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ABSTRACT

NAND flash memory has been widely adopted in the design obuarstorage systems. The
capacity of NAND flash memory chips has been increasing diiaaily and has doubled
about every two years. The increasing capacity of NAND flagmary poses new chal-
lenges for vendors on the system management. Moreoverthatmulti-level-cell (MLC)
NAND flash memory becoming the mainstream in the market faelocost and/or large-
scale storage systems, some new write constraints haveriiestuced into the flash mem-
ory chips. These constraints further pose big challengegXisting flash memory man-
agement techniques that were originally designed for sHeglel-cell (SLC) NAND flash

memory.

In this thesis, we investigate several challenging issnemanaging flash mem-
ory storage systems for resource-constrained embeddtshsy/sSince flash memory does
not support in-place updates and needs to erase beforeeupgatations, a block-device-
emulation software layer, called the flash translationidi/d@L), is designed so as to pro-
vide transparent service. FTLs manage the system with ttoegonents: address trans-
lation, garbage collection, and wear-leveling. In thissiegewe optimize the management
techniques in FTLs from several aspects, including the RASt,agarbage collection over-
head, and real-time storage performance taking into cerein the limited computation

resource in embedded system.

First, we focus on reducing the RAM footprint for addresssiation when doing the
mapping from logical addresses to physical addresses. Ve #us problem, we propose
a demand-based block-level address mapping scheme with-eewel caching mechanism
for large-scale NAND flash storage systems. Our basic idéa ssore the block-level ad-

dress mapping table in specific pages in flash memory andrdesgwmlevel caches in RAM



to store the on-demand block-level address mappings. $iecentire block-level address
mapping table is stored in flash memory and only the demandidr@ss mappings are loaded
into RAM, the RAM footprint can be reduced. The experimengsults show that our tech-
nique can achieve a 91.68% reduction in RAM cost, while tlezaye system response time

presents an average degradation of 2.02% compared witlopsawork.

Second, we aim to reduce the garbage collection overheathanalverage system
response time while hiding the new write constraints in MLANND flash memory. To solve
this problem, we first analyze the garbage collection procednd conclude that the valid
page copy is the essential garbage collection overhead.h@vegdropose two approaches,
namely, concentrated mapping and postponed reclamati@ffeictively reduce the number
of valid page copies. The experimental results show thatetycing the garbage collection
overhead, our scheme can achieve a minimum reduction o2%0i8 the average system

response time compared with previous work.

Third, we study the problem of improving the real-time st@gperformance of
NAND flash memory in real-time embedded systems. To obtaiomper bound for sys-
tem response time, we propose a real-time flash translaty@m scheme to hide the variable
garbage collection by using a distributed partial garbagkection policy that enables the
system to simultaneously reclaim space and serve the vedueests. The experimental re-
sults show that our scheme not only improves the worst-cagers response time and the
average system response time, but also shows a significardtren in RAM cost compared

with previous work.

Keywords: NAND flash memory, flash translation layer, MLC flash, twodkgache, real-

time, embedded systems.
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CHAPTER 1
INTRODUCTION

NAND flash memory has been widely used in embedded systemtodtgeenon-volatility,
shock-resistance, and low power-consumption property.ll-kdewn examples are cell-
phones, cameras, USB flash drives, and solid-state-drf&@B). Similar to other storage
media, the capacity of NAND flash memory chips is increasiregratically and has dou-
bled about every two years [96]. In 2011, one single flash nmgrabip with a capacity
of 128GB was developed with multi-level-cell (MLC) flash beology using 20-nanometer
NAND process technology [12]. The increasing capacity ofNDAflash memory brings
new challenges for vendors with regard to the managemenasifi finemory storage sys-
tems. Moreover, with MLC NAND flash memory becoming the maigasm in the market
for lower cost and/or large-scale storage systems, two néw® eonstraints have been intro-
duced into the flash memory chips compared with the singleHeell (SLC) NAND flash
memory. Random programming on pages within one block isipiteldl, and multiple partial
programming within one page is not allowed. The new writest@ints pose big challenges
for existing flash memory management techniques that wegialy designed for SLC
NAND flash memory. This thesis focuses on optimizing the ngan@ent techniques for
NAND flash memory storage systems in resource-constraimeedded systems to enhance

system performance.

As a non-volatile storage device, NAND flash memory has masgdgoroperties
such as small size, shock resistance, and low power consumptiowever, NAND flash
memory also has some constraints that impose challengés foenagement. NAND flash
memory does not support in-place-updates, and an updatei{e) operation on existing
data in a given physical location (i.e., one page) shouldbegquled by an erase operation on

a larger region (i.e., one block). Besides that, a block hasited number of erase counts,



and it becomes worn-out if the erase counts reach the thoegh89]. In order to hide these

idiosyncrasies and to provide transparent service, a bdevkce-emulation software module
called the flash translation layer (FTL) is built betweenftleesystem and the flash memory
chip [13,14]. FTLs manage the system with three componeawldress translation, garbage
collection, and wear-leveling. In this thesis, we investegseveral challenging issues in
designing the FTLs from several aspects, including the RAdgt ¢or address translation,

the time overhead for garbage collection, and the worst-sgstem response time for real-

time storage systems in resource-constrained embeddienirsys

Many studies have been conducted on the management of NAKIDrflamory stor-
age systems. A great deal of work focuses on the design afpgisie-level solid state drives
(SSDs) [15, 25, 32,53, 66,67, 88, 93], while other work consehe application of NAND
flash memory in embedded systems [19, 42, 50, 56, 62, 70, }.8T®@2mprove the system
performance of NAND flash based embedded systems, some aarkds on exploring the
storage system architecture [16, 31, 38, 40, 41,47,57 5,82 86, 89, 97, 104], and some
work exploits the energy consumption [44, 76, 87, 100, 1@8jje other work concerns the
design of the flash translation layer [13, 14, 20, 29, 91]. §Thn be divided into three
main categories: page-level mapping FTL [13], block-lewapping FTL [10,14,18,73,95],
and hybrid-level mapping FTL [54, 69, 77, 80,98, 99]. In [1&8]fine-grained page-to-page
mapping FTL is proposed that shows good address translketiicrency and a fast average
response time. However, it suffers from a large RAM footpproblem when maintaining
the address mapping table. For example, given a large-§Ri€B/page) based 32GB Mi-
cron NAND flash memory chip MT29F32G08CBABAWP [3], the siddlte mapping table
for the page-level mapping FTL scheme [13] is 96MB, whiclors Ibig to be kept in RAM.

To reduce the size of the address mapping table, blockeapbing FTL schemes
have been proposed and widely adopted in NAND flash memorgigecsystems [10, 14,18,
21,73]. One representative block-level mapping FTL schisnealled NAND flash transla-
tion layer (NFTL) [14]. Using coarse-grained block-to-thoaddress mapping, NFTL can
significantly reduce the size of the address mapping taligaoed with the page-level map-

ping FTL. However, NFTL may still suffer from a large RAM fqwint problem due to the



continuously increasing flash memory capacity. For exanmgileen the above mentioned
32GB Micron NAND flash memory chip, the block-level addresspping table could take
up 1.5MB of RAM space. This large RAM footprint limits the digation of flash mem-
ory in some resource-constrained embedded systems, akpatisome low-end storage
systems. Wu and Kuo [99] proposed an adaptive hybrid-lexspimg FTL in which the
address translator can dynamically and adaptively swigtivéen page-level mapping and
block-level mapping. Kim et al. [55] proposed a log-bloclséd address mapping scheme,
called log-block NFTL. In log-block NFTL, blocks in flash memny are partitioned into data
blocks and log blocks. The data blocks are managed with thekbevel address mapping
approach, and the log blocks with the page-level addrespimgapproach. With the above
FTLs, the flexibility of address mapping is greatly improvétbwever, they ignore the in-
creased size of the address mapping table when appliedge$aale NAND flash storage
systems. In this thesis, we propose a novel address mapginggament scheme that can
solve the RAM footprint problem for large-scale NAND flashmmay storage systems in

resource-constrained embedded systems.

MLC flash memory is becoming the mainstream in the marketdardost storage
systems. In the FTL design for MLC flash, the address mapppgoach should follow the
write constraints of the flash memory chip. The three kindsSTdfs that have been proposed
have mostly been designed based on the SLC flash. It woulddficiant to apply these
schemes directly to MLC flash. In page-level mapping FTLs ghages within one block can
be allocated sequentially. Therefore, they can be apphiddLC flash without complicated
modifications. Based on page-level mapping FTL, the DFTlesah [33] stores the address
mapping table in the flash memory and adopts a cache to staralbssnount of active map-
ping entries in RAM. Data pages in DFTL can also be writterugadgjally. However, DFTL
suffers from extra valid page copy overhead when flushingltitg mapping entries from
the cache to the translation blocks in the flash memory. ThELGIEheme [28] provides a
guaranteed storage service by introducing some additlioeks as the buffer blocks. Al-
though the page allocation approach in both the data bloo#tsree buffer blocks obeys the

two write constraints of MLC flash, GFTL shows a longer averagstem response time due



to the earlier-triggered garbage collection. The supetblmsed FTL scheme (SFTL) [48]
can also be applied to MLC flash. Nevertheless, it may alggéer the garbage collection
procedure very early because of the fixed number of log bldwkisare shared by multiple
data blocks. Thus, although these FTLs can be applied to Mash flthey still suffer from
longer average system response times because of the-¢agliEred garbage collection. In
this thesis, we propose two approaches to effectively rethuee garbage collection overhead
in the design of FTLs for MLC NAND flash memory: concentratedpping and postponed

reclamation.

NAND flash memory has been widely used in both hard real-tintesaft real-time
embedded systems. However, due to variable garbage cofidetencies, NAND flash
memory storage systems may suffer long system responss, tesgecially when the flash
memory is close to being full. Most existing FTL schemes ®on improving the average
response time, but ignore the need to provide a desirablerupgund for the worst-case
response time. In previous work, several techniques haga peoposed to improve the
real-time performance of flash memory storage systems. ganaal. [22] was the first to
propose real-time garbage collection for flash memory gmsystems, where predictable
performance is guaranteed by ensuring that enough free spatways available for write
requests. Although an upper bound for the response time eabtained, their approach
suffers from a slow worst-case response time and requites e system support. Choud-
huri et al. [28] proposed a flash translation layer called GEIguarantee an upper bound
for the system response time. GFTL reduces the upper bouadding extra blocks as the
write buffer and using a partial block cleaning policy to éithe long garbage collection
latency. In order to provide enough free space to serve vatjeests, a block that is full will
be put into a garbage collection queue, and garbage caolleigiconsecutively performed
as long as the queue is not empty. GFTL guarantees a wosstreggonse time for write
requests; however, it suffers a longer worst-case resgonsdor read requests. Moreover,
it introduces a large number of extra page copy operatiohghsignificantly degrades the
average system response time. Since garbage collectismabeccur very often, a scheme

should not sacrifice too much average response time whegirggihe worst-case response



time. Therefore, in this thesis, we propose a real-time fleestslation layer, called RFTL,
which provides not only an ideal upper bound for the worstecsystem response time but

also a faster average system response time.

In summary, we propose three techniques to improve themmyseeformance of both
the SLC and MLC flash memory in resource-constrained emloksigitems. We first focus
on reducing the RAM footprint to address translation mansa# in large-scale NAND flash
memory storage systems. The proposed FTL scheme can bedppkmbedded systems
that have only limited RAM space. Then, we aim to reduce thtbage collection overhead
S0 as to improve the average system response time for MLC NA&D memory. Finally,
we study the problem of improving the real-time performaoickelLC flash memory storage
systems in real-time embedded systems. The proposedmesakTL is useful in some time-

critical applications.

The rest of this chapter is organized as follows: Sectionptekents the related
work. Section 1.2 presents the unified research framewodcti& 1.3 summarizes the

contributions of this thesis. Section 1.4 gives the outtihthe thesis.

1.1 Related Work

In this section, we briefly introduce the NAND flash memoryhtealogy, the flash memory

storage systems, and some related FTL schemes.

1.1.1 NAND Flash Memory

In the past decade, NAND flash memory has been widely adogtadsacondary storage in
embedded systems. As shown in Figure 1.1, a typical NAND flasory is partitioned
into two planes or four planes. Each plane consists of malbjocks, while each block is
further divided into fixed number of pages (32 pages or 64 padEach page contains a data
area (512Bytes or 2KB) and an OOB (Out Of Band) area (32Byt&giBytes). The OOB

area is primarily used to store the Error Correction CodeQJEQSf the corresponding page



and other information such as logical page numbers. Ther¢hage basic operations that
can be performed on a NAND flash memoeyase, writeandread A block is the smallest

unit of erase operations, while a page is the minimum unieatifwrite operations.

N Plane | Plane ———|
%/
\Oc\’j\~
\/Q’ ‘ =/
data oob | i— data oob One Page
data oob | i— data oob
data oob | i— data oob data ‘ oob g
data oob | J)— data oob
One Block

Figure 1.1: A typical NAND flash memory array.

Compared with a hard-disk drive, NAND flash memory has mamngaathges, such
as non-volatility, a smaller size, shock resistance, astkfaaccess times. However, NAND
flash memory also has some constraints that impose chafidagés management. First,
NAND flash memory suffers from out-of-place updates. An updae-write) of existing
data in a given physical location (known as a page) shoulddmeped by an erase operation
on a larger region (known as a block). In NAND flash memoryadaust be written on
free pages, which could cause space to run out after a nureite operations. Thus, a
block-reclaim operation known as garbage collection [3),i§ invoked to regenerate free
space for reuse. Second, a block has a limited erase lifetifoe example, one block in
a SAMSUNG K9F1G08UOC SLC (Single-Level Cell) NAND flash h&9K erase counts,
while one in a SAMSUNG K9G4G08UOA MLC (Multi-Level Cell) NAN flash has only
5K erase counts. A block becomes worn out if its erase coeatshrthe limit [7]. Third, for
some NAND flash memory management schemes, not all blockSI/AND flash get erased
at the same rate, so the lifetime of specific blocks may dseerésster, which would affect
the usefulness of the entire flash memory. To overcome tluesgraints, it is very important

to guarantee that erase or write operations be evenlylliséd across all blocks.
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Figure 1.2: Page program addressing in SLC and MLC NAND flasmory.
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Figure 1.3: Partial page programming in SLC and MLC NAND flagtmory.

To date, two types of NAND flash memory technologies have loeseloped: SLC
flash and MLC flash. In single-level-cell (SLC) flash memorggte cell can exist in one
of two states, storing one bit of information per cell. Muével-cell (MLC) flash memory
has at least four states per cell, so it can store at least tw@fanformation per cell. The
primary benefit of MLC flash memory is its lower cost per unit$torage due to the higher
density of data. However, software complexity is also inse#l to compensate for a larger
bit error ratio. Moreover, MLC introduces two new write ctraits in the flash memory
chip. First, the pages within one block must be programmedecutively from the least

significant bit (LSB) pages to the most significant bit (MSBgps [11]. Second, only one



partial page program is allowed within one page [6]. Figuidnhd Figure 1.3 compare the
page program addressing and the partial page programmi@gnand MLC NAND flash

memory, respectively.

1.1.2 Flash Memory Storage Systems
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Operating System

File System (e.g., Ext2, Ext3, FAT, NTFS)
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Main Memory (e.g., RAM) Flash Translation Layer (FTL)
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=) Address | . Wear | = Garbage
- Translator | | Leveler . | Collector
FTL Mapping Table ] I A 3

! !

Memory Technology Device (MTD) Layer

) )
T T T i T

SLC/MLC NAND Flash Memory

Figure 1.4: A typical management architecture of a NAND flagtmory storage system

with a flash translation layer.

To hide the idiosyncrasies of NAND flash memory, an interragdsoftware mod-
ule called a flash translation layer (FTL) is employed to eatediNAND flash memory
as a block device [2]. Figure 1.4 shows a software-leveligecture of the incorporated
flash translation layer module [58]. In this architectubes tlash translation layer provides

three components: the address translator [14], garbadectmi [20, 34, 90], and wear-



leveler [17, 23, 35, 36, 46]. In FTL, the address translataimtains an FTL mapping table,
which is usually located in RAM, that can translate betwexgidal addresses and physical
addresses; the garbage collector reclaims space by e@ssofete blocks in which invalid
data exist; the wear-leveler is an optional component tisatildutes erase operations evenly
across all blocks, so as to extend the lifetime of NAND flashmoey. This thesis focuses
on optimizing the address translator and the garbage totlecthe flash translation layer
S0 as to improve the flash memory storage performance innesaonstrained embedded

systems.

In NAND flash memory based storage systems, the file systamsssread request
or a write request with a logical address to the flash memapy dthe address translator first
locates the corresponding physical address by searchengditress mapping table in main
memory. According to the out-of-place update property,ldgical address is mapped with
a physical address that contains previously written dagjriput data should be written to
an empty physical location in which no data had previousgnberitten. The mapping table
should then be updated due to the newly changed addressmgapjpiis procedure is called
address translation. The time cost in this procedure isdbeeas translation overhead. After
the address translation, the MTD layer can perform the readrite operation on the flash
media. With the write operations propagating in the flash wmgnfree space shrinks and
garbage collection is triggered to reclaim the invalid gpfe reuse. The valid pages in the
victim block, which is selected based on certain garbageciidn policies [20,59-61], are
copied to a free block, and the original victim block is theased. In this process, the time
consumed by the valid page copy and the block erase opelatitve garbage collection
overhead. A write request cannot be served immediatelyeifgérbage collection process
is running. Thus, the time cost from the request issued byilinaystem to the finishing
time of the requested operation is called siggtem response tim&he system response time

reflects the efficiency of the FTL schemes.



1.1.3 FTL Schemes

Many designs and implementations of NAND flash memory mamage have been pro-
posed in the literature. As FTL plays a critical role in NANRgh memory management,
different FTL schemes have been proposed, which can bear&ted into three major types:
page-level mapping FTL [13], block-level mapping FTL [18, 85], and hybrid-level map-
ping FTL [18,21,27,55,68,74,77,95, 99].

LPN PPN PPN DATA 0O0OB
0 5 0 )
1 1 1
Block #0
Access 2 0 2
LPN=7 3 2 3 y
4 6 —» 4
5 10 5
Block #1
6 3 6
7 — 7
<
8 7 8
12
9 9 Block #2
10 11 10
11 8 11
<
12 9 12
1 1 1
3 5 3 Block #3
14 13 14
15 14 15
Page Mapping Table NAND Flash Memory
(PMT) in RAM

Figure 1.5: An illustration of a page-level mapping FTL stige

In page-level mapping FTLs, every logical page is mappet wite physical page.
If the file system containg logical page units, its mapping table should also haeatries.
Figure 1.5 illustrates an example of a page-level mapping For demonstration purposes,
we assume that one flash chip includes four blocks, and tlehtldack has four pages. In
that case, 16 address mapping entries are needed in thesaddapping table. When the
file system accesses the logical page number (LPN) 7, theqathysmge with the physical
page number (PPN) 4 can be found from the page mapping taB&lh. The file system
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can get the requested data from page 4 in flash memory. As grfmeed page-to-page
mapping approach is adopted, page-level mapping FTLs dmddme efficient at translating
addresses. However, page-level mapping FTLs require @ éargpunt of RAM space, which

limits their usage in some resource-constrained embeddserss.
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Block #1
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Block #2
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11
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Block Mapping Table 12
(BMT) in RAM 13
Block #3
14
15

NAND Flash Memory

Figure 1.6: An illustration of a block-level mapping FTL sche.

For this reason, block-level mapping FTLs [10,14] are pemub Figure 1.6 shows an
example of a block-level mapping FTL scheme. In this exanie logical block is mapped
with one physical block. Given the logical page number (LPiNYided by the number of
pages in each block (i.e., four), the quotient is the logldatk number (LBN), and the
remainder is the block offset. For the given LPN 9, the LBN #relblock offset are 2 and 1,
respectively. Since physical block 0 is mapped with logidatk 2, the target physical page
can be located using the block offset 1 in the physical blaclA8 coarse-grained block-
to-block mapping is used, block-level FTL requires a smmaliember of address mapping
entries compared with page-level mapping FTLs. Howeveogeél page in a block-level
mapping FTL can only be written to a physical page with thegtested block offset. Thus, a
block-level mapping FTL is not as good as a page-level mappiri in mapping flexibility

11



and space utilization ratios.

