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Abstract

Air-cooled chillers are widely used to provide space cooling in air-conditioned
buildings due to their flexibility. The operation of chillers usually takes up the
highest proportion of the total electricity consumption of buildings. Low operational
efficiency and undesirable control are part of the reasons for such high energy
consumption. The deficient performance of air-cooled chillers is mainly due to the
traditional head pressure control (HPC) under which the condensing temperature is
kept high. To improve energy efficiency, chiller systems should be properly operated
to meet the cooling load under external and internal conditions with the least energy

consumption.

This research focuses on the optimal operation of water mist assisted air-cooled
chillers under variable condensing temperature control (CTC), using numerical
simulation, artificial neural network (ANN) and genetic algorithm (GA). The
optimization problem is formulated and solved to find the optimal set point of
condensing temperature and optimal water mist generation rate under various
conditions with least chiller energy consumption. To achieve this objective, a
combination of field investigation, experimentation and system simulation was

conducted.

Field investigation was conducted to identify the operating characteristics and energy
performance of two existing chiller plants with and without water mist pre-cooling.
With the operating characteristics of the studied chillers, the thermodynamic models
for the air-cooled chillers with twin refrigeration circuits with and without water mist
system were developed using TRNSYS and validated using a wide range of

operating data. With the validated model, simulation analyses were carried out to
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determine viable energy saving measures for the chiller plant, including optimal
circuit loading sequence (CLS), CTC, variable speed condenser fans (VSF) and
water mist pre-cooling of the entering condenser air stream. In order to study the
year-round energy consumption, representative office and hotel buildings and their
air-conditioning systems were modeled using EnergyPlus. With the chiller models
and the building models, the load-frequency and weather-load profiles of the
buildings were established, and the energy savings potentials of individual and mixed

uses of the measures were assessed.

Due to the complex nonlinear characteristics of chiller systems, this research presents
an intelligent control technique, including neural networks and genetic algorithms,
for the optimal control of the air-cooled chillers under various operating conditions.
This control involves identifying the optimal set points of condensing temperature,
condenser fans operation and the optimal water mist generation rate, which results in
the least electricity consumption by the compressors and condenser fans. ANN is
used to model the operation of air-cooled chillers, and GA is adopted in searching
optimal set points of condensing temperature and optimal water mist generation rate
based on the predicted fitness values. The results show that this control technique
enabled optimal condensing temperature control successfully, and the chiller
performance could be improved considerably, and its control performance is superior

to the conventional control.

The main contribution to knowledge of this research is the development of an
optimal operation method for water mist assisted air-cooled chillers under variable
condensing temperature control, which is applicable to improve the energy efficiency
of air-cooled chillers. This research also develops an artificial intelligent system

based on the ANN and GA to simulate the chiller operation and find the optimal
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solution for the optimal control of air-cooled chillers, aiming to provide a practical
control technique for the chiller operation. Building services engineers will benefit
from the results of this research on how to design and efficiently operate multiple air-
cooled chillers with water mist system to cut down electricity bills. The results of this
study will also be helpful for chiller manufacturers to apply variable condensing
temperature control and artificial intelligent control in their development of more

efficient chiller products.
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Chapter 1 Introduction

This chapter provides background information about the operation and energy
performance of air-cooled chillers in chilled water systems, presents a review of the
optimization techniques and outlines the aims and objectives of this study. The air-
cooled chillers are regarded as energy inefficient due to the conventional head
pressure control (HPC), and variable condensing temperature control (CTC) is
proposed as an alternative for HPC to improve chiller efficiency. This study aims to
develop an optimum operating strategy with variable condensing temperature control
and water mist pre-cooling to improve the coefficient of performance (COP) of air-

cooled chillers.
1.1 Background

There have been growing concerns about energy consumption and its implications
for the environment and the ecosystem. With high economic growth, Hong Kong has
seen a dramatic increase in energy consumption in recent years, particularly
electricity use in commercial and residential buildings. It was found that the local
building stocks accounted for nearly half of the total primary energy requirement
(Lam, Li et al. 2003), and buildings worldwide shared a substantial responsibility for
the greenhouse gases emissions consequent to electricity generation (Yik, Burnett et
al. 2001). For modern cities in the tropical and sub-tropical regions, air-conditioning
systems are the dominant consumer of energy in buildings, and the energy
consumption of air-conditioning systems accounts for nearly 60% of the total annual
electricity for office buildings (Lam 2000) and 30-50% of the total annual electricity
for hotel buildings (Deng and Burnett 2000; Yu and Chan 2005a). Chillers are the

vital part in a central air conditioning system, which are commonly used for



providing cooling energy in the form of chilled water in most commercial buildings.
Chillers consume about 60% of the total annual electricity use for air-conditioning
systems (Lam 2000; Yik, Burnett et al. 2001; Yu and Chan 2005a). Therefore, chiller
systems play a significant role in the building energy savings, and this underlines the
opportunity to take energy efficiency measures for chillers to reduce the electricity

consumption of commercial buildings.

The energy performance of chillers is of paramount concern in respect of building
energy efficiency. It hinges on the heat rejection process in which the refrigerant
rejects heat to condensing media. There are three major types of liquid chillers,
including air-cooled chillers, water-cooled chillers and evaporative cooled chillers.
Air-cooled chillers make use of ambient air as the condensing medium, while water-
cooled chillers use fresh water or sea water for heat rejections. Considering the
constraints on using fresh water and sea water, air-cooled chillers are commonly
installed in local commercial buildings (Lam 2000; Yik 2001). Although the
government intends to widen the application of cooling towers in air-conditioning
systems for energy efficiency (EMSD 2008), there are arguments why air-cooled
chillers should not be phased out. As far as the medium of heat rejection is concerned,
outdoor air is free, unlimited and readily available. Fresh water is a scarce resource,
and sea water is not readily available except for buildings close to the sea. The
operation of water-cooled chillers with cooling towers hinges on the availability of
water supply and the treatment of fresh water. It may be feasible to implement water
cooling systems in new commercial buildings, accounting for a small percentage of
the building stock. However, in most cases, it is difficult or even impossible to
retrofit the existing air-cooled chiller plants with water-cooled chillers, as there is a
problem of finding spaces for installing cooling towers and their auxiliary equipment
in existing buildings. Therefore, air-cooled chillers should not be phased out. The
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popularity of air-cooled chillers also is due to the ease of installation, the simplicity
of operation and maintenance, and the lower installation and maintenance costs as

compared to water-cooled chillers (Yip and Hui 1991; Zhang, You et al. 2000).

