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ABSTRACT

NAND flash memory has been widely adopted in the design of various storage systems. The

capacity of NAND flash memory chips has been increasing dramatically and has doubled

about every two years. The increasing capacity of NAND flash memory poses new chal-

lenges for vendors on the system management. Moreover, withthe multi-level-cell (MLC)

NAND flash memory becoming the mainstream in the market for lower cost and/or large-

scale storage systems, some new write constraints have beenintroduced into the flash mem-

ory chips. These constraints further pose big challenges for existing flash memory man-

agement techniques that were originally designed for single-level-cell (SLC) NAND flash

memory.

In this thesis, we investigate several challenging issues in managing flash mem-

ory storage systems for resource-constrained embedded systems. Since flash memory does

not support in-place updates and needs to erase before update operations, a block-device-

emulation software layer, called the flash translation layer (FTL), is designed so as to pro-

vide transparent service. FTLs manage the system with threecomponents: address trans-

lation, garbage collection, and wear-leveling. In this thesis, we optimize the management

techniques in FTLs from several aspects, including the RAM cost, garbage collection over-

head, and real-time storage performance taking into consideration the limited computation

resource in embedded system.

First, we focus on reducing the RAM footprint for address translation when doing the

mapping from logical addresses to physical addresses. To solve this problem, we propose

a demand-based block-level address mapping scheme with a two-level caching mechanism

for large-scale NAND flash storage systems. Our basic idea isto store the block-level ad-

dress mapping table in specific pages in flash memory and design two level caches in RAM
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to store the on-demand block-level address mappings. Sincethe entire block-level address

mapping table is stored in flash memory and only the demanded address mappings are loaded

into RAM, the RAM footprint can be reduced. The experimentalresults show that our tech-

nique can achieve a 91.68% reduction in RAM cost, while the average system response time

presents an average degradation of 2.02% compared with previous work.

Second, we aim to reduce the garbage collection overhead andthe average system

response time while hiding the new write constraints in MLC NAND flash memory. To solve

this problem, we first analyze the garbage collection procedure and conclude that the valid

page copy is the essential garbage collection overhead. We then propose two approaches,

namely, concentrated mapping and postponed reclamation, to effectively reduce the number

of valid page copies. The experimental results show that, byreducing the garbage collection

overhead, our scheme can achieve a minimum reduction of 30.92% in the average system

response time compared with previous work.

Third, we study the problem of improving the real-time storage performance of

NAND flash memory in real-time embedded systems. To obtain anupper bound for sys-

tem response time, we propose a real-time flash translation layer scheme to hide the variable

garbage collection by using a distributed partial garbage collection policy that enables the

system to simultaneously reclaim space and serve the write requests. The experimental re-

sults show that our scheme not only improves the worst-case system response time and the

average system response time, but also shows a significant reduction in RAM cost compared

with previous work.

Keywords: NAND flash memory, flash translation layer, MLC flash, two-level cache, real-

time, embedded systems.
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CHAPTER 1

INTRODUCTION

NAND flash memory has been widely used in embedded systems dueto its non-volatility,

shock-resistance, and low power-consumption property. Well-known examples are cell-

phones, cameras, USB flash drives, and solid-state-drives (SSD). Similar to other storage

media, the capacity of NAND flash memory chips is increasing dramatically and has dou-

bled about every two years [96]. In 2011, one single flash memory chip with a capacity

of 128GB was developed with multi-level-cell (MLC) flash technology using 20-nanometer

NAND process technology [12]. The increasing capacity of NAND flash memory brings

new challenges for vendors with regard to the management of flash memory storage sys-

tems. Moreover, with MLC NAND flash memory becoming the mainstream in the market

for lower cost and/or large-scale storage systems, two new write constraints have been intro-

duced into the flash memory chips compared with the single-level-cell (SLC) NAND flash

memory. Random programming on pages within one block is prohibited, and multiple partial

programming within one page is not allowed. The new write constraints pose big challenges

for existing flash memory management techniques that were originally designed for SLC

NAND flash memory. This thesis focuses on optimizing the management techniques for

NAND flash memory storage systems in resource-constrained embedded systems to enhance

system performance.

As a non-volatile storage device, NAND flash memory has many good properties

such as small size, shock resistance, and low power consumption. However, NAND flash

memory also has some constraints that impose challenges forits management. NAND flash

memory does not support in-place-updates, and an update (re-write) operation on existing

data in a given physical location (i.e., one page) should be preceded by an erase operation on

a larger region (i.e., one block). Besides that, a block has alimited number of erase counts,
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and it becomes worn-out if the erase counts reach the threshold [7,39]. In order to hide these

idiosyncrasies and to provide transparent service, a block-device-emulation software module

called the flash translation layer (FTL) is built between thefile system and the flash memory

chip [13,14]. FTLs manage the system with three components:address translation, garbage

collection, and wear-leveling. In this thesis, we investigate several challenging issues in

designing the FTLs from several aspects, including the RAM cost for address translation,

the time overhead for garbage collection, and the worst-case system response time for real-

time storage systems in resource-constrained embedded systems.

Many studies have been conducted on the management of NAND flash memory stor-

age systems. A great deal of work focuses on the design of enterprise-level solid state drives

(SSDs) [15, 25, 32, 53, 66, 67, 88, 93], while other work concerns the application of NAND

flash memory in embedded systems [19, 42, 50, 56, 62, 70, 78, 92]. To improve the system

performance of NAND flash based embedded systems, some work focuses on exploring the

storage system architecture [16, 31, 38, 40, 41, 47, 57, 71, 75, 82, 86, 89, 97, 104], and some

work exploits the energy consumption [44, 76, 87, 100, 103];while other work concerns the

design of the flash translation layer [13, 14, 20, 29, 91]. FTLs can be divided into three

main categories: page-level mapping FTL [13], block-levelmapping FTL [10,14,18,73,95],

and hybrid-level mapping FTL [54, 69, 77, 80, 98, 99]. In [13], a fine-grained page-to-page

mapping FTL is proposed that shows good address translationefficiency and a fast average

response time. However, it suffers from a large RAM footprint problem when maintaining

the address mapping table. For example, given a large-block(2KB/page) based 32GB Mi-

cron NAND flash memory chip MT29F32G08CBABAWP [3], the size of the mapping table

for the page-level mapping FTL scheme [13] is 96MB, which is too big to be kept in RAM.

To reduce the size of the address mapping table, block-levelmapping FTL schemes

have been proposed and widely adopted in NAND flash memory storage systems [10,14,18,

21, 73]. One representative block-level mapping FTL schemeis called NAND flash transla-

tion layer (NFTL) [14]. Using coarse-grained block-to-block address mapping, NFTL can

significantly reduce the size of the address mapping table compared with the page-level map-

ping FTL. However, NFTL may still suffer from a large RAM footprint problem due to the
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continuously increasing flash memory capacity. For example, given the above mentioned

32GB Micron NAND flash memory chip, the block-level address mapping table could take

up 1.5MB of RAM space. This large RAM footprint limits the application of flash mem-

ory in some resource-constrained embedded systems, especially in some low-end storage

systems. Wu and Kuo [99] proposed an adaptive hybrid-level mapping FTL in which the

address translator can dynamically and adaptively switch between page-level mapping and

block-level mapping. Kim et al. [55] proposed a log-block based address mapping scheme,

called log-block NFTL. In log-block NFTL, blocks in flash memory are partitioned into data

blocks and log blocks. The data blocks are managed with the block-level address mapping

approach, and the log blocks with the page-level address mapping approach. With the above

FTLs, the flexibility of address mapping is greatly improved. However, they ignore the in-

creased size of the address mapping table when applied to large-scale NAND flash storage

systems. In this thesis, we propose a novel address mapping management scheme that can

solve the RAM footprint problem for large-scale NAND flash memory storage systems in

resource-constrained embedded systems.

MLC flash memory is becoming the mainstream in the market for low cost storage

systems. In the FTL design for MLC flash, the address mapping approach should follow the

write constraints of the flash memory chip. The three kinds ofFTLs that have been proposed

have mostly been designed based on the SLC flash. It would be inefficient to apply these

schemes directly to MLC flash. In page-level mapping FTLs, the pages within one block can

be allocated sequentially. Therefore, they can be applied to MLC flash without complicated

modifications. Based on page-level mapping FTL, the DFTL scheme [33] stores the address

mapping table in the flash memory and adopts a cache to store a small amount of active map-

ping entries in RAM. Data pages in DFTL can also be written sequentially. However, DFTL

suffers from extra valid page copy overhead when flushing thedirty mapping entries from

the cache to the translation blocks in the flash memory. The GFTL scheme [28] provides a

guaranteed storage service by introducing some additionalblocks as the buffer blocks. Al-

though the page allocation approach in both the data blocks and the buffer blocks obeys the

two write constraints of MLC flash, GFTL shows a longer average system response time due
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to the earlier-triggered garbage collection. The superblock based FTL scheme (SFTL) [48]

can also be applied to MLC flash. Nevertheless, it may also trigger the garbage collection

procedure very early because of the fixed number of log blocksthat are shared by multiple

data blocks. Thus, although these FTLs can be applied to MLC flash, they still suffer from

longer average system response times because of the earlier-triggered garbage collection. In

this thesis, we propose two approaches to effectively reduce the garbage collection overhead

in the design of FTLs for MLC NAND flash memory: concentrated mapping and postponed

reclamation.

NAND flash memory has been widely used in both hard real-time and soft real-time

embedded systems. However, due to variable garbage collection latencies, NAND flash

memory storage systems may suffer long system response times, especially when the flash

memory is close to being full. Most existing FTL schemes focus on improving the average

response time, but ignore the need to provide a desirable upper bound for the worst-case

response time. In previous work, several techniques have been proposed to improve the

real-time performance of flash memory storage systems. Chang et al. [22] was the first to

propose real-time garbage collection for flash memory storage systems, where predictable

performance is guaranteed by ensuring that enough free space is always available for write

requests. Although an upper bound for the response time can be obtained, their approach

suffers from a slow worst-case response time and requires extra file system support. Choud-

huri et al. [28] proposed a flash translation layer called GFTL to guarantee an upper bound

for the system response time. GFTL reduces the upper bound byadding extra blocks as the

write buffer and using a partial block cleaning policy to hide the long garbage collection

latency. In order to provide enough free space to serve writerequests, a block that is full will

be put into a garbage collection queue, and garbage collection is consecutively performed

as long as the queue is not empty. GFTL guarantees a worst-case response time for write

requests; however, it suffers a longer worst-case responsetime for read requests. Moreover,

it introduces a large number of extra page copy operations, which significantly degrades the

average system response time. Since garbage collection does not occur very often, a scheme

should not sacrifice too much average response time when reducing the worst-case response
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time. Therefore, in this thesis, we propose a real-time flashtranslation layer, called RFTL,

which provides not only an ideal upper bound for the worst-case system response time but

also a faster average system response time.

In summary, we propose three techniques to improve the system performance of both

the SLC and MLC flash memory in resource-constrained embedded systems. We first focus

on reducing the RAM footprint to address translation management in large-scale NAND flash

memory storage systems. The proposed FTL scheme can be applied to embedded systems

that have only limited RAM space. Then, we aim to reduce the garbage collection overhead

so as to improve the average system response time for MLC NANDflash memory. Finally,

we study the problem of improving the real-time performanceof MLC flash memory storage

systems in real-time embedded systems. The proposed real-time FTL is useful in some time-

critical applications.

The rest of this chapter is organized as follows: Section 1.1presents the related

work. Section 1.2 presents the unified research framework. Section 1.3 summarizes the

contributions of this thesis. Section 1.4 gives the outlineof the thesis.

1.1 Related Work

In this section, we briefly introduce the NAND flash memory technology, the flash memory

storage systems, and some related FTL schemes.

1.1.1 NAND Flash Memory

In the past decade, NAND flash memory has been widely adopted as a secondary storage in

embedded systems. As shown in Figure 1.1, a typical NAND flashmemory is partitioned

into two planes or four planes. Each plane consists of multiple blocks, while each block is

further divided into fixed number of pages (32 pages or 64 pages). Each page contains a data

area (512Bytes or 2KB) and an OOB (Out Of Band) area (32Bytes or 64Bytes). The OOB

area is primarily used to store the Error Correction Code (ECC) of the corresponding page
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and other information such as logical page numbers. There are three basic operations that

can be performed on a NAND flash memory:erase, write,andread. A block is the smallest

unit of erase operations, while a page is the minimum unit of read/write operations.
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Figure 1.1: A typical NAND flash memory array.

Compared with a hard-disk drive, NAND flash memory has many advantages, such

as non-volatility, a smaller size, shock resistance, and faster access times. However, NAND

flash memory also has some constraints that impose challenges for its management. First,

NAND flash memory suffers from out-of-place updates. An update (re-write) of existing

data in a given physical location (known as a page) should be preceded by an erase operation

on a larger region (known as a block). In NAND flash memory, data must be written on

free pages, which could cause space to run out after a number of write operations. Thus, a

block-reclaim operation known as garbage collection [20, 63] is invoked to regenerate free

space for reuse. Second, a block has a limited erase lifetime. For example, one block in

a SAMSUNG K9F1G08U0C SLC (Single-Level Cell) NAND flash has 100K erase counts,

while one in a SAMSUNG K9G4G08U0A MLC (Multi-Level Cell) NAND flash has only

5K erase counts. A block becomes worn out if its erase counts reach the limit [7]. Third, for

some NAND flash memory management schemes, not all blocks in aNAND flash get erased

at the same rate, so the lifetime of specific blocks may decrease faster, which would affect

the usefulness of the entire flash memory. To overcome these constraints, it is very important

to guarantee that erase or write operations be evenly distributed across all blocks.
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Figure 1.2: Page program addressing in SLC and MLC NAND flash memory.
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Figure 1.3: Partial page programming in SLC and MLC NAND flashmemory.

To date, two types of NAND flash memory technologies have beendeveloped: SLC

flash and MLC flash. In single-level-cell (SLC) flash memory, each cell can exist in one

of two states, storing one bit of information per cell. Multi-level-cell (MLC) flash memory

has at least four states per cell, so it can store at least two bits of information per cell. The

primary benefit of MLC flash memory is its lower cost per unit for storage due to the higher

density of data. However, software complexity is also increased to compensate for a larger

bit error ratio. Moreover, MLC introduces two new write constraints in the flash memory

chip. First, the pages within one block must be programmed consecutively from the least

significant bit (LSB) pages to the most significant bit (MSB) pages [11]. Second, only one
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partial page program is allowed within one page [6]. Figure 1.2 and Figure 1.3 compare the

page program addressing and the partial page programming inSLC and MLC NAND flash

memory, respectively.

1.1.2 Flash Memory Storage Systems

……

File System (e.g., Ext2, Ext3, FAT, NTFS)

Address

Translator

Memory Technology Device (MTD) Layer

Application n

Operating System

Flash Translation Layer (FTL)

Garbage

Collector

Wear

Leveler

FTL Mapping Table

Application 2

logical address

Main Memory (e.g., RAM)

…

SLC/MLC NAND Flash Memory

…

Application 1

physical address

Figure 1.4: A typical management architecture of a NAND flashmemory storage system

with a flash translation layer.

To hide the idiosyncrasies of NAND flash memory, an intermediate software mod-

ule called a flash translation layer (FTL) is employed to emulate NAND flash memory

as a block device [2]. Figure 1.4 shows a software-level architecture of the incorporated

flash translation layer module [58]. In this architecture, the flash translation layer provides

three components: the address translator [14], garbage collector [20, 34, 90], and wear-
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leveler [17, 23, 35, 36, 46]. In FTL, the address translator maintains an FTL mapping table,

which is usually located in RAM, that can translate between logical addresses and physical

addresses; the garbage collector reclaims space by erasingobsolete blocks in which invalid

data exist; the wear-leveler is an optional component that distributes erase operations evenly

across all blocks, so as to extend the lifetime of NAND flash memory. This thesis focuses

on optimizing the address translator and the garbage collector in the flash translation layer

so as to improve the flash memory storage performance in resource-constrained embedded

systems.

In NAND flash memory based storage systems, the file system issues a read request

or a write request with a logical address to the flash memory chip. The address translator first

locates the corresponding physical address by searching the address mapping table in main

memory. According to the out-of-place update property, if alogical address is mapped with

a physical address that contains previously written data, the input data should be written to

an empty physical location in which no data had previously been written. The mapping table

should then be updated due to the newly changed address mapping. This procedure is called

address translation. The time cost in this procedure is the address translation overhead. After

the address translation, the MTD layer can perform the read or write operation on the flash

media. With the write operations propagating in the flash memory, free space shrinks and

garbage collection is triggered to reclaim the invalid space for reuse. The valid pages in the

victim block, which is selected based on certain garbage collection policies [20, 59–61], are

copied to a free block, and the original victim block is then erased. In this process, the time

consumed by the valid page copy and the block erase operationis the garbage collection

overhead. A write request cannot be served immediately if the garbage collection process

is running. Thus, the time cost from the request issued by thefile system to the finishing

time of the requested operation is called thesystem response time. The system response time

reflects the efficiency of the FTL schemes.
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1.1.3 FTL Schemes

Many designs and implementations of NAND flash memory management have been pro-

posed in the literature. As FTL plays a critical role in NAND flash memory management,

different FTL schemes have been proposed, which can be categorized into three major types:

page-level mapping FTL [13], block-level mapping FTL [10, 14, 85], and hybrid-level map-

ping FTL [18,21,27,55,68,74,77,95,99].
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Figure 1.5: An illustration of a page-level mapping FTL scheme.

In page-level mapping FTLs, every logical page is mapped with one physical page.

If the file system containsn logical page units, its mapping table should also haven entries.

Figure 1.5 illustrates an example of a page-level mapping FTL. For demonstration purposes,

we assume that one flash chip includes four blocks, and that each block has four pages. In

that case, 16 address mapping entries are needed in the address mapping table. When the

file system accesses the logical page number (LPN) 7, the physical page with the physical

page number (PPN) 4 can be found from the page mapping table inRAM. The file system
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can get the requested data from page 4 in flash memory. As a fine-grained page-to-page

mapping approach is adopted, page-level mapping FTLs couldbecome efficient at translating

addresses. However, page-level mapping FTLs require a large amount of RAM space, which

limits their usage in some resource-constrained embedded systems.
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Figure 1.6: An illustration of a block-level mapping FTL scheme.

For this reason, block-level mapping FTLs [10,14] are proposed. Figure 1.6 shows an

example of a block-level mapping FTL scheme. In this example, one logical block is mapped

with one physical block. Given the logical page number (LPN), divided by the number of

pages in each block (i.e., four), the quotient is the logicalblock number (LBN), and the

remainder is the block offset. For the given LPN 9, the LBN andthe block offset are 2 and 1,

respectively. Since physical block 0 is mapped with logicalblock 2, the target physical page

can be located using the block offset 1 in the physical block 0. As coarse-grained block-

to-block mapping is used, block-level FTL requires a smaller number of address mapping

entries compared with page-level mapping FTLs. However, a logical page in a block-level

mapping FTL can only be written to a physical page with the designated block offset. Thus, a

block-level mapping FTL is not as good as a page-level mapping FTL in mapping flexibility
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and space utilization ratios.

To make a trade-off between RAM cost and address translationefficiency, hybrid-

level mapping FTLs [24, 26, 28, 55, 65, 99, 102] have been introduced. Wu and Kuo [99]

proposed an adaptive hybrid-level mapping FTL in which the address translator can dynam-

ically and adaptively switch between page-level mapping and block-level mapping. Kim et

al. [55] proposed a log-block based address mapping scheme,called log-block NFTL. In log-

block NFTL, blocks in flash memory are partitioned into data blocks and log blocks. The

data blocks are managed with the block-level address mapping approach, and the log blocks

with the page-level mapping approach. The above hybrid-level mapping FTLs are a great im-

provement in terms of address mapping flexibility. However,they ignore the increased size

of mapping tables when applied to large-scale NAND flash storage systems. The mapping

table size of hybrid-level mapping FTLs tends to be larger than that of block-level mapping

FTLs.

