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Abstract

The purpose of this thesis is to propose some new types of subgradient methods, in-

vestigate convergence properties of the proposed algorithms, and illustrate the high

efficiency and wide applicability by numerical experiments for both convex and quasi-

convex optimization problems.

In the part of convex programming, we propose a primal subgradient method and

a dual subgradient method, based on the gradient sampling technique, to solve a non-

differentiable convex (constrained) optimization problem. The motivation comes from

the fact that the gradient is cheap to compute comparing with the subgradient in

many applications. The proposed algorithms consist of perturbing the projection vec-

tor to the (relative) interior of the effective domain of the objective function or the

constrain set, approaching the subgradient via the convex combination of (relative)

gradients at random nearby points, and proceeding the projected subgradient itera-

tion. Using the constant/vanishing sampling radius and the constant/divergent stepsize

rules, we demonstrate convergence to the (approximate) optimal value with probability

1. Numerical results demonstrate that the gradient sampling technique improves the

convergence behavior of subgradient methods, and that our proposed algorithms are

comparable with some existing subgradient algorithms.

In the part of quasi-convex programming, motivated by practical and theoretical

reasons, we consider a generic inexact subgradient method (we call it the approximate

quasi-subgradient method) to solve a nondifferentiable quasi-convex constrained opti-

mization problem. The inexact terms stem from computation errors and noise, which

come from practical considerations and applications. Assuming that the computational

errors and noise are deterministic and bounded, we study the effect of the inexact terms

on subgradient methods when the constraint set is compact or when the objective func-
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tion satisfies a generalized weak sharp minima condition. In both cases, using the

constant/diminishing stepsize rule, we describe convergence results in both objective

values and iterates, where the tolerances are given explicitly in terms of errors and noise.

We also consider the finite convergence to the approximate optimal value and efficiency

estimates of iterates. Several numerical experiments illustrate that the approximate

quasi-subgradient method is comparable with some existing algorithm and suitable for

large-scale problems. Furthermore, motivated by distributed optimization problems in

networks, where both the data at each node and transmitted data are required to reach

some quantization level, we propose and investigate a quantized approximate quasi-

subgradient method, by using a quantization operator after proceeding the subgradient

iteration along the approximate quasi-subgradient.
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4.3 A function satisfies the Hölder condition but is not Lipschitz continuous. 94

4.4 Illustration of the second proof of Lemma 4.3.5: y ∈ Xα(x), ∀x ∈ B(x̄, θ). 104

4.5 The convergence behavior of the AQSGM. . . . . . . . . . . . . . . . . 126

xvi



Chapter 1

Preview and Introduction

Because of the wide and growing use of optimization in science, engineering, economics,

and industry, much attention has been given to the development of optimization algo-

rithms. Knowledge of the properties and efficiency of these algorithms leads to a better

understanding of their performance on various applications, and points the trend to

future research on improving and extending optimization algorithms. Methods for min-

imizing functions with discontinuous gradients are gaining importance, and experts in

computational methods of mathematical programming tend to agree that significant

progress in the development of algorithms for minimizing nonsmooth functions is the

key to the construction of efficient and powerful techniques for solving large-scale prob-

lems.

In nondifferentiable convex optimization, the two well-known and extensively stud-

ied methods are subgradient methods (see e.g. [52, 57, 58, 80, 82, 94, 106]) and bundle

methods (see e.g. [46, 59, 55, 56, 69, 75, 101, 102]). The former relies on the knowledge

of the objective function’s subgradient and is not a descent method. The later uses both

function values and subgradients, and usually enforces a descent property. Since the

subgradient method has an extremely simple formula and requires very low storage, it

appears a popular and powerful method on large-scale optimization problems. Hence,

in this thesis, we will study the subgradient methods and investigate their properties

and applications.
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1.1 Review on Subgradient Methods for Convex Pro-

gramming

Consider the following convex optimization problem

min f(x)

s.t. x ∈ X,
(1.1.1)

where f : Rn → R is a convex function, and X is a closed and convex set. Problems of

type (1.1.1) are encountered in many application areas: for instance, in economics (see

[90]), mechanics (see [79]), network design (see [15]), image process (see [96]), control

theory (see [32]), optimal shape design (see [45]), data mining (see [22]), and machine

learning (see [53]).

Subgradient methods are popular and practical techniques used to solve problem

(1.1.1). Subgradient methods originated with the works of Polyak [92] and Ermoliev

[38] and they were later developed by Shor [106] in the 1970s. In the last 40 years, many

properties of subgradient methods have been discovered, generalizations and extensions

have been proposed, and many applications have been found (see e.g. [16, 17, 46, 57,

58, 80, 82, 94, 106]).

When the objective function in (1.1.1) is continuously differentiable, the well-known

gradient method was originally proposed by Goldstein [41] and Levitin and Polyak [70]

in 1960s, and was then deeply developed and widely applied by many researchers (see

e.g. [14, 16, 18, 21, 74, 89, 108]), which is described as follows.

Gradient method (GM)

Select a stepsize sequence {vk}, start with an initial point x0 ∈ X, and generate a

sequence {xk} ∈ X via the iteration

xk+1 = PX(xk − vk∇f(xk)),

where PX denotes the projection operator onto X.

The main idea of the subgradient method is to generalize the gradient method by re-

placing the gradient with an arbitrary subgradient. Therefore, the classical subgradient

method for problem (1.1.1) is described as follows.
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Classical subgradient method (SGM)

Select a stepsize sequence {vk}, start with an initial point x0 ∈ X, and generate a

sequence {xk} ∈ X via the iteration

xk+1 = PX(xk − vkgk), (1.1.2)

where PX denotes the projection operator onto X and gk ∈ ∂f(xk) is a subgradient

of f at xk. The subdifferential of a convex function f at xk is defined by (see e.g.

[17, 97, 98])

∂f(xk) := {g : f(x) ≥ f(xk) + ⟨g, x− xk⟩, ∀x ∈ Rn}. (1.1.3)

An essential property of subgradient methods, which plays a key role in the conver-

gence analysis, is the following basic inequality

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2vk(f(xk)− f(x)) + v2k∥gk∥2,∀x ∈ X, (1.1.4)

which follows from the subgradient iteration (1.1.2) and the definition of convex subd-

ifferential (1.1.3). Using the basic inequality (1.1.4), convergence properties of subgra-

dient methods, in both objective values and iterates, were widely studied in [16, 17, 46,

57, 58, 94, 106].

When f is differentiable at xk, ∂f(xk) = {∇f(xk)} and the only choice for gk is

∇f(xk), and thus the subgradient method reduces to the gradient method. Further-

more, in practice, it is usually considered the case when only an ϵ-subgradient can be

obtained (ϵ > 0), that is, gk is allowed to only satisfy the relaxed subgradient inequality,

i.e.,

f(x) ≥ f(xk) + ⟨gk, x− xk⟩ − ϵ, ∀x ∈ Rn,

and then the subgradient method turns into an approximate subgradient method (also

called the ϵ-subgradient method). Benefitted from practical reasons, approximate sub-

gradient methods were widely studied in [2, 36, 46, 61, 68, 106]. Kiwiel [61] proposed

a unified convergence framework for approximate subgradient methods; he presented

convergence in both objective values and iterates, and gave efficiency estimates, using

both the diminishing and nonvanishing stepsize rules. Larsson et al. [68] proposed

and analyzed conditional ϵ-subgradient methods for solving convex constrained opti-

mization problems and convex-concave saddle-point problems. In order to improve
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conditional subgradient methods, D’Antonios and Frangioni [36] combined the deflec-

tion and the conditional subgradient technique into one iteration, and investigated the

unified convergence analysis for the deflected conditional ϵ-subgradient method, using

both the dynamic and diminishing stepsize rules. Applying the dual approach, Mijan-

gos [78] studied the approximate dual subgradient method to solve constrained network

flow problems. Furthermore, Auslender and Teboulle [2] proposed and developed an

interior ϵ-subgradient method for convex constrained optimization problems over poly-

hedral sets, in particular over Rn
+, via replacing the Euclidean distance function by a

logarithmic-quadratic distance-like function.

Besides errors in ϵ-subgradient, the issue of noise on subgradient methods has been

studied for convex constrained optimization problems. Regardless of the random noise,

Polyak [93, 94] first studied the effect of noise, which is deterministic and bounded,

on subgradient methods for convex programming. Polyak presented the convergence

property of the subgradient method with noise, using both the diminishing and Shor-

type (i.e., vk = αvk, where α > 0 and 0 < v < 1) stepsize rules. A surprising conclusion

is that the sequence, generated by the subgradient method with noise, exactly converges

to the optimal solution when the objective function has a unique sharp minimum and

satisfies a linear growth property, even if the noise is nonvanishing.

It is well-known that, in subgradient methods, the stepsize is a critical parameter

that influences the convergence property and efficiency. The following types of stepsize

rules are usually used and studied in the subgradient method literature (see e.g. [11,

61, 94, 106]).

(a) Constant stepsize rule. The stepsize vk is fixed to a positive scalar v.

(b) Diminishing stepsize rule. The stepsize vk satisfies

vk > 0, lim
k→∞

vk = 0,
∞∑
k=0

vk = +∞. (1.1.5)

(c) Divergent stepsize rule. The stepsize vk satisfies

vk > 0,
∞∑
i=1

v2k < +∞,

∞∑
i=1

vk = +∞. (1.1.6)
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(d) Dynamic stepsize rule. The stepsize vk is given by

vk = γ
f(xk)− f∗

∥gk∥2
, 0 < γ < 2, (1.1.7)

where f∗ denotes the optimal value of problem (1.1.1).

The constant stepsize rule is usually utilized if we are interested in quantifying the

progress and efficiency estimates of the algorithm per iteration. The diminishing and

divergent stepsize rules are used if the interest is in establishing the convergence prop-

erty (in both objective values and iterates) of the algorithm as the number of iterations

k tends to infinity. The dynamic stepsize rule, introduced by Polyak [92], is only con-

sidered when the optimal value is estimated and usually shows a better performance

than other types of stepsize rules.

Nowadays, the subgradient method still remains an important tool for large-scale

nonsmooth and stochastic optimization problems, due to its simple formulation and

low storage requirement. In particular, due to special structures of applications, several

types of subgradient methods have been proposed to efficiently solve convex optimiza-

tion problems.

The incremental subgradient method

Consider the convex constrained optimization problem, where the objective function is

a summation of a number of component convex functions, i.e.,

min f(x) =
m∑
i=1

fi(x)

s.t. x ∈ X.
(1.1.8)

This type of optimization problems arises in the Lagrangian dual of the coupling

constraints of large-scale separable optimization problems (see [14, 66]) or distributed

optimization problems in large-scale networks (see [54, 95]). The iteration of the clas-

sical subgradient method for solving problem (1.1.8) is

xk+1 = PX
(
xk − vk

m∑
i=1

gi,k
)
,
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where gi,k is a subgradient of fi at xk.

An incremental subgradient method was proposed to solve this type of optimization

problems (see [61, 80, 88, 105]). The motivation of the incremental approach originates

from the incremental gradient method (the backpropagation method) for differentiable

unconstrained optimization problems (see [14, 74, 76, 108]). The main idea of the

incremental subgradient method is to perform each iteration as a cycle of m subiter-

ations, which are the subgradient iterations for each component function, acting on

previous subiterates. Therefore, the main improvement of the incremental subgradient

method over the classical subgradient method is that at each iteration, x is changed

incrementally through a sequence of m subgradient subiterations, and the incremental

subgradient method for problem (1.1.8) is described as follows.

Incremental subgradient method (IncSGM)

Select a stepsize sequence {vk}, start with an initial point x0 ∈ X, and generate a

sequence {xk} ∈ X via the following iteration. Each iteration starts with

ψ0,k = xk,

through m steps

ψi,k = PX
(
ψi−1,k − vkgi,k

)
, gi,k ∈ ∂fi(ψi−1,k), i = 1, . . . ,m,

and finally arrives at

xk+1 = ψm,k.

The convergence analysis of the incremental subgradient method is to view it as

an approximate subgradient method and inherits that of the approximate subgradient

method. Nedić and Bertsekas [80] established convergence in objective values of the

incremental subgradient method, using the constant, diminishing and dynamic step-

size rules. Furthermore, Kiwiel [61] exhibited a unified convergence framework for the

incremental subgradient method, including convergence in both objective values and

iterates, using various stepsize rules.

The incremental subgradient method inherits the convergence behavior and powerful

numerical performance from the incremental gradient method (see [14, 18]). It was

illustrated in [14, 76, 108] that the incremental gradient method is highly efficient in
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solving large-scale differentiable least squares problems arising in the training of neural

networks, while numerical results in [80] indicated that the incremental subgradient

method rapidly reaches the area near an optimal solution.

The dual subgradient method

Consider the primal problem, which is the following convex constrained optimization

problem

min f(x)

s.t. g(x) ≤ 0

x ∈ X,

(1.1.9)

where f : Rn → R is a convex function, g = (g1, · · · , gm)T with each gi : Rn → R
being convex, and X is a closed and convex set. By relaxing the inequality constraints

g(x) ≤ 0, the dual problem of (1.1.9) arising from the Lagrangian relaxation is given

by

max q(u)

s.t. u ∈ Rm
+ ,

(1.1.10)

where q is the Lagrangian dual function defined by

q(u) = inf
x∈X

{f(x) + ⟨u, g(x)⟩}.

The dual subgradient method was proposed in Shor [106] and widely studied in

[67, 78, 82, 104], that is to utilize the classical subgradient method to solve the dual

problem (1.1.10), and is described as follows.

Dual subgradient method (DSGM)

Select a stepsize sequence {vk}, start with an initial point u0 ∈ Rm
+ , and generate

sequences {xk} ∈ X and {uk} ∈ Rm
+ via the iteration

uk+1 = PRm
+
(uk + vkgk),

where gk is a subgradient of the dual function q at uk given by

gk = g(xk), xk ∈ argmin
x∈X

{f(x) + ⟨uk, g(x)⟩}. (1.1.11)
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The dual subgradient method attracts much attention due to its highly efficient

performance for special structured optimization problems, which has a favorable dual

structure (for instance, the dual function q is simple to evaluate), such as convex re-

source allocation problems in large-scale networks (see [67, 78, 82]). This is the motiva-

tion of the dual subgradient method. The convergence to a (approximate) dual optimal

value of the dual subgradient method were studied in [67, 78, 104], while the progress

was quantified per iteration by using the constant stepsize rule in [82].

One drawback of the dual subgradient method is that the subgradient scheme does

not directly provide an optimal solution of the primal problem, that is, every cluster

point of {xk} generated in (1.1.11) is not the primal optimal solution, even not a

feasible point. To conquer this obstacle, Nemirovskii and Yudin [84] proposed using an

averaging scheme to recover the primal optimal solution, i.e., the averaged vector x̂k

was defined by

x̂k =
1

k

k−1∑
i=0

xi, for all k ≥ 1.

The averaging scheme was widely developed in many works (see e.g. [67, 104, 82]).

Sherali and Choi [104] applied an averaging scheme to recover the primal solution

of linear optimization problems and extended the results to more general averaging

schemes, i.e.,

x̃k =
k∑
i=0

wi,kxi, for all k ≥ 1,

where
k∑
i=0

wi,k = 1 and wi,k ≥ 0 for i = 1, · · · , k. Nedić and Ozdaglar [82] utilized the

averaging scheme to provide estimates on the primal feasibility and primal optimality

of the averaged vector per iteration. Furthermore, Larsson et al. [67] showed that the

limit of the averaged subgradient sequence satisfied the first-order optimality condition,

while the original generated sequence did not satisfy the optimality condition.

The primal-dual subgradient method

Consider the following saddle point problem

min
x

max
µ

L(x, µ)

s.t. x ∈ X,µ ∈M,
(1.1.12)
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where X is a closed and convex set in Rn, M is a closed and convex set in Rm, and

L : X ×M → R is a convex-concave function. A solution of the saddle point problem

(1.1.12) is a vector pair (x∗, µ∗) ∈ X ×M such that

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗), ∀x ∈ X,∀µ ∈M.

Such a vector pair (x∗, µ∗) is also referred to as the saddle point of the function L over

the set X ×M .

Saddle point problems arise in many application areas, for instance, networking

applications, constrained optimization duality, zero-sum games, and general equilibrium

theory. Combining the primal and dual processes together, the primal-dual subgradient

method generates a sequence of primal and dual iterates converging to a saddle point of

problem (1.1.12) (see [68, 83, 87, 103]). Therefore, similar to the classical subgradient

method, the primal-dual subgradient method for (1.1.12) is presented as follows.

Primal-dual subgradient method (PDSGM)

Select a stepsize sequence {vk}, start with initial points x0 ∈ X, µ0 ∈M , and generate

sequences {xk} ∈ X and {µk} ∈M via the iteration

xk+1 = PX(xk − vkLx(xk, µk)),

µk+1 = PM(xk + vkLµ(xk, µk)),

where Lx(xk, µk) and Lµ(xk, µk) denote arbitrary subgradients of L at (xk, µk) with

respect to x and µ.

Using both the diminishing and divergence stepsize rules, Larsson et al. [68], and

Nesterov [87] studied convergence properties of primal-dual subgradient methods along

with the averaging scheme. It is worth mentioning that, by using the primal-dual gap,

the primal-dual subgradient method possesses a natural stopping criterion, which is

unavailable in classical subgradient methods or dual subgradient methods.

Sen and Sherali [103] proposed a class of primal-dual subgradient methods that

employed Lagrangian dual functions along with suitable penalty functions. The dual

iterates were generated by the Lagrangian dual function, while the primal iterates were

produced via the penalty function. Using several classical types of penalty functions,

the sequence of primal and dual iterates converges to a saddle point of problem (1.1.12).
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Moreover, in [103], a geometric convergence rate was established under some additional

assumption.

In contrast to previous works focusing on convergence of the iterates to a saddle

point, Nedić and Ozdaglar [83] utilized the constant stepsize rule and estimated the

convergence rate of the generated sequence per iteration. In particular, under the

bounded subgradient assumption, it was illustrated in [83, Proposition 3.1] that the

function value L(x̂k, µ̂k) at averaged vector (x̂k, µ̂k) converges to the optimal value at

rate 1/k within error level vM2, explicitly given in terms of the stepsize v and the

bound on subgradients M . Furthermore, it was also illustrated in [83] that the primal-

dual subgradient method can be applied in a wide range of problems, where the dual

subgradient methods cannot be used (lack any special structure), because the primal-

dual subgradient method can avoid difficulties associated with computing subgradients

of the dual function.

Interior subgradient method

It is well-known that the classical subgradient method (1.1.2) can be rewritten as (see

[2, 5, 12])

xk+1 = argmin
x∈X

{
vk⟨x, gk⟩+

1

2
∥x− xk∥2

}
. (1.1.13)

To solve the nondifferentiable convex constrained optimization problems, all these

methods mentioned above are projected subgradient methods based on the Euclidean

projection operator, which produces iterates that hit the boundary of the constraint

set. Unfortunately, there are two main disadvantages of the Euclidean projection oper-

ator. One is that the Euclidean projection operator destroys the nice descent property

and often leads to a zig-zagging phenomenon resulting in slow convergence rate. More-

over, the Euclidean projection operator itself may be computationally expensive, if the

constraint set is not simple.

In order to deal with these difficulties, Auslender and Teboulle [2, 5] designed the

interior subgradient method for convex optimization problems. The main idea of the

interior subgradient method is to replace the Euclidean distance in (1.1.13) with a non-

Euclidean distance-like function that can automatically eliminate the constraints and
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also produce interior iterates. Therefore, the interior subgradient method is described

as follows.

Interior subgradient method (IntSGM)

Select a stepsize sequence {vk}, start with an initial point x0 ∈ X, and generate a

sequence {xk} ∈ X via the iteration

xk+1 = argmin
x∈X

{
vk⟨x, gk⟩+ d(x, xk)

}
, (1.1.14)

where d : X × X → R+ is a proximal distance satisfying some mild properties (e.g.

lower semi-continuity and strong convexity).

Using both the diminishing and dynamic stepsize rules, Auslender and Teboulle

[2, 5] established convergence properties and provided efficiency estimates of interior

subgradient methods under mild assumptions. Moreover, indicated in [5], when the

proximal distance d is chosen as the logarithmic-quadratic distance-like function (see [1,

3, 4, 6]) or the Kullback-Liebler relative entropy distance (see [12, 13]), the subproblem

(1.1.14), presented below, can be solved by an analytical formula and the resulting

algorithms are particularly attractive.

(i) The logarithmic-quadratic distance-like function, introduced by Auslender and

Teboulle in [6], is given by

d(x, y) =
n∑
i=1

y2i ω(xi/yi)

with

ω(t) =
σ

2
(t− 1)2 + µ(t− log t− 1),

where σ ≥ µ > 0. It is easy to verify that d(·, y) is a proper, nonnegative, lower

semi-continuous and convex function, and that d(x, y) = 0 if and only if x = y.

Solving (1.1.14), one can obtain the following explicit formulae:

(xk+1)i = (xk)i(ω
∗)′(−vk

(gk)i
(xk)i

), i = 1, · · · , n,

where (x)i denotes the i-th element of vector x, ω∗ is the conjugate dual function

of ω and thus

(ω∗)′(t) =
1

2σ

{
(σ − µ) + t+

√
((σ − µ) + t)2 + 4µσ

}
.
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(ii) The Kullback-Liebler relative entropy distance is given by

d(x, y) =
n∑
i=1

xi log
xi
yi

+ yi − xi, ∀x ∈ Rn
+,∀y ∈ Rn

++.

Hence, (1.1.14) can be easily solved analytically to yields the following explicit

formulae:

(xk+1)i =
(xk)i exp(−vk(gk)i)
n∑
j=1

(xk)j exp(−vk(gk)j)
, i = 1, · · · , n.

When the Kullback-Liebler relative entropy distance is utilized in (1.1.14), the re-

sulting interior subgradient method is actually a mirror descent algorithm. The mirror

descent algorithm was introduced by Nemirovsky and Yudin [85] and could efficiently

solve convex optimization problems over the unit simplex, with millions of variables

(see [13]). The mirror descent algorithm is described as follows.

Mirror descent algorithm (MDA)

Select a stepsize sequence {vk}, start with initial points y0 ∈ dom∇ψ∗, x0 = ∇ψ∗(y0),

and generate a sequence {xk} ∈ X via the iteration

yk+1 = ∇ψ(xk)− vkgk,

xk+1 = ∇ψ∗(yk+1)

= ∇ψ∗(∇ψ(xk)− vk).

(1.1.15)

where ψ : X → R is a given continuously differentiable and strongly convex function

on intX and ψ∗ is its conjugate dual function.

The mirror descent algorithm (1.1.15) looks hard to understand and thus not even

to mention how to improve. Beck and Teboulle [12] viewed the mirror descent algorithm

as an interior subgradient method, where a Bregman-like distance is used in (1.1.14).

This relationship linked these two methods and gave another aspect to understand each

method.

The Bregman-like distance generated by a differentiable function ψ is defined by

Bψ : X ×X → R, given by

Bψ(x, y) = ψ(x)− ψ(y)− ⟨x− y,∇ψ(y)⟩.

The interior subgradient method with the Bregman-like distance is given by

xk+1 = argmin
x∈X

{
vk⟨x, gk⟩+Bψ(x, xk)

}
. (1.1.16)

12



It was illustrated in [12, Proposition 3.2] that the mirror descent algorithm (1.1.15)

corresponds exactly to the interior subgradient method (1.1.16). In particular, when

ψ(x) = 1
2
∥x∥2, Bψ(x, y) = 1

2
∥x − y∥2 and thus this method reduced to the classical

subgradient method.

Subgradient method based on a merit function approach

Ruszczyński [100] developed a subgradient method with averaging for convex optimiza-

tion problem (1.1.1) based on a merit function approach. In this algorithm, the author

used the averaging scheme on both the subgradient approach and the successive di-

rections’ generation, and then combined these two averages into one iterative process.

Therefore, the subgradient algorithm based on a merit function approach designed in

[100] is presented as follows.

Subgradient method based on a merit function approach (MFA-SGM)

Select a scalar a > 0 and a stepsize sequence {vk} ∈ (0,min(1, 1/a)], start with initial

points x0 ∈ X, z0 ∈ ∂f(x0), and generate sequences {xk} ∈ X and {zk} ∈ Rn via the

iteration
yk = PX(xk − zk),

xk+1 = xk + vk(yk − xk),

zk+1 = zk + avk(gk+1 − zk),

(1.1.17)

with gk+1 ∈ ∂f(xk+1).

Using the technique based on a merit function approach in the space of (x, z), it

was demonstrated in [100, Theorem 2.1] that the sequence of the iterates converges to

an optimal solution and the sequence of the corresponding subgradients converges to a

subgradient at that solution.

1.2 Review on Nonconvex Programming

Convex optimization plays a central role in many branches of applied mathematics

and application areas. However, for many problems encountered in economics and

engineering, the notion of convexity is too restrictive. By far, many real-life problems
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cannot be described by convex mathematical models, while nonconvex functions provide

a much more accurate representation of realities. During the past decades, a significant

increase of research activities in nonconvex programming has been witnessed (see e.g.

[9, 44, 49, 51, 72, 99]).

This limitation of convex mathematical models leads to various extensions of convex

functions, which still maintain some nice properties of convex functions for character-

izing optimality conditions and designing algorithms. This leads to the introduction of

several generalizations of the convex function. These generalized convex functions are

frequently used in various fields such as economics, engineering, management science,

probability theory and various applied sciences (see e.g. [9, 35, 44]).

Quasi-convexity

A well-known and useful property of a convex function is that its sublevel sets are all

convex. Many nonconvex functions also have this property and this property leads to

the introduction of quasi-convex functions.

A function f : Rn → R is said to be quasi-convex if for all x, y ∈ Rn and α ∈ [0, 1]

the following inequality holds

f((1− α)x+ αy) ≤ max{f(x), f(y)},

or equivalently its sublevel sets

{x ∈ Rn : f(x) ≤ α}, ∀α ∈ R

are convex.

The quasi-convex function is widely used in many application areas, such as eco-

nomics, engineering, and geometric optimization (see e.g. [9, 35, 44, 109]). Due to the

wide applications of quasi-convex programming, many properties and characteristics of

quasi-convex functions have been studied. Greenberg and Pierskalla [42] studied the

useful properties of quasi-convex functions and characterized the relationship between

convex functions and quasi-convex functions. Crouzeix [33] gave a sufficient and neces-

sary condition for a quasi-convex function to be convex. Luenberger [73] presented the

existence of a multiplier and duality theory of quasi-convex programming.
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Another interesting issue is the subdifferential of the quasi-convex function. Sev-

eral notions of subdifferentials of quasi-convex functions have been proposed, such as

Clarke-Rockafellar subdifferential, Dini subdifferential, Fréchet subdifferential (see [7]

and references therein). The earliest one is the Greenberg-Pierskalla subdifferential pro-

posed in [43]. The Greenberg-Pierskalla subdifferential is defined by the quasi-conjugate

function based on the quasi-convexity structure. Since the conjugate relates to the sup-

port of epigraph, the quasi-conjugate relates to the support of sublevel set. Thus, the

Greenberg-Pierskalla subdifferential, defined by quasi-conjugate functions, is actually

supports of its sublevel set, i.e.,

∂∗f(x) = {g : ⟨g, y − x⟩ < 0,∀y ∈ Sf (x)}, (1.2.1)

where Sf (x) is the strict sublevel set, given by Sf (x) = {y ∈ Rn : f(y) < f(x)}.

To meet much more applications, Mart́ınez-Legaz and Sach [77] introduced the Q-

subdifferential. Given that the Q-subdifferential is a subset of the Greenberg-Pierskalla

subdifferential, it shares with all other quasi-convex subdifferentials the property that

its nonemptiness on the domain of a lower semi-continuous function implies the quasi-

convexity of the function, which justifies the claim that it is a quasi-convex subdiffer-

ential.

Another similar notion is the normal cone to its strict sublevel set, defined by

Nf (x) = {x∗ : ⟨x∗, y − x⟩ ≤ 0,∀y ∈ Sf (x)}. (1.2.2)

Borde and Crouzeix [20] described two important properties of the normal cone to the

strict sublevel set of quasi-convex functions. The first is that Nf (x) is an C-upper

semi-continuous point-to-set mapping when f is a quasi-convex function. The second

is that Nf (x) can be expressed as the convex hull of the limits of {Nf (xn)}, where {xn}
is a sequence converging to x and contained in a dense set. Aussel and Daniilidis [8]

slightly modified the definition of normal operator and studied the corresponding quasi-

monotonicity, which actually characterizes the class of continuous and quasi-convex

functions.
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Subgradient method for quasi-convex programming

To meet much boarder class of problems, Kiwiel [60] proposed a quasi-subgradient

method for quasi-convex optimization problems. The main idea of the quasi-subgradient

method is similar to that of subgradient methods: proceed the subgradient iteration

along the direction of the Greenberg-Pierskalla subgradient (see (1.2.1)) or normal vec-

tor (see (1.2.2)), and then project the resulting point onto the constraint set. Thus, the

quasi-subgradient method is described as follows.

Quasi-subgradient method (QSGM)

Select a stepsize sequence {vk}, start with an initial point x0 ∈ X, and generate a

sequence {xk} ∈ X via the iteration

xk+1 = PX(xk − vkĝk), ĝk = gk/∥gk∥,

where gk ∈ ∂∗f(xk) (or Nf (xk)) is a quasi-subgradient of f at xk.

Assuming the objective function is quasi-convex and upper semi-continuous, and us-

ing the diminishing stepsize rule, Kiwiel presented the convergence property in objective

values in [60, Theorem 1]. In addition, under the assumption that the optimal solution

set has a nonempty interior, the author also arrived at the finite convergence property.

Furthermore, a surprising result is the convergence property in iterates described in [60,

Theorem 4].

Modified dual subgradient method via sharp augmented La-

grangian

Subgradient method for nonconvex programming was also studied by virtue of the sharp

augmented Lagrangian (see [23, 24, 40]). The following nondifferentiable and nonconvex

optimization problem with equality constraints is considered, i.e.,

min f(x)

s.t. g(x) = 0

x ∈ X,

(1.2.3)

where f : Rn → R and g : Rn → Rm are continuous functions, and X is a closed and

convex set. The sharp augmented Lagrangian L : Rn × Rm × R+ → R associated with
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problem (1.2.3) is defined by

L(x, u, c) = f(x)− ⟨u, g(x)⟩+ c∥g(x)∥,

and the dual function q : Rm × R+ → R is defined by (see [98, 99])

q(u, c) = min
x∈X

f(x)− ⟨u, g(x)⟩+ c∥g(x)∥.

Hence, the dual problem arising from the sharp augmented Lagrangian relaxation is

given by

max q(u, c)

s.t. (u, c) ∈ Rm
+ × R+.

(1.2.4)

Gasimov [40] and Burachik et al. [23, 24] proposed and developed an exact/inexact

modified dual subgradient method via sharp augmented Lagrangian to solve noncon-

vex optimization problem (1.2.3). The modified dual subgradient method via sharp

augmented Lagrangian is to utilize the classical subgradient method to solve the dual

problem (1.2.4), and is described as follows.

Modified dual subgradient method via sharp augmented Lagrangian (SAL-

MDSGM)

Select stepsize sequences {vk} and {sk}, start with an initial point (u0, c0) ∈ Rm×R+,

and generate sequences {xk} ∈ X, {uk} ∈ Rm and {ck} ∈ R+ via the iteration

uk+1 = uk − vkf(xk),

ck+1 = ck + (vk + sk)∥f(xk)∥,

where the vector (f(xk), ∥f(xk)∥) is a subgradient of q at (uk, ck), and xk is defined by

xk ∈ argmin
x∈X

{f(x) + c∥g(x)∥ − ⟨u, g(x)⟩}.

The authors not only established primal and dual convergence results, but also

generated a strictly increasing sequence of dual function values (see [40, Theorem 7]

and [24, Proposition 3.1]). This monotone property is impossible in most versions of

subgradient methods.
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1.3 Notations and Preliminaries

The notation used in the thesis is standard. In particular, we consider the n-dimensional

Euclidean space Rn. We view a vector as a column vector, and denote by ⟨x, y⟩ the

inner product of two vectors x, y ∈ Rn. We use ∥x∥ to denote the standard Euclidean

norm, ∥x∥ =
√

⟨x, x⟩. For a set Z in Rn, we denote the closure (resp. interior, convex

hull, convex cone hull, affine space, relative interior, relative boundary) of Z by clZ

(resp. intZ, convZ, coneZ, affZ, riZ, rbdZ). For each x ∈ Rn and δ ∈ R+, B(x, δ)

denotes the closed ball of radius δ centered at x, and specially B denotes the unit ball

at the origin.