To make a trade-off between RAM cost and address translaffariency, hybrid-
level mapping FTLs [24, 26, 28, 55, 65, 99, 102] have beemdutced. Wu and Kuo [99]
proposed an adaptive hybrid-level mapping FTL in which tiiérass translator can dynam-
ically and adaptively switch between page-level mapping) l@ock-level mapping. Kim et
al. [55] proposed a log-block based address mapping schuatte log-block NFTL. In log-
block NFTL, blocks in flash memory are partitioned into daliacks and log blocks. The
data blocks are managed with the block-level address mggpproach, and the log blocks
with the page-level mapping approach. The above hybridteapping FTLs are a great im-
provement in terms of address mapping flexibility. Howetaey ignore the increased size
of mapping tables when applied to large-scale NAND flashaggeisystems. The mapping
table size of hybrid-level mapping FTLs tends to be largantthat of block-level mapping

FTLs.

In flash memory storage systems, one approach to solvingithe RAM footprint
problem is to store the address mapping table in flash memdrgdi in RAM. However,
this approach may incur extra address translation overloedetching the address mapping
table from flash memory. In the literature, several techesgoave been proposed to use a
caching mechanism to improve the system performance [385349,51,52,64,79,81,101].
In DFTL [33], one small address mapping table cache is desiga selectively cache the
on-demand page-level address mapping entries. In ord@hiewe higher cache hit ratios,
temporal locality in workloads is well considered and thestearecently used (LRU) replace-
ment algorithm [43] is used to keep the potential requestaplpmg entries staying in cache.
Therefore, DFTL shows good system response times for waddavith intensive tempo-
ral locality. However, it ignores the spatial locality artaccess frequency of workloads,
which are also important factors for accessing data. Maed®FTL adopts a fine-grained
page-level mapping approach, and one page write operatidata blocks may cause one
address mapping update operation in cache, which may immutranslation page copy op-
eration in the translation blocks. These frequent page oppyations will lead to the erasing

of more translation blocks, which will affect the efficienafyaddress translation. Therefore,
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how to effectively reduce the RAM cost without excessivedpalizing system performance

becomes an important issue.

The three kinds of FTLs proposed in the literature are madélsigned based on
SLC flash. Applying them to MLC flash would be too inefficientlioniting. In page-level
mapping FTL schemes, pages are allocated sequentiallynvatblock and no page status
(valid or invalid) needs to be recorded in its spare arearéfbee, it is still usable to MLC
flash. However, page-level mapping FTL is unsuitable forrgdesized MLC flash due to
the large address mapping table. Block-level mapping FTIlés95] use the block offset to
locate the pages within a block, and the pages may be progedmandomly within a block.
Therefore, block-level mapping FTLs may not be applicablMt.C flash. In hybrid-level
mapping FTLs [28, 48, 68, 77,99], physical blocks are lodygaartitioned into data blocks
(primary blocks) and log blocks (replacement blocks). Aadaifiock is used to store the
first written data, while log blocks are designated to redbedlupdated data. In data block
management, most hybrid-level mapping FTLs adopt the blee&l mapping approach and
use the block offset to locate the pages. In the GFTL scheBjetf# pages can be allocated
sequentially without the block offset; however, the averagstem response time is longer
due to the earlier-triggered garbage collection. A supeibased FTL scheme (SFTL) [48]
obeys the write constraints of MLC flash, but it may also teigtihe garbage collection very
early due to the fixed number of log blocks. Thus, it is neagssadesign an FTL that not

only can be applicable to MLC flash but that can also incurd@sbage collection overhead.

In previous work, several techniques have been proposadpovwe the real-time
storage performance of NAND flash memory storage systemasndgét al. [22] was the first
to propose real-time garbage collection for flash memomag®systems, where predictable
performance is guaranteed by ensuring that enough free spatways available for write
requests. Although an upper bound for the response time eabtained, their approach
suffers from a slow worst-case response time and requites fe system support. Choud-
huri et al. [28] proposed a flash translation layer called GEIguarantee an upper bound
for the system response time. GFTL reduces the upper bouadding extra blocks as the

write buffer and using a partial block cleaning policy todithe long garbage collection la-
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tency. In order to provide enough free space to serve theipgmdite requests, a block that
is full will be put into a garbage collection queue, and a ggsbcollection is consecutively
performed as long as the queue is not empty. GFTL guarant@essicase response time
for write requests; however, it suffers a longer worst-aasponse time for read requests.
Moreover, it introduces a large number of extra page copyatjpas in garbage collection,
which significantly degrade the average system responge #imce garbage collection does
not occur very often, a scheme should not sacrifice too muehage response time when

reducing the worst-case response time.

1.2 The Unified Research Framework

In this section, we present the unified research framewarth®proposed techniques. Fig-

ure 1.7 illustrates the sketch of our research framework.

In this thesis, we target NAND flash memory storage systemesiource-constrained
embedded systems, where RAM (SRAM or DRAM) is adopted as thm+smemory and
NAND flash memory serves as the secondary storage mediaciingiuser data accessed

by the file system.

In this thesis, three flash memory management techniqugeesented to improve
the system performance of NAND flash memory storage systamassource-constrained
embedded systems, in terms of management cost and mandgeffireeency. As shown
in Figure 1.7, we propose three techniques for designing ti@slation layers, with the
objective of reducing the RAM footprint, the garbage cdilee overhead, and the worst-

case system response time, respectively.

e For the first technique, in Chapter 2, we propose a Demanelddaeck-level Address
mapping scheme with a two-level Caching mechanism, named. DADAC, we en-
deavor to reduce the RAM cost in maintaining the address mggpble for FTLs.
To achieve this, we adopt an on-demand strategy by stormgrthire block-level ad-

dress mapping table in the flash memory and caching the desdandpping entries
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Figure 1.7: The unified research framework.
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in RAM. A two-level caching mechanism is designed that také&sconsideration the
access patterns of workloads, such as the temporal lgdaktgpatial locality, and the
access frequency. Taking into account the expensive oaédrfoe flushing the dirty
items from cache to flash memory, a cost-aware cache reptatgmolicy is intro-
duced. The proposed techniques in DAC not only effectiveljuce the RAM cost
but also guarantee the cache hit ratio, thereby improviagtterage system response

time.

For the second technique, in Chapter 3, we propose an MLC NEMNBh Translation
Layer, named MNFTL, to hide the two write constraints of ML@st and, at the
same time, to effectively reduce the garbage collectiomrmasd. To achieve this, we
propose two techniques, namely concentrated mapping asighgoeed reclamation,
to fundamentally reduce the garbage collection overhead. aWélyze the garbage
collection procedure adopted in traditional FTLs, and tathe that the valid page
copies are the essential overhead. A novel block-level mgmpproach is presented
to centralize the invalid space together, so that the nuofhalid pages that need to be
copied by the garbage collector are minimized and the IgteBimg@arbage collection is
reduced. Moreover, a novel garbage collection policy isgihesl to postpone the time
for garbage collection, which can also increase the numbewalid pages within a

fully occupied block.

For the third technique, in Chapter 4, we present a RealHilagh Translation Layer,
named RFTL, to effectively reduce the worst-case systeqporese time for NAND
flash memory storage systems. Our work is motivated by thereagons that most
FTLs focus on improving the average system response timigbate the worst-case
system response time, and most flash storage systems soiffelohg system response
times due to the variable garbage collection latency. Thegein RFTL, we propose
a novel address mapping approach with a distributed pawidlage collection policy
to shorten the blocked time caused by the garbage colleptmeess. By introducing

some extra flash blocks as buffer blocks, RFTL enables thagdsystem to serve the
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write requests and to do the garbage collection simultasigowhich can effectively

reduce the worst-case system response time.

In this thesis, we evaluate the proposed techniques of DATE M., and RFTL using
a variety of realistic I/O traces. The traces reflect theweakload of the system in accessing
the secondary storage system with applications that are deiéy, such as those for web
surfing, document typewriting, downloading, and playingviee and games. DiskMon [1]
is adopted as the tool for collecting these traces from thetmmk with an Intel Pentium Dual
Core 2GHz processor, a 200GB hard disk, and a 2GB DRAM. Weauslsgome well-known
traces that have been widely adopted in other studies, suitteRinancialtrace [5] and the
Websearchrace [8]. The evaluation is conducted by a trace-driveruition. We have
developed a simulator to evaluate our three flash memory geament techniques against

some representative FTL designs.

1.3 Contributions

The contributions of this thesis are summarized as follows.

e We propose for the first time a demand-based block-levelksddnapping scheme for
NAND flash memory management, called DAC, to reduce the RAWEsfe overhead
for large-scale NAND flash memory storage systems in regecoastrained embed-
ded systems. DAC is designed mainly based on the idea oftiselgacaching some
on-demand block-level mapping entries while storing thigremapping table in the
flash memory. A novel two-level caching mechanism is progdmesed on the access
pattern of workloads and the access behavior of flash mentopg.c Experimental
results show that our technique can achieve a 91.68% reduictiRAM cost while
the average system response time presents a 2.02% degnaolathverage compared

with previous work.

e We present for the first time a MLC NAND flash translation layeiled MNFTL, to

hide the write constraints for MLC NAND flash memory and toesgilly reduce the
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garbage collection overhead. In MNFTL, a concentratedesfidmapping approach is
proposed to distribute the invalid pages more close to etwdr,ovhile a postponed
garbage collection policy is used to delay the time requiogeerform the block recla-
mation, so that more valid pages may become invalid and feal&t page copies are
required. Compared with previous FTLs applicable to MLCH]dke experimental re-
sults show that, by reducing the garbage collection ovelh@ar scheme can achieve
a minimum reduction of 30.92% in the average system respiimgecompared with
previous work. In addition, the results show that the RAMtadsMNFTL is well

under control.

e We present a real-time flash translation layer for NAND flasénmary management,
called RFTL, to effectively reduce the worst-case systespaoase time in real-time
embedded systems based on NAND flash memory. A novel blaek-deldress map-
ping scheme is presented to provide enough free space falimuewrite requests,
while a distributed partial garbage collection policy i®dgo cut one garbage collec-
tion process into smaller phases and then interleave eadeptith a write operation.
Compared with previous work, experimental results show ¢l scheme not only
improves the worst-case system response time and the avgyatgm response time,

but also effectively reduces RAM cost compared with presioork.

e A trace-driven simulation framework is implemented to exzéé the proposed flash
memory management schemes in NAND flash based embeddedisysWe con-
ducted experiments and compared our proposed schemesepitbsentative FTL
schemes. The experimental results prove the effectiverfeld® proposed schemes

in running with different kinds of 1/0 workloads.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

e In Chapter 2, we present our demand-based block-level flashary management
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technique, DAC, and show its efficiency in reducing RAM castlérge-scale NAND

flash memory storage systems.

In Chapter 3, we present our flash translation layer desigMi€C NAND flash mem-
ory storage systems, MNFTL, to overcome the write condsamMLC NAND flash
memory chips. We also show that MNFTL can effectively redilngegarbage collec-
tion overhead in MLC flash management, so as to reduce thage/eystem response

time.

In Chapter 4, we present our real-time flash memory managet@emique, RFTL,
and show that RFTL can improve the average system responsaitid the worst-case

system response time as well as the RAM cost for real-timeceladd systems.

In Chapter 5, we present conclusions and discuss possthlefdirections for research

arising from this work.
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CHAPTER 2

DAC: DEMAND-BASED BLOCK-LEVEL ADDRESS MAPPING

WITH A TWO-LEVEL CACHING MECHANISM

2.1 Overview

The density of flash memory chips has doubled every two yeaitsei past decade and the
trend is expected to continue. The increasing capacity oNNAlash memory poses big
challenges for its management. In particular, the manageofeaddress mapping in the
flash translation layer (FTL) suffers from a large RAM foatpy which limits the applica-
tion of flash memory in resource-constrained embeddedrmagste the past decade, various
FTL schemes have been proposed and different FTLs showehtf&AM costs and system
response times. Among them, page-level FTLs [13] can aeleéficient address mapping.
However, they suffer from a large RAM footprint problem in imtaining the page-level
address mapping table. To reduce the size of the addressngapple, block-level FTL
schemes have been proposed and widely adopted in NAND flastorgestorage systems
in embedded systems [10, 14, 18, 21, 27, 73]. NFTL (NAND flaahdlation layer) is one
representative block-level FTL scheme [14]. Differentnfréne-grained page-level FTLs
that keep the mapping information between logical pageshydical pages, NFTL main-
tains a block-level address mapping table in which one kdiock is mapped with one
primary block and one replacement block. Using coarseagthblock-to-block mapping,
NFTL can significantly reduce the size of the address mapjaiblg compared with page-
level FTLs. However, NFTL may still suffer from the large RANMotprint problem due
to the increasing flash memory capacity. How to effectivelguce the RAM footprint for

address management becomes an important issue.
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An on-demand page-level mapping scheme called DFTL [33)84]been proposed
to solve this problem. Unlike the traditional approachem&intaining the page-level address
mapping table in RAM, DFTL stores the address mapping tablepecific flash memory
pages, and one cache in RAM is designed to store the on-deatindss mapping entries.
Moreover, a global translation directory (GTD) is create®AM to track the location of the
address mapping table from the flash memory. Taking advardbtiie on-demand strategy
and the temporal locality of workloads, DFTL effectivelytees the RAM footprint. How-
ever, DFTL is designed based on the page-level address ntappproach, and cannot be
directly applied to solve the RAM footprint problem of NFTWhich is based on the block-
level address mapping approach. Moreover, the page-lemgbing table in flash memory in
DFTL is still big. It not only takes up extra flash space bubalgroduces more management
overhead. Besides that, spatial locality and access freguse not explored by the caching

scheme in DFTL.

In this chapter, we propose a Demand-based block-level @ssdmapping scheme
with a two-level Caching mechanism (DAC) to solve the RAMtfnt problem for NFTL
in large-scale NAND flash memory storage systems. The bdsa of DAC is to store the
block-level address mapping table in specific pages (ctfledranslation pages) in the flash
memory, and a two-level caching mechanism is designed in Ré\btore the on-demand
block-level address mapping entries. Considering the teatpocality of workloads, the
first-level cache in DAC is dedicated to caching a small nurobactive block-level mapping
entries. The second-level cache consists of two cachestbatsed to explore the spatial
locality of workloads and the access frequency of addregsping entries, respectively.
Since the entire block-level address mapping table is dtordlash memory and address
mapping entries are loaded into RAM in an on-demand faslé; is effective at reducing
the RAM footprint. Moreover, the two-level caching mechamiin DAC can effectively
explore the reference locality and the access frequencrefére, the cache hit ratio is

improved and the average system response time can be képingel the control.

We have conducted experiments on a set of traces collecsdriFal workloads by

DiskMon [1]. We compare DAC with NFTL [14] and DFTL [33] in ters of the RAM cost
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and the average system response time. The experimentéikresaw that our technique
can effectively save the RAM cost with very little penalty thve average response time. On
average compared with NFTL, for a 32GB NAND flash memory wit2&-bytes pages per
block, DAC reduces the RAM cost by 91.68% with a 2.02% penaiftghe average system

response time.

This chapter makes the following contributions:

e We present for the first time a demand-based block-levelemddmapping scheme
with a two-level caching mechanism for reducing RAM costarge-scale NAND

flash memory storage systems.

¢ We demonstrate the effectiveness of this address mappinggeanent scheme and

compare it with representative techniques using a set bfreazes.

The rest of this chapter is organized as follows. Sectionir2rdduces the back-
ground and the motivation of this chapter. Section 2.3 diessrour proposed on-demand
block-level address mapping scheme. Section 2.4 and &ezfiopresent the performance
analysis and performance evaluation of our scheme, ragplgctFinally, Section 2.6 con-

cludes the chapter.

2.2 Background and Motivation

In this section, we first introduce the evolution of NAND flaslemory technology, and then
describe the base-line NFTL scheme [14] that will be used latex section. Finally, we

present our motivation for coming up with our scheme.

2.2.1 Trend of Flash Memory Technology

Due to its relatively simple structure and the great demantiigher capacity, NAND flash

memory is one of the most aggressively scaled electroniccegy Figure 2.1 shows the
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evolution of NAND flash memory technology [4]. The aggressirend of the decreasing
process design rule in NAND flash memory technology effetyiaccelerates Moore’ Law.
In late 2011, 20-nanometer NAND process technology wasldegd and one flash memory
chip with a 128GB capacity was released [12]. As the featime af flash memory cells
is close to its minimum limit, further increases in densityl Wwe driven by greater levels
of MLC, possibly the 3-D stacking of transistors, and imgments to the manufacturing
process [4]. With the increasing capacity of flash memorpgshinany existing FTLs suffer
from a large RAM cost when they are adopted to manage largle-88AND flash memory
storage systems. As a block-level address mapping scheRd, Nas the smallest RAM

footprint among the FTL schemes.
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Figure 2.1: The trend in the evolution of NAND flash memoryigesules or technology.

2.2.2 Block-level Mapping NFTL

In block-level mapping NFTL [14], one logical block is mappeith two physical blocks,
which are called the primary physical block (PPB) and thdasgment physical block
(RPB), respectively. The primary block is designated taestbe first written data, and

the replacement block is designed to store the re-writtgalgted) data. A logical page
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number (LPN) in NFTL is partitioned into a logical block nuer{LBN) and a block offset.
Using the logical block number and the block offset, NFTL cdmain the physical page
that stores the requested data from the primary block. I8itte in the target page becomes
invalid (stale), NFTL comes to the replacement block to fimel talid data by searching the
physical pages sequentially. Figure 2.2 shows an exampgleedlFTL scheme. Given the
LPN 7, divided by the number of pages in each block (i.e., 4g,quotient is the LBN 1,
and the remainder is the block offset 3. Using the offset B@rimary block 2, NFTL can
locate the target physical page 11. Since the target pagedkd, it turns to the replacement
block 1 to search sequentially from the first page to find tHel\yege. As coarse-grained
block-to-block mapping is used, NFTL requires a smaller banof address mapping en-
tries compared with page-level FTLs. However, if the filetegsissues write requests to an
identical logical page address, the primary physical bloel present a low space utilization
ratio and expensive block merge operations (including npeage copy operations and block

erase operations) may be triggered, which may increase/itens response time.

PPN DATA 0o0B
Access 0
= 1
LPN=7 Block #0
2
3
<
4 valid
S Block #1
LBN=7/4=1
Offset=T%A4=3 LBN PPBN RPBN 6
0 3 0 7
<
1 2 1 8
o Block #2
PPBN=2 10
offe=s > 11 | invad
12
Block Mapping Table 13
(BMT) in RAM Block #3
14
15

NAND Flash Memory

Figure 2.2: An illustration of the block-level mapping NFEtheme.
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2.2.3 Motivation

Although the block-level NFTL scheme is effective at redhgcihe RAM cost, it still suffers
from large RAM footprint due to the continuously increasM@ND flash memory capacity.
For example, given a large-block (2KB/page) based 32GBdhitNAND flash memory chip
MT29F32G08CBABAWRP [3], the block-level address mappingieacould take up 1.5MB
of RAM space. This large RAM footprint limits the applicati@f flash memory in some
resource-constrained embedded systems, especially ie kovwend storage systems. The
DFTL scheme [33] shows potential at solving the RAM cost proh however, it introduces
many extra address translation overheads. Moreoveragt@gthe spatial locality and access
frequency of workloads, which degrades the system perfocamaA demand-based block-
level address mapping scheme is a promising solution tqotiolslem. These observations
motivated us to design an on-demand block-level addrespimggcheme that can further
reduce the RAM cost without excessively compromising thetesy performance of large-

scale NAND flash memory storage systems.

2.3 DAC: Demand-Based Block-Level FTL

In this section, we introduce oAC (Demand-based block-level Address mapping with
two-level Cacheshapproach. We first give an overview of our scheme in Secti8ri2The
detailed on-demand address mapping approach and the sddiaslation procedure are
then described in Section 2.3.2. Next, we present the fetpielicy and the kick-out policy
for our cache design in Section 2.3.3. Finally, we show tlaéferite operation and garbage

collection procedure in Section 2.3.4.

2.3.1 Overview of DAC

The system architecture of our DAC scheme is shown in FiguBe [a DAC, the physical
blocks in the flash memory are divided into two types: dataltdoand translation blocks.

Data blocks, which are dedicated to storing the real data if® requests, are managed
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Figure 2.3: Architecture of DAC.

in the block-level mapping approach. Unlike the traditiomethod of storing the address
mapping table in RAM, DAC stores the entire block-level adrmapping table in the pages
of translation blocks. The translation blocks, which stibre block-level address mapping
table, are managed in the fine-grained page-level mappimgapgh, and the corresponding

translation page mapping table (TPMT) is stored in RAM.