In flash memory storage systems, one approach to solving the large RAM footprint

problem is to store the address mapping table in flash memory but not in RAM. However,

this approach may incur extra address translation overheadfor fetching the address mapping

table from flash memory. In the literature, several techniques have been proposed to use a

caching mechanism to improve the system performance [33,37,45,49,51,52,64,79,81,101].

In DFTL [33], one small address mapping table cache is designed to selectively cache the

on-demand page-level address mapping entries. In order to achieve higher cache hit ratios,

temporal locality in workloads is well considered and the least recently used (LRU) replace-

ment algorithm [43] is used to keep the potential requested mapping entries staying in cache.

Therefore, DFTL shows good system response times for workloads with intensive tempo-

ral locality. However, it ignores the spatial locality and the access frequency of workloads,

which are also important factors for accessing data. Moreover, DFTL adopts a fine-grained

page-level mapping approach, and one page write operation in data blocks may cause one

address mapping update operation in cache, which may incur one translation page copy op-

eration in the translation blocks. These frequent page copyoperations will lead to the erasing

of more translation blocks, which will affect the efficiencyof address translation. Therefore,
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how to effectively reduce the RAM cost without excessively penalizing system performance

becomes an important issue.

The three kinds of FTLs proposed in the literature are mostlydesigned based on

SLC flash. Applying them to MLC flash would be too inefficient orlimiting. In page-level

mapping FTL schemes, pages are allocated sequentially within a block and no page status

(valid or invalid) needs to be recorded in its spare area. Therefore, it is still usable to MLC

flash. However, page-level mapping FTL is unsuitable for a large-sized MLC flash due to

the large address mapping table. Block-level mapping FTLs [14, 95] use the block offset to

locate the pages within a block, and the pages may be programmed randomly within a block.

Therefore, block-level mapping FTLs may not be applicable to MLC flash. In hybrid-level

mapping FTLs [28, 48, 68, 77, 99], physical blocks are logically partitioned into data blocks

(primary blocks) and log blocks (replacement blocks). A data block is used to store the

first written data, while log blocks are designated to recordthe updated data. In data block

management, most hybrid-level mapping FTLs adopt the block-level mapping approach and

use the block offset to locate the pages. In the GFTL scheme [28], the pages can be allocated

sequentially without the block offset; however, the average system response time is longer

due to the earlier-triggered garbage collection. A superblock-based FTL scheme (SFTL) [48]

obeys the write constraints of MLC flash, but it may also trigger the garbage collection very

early due to the fixed number of log blocks. Thus, it is necessary to design an FTL that not

only can be applicable to MLC flash but that can also incur lessgarbage collection overhead.

In previous work, several techniques have been proposed to improve the real-time

storage performance of NAND flash memory storage systems. Chang et al. [22] was the first

to propose real-time garbage collection for flash memory storage systems, where predictable

performance is guaranteed by ensuring that enough free space is always available for write

requests. Although an upper bound for the response time can be obtained, their approach

suffers from a slow worst-case response time and requires extra file system support. Choud-

huri et al. [28] proposed a flash translation layer called GFTL to guarantee an upper bound

for the system response time. GFTL reduces the upper bound byadding extra blocks as the

write buffer and using a partial block cleaning policy to hide the long garbage collection la-
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tency. In order to provide enough free space to serve the pending write requests, a block that

is full will be put into a garbage collection queue, and a garbage collection is consecutively

performed as long as the queue is not empty. GFTL guarantees aworst-case response time

for write requests; however, it suffers a longer worst-caseresponse time for read requests.

Moreover, it introduces a large number of extra page copy operations in garbage collection,

which significantly degrade the average system response time. Since garbage collection does

not occur very often, a scheme should not sacrifice too much average response time when

reducing the worst-case response time.

1.2 The Unified Research Framework

In this section, we present the unified research framework for the proposed techniques. Fig-

ure 1.7 illustrates the sketch of our research framework.

In this thesis, we target NAND flash memory storage systems inresource-constrained

embedded systems, where RAM (SRAM or DRAM) is adopted as the main-memory and

NAND flash memory serves as the secondary storage media for storing user data accessed

by the file system.

In this thesis, three flash memory management techniques arepresented to improve

the system performance of NAND flash memory storage systems in resource-constrained

embedded systems, in terms of management cost and management efficiency. As shown

in Figure 1.7, we propose three techniques for designing flash translation layers, with the

objective of reducing the RAM footprint, the garbage collection overhead, and the worst-

case system response time, respectively.

• For the first technique, in Chapter 2, we propose a Demand-based block-level Address

mapping scheme with a two-level Caching mechanism, named DAC. In DAC, we en-

deavor to reduce the RAM cost in maintaining the address mapping table for FTLs.

To achieve this, we adopt an on-demand strategy by storing the entire block-level ad-

dress mapping table in the flash memory and caching the demanded mapping entries
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in RAM. A two-level caching mechanism is designed that takesinto consideration the

access patterns of workloads, such as the temporal locality, the spatial locality, and the

access frequency. Taking into account the expensive overhead for flushing the dirty

items from cache to flash memory, a cost-aware cache replacement policy is intro-

duced. The proposed techniques in DAC not only effectively reduce the RAM cost

but also guarantee the cache hit ratio, thereby improving the average system response

time.

• For the second technique, in Chapter 3, we propose an MLC NANDFlash Translation

Layer, named MNFTL, to hide the two write constraints of MLC flash and, at the

same time, to effectively reduce the garbage collection overhead. To achieve this, we

propose two techniques, namely concentrated mapping and postponed reclamation,

to fundamentally reduce the garbage collection overhead. We analyze the garbage

collection procedure adopted in traditional FTLs, and conclude that the valid page

copies are the essential overhead. A novel block-level mapping approach is presented

to centralize the invalid space together, so that the numberof valid pages that need to be

copied by the garbage collector are minimized and the latency for garbage collection is

reduced. Moreover, a novel garbage collection policy is designed to postpone the time

for garbage collection, which can also increase the number of invalid pages within a

fully occupied block.

• For the third technique, in Chapter 4, we present a Real-timeFlash Translation Layer,

named RFTL, to effectively reduce the worst-case system response time for NAND

flash memory storage systems. Our work is motivated by the observations that most

FTLs focus on improving the average system response time butignore the worst-case

system response time, and most flash storage systems suffer from long system response

times due to the variable garbage collection latency. Therefore, in RFTL, we propose

a novel address mapping approach with a distributed partialgarbage collection policy

to shorten the blocked time caused by the garbage collectionprocess. By introducing

some extra flash blocks as buffer blocks, RFTL enables the storage system to serve the
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write requests and to do the garbage collection simultaneously, which can effectively

reduce the worst-case system response time.

In this thesis, we evaluate the proposed techniques of DAC, MNFTL, and RFTL using

a variety of realistic I/O traces. The traces reflect the realworkload of the system in accessing

the secondary storage system with applications that are used daily, such as those for web

surfing, document typewriting, downloading, and playing movies and games. DiskMon [1]

is adopted as the tool for collecting these traces from the notebook with an Intel Pentium Dual

Core 2GHz processor, a 200GB hard disk, and a 2GB DRAM. We alsouse some well-known

traces that have been widely adopted in other studies, such as theFinancial trace [5] and the

Websearchtrace [8]. The evaluation is conducted by a trace-driven simulation. We have

developed a simulator to evaluate our three flash memory management techniques against

some representative FTL designs.

1.3 Contributions

The contributions of this thesis are summarized as follows.

• We propose for the first time a demand-based block-level address mapping scheme for

NAND flash memory management, called DAC, to reduce the RAM storage overhead

for large-scale NAND flash memory storage systems in resource-constrained embed-

ded systems. DAC is designed mainly based on the idea of selectively caching some

on-demand block-level mapping entries while storing the entire mapping table in the

flash memory. A novel two-level caching mechanism is proposed based on the access

pattern of workloads and the access behavior of flash memory chips. Experimental

results show that our technique can achieve a 91.68% reduction in RAM cost while

the average system response time presents a 2.02% degradation on average compared

with previous work.

• We present for the first time a MLC NAND flash translation layer, called MNFTL, to

hide the write constraints for MLC NAND flash memory and to essentially reduce the
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garbage collection overhead. In MNFTL, a concentrated address mapping approach is

proposed to distribute the invalid pages more close to each other, while a postponed

garbage collection policy is used to delay the time requiredto perform the block recla-

mation, so that more valid pages may become invalid and fewervalid page copies are

required. Compared with previous FTLs applicable to MLC flash, the experimental re-

sults show that, by reducing the garbage collection overhead, our scheme can achieve

a minimum reduction of 30.92% in the average system responsetime compared with

previous work. In addition, the results show that the RAM cost of MNFTL is well

under control.

• We present a real-time flash translation layer for NAND flash memory management,

called RFTL, to effectively reduce the worst-case system response time in real-time

embedded systems based on NAND flash memory. A novel block-level address map-

ping scheme is presented to provide enough free space for pending write requests,

while a distributed partial garbage collection policy is used to cut one garbage collec-

tion process into smaller phases and then interleave each phase with a write operation.

Compared with previous work, experimental results show that our scheme not only

improves the worst-case system response time and the average system response time,

but also effectively reduces RAM cost compared with previous work.

• A trace-driven simulation framework is implemented to evaluate the proposed flash

memory management schemes in NAND flash based embedded systems. We con-

ducted experiments and compared our proposed schemes with representative FTL

schemes. The experimental results prove the effectivenessof the proposed schemes

in running with different kinds of I/O workloads.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we present our demand-based block-level flash memory management

18



technique, DAC, and show its efficiency in reducing RAM cost for large-scale NAND

flash memory storage systems.

• In Chapter 3, we present our flash translation layer design for MLC NAND flash mem-

ory storage systems, MNFTL, to overcome the write constraints in MLC NAND flash

memory chips. We also show that MNFTL can effectively reducethe garbage collec-

tion overhead in MLC flash management, so as to reduce the average system response

time.

• In Chapter 4, we present our real-time flash memory management technique, RFTL,

and show that RFTL can improve the average system response time and the worst-case

system response time as well as the RAM cost for real-time embedded systems.

• In Chapter 5, we present conclusions and discuss possible future directions for research

arising from this work.
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CHAPTER 2

DAC: DEMAND-BASED BLOCK-LEVEL ADDRESS MAPPING

WITH A TWO-LEVEL CACHING MECHANISM

2.1 Overview

The density of flash memory chips has doubled every two years in the past decade and the

trend is expected to continue. The increasing capacity of NAND flash memory poses big

challenges for its management. In particular, the management of address mapping in the

flash translation layer (FTL) suffers from a large RAM footprint, which limits the applica-

tion of flash memory in resource-constrained embedded systems. In the past decade, various

FTL schemes have been proposed and different FTLs show different RAM costs and system

response times. Among them, page-level FTLs [13] can achieve efficient address mapping.

However, they suffer from a large RAM footprint problem in maintaining the page-level

address mapping table. To reduce the size of the address mapping table, block-level FTL

schemes have been proposed and widely adopted in NAND flash memory storage systems

in embedded systems [10, 14, 18, 21, 27, 73]. NFTL (NAND flash translation layer) is one

representative block-level FTL scheme [14]. Different from fine-grained page-level FTLs

that keep the mapping information between logical pages andphysical pages, NFTL main-

tains a block-level address mapping table in which one logical block is mapped with one

primary block and one replacement block. Using coarse-grained block-to-block mapping,

NFTL can significantly reduce the size of the address mappingtable compared with page-

level FTLs. However, NFTL may still suffer from the large RAMfootprint problem due

to the increasing flash memory capacity. How to effectively reduce the RAM footprint for

address management becomes an important issue.
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An on-demand page-level mapping scheme called DFTL [33,84]has been proposed

to solve this problem. Unlike the traditional approaches tomaintaining the page-level address

mapping table in RAM, DFTL stores the address mapping table in specific flash memory

pages, and one cache in RAM is designed to store the on-demandaddress mapping entries.

Moreover, a global translation directory (GTD) is created in RAM to track the location of the

address mapping table from the flash memory. Taking advantage of the on-demand strategy

and the temporal locality of workloads, DFTL effectively reduces the RAM footprint. How-

ever, DFTL is designed based on the page-level address mapping approach, and cannot be

directly applied to solve the RAM footprint problem of NFTL,which is based on the block-

level address mapping approach. Moreover, the page-level mapping table in flash memory in

DFTL is still big. It not only takes up extra flash space but also introduces more management

overhead. Besides that, spatial locality and access frequency are not explored by the caching

scheme in DFTL.

In this chapter, we propose a Demand-based block-level Address mapping scheme

with a two-level Caching mechanism (DAC) to solve the RAM footprint problem for NFTL

in large-scale NAND flash memory storage systems. The basic idea of DAC is to store the

block-level address mapping table in specific pages (calledthe translation pages) in the flash

memory, and a two-level caching mechanism is designed in RAMto store the on-demand

block-level address mapping entries. Considering the temporal locality of workloads, the

first-level cache in DAC is dedicated to caching a small number of active block-level mapping

entries. The second-level cache consists of two caches thatare used to explore the spatial

locality of workloads and the access frequency of address mapping entries, respectively.

Since the entire block-level address mapping table is stored in flash memory and address

mapping entries are loaded into RAM in an on-demand fashion,DAC is effective at reducing

the RAM footprint. Moreover, the two-level caching mechanism in DAC can effectively

explore the reference locality and the access frequency. Therefore, the cache hit ratio is

improved and the average system response time can be kept well under the control.

We have conducted experiments on a set of traces collected from real workloads by

DiskMon [1]. We compare DAC with NFTL [14] and DFTL [33] in terms of the RAM cost
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and the average system response time. The experimental results show that our technique

can effectively save the RAM cost with very little penalty onthe average response time. On

average compared with NFTL, for a 32GB NAND flash memory with 64 2K-bytes pages per

block, DAC reduces the RAM cost by 91.68% with a 2.02% penaltyon the average system

response time.

This chapter makes the following contributions:

• We present for the first time a demand-based block-level address mapping scheme

with a two-level caching mechanism for reducing RAM cost in large-scale NAND

flash memory storage systems.

• We demonstrate the effectiveness of this address mapping management scheme and

compare it with representative techniques using a set of real traces.

The rest of this chapter is organized as follows. Section 2.2introduces the back-

ground and the motivation of this chapter. Section 2.3 describes our proposed on-demand

block-level address mapping scheme. Section 2.4 and Section 2.5 present the performance

analysis and performance evaluation of our scheme, respectively. Finally, Section 2.6 con-

cludes the chapter.

2.2 Background and Motivation

In this section, we first introduce the evolution of NAND flashmemory technology, and then

describe the base-line NFTL scheme [14] that will be used in alater section. Finally, we

present our motivation for coming up with our scheme.

2.2.1 Trend of Flash Memory Technology

Due to its relatively simple structure and the great demand for higher capacity, NAND flash

memory is one of the most aggressively scaled electronic devices. Figure 2.1 shows the
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evolution of NAND flash memory technology [4]. The aggressive trend of the decreasing

process design rule in NAND flash memory technology effectively accelerates Moore’ Law.

In late 2011, 20-nanometer NAND process technology was developed and one flash memory

chip with a 128GB capacity was released [12]. As the feature size of flash memory cells

is close to its minimum limit, further increases in density will be driven by greater levels

of MLC, possibly the 3-D stacking of transistors, and improvements to the manufacturing

process [4]. With the increasing capacity of flash memory chips, many existing FTLs suffer

from a large RAM cost when they are adopted to manage large-scale NAND flash memory

storage systems. As a block-level address mapping scheme, NFTL has the smallest RAM

footprint among the FTL schemes.
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Figure 2.1: The trend in the evolution of NAND flash memory design rules or technology.

2.2.2 Block-level Mapping NFTL

In block-level mapping NFTL [14], one logical block is mapped with two physical blocks,

which are called the primary physical block (PPB) and the replacement physical block

(RPB), respectively. The primary block is designated to store the first written data, and

the replacement block is designed to store the re-written (updated) data. A logical page
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number (LPN) in NFTL is partitioned into a logical block number (LBN) and a block offset.

Using the logical block number and the block offset, NFTL canobtain the physical page

that stores the requested data from the primary block. If thedata in the target page becomes

invalid (stale), NFTL comes to the replacement block to find the valid data by searching the

physical pages sequentially. Figure 2.2 shows an example ofthe NFTL scheme. Given the

LPN 7, divided by the number of pages in each block (i.e., 4), the quotient is the LBN 1,

and the remainder is the block offset 3. Using the offset 3 in the primary block 2, NFTL can

locate the target physical page 11. Since the target page is invalid, it turns to the replacement

block 1 to search sequentially from the first page to find the valid page. As coarse-grained

block-to-block mapping is used, NFTL requires a smaller number of address mapping en-

tries compared with page-level FTLs. However, if the file system issues write requests to an

identical logical page address, the primary physical blockmay present a low space utilization

ratio and expensive block merge operations (including manypage copy operations and block

erase operations) may be triggered, which may increase the system response time.

PPN DATA OOB

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

PPBN

Block #0

Block #1

Block #2

Block #3

3

2

Access

LPN=7

LBN=7/4=1

Offset=7%4=3

NAND Flash Memory

Block Mapping Table

(BMT) in RAM

0

1

LBN

0

1

RPBN

PPBN=2

Offset=3

valid

invalid

Figure 2.2: An illustration of the block-level mapping NFTLscheme.
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2.2.3 Motivation

Although the block-level NFTL scheme is effective at reducing the RAM cost, it still suffers

from large RAM footprint due to the continuously increasingNAND flash memory capacity.

For example, given a large-block (2KB/page) based 32GB Micron NAND flash memory chip

MT29F32G08CBABAWP [3], the block-level address mapping table could take up 1.5MB

of RAM space. This large RAM footprint limits the application of flash memory in some

resource-constrained embedded systems, especially in some low-end storage systems. The

DFTL scheme [33] shows potential at solving the RAM cost problem; however, it introduces

many extra address translation overheads. Moreover, it ignores the spatial locality and access

frequency of workloads, which degrades the system performance. A demand-based block-

level address mapping scheme is a promising solution to thisproblem. These observations

motivated us to design an on-demand block-level address mapping scheme that can further

reduce the RAM cost without excessively compromising the system performance of large-

scale NAND flash memory storage systems.

2.3 DAC: Demand-Based Block-Level FTL

In this section, we introduce ourDAC (Demand-based block-level Address mapping with

two-level Caches)approach. We first give an overview of our scheme in Section 2.3.1. The

detailed on-demand address mapping approach and the address translation procedure are

then described in Section 2.3.2. Next, we present the fetch-in policy and the kick-out policy

for our cache design in Section 2.3.3. Finally, we show the read/write operation and garbage

collection procedure in Section 2.3.4.

2.3.1 Overview of DAC

The system architecture of our DAC scheme is shown in Figure 2.3. In DAC, the physical

blocks in the flash memory are divided into two types: data blocks and translation blocks.

Data blocks, which are dedicated to storing the real data from I/O requests, are managed
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in the block-level mapping approach. Unlike the traditional method of storing the address

mapping table in RAM, DAC stores the entire block-level address mapping table in the pages

of translation blocks. The translation blocks, which storethe block-level address mapping

table, are managed in the fine-grained page-level mapping approach, and the corresponding

translation page mapping table (TPMT) is stored in RAM.