Water-cooled chillers normally have an efficiency advantage over air-cooled chillers.
At the full load condition, the coefficient of performance (COP) of air-cooled chillers
is 2.4-4.2 while that of water-cooled chillers is usually well above 4.2. Their
difference in COP is primarily associated with the fact that air-cooled chillers and
water-cooled chillers have different levels of condensing temperature due to different
temperatures of the heat rejection mediums (air or water), and water-cooled chillers
can take advantage of lower condensing temperatures than air-cooled chillers. As to
water-cooled chillers, the temperature of supply condenser water is designed to be
29°C along with a condensing temperature of 40°C (Dossat and Horan 2002), and the
condensing temperature tends to drop considerably at part load conditions. Air-
cooled chillers, by contrast, are designed with an 11-14°C difference between
condensing temperature and ambient air temperature (ARI 1998). In Hong Kong, air-
cooled chillers are designed to operate at an outdoor temperature of 35°C due to the
hot summers. The deficient performance of air-cooled chillers is mainly due to the
traditional head pressure control (HPC), whereby minimal condenser fans are staged
to control the condensing temperature to float around a high set point of 50°C. Using
a high set point of condensing temperature calls for lower heat rejection airflow and
hence the least fan power, but the compressor power is kept high. This control cannot
bring about maximum chiller COP under part load conditions with moderate outdoor
temperatures. The use of HPC is also due to a convention that the proper function of
thermostatic expansion valves needs a high pressure differential of at least 690 kPa to

control refrigerant flow properly. The use of electronic expansion valves enables the



required differential pressure to be as low as 290 kPa for ensuring compressor

lubrication (Yu, Chan et al. 2006).

As far as medium sized chillers are concerned, each includes a shell-and-tube type
evaporator, single or multiple compressors, and an air-cooled condenser with
multiple fans. Each chiller also comprises one or more refrigeration circuits and for
each circuit, there is one expansion valve of either the thermostatic or electronic type
to regulate refrigerant fed into the evaporator. Each chiller contains a microprocessor
to control the staging of compressors and condenser fans. The chillers operate
typically under traditional head pressure control, which causes a considerable
decrease in COP when the chiller operates under part load conditions. Considering
that chillers tend to operate frequently at part load to meet the changing building
cooling load (Browne and Bansal 1998; Browne and Bansal 2001b; Roper 2000),
improving their part load performance is vital for building energy efficiency (Chow

and Chan 1995; Lee and Yik 2002).

As HPC is regarded as energy inefficient, variable condensing temperature control
(CTC) is proposed as an alternative to HPC to lower the condensing temperature for
air-cooled chillers (Manske, Reindl et al. 2001; Yu and Chan 2006b). Under CTC,
the condenser fans are staged as many as possible in most operating conditions to
enhance the heat rejection airflow to decrease the condensing temperature, allowing
the condensing temperature to approach its lower boundary. This causes an increase
in the fan power, but the compressor power can be minimized. There is a trade off
between the compressor’s operation at lower discharge pressures and additional
condenser fan energy consumption. CTC can minimize the sum of compressor power
and condenser fan power for all operating conditions, and hence the chiller COP is

improved. Since there may be many control settings that meet these environmental



requirements, there exists an opportunity to find a set of optimal control settings that
minimize energy costs. However, optimizing the trade-off between a compressor’s
reduced power consumption and additional condenser fan energy consumption at
lower head pressures has been a challenge. Considering that air-cooled chillers are
still popular in many buildings in subtropical regions, it is crucial to improve their
COP through enhancing the design and operation of their condensers, and investigate
how the condensing temperature can be better controlled in order to minimize the

sum of compressor power and condenser fan power to maximize the chiller COP.

Over the last decades, there has been considerable amount of interest in developing
effective building operation strategies to achieve maximum energy savings. Various
optimal or near-optimal operating strategies have been investigated for different
types of heating, ventilating, and air conditioning (HVAC) systems. The HVAC
system is a complicated, nonlinear and discrete system involving many strongly
coupled subsystems and numerous constrains. Therefore, it poses a big challenge for
system modelling and optimization (Kusiak and Li 2010). The conventional
methodologies for optimal control of the chiller system are studied by using a
mathematical model or experimental practices. Although some mathematical models
and empirical methods related to central cooling plant had been developed, but the
analyses of the research on chiller optimization encountered complex thermodynamic
phenomena and relied on a series of simplifying assumptions. The mathematical
methods and/or empirical methods may not describe the system well, and they cannot
handle a complex system with high noise, external disturbance and high nonlinearity.
In addition, these models need a robust numerical solver and are time-consuming to

solve, which is not suitable for optimization and process control.



To alleviate the drawbacks, an alternative method needs to be developed and applied
in order to predict the results and to find the optimal values for the controllable
variables. Artificial intelligence (Al) is appropriate for such complex and ill-defined
problems as an alternative approach to conventional techniques. Al is the use of
computers to emulate the reasoning and decision-making processes of humans. Al
techniques emerged as a computer science discipline in the mid 1950s, and there is
recently a growing interest in the application of Al techniques in various areas, such
as engineering (Chan and Huang 2003; Peng, Zhang et al. 2010; Pham and Pham
1999), building (Dounis 2010), renewable energy system (Mellit, Kalogirou et al.
2009), HVAC system (Nguyen and Chan 2006), supervisory control (Uraikul, Chan
et al. 2007), particularly in areas with huge amounts of data but very little theory.
Numerous applications of Al techniques have been shown to be effective in decision
making and optimization. Al systems comprise of five major branches, i.e. expert
systems (ES), artificial neural networks (ANNs), genetic algorithms (GAs), fuzzy
logic (FL) and various hybrid systems, which are combinations of two or more of the

branches mentioned previously (Kalogirou 2003).

Despite convincing results in many areas, little has been done using neural networks
to model the air-cooled chiller under CTC. The chiller system is a complex,
nonlinear, discrete system involving numerous constrains. Therefore, it poses a big
challenge for system modelling and optimization. Unlike many studies are centered
on mathematical models and simulation approaches, this research presents Al

techniques for chiller model and control.