As shown by the single-ended arrow with a solid line in Fig2r&, the data block
mapping table is stored in the translation pages, while tdwestation page mapping table
is stored in RAM. Taking advantage of the reference localitg the access frequency of

workloads, we designed two-level caches in RAM. The datzkblmapping table cache
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(DBMTC), which serves as the first-level cache, is used thiedhe on-demand data block
address mapping entries. The second-level cache, whitldieetwo different caches, is de-
signed to cache the translation pages. The translationrpégrence locality cache (TPRLC)
is dedicated to selectively caching those translation p#gget contain the on-demand map-
ping entries in the first-level cache; and another trarsiaage access frequency cache
(TPAFC) is designed to cache those translation pages thafreguently accessed when
the requested mapping misses in the DBMTC and the TPRLCel@ift cache replacement
policies are proposed for different caches. The doubleéradrow with a dotted line in
Figure 2.3 describes the address mapping table cachingguoe, and the arrow with a bold
line shows the address mapping entry searching processjugseed address mapping entry
will first be searched for in the first-level cache, and thexated in the translation blocks by

the TPMT in RAM if a cache miss occurs.

2.3.2 Demand-Based Address Mapping with a Two-Level Cache

In this section, we present the data structure and cachimpamésm used to implement the

demand-based block-level address mapping.

Data Blocks and Translation Pages. In our technique, the data blocks are mapped
in a block-level mapping approach, where one virtual datalbhddress (DVBA) is mapped
with one primary physical data block address (DPPBA) andreptacement physical data
block address (DRPBA). Therefore, one address mapping enthe block-level address
mapping table is represented aBVBA, DPPBA, DRPBA>. The pages in the translation
blocks that are used to store this address mapping tablealieel translation pages One
translation page can store a number of logically fixed addmegpping entries. For example,
if 8 bytes are needed to represent one address mappingteetryve can store 256 logically
consecutive mapping entries in one translation page. Taeespverhead incurred by storing
the entire block-level address mapping table is negligiblapared to the whole flash space.
32GB of flash memory needs only about 1.5MB of flash space te sibof these mapping

entries.
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Tranglation Page Mapping Table. In order to track the location of the address map-
ping table, a translation page mapping table implementadieess mapping from one vir-
tual translation page address (TVPA) to one physical tediosl page address (TPPA). Given
the requested virtual data block address (DVBA), dividedigynumber of mapping entries
that each physical translation page can store, the quasielefined as the virtual translation
page address (TVPA). Using the entries in the TPMT, we canddiately locate the physical
translation page that stores the requested virtual datk lalddress. Furthermore, one item
LOCA in the TPMT is used to record the location of the phystcahslation page (in cache
or in flash memory) for each virtual translation page addnetsch will also be helpful for
locating the translation pages. In the TPMT, another iterB@Rs used to record the access
frequency of each translation page when the requested n@pypsses in the first-level cache
and the translation page reference locality cache. ThevadlFREQ needs to be increased
by one if the requested mapping misses in the first two cachles.accumulated value of
FREQ indicates the tendency of the corresponding translatge to need to be fetched into
RAM from flash memory. Although the TPMT is permanently mained in RAM, it does
not pose many space overhead. For example, for a 32GB fl&4 franslation pages are

needed, which requires only about 4KB of RAM space.

Data Block Mapping Table Cache. Making use of the temporal locality in work-
loads, we design the data block mapping table cache in RAMwtbe a small number of
active mapping entries associated with the on-demand bldtthe requested mapping hits
in this cache, DAC can use or update it immediately withoatd@ng for or updating it in
the flash memory. If the requested mapping is not stored indbke and the cache is not yet
full, it will be fetched into cache directly once it is found the flash memory. Otherwise,
if the cache is full, one victim mapping must be kicked out take room for the newly
fetched-in mapping, which may lead to an extra translategepcopy operation in the flash
memory. In order to avoid this extra overhead, we designeevareplacement algorithm
taking into consideration both the LRU replacement alhoniaind the kick-out overhead (to
be explained in a later section). As the first-level cacheAlVRthe DBMTC can flexibly be

set to different sizes based on the size of the address ntafgtite that needs to be cached.
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For example, it can be set to 16KB, which is only about 1% ofilke of the whole mapping
table (1.5MB). If one mapping entry takes up 8 bytes, thed& gntries are included in the
DBMTC. When the active mapping set is large, we adopt a set&ss/e mapping approach

(i.e., 2-way or 4-way) for cache organization to guaranteequery efficiency.

Translation Page Reference Locality Cache. The translation page, which stores the
on-demand mapping entry that has just missed in the firsi-leache, will be selectively
cached in the TPRLC. Since the translation page covers a wpbetrum of logically con-
secutive address mapping entries, according to the spatiity in workloads, it will be
possible for one request to hit in this cache when it miss¢arfirst-level cache. As one
part of the second-level cache, the fetch-in operationeénfRRLC is invoked by the fetch-
in operation in the first-level cache. When the TPRLC is fatie victim page should be
kicked out to make room for the coming fetched-in transtapage. The LRU replacement

algorithm is adopted as the replacement algorithm in trebea

Tranglation Page Access Frequency Cache. The translation page that shows the
strongest tendency to be fetched into RAM will be selecyivelched in the TPAFC. When
the requested mapping frequently misses in the first-leaehe and the translation page ref-
erence locality cache, it should be fetched into RAM fromiflagemory in order to guarantee
the hit ratio and reduce the address translation overhesdnéther part of the second-level
cache, the translation page access frequency cache isndddig cache those translation
pages that contain frequently requested mapping entnesudh a way, the requested map-
ping that misses in the first two caches may hit in this cachee Oeast Frequently Used
(LFU) replacement algorithm is used to evict the victim slation page when the cache is

full.

In both levels of cache, a binaone-bittag is designed to indicate whether one item
is clean or dirty. The status of this bit can be used in themi&ick-out operation in the two
caches. The size of the second-level cache (the TPRLC antPAEC) can also be tuned
flexibly within the RAM size constraint. For example, 10 tskation pages take up about

20KB of RAM space. In terms of cache query efficiency, segaetdokup is sufficient
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for searching the requested mapping in the translationgsigee the mapping entries are

organized consecutively according to the virtual datalobxdress.

Given a request issued from the file system, DAC first searnchtége cache for the
requested address mapping. If the requested mapping Hit® ifirst-level cache, we can
get the requested mapping directly. Otherwise, we needddlimlocation of the translation
page that contains the requested mapping from the TPMe lethuested mapping is located
in the second-level cache, we can find it by searching theecaefjuentially. If both two
level caches miss and are full, the requested mapping wiletehed into the cache from
flash memory and then be used by DAC. Algorithm 2.3.1 showpitbheedure of translating

from a logical data block address to a physical data blockesdd

2.3.3 Replacement Policy in a Two-Level Cache

In the first-level cache, the replacement policy is desigmeskd on the LRU replacement
algorithm and a cost-benefit analysis. We first select a piatemctim mapping based on the
LRU replacement algorithm. The victim mapping is then estdd according to a simple
cost-benefit analysis: if the potential mapping is alsoenity included in the second-level
cache currently, it can be the victim; or else, if the ponmapping has not been updated
since it was fetched into cache, it can be the victim; otheewa new potential mapping will
be selected according to the LRU replacement algorithm arevaluated again. If all of the
mapping entries in the first-level cache violate the rulesyintim is selected and no fetch-in
operation is performed in the first-level cache. The victiapmping that is selected based on
this rule can either be erased directly (if no update occuorethis mapping) or be kicked
out to the second-level cache (if the corresponding tréinslgpage exists). In both cases,
no time-consuming write-back operation towards flash mgrnsincurred in the first-level

cache. Therefore, no extra address translation overheadis£d.

In the second-level cache, the LRU replacement algorithdrtlae LFU replacement
algorithm are used in the TPRLC and the TPAFC, respectivitgr the fetch-in operation

in the first-level cache, the corresponding translationepstgould also be loaded into the
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Algorithm 2.3.1 AddressTranslationR Diba)

Input: DBMTC, TPRLC, TPAFC, TPMT, Requested logical data blockr@dd R Diba, Requested virtual

data block addresB Duvba, Victim entry in DBMTC Evictim, Page numbers in one bloékpage, Map-

ping numbers in one translation padgpage.

Output: Requested primary physical data block addrR€3ppba and Requested replacement physical data

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

block address Drppa.

: RDvba«—RDlba/Npage; RTvba<—RDuvba/Mpage.
. SearchRDvba indexed byH ash(Dvba) in the DBMTC.

. if hit then

returnR Dppba and R Drpba.

: else

LocateRTvpa in the TPMT indexed b¥"vpa; REFreq— Freq; RLoca<— Loca; RT ppa—Tppa.
if RLoca is equal ta) then
SearchRTvpa indexed byT'vpa in the TPRLC; GetR Dvpa indexed byDvpa in RTvpa.
else
RFreq—RFreq+ 1.
if RLoca is equal tol then
SearchRTvpa indexed byT'vpa in the TPAFC; Getk Duvpa indexed byDvpa in RTvpa.
else
Read translation padgel'ppa from flash memory; Gek Dvba, RDppba, RDrpba.
if the DBMTC is not full then
Fetch_in(RDvba, RDppba, RDrpba, DBMTC).
end if
Fetch_in(RTppa, TPRLC, TPAFC).
end if
end if
ReturnR Dppba and R Drpba.

end if
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second-level cache. If both caches in the second-leveludiyeohe victim translation page
will be selected in each of the two caches. For fetch-in dparawe first consider the
TPAFC. If the access frequency for the requested translgdage is higher than that of
the victim page in the TPAFC, the requested translation patdirst be fetched into the
TPAFC after kicking the victim page out. If the requestedgaygthe flash memory and
the victim page in the TPAFC have the same access frequdmeyfetch-in operation is
performed based on a simple cost-benefit analysis: thervdige that has not been changed
since it was fetched into the TPAFC will be kicked out, and rtbguested translation page
will then be fetched-in; otherwise, the requested traimsigbage will be fetched into the
TPRLC. When the access frequency of the requested page és than that of the victim
page in the TPAFC, the requested page will be finally fetcimtd the TPRLC after the
kick-out operation. Algorithm 2.3.2 shows the proceduréet¢hing the requested physical

translation pagé7ppa into the second-level cache.

It is noticed that the second-level cache in our scheme nigt captures the spa-
tial locality in workloads, but simultaneously serves as kitk-out buffer for the first-level
cache. When the requested mapping misses in the first-lagkkg no fetch-in operation is
performed if no victim is selected based on the cost-benefdilyais as discussed in above
section. In this situation, the requested mapping cantstiltached in RAM as its corre-
sponding translation page must be fetched into the TPRLA ffash memory. This policy
can effectively guarantee the cache hit ratio. Meanwhilegmvthe victim mapping in the
first-level cache is kicked out, it will be evicted to the seddevel cache but not the flash
memory. The second-level cache actually delays the ki¢ksperation in the first-level
cache and then performs the kick-out operation in bulk. Thchanism can effectively
reduce the kick-out operations towards the flash memory anckdse the time-consuming
page read or page write operations in the flash memory, wiaiclsignificantly improve the

address translation efficiency.

Next we introduce the kick-out policy in two-level cacheshelvictim mapping in
the first-level cache is either erased directly or kickedtouhe second-level cache. There-

fore, no flash page operations are triggered. However, aa #ash page read or page write
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Al

gorithm 2.3.2 Fetchin (RTppa, TPRLC, TPAFC)

Input: DBMTC, TPRLC, TPAFC, TPMT, Victim page in the TPRLC/TPAERvictim/T Avictm.

Output: Location of RTppa in the TPRLC or the TPAFC

1:

2:

3:

a

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27

28

if the TPRLC is not full then
Fetch translation pagRT ppa into the TPRLC;R Loca<«—0.
else
if the TPAFC is not full then
Fetch translation pageT'ppa into the TPAFC;R Loca+1.
else
Selectl’ Rvictim in the TPRLC by LRU algorithm.
Selectl’ Avictim in the TPAFC by LFU algorithm.
if RE'req is greater thatt'req of T Avictim then
Kick_out(T Avictim, TPAFC); RLoca<1; Fetch translation pageT'ppa into the TPAFC.
else
if RF'reqis equal toF'req of T' Avictim then
if T Avictim is not changed then
Erasel’ Avictim; RLoca«1; Fetch translation pageT ppa into the TPAFC.
else
Kick_out(T Rvictim, TPRLC); RLoca«O0.
Fetch translation pagel'ppa into the TPRLC.
end if
else
if RE'reqis smaller tharF'req of T' Avictim then
Kick_out(T Rvictim, TPRLC); RLoca«O0.
Fetch translation pagel'ppa into the TPRLC.
end if
end if
end if
end if
:end if

: Return the location aRT'ppa in the TPRLC or the TPAFC
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operation may be required when doing the kick-out operatidhe second-level cache. If
the victim translation page has never been updated sinasifetched into the cache, it can
be erased directly and a free space will be released. Otberifithe victim translation page
is changed, it should be flushed back to flash memory in orderaiotain the consistency.
The victim translation page is written to a new free transfapage; meanwhile, the original
translation page becomes invalid. The address of the neslatgon page will correspond-
ingly be recorded in the TPMT. The extra overhead caused éyltish-back operation is
only one page write operation in the worst case. Algorith&i®shows the procedure of the
kick-out operation in the TPRLC, and the kick-out operaiiothe TPAFC obeys the same

rules.

Algorithm 2.3.3 Kick_out (Pvictim, TPRLC)
Input: TPRLC, TPMT, Victim translation page in the TPRLEvictim.

Output: Free location in the TPRLC.
1. PTvpa« Pvictim.Tvpa, PTppa«— Pvictim.Tppa.
2: Sequentially searcRTvpa indexed byT'vpa in the TPMT; GetPTvpa and PT ppa.
3: if PT"ppa is updated then
4:  Write PTppa to a new free translation padél” ppa; PTppa«— F T’ ppa in the TPMT.
5: end if
6: ErasePuvictim in the TPRLC.

7: Return the free location in the TPRLC.

Anillustrative example of the address translation proceahen both levels of cache
miss is shown in Figure 2.4. Given the requested logical patge address (DLPA) 65, the
corresponding virtual data block address (DVBA) is 1 (65/B¢ where 64 is the number of
pages within one physical block. In step (1), the mappingeftDVBA 1 misses in the first-
level cache. In steps (2)-(3), the requested mapping estigcated in physical translation
page TPPA 12 in flash memory after consulting the TPMT withvilial translation page
address (TVPA) 0 (1/256=0), where 256 is the number of mapgntries in each translation
page. Since translation page TPPA 12 is not cached in theddewel cache, the item FREQ
for the requested TVPA 0 in the TPMT needs to be increased Whith reaches 3. In steps

34



(4)-(6), the mapping entry for DVBA 511 in the DBMTC is suppdgo be the victim slot,
and the requested mapping entry is fetched into the DBMTEr &itking the victim out.
In steps (7)-(9), the access frequency of the requestediaVittanslation page TVPA 0 is
obtained from the TPMT with a value of 3, which is smaller thie access frequency of
the victim translation page in the TPAFC with a value of 4. Teéguested translation page
TPPA 12 should be fetched into the TPRLC. In steps (10)-{h2)physical translation page
TPPA 18 is supposed to be the victim in the TPRLC, and it has bkanged compared with
corresponding mapping entries stored in flash memory. Towverethe physical translation
page TPPA 18, together with the updated mapping entriegoguied to the free translation
page 39. The entry for TPPA 18 in the TPMT is changed to 39 spoedingly. In step (13),
translation page TPPA 12 is fetched into the TPRLC after thiénv translation page TPPA

18 is kicked out. In step (14), the newly fetched-in mappintyyeis the requested one.

DBMTC TPRLC TPMT TPAFC
(First-Level Cache) (Second-Level Cache) (Second-Level Cache)
DLPA= 65
DVBA=65/64=1 | 3<4«—(8)
R
M @) | ) ©) j
| DVBA |DPPBA|DRPBA DVBA [ DPPBA|DRPBA
vietim 1 DVBA [DPPBA|DRPBA ' 512 2 3 TVPA|FREQ|LOCA|TPPA 1280 513 566
—> 511 29 30 513 4 6 — 0 2 2 12 1281 7 9
() 7025077249 L2 |13 ]
1683 17 20 767 | 215 216 2 0 0 18 ‘: 1535 11 12
TVPA=12 TPPA=18 . TVPA=5 TPPA=26
203 104 105 L Translation Page# 18 1023 5 1 5 L Translation Page# 26
(6) 3) (12) (10)
! ey
RAM [ 1 218219 | 1.3
‘ \
FLASH (14) @) (13)
DVBA |DPPBA|DRPBA DVBA |DPPBA|DRPBA le| DVBA |DPPBA|DRPBA
110 21 22 512 0 1 512 2 3
DATA 1 218 | 219 513 4 6 513 4 6
255 213 214 767 31 32 (anfp 767 215 216
oob TPPA=12 valid TPPA=18 valid>invalid TPPA=39 free>valid
Data Page# 1 Translation Page# 12 <— | Translation Page# 18 Translation Page# 39
Data Block# 218 Translation Pages

Figure 2.4: lllustration of the address translation pregeshe DAC scheme with both levels

of caches missing.
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2.3.4 Read/Write Operation and Garbage Collection

After address translation, the target primary physicatbladdress can be obtained. A read
or write operation can locate a data page through the offs#ta corresponding primary
physical block. If the target data page is invalid or occdpikis necessary to find the valid
page or a free page by searching the replacement physia bémuentially. For a write
(rewrite) operation, the new mapping should be updatedenctiche correspondingly. If
the replacement block or the primary block is full, the blaokrge operation for the data
blocks will be invoked to release free space. The valid pagdsoth the primary block
and the replacement block will be copied to a new free bloaktae two blocks will then
be erased. The page copy operations incur an address magh@inge. In order to keep
the cache synchronization, the mapping entries in botHdesfecaches should be updated
correspondingly after the garbage collection for data kdocSince the first-level cache is
implemented in a set associative mapping approach while#dpping entries in the second-
level cache are sequentially organized, it is easy to lcradeupdate these changed mapping

entries.

The garbage collection is triggered when the number of fieekis decreases to a
threshold (i.e., 5% of blocks in the whole flash memory). Farbgge collection, a fully
occupied block with the fewest number of valid pages will beested as the victim block
based on a greedy policy. The valid pages in this block aréedojp a new free block
and the victim block will then be erased. The page copies nigy tagger the mapping
update; therefore, the corresponding mapping in the tweltsache and the translation page
mapping table should be updated simultaneously. In thekblmenagement technique, we
maintain one free block pool, which contains the newly ettdsdecks. One free block will
be allocated to serve the garbage collection either for #ta dlocks or for the translation
blocks. The wear-leveling of flash memory is managed auticalbt by locating the blocks
in a round-robin approach. Moreover, in order to reduce thelkerase count and improve
the space utilization of NAND flash memory, we adopt the reawsare strategy [72, 94, 95]

when doing the block reclaim operations in our scheme. Ferldlver space utilization
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problem caused by random writes in NFTL, the reuse-awaatesly can efficiently reduce

the block erase count, which improves the average systqromes time.

2.4 The Performance Analysis of DAC

This section provides an analysis of DAC to show how the nmagmory (i.e., RAM) cost is
reduced and how the average system response time and tleehtictio are enhanced. We
first analyze the RAM requirements of different FTL schem#&®. then discuss the system
performance of DAC and DFTL [33] when limited RAM space isitatale. Finally, we

investigate the extra address translation overhead of DACNFTL [14].

2.4.1 Improvementin RAM Cost

Table 2.1: RAM cost of different FTLs.