As shown by the single-ended arrow with a solid line in Figure2.3, the data block

mapping table is stored in the translation pages, while the translation page mapping table

is stored in RAM. Taking advantage of the reference localityand the access frequency of

workloads, we designed two-level caches in RAM. The data block mapping table cache
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(DBMTC), which serves as the first-level cache, is used to cache the on-demand data block

address mapping entries. The second-level cache, which includes two different caches, is de-

signed to cache the translation pages. The translation pagereference locality cache (TPRLC)

is dedicated to selectively caching those translation pages that contain the on-demand map-

ping entries in the first-level cache; and another translation page access frequency cache

(TPAFC) is designed to cache those translation pages that are frequently accessed when

the requested mapping misses in the DBMTC and the TPRLC. Different cache replacement

policies are proposed for different caches. The double-ended arrow with a dotted line in

Figure 2.3 describes the address mapping table caching procedure, and the arrow with a bold

line shows the address mapping entry searching process. A requested address mapping entry

will first be searched for in the first-level cache, and then located in the translation blocks by

the TPMT in RAM if a cache miss occurs.

2.3.2 Demand-Based Address Mapping with a Two-Level Cache

In this section, we present the data structure and caching mechanism used to implement the

demand-based block-level address mapping.

Data Blocks and Translation Pages. In our technique, the data blocks are mapped

in a block-level mapping approach, where one virtual data block address (DVBA) is mapped

with one primary physical data block address (DPPBA) and onereplacement physical data

block address (DRPBA). Therefore, one address mapping entry in the block-level address

mapping table is represented as<DVBA, DPPBA, DRPBA>. The pages in the translation

blocks that are used to store this address mapping table are called translation pages. One

translation page can store a number of logically fixed address mapping entries. For example,

if 8 bytes are needed to represent one address mapping entry,then we can store 256 logically

consecutive mapping entries in one translation page. The space overhead incurred by storing

the entire block-level address mapping table is negligiblecompared to the whole flash space.

32GB of flash memory needs only about 1.5MB of flash space to store all of these mapping

entries.
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Translation Page Mapping Table. In order to track the location of the address map-

ping table, a translation page mapping table implements theaddress mapping from one vir-

tual translation page address (TVPA) to one physical translation page address (TPPA). Given

the requested virtual data block address (DVBA), divided bythe number of mapping entries

that each physical translation page can store, the quotientis defined as the virtual translation

page address (TVPA). Using the entries in the TPMT, we can immediately locate the physical

translation page that stores the requested virtual data block address. Furthermore, one item

LOCA in the TPMT is used to record the location of the physicaltranslation page (in cache

or in flash memory) for each virtual translation page address, which will also be helpful for

locating the translation pages. In the TPMT, another item FREQ is used to record the access

frequency of each translation page when the requested mapping misses in the first-level cache

and the translation page reference locality cache. The value of FREQ needs to be increased

by one if the requested mapping misses in the first two caches.The accumulated value of

FREQ indicates the tendency of the corresponding translation page to need to be fetched into

RAM from flash memory. Although the TPMT is permanently maintained in RAM, it does

not pose many space overhead. For example, for a 32GB flash, 1,024 translation pages are

needed, which requires only about 4KB of RAM space.

Data Block Mapping Table Cache. Making use of the temporal locality in work-

loads, we design the data block mapping table cache in RAM to cache a small number of

active mapping entries associated with the on-demand blocks. If the requested mapping hits

in this cache, DAC can use or update it immediately without searching for or updating it in

the flash memory. If the requested mapping is not stored in thecache and the cache is not yet

full, it will be fetched into cache directly once it is found in the flash memory. Otherwise,

if the cache is full, one victim mapping must be kicked out to make room for the newly

fetched-in mapping, which may lead to an extra translation page copy operation in the flash

memory. In order to avoid this extra overhead, we designed a new replacement algorithm

taking into consideration both the LRU replacement algorithm and the kick-out overhead (to

be explained in a later section). As the first-level cache in RAM, the DBMTC can flexibly be

set to different sizes based on the size of the address mapping table that needs to be cached.
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For example, it can be set to 16KB, which is only about 1% of thesize of the whole mapping

table (1.5MB). If one mapping entry takes up 8 bytes, then 2,048 entries are included in the

DBMTC. When the active mapping set is large, we adopt a set associative mapping approach

(i.e., 2-way or 4-way) for cache organization to guarantee the query efficiency.

Translation Page Reference Locality Cache. The translation page, which stores the

on-demand mapping entry that has just missed in the first-level cache, will be selectively

cached in the TPRLC. Since the translation page covers a wider spectrum of logically con-

secutive address mapping entries, according to the spatiallocality in workloads, it will be

possible for one request to hit in this cache when it misses inthe first-level cache. As one

part of the second-level cache, the fetch-in operation in the TPRLC is invoked by the fetch-

in operation in the first-level cache. When the TPRLC is full,one victim page should be

kicked out to make room for the coming fetched-in translation page. The LRU replacement

algorithm is adopted as the replacement algorithm in this cache.

Translation Page Access Frequency Cache. The translation page that shows the

strongest tendency to be fetched into RAM will be selectively cached in the TPAFC. When

the requested mapping frequently misses in the first-level cache and the translation page ref-

erence locality cache, it should be fetched into RAM from flash memory in order to guarantee

the hit ratio and reduce the address translation overhead. As another part of the second-level

cache, the translation page access frequency cache is designed to cache those translation

pages that contain frequently requested mapping entries. In such a way, the requested map-

ping that misses in the first two caches may hit in this cache. The Least Frequently Used

(LFU) replacement algorithm is used to evict the victim translation page when the cache is

full.

In both levels of cache, a binaryone-bittag is designed to indicate whether one item

is clean or dirty. The status of this bit can be used in the victim kick-out operation in the two

caches. The size of the second-level cache (the TPRLC and theTPAFC) can also be tuned

flexibly within the RAM size constraint. For example, 10 translation pages take up about

20KB of RAM space. In terms of cache query efficiency, sequential lookup is sufficient
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for searching the requested mapping in the translation pages since the mapping entries are

organized consecutively according to the virtual data block address.

Given a request issued from the file system, DAC first searchesin the cache for the

requested address mapping. If the requested mapping hits inthe first-level cache, we can

get the requested mapping directly. Otherwise, we need to find the location of the translation

page that contains the requested mapping from the TPMT. If the requested mapping is located

in the second-level cache, we can find it by searching the cache sequentially. If both two

level caches miss and are full, the requested mapping will befetched into the cache from

flash memory and then be used by DAC. Algorithm 2.3.1 shows theprocedure of translating

from a logical data block address to a physical data block address.

2.3.3 Replacement Policy in a Two-Level Cache

In the first-level cache, the replacement policy is designedbased on the LRU replacement

algorithm and a cost-benefit analysis. We first select a potential victim mapping based on the

LRU replacement algorithm. The victim mapping is then evaluated according to a simple

cost-benefit analysis: if the potential mapping is also currently included in the second-level

cache currently, it can be the victim; or else, if the potential mapping has not been updated

since it was fetched into cache, it can be the victim; otherwise, a new potential mapping will

be selected according to the LRU replacement algorithm and be evaluated again. If all of the

mapping entries in the first-level cache violate the rules, no victim is selected and no fetch-in

operation is performed in the first-level cache. The victim mapping that is selected based on

this rule can either be erased directly (if no update occurred on this mapping) or be kicked

out to the second-level cache (if the corresponding translation page exists). In both cases,

no time-consuming write-back operation towards flash memory is incurred in the first-level

cache. Therefore, no extra address translation overhead iscaused.

In the second-level cache, the LRU replacement algorithm and the LFU replacement

algorithm are used in the TPRLC and the TPAFC, respectively.After the fetch-in operation

in the first-level cache, the corresponding translation page should also be loaded into the
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Algorithm 2.3.1 AddressTranslation(RDlba)
Input: DBMTC, TPRLC, TPAFC, TPMT, Requested logical data block addressRDlba, Requested virtual

data block addressRDvba, Victim entry in DBMTCEvictim, Page numbers in one blockNpage, Map-

ping numbers in one translation pageMpage.

Output: Requested primary physical data block addressRDppba and Requested replacement physical data

block addressRDrppa.

1: RDvba←RDlba/Npage; RTvba←RDvba/Mpage.

2: SearchRDvba indexed byHash(Dvba) in the DBMTC.

3: if hit then

4: returnRDppba andRDrpba.

5: else

6: LocateRTvpa in the TPMT indexed byTvpa; RFreq←Freq; RLoca←Loca; RTppa←Tppa.

7: if RLoca is equal to0 then

8: SearchRTvpa indexed byTvpa in the TPRLC; GetRDvpa indexed byDvpa in RTvpa.

9: else

10: RFreq←RFreq + 1.

11: if RLoca is equal to1 then

12: SearchRTvpa indexed byTvpa in the TPAFC; GetRDvpa indexed byDvpa in RTvpa.

13: else

14: Read translation pageRTppa from flash memory; GetRDvba, RDppba, RDrpba.

15: if the DBMTC is not full then

16: Fetch in(RDvba, RDppba, RDrpba, DBMTC).

17: end if

18: Fetch in(RTppa, TPRLC, TPAFC).

19: end if

20: end if

21: ReturnRDppba andRDrpba.

22: end if
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second-level cache. If both caches in the second-level are full, one victim translation page

will be selected in each of the two caches. For fetch-in operation, we first consider the

TPAFC. If the access frequency for the requested translation page is higher than that of

the victim page in the TPAFC, the requested translation pagewill first be fetched into the

TPAFC after kicking the victim page out. If the requested page in the flash memory and

the victim page in the TPAFC have the same access frequency, the fetch-in operation is

performed based on a simple cost-benefit analysis: the victim page that has not been changed

since it was fetched into the TPAFC will be kicked out, and therequested translation page

will then be fetched-in; otherwise, the requested translation page will be fetched into the

TPRLC. When the access frequency of the requested page is lower than that of the victim

page in the TPAFC, the requested page will be finally fetched into the TPRLC after the

kick-out operation. Algorithm 2.3.2 shows the procedure offetching the requested physical

translation pageRTppa into the second-level cache.

It is noticed that the second-level cache in our scheme not only captures the spa-

tial locality in workloads, but simultaneously serves as the kick-out buffer for the first-level

cache. When the requested mapping misses in the first-level cache, no fetch-in operation is

performed if no victim is selected based on the cost-benefit analysis as discussed in above

section. In this situation, the requested mapping can stillbe cached in RAM as its corre-

sponding translation page must be fetched into the TPRLC from flash memory. This policy

can effectively guarantee the cache hit ratio. Meanwhile, when the victim mapping in the

first-level cache is kicked out, it will be evicted to the second-level cache but not the flash

memory. The second-level cache actually delays the kick-out operation in the first-level

cache and then performs the kick-out operation in bulk. Thismechanism can effectively

reduce the kick-out operations towards the flash memory and decrease the time-consuming

page read or page write operations in the flash memory, which can significantly improve the

address translation efficiency.

Next we introduce the kick-out policy in two-level caches. The victim mapping in

the first-level cache is either erased directly or kicked outto the second-level cache. There-

fore, no flash page operations are triggered. However, an extra flash page read or page write
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Algorithm 2.3.2 Fetchin (RTppa, TPRLC, TPAFC)
Input: DBMTC, TPRLC, TPAFC, TPMT, Victim page in the TPRLC/TPAFCTRvictim/TAvictm.

Output: Location ofRTppa in the TPRLC or the TPAFC

1: if the TPRLC is not full then

2: Fetch translation pageRTppa into the TPRLC;RLoca←0.

3: else

4: if the TPAFC is not full then

5: Fetch translation pageRTppa into the TPAFC;RLoca←1.

6: else

7: SelectTRvictim in the TPRLC by LRU algorithm.

8: SelectTAvictim in the TPAFC by LFU algorithm.

9: if RFreq is greater thanFreq of TAvictim then

10: Kick out(TAvictim, TPAFC); RLoca←1; Fetch translation pageRTppa into the TPAFC.

11: else

12: if RFreq is equal toFreq of TAvictim then

13: if TAvictim is not changed then

14: EraseTAvictim; RLoca←1; Fetch translation pageRTppa into the TPAFC.

15: else

16: Kick out(TRvictim, TPRLC); RLoca←0.

17: Fetch translation pageRTppa into the TPRLC.

18: end if

19: else

20: if RFreq is smaller thanFreq of TAvictim then

21: Kick out(TRvictim, TPRLC); RLoca←0.

22: Fetch translation pageRTppa into the TPRLC.

23: end if

24: end if

25: end if

26: end if

27: end if

28: Return the location ofRTppa in the TPRLC or the TPAFC
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operation may be required when doing the kick-out operationin the second-level cache. If

the victim translation page has never been updated since it was fetched into the cache, it can

be erased directly and a free space will be released. Otherwise, if the victim translation page

is changed, it should be flushed back to flash memory in order tomaintain the consistency.

The victim translation page is written to a new free translation page; meanwhile, the original

translation page becomes invalid. The address of the new translation page will correspond-

ingly be recorded in the TPMT. The extra overhead caused by the flush-back operation is

only one page write operation in the worst case. Algorithm 2.3.3 shows the procedure of the

kick-out operation in the TPRLC, and the kick-out operationin the TPAFC obeys the same

rules.

Algorithm 2.3.3 Kick out (Pvictim,TPRLC)
Input: TPRLC, TPMT, Victim translation page in the TPRLCPvictim.

Output: Free location in the TPRLC.

1: PTvpa←Pvictim.Tvpa; PTppa←Pvictim.Tppa.

2: Sequentially searchPTvpa indexed byTvpa in the TPMT; GetPTvpa andPT ′ppa.

3: if PT ′ppa is updated then

4: WritePT ′ppa to a new free translation pageFT ′ppa; PTppa←FT ′ppa in the TPMT.

5: end if

6: ErasePvictim in the TPRLC.

7: Return the free location in the TPRLC.

An illustrative example of the address translation procedure when both levels of cache

miss is shown in Figure 2.4. Given the requested logical datapage address (DLPA) 65, the

corresponding virtual data block address (DVBA) is 1 (65/64=1), where 64 is the number of

pages within one physical block. In step (1), the mapping entry of DVBA 1 misses in the first-

level cache. In steps (2)-(3), the requested mapping entry is located in physical translation

page TPPA 12 in flash memory after consulting the TPMT with thevirtual translation page

address (TVPA) 0 (1/256=0), where 256 is the number of mapping entries in each translation

page. Since translation page TPPA 12 is not cached in the second-level cache, the item FREQ

for the requested TVPA 0 in the TPMT needs to be increased by 1,which reaches 3. In steps
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(4)-(6), the mapping entry for DVBA 511 in the DBMTC is supposed to be the victim slot,

and the requested mapping entry is fetched into the DBMTC after kicking the victim out.

In steps (7)-(9), the access frequency of the requested virtual translation page TVPA 0 is

obtained from the TPMT with a value of 3, which is smaller thanthe access frequency of

the victim translation page in the TPAFC with a value of 4. Therequested translation page

TPPA 12 should be fetched into the TPRLC. In steps (10)-(12),the physical translation page

TPPA 18 is supposed to be the victim in the TPRLC, and it has been changed compared with

corresponding mapping entries stored in flash memory. Therefore, the physical translation

page TPPA 18, together with the updated mapping entries, arecopied to the free translation

page 39. The entry for TPPA 18 in the TPMT is changed to 39 correspondingly. In step (13),

translation page TPPA 12 is fetched into the TPRLC after the victim translation page TPPA

18 is kicked out. In step (14), the newly fetched-in mapping entry is the requested one.

DVBA DPPBA DRPBA

DVBA DPPBA DRPBA

512 0 1

513 4 6

... ... ...

767 31 32

TPPA=18 valid>invalid

Translation Page# 18

DVBA DPPBA DRPBA
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... ... ...

767 215 216

TPPA=39 free>valid

Translation Page# 39
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1683 17 20
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... ... ...

767 215 216
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(Second-Level Cache)
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... ... ...
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... ... ...
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Figure 2.4: Illustration of the address translation process in the DAC scheme with both levels

of caches missing.
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2.3.4 Read/Write Operation and Garbage Collection

After address translation, the target primary physical block address can be obtained. A read

or write operation can locate a data page through the offset in the corresponding primary

physical block. If the target data page is invalid or occupied, it is necessary to find the valid

page or a free page by searching the replacement physical block sequentially. For a write

(rewrite) operation, the new mapping should be updated in the cache correspondingly. If

the replacement block or the primary block is full, the blockmerge operation for the data

blocks will be invoked to release free space. The valid pagesin both the primary block

and the replacement block will be copied to a new free block and the two blocks will then

be erased. The page copy operations incur an address mappingchange. In order to keep

the cache synchronization, the mapping entries in both levels of caches should be updated

correspondingly after the garbage collection for data blocks. Since the first-level cache is

implemented in a set associative mapping approach while themapping entries in the second-

level cache are sequentially organized, it is easy to locateand update these changed mapping

entries.

The garbage collection is triggered when the number of free blocks decreases to a

threshold (i.e., 5% of blocks in the whole flash memory). For garbage collection, a fully

occupied block with the fewest number of valid pages will be selected as the victim block

based on a greedy policy. The valid pages in this block are copied to a new free block

and the victim block will then be erased. The page copies may also trigger the mapping

update; therefore, the corresponding mapping in the two-level cache and the translation page

mapping table should be updated simultaneously. In the block management technique, we

maintain one free block pool, which contains the newly erased blocks. One free block will

be allocated to serve the garbage collection either for the data blocks or for the translation

blocks. The wear-leveling of flash memory is managed automatically by locating the blocks

in a round-robin approach. Moreover, in order to reduce the block erase count and improve

the space utilization of NAND flash memory, we adopt the reuse-aware strategy [72, 94, 95]

when doing the block reclaim operations in our scheme. For the lower space utilization

36



problem caused by random writes in NFTL, the reuse-aware strategy can efficiently reduce

the block erase count, which improves the average system response time.

2.4 The Performance Analysis of DAC

This section provides an analysis of DAC to show how the main-memory (i.e., RAM) cost is

reduced and how the average system response time and the cache hit ratio are enhanced. We

first analyze the RAM requirements of different FTL schemes.We then discuss the system

performance of DAC and DFTL [33] when limited RAM space is available. Finally, we

investigate the extra address translation overhead of DAC over NFTL [14].

2.4.1 Improvement in RAM Cost

Table 2.1: RAM cost of different FTLs.

Capacity NFTL DAC Page-level FTL DFTL

32GB 1.5MB 4KB+Scache 96MB 128KB+Scache

64GB 3MB 9KB+Scache 512MB 1.5MB+Scache

In the design of FTL schemes, main-memory (RAM) cost and storage performance

[30] are the two major considerations from the point of view of vendors. In conventional FTL

schemes (NFTL and Page-level FTL), RAM cost refers to the storage cost on the address

mapping table. In demand-based FTL schemes (DAC and DFTL), the address mapping table

is stored in flash memory, and the RAM cost consists of two parts: the global management

table size (i.e., the TPMT in the DAC scheme) and the cache size. The mapping table size and

the global management table size depend on the page size and the flash capacity. Table 2.1

shows the RAM cost for different FTL schemes with 32GB and 64GB NAND flash memory,

respectively.Scache represents the cache size configuration. The cache size can be determined

by engineers in the system design phase according to the performance requirement and the

cost.
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For a 32GB NAND flash memory (2KB-sized page and 128KB-sized block), the

RAM footprint for NFTL is 1.5MB. Based on NFTL, our scheme uses a demand-based ap-

proach and reduces the RAM cost to 4KB (for the TPMT) plus the cache size. Since the

cache size can vary according to the requirements, the RAM cost reduction varies corre-

spondingly following the setup. We useSmt andSgt to represent the size of the address

mapping table and the size of the TPMT, respectively. Then, the improvement in RAM cost

can be calculated as follows:

(1−
Sgt + Scache

Smt

)× 100% (2.1)

For example, for a 32GB NAND flash, DAC shows a 95.57% and 91.41% reduction in RAM

cost when the cache size is set as 64KB and 128KB, respectively.