For a point x and a set Z, the Euclidean distance dist(x, Z) of x from Z and the

projection PZ(x) of x onto Z are respectively defined by

dist(x, Z) := inf
z∈Z

∥x− z∥,

and

PZ(x) := {z ∈ Z : ∥x− z∥ = dist(x, Z)} = argmin
z∈Z

∥x− z∥.

The well-known nonexpansive property of the projection operator is described as fol-

lows.

Lemma 1.3.1 ([17, Proposition 2.2.1]) Let C be a nonempty, closed and convex

subset of Rn. Then the projection operator PC : Rn → C is continuous and nonexpan-

sive, i.e.,

∥PC(x)− PC(y)∥ ≤ ∥x− y∥,∀x, y ∈ C.

The normal cone to a convex set Z at x is defined by

NZ(x) := {ν ∈ Rn : ⟨ν, z − x⟩ ≤ 0,∀z ∈ Z}.

The indicator function δZ of Z is defined by

δZ(x) :=

{
0, x ∈ Z,

+∞, otherwise.

18



For a function f : Rn → R̄ := R ∪ {+∞}, the effective domain of f is defined by

domf := {x ∈ Rn : f(x) < +∞}.

We call f a proper function if f(x) < +∞ for at least one x ∈ Rn, or in other words, if

domf is a nonempty set.

f is said to be convex if for all x, y ∈ Rn and α ∈ [0, 1] the following inequality holds

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y).

f is said to be quasi-convex if for all x, y ∈ Rn and α ∈ [0, 1] the following inequality

holds

f((1− α)x+ αy) ≤ max{f(x), f(y)}.

f is said to be upper semi-continuous on Rn if f(x) = lim
y→x

f(y) for all x ∈ Rn. It is

said to be lower semi-continuous on Rn if f(x) = lim
y→x

f(y) for all x ∈ Rn. It is said to

be continuous on Rn if f is both lower semi-continuous and upper semi-continuous on

Rn. In particular, f is said to be Lipschitz continuous of rank L over X if

|f(x)− f(y)| ≤ L∥x− y∥,∀x, y ∈ X.

Given ϵ ≥ 0, the subdifferential and ϵ-subdifferential of a convex function f at

x ∈ Rn are defined respectively by

∂f(x) := {g : f(y) ≥ f(x) + ⟨g, y − x⟩, ∀y ∈ Rn}, (1.3.1)

and

∂ϵf(x) := {g : f(y) ≥ f(x) + ⟨g, y − x⟩ − ϵ, ∀y ∈ Rn}. (1.3.2)

For each α ∈ R, we denote the (strict) sublevel sets and (strict) superlevel sets of f

respectively by

Sf,α := {x ∈ Rn : f(x) < α}, Sf (x) := Sf,f(x),

S̄f,α := {x ∈ Rn : f(x) ≤ α}, S̄f (x) := S̄f,f(x),

Uf,α := {x ∈ Rn : f(x) > α}, Uf (x) := Uf,f(x),

Ūf,α := {x ∈ Rn : f(x) ≥ α}, Ūf (x) := Ūf,f(x).

(1.3.3)
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It is well-known that f is quasi-convex if and only if Sf,α
(
S̄f,α

)
is convex for all α ∈ R

(see [44, Lemma 1.27]), and that f is upper semi-continuous on Rn if and only if Sf,α

is open for all α ∈ R (see [47, Proposition 1.2.2]).

Given a square matrix A, if for some non-zero vector x and number λ, there holds

Ax = λx,

then the vector x is called an eigenvector of A and the number λ is called the eigenvalue

corresponding to that vector. More general, for a matrix A ∈ Rm×n, the singular values

of A are defined by the square roots of the eigenvalues of the matrix A∗A, where A∗

denotes the adjoint matrix of A.

The singular value decomposition (in short, SVD) is a factorization of a matrix, with

many useful applications in signal processing and statistics. Formally, the singular value

decomposition of a matrix A ∈ Rm×n is a factorization of the form (see [48, Theorem

7.3.5])

A = UΣV T ,

where U is an m×r unitary matrix, Σ is an r×r diagonal matrix of its singular values,

and V T (the transpose of V ) is an n× r unitary matrix.

The nuclear norm of the matrix A is defined by the sum of its singular values, i.e.,

∥A∥∗ =
r∑
i=1

Σii,

where Σii denotes the i-th diagonal element of Σ. The nuclear norm is a convex function

and its subdifferential at Z is given by (see e.g. [71, 96]),

∂∥Z∥∗ = {UV T +W : W and Z have orthogonal row/column spaces and ∥W∥ ≤ 1}.

When Z has no zero singular value (Z is full rank), the nuclear norm is differentiable

and ∇∥Z∥∗ = UV T .

We end this section by recalling the following well-known Separation Theorems and

two well-known properties on real sequences, which are repeatedly used in this thesis,

so as to make the thesis more self-contained.
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Lemma 1.3.2 ([17, Proposition 2.4.5]) Let C be a nonempty and convex subset of

Rn and let x be a vector in Rn. Then x /∈ riC if and only if there exists a hyperplane

that properly separates C and x, that is, there exists a vector a ̸= 0 such that

sup
y∈C

⟨a, y⟩ ≤ ⟨a, x⟩ and inf
y∈C

⟨a, y⟩ < ⟨a, x⟩.

Lemma 1.3.3 ([17, Proposition 2.4.5]) Let C1 and C2 be two nonempty and convex

subsets of Rn. Then riC1∩riC2 = ∅ if and only if there exists a hyperplane that properly

separates C1 and C2, that is, there exists a vector a ̸= 0 such that

sup
x1∈C1

⟨a, x1⟩ ≤ inf
x2∈C2

⟨a, x2⟩ and inf
x1∈C1

⟨a, x1⟩ < sup
x2∈C2

⟨a, x2⟩.

Lemma 1.3.4 ([97, Theorem 11.7]) Let C1 and C2 be two nonempty and convex

subsets of Rn, in additional, C2 is a cone. If riC1 ∩ riC2 = ∅, then there exists a

hyperplane that properly separates C1 and C2 and passes through the origin, that is,

there exists a vector a ̸= 0 such that

⟨a, x1⟩ < 0,∀x1 ∈ riC1, and ⟨a, x2⟩ ≥ 0,∀x2 ∈ clC2.

Lemma 1.3.5 ([61, Lemma 2.1]) Suppose {tk} ⊂ R+ and tsumk :=
k∑
i=1

ti → ∞ as

k → ∞. Given a scalar sequence {ak} and let the averaged sequence âk :=
( k∑
i=1

tiai
)
/tsumk

for all k ∈ N. Then lim
k→∞

ak ≤ lim
k→∞

âk ≤ lim
k→∞

âk ≤ lim
k→∞

ak. In particular, if lim
k→∞

ak = a,

then lim
k→∞

âk = a.

Lemma 1.3.6 ([94, Lemma 2.2.2]) Suppose {ak}, {bk}, and {ck} are positive scalar

sequences satisfying

ak+1 ≤ ak(1 + bk) + ck, ∀k ∈ N,

and ∞∑
k=1

bk <∞,
∞∑
k=1

ck <∞.

Then {ak} converges to some a ∈ R+.
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1.4 Motivation and Outline of the Thesis

Due to its simple formula and low storage requirement, the subgradient method appears

a popular and powerful method on large-scale nonsmooth and stochastic optimization

problems.

In Part I, we propose highly efficient subgradient algorithms, based on gradient

sampling technique, and analyze their convergence properties for convex programming.

Recently, a gradient sampling technique is popular in designing algorithms for opti-

mization problems (see [29, 30, 31, 62, 63]). The gradient sampling technique was first

presented by Burke et al. [30] and then used to design the steepest descent gradient

sampling algorithm to minimize a locally Lipschitz function in [31].

In Chapter 2, we consider the nondifferentiable convex optimization problem with an

extended real-valued objective function. Motivated by the philosophy, given by Burke et

al. in [29, 30, 31], that the gradient is cheap to compute comparing with the subgradient,

we incorporate the gradient sampling technique into the subgradient method, that is

to construct the subgradient information via random sampling of relative gradients at

nearby points. We demonstrate that the sequence, generated by the proposed algorithm,

converges to the optimal value within some explicit tolerance when the constant stepsize

rule is used, and converges to an optimal solution by using the divergent stepsize rule,

with probability 1. In particular, in Section 2.5, we focus on the convex constrained

optimization problem, and the algorithm reduces to a simple version, which skips the

perturbation step and uses the gradient information instead of the relative gradient. In

Section 2.6, we illustrate our proposed algorithms respectively on three examples. Our

numerical experiments show that the gradient sampling procedure does not cost much

time in the whole algorithm and our proposed algorithms always converge faster than

existing subgradient algorithms. Especially for the low-rank recovery problem (i.e., the

nuclear norm minimization problem), our algorithm only costs one third or half of time

that is required for the classical subgradient method. This result might draw attention

of the researchers to the application of subgradient methods on the low-rank recovery

problem.

In Chapter 3, motivated by the convex constrained problem which has a favorable
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dual structure, we incorporate the gradient sampling technique into the dual subgradi-

ent method and investigate its convergence propertiy. We indicate that this algorithm

in the dual approach converges to the dual optimal value with probability 1. We also use

an averaging scheme to recover approximate primal optimal solutions, in the presence

of the Slater condition.

In Part II, we present inexact subgradient algorithms and investigate their properties

for quasi-convex programming.

Motivated by practical reasons, the inexact algorithms is widely applied in solving

optimization problems. The ϵ-subgradient method was widely studied in [2, 36, 46,

61, 68, 106]. Besides errors in ϵ-subgradient, Polyak [93, 94] proposed and studied the

effect of noise, which is deterministic and bounded, on subgradient methods for convex

programming.

In Chapter 4, we focus on an inexact subgradient algorithm for the quasi-convex

optimization problem. Inspired by the idea in [61, 81, 93, 94] and references therein,

we investigate the effect of inexact terms, including both computation errors and noise,

on the inexact subgradient algorithm. We establish convergence properties in both

objective values and iterates with the tolerance given explicitly in terms of the errors and

noise. We also give finite convergence to approximate optimal solutions and efficiency

estimates of iterates. Our investigation is divided into two cases: (i) X is compact

and (ii) X is noncompact. When X is compact, we assume the Hölder condition of

order p > 0, instead of the upper semi-continuity of the objective function used in

[60]. When X is noncompact, we need to assume an additional generalized weak sharp

minima condition. This condition extends the concept of weak sharp minima in [81]

and is presented by using dist(x,X∗), the distance of the decision variable x to X∗. We

also illustrate the proposed algorithm on several numerical experiments in Section 4.6.

Our numerical experiments show that the exact quasi-subgradient method arrives at

a better solution in fewer iterates comparing with level function method proposed by

Xu [109] on small-scale problems, and that inexact subgradient method is suitable for

large-scale problems. We also indicate the sensitivity of inexact terms, which coincides

with the convergence analysis proposed in Section 4.3.

In Chapter 5, motivated by the distributed optimization problem in networks, where
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the data at each node and transmitted data required to reach some quantized level,

we present the quantized approximate quasi-subgradient method, and investigate the

influence of inexact items and convergence behavior.

Based on Chapter 2 and Chapter 4 respectively, the following papers have been

written and submitted:

1. Y. H. Hu, C. K. Sim and X. Q. Yang. Subgradient methods for convex optimiza-

tion problems based on gradient sampling. Submitted.

2. Y. H. Hu, X. Q. Yang and C. K. Sim. Inexact subgradient methods for quasi-

convex optimization problems. Submitted.
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Part I

Subgradient Methods for Convex

Programming
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Chapter 2

Subgradient Method Based on

Gradient Sampling Technique

2.1 Introduction

Subgradient methods are popular and practical techniques used to minimize the nondif-

ferentiable convex function. Subgradient methods originated with the works of Polyak

[92] and Ermoliev [38] and were later developed by Shor [106] in the 1970s. In the

last 40 years, many properties of subgradient methods have been discovered, general-

izations and extensions have been proposed, and many applications have been found

(see [16, 17, 46, 57, 58, 80, 82, 94, 106] and references therein). Nowadays, the subgra-

dient method still remains an important tool for large-scale nonsmooth optimization

and stochastic optimization problems, due to its simple formulation and low storage

requirement.

Recently, a gradient sampling technique is popular in designing algorithms for op-

timization problems (see [29, 30, 31, 62, 63]). The gradient sampling (in short, GS)

technique was first presented by Burke et al. [30] and used to solve typical matrix op-

timization problems. Extending their previous works, in [31], the authors designed the

steepest descent GS algorithm to minimize a locally Lipschitz function. The steepest de-

scent GS algorithm calculates the gradients of the objective function at random nearby

points, uses this information to construct an approximate steepest descent direction,
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and then produces the next iterate via an Armijo line search along this direction. They

also demonstrated that the sequence generated by the steepest descent GS algorithm

converges to a Clarke approximate stationary point when a fixed sampling radius was

utilized (see [31, Theorem 3.4]), and converges to a stationary point when the sampling

radius is reduced dynamically (see [31, Theorem 3.8]), with probability 1.

In this chapter, we consider the nondifferentiable convex optimization problem with

an extended real-valued objective function, i.e.,

min
x∈Rn

f(x), (2.1.1)

where f : Rn → R̄ is a proper, lower semi-continuous and convex function. Let X =

domf , which may have an empty interior, and denote the optimal solution set and the

optimal value of (2.1.1) respectively by X∗ and f∗. Due to the lower semi-continuity

and convexity of f , X is a closed and convex set.

Motivated by the philosophy, given by Burke et al. in [29, 31], that the gradient is

cheap to compute comparing with the subgradient, we incorporate the GS technique

into the subgradient method for problem (2.1.1). The main idea of the subgradient

method based on the GS technique (in short, GS-SGM) is to construct a subgradient

via a convex combination of relative gradients at random sampling points in a certain

neighborhood of the current iterate. The use of relative gradients is due to the fact

that the domain X dose not necessarily have a nonempty interior. Thus, the random

sampling procedure cannot be carried out on the whole space Rn, but on the affine space

spanned by the domain X. Furthermore, as each iterate is not necessarily a relative

interior point of the domain (might be on the relative boundary of X), we perform

a perturbation step to shift the iterate to a relative interior point to ensure that the

random sampling procedure can be carried out.

In the convergence analysis, we demonstrate that the sequence generated by the

GS-SGM converges to the optimal value within the tolerance vM2/2, where M is an

upper bound on relative gradients of the objective function, when a constant stepsize v

is used (see Theorem 2.3.1), and converges to an optimal solution when the divergent

stepsize rule is used (see Theorem 2.3.2), with probability 1. It is worth mentioning

that, without regard to the stochastic process and perturbation step, the GS-SGM is

theoretically a version of the approximate subgradient method, e.g. in [61].
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In Section 2.5, we propose a simple version of GS-SGM (in short, GS-SGMS) to

solve the convex constrained optimization problem. The GS-SGMS constructs the sub-

gradient information via random sampling of gradients at nearby points and projects

the point, obtained from the subgradient iteration along the constructed direction, onto

the constraint set. Since the domain of the objective function is the whole space, all

points are interior points of Rn and the perturbation step is then skipped. We also

demonstrate convergence to an approximate optimal value when a fixed sampling ra-

dius or the constant stepsize rule is utilized (see Theorems 2.5.1-2.5.3), and indicate

convergence to the optimal value when the sampling radius is reduced dynamically and

the divergent stepsize rule is used (see Theorems 2.5.4), with probability 1.

We illustrate the GS-SGM/GS-SGMS on three examples, including the nonsmooth

convex optimization problem (see [100]), the assignment problem (see [80]) and the

low-rank recovery problem (i.e., the nuclear norm minimization problem, see [96]).

The numerical experiments show that the GS procedure does not cost much time in

the whole algorithm and the GS-SGM/GS-SGMS always converges faster than existing

subgradient methods. Especially for the low-rank recovery problem, the GS-SGMS only

costs one third or half of the time that is required for the classical subgradient method.

This result might draw attention of the researchers to the application of subgradient

methods on the low-rank recovery problem.

This chapter is organized as follows. In Section 2.2, we present the subgradient

method based on the GS technique by using a perturbation direction of the projection

point. In Section 2.3, we demonstrate convergence properties of the GS-SGM. In Section

2.4, we calculate the perturbation direction of the projection point in two common

cases of the domain. In Section 2.5, we focus on the convex constrained optimization

problem and propose a simple version of GS-SGM to solve it. We also establish some

corresponding convergence results as that of the GS-SGM. Finally, we exhibit several

numerical results of the GS-SGM/GS-SGMS in Section 2.6.
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2.2 GS-SGM Algorithm

In this section, we propose a subgradient method based on the gradient sampling tech-

nique (GS-SGM) to solve problem (2.1.1). The main idea of the GS-SGM is to construct

the subgradient information via the GS technique and then proceed the iteration of the

classical subgradient method. No subgradient information is required in the GS-SGM

algorithm. When int(X) = ∅, the domain of f has an empty interior and thus the

gradient of f cannot be defined. Thus, we use the relative gradient instead. In the

following, we introduce the definition of the relative gradient (see Hiriart-Urruty and

Lemaréchal [47]).

Definition 2.2.1 (see [47]) f : Rn → R is said to be relatively differentiable at x̄, if

there exists a vector g ∈ V , the subspace parallel to affX, such that

f(x̄+ h) = f(x̄) + ⟨g, h⟩+ o(∥h∥), for h ∈ V.

When it exists, g is called the relative gradient of f at x̄ and denoted by ∇Xf(x̄).

In order to make the above definition understood more easily, we introduce a new

convex function f0(y) := f(x0 + y), where x0 is fixed in X and y varies in the sub-

space V . This transformation makes the domain of the new function f0, which is also a

proper, lower semi-continuous and convex function, full-dimensional in V , and hence f0

is differentiable almost everywhere on int(domf0) ⊂ V , that is, f is relatively differen-

tiable almost everywhere on riX (see [47, Page 117]). Actually, ∇Xf(x) is the gradient

of f0(y) at y := x− x0.

Since we need to calculate relative gradients at points in a certain neighborhood

of the current iterate in the GS technique, we need all iterates to be relative interior

points of the domain. However, if an iterate is not a relative interior point of X, we

need to perform a perturbation step to guarantee the iterate to be a relative interior

point and to ensure the GS technique can succeed. Therefore, the GS-SGM consists of

generating a sequence {xk}, by taking from xk along the direction, which is constructed

via random sampling of relative gradients at nearby points, and then projecting the

resulting point onto X and finally performing a perturbation step.
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In order to facilitate the reading and analysis of the algorithm, we provide a partial

glossary of the notation, which is used in the GS-SGM, and present the GS-SGM

algorithm as follows.

Table 2.1: Notation used in GS-SGM

k: Number of iterations. s: Sample size.

vk: Stepsize. αk: Perturbation weight.

µki: Unit ball sample. δk: Sampling radius.

xk: Current iterate. xki: Sampling point.

D: Points of relative differentiability. Gk: Approximate subdifferential.

λk: Iterative direction weight. gk: Iterative direction.

x̄k: Projection point. yk: Perturbation direction.

Subgradient method based on the gradient sampling technique (GS-SGM)

Step 1. (Initialization)

Start from k = 0, select an initial point x0 ∈ riX and parameters s, {vk} and

{αk}.

Step 2. (Generate the approximate subdifferential via the GS technique)

Let µk1, · · · , µks be sampled independently and uniformly from B ∩ V , choose

the sampling radius to satisfy 0 < δk ≤ dist(xk, rbdX), and set

xki = xk + δkµki, i = 1, · · · , s.

If for some i = 1, · · · , s, the point xki ̸∈ D, then STOP; otherwise, set

Gk = conv{∇Xf(xk1), · · · ,∇Xf(xks)}.

Choose an arbitrary vector in Gk as the iterative direction, i.e.,

gk =
s∑
i=1

λi∇Xf(xki), with
s∑
i=1

λi = 1 and λi ≥ 0,

and go to Step 3.

Step 3. (Solution update and perturbation)
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Compute x̄k+1 = PX(xk − vkgk) by solving the convex optimization problem

min ∥x− (xk − vkgk)∥2

s.t. x ∈ X.

Compute the perturbation direction of x̄k+1 as a certain relative interior point

of X, which satisfies

yk ∈ {x̄k+1 −NX(x̄k+1)} ∩ riX ∩B(x̄k+1, 1), (2.2.1)

and set

xk+1 = (1− αk)x̄k+1 + αkyk, 0 < αk < 1. (2.2.2)

Set k = k + 1 and go back to Step 2.

The following remarks explain the choice of parameters and the designing of this

algorithm.

Remark 2.2.1 In Step 2, we choose δk ≤ dist(xk, rbdX) to keep all sampling points

in X. By relating to αk−1, the sampling radius δk in this form can be easily calculated

in practical computation.

Remark 2.2.2 The perturbation direction plays a key role in the GS-SGM and its

convergence analysis. In (2.2.1), we choose yk ∈ riX to guarantee xk+1 ∈ riX and

yk ∈ {x̄k+1−NX(x̄k+1)}∩B(x̄k+1, 1) to obtain the convergence property of this algorithm.

We will show the existence of such yk in Lemma 2.3.3.

In Step 2, if some random sampling point is not in D, this algorithm will stop and

it turns out to be failed. Fortunately, in the proof of Theorem 2.3.1, we show that the

GS-SGM will not terminate finitely in Step 2, that is, a sequence of infinite points {xk}
will be generated by the GS-SGM with probability 1.

The GS-SGM combine the subgradient method and the GS technique into one it-

eration. Thus, there are two main differences between the GS-SGM and the classical

subgradient method. Firstly, it stems from the GS procedure. The classical subgradient

method always assumes that the subgradient of the objective function can be obtained

easily through a ”black box”, while the GS-SGM constructs the subgradient information
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by calculating the convex combination of relative gradients sampled at random nearby

points in Step 2. Secondly, it is the perturbation step. The classical subgradient method

only proceeds a projection operator after solution updating. It makes each iterate xk a

feasible point that might not be a relative interior point of X. On the other hand, the

GS-SGM performs a perturbation (2.2.2) after the projection operator. It makes each

iterate xk+1 always be a relative interior point of X. However, it follows from (2.2.1)

that yk = x̄k+1 if x̄k+1 is a relative interior point of X, and thus the perturbation step

is not necessary in this case. Therefore, when the optimal solution of problem (2.1.1) is

a relative interior point of X, the GS-SGM differs little from the classical subgradient

method in the perturbation step.

2.3 Convergence Analysis

In this section, we investigate convergence properties of the GS-SGM. First, we need

to do some analysis on the procedures of this algorithm. The following Lemmas 2.3.1

and 2.3.2 tell us that each vector in Gk is an approximate subgradient of f at xk.

Lemma 2.3.1 Let g1 be a subgradient of f at x1 ∈ X. Then, for any x2 ∈ X, g1 is an

ϵ-subgradient of f at x2 with ϵ = f(x2)− f(x1)− ⟨g1, x2 − x1⟩.

Proof. By the definition of the subgradient (cf. (1.3.1)), we have

⟨g1, x− x1⟩ ≤ f(x)− f(x1), ∀x ∈ Rn.

Thus,

⟨g1, x− x2⟩ = ⟨g1, x− x1⟩+ ⟨g1, x1 − x2⟩
≤ f(x)− f(x1)− ⟨g1, x2 − x1⟩
= f(x)− f(x2) + f(x2)− f(x1)− ⟨g1, x2 − x1⟩
= f(x)− f(x2) + ϵ, ∀x ∈ Rn,

with ϵ = f(x2)− f(x1)− ⟨g1, x2 − x1⟩.

Lemma 2.3.2 Let gi be an ϵi-subgradient of f at x ∈ X for i = 1, · · · , s. Then, the

convex combination
∑s

i=1 λigi is also an ϵ-subgradient of f at x with ϵ =
∑s

i=1 λiϵi.
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Proof. By the definition of the ϵ-subgradient (cf. (1.3.2)), we have

⟨gi, y − x⟩ ≤ f(y)− f(x) + ϵi,∀y ∈ Rn, i = 1, · · · , s.

Thus,

⟨
∑s

i=1 λigi, y − x⟩ =
∑s

i=1 λi⟨gi, y − x⟩
≤ f(y)− f(x) +

∑s
i=1 λiϵi

= f(y)− f(x) + ϵ, ∀y ∈ Rn,

with ϵ =
∑s

i=1 λiϵi.

From Lemmas 2.3.1-2.3.2, it follows that the iterative direction gk ∈ Gk, gener-

ated in Step 2, is an approximate subgradient. Indeed, when xki ∈ D, the relative

gradient ∇Xf(xki) is also a subgradient of f at xki. Thus, by using Lemma 2.3.1,

we have that ∇Xf(xki) is an ϵki-subgradient of f at xk with ϵki = f(xk) − f(xki) +

⟨∇Xf(xki), δkµki⟩. Furthermore, from Lemma 2.3.2, it follows that the convex com-

bination gk =
s∑
i=1

λi∇Xf(xki) is an ϵk-subgradient of f at xk with ϵk =
s∑
i=1

λiϵki, that

is,

⟨gk, x− xk⟩ ≤ f(x)− f(xk) + ϵk

= f(x)−
s∑
i=1

λif(xki) +
s∑
i=1

λi⟨∇Xf(xki), δkµki⟩,∀x ∈ Rn.
(2.3.1)

The following lemma is very important for the GS-SGM. It demonstrates that Step

3 of the GS-SGM is well-defined in that it guarantees the existence of the perturbation

direction.

Lemma 2.3.3 Let C ⊂ Rn be a closed and convex set. Then for each x ∈ C, the

intersection
(
x−NC(x)

)
∩ riC ∩B(x, 1) is nonempty.

Proof. This lemma follows if we show that(
−NC(x)

)
∩
(
− x+ ri(C ∩B(x, 1))

)
̸= ∅,

by noting riC ∩B(x, 1) = ri(C ∩B(x, 1)) (see [47, Proposition 2.1.10]).

By contradiction, suppose that
(
−NC(x)

)
∩
(
− x+ ri(C ∩ B(x, 1))

)
= ∅. By the

Separation Theorem (see Lemma 1.3.4), there exists some s ̸= 0 such that

⟨s,−y⟩ ≥ 0,∀y ∈ NC(x), (2.3.2)
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and

⟨s,−x+ z⟩ < 0,∀z ∈ ri(C ∩B(x, 1)). (2.3.3)

Taking z in the closure of ri(C ∩B(x, 1)), the relation (2.3.3) implies that

⟨s,−x+ z⟩ ≤ 0, ∀z ∈ C ∩B(x, 1),

which is equivalent to s ∈ NC(x). Thus, it follows from (2.3.2) that ⟨s,−s⟩ ≥ 0, which

implies s = 0. Hence, we arrive at the contradiction with the Separation Theorem

(s ̸= 0).

Throughout the rest of this section, we use the following assumptions which are

quite general in convex programming.

Assumption 2.3.1 The optimal solution set X∗ is nonempty.

Assumption 2.3.2 The relative gradients of f are bounded, i.e., there exists some

scalar M such that ∥g∥ ≤M for all g ∈ ∇Xf(D).

In the convergence analysis, we start with the basic inequality, which shows a sig-

nificant property of the sequence of iterates {xk}.

Lemma 2.3.4 Suppose Assumption 2.3.2 holds and the sequence {xk} is generated by

the GS-SGM. Then for all x ∈ X, we have

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2vk
(
f(xk)− f(x)

)
+ 4vkδkM + v2kM

2 + α2
k. (2.3.4)

Proof. According to the GS-SGM, for all x ∈ X, we have

∥xk+1 − x∥2 = ∥(1− αk)x̄k+1 + αkyk − x∥2

= ∥x̄k+1 − x− αk(x̄k+1 − yk)∥2

= ∥x̄k+1 − x∥2 − 2αk⟨x̄k+1 − x, x̄k+1 − yk⟩+ α2
k∥x̄k+1 − yk∥2.

(2.3.5)

According to Lemma 2.3.3, the perturbation direction is well-defined. Due to the chosen

rule of yk (cf. (2.2.1)), yk ∈ x̄k+1 −NX(x̄k+1) implies that

⟨x̄k+1 − x, x̄k+1 − yk⟩ ≥ 0,∀x ∈ X,
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and yk ∈ B(x̄k+1, 1) implies that ∥x̄k+1 − yk∥ ≤ 1. Hence, the relation (2.3.5) reduces

to

∥xk+1 − x∥2 ≤ ∥x̄k+1 − x∥2 + α2
k

≤ ∥xk − vkgk − x∥2 + α2
k

= ∥xk − x∥2 − 2vk⟨gk, xk − x⟩+ v2k∥gk∥2 + α2
k, ∀x ∈ X,

(2.3.6)

where the second inequality follows from the nonexpansive property of the projection

operator (see Lemma 1.3.1).

It follows from Lemmas 2.3.1-2.3.2 that gk is an ϵk-subgradient of f at xk. Thus,

substituting the subgradient inequality (2.3.1) into (2.3.6), we obtain

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2vk

( s∑
i=1

λif(xki)− f(x)
)

+ 2vk

( s∑
i=1

λi⟨∇Xf(xki), δkµki⟩
)
+ v2k∥gk∥2 + α2

k

= ∥xk − x∥2 − 2vk
(
f(xk)− f(x)

)
+ 2vk

[ s∑
i=1

λi

(
⟨∇Xf(xki), δkµki⟩+ f(xk)− f(xki)

)]
+ v2k∥gk∥2 + α2

k

≤ ∥xk − x∥2 − 2vk
(
f(xk)− f(x)

)
+ 2vk

( s∑
i=1

λi⟨∇Xf(xki)−∇Xf(xk), δkµki⟩
)
+ v2k∥gk∥2 + α2

k

≤ ∥xk − x∥2 − 2vk
(
f(xk)− f(x)

)
+ 2vkδk∥µki∥

(
∥∇Xf(xki)∥+ ∥∇Xf(xk)∥

)
+ v2k∥gk∥2 + α2

k

≤ ∥xk − x∥2 − 2vk
(
f(xk)− f(x)

)
+ 4vkδkM + v2kM

2 + α2
k,

where the second inequality follows from f(xk)− f(xki) ≤ ⟨∇Xf(xk),−δkµki⟩, and the

fourth inequality follows from the bound on relative gradients M and sampling points

in the unit ball. Thus, we arrive at the basic inequality (2.3.4).

Constant stepsize rule

We first describe the convergence property of the GS-SGM by using the constant stepsize

rule.

Theorem 2.3.1 Let Assumptions 2.3.1-2.3.2 hold. Suppose the sequence {xk} is gen-

erated by the GS-SGM with the constant stepsize rule, δk ≤ dist(xk, rbdX), and
∞∑
k=0

α2
k <

+∞. Then, lim
k→∞

f(xk) ≤ f∗ + vM2/2 with probability 1.
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Proof. We begin the proof by making an observation concerning the stochastic struc-

ture of the GS-SGM. Although the algorithm specifies that the points µk1, · · · , µkm are

sampled from B ∩ V at each iteration, we may think of this sequence as a realization

of a stochastic process {(µk1, · · · , µkm)} occurring before initiation of the algorithm. If

the whole set has a strictly positive measure, by measure theory, xki lies outside any

fixed subset of Lebesgue measure zero almost surely, which is independent of the sample

size.

We first consider the case when the GS-SGM terminates finitely. Let x ∈ riX, δ > 0,

and z be a realization of a random variable that is uniformly distributed on B ∩ V .

Since f is relatively differentiable almost everywhere on riX (also on X), by measure

theory, the probability that x + δz ̸∈ D is zero. Therefore, we have shown that the

GS-SGM does not terminate finitely in Step 2 with probability 1.

We now restrict our attention to the case when the GS-SGM generates a sequence

of infinite points {xk}. According to the GS-SGM and Lemma 2.3.4 with vk ≡ v, for

all x ∈ X, we have

2v
(
f(xk)− f(x)

)
≤ ∥xk − x∥2 − ∥xk+1 − x∥2 + 4vδkM + v2M2 + α2

k. (2.3.7)

Summing (2.3.7) over k = 0, · · · , n, we arrive at

n∑
k=0

f(xk)

n
− f(x) ≤ ∥x0 − x∥2

2nv
+ 2M

n∑
k=0

δk

n
+
vM2

2
+

n∑
k=0

α2
k

2nv
. (2.3.8)

In the GS-SGM, by the assumption, we have the following rules:
∞∑
k=0

α2
k < +∞,

δk ≤ dist(xk, rbdX).