As chiller operation causes an upward trend in electricity use for the increasing
number of buildings in Hong Kong, it is essential to develop better plant controls for

efficient operation of cooling plant. The long-term significance of this project rests



on its contribution to energy conservation in the building sector of Hong Kong. The
outcome is a method of optimal operation for water mist assisted air-cooled chillers
under variable condensing temperature control, using Al techniques on the optimum
set point of condensing temperature and load sharing strategies at part load

conditions.
1.2 Optimal control for air-cooled chillers

Optimization is a scientific area that offers a wide variety of methods with great
potential for the solution of complicated decision problems (Diakaki, Grigoroudis et
al. 2008). The difference between normal operation and optimal operation is that in
optimal operation, the system is controlled to minimize or maximize the cost
function while satisfying certain physical constraints, which is a function of
controlled and uncontrolled variables(Ning and Zaheeruddin 2010). The optimal
control for chiller plants is to determine the optimal operation mode and set points
that minimize overall system energy consumption or operating cost while still
meeting the building cooling load. For the chiller system, the uncontrolled variables
are those such as the chiller load, ambient air conditions. Control variables include
the continuous control variables and discrete control variables that are set points and
operating mode minimizing the total system cost. The continuous control variables
are those, such as chilled water temperature, chilled water flow rate, and set point of
condensing temperature, which can vary continuously over the control range. The
discrete control variables are those that have discrete settings, such as high and low
fan speed, the number of operating chillers, and the number of operating condenser

fans.



1.2.1 Optimal control method

The optimization algorithm is a numerical method for finding the values of the
optimal solutions, and it is common to apply a suitable simulation—optimization
technique to model the system to determine the required operation parameters. It
comprises of two sections: control methods and optimization techniques. The control
methods can simulate or properly predict the behavior of complex systems, and the
optimization techniques are used to find optimal control solutions for a system. The
optimal control in HVAC systems can be divided into four categories, including
model-based supervisory control method, hybrid supervisory control method,
performance map-based supervisory control method, and model-free supervisory
control method (Wang and Ma 2008). The selection of the control methods for an
optimal control application is crucial to the development of an effective control

strategy.

Model-free supervisory control methods, including expert systems and reinforcement
learning approach, do not require a “model” of the targeted system. Expert systems
can imitate human reasoning to make decisions and deduce the reasonable solutions
for a given working condition, and reinforcement learning approach can be applied to
find the optimal or near-optimal solutions for the control problem without any prior
knowledge of the environment. However, model-free supervisory control depends on
the richness of the knowledge database, and it takes a long time for the controllers to
learn. These features hinder the implement of model-free supervisory control in

practice (Henze and Schoenmann 2003; Liu and Henze 2006).

According to the knowledge of the system utilized to formulate the models, the
model-based supervisory control can be further divided into three groups: physical

model-based supervisory control, gray-box model-based supervisory control, and



black-box model-based supervisory control (Wang and Ma 2008). Physical model-
based supervisory control is based on fundamental laws of energy, mass, heat
transfer, momentum, and flow balance, etc., and a set of mathematical equations can
be derived and solved. Generally, physical models have excellent performance in
prediction and high control reliabilities since the basic assumptions and physical laws
utilized in the model development are effective and valid within the allowed working
conditions. However, most physical models are rather complicated, and an iteration
process is always required. These characteristics may seriously prevent their online
optimal control. Considering the drawbacks of the physical models, gray-box models
consisting of a combination of empirical and physical models are commonly
employed for the chiller system (Browne and Bansal 1998; Ding 2007). The main
advantages of gray-box models are that the complexity and computational
requirements to achieve the optimal solutions are reduced greatly; however, gray-box

models strongly depend on the richness of data used to train the models.

Black-box models are composed entirely of empirical models and therefore do not
generally utilize parameters that have physical meaning. Typical black-box models
are polynomial curve fits and artificial neural networks (ANNs). Black-box models
are simple enough without requiring the detailed physical knowledge of the system,
and they do not generally utilize parameters that have physical meaning. They can
map the performance of a tested system, and provide very fast execution speeds
compared to gray or physical models. As a result, black-box models are generally
utilized in system simulation programs (Reddy and Andersen 2002; Swider 2003).
The accuracy of these models depends on the size of data used to train the models.
Artificial neural networks are capable of powerful universal function approximation
(Haider and Zeng 2009; lannella and Back 2001; Maass 1997; Shin 1998).
Theoretically, an ANN model with a proper configuration is able to map any

9



complicated functional relationship between dependent and independent variables
without the need for a preconceived function form and prior knowledge of the
regularities in the data. ANNs can generalize from previous examples and modify
their behaviour in response to the environment. Recently, ANN models have
demonstrated advantages over the traditional methods (Bechtler, Browne et al. 2001a;
Chow, Zhang et al. 2002; Hosoz and Ertunc 2006; Hosoz, Ertunc et al. 2008; Swider,
Browne et al. 2001; Wu, Zhang et al. 2011). The excellent capability of ANNSs in
function approximation inspired the development of ANN-based function
approximation of chiller models in this study, identifying the functional mapping

between specific outputs and controllable and non-controllable inputs of the chillers.
1.2.2 Optimization techniques

When the appropriate optimal control method is selected, the method used for
finding the optimal control variables is equally important in realizing the optimal
control strategy. Many optimization techniques have been developed in the past
decades, and they could be summarized into two categorizes: linear optimization
techniques and nonlinear optimization techniques (Wang and Ma 2008). The linear
optimization technique is the most simple and straightforward technique, including
direct search methods (Wright and Hanby 1987; Yao and Chen 2010), gradient-based

methods (Chang, Chan et al. 2010; Ilhan 2012).