The RAM cost for a page-level FTL is 96MB when the flash size is 32GB. Based

on a page-level FTL, DFTL stores the 96MB-sized page-level mapping table in translation

blocks and sets up a global translation directory in RAM, which takes up 128KB of RAM

space. When the flash capacity is increased to 64GB, the global translation directory in

DFTL takes up 1.5MB of RAM space. These figures indicate that the DFTL scheme will

be unable to work when the RAM space is less than 1.5MB, but that DAC can work well

as long as the RAM space is marginally larger than 9KB. Our scheme shows a lower RAM

space requirement with better scalability.

2.4.2 Improvement in Cache Hit Ratio

The cache hit ratio is critical in determining the address translation efficiency. If the re-

quested mapping hits in the cache, the address mapping information can be obtained di-

rectly. The time overhead in this situation is the cache operations (cache read, cache write,

cache searching, etc.), which is only about 5µs in real applications. If the requested mapping

misses in the cache, the address mapping information needs to be read from flash memory.

The time overhead is at least one flash page read operation, which is about 30µs. Therefore,

having a good cache management mechanism is very important.
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Cache size is one critical factor that has an impact on the cache performance. Given

two caches with the same size and the same replacement algorithm, we can get a higher hit

ratio if more cache items can be included. In the DFTL scheme,each entry is one page-level

address mapping. In the DAC scheme, each entry in the first-level cache is one block-level

address mapping. The block-level mapping takes up much lessspace than the page-level

mapping. Therefore, more items can be maintained in the cache of DAC than in that of

DFTL. Moreover, one page-level mapping only represents themapping information of one

page. One block-level mapping can cover the mapping information of 64 pages if one block

includes 64 pages. The cache hit ratio in DAC may be 64 times higher than that in DFTL.

The replacement algorithm is another important factor affecting the cache hit ratio.

A good replacement policy should not only capture the temporal locality of workloads, but

also the spatial locality and access frequency of workloads. DFTL adopts a one-level cache

that captures the temporal locality well. In DAC, we use a two-level caching mechanism that

captures both the reference locality and the access frequency of workloads. For each fetch-

in operation in DFTL, one page-level mapping is read into thecache from flash memory,

with one page read time overhead. For each fetch-in operation in DAC, one block-level

mapping is read into the first-level cache. The corresponding translation page will also be

read into the second-level cache, and the time overhead is the same as that of DFTL. Thus,

according to the spatial locality in workloads, the coming request will hit in the second-level

cache in DAC, while a cache-miss may happen in DFTL. The DAC scheme should have a

higher cache hit ratio than that of the DFTL scheme under the same time overhead on cache

replacement.

A lower cache hit ratio leads to more translation pages beingflushed from cache to

flash memory. Thus, more flash space is consumed and more garbage collection will be

triggered, so that more block erase operations will be performed. In the DFTL scheme,

one page-level mapping table cache is adopted. One flush-back operation consumes one

free translation page. However, in the DAC scheme, more thanone flush-back operation

may consume one free translation page. This is because the second-level cache serves as

the kick-out buffer of the first-level cache, and the second-level cache can do the flush-back
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Figure 2.5: Illustration of kick-out operations in the DFTLscheme and the DAC scheme.
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operation in batches. Figure 2.5 (a) shows an illustrative example of kick-out operations

in the DFTL scheme. Two victim mapping entries in the CMT leadto the consumption of

two free translation pages (translation page #37 and translation page #38). In Figure 2.5 (b),

two victim mapping entries in the DBMTC in the DAC scheme are evicted to the TPRLC,

and one free translation page (translation page #19) is used. Therefore, the DAC scheme

has a higher space utilization ratio and lower translation block erase counts than the DFTL

scheme.

2.4.3 Extra Address Translation Overhead

In conventional FTL schemes, where the address mapping table is stored in main memory

(i.e., RAM), the address translation overhead is the time cost of the mapping table search-

ing in RAM. However, in demand-based FTL schemes, where the address mapping table

is stored in flash memory, besides the overhead of cache operations in RAM, some extra

overhead on the address translation procedure are introduced if the requested mapping ta-

ble is not maintained in the cache. The extra overhead is the time overhead to fetch (read)

the address mapping table from flash memory as well as the potential dirty mapping entries

kick-out (write-back) overhead from cache to flash memory.

In the DAC scheme, the extra overhead is the same as that of theNFTL scheme

when mapping entries hit in the cache. In the cache-miss situation, the extra overhead dif-

fers according to the status of the victim translation page in cache. If the victim translation

page is clean, the time overhead is one translation page read(Trd) operation (for the fetch-in

operation). Otherwise, if the victim translation page is dirty, the time overhead is one trans-

lation page write (Twr) operation (for the kick-out operation) and one translation page read

(Trd) operation (for the fetch-in operation). In order to reducethe extra address translation

overhead, the DAC scheme considers both the reference locality and the access frequency

of workloads. Moreover, the proposed cost-aware LRU replacement algorithm gives clean

pages a higher priority to be victim translation pages, so that fewer translation page write

operations need to be introduced.
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2.5 Evaluation

To evaluate the effectiveness of the proposed scheme, we conduct a series of experiments and

present the experimental results with discussions in this section. We compare and evaluate

our proposed DAC scheme over NFTL [14] and DFTL [33] in terms of address translation

overhead, average system response time, and cache hit ratio. In this section, we first intro-

duce the experimental setup. We then present the experimental results with discussions.

2.5.1 Experimental Setup

Table 2.2: Experimental setup.

Notebook

Configuration

CPU Intel Dual Core 2GHz

Disk Space 200GB

RAM 2GB

DiskMon Traces
CopyFiles, DownFiles, Web Applications,

Office, P2P, Media Player

Simulation

Environment

OS Kernel Linux 2.6.17

Flash Size 32GB

Simulator NAND Flash Simulator

Table 4.3 summarizes the experimental setup. We developed atrace-driven NAND

flash simulator under Linux 2.6.17 and implemented three schemes: DAC, NFTL, and DFTL.

A 32GB NAND flash memory with 2KB-sized page and 128KB-sized block is simulated. To

conduct a fair comparison with different FTL schemes, we consider only a portion of flash as

the active region that stores our workloads. The remaining flash is assumed to contain cold

data or free blocks, which are not under consideration. The framework of our simulation

platform, as shown in Figure 4.7, consists of two modules: a NAND flash simulator mod-

ule providing basic read, write, and erase capabilities; and a desired flash translation layer

management scheme that can be executed on top of the NAND flashsimulator. The traces,
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along with various flash parameters, such as block size and page size, page read time, page

write time, and so on, are fed into our simulation framework.Based on the flash memory

data sheet [3], the time cost to read a physical page, write a physical page, erase a physical

block, read the spare area of a physical page, and search one item in cache, are set as the

time consumption for one flash page-read and one flash page-write operation, and are set as

36.6µs, 226.7µs, 2000µs, 0.8µs, and 2µs, respectively.

DiskMon Traces

Input

Parameters
Experimental

Results

NAND

Flash

Simulator

Flash

Translation

Layer

Figure 2.6: The framework of the simulation platform.

The traces with data requests used in this simulation are collected by running DiskMon

[1] in Windows XP over a notebook with an Intel Dual Core 2GHz processor, a 200GB hard

disk, and a 2GB DRAM. The traces reflect the real workload of the system in accessing

the hard disk with applications that are used daily, such as those for web surfing, document

typewriting, downloading, and playing movies and games. For each trace, the numbers and

percentages of read and write operations are listed in Table2.3. Trace 1, Trace 2, and Trace 5

are write-dominant applications, while Trace 3 and Trace 4 are read-dominant applications.

Trace 6 owns similar percentages of read requests and write requests. The percentage of

sequential operations indicates the access pattern of traces in terms of the arrival sequence

of requests.

In the simulation, different RAM size configurations are simulated in order to explore

the relationship among RAM size, cache hit ratio, and average system response time. We

first consider that the three caches are all of the same size. Since the size of one flash page

is 2KB, the size of each cache is initialized to 2KB, and the three caches initially take up

6KB of RAM space . The sizes of the three caches are then increased incrementally and the

total cache size finally reaches 252KB. The RAM cost consequently becomes 256KB, since

the translation page mapping table takes up 4KB in our scheme. In the DFTL scheme, the

43



Table 2.3: The characteristics of the traces.

# of writes # of reads % of writes % of reads % of sequential operations

Trace 1 15,860,736 1,040,896 90% 10% 99.96%

Trace 2 8,198,708 2,471,266 77% 23% 53.50%

Trace 3 2,416,100 17,842,716 12% 88% 99.99%

Trace 4 639,193 8,518,437 7% 93% 50.01%

Trace 5 9,208,655 4,899,133 65% 35% 94.98%

Trace 6 8,903,616 10,906,320 45% 55% 97.91%

global translation directory takes up 128KB of RAM space. The cache size is initialized to

4KB and then increased to 128KB, which boots the RAM cost to 256KB. In the simulation,

we first collect the experimental results of our scheme undereight RAM size configurations

starting from 10KB to 136KB with an interval of 18KB. In orderto make a comparison with

DFTL, we then run the simulation with four RAM size configurations for both two schemes

starting from 136KB to 256KB with an interval of 30KB.

2.5.2 Results and Discussion

Results of DAC and NFTL

In this section, we compare and evaluate our proposed DAC scheme over the representative

block-level flash translation layer scheme NFTL [14] in terms of two performance metrics:

the average system response time and the extra address translation overhead. We first con-

ducted experiments to show how the RAM size influences the average system response time.

The results, in which the average response time of each tracecan be obtained by varying the

RAM size from 10KB to 256KB, are shown in Figure 2.7.

From Figure 2.7, we can see that, although the plots for different traces are different,

they all show the same trend: the average response time decreases as RAM size increases.
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Figure 2.7: The average system response time for DAC and NFTLwith different RAM size

configurations over six traces from Trace 1 to Trace 6.
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Figure 2.8: The cache hit ratio of DAC with different RAM sizeconfigurations over six

traces from Trace 1 to Trace 6.
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When the RAM size reaches 64KB, which takes 8.32% of the entire active mapping table

size (768KB) in flash memory, the average response time of alltraces are very close to or

even the same as that of the NFTL scheme. Therefore, on average, DAC reduces the RAM

cost by 91.68% under a 2.02% penalty to the average system response time compared with

the NFTL scheme. For Trace 1 and Trace 3, the average responsetime shows no change

when the RAM size varies from 10KB to 256KB. This is because the requests in Trace 1

and Trace 3 present much more sequential patterns. Their requested mapping can hit in a

very small cache, and the response time can be significantly reduced even with a small cache

size configuration. We can also see that the average responsetime of Trace4 in DAC is

much longer than that of the NFTL scheme when the RAM size is small. This is because

the response time of a read request at least doubles when a cache-miss happens. The read-

dominant requests with a higher random access pattern in Trace 4 leads to a lower cache hit

ratio, which increases the average response time.

Next, we present the experimental results in terms of the cache hit ratio and the

extra address translation overhead. Based on the NFTL scheme, the DAC scheme introduces

translation blocks and a caching mechanism for managing address mapping. Therefore,

the extra overhead of DAC includes all of the operations on the translation blocks, such as

the translation page read count, the translation page writecount, and the translation block

erase count. These extra overheads are incurred by the kick-out operation and the fetch-in

operation in the cache, which are determined by the cache hitratio.

Figure 2.8 presents the cache hit ratio in our scheme when theRAM size is limited

to 256KB. The cache hit ratio is influenced by both the cache size and the reference locality

of workloads. Traces with more sequential access pattern have more spatial locality. Traces

with frequent update operations should present more temporal locality. This can be verified

by the results of Trace 1 and Trace 5, shown in Figure 2.8. Whenthe RAM size is set as

10KB, the hit ratio almost reaches 100% for these two traces.For Trace 2 and Trace 4, the

cache hit ratio increases when the RAM size is increased. Thetrend of increase stops at one

point and no further improvement can be achieved. This is because the reference locality has

been entirely captured, and no more benefit can be obtained with the increased cache size.
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Figure 2.9: The number of translation page read in the DAC scheme with different RAM

size configurations over six traces from Trace 1 to Trace 6.
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Figure 2.10: The number of translation page write in the DAC scheme with different RAM

size configurations over six traces from Trace 1 to Trace 6.
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A higher cache hit ratio leads to fewer fetch-in operations in cache, and fewer trans-

lation page read operations are triggered. Otherwise, a lower hit ratio will cause more trans-

lation page read operations and more translation page writeoperations. Figure 2.9 and Fig-

ure 2.10 show the experimental results of a translation pageread count and translation page

write count, respectively. Due to the increasing hit ratio in cache, both the translation page

read count and the translation page write count for all of thetraces are decreased. For Traces

1, 3, 5, and 6, the hit ratio is constant but the translation page read count and the translation

page write count is decreased. This is because our scheme adopts a two-level caching mecha-

nism in which three caches are involved. The second-level cache serves as the kick-out buffer

for the first-level cache. When the size of the second-level cache is increased, more victim

translation pages in the first-level cache are evicted to thesecond-level cache and fewer vic-

tim translation pages are flushed back to flash memory. Therefore, fewer translation page

write operations are needed, and fewer translation pages are consumed. In particular, for

the read-dominant Trace 2, only 2 page write operations are triggered, and this number is

reduced to 1 with the increased cache size.

Results of DAC and DFTL

In this section, we compare and evaluate our proposed DAC over DFTL in terms of the cache

hit ratio with different RAM size configurations over six traces. We also compare the average

system response time and the extra address translation overhead of the two schemes under

the same scenario in which a limited amount of RAM space is given.

Figure 2.11 shows the cache hit ratio for DAC and DFTL under the same RAM size

configurations. In both schemes, the cache hit ratio shows the same trend of increase when

the cache size varies from 10KB to 256KB. Since the GTD takes up 128KB of RAM space in

DFTL scheme, the DFTL scheme cannot work when the RAM size is smaller than 128KB.

In Figure 2.11, we only show the cache hit ratio of DFTL when the RAM size is larger than

128KB. From the figure, we can see that the cache hit ratio of DFTL increases when the cache

size increases. However, the cache hit ratio for DAC is much higher than that of DFTL when

50



0 40 80 120 160 200 240
0

20

40

60

80

100
H

it 
R

at
io

 (
%

)

RAM Size (KB)

 

 DAC
 DFTL

(a) Trace 1

0 40 80 120 160 200 240
0

20

40

60

80

100

RAM Size (KB)

H
it 

R
at

io
 (

%
)

 

 

 DAC
 DFTL

(b) Trace 2

0 40 80 120 160 200 240
0

20

40

60

80

100

RAM Size (KB)

H
it 

R
at

io
 (

%
)

 DAC
 DFTL

(c) Trace 3

0 40 80 120 160 200 240
0

20

40

60

80

100

RAM Size (KB)

H
it 

R
at

io
 (

%
)

 

(d) Trace 4

0 40 80 120 160 200 240
0

20

40

60

80

100

RAM Size (KB)

H
it 

R
at

io
 (

%
)

 DAC
 DFTL

(e) Trace 5

0 40 80 120 160 200 240
0

20

40

60

80

100

H
it 

R
at

io
 (

%
)

RAM Size (KB)

  DAC
 DFTL

 

(f) Trace 6

Figure 2.11: The cache hit ratio of DAC and DFTL with different RAM size configurations

over six traces from Trace 1 to Trace 6.
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Figure 2.12: The average response time for DAC and DFTL with different RAM size con-

figurations over six traces from Trace 1 to Trace 6.
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they have the same RAM size configuration. The improvement inthe cache hit ratio in our

scheme comes from the larger mapping granularity and the two-level caching mechanism.

In our scheme, we use the coarse-grained block-level mapping approach while DFTL adopts

a fine-grained page-level mapping approach. Our scheme has amuch smaller mapping table

than DFTL, and more mapping items will be cached under the same cache size. Another

factor that influences the cache hit ratio is the cache design. In our scheme, two-level caches

are designed, and both temporal locality and access frequency are considered. In DFTL, the

one-level cache only takes into account temporal locality.

Page-level FTL is considered to have a better response time than block-level FTL. We

compare the average system response time of page-level mapping-based DFTL scheme with

our block-level mapping-based DAC scheme. Figure 2.12 presents the average response time

of these two schemes. DFTL shows a better average response time for write-dominant traces

(Trace 1 and Trace 2) and a worse average response time for read-dominant traces (Trace

3 and Trace 4) compared with the DAC scheme. This is based on the fact that the page-

level FTL scheme triggers garbage collection later than theblock-level FTL scheme. DAC

scheme can achieve benefit from the improvement in the cache hit ratio; however, the benefit

cannot counteract the penalty caused by the earlier-triggered garbage collection overheads.

For read-dominant traces, the higher hit ratio in DAC can reduce the average response time,

since fewer block erase operations are involved in both DAC and DFTL.

Table 2.4 presents the cache hit ratio and the average response time of these two

schemes when the RAM size is 132KB. From the results, we can see that the DAC scheme

has a higher cache hit ratio (74.31% higher on average) than the DFTL scheme. For most of

the traces, our scheme shows a faster average response time.However, it shows a 28.46%

slow-down in the average response time for Trace 2 when compared with DFTL. This is

because Trace 2 is a write-dominant trace that has far fewer sequential writes than other

write-dominant traces (i.e., Trace 1 and Trace 5). For random requests, the block-level FTL

triggers more garbage collection overhead than the page-level FTL. This can be verified from

the results shown in Table 2.5. Considering all of the traces, DAC achieves a 27.65% reduc-

tion in average response time compared with the DFTL scheme.Therefore, the demand-
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Table 2.4: Performance for DAC and DFTL with 132KB RAM.

Hit Ratio (%) Average System Response Time (µs)

DAC DFTL improvement DAC DFTL improvement (%)

Trace 1 99.99 0.23 99.76 532 535 0.56

Trace 2 99.95 74.79 25.16 343 267 -28.46

Trace 3 82.75 0.02 82.73 39 105 62.85

Trace 4 78.84 0.07 78.77 42 114 63.15

Trace 5 99.58 5.83 93.75 251 435 42.29

Trace 6 84.69 18.96 65.73 268 360 25.55

Average 74.31 27.65

based block-level mapping scheme outperforms demand-based page-level mapping scheme

when limited RAM size is provided. Table 2.5 shows the address translation overhead of

these two schemes. In the table, columns “D.Copy,” “D.Era.,” “T.Rd,” and “T.Wr” represent

the copy count of data pages in the garbage collection procedure, the data block erase count,

the translation page read count, and the translation page write count, respectively. “D.Copy”

and “D.Era.” indicate the garbage collection overhead on data blocks while “T.Rd,” “T.Wr”

and “T.Era.” describe the address translation overhead caused by the on-demand address

mapping approach. These five metrics directly determine theaverage system response time.

From the results shown in Table 2.5, we can see that the DFTL scheme shows much

less overhead than the DAC scheme in terms of garbage collection on data blocks. For

example, the data block copy count and the data block erase count in DFTL are an order

of magnitude smaller than that of DAC for most traces. This isbased on the fact that the

fine-grained page-level mapping scheme has a higher space utilization ratio than the coarse-

grained block-level mapping scheme. DFTL triggers the garbage collection of data blocks

much later than the DAC scheme. However, DAC has much less overhead on the translation

block operations. This can be proved by the fact that the translation block erase counts for

six traces in DAC scheme are zero. This overhead reduction comes from the higher cache
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Table 2.5: Overhead for DAC and DFTL with 132KB RAM.

DAC scheme DFTL scheme

Traces D.Copy D.Era. T.Rd. T.Wr. T.Era. D.Copy D.Era. T.Rd. T.Wr. T.Era.