By the definitions of δk and αk, we obtain δk ≤ dist(xk, rbdX) ≤ ∥xk − x̄k∥ ≤ αk−1.

Furthermore, due to
∞∑
k=0

α2
k < +∞, we have lim

k→∞
δk = 0, and hence lim

n→∞

∑n
k=0 α

2
k

2nv
= 0 and

lim
n→∞

∑n
k=0 δk
n

= 0 (cf. Lemma 1.3.5). Thus, by using Lemma 1.3.5, the relation (2.3.8)

implies

lim
k→∞

f(xk) ≤ lim
n→∞

∑n
k=0 f(xk)

n

≤ f(x) +
vM2

2
,∀x ∈ X.

Therefore, we arrive at that lim
k→∞

f(xk) ≤ f∗ + vM2/2 with probability 1.

36



Divergent stepsize rule

The corresponding convergence result is indicated in the following theorem by using

the divergent stepsize rule.

Theorem 2.3.2 Let Assumptions 2.3.1-2.3.2 hold. Suppose the sequence {xk} is gen-

erated by the GS-SGM with the divergent stepsize rule (1.1.6), δk ≤ dist(xk, rbdX),

and
∞∑
k=0

α2
k < +∞. Then, xk converges to some x∗ ∈ X∗ and lim

k→∞
f(xk) = f∗, with

probability 1.

Proof. By the proof of Theorem 2.3.1, the GS-SGM does not terminate finitely in

Step 2 with probability 1. We now focus on the case when the GS-SGM generates a

sequence of infinite points {xk}. According to the GS-SGM and Lemma 2.3.4, for all

x ∈ X, we have

2vk
(
f(xk)− f(x)

)
≤ ∥xk − x∥2 − ∥xk+1 − x∥2 + 4vkδkM + v2kM

2 + α2
k. (2.3.9)

Summing (2.3.9) over k = 0, · · · , n, we obtain
n∑
k=0

vkf(xk)

n∑
k=0

vk

− f(x) ≤ ∥x0 − x∥2

2
n∑
k=0

vk

+ 2M

n∑
k=0

vkδk

n∑
k=0

vk

+

M2
n∑
k=0

v2k +
n∑
k=0

α2
k

2
n∑
k=0

vk

. (2.3.10)

In the GS-SGM, by the assumption, we have the following rules:

∞∑
k=0

vk = +∞ and
∞∑
k=0

v2k < +∞,

∞∑
k=0

α2
k < +∞,

δk ≤ dist(xk, rbdX).

(2.3.11)

By the definitions of δk and αk, we have δk ≤ dist(xk, rbdX) ≤ ∥xk − x̄k∥ ≤ αk−1.

Also, due to
∞∑
k=0

α2
k < +∞ and

∞∑
k=0

v2k < +∞, we have
∞∑
k=1

vkαk−1 < +∞ and thus

∞∑
k=0

vkδk < +∞. Therefore, we arrive at the following results:

lim
n→∞

∥x0−x∥2
n∑

k=0
vk

= 0,

lim
n→∞

n∑
k=0

vkδk

n∑
k=0

vk

= 0,

lim
n→∞

M2
n∑

k=0
v2k+

n∑
k=0

α2
k

n∑
k=0

vk

= 0.
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Substituting the above three relations into (2.3.10), we obtain

lim
k→∞

f(xk) ≤ lim
n→∞

n∑
k=0

vkf(xk)

n∑
k=0

vk

≤ f(x), ∀x ∈ X, (2.3.12)

where the first inequality follows from Lemma 1.3.5. Therefore, we prove that lim
k→∞

f(xk) =

f∗ with probability 1.

We next prove convergence in iterates {xk} as follows. By using (2.3.4) with any

x∗ ∈ X∗, we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk
(
f(xk)− f∗

)
+ 4vkδkM + v2kM

2 + α2
k

≤ ∥xk − x∗∥2 + 4vkδkM + v2kM
2 + α2

k.
(2.3.13)

The rules (2.3.11) immediately imply that

∞∑
k=0

(
4vkδkM + v2kM

2 + α2
k

)
<∞.

Hence, it follows from Lemma 1.3.6 with bk = 0 and ck = 4vkδkM + v2kM
2 + α2

k that

ak = ∥xk − x∗∥ converges. Thus, the sequence {xk} is bounded. Furthermore, we

have proved that lim
k→∞

f(xk) = f∗, which together with the boundedness of {xk} and

the lower semi-continuity of f implies that {xk} has a cluster point x∗ ∈ X∗. Finally,

xk converges to x∗ from (2.3.13), noting that the tail sums
∞∑
i=k

(
4viδiM + v2iM

2 + α2
i

)
vanishes as k tends to infinity.

2.4 Calculate the Perturbation Direction

The perturbation direction, yk ∈ {x̄k+1−NX(x̄k+1)}∩ riX ∩B(x̄k+1, 1), plays a key role

in the GS-SGM to guarantee that each iterate is a relative interior point and to achieve

the convergence property. We have proved its existence in Lemma 2.3.3. In this section,

we show how this direction can be calculated in two common cases of the domain X:

X is a convex polyhedron and the sublevel set of some convex quadratic functions. For

the sake of simplicity, we denote yk = x̄ − s̄ with x̄ = x̄k+1 and s̄ ∈ NX(x̄k+1) in what

follows.
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Case 1. Convex Polyhedron

If X is a convex polyhedron in Rn, i.e., for some ai ∈ Rn and bi ∈ R (i = 1, · · · ,m),

X := {x : ⟨ai, x⟩ ≤ bi, ∥ai∥ = 1, i = 1, 2, · · · ,m},

which is assumed not to be a singleton. For each x̄ ∈ X, the active index set is defined

by

J(x̄) := {i : ⟨ai, x̄⟩ = bi, i = 1, 2, · · · ,m}.

Without loss of generality, deleting the redundant constraints, we assume that {ai :
i ∈ J(x̄)} is linear independent. It is well-known that the normal cone to X at x̄ is

given by (see [98, Proposition 10.3])

NX(x̄) = cone{aj : j ∈ J(x̄)}
= {

∑
j∈J(x̄)

βjaj : βj ≥ 0}.

Since s̄ ∈ NX(x̄), it can be represented as s̄ =
∑

j∈J(x̄)
βjaj with βj ≥ 0.

In order to calculate the perturbation direction, in the following, we will deduce

the condition on parameters βi such that x̄ − s̄ ∈ riX ∩ B(x̄, 1), that is ∥s̄∥ ≤ 1 and

⟨ai, x̄− s̄⟩ < bi for i = 1, 2, · · · ,m. The deduction is divided into two cases: (i) x̄ ∈ riX

and (ii) x̄ ∈ rbdX.

(i) x̄ ∈ riX.

In this case, J(x̄) = ∅, s̄ ∈ NX(x̄) = {0}, and x̄− s̄ = x̄ ∈ riX.

(ii) x̄ ∈ rbdX.

Deduction of the condition on parameters βi is split into two cases of index: (a)

i ̸∈ J(x̄) and (b) i ∈ J(x̄), as follows.

(a) i ̸∈ J(x̄).

In this case, we have ⟨ai, x̄⟩ < bi. Choose βj for all j ∈ J(x̄) satisfying

βj <
1

|J(x̄)|
min{min

i̸∈J(x̄)

bi − ⟨ai, x̄⟩
max{−⟨ai, aj⟩, 0}

, 1}, (2.4.1)

then we obtain the inequalities

∥s̄∥ ≤ 1 and ⟨ai, x̄− s̄⟩ < bi,∀i ̸∈ J(x̄).
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(b) i ∈ J(x̄).

In this case, we have ⟨ai, x̄⟩ = bi. Hence, to guarantee ⟨ai, x̄−s̄⟩ < bi for all i ∈
J(x̄), we need to choose βj such that∑

j∈J(x̄)

βj⟨ai, aj⟩ > 0, ∀i ∈ J(x̄). (2.4.2)

According to what have been shown above, s̄ =
∑

j∈J(x̄)
βjaj with βj satisfying

(2.4.1) and (2.4.2) has the properties that s̄ ∈ NX(x̄) and x̄ − s̄ ∈ riX ∩ B(x̄, 1),

which is the perturbation direction.

Remark 2.4.1 In practical computation, we always use the following equivalent linear

system ∑
j∈J(x̄)

βj⟨ai, aj⟩ ≥ 1,∀i ∈ J(x̄).

instead of (2.4.2) to find parameters βj.

Remark 2.4.2 The perturbation direction in the box constraint case is particularly easy

to calculate. For example, if X = Rn
+, we obtain

s̄ =
sign(x̄)− e√

n
,

where e = (1, 1, · · · , 1)T and sign(·) denotes the sign function. It is a motivation fac-

tor to apply the GS-SGM to the Lagrangian dual of a convex constrained optimization

problem, which will be shown in Chapter 3.

Case 2. Sublevel set of some convex quadratic functions

Define

fi(x) =
1

2
xTQix+ cTi x+ di, i ∈ I = {1, 2, · · · ,m},

where Qi is symmetric, positive semi-definite matrix, ci ∈ Rn and di ∈ R (i = 1, · · · ,m).

Let X be the sublevel set of these convex quadratic functions, i.e.,

X := {x : fi(x) ≤ 0, ∀i ∈ I}.
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For each x̄ ∈ X, the active index set is defined by

J(x̄) := {i : fi(x̄) = 0, i ∈ I}.

Similarly, we will calculate the perturbation direction by looking at the two situa-

tions: (i) x̄ ∈ riX and (ii) x̄ ∈ rbdX.

(i) x̄ ∈ riX.

In this case, J(x̄) = ∅, s̄ ∈ NX(x̄) = {0}, and x̄− s̄ = x̄ ∈ riX.

(ii) x̄ ∈ rbdX.

From [98, Proposition 10.3], by the regularity of f , the normal cone of X at x̄ is

given by

NX(x̄) = cone{∇fi(x̄) : i ∈ J(x̄)}
= cone{Qix̄+ ci : i ∈ J(x̄)}
= {

∑
j∈J(x̄)

βj(Qjx̄+ cj) : βj ≥ 0}.

Since s̄ ∈ NX(x̄), it can be represented as s̄ =
∑

j∈J(x̄)
βj(Qjx̄+ cj) with βj ≥ 0.

In short, denote β = (β1, · · · , β|J(x̄)|)T ∈ R|J(x̄)|, aj = Qjx̄+cj andA = (a1, · · · , a|J(x̄)|) ∈
Rn×|J(x̄)|, and thus s̄ = Aβ.

In order to calculate the perturbation direction, in the following, we will deduce

the condition on parameter β such that x̄− s̄ ∈ riX∩B(x̄, 1), that is, ∥s̄∥ ≤ 1 and

fi(x̄− s̄) < 0 for all i ∈ I, in two cases of index: (a) i ̸∈ J(x̄) and (b) i ∈ J(x̄).

(a) i ̸∈ J(x̄).

In this case, we have fi(x̄) < 0. Thus,

fi(x̄− s̄) = 1
2
(x̄− s̄)TQi(x̄− s̄) + cTi (x̄− s̄) + di

= 1
2
s̄TQis̄− x̄TQis̄− cTi s̄+ fi(x̄)

= 1
2
βT (ATQiA)β − (x̄TQi + cTi )Aβ + fi(x̄).

To guarantee fi(x̄− s̄) < 0, we shall choose β ∈ R|J(x̄)| such that

1

2
βT (ATQiA)β − (x̄TQi + cTi )Aβ + fi(x̄) < 0, ∀i ̸∈ J(x̄). (2.4.3)

Such β can easily be shown to exist since fi(x̄) < 0.
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(b) i ∈ J(x̄).

In this case, we have fi(x̄) = 0. Thus, as shown in (2.4.3), we need

1

2
βT (ATQiA)β − (x̄TQi + cTi )Aβ < 0, ∀i ∈ J(x̄). (2.4.4)

According to what have been shown above, s̄ =
∑

j∈J(x̄)
βj(Qjx̄ + cj) with βj sat-

isfying (2.4.3), (2.4.4) and ∥s̄∥ ≤ 1 has the properties that s̄ ∈ NX(x̄) and

x̄− s̄ ∈ riX ∩B(x̄, 1), which is the perturbation direction required.

For the sake of simplicity, let

Fi(β) =
1

2
βTPiβ − hTi β + wi(x̄),

where Pi = ATQiA, hi = (x̄TQi + cTi )A and

wi(x̄) =

{
0, if i ∈ J(x̄),

fi(x̄), otherwise.

Then inequalities (2.4.3) and (2.4.4) are equivalent to Fi(β) < 0 for all i ∈ I.

Ignoring terms involving β2, by choosing β small enough, Fi(β) < 0 is equivalent

to

(−hi)Tβ + wi(x̄) < 0,∀i ∈ I. (2.4.5)

Therefore, calculating such βj that satisfy (2.4.3), (2.4.4) and ∥s̄∥ ≤ 1 is equivalent

to finding βj small enough and that satisfy (2.4.5), which can be done computa-

tionally as in Case 1 (Remark 2.4.1).

2.5 A Simple Version of GS-SGM

We have presented a GS-SGM for the nonsmooth convex optimization problem, proved

its convergence to an optimal solution with probability 1, and calculated the perturba-

tion direction in two common cases of the domain.

In previous sections, especially by the theoretical part, we consider the extended

real-valued objective function, whose domain may have an empty interior. In this

case, we need to use the relative gradient instead of the gradient and use the relative
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gradients at random nearby points to construct the subgradient information. For the

simple model of minimizing a convex function f : Rn → R over a constraint set (see

[16, 17, 30, 31, 81, 80, 82, 87, 100, 106] and references therein), the GS-SGM reduces

to a much simpler form (in short, GS-SGMS). Hence, in this section, we consider the

following convex constrained optimization problem

min f(x)

s.t. x ∈ X,
(2.5.1)

where f : Rn → R is a convex function, and X is a closed and convex set. Denote

the optimal solution set and the optimal value of problem (2.5.1) respectively by X∗

and f∗. It is worth mentioning that (2.5.1) is a special case of (2.1.1) as the objective

function is replaced by f + δX .

Since the domain of the objective function is the whole space, all points are interior

points of Rn, and thus we do not need to consider the relative gradient and perturbation

step. Only the GS procedure is added in the iterative process of the classical subgradient

method. Numerical tests on the low-rank recovery problem, in Section 2.6, show that

the GS technique can improve the convergence behavior of the subgradient method.

2.5.1 GS-SGMS Algorithm

In this subsection, we propose a simple version of GS-SGM (GS-SGMS) to solve prob-

lem (2.5.1). The GS-SGMS is similar to the GS-SGM. The two main differences are

that the gradients at random nearby points are used instead of the relative gradients,

and that the perturbation step is skipped, because the domain of the objective function

is the whole space. The GS-SGMS constructs the subgradient information via ran-

dom sampling of gradients at nearby points and projects the point, obtained from the

subgradient iteration along the constructed direction, onto the constraint set.

In order to facilitate the reading and analysis of the algorithm, we provide a partial

glossary of the notation, which is used in the GS-SGMS, and present the GS-SGMS

algorithm as follows.

A simple version of GS-SGM (GS-SGMS)
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Table 2.2: Notation used in GS-SGMS

k: Number of iterations. s: Sample size.

vk: Stepsize. δk: Sampling radius.

xk: Current iterate. xki: Sampling point.

µki: Unit ball sample. Gk: Approximate subdifferential.

D: Points of differentiability. gk: Iterative direction.

λk: Iterative direction weight.

Step 1. (Initialization)

Start from k = 0, select an initial pint x0 ∈ riX and parameters s, {vk} and

{δk}.

Step 2. (Generate the approximate subdifferential via the GS technique)

Let µk1, · · · , µks be sampled independently and uniformly from B, and set

xki = xk + δkµki, i = 1, · · · , s.

If for some i = 1, · · · , s, the point xki ̸∈ D, then STOP; otherwise, set

Gk = conv{∇f(xk1), · · · ,∇f(xks)}.

Choose an arbitrary vector in Gk as the iterative direction, i.e.,

gk =
s∑
i=1

λi∇f(xki), with
s∑
i=1

λi = 1 and λi ≥ 0,

and go to Step 3.

Step 3. (Solution update)

Compute xk+1 = PX(xk − vkgk) by solving the convex optimization problem

min ∥x− (xk − vkgk)∥2

s.t. x ∈ X.

Set k = k + 1 and go back to Step 2.

It has been illustrated in the proof of Theorem 2.3.1 that the GS-SGMS will not

terminate finitely in Step 2, that is, a sequence of infinite points {xk} will be generated

by the GS-SGMS with probability 1.
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The only difference between the GS-SGMS and the classical subgradient method

is the GS procedure. The classical SGM always assumes that the subgradient of the

objective function can be obtained through a ”black box”, while the GS-SGMS con-

structs the subgradient information by calculating the convex combination of gradients

sampled at random nearby points in Step 2.

2.5.2 Convergence Analysis

In this subsection, we investigate convergence properties of the GS-SGMS for different

types of stepsize rules and sampling radius rules.

Similar to what have been described in Section 2.3, from Lemmas 2.3.1-2.3.2, it

follows that the iterative direction gk ∈ Gk, generated in Step 2, is an approximate

subgradient, that is

⟨gk, x− xk⟩ ≤ f(x)− f(xk) + ϵk

= f(x)−
s∑
i=1

λif(xki) +
s∑
i=1

λi⟨∇f(xki), δkµki⟩, ∀x ∈ Rn.
(2.5.2)

Throughout the rest of this section, we use the following assumption which is quite

natural in convex programming.

Assumption 2.5.1 The gradients of f are bounded, i.e., there exists a scalar M such

that ∥g∥ ≤M for all g ∈ ∇f(D).

In the convergence analysis, we start with the basic inequality, which shows a sig-

nificant property of the iterate sequence {xk}.

Lemma 2.5.1 Suppose Assumption 2.5.1 holds and the sequence {xk} is generated by

the GS-SGMS. Then for all x ∈ X, we have

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2vk
(
f(xk)− f(x)

)
+ 4vkδkM + v2kM

2. (2.5.3)

Proof. According to the GS-SGMS, it follows from the nonexpansive property of the
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projection operator that

∥xk+1 − x∥2 = ∥PX(xk − vkgk)− x∥2

≤ ∥xk − vkgk − x∥2

= ∥xk − x∥2 − 2vk⟨gk, xk − x⟩+ v2k∥gk∥2

≤ ∥xk − x∥2 − 2vk
(
f(xk)− f(x)

)
+ 2vk

[ s∑
i=1

λi

(
⟨∇f(xki), δµki⟩+ f(xk)− f(xki)

)]
+ v2k∥gk∥2

≤ ∥xk − x∥2 − 2vk
(
f(xk)− f(x)

)
+ 4vkδkM + v2kM

2,∀x ∈ X,

where the second inequality follows from (2.5.2), and the third inequality follows from

f(xk)− f(xki) ≤ ⟨∇f(xk),−δkµki⟩, the bound on gradients M and sampling points in

the unit ball. Thus, we arrive at the basic inequality (2.5.3).

Constant stepsize rule

We first describe the convergence property of the GS-SGMS by using the constant

stepsize rule and the constant sampling radius.

Theorem 2.5.1 Let Assumption 2.5.1 hold. Suppose the sequence {xk} is generated

by the GS-SGMS with the constant stepsize rule and the constant sampling radius δ.

Then, lim
k→∞

f(xk) ≤ f∗ + 2Mδ + vM2/2 with probability 1.

Proof. By the proof of Theorem 2.3.1, the GS-SGMS does not terminate finitely in

Step 2 with probability 1. We now focus on the case when the GS-SGMS generates a

sequence of infinite points {xk}.

According to the GS-SGMS and Lemma 2.5.1 with vk ≡ v and δk ≡ δ, for all x ∈ X,

we have

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2v
(
f(xk)− f(x)

)
+ 4vδM + v2M2. (2.5.4)

Summing (2.5.4) over k = 0, · · · , n, we obtain

n∑
k=0

f(xk)

n
− f(x) ≤ ∥x0 − x∥2

2nv
+ 2Mδ +

vM2

2
.
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Thus, by using Lemma 1.3.5, we arrive at

lim
k→∞

f(xk) ≤ lim
n→∞

∑n
k=0 f(xk)

n

≤ f(x) + 2Mδ +
vM2

2
,∀x ∈ X.

Therefore, we arrive at that lim
k→∞

f(xk) ≤ f∗ + 2Mδ + vM2/2 with probability 1.

When the sampling radius is reduced dynamically, the error term involving the

sampling radius δ vanishes.

Theorem 2.5.2 Let Assumption 2.5.1 hold. Suppose the sequence {xk} is generated

by the GS-SGMS with the constant stepsize rule and lim
k→∞

δk = 0. Then, lim
k→∞

f(xk) ≤

f∗ + vM2/2 with probability 1.

Proof. By the proof of Theorem 2.3.1, the GS-SGMS does not terminate in Step 2

with probability 1. We now focus on the case when the GS-SGMS generates a sequence

of infinite points {xk}.

Summing (2.5.3) over k = 0, · · · , n, we obtain

n∑
k=0

f(xk)

n
− f(x) ≤ ∥x0 − x∥2

2nv
+ 2M

∑n
k=0 δk
n

+
vM2

2
.

Thus, by using Lemma 1.3.5, we arrive at

lim
k→∞

f(xk) ≤ lim
n→∞

∑n
k=0 f(xk)

n

≤ f(x) +
vM2

2
,∀x ∈ X,

where the second inequality holds since lim
n→∞

∑n
k=0 δk
n

= 0, which follows from Lemma

1.3.5 and lim
k→∞

δk = 0. Therefore, we arrive at that lim
k→∞

f(xk) ≤ f∗ + vM2/2 with

probability 1.

Divergent stepsize rule

The corresponding convergence results are indicated in the following theorems by using

the diminishing stepsize rule.
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Theorem 2.5.3 Let Assumption 2.5.1 hold. Suppose the sequence {xk} is generated by

the GS-SGMS with the divergent stepsize rule (1.1.6) and the constant sampling radius

δ. Then, lim
k→∞

f(xk) ≤ f∗ + 2Mδ with probability 1.

Proof. By the proof of Theorem 2.3.1, the GS-SGMS does not terminate in Step 2

with probability 1. We now focus on the case when the GS-SGMS generates a sequence

of infinite points {xk}.

Summing (2.5.3) over k = 0, · · · , n, we obtain

n∑
k=0

vkf(xk)

n∑
k=0

vk

− f(x) ≤ ∥x0 − x∥2

2
n∑
k=0

vk

+ 2Mδ +M2

n∑
k=0

v2k

2
n∑
k=0

vk

.

Thus, by using Lemma 1.3.5, we obtain

lim
k→∞

f(xk) ≤ lim
n→∞

n∑
k=0

vkf(xk)

n∑
k=0

vk

≤ f(x) + 2Mδ,∀x ∈ X,

where the second inequality follows from the properties of the divergent stepsize rule

(cf. (1.1.6)). Therefore, we arrive at that lim
k→∞

f(xk) ≤ f∗ +2Mδ with probability 1.

Theorem 2.5.4 Let Assumption 2.5.1 hold. Suppose the sequence {xk} is generated

by the GS-SGMS with the divergent stepsize rule (1.1.6) and lim
k→∞

δk = 0. Then,

lim
k→∞

f(xk) = f∗ with probability 1.

Proof. By the proof of Theorem 2.3.1, the GS-SGMS does not terminate in Step 2

with probability 1. We now focus on the case when the GS-SGMS generates a sequence

of infinite points {xk}.

Summing (2.5.3) over k = 0, · · · , n, we obtain

n∑
k=0

vkf(xk)

n∑
k=0

vk

− f(x) ≤ ∥x0 − x∥2

2
n∑
k=0

vk

+ 2M

∑n
k=0 vkδk
n∑
k=0

vk

+M2

n∑
k=0

v2k

2
n∑
k=0

vk

.
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Thus, by using Lemma 1.3.5, we obtain

lim
k→∞

f(xk) ≤ lim
n→∞

n∑
k=0

vkf(xk)

n∑
k=0

vk

≤ f(x), ∀x ∈ X,

where the second inequality follows from the properties of the divergent stepsize rule (cf.

(1.1.6)) and lim
k→∞

δk = 0. Therefore, we arrive at that lim
k→∞

f(xk) = f∗ with probability

1.

2.6 Numerical Experiments

In this section, we show some numerical experiments to illustrate that the GS-SGM/GS-

SGMS is comparable with some existing subgradient algorithms. In the first experiment,

we compare the GS-SGM with the algorithm proposed by Ruszczyński [100] on a non-

smooth convex optimization. In the second experiment, cited in [80], we apply the

GS-SGM to solve the dual problem arising from the assignment problem and compare

with the incremental subgradient method used in [80]. In the third experiment, we use

the GS-SGMS to deal with the low rank-recovery problem. Applying the GS-SGMS, we

can recover the MIT logo and PolyU logo clearly.

Before we present the numerical experiments in detail, we need to clarify some points

in the numerical experiments.

Since the subgradient method is not a descent method, it is common to keep track of

the best point found so far, i.e., the one with the least function value so far. Therefore,

at each iteration, we set the record value

f reck := min{fk, f reck−1}.

This technique makes the sequence {f reck } to be nonincreasing.

We have presented the convergence theory of the GS-SGM for minimizing an ex-

tended real-valued convex function, whose domain might have an empty interior. In

that case, we need to introduce the relative gradient. In the following three numerical
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experiments, domains of objective functions are all full dimensional, hence relative gra-

dients reduce to gradients for these cases. Following [31], we do not attempt to check

whether the iterates lie in the set D where f is differentiable in Step 2. Moreover, we

have demonstrated that the GS-SGM does not terminate finitely in Step 2 and thus

generates a sequence of infinite points {xk} with probability 1. Therefore, we skip the

differentiability check and assume that we have the information whether the gradient

of the objective function exists or not at a given point.

Another issue is the stopping criterion. Besides the nondifferentiable information, we

do not set any stopping criterion in the GS-SGM/GS-SGMS. Lack of implementable

stopping criterion is a traditional drawback of subgradient methods. This drawback

originated from the nondescent property of the subgradient direction. If we cannot

obtain or estimate the optimal value, it is really hard to set an effective stopping

criterion. One common trick is to check whether there is any improvement in the last

100 iterations. If f reck does not decrease in the last 100 iterations, then we stop and

obtain the optimal value so far. Another idea is to use the primal-dual subgradient

method. The natural stopping criterion is the gap between the primal function value

and the dual function value. In the following numerical experiments, we do not set

any stopping criterion and just illustrate the performance of the GS-SGM/GS-SGMS,

comparing with other algorithms in the specified number of iterations.

Nonsmooth convex optimization

Consider the nonsmooth convex optimization problem (see [100])

min
x∈Rn

f(x), (2.6.1)

where f : Rn → R̄ is defined by

f(x) =

{
max{f1(x), f2(x)}, if x ∈ Rn

+,

+∞, otherwise,

with

f1(x) = α− cTx, f2(x) =
1

2
xTDx.

As in [100], we set n = 100 and

α = n · rand(), c = 2 · rand(n, 1)− e, D = diag(rand(n, 1)).
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Here, rand() denotes a random value drawn from an uniform distribution on the unit

interval, rand(n, 1) denotes a column vector with n elements that all take random values

on the unit interval, e denotes the vector in Rn with all elements 1, and D is a diagonal

matrix with random diagonal entries.

Solved using CVX1, the optimal value for an instance of the above problem is f∗ =

18.5166.

Ruszczyński [100] designed the subgradient algorithm based on a merit function

approach (MFA-SGM) (see Section 1.1, Page 13). The MFA-SGM differs from the

GS-SGM in two main ways. The first difference is the GS procedure. The MFA-SGM

updates the subgradient information by calculating the convex combination of current

subgradient and successive direction, while the GS-SGM constructs the subgradient

information via calculating the convex combination the relative gradients at random

nearby points. The second difference is the updating and projection steps. The MFA-

SGM uses stepsize τk in the updating step after the projection operation while the

GS-SGM uses stepsize vk in the updating step before the projection operation. This

is the essential difference between the MFA-SGM and the GS-SGM. Note that, if the

MFA-SGM starts from an (relative) interior point of X, then all iterates are relative

interior points, which is the same property with the GS-SGM.

In the numerical computation, we use the same parameter a = 0.1 and stepsize

τk = τ/(1 + 0.01k) in the MFA-SGM as in [100]. For comparison, we choose the

divergent stepsize rule vk = v/(1 + 0.01k) and other parameters s = n
2
= 50, αk = vk,

δk = αk/2, λi = 1/s in the GS-SGM algorithm. Figure 2.1 plots the difference fkrec− f∗

when τ = 0.5 in the MFA-SGM and when v = 0.3, 1, and 1.5 respectively in the GS-

SGM until 3000 iterations. It is illustrated that the GS-SGM when v = 1.5 converges

faster than the MFA-SGM when τ = 0.5, but slower than the GS-SGM when v = 1.

1CVX, designed by Michael Grant and Stephen Boyd, is a Matlab-based modeling system for convex

optimization. Detailed information is available at the website http://cvxr.com/cvx/.
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Figure 2.1: Comparison of MFA-SGM and GS-SGM

Assignment problem

The assignment problem is to assign m jobs to n machines such that the total cost is

minimal (see [66, 80]). Job i, performed at machine j, costs aij and requires pij time

units. Given the total available time tj at each machine j, we want to find the minimum

cost assignment of the jobs to the machines. Formally the problem can be written as

min
∑m

i=1

∑n
j=1 aijyij

s.t.
∑n

j=1 yij = 1, i = 1, . . . ,m,∑m
i=1 pijyij ≤ tj, j = 1, . . . , n,

yij = 0 or 1, for all i, j,

where yij is the assignment variable, which equals to 1 if the i-th job is assigned to the

j-th machine and equals to 0 otherwise.

In the numerical experiment we choose n equal to 4 and m equal to 100. The data

of the problem are randomly drawn from an uniform distribution on the unit interval,

i.e.,

A = (aij) = rand(m,n), P = (pij) = rand(m,n).
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The value tj is calculated according to the formula

tj =
t̄

n

m∑
i=1

pij, j = 1, . . . , n,

with t̄ taking the value 0.4.

By relaxing the time constraints of machines, the dual problem is given by (see [80])

max f(x) =
∑m

i=1 fi(x)

s.t. x ≥ 0,
(2.6.2)

where

fi(x) = min∑n
j=1 yij=1,yij=0 or 1

n∑
j=1

(aij + xjpij)yij −
1

m

n∑
j=1

tjxj. (2.6.3)

This is a concave maximization problem with a piecewise differentiable objective func-

tion. Since aij + xjpij ≥ 0 for all i, j, the objective value fi(x) is easily evaluated for

each x ≥ 0 by

fi(x) = aij∗ + xjpij∗ −
1

m

n∑
j=1

tjxj,

where j∗ is the index such that

aij∗ + xjpij∗ = min
1≤j≤n

{aij + xjpij}.

Without additional cost, we obtain a subgradient gi of fi at x, whose j-th element is

given by

(gi)j =

{
− tj
m
, if j ̸= j∗,

pij∗ −
tj∗

m
, if j = j∗.

The subgradient method for solving the dual problem (2.6.2) is given by

xk+1 = PRm
+
[xk + vk

m∑
i=1

gi,k],

where gi,k is a subgradient of fi at xk and vk is the stepsize. While Nedić and Bertsekas

[80] proposed an incremental subgradient method (IncSGM) to solve the dual problem

(2.6.2) (see Section 1.1, Page 6).

In the numerical computation, we choose the divergent stepsize rule vk = 0.05/(1 +

0.01k) in both the IncSGM and the GS-SGM, and parameters αk = vk, δk = αk/2,

λi = 1/s and different sample size s = 1, 5, 10 in the GS-SGM. Figure 2.2 shows the
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values of fk in the IncSGM and in the GS-SGM when s = 1, 5, 10 until 300 iterates. It

is illustrated that the GS-SGM with s = 1 performs almost the same as the IncSGM,

while the GS-SGM with s = 5, 10 have better convergence behavior and obtain the

better optimal value than the IncSGM.
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Figure 2.2: Comparison of IncSGM and GS-SGM

Low-rank recovery

In many engineering applications, the underlying data lies approximately on a low-

dimensional linear subspace, hence the low-rank recovery problem has become an im-

portant issue in many applications in recent years. This problem can be stated as (see

[96])

min rankZ

s.t. A(Z) = b,
(2.6.4)

where Z ∈ Rm×n is the decision variable, the linear mapping A : Rm×n → Rp and vector

b ∈ Rp are given. Denote K := mn, the linear mapping A : Rm×n → Rp can always be
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written as its matrix representation, i.e.,

A(Z) = AZvec,

where Zvec ∈ RK denotes the “vectorized” Z with its columns stacked in order on top

of one another, and A is a p×K matrix.

