experimental DX A/C system with 

the predicted results using the ANN-based steady-state model developed. All the 

relative errors when using the developed ANN-based model for prediction were 

lower than 4%, with most of them being lower than 1%, suggesting the high 

prediction accuracy of the ANN-based model developed. 

 

The development of the ANN-based steady-state model for the experimental DX A/C 

system having multivariable inputs and multivariable outputs has clearly suggested 

that its operating performances can well be represented by using ANN. The 

ANN-based model developed and reported in this Chapter was the first of its kind 

applied to a DX A/C system, a highly non-linear complex system. It is expected that 

the ANN-based steady-state model developed would be very useful in both 

understanding the operating performances of a DX A/C system and developing an 

appropriate controller for the DX A/C system to simultaneously control indoor air 

temperature and humidity in a space served by the DX A/C system, which are to be 

reported in Chapters 6 to 8 in this Thesis. 
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Chapter 6 

ANN-based Dynamic Modeling of the Experimental DX A/C System  

 

6.1 Introduction 

 

Developing a dynamic model for a DX A/C system to effectively reflect its dynamic 

operating performances is strongly desirable for control purposes. Firstly, it is well 

known that the operation of a DX A/C system is dynamic in nature and the coupling 

effect among its various operating variables is intense [Qi and Deng 2008]. Secondly, 

all the system components operate in transit conditions in response to the changes in 

the operating environments and boundary conditions in real applications [Yang 

2008]. Thirdly, a good dynamic model which can effectively reflect the dynamic 

characteristics of a DX A/C system is significantly useful in developing its advanced 

control strategies, such as capacity control, simultaneous control over indoor air 

temperature and humidity, etc. [Qi and Deng 2008].  

 

Complexity is a necessary ingredient in physical systems [Mohanraj et al. 2009a]. 

The complexity of a DX A/C system stems from the fact that it is composed of 

several interconnected subsystems which mutually influence one another [Amaral 

and Ottino 2004], and there exist nonlinear dynamics between system inputs and 

outputs [Loannou and Pitsillides 2008]. In addition, the complexity in controlling 

DX A/C systems also derives from their MIMO characteristics. As a result, the 
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control for MIMO systems still presents much difficulty in the current literature 

[Wong et al. 2010, Mahmoud and Alajmi 2010]. Effective and intelligent control 

strategies for DX A/C systems have been thus pursued for decades to satisfy the 

increasingly high requirements for indoor thermal comfort. 

 

Various control strategies have been designed for, and employed in DX A/C systems. 

These include the traditional PI or PID control strategies. However, for PI or PID 

control strategies, the coupling effect between the output air temperature and 

humidity from a DX A/C system can only be dealt with by using two decoupled 

feedback control loops. Hence, the transient control performance of the two 

decoupled feedback control loops is inherently poor due to the strong cross-coupling 

between air temperature and humidity [Krakow et al. 1995, Qi and Deng 2008].  

 

In order to address the coupling effect, other advanced physical-based control 

strategies have been developed, as detailed in Chapter 2. For these physical-based 

advanced controllers developed for DX A/C systems, it was necessary to have a 

physical-based dynamic mathematical model to back up controllers’ development. 

However, because of the complicated inherent interaction among the sub-systems 

and the nonlinear dynamics in a DX A/C system, developing its physical model of 

adequate accuracy has always been challenging. 

 

On the other hand, as previously pointed out, ANN has a powerful ability in 
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recognizing accurately the inherent relationship between any set of input and output 

without requiring a physical model, while the predicted results using ANN do 

account for all the physics relating the outputs to the inputs. Therefore, the use of 

ANN offered a viable solution to the dynamic modeling of complex systems 

[Angeline et al. 1994]. Using an ANN-based dynamic model, a number of control 

strategies have been developed, such as the inverse-model-based control which 

included IMC method and DIC method [Daosud et al. 2005, Deng et al. 2009], 

model predictive control [Aggelogiannaki et al. 2007, Kittisupakorn et al. 2009] and 

optimal control [Becerikli et al. 2003], etc. 

 

While the ANN-based modeling and control has been widely used in other 

engineering systems or processes, no previously reported studies on applying the 

ANN techniques to the simultaneous control of indoor air temperature and humidity 

using a DX A/C system may be identified in open literature. On the other hand, a DX 

A/C system appeared to be an ideal venue where ANN-based modeling and control 

techniques may be applied to because of its nonlinear and MIMO characteristics. It 

was therefore considered necessary to develop an ANN-based dynamic model and an 

ANN-based controller for a variable speed DX A/C system for the simultaneous 

control of indoor air temperature and humidity in order to fully take the advantage of 

the advancement in ANN technique.  

 

The development of the ANN-based dynamic model for the experimental DX A/C 
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system is reported in this Chapter and that of ANN-based controller in Chapter 7. In 

this Chapter, firstly, the experimental conditions at which experiments were carried 

out for developing the dynamic model are specified. Secondly, the development of 

the ANN-based dynamic model for the experimental DX A/C system considering the 

coupling effect between output air temperature and humidity is presented. Finally, 

the experimental validation of the ANN-based dynamic model developed by 

comparing the measured open-loop responses for the experimental DX A/C system 

after being subject to step changes in compressor and supply fan speeds, with the 

corresponding predicted results using the ANN-based dynamic model developed is 

presented. 

 

6.2 Experimental conditions 

 

All the experimental work carried out when dynamically modeling the experimental 

DX A/C system using ANN may be divided into two categories: I) for developing 

the ANN-based dynamic model; II) for validating the ANN-based dynamic model 

developed. 

 

During all experiments, no outdoor air was introduced by fully closing the outdoor 

air damper in the experimental DX A/C system so that the space cooling load was 

fully provided by the LGUs. The condenser cooling air flow rate was maintained 

constant at 3100 m3/h at a fixed inlet temperature 35 oC. The degree of refrigerant 
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superheat was maintained constant at 6 ºC by using the EEV, which was controlled 

by a built-in conventional PID controller in the DX A/C system. 

 

Category I experiments 

 

The purpose of Category I experiments was to obtain sufficient amount of 

experimental data linking the outputs from, with the inputs to the DX A/C system, so 

as to facilitate the intended ANN-based dynamic model development. In the current 

study, indoor air dry-bulb temperature and wet-bulb temperature, Tdb and Twb, were 

regarded as the outputs from, and the compressor speed and supply fan speed, PC 

and PF, as the inputs to the system. 

 

When carrying out Category I experiments, both indoor sensible load and latent load 

were kept constant. To achieve this, before recording the experimental data, the 

speeds of compressor and supply fan were fixed both at 60% of their respective 

maximums. The outputs from the LGUs were then regulated using the PID controller, 

so that indoor air dry-bulb temperature and wet-bulb temperature stayed steadily at 

their respective setpoints, i.e., 24 oC and 17.1 oC (or an equivalent of indoor air 

moisture content of 0.00934 kg/(kg dry air) or a relative humidity of 50%). Then the 

outputs from the LGUs remained unchanged for the rest of the experimental duration, 

and the speeds of compressor and supply fan were varied between 30% and 90% of 

their respective maximum speeds to collect the variation of the experimental results 
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of Tdb and Twb. The pattern of input signals were designed as N-samples-constant 

signals following the methods proposed by Norgaard et al [2000]. Totally 5 groups 

of experiments, each lasting for 4 hours, were carried out. In each group, there were 

different combinations of compressor speeds and supply fan speeds which were 

randomly selected according to the N-samples-constant signal methodology. The 

experimental data collected from the first four groups were used for training, and 

those from the last one for testing the ANN-based dynamic model. The sampling 

interval for experimental data was determined at 1 minute. Totally 960 sets of 

experimental data were collected to train, and 240 sets of experimental data to test 

the ANN-based dynamic model. Each set of experimental data included the 

compressor speed, PC, supply fan speed, PF, indoor air dry-bulb temperature, Tdb and 

wet-bulb temperature, Twb. 

 

Category II experiments 

 

The purpose of the Category II experiments was to validate the ANN-based dynamic 

model developed. These experiments were carried out independent of those in 

Category I, so as to validate independently the ANN-based dynamic model to be 

developed. Three different variation patterns of input signals were designed: 1) 

varying PC only, with PF fixed; 2) varying PF only, with PC fixed; and 3) varying 

both PC and PF. Experimental data were collected at the above three patterns of input 

signals and compared to the corresponding predicted output results using the 
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ANN-based dynamic model. For the first variation pattern, the step changes in 

compressor speed, PC, were 30%→90%→30%; for the second pattern, the step 

changes in supply fan speed, PF, were 30%→90%→30%; and for the last one, the 

step changes in both compressor speed and supply fan speed, PC and PF, were 

30%→60%→90%, respectively. The time interval for each step change was all set at 

20 minutes, and the open-loop responses of the system were recorded 

correspondingly. Three experiments, corresponding to the three variation patterns, 

were carried out. Each lasted for one hour, and the sampling interval for 

experimental data was at 1 minutes. Thus, in each experiment, totally 60 sets of data 

were collected. 

 

6.3 Development of the ANN-based dynamic model 

 

When developing an ANN-based dynamic model for a complicated system or 

process, the previous/present outputs from the system, together with the 

previous/present inputs to the system, would be designated as inputs to the ANN. A 

network where the outputs at the previous time steps are used as the inputs to the 

network at the current time step is generally known as a recurrent network [Yang 

2008]. The structure of the ANN used to develop the ANN-based dynamic model for 

the experimental DX A/C system is shown in Fig. 6.1. The first six inputs to the 

ANN are the indoor air dry-bulb and wet-bulb temperatures at the present time step 

(t) and two previous time steps (t−1) and (t−2), while the other six inputs are the 



 106 

compressor and supply fan speeds at the present time step and two previous time 

steps. The two outputs of the ANN are the indoor air dry-bulb and wet-bulb 

temperatures at one time step ahead (t+1). 

 

Tdb(t)
Twb(t)

Tdb(t-1)
Twb(t-1)
Tdb(t-2)
Twb(t-2)

PC(t)
PF(t)

PC(t-1)
PF(t-1)
PC(t-2)
PF(t-2)

…
 ...

Tdb(t+1)
Twb(t+1)

 

 

Fig. 6.1 The structure of the ANN-based dynamic model with inputs and outputs 

 

This multilayer feedforward ANN was selected because of its capability of 

approximating any function after sufficient training. Feed-forward BP algorithm was 

used in the current study. In training of an ANN, if too much training was applied to 

a group of data, the ANN would eventually become over-fit. This meant that the 

ANN obtained would be fitted precisely to this group of training data, thereby losing 

its generality [Nissen 2003]. Therefore, part of experimental data sets should be 

reserved as testing data. By testing, it could be decided that how much training was 
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required for a trained ANN to perform well without over-fitting. This was the so 

called Early Stopping Strategy, which was derived from the fact that the errors for 

the training data decreased continuously, while that for the testing data decreased 

firstly and then increased when the ANN’s generality was considered to start to 

diminish. Therefore, the training of the ANN should be stopped when the errors for 

the testing data started to increase, thus avoiding over-fitting [Ahmad and Zhang 

2009, Asensio-Cuesta et al. 2010]. It was noted that there were no exact or specific 

guidelines readily available on allocating the percentage of the total data sets for 

either training or testing, with however some discussions seen in earlier literatures. 

For example, Pacheco-Vega et al. [2001b] mentioned when more than 60% of the 

experimental data sets were used for training, the final results would be indifferent. 

Others used 75% [Diaz et al. 1999] or 80% [Anderson et al. 1997] of the data sets for 

training. In the current study, with reference to these previously reported studies 

[Pacheco-Vega et al. 2001b, Diaz et al. 1999, Anderson et al. 1997], 80% of the total 

data sets were used for training and the remaining 20% for testing. 

 

Two indices were used to evaluate the results of ANN training and testing, i.e., ARE 

and MRE, which similar to Equations (5.11) and (5.12), were evaluated by: 
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 ( )n
jREMaxMRE =  (6.2) 

 

where JI is the total number of neurons in the output layer (JI=2 in the current study), 

N the total number of the data sets used in training or testing (N=960 for training and 

N=240 for testing in the current study), y the experimental results, and O the 

corresponding predicted results using the ANN trained. 

 

During training, ARE for the testing data as defined by Equation (6.1), was evaluated 

to determine when the ANN training should be stopped following the Early Stopping 

Strategy. Furthermore, different ANN structures with one, two and three hidden 

layers and different combinations of number of neurons in the hidden layers have 

been tried and compared. It was shown that at different number of hidden layers, no 

clear difference in ARE may be observed. The ANN with single hidden layer was 

therefore chosen. Finally, the number of neurons in the hidden layer was determined 

by trial and error, which suggested that an ANN having a 12-30-2 structure be 

employed. 

 

The ANN-based dynamic model for the experimental DX A/C system obtained after 

training and testing was a good representation of the dynamic characteristics 

between system inputs and outputs. Figure 6.2 shows the comparisons between the 

experimental training data (Tdb and Twb) and the corresponding predicted results 

using the ANN-based dynamic model developed for one of the four groups of 
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experimental data used for training. 

 

 

 

Fig. 6.2 Example comparisons between the experimental and the predicted dry-bulb 

and wet-bulb temperatures using the ANN-based dynamic model developed 

 

For the ANN-based dynamic model developed, the values of ARE and MRE during 

training were 0.30% and 1.36%, respectively, indicating that the ANN-based 

dynamic model developed was able to model the dynamic relationship between the 

inputs and outputs for the experimental DX A/C system with a high accuracy.  
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6.4 Validation of the ANN-based dynamic model developed 

 

Simulation results using the ANN-based dynamic model developed were compared 

with the Category II experimental results obtained using the experimental DX A/C 

system for the purpose of model validation. When validating the model, in addition 

to using ARE and MRE, two further evaluating indices, i.e., R and σ, were also used 

as follows:  
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where N is the total number of the data sets used in validation (N=60 in the current 

study). R indicates the average accuracy of the model prediction while σ the degree 

of scatter of the model prediction. The accuracy of the prediction increases with R 

approaching unity and σ approaching zero, respectively. 

 

Figures 6.3 and 6.4 show the comparison between experimental results and the 

corresponding predicted results using the ANN-based dynamic model developed 

when the compressor speed and supply fan speed were varied following the variation 

patterns 1) and 2) shown in Section 6.2 (Category II experiments). The calculated 

results of ARE for these two experiments were 0.33% and 0.27%, respectively, and 
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MRE were 0.89% and 0.99%, respectively. The calculated results of R and σ for the 

indoor air dry-bulb and wet-bulb temperature for pattern 1), i.e., Rdb, Rwb, σdb, σwb, 

were 1.0014, 0.9978, 2.9830×10-6 and 1.3904×10-5, respectively, and the 

corresponding results for pattern 2) were 1.0008, 0.9966, 1.8776×10-6 and 

1.0152×10-5, respectively. The results of all these evaluating indices indicated the 

high prediction accuracy of the ANN-based dynamic model developed. 

 

 

 

Fig. 6.3 Comparison between the experimental and the predicted dry-bulb and 

wet-bulb temperatures using the ANN-based dynamic model developed in validation 

(varying PC) 
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Fig. 6.4 Comparison between the experimental and the predicted dry-bulb and 

wet-bulb temperatures using the ANN-based dynamic model developed in validation 

(varying PF) 

 

The comparison between the experimental and predicted indoor air dry-bulb and 

wet-bulb temperatures when both the compressor speed and supply fan speed were 

varied following the variation pattern 3) as specified in Section 6.2 (Category II 

experiments) are shown in Fig. 6.5. The ARE was evaluated at 0.27%, and the MRE 

at 1.15% and the values of Rdb, Rwb, σdb and σwb were 1.0014, 0.9978, 2.9830×10-6 

and 1.3904×10-5 respectively. The results of all these evaluating indices also 

suggested that the ANN-based dynamic model developed could represent the 

dynamic relationship between the inputs and outputs of the experimental DX A/C 

system with a high accuracy. 
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Fig. 6.5 Comparison between the experimental and the predicted dry-bulb and 

wet-bulb temperatures using the ANN-based dynamic model developed in validation 

(varying both PC and PF) 
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measured results of indoor air dry-bulb and wet-bulb temperatures under Category II 

experiments conditions for the experimental DX A/C system, with the predicted 

results using the ANN-based dynamic model developed. The values of ARE and 

MRE when validating the ANN-based dynamic model developed under three 

different input patterns were 0.33%, 0.27%, 0.27% and 0.89%, 0.99%, 1.15%, 

respectively, suggesting the high prediction accuracy of the ANN-based dynamic 

model developed.  

 

The ANN-based dynamic model developed helped to better understand the dynamic 

operating performance of a DX A/C system. Based on the ANN-based dynamic 

model developed, an ANN-based controller for the DX A/C system to 

simultaneously control indoor air temperature and humidity in a space served by the 

DX A/C system was developed and is reported in Chapter 7. 
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Chapter 7 

ANN-based Controller for the Experimental DX A/C System for 

Simultaneous Control of Indoor Air Temperature and Humidity 

 

7.1 Introduction 

 

An ANN-based dynamic model for the experimental DX A/C system has been 

developed and is reported in Chapter 6. When developing the dynamic model, it was 

intended that the model would be used to assist the development of an ANN-based 

controller for the DX A/C system for simultaneous control over indoor air 

temperature and humidity.  

 

This Chapter presents the development of an ANN-based controller for the 

experimental DX A/C system to control the indoor air temperature and humidity 

simultaneously by varying compressor speed and supply fan speed. In this Chapter, 

the ANN training algorithm used in developing the ANN-based controller for the DX 

A/C system is firstly introduced. Secondly, the development of the ANN-based 

controller for the experimental DX A/C system is detailed. Finally, the validation of 

the ANN-based controller developed by carrying out the controllability tests using 

the experimental DX A/C system is presented.  
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7.2 ANN training algorithm used to design the ANN-based controller 

 

The ANN-based controller to be developed was composed of the ANN-based 

dynamic model reported in Chapter 6, and an ANN-based inverse model, whose 

details will be given later in Section 7.3. When developing the ANN-based controller, 

the DIC strategy following the ANN-based direct design method was used. 

 

There were usually two methods for establishing an inverse model in the DIC 

strategy: an off-line method known as general training and an on-line method called 

specialized training [Norgaard et al. 2000, Saerens and Soquet 1989]. In the current 

study, both the general training and specialized training methods were used in 

training the ANN-based inverse model. The former is detailed Chapter 5 and the 

latter will be introduced as follows. 

 

The specialized training method aims at minimizing the difference between the 

actual output from a controlled system and the control reference: 

 

 ( )∑ −=
i

ii ryE 2

2
1  (7.1) 

 

Where, y is the output from the system and r, the control reference. The BP 

algorithm implements a gradient descent in E and upgrades the weights of the 

ANN-based inverse model, i.e., W, in such a way: 
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To obtain the value of 
W∂
∂E , the chain rule can be used:  

 

 W
u

u
y

yW ∂
∂

∂
∂

∂
∂

=
∂
∂ EE  (7.3) 

 

The value of 
y∂

∂E  could be evaluated as follows: 
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The value of 
u
y
∂
∂ , which is the Jacobian of the system, could be evaluated using the 

ANN-based dynamic model developed:  
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Where ym(t+1) refers to the outputs from the ANN-based dynamic model at time step 

(t+1). It is the predicted result using the ANN-based dynamic model developed.  

 

Compared to general training, specialized training has no training stage during which 
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the network is not operational. In specialized training, ANN learns directly towards 

the goal of the controller, which is that the system output should follow the reference 

signal closely and effectively, so as to improve the control performance of the 

ANN-based controller. Under specialized training, ANN could learn continuously 

and can therefore be used in processes with time varying characteristics. However, 

the evaluation of the error between the control reference and the output from the 

controlled system requires prior knowledge of the system, which means that the 

dynamic model of the system should be available first. In this study, the ANN-based 

dynamic model developed of the DX A/C system was used when updating of the 

ANN-based inverse model when the prior knowledge of the system was required. 