Capacity || NFTL DAC Page-level FTL DFTL
32GB || 1.5MB | 4KB+S.qche 96MB 128KB+S.qche
64GB 3MB | 9KB+S.uche 512MB 1.5MB+S qche

In the design of FTL schemes, main-memory (RAM) cost andagi@iperformance
[30] are the two major considerations from the point of vidwendors. In conventional FTL
schemes (NFTL and Page-level FTL), RAM cost refers to theage cost on the address
mapping table. In demand-based FTL schemes (DAC and DFfi¢ gpddress mapping table
is stored in flash memory, and the RAM cost consists of twospdine global management
table size (i.e., the TPMT in the DAC scheme) and the caclee $ize mapping table size and
the global management table size depend on the page sizbafldgh capacity. Table 2.1
shows the RAM cost for different FTL schemes with 32GB and BAAND flash memory,
respectivelyS,..... represents the cache size configuration. The cache sizechtdrmined
by engineers in the system design phase according to therpenfice requirement and the

cost.
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For a 32GB NAND flash memory (2KB-sized page and 128KB-siziedk), the
RAM footprint for NFTL is 1.5MB. Based on NFTL, our scheme ssedemand-based ap-
proach and reduces the RAM cost to 4KB (for the TPMT) plus thehe size. Since the
cache size can vary according to the requirements, the RAd realuction varies corre-
spondingly following the setup. We usg,, and Sy to represent the size of the address
mapping table and the size of the TPMT, respectively. THanjrhprovement in RAM cost
can be calculated as follows:

Sgt + Scache

1—
( Smt

) x 100% (2.1)

For example, for a 32GB NAND flash, DAC shows a 95.57% and 3b./dduction in RAM

cost when the cache size is set as 64KB and 128KB, respactivel

The RAM cost for a page-level FTL is 96MB when the flash sized&B. Based
on a page-level FTL, DFTL stores the 96MB-sized page-levagbpmg table in translation
blocks and sets up a global translation directory in RAM, chihiakes up 128KB of RAM
space. When the flash capacity is increased to 64GB, the |di@eslation directory in
DFTL takes up 1.5MB of RAM space. These figures indicate thatRFTL scheme will
be unable to work when the RAM space is less than 1.5MB, butRA&L can work well
as long as the RAM space is marginally larger than 9KB. Ouesthshows a lower RAM

space requirement with better scalability.

2.4.2 Improvement in Cache Hit Ratio

The cache hit ratio is critical in determining the addressdfation efficiency. If the re-
guested mapping hits in the cache, the address mappingnafimn can be obtained di-
rectly. The time overhead in this situation is the cache atjp@ns (cache read, cache write,
cache searching, etc.), which is only about t real applications. If the requested mapping
misses in the cache, the address mapping information nednsread from flash memory.
The time overhead is at least one flash page read operatidet) i8rabout 3@s. Therefore,

having a good cache management mechanism is very important.
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Cache size is one critical factor that has an impact on thieecperformance. Given
two caches with the same size and the same replacementtlalgowe can get a higher hit
ratio if more cache items can be included. In the DFTL schexaeh entry is one page-level
address mapping. In the DAC scheme, each entry in the fust-teche is one block-level
address mapping. The block-level mapping takes up muchslemse than the page-level
mapping. Therefore, more items can be maintained in theecatiDAC than in that of
DFTL. Moreover, one page-level mapping only representsriapping information of one
page. One block-level mapping can cover the mapping infoomaf 64 pages if one block

includes 64 pages. The cache hit ratio in DAC may be 64 tingdsanithan that in DFTL.

The replacement algorithm is another important factorcdffig the cache hit ratio.
A good replacement policy should not only capture the temdocality of workloads, but
also the spatial locality and access frequency of workloBdiSTL adopts a one-level cache
that captures the temporal locality well. In DAC, we use a-texel caching mechanism that
captures both the reference locality and the access fregudmworkloads. For each fetch-
in operation in DFTL, one page-level mapping is read intodaehe from flash memory,
with one page read time overhead. For each fetch-in operaii®AC, one block-level
mapping is read into the first-level cache. The correspagntiemslation page will also be
read into the second-level cache, and the time overhead satime as that of DFTL. Thus,
according to the spatial locality in workloads, the comiaguest will hit in the second-level
cache in DAC, while a cache-miss may happen in DFTL. The DA@@s® should have a
higher cache hit ratio than that of the DFTL scheme underdhsegime overhead on cache

replacement.

A lower cache hit ratio leads to more translation pages b#usiped from cache to
flash memory. Thus, more flash space is consumed and moreggacblection will be
triggered, so that more block erase operations will be peréd. In the DFTL scheme,
one page-level mapping table cache is adopted. One flushdymration consumes one
free translation page. However, in the DAC scheme, more gmenflush-back operation
may consume one free translation page. This is because ¢badstevel cache serves as

the kick-out buffer of the first-level cache, and the sectmavdy cache can do the flush-back
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Cached Mapping Table

DLPN DPPN
17 5
victim 3 46
15 127
victim 5 287 L4
RAM flush-back flush-back
FLASH
v
DLPN | DPPN DLPN | DPPN DLPN | DPPN
3 11 3 46 3 46
4 25 4 25 < 4 25
5 37 5 37 5 287
valid Free to valid Free to valid
TPPN=36 TPPN=37 TPPN=38
Translation Page# 36 Translation Page# 37 Translation Page# 38
(a) DFTL scheme
TPRLC (Second-Level Cache)
DBMTC (First-Level Cache)
DVBA | DPPBA | DRPBA kick-out DVBA DPPBADRPBA
512 | 250 | 249
icti ! o - / 513 | 104 | 105
VIR, [Ts12 [ 250 | 249 /
victim 15618; 11074 12005 767 | 215 | 216
TVPA=12 TPPA=18
Translation Page# 18
RAM
FLASH flush-back
DVBA [DPPBA|DRPBA DVBA |DPPBA|DRPBA
512 2 3 512 | 250 | 249
513 4 6 513 | 104 | 105
767 | 215 | 216 767 | 215 | 216
TVPA=12 TPPA=18 TVPA=12 TPPA=19
Translation Page# 18 Translation Page# 19

(b) DAC scheme

Figure 2.5: lllustration of kick-out operations in the DF§theme and the DAC scheme.
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operation in batches. Figure 2.5 (a) shows an illustratkele of kick-out operations
in the DFTL scheme. Two victim mapping entries in the CMT l¢adhe consumption of
two free translation pages (translation page #37 and afioslpage #38). In Figure 2.5 (b),
two victim mapping entries in the DBMTC in the DAC scheme areted to the TPRLC,
and one free translation page (translation page #19) is. uEkdrefore, the DAC scheme
has a higher space utilization ratio and lower translatioglberase counts than the DFTL

scheme.

2.4.3 Extra Address Translation Overhead

In conventional FTL schemes, where the address mapping isistored in main memory
(i.e., RAM), the address translation overhead is the tinst 0bthe mapping table search-
ing in RAM. However, in demand-based FTL schemes, where dadeeas mapping table
is stored in flash memory, besides the overhead of cachetmperan RAM, some extra

overhead on the address translation procedure are inddtithe requested mapping ta-
ble is not maintained in the cache. The extra overhead idgrtte dverhead to fetch (read)
the address mapping table from flash memory as well as thatutdirty mapping entries

kick-out (write-back) overhead from cache to flash memory.

In the DAC scheme, the extra overhead is the same as that dRfié& scheme
when mapping entries hit in the cache. In the cache-misatsity the extra overhead dif-
fers according to the status of the victim translation pageache. If the victim translation
page is clean, the time overhead is one translation pagdfegdperation (for the fetch-in
operation). Otherwise, if the victim translation page idydithe time overhead is one trans-
lation page write {,,-) operation (for the kick-out operation) and one transtapage read
(T}.4) operation (for the fetch-in operation). In order to redtive extra address translation
overhead, the DAC scheme considers both the referenceatjoaatl the access frequency
of workloads. Moreover, the proposed cost-aware LRU reprent algorithm gives clean
pages a higher priority to be victim translation pages, s tewer translation page write

operations need to be introduced.
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2.5 Evaluation

To evaluate the effectiveness of the proposed scheme, vaeicoa series of experiments and
present the experimental results with discussions in #oi@an. We compare and evaluate
our proposed DAC scheme over NFTL [14] and DFTL [33] in terrhaddress translation
overhead, average system response time, and cache hitlratlas section, we first intro-

duce the experimental setup. We then present the expeahrentilts with discussions.

2.5.1 Experimental Setup

Table 2.2: Experimental setup.

CPU Intel Dual Core 2GHz
Notebook Disk Space 200GB
Configuration RAM 2GB

CopyFiles, DownFiles, Web Applications

DiskMon Traces
Office, P2P, Media Player

OS Kernel Linux 2.6.17
Simulation
Flash Size 32GB
Environment
Simulator NAND Flash Simulator

Table 4.3 summarizes the experimental setup. We developrededriven NAND
flash simulator under Linux 2.6.17 and implemented threemas: DAC, NFTL, and DFTL.
A 32GB NAND flash memory with 2KB-sized page and 128KB-siz&atk is simulated. To
conduct a fair comparison with different FTL schemes, wesader only a portion of flash as
the active region that stores our workloads. The remainaghfls assumed to contain cold
data or free blocks, which are not under consideration. Tamdéwork of our simulation
platform, as shown in Figure 4.7, consists of two modules:AAN flash simulator mod-
ule providing basic read, write, and erase capabilitied; adesired flash translation layer

management scheme that can be executed on top of the NANDsflasihator. The traces,
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along with various flash parameters, such as block size agel fiae, page read time, page
write time, and so on, are fed into our simulation framewdBased on the flash memory
data sheet [3], the time cost to read a physical page, writeysigal page, erase a physical
block, read the spare area of a physical page, and searcheoméni cache, are set as the
time consumption for one flash page-read and one flash patgeperation, and are set as

36.6us, 226.7us, 200Qus, 0.8us, and 2us, respectively.

Input ’1:
Parameters Flash NAND

Experimental

Translation K= Flash |—) Result
i , esults
DiskMon —N  Traces ) Layer Simulator

Figure 2.6: The framework of the simulation platform.

The traces with data requests used in this simulation aleated by running DiskMon
[1] in Windows XP over a notebook with an Intel Dual Core 2GHagessor, a 200GB hard
disk, and a 2GB DRAM. The traces reflect the real workload ef gfistem in accessing
the hard disk with applications that are used daily, suclhas& for web surfing, document
typewriting, downloading, and playing movies and games.e€aah trace, the numbers and
percentages of read and write operations are listed in PaBlélrace 1, Trace 2, and Trace 5
are write-dominant applications, while Trace 3 and Traceedr@ad-dominant applications.
Trace 6 owns similar percentages of read requests and \eqieests. The percentage of
sequential operations indicates the access pattern @stiaderms of the arrival sequence

of requests.

In the simulation, different RAM size configurations are glated in order to explore
the relationship among RAM size, cache hit ratio, and avesgtem response time. We
first consider that the three caches are all of the same sizee 81e size of one flash page
is 2KB, the size of each cache is initialized to 2KB, and the¢hcaches initially take up
6KB of RAM space . The sizes of the three caches are then sedaacrementally and the
total cache size finally reaches 252KB. The RAM cost consatiypibecomes 256KB, since
the translation page mapping table takes up 4KB in our schémthe DFTL scheme, the
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Table 2.3: The characteristics of the traces.

# of writes # of reads % of writes | % of reads| % of sequential operations
Trace 1| 15,860,736 1,040,896 90% 10% 99.96%
Trace 2| 8,198,708 2,471,266 77% 23% 53.50%
Trace 3| 2,416,100 17,842,716 12% 88% 99.99%
Trace 4| 639,193 8,518,437 7% 93% 50.01%
Trace 5| 9,208,655 4,899,133 65% 35% 94.98%
Trace 6| 8,903,616 10,906,320 45% 55% 97.91%

global translation directory takes up 128KB of RAM spacee Thache size is initialized to
4KB and then increased to 128KB, which boots the RAM cost 8KI& In the simulation,

we first collect the experimental results of our scheme uedgtt RAM size configurations
starting from 10KB to 136KB with an interval of 18KB. In ord&r make a comparison with
DFTL, we then run the simulation with four RAM size configuoais for both two schemes

starting from 136KB to 256KB with an interval of 30KB.

2.5.2 Results and Discussion

Results of DAC and NFTL

In this section, we compare and evaluate our proposed DAEnselover the representative
block-level flash translation layer scheme NFTL [14] in terai two performance metrics:
the average system response time and the extra addredaticaneverhead. We first con-
ducted experiments to show how the RAM size influences thegeesystem response time.
The results, in which the average response time of eachdeacbe obtained by varying the

RAM size from 10KB to 256KB, are shown in Figure 2.7.

From Figure 2.7, we can see that, although the plots forreiffietraces are different,

they all show the same trend: the average response timeadesras RAM size increases.
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Figure 2.7: The average system response time for DAC and N#ifLdifferent RAM size

configurations over six traces from Trace 1 to Trace 6.
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Figure 2.8: The cache hit ratio of DAC with different RAM sizenfigurations over six

traces from Trace 1 to Trace 6.
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When the RAM size reaches 64KB, which takes 8.32% of the eeatitive mapping table
size (768KB) in flash memory, the average response time dfealés are very close to or
even the same as that of the NFTL scheme. Therefore, on aydda¢C reduces the RAM
cost by 91.68% under a 2.02% penalty to the average systgonss time compared with
the NFTL scheme. For Trace 1 and Trace 3, the average resporesshows no change
when the RAM size varies from 10KB to 256KB. This is becausergguests in Trace 1
and Trace 3 present much more sequential patterns. Theiesegg mapping can hitin a
very small cache, and the response time can be significatlyced even with a small cache
size configuration. We can also see that the average respioms®f Trace4 in DAC is
much longer than that of the NFTL scheme when the RAM size @llsrthis is because
the response time of a read request at least doubles whem@cass happens. The read-
dominant requests with a higher random access pattern ae Aréeads to a lower cache hit

ratio, which increases the average response time.

Next, we present the experimental results in terms of théednit ratio and the
extra address translation overhead. Based on the NFTL shkenDAC scheme introduces
translation blocks and a caching mechanism for managingeaddnapping. Therefore,
the extra overhead of DAC includes all of the operations enttanslation blocks, such as
the translation page read count, the translation page woit@t, and the translation block
erase count. These extra overheads are incurred by theutoperation and the fetch-in

operation in the cache, which are determined by the cachiatiot

Figure 2.8 presents the cache hit ratio in our scheme wheRAM size is limited
to 256KB. The cache hit ratio is influenced by both the cache and the reference locality
of workloads. Traces with more sequential access pattesa im@re spatial locality. Traces
with frequent update operations should present more temhfmwality. This can be verified
by the results of Trace 1 and Trace 5, shown in Figure 2.8. WherRAM size is set as
10KB, the hit ratio almost reaches 100% for these two traEes.Trace 2 and Trace 4, the
cache hit ratio increases when the RAM size is increasediréhd of increase stops at one
point and no further improvement can be achieved. This ialisethe reference locality has

been entirely captured, and no more benefit can be obtainbdtva increased cache size.
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Figure 2.9: The number of translation page read in the DA@m®&hwith different RAM

size configurations over six traces from Trace 1 to Trace 6.
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Figure 2.10: The number of translation page write in the DABesne with different RAM

size configurations over six traces from Trace 1 to Trace 6.
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A higher cache hit ratio leads to fewer fetch-in operationsache, and fewer trans-
lation page read operations are triggered. Otherwise, arlowratio will cause more trans-
lation page read operations and more translation page apéeations. Figure 2.9 and Fig-
ure 2.10 show the experimental results of a translation peayg count and translation page
write count, respectively. Due to the increasing hit rati@ache, both the translation page
read count and the translation page write count for all oftthees are decreased. For Traces
1, 3, 5, and 6, the hit ratio is constant but the translatiggepaad count and the translation
page write count is decreased. This is because our schempesadwo-level caching mecha-
nism in which three caches are involved. The second-lewtleaerves as the kick-out buffer
for the first-level cache. When the size of the second-leaehe is increased, more victim
translation pages in the first-level cache are evicted te¢lcend-level cache and fewer vic-
tim translation pages are flushed back to flash memory. Térerefewer translation page
write operations are needed, and fewer translation pagescanrsumed. In particular, for
the read-dominant Trace 2, only 2 page write operationsraygered, and this number is

reduced to 1 with the increased cache size.

Results of DAC and DFTL

In this section, we compare and evaluate our proposed DACRIVEL in terms of the cache
hit ratio with different RAM size configurations over six tes. We also compare the average
system response time and the extra address translationeackof the two schemes under

the same scenario in which a limited amount of RAM space isrgiv

Figure 2.11 shows the cache hit ratio for DAC and DFTL undersime RAM size
configurations. In both schemes, the cache hit ratio shogvsame trend of increase when
the cache size varies from 10KB to 256KB. Since the GTD takek28KB of RAM space in
DFTL scheme, the DFTL scheme cannot work when the RAM sizenallsr than 128KB.
In Figure 2.11, we only show the cache hit ratio of DFTL whes RAM size is larger than
128KB. From the figure, we can see that the cache hit ratio dil0Rcreases when the cache

size increases. However, the cache hit ratio for DAC is mughéer than that of DFTL when
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Figure 2.11: The cache hit ratio of DAC and DFTL with diffetéAM size configurations

over six traces from Trace 1 to Trace 6.
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Figure 2.12: The average response time for DAC and DFTL wiferént RAM size con-

figurations over six traces from Trace 1 to Trace 6.
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they have the same RAM size configuration. The improvemetitércache hit ratio in our

scheme comes from the larger mapping granularity and thdewe caching mechanism.
In our scheme, we use the coarse-grained block-level mg@mproach while DFTL adopts
a fine-grained page-level mapping approach. Our schemerhastasmaller mapping table
than DFTL, and more mapping items will be cached under theeszache size. Another
factor that influences the cache hit ratio is the cache debsigrmur scheme, two-level caches
are designed, and both temporal locality and access freguee considered. In DFTL, the

one-level cache only takes into account temporal locality.

Page-level FTL is considered to have a better responseltmmdaiock-level FTL. We
compare the average system response time of page-levelmgapgsed DFTL scheme with
our block-level mapping-based DAC scheme. Figure 2.12gmtsghe average response time
of these two schemes. DFTL shows a better average resporesoti write-dominant traces
(Trace 1 and Trace 2) and a worse average response time tbdosainant traces (Trace
3 and Trace 4) compared with the DAC scheme. This is basedeofath that the page-
level FTL scheme triggers garbage collection later tharbtbek-level FTL scheme. DAC
scheme can achieve benefit from the improvement in the cactedib; however, the benefit
cannot counteract the penalty caused by the earlier-tegiggarbage collection overheads.
For read-dominant traces, the higher hit ratio in DAC camucedhe average response time,

since fewer block erase operations are involved in both DACRFTL.

Table 2.4 presents the cache hit ratio and the average respione of these two
schemes when the RAM size is 132KB. From the results, we caths¢ the DAC scheme
has a higher cache hit ratio (74.31% higher on average) tteBETL scheme. For most of
the traces, our scheme shows a faster average responseHowever, it shows a 28.46%
slow-down in the average response time for Trace 2 when cadpaith DFTL. This is
because Trace 2 is a write-dominant trace that has far feaggrestial writes than other
write-dominant traces (i.e., Trace 1 and Trace 5). For ranckegjuests, the block-level FTL
triggers more garbage collection overhead than the pagdéH&L. This can be verified from
the results shown in Table 2.5. Considering all of the trabésC achieves a 27.65% reduc-

tion in average response time compared with the DFTL schehherefore, the demand-
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Table 2.4: Performance for DAC and DFTL with 132KB RAM.

Hit Ratio (%) Average System Response Time)
DAC | DFTL | improvement| DAC | DFTL | improvement (%)
Trace 1| 99.99| 0.23 99.76 532 | 535 0.56
Trace 2 | 99.95| 74.79 25.16 343 | 267 -28.46
Trace 3 | 82.75| 0.02 82.73 39 105 62.85
Trace4 | 78.84| 0.07 78.77 42 114 63.15
Trace 5| 99.58| 5.83 93.75 251 | 435 42.29
Trace 6 | 84.69| 18.96 65.73 268 | 360 25.55
Average 74.31 27.65

based block-level mapping scheme outperforms demanatipegge-level mapping scheme
when limited RAM size is provided. Table 2.5 shows the adsltesnslation overhead of
these two schemes. In the table, columns “D.Copy,” “D.Ef&.Rd,” and “T.Wr” represent
the copy count of data pages in the garbage collection puveethe data block erase count,
the translation page read count, and the translation pageeaunt, respectively. “D.Copy”
and “D.Era.” indicate the garbage collection overhead da Béocks while “T.Rd,” “T.Wr”
and “T.Era.” describe the address translation overheadechby the on-demand address

mapping approach. These five metrics directly determinavkeage system response time.