Trace1 8.9E6 2.8E5 43 0 0 0.1E5 1.2E5 2.0E7 0.9E7 1.E5

Trace2 4.2E6 2.1E5 5,007 0.3E4 0 3,592 9,210 0.5E7 0.2E7 0.3E5

Trace3 0 0 1,864 1 0 0 0 4.0E7 17,065 0

Trace4 94 54 9.0E5 1 0 0 0 1.8E7 10,813 0

Trace5 3.5E6 1.1E5 6,555 0.3E4 0 4.0E5 0.7E5 2.6E7 1.0E7 1.5E5

Trace6 6.8E6 2.5E5 0.5E5 3.3E4 0 9.0E5 1.1E5 3.2E7 1.1E7 1.1E5

Average 3.9E6 1.4E5 3.3E5 0.E4 0 2.2E5 0.5E5 2.4E7 0.5E7 0.7E5

hit ratio, which significantly decreases the write operations in the translation blocks. The

reduced overhead enables DAC to have better system performance than DFTL when the

RAM size configuration is very small.

Impact of Cache Size Allocation

For the above experiments, the size of each cache is fixed and equal to each other. To

explore the impact of performing different cache size allocations performed on the system

performance, we run the simulation with more cache size configurations. Since three caches

are involved, we fix two cache sizes while varying the size of the other one. We assume

that the whole cache size is 64KB, and the cache size of each ofthe two caches is 16KB,

while the size of the other cache varies from 0KB to 32KB. Two traces, Trace 2 and Trace

6, are taken since they represent the random-dominant traceand the sequential-dominant

trace, respectively. Figure 2.13 shows the cache hit ratio and the translation page read and

translation page write overheads of our scheme. In the figure, Cache-I means the first-level

cache ( i.e., the DBMTC), while Cache-II(1) and Cache-II(2)represent the first cache (i.e.,

the TPRLC) and the second cache (i.e., the TPAFC) of the second-level cache, respectively.
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Figure 2.13: Performance of the DAC scheme with different cache size configurations over

Trace 2 and Trace 6.
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The X-axis in each figure means that the cache size of one cache(i.e., Cache-I) is increasing

from 0KB to 32KB with an interval of 4KB while the other two caches (i.e., in Cache-II)

are fixed at 16KB. The curve corresponding to each cache showsthe variation in the system

performance.

From Figure 2.13 (a), we can see that the cache hit ratio increases as the cache size

increases. However, the first-level cache has more impact onthe cache hit ratio than the

other two caches. For example, the hit ratio of Cache-I growsmuch faster than that of the

other caches with the same interval of increase. This is because the first-level cache has

fine granularity and each cache line stores one single mapping entry. In the second-level

cache, each cache line stores one translation page, which includes multiple mapping entries.

The first-level cache is much more flexible and effective at improving the cache hit ratio,

especially for traces with more random-access patterns. The improved cache hit ratio leads

to less translation page read and translation page write overhead. This can be verified by the

results shown in Figure 2.13 (b) and (c). Moreover, Cache-II(1) shows a lower reduction in

the translation page write count than the other two caches. This is due to the fact that only

53.50% of the requests in Trace 2 are sequential. Cache-II(1) has captured all of the spatial

locality with a very small configuration size, and no furtherbenefit can be achieved when

the size continues to increase. Therefore, the curve of the translation page write count for

Cache-II(1) is smoother that that of other caches.

Figure 2.13 (d)-(f) show the results of Trace 6. Trace 6 is a sequential-dominant trace

with 97.91% of requests accessing the disk sequentially. Figure 2.13 (d) presents the cache

hit ratio of Trace 6. From the figure, we can observe that the cache hit ratio shows no big

change when the cache size is increased, which is the same as the result shown in the above

section. However, the constant cache hit ratio does not meanthat the other two caches have

no functions. As shown in Figure 2.13 (e) and (f), the translation page read count and the

translation page write count are significantly reduced. This is because that we designed the

second-level cache to serve as the kick-out buffer of the first-level cache. With the increase

in the size of the second-level cache, more dirty pages are served in the second-level cache,

and less flush-back overhead is needed. From the figure, we canalso see that there is more
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improvement in the kick-out overhead in Cache-II(1) than inCache-II(2) and Cache-I. This is

because Trace 6 is a sequential-dominant trace, while Cache-II is specially designed for this

kind of workloads. The results shown in Figure 2.13 serve as the guidelines for allocating

cache sizes for different workloads. The size of the first-level cache should be larger than

that of other two caches if the application is random-dominant. Otherwise, the size of the

second-level cache, especially the size of Cache-II(1), should be larger than that of the other

two caches.

2.6 Summary

In this chapter, we proposed a demand-based block-level address mapping scheme with two-

level caches (DAC) in large-scale NAND flash storage systemsto reduce the RAM footprint

without excessively compromising system performance. In DAC, block-level NFTL was

adopted as the baseline scheme. Instead of the traditional approach of storing the address

mapping table in the RAM, we stored the block-level address mapping table in the flash

memory, and only cached the demanded mapping entries into the RAM. A two-level caching

mechanism was designed to improve the cache hit ratio by together exploring the tempo-

ral locality, spatial locality and access frequency in workloads. The experimental results

showed that our scheme can considerably reduce the RAM cost while keeping the average

system response time well under control. In particular, on average our technique achieves a

91.68% reduction in RAM cost with only a 2.02% penalty to the average system response

time compared to previous work. Moreover, our scheme showeda better cache hit ratio and

faster average system response time compared with DFTL whenthe cache size is limited in

resource-constrained embedded systems.
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CHAPTER 3

MNFTL: AN MLC NAND FLASH TRANSLATION LAYER

WITH POSTPONED GARBAGE COLLECTION

3.1 Overview

NAND flash memory has been widely used in various storage systems due to its unique

characteristics, such as non-volatility, low power-consumption, and fast access time. In re-

cent years, multi-level cell (MLC) NAND flash memory has become the mainstream in the

market for large-scale storage systems. A new NAND flash technology, MLC technology

further increases the capacity of NAND flash memory chips by storing more than one bit of

data per cell instead of the traditional one bit of data per cell used in single-level cell (SLC)

technology. However, this new technology also introduces two write constraints. First, the

pages within a block must be programmed (written) consecutively from the least significant

bit (LSB) pages to the most significant bit (MSB) pages [11]; second, partial-programming

is allowed for only once [6] in one page. These two constraints pose new challenges for

existing flash translation layer (FTL) schemes that were originally designed for SLC NAND

flash memory. This chapter proposes a novel flash translationlayer to cope with the problems

caused by these two constraints in MLC NAND flash storage systems.

In the past decade, three types of flash translation layer (FTL) schemes have been

proposed: page-level mapping, block-level mapping, and hybrid-level mapping. Page-level

FTL can allocate the pages within a block sequentially without recording the page status

(valid or invalid) in the spare area. Therefore, page-levelFTL is still usable to MLC flash.

However, page-level FTL is unsuitable for a large-sized MLCflash due to the large address

mapping table. How to reduce the size of the address mapping table is a crucial issue. Based
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on page-level FTL, the DFTL scheme [33] stores the address mapping table in flash memory

and only caches a small number of active mappings in RAM. It effectively reduces the RAM

cost; however, it incurs extra valid page copies when maintaining the address mapping table

in the flash memory. Block-level FTL schemes [14, 83, 95] use the block offset to locate the

pages within a block, and the pages may be programmed randomly within a block. Therefore,

block-level FTLs may not be applicable to MLC flash.

In hybrid-level FTL schemes, physical blocks are logicallypartitioned into data

blocks (primary blocks) and log blocks (replacement blocks) [24, 26, 28, 48, 68, 77, 99]. A

data block is used to store the first written data, while the updated data are stored in log

blocks. In data blocks, most of these schemes adopt the block-level mapping approach and

use the block offset to locate the pages. In the GFTL scheme [28], the pages can be written

sequentially within a block; however, the average system response time is slower due to the

earlier-triggered garbage collection. In the superblock based FTL scheme (SFTL) [48], the

garbage collection may be triggered earlier by log blocks, and extra valid page copies may

be needed. We have observed that valid page copies will directly incur the garbage collection

overhead. Therefore, it is necessary to design a flash translation layer that will not only be

applicable to MLC flash but also reduce the garbage collection overhead.

In this chapter, we propose a novel flash translation layer (FTL) called MNFTL for

MLC NAND flash memory storage systems. We analyze several fundamental problems in

the design of the MLC flash translation layer, and observe that unnecessary valid page copies

cause the garbage collection overhead. In order to reduce the number of valid page copies,

we propose two approaches to design the flash translation layer: concentrated mappingand

postponed reclamation. Since the number of valid pages within one fully occupied block de-

pends on the address mapping approach, concentrated mapping is utilized to store the written

data and its updated data in the same physical block so that the invalid pages can be concen-

trated closer to each other. Moreover, a valid page may become invalid if the block to which

it is allocated is later to be reclaimed. Thus, postponed reclamation is adopted to postpone

the time at which the garbage collection is triggered, so that the number of invalid pages

within one block can be increased. Both of the two approachesreduce the number of valid
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pages within the victim block that will be selected for garbage collection. In our approach,

concentrated mapping uses the page-level mapping approach, so that the write constraints of

MLC NAND flash can be satisfied. The corresponding page-levelmapping table is stored

in the spare area of the newly allocated pages, while the pagemapping table indices are

recorded in the RAM. Therefore, limited RAM space is used. Weconduct experiments on a

set of benchmarks. The experimental results show that our scheme presents a reduction of

30.09% on the average system response time compared with previous work.

This chapter makes the following contributions:

• We present for the first time a flash translation layer to hide the new write constraints

of MLC NAND flash memory.

• Our scheme is the first work that reduces the garbage collection overhead by reducing

the number of valid page copies in the design of the MLC flash translation layer.

• We demonstrate the effectiveness of our techniques by comparing them with some

representative FTLs using a set of realistic I/O workloads.

The rest of this chapter is organized as follows. Section 3.2shows the background

and the problem analysis in the FTL design. Section 3.3 presents our proposed MLC NAND

flash translation layer scheme in detail. In Section 3.4, we present the performance evaluation

of our scheme. Finally, we present our conclusions in Section 3.5.

3.2 Background and Problem Analysis

In this section, we first introduce the MLC NAND flash memory that is the focus of this chap-

ter. Then, we analyze the problems posed by MLC flash in designing the flash translation

layer. Finally, we give the motivation of this chapter.

61



3.2.1 MLC NAND Flash Memory

For today’s media-rich mobile consumer electronics, NAND flash is widely adopted as the

non-volatile memory-of-choice for multimedia and Internet capability. There are two types

of NAND flash memory architecture: Single-Level Cell (SLC) and Multi-Level Cell (MLC).

SLC NAND flash ICs have one bit of data stored per memory cell, and two states: erased

(1) or programmed (0). MLC NAND flash ICs have two bits of data stored per memory cell,

and four states: erased (11), two thirds (10), one third (01), or programmed (00). Figure 3.1

(a) and (b) show the voltage references for SLC flash and MLC flash, respectively. The

complex architecture of MLC NAND flash increases the capacity of the NAND flash memory

chip; however, it also results in a performance disadvantage when compared to SLC NAND

flash. Since MLC NAND flash has four states, it must expend moreenergy in managing the

electrical charge during operations. Therefore, energy consumption is greater with MLC than

with SLC. The program and erase operations of MLC NAND flash last 10,000 cycles, while

those of SLC NAND flash last 100, 000 cycles. Moreover, the complex architecture of MLC

NAND flash introduces two constraints in programming data. Random page programming

within one block and multiple partial page programming within one page are no longer

allowed. The two write constraints pose new challenges for its management, in particular,

with regard to design of the flash translation layer.
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Figure 3.1: Voltage references for SLC and MLC flash cell.
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3.2.2 Problem Analysis

In this section, we analyze some fundamental problems in thedesign of the MLC flash

translation layer, taking into consideration the new writeconstraints of MLC flash.

Our first objective is to answer the following question:is page-level mapping a must

in the design of the MLC NAND flash translation layer?In a block-level FTL [14], a logical

page number (LPN) is divided into a logical block number (LBN) and a block offset (BO),

and the logical block number is translated to a physical block number (PBN). The block

offset helps to find the target page within the physical block. Given the logical page number,

divided by the number of pages in a physical block, the quotient is the logical block number

and the remainder is the block offset. When the block offset is used to locate the physical

page, a set of consecutive pages in the logical block is usually stored in the same physical

block. But the physical pages might be written randomly for the random pages in the logical

block. This situation also exists in hybrid-level FTL schemes [26,68,77,99], which adopt the

block offset to locate pages in their block-level mapping schemes. In a page-level FTL [13],

an LPN is translated to a physical block number (PBN) and a physical page number (PPN).

Since a logical page can be mapped with a physical page in any location in flash memory,

sequential allocation of the pages within a block is allowed. In addition, the pages maintained

in the mapping table are valid, so the page status (valid or invalid) does not need to be

stored in the spare area. Therefore, the page-level mappingapproach is potentially beneficial

in overcoming the write constraints in MLC flash. Our observation is that thepage-level

mapping approach is necessary in designing the MLC flash translation layer.

Flash Space:

M-N E

Requested Write Data:

(b) M > N

N

N

Flash Space:

N

 M

Requested Write Data:

(a) M < N

Figure 3.2: Extra overhead in garbage collection.
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Another challenge we face in designing the FTL is the garbagecollection overhead.

Therefore, the next question we investigate is:what is the fundamental overhead for garbage

collection in NAND flash memory?Given a set of write requests, we assume that the total

amount of space required to store the requested data isM, and that the total amount of space

that the flash memory chip can provide isN. If M≤N, as shown in Figure 3.2(a), the flash

memory chip can provide enough space to store the requested data, and no garbage collection

is needed. For this case, smart FTL schemes should not incur any garbage collection. If

M>N, as shown in Figure 3.2(b), the flash memory chip will not haveenough space to service

all of the requests. In order to store theM-N data into the flash chip, garbage collection

must be performed to reclaim some obsolete space scattered over the flash chip. During the

garbage collection, valid pages in the victim block need to be copied into blocks that contain

free pages, which require extra space to store these valid pages. We assume that this extra

space isE, whereE indicates the garbage collection overhead. For this case, FTL schemes

should try to minimize this garbage collection overhead. Based on this analysis, the first

observation we make is thatthe valid page copies cause the essential garbage collection

overhead in NAND flash memory.
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Figure 3.3: Two mapping approaches and postponed reclamation.

Since reducing valid page copies can cut down the garbage collection overhead, our

next step is to explore in detail the method involved in effectively reducing the number of

valid page copies in garbage collection. Two factors determine the number of valid pages in a

physical block that is selected as a victim block, the distribution of write (update) operations
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mapped to this block, and the time required to trigger the garbage collection to turn this block

into a victim block. The first factor is based on the dedicatedFTL scheme. If a write request

is mapped to a physical block that contains the old version ofdata, the number of valid page

copies may be reduced. Figure 3.3 shows an example. For the purpose of demonstration,

we assume that each physical block has four pages. Given a setof write requests (A, B, A1,

B1, A2, B2, C, D), A1, A2 are updated versions ofA, andB1, B2 are updated versions ofB.

In Figure 3.3(a),A andB together with updated versionA1 andB1 are mapped to block0,

while A2, B2, C, andD are mapped to block1. All four pages in block0 are invalid, and

no valid page copy is needed when reclaiming block0. This mapping is calledconcentrated

mapping. In the separated mapping approach shown in Figure 3.3(b), block 0 is designed

to store the first version of data. When block0 is selected as a victim block to perform

garbage collection, two valid page copies (forA andB) are needed. This example shows

that concentrated mapping outperforms separated mapping in reducing the number of valid

page copies.

The time at which to trigger the garbage collection also affects the number of valid

pages in a victim block. An example is shown in Figure 3.3(c).At time t0, when block0

is selected as a victim block, two valid page copies (C andD) are needed. If thepostponed

reclamationapproach is applied to postpone the time for garbage collection, the number of

valid page copies may be reduced as well. At timet1, t1>t0, D is updated by the new version

of the data, and only one valid page copy (C) is needed when performing garbage collection.

Therefore, the second observation that we make is thatconcentrated mapping and postponed

reclamation are effective at reducing the number of valid page copies.

3.2.3 Motivation

Duo to the write constraints in MLC flash, most existing FTL schemes have a limited ability

to manage the MLC flash memory storage systems. Page-level FTLs [13] can be used for

MLC without modification; however, the big RAM footprint is an issue for large-capacity

based MLC NAND flash memory. GFTL [28], DFTL [33], and SFTL [48] can be used in
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MLC flash; however, they suffer from a slow average system response time due to the earlier-

triggered garbage collection. How to design an efficient FTLscheme for MLC becomes an

important issue. Through an analysis of the problem in abovesection, we make three ob-

servations. First, the page-level mapping approach is necessary for the MLC FTL design

if the two write constraints are to be overcome. Second, valid page copies are the essential

garbage collection overhead. Third, concentrated addressmapping and postponed reclama-

tion can effectively reduce the garbage collection overhead. These observations provide us

with insights on how to design an efficient flash translation layer for MLC flash.

3.3 MNFTL: MLC NAND Flash Translation Layer

In this section, an efficient hybrid-level MLC NAND flash translation layer, called MNFTL,

is proposed. In our scheme, the page-level mapping approachis applied to each logical

block in which concentrated mapping is deployed and limitedRAM space is taken. In Sec-

tion 3.3.1, an adaptive block-level mapping scheme is also proposed in which the postponed

reclamation mechanism is implemented. In Section 3.3.2, detailed write and read opera-

tions in MNFTL are presented based on the hybrid-level address mapping scheme. In Sec-

tion 3.3.3, a novel garbage collection policy is introducedto reduce the number of valid page

copies and block erase counts.

3.3.1 MNFTL with Concentrated Address Mapping

In MNFTL, one logical page number is translated to one logical block number (LBN) and

one block offset (BO) as shown in Figure 3.4. One logical block is mapped withM physical

blocks. M is varied in an on-demand fashion. If more write (update) requests are issued

to one logical block, more physical blocks will be needed, and M will be increased corre-

spondingly. Otherwise,M will be decreased when these physical blocks are reclaimed.The

block mapping table (BMT) for each logical block is represented by a linked-list. The head

of a list is the logical block number (LBN) and each node in thelist is one physical block
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number (PBN) that is mapped to this LBN. The pages in one logical block are managed with

the page-level mapping approach. Each page in one logical block can be mapped with any

physical pages in its correspondingM physical blocks. Pages are mapped and programmed

sequentially in each physical block. The page mapping table(PMT) for each logical block is

divided intoN sub-tables, and each sub-table is stored in the spare area (OOB) of the newly

mapped physical page.N pointers are recorded in RAM as the indices of the page mapping

table. The value ofN depends on the size of the page mapping table of one logical block and

the size of the spare area (OOB) of one physical page.

LBN PPN_1 PPN_2 PPN_N PBN_0 PBN_1

N M

Page Mapping Table Index Block Mapping Table 

LBN

LPN

BO

 Flash Block

BO
PPN

0 1 P-2 P-1

PMT_1 PMT_2 PMT_N

Page Mapping Table for One Logical Block

PPN

LPN: Logical page number LBN: Logical block number PMT: Page mapping table

PPN: Physical page number PBN: Physical block number BO: Block offset

Figure 3.4: Address translation in MNFTL.

Figure 3.4 shows the block mapping table (BMT) for one LBN in RAM and the page

mapping table (PMT) for one logical block. In block-level mapping, one logical block can

be mapped to any physical block in the whole flash memory. The blocks mapped to one

LBN form a linked-list, and the linked-list of all LBNs form alinked-list array. In page-

level mapping for each logical block, one logical page can bemapped with any physical

page in its corresponding physical blocks. Suppose both onelogical block and one physical

block includePpages, so that the entire page-mapping table for one logicalblock hasP rows.

Assume that the spare area of one physical page can storeQ (P≥Q>0) rows of mapping slots.