 

7.3 Development of the ANN-based controller 

 

The controller to be developed was expected to be able to achieve the simultaneous 

control over indoor air temperature and humidity, through simultaneously varying 

the speeds of compressor and supply fan in the experimental DX A/C system. As 

mentioned earlier, the controller consisted of the ANN-based dynamic model 

reported in Chapter 6 and an ANN-based inverse model for the experimental DX 

A/C system. The ANN-based inverse model, as opposed to the ANN-based model, 

was a dynamic model trained to simulate the inverse dynamic characteristics of the 

DX A/C system to be controlled and then acted as an actuator in the controller. The 

structure of the ANN-based inverse model was the same as that of the ANN-based 
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dynamic model presented in Chapter 6. The inputs and outputs of the ANN-based 

inverse model are shown in Fig. 7.1, in which rdb and rwb are the control references, 

or settings, for indoor air dry-bulb temperature and wet-bulb temperature. Other 

inputs included the indoor air dry-bulb and wet-bulb temperatures at the present time 

step (t) and two previous time steps (t−1) and (t−2), the compressor and supply fan 

speeds at the two previous time steps. The two outputs of the ANN-based inverse 

model were the compressor and supply fan speeds at the present time step. With such 

an inverse model, the required compressor and supply fan speeds at the present time 

step may be evaluated, and implemented in the DX A/C system to be controlled. 

 

Tdb(t)
Twb(t)

Tdb(t-1)
Twb(t-1)
Tdb(t-2)
Twb(t-2)

PC(t-1)
PF(t-1)
PC(t-2)
PF(t-2)

…
 ...

PC(t)
PF(t)rdb(t+1)

rwb(t+1)

 

 

Fig. 7.1 The structure of the ANN-based inverse model with inputs and outputs 

 

The development of the ANN-based controller was accomplished in the following 
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three steps: 

 

Step (1): Building an ANN-based dynamic model for the experimental DX A/C 

system using the general training method, which is already presented in Chapter 6. 

After validation, this ANN-based dynamic model was included as part of the 

ANN-based controller to describe the dynamic relationship between inputs and 

outputs of the experimental DX A/C system. Since the indoor loads were fixed in 

this study with only small changes introduced in the disturbance rejection test as 

detailed in Section 7.4.2.2, the ANN-based dynamic model developed was directly 

used in the controller for estimating of the plant Jacobian and therefore no further 

on-line training was needed [Ng 1997, Wang and Bao 2000]. 

 

Step (2): Training an initial ANN-based inverse model with inputs and outputs 

shown in Fig. 7.1 using the experimental data collected in Chapter 6 by the general 

training method. The training and testing process for the initial ANN-based inverse 

model was similar to that for the ANN-based dynamic model presented in Chapter 6.  

 

Step (3): However, when the initial ANN-based inverse model trained was used as an 

actuator in the ANN-based controller for the experimental DX A/C system, a large 

deviation between the control references and the outputs from the system was 

resulted in since the inverse model was off-line trained. Hence, the specialized 

training method was then used to update the initial ANN-based inverse model. Using 
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this on-line training method, the weights of the ANN-based inverse model were 

continuously updated according to changes in control references and real-time 

operating parameters of the experimental DX A/C system. 

 

The operating principle of the ANN-based controller under the DIC strategy 

established following the above three steps is illustrated in Fig. 7.2. In this figure, u 

is the inputs to the system (u=[PC, PF] in the current study), y, the outputs from the 

system (y=[Tdb, Twb] in the current study), ym, the outputs from the ANN-based 

model, r, the control reference of the controller (r=[rdb, rwb] in the current study), and 

q, a time delay operator (for example, q-2 u(t)=u(t-2)). 
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Fig. 7.2 The ANN-based controller under DIC strategy for the experimental DX A/C 

system 
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7.4 Controllability tests 

 

7.4.1 Test types and conditions 

 

After developing the ANN-based controller for the experimental DX A/C system as 

reported above, the controllability tests to examine its control performance were 

carried out using the experimental DX A/C system. When carrying out the tests, the 

controller was digitally implemented in the form of a computer program, with 

suitable interfaces for collecting data and outputting control actions such as varying 

speeds of compressor and supply fan via variable speed drives.  

 

With the computerized instrumentation, all the measured data could be recorded for 

subsequent analysis, and the control inputs to the DX A/C system could be generated 

based on the feedback signals of measured indoor air temperature and humidity. The 

schematic diagram of the ANN-based controller implementation for the experimental 

DX A/C system is shown in Fig. 7.3.  
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Fig. 7.3 Schematic diagram of the ANN-based controller arrangement 

 

For all controllability tests using the experimental DX A/C system, indoor air 

temperature control was via controlling indoor air dry-bulb temperature, and indoor 

humidity control was via controlling indoor air wet-bulb temperature. During the 

controllability tests, the time interval between the changes in compressor and supply 

fan speeds (controller’s outputs) was 1 minute. 

 

The following two types of controllability tests were carried out: 

 

(1) Command following: the output variables could track changes of their setpoints 

with stability. When the setpoints of indoor air dry-bulb temperature and wet-bulb 

temperature were changed, the controller was expected to react so that indoor air 



 124 

temperature and moisture content could be maintained at their respective new 

setpoints. In the current study, the setpoints of indoor air dry-bulb temperature and 

wet-bulb temperature were altered from 24 ºC and 17.1 ºC, respectively, to 25 ºC and 

18 ºC, respectively. 

 

(2) Disturbance rejection: the output variables, i.e., indoor air dry-bulb temperature 

and wet-bulb temperature were to be maintained at their respective setpoints when 

space sensible load and latent load were subjected to disturbances. In the current 

study, this type of test was carried out under the indoor air setpoints of 24 ºC, 

dry-bulb temperature and 17.1 ºC, wet-bulb temperature. The disturbances 

introduced to the system were the changes in indoor sensible and latent cooling loads, 

from 4.1 kW and 2.3 kW, respectively, to 3.4 kW and 1.9 kW, respectively. 

 

7.4.2 Test results 

 

7.4.2.1 Command following test 

 

Figure 7.4 shows the results of command following test for the ANN-based 

controller developed, following a change in the setpoints of indoor air dry-bulb 

temperature and wet-bulb temperature. As seen, indoor air temperature settings were 

at 24 ºC for dry-bulb temperature and 17.1 ºC for wet-bulb temperature initially. 

During the first 400 s of the test, the DX A/C system was stable, and both indoor air 
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temperature and humidity were maintained at their respective setpoints. At t = 400 s, 

the above settings were altered to 25 ºC and 18 ºC, respectively, and the ANN-based 

controller was immediately reacted by simultaneously varying the compressor and 

supply fan speeds, as shown in Fig. 7.5. The indoor air dry-bulb temperature and 

wet-bulb temperature reached their respective new setpoints after about 1000 s and 

was maintained steady during the following 2100 s, as shown in Fig. 7.4. Therefore, 

the ANN-based controller developed was able to track the changes in the indoor air 

dry-bulb temperature and wet-bulb temperature settings. 

 

 

 

Fig. 7.4 The variations of the indoor air dry-bulb and wet-bulb temperatures in 

command following test 
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Fig. 7.5 The variations of compressor and supply fan speeds in command following 

test 

 

7.4.2.2 Disturbance rejection test 

 

During the disturbance rejection test, indoor settings were 24 ºC for air dry-bulb 

temperature, and 17.1 ºC for air wet-bulb temperature, respectively (or an equivalent 

of indoor air moisture content 0.00934 kg/(kg dry air) or relative humidity 50%). 

With the ANN-based controller, these settings were expected to be maintained after 

the disturbances in both space sensible and latent cooling loads were introduced. The 

ANN-based controller was enabled when the deviation for either the measured 

indoor air dry-bulb temperature or the measured indoor air wet-bulb temperature was 

greater than ± 0.5 ºC. 

 

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500

Time (s)

Sp
ee

d 
(%

)

400s 1400s

PF

PC



 127 

Figures 7.6 and 7.7 present the results of disturbance rejection test for the 

ANN-based controller. As seen, prior to the introduction of disturbance at t = 400 s, 

indoor air temperatures were stably maintained at their respective setpoints. At t = 

400 s, space sensible load was reduced from 4.1 kW to 3.4 kW and space latent load 

from 2.3 kW to 1.9 kW, respectively. In response to the disturbance, both indoor air 

dry-bulb and wet-bulb temperatures gradually decreased. At about t = 1400 s, when 

indoor air dry-bulb temperature dropped to 23.5 ºC, the ANN-based controller was 

enabled. Figure 7.7 shows the variation profiles of compressor speed and supply fan 

speed. The indoor air dry-bulb temperature and wet-bulb temperature came back to 

their respective setpoints after about 720 s and were maintained steady during the 

following 1880 s, as shown in Fig. 7.6. Therefore, the ANN-based controller was 

able to bring back the indoor air dry-bulb and wet-bulb temperatures to their 

respective set points after indoor thermal loads were varied, achieving a satisfactory 

control performance in disturbance rejection test. As seen, at the end of test, the 

deviation between indoor air wet-bulb temperature and its setting was less than 0.2 

ºC.  
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Fig. 7.6 The variations of the indoor air dry-bulb and wet-bulb temperatures in 

disturbance rejection test 

 

 

 

Fig. 7.7 The variations of compressor and supply fan speeds in disturbance rejection 

test 
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7.5 Conclusions 

 

In this Chapter, an ANN-based controller to simultaneously control indoor air 

temperature and humidity in a space served by the experimental DX A/C system has 

been developed using the ANN-based dynamic model developed and reported in 

Chapter 6. This ANN-based controller was designed using the DIC strategy. 

Controllability tests including the command following test and disturbance rejection 

test were then carried out to examine the performance of the ANN-based controller 

developed. In the command following test, the indoor air dry-bulb temperature and 

wet-bulb temperature could be controlled to their respective new setpoints. In the 

disturbance rejection capability test, the results showed that the ANN-based 

controller can effectively control the indoor air dry-bulb temperature and wet-bulb 

temperature to their respective setpoints when there were sensible and latent load 

disturbances imposed. Therefore the results of the controllability tests showed that 

the ANN-based controller developed could simultaneously control indoor air 

temperature and humidity by varying compressor speed and supply fan speed of the 

experimental DX A/C system with an adequate control accuracy.  

 

A novel feature of the ANN-based controller reported in this Chapter was that it dealt 

with a MIMO system which presented much difficulty for control in current 

literature. A possible approach of controlling a complex MIMO nonlinear dynamic 

system based on ANN-based techniques was illustrated. It was expected that this 

approach could be further developed to be applicable to more general complex 
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systems. 

 

In the development of this ANN-based controller, it could be noted that the controller 

could only perform well in the vicinity of the operating points where the ANN-based 

dynamic model was originally trained. This is because that the weights of the 

ANN-based dynamic model in the ANN-based controller remained unchanged while 

the operating conditions of the system may continuously vary, leading to the problem 

of limited controllable range. In order to resolve this problem of limited controllable 

range, an ANN-based on-line adaptive controller has been developed and is reported 

in Chapter 8 in this thesis. 
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Chapter 8 

ANN-based On-line Adaptive Controller for the Experimental DX 

A/C System for Simultaneous Control of Indoor Air Temperature 

and Humidity 

 

8.1 Introduction 

 

In Chapter 7, the development of an ANN-based controller, which was based on the 

ANN-based dynamic model, for the experimental DX A/C system, is reported. This 

ANN-based controller developed consist the ANN-based dynamic model, which was 

off-line trained beforehand and remained unchanged during control, and an 

ANN-based inverse model, which was updated during control to minimize the 

difference between control references and controlled variables. However, similar to 

all models developed through system identification, the ANN-based dynamic model 

used was off-line trained using the operating data collected at a particular operating 

point, or the training point, and would therefore fail to simulate system performance 

when the operating conditions drifted away from the training point, making the 

ANN-based inverse model incapable of being updated to correctly trace the control 

references. Therefore, the ANN-based controller can only work as expected near the 

system operating point at which the ANN-based dynamic model was off-line trained. 

In other words, the ANN-based controller developed had a problem of limited 

controllable range. In order to make the ANN-based controller workable at the entire 
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operating rang of the DX A/C system, the concept of adaptive control was applied to 

the ANN-based controller developed to turn it into an ANN-based on-line adaptive 

controller, in which an ANN-based dynamic model was trained on-line using the 

data collected and thus updated on a regular basis as the system operation went on. 

Consequently the model can represent the real-time dynamic operating performance 

of the DX A/C system. Then the ANN-based inverse model could be updated 

correctly to adapt to the change in operating conditions. 

 

This Chapter reports on the development of the ANN-based on-line adaptive 

controller and the results of its controllability tests. Firstly, the development of the 

ANN-based on-line adaptive controller is detailed. Secondly, the results of 

controllability tests for the ANN-based on-line adaptive controller including initial 

start-up stage test, command following test, disturbance rejection test and 

commanding following with disturbances test using the experimental DX A/C 

system are presented. Finally, a discussion on related issues in the development of 

the ANN-based on-line adaptive controller for the experimental DX A/C system is 

detailed. 

 

8.2 The development of the ANN-based on-line adaptive controller 

 

The details of the ANN-based controller previously developed are reported in 

Chapter 7. Since the ANN-based dynamic model in the ANN-based controller was 
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off-line trained at a fixed operating point, satisfactory control performances were 

achieved using the ANN-based controller when the DX A/C system was operated in 

the vicinity of this training point. However, as commonly acknowledged, control 

performance still using such a controller would be likely to deteriorate, when the DX 

A/C system is operated away from the training point. It was therefore necessary that 

an ANN-based on-line adaptive controller should be developed to address and 

resolve the problem of limited controllable range, as discussed earlier. 

 

The operating principle of the ANN-based on-line adaptive controller is illustrated in 

Fig. 8.1. In this figure, similar to those in Fig. 7.2, u is the inputs to the system 

(u=[PC, PF], where PC is the percentage of the maximum compressor speed, and PF 

the percentage of the maximum supply fan speed), y, the outputs from the system 

(y=[Tdb, Twb], where Tdb is the indoor air dry-bulb temperature and Twb indoor air 

wet-bulb temperature), ym, the outputs from the ANN-based model, r, the control 

references of the controller (r=[rdb, rwb]), q, a time delay operator (for example, q-2 

u(t)=u(t-2)), and t, time instant (where t is the present time step, (t-1), the time 

instant at last time step and (t+1), the time instant at next time step, and the time 

interval between time instant t and (t+1) is ∆t). 
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Fig. 8.1 The schematics of the ANN-based on-line adaptive controller 

 

Comparing Fig 8.1 with Fig 7.2 in Section 7.3 in Chapter 7, the development of the 

ANN-based on-line adaptive controller was accomplished in four steps, with Steps 

(1) and (2) being the same as that of the developed ANN-based controller presented 

in Section 7.3 in Chapter 7. The two more steps were:  

 

Step (3): Updating the ANN-based dynamic model on-line using the data collected 

during control using the general training method. The data used for on-line training 

were updated continuously every 60 s in the current study, so that the resulted 

updated ANN-based model could reflect the real-time operating performance of the 

DX A/C system;  
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Step (4): Updating the weights of the ANN-based inverse model using the 

specialized training method according to the changes in control references and 

real-time operating parameters of the DX A/C system. Since the ANN-based 

dynamic model would be trained using the latest collected data every time when the 

ANN-based inverse model was updated to calculate the control outputs, the updating 

of the ANN-based inverse model could use the Jacobian of the system which was 

evaluated by the last updated ANN-based dynamic model. In this way, the 

ANN-based on-line adaptive controller could adapt to the changes in actual 

operating conditions for the DX A/C system. 

 

In the current study, both the ANN-based dynamic model and ANN-based inverse 

model were initially off-line trained around the indoor air dry-bulb temperature and 

wet-bulb temperature setpoints of 24 oC and 17.1 oC respectively (or 50% RH). The 

controllable ranges of the ANN-based on-line adaptive controller were designed to 

be extended to 20 oC to 28 oC for indoor air dry-bulb temperature and 13 oC to 21 oC 

for indoor air wet-bulb temperature, which were commonly required for indoor 

thermal comfort.   

 

The flow chart of control process is illustrated in Fig. 8.2. In this figure, τ is the time 

duration starting from the beginning of control to the current time instant, ∆ t, the 

time interval between two consecutive control actions by the ANN-based on-line 

adaptive controller (∆t = 60 s in the current study), k, counter of control action by the 
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ANN-based on-line adaptive controller, l, the number of data sets used for on-line 

training of the ANN-based dynamic model (l was set at 10 in the current study). 

 

In Figure 8.2, the judgment ‘τ ≥ k×∆t ?’ suggests whether the present time interval, 

∆t, was satisfied so that the controller could act to change the speeds of compressor 

and supply fan according to the results calculated by the ANN-based on-line 

adaptive controller. If the answer to this judgment was ‘Yes’, the controller would 

act to adjust the speeds of compressor and supply fan. However, if a ‘No’ answer 

was obtained, the control program would do data logging periodically (every 2 s in 

the current study) and the speeds of compressor and supply fan were kept unchanged. 

During the period of data logging, the program was running continuously and the 

operating data were recorded. Although the data recorded during the period of data 

logging would not be used for control, they could be displayed to reflect the dynamic 

operating conditions of the DX A/C system under control. 
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Fig. 8.2 Flow chart of the ANN-based on-line adaptive controller  

 

In the current study, the data used for on-line training of the ANN-based dynamic 

model were collected every 60 s from the beginning of control. Thus, it would take 
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10 minutes for the controller to collect sufficient data sets to start on-line training of 

the ANN-based dynamic model. Therefore, in Fig.8.2 the judgment ‘k > l ?’ suggests 

whether the controller could start the on-line training of the ANN-based dynamic 

model. A ‘No’ answer means that the data sets collected were not adequate to train 

on-line the ANN-based dynamic model, then the controller would continue to collect 

data and the initially trained ANN-based dynamic model would still be used to 

calculate the Jacobian of the system so as to achieve updating the ANN-based 

inverse model. However, a ‘Yes’ answer means that the controller had collected 

adequate data sets to training the ANN-based dynamic model, so that it would be 

on-line trained using the data collected and used to calculate the Jacobian of the 

system to update the ANN-based inverse model. Once the condition of  ‘k > l’ was 

satisfied, a ‘Yes’ answer would always be obtained in this judgment, which meant 

the initial weights of the ANN-based dynamic model would never be used again in 

the remaining system operating period, and the data used for on-line training the 

ANN-based dynamic model would be updated every 60 s. 

 

X and Y are the data collected to on-line train the ANN-based dynamic model, 

defined as follows: 

 

 X = [X(1), X(2), … X(l)] (8.1) 

 

 Y = [Y(1), Y(2), … Y(l)] (8.2) 
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During the initial period of control (10 minutes in the current study), when the data 

sets collected to train the ANN-based dynamic model were not sufficient (when k ≤ 

l), the initial weights of the ANN-based dynamic model obtained through off-line 

training were used to calculate the Jacobian of the DX A/C system, so as to 

accomplish the updating of the ANN-based inverse model. Meanwhile, the data 

needed to train the ANN-based dynamic model were collected using: 

 

 
X(k) = [PC, PF]p 

 
Y(k) = [Tdb, Twb]p 

(8.3) 

 

where, ‘X(k) = [PC, PF]p’ means to collect the values of PC and PF at the present 

time. 