From the results shown in Table 2.5, we can see that the DFfiénse shows much
less overhead than the DAC scheme in terms of garbage ¢ofleah data blocks. For
example, the data block copy count and the data block eras# ao DFTL are an order
of magnitude smaller than that of DAC for most traces. Thibased on the fact that the
fine-grained page-level mapping scheme has a higher spéeatign ratio than the coarse-
grained block-level mapping scheme. DFTL triggers the ggebcollection of data blocks
much later than the DAC scheme. However, DAC has much leghead on the translation
block operations. This can be proved by the fact that theskaéion block erase counts for

six traces in DAC scheme are zero. This overhead reductioresdrom the higher cache
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Table 2.5: Overhead for DAC and DFTL with 132KB RAM.

DAC scheme DFTL scheme
Traces || D.Copy | D.Era.| T.Rd. | TWr. | T.Era. || D.Copy | D.Era.| T.Rd.| T.Wr. | T.Era.
Tracel 8.9E6| 2.8E5 43 0 0 0.1E5| 1.2E5| 2.0E7| 0.9E7| 1.E5
Trace2 4.2E6| 2.1E5| 5,007 | 0.3E4 0 3,692 | 9,210| 0.5E7| 0.2E7| 0.3E5
Trace3 0 0| 1,864 1 0 0 0 | 4.0E7| 17,065 0
Traced 94 54 | 9.0E5 1 0 0 0| 1.8E7| 10,813 0
Traceb 3.5E6| 1.1E5| 6,555| 0.3E4 0 4.0E5| 0.7E5| 2.6E7| 1.0E7| 1.5E5
Trace6 6.8E6| 2.5E5| 0.5E5| 3.3E4 0 9.0E5| 1.1E5| 3.2E7| 1.1E7| 1.1E5
Average 3.9E6| 1.4E5| 3.3E5| 0.E4 0 2.2E5| 0.5E5| 2.4E7| 0.5E7| 0.7E5

hit ratio, which significantly decreases the write operadiin the translation blocks. The
reduced overhead enables DAC to have better system perioenthan DFTL when the

RAM size configuration is very small.

Impact of Cache Size Allocation

For the above experiments, the size of each cache is fixed qul & each other. To

explore the impact of performing different cache size atmns performed on the system
performance, we run the simulation with more cache size gordtions. Since three caches
are involved, we fix two cache sizes while varying the sizehef other one. We assume
that the whole cache size is 64KB, and the cache size of eattfedfvo caches is 16KB,

while the size of the other cache varies from OKB to 32KB. Tvaxés, Trace 2 and Trace
6, are taken since they represent the random-dominant aredte¢he sequential-dominant
trace, respectively. Figure 2.13 shows the cache hit ratibthe translation page read and
translation page write overheads of our scheme. In the figiaehe-1 means the first-level
cache (i.e., the DBMTC), while Cache-lI(1) and Cache-li@)resent the first cache (i.e.,

the TPRLC) and the second cache (i.e., the TPAFC) of the selemel cache, respectively.
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The X-axis in each figure means that the cache size of one ¢aeh&ache-l) is increasing
from OKB to 32KB with an interval of 4KB while the other two daes (i.e., in Cache-II)
are fixed at 16KB. The curve corresponding to each cache sti@yariation in the system

performance.

From Figure 2.13 (a), we can see that the cache hit ratioaseseas the cache size
increases. However, the first-level cache has more impathemcache hit ratio than the
other two caches. For example, the hit ratio of Cache-I gnowsh faster than that of the
other caches with the same interval of increase. This isusecthe first-level cache has
fine granularity and each cache line stores one single mggitry. In the second-level
cache, each cache line stores one translation page, witictié@s multiple mapping entries.
The first-level cache is much more flexible and effective gtrioming the cache hit ratio,
especially for traces with more random-access patterns.improved cache hit ratio leads
to less translation page read and translation page writdead. This can be verified by the
results shown in Figure 2.13 (b) and (c). Moreover, Cacfie-Bhows a lower reduction in
the translation page write count than the other two cachbss i$ due to the fact that only
53.50% of the requests in Trace 2 are sequential. Cachehiéd captured all of the spatial
locality with a very small configuration size, and no furtlenefit can be achieved when
the size continues to increase. Therefore, the curve ofrémslation page write count for

Cache-lI(1) is smoother that that of other caches.

Figure 2.13 (d)-(f) show the results of Trace 6. Trace 6 igasatial-dominant trace
with 97.91% of requests accessing the disk sequentialgur€i2.13 (d) presents the cache
hit ratio of Trace 6. From the figure, we can observe that tlehedit ratio shows no big
change when the cache size is increased, which is the sarne @stlt shown in the above
section. However, the constant cache hit ratio does not niieeithe other two caches have
no functions. As shown in Figure 2.13 (e) and (f), the transhapage read count and the
translation page write count are significantly reduced sThbecause that we designed the
second-level cache to serve as the kick-out buffer of theléx®l cache. With the increase
in the size of the second-level cache, more dirty pages aved@ the second-level cache,

and less flush-back overhead is needed. From the figure, walsasee that there is more
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improvementin the kick-out overhead in Cache-II(1) tha@athe-II(2) and Cache-I. Thisis
because Trace 6 is a sequential-dominant trace, while Aachspecially designed for this
kind of workloads. The results shown in Figure 2.13 servehagyuidelines for allocating
cache sizes for different workloads. The size of the firgelleache should be larger than
that of other two caches if the application is random-domin®therwise, the size of the
second-level cache, especially the size of Cache-ll(Duylshbe larger than that of the other

two caches.

2.6 Summary

In this chapter, we proposed a demand-based block-levetssichapping scheme with two-
level caches (DAC) in large-scale NAND flash storage systemsduce the RAM footprint
without excessively compromising system performance. ACDblock-level NFTL was
adopted as the baseline scheme. Instead of the traditippabach of storing the address
mapping table in the RAM, we stored the block-level addrespping table in the flash
memory, and only cached the demanded mapping entries mRAIM. A two-level caching
mechanism was designed to improve the cache hit ratio bythegexploring the tempo-
ral locality, spatial locality and access frequency in woskls. The experimental results
showed that our scheme can considerably reduce the RAM dok keeping the average
system response time well under control. In particular,\@rage our technique achieves a
91.68% reduction in RAM cost with only a 2.02% penalty to therage system response
time compared to previous work. Moreover, our scheme shanestter cache hit ratio and
faster average system response time compared with DFTL thieerache size is limited in

resource-constrained embedded systems.
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CHAPTER 3

MNFTL: AN MLC NAND FLASH TRANSLATION LAYER

WITH POSTPONED GARBAGE COLLECTION

3.1 Overview

NAND flash memory has been widely used in various storageesysidue to its unique
characteristics, such as non-volatility, low power-canption, and fast access time. In re-
cent years, multi-level cell (MLC) NAND flash memory has bewothe mainstream in the
market for large-scale storage systems. A new NAND flashnigldgy, MLC technology
further increases the capacity of NAND flash memory chipstbsirsy more than one bit of
data per cell instead of the traditional one bit of data pérused in single-level cell (SLC)
technology. However, this new technology also introdueeswrite constraints. First, the
pages within a block must be programmed (written) conseelytirom the least significant
bit (LSB) pages to the most significant bit (MSB) pages [1&Land, partial-programming
is allowed for only once [6] in one page. These two constsaptse new challenges for
existing flash translation layer (FTL) schemes that wergioaily designed for SLC NAND
flash memory. This chapter proposes a novel flash translatyento cope with the problems

caused by these two constraints in MLC NAND flash storageesyst

In the past decade, three types of flash translation layel)(B&hemes have been
proposed: page-level mapping, block-level mapping, aratibylevel mapping. Page-level
FTL can allocate the pages within a block sequentially with@cording the page status
(valid or invalid) in the spare area. Therefore, page-I&lL is still usable to MLC flash.
However, page-level FTL is unsuitable for a large-sized MlaSh due to the large address

mapping table. How to reduce the size of the address mapglihg is a crucial issue. Based
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on page-level FTL, the DFTL scheme [33] stores the addregppimg table in flash memory
and only caches a small number of active mappings in RAMfécéfely reduces the RAM
cost; however, it incurs extra valid page copies when maimg the address mapping table
in the flash memory. Block-level FTL schemes [14, 83, 95] heetiock offset to locate the
pages within a block, and the pages may be programmed ragdathin a block. Therefore,

block-level FTLs may not be applicable to MLC flash.

In hybrid-level FTL schemes, physical blocks are logicgllrtitioned into data
blocks (primary blocks) and log blocks (replacement blp¢R4, 26, 28, 48,68, 77,99]. A
data block is used to store the first written data, while théaigd data are stored in log
blocks. In data blocks, most of these schemes adopt the-tdwekmapping approach and
use the block offset to locate the pages. In the GFTL scheBjetfZe pages can be written
sequentially within a block; however, the average systesposse time is slower due to the
earlier-triggered garbage collection. In the superbloagdn FTL scheme (SFTL) [48], the
garbage collection may be triggered earlier by log blocksl, @xtra valid page copies may
be needed. We have observed that valid page copies willtijiracur the garbage collection
overhead. Therefore, it is necessary to design a flash ataslayer that will not only be

applicable to MLC flash but also reduce the garbage colleci@rhead.

In this chapter, we propose a novel flash translation lay&L)Ealled MNFTL for
MLC NAND flash memory storage systems. We analyze severaduomental problems in
the design of the MLC flash translation layer, and observeuhiaecessary valid page copies
cause the garbage collection overhead. In order to redeceummber of valid page copies,
we propose two approaches to design the flash translatien lkegncentrated mappingnd
postponed reclamatiorSince the number of valid pages within one fully occupiexthklde-
pends on the address mapping approach, concentrated mapptilized to store the written
data and its updated data in the same physical block so #hatvhlid pages can be concen-
trated closer to each other. Moreover, a valid page may beaovalid if the block to which
it is allocated is later to be reclaimed. Thus, postponelhneation is adopted to postpone
the time at which the garbage collection is triggered, so tina number of invalid pages

within one block can be increased. Both of the two approactsce the number of valid
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pages within the victim block that will be selected for gagbaollection. In our approach,
concentrated mapping uses the page-level mapping appsatiat the write constraints of
MLC NAND flash can be satisfied. The corresponding page-lmaghping table is stored
in the spare area of the newly allocated pages, while the pegping table indices are
recorded in the RAM. Therefore, limited RAM space is used.ddleduct experiments on a
set of benchmarks. The experimental results show that dnanse presents a reduction of

30.09% on the average system response time compared wiibysevork.

This chapter makes the following contributions:

e We present for the first time a flash translation layer to hidertew write constraints

of MLC NAND flash memory.

e Our scheme is the first work that reduces the garbage calfeotierhead by reducing

the number of valid page copies in the design of the MLC flashsiation layer.

e We demonstrate the effectiveness of our techniques by cangpegnem with some

representative FTLs using a set of realistic /0O workloads.

The rest of this chapter is organized as follows. SectiorsB@vs the background
and the problem analysis in the FTL design. Section 3.3 pteseir proposed MLC NAND
flash translation layer scheme in detail. In Section 3.4, iesegnt the performance evaluation

of our scheme. Finally, we present our conclusions in Se@ib.

3.2 Background and Problem Analysis

In this section, we first introduce the MLC NAND flash memorattls the focus of this chap-
ter. Then, we analyze the problems posed by MLC flash in degighe flash translation

layer. Finally, we give the motivation of this chapter.
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3.2.1 MLC NAND Flash Memory

For today’s media-rich mobile consumer electronics, NAN&3Hil is widely adopted as the
non-volatile memory-of-choice for multimedia and Internapability. There are two types
of NAND flash memory architecture: Single-Level Cell (SL@paVulti-Level Cell (MLC).
SLC NAND flash ICs have one bit of data stored per memory call, tavo states: erased
() or programmed (0). MLC NAND flash ICs have two bits of dataed per memory cell,
and four states: erased (11), two thirds (10), one third, @1programmed (00). Figure 3.1
(a) and (b) show the voltage references for SLC flash and ML€hfleespectively. The
complex architecture of MLC NAND flash increases the capaifithe NAND flash memory
chip; however, it also results in a performance disadvantelgen compared to SLC NAND
flash. Since MLC NAND flash has four states, it must expend reasggy in managing the
electrical charge during operations. Therefore, energgamption is greater with MLC than
with SLC. The program and erase operations of MLC NAND flash 18,000 cycles, while
those of SLC NAND flash last 100, 000 cycles. Moreover, themerarchitecture of MLC
NAND flash introduces two constraints in programming datand®m page programming
within one block and multiple partial page programming Wwitlone page are no longer
allowed. The two write constraints pose new challengestfomianagement, in particular,

with regard to design of the flash translation layer.
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Figure 3.1: Voltage references for SLC and MLC flash cell.
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3.2.2 Problem Analysis

In this section, we analyze some fundamental problems irddsign of the MLC flash

translation layer, taking into consideration the new wea@straints of MLC flash.

Our first objective is to answer the following questiampage-level mapping a must
in the design of the MLC NAND flash translation layén?a block-level FTL [14], a logical
page number (LPN) is divided into a logical block number (DBi¥d a block offset (BO),
and the logical block number is translated to a physical lolmember (PBN). The block
offset helps to find the target page within the physical blggien the logical page number,
divided by the number of pages in a physical block, the gabtgethe logical block number
and the remainder is the block offset. When the block offsetsied to locate the physical
page, a set of consecutive pages in the logical block is lysstared in the same physical
block. But the physical pages might be written randomly fer tandom pages in the logical
block. This situation also exists in hybrid-level FTL sches26,68,77,99], which adopt the
block offset to locate pages in their block-level mappinigesues. In a page-level FTL [13],
an LPN is translated to a physical block number (PBN) and &ighypage number (PPN).
Since a logical page can be mapped with a physical page incgagidn in flash memory,
sequential allocation of the pages within a block is allowecddition, the pages maintained
in the mapping table are valid, so the page status (valid \alio) does not need to be
stored in the spare area. Therefore, the page-level mapppr@ach is potentially beneficial
in overcoming the write constraints in MLC flash. Our obséorais that thepage-level

mapping approach is necessary in designing the MLC flaslstation layet

Requested Write Data: Requested Write Data:
| M | | N | »v [ET
Flash Space: Flash Space:
N N |
()M <N (byM>N

Figure 3.2: Extra overhead in garbage collection.
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Another challenge we face in designing the FTL is the garlzafjection overhead.
Therefore, the next question we investigatevbat is the fundamental overhead for garbage
collection in NAND flash memory@iven a set of write requests, we assume that the total
amount of space required to store the requested dMaasd that the total amount of space
that the flash memory chip can provideNsIf M<N, as shown in Figure 3.2(a), the flash
memory chip can provide enough space to store the requesti@chthd no garbage collection
is needed. For this case, smart FTL schemes should not ingugarbage collection. If
M>N, as shown in Figure 3.2(b), the flash memory chip will not raveugh space to service
all of the requests. In order to store theN data into the flash chip, garbage collection
must be performed to reclaim some obsolete space scattegethe flash chip. During the
garbage collection, valid pages in the victim block needdatpied into blocks that contain
free pages, which require extra space to store these vajiespalVe assume that this extra
space i€, whereE indicates the garbage collection overhead. For this cale sEhemes
should try to minimize this garbage collection overheadsdgbon this analysis, the first
observation we make is th#te valid page copies cause the essential garbage collectio

overhead in NAND flash memory

Data OOB Data OOB Data OOB Data OOB Data OOB Data OOB
A A2 A Al A A
B B2 B B1 B B
Al C C A2 C C
B1 D D B2 D D
Block# 0 Block# 1 Block# 0 Block# 1 Block# 0 (10)  Block# 1 (¢1)
(a) Concentrated Mapping (b) Separated Mapping (c) Postponed Reclamation

|:| Invalid page |:| Valid page OOB: Out Of Band area

Figure 3.3: Two mapping approaches and postponed reclamati

Since reducing valid page copies can cut down the garbatgrtioh overhead, our
next step is to explore in detail the method involved in dffety reducing the number of
valid page copies in garbage collection. Two factors detezritihe number of valid pagesin a

physical block that is selected as a victim block, the distiion of write (update) operations
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mapped to this block, and the time required to trigger thbage collection to turn this block
into a victim block. The first factor is based on the dedic&&t scheme. If a write request
Is mapped to a physical block that contains the old versiatatd, the number of valid page
copies may be reduced. Figure 3.3 shows an example. For thegmiof demonstration,
we assume that each physical block has four pages. Giverohwsete requestsA, B, Al,
B1l, A2, B2, C, ) Al, A2 are updated versions éf andB1, B2 are updated versions &t

In Figure 3.3(a) A andB together with updated versiokl andB1 are mapped to blocR,
while A2, B2, C, andD are mapped to block. All four pages in block) are invalid, and
no valid page copy is needed when reclaiming bldckhis mapping is calledoncentrated
mapping In the separated mapping approach shown in Figure 3.3lgk b is designed
to store the first version of data. When blo@ks selected as a victim block to perform
garbage collection, two valid page copies (fbrand B) are needed. This example shows
that concentrated mapping outperforms separated mappirgglucing the number of valid

page copies.

The time at which to trigger the garbage collection alsoci$fehe number of valid
pages in a victim block. An example is shown in Figure 3.3 time tO, when blockO
Is selected as a victim block, two valid page copi€safid D) are needed. If thpostponed
reclamationapproach is applied to postpone the time for garbage cmtedhe number of
valid page copies may be reduced as well. At tifhe¢1>t0, D is updated by the new version
of the data, and only one valid page copy) {s needed when performing garbage collection.
Therefore, the second observation that we make ithratentrated mapping and postponed

reclamation are effective at reducing the number of valiggeaopies.

3.2.3 Motivation

Duo to the write constraints in MLC flash, most existing FThemes have a limited ability
to manage the MLC flash memory storage systems. Page-levsl [EB] can be used for
MLC without modification; however, the big RAM footprint i;xassue for large-capacity

based MLC NAND flash memory. GFTL [28], DFTL [33], and SFTL J4&n be used in
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MLC flash; however, they suffer from a slow average systeipaese time due to the earlier-
triggered garbage collection. How to design an efficient EEheme for MLC becomes an
important issue. Through an analysis of the problem in alsa@ation, we make three ob-
servations. First, the page-level mapping approach isssacg for the MLC FTL design
if the two write constraints are to be overcome. Seconddvyadige copies are the essential
garbage collection overhead. Third, concentrated addnegping and postponed reclama-
tion can effectively reduce the garbage collection oveih@dese observations provide us

with insights on how to design an efficient flash translateyel for MLC flash.

3.3 MNFTL: MLC NAND Flash Translation Layer

In this section, an efficient hybrid-level MLC NAND flash tidation layer, called MNFTL,

is proposed. In our scheme, the page-level mapping apprisagpplied to each logical

block in which concentrated mapping is deployed and limRédM space is taken. In Sec-
tion 3.3.1, an adaptive block-level mapping scheme is alspgsed in which the postponed
reclamation mechanism is implemented. In Section 3.3.8ildd write and read opera-
tions in MNFTL are presented based on the hybrid-level asfdneapping scheme. In Sec-
tion 3.3.3, a novel garbage collection policy is introduteeteduce the number of valid page

copies and block erase counts.

3.3.1 MNFTL with Concentrated Address Mapping

In MNFTL, one logical page number is translated to one Iddiack number (LBN) and
one block offset (BO) as shown in Figure 3.4. One logical blisamapped withiM physical
blocks. M is varied in an on-demand fashion. If more write (updatelests are issued
to one logical block, more physical blocks will be needed] Bhwill be increased corre-
spondingly. Otherwisayl will be decreased when these physical blocks are reclaiifiegl.
block mapping table (BMT) for each logical block is represeiby a linked-list. The head

of a list is the logical block number (LBN) and each node inlibeis one physical block
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number (PBN) that is mapped to this LBN. The pages in one #éddplock are managed with
the page-level mapping approach. Each page in one logicekldlan be mapped with any
physical pages in its correspondiNgphysical blocks. Pages are mapped and programmed
sequentially in each physical block. The page mapping t@\&T) for each logical block is
divided intoN sub-tables, and each sub-table is stored in the spare a@#) (@ the newly
mapped physical pag®\ pointers are recorded in RAM as the indices of the page mgppin
table. The value o depends on the size of the page mapping table of one logimeik bind

the size of the spare area (OOB) of one physical page.