The whole page mapping table is then divided intoN sub-tables according to the logical page

number, whereN=⌊P/Q⌋. One sub-table together with the requested data is written into the
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spare area and the data area of the mapped physical page separately. This programming

operation can be implemented in one write cycle, so it obeys the new constraints for MLC

NAND flash memory [6]. Besides that, in the block mapping table (BMT), N pointers point

to the physical pages, which store the newest version of the page mapping table. In this

way, the page mapping table (PMT) can be obtained directly byreading the spare area of the

physical pages while limited RAM space is taken when doing address translation.

Managed by the block-level mapping approach in MNFTL, all ofthe data accessing

the same logical block are concentrated in one or more physical blocks. The first written data

and the re-written data are consequently distributed closer to each other, which increases the

possibility that an invalid page can be allocated within onephysical block. The number of

invalid pages within one block can be increased and the number of valid page copy oper-

ations reduced when the block is selected as the victim by thegarbage collection process.

Therefore, the concentrated mapping approach can reduce the garbage collection overhead.

3.3.2 MNFTL Reads and Writes

A write request issued from the file system is represented by apiece of data and a logical

page number (LPN), e.g.,write(A,35). Given the LPN, divided by the page numbers in one

logical block, the quotient is the logical block number (LBN), and the remainder is the block

offset (BO). After the translation from logical page numberto logical block number, the first

write to a given logical page is to the first free page in a free physical block that is mapped

to the logical block. Once a physical block is mapped, pages are allocated sequentially,

regardless of whether the operation is a write or an update operation. AfterP writes, the

physical block becomes full, and a new free physical block will be allocated to the logical

block if necessary. When a new page is mapped, the newest version of the page mapping

sub-table (which includes the requested block offset) willbe read out from the spare area

of the page pointed to by pointers in the block mapping table.The corresponding mapping

slot will be updated and then written to the spare area of the new page, together with the

requested data written to the data area. The pointer in the block mapping table will also
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point to the new physical page. The time taken for a write request is one OOB read and one

page write (T rdoob + T wrpg) if a free block and a free page are available.

4 136 94 11 17 ^

4 88 11 ^

4 88 89 11 ^

4 90 89 11 ^

4 91 89 11 ^

4 92 89 11 ^

4 93 89 11 ^

4 93 94 11 ^

4 95 94 11 ^

4 136 137 11 17 ^

4 136 138 11 17 ^

4 136 138 11 17 ^

W (A, 35)

W (B, 36)

W (C, 34)

W (D, 34)

W (E, 34)

W (F, 33)

W (G, 37)

W (H, 35)

W (I, 34)

W (J, 39)

W (K, 37)

Original BMT

New BMT

PPN_1LBN PPN_2 ^

A
0 1 32

PMT_0: 88

B 89
4 5 76

PMT_1:

C
0 1 32

PMT_0: 90 88

D
0 1 32

PMT_0: 91 88

E
0 1 32

PMT_0: 92 88

F
0 1 32

PMT_0: 93 92 88

G 89
4 5 76

PMT_1: 94

H
0 1 32

PMT_0: 93 92 95

I
0 1 32

PMT_0: 93 136 95

J 89
4 5 76

PMT_1: 94 137

K 89
4 5 76

PMT_1: 138 137

Data storing in Flash memory

Data Spare Area (OOB)PPN

Physical Block# 11

Physical Block# 17

88

89

90

91

92

89

90

91

136

137

138

143
R (39)

(2) 39%8=7(1) 39/8=4

(3)

BMT: Block mapping table LBN: Logical block number PPN: Physical page number

PMT: Page mapping table Step (1)             (4): Address translation procedureW: write  R: read

Figure 3.5: Illustration of address translation in MNFTL.

An example of a write operation in MNFTL is given in Figure 3.5. Assume that

each block has eight pages, and that the page mapping table for one logical block is divided

into two parts:PMT 0 (BO:0-3)andPMT 1 (BO:4-7). The original block mapping table

is free. For the first write requestwrite(A,35), the correspondingLBN andBO are4 and3,

respectively. A new free blockPBN=11 is allocated, and the dataA is written into the data

area of the first free pagePPN=88. The updated mapping sub-tablePMT 0 is stored in the

spare area of pagePPN=88. The corresponding pointerPPN 1 in the block mapping table

simultaneously points toPPN=88. After eight writes, the physical blockPBN=11 becomes

full, a new free blockPBN=17 is allocated, and the data are written sequentially into the

pages. After 11 writes from the file system, the new block mapping table is given. For the
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logical blockLBN=4, two physical blocks are consumed.PPN 0=136andPPN 1=138point

to the new version of the page mapping table for this logical block.

A read request issued from the file system is represented by a logical page number

(LPN), e.g.,read (39). The corresponding LBN will first be searched in the block mapping

table. Then, the page mapping sub-table for the requested BOcan be obtained using the

pointer in the block mapping table. From the sub-table, we can get the physical page, which

stores the requested data. The time overhead for one read request is one OOB read and one

page read:T rdoob + T rdpg. In Figure 3.5, an example is given for read requestread(39).

In step(1)-(2), using theLBN=4 and BO=7, we obtain thePPN 1=138, which stores the

requested page mapping table. In step(3), by reading the spare area, we get thePMT 1

(BO:4-7)and the target pagePPN=137. By reading the data area of target pagePPN=137,

we obtain the valid target dataJ.

3.3.3 MNFTL with Postponed Garbage Collection

The garbage collection mechanism in MNFTL aims to reduce thenumber of valid page

copies and block erase counts. It is invoked once there are nofree blocks to allocate. One

fully occupied physical block with the fewest valid pages inthe whole flash memory will

be selected as the victim block. The valid pages in the victimblock are copied to another

physical block, which is mapped to the same logical block along with the victim block. Since

the concentrated mapping approach is adopted in MNFTL, the number of valid page copies

can be reduced. Moreover, the physical blocks are allocatedin an on-demand fashion, and

the garbage collection is triggered until all of the blocks are used. This is different from the

address mapping approach adopted by existing FTL schemes, in which one or more physical

blocks can only be mapped to specific logical block(s). The fixed mapping management trig-

gers the garbage collection earlier, before all of the blocks are used. Therefore, the garbage

collection in MNFTL actually delays the time at which to reclaim the invalid space. The

delayed reclamation may enable a valid page to become invalid so that the number of invalid

pages can be increased and the number of valid page copies canbe reduced. In MNFTL, the
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garbage collection of a victim block amounts to the following steps:

A PMT_0

B PMT_1

Data OOB

C PMT_0

D PMT_0

E PMT_0

F PMT_0

G PMT_1

H PMT_0

88

89

90

91

92

93

94

95

I PMT_0

Data OOB

136

137

138

139

140

141

142

143

Data OOB

88

89

90

91

92

93

94

95

I PMT_0

B PMT_1

Data OOB

F PMT_0

G PMT_1

H PMT_0

136

137

138

139

140

141

142

143

Physical Block# 11 Physical Block# 17 Physical Block# 11 Physical Block# 17

Before garbage collection After garbage collection

Invalid page Valid page Free pageCopy

Figure 3.6: Garbage collection in MNFTL.

1. Select the victim block: In this step, the block with the fewest valid pages is

selected as the victim block. If the pages in this block are not referenced in the page mapping

table, then they are invalid, otherwise, they are valid. Thetime cost to identify the valid

pages in the block isN × T rdoob, whereN is the number of sub page mapping tables for

one logical block. In Figure 4.5, suppose the physical blockPBN 11is selected as the victim

block afterpage 136in PBN 17is written, andPBN 17is the new block mapped to the same

logical block. In that case, victim blockPBN 11has four valid pages which will be copied

to the free pages in physical blockPBN 17.

2. Copy the valid pages: The pages in the victim block can be classified into three

types according to the difference in state between the data area and the spare area. (a) Full

valid page: both the data area and the spare area are valid (e.g., page 94in Figure 4.5). (b)

Full invalid page: both the data area and space area are invalid (e.g.,page 88). (c) Partial

valid page: the data area is valid and the spare area is invalid (e.g.,page 89). When copying

one valid page (regardless of whether it is a full valid page or a partial valid page) to a new

block, we need to read out its mapping sub-table, and write the updated mapping sub-table

as well as the data into a new free page. Assume that there areS valid pages in the victim

block, the time overhead to copy these valid pages isS × (T rdpg + T wrpg).
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3. Erase the victim block: The victim block (e.g.,block 11) is erased with time

overheadT er. Figure 4.5 shows an example of the garbage collection procedure in MNFTL.

The total time cost of this process isN×T rdoob+S×(T rdpg+T wrpg)+T er. Instead

of fully searching all physical blocks, we first select the victim block from the logical block,

which has been mapped with the maximum number of data blocks when garbage collection

is triggered. If more physical blocks are mapped to one logical block, then more update

operations are performed in the mapped physical blocks so that fewer valid pages can be

obtained from the victim block. Let us suppose one block hasP pages. IfP physical blocks

are mapped to the same logical block, then each physical block has at most one valid page

left; if P+1 physical blocks are mapped to the same logical block, at least one of the physical

blocks will not have valid pages, which is the ideal scenarioto reduce the garbage collection

overhead. Moreover, there are obvious working and idle timeperiods in a working cycle

for most real applications. In fact, we can perform reclaim operations on the logical blocks

mapped with many physical blocks when the system is idle. In this way, by utilizing the idle

period, more free blocks can be generated. Moreover, the wear-leveling of flash memory in

MNFTL is managed automatically by locating the blocks in a round-robin approach.

3.4 Evaluation

In this section, we present the experimental setup and the experimental results with an anal-

ysis. We compare and evaluate our proposed MNFTL scheme overfour representative FTL

schemes: PFTL (Page-level FTL) [13], GFTL [28], DFTL [33], and SFTL [48], in terms

of three performance metrics: the main-memory requirements, the average system response

time, and the garbage collection overhead.

3.4.1 Experimental Setup

We developed a trace-driven MLC NAND flash simulator under Linux 2.6.17 and imple-

mented five schemes: PFTL (Page-level FTL) [13], GFTL [28], DFTL [33], SFTL [48], and
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MNFTL. To conduct a fair comparison with different FTL schemes, we consider only a por-

tion of flash as the active region that stores our workloads. The remaining flash is assumed

to contain cold data or free blocks, which are not under consideration. The framework of our

simulation platform, as shown in Figure 3.7, consists of twomodules: a NAND flash simu-

lator module providing basic read, write, and erase capabilities; and a desired MLC NAND

flash translation layer management scheme that can be executed on top of the NAND flash

simulator. The traces along with various flash parameters, such as block size and page size,

page read time and page write time, and so on, are fed into our simulation framework.

DiskMon Traces

Input

Parameters
Experimental

Results

NAND

Flash

Simulator

MNFTL

SPC

Figure 3.7: The framework of the simulation platform.

In the experiment, a 8GB MLC NAND flash memory is configured. The page size

and the block size are set as 2KB and 256KB, respectively. Thetime cost for one OOB

read, one page read, one page write, and one block erase are set as 20µs, 60µs, 800µs, and

1500µs, respectively. One access to the address mapping table in RAM is set as 5µs. In

the simulation, we assume only a portion of flash as the activeregion that stores our test

workloads. For the SFTL scheme, we set one superblock size as6 (4 data blocks and 2 log

blocks), and the total log block number is set as 256. The cache size in the DFTL scheme is

set as 64KB, which is about 4% of the whole page mapping table stored in the flash memory.

We use a set of benchmarks from both the real-world and synthetic traces to study the system

performance for different FTL schemes. The traces used in this simulation are summarized

in Table 3.1.Financial1andFinancial2are I/O traces from an OLTP application running at

a financial institution [5] obtained from the Storage Performance Council (SPC).Websearch

is a read-dominant trace also made available by SPC.Systemdisk1, Systemdisk2, andSys-

temdisk3are traces that we collected from the desktop running Diskmon with Windows XP

on an NTFS file system.
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Table 3.1: Traces used for simulation.

Traces Number of Requests % of Write Requests Average Request Size (KB)

Financial1 1,333,747 78.56 3.17

Financial2 3,699,194 17.65 2.26

Websearch 4,261,709 0.02 15.05

Systemdisk1 1,040,692 74.04 42.65

Systemdisk2 2,636,016 61.96 44.10

Systemdisk3 1,312,945 58.10 36.72

The main-memory requirement for a flash translation layer depends mainly on the

size of the address mapping table. For the simulated 8GB MLC NAND flash memory chip,

one physical page (block) number takes about 3 bytes (2 bytes) of RAM space, while one

pointer in the linked-list requires 4 bytes of RAM space. ForGFTL, DFTL, and SFTL, the

address mapping table are446KB, 176KB, and62KB, respectively. For the page-level

FTL, the address mapping table takes up12MB of RAM space. Our scheme applies the

page-level mapping scheme in each logical block, and storesthe page mapping table indices

in RAM. The RAM space in our scheme is about1.06MB (32× 1024× 34B). Our scheme

results in a big reduction in RAM cost compared with the page-level FTL.

3.4.2 Results and Discussion

In this section, we show the experimental results in terms ofthe average system response

time and the garbage collection overhead for different FTL schemes. Analysis is given to

demonstrate how our MNFTL scheme outperforms other FTL schemes. Figure 3.8 shows

the average system response time for different FTL schemes under the same experimental

environment over six traces. In Figure 3.8, the X-axis represents the six traces and the

Y-axis shows the average system response time. From the results, we can see that, our
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Figure 3.8: The average system response time of different FTLs over six traces.

proposed MNFTL can achieve an average reduction of 30.92% inaverage response time

among the six traces compared with the DFTL scheme, and more improvements can be

obtained compared to the GFTL scheme and the SFTL scheme. In particular, for the read-

dominant traceWebsearch, our scheme is 15µs faster than SFTL and 20µs slower than the

page-level FTL scheme. This is because the page-level FTL scheme can find the requested

address mapping in RAM directly, while MNFTL needs to read one OOB (T rdoob) to

get the target page mapping table. However, the SFTL scheme needs to read two OOBs

(2× T rdoob) to obtain the requested mapping table. Therefore, if no garbage collection is
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Figure 3.9: The number of valid page copy for different FTLs over six traces.

invoked, the average system response time for read requestsin these schemes is a difference

of about one OOB read (T rdoob).

For write-dominant traces, we observe that MNFTL shows a much faster average

response time than DFTL, GFTL, and SFTL and a slightly sloweraverage response time than

page-level FTL. This is based on the fact that, the DFTL scheme introduces translation blocks

to save the address mapping table, and the GFTL scheme uses some extra blocks (about 16%

of all data blocks) as the write buffer in order to guarantee the real-time performance, while

the SFTL scheme introduces a small number of log blocks to store the updated data. These

76



Financial1 Financial2 Websearch
0

6000
12000
18000
24000
30000
36000
42000
48000
54000
60000
66000
72000
78000
84000
90000
96000

B
lo

ck
 E

ra
se

 C
ou

nt

Traces

 PFTL
 DFTL
 GFTL
 SFTL
 MNFTL

 

Systemdisk1 Systemdisk2 Systemdisk3
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Bl
oc

k 
Er

as
e 

C
ou

nt

Traces

 PFTL
 DFTL
 GFTL
 SFTL
 MNFTL

 
Figure 3.10: The number of block erase for different FTLs over six traces.

extra blocks led to the earlier triggered garbage collection, which resulted in more valid page

copies and block erase counts. This observation is also proven by the experimental results

for the valid page copy count and block erase count, which areshown in Figure 3.9 and

Figure 3.10, respectively. From the results, we observe that our MNFTL scheme can achieve

an average reduction of 69.78% in the number of valid page copies, and a 33.35% average

reduction in the number of block erase counts compared with the DFTL scheme. For the

GFTL scheme and the SFTL scheme, we find that a significant number of valid page copy

and block erase operations are invoked. This is because, in the GFTL scheme, the garbage
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collection is triggered once a physical block is full, and itis continually performed whenever

one block exists in the garbage collection queue (GCQ). In the SFTL scheme, four data

blocks in a superblock share the same two log blocks. Once thetwo log blocks are full or the

four data blocks are full, the garbage collection will be triggered. In our scheme, no extra

blocks are involved, so that block reclamation is invoked when nearly all of the data blocks

are consumed. From the experimental results, we also observe that the number of valid page

copies and the block erase counts for traceWebsearchare 0. This is because 99.98% of

the requests inWebsearchare read requests, and the write requests are unable to trigger the

garbage collection.

3.5 Summary

In this chapter, we studied the problem of reducing the garbage collection overhead in de-

signing the MLC flash translation layer while satisfying thewrite constraints of MLC flash

memory. An efficient MLC NAND flash translation layer, calledMNFTL, was proposed, in

which a novel address mapping scheme was adopted to fundamentally reduce the garbage

collection overhead with a limited amount of RAM usage. By applying the proposed con-

centrated mapping and postponed reclamation, MNFTL was able to effectively reduce the

number of valid page copies and block erase counts. We conducted experiments on a set of

benchmarks, and the experimental results showed that our scheme can significantly improve

the average system response time compared with previous work.
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CHAPTER 4

RFTL: A REAL-TIME FLASH TRANSLATION LAYER

WITH DISTRIBUTED PARTIAL GARBAGE COLLECTION

4.1 Overview

No matter in mission-critical hard real-time systems such as aerospace [9] and the military or

in soft real-time systems such as iPads and smart phones, NAND flash memory has become

essential due to its unique characteristics, such as non-volatility, low power-consumption,

and fast access time. However, in NAND flash, a page once written cannot be overwritten

until it is erased (out-of-place update). The erase operation can only be performed in a

unit of one block (bulk-erase). These properties have caused the response time to become

unpredictable. Most existing FTL schemes focus on improving the average performance,

but ignore the real-time storage performance. In this chapter, we propose a real-time FTL

scheme that can provide an upper bound to the worst-case system response time for I/O

requests in NAND flash storage systems.

A flash translation layer is a block-device-emulation software layer that simulates

NAND flash as a hard disk by hiding “out-of-place update” and “bulk-erase” properties.

One function of FTL is to do address mapping between a logicaladdress in file systems

to a physical address in flash media. Another important function is to reclaim the space

by erasing obsolete blocks in flash, also known asgarbage collection. Garbage collection

will be invoked if there is not enough free space to serve the requests. Given a read/write

request issued from the file system, the best-case response time is constant, since no garbage

collection is invoked. However, in the worst case, a requestwill be blocked by the time-

consuming garbage collection. The request consequently suffers a long latency, which might

79



be intolerable for mission-critical real-time applications. Therefore, how to design a service-

guaranteed FTL scheme for real-time applications has become an important problem.

In previous work, several techniques have been proposed to solve this problem.

Chang et al. [22] was the first to propose real-time garbage collection for flash memory

storage systems, where predictable performance is guaranteed by ensuring that enough free

space is always available for write requests. Although an upper bound to the response time

can be obtained, their approach suffers from a slow worst-case response time and requires

extra file system support. Choudhuri et al. [28] proposed a flash translation layer called

GFTL to guarantee an upper bound to the response time. GFTL reduces the upper bound

by adding extra blocks as the write buffer and using a partialblock cleaning policy to hide

the long garbage collection latency. In order to provide enough free space to serve write re-

quests, the full blocks are centrally organized in a garbagecollection queue, and the garbage

collection operations are consecutively performed as longas the queue is not empty. GFTL

guarantees a worst-case response time for write requests, however, it suffers from a slower

worst-case response time for read requests. Moreover, it introduces a large amount of extra

page copy operations, which significantly degrade the average system response time. Since

garbage collection does not occur very often, a scheme should not sacrifice too much average

response time when reducing the worst-case response time. We address this problem in this

chapter.

In this chapter, we propose a real-time flash translation layer, called RFTL, which

provides not only an ideal upper bound to the worst-case response time but also a faster

average response time. A distributed partial garbage collection policy is applied in RFTL.