 

When sufficient data sets were collected during control (when k > l), the ANN-based 

dynamic model was on-line trained and the weights so obtained were then used to 

calculate the Jacobian of the DX A/C system. Therefore, the size of the data sets 

used for on-line training the ANN-based dynamic model was fixed, with the newest 

data sets added and the oldest removed, as follows:  

 

 
X(i) = X(i+1) 

 
Y(i) = Y(i+1) 

(8.4) 

 

where, i = 1, 2, … (l-1).  



 140 

 

 
X(l) = [PC, PF]p 

 
Y(l) = [Tdb, Twb]p 

(8.5) 

 

The determination of l should be made to ensure that adequate information on the 

operating conditions of the DX A/C system was collected for training the 

ANN-based dynamic model. On the other hand, although the ANN-based dynamic 

model performed better with an increase in l, the time duration required for training 

would be longer making the control program more complicated, and the waiting 

period would also be longer before sufficient data could be collected for on-line 

training the ANN-based dynamic model, lowering the control sensitivity. Therefore, 

the determination of l would be influenced by these two aspects, and a trial and error 

method, together with the knowledge of a controlled system, should be used in 

deciding the value of l. 

 

8.3 Controllability tests 

 

During the controllability tests, the time interval between two subsequent changes in 

compressor and supply fan speeds (controller’s outputs) was 60 s. The following 

four types of controllability tests were carried out: 

 

(1) Initial start-up stage test: to simulate the condition when the system was initially 

started up, making sure that the indoor air temperature and humidity could return to 
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the setpoints within the controllable ranges by the controller, from their starting 

points. 

 

(2) Command following test: when the setpoints of indoor air dry-bulb temperature 

and wet-bulb temperature were changed, the controller was expected to respond so 

that indoor air temperature and moisture content could be maintained at their 

respective new setpoints. 

 

(3) Disturbance rejection test: the output variables of the DX A/C system, i.e., indoor 

air dry-bulb temperature and wet-bulb temperature were to be maintained at their 

respective setpoints when space sensible and latent cooling loads were subjected to 

disturbances. 

 

(4) Command following with disturbances test: when the setpoints of indoor air 

dry-bulb temperature and wet-bulb temperature were changed, and space sensible 

and latent cooling loads were also varied after being subjected to disturbances, the 

indoor air dry-bulb and wet-bulb temperatures could be maintained at their 

respective new setpoints by the controller.  
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8.3.1 Initial start-up stage test (Exp. I-1) 

 

Figure 8.3 shows the results of initial start-up stage test for the ANN-based on-line 

adaptive controller developed. As seen, the initial indoor air temperature settings 

were the same as those outdoor conditions commonly seen in summer in Hong Kong 

(Tdb = 30 ºC and Twb = 27 ºC, or RH = 79%). At 300 s into the test, the indoor air 

settings were altered to commonly adopted setpoints of indoor air conditions (Tdb = 

24 ºC and Twb = 17 ºC) and the controller was immediately responded by 

simultaneously varying the compressor and supply fan speeds, as shown in Fig. 8.3. 

Tdb and Twb reached their respective new setpoints at about 2220 s into the test and 

were maintained steadily for the remaining 2580 s of the testing period. The 

fluctuations of Tdb and Twb during the 2580 s period were within 0.1 ºC and 0.15 ºC, 

respectively. The ANN-based on-line adaptive controller could return the indoor air 

dry-bulb and wet-bulb temperatures to their setpoints within the controllable range 

from relatively high values outside the range. The test results clearly demonstrated 

that the controller can well control the DX A/C system over a wide operating range.  

 



 143 

 

 

 

Fig. 8.3 The variations of the indoor air dry-bulb and wet-bulb temperatures and 

compressor and supply fan speeds in Exp. I-1 
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8.3.2 Command following tests (Exp. II-1, II-2 and II-3) 

 

Figures 8.4 to 8.6 show the results of command following tests for the ANN-based 

on-line adaptive controller. The initial settings of indoor air conditions were Tdb = 28 

ºC and Twb = 21 ºC in Exp II-1, Tdb = 26 ºC and Twb = 19 ºC in Exp II-2 and Tdb = 21 

ºC and Twb = 14 ºC in Exp II-3. At 300 s into the test, the above settings were altered 

to Tdb = 26 ºC and Twb = 19 ºC, Tdb = 23 ºC and Twb = 16 ºC and Tdb = 23 ºC and Twb 

= 16 ºC, respectively, and the controller responded immediately by simultaneously 

varying the compressor and supply fan speeds. Tdb and Twb reached their respective 

new setpoints in about 1500 s, 1800 s and 3000 s, respectively, and were maintained 

steadily in the remaining3300 s, 3300 s and 3000 s, respectively, of the testing period. 

As seen in all tests, Tdb was very stable and accurate during the steady periods, and 

the fluctuations of Twb during the steady periods were all within 0.2 ºC. These 

suggested that the ANN-based on-line adaptive controller was able to track the 

changes in its indoor air dry-bulb temperature and wet-bulb temperature settings 

within their controllable ranges. Since both the ANN-based dynamic model and 

inverse model were on-line updated continuously, the speeds of compressor and 

supply fan would keep changing to deal with the disturbances even when the 

controlled parameters did not significantly fluctuate. 
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Fig. 8.4 The variations of the indoor air dry-bulb and wet-bulb temperatures and 

compressor and supply fan speeds in Exp. II-1 
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Fig. 8.5 The variations of the indoor air dry-bulb and wet-bulb temperatures and 

compressor and supply fan speeds in Exp. II-2 
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Fig. 8.6 The variations of the indoor air dry-bulb and wet-bulb temperatures and 

compressor and supply fan speeds in Exp. II-3 
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8.3.3 Disturbance rejection tests (Exp III-1 and III-2) 

 

In these tests, the indoor air settings were Tdb = 28 ºC and Twb = 21 ºC in Exp III-1 

and Tdb = 25 ºC and Twb = 18 ºC in Exp III-2, respectively. The ANN-based 

controller was enabled when the deviation for either the measured indoor air 

dry-bulb temperature or the measured indoor air wet-bulb temperature was greater 

than 0.5±  ºC. Figures 8.7 and 8.8 present the results of disturbance rejection tests 

for the ANN-based on-line adaptive controller. As seen, prior to the introduction of 

disturbance at 300 s into the test, indoor air temperatures were steadily maintained at 

their respective setpoints. At 300 s into the test, space sensible load was reduced 

from 4.6 kW to 3.4 kW in Exp III-1 and 4.4 kW to 3.6 kW in Exp III-2, and space 

latent load from 2.5 kW to 1.9 kW in Exp III-1 and 3.4 kW to 3.0 kW in Exp III-2, 

respectively. In response to the disturbances, both Tdb and Twb were gradually 

decreased. At about 960 s into the test, when Tdb dropped to 27.5 ºC in Exp III-1 and 

24.5 ºC in Exp III-2, the controller was enabled. The variation profiles of compressor 

speed and supply fan speed are also shown in Figs. 8.7 and 8.8. Indoor air dry-bulb 

and wet-bulb temperatures went back to their respective setpoints in about 540 s in 

Exp III-1 and 1020 s in Exp III-2 and were maintained steadily thereafter for the rest 

of the test period. The fluctuations of Tdb and Twb during the steady period were both 

within 0.2 ºC. Therefore, the ANN-based on-line adaptive controller was able to 

maintain indoor air dry-bulb and wet-bulb temperatures at their respective set points 

after indoor thermal loads were varied, achieving a satisfactory control performance 
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in the disturbance rejection test.  

 

 

 

 

Fig. 8.7 The variations of the indoor air dry-bulb and wet-bulb temperatures and 

compressor and supply fan speeds in Exp. III-1 
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Fig. 8.8 The variations of the indoor air dry-bulb and wet-bulb temperatures and 

compressor and supply fan speeds in Exp. III-2 
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8.3.4 Command following with disturbances tests (Exp IV-1, IV-2 and IV-3) 

 

Figures 8.9 to 8.11 show the results of command following with disturbances tests 

for the ANN-based on-line adaptive controller. Initially, indoor air settings were at 

27 ºC dry-bulb temperature and 20 ºC wet-bulb temperature and the percentage 

outputs from the LGUs were 15% for sensible load and 30% for latent load, 

respectively, in all these three tests. At 300 s into the test, indoor air settings were 

changed to 25 ºC dry-bulb temperature and 18 ºC wet-bulb temperature, respectively. 

At the same time, the outputs of LGUs also started to vary in all the tests according 

to the following different patterns:  

 

In Exp. IV-1: the outputs of LGUs were step changed from 15% to 18% for sensible 

load and 30% to 27% for latent load, and remained unchanged thereafter;  

 

In Exp. IV-2: the outputs of LGUs were step changed from 15% to 12% for sensible 

load and 30% to 27% for latent load, as represented by the dashed lines in Fig 8.10, 

and then randomly varied within 3% around the dashed lines, respectively, till the 

end of the test, as shown in the figure;  

 

In Exp. IV-3: the outputs of LGUs were reduced from 15% to 10% for sensible load, 

and 30% to 25% for latent load, at the end of the test, during which both were 

randomly varied within 3% around the dashed lines shown in Fig. 8.11.  
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As seen, after all the changes were introduced, the controller immediately responded 

by simultaneously varying the compressor and supply fan speeds, and Tdb and Twb 

reached their respective new setpoints in about 3000 s in Exp IV-1, 1620 s in Exp 

IV-2 and 1660 s in Exp IV-3, and were maintained steadily thereafter for the 

remaining test periods of 3300 s, 1980 s and 3240 s, respectively. It can be seen that 

the fluctuations of Tdb and Twb were all within 0.3 ºC. Therefore, the ANN-based 

on-line adaptive controller was able to function properly under the changes in both 

indoor air settings and thermal loads. 
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Fig. 8.9 The variations of the indoor air dry-bulb and wet-bulb temperatures, 

compressor and supply fan speeds and sensible and latent cooling loads in Exp. IV-1 
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Fig. 8.10 The variations of the indoor air dry-bulb and wet-bulb temperatures, 

compressor and supply fan speeds and sensible and latent cooling loads in Exp. IV-2 
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Fig. 8.11 The variations of the indoor air dry-bulb and wet-bulb temperatures, 

compressor and supply fan speeds and sensible and latent cooling loads in Exp. IV-3 
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8.4 Discussions 

 

The feasibility of this ANN-based on-line adaptive controller has been proven 

through controllability tests using the experimental DX A/C system. The successful 

development of the ANN-based on-line adaptive controller may be attributed to the 

following reason. 

 

The variations in the operating status of a DX A/C system were relatively slow 

because of the thermal inertia of indoor air. This allowed an ANN to have adequate 

time to be trained and updated for reflecting the changes in system operating status 

on-line using the latest operating data. Otherwise, there could be a deviation in the 

system operating status when the ANN training/updating was finished, leading to 

that the updated ANN might not be able to timely reflect the current system 

operating status. Therefore, it was expected that there existed a maximum rate of 

change in system operating status. The ANN-based on-line adaptive controller may 

not work properly once the rate of change was over its maximum value.  

 

The issue of limited controllable range was encountered not only in an ANN-based 

control strategy, but also in all control strategies which were built based on a 

dynamic system model obtained through system identification. Since it was 

impossible to cover all possible operating conditions when carrying out system 

identification particularly when the system was complex, the data sets for system 
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identification were obtained under certain specific operating conditions. This 

explained why system control based on system identification would become 

ineffective as the operating conditions drifted away from the ones when system 

identification was carried out [Pintelon and Schoukens 2001]. With the successful 

development of the ANN-based on-line adaptive controller for the DX A/C system 

reported, it is believed that online adaptive control presented in this Chapter can be 

suitably employed to extend controllable range for all control strategies developed 

through system identification. 

 

8.5 Conclusions 
 
 

An ANN-based on-line adaptive controller for the DX A/C system has been 

developed, to address the issue of limited controllable range of a previously 

developed ANN-based controller for a DX A/C system, which is common to all 

controllers developed based on system identification. Using the experimental DX 

A/C system, controllability tests including the initial start-up stage test, command 

following test, disturbance rejection test and command following with disturbances 

test were carried out to examine the control performance of the ANN-based on-line 

adaptive controller developed. Tests results showed that the ANN-based on-line 

adaptive controller developed was able to control indoor air dry-bulb temperature 

and wet-bulb temperature both near and away from the operating condition at which 

the ANN-based model in the controller was initially trained, but within the entire 

range of operating conditions, with a high control accuracy. 
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Chapter 9 

Conclusions and Future Work  

 

9.1 Conclusions 

 

A programmed research work on investigating the ANN-based modeling and control 

for an experimental DX A/C system having a variable speed compressor and a 

variable speed supply fan has been successfully carried out and is reported in this 

thesis. The conclusions of the thesis are as follows: 

 

(1) A two-in two-out ANN-based steady-state model for the experimental DX 

A/C system has been developed using BP training algorithm linking its 

steady-state TCC and Equipment SHR with different combinations of its 

compressor and supply fan speeds at a fixed inlet air state of 24oC and 50% 

RH, respectively. The ANN-based steady-state model has been validated 

experimentally by comparing the measured results of TCC and SHR at 10 

additional sets of compressor speed and supply fan speed combinations using 

the experimental DX A/C system, with the predicted results using the 

ANN-based steady-state model developed. All the REs when using the 

developed ANN-based steady-state model for prediction were lower than 4%, 

with most of them being lower than 1%, suggesting the high prediction 

accuracy of the ANN-based model developed. Therefore, the ANN-based 

steady-state model for the experimental DX A/C system having multivariable 

inputs and multivariable outputs can be used to predict the steady-state 

operating performances of the DX A/C system, with a high accuracy. 
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(2) An ANN-based dynamic model for the experimental DX A/C system has been 

developed linking its output air dry-bulb temperature and wet-bulb 

temperature with the variation of its compressor and supply fan speeds at a 

fixed indoor sensible and latent load. The ANN-based dynamic model has 

been validated experimentally by comparing the measured results of dry-bulb 

and wet-bulb temperature under different variations of compressor speed 

and/or supply fan speed using the experimental DX A/C system, with the 

predicted results using the ANN-based dynamic model developed. The values 

of ARE and MRE when validating the ANN-based dynamic model developed 

under three different input patterns were 0.33%, 0.27%, 0.27% and 0.89%, 

0.99%, 1.15%, respectively, suggesting the high prediction accuracy of the 

ANN-based dynamic model developed. The ANN-based dynamic model 

developed helped to better understand the dynamic operating performance of 

the DX A/C system and the development of an ANN-based controller for the 

simultaneous control of indoor air temperature and humidity. 

 

(3) An ANN-based controller to simultaneously control the indoor air temperature 

and humidity in a space served by an experimental DX A/C system has been 

developed using the ANN-based dynamic model developed. This ANN-based 

controller was designed using the DIC strategy. Controllability tests including 

the command following test and disturbance rejection test were carried out to 
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examine the performance of the ANN-based controller developed. In the 

command following test, the indoor air dry-bulb temperature and wet-bulb 

temperature could be controlled to their respective new setpoints. In the 

disturbance rejection capability test, the results showed that the ANN-based 

control strategy can effectively control the indoor air dry-bulb temperature 

and wet-bulb temperature to their respective setpoints when there were 

sensible and latent load disturbances imposed. Therefore, the results of the 

controllability tests showed that the ANN-based controller developed could 

simultaneously control indoor air temperature and humidity by varying 

compressor speed and supply fan speed of the experimental DX A/C system 

with an adequate control accuracy. With the successful controller development, 

a possible approach of controlling a complex MIMO nonlinear dynamic 

system based on ANN has been illustrated. 

 

(4) An ANN-based on-line adaptive controller for the DX A/C system has been 

developed to address the issue of limited controllable range of the ANN-based 

controller developed, which is common to all controllers developed based on 

system identification. Using the experimental DX A/C system, controllability 

tests including the initial start-up stage test, command following test, 

disturbance rejection test and command following with disturbances test were 

carried out to examine the control performance of the ANN-based on-line 

adaptive controller developed. Tests results showed that the ANN-based 
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on-line adaptive controller developed was able to control indoor air dry-bulb 

temperature and wet-bulb temperature both near and away from the operating 

condition at which the ANN-based model in the controller was initially 

trained, but within the entire range of operating conditions, with a high 

control accuracy. 

 

The research work reported in this Thesis has made important contributions to the 

modeling and control of DX A/C systems. Better indoor thermal comfort for 

occupants, and reduced energy use can be achieved when using variable speed DX 

A/C systems. The ANN-based steady-state model, ANN-based dynamic model, 

ANN-based controller and ANN-based on-line adaptive controller developed and 

reported in this Thesis for the experimental DX A/C system are all the first of its 

kind. Furthermore, the ANN-based on-line adaptive controller developed for the DX 

A/C system could address the problem of limited controllable range of the 

ANN-based controller developed, which is common to controllers developed based 

on system identification. The long-term significance of the research work is that it 

will encourage a wider application of A/C systems to better control indoor thermal 

environment, leading to a better indoor thermal comfort and more energy saving. 
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9.2 Proposed future work 

 

A number of future studies following on the successful completion of the research 

work reported in this thesis are proposed as follows: 

 

Firstly, future studies may be directed to improving indoor thermal comfort using a 

DX A/C system. In this thesis, the controlled variables were the indoor air 

temperature and humidity. Although indoor air temperature and humidity are greatly 

important to indoor thermal comfort, it would not be enough as far as indoor thermal 

comfort is concerned, as comfort is a cognitive process influenced by different kinds 

of processes, such as physical, physiological or even psychological aspects 

[ASHRAE 2005]. Conventionally, thermal comfort indices are widely used to reflect 

the level of indoor thermal comfort, such as PMV, which is affected by six 

parameters, including four environmental and two personal. Therefore, when it 

intends to control a DX A/C system directly based on PMV, the number of controlled 

variables of a new ANN-based controller will be changed from the current two to 

six. 

 

The concept of PMV based on a homogeneous whole volume thermal environment 

was used in the conventional comfort theory, which is somehow outdated. In recent 

years, the research into non-uniform thermal environment has been prevailing and 

fruitful. One of the significant research outcomes is ASHRAE 55-2010, which 

allows elevated air movement to broadly offset the need to cool the air in warm 

conditions for energy saving. 
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One way of improving indoor thermal comfort is to account for the thermal 

sensation of specific occupants. Thermal comfort is based on human response to a 

thermal environment, and those thermal comfort indices may just be statistically 

meaningful. Therefore, including the thermal sensations of occupants as part of 

controllers’ profile can be interesting. A similar idea was implemented by Federspiel 

and Asada [1994] in their user adaptable comfort controller, in which the parameters 

of a thermal sensation prediction model could be adjusted with respect to the actual 

thermal sensation of a specific occupant. Liang and Du [2008] also developed a user 

adaptable controller, in which three types of user commands were considered: on/off, 

cooler and warmer, so that the thermal sensations of a specific user could influence 

system control. With regard to the developed ANN-based controller reported in this 

thesis, users’ sensations could be used to adjust the weights of an ANN, so that the 

controller could predict the actual comfort conditions and help achieve a more 

effective and intelligent control. 

 

Secondly, as reported in this thesis, the purpose of the ANN-based controller 

developed was to simultaneously control the indoor air temperature and humidity by 

varying the compressor speed and supply fan speed. However, the energy 

consumption of the DX A/C system under control was not yet considered. Therefore, 

a further development to ANN-based controller for the DX A/C system is to 

maximize system’s operating efficiency in terms of coefficient of performance 

(COP). 