As the optimization problems related to optimal control of HVAC systems are often
complicated, nonlinear and discrete system should be utilized to deal with such
problems. Nonlinear optimization techniques are more complex and sophisticated
than linear optimization techniques, and they can be further subdivided into two
categories, including nonlinear local optimization techniques and nonlinear global

optimization techniques (Wang and Ma 2008). Nonlinear local optimization
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techniques include direct search techniques, gradient-based optimization techniques,
etc. Nonlinear global optimization techniques include simulated annealing, branch
and bound, evolutionary algorithm (EA), tabu search, etc. Evolutionary algorithms
include evolution strategy (ES), evolutionary programming (EP), genetic algorithm
(GA), and genetic programming (GP). Gradient-based optimization techniques are
effective in search for the optimum for a particular and simple optimization problem,
but they would likely get trapped at the local optimal values, and the convergence
speed is strongly dependent on the initial guess of optimal variables (Wang and Jin
2000). To overcome this shortcoming, nonlinear global optimization techniques
should be applied for the nonlinear and complicated optimization problems in HVAC
systems. Global optimization techniques depend on heuristic methods rather than
derivatives to search for the optimal solutions, and they can explore the overall
search space and can avoid to get trapped at the local optimal values. EA has been
found to be more advantageous over the traditional and other heuristic methods for
HVAC optimization problems (Fong, Hanby et al. 2009). Among all of these
optimization techniques, GA is more attractive than other optimization algorithms.
GA is a result-based method, and no derivatives are required during the calculation
since it is independent of the function gradient. In addition, GA has implicit parallel
computation features, which make it more efficient than the exhaustive search
methods. These features make it feasible to solve the complicated and global
optimization problems, and GA has been widely used in building thermal system
(Wright, Loosemore et al. 2002), control of HVAC system (Chow, Zhang et al. 2002;
Huang and Lam 1997; Lu, Cai et al. 2005a; Nassif, Kajl et al. 2005; Wang and Jin
2000; Zhou and Haghighat 2009), building design optimization (Magnier and

Haghighat 2010; Wang, Zmeureanu et al. 2005), solar energy (Kalogirou 2004;
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Varun and Siddhartha 2010), heat exchanger (Allen, Savard-Goguen et al. 2009; Xie,

Sunden et al. 2008), etc.
1.3 Aim, objectives and scope of works
1.3.1 Aim and objectives

With a view to operating air-cooled chillers more efficiently, the aim of this research
is to investigate the composite methodologies for improving air-cooled chiller
performance, including variable condensing temperature control, variable speed

condenser fans and water mist pre-cooling. The objectives of this research are:

e to identify the operating characteristics and performance of air-cooled chillers

with and without water mist pre-cooling under local climatic conditions;

e to develop the control strategy of variable set point of condensing
temperature for the air-cooled chillers combined with the enhanced condenser

features;

e to propose a hybrid ANN-GA strategy to facilitate modeling and

optimization of the air-cooled chillers; and

e to evaluate the potential electricity savings of chillers with variable
condensing temperature control, water mist pre-cooling and other enhanced

condenser features in Hong Kong.
1.3.2 Scope of works

The objectives are achieved through a combination of field investigation,

experimentation and system simulation.

e A field investigation is carried out on existing chiller plants with air-cooled
screw chillers to identify their operating characteristics and performance of

air-cooled chillers under local climatic conditions.
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e Experimental study on the air-cooled chillers with water mist system is
conducted. The operating data are used to furnish parameters of a chiller’s

mathematical models and to validate the models.

e Detailed chiller models with or without water mist pre-cooling are developed,
which form the basis for the simulation analysis of variable condensing
temperature control. Extensive simulations are performed on the enhanced
condenser features, including variable condensing temperature control,
variable speed condenser fans and water mist pre-cooling, and the potential

benefits of air-cooled chillers with different condenser feathers are studied.

e This research proposes a hybrid ANN—GA strategy to facilitate modeling and
optimization of the air-cooled chillers. It can be expressed in two parts: first
an ANN model is needed that can act like the real system; second, based on
the ANN model, the control methodology using GA is developed that can find
the optimal solution from the solution space of simulation model. This hybrid
method can be considered to be an optimization technique that uses GA to
find the optimal solution from the solution space generated by the previously

trained neural network.

e Representative office building and hotel buildings in Hong Kong are
modelled. The model buildings are used for ascertaining the cooling load
profiles which constitute the inputs of the chiller models to be developed in
this research. The energy saving potential for the commercial building sector

in Hong Kong will be evaluated with the proposed optimal control strategies.

1.4 Organization of the Thesis

This research aims to develop an optimal operation method for water mist assisted
air-cooled chillers under variable condensing temperature control, and propose a
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robust and efficient simulation-based optimization technique combining GA and
ANN for air-cooled chillers, so as to meet the required chiller load with minimum
energy consumption. Before implementation of energy saving measures in a chiller
plant, it is worth characterizing the performance of current chiller products and the
related specifications and requirements. It is also necessary to analyze chiller
performance by simulation to assess energy effectiveness relating to various energy

saving measures and to ascertain the control requirements.

Chapter 1 provides background information about the operation and energy
performance of air-cooled chillers in air-conditioned buildings, the optimization
methods and optimization techniques, and outlines the aims and objectives of this

study.

Chapter 2 reviews the variable condensing temperature control and other advanced
condenser features for enhancing the COP of air-cooled chillers. The fundamental of

neural networks, genetic algorithms and neural control concepts are also reviewed.

Chapter 3 presents the generic reference buildings including a representative office
building and a hotel building, and the characteristics of the load-frequency and

weather-load profiles of such buildings.

Chapter 4 develops the models of the air-cooled screw chiller with twin refrigeration
circuits. This chapter investigates how variable condensing temperature control and
variable speed condenser fans can be applied to enhance the chiller COP. It also
presents the investigation on the optimal load sharing between refrigeration circuits

in the air-cooled chillers.

Chapter 5 describes the experiment on an air-cooled screw chiller with water mist
system and the development of the integrated models for the air-cooled chiller with

water mist system. The composite methodologies for improving air-cooled chiller
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performance are investigated, including variable condensing temperature control,
variable speed condenser fans and water mist pre-cooling. The findings of
experimental and simulation studies on the air-cooled screw chiller with water mist
are presented. Detailed analyses on the energy saving potential of the chillers serving
the typical office building and the hotel building with improved efficiency of air-

cooled chillers are reported.

Chapter 6 presents the implementation of the optimal control using neural network

and genetic algorithm for air-cooled chillers.