The basic idea for the low-rank recovery problem is to reformulate (2.6.4) as a

nuclear norm minimization problem and solve it efficiently as a convex optimization

problem. The corresponding nuclear norm minimization problem is given by

min ∥Z∥∗
s.t. A(Z) = b.

(2.6.5)

It is recalled that the nuclear norm of Z, denoted by ∥Z∥∗, is defined as the sum

of its singular values (see Section 1.3, Page 20). Let Z = UΣV T be an SVD where

U ∈ Rm×r, V ∈ Rn×r, and Σ is an r × r diagonal matrix of singular values. The

subdifferential of the nuclear norm at Z is given by (see [71, 96])

∂∥Z∥∗ = {UV T +W : W and Z have orthogonal row/column spaces and ∥W∥ ≤ 1}.

When Z has no zero singular value (Z is full rank), the nuclear norm is differentiable

and ∇∥Z∥∗ = UV T .

(a) MIT logo (b) PolyU logo

Figure 2.3: The original MIT and PolyU logos.

We are interested in the logos of Massachusetts Institute of Technology (MIT) and

The Hong Kong Polytechnic University (PolyU), which are shown in Figure 2.3. To

make these logos low rank, we need to do some modifications on the two logos. The

modified MIT logo has three distinct colors white, gray, and black, with rank equal
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to 5, while the modification of PolyU logo is a little more complex. Since the original

PolyU logo is almost full rank, we rotate it by 45 degrees and then make it low rank.

We can see them in Figure 2.4. The modified PolyU logo has two distinct colors white

and black, with rank equal to 9.

(a) MIT logo (b) PolyU logo

Figure 2.4: The modified MIT and PolyU logos.

Consider the modified MIT and PolyU logos presented in Figure 2.4. The modified

MIT logo has 46 rows and 81 columns (3726 elements), with three distinct values

corresponding to white, gray, and black, while the modified PolyU logo has 60 rows

and 60 columns (3600 elements), with two distinct values corresponding to white and

black. For the linear mapping A, we use the Gaussian ensemble and sample constraint

matrice A with p ranging between 700 and 2400 in the numerical experiments.

Here, we use the classical subgradient method (SGM) and the GS-SGMS to solve the

nuclear norm minimization problem (2.6.5). In the numerical computation, we choose

divergent stepsize rule vk = 1/(1 + 0.1k), αk = vk, δk = αk/2, λi = 1/s and different

sample size s = 1, 5, 20, 50, 200 in the GS-SGMS.

Figure 2.5 shows the recovered images for the modified MIT logo respectively using

the Gaussian ensemble with p = 800, p = 1100 and p = 1400, while Figure 2.6 shows the

recovered images for the modified PolyU logo respectively using the Gaussian ensemble

with p = 1000, p = 1500 and p = 2000. Moreover, Figure 2.7 illustrates the errors,

measured by the Frobenius norm, between the recovered image and the truth image

for both MIT and PolyU logos until 1000 iterations in the GS-SGMS, as the number of

constraints p changes from 700 to 2100. The numerical result verifies the conclusion,

given by Recht in [96], that the perfect recovery is always attained when p > 2r(m +

n− r) for a rectangle image (like MIT logo), and when p > n
√
r(2n− r) for a square

image (like PolyU logo).
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(a) 800 constraints (b) 1100 constraints (c) 1300 constraints

Figure 2.5: Recovered images for the modified MIT logo.

(a) 1000 constraints (b) 1500 constraints (c) 2000 constraints

Figure 2.6: Recovered images for the modified PolyU logo.
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Figure 2.7: Error between the recovered image and the ground truth for both the

modified MIT and PolyU logos.
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Choosing numbers of constraints p of the MIT and PolyU logos described above, we

display the numerical results for recovering the modified MIT logo as p ≥ 1300 in Table

2.3 and the modified PolyU logo as p ≥ 2000 in Table 2.4. In these tables, ∆f denotes

the required error of the objective value, and NIT and time denote the corresponding

number and time of iterations needed to reach the specified precision of ∆f respectively.

It is illustrated in Tables 2.3-2.4 that the GS-SGMS arrives at the required level in fewer

iterations and less time than that of SGM. The GS-SGMS meets the requirement, called

for by Recht in [96], what extent subgradient methods can be efficiently applied to the

nuclear norm minimization problem. When s = 50, it only costs one third or half of

the time that is required for the SGM. Bigger sample size, better result? The answer

is negative. From Tables 2.3-2.4, we observe that the number of iterations is less as the

sample size increases. However, it costs more time to compute gradients when s = 200

and 500. As such the total computational time becomes large again when s is over 200.

Figure 2.8 and Figure 2.9 show the convergence behavior in objective values and

iterates respectively for recovering the modified MIT logo as p = 1500, while Figure

2.10 and Figure 2.11 show the convergence behavior in objective values and iterates

respectively for recovering the modified PolyU logo as p = 2200, using the SGM and

the GS-SGMS. In these figures, ∆fk = fk− f∗ denotes the error of objective values and

∆Zk = ∥Zk − Z∗∥F denotes the error of iterates in Frobenius norm.
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Table 2.3: Computation results for recovering the modified MIT logo.

p = 1300 p = 1400

Algorithms/ sample size ∆f NIT time ∆f NIT time

SGM 0.3 369 11min 0.3 427 14min

GS-SGMS/ s = 1 0.3 427 13min 0.3 471 15min

GS-SGMS/ s = 5 0.3 295 9min 0.3 298 10min

GS-SGMS/ s = 20 0.3 254 8min 0.3 226 8min

GS-SGMS/ s = 50 0.3 241 8min 0.3 206 7min

GS-SGMS/ s = 200 0.3 234 10min 0.3 191 9min

GS-SGMS/ s = 500 0.3 212 13min 0.3 186 13min

p = 1500 p = 1600

SGM 0.3 460 16min 0.3 486 18min

GS-SGMS/ s = 1 0.3 449 16min 0.3 510 20min

GS-SGMS/ s = 5 0.3 313 11min 0.3 320 12min

GS-SGMS/ s = 20 0.3 223 8min 0.3 236 9min

GS-SGMS/ s = 50 0.3 207 8min 0.3 211 8min

GS-SGMS/ s = 200 0.3 191 10min 0.3 186 10min

GS-SGMS/ s = 500 0.3 187 13min 0.3 185 14min
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Table 2.4: Computation results for recovering the modified PolyU logo.

p = 2000 p = 2100

Algorithms/ sample size ∆f NIT time ∆f NIT time

SGM 0.3 472 18min 0.3 495 19min

GS-SGMS/ s = 1 0.3 424 16min 0.3 421 17min

GS-SGMS/ s = 5 0.3 252 10min 0.3 225 9min

GS-SGMS/ s = 20 0.3 193 8min 0.3 188 8min

GS-SGMS/ s = 50 0.3 168 7min 0.3 163 7min

GS-SGMS/ s = 200 0.3 153 9min 0.3 149 8min

GS-SGMS/ s = 500 0.3 150 12min 0.3 143 11min

p = 2200 p = 2300

SGM 0.3 520 22min 0.3 509 23min

GS-SGMS/ s = 1 0.3 461 20min 0.3 397 17mim

GS-SGMS/ s = 5 0.3 252 11min 0.3 244 11min

GS-SGMS/ s = 20 0.3 183 8min 0.3 173 8min

GS-SGMS/ s = 50 0.3 158 7min 0.3 148 7min

GS-SGMS/ s = 200 0.3 141 8min 0.3 135 8min

GS-SGMS/ s = 500 0.3 138 11min 0.3 131 11min
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Figure 2.8: Convergence in objective values of the SGM and the GS-SGMS for recovering

the modified MIT logo as p = 1500.
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Figure 2.9: Convergence in iterates of the SGM and the GS-SGMS for recovering the

modified MIT logo as p = 1500.
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Figure 2.10: Convergence in objective values of the SGM and the GS-SGMS for recov-

ering the modified PolyU logo as p = 2200.
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Figure 2.11: Convergence in iterates of the SGM and the GS-SGMS for recovering the

modified PolyU logo as p = 2200.
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Chapter 3

Dual Subgradient Method Based on

Gradient Sampling Technique

3.1 Introduction

Lagrangian relaxation and duality are powerful and effective tools for solving convex

optimization problems and providing lower bounds on the optimal value of nonconvex

optimization problems. Subgradient methods are popular and efficent techniques, used

in this framework, to achieve dual optimal solutions and lower bounds on the primal

optimal value. By combining the subgradient method with the dual approach, the dual

subgradient method was proposed in Shor [106] and widely studied in [67, 78, 82, 104].

In these works, Sherali and Choi [104] focused on the linear programming, while Mijan-

gos [78], Larsson [67], and Nedić and Ozdaglar [82] investigated the convex programming

applied the dual subgradient method to solve the convex resource allocation problems

in large-scale networks.

In this chapter, we consider the following convex constrained optimization problem

min f(x)

s.t. g(x) ≤ 0,

x ∈ X,

(3.1.1)

where f : Rn → R is a convex function, g = (g1, · · · , gm)T with each gi : Rn → R being

convex, and X is a closed and convex subset of Rn. We denote the optimal solution set
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and the optimal value of problem (3.1.1) respectively by X∗ and f∗.

Arising from the Lagrangian relaxation of the inequality constraints g(x) ≤ 0, the

dual problem of (3.1.1) is given by

max q(u)

s.t. u ∈ Rm
+ ,

(3.1.2)

where q : Rm
+ → R is the dual function defined by

q(u) = inf
x∈X

{f(x) + ⟨u, g(x)⟩}. (3.1.3)

We refer to the vector u ∈ Rm
+ in (3.1.3) as a multiplier, and denote the dual optimal

solution set and the dual optimal value of dual problem (3.1.2) respectively by U∗ and

q∗.

Due to the formula of the dual function (cf. (3.1.3)), q is a concave function on Rm

and its subgradients at u are related to primal vectors xu, which attain the minimum

in (3.1.3). Formally, the subdifferential of q at u ≥ 0 is given by

∂q(u) = conv{g(xu), xu ∈ Xu}, (3.1.4)

where Xu is the optimal solution set of the problem of minimizing f(x)+ ⟨u, g(x)⟩ over
x ∈ X, i.e.,

Xu = {xu ∈ X, q(u) = f(xu) + ⟨u, g(xu)⟩}.

Incorporating the GS technique into the dual subgradient method, we propose a

dual subgradient method based on the GS technique (in short, GS-DSGM) to solve

dual problem (3.1.2). The main idea of the GS-DSGM is to construct the subgradient

information in the dual space via the GS technique, that is to approach the subgradient

by the convex combination of gradients at random nearby points. After the subgradi-

ent iteration along the constructed direction, the resulting point is projected onto the

nonnegative orthant Rm
+ and then performed a perturbation step.

The main objective of this chapter is to investigate convergence properties of the

GS-DSGM by using both the constant and divergent stepsize rules, and to recover the

approximate primal optimal solutions by using an averaging scheme. We indicate that

the sequence generated by the GS-DSGM converges to the dual optimal value within the
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tolerance vM2/2, whereM is an upper bound on gradients of the dual function, when a

constant stepsize v is used (see Theorem 3.3.1), and converges to the dual optimal value

by using the divergent stepsize rule (see Theorem 3.3.2), with probability 1. Moreover,

we use an averaging scheme to recover primal optimal solutions by forming running

averages of the primal vectors, which are generated by evaluating gradients of the dual

function. Focusing on using the constant stepsize rule and the constant sampling radius,

we provide the upper and lower bounds on the primal function value at the averaged

vector, and give the upper and lower bounds on the amount of constraint violation at

the averaged vector, per iteration.

This chapter is organized as follows. In Section 3.2, we propose the dual subgradi-

ent method based on the GS technique. In Section 3.3, we demonstrate convergence

properties of the GS-DSGM by using both the constant and divergent stepsize rules.

Finally, in Section 3.4, we recover the approximate primal optimal solutions by using an

averaging scheme and provide bounds on their feasibility violation and primal function

values.

3.2 GS-DSGM Algorithm

In this section, we propose a dual subgradient method based on the gradient sampling

technique (GS-DSGM) to solve dual problem (3.1.2). This work is motivated by the

constrained primal problems, which have a favorable dual problem structure leading to

efficient implementation of dual subgradient methods, and by Remark 2.4.2 that the

perturbation direction in the box constraint case is particularly easy to calculate. The

main idea of the GS-DSGM is to construct the subgradient information in the dual

space via the GS technique and then proceed the iterative process of the subgradient

method. A perturbation step is needed to guarantee each iterate to be an interior point

of Rm
+ . Therefore, the GS-DSGM consists of generating a multiplier sequence {uk}, by

carrying out the subgradient iteration, where the iterative direction is constructed via

random sampling of gradients at nearby points in the dual space, and then projecting

the resulting point onto Rm
+ and finally performing a perturbation step.

In order to facilitate the reading and analysis of the algorithm, we provide a partial
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glossary of the notation, used in the GS-DSGM, and present the GS-DSGM algorithm

as follows.

Table 3.1: Notation used in GS-DSGM

k: Number of iterations. s: Sample size.

vk: Stepsize. αk: Perturbation weight.

νki: Unit ball sample. δk: Sampling radius.

uk: Current iterate in dual space. uki: Sampling point in dual space.

D: Points of differentiability. xki: Corresponding vector in primal space.

Gk: Approximate subdifferential. gk: Iterative direction.

λk: Iterative direction weight. u+k : Projection point.

ωk: Perturbation direction.

Dual subgradient method based on the gradient sampling technique(GS-

DSGM)

Step 1. (Initialization)

Start from k = 0, select an initial point u0 ∈ Rm
++ and parameters s, {vk} and

{αk}.

Step 2. (Generate the approximate subdifferential via the GS technique)

Let νk1, · · · , νks be sampled independently and uniformly from B, choose the

sampling radius to satisfy 0 < δk ≤ αk−1, and set

uki = uk + δkνki, i = 1, · · · , s.

If for some i = 1, · · · , s, the point uki ̸∈ D, then STOP; otherwise, set

Gk = conv{g(xk1), · · · , g(xks)},

where xki is the optimal solution of q(uki), i.e.,

xki = argmin
x∈X

{f(x) + ⟨uki, g(x)⟩}.

Choose an arbitrary vector in Gk as the iterative direction, i.e.,

gk =
s∑
i=1

λig(xki),

and go to Step 3.
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Step 3. (Solution update and perturbation)

Compute u+k+1 = max{0, uk+vkgk}, the projection onto the nonnegative orthant

Rm
+ , and then proceed to perturb u+k+1 by an interior point of Rm

+ , i.e.,

uk+1 = (1− αk)u
+
k+1 + αkωk,

where

ωk ∈ {u+k+1 −NRm
+
(u+k+1)} ∩B(u+k+1, 1). (3.2.1)

Set k = k + 1 and go back to Step 2.

Remark 3.2.1 It follows from Remark 2.4.2 that the perturbation direction ωk has the

following analytical formula:

ωk =
sign(u+k+1)− e

√
m

.

Since the dual function q is concave, it is differentiable almost everywhere on Rm
+ .

Thus, by using the same argument as in the proof of Theorem 2.3.1, it is easy to see

that the GS-DSGM will not terminate finitely in Step 2, that is, a sequence of infinite

multipliers {uk} will be generated by the GS-DSGM, with probability 1.

3.3 Convergence Analysis

In this section, we investigate convergence properties of the GS-DSGM.

Since the dual function q is a concave function, it follows from Lemmas 2.3.1-2.3.2

that the iterative direction gk ∈ Gk, generated in Step 2, is an approximate subgradient

of q at uk. Indeed, when uki ∈ D, it follows from (3.1.4) that g(xki) is a gradient (sub-

gradient) of f at uki. By using Lemma 2.3.1, we obtain that g(xki) is an ϵki-subgradient

of q at uk with ϵki = q(uki) − q(uk) − ⟨g(xki), δkνki⟩. Furthermore, from Lemma 2.3.2,

it follows that the convex combination gk =
s∑
i=1

λig(xki) is an ϵk-subgradient of q at uk

with ϵk =
s∑
i=1

λiϵki, that is,

⟨gk, u− uk⟩ ≥ q(u)− q(uk)− ϵk

= q(u)−
s∑
i=1

λiq(uki) +
s∑
i=1

λi⟨g(xki), δkνki⟩,∀u ∈ Rm
+ .

(3.3.1)
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Throughout the rest of this section, we use the following assumption to investigate

convergence properties of the GS-DSGM.

Assumption 3.3.1 The constraint set X in the primal problem (3.1.1) is bounded.

Since constraint functions gi are all convex on Rm, they are all continuous on Rm.

Thus, the boundedness of X implies that the gradient of q is uniformly bounded on

Rm
+ , i.e.,

∥gki∥ ≤M, ∀k, i ∈ N, with M := max
x∈X

∥g(x)∥. (3.3.2)

In the convergence analysis, we start with the basic inequality, which shows a sig-

nificant property of the multiplier sequence {uk}.

Lemma 3.3.1 Suppose Assumption 3.3.1 holds and the multiplier sequence {uk} is

generated by the GS-DSGM. Then for all u ∈ Rm
+ , we have

∥uk+1 − u∥2 ≤ ∥uk − u∥2 + 2vk
(
q(uk)− q(u)

)
+ 4vkδkM + v2kM

2 + α2
k. (3.3.3)

Proof. According to the GS-DSGM, for all u ∈ Rm
+ , we have

∥uk+1 − u∥2 = ∥(1− αk)u
+
k+1 + αkωk − u∥2

= ∥u+k+1 − u− αk(u
+
k+1 − ωk)∥2

= ∥u+k+1 − u∥2 − 2αk⟨u+k+1 − u, u+k+1 − ωk⟩+ α2
k∥u+k+1 − ωk∥2.

(3.3.4)

Due to the chosen rule (3.2.1), ωk ∈ u+k+1 −NRm
+
(u+k+1) implies that

⟨u+k+1 − u, u+k+1 − ωk⟩ ≥ 0, ∀u ∈ Rm
+ ,

and ωk ∈ B(u+k+1, 1) implies that ∥u+k+1 − ωk∥ ≤ 1. Hence, the relation (3.3.4) reduces

to

∥uk+1 − u∥2 ≤ ∥u+k+1 − u∥2 + α2
k

≤ ∥uk + vkgk − u∥2 + α2
k

= ∥uk − u∥2 + 2vk⟨gk, uk − u⟩+ v2k∥gk∥2 + α2
k, ∀u ∈ Rm

+ ,

(3.3.5)

where the second inequality follows from the nonexpansive property of the projection

operator.
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It follows from the preceding declaration that gk is an ϵk-subgradient of q at uk.

Thus, by using (3.3.1) and (3.3.5), we obtain

∥uk+1 − u∥2 ≤ ∥uk − u∥2 + 2vk

( s∑
i=1

λiq(uki)− q(u)
)

+2vk

( s∑
i=1

λi⟨g(xki), δkνki⟩
)
+ v2k∥gk∥2 + α2

k

≤ ∥uk − u∥2 + 2vk

( s∑
i=1

λiq(uki)− q(u)
)

(3.3.6)

+2vkδkM + v2kM
2 + α2

k

≤ ∥uk − u∥2 + 2vk
(
q(uk)− q(u)

)
+2vk

s∑
i=1

λi
(
q(uki)− q(uk)

)
+ 2vkδkM + v2kM

2 + α2
k

≤ ∥uk − u∥2 + 2vk
(
q(uk)− q(u)

)
+2vk

( s∑
i=1

λi⟨g(xk), δkνki⟩
)
+ 2vkδkM + v2kM

2 + α2
k

≤ ∥uk − u∥2 + 2vk
(
q(uk)− q(u)

)
+ 4vkδkM + v2kM

2 + α2
k,

where the second and fifty inequalities both follow from the bound on gradients M and

sampling points in the unit ball, and the fourth inequality follows from q(uki)−q(uk) ≤
⟨g(xk), δkνki⟩. Thus, we arrive at the basic inequality (3.3.3).

Constant stepsize rule

The convergence analysis of the GS-DSGM is similar to that of the GS-SGM in Section

2.3. We first describe the convergence property of the GS-DSGM by using the constant

stepsize rule.

Theorem 3.3.1 Let Assumption 3.3.1 hold. Suppose the multiplier sequence {uk} is

generated by the GS-DSGM with the constant stepsize rule, δk ≤ αk, and
∞∑
k=0

α2
k < +∞.

Then, lim
k→∞

q(uk) ≥ q∗ − vM2/2 with probability 1.

Proof. By the proof of Theorem 2.3.1, GS-DSGM does not terminate finitely in Step 2

with probability 1. We now focus on the case when the GS-DSGM generates a sequence

of infinite multipliers {uk}.
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According to the GS-DSGM and Lemma 3.3.1 with vk ≡ v, for each u ∈ Rm
+ , we

have

2v
(
q(u)− q(uk)

)
≤ ∥uk − u∥2 − ∥uk+1 − u∥2 + 4vδkM + v2M2 + α2

k. (3.3.7)

Summing (3.3.7) over k = 0, · · · , n, we obtain

q(u)−

n∑
k=0

q(uk)

n
≤ ∥u0 − u∥2

2nv
+ 2M

n∑
k=0

δk

n
+
vM2

2
+

n∑
k=0

α2
k

2nv
. (3.3.8)

By the assumptions,
∞∑
k=0

α2
k < +∞ implies lim

k→∞
αk = 0. Furthermore, due to δk ≤ αk,

we have lim
k→∞

δk = 0 and hence lim
n→∞

∑n
k=0 δk
n

= 0 (cf. Lemma 1.3.5). Thus, by using

Lemma 1.3.5, the relation (3.3.8) implies

lim
k→∞

q(uk) ≥ lim
k→∞

n∑
k=1

q(uk)

n

≥ q(u)− vM2

2
,∀u ∈ Rm

+ .

Therefore, we arrive at that lim
k→∞

q(uk) ≥ q∗ − vM2/2 with probability 1.

Divergent stepsize rule

The corresponding convergence result is indicated in the following theorem by using

the divergent stepsize rule.

Theorem 3.3.2 Let Assumption 3.3.1 hold. Suppose the multiplier sequence {uk} is

generated by the GS-DSGM with divergent stepsize rule (1.1.6), δk ≤ αk, and
∞∑
k=0

α2
k <

+∞. Then, lim
k→∞

q(uk) = q∗ with probability 1.

Proof. By the proof of Theorem 2.3.1, GS-DSGM does not terminate finitely in Step 2

with probability 1. We now focus on the case when the GS-DSGM generates a sequence

of infinite multipliers {uk}.

According to the GS-DSGM and Lemma 3.3.1, for each u ∈ Rm
+ , we have

2vk
(
q(u)− q(uk)

)
≤ ∥uk − u∥2 − ∥uk+1 − u∥2 + 4vkδkM + v2kM

2 + α2
k. (3.3.9)
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Summing (3.3.9) over k = 0, · · · , n, we obtain

q(u)−

n∑
k=0

vkq(uk)

n∑
k=0

vk

≤ ∥u0 − u∥2

2
n∑
k=0

vk

+ 2M

n∑
k=0

vkδk

n∑
k=0

vk

+

M2
n∑
k=0

v2k +
n∑
k=0

α2
k

2
n∑
k=0

vk

. (3.3.10)

Similar to the proof of Theorem 2.3.2, by the assumptions of parameter rules, we obtain

the following results: 

lim
n→∞

∥u0−u∥2
n∑

k=0

vk

= 0,

lim
n→∞

n∑
k=0

vkδk

n∑
k=0

vk

= 0,

lim
n→∞

M2
n∑

k=0
v2k+

n∑
k=0

α2
k

n∑
k=0

vk

= 0.

Substituting the above three relations into (3.3.10), we obtain

lim
k→∞

q(uk) ≥ lim
k→∞

n∑
k=1

vkq(uk)

n∑
k=1

vk

≥ q(u),∀u ∈ Rm
+ ,

where the first inequality follows from Lemma 1.3.5. Therefore, we arrive at that

lim
k→∞

q(uk) = q∗ with probability 1.

3.4 Approximate Primal Optimal Solutions

We have demonstrated the convergence property of the sequence q(uk) in the preceding

Theorems. However, a defect of the GS-DSGM is that it cannot directly generate the

primal optimal solution, which is inherited from the dual subgradient method.

In this section, to conquer this obstacle, we use an averaging scheme to recover

the approximate optimal solutions of problem (3.1.1). Using the averaging scheme

to recover the primal optimal solution was proposed by Nemirovskii and Yudin [84]

and then developed in many works (see e.g. [67, 104, 82]). Due to the convexity of

the objective function and constraint functions, the averaging scheme can reduce the

primal function value and the amount of constraint violation at primal vectors.
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In view of simplicity and practical significance, we focus on the constant stepsize,

the constant sampling radius and the constant perturbation weight rules throughout

this section, i.e.,

vk ≡ v, αk ≡ α, and δk ≡ α.

Thus, for all u ∈ Rm
+ , the basic inequality (3.3.6) reduces to

∥uk+1 − u∥2 ≤ ∥uk − u∥2 + 2v
( s∑
i=1

λiq(uki)− q(u)
)
+ (vM + α)2. (3.4.1)

For sequences {νki}, {uki}, {xki} generated in the GS-DSGM, we denote

ν̄k :=
s∑
i=1

λiνki, ūk :=
s∑
i=1

λiuki, and x̄k :=
s∑
i=1

λixki, (3.4.2)

where {λk} is the iterative direction weight, used in the GS-DSGM.

In the averaging scheme, the average of vectors x̄0, · · · , x̄k−1 is defined by

x̂k =
1

k

k−1∑
j=0

x̄j, ∀k ≥ 1. (3.4.3)

Since X is convex and xki ∈ X for all i and k, x̄k lies in X and thus the averaged

vector x̂k lies in X. However, the averaged vector x̂k may not satisfy the constraint

inequalities g(x) ≤ 0, and therefore, it can be primal infeasible.

In the following theorem, we provide the upper and lower bounds on the amount of

constraint violation and the primal function value at averaged vector per iteration.

Theorem 3.4.1 Let Assumption 3.3.1 hold. Suppose the multiplier sequence {uk} is

generated by the GS-DSGM, and {x̂k} is the sequence of averaged vectors given in

(3.4.3). Then, for all k ≥ 1, the following statements are true:

(i) an upper bound on the amount of constraint violation at the averaged vector x̂k is

given by

∥g(x̂k)+∥ ≤ ∥uk∥
kv

,

(ii) an upper bound on the primal function value at the averaged vector x̂k is given by

f(x̂k) ≤ q∗ +
∥u0∥2

2kv
+

(vM + α)2

2v
,

72



(iii) a lower bound on the primal function value (a lower bound on the amount of

constraint violation) at the averaged vector x̂k is given by

f(x̂k) ≥ q∗ − ∥u∗∥∥g(x̂k)+∥.

Proof.

(i) According to the GS-DSGM, for all k ∈ N, we have

uk+1 = (1− α)u+k+1 + αωk

= u+k+1 + α(ωk − u+k+1)

≥ uk + vgk + α(ωk − u+k+1).

Since gk =
s∑
i=1

λig(xki) and x̄k =
s∑
i=1

λixki (see (3.4.2)), it follows from the convexity

of constraint functions that

vg(x̄k) ≤ vgk

≤ uk+1 − uk − α(ωk − u+k+1),∀k ≥ 0.

Thus,

v
k−1∑
j=0

g(x̄j) ≤ uk − u0 − α
k−1∑
j=0

(ωj − u+j+1)

≤ uk,

where the second inequality holds due to u0 ≥ 0 and ωj − u+j+1 ≥ 0 for all j ∈ N,
which follows from the chosen rule of the perturbation direction (see (3.2.1)).

Since the constraint set X is convex and xki ∈ X for all i and k, we obtain x̄k ∈ X

and thus x̂k ∈ X for all k. Hence, from the convexity of g, it follows that

g(x̂k) ≤ 1

k

k−1∑
j=0

g(x̄j)

≤ uk
kv
, ∀k ≥ 1.

Moreover, due to uk ≥ 0 for all k, we arrive at g(x̂k)
+ ≤ uk/(kv), and hence

∥g(x̂k)+∥ ≤ ∥uk∥
kv

,∀k ≥ 1.
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(ii) Since the objective function is convex and the primal vector xki is a minimizer of

the Lagrangian function f(x) + ⟨uki, g(x)⟩ over X, we obtain

f(x̄k) ≤
s∑
i=1

λif(xki)

=
[ s∑
i=1

λi

(
f(xki) + ⟨uki, g(xki)⟩

)]
−

s∑
i=1

λi⟨uki, g(xki)⟩

=
[ s∑
i=1

λiq(uki)
]
−

s∑
i=1

λi⟨uk + δkνki, g(xki)⟩

=
[ s∑
i=1

λiq(uki)
]
− ⟨uk, gk⟩ − δk

s∑
i=1

λi⟨νki, g(xki)⟩

≤ q∗ + αM − ⟨uk, gk⟩,

where the last inequality follows from q(uki) ≤ q∗, the bound on gradients M and

sampling points in the unit ball. Thus, by the convexity of f and (3.4.3), we have

f(x̂k) ≤ 1
k

k−1∑
j=0

f(x̄j)

≤ q∗ + αM − 1
k

k−1∑
j=0

⟨uj, gj⟩.
(3.4.4)

Next, we estimate the term
k−1∑
j=0

⟨uj, gj⟩ in the last inequality.

By using (3.3.5) with u = 0, we obtain

∥uj+1∥2 ≤ ∥uj∥2 + 2v⟨gj, uj⟩+ v2M2 + α2, ∀j ≥ 0,

that is,

−⟨gj, uj⟩ ≤
∥uj∥2 − ∥uj+1∥2 + v2M2 + α2

2v
,∀j ≥ 0. (3.4.5)

Summing (3.4.5) over j = 0, · · · , k − 1, we obtain

−
k−1∑
j=0

⟨gj, uj⟩ ≤
∥u0∥2 − ∥uk∥2 + kv2M2 + kα2

2v
, ∀k ≥ 1.

Thus, the relation (3.4.4) reduces to

f(x̂k) ≤ q∗ + αM +
∥u0∥2 − ∥uk∥2 + kv2M2 + kα2

2kv

≤ q∗ +
∥u0∥2

2kv
+

(vM + α)2

2v
,∀k ≥ 1.

(iii) Given a dual optimal solution u∗ ∈ U∗, we have

f(x̂k) = f(x̂k) + ⟨u∗, g(x̂k)⟩ − ⟨u∗, g(x̂k)⟩
≥ q∗ − ⟨u∗, g(x̂k)⟩.

(3.4.6)
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Since u∗ ≥ 0 and g(x̂k)
+ ≥ g(x̂k), we obtain

⟨u∗, g(x̂k)⟩ ≤ ⟨u∗, g(x̂k)+⟩
≤ ∥u∗∥∥g(x̂k)+∥.

Thus, the relation (3.4.6) reduces to

f(x̂k) ≥ q∗ − ∥u∗∥∥g(x̂k)+∥.

Theorem 3.4.1 demonstrates that the upper and lower bounds on the amount of

constraint violation ∥g(x̂k)+∥ and the primal value f(x̂k) are available provided if the

upper bounds on the multiplier norms ∥uk∥ and dual optimal solution norms ∥u∗∥ are

given.

In the rest of this section, under the Slater condition, we provide an upper bound

on the multiplier sequence {uk} and then derive the upper and lower bounds on the

amount of constraint violation ∥g(x̂k)+∥ and the primal value f(x̂k). The well-known

Slater condition is described as follows (see e.g. [16, 17, 46]).

Assumption 3.4.1 (Slater condition) There exists a vector x̄ ∈ X such that

gi(x̄) < 0,∀i = 1, · · · ,m.

When it exists, the vector x̄ is called a Slater point.

Under the assumption that f∗ is finite, it is well-known that the Slater condition is a

sufficient condition for a zero duality gap (i.e., f∗ = q∗), as well as, for the existence of a

dual optimal solution (see [16, 17, 46]). Furthermore, the following lemma, cited in [82],

extends the result on the boundedness of the dual optimal solution set under the Slater

condition (see [46]), and shows that the Slater condition guarantees the boundedness

of the superlevel set Ūq(ū) of q, i.e., Ūq(ū) = {u ∈ Rm
+ : q(u) ≥ q(ū)}.