 

Thirdly, using the ANN-based controller developed through varying compressor 

speed and supply fan speed in the DX A/C system, indoor air temperature and 
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humidity may be controlled to their respective setpoints. However, the fluctuation of 

operating degree of superheat (DS), which was controlled by a built-in conventional 

PID controller, can be observed from the experimental data while varying 

compressor speed and supply fan speed. The PID controller would not respond to 

take control actions until it received the feedback information of the change in DS, 

so that EEV’s opening can be correspondingly adjusted. However, such a feedback 

process would take time before the opening of the EEV can be regulated in order to 

return the DS to its setpoint. To solve this problem, Qi et al. [2010] developed a new 

DS controller in which the information of the changes in both compressor speed and 

supply fan speed were used for predicting the changes in DS, thus appropriate 

control actions by the EEV may be timely taken. Therefore, such a DS controller 

may be integrated into the ANN-based controller to obtain a modified ANN-based 

controller to simultaneously control indoor air temperature, humidity and DS by 

varying the compressor speed, supply fan speed and EEV’s opening. 

 

Finally, the principle of this ANN-based control strategy could be implemented in 

other thermal engineering systems, to demonstrate its applicability to different 

thermal systems. Further development work in this aspect should be carried out. 
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Appendix A 

Photos of the Experimental DX A/C system  

 

 
 

Photo 1  Overview of the experimental rig (1) 
 

 

Photo 2  Overview of the experimental rig (2) 
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Photo 3  Variable-speed compressor in the DX A/C system 
 

 
 

Photo 4  DX cooling coil in the DX A/C system  
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Photo 5  Load generation units inside conditioned space 
 

 
 

Photo 6  Logging & control supervisory program 
 
 



 
 

168 

References 

1 Abbassi and Bahar 2005 
Abbassi, A. and Bahar, L. 
Application of neural network for the modeling and control of evaporative 
condenser cooling load. Applied Thermal Engineering, Vol. 25, No. 17-18, pp. 
3176-3186 (2005) 
 

2 Aggelogiannaki et al. 2007 
Aggelogiannaki, E., Sarimveis, H. and Koubogiannis, D.  
Model predictive temperature control in long ducts by means of a neural 
network approximation tool. Applied Thermal Engineering, Vol. 27, No. 
14-15, pp. 2363-2369 (2007) 
 

3 Ahmad and Zhang 2009 
Ahmad, Z. and Zhang, J.  
Selective combination of multiple neural networks for improving model 
prediction in nonlinear systems modelling through forward selection and 
backward elimination. Neurocomputing, Vol.72, pp. 1198-204 (2009) 
 

4 Amaral and Ottino 2004 
Amaral, L.A.N. and Ottino, J.M.  
Complex systems and networks: challenges and opportunities for chemical 
and biological engineers. Chemical Engineering Science, Vol. 59, pp. 
1653-1666. (2004) 
 

5 Amrane et al. 2003 
Amrane, K., Hourahan, G.C. and Potts, G. 
Latent performance of unitary equipment. ASHRAE Journal, Vol. 45, No. 1, 
pp. 28-31 (2003) 
 

6 Anderson et al. 1997 
Anderson, C.W., Hittle, D.C., Katz, A.D. and Kretchmar, R.M.  
Synthesis of reinforcement learning, neural networks and PI control applied to 
a simulated heating coil. Artificial Intelligence in Engineering, Vol. 11, No. 4, 
pp. 421-429 (1997) 
 

7 Andrade et al. 2002 
Andrade, M.A., Bullard, C.W., Hancock, S. and Lubliner, M. 
Modulating blower and compressor capacities for efficient comfort control. 
ASHRAE Transactions, Vol. 108, Part. 1, pp. 631-637 (2002) 
 

8 Angeline et al. 1994 
Angeline, P.J., Saunder, G.M. and Pollack, J.B. 
Complete introduction of recurrent neural networks. Proceedings of the Third 
Annual Conference on Evolutionary Programming, Sebald A.V. and Fogel 
L.J. eds., World Scientific, Singapore, pp. 1-8, (1994) 

http://www.sciencedirect.com/science/article/pii/S1359431105001122�
http://www.sciencedirect.com/science/article/pii/S1359431105001122�
http://www.sciencedirect.com/science/article/pii/S1359431105001122�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1Y-4N85BCP-2&_user=107833&_coverDate=10%2F31%2F2007&_alid=1747775471&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5687&_sort=r&_st=13&_docanchor=&view=c&_ct=91&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=ac84637cd04287a95c67d38dbd5d9252&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1Y-4N85BCP-2&_user=107833&_coverDate=10%2F31%2F2007&_alid=1747775471&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5687&_sort=r&_st=13&_docanchor=&view=c&_ct=91&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=ac84637cd04287a95c67d38dbd5d9252&searchtype=a�
http://www.sciencedirect.com/science/article/pii/S0925231208001562?_alid=1766263352&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=192307&_zone=rslt_list_item&md5=b2e38c996eb8d0f3f60a5c0d3e328b37�
http://www.sciencedirect.com/science/article/pii/S0925231208001562?_alid=1766263352&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=192307&_zone=rslt_list_item&md5=b2e38c996eb8d0f3f60a5c0d3e328b37�
http://www.sciencedirect.com/science/article/pii/S0925231208001562?_alid=1766263352&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=192307&_zone=rslt_list_item&md5=b2e38c996eb8d0f3f60a5c0d3e328b37�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFK-4C2FC43-1&_user=107833&_coverDate=05%2F31%2F2004&_alid=1607288683&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5229&_sort=r&_st=13&_docanchor=&view=c&_ct=54638&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=a940d05d00dfe2414f759386468bb728&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFK-4C2FC43-1&_user=107833&_coverDate=05%2F31%2F2004&_alid=1607288683&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5229&_sort=r&_st=13&_docanchor=&view=c&_ct=54638&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=a940d05d00dfe2414f759386468bb728&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1X-3SP7D48-C&_user=107833&_coverDate=10%2F31%2F1997&_alid=1691827079&_rdoc=2&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5686&_sort=r&_st=13&_docanchor=&view=c&_ct=7921&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=19f4f28abbb1afa3eadc343f9faf9d8e&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1X-3SP7D48-C&_user=107833&_coverDate=10%2F31%2F1997&_alid=1691827079&_rdoc=2&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5686&_sort=r&_st=13&_docanchor=&view=c&_ct=7921&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=19f4f28abbb1afa3eadc343f9faf9d8e&searchtype=a�


 
 

169 

 

9 Ao and Palade 2011 
Ao, S.I. and Palade, V. 
Ensemble of Elman neural networks and support vector machines for reverse 
engineering of gene regulatory networks. Applied Soft Computing, Vol. 11, 
No. 2, pp. 1718-1726 (2011) 
 

10 Arcaklioglu et al. 2004 
Arcaklioglu, E., Cavusoglu, A. and Erisen, A. 
Thermodynamic analyses of refrigerant mixtures using artificial neural 
networks. Applied Energy, Vol. 78, No. 2, pp. 219-230 (2004)  
 

11 Arens and Baughman 1996  
Arens, E.A. and Baughman, A.V.  
Indoor humidity and human health: part II-buildings and their systems. 
ASHRAE Transactions, Vol. 102, No. 1, pp. 212-221 (1996) 
 

12 Argiriou et al. 2000 
Argiriou, A.A., Bellas-Velidis, I. and Balaras, C.A.  
Development of a neural network heating controller for solar buildings. 
Neural Networks, Vol. 13, pp. 811-820 (2000) 
 

13 Argiriou et al. 2004 
Argiriou, A.A., Bellas-Velidis, I., Kummert. M. and Andre, P.  
A neural network controller for hydronic heating systems of solar buildings. 
Neural Networks, Vol. 17, pp. 427-440 (2004) 
 

14 Asensio-Cuesta et al. 2010 
Asensio-Cuesta, S., Diego-Mas, J.A. and Alcaide-Marzal, J.  
Applying generalised feedforward neural networks to classifying industrial 
jobs in terms of risk of low back disorders. International Journal of Industrial 
Ergonomics, Vol. 40, pp. 629-635 (2010) 
 

15 ASHRAE 2000  
ASHRAE 
Handbook-HVAC Systems and Equipment (2000) 
 

16 ASHRAE 2005 
ASHRAE 
ASHRAE Handbook - Fundamentals, Refrigerating American Society of 
Heating and Air-Conditioning Engineers (2005) 
 

17 Atik et al. 2010 
Atik, K., Aktas, A. and Deniz, E. 
Performance parameters estimation of MAC by using artificial neural 
network. Expert Systems with Applications, Vol. 37, No. 7, pp. 5436-5442 
(2010) 
 

http://www.sciencedirect.com/science/article/pii/S1568494610001158?_alid=1866441527&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=18238&_zone=rslt_list_item&md5=9f0d793081ec8d2b1f2b8a0f67d82658�
http://www.sciencedirect.com/science/article/pii/S1568494610001158?_alid=1866441527&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=18238&_zone=rslt_list_item&md5=9f0d793081ec8d2b1f2b8a0f67d82658�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1T-49SWC7H-1&_user=107833&_coverDate=06%2F30%2F2004&_alid=1609182328&_rdoc=4&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5683&_sort=r&_st=4&_docanchor=&_ct=47&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=b62feb8f38302c6582db617385f1f79f&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1T-49SWC7H-1&_user=107833&_coverDate=06%2F30%2F2004&_alid=1609182328&_rdoc=4&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5683&_sort=r&_st=4&_docanchor=&_ct=47&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=b62feb8f38302c6582db617385f1f79f&searchtype=a�
http://www.sciencedirect.com/science/article/pii/S0169814110000715?_alid=1766264257&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=1438&_zone=rslt_list_item&md5=ba60235e8b7c64cf9a19de50eabe2d0e�
http://www.sciencedirect.com/science/article/pii/S0169814110000715?_alid=1766264257&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=1438&_zone=rslt_list_item&md5=ba60235e8b7c64cf9a19de50eabe2d0e�
http://www.sciencedirect.com/science/article/pii/S0957417410001090?_alid=1873352666&_rdoc=5&_fmt=high&_origin=search&_docanchor=&_ct=135&_zone=rslt_list_item&md5=c461dcf0494a48c8437f8fc5eceff737�
http://www.sciencedirect.com/science/article/pii/S0957417410001090?_alid=1873352666&_rdoc=5&_fmt=high&_origin=search&_docanchor=&_ct=135&_zone=rslt_list_item&md5=c461dcf0494a48c8437f8fc5eceff737�


 
 

170 

18 Atthajariyakul and Leephakpreeda 2005 
Atthajariyakul, S. and Leephakpreeda, T. 
Neural computing thermal comfort index for HVAC systems. Energy 
Conversion and Management, Vol. 46, No. 15-16, pp. 2553-2565 (2005) 
 

19 Bao et al. 2006 
Bao, C., Ouyang, M. and Yi, B.  
Modeling and optimization of the air system in polymer exchange membrane 
fuel cell system. Journal of Power Sources, Vol. 156, No. 2, pp. 232-243 
(2006) 
 

20 Barringer and McGugan 1989  
Barringer, C.G. and McGugan, C.A. 
Development of a dynamic model for simulating indoor air temperature and 
humidity. ASHRAE Transactions, Vol. 95, Part. 2, pp. 449-460 (1989) 
 

21 Bacthler et al. 2001 
Bacthler, H., Browne, M.W., Bansal, P.K. and Kecman, V. 
Neural-networks – A new approach to model vapour compression heat pumps. 
International Journal of Energy Research, Vol. 25, pp. 591-599 (2001) 
 

22 Becerikli et al. 2003 
Becerikli, Y., Konar, A.F. and Samad, T.  
Intelligent optimal control with dynamic neural networks. Neural Networks, 
Vol. 16, No. 2, pp. 251-259 (2003) 
 

23 Bechtler et al. 2001 
Bechtler, H., Browne, M.W., Bansal, P.K. and Kecman, V. 
New approach to dynamic modelling of vapour-compression liquid chillers: 
artificial neural networks. Applied Thermal Engineering, Vol. 21, No. 9, pp. 
941-953 (2001) 
 

24 Ben-Nakhi and Mahmoud 2002 
Ben-Nakhi, A.E. and Mahmoud, M.A. 
Energy conservation in buildings through efficient A/C control using neural 
networks. Applied Energy, Vol. 73, No. 1, pp. 5-23 (2002) 
 

25 Berbari 1998 
Berbari, G. J. 
Fresh air treatment in hot and humid climates. ASHRAE Journal, Vol. 40, No. 
10, pp. 64-70 (1998) 
 

26 Berglund 1998 
Berglund, L.G. 
Comfort and humidity. ASHRAE Journal, Vol. 40, No. 8, pp. 35-41 (1998) 
 

  

  

http://www.sciencedirect.com/science/article/pii/S0196890405000166�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T08-47XSTXV-2&_user=107833&_coverDate=03%2F31%2F2003&_alid=1747777977&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=4856&_sort=r&_st=13&_docanchor=&view=c&_ct=7489&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=a084b002cd5841ed1560ac6e425988af&searchtype=a�
http://www.sciencedirect.com/science/article/pii/S1359431100000934?_alid=1873304577&_rdoc=4&_fmt=high&_origin=search&_docanchor=&_ct=1236&_zone=rslt_list_item&md5=eb9d5426b287c4964404a79e2292a914�
http://www.sciencedirect.com/science/article/pii/S1359431100000934?_alid=1873304577&_rdoc=4&_fmt=high&_origin=search&_docanchor=&_ct=1236&_zone=rslt_list_item&md5=eb9d5426b287c4964404a79e2292a914�
http://www.sciencedirect.com/science/article/pii/S0306261902000272�
http://www.sciencedirect.com/science/article/pii/S0306261902000272�


 
 

171 

27 Blunier et al. 2009 
Blunier, B., Cirrincione, G., Herve, Y. and Miraoui, A. 
A new analytical and dynamical model of a scroll compressor with 
experimental validation.International Journal of Refrigeration, Vol. 32, No. 5, 
pp. 874-891 (2009) 
 

28 Bordick and Gilbride 2002 
Bordick, J. and Gilbride, T.L. 
Focusing on buyer’s needs: DOE’s engineering technology programme. 
Energy Engineering, Vol. 99, No. 6, pp. 18-38 (2002) 
 

29 Brandemuehl and Katejanekarn 2004 
Brandemuehl, M.J. and Katejanekarn, T. 
Dehumidification characteristics of commercial building applications. 
ASHRAE Transactions, Vol. 114, Part. 2, pp. 65-76 (2004) 
 

30 Broomhead and Lowe 1988 
Broomhead, D.S. and Lowe, D. 
Multivariable functional interpolation and adaptive networks. Complex system, 
Vol. 2, pp. 321-355 (1988) 
 

31 Carrado and Mazza 1991 
Carrado, V. and Mazza, A.  
Axial fan. IEA Annex 17 Report, Politecnico di Torino, Italy (1991) 
 

32 Cavallini et al. 1996 
Cavallini, A., Doretti, L., Longo, G.A., Rossetto, L., Bella, B. and Zannerio, 
A.  
Thermal analysis of a hermetic reciprocating compressor. International 
Compressor Engineering Conference, Purdue University, USA, 1996 
 

33 Chang 2007 
Chang, Y.C. 
Sequencing of chillers by estimating chiller power consumption using 
artificial neural networks. Building and Environment, Vol. 42, No. 1, pp. 
180-188 (2007) 
 

34 Chang and Chen 2009 
Chang, Y.C. and Chen, W.H. 
Optimal chilled water temperature calculation of multiple chiller systems 
using Hopfield neural network for saving energy. Energy, Vol. 34, No. 4, pp. 
448-456 (2009) 
 

35 Chen and Deng 2006 
Chen, W. and Deng, S.M. 
Development of a dynamic model for a DX VAV air conditioning system. 
Energy Conversion and Management, Vol. 47, No. 18-19, pp. 2900-2924 
(2006) 
 

http://www.sciencedirect.com/science/article/pii/S0140700708002314?_alid=1868358115&_rdoc=2&_fmt=high&_origin=search&_docanchor=&_ct=72&_zone=rslt_list_item&md5=caff5d4d9b82113b8288f95bf55e32fd�
http://www.sciencedirect.com/science/article/pii/S0140700708002314?_alid=1868358115&_rdoc=2&_fmt=high&_origin=search&_docanchor=&_ct=72&_zone=rslt_list_item&md5=caff5d4d9b82113b8288f95bf55e32fd�
http://www.sciencedirect.com/science/article/pii/S0360132305003604?_alid=1873304577&_rdoc=5&_fmt=high&_origin=search&_docanchor=&_ct=1236&_zone=rslt_list_item&md5=904b8540a099a6dd60cab7f5727c5a88�
http://www.sciencedirect.com/science/article/pii/S0360132305003604?_alid=1873304577&_rdoc=5&_fmt=high&_origin=search&_docanchor=&_ct=1236&_zone=rslt_list_item&md5=904b8540a099a6dd60cab7f5727c5a88�
http://www.sciencedirect.com/science/article/pii/S0360544208003265?_alid=1873304577&_rdoc=8&_fmt=high&_origin=search&_docanchor=&_ct=1236&_zone=rslt_list_item&md5=335209e76c0d1dff3d6ae4668fe217ed�
http://www.sciencedirect.com/science/article/pii/S0360544208003265?_alid=1873304577&_rdoc=8&_fmt=high&_origin=search&_docanchor=&_ct=1236&_zone=rslt_list_item&md5=335209e76c0d1dff3d6ae4668fe217ed�
http://www.sciencedirect.com/science/article/pii/S019689040600121X�


 
 

172 

36 Chen et al. 2002a 
Chen, Y., Halm, N.P., Groll, E.A. and Braun, J.E.  
Mathematical modeling of scroll compressors. Part I: compression process 
modeling. International Journal of Refrigeration, Vol. 25, pp.731-750(2002). 

 
37 Chen et al. 2002b 

Chen, Y., Halm, N.P., Groll, E.A. and Braun, J.E.  
Mathematical modeling of scroll compressors. Part II: overall scroll 
compressor modeling, International Journal of Refrigeration, Vol. 25, pp. 
751-764 (2002). 
 