Chapter 7 gives conclusions and recommendations for future work.
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Chapter 2 Literature Review

This chapter reviews the measures to improve chiller performance, especially the
variable condensing temperature control (CTC) and the other advanced condenser
features for enhancing the COP of air-cooled chillers, including variable speed
condenser fans and water mist pre-cooling. The fundamental of neural networks,

genetic algorithms and neural control concepts are also presented.
2.1 State-of-the-art technologies for air-cooled chillers
2.1.1 Variable condensing temperature control

It is important to understand the control of condensing temperature for air-cooled
chillers because this influences greatly how their COP changes at different operating
conditions. Compared with water-cooled chillers using evaporative cooling towers,
air-cooled chillers are less-efficient. According to many studies (Chan and Yu 2002;
Love, Cleland et al. 2005; Manske, Reindl et al. 2001; Smith and King 1998), the
deficient performance of air-cooled chillers is mainly due to the traditional head
pressure control (HPC) under which the condensing temperature floats around a high
set point of 50°C based on a design outdoor temperature of 35°C, irrespective of
different chiller loads and weather conditions. In general, chiller microprocessors are
equipped with a control algorithm to stage the constant speed fans, which is based on
settings (set point, high setting and low setting point) for the condensing temperature.
The conventional control of air-cooled chillers is not intended to control the
condensing temperature at its set point precisely, but allow the condensing
temperature to hover above the outdoor temperature by various degrees. The

difference between the condensing temperature and its set point depends mainly on

16



the outdoor temperature, chiller load and the differential pressure requirement of an
expansion valve. The controllability of condensing temperature dictates the trade-off
between compressor power and condenser fan power and, in turn, influences the way

to maximize the chiller COP in any given operating condition.

For air-cooled chillers, the condenser fan power under HPC can be kept low, but the
compressor power remains to be considerable with higher condensing temperature.
The pitfalls of conventional HPC have been highlighted. To overcome this, proper
control of condensing temperature should be developed to optimize the trade-off
between the compressor power and condenser fan power, given that the condensing
temperature can vary widely in response to the outdoor temperature and chiller load.
Variable condensing temperature control (CTC) is proposed as an alternative to HPC
to lower the condensing temperature to improve chiller efficiency (Brownell, Klein et
al. 1999; Hosoz and Ertunc 2006; Love, Cleland et al. 2005; Manske, Reindl et al.

2001).

The lowering of condensing temperature is constrained mainly by the required
pressure differential across the expansion valve. The flow of refrigerant within a
chiller is traditionally controlled by using a thermostatic expansion valve (TEV)
which throttles a proper amount of liquid refrigerant from the condenser to the
evaporator and creates a certain differential between the condensing pressure and
evaporating pressure for allowing heat rejection to take place (Yu, Chan et al. 2006).
If a thermostatic expansion valve (TEV) is used, the potential to reduce the
condensing temperature is low at high chiller loads even with reduced outdoor
temperatures based on the physical characteristics of a TEV, because a high
differential between the condensing pressure and evaporating pressure is required for

the valve to provide sufficient refrigerant flow to satisfy the loads. The proper
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function of thermostatic expansion valves conventionally needs a high pressure
differential of at least 690 kPa to control refrigerant flow properly (ARI 1998;
Brownell, Klein et al. 1999; Yu, Chan et al. 2006). The condensing temperature is
raised along with the high pressure differential. Therefore, traditional head pressure
control has been adopted to maintain the condensing temperature at a high level in

regardless of variations in outdoor temperature and cooling load.

Electronic expansion valves (EEVs), on the other hand, help relieves the constraint,
and the required differential pressure can be as low as 290 kPa for ensuring
compressor lubrication (Yu, Chan et al. 2006), which is much lower than that
normally required for TEVs. EEVs enable the lower limit of the condensing
temperature to drop, and they are the pre-requisite for the implementation of variable
condensing temperature control (CTC). Each EEV includes a PID controller to
compute its open position based on the set point of the degree of superheat, which is
superior to TEVs in the refrigerant flow control. Refrigerant flow is directly
proportional to the open position of an EEV and is independent of the pressure
differential across the valve. When the degree of superheat exceeds its set point, the
electronic expansion valve begins to open wider to call for more refrigerant to be fed
into the evaporator, and hence the degree of superheat is restored to its set point. It is
desirable to use EEVs to provide accurate control of the degree of superheat to meet
the changing chiller load when the condensing temperature varies with the outdoor
temperature from time to time (Finn and Doyle 2000; Outtagarts, Haberschill et al.

1997; Tassou and Al-Nizari 1993).

The extent to which the compressor power can drop hinges on the lowest condensing
temperature that is achievable at a given evaporating temperature. The lower

boundary of condensing temperature is dictated by the differential pressure
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requirement of expansion valves, the heat rejection capacity of condensers and the
free flow of oil for proper compressor lubrication. The differential pressure
requirement can be relieved by using electronic expansion valves. Experimental tests
on an air-cooled reciprocating chiller confirmed that lubricant could return properly
to the compressors operating with oil level regulators even when the condensing

temperature dropped down to 20°C (Yu, Chan et al. 2000).

It is questionable how a fixed set point of condensing temperature can be used in all
operating conditions to minimize the sum of compressor power and condenser fan
power. According to recent research, the set point of condensing temperature should
be reset in response to changes in outdoor temperature and chiller part load ratios in
order to maximize chiller COP in various operating conditions (Manske, Reindl et al.
2001; Yu and Chan 2006b). To successfully implement CTC, the chiller
microprocessor should contain an algorithm to carry out the reset strategy for the set
point of condensing temperature. Yet there is little proof about the capability of
adjusting the set point of condensing temperature via the existing chiller

MiCroprocessors.

Floating head pressure control (FHPC) has been emerged as a basic energy saving
technology in industrial refrigeration systems serving supermarkets (Khattar and
Henderson 2000). FHPC is an analogue of CTC because its implementation means
that the set point of condensing temperature should be adjusted in response to the
outdoor temperature and chiller load. There are many researches on the use of
floating head pressure control. Brownell (1998) made a comparison between the
fixed and floating head pressure control for a refrigeration system serving the
Madison ice arena. To implement floating head pressure, he recommended that the

condensing pressure should be adjusted as a function of the ambient web bulb
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temperature for water-cooled chillers or evaporative condensers, which resulted in an
increase of 23% in the COP of the refrigeration system. He did not describe in detail
what modification should be made on the control system of chillers in order to
realize the floating head pressure control. Various fan control strategies were
investigated in a refrigeration thermal test centre (Edison 2007), which showed that
various degrees of energy savings could be achieved by using variable condensing
temperature set points and variable speed condenser fans. Another research on energy
savings in refrigeration plants with floating head pressure control was reported
(Singh 2007). There were electronic controllers to permit refrigeration system
operation at the lowest condenser pressure possible, and the control of condenser
fans was based on the temperature difference between the outdoor temperature and
condensing temperature. An overall 13.95% energy saving could be achieved when
variable speed along with floating condensing pressure control strategies were

employed.