Lemma 3.4.1 ([82, Lemma 1]) Let the Slater condition hold (cf. Assumption 3.4.1).

Then the superlevel set Ūq(ū) is bounded, in particular, we have

max
u∈Ūq(ū)

∥u∥ ≤ 1

γ

(
f(x̄)− q(ū)

)
,

where γ := min
i=1,··· ,m

{−gi(x̄)} and x̄ is a Slater point.
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Restricting ū to u∗ ∈ U∗, it follows from Lemma 3.4.1 that U∗ is nonempty and

bounded, i.e.,

max
u∈U∗

∥u∥ ≤ 1

γ

(
f(x̄)− q∗

)
, (3.4.7)

where γ := min
i=1,··· ,m

{−gi(x̄)} and x̄ is a Slater point.

In the following lemma, we establish the boundedness of the multiplier sequence

{uk} under the bounded constraint set assumption and the Slater condition.

Lemma 3.4.2 Let Assumptions 3.3.1 and 3.4.1 hold. Suppose the multiplier sequence

{uk} is generated by the GS-DSGM. Then, the sequence {uk} is bounded, in particular,

we have

∥uk∥ ≤ 2

γ

(
f(x̄)− q∗

)
+max

{
∥u0∥,

1

γ

(
f(x̄)− q∗

)
+

(vM + α)2

2vγ
+ vM + 2α

}
, (3.4.8)

where γ = min
i=1,··· ,m

{−gi(x̄)} and x̄ is a Slater point.

Proof. Given an arbitrary u∗ ∈ U∗, we first claim that for all k ≥ 0 there holds

∥uk − u∗∥ ≤ max
{
∥u0 − u∗∥, ∥u∗∥+ 1

γ

(
f(x̄)− q∗

)
+

(vM + α)2

2vγ
+ vM + 2α

}
. (3.4.9)

We prove the relation (3.4.9) by induction. Note that the relation (3.4.9) holds for

k = 0. Assuming that the relation (3.4.9) holds for some k ≥ 0, we now consider the

following two cases.

Case 1. If
s∑
i=1

λiq(uki) ≥ q∗− (vM+α)2

2v
. According to the GS-DSGM, by using (3.2.1)

and the nonexpansive property of the projection operator, we obtain

∥uk+1 − u∗∥ = ∥(1− α)u+k+1 + αωk − u∗∥
= ∥u+k+1 − u∗ − α(u+k+1 − ωk)∥
≤ ∥u+k+1 − u∗∥+ α∥u+k+1 − ωk∥
≤ ∥uk + vgk − u∗∥+ α

≤ ∥uk∥+ vM + ∥u∗∥+ α

= ∥ūk − αν̄k∥+ ∥u∗∥+ vM + α

= ∥ūk∥+ ∥u∗∥+ vM + 2α,

(3.4.10)

where the third equality follows from ūk = uk + δkν̄k. By the concavity of q, we have

q(ūk) ≥
s∑
i=1

λiq(uki)

≥ q∗ − (vM+α)2

2v
.
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Thus, by using Lemma 3.4.1, we have

∥ūk∥ ≤ 1

γ

(
f(x̄)− q∗

)
+

(vM + α)2

2vγ
,

and hence, the relation (3.4.10) implies

∥uk+1 − u∗∥ ≤ ∥u∗∥+ 1

γ

(
f(x̄)− q∗

)
+

(vM + α)2

2vγ
+ vM + 2α.

Therefore, the relation (3.4.9) holds for k + 1 in this case.

Case 2. If
s∑
i=1

λiq(uki) < q∗ − (vM+α)2

2v
. From the basic inequality (3.4.1), it follows

that

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 + 2v
( s∑
i=1

λiq(uki)− q∗
)
+ (vM + α)2

< ∥uk − u∗∥2 − (vM + α)2 + (vM + α)2

= ∥uk − u∗∥2.

By induction, it follows that the relation (3.4.9) holds for k + 1 as well. Therefore, the

relation (3.4.9) holds for all k ≥ 0.

From the relation (3.4.9), for all k ≥ 0, we arrive at

∥uk+1∥ ≤ ∥uk+1 − u∗∥+ ∥u∗∥
≤ max

{
∥u0 − u∗∥, ∥u∗∥+ 1

γ

(
f(x̄)− q∗

)
+ (vM+α)2

2vγ
+ vM + 2α

}
+ ∥u∗∥

≤ max
{
∥u0∥+ ∥u∗∥, ∥u∗∥+ 1

γ

(
f(x̄)− q∗

)
+ (vM+α)2

2vγ
+ vM + 2α

}
+ ∥u∗∥

= 2∥u∗∥+max
{
∥u0∥, 1γ

(
f(x̄)− q∗

)
+ (vM+α)2

2vγ
+ vM + 2α

}
≤ 2

γ

(
f(x̄)− q∗

)
+max

{
∥u0∥, 1γ

(
f(x̄)− q∗

)
+ (vM+α)2

2vγ
+ vM + 2α

}
,

(3.4.11)

where the last inequality follows from (3.4.7). Thus, we obtain an upper bound on the

multiplier sequence as (3.4.8).

It is worth mentioning that the upper bound of the multiplier sequence {uk} depends
on parameters in the GS-DSGM and problem data only. In particular, this upper bound

(see (3.4.8)) is given explicitly in terms of the norm of initial point u0, the stepsize v,

the sampling radius α (perturbation weight), the bound on gradients M , the Slater

point x̄ and the dual optimal value q∗.

Under the bounded constraint set assumption and the Slater condition, applying

relations (3.4.7) and (3.4.8) to Theorem 3.4.1, we provide the upper and lower bounds
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on the amount of constraint violation ∥g(x̂k)+∥ and the primal function value f(x̂k).

Thus, we strengthen Theorem 3.4.1 as follows.

Theorem 3.4.2 Let Assumptions 3.3.1 and 3.4.1 hold. Suppose the multiplier sequence

{uk} is generated by the GS-DSGM, and {x̂k} is the sequence of averaged vectors given

in (3.4.3). Also, define

Q∗ :=
2

γ

(
f(x̄)− q∗

)
+max

{
∥u0∥,

1

γ

(
f(x̄)− q∗

)
+

(vM + α)2

2vγ
+ vM + 2α

}
. (3.4.12)

Then, for all k ≥ 1, the following statements are true:

(i) an upper bound on the amount of constraint violation at the averaged vector x̂k is

given by

∥g(x̂k)+∥ ≤ Q∗

kv
,

(ii) an upper bound on the primal function value at the averaged vector x̂k is given by

f(x̂k) ≤ f∗ +
∥u0∥2

2kv
+

(vM + α)2

2v
,

(iii) a lower bound on the primal function value (a lower bound on the amount of

constraint violation) at the averaged vector x̂k is given by

f(x̂k) ≥ f∗ −
1

γ

(
f(x̄)− q∗

)
∥g(x̂k)+∥.

Proof.

(i) Under assumptions 3.3.1 and 3.4.1, it follows from Lemma 3.4.2 that

∥uk∥ ≤ Q∗, ∀k ∈ N.

Applying Theorem 3.4.1(i), for all k ≥ 1, we arrive at

∥g(x̂k)+∥ ≤ Q∗

kv
.

(ii) It is well-known that the Slater condition is sufficient for a zero duality gap, i.e.,

f∗ = q∗. Thus, from Theorem 3.4.1(ii), it follows that

f(x̂k) ≤ f∗ +
∥u0∥2

2kv
+

(vM + α)2

2v
.
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(iii) It follows from the Slater condition that the dual optimal set is nonempty and

there is a zero duality gap, i.e., f∗ = q∗. Also, it follows from (3.4.7) that

∥u∗∥ ≤ 1

γ

(
f(x̄)− q∗

)
.

Thus, by applying Theorem 3.4.1(iii), we arrive at

f(x̂k) ≥ f∗ −
1

γ

(
f(x̄)− q∗

)
∥g(x̂k)+∥.

For the sake of simplicity, we choose the initial point in the dual space near the

origin. Thus, the upper bound Q∗ in Theorem 3.4.2(i) reduces to

Q∗ =
3

γ

(
f(x̄)− f∗

)
+

(vM + α)2

2vγ
+ vM + 2α, (3.4.13)

and the estimate in Theorem 3.4.2(ii) reduces to

f(x̂k) ≤ f∗ +
(vM + α)2

2v
. (3.4.14)

Applying the preceding two relations, we can estimate the order of the number of

iterations required to achieve an both ϵ-feasible and ϵ-optimal solution.

In particular, to achieve the ϵ-optimality, from (3.4.14), it is to satisfy

ϵ ≥ (vM + α)2/(2v)

≥ (4vαM)/(2v)

= 2αM.

Thus, the sampling radius is required to satisfy α ≤ ϵ/(2M). We do not need any

restriction on the value of stepsize, which is a surprising result and different from the

corresponding result in [82].

Suppose the sampling radius is proportional to the stepsize, i.e., α = lv. In this

case, to achieve the ϵ-optimality, the stepsize is required to satisfy v ≤ 2ϵ/(M + l)2.

Furthermore, to achieve the ϵ-feasibility, from (3.4.13), it is to satisfy

ϵ ≥ Q∗

kv

=
3

kvγ

(
f(x̄)− f∗

)
+

(vM + α)2

2kv2γ
+
M

k
+

2α

kv
,

=
3

kvγ

(
f(x̄)− f∗

)
+

(M + l)2

2kγ
+
M + 2l

k
.
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Thus, the number of iterations should satisfy

k ≥ 3

vγϵ

(
f(x̄)− f∗

)
+

(M + l)2

2γϵ
+
M + 2l

ϵ

≥ 3

2γϵ2
(M + l)2

(
f(x̄)− f∗

)
+

(M + l)2

2γϵ
+
M + 2l

ϵ
,

where the last inequality follows from v ≤ 2ϵ/(M+ l)2 (ϵ-optimality). Hence, to achieve

an both ϵ-feasible and ϵ-optimal solution, the number of the iterations is of the order

1/ϵ2, which is typical for subgradient methods.

The significance of the averaging scheme can be interpreted as follows. It follows

from Theorem 3.4.2(i) that the amount of constraint violation ∥g(x̂k)+∥ diminishes to

zero as the number of iterations k tends to infinity. From the results in Theorem 3.4.2,

we have that the limit of the function value f(x̂k) lies in the range [f∗, f∗ + (vM +

α)2/(2v)].
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Part II

Subgradient Methods for

Quasi-Convex Programming
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Chapter 4

Approximate Quasi-Subgradient

Method

4.1 Introduction

Subgradient methods are popular and powerful techniques used to minimize the nondif-

ferentiable convex function. Motivated by practical reasons, approximate subgradient

methods (also called ϵ-subgradient methods) were widely studied in [2, 36, 46, 61, 68,

106]. Kiwiel [61] proposed a unified convergence framework for approximate subgradi-

ent methods. The author presented convergence in both objective values and iterates,

and gave efficiency estimates, using both the diminishing and nonvanishing stepsize

rules. Larsson et al. [68] proposed and analyzed conditional ϵ-subgradient methods

for solving convex constrained optimization problems and convex-concave saddle-point

problems. In order to improve conditional subgradient methods, D’Antonios and Fran-

gioni [36] combined the deflection and the conditional subgradient technique into one

iteration, and investigated the unified convergence analysis for the deflected conditional

ϵ-subgradient method, using both the dynamic and diminishing stepsize rules. Apply-

ing the dual approach, Mijangos [78] studied the approximate dual subgradient method

to solve constrained network flow problems. Furthermore, Auslender and Teboulle

[2] proposed and developed an interior ϵ-subgradient method for convex constrained

optimization problems over polyhedral sets, in particular over Rn
+, via replacing the
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Euclidean distance function by a logarithmic-quadratic distance-like function.

Besides errors in approximate subgradient, the issue of noise on subgradient meth-

ods has been studied for convex constrained optimization problems. Polyak [93, 94] first

studied the effect of noise, which was assumed to be deterministic and bounded, on sub-

gradient methods for convex programming. Polyak presented the convergence property

of the subgradient method with noise, using both the diminishing and Shor-type (i.e.,

vk = αvk, where α > 0 and 0 < v < 1) stepsize rules. A interesting conclusion is that

the sequence exactly converges to the optimal solution when the objective function has

a unique sharp minimum and satisfies a linear growth property, even if the noise is

nonvanishing.

Recently, Nedić and Bertsekas [81] studied the influence of errors and noise on sub-

gradient methods for convex constrained optimization problems. When the constraint

set is compact or the objective function had a set of weak sharp minima (see [28, 91]),

the authors established convergence to the optimal value within some tolerance, which

is expressed in terms of errors and noise, under the bounded subgradient assumption.

There are numerous papers in the subgradient method literature focusing on con-

vex optimization problems. To meet much broader class of problems, Gasimov [40]

and Burachik et al. [23, 24] proposed and developed an exact/inexact modified dual

subgradient algorithm for a nonconvex optimization problem with equality constraints

by virtue of a sharp augmented Lagrangian. Moreover, Kiwiel [60] studied convergence

properties and efficiency estimates of the exact quasi-subgradient method to minimize

a upper semi-continuous and quasi-convex function, using the diminishing stepsize rule.

In this chapter, we focus on an inexact subgradient algorithm, which we also call

the approximate quasi-subgradient method (in short, AQSGM), for the following quasi-

convex optimization problem:

min f(x)

s.t. x ∈ X,
(4.1.1)

where f : Rn → R is a quasi-convex function, and the constraint set X is nonempty,

closed and convex. We denote the optimal solution set and the optimal value of problem

(4.1.1) respectively by X∗ and f∗, anddd assume that X∗ is nonempty and compact.

Inspired by the idea in [81, 93, 94] and references therein, we investigate the effect

83



of inexact terms, including both computation errors and noise, on the AQSGM. The

computation errors, which give rise to the ϵ-subgradient, is inevitable in computing

process. On the other hand, the noise stems from practical considerations and applica-

tions, and is manifested in inexact computation of subgradients. Considering a generic

inexact subgradient algorithm for the quasi-convex optimization problem (4.1.1) and

assuming the inexact terms are deterministic and bounded, we establish convergence

properties in both objective values and iterates with the tolerance given explicitly in

terms of errors and noise. We also give finite convergence to the approximate optimal

value and efficiency estimates of iterates.

Our investigation is divided into two cases: (i) X is compact and (ii) X is noncom-

pact. When X is compact, we assume the Hölder condition of order p > 0, instead of

the upper semi-continuity of the objective function used in [60], to obtain convergence

properties in objective values (see Theorems 4.3.1 and 4.3.2) and finite convergence (see

Theorems 4.3.3 and 4.3.3). We give Examples 4.3.3-4.3.4 to illustrate that the Hölder

condition and the upper semi-continuity are independent of each other, and show that

the Hölder condition of order 1 is equivalent to the bounded subgradient assumption,

used in [81], for a convex function (see Lemma 4.3.1). Moreover, we describe the con-

vergence property in iterates (see Theorem 4.3.5), which are absent in [81], although

we need the additional assumption of the upper semi-continuity of the objective func-

tion. Different from this theorem, the lower semi-continuity of the objective function is

assumed in [61] to prove convergence in iterates of subgradient method for convex op-

timization. When X is noncompact, we need to assume an additional generalized weak

sharp minima condition (see Assumption 4.4.1). This condition extends the concept of

weak sharp minima in [81] and is presented by using dist(x,X∗), the distance of the

decision variable x from X∗.

We also investigate the quantification of the effect of errors and noise by using both

the constant and diminishing stepsize rules, while only the diminishing stepsize rule

is considered in studying convergence properties and efficiency estimates of an exact

quasi-subgradient method in Kiwiel [60].

We also illustrate the AQSGM on two numerical experiments, including the frac-

tional programming and large-scale minimax linear fractional programming. The nu-

merical experiments show that the exact quasi-subgradient method arrives at a bet-
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ter solution in fewer number of iterations comparing with the level function method

proposed by Xu [109] on small-scale problems, and that the AQSGM is suitable for

large-scale problems. We also indicate the sensitivity of inexact terms, which coincides

with the convergence results in this Chapter.

This chapter is organized as follows. In Section 4.2, we present some preliminaries

of the quasi-subdifferential theory and the AQSGM algorithm, which is to be investi-

gated in this chapter. In Section 4.3, we demonstrate convergence properties in both

objective values and iterates, and finite convergence behavior of the AQSGM when the

constraint set X is compact. In Section 4.4, we describe convergence behavior in both

objective values and iterates and finite convergence when the objective function satisfies

a generalized weak sharp minima condition over a noncompact set X. Finally, Section

4.5 gives the efficiency estimates and Section 4.6 illustrates some numerical results.

4.2 AQSGM Algorithm

Preliminaries of quasi-subdifferential theory

There are many different types of subdifferentials, such as Clarke-Rockafellar subdif-

ferential, Dini subdifferential, Fréchet subdifferential and so on (see [7] and references

therein). They are the same for convex functions, but different for nonconvex functions.

Here, we introduce the Greenberg-Pierskalla subdifferential, defined by Greenberg and

Pierskalla [43], as follows.

Definition 4.2.1 (see [43]) The z-quasi-conjugate of f is a function f ∗
z : Rn → R̄,

defined by

f ∗
z (x) = z − inf{f(y) : ⟨x, y⟩ ≥ z}.

It is recalled in [43, Theorem 1] that the z-quasi-conjugate function provides a

lower bound for the corresponding convex conjugate function, and indeed, the convex

conjugate function is the supremum of the z-quasi-conjugates over z.
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Definition 4.2.2 (see [43]) A Greenberg-Pierskalla subgradient of f at x is a vector

g ∈ Rn such that

f(x) + f ∗
⟨g,x⟩(g) = ⟨g, x⟩. (4.2.1)

The set of Greenberg-Pierskalla subgradients of f at x is called the Greenberg-Pierskalla

subdifferential of f at x and is denoted by ∂∗f(x).

The following proposition gives an equivalent formula and some important properties

of the Greenberg-Pierskalla subdifferential.

Proposition 4.2.1 ([43, Theorem 6]) The following statements are true:

(i) ∂∗f(x) = {g : ⟨g, y − x⟩ < 0, ∀y ∈ Sf (x)}, where Sf (x) is the strict sublevel set,

defined by Sf (x) = {y ∈ Rn : f(y) < f(x)},

(ii) ∂∗f(x) is a convex cone,

(iii) 0 ∈ ∂∗f(x) if and only if x ∈ argmin f .

Unfortunately, different from traditional subdifferentials, the Greenberg-Pierskalla

subdifferential of f is not a closed set. Thus, in this chapter, following [46], we define

the following closed set, which contains the closure of ∂∗f(x), instead as the quasi-

subdifferential, and use it in the inexact subgradient method.

Definition 4.2.3 The quasi-subdifferential of f at x is defined by

∂̄∗f(x) = {g : ⟨g, y − x⟩ ≤ 0, ∀y ∈ Sf (x)}. (4.2.2)

When f is convex, the quasi-subdifferential coincides with the convex cone hull of

the convex subdifferential (i.e., ∂̄∗f(x) = cone(∂f(x)), see [46, Chapter VI, Theorem

1.3.5]), and thus the inexact subgradient method (4.2.5) reduces to a normalized version

of inexact subgradient method in [81]. When f is quasi-convex, the existence and rela-

tionship between the Greenberg-Pierskalla subdifferential and the quasi-subdifferential

are described in the following lemma.
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Lemma 4.2.1 If f is quasi-convex on Rn, then ∂̄∗f(x) \ {0} ̸= ∅. In addition, if f is

upper semi-continuous on Rn, then ∂∗f(x) ̸= ∅ and ∂̄∗f(x) coincides with the closure

of ∂∗f(x), i.e., ∂̄∗f(x) = ∂∗f(x) ∪ {0}.

Proof. If Sf (x) = ∅, then ∂̄∗f(x) = ∂∗f(x) = Rn and the conclusions hold automat-

ically. Now suppose Sf (x) ̸= ∅. Since the convex sets {x} and Sf (x) are disjoint, it

follows from Lemma 1.3.2 that there exists a proper hyperplane separation, i.e., there

exists a vector g ̸= 0 such that

sup
y∈Sf (x)

⟨g, y⟩ ≤ ⟨g, x⟩ and inf
y∈Sf (x)

⟨g, y⟩ < ⟨g, x⟩.

Thus, the vector g is a nonzero vector in ∂̄∗f(x). For the second conclusion, see [60,

Lemma 3].

The above lemma shows that the existence of nonzero quasi-subgradient only re-

quires the quasi-convexity. Hence, throughout the rest of this chapter, we assume that

the objective function is quasi-convex. In particular, we do not assume the upper semi-

continuity of the objective function, which is used in [60], unless otherwise specified.

Motivated by practical reasons, relaxing (4.2.1) by f(x) + f∗
⟨g,x⟩(g) ≤ ⟨g, x⟩ + ϵ, we

define the ϵ-quasi-subdifferential (ϵ > 0) as follows.

Definition 4.2.4 Let f : Rn → R be a quasi-convex function. The ϵ-quasi-subdifferential

of f at x is defined by

∂̄∗ϵ f(x) = {g : ⟨g, y − x⟩ ≤ 0,∀y ∈ Sf,f(x)−ϵ}, (4.2.3)

where Sf,f(x)−ϵ = {y ∈ Rn : f(y) < f(x)− ϵ}.

It follows from (4.2.3) that the ϵ-quasi-subdifferential is a closed and convex cone.

Furthermore, the following proposition shows some basic properties and calculus rules

of the ϵ-quasi-subdifferential.

Proposition 4.2.2 Let f : Rn → R be a quasi-convex function. The following state-

ments are true:
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(i) ∂̄∗ϵ f(x) ⊂ ∂̄∗ϵ′f(x), whenever ϵ ≤ ϵ′,

(ii) ∂̄∗f(x) =
∩
ϵ>0

∂̄∗ϵ f(x) [= lim
ϵ↓0

∂̄∗ϵ f(x)],

(iii) for the function h(x) = f(x) + r, then ∂̄∗ϵh(x) = ∂̄∗ϵ f(x),

(iv) for the function h(x) = αf(x) and α > 0, then ∂̄∗ϵh(x) = ∂̄∗ϵ/αf(x),

(v) for the function h(x) = f(αx) and α ̸= 0, then ∂̄∗ϵh(x) = ∂̄∗ϵ f(αx),

(vi) more generally, if A is an invertible n×n matrix, then ∂̄∗ϵ (f ◦A)(x) = AT ∂̄∗ϵ f(Ax),

(vii) for the function h(x) = f(x+ x0), then ∂̄
∗
ϵh(x) = ∂̄∗ϵ f(x+ x0),

(viii) if f1 ≤ f2 and f1(x0) = f2(x0), then ∂̄
∗
ϵ f1(x0) ⊂ ∂̄∗ϵ f2(x0).

Proof. All statements follow easily from the definition (4.2.3) and elementary calculus

rules. Below, we give the proofs for (ii) and (vi), which may need some explanations.

(ii) From (i) and [98, Exercise 4.3], we obtain lim
ϵ↓0

∂̄∗ϵ f(x) =
∩
ϵ>0

cl(∂̄∗ϵ f(x)) =
∩
ϵ>0

∂̄∗ϵ f(x).

Given g ∈
∩
ϵ>0

∂̄∗ϵ f(x), we have ⟨g, y − x⟩ ≤ 0 for all y ∈ Sf,f(x)−ϵ and all

ϵ > 0. Hence, ⟨g, y − x⟩ ≤ 0 for all y ∈ Sf (x), that is, g ∈ ∂̄∗f(x). There-

fore,
∩
ϵ>0

∂̄∗ϵ f(x) ⊂ ∂̄∗f(x). The reverse inclusion follows directly from (i), and

thus the equality holds.

(vi) It follows from (4.2.3) and the invertibility of A that

∂̄∗ϵ (f ◦ A)(x) = {g : ⟨g, y − x⟩ ≤ 0, ∀y satisfying (f ◦ A)(y) < (f ◦ A)(x)− ϵ}
= {g : ⟨(A−1)Tg, Ay − Ax⟩ ≤ 0,∀Ay satisfying f(Ay) < f(Ax)− ϵ}
= AT ∂̄∗ϵ f(Ax).

The above proposition extends some properties of the ϵ-subdifferential of convex

functions (see [46, Chapter XI, (1.1.3) and Proposition 1.3.1]). Besides, the ϵ-subdifferential

of convex function (cf. (1.3.2)) is a convex mapping on variable ϵ (see [46, Chapter XI,

(1.1.4)]), i.e., for all positive scalars ϵ, ϵ′ and α ∈ [0, 1] there holds

α∂ϵf(x) + (1− α)∂ϵ′f(x) ⊂ ∂αϵ+(1−α)ϵ′f(x). (4.2.4)
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However, the ϵ-quasi-subdifferential ∂̄∗ϵ f does not satisfy this property. An example is

given as follows.

Example 4.2.1 Consider the quasi-convex function

f(x) :=

{
1, x ≥ 0,

0, x < 0.

It is easy to see ∂̄∗ϵ f(0) = R+ when ϵ < 1, and ∂̄∗ϵ f(0) = R when ϵ ≥ 1. However, when

ϵ = 2, ϵ′ = 1/2 and α = 1/4, the relation (4.2.4) does not hold.

AQSGM algorithm

We first describe the distributed optimization problem in networks consisting of m

nodes and a fusion center (see e.g. [10, 54, 81, 95]), which is the motivating example of

considering the noise in subgradient methods given by Nedić and Bertsekas [81].

node

xk

fusion center

∂fi(xk)

(a) Unquantized model

node

xk

∂fi(xk)

fusion center

g
Q

i,k

(b) Quantized model

Figure 4.1: The distributed optimization problem in networks.

Each node i has an objective function fi known only at the node i, while the ob-

jective of the distributed optimization problem is to minimize f(x) =
m∑
i=1

fi(x) over a

constraint set X. The fusion center is responsible for updating xk and broadcasting
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this information to the nodes in the network. In return, upon receiving xk, each node

i calculates a subgradient of its objective function fi at xk and sends the subgradient

information to the fusion center (see Figure 4.1(a)).

However, in many applications, the links between the fusion center and the nodes can

transmit only the quantized data (see e.g. [10, 54, 95]). For example, the quantization

level is Q and every information xk is quantized with respect to the level Q. Thus, the

nodes receive the quantized data xQk instead of the true information xk. Then each node

i calculates a subgradient gi,k of fi at x
Q
k and sends it to the fusion center. Again, due to

the quantization of the transmitted data, the fusion center only receives the quantized

subgradient gQi,k and updates the information xk using these quantized subgradients (see

Figure 4.1(b)). Therefore, the approximate subgradient can be written as

gQk = gk + rk with gQk =
m∑
i=1

gQi,k, gk =
m∑
i=1

gi,k, rk =
m∑
i=1

(gQi,k − gi,k).

Since gi,k ∈ ∂fi(x
Q
k ), gk ∈ ∂f(xQk ) and thus gk is an ϵk-subgradient of f at xk with

ϵk = f(xk) − f(xQk ) − ⟨gk, xk − xQk ⟩, which follows from Lemma 2.3.1. The noise rk is

deterministic and it is due to the quantization of the subgradients gi,k. Both the error

ϵk and noise norm ∥rk∥ are related to the quantization level Q.

Thus, in this chapter, we consider using a generic inexact subgradient method, which

we also call the approximate quasi-subgradient method (AQSGM), to solve problem

(4.1.1) as follows.

Approximate quasi-subgradient method (AQSGM)

Select a stepsize sequence {vk}, an error sequence {ϵk} and a noise sequence {rk}, start
with an initial point x0 ∈ X, and generate a sequence {xk} ∈ X via the iteration

xk+1 = PX(xk − vkg̃k), (4.2.5)

where the iterative direction g̃k is an approximate quasi-subgradient of the following

form

g̃k := gk/∥gk∥+ rk, (4.2.6)

where rk is a noise vector and gk ∈ ∂̄∗ϵkf(xk) is an arbitrary nonzero ϵk-quasi-subgradient

of f at xk.
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Let us first consider the following example, which says that the ϵ-quasi-subdifferential

does not coincide with the quasi-subdifferential with noise.

Example 4.2.2 Consider the quasi-convex function

f(x, y) :=

{
x2 + y2, x ≥ 0,

y2, x < 0.

Its strict sublevel set Sf (0, 1) = Sf,1 is illustrated in Figure 4.2, thus it is easy to see

∂̄∗f(0, 1) = cone{(0, 1)}. Let the noise vector r = (−δ, 0) with δ > 0. Then its quasi-

subdifferential with noise and ϵ-quasi-subdifferential are respectively given by

∂̄∗f(0, 1) + r = {(−δ, λ) : λ ∈ R+},

and

∂̄∗ϵ f(0, 1) =

{
cone{(0, 1), (

√
ϵ,
√
1− ϵ)}, ϵ < 1,

R2, ϵ ≥ 1.

It is obvious that (−δ, 1) /∈ ∂̄∗ϵ f(0, 1) for all δ > 0 when ϵ < 1. Thus, from this

example, we see that the quasi-subdifferential with noise cannot be represented by the

ϵ-quasi-subdifferential.

Sf,1−ε

(0,1)

(−δ,1)

∂̄
∗

ε
f(0, 1)

Sf,1

(
√

ε,
√

1 − ε)

Figure 4.2: Illustration of Example 4.2.2.

91



It is well-known that the stepsize rule is critical in subgradient methods. In this

chapter, assuming the noise and errors are deterministic and bounded, we investigate

convergence properties of the AQSGM by using both the constant and diminishing

stepsize rules.

4.3 Convergence Properties for a Compact X

In this section, we investigate convergence properties of the AQSGM when the con-

straint set X is compact. Throughout this section, the following three assumptions are

made.

Assumption 4.3.1 The constraint set X is compact.

Assumption 4.3.2 f satisfies the Hölder condition of order p > 0 with modulus µ > 0

on Rn, that is,

f(x)− f∗ ≤ µ
(
dist(x,X∗)

)p
, ∀x ∈ Rn. (4.3.1)

Assumption 4.3.3 The noise and errors are bounded, i.e., there exist some scalars R

and ϵ ≥ 0 such that

∥rk∥ ≤ R, ∀k ≥ 0 and lim
k→∞

ϵk = ϵ.

Since the constraint set X is compact, all iterates are bounded. Therefore, there

exists some d > 0 (such as the diameter of X) such that ∥xk − x∥ ≤ d for all x ∈ X

and k ≥ 0. Moreover, under the bounded noise assumption, it follows from (4.2.6) that

approximate quasi-subgradients are uniformly bounded, i.e., ∥g̃k∥ ≤ 1+R for all k ≥ 0.

Konnov [64] used the Hölder condition of order p to describe the property of the

quasi-subgradient. Here, we use this condition to investigate convergence properties of

the AQSGM.

Nedić and Bertsekas [81] used the bounded subgradient assumption to study the

influence of errors and noise on subgradient methods for convex optimization. The

bounded subgradient assumption is quite natural in the subgradient method literature
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(see [17, 61, 80, 106] and references therein). The following lemma shows that the

bounded subgradient assumption is equivalent to the Hölder condition of order 1 when

f is convex.

Lemma 4.3.1 If f : Rn → R is convex, then the following two statements are equiva-

lent:

(i) there is a positive scalar M such that ∥g∥ ≤M for all g ∈ ∂f(x) and x ∈ Rn,

(ii) f satisfies the Hölder condition of order 1 with modulus M on Rn.

Proof.

[(i) ⇒ (ii)]: It follows from [32, Theorem 7.3] that (i) (uniformly bounded subgra-

dient) is equivalent to the Lipschitz continuity of rank M , which implies (ii).