Page Mapping Table Index Block Mapping Table
| LBN [ e > PPN_I || > PPN 2| | -+ [PPN_N| > PBN_O[ o » PBN_1] ¢] >
‘ « N " M -
PMT 1 PMT 2 PMT N
LBN [BO] ‘ = — —
LPN BO 0 1 P-2 P-1 PPN‘  ——

PPN ‘ ‘ ‘ ...... ‘ ‘ ‘

Page Mapping Table for One Logical Block Flash Block

LPN: Logical page number LBN: Logical block number PMT: Page mapping table
PPN: Physical page number ~ PBN: Physical block number BO: Block offset

Figure 3.4: Address translation in MNFTL.

Figure 3.4 shows the block mapping table (BMT) for one LBN WNRand the page
mapping table (PMT) for one logical block. In block-level pping, one logical block can
be mapped to any physical block in the whole flash memory. Tbekb mapped to one
LBN form a linked-list, and the linked-list of all LBNs form knked-list array. In page-
level mapping for each logical block, one logical page canmagped with any physical
page in its corresponding physical blocks. Suppose bothamieal block and one physical
block includeP pages, so that the entire page-mapping table for one Idgmek hasP rows.
Assume that the spare area of one physical page can@{&eQ>0) rows of mapping slots.
The whole page mapping table is then divided iNtsub-tables according to the logical page

number, wherdN=| P/Q|. One sub-table together with the requested data is writteentihe

67



spare area and the data area of the mapped physical pagateBpaihis programming
operation can be implemented in one write cycle, so it oblegsew constraints for MLC
NAND flash memory [6]. Besides that, in the block mappingeéal@MT), N pointers point
to the physical pages, which store the newest version of dge pnapping table. In this
way, the page mapping table (PMT) can be obtained directhgagling the spare area of the

physical pages while limited RAM space is taken when doirdyess translation.

Managed by the block-level mapping approach in MNFTL, alihef data accessing
the same logical block are concentrated in one or more péiptsliccks. The first written data
and the re-written data are consequently distributed closeach other, which increases the
possibility that an invalid page can be allocated within phgsical block. The number of
invalid pages within one block can be increased and the nuwibealid page copy oper-
ations reduced when the block is selected as the victim bygdnleage collection process.

Therefore, the concentrated mapping approach can redegmatbage collection overhead.

3.3.2 MNFTL Reads and Writes

A write request issued from the file system is represented fog@e of data and a logical
page number (LPN), e.gwrite(A,35) Given the LPN, divided by the page numbers in one
logical block, the quotient is the logical block number (LBENd the remainder is the block
offset (BO). After the translation from logical page numtelogical block number, the first
write to a given logical page is to the first free page in a friegsical block that is mapped
to the logical block. Once a physical block is mapped, pagesaliocated sequentially,
regardless of whether the operation is a write or an updateatipn. AfterP writes, the
physical block becomes full, and a new free physical blodk lvé allocated to the logical
block if necessary. When a new page is mapped, the newesbivarfsthe page mapping
sub-table (which includes the requested block offset) lgllread out from the spare area
of the page pointed to by pointers in the block mapping tablee corresponding mapping
slot will be updated and then written to the spare area of #ve page, together with the

requested data written to the data area. The pointer in theklshapping table will also
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point to the new physical page. The time taken for a write estjis one OOB read and one

page write {_rdoob + T _wrpg) if a free block and a free page are available.
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W (C, 34)
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W (K, 37)

New BMT

(1)39/8=4

R (39)

~»PPN_1] «

| »PPN_2[ "]

[4] +]-~88] +]

]

[4] +]-~88] +} >89

]

(4T e] B0l ] 9«

A7

[41e] i) 9«

7]

[4] ] >192] ] ~{89] «

7]

[4] o193 +]-~i89] -

]2

(4]e] o3l o] o4l

[ ]2

(4]+] o5 o] o1

]

(4] o] »[136] ] 94

L] o7

(4] o] -»136] ] -»137

ERD

]

(4] {136[ +] o138

[ oit] o] 7]

]

(4Te] o136 o] o138

(2) 39%8=7

Data storing in Flash memory

-

88
89
90
91
92
89
90
91

136
137
»138

3)

143

PPN Data

Spare Area (OOB)

A

PMT 0:

PMT 1:

PMT 0:

PMT 0:

PMT 0:

PMT 0:

PMT I:

T QM ool w

95

0
PMT0: [~ 793792 ]

Physical Block# 11

0 1 2 3
PMT_0: 93 [136] 95

— 4 5 6 7
PMT_I: 89 To4 T137]
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BMT: Block mapping table

PMT: Page mapping table

LBN: Logical block number

W: write R:read Step (1)

PPN: Physical page number

>(4): Address translation procedure

Figure 3.5: lllustration of address translation in MNFTL.

An example of a write operation in MNFTL is given in Figure 3.Bssume that

each block has eight pages, and that the page mapping taldeddogical block is divided

into two parts:PMT_0 (BO:0-3)and PMT_1 (BO:4-7) The original block mapping table

is free. For the first write requestrite(A,35) the correspondingBN andBO are4 and3,

respectively. A new free blocRBN=11is allocated, and the datais written into the data

area of the first free pagePN=88. The updated mapping sub-tal?®T_0 is stored in the

spare area of pagePN=88. The corresponding point&PN_1 in the block mapping table

simultaneously points tBPN=88. After eight writes, the physical blodRBN=11 becomes

full, a new free blockPBN=17 is allocated, and the data are written sequentially into the

pages. After 11 writes from the file system, the new block nragpmable is given. For the
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logical blockLBN=4, two physical blocks are consumd?PN_0=136andPPN _1=138point

to the new version of the page mapping table for this logitath

A read request issued from the file system is represented bgieal page number
(LPN), e.g.,read (39) The corresponding LBN will first be searched in the block piag
table. Then, the page mapping sub-table for the requesteda®e obtained using the
pointer in the block mapping table. From the sub-table, wegs the physical page, which
stores the requested data. The time overhead for one reaestdag one OOB read and one
page read? _rdoob + T _rdpg. In Figure 3.5, an example is given for read requeatl(39)

In step(1)-(2), using th& BN=4 and BO=7, we obtain thePPN.1=138 which stores the
requested page mapping table. In step(3), by reading the spea, we get theMT_1
(BO:4-7)and the target pagePN=137. By reading the data area of target pd&jeN=137,

we obtain the valid target dafa

3.3.3 MNFTL with Postponed Garbage Collection

The garbage collection mechanism in MNFTL aims to reducentimaber of valid page
copies and block erase counts. It is invoked once there afeeadlocks to allocate. One
fully occupied physical block with the fewest valid pageghe whole flash memory will
be selected as the victim block. The valid pages in the vittiock are copied to another
physical block, which is mapped to the same logical block@hith the victim block. Since
the concentrated mapping approach is adopted in MNFTL, tineber of valid page copies
can be reduced. Moreover, the physical blocks are alloaatad on-demand fashion, and
the garbage collection is triggered until all of the blocks ased. This is different from the
address mapping approach adopted by existing FTL schem&hjéh one or more physical
blocks can only be mapped to specific logical block(s). Thedimnapping management trig-
gers the garbage collection earlier, before all of the dcanle used. Therefore, the garbage
collection in MNFTL actually delays the time at which to raich the invalid space. The
delayed reclamation may enable a valid page to becomedsalihat the number of invalid

pages can be increased and the number of valid page copiés caduced. In MNFTL, the
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garbage collection of a victim block amounts to the follogvsteps:

"""""""""""""""" Before garbage collection + After garbage collection {
Data OOB Data OOB Data OOB Data OOB

88| A | PMT 0 136 1 PMT 0 88 136 1 PMT 0
8| B | PMT I — 137 89 137/ B | PMT 1
90| C | PMT 0 138 90 138 F | PMT O
91| D | PMT 0 139 91 139 G | PMT_1
92| E | PMT 0 140 92 140 H | PMT 0
93| F | PMT 0 141 93 141
94| G | PMT I 142 94 142
95| H | PMT 0O 143 95 143

Physical Block# 11 Physical Block# 17 Physical Block# 11 Physical Block# 17

—— > Copy |:| Invalid page |:| Valid page |:| Free page

Figure 3.6: Garbage collection in MNFTL.

1. Select the victim blocklin this step, the block with the fewest valid pages is
selected as the victim block. If the pages in this block ateeferenced in the page mapping
table, then they are invalid, otherwise, they are valid. Tihee cost to identify the valid
pages in the block i&V x T'_rdoob, whereN is the number of sub page mapping tables for
one logical block. In Figure 4.5, suppose the physical bleBN 11is selected as the victim
block afterpage 136n PBN 17is written, andPBN 17is the new block mapped to the same
logical block. In that case, victim blodRBN 11has four valid pages which will be copied

to the free pages in physical bloBIBN 17

2. Copy the valid pagesThe pages in the victim block can be classified into three
types according to the difference in state between the dataand the spare area. (a) Full
valid page: both the data area and the spare area are valido@ge 94in Figure 4.5). (b)
Full invalid page: both the data area and space area aredrfead).,page 88. (c) Partial
valid page: the data area is valid and the spare area isdnieadi. page 89. When copying
one valid page (regardless of whether it is a full valid page partial valid page) to a new
block, we need to read out its mapping sub-table, and wréauffdated mapping sub-table
as well as the data into a new free page. Assume that thei®\aie pages in the victim

block, the time overhead to copy these valid pagesis(T_rdpg + T -wrpg).
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3. Erase the victim block The victim block (e.g.block 1)) is erased with time
overhead _er. Figure 4.5 shows an example of the garbage collection groeen MNFTL.
The total time cost of this processi&x T'_rdoob+ S x (T _rdpg+T_wrpg)+T _er. Instead
of fully searching all physical blocks, we first select thetirn block from the logical block,
which has been mapped with the maximum number of data blobksgarbage collection
is triggered. If more physical blocks are mapped to one Edaock, then more update
operations are performed in the mapped physical blocks atof¢iver valid pages can be
obtained from the victim block. Let us suppose one blockmhpaages. IfP physical blocks
are mapped to the same logical block, then each physicak hlas at most one valid page
left; if P+1 physical blocks are mapped to the same logical block, at teeesof the physical
blocks will not have valid pages, which is the ideal scentriceduce the garbage collection
overhead. Moreover, there are obvious working and idle {p@eods in a working cycle
for most real applications. In fact, we can perform reclaperations on the logical blocks
mapped with many physical blocks when the system is idlehiway, by utilizing the idle
period, more free blocks can be generated. Moreover, theleealing of flash memory in

MNFTL is managed automatically by locating the blocks in an@d-robin approach.

3.4 Evaluation

In this section, we present the experimental setup and theremental results with an anal-
ysis. We compare and evaluate our proposed MNFTL schemdawerepresentative FTL
schemes: PFTL (Page-level FTL) [13], GFTL [28], DFTL [33hdaSFTL [48], in terms
of three performance metrics: the main-memory requiresy¢hé average system response

time, and the garbage collection overhead.

3.4.1 Experimental Setup

We developed a trace-driven MLC NAND flash simulator underuxi 2.6.17 and imple-
mented five schemes: PFTL (Page-level FTL) [13], GFTL [28}TD [33], SFTL [48], and
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MNFTL. To conduct a fair comparison with different FTL schesnwe consider only a por-
tion of flash as the active region that stores our workloade fEmaining flash is assumed
to contain cold data or free blocks, which are not under caration. The framework of our
simulation platform, as shown in Figure 3.7, consists of imadules: a NAND flash simu-
lator module providing basic read, write, and erase capiaisil and a desired MLC NAND
flash translation layer management scheme that can be edemuttop of the NAND flash
simulator. The traces along with various flash parameteard) as block size and page size,

page read time and page write time, and so on, are fed intdrouiation framework.

Input ’1:
SPC Pararlr)leters NAND E . al
xperimenta
— MNFTL K= S.Flals ht :(> Results
DiskMon —="  Traces =) imulator
\/

Figure 3.7: The framework of the simulation platform.

In the experiment, a 8GB MLC NAND flash memory is configured.e age size
and the block size are set as 2KB and 256KB, respectively. tifitne cost for one OOB
read, one page read, one page write, and one block erasd aseXps, 60us, 80Qus, and
150Qus, respectively. One access to the address mapping table W RAet as s. In
the simulation, we assume only a portion of flash as the actigen that stores our test
workloads. For the SFTL scheme, we set one superblock sigd4sdata blocks and 2 log
blocks), and the total log block number is set as 256. Theecaide in the DFTL scheme is
set as 64KB, which is about 4% of the whole page mapping tabtedin the flash memory.
We use a set of benchmarks from both the real-world and siyath@&ces to study the system
performance for different FTL schemes. The traces usedsrstmulation are summarized
in Table 3.1.FinanciallandFinancial2are 1/O traces from an OLTP application running at
a financial institution [5] obtained from the Storage Parfance Council (SPCWebsearch
is a read-dominant trace also made available by SBGtemdisk1Systemdisk2and Sys-
temdisk3are traces that we collected from the desktop running Diskwith Windows XP

on an NTFS file system.
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Table 3.1: Traces used for simulation.

Traces Number of Requests % of Write Requests| Average Request Size (KB)
Financiall 1,333,747 78.56 3.17
Financial2 3,699,194 17.65 2.26
Websearch 4,261,709 0.02 15.05
Systemdiskl 1,040,692 74.04 42.65
Systemdisk2 2,636,016 61.96 44.10
Systemdisk3 1,312,945 58.10 36.72

The main-memory requirement for a flash translation laygedds mainly on the
size of the address mapping table. For the simulated 8GB MAGIDI flash memory chip,
one physical page (block) number takes about 3 bytes (2 bogtd2AM space, while one
pointer in the linked-list requires 4 bytes of RAM space. &6fTL, DFTL, and SFTL, the
address mapping table a4eé6 K B, 176 K B, and62K B, respectively. For the page-level
FTL, the address mapping table takes12@/ B of RAM space. Our scheme applies the
page-level mapping scheme in each logical block, and stbegsage mapping table indices
in RAM. The RAM space in our scheme is abdui6 M B (32 x 1024 x 34B). Our scheme

results in a big reduction in RAM cost compared with the pbayel FTL.

3.4.2 Results and Discussion

In this section, we show the experimental results in termthefaverage system response
time and the garbage collection overhead for different FGhesnes. Analysis is given to
demonstrate how our MNFTL scheme outperforms other FTLrselse Figure 3.8 shows
the average system response time for different FTL schem@sruhe same experimental
environment over six traces. In Figure 3.8, the X-axis repn¢s the six traces and the

Y-axis shows the average system response time. From thdsrese can see that, our
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Figure 3.8: The average system response time of differebs l6Ver six traces.

proposed MNFTL can achieve an average reduction of 30.928vénage response time
among the six traces compared with the DFTL scheme, and mgoeovements can be
obtained compared to the GFTL scheme and the SFTL schemartinytar, for the read-
dominant tracéVebsearchour scheme is 1o faster than SFTL and 26 slower than the
page-level FTL scheme. This is because the page-level Fiiénse can find the requested
address mapping in RAM directly, while MNFTL needs to reag @OB (I'_rdoob) to
get the target page mapping table. However, the SFTL schemésrio read two OOBs

(2 x T'rdoobd) to obtain the requested mapping table. Therefore, if nbage collection is
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Figure 3.9: The number of valid page copy for different FTkgIosix traces.

invoked, the average system response time for read requnebtse schemes is a difference

of about one OOB read (.rdoob).

For write-dominant traces, we observe that MNFTL shows ahrfaster average
response time than DFTL, GFTL, and SFTL and a slightly slaaverage response time than
page-level FTL. Thisis based on the fact that, the DFTL s&hietnoduces translation blocks
to save the address mapping table, and the GFTL scheme use®stra blocks (about 16%
of all data blocks) as the write buffer in order to guarankeereal-time performance, while

the SFTL scheme introduces a small number of log blocks te $h® updated data. These
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Figure 3.10: The number of block erase for different FTLsr®e traces.

extra blocks led to the earlier triggered garbage collegtichich resulted in more valid page
copies and block erase counts. This observation is alsaprby the experimental results
for the valid page copy count and block erase count, whichshosvn in Figure 3.9 and

Figure 3.10, respectively. From the results, we observeolmdVINFTL scheme can achieve
an average reduction of 69.78% in the number of valid pageesppnd a 33.35% average
reduction in the number of block erase counts compared WwahXFTL scheme. For the
GFTL scheme and the SFTL scheme, we find that a significant auoftvalid page copy

and block erase operations are invoked. This is becauskeiGETL scheme, the garbage
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collection is triggered once a physical block is full, ani itontinually performed whenever
one block exists in the garbage collection queue (GCQ). hSRTL scheme, four data
blocks in a superblock share the same two log blocks. Onasvihig blocks are full or the

four data blocks are full, the garbage collection will bggered. In our scheme, no extra
blocks are involved, so that block reclamation is invokeatwhearly all of the data blocks
are consumed. From the experimental results, we also ab#®at/the number of valid page
copies and the block erase counts for trééebsearchare 0. This is because 99.98% of
the requests iWVebsearclare read requests, and the write requests are unable terttlyg

garbage collection.

3.5 Summary

In this chapter, we studied the problem of reducing the ggelmllection overhead in de-
signing the MLC flash translation layer while satisfying thiete constraints of MLC flash

memory. An efficient MLC NAND flash translation layer, callstNFTL, was proposed, in

which a novel address mapping scheme was adopted to funtiiyeaduce the garbage
collection overhead with a limited amount of RAM usage. Bylgmg the proposed con-
centrated mapping and postponed reclamation, MNFTL was tabéffectively reduce the
number of valid page copies and block erase counts. We ctediegperiments on a set of
benchmarks, and the experimental results showed that banmszcan significantly improve

the average system response time compared with previolks wor
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CHAPTER 4

RFTL: A REAL-TIME FLASH TRANSLATION LAYER

WITH DISTRIBUTED PARTIAL GARBAGE COLLECTION

4.1 Overview

No matter in mission-critical hard real-time systems sugherospace [9] and the military or
in soft real-time systems such as iPads and smart phonesPNKash memory has become
essential due to its unique characteristics, such as niatiitg, low power-consumption,
and fast access time. However, in NAND flash, a page onceanrgannot be overwritten
until it is erased (out-of-place update). The erase opmratan only be performed in a
unit of one block (bulk-erase). These properties have chtiseresponse time to become
unpredictable. Most existing FTL schemes focus on imprgvire average performance,
but ignore the real-time storage performance. In this drapte propose a real-time FTL
scheme that can provide an upper bound to the worst-casensyssponse time for 1/0

requests in NAND flash storage systems.

A flash translation layer is a block-device-emulation saftvlayer that simulates
NAND flash as a hard disk by hiding “out-of-place update” amdilk-erase” properties.
One function of FTL is to do address mapping between a logiddress in file systems
to a physical address in flash media. Another important fands to reclaim the space
by erasing obsolete blocks in flash, also knowrgasbage collection Garbage collection
will be invoked if there is not enough free space to serve dugiests. Given a read/write
request issued from the file system, the best-case resporesesconstant, since no garbage
collection is invoked. However, in the worst case, a requatbe blocked by the time-

consuming garbage collection. The request consequeritgrsa long latency, which might
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be intolerable for mission-critical real-time applicatg Therefore, how to design a service-

guaranteed FTL scheme for real-time applications has be@mimportant problem.

In previous work, several techniques have been proposedlve shis problem.
Chang et al. [22] was the first to propose real-time garbadleatmn for flash memory
storage systems, where predictable performance is geaabl ensuring that enough free
space is always available for write requests. Although greupound to the response time
can be obtained, their approach suffers from a slow worst-casponse time and requires
extra file system support. Choudhuri et al. [28] proposed shftaanslation layer called
GFTL to guarantee an upper bound to the response time. GFiuces the upper bound
by adding extra blocks as the write buffer and using a pabt@tk cleaning policy to hide
the long garbage collection latency. In order to provideugiofree space to serve write re-
quests, the full blocks are centrally organized in a garlzadjection queue, and the garbage
collection operations are consecutively performed as Esthe queue is not empty. GFTL
guarantees a worst-case response time for write requestgyvhbr, it suffers from a slower
worst-case response time for read requests. Moreovetradinces a large amount of extra
page copy operations, which significantly degrade the gecsgistem response time. Since
garbage collection does not occur very often, a schemednotkacrifice too much average
response time when reducing the worst-case response timadwess this problem in this

chapter.