While CTC can be a standard feature for new refrigeration systems and can be
retrofitted in existing refrigeration systems, it is hardly found in air-cooled chiller
products available in the market. There is little technical difficulty in implementing
CTC in air-cooled chillers, but hardly any manufacturers have attempted to retrofit
their chiller products with this advanced control, which involved in adding a
controller capable of automatically adjusting the set point of condensing temperature
in response to variations in the outdoor temperature and chiller load. There is also
little proof about the capability of adjusting the set point of condensing temperature

via the existing chiller microprocessor.
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2.1.2 Variable speed control of condenser fans

Variable speed technology has long been a workable energy-efficient feature to
enhance the energy performance of chiller systems. Considering a chilled water
system with air cooled chillers, variable speed control is confined to the compressors,

condenser fans and chilled water pumps.

Many studies have demonstrated that variable speed control for chiller compressors
or cooling tower fans could save power when chillers operate at part load (Aprea,
Mastrullo et al. 2004; Hartman 2001; Koury, Machado et al. 2001; Qureshi and
Tassou 1996; Tassou and Qureshi 1998). The power saving is due to the improved
efficiency of the motors when operating at a lower speed under part-load conditions.
While variable speed compressors are increasingly used for chillers, there is limited
evidence to support the use of variable speed condenser fans for the heat rejection

system of air-cooled chillers.

There is a convention among engineers that variable speed control for condenser fans
has an insignificant effect on saving chiller power, as the nominal fan power
accounts for less than one-tenth of the nominal compressor power. Although variable
speed control of condenser fans can bring a lot of benefits in respect of operation and
energy efficiency, it is still not a standard feature for air-cooled chillers (Holden
2005). Variable speed control for condenser fans is superior to cycling constant
speed condenser fans in steps with regard to the controllability of condensing
temperature. With regard to energy savings, considerable power can be saved
because of the cube relationship between power and speed when the fans operate at
reduced speed to meet the required heat rejection airflow for any given cooling
capacity. Furthermore, the variable speed fans are able to better control the

condensing temperature at any given reduced set point. Existing air-cooled chillers
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normally contain multiple condenser fans, and the constant speed fans are staged in
steps to maintain the required condensing temperature or pressure. Such the step-by-
step variation of heat rejection airflow could cause a serious fluctuation in the
condensing temperature and hence the COP when its set point is adjusted from time
to time in response to the ambient and load conditions. When a variable frequency
drive is applied to control the speed of all the condenser fans in parallel, they can
operate altogether at the required speed to maintain the set point of the condensing

temperature.

The fan speed may increase by up to 20% if the variable frequency drive is properly
sized. Depending on the condenser design, this helps further lower the condensing
temperature, even at high outdoor temperatures. Considering that all the variable
speed condenser fans need to operate, the control of fan cycling in steps can be
waived. This helps moderate the wear and tear problem resulting from frequent
switching of the fans. The noise emitted from air-cooled chillers can be reduced
when the fans are able to operate at lower speed. This can help eliminate the need to
build an acoustic enclosure for the chillers which could cause ineffective heat

rejection with increased energy consumption.

If variable speed control is applied to condenser fans, each of them can operate at a
lower speed with much reduced power while the condensing temperature is
maintained at its set point. Simulation analyses on air-cooled reciprocating and screw
chillers (Chan and Yu 2002; Yu and Chan 2006b) confirmed that variable speed
condenser fans and electronic expansion valves should be used to complement CTC
to increase the chiller COP by up to 127.5%. The heat rejection airflow could be
modulated smoothly by the variable speed fans with reduced power to enhance the

controllability of condensing temperature. It was reported that the implementation of
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CTC was economically viable, with very short paybacks of 0.38-1.07 years when

used in chiller systems serving local commercial buildings (Yu and Chan 2006a).

2.1.3 Evaporative cooling for air-cooled condensers

As air-cooled chillers apply condenser fans to force ambient air to condense and
slightly sub-cool the refrigerant, the extent of the condensing temperature drop is
constrained by the dry bulb temperature (DBT) of ambient air. Evaporative cooling
could decrease the temperature of ambient air, and is effective for pre-cooling the
entering condenser air so as to improve the performance of the air-cooled chillers.
This concept is enhanced at present in consideration of energy saving and

environmental protection.

Refrigeration systems with evaporative condensers have been applied for years.
However, using evaporative pre-coolers to enhance the COP of air-cooled chillers is
not common, even though the concept is not new. For the evaporative pre-coolers,
ambient air is drawn or blown through a porous wetted surface with a film of cool
water. The air stream is cooled by the evaporation of water when leaving the pre-
cooler, and its DBT drops to approach its wet bulb temperature (WBT). The pre-
coolers enable the condensing temperature to drop in response to a reduction of air
temperature entering condensers, which results in a decrease of the compressor
power. However, additional fan power is required for the evaporative condenser to
draw or blow air through the porous surface due to the pressure drop across the pre-
coolers, which results in the beneficial trade off. The pre-coolers, when installed in
front of air-cooled condensers, can pre-cool the outdoor air before entering the
condensers while consuming less than 15% of the cooling water required by cooling

towers and evaporative condensers (Bom, Foster et al. 1999; Zhang, You et al. 2000).

The potential and benefits of using evaporative pre-coolers hinge on the extent to
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which the condensing temperature can drop and whether the decrease in compressor
power due to this drop can outweigh the additional fan power. Zhang et al. (Zhang,
You et al. 2000) have indicated that the use of evaporative pre-coolers can bring
about a 14.7% increase in the COP of air-cooled chillers working under the climatic
conditions of Tianjin of China. According to a simulation study conducted by Yu and
Chan (2005b), a 1.4-14.4% decrease in chiller power and a 1.3—4.6% increase in the
refrigeration effect could be achieved when an air-cooled reciprocating chiller with
an evaporative pre-cooler operated under head pressure control. When the
condensing temperature control replaced the head pressure control, the chiller power
could further reduce by 1.3—4.3% in certain operating conditions. The pre-coolers are
expected to have a high effectiveness when cooling outdoor air in a hot and dry
climate, but they can function properly even when the climate is hot and humid. The
combined use of CTC and evaporative pre-coolers is an economically viable option
for chiller performance improvements (Yu and Chan 2006a). However, this
technology has some side effects including the risk of mineral deposits and corrosion

of the condenser coils, which will reduce the cooling efficiency with time.