[(ii) ⇒ (i)]: By contradiction, suppose there exist some x̃ ∈ Rn and g̃ ∈ ∂f(x̃) such

that ∥g̃∥ > M . Then, by the Hölder condition, for any scalar λ > max{dist(x̃,X∗)
∥g̃∥−M , f∗−f(x̃)

(∥g̃∥−M)2
},

we have
f(x̃+ λg̃)− f∗ ≤Mdist(x̃+ λg̃,X∗)

≤M(dist(x̃, X∗) + λ∥g̃∥)
< M(λ(∥g̃∥ −M) + λ∥g̃∥)
= λ(2M∥g̃∥ −M2)

= λ∥g̃∥2 − λ(∥g̃∥ −M)2,

(4.3.2)

where the second inequality follows from the triangular inequality, and the third in-

equality follows from λ > dist(x̃, X∗)/(∥g̃∥ − M). Moreover, since f is convex and

g̃ ∈ ∂f(x̃), we have

f(x̃+ λg̃)− f(x̃) ≥ ⟨g̃, λg̃⟩
= λ∥g̃∥2

> f(x̃+ λg̃)− f∗ + λ(∥g̃∥ −M)2

> f(x̃+ λg̃)− f∗ + (f∗ − f(x̃))

= f(x̃+ λg̃)− f(x̃),

where the second inequality follows from (4.3.2) and the third inequality follows from

λ > (f∗ − f(x̃))/(∥g̃∥ −M)2. Hence, we arrive at a contradiction.
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However, the relationship between the Hölder condition of order 1 and the Lipschitz

continuity does not hold for quasi-convex functions. The following Figure 4.3 shows

an example of the quasi-conve function which satisfies the Hölder condition but is not

Lipschitz continuous.

Example 4.3.1

f(x) =


1, x ≤ 0,

x+ 1, 0 < x < 1,

3, x ≥ 1.

It is easy to check that the function satisfies the Hölder condition of order 1 with modulus

2, but it is not Lipschitz continuous at x = 1.

f(x)

y

x

Figure 4.3: A function satisfies the Hölder condition but is not Lipschitz continuous.

Convergence in objective values

We now give the basic inequality and convergence properties in objective values using

both the constant and diminishing stepsize rules. We start with the basic inequality,

which shows a significant property of a subgradient iteration.
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Lemma 4.3.2 Suppose Assumptions 4.3.1 and 4.3.3 hold and the sequence {xk} is

generated by the AQSGM. Then for all x ∈ X, we have

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2vk

(
⟨gk/∥gk∥, xk − x⟩ −Rd− 1

2
vk(1 +R)2

)
, ∀k. (4.3.3)

Proof. By relations (4.2.5)-(4.2.6) and the nonexpansive property of the projection

operator, for all x ∈ X, we have the following basic inequality

∥xk+1 − x∥2 = ∥PX(xk − vkg̃k)− x∥2

≤ ∥xk − vkg̃k − x∥2

= ∥xk − x∥2 − 2vk⟨gk/∥gk∥+ rk, xk − x⟩+ v2k∥gk/∥gk∥+ rk∥2

≤ ∥xk − x∥2 − 2vk

(
⟨gk/∥gk∥, xk − x⟩ −Rd− 1

2
vk(1 +R)2

)
,

where the last inequality follows from the compactness of X and the boundedness of

noise.

The basic inequality (4.3.3) is quite different from that of convex subgradient method

(see (1.1.4)). As shown in (1.1.4), the basic inequality describes the relationship be-

tween the function value and the distance from any point of the current iterate, while

(4.3.3) does not describe any connection with function values. This difference originates

from different definitions of subgradients. The convex subgradient is directly connected

with function values, however, the quasi-convex subgradient coincides with the normal

direction to its current sublevel set. Hence, we need to assume the Hölder condition to

connect the quasi-convex subgradient with function values.

To make the thesis more self-contained, we cite and describe the following lemmas

which are repeatedly used in the convergence analysis.

Lemma 4.3.3 ([60, Lemma 6]) If B(x̄, r̄) ⊂ clSf,f(xk)−ϵk for some x̄ ∈ Rn and r̄ ≥ 0,

then ⟨gk/∥gk∥, xk − x̄⟩ ≥ r̄.

Lemma 4.3.4 If Assumption 4.3.2 holds and f(xk) > f∗ + µr̄p + ϵk holds for some

r̄ ≥ 0, then ⟨gk/∥gk∥, xk − x∗⟩ ≥ r̄ for all x∗ ∈ X∗.
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Proof. Given x∗ ∈ X∗, by the Hölder condition of order p and the assumption given

in the lemma, for all x ∈ B(x∗, r̄), we have

f(x)− f∗ ≤ µ
(
dist(x,X∗)

)p
≤ µr̄p

< f(xk)− f∗ − ϵk,

which implies B(x∗, r̄) ⊂ Sf,f(xk)−ϵk . Hence, the conclusion follows from Lemma 4.3.3.

We first describe the convergence property of the AQSGM by using the constant

stepsize rule.

Theorem 4.3.1 Let Assumptions 4.3.1-4.3.3 hold. Then, for a sequence {xk} gener-

ated by the AQSGM with the constant stepsize rule, we have

lim
k→∞

f(xk) ≤ f∗ + µ(Rd+
v

2
(1 +R)2)p + ϵ.

Proof. We prove by contradiction, assuming that

lim
k→∞

f(xk) > f∗ + µ(Rd+
v

2
(1 +R)2)p + ϵ,

that is, there exist some δ > 0 and positive integer k0 such that

f(xk) > f∗ + µ(Rd+
v

2
(1 +R)2 + δ)p + ϵk,∀k ≥ k0.

It follows from Lemma 4.3.4 that for all x∗ ∈ X∗ and k ≥ k0 there holds

⟨gk/∥gk∥, xk − x∗⟩ ≥ Rd+
v

2
(1 +R)2 + δ.

Therefore, by using the basic inequality (4.3.3) with vk ≡ v and x = x∗, we obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2v
(
Rd+ v

2
(1 +R)2 + δ −Rd− v

2
(1 +R)2

)
= ∥xk − x∗∥2 − 2vδ

≤ · · · ≤ ∥xk0 − x∗∥2 − 2(k − k0 + 1)vδ,

which yields a contradiction for sufficiently large k.

In Assumption 4.3.2, we assume that f satisfies the Hölder condition on the whole

space Rn. Actually, this assumption is essential for the convergence result in Theorem

4.3.1. Relaxing it by the assumption that f satisfies the Hölder condition on the con-

straint set X cannot ensure the validity of Theorem 4.3.1, even if f is continuous on

Rn as shown by the following example.
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Example 4.3.2 Consider the objective function

f(u, v) :=

{
M |v|, u ≤ 0,

u+M |v|, u > 0,

with M = 100 and the constraint set X = {(u, v) : −1 ≤ u ≤ 1, v = 0}. Obviously, the

optimal value of problem (4.1.1) is f∗ = 0 and the optimal solution set is X∗ = {(u, v) :
−1 ≤ u ≤ 0, v = 0}. It is easy to check that f is continuous and quasi-convex on R2

and satisfies the Hölder condition (cf. (4.3.1)) on X with µ = p = 1.

Starting from x0 = (1, 0), we use the AQSGM to solve this problem. Specially,

we choose the quasi-subgradient g = (1/
√
1 +M2,M/

√
1 +M2) ∈ ∂̄∗f(x0), the noise

vector r = (−1/
√
1 +M2, 0) and the constant stepsize rule v = 1/2, then we have

x1 = PX
(
x0 − v(g + r)

)
= PX

(
(1, 0)− v(0,M/

√
1 +M2)

)
= (1, 0) = x0.

Hence, a fixed sequence is generated and lim
k→∞

f(xk) = f(x0) = 1. However, when

R = 0.01, ϵ = 0, d = 2 and v = 1/2, the total error µ(Rd+ v
2
(1 +R)2)p + ϵ < 1/2 < 1.

Therefore, Theorem 4.3.1 fails for this problem.

Using the diminishing stepsize rule, the error term involving the stepsize v in The-

orem 4.3.1 vanishes and the following theorem is obtained.

Theorem 4.3.2 Let Assumptions 4.3.1-4.3.3 hold. Then, for a sequence {xk} gener-

ated by the AQSGM with the diminishing stepsize rule, we have

lim
k→∞

f(xk) ≤ f∗ + µ(Rd)p + ϵ.

Proof. By contradiction, we assume that

lim
k→∞

f(xk) > f∗ + µ(Rd)p + ϵ,

that is, there exist some δ > 0 and positive integer k0 such that

f(xk) > f∗ + µ(Rd+ δ)p + ϵk,∀k ≥ k0.
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It follows from Lemma 4.3.4 that for all x∗ ∈ X∗ and k ≥ k0,

⟨gk/∥gk∥, xk − x∗⟩ ≥ Rd+ δ.

Since the stepsize vk diminishes, there exists some positive integer kδ > k0 such that

vk ≤ δ/(1 +R)2, ∀k ≥ kδ. (4.3.4)

Therefore, by using the basic inequality (4.3.3) with vk ≡ v and x = x∗, we obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
Rd+ δ −Rd− vk

2
(1 +R)2

)
≤ ∥xk − x∗∥2 − vkδ

≤ · · · ≤ ∥xkδ − x∗∥2 − δ
k∑

i=kδ

vi,

where the second inequality follows from (4.3.4). Thus, it yields a contradiction for

sufficiently large k, since
∞∑
i=kδ

vi = +∞.

Theorems 4.3.1-4.3.2 show convergence to the optimal value within some tolerance

given in terms of errors and noise by using the constant and diminishing stepsize rules

respectively. In Theorem 4.3.2, the total error c := µ(Rd)p + ϵ, which is a similar

formula as in [81], has an additive form, including the noise level R and the error level

ϵ. By contrast, in Theorem 4.3.1, the total error additionally includes a term related

to the constant stepsize v. In the presence of persistent noise (R > 0), the total error

is not zero even if computation errors vanish (ϵk ≡ 0).

Corollary 4.3.1 Let Assumptions 4.3.1-4.3.3 hold. Then, for a sequence {xk} gener-

ated by the AQSGM with the diminishing stepsize rule and ϵk ≡ 0, we have

lim
k→∞

f(xk) ≤ f∗ + µ(Rd)p.

Considering another special case when the noise vanishes (R = 0), the AQSGM

reduces to the ϵ-quasi-subgradient method. In this case, the term ⟨rk, xk−x⟩ vanishes in
the corresponding basic inequality, and we obtain Lemma 4.3.2 (where R = 0) without

the need for X to be compact. Therefore, when the noise vanishes, the convergence

property holds regardless of compactness of X.
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Corollary 4.3.2 Let Assumptions 4.3.2-4.3.3 hold. Then, for a sequence {xk} gener-

ated by the AQSGM with the diminishing stepsize rule and rk ≡ 0, we have

lim
k→∞

f(xk) ≤ f∗ + ϵ.

Corollary 4.3.3 Let Assumption 4.3.2 hold. Then, for a sequence {xk} generated by

the AQSGM with the diminishing stepsize rule, rk ≡ 0 and ϵk ≡ 0, we have

lim
k→∞

f(xk) = f∗.

Note again that Corollaries 4.3.2-4.3.3 are obtained without the compactness as-

sumption on X. The latter is the main result in [60], where the upper semi-continuity

of f is assumed. Here, we have obtained the convergence result as in [60] without the

upper semi-continuity assumption, but using the Hölder condition of order p instead.

The following two examples show that the Hölder condition and upper semi-continuity

are independent of each other.

Example 4.3.3 (The function satisfies the Hölder condition but is not upper

semi-continuous.) Consider the objective function

f(x) :=


0, x ≤ 0,

x2, 0 < x ≤ 1,

2, x > 1,

and the constraint set X = {x ∈ R : 0 ≤ x ≤ 10}. Obviously, the optimal value of

problem (4.1.1) is f∗ = 0 and the optimal solution set is X∗ = {0}. It is easy to verify

that f is quasi-convex (since its sublevel sets are all convex) and satisfies the Hölder

condition of order 2 with modulus 2 on R. However, f is not upper semi-continuous

at x = 1. Thus, this example shows that the Hölder condition does not imply the upper

semi-continuity.

Thus, from [60], we cannot obtain the convergence property of the exact quasi-

subgradient method (cf. (14)-(15) in [60]) for this example. However, the sequence

generated by the exact quasi-subgradient method converges to X∗. Indeed, for any

x ∈ X \ X∗, the strict sublevel set Sf (x) is the line segment [0,min{1, x}) and the

99



quasi-subdifferential ∂̄∗f(x) = R+. Therefore,

xk+1 = PX(xk − vkgk/∥gk∥)
= max{xk − vk, 0},

and thus the sequence {xk} converges to the origin, which is the optimal solution, due

to the properties of the diminishing stepsize rule. This iterative result coincides with

the result in Corollary 4.3.3.

Example 4.3.4 (The function is upper semi-continuous but does not satisfy

the Hölder condition.) Consider the objective function

f(x) = ex,

and the constraint set R+. Obviously, the optimal value of problem (4.1.1) is f∗ = 1 and

the optimal solution set is X∗ = {0}. It is easy to check that f is continuous and quasi-

convex (since it is monotone) on R. However, by the Taylor expansion ex =
∞∑
n=0

xn

n!
, we

claim that f does not satisfy the Hölder condition on R for any positive scalars p and µ.

Indeed, given positive scalars p and µ, when x ≥ exp( log(µ⌈p+1⌉!)
⌈p+1⌉−p ), where exp(·) and ⌈p⌉

denote the exponential function and the largest integer not greater than p respectively,

we have
f(x)− f∗ = ex − 1

> x⌈p+1⌉

⌈p+1⌉! +
x0

0!
− 1

= x⌈p+1⌉

⌈p+1⌉!

≥ µxp,

which contradicts with (4.3.1). Thus, this example shows that upper semi-continuity

does not imply the Hölder condition.

Although, from [60], we obtain the convergence property of the exact quasi-subgradient

method for this example. However, the convergence result of the AQSGM (see Theorem

4.3.2) fails for this example. Indeed, given positive scalars p and µ, we consider the

constraint set X = {x ∈ R : 0 ≤ x ≤ exp( log(µ⌈p+1⌉!)
⌈p+1⌉−p )}, noise rk ≡ −1 and errors

ϵk ≡ 0. For any x ∈ X \X∗, the strict sublevel set Sf (x) is the line segment [0, x) and

the quasi-subdifferential ∂̄∗f(x) = R+. Thus, starting from x0 = exp( log(µ⌈p+1⌉!)
⌈p+1⌉−p ), we

have
x1 = PX(x0 − v0(g0/∥g0∥+ r0))

= x0.
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Hence, the AQSGM generates a fixed sequence and lim
k→∞

f(xk) = f(x0) = ex0. However,

when R = 1, ϵ = 0 and d = exp( log(µ⌈p+1⌉!)
⌈p+1⌉−p ), the total error µ(Rd)p + ϵ = µdp =

d⌈p+1⌉/⌈p + 1⌉! < ed = ex0, where the inequality follows from the Taylor expansion.

Therefore, Theorem 4.3.2 fails for this example.

From the above two examples, we observe that the Hölder condition of order p

describes some property of the objective function, which is essentially different from

the upper semi-continuity, and it can be used to investigate convergence properties

of the AQSGM. Hence, using the mild assumptions, we have established convergence

properties of the AQSGM from a new perspective, which is different from that in [60].

Finite convergence

The optimal solution set X∗ has a nonempty interior in many applications, such as

surrogate relaxation of discrete programming problems (see [37]). Here, we demonstrate

the finite convergence to the approximate optimal value of problem (4.1.1) under the

assumption that the optimal solution set X∗ has a nonempty interior.

Theorem 4.3.3 Let Assumptions 4.3.1-4.3.3 hold, intX∗ ̸= ∅ and the diminishing

stepsize rule be chosen. Then f(xk) ≤ f∗ + µ(Rd)p + ϵ for some k.

Proof. By contradiction, we assume that f(xk) > f∗ + µ(Rd)p + ϵ, ∀k ∈ N. Since

intX∗ ̸= ∅, we set B(x̄, δ̄) ⊂ X∗ with δ̄ > 0. For all x ∈ B(x̄, Rd+ 2
3
δ̄), we have

f(x)− f∗ ≤ µ
(
dist(x,X∗)

)p
≤ µ(Rd− 1

3
δ̄)p

= µ(Rd)p − δ′

< f(xk)− f∗ − ϵ− δ′,

(4.3.5)

where δ′ is a scalar in [1
3
µpδ̄(Rd− 1

3
δ̄)p−1, 1

3
µpδ̄(Rd)p−1] satisfying the mean value the-

orem. In addition, since lim
k→∞

ϵk = ϵ, there exists some k0 such that ϵk ≤ ϵ + δ′ for all

k ≥ k0. Therefore, (4.3.5) implies f(x) < f(xk)−ϵk and thus B(x̄, Rd+ 2
3
δ̄) ⊂ Sf,f(xk)−ϵk

for all k ≥ k0. Hence, it follows from Lemma 4.3.3 that

⟨gk/∥gk∥, xk − x̄⟩ ≥ Rd+
2

3
δ̄. (4.3.6)
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However, summing the basic inequality (4.3.3) with x = x̄ over i = k0, · · · , k, we obtain

min
i=k0,...,k

⟨gi/∥gi∥, xi − x̄⟩ ≤
∑k

i=ko
vi⟨gi/∥gi∥, xi − x̄⟩∑k

i=ko
vi

≤ ∥xk0 − x̄∥2

2
∑k

i=k0
vi

+Rd+

∑k
i=k0

v2i

2
∑k

i=k0
vi
(1 +R)2. (4.3.7)

By the properties of the diminishing stepsize rule (cf. (1.1.5)), it follows from Lemma

1.3.5 that lim
k→∞

(
∑k

i=k0
v2i /

∑k
i=k0

vi) = 0, and hence the right hand side of (4.3.7) tends

to Rd as k tends to infinity. Therefore, we arrive at a contradiction with (4.3.6).

Under the same assumptions as in Theorem 4.3.3, we now describe a related result

for the nonvanishing stepsize rule.

Theorem 4.3.4 Let Assumptions 4.3.1-4.3.3 hold. If B(x̄, δ̄) ⊂ X∗ with δ̄ > 0 and

there exist some 0 < κ < 1 and k0 ∈ N such that vk ∈ [ κ2δ̄
(1+R)2

, κδ̄
(1+R)2

] for all k ≥ k0.

Then f(xk) ≤ f∗ + µ(Rd)p + ϵ for some k.

Proof. By contradiction, suppose f(xk) > f∗ + µ(Rd)p + ϵ, ∀k ∈ N. As in the proof of

Theorem 4.3.3 and (4.3.7), we have

Rd+
2

3
δ̄ ≤ min

i=k0,...,k
⟨gi/∥gi∥, xi − x̄⟩

≤ ∥xk0 − x̄∥2

2
∑k

k0
vi

+Rd+

∑k
k0
v2i

2
∑k

k0
vi
(1 +R)2

≤ ∥xk0 − x̄∥2

2κ2δ̄(k − k0 + 1)
(1 +R)2 +Rd+ δ̄/2,

whose last right hand side tends to Rd + δ̄/2 as k tends to infinity. The contradiction

happens.

Convergence in iterates

We have shown convergence properties in objective values in preceding theorems, and

here we consider the convergence property in iterates. In [81], where noise in subgradient

methods for convex optimization was considered, Nedić and Bertsekas did not give the

convergence property in iterates. In fact, convergence of {xk} is quite difficult to obtain.
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Kiwiel [61] has described convergence of {xk} that was generated by ϵ-subgradient

method for convex optimization. Although Kiwiel [61] did not consider the effect of

noise, his work is really helpful for our research. Following the framework of [61], we will

give convergence of {xk} by using the diminishing stepsize rule. Besides the extension to

the AQSGM, another improvement of our work is to maintain the convergence property

without the lower semi-continuity and coercive condition assumptions used in [61],

although we assume the upper semi-continuity instead.

Since we are considering the inexact subgradient method, we can only expect that

{xk} converges to some approximate optimal solution set. First, let us show a useful

property of a convergent sequence, which also converges in objective values. This result

requires the additional upper semi-continuity assumption.

Lemma 4.3.5 Suppose f is upper semi-continuous on Rn, α > 0, and the sequence

{xk} converges to x̄ with lim
k→∞

f(xk) ≤ f∗+α. Then dist(x̄, S̄f,f∗+α) = 0, where S̄f,f∗+α =

{x ∈ Rn : f(x) ≤ f∗ + α}.

Proof. For all β > f∗ + α, since lim
k→∞

f(xk) ≤ f∗ + α < β, we have dist(x̄, Sf,β) = 0.

Observe that Sf,f∗+α is a nonempty and open set (since α is positive and f is upper

semi-continuous) and Sf,f∗+α ⊂
∩

β>f∗+α

Sf,β. Furthermore, since the sequence of sublevel

sets {Sf,β} is decreasing as β ↓ f∗ + α, by using [98, Exercise 4.3(b)], we have

lim
β↓f∗+α

Sf,β =
∩

β>f∗+α

clSf,β

= cl
∩

β>f∗+α

Sf,β

= clS̄f,f∗+α,

(4.3.8)

where the second equality follows from [97, Theorem 6.5] and the fact that Sf,β are all

convex due to the quasi-convexity. Finally, by using [98, Corollary 4.7] and (4.3.8), we

arrive at
dist(x̄, S̄f,f∗+α) = dist(x̄, cl(S̄f,f∗+α))

= lim
β↓f∗+α

dist(x̄, Sf,β)

= 0.

Another proof of Lemma 4.3.5. By contradiction, we assume dist(x̄, S̄f,f∗+α) =
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ρ > 0. For all x /∈ S̄f,f∗+α, we define Xα(x) := conv
(
S̄f,f∗+α ∪ {x}

)
\ S̄f,f∗+α. By the

quasi-convexity of f , we have Xα(x) ⊂ S̄f (x).

We first claim that
∩

x∈B(x̄,θ)

Xα(x) ̸= ∅ for sufficiently small θ > 0. Indeed, since

α > 0 and f is quasi-convex and upper semi-continuous, S̄f,f∗+α is a closed and convex

set, whose interior is nonempty. Thus, we set B(z, δ) ⊂ S̄f,f∗+α with some δ > 0 and

thus ρz := ∥x̄− z∥ > ρ due to dist(x̄, S̄f,f∗+α) = ρ. Let y := x̄(1− ρ/(2ρz)) + zρ/(2ρz),

which is on the segment between x̄ and z but not in S̄f,f∗+α, due to ∥y − x̄∥ = ρ/2 <

ρ. When θ ≤ δρ/(2ρz − ρ), for any point x̄ + θw ∈ B(x̄, θ) with ∥w∥ ≤ 1, there

exists z − wθ(2ρz − ρ)/ρ ∈ B(z, δ) such that y is on the segment between x̄ + θw and

z−wθ(2ρz − ρ)/ρ. That is y ∈ Xα(x) for all x ∈ B(x̄, θ). Therefore,
∩

x∈B(x̄,θ)

Xα(x) ̸= ∅

when θ ≤ δρ/(2ρz − ρ).

Since y ∈
∩

x∈B(x̄,θ)

Xα(x), the quasi-convexity of f implies f(y) ≤ f(x) for all x ∈

B(x̄, θ). Furthermore, by the assumption that {xk} converges to x̄ with lim
k→∞

f(xk) ≤
f∗ + α, we obtain f(y) ≤ f∗ + α. However, y does not meet S̄f,f∗+α. Hence, we arrive

at the contradiction.

δ

B(z, δ)

B(x̄, θ)z

θ

y

x̄

S̄f,f∗+α

Figure 4.4: Illustration of the second proof of Lemma 4.3.5: y ∈ Xα(x), ∀x ∈ B(x̄, θ).

Next, we describe convergence of {xk} to some approximate optimal solution set by
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using the diminishing stepsize rule.

Theorem 4.3.5 Let Assumptions 4.3.1-4.3.3 hold, the total error c := µ(Rd)p+ ϵ > 0,

f be upper semi-continuous on Rn and the diminishing stepsize rule be chosen. Then

the following statements are true:

(i) lim
k→∞

dist(xk, S̄f,f∗+c ∩X) = 0,

(ii) lim
k→∞

dist(xk, X
∗ + ρ(c)B) = 0, where ρ(c) is defined by

ρ(c) := max{dist(x,X∗) : x ∈ S̄f,f∗+c ∩X}.

Proof. First, observe thatX∗ ⊂ S̄f,f∗+c∩X ⊂ X∗+ρ(c)B. Furthermore, the nonempti-

ness of X∗ and the compactness of X imply that S̄f,f∗+c∩X is nonempty and bounded.

(i) Theorem 4.3.2 gives that lim
k→∞

f(xk) ≤ f∗+ c. The compactness of X then implies

that there exists some subsequence {xki} that converges to some x̄ ∈ X with

lim
i→∞

f(xki) ≤ f∗ + c. Thus, the conclusion follows from Lemma 4.3.5.

(ii) Given σ > 0, define

V2σ := X∗ + ρ(c)B + 2σB,

and

eσ := inf{f(x) : x ∈ X, dist(x, S̄f,f∗+c ∩X) ≥ σ} − (f∗ + c). (4.3.9)

We first claim that eσ > 0. Indeed, if eσ = 0, there exists a sequence {zi}, in
{x : x ∈ X, dist(x, S̄f,f∗+c ∩X) ≥ σ}, converging to some z̄ ∈ X with lim

i→∞
f(zi) =

f∗ + c. It follows from Lemma 4.3.5 that dist(z̄, S̄f,f∗+c) = 0. Moreover, since

z̄ ∈ X, dist(z̄, S̄f,f∗+c ∩X) = 0, which is impossible as σ > 0.

For such positive eσ, there exists some δ > 0 such that

µ(Rd+ δ)p ≤ µ(Rd)p + eσ/2. (4.3.10)

Since the stepsize vk diminishes, there exists some kδ ∈ N such that

vk ≤ δ/(1 +R)2, ∀k ≥ kδ. (4.3.11)
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Since lim
k→∞

ϵk = ϵ and lim
k→∞

∥xk+1−xk∥ = 0 (since vk diminishes), there exists some

kσ ≥ kδ such that

ϵk < ϵ+ eσ/2, (4.3.12)

and

∥xk+1 − xk∥ ≤ σ, (4.3.13)

for all k ≥ kσ. Since lim
k→∞

dist(xk, S̄f,f∗+c ∩ X) = 0 (cf. (i)), there exists some

k′σ ≥ kσ ≥ kδ such that

xk′σ ∈ (S̄f,f∗+c ∩X) + σB

⊂ X∗ + ρ(c)B + σB

⊂ V2σ,

that is xk′σ ∈ V2σ. Next, we claim that xk ∈ V2σ for all k ≥ k′σ. Proving by

induction, we assume that xk ∈ V2σ for some k ≥ k′σ and consider the following

two cases.

Case 1. If dist(xk, S̄f,f∗+c ∩X) ≤ σ, from (4.3.13), we have

xk+1 ∈ {xk}+ σB

⊂ (S̄f,f∗+c ∩X + σB) + σB

⊂ X∗ + ρ(c)B + 2σB

= V2σ.

Case 2. Suppose dist(xk, S̄f,f∗+c ∩X) > σ. From (4.3.9), we have

f(xk) ≥ eσ + f∗ + c

= f∗ + (µ(Rd)p + eσ/2) + (ϵ+ eσ/2)

> f∗ + µ(Rd+ δ)p + ϵk, ∀k ≥ k′σ,

where the second inequality follows from relations (4.3.10) and (4.3.12). Hence,

from Lemmas 4.3.2 and 4.3.4, we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk(δ − vk
2
(1 +R)2)

≤ ∥xk − x∗∥2,

where the second inequality follows from (4.3.11). Thus, xk ∈ V2σ implies xk+1 ∈
V2σ.

Therefore, by induction, xk ∈ V2σ and hence dist(xk, X
∗ + ρ(c)B) ≤ 2σ for all

k ≥ k′σ. Since σ > 0 is arbitrary, dist(xk, X
∗ + ρ(c)B) vanishes as k tends to

infinity.
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4.4 Convergence Properties for f with Generalized

Weak Sharp Minima

In this section, we consider the other case when X is noncompact. Considering the

similar case, Nedić and Bertsekas [81] assumed that the objective function f had a set

of weak sharp minima and the ϵ-subgradients were uniformly bounded on X (see [81,

Assumptions 3.1-3.2]). The function f is said to have a set of weak sharp minima over

X (see [28]) if for some scalar η > 0 there holds

f(x)− f∗ ≥ η dist(x,X∗), ∀x ∈ X. (4.4.1)

A natural extension to generalize the weak sharp minima is the weak sharp minima

of order q (see [19, 107]), that is, there exist some scalars η, q > 0 such that

f(x)− f∗ ≥ η
(
dist(x,X∗)

)q
,∀x ∈ X. (4.4.2)

However, if p > q, contradiction between (4.3.1) and (4.4.2) arises as dist(x,X∗) tends

to zero. Also, if p < q, contradiction arises again as dist(x,X∗) tends to infinity. In

order to avoid the contradiction, we weaken the assumption (4.4.2) as the generalized

weak sharp minima, in which the constant q is replaced by a real-valued function g(t).

Furthermore, in what follows we consider a noise sequence {rk} whose bound R

is lower than (η/µ)1/p, which we refer to as a low level noise sequence (see [81]). In

particular, we introduce the following two assumptions.

Assumption 4.4.1 The function f satisfies the generalized weak sharp minima condi-

tion over X, that is, there exist some scalars η > 0, q ≥ p and a function g : R+ → R+,

satisfying g(·) ≥ p, sup
t≥0

g(t) = q and lim
t→∞

g(t) = p, such that

f(x)− f∗ ≥ η
(
dist(x,X∗)

)g(dist(x,X∗))
, ∀x ∈ X, (4.4.3)

where p is the order used in Assumption 4.3.2.
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Assumption 4.4.2 {rk} is a low level noise sequence, i.e., R < (η/µ)1/p.

When g(t) ≡ p, Assumption 4.4.1 reduces to the weak sharp minima of order p,

whose sufficient and necessary conditions have been described by Studniarski and Ward

[107] and Bonnans and Ioffe [19] for specified p = 2. Furthermore, if p = 1, it reduces

to the well-known weak sharp minima, which was introduced by Burke and Ferris [28]

and widely studied by Burke and Deng [25, 26, 27] and Zheng and Ng [110, 111]. Note

that, to arrive at the corresponding convergence results, Assumptions 4.3.2 and 4.4.1

with specified g(t) ≡ p and p = 1 are used in [81].

When

g(t) :=

{
q, 0 ≤ t ≤ 1,

p, t > 1,

where q > p, Assumption 4.4.1 reduces to

f(x)− f∗ ≥ min{η
(
dist(x,X∗)

)g(0)
, η
(
dist(x,X∗)

)p},
which is equivalent to that f has Höldrian level sets over X (see [91]).

Before we go on, for each v ≥ 0, θ ≥ 0 and x ∈ X, we define a new function

Hx
v,θ : R+ → R by

Hx
v,θ(z) := µ

(v
2
(1 +R)2 +R(

z

η
)1/g(dist(x,X

∗))
)p

+ ϵ+ θ − z, (4.4.4)

where µ and p are scalars given in Assumption 4.3.2, and R and ϵ are scalars given in

Assumption 4.3.3. The maximum solution z∗v,θ of the inequality Hx
v,θ(z) ≥ 0 over X is

defined by

z∗v,θ := sup{z : Hx
v,θ(z) ≥ 0 for some x ∈ X}. (4.4.5)

Assumption 4.4.1 says that p ≤ g(dist(x,X∗)) ≤ q for all x ∈ X. Hence, from (4.4.4),

for given v ≥ 0 and θ ≥ 0, we have

Hx
v,θ(z) ≤ max{Hp

v,θ(z), H
q
v,θ(z)},∀z ≥ 0, x ∈ X,

where Hp
v,θ(z) := µ

(
v
2
(1 + R)2 + R( z

η
)1/p

)p
+ ϵ + θ − z and Hq

v,θ(z) := µ
(
v
2
(1 + R)2 +

R( z
η
)1/q

)p
+ϵ+θ−z. Thus, applying (4.4.5) and Assumption 4.4.1, z∗v,θ can be rewritten

as

z∗v,θ = max{sup{z : Hp
v,θ(z) ≥ 0}, sup{z : Hq

v,θ(z) ≥ 0}}.
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For the sake of simplicity, denote

zpv,θ := sup{z : Hp
v,θ(z) ≥ 0} and zqv,θ := sup{z : Hq

v,θ(z) ≥ 0}, (4.4.6)

and hence

z∗v,θ = max{zpv,θ, z
q
v,θ}. (4.4.7)

Since Hx
v,θ(0) > 0 and Hx

v,θ(z) is continuous on variable z for all x ∈ X, z∗v,θ is

positive. However, it might be +∞. The following lemma shows that z∗v,θ is finite and

continuous on parameters v and θ under Assumptions 4.4.1-4.4.2.

Lemma 4.4.1 If Assumptions 4.4.1-4.4.2 hold, then the following statements hold:

(i) z∗v,θ is finite for all v ≥ 0 and θ ≥ 0,

(ii) lim
θ→0+

z∗v,θ = z∗v,0 for all v ≥ 0,

(iii) lim
v→0+

z∗v,θ = z∗0,θ for all θ ≥ 0.