38 Chow et al. 2002 
Chow, T.T., Zhang, G.Q., Lin, Z. and Song, C.L. 
Global optimization of absorption chiller system by genetic algorithm and 
neural network. Energy and Buildings, Vol. 34, No. 1, pp. 103-109 (2002) 
 

39 Chua et al. 2007 
Chua, K.J., Ho, J.C. and Chou, S.K.  
A comparative study of different control strategies for indoor air humidity. 
Energy and Buildings, Vol. 39, pp. 537-545 (2007) 
 

40 Chuah et al. 1998 
Chuah, Y.K., Hung, C.C. and Tseng, P.C. 
Experiments on the dehumidification performance of a finned tube heat 
exchanger. HVAC&R Research, Vol. 4, No. 2, pp. 167-178 (1998) 
 

41 Cortes et al. 2009 
Cortes, O., Urquiza, G. and Hernandez, J.A. 
Optimization of operating conditions for compressor performance by means of 
neural network inverse. Applied Energy, Vol. 86, No. 11, pp. 2487-2493 
(2009) 
 

42 Damasceno and Rooke 1990 
Damasceno, G. S. and Rooke, S. P. 
Comparison of three steady-state heat pump computer models. ASHRAE 
Transaction, Vol. 96, part 2, pp. 191-204 (1990) 
 

43 Daosud et al. 2005 
Daosud, W., Thitiyasook, P., Arpornwichanop, A., Kittisupakorn, P. and 
Hussain, M.A. 
Neural network inverse model-based controller for the control of a steel 
pickling process. Computers & Chemical Engineering, Vol. 29, No. 10, pp. 
2110-2119 (2005) 
 

44 Deng 2000  
Deng, S. M.  
A dynamic mathematical model of a direct expansion (DX) water-cooled air 
conditioning plant. Building and Environment, Vol. 35, No. 7, pp. 603-613 
(2000) 
 

http://www.sciencedirect.com/science/article/pii/S0378778801000858�
http://www.sciencedirect.com/science/article/pii/S0378778801000858�
http://www.sciencedirect.com/science/article/pii/S0306261909000749�
http://www.sciencedirect.com/science/article/pii/S0306261909000749�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-4GWBDYJ-1&_user=107833&_coverDate=09%2F15%2F2005&_alid=1747765335&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5235&_sort=r&_st=13&_docanchor=&view=c&_ct=10&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=76601ae38d8360881a5a145d3e0e1f9e&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-4GWBDYJ-1&_user=107833&_coverDate=09%2F15%2F2005&_alid=1747765335&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5235&_sort=r&_st=13&_docanchor=&view=c&_ct=10&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=76601ae38d8360881a5a145d3e0e1f9e&searchtype=a�


 
 

173 

45 Deng et al. 2009 
Deng, H., Xu, Z. and Li, H.X.  
A novel neural internal model control for multi-input multi-output nonlinear 
discrete-time processes. Journal of Process Control, Vol. 19, No. 8, pp. 
1392-1400 (2009) 
 

46 Diaz et al. 1996 
Diaz, G., Yanes, J., Sen, M., Yang, K.T. and McClain, R.L. 
Analysis of data from single-row heat exchanger experiments using an 
artificial neural network. Proceedings of the ASME Fluids Engineering 
Division FED-242, pp. 45-52 (1996) 
 

47 Diaz et al. 1999 
Diaz, G., Sen, M., Yang, K.T. and McClain, R.L. 
Simulation of Heat Exchanger Performance by Artificial Neural Networks. 
HVAC&R Research, Vol. 5, No. 3, pp. 195-208 (1999) 
  

48 Diaz et al. 2001a 
Diaz, G., Sen, M., Yang, K.T. and McClain, R.T.  
Dynamic prediction and control of heat exchangers using artificial neural 
networks. International Journal of Heat Mass Transfer, Vol. 45, pp. 
1671-1679 (2001)  
 

49 Diaz et al. 2001b 
Diaz, G., Sen, M., Yang, K.T. and McClain, R.T.  
Adaptive neuro-control of heat exchangers. ASME Journal of Heat Transfer, 
Vol. 123, pp. 417-612 (2001)  
 

50 Diaz et al. 2004 
Diaz, G., Sen, M., Yang, K.T. and McClain, R.L. 
Stabilization of thermal neurocontrollers. Applied Artificial Intelligence, Vol. 
18, No. 5, pp. 447-466 (2004) 
 

51 Ding et al. 2002 
Ding, G.L., Zhang, C.L. and Liu, H.  
A fast simulation model combining with artificial neural networks for 
fin-and-tube condenser. Heat Transfer - Asian Research, Vol. 31, No. 7, pp. 
551-557 (2002) 
 

52 Ding et al. 2004 
Ding, G.L., Zhang, C.L. and Zhan, T. 
An approximate integral model with an artificial neural network for heat 
exchangers. Heat Transfer-Asia Research, Vol. 33, No. 3, pp. 153-160 (2004) 
 

53 Egilegor et al. 1997 
Egilegor, B., Uribe, J.P., Arregi, G., Pradilla, E. and Susperregi, L. 
A fuzzy control adapted by a neural network to maintain a dwelling within 
thermal comfort. Proceedings of Building Simulation 97, Vol. II, pp 87-94 
(1997) 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4N-4WK3YG2-1&_user=107833&_coverDate=09%2F30%2F2009&_alid=1747760933&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5763&_sort=r&_st=13&_docanchor=&view=c&_ct=1037&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=e2eca4471d32cda6ab8efcf5e833bad0&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4N-4WK3YG2-1&_user=107833&_coverDate=09%2F30%2F2009&_alid=1747760933&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5763&_sort=r&_st=13&_docanchor=&view=c&_ct=1037&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=e2eca4471d32cda6ab8efcf5e833bad0&searchtype=a�
http://www.informaworld.com/smpp/title~db=all~content=t713191765~tab=issueslist~branches=18#v18�
http://www.informaworld.com/smpp/title~db=all~content=g713768209�


 
 

174 

54 Ekici and Aksoy 2009 
Ekici, B.B. and Aksoy, U.T. 
Prediction of building energy consumption by using artificial neural networks. 
Advances in Engineering Software, Vol. 40, No. 5, pp. 356-362 (2009) 
 

55 Ekren et al. 2010 
Ekren, O., Sahin, S. and Isler, Y. 
Comparison of different controllers for variable speed compressor and 
electronic expansion valve. International Journal of Refrigeration, Vol. 33, 
No. 6, pp. 1161-1168 (2010) 
 

56 Ertunc and Hosoz 2006 
Ertunc, H.M. and Hosoz, M. 
Artificial neural network analysis of a refrigeration system with an 
evaporative condenser. Applied Thermal Engineering, Vol. 26, pp. 627-635 
(2006) 
 

57 Ertunc and Hosoz 2008 
Ertunc, H.M. and Hosoz, M. 
Comparative analysis of an evaporative condenser using artificial neural 
network and adaptive neuro-fuzzy inference system. International Journal of 
Refrigeration, Vol. 31, pp. 1426-1436 (2008) 
 

58 Escriva-Escriva et al. 2011 
Escriva-Escriva, G., Alvarez-Bel, C., Roldan-Blay, C. and Alcazar-Ortega, M. 
New artificial neural network prediction method for electrical consumption 
forecasting based on building end-uses. Energy and Buildings, Vol. 43, No. 
11, pp. 3112-3119 (2011) 
 

59 Esen and Inalli 2009 
Esen, H. and Inalli, M.  
Modelling of a vertical ground coupled heat pump system by using artificial 
neural networks. Expert Systems with Applications. Vol. 36, pp. 10229-11038 
(2009) 
 

60 Esen et al. 2008a 
Esen, H., Inalli, M., Sengur, A. and Esen, M.  
Performance prediction of a ground coupled heat pump system using artificial 
neural networks. Expert Systems with Applications, Vol. 35, pp. 1940-1948 
(2008) 
 

61 Esen et al. 2008b 
Esen, H., Inalli, M., Sengur, A. and Esen, M.  
Forecasting of a ground-coupled heat pump performance using neural 
networks with statistical data weighting preprocessing. International Journal 
of Thermal Sciences, Vol. 47, pp. 431-441 (2008) 
 

  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1P-4SV0SPT-3&_user=107833&_coverDate=05%2F31%2F2009&_alid=1609143264&_rdoc=4&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5680&_sort=r&_st=4&_docanchor=&_ct=26&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=7dcf5b278bcdd961d15e1a54e484f14d&searchtype=a�
http://www.sciencedirect.com/science/article/pii/S0140700710000915�
http://www.sciencedirect.com/science/article/pii/S0140700710000915�
http://www.sciencedirect.com/science/article/pii/S0378778811003422�
http://www.sciencedirect.com/science/article/pii/S0378778811003422�


 
 

175 

62 Esen et al. 2008c 
Esen, H., Inalli, M., Sengur, A. and Esen, M.  
Artificial neural networks and adaptive neuro-fuzzy assessments for 
ground-coupled heat pump system. Energy and Buildings, Vol. 40, pp. 
1074-1083 (2008) 
 

63 Fahlman and Lebiere 1990 
Fahlman, S.E. and Lebiere, C. 
The cascade-correlation learning architecture. Advances in Neural Information 
Processing System 2, D. Touretzky (eds), Morgan Kaufmann, San Mateo, CA, 
pp. 534-542, 1990 
 

64 Fanger 2001 
Fanger, P.O. 
Human requirements in future air-conditioned environments. International 
Journal of Refrigeration, Vol. 24, pp. 148-153 (2001) 
 

65 Fargus and Chapman 1998 
Fargus, R.S. and Chapman, C.  
Commercial PI-neural controller for the control of building services plant. IEE 
Conference Publication, Vol. 455, No. 2, pp. 1688-1693, Stevenage, England 
(1998) 
 

66 Federspiel and Asada 1994 
Federspiel, C.C. and Asada, H.  
User-Adaptable Comfort Control for HVAC Systems. Journal of Dynamic 
Systems, Measurement and Control, Vol. 116, No. 3, pp. 474-486 (1994) 
 

67 Friedrich et al. 2008 
Friedrich, M., Fankhauser, M., Oyeyemi, E. and McKinnell, L.A. 
A neural network-based ionospheric model for Arecibo. Advances in Space 
Research, Vol. 42, No. 4, pp. 776-781 (2008) 
 

68 Galindo et al. 2008 
Galindo, J., Serrano, J.R., Climent, H. and Tiseira, A. 
Experiments and modelling of surge in small centrifugal compressor for 
automotive engines. Experimental Thermal and Fluid Science, Vol. 32, No. 3, 
pp. 818-826 (2008) 
 

69 Gao et al. 2009 
Gao, M., Sun, F.Z., Zhou, S.J., Shi, Y.T., Zhao, Y.B. and Wang, N.H. 
Performance prediction of wet cooling tower using artificial neural network 
under cross-wind conditions. International Journal of Thermal Science, Vol. 
48, pp. 583-589 (2009) 
 

70 Graupe 2007 
Daniel, G. 
Principles of artificial neural networks. 2nd ed. Singapore: World Scientific 
Publishing Co. Pte. Ltd. 2007 
 

http://www.sciencedirect.com/science/article/pii/S0273117707007946?_alid=1866442156&_rdoc=8&_fmt=high&_origin=search&_docanchor=&_ct=510&_zone=rslt_list_item&md5=21bf227384eeb4303165a6c83117c402�
http://www.sciencedirect.com/science/article/pii/S0894177707001380?_alid=1861474672&_rdoc=3&_fmt=high&_origin=search&_docanchor=&_ct=3245&_zone=rslt_list_item&md5=2efba1f516f5b18671dd2615d25ce93b�
http://www.sciencedirect.com/science/article/pii/S0894177707001380?_alid=1861474672&_rdoc=3&_fmt=high&_origin=search&_docanchor=&_ct=3245&_zone=rslt_list_item&md5=2efba1f516f5b18671dd2615d25ce93b�


 
 

176 

71 Gurney 1997 
Gurney, K. 
An introduction to neural networks. London: UCL Press; 1997 
 

72 Harriman Ⅲ and Judge 2002 
Harriman, Ⅲ L.G. and Judge, J.  
Dehumidification equipment advances. ASHRAE Journal, Vol. 44, No. 8, pp. 
22-29 (2002) 
 

73 Hayashi et al. 2010 
Hayashi, Y., Hsieh, M.H. and Setiono, R. 
Understanding consumer heterogeneity: A business intelligence application of 
neural networks. Knowledge-Based Systems, Vol. 23, No. 8, pp. 856-863 
(2010) 
 

74 Hayati et al. 2009 
Hayati, M., Rezaei, A. and Seifia, M. 
Prediction of the heat transfer rate of a single layer wire-on-tube type heat 
exchanger using ANFIS. International Journal of Refrigeration, Vol. 32, pp. 
1914-1917 (2009) 
 

75 Haykin 1999 
Haykin, S. 
Neural Networks, A Comprehensive Foundation. 2nd ed. London: 
Prentice-Hall; 1999 
 

76 He et al. 1997 
He, X.D., Liu, S. and Asada, H.H. 
Modeling of vapor compression cycles for multivariable feedback control of 
HVAC systems. Transaction of the ASME: Journal of Dynamic Systems, 
Measurement, and Control, Vol. 119, pp. 183-191 (1997) 
 

77 Henderson 1998 
Henderson, H.I. Jr.  
The impact of part-load air conditioner operation on dehumidification 
performance: Validating a latent capacity degradation model. Proceeding of 
the 1998 ASHRAE Indoor Air Quality Conference. (1998) 
 

78 Henderson et al. 1992 
Henderson, H.I.Jr., Rengarjan, K. and Shirey, D.B. 
The impact of comfort control on air conditioner energy use in humid 
climates. ASHRAE Transactions, Vol. 98, No. Part. 2, pp. 104-112 (1992) 
 

79 Holman 1994 
Holman, J.P. 
Experimental methods for engineers. New York: McGraw-Hill, 1994 
 

  

http://www.google.com.hk/search?hl=zh-CN&tbo=p&tbm=bks&q=inauthor:%22Kevin+Gurney%22&source=gbs_metadata_r&cad=7�
http://www.sciencedirect.com/science/article/pii/S0950705110000912?_alid=1866426626&_rdoc=5&_fmt=high&_origin=search&_docanchor=&_ct=13190&_zone=rslt_list_item&md5=048e867d0c4a590e8bbab825efc33736�
http://www.sciencedirect.com/science/article/pii/S0950705110000912?_alid=1866426626&_rdoc=5&_fmt=high&_origin=search&_docanchor=&_ct=13190&_zone=rslt_list_item&md5=048e867d0c4a590e8bbab825efc33736�


 
 

177 

80 Hopfield 1982 
Hopfield, J.J. 
Neural networks and physical systems with emergent collective computational 
abilities. Proceedings of the National Academy of Science, USA, Vol. 79, pp. 
2554-2558 (1982) 
 

81 Hosoz and Ertunc 2006a 
Hosoz, M. and Ertunc, H.M. 
Modeling of a cascade refrigeration system using artificial neural networks. 
International Journal of Energy Research, Vol. 30, pp. 1200-1215 (2006) 
 

82 Hosoz and Ertunc 2006b 
Hosoz, M. and Ertunc, H.M. 
Artificial neural network analysis of an automobile air conditioning system. 
Energy Conversion and Management, Vol. 47, No. 11-12, pp. 1574-1587 
(2006) 
 

83 Hosoz et al. 2007 
Hosoz, M., Ertunc, H.M. and Bulgurcu, H. 
Performance prediction of a cooling tower using artificial neural network. 
Energy Conversion and Management, Vol. 48, pp. 1349-1359 (2007) 
 

84 Hou et al. 2006 
Hou, Z., Lian, Z., Yao, Y. and Yuan, X.  
Cooling-load prediction by the combination of rough set theory and an 
artificial neural-network based on data-fusion technique. Applied Energy, Vol. 
83, pp. 1033-1046 (2006) 
 

85 Hourahan 2004 
Hourahan, G.C. 
How to properly size unitary equipment. ASHRAE Journal, Vol. 46, No. 2, pp. 
15-18 (2004) 
 

86 Huang et al. 2004 
Huang, S.N, Tan, K.K. and Tang, K.Z. 
Neural network control: theory and applications. Baldock, Hertfordshire, 
England: Research Studies Press, 2004 
 

87 Huang et al. 2010 
Huang, Y, Lan, Y, Thomson, S.J., Fang, A, Hoffmann, W.C. and Lacey, R.E. 
Development of soft computing and applications in agricultural and biological 
engineering. Computers and Electronics in Agriculture, Vol. 71, No. 2 (2010) 
 

88 Islamoglu et al. 2005 
Islamoglu, Y., Kurt, A. and Parmaksizoglu, C. 
Performance prediction for non-adiabatic capillary tube suction line heat 
exchanger: an artificial neural network approach. Energy Conversion and 
Management, Vol. 46, No. 2, pp. 223-232 (2005)  
 

http://www.sciencedirect.com/science/article/pii/S0196890405002001?_alid=1873352666&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=135&_zone=rslt_list_item&md5=a4386a803ccd6c979d01f6475008a123�
http://www.google.com.hk/search?hl=zh-CN&tbo=p&tbm=bks&q=inauthor:%22Sunan+Huang%22�
http://www.google.com.hk/search?hl=zh-CN&tbo=p&tbm=bks&q=inauthor:%22Kok+Kiong+Tan%22�
http://www.google.com.hk/search?hl=zh-CN&tbo=p&tbm=bks&q=inauthor:%22Kok+Zuea+Tang%22�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5M-4YDR2B2-1&_user=107833&_coverDate=05%2F31%2F2010&_alid=1605412844&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5006&_sort=r&_st=13&_docanchor=&view=c&_ct=5851&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=15b0b57fab1ab44a9776f1c0cdb4d6fe&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5M-4YDR2B2-1&_user=107833&_coverDate=05%2F31%2F2010&_alid=1605412844&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5006&_sort=r&_st=13&_docanchor=&view=c&_ct=5851&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=15b0b57fab1ab44a9776f1c0cdb4d6fe&searchtype=a�


 
 

178 

89 Jacobs et al. 1991 
Jacobs, R.A., Jordan, M.I. and Barto, A.G. 
Task decomposition through competition in a modular connectionist 
architecture: the what and where vision tasks. Cognitive Science, Vol. 15, pp. 
219-250 (1991) 
 

90 Jeannette et al. 1998 
Jeannette, E., Assawamartbunlue, K., Curtiss, P. and Kreider, J.  
Experimental results of a predictive neural network HVAC controller. 
ASHRAE Transactions, Vol. 104, No. 2, pp. 192-197, ASHRAE, Atlanta, GA, 
USA (1998) 
 

91 Jia et al. 1995 
Jia, X., Tso, C. P., Chia, P. K. and Jolly, P.  
A distributed model for prediction of the transient response of an evaporator. 
International Journal of Refrigeration, Vol. 18, No. 5. pp. 336-342(1995) 
 

92 Jiang et al. 2006 
Jiang, W., Khan, J and Dougal, R.A. 
Dynamic centrifugal compressor model for system simulation. Journal of 
Power Sources, Vol. 158, No. 2, pp. 1333-1343 (2006) 
 

93 Jordan and Jacobs 1993 
Jordan, M. and Jacobs, R. 
Hierarchical mixtures of experts and the EM algorithm. Technical report 9301, 
MIT computational cognitive science (1993) 
 

94 Kanarachos and Geramanis 1998 
Kanarachos, A. and Geramanis, K. 
Multivariable control of single zone hydronic heating systems with neural 
networks. Energy Conversion and Management, Vol. 39, No. 13, pp. 
1317-1336 (1998) 
 

95 Karlaftis and Vlahogianni 2011 
Karlaftis, M.G. and Vlahogianni, E.I. 
Statistical methods versus neural networks in transportation research: 
Differences, similarities and some insights. Transportation Research Part C: 
Emerging Technologies, Vol. 19, No. 3, pp. 387-399 (2011) 
 

96 Khayyam et al. 2011 
Khayyam, Hamid, Kouzani, A.Z., Hu, E.J. and Nahavandi, S. 
Coordinated energy management of vehicle air conditioning system. Applied 
Thermal Engineering, Vol. 31, No. 5, pp. 750-764 (2011)  
 

97 Kim et al. 2010 
Kim, M.Y., Charles, P.G. and Christopher, Y.C.  
Assessment of physically-based and data-driven models to predict microbial 
water quality in open channels. Journal of Environmental Sciences, Vol. 22, 
No. 6, pp. 851-857 (2010) 
 

http://www.sciencedirect.com/science/article/pii/S0378775305014813?_alid=1861474672&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=3245&_zone=rslt_list_item&md5=4422b03a26fd6b1a843b28a64a285f06�
http://www.sciencedirect.com/science/article/pii/S0196890498000156�
http://www.sciencedirect.com/science/article/pii/S0196890498000156�
http://www.sciencedirect.com/science/article/pii/S0968090X10001610?_alid=1866438468&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=7784&_zone=rslt_list_item&md5=f505d502296b3c7caed49b6cc3c375bb�
http://www.sciencedirect.com/science/article/pii/S0968090X10001610?_alid=1866438468&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=7784&_zone=rslt_list_item&md5=f505d502296b3c7caed49b6cc3c375bb�
http://www.sciencedirect.com/science/article/pii/S1359431110004497�


 
 

179 

98 Kittisupakorn et al. 2009 
Kittisupakorn, P., Thitiyasook, P., Hussain, M.A. and Daosud, W.  
Neural network based model predictive control for a steel pickling process. 
Journal of Process Control, Vol. 19, No. 4, pp. 579-590 (2009) 
 