Due to the side effects of evaporative pre-coolers, an alternative for evaporative
cooling is proposed, which is to install water mist system to pre-cool the air entering
condensers. The system produces a mist of 10-micron water droplets via atomization
nozzles, which allows the ambient air entering the condenser to cool from its dry-
bulb temperature to wet-bulb temperature while the droplets are fully vaporized. The
water mist pre-cooling system is not a new concept, and it has been applied
successfully in the industries (Cheung, Santos et al. 2006; Hsieh and Yao 2006;
Zhang, Fang et al. 2007). However, the application of water-mist pre-cooling
associated with a chiller system is uncommon. The water mist system has advantage
over the evaporative condenser because, firstly, it has no additional air pressure loss
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through the wetted media and hence no additional fan power will be incurred.
Although the water mist pump will operate to deliver water at a high pressure of
around 70 bars, the water flow rates are very low and hence a small amount of power
to drive the high pressure pumps is the only additional power to be considered.
Secondly, it is simple and convenient to install a mist system, which is advantageous
in retrofitting for the existing hundreds of thousands of air-cooled chillers. Due to the
remarkable advantage of water mist system, it is expected to be widely applied. Yu
and Chan (2009) studied the application of water mist system by simulation. Yet
there is a lack of field investigations for the air-cooled chillers with water mist
system, and there is a lack of research into how to reap the benefits of water mist pre-

cooling with CTC and other advanced condenser features.
2.2 Avrtificial neural networks

Artificial neural networks (ANNSs) are computing systems made up of a number of
simple and highly interconnected neurons (also called nodes or processing elements),
which represents information and processes information according to methods
inspired by current knowledge of brain structure and brain function (Richard M
1997). ANN is a computational mechanism which, given a set of data, is able to
acquire, represent, and compute a mapping from one multivariate space of
information to another (Garrett 1994). Information is passed through the neurons
along interconnections. An incoming connection has two values associated with it, an

input value and a weight. The output of the unit is a function of the summed value.

A typical artificial neural network is comprised of one input layer, one output layer
and one or more hidden layers. Each layer consists of many interconnected neurons,
each of which is connected to other neurons in the following layer. ANNs are models

which map from a set of given patterns (input patterns) to an associated set of known
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values (target output) and learn the relationship between the controlled and
uncontrolled variables by studying previously recorded data. They are trained with
respect to data sets until they learn the patterns presented to them. When ANNSs are
trained properly with a sufficient data set and learning period, each ANN will adjust
to establish the best non-linear relationship possible for its own unique architecture,

then they can be used for prediction, classification or control.

The main advantages of ANNs over other modeling techniques are their abilities to
map complex and nonlinear functions, to learn and generalize by experience, as well
as to handle multivariable problems without having to assume the form of the
relationship between input and output variables, instead of complex rules and
mathematical routines. ANN can operate as a black box model, which requires no
detailed information about the system and sophisticated mathematical knowledge,
obviating the need to use complex mathematically explicit formulas, computer
models, or impractical and costly physical models (Mellit and Kalogirou 2008). In
addition, neural networks are fault tolerant, robust, and noise immune. With the
capability of an ANN to cope with uncertainty in complex situations, there has been
a substantial increase in a wide range of applications in recent years, and they have
been applied for process modeling, pattern classification, clustering, expert rules
extraction, forecasting, prediction, optimization and control (Basheer and Hajmeer
2000; Bechtler, Browne et al. 2001b; Gandhidasan and Mohandes 2011; Kalogirou
2003; Kavchak and Budman 1999; Song, Baek et al. 2005; Soteris A 2000). From the
control theory viewpoint, the capability of neural networks to deal with nonlinear

system is most significant.
2.2.1 Artificial neural network architectures

Multiple neurons are interconnected to form a neural network to facilitate parallel-
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distributed computing. A number of ANN architectures and algorithms have been
developed and applied for solving different problems (Haykin 1999; Pham and Pham
1999). ANNs can be classified in many different ways according to their relevant
features. The classification of ANNs can be based on the their function (e.g., pattern
association, clustering), the type of learning algorithm, the learning rule (the driving
engine of the learning algorithm), the degree of learning supervision, etc. (Basheer
and Hajmeer 2000). Generally, ANNs are classified according to the direction of
flow of information within the neural network, and they are feed-forward neural
networks and recurrent neural networks (or feedback networks). In the feed-forward
neural network, information or signals move in only one direction from the input
nodes to output nodes, and there is no feedback (loops) in the network. Feed-forward
ANNs tend to be straightforward networks that associate inputs with outputs.
Generally, a feed-forward neural network consists of multiple layers, including one
input layer, one output layer, and one or more hidden layers, therefore, it is called
multilayer feed-forward neural network (MFNN). Figure 2.1 shows the typical
configuration of multilayer feed-forward neural network. Each single neuron is
connected to other neurons of a previous layer through adaptable synaptic weights,
and the signal traveling along the link is multiplied by the connection weight. In
subsequent layers, each unit sums its inputs and a bias or threshold term, and an
output of each unit can be produced with the activation function. Multiple layers of
neurons with nonlinear transfer functions allow the network to learn linear and
nonlinear relationships between input and output vectors. The number of hidden
layers in a neural network greatly affects its performance. By adding one or more
hidden layers, the network is enabled to extract higher-order statistics, which causes
the network to become more complicated and incurs more computing time. There is a

trade-off between accuracy of the neural network, the structural complexity and
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hence the computing time.

Input layer Hidden layer ~ Output layer

Figure 2.1 Multilayer feed-forward neural network

Contrary to feed-forward networks, recurrent neural networks (RNNs) are models
with bi-directional data flow. A recurrent neural network distinguishes itself from a
feed-forward neural network in that it has at least one feedback loop. While a feed-
forward network propagates data only from input to output, RNNs can have signals
traveling in both directions by introducing loops in the network. Figure 2.2
demonstrates the configuration of recurrent neural network. Computations derived
from earlier input are fed back into the network, which gives them a kind of memory.
The presence of feedback loop in the RNNs has a profound impact on the learning
capability of the network and on its performance, which results in a nonlinear

dynamical behavior (Haykin 1999).
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Input layer Hidden layer ~ Output layer

Figure 2.2 Recurrent neural network

2.2.2 Learning methods in neural networks

Analogous to the learning process of human brain, an ANN learns from the data
provided. This learning process is also referred to as ‘training”. The most significant
property for a neural network is the ability to learn from its environment, and
improve the performance through learning. A neural network learns about its
environment through an interactive process of adjustments applied to its synaptic
weights and bias levels. Ideally, the network becomes more knowledgeable about its
environment after each iteration of the learning process (Haykin 1999). A prescribed
set of well-defined rules for the solution of a learning problem is called a learning
algorithm. There is a diverse variety of learning algorithms, and each offers
advantages of its own. Basically, learning algorithms differ from each other in the
way in which the adjustment to a synaptic weight of a neuron is formulated.
Generally, based on presence or absence of a teacher, there are three types of learning

algorithms: unsupervised learning, supervised learning and reinforced learning
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(Haykin 1999).