Different from the centralized partial garbage collectionpolicy [9], in which all full blocks

are put into a queue and garbage collection is performed in a centralized manner, garbage

collection in RFTL is distributed to each logical block and afull block is reclaimed according

to the arrival sequence of write requests in a distributed manner. The condition to invoke

one partial step in garbage collection is when a write request arrives and the corresponding

requested data block is full. Since a write request is servedimmediately after one partial

garbage collection step, the worst-case response time of a request is only the overhead to
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perform one partial step in garbage collection. Moreover, in a logical block, the garbage

collection of a full block is performed only when there is a write request to the logical block;

therefore, many unnecessary valid page copies and block erase operations are avoided so

as to significantly improve the average system response time. Compared with GFTL, our

approach does need more flash memory space; however, it effectively reduces the more

valuable RAM cost. To the best of our knowledge, this is the first work to reduce both the

average response time and worst-case response time by applying a distributed partial garbage

collection policy in NAND flash memory storage systems.

We evaluate our scheme with a set of benchmarks running on a NAND flash memory

simulator that we developed under Linux kernel 2.6.17. The experimental results show that

our scheme can achieve a 36.30% improvement in the worst-case response time compared

with GFTL. Moreover, we make a trade-off between the flash space and the average system

response time. By doubling the flash space of GFTL, our schemeleads to a 91.79% reduction

in the more valuable RAM space and a 67.06% improvement in theaverage system response

time compared with GFTL.

This chapter makes the following contributions:

• We present for the first time a real-time flash translation layer to improve the worst-

case system response time of NAND flash memory storage systems.

• We present for the first time a distributed partial garbage collection policy to enable

the system to simultaneously reclaim space and serve the write requests.

• We demonstrate the effectiveness of our technique by comparing it with representative

FTL schemes using a set of realistic I/O workloads.

The rest of this chapter is organized as follows. Section 4.2shows background and

motivation. Section 4.3 presents our RFTL scheme and the WCET analysis. In Section 4.4,

we present the performance evaluation of our scheme, and in Section 4.5 we give our con-

clusions.
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4.2 Background and Motivation

In this section, we first introduce the performance specifications of the NAND flash mem-

ory chip. Then, we describe the garbage collection overheadin some representative FTL

schemes. Finally, we present the motivation of our work.

Table 4.1: NAND flash specifications.

Characteristics Samsung 16MB Small Block SLC Samsung 128MB Large Block SLC

Block size 16KB 64KB

Page size 512B 2KB

OOB size 16B 64B

Read page 36µs 25µs

Read OOB 10µs 25µs

Write page 200µs 300µs

Erase 2000µs 2000µs

4.2.1 Characteristics of Flash Memory Operations

A typical flash memory chip supports three kinds of operations: page read, page write, and

block erase. The performance of the three operations is quite different, as shown in Table 4.1.

A block erase takes a much longer time than a page write, whichis much longer than a page

read. With the propagation of writes in a flash memory chip, free space shrinks and garbage

collection is invoked to regenerate some new free space for reuse. The garbage collection

process may include a number of page read, page write, and block erase operations. Since

garbage collection is usually considered uninterruptable, a pending write request may be

blocked and the response time will largely depend on the garbage collection latency.
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4.2.2 Garbage Collection Overhead

In the past decade, three kinds of FTL schemes have been proposed and different garbage

collection policies adopted. In page-level FTL [13], one logical page (sector) is mapped with

one physical page. The garbage collection in a page-level FTL is invoked when the NAND

flash runs out of space, and each time only one victim block will be reclaimed. In general,

the block with the fewest valid pages is taken as the victim block. The victim block will be

erased after the valid pages are copied into a new free block.Suppose that one block consists

of π pages and that the victim block hasM valid pages (π ≥ M ≥ 0). The time overhead to

reclaim the victim block isM∗(Trdpg+Twrpg)+Ter, whereTrdpg is the time required to read

a page,Twrpg is the time needed to write a page, andTer is the time that it takes to erase a

block.

In block-level FTL schemes [14], a logical page number (LPN)is made up of a

logical block number (LBN) and a block offset (BO). One logical block is mapped with a

physical block (called theprimary block). In the case of a rewrite operation (or if the primary

block is full), a new physical block (called thereplacement block) is chosen to serve the write

requests. The garbage collection in a block-level FTL is invoked once both the primary and

the replacement blocks are full. Both of these blocks will beerased after being merged into a

new free block. Since two blocks are involved in this process, the garbage collection latency

is much longer in the worst case compared with the one in page-level FTL.

In hybrid-level FTL schemes [26, 85, 99], physical blocks are logically partitioned

into data blocks (primary blocks) and log blocks (replacement blocks). A data block is used

to store the first written data, while the updated data is stored in log blocks. Since one log

block might be shared by more than one data block, the garbagecollection needs to reclaim

the data block and all associated log blocks at the same time.Thus, for a merge operation

in hybrid-level FTL schemes, valid pages scattered in a datablock and its corresponding log

blocks are copied into more than one free block. The garbage collection latency of hybrid-

level FTL tends to be much longer than that of page-level FTLsand block-level FTLs.
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4.2.3 Motivation

The non-deterministic response time of requests in NAND flash memory is caused by the

variable garbage collection latency. Figure 4.1 shows an illustrative example of the garbage

collection (GC) process in page-level FTL schemes. For the sake of illustration, we assume

that each block consists of eight physical pages. In Figure 4.1, the victim block consists of

five valid pages. These valid pages are copied to a new free block. After that, all of pages in

the victim block become invalid and the victim block is then erased for reuse. Based on the

specifications of a small block NAND flash shown in Table 4.1, the time overhead to reclaim

this block is5∗(36+200)+2000=3180µs. Given a write request, the response time is200µs

if no garbage collection is triggered. Otherwise, the response time becomes3380µs when

the request is blocked by the garbage collection with five valid-page copy operations. Such

long time latency limits the usage of NAND flash in real-time applications. Moreover, since

the number of valid pages in different victim blocks is different, the time overhead to reclaim

these blocks varies, which makes the response time of the requests non-deterministic. These

observations motivated us to design a flash translation layer that can hide the long garbage

collection latency and provide a deterministic response time.

Before garbage collection After garbage collection

Victim Block New Block Victim Block New Block

Invalid page Valid page Free pageCopy

Figure 4.1: An illustration of garbage collection.

84



4.3 RFTL: Real-Time FTL

In this section, we describe details of the techniques for our RFTL scheme. We first pro-

pose the system architecture of a real-time flash memory storage system in Section 4.3.1.

Then, we present the problem formulation and the address mapping approach for RFTL in

Section 4.3.2 and Section 4.3.3, respectively. A real-timetask scheduler and a new garbage

collection policy are described in Section 4.3.4 and Section 4.3.5, respectively. Finally, we

present the WCET analysis in Section 4.3.6.

4.3.1 Real-time Flash Memory Storage System Architecture

……

File System

Real-time Address Mapping

Memory Technology Device (MTD) Layer

Real-time Task

Real-time Flash Translation Layer (RFTL)

Distributed Partial Garbage Collection

Real-time Scheduler

Real-time Task

NAND Flash Memory

Real-time Task

Figure 4.2: System architecture.

This section proposes the system architecture of a real-time NAND flash memory

storage system, as shown in Figure 4.2. The system architecture is similar to the conventional

NAND flash memory storage system shown in Chapter One, exceptthat a conventional flash
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memory storage system does not take into consideration real-time task, a real-time scheduler

and a real-time garbage collection policy. We propose to support real-time services for real-

time tasks by removing the unpredictability of the garbage collection overhead. A novel

hybrid-level address mapping approach is designed to provide sufficient free space to serve

the pending writes; meanwhile, a distributed partial garbage collection policy is proposed

to reduce the worst-case block time for each write. A real-time scheduler is initiated to

simultaneously serve the write and the garbage collection,while satisfying an upper bound

to the response time that is close to an ideal case.

4.3.2 Problem Formulation

In order to remove the unpredictability, we model the NAND flash storage system as follows.

Each I/O request issued from a file system to the FTL is modeledas an independent real-

time taskT= {p, e, d}, wherep is the period,e is the execution time andd is the deadline.

Without loss of generality, we assume thatp is equal tod. Multiple I/O requests form a

set of real-time tasksV ={T1, T2, ..., Tn}. There are two kinds of tasks in task setV : read

request taskTr={pr, er, dr}, and write request taskTw={pw, ew, dw}. pr andpw denote the

frequency of a read or write request arriving from the file system. er represents the time

taken to search for a target page, read the data from the page,and return a success or failure

to the file system.ew is the time overhead to search for a free page in which to storethe data.

The values ofer andew are determined by the specific FTL. A lower bound onp (denoted

asL(p)) gives the maximum request arrival rate that an FTL can handle. The upper bound

on e (denoted asU(e)) shows the worst-case execution time for requests when no garbage

collection is involved. From the perspective of the file system,L(p) represents the worst-case

response time when garbage collection is considered.

For the purpose of comparison, we first present a hypothetical ideal case as a baseline.

In the ideal case, a read/write request task can be executed directly without any garbage

collection involved. This is the best case scenario, and both the execution time and the

response time are constant. Here, we only consider the flash operation time overhead since
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the address translation overhead in RAM operations is at least an order of magnitude less than

the flash operation time. The upper bounds onU(e) in the ideal case are shown in Table 4.2.

In the table,Trdoob represents the time to read an OOB of a page. In the worst-casescenario,

the execution of a read/write request task will be blocked bygarbage collection. Note that,

Ter is the longest atomic operation in flash media since the eraseof one block cannot be

interrupted. Therefore,Ter is the minimum time for which a request will be blocked and

L(p) should beTer in the ideal case.

Table 4.2: Service guarantee bounds.

Bounds Ideal GFTL scheme [28] RFTL scheme

U(er) Trdpg Trdpg+πTrdoob Trdpg+Trdoob

U(ew) Twrpg Twrpg Twrpg+Trdoob

L(p) Ter Ter+max{U(er),U(ew)} max{Ter + U(ew),U(er)}

In this chapter, we design a real-time FTL scheme (called RFTL) that guarantees

U(e) for both reads and writes that are marginallyTrdoob larger thanTer. Our scheme pro-

vides service guarantees for requests that have a lower worst-case response time (L(p))

than GFTL [28], sinceTrdpg+πTrdoob tends to be greater thanTwrpg+Trdoob according to

the NAND flash specifications shown in Table 4.1.

Based on the model and problem analysis, we formulate the problem as follows:

Given a NAND flash memory chip and a task setV ={T1, T2, ..., Tn}, how can an

FTL scheme be designed that can jointly schedule the requests and corresponding garbage

collection operations such that a request can be executed within an upper boundL(p) that

is close toTer?
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4.3.3 Address Mapping in RFTL

In RFTL, we use a hybrid-level mapping approach. A logical page number (LPN) is divided

into a logical block number (LBN) and a block offset (BO). A block mapping table is used

to map a logical block with three physical blocks: theprimary block, thereplacement block

and thebuffer blockas shown in Figure 4.3. Three indices that point to the next available

page in each block are recorded in the table. The primary block is used first to serve the write

requests, and the buffer block will serve the pending write requests when the primary block

is full, while the replacement block provides a space to reclaim the primary block. These

three blocks can periodically change their functions to provide guaranteed space for writes.

LBN PB_Index RB_Index BB_Index PPN_1 PPN_2 PPN_N

Block Mapping Table Page Mapping Table

0

1

Pi-2

Pi-1

PMT_1 PMT_2 PMT_N

BO PPN

Page Mapping Table 

(PMT)

Primary Block 

(PB)

Buffer Block 

(BB)

Replacement Block 

(RB)

Free pageValid pageInvalid page

LBN: Logical block number BO: Block offset PPN: Physical page number

Figure 4.3: Address mapping in RFTL.

For each logical block, a page-level mapping table is used tomap a logical page to

a physical page that may belong to one of these three physicalblocks. In order to reduce

the RAM cost, the page mapping table is divided intoN small tables, and each small table

is stored in the OOB area of the newly allocated page. Supposethat each logical block and

each physical block includeπ pages; the entire page-mapping table for a logical block then

hasπ entries. Assume that the OOB area of a physical page can storeα (π≥α>0) entries of

mapping slots; then the whole page mapping table is divided into N sub-tables according to
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the logical page number, whereN=⌊π/α⌋. TheN page mapping table indices are recorded in

the RAM. Using the page-level mapping table indices, RFTL can obtain the address mapping

information rapidly by reading one OOB.

4.3.4 Real-time Task Scheduler in RFTL

After obtaining the address mapping information, the read/write request should be serviced

in three physical blocks. If no garbage collection is involved, RFTL will only execute this

request in one periodp. Otherwise, if the primary block is full and the garbage collection is

invoked, the valid-page copy operations and the erase operation performed on the garbage

collection are divided into partial steps, and the time taken to perform each step is no longer

than the longest atomic operation in flash (that is the block erase operationTer). In such a

scenario, RFTL will first execute the request and then serve one partial garbage collection

step in one periodp.

Tasks

time

p p p

e_w0 e_w1 e_w2 e_w3 e_w4e_copy1 e_copy2 e_erase

serve read/write requests serve garbage collection

Figure 4.4: Task schedule in RFTL.

Figure 4.4 shows the task schedule policy of RFTL, in which the requests and the

garbage collection can be alternatively scheduled. Five requestsw0, w1, w2, w3, andw4 are

mapped with the same primary block.w0 is scheduled directly since free space is available.

When the primary block is full, the pending tasks are scheduled in each periodp and the

time cost to execute each task ise w1, e w2, ande w3, respectively. In the time left for each

period, the partial garbage collection operations of this primary block will be scheduled. In

Figure 4.4, there are two copy operations and one erase operation. The time costs of these

three operations aree copy1, e copy2 ande erase, respectively. After garbage collection,

the primary block becomes free andw4 can be scheduled.

A write request issued from the file system is represented by adata and a logical page
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number (LPN), e.g.,write(D,126), whereD is the data and126 is the LPN. When a write

request is scheduled, the LPN is first translated to an LBN anda block offset (BO). Since

three physical blocks are mapped to the logical block with LBN, the first write to the LBN

is written to the first free page of the primary block, and the pages in the primary block are

allocated sequentially from page 0. Afterπ writes, the primary block becomes full, the buffer

block will then serve the coming write requests, and the distributed partial garbage collection

will be invoked simultaneously to reclaim the primary block. The buffer block serves as the

buffer for requests from the time that the primary block becomes full until it is reclaimed.

The valid pages in the primary block will be copied to the replacement block, where the

copy operation can be interleaved with the requests. In the page copy process, a free page

is guaranteed to be available in the buffer block to serve therequests simultaneously (to be

explained in Section 4.3.6).

When a physical page is allocated to serve the write request,one mapping slot (BO,

PBN) is formed. The corresponding sub-table and the data arewritten to the OOB area and

data area, respectively. A page table index is stored in RAM to keep track of the mapping

information. For a rewrite (update) operation, the out-of-date mapping slot needs to be

read out from the OOB of the page pointed to by the pointers in RAM. The corresponding

mapping slot will be updated and then written to the OOB of thenew page. The page

table index in RAM will also point to the new physical page. Ifa free page can always be

guaranteed in the buffer block, the time to execute a write request is constant:Trdoob+Twrpg

(one OOB read and one page write). The best-case response time is alsoTrdoob+Twrpg. In

the worst case, when the partial garbage collection operation is scheduled, the worst-case

response time isTer+Trdoob+Twrpg.

A read request issued from the file system is represented by a logical page number

(LPN), e.g.,read (36). When a read request is scheduled, the LPN is first translatedto an

LBN and a BO. The corresponding LBN will be searched in the block mapping table in

RAM. Then, the page mapping sub-table for the requested BO can be obtained using the

page table index in RAM. From the sub-table, we can get the physical page that stores the

requested data. Since no space is required in serving the read request, no partial garbage
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collection is invoked. Therefore, the best-case response time and the worst-case response

time of a read request are the sameTrdoob+Trdpg.

4.3.5 RFTL with Distributed Garbage Collection

The garbage collection in RFTL is invoked once a primary block is full and a write request

is issued to this primary block. Given a block withπ pages, the garbage collection can be

partitioned intok periods (steps) if all of theπ pages are valid:

k = ⌈π × (Trdpg + Twrpg + 2Trdoob) + Ter/Ter⌉ (4.1)

In one periodp, the write request will first be serviced, and the execution time isew,

whereew=Twrpg+Trdoob. After the request is serviced, the time left in this period is t, where

t ≥ Te. In time t, the garbage collection operations (valid-page copy or block erase) will be

performed. For valid-page copy operations, suppose that the maximum number of pages that

can be copied in this period isβ, then:

β = ⌊t/(Trdpg + Twrpg + 2Trdoob)⌋ (4.2)

Figure 4.5 gives an example of the garbage collection process in RFTL. We assume

thatβ=4 andk=3, which means that four valid-page copies can be finished inone periodp

and three periods are needed in the worst case. In Figure 4.5 (a), the primary block is full and

garbage collection is triggered. Write requestw0 is serviced in the first page of the buffer

block; meanwhile, four valid pages in the primary block are copied to the replacement block

after copy0, as shown in Figure 4.5 (b). Afterw1 is serviced, all of the valid pages in the

primary block are copied into the replacement block by thecopy1 operation. The primary

block is erased after the write requestw2 is serviced.

Exchange OperationAfter the primary block is reclaimed, an exchange operationis

performed to change the position of the primary block and thereplacement block as shown

in Figure 4.5 (d). The new primary block will serve the comingrequests if free space is
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Figure 4.5: Garbage collection in RFTL.
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available (i.e.,w3 andw4). After the primary block is full, the coming requests are written

to the buffer block (i.e.,w5 andw6). When the buffer block has onlyk (i.e.,k=3) free pages

left, the partial garbage collection of the primary block istriggered again. The replacement

block will store the valid pages from both the primary block and the buffer block. The partial

garbage collection is interleaved with pending requests served in the buffer block (i.e.,w7,

w8 andw9). After the buffer block is full, the primary block is free, as shown in Figure 4.5

(e).

Circular Shift Operation After the buffer block is full, a circular shift operation is

taken to change the position of the three blocks. The free primary block will be reallocated

as a buffer block, and the original buffer block is transferred to a new replacement block.

The original replacement block will serve as the new primaryblock, as shown in Figure 4.5

(f). Partial garbage collection for the replacement block is triggered. Since the replacement

block hask valid pages, the garbage collection can be split intoj partial steps:

j = ⌈k × (Trdpg + Twrpg + 2Trdoob)/Ter + 1⌉ (4.3)

Figure 4.5 (g) shows an example of the reclamation of the replacement block when

j equals to two. The replacement block becomes free after two write requestsw10 andw11

are served in the buffer block. The primary block can serve the requests again if free pages

are included. A new garbage collection will be invoked if thenew primary block is full and

a new request wants to access this block.

In RFTL, garbage collection of one physical block is partitioned into multiple in-

dependent steps, and each step is triggered by one request. If the requests arrive and want

to access the same logical block, the partial steps are performed consecutively within the

physical blocks mapped to the same logical block. Otherwise, if the requests want to access

different logical blocks, the garbage collection operations are correspondingly distributed to

different logical blocks. In Figure 4.5, the garbage collection of the primary block or re-

placement block is triggered and finished by consecutive requests, which are mapped to the

same logical block.
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Figure 4.6: Distributed garbage collection in RFTL.

Figure 4.6 gives an example of garbage collection distributed to different logical

blocks by the requests mapped to different logical blocks. We suppose that four requestsw0,

w1, w2, andw3 arrive sequentially. Write requestsw0 andw3 are mapped to primary block

B0, andw1 is mapped to primary blockB1, while w3 is mapped to primary blockB2. In

the first period, the garbage collection ofB0 is performed in which a valid-page copy,copy0,

is executed after the schedule of requestw0. In the second period, primary blockB1 is re-

claimed since the requestw1 is mapped to it, and block erase operationerase is executed.