99 Kittler 1996 
Kittler, R.  
Mechanical Dehumidification Control Strategies and Psychromatrics.  
ASHRAE Transactions, Vol. 102, No. 2, pp. 613-617 (1996) 
 

100 Kizilkan 2011 
Kizilkan, O. 
Thermodynamic analysis of variable speed refrigeration system using artificial 
neural networks. Expert Systems with Applications, Vol. 38, No. 9, pp. 
11686-11692 (2011) 
 

101 Kohonen 1982 
Kohonen, T. 
Self-organized formation of topologically correct feature maps. Biological 
Cybernetics, Vol. 43, pp. 59-69 (1982) 
 

102 Kosar 2006 
Kosar, D. 
Dehumidification system enhancements. ASHRAE Journal, February, pp. 
48-58 (2006) 

 
103 Krakow et al. 1995 

Krakow, K.I., Lin, S. and Zeng, Z.S. 
Temperature and humidity control during cooling and dehumidifying by 
compressor and evaporator fan speed variation. ASHRAE Transactions, Vol. 
101, No. 1, pp. 292-304 (1995) 
 

104 Krichel and Sawodny 2011 
Krichel, S.V. and Oliver, Sawodny 
Dynamic modeling of compressors illustrated by an oil-flooded twin helical 
screw compressor. Mechatronics, Vol. 21, No. 1, pp. 77-84 (2011) 
 

105 Kurt and Kayfeci 2009 
Kurt, H. and Kayfeci, M.  
Prediction of thermal conductivity of ethylene glycol-water solutions by using 
artificial neural networks. Applied Energy, Vol. 86, pp. 2244-2248 (2009) 
 

106 Kusiak et al. 2010 
Kusiak, A., Li, M. and Zhang, Z. 
A data-driven approach for steam load prediction in buildings. Applied 
Energy, Vol. 87, No. 3, pp. 925-933 (2010) 
 

  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4N-4TSC3WK-1&_user=107833&_coverDate=04%2F30%2F2009&_alid=1747770842&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5763&_st=13&_docanchor=&view=c&_ct=15&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=18a91a46ce26fc390047f9d6fda0d7b5&searchtype=a�
http://www.sciencedirect.com/science/article/pii/S095741741100460X?_alid=1873220500&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=427&_zone=rslt_list_item&md5=ad2591a8d90be371abeb04c513003092�
http://www.sciencedirect.com/science/article/pii/S095741741100460X?_alid=1873220500&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=427&_zone=rslt_list_item&md5=ad2591a8d90be371abeb04c513003092�
http://www.sciencedirect.com/science/article/pii/S0957415810001406?_alid=1861475859&_rdoc=4&_fmt=high&_origin=search&_docanchor=&_ct=718&_zone=rslt_list_item&md5=84ae417c4bd15c2064dd84cc4f7ec6ed�
http://www.sciencedirect.com/science/article/pii/S0957415810001406?_alid=1861475859&_rdoc=4&_fmt=high&_origin=search&_docanchor=&_ct=718&_zone=rslt_list_item&md5=84ae417c4bd15c2064dd84cc4f7ec6ed�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1T-4XBP9CF-2&_user=107833&_coverDate=03%2F31%2F2010&_alid=1609130895&_rdoc=5&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5683&_sort=r&_st=4&_docanchor=&_ct=17&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=873af58a67a8758dcd37597fbc0fe75a&searchtype=a�


 
 

180 

107 Kwok et al. 2011 
Kwok, S.S.K., Yuen, R.K.K. and Lee, E.W.M. 
An intelligent approach to assessing the effect of building occupancy on 
building cooling load prediction. Building and Environment, Vol. 46, No. 8, 
pp. 1681-1690 (2011) 
 

108 Labus et al. 2012 
Labus, J., Hernandez, J.A., Bruno, J.C. and Coronas, A. 
Inverse neural network based control strategy for absorption chillers. 
Renewable Energy, Vol. 39, No. 1, pp. 471-482 (2012) 
 

109 Lam 1996 
Lam, J.C.  
An analysis of residential sector energy use in Hong Kong. Energy, Vol. 21, 
pp.1-8 (1996) 
 

110 Lenarduzzi and Yap 1998 
Lenarduzzi, F. J. and Yap, S. S. 
Measuring the performance of a variable-speed drive retrofit on a fixed-speed 
centrifugal chiller. ASHRAE Transaction, Vol. 104, part 2, pp. 658-667 (1998) 

 
111 Li and Deng 2007a 

Li, Z. and Deng, S.M.  
An experimental study on the inherent operational characteristics of a direct 
expansion (DX) air conditioning (A/C) unit. Building and Environment, Vol. 
42, No. 1, pp. 1-10 (2007) 
 

112 Li and Deng 2007b 
Li, Z. and Deng, S.M. 
A DDC-based capacity controller of a direct expansion (DX) air conditioning 
(A/C) unit for simultaneous indoor air temperature and humidity control - Part 
I: Control algorithms and preliminary controllability tests. International 
Journal of Refrigeration, Vol. 30, No. 1, pp. 113-123 (2007) 
 

113 Li and Deng 2007c 
Li, Z. and Deng, S.M. 
A DDC-based capacity controller of a direct expansion (DX) air conditioning 
(A/C) unit for simultaneous indoor air temperature and humidity control – Part 
II: Further development of the controller to improve control sensitivity. 
International Journal of Refrigeration, Vol. 30, No. 1, pp. 124-133 (2007) 
 

114 Liang and Du 2008 
Liang, J. and Du, R. 
Design of intelligent comfort control system with human learning and 
minimum power control strategies. Energy Conversion and Management, Vol. 
49, No. 4, pp. 517-528 (2008) 
 

  

http://www.sciencedirect.com/science/article/pii/S0360132311000564�
http://www.sciencedirect.com/science/article/pii/S0360132311000564�
http://www.sciencedirect.com/science/article/pii/S0960148111004952�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V23-4H7T0H7-4&_user=107833&_coverDate=01%2F31%2F2007&_alid=1357312672&_rdoc=4&_fmt=high&_orig=search&_cdi=5691&_sort=r&_st=4&_docanchor=&_ct=11&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=42ca7240c676900ca5925615fe96ee07�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V23-4H7T0H7-4&_user=107833&_coverDate=01%2F31%2F2007&_alid=1357312672&_rdoc=4&_fmt=high&_orig=search&_cdi=5691&_sort=r&_st=4&_docanchor=&_ct=11&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=42ca7240c676900ca5925615fe96ee07�
http://www.sciencedirect.com/science/article/pii/S0140700706001241�
http://www.sciencedirect.com/science/article/pii/S0140700706001241�
http://www.sciencedirect.com/science/article/pii/S0140700706001241�
http://www.sciencedirect.com/science/article/pii/S0140700706001204�
http://www.sciencedirect.com/science/article/pii/S0140700706001204�
http://www.sciencedirect.com/science/article/pii/S0140700706001204�
http://www.sciencedirect.com/science/article/pii/S0196890407002889�
http://www.sciencedirect.com/science/article/pii/S0196890407002889�


 
 

181 

115 Liang et al. 1999 
Liang, S.Y., Liu, M., Wong, T.N., and Nathan, G.K.  
Analytical study of evaporator coil in humid environment, Applied Thermal 
Engineering, Vol. 19, pp.1129-1145(1999) 
 

116 Li et al. 2009 
Li, Q., Meng, Q., Cai, J., Yoshino, H. and Mochida, A.  
Predicting hourly cooling load in the building: a comparison of support vector 
machine and different artificial neural networks. Energy Conversion and 
Management, Vol. 50, pp. 90-96 (2009) 
 

117 Yamamoto et al. 1982 
Yamamoto, T., Hibi, H. and Kuroda, T. 
Development of an energy-saving-oriented variable capacity system heat 
pump. ASHRAE Transaction, Vol. 88, part 1, pp. 441-450 (1982) 
 

118 Lin et al. 2008 
Lin, C.S, Chiu, J.S., Hsieh, M.H., Mok, M.S., Li, Y.C. and Chiu, H.W. 
Predicting hypotensive episodes during spinal anesthesia with the application 
of artificial neural networks, Computer Methods and Programs in 
Biomedicine, Vol. 92, No. 2, pp. 193-197 (2008) 
 

119 Link and Deschamps 2011 
Link, R. and Deschamps, C.J. 
Numerical modeling of startup and shutdown transients in reciprocating 
compressors. International Journal of Refrigeration, Vol. 34, No. 6, pp. 
1398-1414 (2011) 
 

120 Liu et al. 2007 
Liu, W.W., Lian, Z.W. and Zhao, B. 
A neural network evaluation model for individual thermal comfort. Energy 
and Buildings, Vol. 39, No. 10, pp. 1115-1122 (2007) 
 

121 Loannou and Pitsillides 2008 
Loannou, P.A., Pitsillides, A.  
Modeling and control of complex systems. London, New York: CRC Press, 
Tayor & Francis Group; 2008. 
 

122 Lu 2003 
Lu, X. 
Estimation of indoor moisture generation rate from measurement in 
buildings. Building and Environment, Vol. 38, No. 5, pp. 665-675 (2003) 
 

123 Lu and Viljanen 2009 
Lu, T. and Viljanen, M. 
Prediction of indoor temperature and relative humidity using neural network 
models: model comparison. Neural Computing and applications, Vol. 18, pp. 
345-357 (2009) 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5J-4T9TBYV-1&_user=107833&_coverDate=11%2F30%2F2008&_alid=1604844108&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5004&_sort=r&_st=13&_docanchor=&view=c&_ct=209&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=01976dc462d225cc0a4476a66e67b9c9&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5J-4T9TBYV-1&_user=107833&_coverDate=11%2F30%2F2008&_alid=1604844108&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5004&_sort=r&_st=13&_docanchor=&view=c&_ct=209&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=01976dc462d225cc0a4476a66e67b9c9&searchtype=a�
http://www.sciencedirect.com/science/article/pii/S0140700711000879?_alid=1861423063&_rdoc=5&_fmt=high&_origin=search&_docanchor=&_ct=662&_zone=rslt_list_item&md5=5f83e032b70a881c78df9901cc611b94�
http://www.sciencedirect.com/science/article/pii/S0140700711000879?_alid=1861423063&_rdoc=5&_fmt=high&_origin=search&_docanchor=&_ct=662&_zone=rslt_list_item&md5=5f83e032b70a881c78df9901cc611b94�
http://www.sciencedirect.com/science/article/pii/S0378778806003008�
http://www.sciencedirect.com/science/article/pii/S0360132302002378?_alid=1857965075&_rdoc=4&_fmt=high&_origin=search&_docanchor=&_ct=489&_zone=rslt_list_item&md5=2bb9a07189f6620c24c0932179b580e3�
http://www.sciencedirect.com/science/article/pii/S0360132302002378?_alid=1857965075&_rdoc=4&_fmt=high&_origin=search&_docanchor=&_ct=489&_zone=rslt_list_item&md5=2bb9a07189f6620c24c0932179b580e3�


 
 

182 

124 Lu et al. 2004 
Lu, W.Z., Wang, W.J., Wang, X.K., Yan, S.H. and Lam, J.C. 
Potential assessment of a neural network model with PCA/RBF approach for 
forecasting pollutant trends in Mong Kok urban air, Hong Kong. 
Environmental Research, Vol. 96, No. 1, pp. 79-87 (2004) 
 

125 Lucas and Miranville 2004 
Lucas, F. and Miranville, F. 
Indoor humidity modeling and evaluation of condensation on interior surfaces. 
ASHRAE Transactions, Vol. 110, Part. 2, pp. 300-308 (2004) 
 

126 Mahmoud and Alajmi 2010 
Mahmoud, M.A. and Alajmi, A.F.  
Quantitative assessment of energy conservation due to public awareness 
campaigns using neural networks. Applied Energy, Vol. 87, No. 1, pp. 
220-228 (2010) 
 

127 Manohar et al. 2006 
Manohar, H.J., Saravanan, R. and Renganarayanan, S. 
Modelling of steam fired double effect vapour absorption chiller using neural 
network. Energy Conversion and Management, Vol. 47, No. 15-16, pp. 
2202-2210 (2006)  
 

128 Marini et al. 2008 
Marini, F., Bucci, R., Magri, A.L. and Magri, A.D. 
Artificial neural networks in chemometrics: History, examples and 
perspectives. Microchemical Journal, Vol. 88, No. 2, pp. 178-185 (2008) 
 

129 Mazzei et al. 2005 
Mazzei, P., Minichiello, F. and Palma, D. 
HVAC dehumidification systems for thermal comfort: a critical review. 
Applied Thermal Engineering, Vol. 25, pp. 677-707 (2005) 
 

130 Mehrotra et al. 1996 
Mehrotra, K., Mohan, C.K. and Ranka, S. 
Elements of artificial neural networks. London, England: MIT Press, 1996 
 

131 Mei and Levermore 2002 
Mei, L. and Levermore, G. J. 
Simulation and validation of a VAV system with an ANN fan model and a 
non-linear VAV box model. Building and Environment, Vol. 37, No. 3, pp. 
277-284 (2002) 
 

132 McGahey 1998 
McGahey, K. 
New commercial applications for desiccant-based cooling. ASHRAE Journal, 
Vol. 40, No. 7, pp. 41-45 (1998) 
 

  

http://www.sciencedirect.com/science/article/pii/S0013935103002159�
http://www.sciencedirect.com/science/article/pii/S0013935103002159�
http://www.sciencedirect.com/science/article/pii/S0306261909000877?_alid=1811215169&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=2371&_zone=rslt_list_item&md5=c98905e95ced8e45714ad039dda3cd54�
http://www.sciencedirect.com/science/article/pii/S0306261909000877?_alid=1811215169&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=2371&_zone=rslt_list_item&md5=c98905e95ced8e45714ad039dda3cd54�
http://www.sciencedirect.com/science/article/pii/S0196890405003365?_alid=1873304577&_rdoc=6&_fmt=high&_origin=search&_docanchor=&_ct=1236&_zone=rslt_list_item&md5=673f5fa0df6cac0a59e4cffdb60e7154�
http://www.sciencedirect.com/science/article/pii/S0196890405003365?_alid=1873304577&_rdoc=6&_fmt=high&_origin=search&_docanchor=&_ct=1236&_zone=rslt_list_item&md5=673f5fa0df6cac0a59e4cffdb60e7154�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W6H-4R7J8G7-2&_user=107833&_coverDate=04%2F30%2F2008&_alid=1605526357&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6599&_sort=r&_st=13&_docanchor=&view=c&_ct=277&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=3e4424021909d3c40ccb3f5b3c96ab2f&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W6H-4R7J8G7-2&_user=107833&_coverDate=04%2F30%2F2008&_alid=1605526357&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6599&_sort=r&_st=13&_docanchor=&view=c&_ct=277&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=3e4424021909d3c40ccb3f5b3c96ab2f&searchtype=a�
http://www.google.com.tw/search?hl=zh-CN&tbo=p&tbm=bks&q=inauthor:%22Kishan+Mehrotra%22�
http://www.google.com.tw/search?hl=zh-CN&tbo=p&tbm=bks&q=inauthor:%22Chilukuri+K.+Mohan%22�
http://www.google.com.tw/search?hl=zh-CN&tbo=p&tbm=bks&q=inauthor:%22Sanjay+Ranka%22�


 
 

183 

133 McCulloch and Pitts 1943 
McCulloch, W.S. and Pitts, W. 
A logical calculus of the ideas immanent in nervous activity. Bulletin of 
Mathematical Biophysics, Vol. 5, pp. 115-133 (1943) 
 

134 McNelis 2005 
McNelis, P.D.  
Neural Networks in Finance: Gaining Predictive Edge in the Market. London: 
Elsevier; 2005. 
 

135 Miro 2005 
Miro, C. 
ASHRAE issues guidance on minimizing mold, mildew. ASHRAE Journal, 
Vol. 47, No. 3, pp. 86 (2005) 
 

136 Moghaddam et al. 2011 
Moghaddam, J.J., Farahani, M.H. and Amanifard, N. 
A neural network-based sliding-mode control for rotating stall and surge in 
axial compressors. Applied Soft Computing, Vol. 11, No. 1, pp. 1036-1043 
(2011) 
 

137 Mohanraj et al. 2009a 
Mohanraj, M., Jayaraj, S. and Muraleedharan, C.  
Performance prediction of a direct expansion solar assisted heat pump using 
artificial neural networks. Applied Energy, Vol. 86, pp. 1441-1449 (2009) 
 

138 Mohanraj et al. 2009b 
Mohanraj, M., Jayaraj, S. and Muraleedharan, C.  
Exergy analysis of a direct expansion solar assisted heat pump using artificial 
neural networks. International Journal of Energy Research, Vol. 33, pp. 
1005-1020 (2009) 
 

139 Mohanraj et al. 2010 
Mohanraj, M., Jayaraj, S. and Muraleedharan, C.  
Exergy assessment of direct expansion solar assisted heat pump working with 
R22 and R407C/LPG mixture. International Journal of Green Energy, Vol. 7, 
pp. 65-83 (2010) 
 

140 Morel et al. 2001 
Morel, N., Bauer, M., El-Khoury, M. and Krauss, J.  
Neurobat, a predictive and adaptive heating-control system using artificial 
neural networks. International Journal of Solar Energy, Vol. 21, No. 2-3, pp. 
161-202 (2001) 
 

141 Mustafaraj et al. 2010 
Mustafaraj, G., Chen, J. and Lowry, G. 
Thermal behaviour prediction utilizing artificial neural networks for an open 
office. Applied Mathematical Modelling, Vol. 34, No. 11, pp. 3216-3230 
(2010) 
 

http://www.sciencedirect.com/science/article/pii/S1568494610000311�
http://www.sciencedirect.com/science/article/pii/S1568494610000311�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYC-4YDC3S4-2&_user=107833&_coverDate=11%2F30%2F2010&_alid=1600162784&_rdoc=2&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5615&_sort=r&_st=13&_docanchor=&view=c&_ct=2580&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=e1b91356a13958f363ab5cf4156e846c&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYC-4YDC3S4-2&_user=107833&_coverDate=11%2F30%2F2010&_alid=1600162784&_rdoc=2&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5615&_sort=r&_st=13&_docanchor=&view=c&_ct=2580&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=e1b91356a13958f363ab5cf4156e846c&searchtype=a�


 
 

184 

142 Mustafaraj et al. 2011 
Mustafaraj, G., Lowry, G. and Chen, J. 
Prediction of room temperature and relative humidity by autoregressive linear 
and nonlinear neural network models for an open office. Energy and 
Buildings, Vol. 43, No. 6, pp. 1452-1460 (2011) 
 

143 Nagaya et al. 2006 
Nagaya, K., Senbongi, T., Li, Y., Zheng, J. and Murakami, I. 
High energy efficiency desiccant assisted automobile air-conditioner and its 
temperature and humidity control system. Applied Thermal Engineering , Vol. 
26, pp. 1545-1551 (2006) 
 

144 Nanayakkara et al. 2002 
Nanayakkara, V.K., Ikegami, Y. and Uehara, H. 
Evolutionary design of dynamic neural networks for evaporator control, 
International Journal of Refrigeration, Vol. 25, No. 6, pp. 813-826 (2002) 
 

145 Narendra and Parthasarathy 1990 
Narendra, K.S. and Parthasarathy, K. 
Identification and control of dynamical systems using neural networks. IEEE 
Transactions on Neural Networks, Vol. 3, pp. 4-27 (1990) 
 