Proof.

(i) By the assumption, since R < (η/µ)1/p and q ≥ p, we have

lim
z→∞

µ
( R

η1/q
z1/q−1/p

)p
< 1,

which is equivalent to

lim
z→∞

[µ
z

(v
2
(1 +R)2 +R(

z

η
)1/q

)p
+
ϵ+ θ

z

]
< 1,∀v ≥ 0, θ ≥ 0.

This implies lim
z→∞

Hq
v,θ(z) < 0. Hence, zqv,θ < +∞ for all v ≥ 0 and θ ≥ 0 since

Hq
v,θ(·) is continuous. Similarly, we can prove that zpv,θ < +∞ for all v ≥ 0 and

θ ≥ 0. Thus, by using (4.4.7), we arrive at that z∗v,θ is finite for all v ≥ 0 and

θ ≥ 0.

(ii) Since Hq
v1,θ1

(·) ≤ Hq
v2,θ2

(·) for all v1 ≤ v2 and θ1 ≤ θ2, then zqv1,θ1 ≤ zqv2,θ2 . This

monotonicity immediately implies lim
θ→0

zqv,θ ≥ zqv,0.

Next, we prove the reverse inequality. By the definition of zqv,θ, for given v ≥ 0

and each positive integer n, there exists some zn satisfying zn > zqv,1/n − 1/n and
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Hq
v,1/n(zn) ≥ 0. Together with the monotonicity of zqv,θ, we have −1 < zn ≤

zqv,1/n ≤ zqv,1, where the last term is finite by (i). So the sequence {zn} is bounded

and has cluster points. Thus, for each of its cluster points z̄, taking a subsequence

of {zn} if necessary, we have

lim
n→∞

Hq
v,1/n(zn) = lim

n→∞
µ
(
v
2
(1 +R)2 +R( zn

η
)1/q

)p
+ ϵ+ 1

n
− zn

= µ
(
v
2
(1 +R)2 +R( z̄

η
)1/q

)p
+ ϵ− z̄

= Hq
v,0(z̄),

which is nonnegative, since {Hq
v,1/n(zn)} are all nonnegative. Then, by the defini-

tion of zqv,θ, we have z
q
v,0 ≥ z̄ ≥ lim

θ→0+
zqv,θ, where the second inequality holds due to

zn > zqv,1/n − 1/n. Therefore, we arrive at lim
θ→0+

zqv,θ = zqv,0.

Similarly, we can prove that lim
θ→0+

zpv,θ = zpv,0. Thus, from (4.4.7), we arrive at

lim
θ→0+

z∗v,θ = z∗v,0 for all v ≥ 0.

(iii) The proof is similar to that of (ii).

These properties of z∗v,θ will be used in the study of convergence in both objective

values and iterates when X is noncompact in what follows.

Convergence in objective values

Similar to Section 4.3, we start with the following basic inequality.

Lemma 4.4.2 Let Assumption 4.3.3 hold and {xk} be the sequence generated by the

AQSGM. Then for all x ∈ X, we have

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2vk

(
⟨gk/∥gk∥, xk − x⟩ −R∥xk − x∥ − 1

2
vk(1 +R)2

)
, ∀k.
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Proof. By relations (4.2.5)-(4.2.6) and the nonexpansive property of the projection

operator, for all x ∈ X, we have the following basic inequality

∥xk+1 − x∥2 = ∥PX(xk − vkg̃k)− x∥2

≤ ∥xk − vkg̃k − x∥2

= ∥xk − x∥2 − 2vk⟨gk/∥gk∥+ rk, xk − x⟩+ v2k∥gk/∥gk∥+ rk∥2

≤ ∥xk − x∥2 − 2vk

(
⟨gk/∥gk∥, xk − x⟩ −R∥xk − x∥ − 1

2
vk(1 +R)2

)
,

where the last inequality follows from the boundedness of noise.

Before we discuss convergence in objective values which is the main result in this

subsection, we consider the following two lemmas which show the boundedness of the

sequence {xk}, generated by the AQSGM using both the constant and diminishing

stepsize rules.

Lemma 4.4.3 Suppose Assumptions 4.3.2-4.4.2 hold and {xk} is generated by the

AQSGM with the constant stepsize rule. Then, {xk} is bounded.

Proof. Since lim
k→∞

ϵk = ϵ, for any θ > 0, there exists some positive integer k0 such that

ϵk < ϵ+ θ, ∀k ≥ k0. (4.4.8)

Define the maximum solution of tg(t) ≤ z∗v,θ/η by

T := sup{t ∈ R+ : tg(t) ≤ z∗v,θ/η}, (4.4.9)

which is finite, since z∗v,θ is finite (cf. Lemma 4.4.1(i)) and lim
t→∞

tg(t) = +∞ (cf. Assump-

tion 4.4.1). Next, we claim that the following inequality holds for all i ≥ k0:

dist(xi, X
∗) ≤ max{dist(xk0 , X∗), T + v(1 +R)}. (4.4.10)

It is obvious that the relation (4.4.10) holds if i = k0. Proving by induction, we assume

the relation (4.4.10) holds for some i = k (≥ k0) and consider the following two cases.

Case 1. If f(xk) ≤ f∗+µ
(
v
2
(1+R)2+R(f(xk)−f∗

η
)1/g(dist(xk,X

∗))
)p

+ ϵk, together with

(4.4.8), we have

µ
(v
2
(1 +R)2 +R(

f(xk)− f∗
η

)1/g(dist(xk,X
∗))
)p

+ ϵ+ θ − (f(xk)− f∗) ≥ 0,
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that is, Hxk
v,θ(f(xk)−f∗) ≥ 0. Hence, from (4.4.5), we obtain f(xk)−f∗ ≤ z∗v,θ, and thus

dist(xk, X
∗)g(dist(xk,X

∗)) ≤ z∗v,θ/η,

which follows from (4.4.3). Thus, from (4.4.9), we arrive at dist(xk, X
∗) ≤ T , and thus

relations (4.2.5)-(4.2.6) imply

dist(xk+1, X
∗) ≤ dist(xk, X

∗) + vk∥gk/∥gk∥+ rk∥
≤ T + v(1 +R),

that is, the relation (4.4.10) holds for i = k + 1.

Case 2. Suppose f(xk) > f∗ +µ
(
v
2
(1+R)2 +R(f(xk)−f∗

η
)1/g(dist(xk,X

∗))
)p

+ ϵk. Then,

it follows from Lemma 4.3.4 that

⟨gk/∥gk∥, xk − x∗⟩ ≥ v
2
(1 +R)2 +R(f(xk)−f∗

η
)1/g(dist(xk,X

∗))

≥ v
2
(1 +R)2 +R dist(xk, X

∗),

where the second inequality follows from (4.4.3). Hence, applying Lemma 4.4.2 with

vk = v and x∗ = PX∗(xk), we obtain(
dist(xk+1, X

∗)
)2

≤ ∥xk+1 − x∗∥2

≤ ∥xk − x∗∥2 − 2v
(
v
2
(1 +R)2 +R dist(xk, X

∗)−R∥xk − x∗∥ − v
2
(1 +R)2

)
=

(
dist(xk, X

∗)
)2
.

Hence, the relation (4.4.10) holds for i = k + 1.

Therefore, by induction, the relation (4.4.10) holds for all i ≥ k0. Since the right

hand side of (4.4.10) is finite and X∗ is compact, {xk} is bounded.

Lemma 4.4.4 If Assumptions 4.3.2-4.4.2 hold and {xk} is generated by the AQSGM

with the diminishing stepsize rule. Then, {xk} is bounded.

Proof. The proof uses the properties of the diminishing stepsize rule and a line of

analysis similar to that of Theorem 4.4.1. The details are omitted.

From Lemmas 4.4.3-4.4.4, {xk} is bounded and hence {f(xk)} is bounded from

above due to the Hölder condition (cf. (4.3.1)), using both types of stepsize rules. We

denote the upper bound on {f(xk)} by M in what follows.
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Theorem 4.4.1 Let Assumptions 4.3.2-4.4.2 hold. Then, for a sequence {xk} be gen-

erated by the AQSGM with the constant stepsize rule, we have

lim
k→∞

f(xk) ≤ f∗ + z∗v,0,

where z∗v,0 is finite.

Proof. The finiteness of z∗v,0 has been proved in Lemma 4.4.1(i). To prove the conver-

gence property, we first show that

lim
k→∞

f(xk) < f∗ + z∗v,θ

for all θ > 0 by contradiction, that is, assume that the following inequality holds for

some θ > 0,

lim
k→∞

f(xk) ≥ f∗ + z∗v,θ.

Thus, there exist some δ ∈ (0,min{θ/2, z∗v,θ}) and positive integer k0 such that

f(xk) > f∗ + z∗v,θ − δ, (4.4.11)

and

ϵk < ϵ+ θ/2, (4.4.12)

for all k ≥ k0, where (4.4.12) holds due to lim
k→∞

ϵk = ϵ.

From (4.4.5) and (4.4.11), we obtain f(xk) − f∗ + δ > z∗v,θ and thus Hxk
v,θ(f(xk) −

f∗ + δ) < 0, that is,

f(xk) > f∗ + µ
(
v
2
(1 +R)2 +R(f(xk)−f∗+δ

η
)1/g(dist(xk,X

∗))
)p

+ ϵ+ θ − δ

> f∗ + µ
(
v
2
(1 +R)2 +R(f(xk)−f∗+δ

η
)1/g(dist(xk,X

∗))
)p

+ ϵk

≥ f∗ + µ
(
v
2
(1 +R)2 +R(f(xk)−f∗

η
)1/g(dist(xk,X

∗)) + δ′
)p

+ ϵk,∀k ≥ k0,

where the second inequality follows from (4.4.12) and 0 < δ < θ/2, and the third

inequality follows from the Taylor expansion with δ′ = min{ δ
ηq
(
z∗v,θ
η
)1/q−1, δ

ηp
(M−f∗

η
)1/p−1}

> 0 (recall that M is an upper bound on {f(xk)}). Therefore, by using Lemmas 4.3.4

and 4.4.2, we obtain

⟨gk/∥gk∥, xk − x∗⟩ ≥ v
2
(1 +R)2 +R(f(xk)−f∗

η
)1/g(dist(xk,X

∗)) + δ′

≥ v
2
(1 +R)2 +R dist(xk, X

∗) + δ′, ∀k ≥ k0,
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and hence (
dist(xk+1, X

∗)
)2 ≤

(
dist(xk, X

∗)
)2 − 2vδ′

≤ · · · ≤
(
dist(xk0 , X

∗)
)2 − 2(k − k0 + 1)vδ′,

which yields a contradiction for sufficiently large k. Therefore, we have

lim
k→∞

f(xk) ≤ f∗ + z∗v,θ,∀θ > 0.

Taking the limit as θ → 0, by using Lemma 4.4.1(ii), we arrive at the conclusion.

We now give explicit expressions for the tolerance in approaching f∗ in Theorem

4.4.1 in some specific cases of p and g(t). By solving relations (4.4.6)-(4.4.7), we have

the following corollaries where the total errors are given in explicit expressions.

Corollary 4.4.1 Let Assumptions 4.3.2-4.4.2 hold with g(t) ≡ p and p = 1. Then, for

a sequence {xk} generated by the AQSGM with the constant stepsize rule, we have

lim
k→∞

f(xk) ≤ f∗ +
(1
2
µv(1 +R)2 + ϵ

) η

η −Rµ
.

Proof. By the assumptions, since g(t) ≡ p and p = q = 1, we have

Hp
v,0(z) = Hq

v,0(z) = µ
(v
2
(1 +R)2 +R

z

η

)
+ ϵ− z and zpv,0 = zqv,0.

It is clear that Hp
v,0(z) is linear and decreasing due to R < η/µ. Thus, by (4.4.6),

zpv,0 is just the solution of Hp
v,0(z) = 0. Then, from (4.4.7), we have z∗v,0 = zpv,0 =(

1
2
µv(1 +R)2 + ϵ

)
η

η−Rµ . Hence, by Theorem 4.4.1, we arrive at the conclusion.

Corollary 4.4.2 Let Assumptions 4.3.2-4.4.2 hold with g(t) ≡ p and p = 2. Then, for

a sequence {xk} generated by the AQSGM with the constant stepsize rule, we have

lim
k→∞

f(xk) ≤ f∗ + η
(µvR(1 +R)2 +

√
ηµv2(1 +R)4 + 4ϵ(η − µR2)

2(η − µR2)

)2

.

Proof. By the assumptions, g(t) ≡ p and p = q = 2, we have

Hp
v,0(z) = Hq

v,0(z) = µ
(v
2
(1 +R)2 +R(

z

η
)1/2

)2

+ ϵ− z and zpv,0 = zqv,0.

114



Taking y = ( z
η
)1/2, we define Hp

v,0(z(y)) := µ
(
v
2
(1+R)2+Ry

)2

+ϵ−ηy2. By calculation,

the solution of Hp
v,0(z(y)) = 0 is ȳ =

µvR(1+R)2+
√
ηµv2(1+R)4+4ϵ(η−µR2)

2(η−µR2)
(the negative

solution should be ignored since y ≥ 0). Moreover, the derivative
(
Hp
v,0(z(y))

)′
=

µvR(1 + R)2 + 2y(µR2 − η), which is negative if y > µvR(1+R)2

2(η−µR2)
. Hence, Hp

v,0(z(y)) is

decreasing and thus negative if y > ȳ. Then, from (4.4.7), we have z∗v,0 = zpv,0 = z(ȳ) =

ηȳ2. Thus, by Theorem 4.4.1, we arrive at the conclusion.

Using the diminishing stepsize rule, the total error tends to z∗0,0 as vk diminishes

and the following theorem is obtained.

Theorem 4.4.2 Let Assumptions 4.3.2-4.4.2 hold and the sequence {xk} be generated

by the AQSGM with the diminishing stepsize rule. Then, z∗0,0 is finite and

lim
k→∞

f(xk) ≤ f∗ + z∗0,0.

Proof. The proof uses the properties of the diminishing stepsize rule and a line of

analysis similar to that of Theorem 4.4.1. The details are omitted.

Corollary 4.4.3 Let Assumptions 4.3.2-4.4.2 hold with g(t) ≡ p and p = 1. Then, for

a sequence {xk} generated by the AQSGM with the diminishing stepsize rule, we have

lim
k→∞

f(xk) ≤ f∗ +
ηϵ

η −Rµ
.

Proof. Solving relations (4.4.6)-(4.4.7) with v = θ = 0, g(t) ≡ p and p = 1, by

Theorem 4.4.2, we arrive at this corollary.

So far, we have established convergence properties in objective values of the AQSGM

and extended the corresponding results [81] in the presence of the generalized weak

sharp minima condition (see Theorems 4.4.1-4.4.2). Specified g(t) ≡ p and p = 1, the

generalized weak sharp minima reduces to the weak sharp minima as in [81] and the total

error in Corollaries 4.4.1 and 4.4.3 have similar formulae to that in [81, Propositions

3.1-3.2].

The exact quasi-subgradient method with the noise and the ϵ-quasi-subgradient

method can be considered as two special cases of the AQSGM with ϵk ≡ 0 and R =
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0 respectively. We now demonstrate how the noise rk and the errors ϵk affect the

established results under the assumption of the weak sharp minima (see (4.4.1)).

When exact subgradients are used (ϵk ≡ 0) and the low level noise is persistent

(R > 0), the total error e := ηϵ/(η −Rµ) in Corollary 4.4.3 vanishes and the objective

value converges to f∗.

Corollary 4.4.4 Let Assumptions 4.3.2-4.4.2 hold with g(t) ≡ p and p = 1. Then,

for a sequence {xk} generated by the AQSGM with the diminishing stepsize rule and

ϵk ≡ 0, we have

lim
k→∞

f(xk) = f∗.

By contrast, exact convergence cannot be guaranteed in the corresponding result of

Corollary 4.3.1. When ϵk-subgradients are used (ϵ > 0) and noise vanishes (R = 0),

the total error in the estimate of Corollary 4.4.3 does not vanish. In particular, the

total error e = ηϵ/(η − Rµ) is proportional to the error level ϵ. This demonstrates the

different effect of the noise rk and the errors ϵk on the AQSGM under the assumption

of the weak sharp minima.

Finite convergence

In this subsection, we describe the finite convergence to the approximate optimal

value of problem (4.1.1) under the assumption that the optimal solution set X∗ has

a nonempty interior.

Theorem 4.4.3 Let Assumptions 4.3.2-4.4.2 hold, intX∗ ̸= ∅ and the diminishing

stepsize rule be chosen. Then, f(xk) ≤ f∗ + z∗0,0 for some k.

Proof. By contradiction, we assume that f(xk) > f∗ + z∗0,0 for all k ∈ N. Then, from

(4.4.5), we have Hxk
0,0(f(xk)− f∗) < 0, that is,

f(xk) > f∗ + µ
(
R(
f(xk)− f∗

η
)1/g(dist(xk,X

∗))
)p

+ ϵ. (4.4.13)
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Due to Lemma 4.4.4, we have z∗0,0 + f∗ < f(xk) ≤ M . Since intX∗ ̸= ∅, we set

B(x̄, δ̄) ⊂ X∗ with δ̄ > 0. Hence, for all x ∈ B(x̄, R(f(xk)−f∗
η

)1/g(dist(xk,X
∗)) + 2

3
δ̄) there

holds
f(x)− f∗ ≤ µ

(
dist(x,X∗)

)p
≤ µ

(
R(f(xk)−f∗

η
)1/g(dist(xk,X

∗)) − 1
3
δ̄
)p

≤ µ
(
R(f(xk)−f∗

η
)1/g(dist(xk,X

∗))
)p

− δ′

< f(xk)− f∗ − δ′ − ϵ,

(4.4.14)

where δ′ = min{ δ
3ηq

(
z∗0,0
η
)1/q−1, δ

3ηp
(M−f∗

η
)1/p−1} > 0, the third inequality follows from the

Taylor expansion, and the fourth inequality follows from (4.4.13). In addition, since

lim
k→∞

ϵk = ϵ, there exists some k0 such that ϵk ≤ ϵ+ δ′ for all k ≥ k0. Therefore, (4.4.14)

implies f(x) < f(xk)− ϵk and thus B(x̄, R(f(xk)−f∗
η

)1/g(dist(xk,X
∗)) + 2

3
δ̄) ⊂ Sf,f(xk)−ϵk for

all k ≥ k0. Thus, it follows from Lemma 4.3.3 and (4.4.3) that

⟨gk/∥gk∥, xk − x̄⟩ ≥ R(f(xk)−f∗
η

)1/g(dist(xk,X
∗)) + 2

3
δ̄

≥ R dist(xk, X
∗) + 2

3
δ̄.

Hence, by using Lemma 4.4.2, we obtain(
dist(xk+1, X

∗)
)2 ≤ (

dist(xk, X
∗)
)2 − 4

3
vkδ̄ + v2k(1 +R)2.

It gives the upper bound on δ̄ as follows

δ̄ ≤
3
(
dist(xk0 , X

∗)
)2

4
∑k

i=k0
vi

+
3
∑k

i=k0
v2i

4
∑k

i=k0
vi
(1 +R)2, (4.4.15)

whose right hand side tends to zero as k tends to infinity. Hence, we arrive at a

contradiction with δ̄ > 0.

Under the same assumptions, we now describe a related result for nonvanishing

stepsize rule.

Theorem 4.4.4 Let Assumptions 4.3.2-4.4.2 hold. If B(x̄, δ̄) ⊂ X∗ with δ̄ > 0 and

there exist some 0 < κ < 1 and k0 ∈ N such that vk ∈ [ κ2δ̄
(1+R)2

, κδ̄
(1+R)2

] for all k ≥ k0.

Then, f(xk) ≤ f∗ + z∗0,0 for some k.
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Proof. Suppose f(xk) > f∗ + z∗0,0 for all k ∈ N. As in the proof of Theorem 4.4.3 and

(4.4.15), we have

δ̄ ≤
3
(
dist(xk0 , X

∗)
)2

4
∑k

i=k0
vi

+
3
∑k

i=k0
v2i

4
∑k

i=k0
vi
(1 +R)2

≤
3
(
dist(xk0 , X

∗)
)2

4κ2δ̄(k − k0 + 1)
(1 +R)2 +

3

4
δ̄,

whose last right hand side tends to 3
4
δ̄ as k tends to infinity. The contradiction happens.

Convergence in iterates

Similar to Section 4.3, we prove the following theorem which describes convergence of

{xk} to some approximate optimal solution set in the presence of a generalized weak

sharp minima condition (see (4.4.3)).

Theorem 4.4.5 Let Assumptions 4.3.2-4.4.2 hold with z∗0,0 > 0 (see (4.4.5)), f be

upper semi-continuous on Rn and the diminishing stepsize rule be chosen. Then the

following statements are true:

(i) lim
k→∞

dist(xk, S̄f,f∗+z∗0,0 ∩X) = 0.

(ii) lim
k→∞

dist(xk, X
∗ + ρ(z∗0,0)B) = 0, where ρ(z∗0,0) is defined by

ρ(z∗0,0) := max{dist(x,X∗) : x ∈ S̄f,f∗+z∗0,0 ∩X}.

Proof. The proof uses a line of analysis similar to that of Theorem 4.3.5.

(i) The boundedness of {xk} is given by Lemma 4.4.4, and it is given by Theorem

4.4.2 that lim
k→∞

f(xk) ≤ f∗+ z∗0,0. Hence, there exists some subsequence {xki} that

converges to some x̄ ∈ X with lim
i→∞

f(xki) ≤ f∗+z
∗
0,0. Thus, the conclusion follows

from Lemma 4.3.5.

(ii) Given σ > 0, define

V2σ := X∗ + ρ(z∗0,0)B + 2σB,
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and

eσ := inf{f(x) : x ∈ X, dist(x, S̄f,f∗+z∗0,0 ∩X) ≥ σ} − (f∗ + z∗0,0). (4.4.16)

Since eσ is positive (by the proof of Theorem 4.3.5) and z∗v,θ is continuous on

parameters v and θ (cf. Lemma 4.4.1), there exist some positive v and θ such that

z∗v,θ < z∗0,0 + eσ. (4.4.17)

Since the stepsize vk diminishes, there exists kv ∈ N such that

vk ≤ v, ∀k ≥ kv. (4.4.18)

Since lim
k→∞

ϵk = ϵ and lim
k→∞

∥xk+1−xk∥ = 0 (since vk diminishes), there exists some

kσ ≥ kv such that

ϵk < ϵ+ θ, (4.4.19)

and

∥xk+1 − xk∥ ≤ σ, (4.4.20)

for all k ≥ kσ. Since lim
k→∞

dist(xk, S̄f,f∗+z∗0,0 ∩ X) = 0 (cf. (i)), there exists some

k′σ ≥ kσ ≥ kv such that

xk′σ ∈ (S̄f,f∗+z∗0,0 ∩X) + σB

⊂ X∗ + ρ(z∗0,0)B + σB

⊂ V2σ,

that is xk′σ ∈ V2σ.

Next, we claim that xk ∈ V2σ for all k ≥ k′σ. Proving by induction, we assume

that xk ∈ V2σ for some k ≥ k′σ and consider the following two cases.

Case 1. If dist(xk, S̄f,f∗+z∗0,0 ∩X) ≤ σ, from (4.4.20), we have

xk+1 ∈ {xk}+ σB

⊂ (S̄f,f∗+z∗0,0 ∩X + σB) + σB

⊂ X∗ + ρ(z∗0,0)B + 2σB

= V2σ.

Case 2. Suppose dist(xk, S̄f,f∗+z∗0,0 ∩X) > σ. From (4.4.16), we have

f(xk) ≥ eσ + f∗ + z∗0,0

> f∗ + z∗v,θ,
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where the second inequality follows from (4.4.17). Thus, from (4.4.5), we obtain

Hxk
v,θ(f(xk)− f∗) < 0, that is,

f(xk) > f∗ + µ
(
v
2
(1 +R)2 +R(f(xk)−f∗

η
)1/g(dist(xk,X

∗))
)p

+ ϵ+ θ

> f∗ + µ
(
v
2
(1 +R)2 +R(f(xk)−f∗

η
)1/g(dist(xk,X

∗))
)p

+ ϵk, ∀k ≥ kσ,

where the second inequality follows from (4.4.19). Hence, from Lemmas 4.3.4 and

4.4.2, we have(
dist(xk+1, X

∗)
)2 ≤

(
dist(xk, X

∗)
)2 − 2vk

(
v
2
(1 +R)2 − vk

2
(1 +R)2

)
≤

(
dist(xk, X

∗)
)2
,

where the second inequality follows from (4.4.18). Thus, xk ∈ V2σ implies xk+1 ∈
V2σ.

Therefore, by induction, xk ∈ V2σ and hence dist(xk, X
∗ + ρ(z∗0,0)B) ≤ 2σ for all

k ≥ k′σ. Since σ > 0 is arbitrary, dist(xk, X
∗ + ρ(z∗0,0)B) vanishes as k tends to

infinity.

4.5 Efficiency

In this section, under the bounded assumption (i.e., Assumptions 4.3.1 and 4.3.3), we

discuss efficiency estimates of the AQSGM. In order to quantify the efficiency of the

AQSGM, we introduce some concepts as in [60].

The inradius of a set Z is the radius of the largest ball contained in Z, denoted by

ṙ(Z) := sup{r > 0 : B(x, r) ⊂ Z for some x ∈ Z}. (4.5.1)

For any γ ∈ (0, 1), the γ-solution set of problem (4.1.1) is defined by

X∗
γ := {x ∈ X : ṙ(Sf (x)) < γṙ(X)}. (4.5.2)

It follows from (4.5.2) that x is an γ-solution of problem (4.1.1) if x ∈ X and Sf (x)

does not contain a ball with radius γṙ(X). Thus, the significance of the inradius is to

estimate the efficiency of algorithms, inasmuch as x is an γ-solution if ṙ(Sf (x)) < γṙ(X).
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The criterion is that the quality of iterates improves if the inradius of its strict sublevel

set decreases.

At iteration k ≥ 1, the record value f recϵ,k denotes the best approximate value found

so far, and is defined by

f recϵ,k := min
j=1,...,k

{
f(xj)− ϵj

}
. (4.5.3)

Let ṙk denote the inradius of the record strict sublevel set, defined by

ṙk := ṙ(Sf,frecϵ,k
),

which is nonincreasing in k.

In view of application considerations, we would like our algorithm to reach the γ-

solution set as fast as possible. Since the quality of the record value/point improves

if the inradius ṙk decreases (cf. [60, Lemma 13]), we would like ṙk to decrease as fast

as possible. For this purpose, we now give an upper bound on ṙk that depends on the

stepsize rule.

Lemma 4.5.1 Let Assumptions 4.3.1 and 4.3.3 hold. For a sequence {xk} generated

by the AQSGM, we have

ṙk ≤ Rd+
d2 + (1 +R)2

∑k
j=i v

2
j

2
∑k

j=i vj
, for i = 1, · · · , k. (4.5.4)

Proof. Suppose ṙk > 0. For any δ < ṙk, it follows from (4.5.1) that there exists

some x̄ such that B(x̄, δ) ⊂ Sf,frecϵ,k
. Then for each j = 1, · · · , k, from (4.5.3), we have

B(x̄, δ) ⊂ Sf,f(xj)−ϵj . Hence, it follows from Lemma 4.3.3 that

⟨gj/∥gj∥, xj − x̄⟩ ≥ δ, for j = 1, · · · , k.

Therefore, from Lemma 4.3.2, we have

∥xj+1 − x̄∥2 ≤ ∥xj − x̄∥2 − 2vjδ + 2vjRd+ v2j (1 +R)2.

Summing these inequalities over j = i, · · · , k, we arrive at

δ ≤ Rd+
d2 + (1 +R)2

∑k
j=i v

2
j

2
∑k

j=i vj
, for i = 1, · · · , k.
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Since δ < ṙk is arbitrary, we arrive at the conclusion.

In the sense of guaranteeing that the record values/points become γ-solutions as

fast as possible, the best stepsize may be found by minimizing the upper bound of ṙk

in (4.5.4). In the following, we offer the best choice on the constant stepsize rule and

estimate the rate of efficiency by using the diminishing stepsize rule.

Theorem 4.5.1 Let Assumptions 4.3.1 and 4.3.3 hold. For a sequence {xk} generated

by the AQSGM, the following statements hold:

(i) if a constant stepsize v is chosen, then ṙk ≤ d2

2kv
+Rd+ v

2
(1 +R)2,

(ii) the best constant stepsize is v = d
(1+R)

√
k
and then ṙk ≤ d(1+R)√

k
+Rd,

(iii) if the diminishing stepsize is chosen as vi = a/
√
i, then

ṙk ≤ Rd+ ck−1/2 with c =
d2 + a2(1 + log 2)(1 +R)2

a(4− 2
√
2)

.

More general, if vk is chosen as the diminishing stepsize rule, then lim
k→∞

ṙk ≤ Rd.

Proof.

(i) It is (4.5.4) specifying i = 1 and vi ≡ v.

(ii) Minimizing the upper bound on ṙk in (i) with respect to v, we obtain the best

constant stepsize v = d
(1+R)

√
k
and the corresponding upper bound on the inradius.

(iii) It follows from [86, p.157] that

k∑
j=i

j−1 ≤ 1 + log 2 and
k∑
j=i

j−1/2 ≥ (2−
√
2)k1/2, for i = ⌈k

2
⌉.

Using the relation (4.5.4), we obtain

ṙk ≤ Rd+
d2 + a2(1 + log 2)(1 +R)2

a(4− 2
√
2)k1/2

= Rd+ ck−1/2.

Furthermore, from the properties of the diminishing stepsize rule (see (1.1.5)),

we have lim
k→∞

(
∑k

j=i v
2
j/

∑k
j=i vj) = 0 (cf. [61, Lemma 2.1]), the relation (4.5.4)

implies lim
k→∞

ṙk ≤ Rd.
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4.6 Numerical Experiments

In this section, we show two numerical experiments to illustrate the performance of the

AQSGM on the fractional programming, which is widely applied in applications and

has been extensively studied by many researchers (see e.g. [9, 34, 39, 44, 50]). In the

first experiment, we compare the exact quasi-subgradient method (in short, QSGM)

with the projected level function method (in short, PLFM) proposed by Xu [109].

The computation result shows that the exact quasi-subgradient method arrives at a

better solution in fewer number of iterations on this small-scale problem. In the second

experiment, we show the performance of the AQSGM and illustrate the sensitivity

of inexact terms on the large-scale fractional programming. The computation result

coincides with the obtained convergence results and shows that the AQSGM is suitable

for large-scale problems.

Fractional programming

Consider the following fractional programming problems (see [109])

min p(x)/q(x)

s.t. x ∈ C,
(4.6.1)

where

p(x) = max{x21 + x42; (2− x1)
2 + (2− x1)

2(2− x2)
2; 2ex2−x1},

q(x) = c1x1 + c2x2 + 1,

with c1 and c2 specified below, and

C = {x ∈ R2 : x ≥ 0;x1 + x2 ≤ 3}.

Since p(x) is convex and q(x) is affine and positive when (c1, c2) is restricted to be

nonnegative, it can be shown that the function p(x)/q(x) is nonsmooth and quasi-

convex on C for specified c in Table 4.1 (cf. criterion (K) in [9, page 209]). We compare

the exact quasi-subgradient method (QSGM) with projected level function method

(PLFM) in [109] for this example. We illustrate the numerical results in Table 4.1. In

this table, c = (c1, c2)
T is a vector representing the parameters in the function q(x). At

the column of parameters, it denotes stepsize and parameter λ respectively in QSGM
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and PLFM. NIT denotes the number of iterations needed to reach the approximate

optimal value, fopt denotes the objective function value as the algorithms terminate

and the last column presents the approximate solution as the algorithms terminate. It

is illustrated in Table 4.1 that the QSGM arrives at a better solution in fewer number

of iterations on this small-scale problem.