In period 4, primary blockB0 is reclaimed again since the garbage collection is not finished

in the first period. Two benefits can be achieved by distributed partial garbage collection.

First, the long garbage collection latency can be fundamentally hidden, such that the worst-

case response time of requests can be reduced toL(p), whereL(p)=max{Trdpg+Trdoob,

Ter+Twrpg+Trdoob}. Second, the garbage collection overhead can be reduced since the valid

page numbers in one block may decrease when the garbage collection is distributed. In other

words, the change from reclaiming one block to a new block postpones the garbage collec-

tion of the old block. The postponed reclamation of the old block may reduce the number

of valid page numbers within it, since a later rewrite operation may make the original valid

page invalid. The average system response time is consequently reduced due to the decreased

garbage collection overhead.
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4.3.6 WCET Analysis in RFTL

Based on the distributed garbage collection policy, we can obtain the worst-case response

time for requests in RFTL isL(p) if enough free space can be guaranteed. In order to verify

that the block management in RFTL can provide enough space for all requests, we present

the worst-case analysis and give one theorem. The theorem gives the sufficient condition for

a write request to be deterministically serviced.

Theorem 4.3.1.The sufficient condition for providing a deterministic service for each re-

quest is that at least one free block andk free pages should be reserved when the distributed

partial garbage collection is triggered.

Proof. In the worst case, all pages in the victim block are valid pages. If the space reserved

is less than one free block, there is no place to store at leastone of the valid pages in the

victim block. If fewer thank free pages are provided, at least one pending write will be

blocked.

Based on Theorem 4.3.1, we can get two lemmas for our scheme. The first lemma

shows the sufficient condition for guaranteeing a deterministic service when doing partial

garbage collection for one block withk valid pages. The second lemma presents the mini-

mum number of blocks that are needed to guarantee the deterministic service.

Lemma 4.3.1.Given a victim block withk valid pages, the sufficient condition for partial

garbage collection to work is that at leastk+j free pages should be reserved.

Proof. In the worst-case scenario, enough free space should be guaranteed to store thek

valid pages and thej pending writes that are interleaved with the partial garbage collection.

Therefore, if less thank + j space is provided, at least one valid page or one pending write

will be blocked.
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In RFTL, the partial garbage collection of the replacement block is triggered after the

circular shift operation. In the worst case,k valid pages need to be copied into buffer block.

Since the buffer block can provide at least2k+j free pages, the partial garbage collection

can be guaranteed according to Lemma 4.3.1.

Lemma 4.3.2.When distributed partial garbage collection is applied in block-level mapping

schemes, the minimum number of blocks to guarantee deterministic service is 3.

Proof. If one logical block is mapped to one physical block, no free space is provided to

do a partial garbage collection. This violates the sufficient condition in Theorem 4.3.1. If

one logical block is mapped to two physical blocks, only one free block is provided. This

also violates the sufficient condition in Theorem 4.3.1. Therefore, in order to provide a

deterministic service with distributed partial garbage collection, at least three blocks are

needed.

In RFTL, we adopt a block-level mapping approach in which onelogical block is

mapped to three physical blocks. Lemma 4.3.2 provides the guidelines on how to design a

deterministic FTL scheme with a block-level mapping approach.

4.4 Evaluation

To evaluate the effectiveness of the proposed RFTL, we conduct a series of experiments and

present the results with an analysis in this section. We compare and evaluate our proposed

RFTL scheme over a well-known block-level FTL scheme (NFTL)[14], and a hybrid-level

FTL scheme (GFTL) [28], in terms of the best-case system response time and the worst-case

system response time. Besides, the distribution of the average system response time is also

evaluated.

96



Table 4.3: Experimental setup.

CPU Intel Dual Core 2GHz

Hardware Disk Space 200GB

RAM 2GB

Simulation

Environment

OS Kernel Linux 2.6.17

Flash Simulator NAND flash simulator

Flash Size 128/256/512MB

4.4.1 Experimental Setup

In the experiments, we developed a trace-driven NAND flash simulator under Linux kernel

2.6.17 and implemented three FTL schemes: GFTL [28], NFTL [14], and RFTL. The NFTL

scheme is a general purpose block-level FTL scheme. GFTL is arepresentative determin-

istic FTL scheme. Therefore, we compare our scheme with NFTLand GFTL. Table 4.3

summarizes our experimental setup. Three NAND flash memory chips with a capacity of

128MB, 256MB, and 512MB, respectively are simulated. To conduct a fair comparison with

different FTL schemes, we consider only a portion of flash as the active region in which our

workloads are stored. The remaining flash is assumed to contain cold data or free blocks

that are not under consideration. The framework of our simulation platform, as shown in

Figure 4.7, consists of two modules: a NAND flash simulator providing basic read, write,

and erase capabilities; and a desired flash translation layer management scheme that can be

executed on top of the NAND flash simulator. The traces, alongwith various flash parame-

ters such as block size and page size, page read time and page write time, and so on, are fed

into our simulation framework. We can get the simulation results after running the NAND

flash simulator. The parameters in our simulation are based on the flash memory data sheet

values shown in Table 4.1.
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Figure 4.7: The framework of the simulation platform.

We use the following benchmarks from both the real-world andthe synthetic traces

to study the system performance for different FTL schemes.Multimediais a real-world trace

that we obtained from a notebook with Windows XP on an NTFS filesystem downloading

and playing multimedia files (e.g., Movie, MP3). It consistsof 1,633,269 write requests

and 1,002,748 read requests.Financial is a well-known, write-dominant I/O trace obtained

from an OLTP application running at a financial institution [5]. It consists of 4,099,354 write

requests and 1,235,633 read requests. In order to perform a rigorous evaluation of different

schemes, each read/write request in the traces is simulatedwith a periodicity ofL(p) without

any idle period involved.

4.4.2 Results and Discussion

In this section, we present the simulation results of the proposed RFTL scheme, GFTL

scheme, and NFTL scheme in terms of real-time and average performance as well as the

space overhead (RAM cost and flash memory cost).

Table 4.4 presents the best-case and the worst-case system response time of the RFTL

scheme for the two traces based on varying flash utilizations(%) and numbers of pages per

block (π). The first two columns underRbest andRworst denote the best-case and the worst-

case response time for read requests, respectively. The next two columns,Wbest andWworst,

represent the best-case and the worst-case response time, respectively, for write requests.

Based on Table 4.4, we can observe that the worst-case response time for a read request

is 50µs, which is equal toTrdoob+Trdpg. For a write request, the worst-case response time

is 2325µs, which is equal toTer+Trdoob+Twrpg. The worst-case response time for a read

98



request and write request is independent of the flash utilization and the flash size. It presents

no variation when the flash utilization and the page size per block (π) vary. This observation

shows that our scheme can provide a guaranteed service for different flash specifications and

different traces.

Table 4.4: Best-case and worst-case system response times for RFTL.

Benchmarks % π Rbest (µs) Rworst (µs) Wbest (µs) Wworst (µs)

Multimedia

50 32 50 50 325 2,325

50 64 50 50 325 2,325

50 128 50 50 325 2,325

100 32 50 50 325 2,325

100 64 50 50 325 2,325

100 128 50 50 325 2,325

Financial

50 32 50 50 325 2,325

50 64 50 50 325 2,325

50 128 50 50 325 2,325

100 32 50 50 325 2,325

100 64 50 50 325 2,325

100 128 50 50 325 2,325

Table 4.5 shows the average system response time for the RFTLscheme under vary-

ing flash utilization ratios (%) and numbers of pages per block (π). Columns underRavg

andWavg represent the average system response time for a read request and write request,

respectively. The average response time for all requests, the total number of valid-page copy

operations, and the total number of erase operations are also measured, and are denoted as

Tavg, Σcp, andΣer, respectively. From the results, we can see that, the average response
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Table 4.5: Average system response time for RFTL.

Benchmarks % π Ravg (µs) Wavg (µs) Tavg (µs) Σcp Σer

Multimedia

50 32 50 400 335 137,630 69,142

50 64 50 359 298 66,508 33,296

50 128 50 339 280 32,414 16,208

100 32 50 419 341 270,903 205,297

100 64 50 375 303 131,281 99,021

100 128 50 353 285 64,295 48,367

Financial

50 32 50 389 274 31,822 26,943

50 64 50 354 248 15,445 13,049

50 128 50 338 236 7,488 6,285

100 32 50 390 271 68,687 79,720

100 64 50 355 245 33,409 38,714

100 128 50 337 232 16,381 18,812

time for read requests is close to the best-case response time, and the average response time

for write requests is close to the worst-case response time.This is because that few valid-

page copy operations or block erase operations are involvedin one periodp. This verifies

that the distributed garbage collection can provide enoughspace to serve the continuous in-

coming requests. The average response time for each trace isdecreased, while the number

of valid-page copy and block erase operations are reduced asthe flash size increases (e.g., as

π increases from 32 to 128). This is based on the fact that more free flash space will lead to

less garbage collection when the same number of requests areserviced. Moreover, the valid-

page copy and block erase operation are increased when the flash utilization is increased for

a fixed flash size. This is due to the fact that the amount of freespace shrinks when the flash
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continually serves the write request. More garbage collection will be invoked to reclaim the

obsolete pages, which increases the average system response time.
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Figure 4.8: Average time distribution per period in RFTL.

Figure 4.8 shows the distribution of the request service time and the garbage collec-

tion (GC) overhead in one periodp. The total length of a bar represents the upper bound of

the response time, which isL(p) as mentioned in Table 4.2. The “Request” bar denotes the

execution time of the request, and the “GC” bar represents the average time cost in garbage

collection, which includes a series of valid-page copy and block erase operations. The time

left is the idle time. Since the total length of the bar is calculated under the worst-case sce-

nario, from the results we can see that a large amount of time is idle in one period. The idle

time increases when the value ofπ is increased. This is because more space is provided,

leading to less garbage collection overhead. Note that in case of a read request, much more

idle time is left than in the case of a write request for both traces. This is because the time

cost to execute a page read is less than that for a page write. In particular, we find that the

garbage collection time is zero in one period for all read requests. This is because no partial

garbage collection is scheduled when a read request is executed. This schedule policy can
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delay the garbage collection time. Thus, the number of invalid pages may be increased and

the number of valid pages within the victim block is reduced correspondingly, allowing the

average system response time to be improved. From the figure,we can also observe that

the idle time for the traceFinancial is longer than that of the traceMultimedia. This is

because the traceFinancial follows a higher temporal locality and more update operations

occur, resulting in fewer valid-page copy operations in garbage collection.

Table 4.6: Performance for RFTL, GFTL and NFTL.

Traces Metrics
FTL Schemes

RFTL scheme GFTL scheme NFTL scheme

Multimedia

Tworst (µs) 2,325 3,650 4,335

Tavg (µs) 303 525 321

Σcp 1.31e5 5.38e5 3.95e5

Σer 0.99e5 1.29e5 0.48e5

Σoob 0.05e8 0.29e8 1.37e8

L(p) (µs) 2,325 3,650 4,335

Financial

Tworst (µs) 2,325 3,650 4,557

Tavg (µs) 245 2,997 522

Σcp 0.03e6 7.65e7 0.38e7

Σer 0.38e5 6.60e5 1.23e5

Σoob 0.02e8 0.40e8 2.86e8

L(p) (µs) 2,325 3,650 4,557

Table 4.6 compares the system performance of RFTL, GFTL, andNFTL under the

same flash size and space utilization ratio. Both RFTL and GFTL show great improvement in
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the worst-case response time compared with the NFTL scheme,which is a general purpose

FTL. In the NFTL scheme, two block merge operations are involved and the blocked time of

each request in the worst case is at least 2*Ter. In the GFTL scheme and RFTL scheme, one

victim block reclamation is needed and the garbage collection is partitioned into multiple

small steps. Therefore, they have lower worst-case response time than the NFTL scheme.

Note that RFTL achieves a 36.30% improvement in the worst-case response time compared

to GFTL, which means that RFTL can accept requests at a higherarrival rate while providing

read/write service guarantees. This is based on the fact that in GFTL it is necessary to search

all of the OOB area of one block in order to read the valid page.But in RFTL, the address

mapping information can be obtained by reading one OOB area.

The RFTL scheme a shows better average response time than theNFTL scheme,

while GFTL has the longest average response time. In order toprovide enough space to

serve the real-time requests, the GFTL scheme invokes the garbage collection once a block

becomes full. The reclamation of one block is performed in a concentrated manner, which

incurs many unnecessary valid page copies and unnecessary block erase overhead. As shown

in Table 4.6, this extra overhead significantly increases the average response time compared

with NFTL and RFTL. In the RFTL scheme, the partial garbage collection is distributed to

each logical block in an on-demand fashion. The valid page copy and block erase operations

are performed only when needed. The delayed reclamation reduces the number of valid

page copies and block erases. Therefore, RFTL achieves a 67.06% improvement in average

response time compared with GFTL.

4.4.3 Overhead

In order to provide a deterministic service, both GFTL and RFTL introduce extra flash space

to serve as the write buffer for partial garbage collection.The number of buffer blocks re-

quired for GFTL is the same as that of data blocks, while RFTL needs double the number

of data blocks to serve as replacement blocks and buffer blocks. Although RFTL has more

overhead in terms of flash space, it shows a great reduction inthe much more valuable RAM

103



space. Given a large-block based 128MB NAND flash with 64 pages per block, RFTL re-

quires 16KB (16B*1024) of RAM space to store the block mapping table and page mapping

table index. For the GFTL scheme, the RAM cost is 195KB, whichconsists of three parts:

the block level mapping table for data blocks (3KB), the pagemapping table for buffer blocks

(64KB), and one block buffer in RAM (128KB). RFTL shows a 91.79% reduction in RAM

cost compared with GFTL.

4.5 Summary

In this chapter, we proposed a real-time flash translation layer (called RFTL) for NAND flash

memory storage systems, which can provide real-time service guarantees by hiding the long

garbage collection latency. To achieve this, a novel hybrid-level address mapping approach

was designed to provide enough free space to serve the pending writes. Meanwhile, a dis-

tributed garbage collection policy was introduced to reduce the worst-case response time. A

real-time scheduler was in charge of coordinating the writes and the garbage collection so

that an upper bound to the response time could be obtained. Inorder to evaluate the sys-

tem performance of our scheme, we conducted a series of experiments. The experimental

results showed that our scheme can achieve a 36.30% improvement in the upper bound of

the worst-case response time for requests compared with GFTL. Moreover, we achieved a

67.06% reduction in average system response time and a 91.79% reduction in RAM cost

compared with GFTL.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

NAND flash memory has been widely adopted in storage systems for various embedded

systems and consumer-electronic products, due to its advantages in non-volatility, shock-

resistance and low-power consumption. With the fast development of flash memory technol-

ogy, the capacity of flash memory chips has been increasing dramatically, particularly with

the advent of MLC NAND flash memory technology. The increasedcapacity of the NAND

flash memory chip poses new challenges for its management. Flash translation layers suf-

fer from a large RAM footprint problem for address management. Moreover, most existing

FTLs are designed for SLC flash, and become inapplicable or inefficient when applied to

MLC flash. In this thesis, we investigated several challenging issues in designing the FTL

schemes for NAND flash memory storage system in resource-constrained embedded sys-

tems. In particular, we proposed three techniques to optimize the system performance from

three aspects including the RAM cost, garbage collection overhead, and real-time storage

performance.

• First, we proposed a demand-based block-level address mapping scheme with a two-

level caching mechanism, named DAC, to reduce the RAM footprint on address map-

ping management for large-scale NAND flash memory storage systems in resource-

constrained embedded systems. In our DAC, the large addressmapping table is stored

in the flash memory chip and only a small number of active mapping entries are cached

in RAM so that the RAM footprint can be reduced. In order to reduce the extra address
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translation overhead caused by the on-demand address mapping scheme, a two-level

caching mechanism was proposed to improve the cache hit ratio, in which the refer-

ence locality and the access frequency of workloads were explored. Different cache

replacement policies are initiated for different caches, so that a higher cache hit ratio

and lower kick-out overhead can be achieved. We conducted experiments on a set of

traces collected from real workloads. The experimental results showed that our tech-

nique can achieve a 91.68% reduction in RAM cost, while the average response time

presents an average degradation of 2.02% compared with previous work.

• Second, we proposed a novel flash translation layer (FTL) called MNFTL for MLC

NAND flash memory storage systems, to reduce the garbage collection overhead while

hiding the new write constraints in MLC flash. We analyzed several fundamental prob-

lems in the design of the MLC flash translation layer, and observed that valid page

copies cause the garbage collection overhead. In our MNFTL,the garbage collection

overhead reduction is achieved by concentrating the invalid pages closer to each other,

while postponing the time to do the block reclamation. In this way, the valid page

numbers within a victim block can be minimized and the numberof valid page copies

can be reduced. In our approach, concentrated mapping uses the page-level mapping

approach, so the write constraints of MLC NAND flash can be satisfied. The corre-

sponding page-level mapping table is stored in the spare area of the newly allocated

pages, while the page mapping table indices are recorded in the RAM. Therefore, lim-

ited RAM space is used. We conducted experiments on a set of benchmarks. The

experimental results showed that our scheme presents a reduction of 30.09% in the

average system response time compared with previous work.

• Third, we proposed a real-time flash translation layer, named RFTL, to reduce the

worst-case system response time and the average system response time of NAND flash

memory storage systems in real-time embedded systems. In RFTL, the improvement

in performance is achieved by cutting the long garbage collection process into small

partial steps and interleaving each small step with the pending write requests. Through
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the proposed distributed partial garbage collection policy, the response time of a pend-

ing write request is decreased and an upper bound to the worst-case response time

that close to being an ideal case is obtained. Meanwhile, theaverage system response

time is also reduced due to the postponed reclamation introduced by the partial garbage

collection. The experimental results showed that our scheme can achieve a 36.30% im-

provement in the upper bound of the worst-case response timefor requests compared

with GFTL. Moreover, we achieved a 67.06% reduction in average system response

time and a 91.79% reduction in RAM cost compared with GFTL.

5.2 Future Work

The work presented in this thesis can be extended in different directions in the future.

• First, the two-level caching mechanism proposed in this thesis mainly focuses on

block-level FTL designs, and we can further apply it to hybrid-level FTLs. Compared

with block-level FTL, hybrid-level FTLs have better address mapping efficiency and

flexibility. However, they have a much larger RAM footprint than block-level FTL.

Applying the demand-based address mapping scheme to these schemes can reduce the

RAM cost and further improve the address mapping flexibilityas well as the average

system response time. Moreover, the proposed two-level caching mechanism can also

be used to overcome the drawbacks in the demand-based page-level DFTL scheme.

As discussed in this thesis, the one-level cache design in DFTL suffers from a lower

cache hit ratio and more expensive overhead on translation block management. How

to design a two-level caching mechanism in the DFTL scheme toimprove the system

performance is a future endeavor.

• Second, the power failure problem was not studied in this thesis. As the address map-

ping table is working and maintained in the RAM when a flash memory chip is in

normal working mode, we may lose the most-updated mapping entries when a power

failure occurs. A promising main memory alternative, PhaseChange Memory (PCM),
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can provide a non-volatile storage service, which can overcome the power failure prob-

lem. Therefore, we can further explore the possibility of storing the address mapping

table in PCM. The endurance of PCM and the implementation of two-level caching

with PCM are issues we need to address.

• Third, this work only focuses on the optimizing techniques for SLC or MLC NAND

flash memory storage systems. Since SLC and MLC flash have different properties and

distinct performances, an SLC/MLC hybrid-architecture NAND flash memory storage

system may provide better storage performance after adopting the advantages of the

two technologies. Therefore, it is interesting to extend our techniques to optimizing

the hybrid-architecture storage system.

• Finally, a possible research direction is to use main memorydata compression tech-

niques to manage the large address mapping table in RAM, so that the RAM cost can

be reduced.
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