146 Navarro-Esbri et al. 2007 
Navarro-Esbri, J., Berbegall, V., Verdu, G., Cabello, R. and Llopis, R. 
A low data requirement model of a variable-speed vapour compression 
refrigeration system based on neural networks. International Journal of 
Refrigeration, Vol. 30, No. 8, pp. 1452-1459 (2007) 
 

147 Navarro et al. 2007 
Navarro, E., Granryd, E., Urchueguia, J.F. and Corberan, J.M.  
A phenomenological model for analyzing reciprocating compressors. 
International Journal of Refrigeration. Vol. 30, No. 7, pp. 1254-1265 (2007) 
 

148 Ndiaye and Bernier 2010 
Ndiaye, D. and Bernier, M. 
Dynamic model of a hermetic reciprocating compressor in on-off cycling 
operation (Abbreviation: Compressor dynamic model). Applied Thermal 
Engineering, Vol. 30, No. 8-9, pp. 792-799 (2010) 
 

149 Negrao et al. 2011 
Negrao, C.O.R., Erthal, R.H., Andrade, D.E.V. and Silva, L.W. 
A semi-empirical model for the unsteady-state simulation of reciprocating 
compressors for household refrigeration applications. Applied Thermal 
Engineering, Vol. 31, No. 6-7, pp. 1114-1124 (2011) 
 

150 Neto and Fiorelli 2008 
Neto, A.H. and Fiorelli, F.A.S. 
Comparison between detailed model simulation and artificial neural network 
for forecasting building energy consumption. Energy and Buildings, Vol. 40, 
No. 12, pp. 2169-2176 (2008) 

http://www.sciencedirect.com/science/article/pii/S037877881100051X�
http://www.sciencedirect.com/science/article/pii/S037877881100051X�
http://www.sciencedirect.com/science/article/pii/S0140700701000901�
http://www.sciencedirect.com/science/article/pii/S0140700707000485?_alid=1873217155&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=136&_zone=rslt_list_item&md5=f2b00210e6f291fb24b30aa96576ea6e�
http://www.sciencedirect.com/science/article/pii/S0140700707000485?_alid=1873217155&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=136&_zone=rslt_list_item&md5=f2b00210e6f291fb24b30aa96576ea6e�
http://www.sciencedirect.com/science/article/pii/S1359431109003548?_alid=1861423063&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=662&_zone=rslt_list_item&md5=ea3fc3494691d0918b0768231d476829�
http://www.sciencedirect.com/science/article/pii/S1359431109003548?_alid=1861423063&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=662&_zone=rslt_list_item&md5=ea3fc3494691d0918b0768231d476829�
http://www.sciencedirect.com/science/article/pii/S1359431110005223?_alid=1861423063&_rdoc=2&_fmt=high&_origin=search&_docanchor=&_ct=662&_zone=rslt_list_item&md5=79a051f5b1adc3bfc68f46d016760f67�
http://www.sciencedirect.com/science/article/pii/S1359431110005223?_alid=1861423063&_rdoc=2&_fmt=high&_origin=search&_docanchor=&_ct=662&_zone=rslt_list_item&md5=79a051f5b1adc3bfc68f46d016760f67�
http://www.sciencedirect.com/science/article/pii/S0378778808001448�
http://www.sciencedirect.com/science/article/pii/S0378778808001448�


 
 

185 

 

151 NG 1997 
NG, G.W. 
Application of neural networks to adaptive control of nonlinear systems. 
Taunton, Somerset, England: Research studies press ltd, 1997 
 

152 Nissen 2003 
Nissen, S.  
Implementation of a Fast Artificial Neural Network Library (FANN), Report, 
Department of Computer Science University of Copenhagen (DIKU), 2003 
 

153 Norgaard et al. 2000 
Norgaard. M., Ravn, O., Poulsen, N.K. and Hansen, L.K.  
Neural Networks for Modelling and Control of Dynamic Systems. Springer, 
London, 2000 
 

154 Ovaska 2004 
Ovaska, S.J.  
Computationally Intelligent Hybrid Systems: The Fusion of Soft Computing 
and Hard Computing. John Wiley & Sons, Inc. NY, 2004   
 

155 Pacheco-Vega et al. 2001a 
Pacheco-Vega, A., Diaz, G., Sen, M., Yang, K.T. and McClain, R.T. 
Neural network analysis of fin-tube refrigerating heat exchanger with limited 
experimental data. International Journal of Heat Mass Transfer, Vol. 44, pp. 
763-770 (2001) 
 

156 Pacheco-Vega et al. 2001b 
Pacheco-Vega, A., Diaz, G., Sen, M., Yang, K.T. and McClain, R.T.  
Heat Rate Predictions in Humid Air-Water Heat Exchanger Using Correlations 
and Neural Networks. ASME Journal of Heat Transfer, Vol. 123, No. 2, pp. 
348-354 (2001) 
 

157 Palau et al. 1999 
Palau, A., Velo, E. and Puigjaner, L. 
Use of neural networks and expert systems to control a gas/solid sorption 
chilling machine. International Journal of Refrigeration, Vol. 22, No. 1, pp. 
59-66 (1999) 
 

158 Park 2010 
Park, Y.C. 
Transient analysis of a variable speed rotary compressor. Energy Conversion 
and Management, Vol. 51, No. 2, pp. 277-287 (2010) 
 

159 Park et al. 2007 
Park, C., Cho, H., Lee, Y. and Kim, Y. 
Mass flow characteristics and empirical modeling of R22 and R410A flowing 
through electronic expansion valves. International Journal of Refrigeration, 
Vol. 30, pp.1401-1407(2007) 

http://as.wiley.com/WileyCDA/Section/id-302477.html?query=Seppo+J.+Ovaska�
http://www.cp1897.com.hk/books_publishers.php?publishers_code=P001402&keywords=John+Wiley+%26+Sons%2CInc.+NY�
http://www.sciencedirect.com/science/article/pii/S0140700797000467�
http://www.sciencedirect.com/science/article/pii/S0140700797000467�
http://www.sciencedirect.com/science/article/pii/S019689040900377X?_alid=1861534747&_rdoc=10&_fmt=high&_origin=search&_docanchor=&_ct=10615&_zone=rslt_list_item&md5=108349c8608d523d6eccb9be3f1ef42e�


 
 

186 

 

160 Perez-Segarra et al. 2003 
Perez-Segarra, C.D., Rigola, J. and Oliva, A.,  
Modeling and numerical simulation of the thermal and fluid dynamic behavior 
of hermetic reciprocating compressors. Part 1: theoretical basis, HVAC & R 
Research, Vol. 9, No. 2, pp. 215-235 (2003) 

 
161 Pintelon and Schoukens 2001 

Pintelon, R. and Schoukens, J.  
System identification: a frequency domain approach, IEEE Press, New York, 
2001 
 

162 Porkhial et al. 2004 
Porkhial, S., Khastoo, B. , Saffar-Avval, M.  
Transient response of dry expansion evaporator in household refrigerators. 
Applied Thermal Engineering, Vol. 24, pp. 1465-1480 (2004) 
 

163 Qi and Deng 2008 
Qi, Q., Deng, S.M.  
Multivariable control-oriented modeling of a direct expansion (DX) air 
conditioning (A/C) system. International Journal of Refrigeration, Vol. 31, 
pp. 841-849 (2008) 
 

164 Qi and Deng 2009 
Qi, Q., Deng, S.M.  
Multivariable control of indoor air temperature and humidity in a direct 
expansion (DX) air conditioning (A/C) system. Building Environment, Vol. 
44, pp. 1659-1667 (2009) 
 

165 Qi et al. 2010 
Qi, Q., Deng, S.M., Xu X.G. and Chan, M.Y. 
Improving degree of superheat control in a direct expansion (DX) air 
conditioning (A/C) system. International Journal of Refrigeration, Vol. 33, 
No. 1, pp. 125-134 (2010) 
 

166 Qureshi and Tassou 1996 
Qureshi, T. Q. and Tassou, S. A.  
Variable-speed capacity control in refrigeration systems. Applied Thermal 
Engineering, Vol. 16, No. 2, pp. 103-113(1996) 
 

167 Rigola et al. 2003 
Rigola, J., Perez-Segarra, C.D. and Oliva, A.,  
Modeling and numerical simulation of the thermal and fluid dynamic behavior 
of hermetic reciprocating compressors. Part 2: experimental investigation, 
HVAC & R Research, Vol. 9, No. 2, pp. 237-249 (2003) 
 

  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V23-4TX790R-1&_user=107833&_coverDate=08%2F31%2F2009&_alid=1726236942&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5691&_sort=r&_st=13&_docanchor=&view=c&_ct=6&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=8c4f292af51b92693ce5e20c063af1c5&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V23-4TX790R-1&_user=107833&_coverDate=08%2F31%2F2009&_alid=1726236942&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5691&_sort=r&_st=13&_docanchor=&view=c&_ct=6&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=8c4f292af51b92693ce5e20c063af1c5&searchtype=a�
http://www.sciencedirect.com/science/article/pii/S0140700709002060�
http://www.sciencedirect.com/science/article/pii/S0140700709002060�


 
 

187 

168 Rock and Wu 1998 
Rock, B.A. and Wu, C.T.  
Performance of fixed, air-side economizer, and neural network 
demand-controlled ventilation in CAV systems. ASHRAE Transactions, Vol. 
104, No. 2, pp. 234-245, ASHRAE, Atlanta, GA, USA (1998) 
 

169 Rode et al. 2004 
Rode, C., Mendes, N. and Grau, K. 
Evaluation of moisture buffer effects by performing whole-building 
simulations. ASHRAE Transactions, Vol. 110, No. 2, pp. 783-794 (2004) 
 

170 Rosenblatt 1958 
Rosenblatt, F. 
The perceptron: a probabilistic model for information storage and organization 
in the brain, Psychological Review, Vol. 65, No. 6, pp. 386-408 (1958) 
 

171 Rosiek and Batlles 2010 
Rosiek, S. and Batlles, F.J.  
Modelling a solar-assisted air-conditioning system installed in CIESOL 
building using an artificial neural network. Renewable Energy, Vol. 35, pp. 
2894-2901 (2010) 
 

172 Rosiek and Batlles 2011 
Rosiek, S. and Batlles, F.J. 
Performance study of solar-assisted air-conditioning system provided with 
storage tanks using artificial neural networks. International Journal of 
Refrigeration, Vol. 34, No. 6, pp. 1446-1454 (2011) 
 

173 Rumelhart et al. 1986 
Rumelhart, D.E., Hinton, G.E. and Williams, R.J. 
Learning representations of back-propagation errors. Nature (London), Vol. 
323, pp. 533-536 (1986) 
 

174 Saerens and Soquet 1989 
Saerens, M. and Soquet, A.  
A neural controller. In: Proceeding of the first international conference of 
artificial neural networks, London, pp. 211-215 (1989) 
 

175 Sahin 2011 
Sahin, A.S. 
Performance analysis of single-stage refrigeration system with internal heat 
exchanger using neural network and neuro-fuzzy. Renewable Energy, Vol. 36, 
No. 10, pp. 2747-2752 (2011) 
 

176 Saidur et al. 2006 
Saidur, R., Masjuki, H.H. and Jamiludhin, M.Y. 
A new method to investigate the energy performance of a household 
refrigerator-freezer. International Energy Journal, Vol. 7, pp. 9-15 (2006) 
 

http://www.sciencedirect.com/science/article/pii/S0140700711001095?_alid=1873385549&_rdoc=7&_fmt=high&_origin=search&_docanchor=&_ct=4838&_zone=rslt_list_item&md5=b78c30748f3c99ebaf08d6f45d73b970�
http://www.sciencedirect.com/science/article/pii/S0140700711001095?_alid=1873385549&_rdoc=7&_fmt=high&_origin=search&_docanchor=&_ct=4838&_zone=rslt_list_item&md5=b78c30748f3c99ebaf08d6f45d73b970�
http://www.sciencedirect.com/science/article/pii/S0960148111001236?_alid=1873222014&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=3105&_zone=rslt_list_item&md5=2547a91d49b639dc5d25902b279a7d3a�
http://www.sciencedirect.com/science/article/pii/S0960148111001236?_alid=1873222014&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=3105&_zone=rslt_list_item&md5=2547a91d49b639dc5d25902b279a7d3a�


 
 

188 

177 Sainlez and Heyen 2011 
Sainlez, M. and Heyen, G. 
Recurrent neural network prediction of steam production in a Kraft recovery 
boiler. Computer Aided Chemical Engineering, Vol. 29, pp. 1784-1788 (2011) 
 

178 Sanaye et al. 2011 
Sanaye, S., Dehghandokht, M., Beigi, H.M. and Bahrami, S. 
Modeling of rotary vane compressor applying artificial neural network. 
International Journal of Refrigeration, Vol. 34, pp. 764-772 (2011) 
 

179 Scalabrin and Bianco 1994 
Scalabrin, G. and Bianco, G. 
Experimental and thermodynamic analysis of a variable-speed open 
reciprocating refrigeration compressor. International Journal of Refrigeration, 
Vol. 17, No. 1, pp. 68-75 (1994) 

 
180 Schalkoff 1997 

Schalkoff, R.J. 
Artificial neural networks. USA: McGraw-Hill; 1997 
 

181 Sen and Yang 2000 
Sen, M. and Yang, K.T. 
Applications of artificial neural networks and genetic algorithms in thermal 
engineering. Kreith F. (Ed.), The CRC Handbook of Thermal Engineering, 
CRC Press, Boca Raton, FL, 2000 
 

182 Sencan 2006 
Sencan, A. 
Artificial intelligent methods for thermodynamic evaluation of ammonia-water 
refrigeration systems. Energy Conversion and Management, Vol. 47, pp. 
3319-3332 (2006) 
 

183 Sencan 2007 
Sencan, A. 
Performance of ammonia-water refrigeration systems using artificial neural 
networks. Renewable Energy, Vol. 32, pp. 314-328 (2007) 
 

184 Sencan et al. 2011 
Sencan, A., Kose, I.I. and Selbas, R.  
Prediction of thermophysical properties of mixed refrigerants using artificial 
neural network. Energy Conversion and Management, Vol. 52, pp. 958-974 
(2011) 
 

185 Seshaiah et al. 2007 
Seshaiah, N., Ghosh, S.K., Sahoo, R.K. and Sarangi, S.K. 
Mathematical modeling of the working cycle of oil injected rotary twin screw 
compressor. Applied Thermal Engineering, Vol. 27, No. 1, pp. 145-155 (2007) 
 

  

http://www.sciencedirect.com/science/article/pii/B9780444542984501355?_alid=1868618463&_rdoc=4&_fmt=high&_origin=search&_docanchor=&_ct=2147&_zone=rslt_list_item&md5=dc4ebdac1aea0c7c6494c728eff51cd3�
http://www.sciencedirect.com/science/article/pii/B9780444542984501355?_alid=1868618463&_rdoc=4&_fmt=high&_origin=search&_docanchor=&_ct=2147&_zone=rslt_list_item&md5=dc4ebdac1aea0c7c6494c728eff51cd3�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V4R-51P9WYR-2&_user=107833&_coverDate=12%2F13%2F2010&_alid=1608656948&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5765&_st=13&_docanchor=&view=c&_ct=18&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=c33c03815b71180f09ecbd6bca9c645b&searchtype=a�
http://www.google.com.hk/search?hl=zh-CN&tbo=p&tbm=bks&q=inauthor:%22Robert+J.+Schalkoff%22�
http://www.sciencedirect.com/science/article/pii/S1359431106001670?_alid=1861475859&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=718&_zone=rslt_list_item&md5=847ab0f0176946fea4aa5acedd660bbd�
http://www.sciencedirect.com/science/article/pii/S1359431106001670?_alid=1861475859&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=718&_zone=rslt_list_item&md5=847ab0f0176946fea4aa5acedd660bbd�


 
 

189 

186 Shakun 1992 
Shakun, W. 
The causes and control of mold and mildew in hot and humid climates. 
ASHRAE Transactions, Vol. 98, No. 1, pp. 1282-1292 (1992) 
 

187 Shaw and Luxton 1988  
Shaw, A. and Luxton, R.E. 
A comprehensive method of improving part-load air-conditioning 
performance. ASHRAE Transactions, Vol. 94, Part. 1, pp. 442-457 (1988) 
 

188 Sherman 1999 
Sherman, M. 
Indoor air quality for residential buildings. ASHRAE Journal, Vol. 41, No. 5, 
pp. 26-30 (1999) 
 

189 Shirey and Henderson 2004 
Shirey, D.B.Ⅲ. and Henderson, H.I.Jr.   
Dehumidification at part load. ASHRAE Journal, Vol. 46, No. 3, pp. 42-47 
(2004) 
 

190 Silver et al. 1990 
Silver, S.C., Fine, P.J. and Rose, F. 
Performance monitoring of DX rooftop cooling equipment. Energy 
Engineering: Journal of the Association of Energy, Vol. 87, No. 5, pp. 32-41 
(1990) 
 

191 Sofuoglu 2008 
Sofuoglu, S.C. 
Application of artificial neural networks to predict prevalence of 
building-related symptoms in office buildings. Building and Environment, Vol. 
43, No. 6, pp. 1121-1126 (2008) 
 

192 Soyguder 2011 
Soyguder, S.  
Intelligent system based on wavelet decomposition and neural network for 
predicting of fan speed for energy saving in HVAC system. Energy and 
Buildings, Vol. 43, pp. 814-822 (2011) 
 

193 Sozen and Akcayol 2004 
Sozen, A. and Akcayol, M.A. 
Modelling (using artificial neural networks) the performance parameters of a 
solar-driven ejector-absorption cycle. Applied Energy, Vol. 79, pp. 309-325 
(2004) 
 

194 Sozen et al. 2004a 
Sozen, A., Arcaklioglu, E. and Ozalp, M. 
Performance analysis of ejector absorption heat pump using ozone safe fluid 
couple through artificial neural networks. Energy Conversion and 
Management, Vol. 45, pp. 2233-2253 (2004) 
 

http://www.sciencedirect.com/science/article/pii/S0360132307000972�
http://www.sciencedirect.com/science/article/pii/S0360132307000972�


 
 

190 

195 Sozen et al. 2004b 
Sozen, A., Ozalp, M. and Arcaklioglu, E.  
Investigation of thermodynamic properties of refrigerant/absorbent couples 
using artificial neural networks. Chemical Engineering and Processing, Vol. 
43, pp. 1253-1264 (2004) 
 

196 Sozen et al. 2005 
Sozen, A., Arcaklioglu, E. and Ozalp, M.  
Formulation based on artificial neural network of thermodynamic properties of 
ozone friendly refrigerant/absorbent couples. Applied Thermal Engineering, 
Vol. 25, pp. 1808-1820 (2005) 
 

197 Sozen et al. 2007 
Sozen, A., Ozalp, M. and Arcaklioglu, E. 
Calculation for the thermodynamic properties of an alternative refrigerant 
(R508b) using artificial neural network. Applied Thermal Engineering, Vol. 
27, No. 2-3, pp. 551-559 (2007)  
 

198 Sozen et al. 2009 
Sozen, A., Arcaklioglu, E., Menlik, T. and Ozalp, M. 
Determination of thermodynamic properties of an alternative refrigerant 
(R407c) using artificial neural network. Expert Systems with Applications, Vol. 
36, No. 3, pp. 4346-4356 (2009)  
 

199 Sozen et al. 2010 
Sozen, A., Arcaklioglu, E. and Menlik, T. 
Derivation of empirical equations for thermodynamic properties of a ozone 
safe refrigerant (R404a) using artificial neural network. Expert Systems with 
Applications, Vol. 37, No. 2, pp. 1158-1168 (2010)  
 

200 Sterling et al. 1985 
Sterling, E.M., Arundel, A. and Sterling, T.D. 
Criteria for human exposure to humidity in occupied buildings. ASHRAE 
Transactions, Vol. 91, No. Part. 1B, pp. 611-622 (1985) 
 