Table 4.1: Computation results for fractional programming

Algorithm c Parameters NIT fopt Solution

PLFM (0,0) 1 36 1.9552 (1.1669,0.8770)

QSGM (0,0) 0.1/(1 + 0.1k) 14 1.9530 (1.1473,0.8879)

PLFM (2,1) 1 33 0.4615 (1.0001,1.0005)

QSGM (2,1) 0.1/(1 + 0.1k) 23 0.4614 (1.3839,0.8402)

PLFM (20,10) 1 31 0.0583 (1.2609,0.7967)

QSGM (20,10) 0.1/(1 + 0.1k) 29 0.0583 (1.2635,0.8129)

Minimax linear fractional programming

Consider the following minimax linear fractional programming

min max
1≤k≤p

cTk x+αk

dTk x+βk

s.t. Ax ≤ b,

x ≥ 0,

which is a nonsmooth and quasi-convex maximization problem when the denominators

are positive (cf. criterion (K) in [9, page 209]). All elements of the matrix A, vectors

b, ck, dk and scalars αk, βk are randomly generated from the uniform distribution

on certain intervals: A ∈ [0, 1], b ∈ [n, 2n], ck ∈ [0, 50], dk ∈ [0, 5], αk ∈ [−50, 50],

βk ∈ [0, 5].

The minimax linear fractional programming has been well studied in many articles

(see [34, 39, 44] and references therein), so the quasi-convex programming formulation

does not lead to improve solutions for this problem, but it provides an illuminating

example of how to find such a formulation more generally, and we use the large-scale

minimax linear fractional programming example to illustrate the AQSGM.
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We use the AQSGM to solve this fractional programming in medium-scale and large-

scale. In this experiment, we add a deterministic noise into each quasi-subgradient.

In Table 4.2, we illustrate the numerical results of the AQSGM when the noise level

R = 0.01. The stopping criterion is that the error in approaching the optimal value is

less than 0.05, i.e., ∥fk − f∗∥ < 0.05. NIT and time denote the corresponding number

and time of iterations needed to reach the specified level respectively. fopt denotes the

objective function value as the AQSGM terminates. It is illustrated that NIT lies on a

stable level as the dimension increases. Hence, the AQSGM is suitable for large-scale

problems.

Table 4.2: Computation results of the AQSGM

Dimension Number Stepsize NIT Time fopt

10 100 1/(1 + 0.1k) 93 1.3sec 6.6344

10 1000 1/(1 + 0.1k) 57 6.5sec 4.8343

50 100 1/(1 + 0.1k) 113 8.0sec 9.0081

50 1000 1/(1 + 0.1k) 68 47sec 7.8315

100 100 3/(1 + 0.1k) 106 16sec 9.7454

100 1000 3/(1 + 0.1k) 70 1.8min 8.4501

200 100 3/(1 + 0.1k) 109 35sec 9.9213

200 2000 3/(1 + 0.1k) 76 6min 8.9462

We also do some tests on the effect of noise on the AQSGM. In Figure 4.5, we

show the convergence behavior of the AQSGM and the sensitivity of inexact terms as

R = 0.1, 0.2 and 1. The gaps between curves describe the total errors in approaching

the optimal value (cf. Theorem 4.3.2). Recall that the approximate quasi-subgradient

has the form (see (4.2.6))

g̃k := gk/∥gk∥+ rk,

where the first term gk/∥gk∥ has a norm of 1. It is worth mentioning in Figure 4.5 that

the sequence does not converge when R ≥ 1. This is because R is too big that the

quasi-subgradient is not the primary direction in the iteration (cf. (4.2.6)).
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Figure 4.5: The convergence behavior of the AQSGM.
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Chapter 5

Quantized Approximate

Quasi-Subgradient Method

5.1 Introduction

Polyak [93, 94] and Nedić and Bertsekas [81] studied the effect of noise on subgradient

methods for convex constrained optimization problems. In Chapter 4, to meet much

broader class of problems, we have proposed an approximate quasi-subgradient method

(AQSGM) and investigated the effect of inexact terms on the AQSGM for quasi-convex

constrained optimization problems.

However, as the motivating example given in Section 4.2, the distributed optimiza-

tion problem in networks usually requires the data at each node and transmitted data

to reach a quantization level (see e.g. [10, 54, 95]). As in Chapter 4, only considering

noise on the transmitted data is not enough. Therefore, in this chapter, we investigate

the influence of inexact items and convergence behavior on the quantized approximate

quasi-subgradient method (in short, QAQSGM), which applies a quantization operator

after the subgradient iteration along the approximate quasi-subgradient, for quantized

quasi-convex constrained optimization problems.

In this chapter, we consider the following nondifferentiable quantized quasi-convex
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constrained optimization problem:

min f(x)

s.t. x ∈ X

x ∈ Λ,

(5.1.1)

where f : Rn → R is a quasi-convex function, X is a closed and convex set, and Λ is a

quantization lattice defined by

Λ = {(λ1∆, λ2∆, · · · , λn∆) : λi ∈ Z}, (5.1.2)

where ∆ > 0 is the given quantization scalar. We denote the optimal solution set and

the optimal value of problem (5.1.1) respectively by X∗ and f∗, and we assume that X∗

is nonempty and compact.

Inspired by the idea in [81] and references therein, we propose a quantized approxi-

mate quasi-subgradient method (QAQSGM), and investigate the effect of inexact terms

and convergence behavior on the QAQSGM. Considering the generic inexact subgra-

dient algorithm for problem (5.1.1) and assuming the inexact terms are deterministic

and bounded, we establish convergence results in two cases: (i) X is compact and (ii)

X is noncompact. Throughout this chapter, we only consider the constant stepsize rule

and obtain the best constant stepsize by minimizing the tolerance in approaching the

optimal value.

This chapter is organized as follows. In Section 5.2, we present the QAQSGM

algorithm. In Section 5.3, we demonstrate convergence properties of the QAQSGM

when the constraint set X is compact or when f satisfies a generalized weak sharp

minima condition over a noncompact set X.

5.2 QAQSGM Algorithm

For a given scalar ∆ > 0, the quantization lattice Λ in (5.1.2) consists of points regularly

spaced by ∆ along each coordinate axis. We define the quantization operator Q : Rn →
X ∩ Λ by

Q(·) = PX∩Λ(PX(·)), (5.2.1)
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which projects its argument first onto the constraint set X and then onto the nearest

lattice point in X ∩ Λ. Note that applying the quantization operator Q(·) to x ∈ Rn

is not equivalent to directly projecting x to the nearest point in X ∩ Λ. In particular,

when x /∈ X, the nearest point to x in X ∩ Λ can be different from Q(x), and may

result in a large error (see [95]).

In this section, we propose a quantized approximate quasi-subgradient method

(QAQSGM) to solve problem (5.1.1) as follows.

Quantized approximate quasi-subgradient method (QAQSGM)

Select the stepsize v, an error sequence {ϵk} and a noise sequence {rk}, start with an

initial point x0 ∈ X, and generate a sequence {xk} ∈ X via the iteration

xk+1 = Q(xk − vg̃k), (5.2.2)

where the direction g̃k is an approximate quasi-subgradient of the following form

g̃k := gk/∥gk∥+ rk, (5.2.3)

where rk is a noise vector and gk ∈ ∂̄∗ϵkf(xk) is an arbitrary nonzero ϵk-quasi-subgradient

of f at xk (cf. (4.2.3)).

If the diminishing stepsize rule is utilized, the QAQSGM may terminate at some

point that is far away from the optimal value/solution. An example is given as follows.

Example 5.2.1 Consider the following quantized quasi-convex constrained optimiza-

tion problem

min ∥x∥
s.t. x ∈ R+

x ∈ N.

Obviously, its optimal value is f∗ = 0 and its optimal solution set is X∗ = {0}. In

particular, we choose ϵk ≡ 0 and rk ≡ 0, and the QAQSGM reduces to the exact

quantized quasi-subgradient method. It is easy to verify that ∂̄∗f(x) = R+ for all x > 0,

and the algorithm generates the iterates via

xk+1 = QX(xk − vk).
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Suppose we choose the diminishing stepsize rule, for instance, vk = v/k (v ≫ 1).

Since the quantization scalar ∆ = 1, the algorithm is sure to terminate after k = 2v

iterations. Starting from the initial point x0 = 4v2 + 10v, we have

x2v ≥ x2v−1 −
v

2v
− 1

≥ · · ·

≥ x0 −
2v∑
i=1

v

i
− 2v

≥ x0 − v −
22∑
i=2

v

i
− · · · −

2(⌈log 2v⌉+1)∑
i=2⌈log 2v⌉

v

i
− 2v

≥ x0 − v − v(1 + log 2)⌈log 2v⌉ − 2v

> x0 − v − 4v2 − 2v

= 7v,

where the first inequality holds due to the quantization lattice, and the fifth inequality

follows from the fact that
∑k

j=i j
−1 ≤ 1 + log 2 for all i = k/2 and k ∈ N (see [86,

p.157]). Thus, the algorithm terminates at a point that is far away from (> 7v) the

optimal solution.

Hence, in this chapter, assuming the noise and errors are deterministic and bounded,

we investigate convergence properties of the QAQSGM only using the constant stepsize

rule.

5.3 Convergence Analysis

The convergence analysis is divided into two cases: (i) X is compact and (ii) X is

noncompact while the objective function satisfies the generalized weak sharp minima

condition.

5.3.1 Convergence for a Compact X

In this subsection, we investigate the convergence property of the QAQSGM when the

constraint set X is compact. Same as Section 4.3, throughout this subsection, the
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following three assumptions are made.

Assumption 5.3.1 The constraint set X is compact.

Assumption 5.3.2 f satisfies the Hölder condition of order p > 0 with modulus µ > 0

on Rn, that is,

f(x)− f∗ ≤ µ
(
dist(x,X∗)

)p
, ∀x ∈ Rn. (5.3.1)

Assumption 5.3.3 The noise and errors are bounded, i.e., there exist some scalars R

and ϵ ≥ 0 such that

∥rk∥ ≤ R, ∀k ≥ 0 and lim
k→∞

ϵk = ϵ.

Since the constraint set X is compact, all iterates are bounded. Therefore, there

exists some d > 0 (such as the diameter of X) such that ∥xk − x∥ ≤ d for all x ∈ X

and k ≥ 0. Moreover, under the bounded noise assumption, it follows from (5.2.3) that

approximate quasi-subgradients are uniformly bounded, i.e., ∥g̃k∥ ≤ 1+R for all k ≥ 0.

We start with the following lemmas that describe a very important property of

the quantization operator and show the basic inequality of the subgradient iteration

respectively.

Lemma 5.3.1 For all x ∈ Rn and y ∈ X, we have

∥Q(x)− y∥ ≤ ∥x− y∥+
√
n∆. (5.3.2)

Proof. Due to the structure of quantization lattice Λ (cf. (5.1.2)), for all x ∈ Rn and

y ∈ X, we obtain

∥Q(x)− y∥ = ∥Q(x)− PX(x) + PX(x)− y∥
≤ ∥Q(x)− PX(x)∥+ ∥PX(x)− y∥
≤

√
n∆+ ∥PX(x)− y∥

≤
√
n∆+ ∥x− y∥,

where the third inequality follows from the nonexpansive property of the projection

operator.
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Lemma 5.3.2 Suppose Assumptions 5.3.1 and 5.3.3 hold, and the sequence {xk} is

generated by the QAQSGM. Then for all x ∈ X and k ∈ N, we have

∥xk+1−x∥2 ≤ ∥xk−x∥2− 2v
(
⟨ gk
∥gk∥

, xk−x⟩− d(

√
n∆

v
+R)− 1

2v

(√
n∆+ v(1+R)

)2)
.

Proof. By relations (5.2.2)-(5.2.3) and Lemma 5.3.1, for all x ∈ X, we have the

following basic inequality

∥xk+1 − x∥2 = ∥Q(xk − vg̃k)− x∥2

≤ (∥xk − vg̃k − x∥+
√
n∆)2

= ∥xk − vg̃k − x∥2 + 2
√
n∆∥xk − vg̃k − x∥+ n∆2

= ∥xk − x∥2 − 2v⟨gk/∥gk∥+ rk, xk − x⟩+ v2∥gk/∥gk∥+ rk∥2

+2
√
n∆∥xk − vg̃k − x∥+ n∆2

≤ ∥xk − x∥2 − 2v
(
⟨ gk
∥gk∥

, xk − x⟩ −Rd− 1

2
v(1 +R)2

−
√
n∆(d+ v(1 +R))

v
− n∆2

2v

)
≤ ∥xk − x∥2 − 2v

(
⟨ gk
∥gk∥

, xk − x⟩ − d(R +

√
n∆

v
)−

(
v(1 +R) +

√
n∆

)2
2v

)
,

where the second inequality follows from the compactness of X and boundedness of

noise.

The convergence result of the QAQSGM is demonstrated as follows.

Theorem 5.3.1 Let Assumptions 5.3.1-5.3.3 hold. Then, for a sequence {xk} gener-

ated by the QAQSGM, we have

lim
k→∞

f(xk) ≤ f∗ + µ
(
d(

√
n∆

v
+R) +

1

2v

(√
n∆+ v(1 +R)

)2)p
+ ϵ. (5.3.3)

Proof. By contradiction, we assume that

lim
k→∞

f(xk) > f∗ + µ
(
d(

√
n∆

v
+R) +

1

2v

(√
n∆+ v(1 +R)

)2)p
+ ϵ,

that is, there exist some δ > 0 and positive integer k0 such that

f(xk) > f∗ + µ
(
d(

√
n∆

v
+R) +

1

2v

(√
n∆+ v(1 +R)

)2
+ δ

)p
+ ϵk, ∀k ≥ k0.
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Thus, it follows from Lemma 4.3.4 (only require Assumption 5.3.2) that for all x∗ ∈ X∗

and k ≥ k0 there holds

⟨gk/∥gk∥, xk − x∗⟩ ≥ d(

√
n∆

v
+R) +

1

2v

(√
n∆+ v(1 +R)

)2
+ δ.

Therefore, from Lemma 5.3.2 with x∗ ∈ X∗, we obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2v
(
d(

√
n∆

v
+R) +

1

2v

(√
n∆+ v(1 +R)

)2
+ δ

−d(
√
n∆

v
+R)− 1

2v

(√
n∆+ v(1 +R)

)2)
= ∥xk − x∗∥2 − 2vδ

< · · · < ∥xk0 − x∗∥2 − 2(k − k0 + 1)vδ,

which yields a contradiction for sufficiently large k.

Thus, for a given quantization scalar ∆, the best constant stepsize can be obtained

by minimizing the tolerance estimated in (5.3.3), i.e.,

min
v≥0

{
d(

√
n∆

v
+R) +

1

2v

(√
n∆+ v(1 +R)

)2}
.

It is trivial to verify that the best constant stepsize, which is the optimal solution of

the preceding optimization problem, is given by

v∗ =

√
n∆2 + 2d

√
n∆

1 +R
.

It is also observed that the tolerance, given in (5.3.3), has the same expression as

that of the AQSGM (cf. Theorem 4.3.1) if the quantization operator is infinitely precise

(i.e., ∆ is sufficiently small).

5.3.2 Convergence for f with Generalized Weak Sharp Minima

In this subsection, we consider the case when X is noncompact. In this case, we assume

that the objective function f satisfies the generalized weak sharp minima condition over

X, as in Chapter 4. In particular, we introduce the following two assumptions.

Assumption 5.3.4 The function f satisfies the generalized weak sharp minima condi-

tion over X, that is, there exist some scalars η > 0, q ≥ p and a function g : R+ → R+,
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satisfying g(·) ≥ p, sup
t≥0

g(t) = q and lim
t→∞

g(t) = p, such that

f(x)− f∗ ≥ η
(
dist(x,X∗)

)g(dist(x,X∗))
, ∀x ∈ X, (5.3.4)

where p is the order used in Assumption 5.3.2.

Assumption 5.3.5 {rk} is a low level noise sequence, i.e., R +
√
n∆/v < (η/µ)1/p.

Before we go on, for each θ ≥ 0 and x ∈ X, we define a new function Kx
θ : R+ → R

by

Kx
θ (y) := µ

( 1

2v

(√
n∆+ v(1+R)

)2
+(

√
n∆

v
+R)(

y

η
)1/g(dist(x,X

∗))
)p

+ ϵ+ θ− y, (5.3.5)

where µ and p are scalars given in Assumption 4.3.2 and R and ϵ are scalars given in

Assumption 4.3.3. The maximum solution y∗θ of the inequality Kx
θ (y) ≥ 0 over X is

defined by

y∗θ := sup{y : Kx
θ (y) ≥ 0 for some x ∈ X}. (5.3.6)

Assumption 5.3.4 says that p ≤ g(dist(x,X∗)) ≤ q for all x ∈ X. Hence, from (5.3.5),

for given θ ≥ 0, we have

Kx
θ (y) ≤ max{Kp

θ (y), K
q
θ (y)},∀y ≥ 0, x ∈ X,

where Kp
θ (y) := µ

(
1
2v

(√
n∆+ v(1+R)

)2
+(

√
n∆
v

+R)(y
η
)1/p

)p
+ ϵ+ θ− y and Kq

θ (y) :=

µ
(

1
2v

(√
n∆+ v(1 + R)

)2
+ (

√
n∆
v

+ R)(y
η
)1/q

)p
+ ϵ+ θ − y. Thus, applying (5.3.6) and

Assumption 5.3.4, y∗θ can be rewritten as

y∗θ = max{sup{y : Kp
θ (y) ≥ 0}, sup{y : Kq

θ (y) ≥ 0}}.

For the sake of simplicity, denote

ypθ := sup{y : Kp
θ (y) ≥ 0} and yqθ := sup{y : Kq

θ (y) ≥ 0}, (5.3.7)

and hence

y∗θ = max{ypθ , y
q
θ}. (5.3.8)

Since Kx
θ (0) > 0 and Kx

θ (y) is continuous on variable y for all x ∈ X, then y∗θ is

positive. However, it might be +∞. The following lemma shows that y∗θ is finite and

continuous on parameter θ under Assumptions 5.3.4-5.3.5.
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Lemma 5.3.3 Let Assumptions 5.3.4-5.3.5 hold. Then the following statements hold:

(i) y∗θ is finite for all θ ≥ 0,

(ii) lim
θ→0+

y∗θ = y∗0.

Proof.

(i) By the assumptions, since R +
√
n∆/v < (η/µ)1/p and q ≥ p, we have

lim
y→∞

µ
(R +

√
n∆/v

η1/q
y1/q−1/p

)p
< 1,

which is equivalent to

lim
y→∞

[µ
y

( 1

2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆

v
+R)(

y

η
)1/q

)p
+
ϵ+ θ

y

]
< 1, ∀θ ≥ 0.

This implies lim
y→∞

Kq
θ (y) < 0. Hence, yqθ < +∞ for all θ ≥ 0 since Kq

θ (·) is

continuous. Similarly, we can prove that ypθ < +∞ for all θ ≥ 0. Thus, by using

(5.3.8), we arrive at that y∗θ is finite for all θ ≥ 0.

(ii) Since Kq
θ1
(·) ≤ Kq

θ2
(·) for all θ1 ≤ θ2, then y

q
θ1

≤ yqθ2 . This monotonicity immedi-

ately implies lim
θ→0

yqθ ≥ yq0.

Next, we prove the reverse inequality. By definition of yqθ , for each positive integer

i, there exists some yi satisfying yi > yq1/i − 1/i and Kq
1/i(yi) ≥ 0. Together with

the monotonicity of yqθ , we have −1 < yi ≤ yq1/i ≤ yq1, where the last term is finite

by (i). So the sequence {yi} is bounded and has cluster points. Thus, for each of

its cluster points ȳ, taking a subsequence of {yi} if necessary, we have

lim
i→∞

Kq
1/i(yi) = lim

i→∞
µ
(

1
2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆
v

+R)(yi
η
)1/q

)p
+ ϵ+ 1

i
− yi

= µ
(

1
2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆
v

+R)( ȳ
η
)1/q

)p
+ ϵ− ȳ

= Kq
0(ȳ),

which is nonnegative, since {Kq
1/i(yi)} are all nonnegative. Then, by the definition

of yqθ , we have yq0 ≥ ȳ ≥ lim
θ→0+

yqθ , where the second inequality follows from yi >

yq1/i − 1/i. Therefore, we arrive at lim
θ→0+

yqθ = yq0.

Similarly, we can prove that lim
θ→0+

ypθ = yp0. Thus, from (5.3.8), we arrive at

lim
θ→0+

y∗θ = y∗0.
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These properties of y∗θ will be used in the study of the convergence property of the

QAQSGM when X is noncompact in what follows. Also, we start with the following

basic inequality.

Lemma 5.3.4 Let Assumption 5.3.3 hold and {xk} be the sequence generated by the

QAQSGM. Then, for all x ∈ X and k ∈ N, we have

∥xk+1−x∥2 ≤ ∥xk−x∥2−2v
(
⟨ gk
∥gk∥

, xk−x⟩−∥xk−x∥(
√
n∆

v
+R)− 1

2v

(√
n∆+v(1+R)

)2)
.

Proof. By (5.2.2)-(5.2.3) and Lemma 5.3.1, for all x ∈ X, we have the following basic

inequality

∥xk+1 − x∥2 = ∥Q(xk − vg̃k)− x∥2

≤ (∥xk − vg̃k − x∥+
√
n∆)2

= ∥xk − vg̃k − x∥2 + 2
√
n∆∥xk − vg̃k − x∥+ n∆2

= ∥xk − x∥2 − 2v⟨gk/∥gk∥+ rk, xk − x⟩+ v2∥gk/∥gk∥+ rk∥2

+2
√
n∆∥xk − vg̃k − x∥+ n∆2

≤ ∥xk − x∥2 − 2v
(
⟨ gk
∥gk∥

, xk − x⟩ − ∥xk − x∥(R +

√
n∆

v
)

−
(
v(1 +R) +

√
n∆

)2
2v

)
, (5.3.9)

where the second inequality follows from the boundedness of noise.

Before we discuss the convergence property of the QAQSGM which is the main result

in this subsection, we consider the following lemma which shows the boundedness of

the sequence {xk}.

Lemma 5.3.5 Suppose Assumptions 5.3.2-5.3.5 hold and {xk} is generated by the

QAQSGM. Then, {xk} is bounded.

Proof. Since lim
k→∞

ϵk = ϵ, for any θ > 0, there exists some positive integer k0 such that

ϵk < ϵ+ θ, ∀k ≥ k0. (5.3.10)
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Define the maximum solution of tg(t) ≤ y∗θ/η by

T := sup{t ∈ R+ : tg(t) ≤ y∗θ/η}, (5.3.11)

which is finite, since y∗θ is finite (cf. Lemma 5.3.3(i)) and lim
t→∞

tg(t) = +∞. Next, we

claim that the following inequality holds for all i ≥ k0:

dist(xi, X
∗) ≤ max{dist(xk0 , X∗), T + v(1 +R) +

√
n∆}. (5.3.12)

It is obvious that the relation (5.3.12) holds if i = k0. Proving by induction, we assume

the relation (5.3.12) holds for some i = k (≥ k0) and consider the following two cases.

Case 1. If f(xk) ≤ f∗+µ
(

1
2v

(√
n∆+v(1+R)

)2
+(

√
n∆
v

+R)(f(xk)−f∗
η

)1/g(dist(xk,X
∗))
)p

+

ϵk, together with (5.3.10), we have

µ
( 1

2v

(√
n∆+v(1+R)

)2
+(

√
n∆

v
+R)(

f(xk)− f∗
η

)1/g(dist(xk,X
∗))
)p
+ϵ+θ−(f(xk)−f∗) ≥ 0,

that is, Kxk
θ (f(xk)− f∗) ≥ 0. Hence, from (5.3.6), we obtain f(xk)− f∗ ≤ y∗θ , and thus

dist(xk, X
∗)g(dist(xk,X

∗)) ≤ y∗θ/η,

which follows from (5.3.4). Thus, we arrive at dist(xk, X
∗) < T , which follows from

(5.3.11), and thus the relation (5.3.2) implies

dist(xk+1, X
∗) ≤ dist(xk − vg̃k, X

∗) +
√
n∆

≤ dist(xk, X
∗) + v∥gk/∥gk∥+ rk∥+

√
n∆

< T + v(1 +R) +
√
n∆,

that is, the relation (5.3.12) holds for i = k + 1.

Case 2. If f(xk) > f∗+µ
(

1
2v

(√
n∆+v(1+R)

)2
+(

√
n∆
v

+R)(f(xk)−f∗
η

)1/g(dist(xk,X
∗))
)p

+

ϵk, then it follows from Lemma 4.3.4 that

⟨gk/∥gk∥, xk − x∗⟩ ≥ 1
2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆
v

+R)(f(xk)−f∗
η

)1/g(dist(xk,X
∗))

≥ 1
2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆
v

+R) dist(xk, X
∗),

where the second inequality follows from (5.3.4). Hence, applying Lemma 5.3.4 with

x∗ = PX∗(xk), we obtain(
dist(xk+1, X

∗)
)2 ≤ ∥xk+1 − x∗∥2

≤ ∥xk − x∗∥2 − 2v
(

1
2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆
v

+R) dist(xk, X
∗)

−∥xk − x∥(
√
n∆
v

+R)− 1
2v

(√
n∆+ v(1 +R)

)2)
=

(
dist(xk, X

∗)
)2
.
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Hence, the relation (5.3.12) holds for i = k + 1.

Therefore, by induction, the relation (5.3.12) holds for all i ≥ k0. Since the right

hand side of (5.3.12) is finite and X∗ is compact, {xk} is bounded.

From Lemma 5.3.5, {xk} is bounded and hence {f(xk)} is bounded from above by

the Hölder condition (cf. (5.3.1)). We denote the upper bound on {f(xk)} by M in

what follows.

Theorem 5.3.2 Let Assumptions 5.3.2-5.3.5 hold. Then, for a sequence {xk} gener-

ated by the QAQSGM, we have

lim
k→∞

f(xk) ≤ f∗ + y∗0,

where y∗0 is finite.

Proof. The finiteness of y∗0 has been proved in Lemma 5.3.3(i). To prove the conver-

gence property, we first show that

lim
k→∞

f(xk) < f∗ + y∗θ

for all θ > 0 by contradiction, that is, assume that the following inequality holds for

some θ > 0,

lim
k→∞

f(xk) ≥ f∗ + y∗θ .

Thus, there exists some δ ∈ (0,min{θ/2, y∗θ}) and positive integer k0 such that

f(xk) > f∗ + y∗θ − δ, (5.3.13)

and

ϵk < ϵ+ θ/2, (5.3.14)

for all k ≥ k0, where (5.3.14) holds due to lim
k→∞

ϵk = ϵ.

From (5.3.6) and (5.3.13), we obtain f(xk)− f∗+ δ > sup{y : Kxk
θ (y) ≥ 0} and thus

Kxk
θ (f(xk)− f∗ + δ) < 0, that is, for all k ≥ k0 there holds

f(xk)

> f∗ + µ
(

1
2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆
v

+R)(f(xk)−f∗+δ
η

)1/g(dist(xk,X
∗))
)p

+ ϵ+ θ − δ

> f∗ + µ
(

1
2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆
v

+R)(f(xk)−f∗+δ
η

)1/g(dist(xk,X
∗))
)p

+ ϵk

≥ f∗ + µ
(

1
2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆
v

+R)(f(xk)−f∗
η

)1/g(dist(xk,X
∗)) + δ′

)p
+ ϵk,
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where the second inequality follows from (5.3.14) and 0 < δ < θ/2, and the third

inequality follows from the Taylor expansion with some positive scalar δ′ = (
√
n∆
v

+

R)min{ δ
ηq
(
y∗θ
η
)1/q−1, δ

ηp
(M−f∗

η
)1/p−1} (recall that M is an upper bound on {f(xk)}).

Therefore, by using Lemmas 4.3.4 and 5.3.4, we obtain

⟨gk/∥gk∥, xk − x∗⟩ ≥ 1
2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆
v

+R)(f(xk)−f∗
η

)1/g(dist(xk,X
∗)) + δ′

≥ 1
2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆
v

+R) dist(xk, X
∗) + δ′,∀k ≥ k0,

and hence (
dist(xk+1, X

∗)
)2 ≤

(
dist(xk, X

∗)
)2 − 2vδ′

≤ · · · ≤
(
dist(x0, X

∗)
)2 − 2(k − k0 + 1)vδ′,

which yields a contradiction for sufficiently large k. Thus, we have

lim
k→∞

f(xk) ≤ f∗ + y∗θ , ∀θ > 0.

Taking the limit as θ → 0, applying Lemma 5.3.3(ii), we arrive at the conclusion.

We now give an explicit expression for the tolerance in approaching f∗ in Theorem

5.3.2 in a specific case of p and g(t). By solving relations (5.3.7)-(5.3.8), we obtain the

following corollary where the total error is given in an explicit expression.

Corollary 5.3.1 Let Assumptions 5.3.2-5.3.5 hold with g(t) ≡ p and p = 1. Then, for

a sequence {xk} generated by the QAQSGM, we have

lim
k→∞

f(xk) ≤ f∗ + η
µ
(√

n∆+ v(1 +R)
)2

+ 2vϵ

2(vη − vµR− µ
√
n∆)

.

Proof. By the assumptions, since g(t) ≡ p and p = q = 1, we have

Kp
0 (y) = Kq

0(y) = µ
( 1

2v

(√
n∆+ v(1 +R)

)2
+ (

√
n∆

v
+R)

y

η

)
+ ϵ− y,

and

yp0 = yq0.

It is clear that Kp
0 (y) is linear and decreasing due to R +

√
n∆/v < η/µ. Thus, by

(5.3.7), yp0 is just the solution of Kp
0 (y) = 0. Thus, from (5.3.8), we have

y∗0 = yp0 = η
µ
(√

n∆+ v(1 +R)
)2

+ 2vϵ

2(vη − vµR− µ
√
n∆)

.
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Hence, by Theorem 5.3.2, we arrive at the conclusion.

It is also observed that the total error, given in Corollary 5.3.1, has the same ex-

pression as that of the AQSGM (cf. Corollary 4.4.1) if the quantization operator is

infinitely precise (i.e., ∆ is sufficiently small).
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Chapter 6

Conclusion and Future Work

In this thesis, we proposed several new types of subgradient methods, investigated

convergence properties of the proposed algorithms, and illustrated the high efficiency

and wide applicability by numerical experiments for both convex and quasi-convex

optimization problems.

Based on the GS technique, we proposed the GS-SGM and GS-DSGM to solve non-

differentiable convex (constrained) optimization problems. Using both the constant and

divergent stepsize rules, we proved that our proposed algorithms converge to an (ap-

proximate) optimal value/solution with probability 1. Numerical results demonstrate

that the GS technique improves the convergence behavior of subgradient methods, es-

pecially for the low-rank recovery problems.

To meet much broader class of problems, we considered using a generic inexact

subgradient method (AQSGM) to solve nondifferentiable quasi-convex constrained op-

timization problems. Assuming that the computational errors and noise are determin-

istic and bounded, we studied the effect of the inexact terms on subgradient methods

when the constraint set is compact or when the objective function satisfies the gener-

alized weak sharp minima condition. In both cases, using both the constant and di-

minishing stepsize rules, we described convergence results in both objective values and

iterates, where the tolerances are given explicitly in terms of errors and noise, finite

convergence to the approximate optimal value and efficiency estimates of iterates. We

also proposed and analyzed the QAQSGM for a quantized quasi-convex constrained
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optimization problem. Several numerical experiments illustrate that the AQSGM is

comparable with some existing algorithms, and suitable for large-scale problems.

Based on these results and contributions, there are many other issues that are needed

to deal with in the future work. We summarize three directions for my future work as

follows. (i) We will extend the quasi-subgradient method by using other types of stepsize

rules and other types of quasi-subgradients. (ii) Nedić and Bertsekas [80] investigated

an increment subgradient method to solve the convex optimization problem, where the

objective function is a summation of a number of component convex functions, and the

high efficiency of the incremental approach was illustrated in [14, 18, 80, 108]. However,

the convergence property of the incremental quasi-subgradient method still remains an

open question. The difficulty stems from the limitation of the definition of the quasi-

subdifferential and the fact that the summation of some quasi-convex functions may

not be quasi-convex. We will try to define some new type of quasi-subgradient and

investigate the convergence property of the incremental quasi-subgradient method. (iii)

Auslender and Teboulle [2, 4, 5] designed the interior subgradient method for con-

vex optimization problems, and Langenberg and Tichatschke [65] proposed an interior

proximal point method to solve quasi-convex optimization problems. Since there is a

close link between the proximal point method and the subgradient method, we will

propose and investigate an interior quasi-subgradient method for quasi-convex opti-

mization problems in the future work. This could be an interesting research topic in

the future.
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[81] A. Nedić and D. P. Bertsekas. The effect of deterministic noise in subgradient

methods. Mathematical Programming, 125:75–99, 2010.
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