In this chapter, we propose a real-time flash translatioarlagalled RFTL, which
provides not only an ideal upper bound to the worst-caseoresptime but also a faster
average response time. A distributed partial garbageatadle policy is applied in RFTL.
Different from the centralized partial garbage collectpmiicy [9], in which all full blocks
are put into a queue and garbage collection is performed en&alized manner, garbage
collection in RFTL is distributed to each logical block anfithblock is reclaimed according
to the arrival sequence of write requests in a distributedrmea The condition to invoke
one partial step in garbage collection is when a write retjaies’es and the corresponding
requested data block is full. Since a write request is senvedediately after one partial

garbage collection step, the worst-case response time exjugest is only the overhead to
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perform one partial step in garbage collection. Moreover ilogical block, the garbage
collection of a full block is performed only when there is aterequest to the logical block;
therefore, many unnecessary valid page copies and blosk @erations are avoided so
as to significantly improve the average system response toenpared with GFTL, our
approach does need more flash memory space; however, itiedfgaeduces the more
valuable RAM cost. To the best of our knowledge, this is th& fivork to reduce both the
average response time and worst-case response time byrapplyistributed partial garbage

collection policy in NAND flash memory storage systems.

We evaluate our scheme with a set of benchmarks running olNONFash memory
simulator that we developed under Linux kernel 2.6.17. Ttpeamental results show that
our scheme can achieve a 36.30% improvement in the worstreaponse time compared
with GFTL. Moreover, we make a trade-off between the flaslts@ad the average system
response time. By doubling the flash space of GFTL, our scheads to a 91.79% reduction
in the more valuable RAM space and a 67.06% improvement intbeage system response

time compared with GFTL.

This chapter makes the following contributions:

e We present for the first time a real-time flash translatiomitag improve the worst-

case system response time of NAND flash memory storage system

e We present for the first time a distributed partial garbagiection policy to enable

the system to simultaneously reclaim space and serve the n@guests.

e We demonstrate the effectiveness of our technique by cangpiafvith representative

FTL schemes using a set of realistic I/O workloads.

The rest of this chapter is organized as follows. SectiorsA@®vs background and
motivation. Section 4.3 presents our RFTL scheme and the WaBialysis. In Section 4.4,
we present the performance evaluation of our scheme, anddtios 4.5 we give our con-

clusions.
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4.2 Background and Motivation

In this section, we first introduce the performance specitioa of the NAND flash mem-
ory chip. Then, we describe the garbage collection overlreadme representative FTL

schemes. Finally, we present the motivation of our work.

Table 4.1: NAND flash specifications.

Characteristicg| Samsung 16MB Small Block SLC Samsung 128MB Large Block SLC
Block size 16KB 64KB
Page size 512B 2KB
OOB size 16B 64B
Read page 36us 25us
Read OOB 10us 25us
Write page 200us 300us
Erase 200Qus 200Qus

4.2.1 Characteristics of Flash Memory Operations

A typical flash memory chip supports three kinds of operatiqgrage read, page write, and
block erase. The performance of the three operations is different, as shown in Table 4.1.
A block erase takes a much longer time than a page write, whictuch longer than a page
read. With the propagation of writes in a flash memory chige fspace shrinks and garbage
collection is invoked to regenerate some new free spaceetmer. The garbage collection
process may include a number of page read, page write, anll bfase operations. Since
garbage collection is usually considered uninterruptadlpending write request may be

blocked and the response time will largely depend on theaggarisollection latency.
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4.2.2 Garbage Collection Overhead

In the past decade, three kinds of FTL schemes have beengawamd different garbage
collection policies adopted. In page-level FTL [13], ongit@al page (sector) is mapped with
one physical page. The garbage collection in a page-leveliginvoked when the NAND
flash runs out of space, and each time only one victim blockbeilreclaimed. In general,
the block with the fewest valid pages is taken as the victiotkl The victim block will be
erased after the valid pages are copied into a new free bfghpose that one block consists
of = pages and that the victim block has valid pages{ > M > 0). The time overhead to
reclaim the victim block iSV/«(T’.apg+Tiwrpg)+1er, WhereT, 4, is the time required to read
a page,l,,, Is the time needed to write a page, dfid is the time that it takes to erase a

block.

In block-level FTL schemes [14], a logical page number (LRN)nade up of a
logical block number (LBN) and a block offset (BO). One Iagiblock is mapped with a
physical block (called thprimary blocR. In the case of a rewrite operation (or if the primary
block is full), a new physical block (called tmeplacement blogks chosen to serve the write
requests. The garbage collection in a block-level FTL iskad once both the primary and
the replacement blocks are full. Both of these blocks wilklesed after being merged into a
new free block. Since two blocks are involved in this proc#ss garbage collection latency

is much longer in the worst case compared with the one in pagdFTL.

In hybrid-level FTL schemes [26, 85, 99], physical blocke &gically partitioned
into data blocks (primary blocks) and log blocks (replacetnidocks). A data block is used
to store the first written data, while the updated data isestam log blocks. Since one log
block might be shared by more than one data block, the garabtpetion needs to reclaim
the data block and all associated log blocks at the same fliines, for a merge operation
in hybrid-level FTL schemes, valid pages scattered in alolaizk and its corresponding log
blocks are copied into more than one free block. The garbalection latency of hybrid-

level FTL tends to be much longer than that of page-level Faig block-level FTLs.
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4.2.3 Motivation

The non-deterministic response time of requests in NANChflaemory is caused by the
variable garbage collection latency. Figure 4.1 showslastrative example of the garbage
collection (GC) process in page-level FTL schemes. For délke sf illustration, we assume
that each block consists of eight physical pages. In Figukethe victim block consists of
five valid pages. These valid pages are copied to a new frek.bidter that, all of pages in
the victim block become invalid and the victim block is theased for reuse. Based on the
specifications of a small block NAND flash shown in Table 4hg, time overhead to reclaim
this block is5x(36+4-200)42000=3180us. Given a write request, the response time(8..s

if no garbage collection is triggered. Otherwise, the respaime become3$380us when
the request is blocked by the garbage collection with fivelva&ge copy operations. Such
long time latency limits the usage of NAND flash in real-tinpphcations. Moreover, since
the number of valid pages in different victim blocks is diéfet, the time overhead to reclaim
these blocks varies, which makes the response time of thesegnon-deterministic. These
observations motivated us to design a flash translatiorr kgt can hide the long garbage

collection latency and provide a deterministic response ti

[ Before garbage collection - P After garbage collection - >

N

Victim Block New Block Victim Block New Block

—— > Copy |:| Invalid page |:| Valid page |:| Free page

Figure 4.1: An illustration of garbage collection.
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4.3 RFTL: Real-Time FTL

In this section, we describe details of the techniques forRETL scheme. We first pro-
pose the system architecture of a real-time flash memoragosystem in Section 4.3.1.
Then, we present the problem formulation and the addrespimgppproach for RFTL in
Section 4.3.2 and Section 4.3.3, respectively. A real-tias& scheduler and a new garbage
collection policy are described in Section 4.3.4 and Sedlid.5, respectively. Finally, we

present the WCET analysis in Section 4.3.6.

4.3.1 Real-time Flash Memory Storage System Architecture

Real-time Task Real-time Task | - Real-time Task

! ! {

File System

{ !

Real-time Flash Translation Layer (RFTL)

3 Real-time Address Mapping iDistributed Partial Garbage CoIIectioné

Memory Technology Device (MTD) Layer

) )
) ) ey ey I =

NAND Flash Memory

Figure 4.2: System architecture.

This section proposes the system architecture of a real-NAND flash memory
storage system, as shown in Figure 4.2. The system araim¢gstsimilar to the conventional

NAND flash memory storage system shown in Chapter One, exicapa conventional flash
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memory storage system does not take into consideratiotinealtask, a real-time scheduler
and a real-time garbage collection policy. We propose t@stpeal-time services for real-
time tasks by removing the unpredictability of the garbagkection overhead. A novel
hybrid-level address mapping approach is designed to gecsufficient free space to serve
the pending writes; meanwhile, a distributed partial ggebeollection policy is proposed
to reduce the worst-case block time for each write. A reaktischeduler is initiated to
simultaneously serve the write and the garbage collectitile satisfying an upper bound

to the response time that is close to an ideal case.

4.3.2 Problem Formulation

In order to remove the unpredictability, we model the NANBfigtorage system as follows.
Each 1/O request issued from a file system to the FTL is moda$edn independent real-
time taskl'= {p, e, d}, wherep is the periodg¢ is the execution time and s the deadline.
Without loss of generality, we assume thats equal tod. Multiple I/O requests form a
set of real-time task§'={11, 75, ...,7,,}. There are two kinds of tasks in task $&t read
request task,.={p,, e,, d,.}, and write request task,={p., €, dw }. p» andp,, denote the
frequency of a read or write request arriving from the filetsgs e, represents the time
taken to search for a target page, read the data from the gadeeturn a success or failure
to the file systeme,, is the time overhead to search for a free page in which to fterdata.
The values ok, ande,, are determined by the specific FTL. A lower boundpofdenoted
asL(p)) gives the maximum request arrival rate that an FTL can fantthe upper bound
on e (denoted ad/(e)) shows the worst-case execution time for requests when riiagea
collection is involved. From the perspective of the file systL(p) represents the worst-case

response time when garbage collection is considered.

For the purpose of comparison, we first present a hypothéleal case as a baseline.
In the ideal case, a read/write request task can be executsstlyl without any garbage
collection involved. This is the best case scenario, anth boé execution time and the

response time are constant. Here, we only consider the fl@staton time overhead since
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the address translation overhead in RAM operations is st égvorder of magnitude less than
the flash operation time. The upper boundd/dn) in the ideal case are shown in Table 4.2.
In the table T, ..., represents the time to read an OOB of a page. In the worstscasario,
the execution of a read/write request task will be blockedégpbage collection. Note that,
T.. is the longest atomic operation in flash media since the evhsae block cannot be
interrupted. Thereforel,, is the minimum time for which a request will be blocked and

L(p) should beT,. in the ideal case.

Table 4.2: Service guarantee bounds.

Bounds|| Ideal GFTL scheme [28] RFTL scheme
Uler) || Trdpg Trdpg+7Trdoob Trdpg+Trdood
Ulew) Twrpg Twrpg Twrpg+Trdoob

L(p) Ter | Tertmaz{U(e;),U(ew)} | maz{Ter +U(ew),Ul(er)}

In this chapter, we design a real-time FTL scheme (called IRRFfiat guarantees
U (e) for both reads and writes that are marginally,., larger thanl,,. Our scheme pro-
vides service guarantees for requests that have a lowert-sass response time.(p))
than GFTL [28], sincel; ,,+7T1} 4000 tends to be greater thah,,,,+71q4.0, according to

the NAND flash specifications shown in Table 4.1.

Based on the model and problem analysis, we formulate tHagroas follows:

Given a NAND flash memory chip and a task Bet{7}, T, ...,7,,}, how can an
FTL scheme be designed that can jointly schedule the rexjaestcorresponding garbage
collection operations such that a request can be executddnaan upper bound.(p) that

is close tdl ., ?
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4.3.3 Address Mapping in RFTL

In RFTL, we use a hybrid-level mapping approach. A logicgeaumber (LPN) is divided
into a logical block number (LBN) and a block offset (BO). Aobk mapping table is used
to map a logical block with three physical blocks: fmémary block thereplacement block
and thebuffer blockas shown in Figure 4.3. Three indices that point to the nexiiale
page in each block are recorded in the table. The primanki$ogsed first to serve the write
requests, and the buffer block will serve the pending wetpiests when the primary block
is full, while the replacement block provides a space toaietlthe primary block. These

three blocks can periodically change their functions tosg® guaranteed space for writes.

e Block Mapping Table =~ i) P Page Mapping Table - >
| LBN PB Index | RB Index | BB Index PPN_I [PPN 2[ - PPN N
1 1 PMT 1 PMT 2 PMT N
~ BO PPN
> > L) 0
B 1
S 5 Y Y O S s
Pi-2
,,,,,,,,,,, » :
|| Pi-l
Primary Block Replacement Block Buffer Block Page Mapping Table
(PB) (RB) (BB) (PMT)
D idpee [ Validpage [ | Frecpuge
LBN: Logical block number BO: Block offset PPN: Physical page number

Figure 4.3: Address mapping in RFTL.

For each logical block, a page-level mapping table is useddp a logical page to
a physical page that may belong to one of these three physmeits. In order to reduce
the RAM cost, the page mapping table is divided iNt@mall tables, and each small table
is stored in the OOB area of the newly allocated page. Supbaseach logical block and
each physical block include pages; the entire page-mapping table for a logical block the
hasr entries. Assume that the OOB area of a physical page canstarea>0) entries of

mapping slots; then the whole page mapping table is dividexN sub-tables according to
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the logical page number, whelke=| 7/a|. TheN page mapping table indices are recorded in
the RAM. Using the page-level mapping table indices, RFTi@atain the address mapping

information rapidly by reading one OOB.

4.3.4 Real-time Task Scheduler in RFTL

After obtaining the address mapping information, the reaiti request should be serviced
in three physical blocks. If no garbage collection is inealy RFTL will only execute this
request in one periogl. Otherwise, if the primary block is full and the garbage ection is
invoked, the valid-page copy operations and the erase opeerformed on the garbage
collection are divided into partial steps, and the time teceperform each step is no longer
than the longest atomic operation in flash (that is the bloekesoperatiorT.,). In such a
scenario, RFTL will first execute the request and then semneepartial garbage collection
step in one periog.

e R — e P s P

Tasks | e w0 ‘ e wl ‘ e copyl e w2 ‘ e _copy2 e w3 ‘ e _erase e w4 ‘

|:| serve read/write requests |:| serve garbage collection

»
>

time

Figure 4.4: Task schedule in RFTL.

Figure 4.4 shows the task schedule policy of RFTL, in whiah ibquests and the
garbage collection can be alternatively scheduled. Figeestso0, w1, w2, w3, andw4 are
mapped with the same primary bloako0 is scheduled directly since free space is available.
When the primary block is full, the pending tasks are schedlih each periogh and the
time cost to execute each taskis1, e_w2, ande_w3, respectively. In the time left for each
period, the partial garbage collection operations of thisary block will be scheduled. In
Figure 4.4, there are two copy operations and one erasetmperdhe time costs of these
three operations are copyl, e_copy2 ande_erase, respectively. After garbage collection,

the primary block becomes free and can be scheduled.

A write request issued from the file system is representeddagaand a logical page
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number (LPN), e.g.write(D,126) whereD is the data and 26is the LPN. When a write
request is scheduled, the LPN is first translated to an LBNaahbbck offset (BO). Since
three physical blocks are mapped to the logical block witiNL.Be first write to the LBN
is written to the first free page of the primary block, and thggs in the primary block are
allocated sequentially from page 0. Aftewrites, the primary block becomes full, the buffer
block will then serve the coming write requests, and theibisted partial garbage collection
will be invoked simultaneously to reclaim the primary blodkhe buffer block serves as the
buffer for requests from the time that the primary block bres full until it is reclaimed.
The valid pages in the primary block will be copied to the ageiment block, where the
copy operation can be interleaved with the requests. In &lge gopy process, a free page
is guaranteed to be available in the buffer block to serveeqaests simultaneously (to be

explained in Section 4.3.6).

When a physical page is allocated to serve the write reqaestmapping slot (BO,
PBN) is formed. The corresponding sub-table and the datevaiten to the OOB area and
data area, respectively. A page table index is stored in RANKeep track of the mapping
information. For a rewrite (update) operation, the outtate mapping slot needs to be
read out from the OOB of the page pointed to by the pointersAMRThe corresponding
mapping slot will be updated and then written to the OOB of nle&v page. The page
table index in RAM will also point to the new physical page.alfree page can always be
guaranteed in the buffer block, the time to execute a wriigest is constantl; oo+ Liyrpg
(one OOB read and one page write). The best-case resporsestatsol ;. qoop+ Tiyrpg- 1N
the worst case, when the partial garbage collection operasgi scheduled, the worst-case

response time 8,471 qoob+ 1 rpg-

A read request issued from the file system is represented dgieal page number
(LPN), e.g.,read (36) When a read request is scheduled, the LPN is first transtatad
LBN and a BO. The corresponding LBN will be searched in thecblmapping table in
RAM. Then, the page mapping sub-table for the requested Bbeaobtained using the
page table index in RAM. From the sub-table, we can get theiphlpage that stores the

requested data. Since no space is required in serving tderegaest, no partial garbage
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collection is invoked. Therefore, the best-case respanse and the worst-case response

time of a read request are the saig,.,+ 1 dp,-

4.3.5 RFTL with Distributed Garbage Collection

The garbage collection in RFTL is invoked once a primary bliscfull and a write request
is issued to this primary block. Given a block withpages, the garbage collection can be

partitioned intok periods (steps) if all of the pages are valid:

k= |_7T X (Trdpg + Twrpg + 2Trdoob) + Ter/Ter-I (41)

In one periodo, the write request will first be serviced, and the executiortse,,,
wheree,,.=T.,,4+1ra00p- After the request is serviced, the time left in this periet, where
t > T.. Intimet, the garbage collection operations (valid-page copy oclbérase) will be
performed. For valid-page copy operations, suppose teahximum number of pages that

can be copied in this period i then:

ﬁ = Lt/(Trdpg + Twrpg + 2T7"doob)J (42)

Figure 4.5 gives an example of the garbage collection psoceRFTL. We assume
that /=4 andk=3, which means that four valid-page copies can be finishemhéperiodp
and three periods are needed in the worst case. In Figura}4is€¢ primary block is full and
garbage collection is triggered. Write request is serviced in the first page of the buffer
block; meanwhile, four valid pages in the primary block aspied to the replacement block
after copy0, as shown in Figure 4.5 (b). Afterl is serviced, all of the valid pages in the
primary block are copied into the replacement block byd#ye,1 operation. The primary

block is erased after the write request is serviced.

Exchange OperationAfter the primary block is reclaimed, an exchange operason
performed to change the position of the primary block andépéacement block as shown

in Figure 4.5 (d). The new primary block will serve the comimgjuests if free space is
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Figure 4.5: Garbage collection in RFTL.
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available (i.exw3 andw4). After the primary block is full, the coming requests aratien

to the buffer block (i.ew5 andw6). When the buffer block has only(i.e., £=3) free pages
left, the partial garbage collection of the primary blockriggered again. The replacement
block will store the valid pages from both the primary blockidahe buffer block. The partial
garbage collection is interleaved with pending requestgeskein the buffer block (i.ew7,

w8 andw9). After the buffer block is full, the primary block is frees ahown in Figure 4.5
(e).

Circular Shift Operation After the buffer block is full, a circular shift operation is
taken to change the position of the three blocks. The freaam block will be reallocated
as a buffer block, and the original buffer block is transfdrto a new replacement block.
The original replacement block will serve as the new printdogk, as shown in Figure 4.5
(f). Partial garbage collection for the replacement blaciiggered. Since the replacement

block hask valid pages, the garbage collection can be split jnpartial steps:

.j = [k X (Trdpg + Twrpg + 2Trdoob)/Ter + 1—I (43)

Figure 4.5 (g) shows an example of the reclamation of theaogwhent block when
j equals to two. The replacement block becomes free after tite vequestsr10 andwl1
are served in the buffer block. The primary block can sereer#igjuests again if free pages
are included. A new garbage collection will be invoked if tieav primary block is full and

a new request wants to access this block.

In RFTL, garbage collection of one physical block is pavtigd into multiple in-
dependent steps, and each step is triggered by one requ#st. réequests arrive and want
to access the same logical block, the partial steps arerpeztb consecutively within the
physical blocks mapped to the same logical block. Othenvifiskee requests want to access
different logical blocks, the garbage collection openagiare correspondingly distributed to
different logical blocks. In Figure 4.5, the garbage cditat of the primary block or re-
placement block is triggered and finished by consecutiveests, which are mapped to the

same logical block.
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Figure 4.6: Distributed garbage collection in RFTL.