201 Straube 2002 
Straube, J.F. 
Moisture in buildings. ASHRAE Journal, Vol. 44, No. 1, pp. 15-19 (2002) 
 

202 Swider et al. 2001 
Swider, D.J., Browne, M.W., Bansal, P.K. and Kecman, V.  
Modeling of vapour compression liquid chillers with neural networks. Applied 
Thermal Engineering, Vol. 21, pp. 311-329 (2001) 
 

203 Tian et al. 2008 
Tian, J., Feng, Q. and Zhu, R.Q. 
Analysis and experimental study of MIMO control in refrigeration system. 
Energy Conversion and Management, Vol. 49, No. 5, pp. 933-939 (2008) 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1Y-4KJV3C3-1&_user=107833&_coverDate=02%2F28%2F2007&_alid=1609182328&_rdoc=2&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5687&_sort=r&_st=4&_docanchor=&_ct=47&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=cd5417a52bde8d015c7defa7ce77c78d&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1Y-4KJV3C3-1&_user=107833&_coverDate=02%2F28%2F2007&_alid=1609182328&_rdoc=2&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5687&_sort=r&_st=4&_docanchor=&_ct=47&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=cd5417a52bde8d015c7defa7ce77c78d&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-4SH0XV7-5&_user=107833&_coverDate=04%2F30%2F2009&_alid=1609182328&_rdoc=3&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=4&_docanchor=&_ct=47&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=534ac17a8de0a499826e5fac7e8cb602&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-4SH0XV7-5&_user=107833&_coverDate=04%2F30%2F2009&_alid=1609182328&_rdoc=3&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=4&_docanchor=&_ct=47&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=534ac17a8de0a499826e5fac7e8cb602&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-4WM7508-D&_user=107833&_coverDate=03%2F31%2F2010&_alid=1609182328&_rdoc=15&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=4&_docanchor=&_ct=47&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=2f0314023849589fb7691354184f066c&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-4WM7508-D&_user=107833&_coverDate=03%2F31%2F2010&_alid=1609182328&_rdoc=15&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=4&_docanchor=&_ct=47&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=2f0314023849589fb7691354184f066c&searchtype=a�
http://www.sciencedirect.com/science/article/pii/S0196890407003743�


 
 

191 

204 Tirnovan et al. 2008 
Tirnovan, R., Giurgea, S., Miraoui, A., Cirrincione, M. 
Surrogate modelling of compressor characteristics for fuel-cell applications. 
Applied Energy, Vol. 85, No. 5, pp. 394-403 (2008) 
 

205 Toftum and Fanger 1999 
Toftum, J. and Fanger, P.O. 
Air Humidity Requirements for Human Comfort. ASHRAE Transactions, Vol. 
105, No. 2, pp. 641-647 (1999) 
 

206 Vargas and Parise 1995 
Vargas, J.V.C. and Paris, J.A.R.   
Simulation in transient regime of a heat pump with closed-looped and on-off 
control. International Journal of Refrigeration, Vol. 18, No. 4, pp. 25-243 
(1995) 
 

207 Varshney and Panigrahi 2005 
Varshney, K. and Panigrahi, P.K. 
Artificial neural network control of a heat exchanger in a closed flow air 
circuit, Applied Soft Computing, Vol. 5, No. 4, pp. 441-465 (2005) 
 

208 Vasickaninova et al. 2011 
Vasickaninova, A., Bakosova, M., Meszaros, A. and Klemes, J.J. 
Neural network predictive control of a heat exchanger, Applied Thermal 
Engineering, Vol. 31, No. 13, pp. 2094-2100 (2011) 
 

209 Vins and Vacek 2009 
Vins, V. and Vacek, V. 
Mass flow rate correlation for two-phase flow of R218 through a capillary 
tube. Applied Thermal Engineering, Vol. 29, pp. 2816-2823 (2009) 
 

210 Wang and Bao 2000 
Wang, D. and Bao, P.  
Enhancing the estimation of plant Jacobian for adaptive neural inverse control. 
Neurocomputing, Vol. 34, pp. 99-115 (2000) 
 

211 Wang and Touber 1991 
Wang, H. and Touber, S.  
Distributed and non-steady-state modeling of an air cooler. International 
Journal of Refrigeration, Vol.14, pp. 98-111(1991) 
 

212 Wang et al. 2006 
Wang, Q.W., Xie, G.N., Zeng, M. and Luo, L.Q. 
Prediction of heat transfer rates for shell-and-tube heat exchangers by artificial 
neural network approach. Journal of Thermal Science, Vol. 15, pp. 257-262 
(2006)  
 

  

http://www.sciencedirect.com/science/article/pii/S0306261907001158?_alid=1868354213&_rdoc=4&_fmt=high&_origin=search&_docanchor=&_ct=251&_zone=rslt_list_item&md5=2b862326ffacac4a2fbc04cde5fd3028�
http://s.wanfangdata.com.cn/Paper.aspx?f=detail&q=%e4%bd%9c%e8%80%85%3a%22Jorn+Toftum%22+DBID%3aNSTL_QK�
http://s.wanfangdata.com.cn/Paper.aspx?f=detail&q=%e4%bd%9c%e8%80%85%3a%22P.+O.+Fanger%22+DBID%3aNSTL_QK�
http://www.mendeley.com/research/air-humidity-requirements-human-comfort/�
http://www.sciencedirect.com/science/article/pii/S156849460400105X�
http://www.sciencedirect.com/science/article/pii/S156849460400105X�
http://www.sciencedirect.com/science/article/pii/S1359431111000354�


 
 

192 

213 Winandy et al. 2002 
Winandy, E., Saavedra, O.C. and Lebrun, J.  
Simplified modeling of an open-type reciprocating compressor, International 
Journal of Thermal Science, Vol. 41, pp.183-192(2002). 
 

214 Widrow 1962 
Widrow, B. 
Generalization and information storage in networks of adeline neurons. in 
M.C. Yovitz, G.T. Jacobi, and G.D. Goldstein, eds., Self-Organizing Systems, 
pp. 435-461, Washington DC: Spartan Books (1962) 
 

215 Widrow and Hoff 1960 
Widrow, B. and Hoff, M.E. 
Adaptive switching circuits. Proc. IRE WESCON Conference, New York, pp. 
96-104 (1960) 
 

216 Wong et al. 2010 
Wong, S.L., Wan, K.K.W. and Lam, T.N.T. 
Artificial neural networks for energy analysis of office buildings with 
daylighting. Applied Energy, Vol. 87, No. 2, pp. 551-557 (2010) 
 

217 Wu et al. 2011 
Wu, J.S., Zhang, G.Q., Zhang, Q., Zhou, J. and Wang, Y. 
Artificial neural network analysis of the performance characteristics of a 
reversibly used cooling tower under cross flow conditions for heat pump 
heating system in winter. Energy and Buildings, Vol. 43, No. 7, pp. 
1685-1693 (2011) 
 

218 Xia et al. 2008 
Xia, L., Chan, M.Y. and Deng, S.M.  
Development of a method for calculating steady-state equipment sensible heat 
ratio of direct expansion air conditioning units. Applied Energy, Vol. 85, No. 
12, pp. 1198-1207 (2008) 
 

219 Xie et al. 2007 
Xie, G.N., Wang, Q.W., Zeng, M. and Luo, L.Q. 
Heat transfer analysis for shell-and-tube heat exchangers with experimental 
data by artificial neural networks approach. Applied Thermal Engineering, 
Vol. 27, pp. 1096-1104 (2007)  
 

220 Xu et al. 2008 
Xu, X.G., Deng, S.M. and Chan, M.Y.  
A new control algorithm for direct expansion air conditioning systems for 
improved indoor humidity control and energy efficiency. Energy Conversion 
and Management, Vol. 49, No. 4, pp. 578-586 (2008) 
 

221 Yang 2008 
Yang, K.T. 
Artificial Neural Networks (ANNs): A New Paradigm for Thermal Science 
and Engineering. Journal of Heat Transfer, Vol. 130, pp. 1-18 (2008) 

http://www.sciencedirect.com/science/article/pii/S0306261909002669�
http://www.sciencedirect.com/science/article/pii/S0306261909002669�
http://www.sciencedirect.com/science/article/pii/S0378778811000867?_alid=1873226482&_rdoc=10&_fmt=high&_origin=search&_docanchor=&_ct=4712&_zone=rslt_list_item&md5=6a1f1ff3b6817fc1df2706f32e913b0e�
http://www.sciencedirect.com/science/article/pii/S0378778811000867?_alid=1873226482&_rdoc=10&_fmt=high&_origin=search&_docanchor=&_ct=4712&_zone=rslt_list_item&md5=6a1f1ff3b6817fc1df2706f32e913b0e�
http://www.sciencedirect.com/science/article/pii/S0378778811000867?_alid=1873226482&_rdoc=10&_fmt=high&_origin=search&_docanchor=&_ct=4712&_zone=rslt_list_item&md5=6a1f1ff3b6817fc1df2706f32e913b0e�
http://www.sciencedirect.com/science/article/pii/S0306261908000640�
http://www.sciencedirect.com/science/article/pii/S0306261908000640�
http://www.sciencedirect.com/science/article/pii/S0196890407002749�
http://www.sciencedirect.com/science/article/pii/S0196890407002749�


 
 

193 

 

222 Yang and Lee 1991 
Yang, K. H and Lee, M. L. 
Analysis of an inverter-driven air-conditioning system and its application in a 
hot and humid area. International Journal of Energy Research, Vol. 15, No. 5, 
pp. 357-365 (1991) 

 
223 Yang and Sen 2000 

Yang, K.T. and Sen, M. 
Artificial neural network-based dynamic modeling thermal systems and their 
control. Wang B.X. (Ed.), Heat Transfer Science and Technology, Higher 
Education Press, Beijing (2000) 
 

224 Yang et al. 2003 
Yang, I.H., Yeo, M.S. and Kim, K.W. 
Application of artificial neural network to predict the optimal start time for 
heating system in building. Energy Conversion and Management, Vol. 44, No. 
17, pp. 2791-2809 (2003)  
 

225 Yang et al. 2005 
Yang, B.S., Hwang, W.W., Kim, D.J. and Tan, A.C. 
Condition classification of small reciprocating compressor for refrigerators 
using artificial neural networks and support vector machines. Mechanical 
Systems and Signal Processing, Vol. 19, No. 2, pp. 371-390 (2005) 
 

226 Yang et al. 2009 
Yang, L., Zhao, L.X., Zhang, C.L. and Gu, B. 
Loss-efficiency model of single and variable-speed compressors using neural 
networks. International Journal of Refrigeration, Vol. 32, No. 6, pp. 
1423-1432 (2009) 
 

227 Yao et al. 2006 
Yao, Y., Lian, Z., Hou, Z. and Liu, W.  
An innovative air conditioning load forecasting model based on RBF neural 
network and combined residual error correction. International Journal of 
Refrigeration, Vol. 29, pp. 528-538 (2006) 
 

228 Yaqub and Zubair 2001 
Yaqub, M. and Zubair, S.M.  
Capacity Control for Refrigeration and Air-Conditioning Systems: A 
Comparative Study. Transactions of the ASME, Vol. 123, pp. 92-99 (2001) 
 

229 Yau 2007 
Yau, Y.H.  
Application of a heat pipe heat exchanger to dehumidification enhancement in 
a HVAC system for tropical climates--a baseline performance characteristics 
study. International Journal of Thermal Sciences, Vol. 46, pp. 164-171(2007) 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2P-484V7TV-5&_user=107833&_coverDate=10%2F31%2F2003&_alid=1609124667&_rdoc=16&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5708&_sort=r&_st=13&_docanchor=&view=c&_ct=18104&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=4ad39d21ccada3ded2136719306bb5c8&searchtype=a�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2P-484V7TV-5&_user=107833&_coverDate=10%2F31%2F2003&_alid=1609124667&_rdoc=16&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5708&_sort=r&_st=13&_docanchor=&view=c&_ct=18104&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=4ad39d21ccada3ded2136719306bb5c8&searchtype=a�
http://www.sciencedirect.com/science/article/pii/S0888327004000858?_alid=1868346994&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=173&_zone=rslt_list_item&md5=16caffaa034d0cce7ccd098240afd59a�
http://www.sciencedirect.com/science/article/pii/S0888327004000858?_alid=1868346994&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=173&_zone=rslt_list_item&md5=16caffaa034d0cce7ccd098240afd59a�
http://www.sciencedirect.com/science/article/pii/S0140700709000802?_alid=1868346994&_rdoc=2&_fmt=high&_origin=search&_docanchor=&_ct=173&_zone=rslt_list_item&md5=8836fdaaaac1a989629809c8c45d0873�
http://www.sciencedirect.com/science/article/pii/S0140700709000802?_alid=1868346994&_rdoc=2&_fmt=high&_origin=search&_docanchor=&_ct=173&_zone=rslt_list_item&md5=8836fdaaaac1a989629809c8c45d0873�


 
 

194 

230 Yigit and Ertunc 2006 
Yigit, K.S. and Ertunc, H.M.  
Prediction of the air temperature and humidity at the outlet of a cooling coil 
using neural networks. International Communications in Heat and Mass 
Transfer, Vol. 33, pp. 898-907 (2006) 
 

231 Youn et al. 2002 
Youn, C.P., Kim, Y., and Cho, H. 
Thermodynamic analysis on the performance of a variable speed scroll 
compressor with refrigerant injection. International Journal of Refrigeration, 
Vol. 25, No. 8, pp.1072-1082 (2002) 

 
232 Zadeh 1994 

Zadeh, L.A. 
Fuzzy Logic, Neural Networks, and Soft Computing. Communications of the 
ACM, Vol. 37, No. 3, pp. 77-84 (1994) 
 

233 Zadeh 1996 
Zadeh, L.A. 
The roles of soft computing and fuzzy logic in the conception, design and 
deployment of intelligent systems. IIZUKA’96, in: Proceedings of the Fourth 
International Conference on Soft Computing, pp. 3-4 (1996) 
 

234 Zavala-Rio and Santiesteban-Cos 2007 
Zavala-Rio, A. and Santiesteban-Cos, R. 
Reliable compartmental models for double-pipe heat exchangers: An 
analytical study. Applied Mathematical Modelling, Vol. 31, No. 9, pp. 
1739-1752 (2007) 
 

235 Zhang 2002 
Zhang, G.Q. 
China HVACR Annual Business Volume Ⅱ. Chinese Construction Industry 
Press, pp. 44-45 (2002) 
 

236 Zhang 2005 
Zhang, C.L. 
Generalized correlation of refrigerant mass flow rate through adiabatic 
capillary tubes using artificial neural network. International Journal of 
Refrigeration, Vol. 28, pp. 506-514 (2005) 
 

237 Zhang and Zhang 2006 
Zhang, W.J. and Zhang, C.L. 
A generalized moving-boundary model for transient simulation of 
dry-expansion evaporators under larger disturbances. International Journal of 
Refrigeration, Vol. 29, pp. 1119-1127 (2006) 
 

238 Zhao and Zhang 2010 
Zhao, L.X. and Zhang, C.L. 
Fin-and tube condenser performance evaluation using neural networks. 
International Journal of Refrigeration, Vol. 33, pp. 625-634 (2010) 

http://www.sciencedirect.com/science/article/pii/S0307904X06001399?_alid=1861647589&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=2308&_zone=rslt_list_item&md5=ebb9a7063e410a389aff33564e8d2a4e�
http://www.sciencedirect.com/science/article/pii/S0307904X06001399?_alid=1861647589&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=2308&_zone=rslt_list_item&md5=ebb9a7063e410a389aff33564e8d2a4e�


 
 

195 

 

239 Zhao et al. 2007 
Zhao, L.X., Zhang, C.L., Shao, L.L. and Yang, L. 
A generalized neural network model of refrigerant mass flow through 
adiabatic capillary tubes and short tube orifices. ASME Journal of Fluids 
Engineering, Vol. 129, pp. 1559-1564 (2007) 
 

 
 
 
 


	01 HARD COVER
	02 Title page
	03 Certificate of Originality
	Certificate of Originality

	04 Abstract
	05 Publications Arising from the Thesis
	06 Acknowlegement
	Acknowledgements

	07 CONTENT&Figures&Tables&Nomenclature&Abbreviations
	Table of Contents
	Page
	Certificate of Originality
	Abstract
	Publications arising from the thesis
	Table of Contents
	Nomenclature
	Subscripts
	List of Abbreviations
	Introduction
	Chapter 1
	Literature Review
	Chapter 2
	Appendix A
	References
	List of Figures
	Page
	Chapter 2
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Page

	Chapter 4
	Chapter 5

	08 Chapter 1 Introduction
	Chapter 1
	Introduction

	09 Chapter 2 LR
	Chapter 2
	Literature Review
	2.1 Introduction
	2.2 Fundamental issues for indoor humidity control
	2.2.1 Sources of indoor moisture
	2.2.2 Effects of indoor humidity level on human thermal comfort

	2.3 Modeling of DX A/C systems
	2.4 Control of DX A/C systems
	2.4.1.2 Humidity control
	2.4.2 Indoor thermal environment control using variable speed DX A/C systems

	2.5 The application of ANN to the modeling and control of HVAC systems
	2.5.1 Fundamental concepts of ANN
	2.5.2 Brief history of ANN related research work
	2.5.3 Applications of ANN to modeling and control of HVAC systems
	2.5.3.1 ANN-based modeling for HVAC systems
	2.5.3.2 ANN-based control for HVAC systems
	2.6 The rationale of choosing ANN in the modeling and control of DX A/C systems

	2.7 Conclusions


	10 Chapter 3 Proposition
	Chapter 3
	Proposition
	3.1 Background
	3.2 Project title
	3.3 Aims and objectives
	3.4 Research methodologies


	11 Chapter 4 Experimental system
	Chapter 4
	Description of the Experimental rig of DX A/C System
	4.1 Introduction
	4.2 Detailed description of the experimental system and its major components
	4.2.1 The DX refrigeration plant
	4.2.2 The air-distribution sub-system

	4.3 Computerized instrumentation and DAS
	4.3.1 Sensors/measuring devices for temperatures, pressures and flow rates
	4.3.2 The DAS

	4.4 LabVIEW L&C supervisory program
	4.5 Conventional control loops in the experimental system
	4.6 Conclusions


	12 Chapter 5 Steady state
	Chapter 5
	ANN-based Steady-state Modeling of the Experimental DX A/C System
	5.1 Introduction
	5.2 Experimental conditions
	5.3 Training algorithm in developing the ANN-based steady-state model
	5.4 Development of the ANN-based steady-state model
	5.5 Validation of the ANN-based steady-state model developed
	5.6 Conclusions


	13 Chapter 6 Dynamic
	Chapter 6
	ANN-based Dynamic Modeling of the Experimental DX A/C System
	6.1 Introduction
	6.2 Experimental conditions
	6.3 Development of the ANN-based dynamic model
	6.4 Validation of the ANN-based dynamic model developed
	6.5 Conclusions



	14 Chapter 7 ANN-based controller
	Chapter 7
	ANN-based Controller for the Experimental DX A/C System for Simultaneous Control of Indoor Air Temperature and Humidity
	7.1 Introduction
	7.2 ANN training algorithm used to design the ANN-based controller
	7.3 Development of the ANN-based controller
	7.4 Controllability tests
	7.5 Conclusions



	15 Chapter 8 On-line adaptive controller
	Chapter 8
	ANN-based On-line Adaptive Controller for the Experimental DX A/C System for Simultaneous Control of Indoor Air Temperature and Humidity


	16 Chapter 9 Conclusions
	Chapter 9
	Conclusions and Future Work


	17 Appendix A
	18 References
	References