Figure 4.6 gives an example of garbage collection disteithub different logical
blocks by the requests mapped to different logical blocks sWppose that four requesis,
wl, w2, andw3 arrive sequentially. Write requesis) andw3 are mapped to primary block
B0, andw1 is mapped to primary block1, while w3 is mapped to primary block2. In
the first period, the garbage collection/®f is performed in which a valid-page copypy0,
is executed after the schedule of reque8t In the second period, primary blodkl is re-
claimed since the requestl is mapped to it, and block erase operationse is executed.
In period 4, primary block30 is reclaimed again since the garbage collection is not fadsh
in the first period. Two benefits can be achieved by distribyi@rtial garbage collection.
First, the long garbage collection latency can be fundaailgritidden, such that the worst-
case response time of requests can be reducddtp where L(p)=max{ T, apg+T:doob
Ter+Twrpg+Traoon - S€CON, the garbage collection overhead can be reduasslthia valid
page numbers in one block may decrease when the garbagetioollis distributed. In other
words, the change from reclaiming one block to a new blockpmoses the garbage collec-
tion of the old block. The postponed reclamation of the olackimay reduce the number
of valid page numbers within it, since a later rewrite operatnay make the original valid
page invalid. The average system response time is consigreziuced due to the decreased

garbage collection overhead.
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4.3.6 WCET Analysis in RFTL

Based on the distributed garbage collection policy, we daaio the worst-case response
time for requests in RFTL i&(p) if enough free space can be guaranteed. In order to verify
that the block management in RFTL can provide enough spaclfeequests, we present
the worst-case analysis and give one theorem. The theokas thie sufficient condition for

a write request to be deterministically serviced.

Theorem 4.3.1.The sufficient condition for providing a deterministic Seevfor each re-
quest is that at least one free block ainffee pages should be reserved when the distributed

partial garbage collection is triggered.

Proof. In the worst case, all pages in the victim block are valid gadfethe space reserved
is less than one free block, there is no place to store at tegesbf the valid pages in the
victim block. If fewer thank free pages are provided, at least one pending write will be

blocked. O

Based on Theorem 4.3.1, we can get two lemmas for our scheheefirst lemma
shows the sufficient condition for guaranteeing a detestimservice when doing partial
garbage collection for one block withvalid pages. The second lemma presents the mini-

mum number of blocks that are needed to guarantee the datstimservice.

Lemma 4.3.1.Given a victim block with: valid pages, the sufficient condition for partial

garbage collection to work is that at leakt j free pages should be reserved.

Proof. In the worst-case scenario, enough free space should bargead to store thg
valid pages and thgpending writes that are interleaved with the partial gaebegllection.
Therefore, if less thak + 7 space is provided, at least one valid page or one pending writ

will be blocked. U
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In RFTL, the partial garbage collection of the replacemémntkis triggered after the
circular shift operation. In the worst cageyalid pages need to be copied into buffer block.
Since the buffer block can provide at le@stt; free pages, the partial garbage collection

can be guaranteed according to Lemma 4.3.1.

Lemma 4.3.2.When distributed partial garbage collection is applied indk-level mapping

schemes, the minimum number of blocks to guarantee detstimservice is 3.

Proof. If one logical block is mapped to one physical block, no frpace is provided to
do a partial garbage collection. This violates the sufficaandition in Theorem 4.3.1. If
one logical block is mapped to two physical blocks, only omefblock is provided. This
also violates the sufficient condition in Theorem 4.3.1. r€fare, in order to provide a
deterministic service with distributed partial garbagdlemtion, at least three blocks are

needed. O

In RFTL, we adopt a block-level mapping approach in which toggcal block is
mapped to three physical blocks. Lemma 4.3.2 provides tigetnes on how to design a

deterministic FTL scheme with a block-level mapping apploa

4.4 Evaluation

To evaluate the effectiveness of the proposed RFTL, we adradseries of experiments and
present the results with an analysis in this section. We @osenpnd evaluate our proposed
RFTL scheme over a well-known block-level FTL scheme (NFT14], and a hybrid-level

FTL scheme (GFTL) [28], in terms of the best-case systenoresptime and the worst-case
system response time. Besides, the distribution of theageesystem response time is also

evaluated.
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Table 4.3: Experimental setup.

CPU Intel Dual Core 2GHz
Hardware Disk Space 200GB
RAM 2GB
OS Kernel Linux 2.6.17

Simulation
Flash Simulator; NAND flash simulator

Environment
Flash Size 128/256/512MB

4.4.1 Experimental Setup

In the experiments, we developed a trace-driven NAND flastukitor under Linux kernel
2.6.17 and implemented three FTL schemes: GFTL [28], NFH],[and RFTL. The NFTL
scheme is a general purpose block-level FTL scheme. GFTlepresentative determin-
istic FTL scheme. Therefore, we compare our scheme with N&d GFTL. Table 4.3
summarizes our experimental setup. Three NAND flash memlnipsavith a capacity of
128MB, 256MB, and 512MB, respectively are simulated. Toduart a fair comparison with
different FTL schemes, we consider only a portion of flasthasactive region in which our
workloads are stored. The remaining flash is assumed toioorwéd data or free blocks
that are not under consideration. The framework of our s platform, as shown in
Figure 4.7, consists of two modules: a NAND flash simulatavyating basic read, write,
and erase capabilities; and a desired flash translation tageagement scheme that can be
executed on top of the NAND flash simulator. The traces, aleitiy various flash parame-
ters such as block size and page size, page read time and pggéme, and so on, are fed
into our simulation framework. We can get the simulatioruhssafter running the NAND
flash simulator. The parameters in our simulation are basgteflash memory data sheet

values shown in Table 4.1.

97



Parameters E . al
Xperimenta
RFTL <ﬁ> Flash :'|>
Simulat Results
DiskMon :'|> Traces :'|> lmuiator

Figure 4.7: The framework of the simulation platform.
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We use the following benchmarks from both the real-world #redsynthetic traces
to study the system performance for different FTL scherivkgtimediais a real-world trace
that we obtained from a notebook with Windows XP on an NTFSsfiistem downloading
and playing multimedia files (e.g., Movie, MP3). It consiefsl,633,269 write requests
and 1,002,748 read requesEBnancialis a well-known, write-dominant I/O trace obtained
from an OLTP application running at a financial instituti®j [It consists of 4,099,354 write
requests and 1,235,633 read requests. In order to perfoigoraus evaluation of different
schemes, each read/write request in the traces is simuléted periodicity ofL(p) without

any idle period involved.

4.4.2 Results and Discussion

In this section, we present the simulation results of theppsed RFTL scheme, GFTL
scheme, and NFTL scheme in terms of real-time and averaderpamce as well as the

space overhead (RAM cost and flash memory cost).

Table 4.4 presents the best-case and the worst-case sysjgomse time of the RFTL
scheme for the two traces based on varying flash utiliza{i@)sand numbers of pages per
block (7). The first two columns undek,..; andR,,,..; denote the best-case and the worst-
case response time for read requests, respectively. Théwegolumns Wi, andW ...,
represent the best-case and the worst-case response éspectively, for write requests.
Based on Table 4.4, we can observe that the worst-case maspiome for a read request
is 5Qus, which is equal tdl’ 40, +7154- FOr a write request, the worst-case response time

is 232%:s, which is equal talL, 4T 40+ Twrpg- The worst-case response time for a read
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request and write request is independent of the flash utdizand the flash size. It presents
no variation when the flash utilization and the page size [waki{r) vary. This observation
shows that our scheme can provide a guaranteed servicdfredt flash specifications and

different traces.

Table 4.4: Best-case and worst-case system response tniRETL.

Benchmarks % ™ Rbest (,U'S) Rworst (MS) Wbest (,U'S) Wworst (IU'S)
50| 32 50 50 325 2,325
50| 64 50 50 325 2,325
50 | 128 50 50 325 2,325
Multimedia
100 | 32 50 50 325 2,325
100| 64 50 50 325 2,325
100 | 128 50 50 325 2,325
50| 32 50 50 325 2,325
50| 64 50 50 325 2,325
50| 128 50 50 325 2,325
Financial
100 | 32 50 50 325 2,325
100| 64 50 50 325 2,325
100 | 128 50 50 325 2,325

Table 4.5 shows the average system response time for the B¢hEme under vary-
ing flash utilization ratios (%) and numbers of pages periblag. Columns under,,,
andW,,, represent the average system response time for a read remaesrite request,
respectively. The average response time for all requésts$otal number of valid-page copy
operations, and the total number of erase operations avereasured, and are denoted as

Tovgs Lep, @and X, respectively. From the results, we can see that, the awe@esponse

99



Table 4.5: Average system response time for RFTL.

Benchmarks % T || Ravg (145) | Wavg (145) | Tavg (1£5) Yep Yer
50| 32 50 400 335 137,630| 69,142
50| 64 50 359 298 66,508 | 33,296
50| 128 50 339 280 32,414| 16,208

Multimedia
100 | 32 50 419 341 270,903| 205,297
100| 64 50 375 303 131,281 99,021
100 | 128 50 353 285 64,295| 48,367
50| 32 50 389 274 31,822 26,943
50 64 50 354 248 15,445| 13,049
50 | 128 50 338 236 7,488 6,285

Financial

100 | 32 50 390 271 68,687 79,720
100 | 64 50 355 245 33,409| 38,714
100 | 128 50 337 232 16,381| 18,812

time for read requests is close to the best-case responseaind the average response time
for write requests is close to the worst-case response firhis is because that few valid-
page copy operations or block erase operations are invatvede periodp. This verifies
that the distributed garbage collection can provide en@jgtte to serve the continuous in-
coming requests. The average response time for each trdeensased, while the number
of valid-page copy and block erase operations are reduck digsh size increases (e.g., as
7 increases from 32 to 128). This is based on the fact that meesfiash space will lead to
less garbage collection when the same number of requesteraieed. Moreover, the valid-
page copy and block erase operation are increased whenghauiflbzation is increased for

a fixed flash size. This is due to the fact that the amount ofdpaee shrinks when the flash
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continually serves the write request. More garbage catieatill be invoked to reclaim the

obsolete pages, which increases the average system redpoas

[ Idel W GC I Request

2400 FMultimedia  Multimedia  Multimedia Financial Financial Financial
n=32 =64 =128 n=32 =64 n=128

2250

600 |-
500 |-
400 |-
300 [
200 |
100

Time (u

Rd Wr Rd Wr Rd Wr Rd Wr Rd Wr Rd Wr
Read/Write Requests

Figure 4.8: Average time distribution per period in RFTL.

Figure 4.8 shows the distribution of the request service taimd the garbage collec-
tion (GC) overhead in one perigd The total length of a bar represents the upper bound of
the response time, which I5(p) as mentioned in Table 4.2. The “Request” bar denotes the
execution time of the request, and the “GC” bar represemtawerage time cost in garbage
collection, which includes a series of valid-page copy aledlerase operations. The time
left is the idle time. Since the total length of the bar is addted under the worst-case sce-
nario, from the results we can see that a large amount of snt#d in one period. The idle
time increases when the value ofis increased. This is because more space is provided,
leading to less garbage collection overhead. Note thatda oha read request, much more
idle time is left than in the case of a write request for bo#ités. This is because the time
cost to execute a page read is less than that for a page wrifgarticular, we find that the
garbage collection time is zero in one period for all readiesgs. This is because no partial

garbage collection is scheduled when a read request is texectihis schedule policy can
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delay the garbage collection time. Thus, the number of idyzdges may be increased and
the number of valid pages within the victim block is reducedespondingly, allowing the
average system response time to be improved. From the figierean also observe that
the idle time for the tracéinancial is longer than that of the trac& ultimedia. This is
because the tracBinancial follows a higher temporal locality and more update operetio

occur, resulting in fewer valid-page copy operations irbgge collection.

Table 4.6: Performance for RFTL, GFTL and NFTL.

FTL Schemes
Traces Metrics

RFTL scheme| GFTL scheme| NFTL scheme
Tworst (14S) 2,325 3,650 4,335
Tovg (1S) 303 525 321
Zep 1.31e5 5.38e5 3.95e5

Multimedia
Ser 0.99e5 1.29e5 0.48e5
Yoob 0.05e8 0.29e8 1.37e8
L(p) (us) 2,325 3,650 4,335
Tworst (14S) 2,325 3,650 4,557
Tavg (1S) 245 2,997 522
Zep 0.03e6 7.65e7 0.38e7
Financial

Ser 0.38e5 6.60e5 1.23e5
Yoob 0.02e8 0.40e8 2.86e8
L(p) (us) 2,325 3,650 4,557

Table 4.6 compares the system performance of RFTL, GFTLN4AL under the

same flash size and space utilization ratio. Both RFTL andlG#ibw great improvementin
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the worst-case response time compared with the NFTL schehieh is a general purpose
FTL. In the NFTL scheme, two block merge operations are vewland the blocked time of
each request in the worst case is at lea§t.2*In the GFTL scheme and RFTL scheme, one
victim block reclamation is needed and the garbage cotieas partitioned into multiple
small steps. Therefore, they have lower worst-case respime than the NFTL scheme.
Note that RFTL achieves a 36.30% improvement in the worsgé-casponse time compared
to GFTL, which means that RFTL can accept requests at a hagheal rate while providing
read/write service guarantees. This is based on the faantlTL it is necessary to search
all of the OOB area of one block in order to read the valid pd#at.in RFTL, the address

mapping information can be obtained by reading one OOB area.

The RFTL scheme a shows better average response time tha-ile scheme,
while GFTL has the longest average response time. In ordpraaide enough space to
serve the real-time requests, the GFTL scheme invokes thagg collection once a block
becomes full. The reclamation of one block is performed im@acentrated manner, which
incurs many unnecessary valid page copies and unneces$sekyebase overhead. As shown
in Table 4.6, this extra overhead significantly increasesatrerage response time compared
with NFTL and RFTL. In the RFTL scheme, the partial garbagéecton is distributed to
each logical block in an on-demand fashion. The valid pagy end block erase operations
are performed only when needed. The delayed reclamatiarcesdthe number of valid
page copies and block erases. Therefore, RFTL achieve®&% improvement in average

response time compared with GFTL.

4.4.3 Overhead

In order to provide a deterministic service, both GFTL and Rintroduce extra flash space
to serve as the write buffer for partial garbage collectibhe number of buffer blocks re-
quired for GFTL is the same as that of data blocks, while RF&keds double the number
of data blocks to serve as replacement blocks and buffekbloslthough RFTL has more

overhead in terms of flash space, it shows a great reductitre imuch more valuable RAM
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space. Given a large-block based 128MB NAND flash with 64 pauge block, RFTL re-
quires 16KB (16B*1024) of RAM space to store the block mapgable and page mapping
table index. For the GFTL scheme, the RAM cost is 195KB, witichsists of three parts:
the block level mapping table for data blocks (3KB), the paxggping table for buffer blocks
(64KB), and one block buffer in RAM (128KB). RFTL shows a 99% reduction in RAM

cost compared with GFTL.

4.5 Summary

In this chapter, we proposed a real-time flash translatigerlgcalled RFTL) for NAND flash
memory storage systems, which can provide real-time sega@arantees by hiding the long
garbage collection latency. To achieve this, a novel hylawel address mapping approach
was designed to provide enough free space to serve the gewdies. Meanwhile, a dis-
tributed garbage collection policy was introduced to redine worst-case response time. A
real-time scheduler was in charge of coordinating the writed the garbage collection so
that an upper bound to the response time could be obtainedrdbr to evaluate the sys-
tem performance of our scheme, we conducted a series ofieyges. The experimental
results showed that our scheme can achieve a 36.30% impeoiemthe upper bound of
the worst-case response time for requests compared with. QAdreover, we achieved a
67.06% reduction in average system response time and a%I&@uction in RAM cost

compared with GFTL.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

NAND flash memory has been widely adopted in storage systemsgatious embedded
systems and consumer-electronic products, due to its &mlyas in non-volatility, shock-
resistance and low-power consumption. With the fast dgretnt of flash memory technol-
ogy, the capacity of flash memory chips has been increasemgatically, particularly with
the advent of MLC NAND flash memory technology. The increasmghcity of the NAND
flash memory chip poses new challenges for its managemessh Blanslation layers suf-
fer from a large RAM footprint problem for address manageimbBtoreover, most existing
FTLs are designed for SLC flash, and become inapplicableefficirent when applied to
MLC flash. In this thesis, we investigated several challeggssues in designing the FTL
schemes for NAND flash memory storage system in resourcst@dned embedded sys-
tems. In particular, we proposed three techniques to opéiiie system performance from

three aspects including the RAM cost, garbage collectiariead, and real-time storage

performance.

e First, we proposed a demand-based block-level addressingapgheme with a two-
level caching mechanism, named DAC, to reduce the RAM faatpn address map-
ping management for large-scale NAND flash memory storag&esys in resource-
constrained embedded systems. In our DAC, the large adarggsging table is stored
in the flash memory chip and only a small number of active mappntries are cached

in RAM so that the RAM footprint can be reduced. In order touaslthe extra address
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translation overhead caused by the on-demand addressgegghieme, a two-level
caching mechanism was proposed to improve the cache hot mtwhich the refer-

ence locality and the access frequency of workloads werteg Different cache

replacement policies are initiated for different cachesthat a higher cache hit ratio
and lower kick-out overhead can be achieved. We conducteeriements on a set of
traces collected from real workloads. The experimentallteshowed that our tech-
nique can achieve a 91.68% reduction in RAM cost, while thexaye response time

presents an average degradation of 2.02% compared witlopsework.

Second, we proposed a novel flash translation layer (FTU¢aEMNFTL for MLC
NAND flash memory storage systems, to reduce the garbageetioth overhead while
hiding the new write constraints in MLC flash. We analyzedesaMfundamental prob-
lems in the design of the MLC flash translation layer, and okeskthat valid page
copies cause the garbage collection overhead. In our MNEE_garbage collection
overhead reduction is achieved by concentrating the ityelges closer to each other,
while postponing the time to do the block reclamation. Irstvay, the valid page
numbers within a victim block can be minimized and the nundfesalid page copies
can be reduced. In our approach, concentrated mappinghseage-level mapping
approach, so the write constraints of MLC NAND flash can besatl. The corre-
sponding page-level mapping table is stored in the spagedarthe newly allocated
pages, while the page mapping table indices are recordée IRAM. Therefore, lim-
ited RAM space is used. We conducted experiments on a setnehb®arks. The
experimental results showed that our scheme presents ati@dof 30.09% in the

average system response time compared with previous work.

Third, we proposed a real-time flash translation layer, iRETL, to reduce the
worst-case system response time and the average systamsegjme of NAND flash
memory storage systems in real-time embedded systems. Th,Rifre improvement
in performance is achieved by cutting the long garbage cidlie process into small

partial steps and interleaving each small step with the ipgnarite requests. Through
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the proposed distributed partial garbage collection gotite response time of a pend-
ing write request is decreased and an upper bound to the-easstresponse time
that close to being an ideal case is obtained. Meanwhileatbege system response
time is also reduced due to the postponed reclamation intextlby the partial garbage
collection. The experimental results showed that our seheam achieve a 36.30% im-
provement in the upper bound of the worst-case responsddinmmequests compared
with GFTL. Moreover, we achieved a 67.06% reduction in agersystem response

time and a 91.79% reduction in RAM cost compared with GFTL.

5.2 Future Work

The work presented in this thesis can be extended in diffeliezctions in the future.

e First, the two-level caching mechanism proposed in thisithenainly focuses on
block-level FTL designs, and we can further apply it to hglHavel FTLs. Compared
with block-level FTL, hybrid-level FTLs have better addsemapping efficiency and
flexibility. However, they have a much larger RAM footpritiain block-level FTL.
Applying the demand-based address mapping scheme to ttiesmas can reduce the
RAM cost and further improve the address mapping flexibagywell as the average
system response time. Moreover, the proposed two-levlimgenechanism can also
be used to overcome the drawbacks in the demand-based eayddFTL scheme.
As discussed in this thesis, the one-level cache design IFL¥affers from a lower
cache hit ratio and more expensive overhead on translalomk management. How
to design a two-level caching mechanism in the DFTL schemmpoove the system

performance is a future endeavor.

e Second, the power failure problem was not studied in thisishé\s the address map-
ping table is working and maintained in the RAM when a flash menchip is in
normal working mode, we may lose the most-updated mappitrgesrwhen a power

failure occurs. A promising main memory alternative, Phasange Memory (PCM),
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can provide a non-volatile storage service, which can @rascthe power failure prob-
lem. Therefore, we can further explore the possibility ofisty the address mapping
table in PCM. The endurance of PCM and the implementationvoflevel caching

with PCM are issues we need to address.

Third, this work only focuses on the optimizing techniques$LC or MLC NAND
flash memory storage systems. Since SLC and MLC flash haeeetiffproperties and
distinct performances, an SLC/MLC hybrid-architectureNNAflash memory storage
system may provide better storage performance after adpghie advantages of the
two technologies. Therefore, it is interesting to extend teahniques to optimizing

the hybrid-architecture storage system.

Finally, a possible research direction is to use main merdatg compression tech-
nigues to manage the large address mapping table in RAM asohts RAM cost can

be reduced.
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