Supervised learning is also referred to as learning with a teacher. Figure 2.3 shows a
block diagram of learning with a teacher. In supervised learning, both the inputs and
the outputs are provided, and supervised learning employs a “teacher” to assist in
training by telling the network what the desired response should be for a given input.
The network processes the inputs and compares its resulting outputs against the
desired outputs, and then the supervised learning algorithms use the difference
between the predicted and desired response to adjust the weights of the network to
improve prediction capabilities (McCord-Nelson and Illingworth 1991). It is a
closed-loop feedback system, but the unknown environment is not in the loop. The
important principle is that supervised learning requires an input and a corresponding
desired output. Given an algorithm designed to minimize the cost function, an
adequate set of input-output examples, and enough time permitted to do the training,
a supervised learning system is usually able to perform such tasks as pattern

classification and function approximation (Haykin 1999; Priddy and Keller 2005).
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Figure 2.3 Block diagram of learning with a teacher

In supervised learning, the learning process acts as a teacher. However, there is no

teacher employed in the learning process for the algorithm of ‘learning without a
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teacher’. It is analogous to students learning a lesson on their own. Under the
paradigm of learning without a teacher, two subdivisions are identified:
reinforcement learning and unsupervised learning. In reinforcement learning, the
learning of an input-output mapping is performed through continuous interaction
with the environment in order to minimize a scalar index of performance. Figure 2.4
shows the block diagram of one form of reinforced learning system built around a
critic that converts a primary reinforcement signal received from the environment
into a higher quality reinforcement signal called the heuristic reinforcement signal,
both of which are scalar inputs. Reinforcement learning is closely related to dynamic
programming. In unsupervised learning, there is no external teacher or critic to
oversee the learning process to adjust the weights, rather there is an internal
monitoring of performance, as indicated in Figure 2.5. The learning process is an
open loop with a set of adaption rules that govern general behavior. The learning
system receives stimulus from the environment, produces a response and, along with
the adaption rule, adjusts the weights of the neural network to obtain the desired
performance. The adaption rule in the unsupervised algorithm performs the error-
signal generation role the teacher performs in the supervised learning system. Once
the network has become tuned to the statistical regularities of the input data, it
develops the ability to form internal representations for encoding features of the
input and thereby to create new classes automatically (Haykin 1999; McCord-Nelson

and Illingworth 1991; Priddy and Keller 2005).
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Figure 2.4 Block diagram of reinforcement learning
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Figure 2.5 Block diagram of unsupervised learning

These learning algorithms can be further categorized based on the learning rules used.
A learning rule defines how exactly the network weights should be adjusted or
updated between successive training cycles (epochs). The unsupervised learning
algorithms include Hebbian and competitive learning algorithm, and supervised
learning algorithms include stochastic learning and gradient descent learning.
Gradient descent learning is further categorized as least mean square algorithm and
back propagation. Figure 2.6 shows the classification of the learning algorithms.
Generally, several of the algorithms are used to achieve the minimum error in the
shortest time. There are also alternative forms of neural network systems being
constantly developed, including new or modifications of existing ones. For specific
problems, the decision as to which network works better for a given problem
depends strictly on the problem logistics. For example, a clustering problem requires
a Kohonen network, and a mapping problem may be modeled using a variety of

ANNSs such as BP and radial basis function (RBF) networks. The suitability of an
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appropriate paradigm and strategy for application is very much dependent on the

type of the problem to be solved (Kalogirou 2003).

Neural network
learning algorithm

I
l l I

Supervised learning Reinforced learning Unsupervised learning
: Error correction Hebbian Competitive
Stochastic Gradient descen
Least mean Back
square propagation

Figure 2.6 Classification of learning algorithms

2.2.3 Back-propagation ANNs

Despite the diversity of ANN algorithms, the back-propagation (BP) algorithm and
its variants are the most popular learning algorithms in neural networks (Besaw,
Rizzo et al. 2010; Kalogirou 2003; Mohanraj, Jayaraj et al. 2012). BP networks are
known for their ability to generalize well on a wide variety of problems. BP networks
belong to a supervised type of networks, i.e. trained with both inputs and outputs.
Due to its popularity, flexibility and adaptability, BP has been widely applied in

many application areas as it tends to generalize well.

Multilayer feed-forward neural networks consist of units arranged in layers with only
forward connections to units in subsequent layers, as shown in Figure 2.1. The
connections have weights associated with them. Each signal traveling along the link
is multiplied by a connection weight. The first layer is the input layer, and the input
units distribute the inputs to units in subsequent layers. In subsequent layers, each
unit sums its inputs, adds a bias or threshold term to the sum and nonlinearly

transforms the sum to produce an output. This nonlinear transformation is called the
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activation function of the unit. The output layer units often have linear activations.
The layers between the input layer and output layer are called hidden layers and units

in hidden layers are called hidden units (Mellit and Kalogirou 2008).

The training of all patterns of a training data set is called an epoch. The training set
has to be a representative collection of input—output examples. Figure 2.7 depicts a
portion of a multilayer feed-forward ANN trained with BP algorithm. Two kinds of
signals are identified in this network: function signals and error signals. A function
signal propagates forward (neuron by neuron) through the neural network, and
emerges at the output end of the network as an output signal. An error signal
originates at an output neuron of the neural network, and propagates backward (layer

by layer) through the network.

—»  Function signals

Daduiaiatiiai Error signals

Figure 2.7 Two basic signal flows in a MFNN: forward propagation of function
signals and back-propagation of error signals

BP training is a gradient descent algorithm. It tries to improve the performance of the
neural network by reducing the total error by changing the weights along its gradient
(Haykin 1999). Suppose the ith element of the input vector (pattern) is denoted by

x,(n), y;(n) refers to the function signal appearing at the output of neuron j at
iteration n, and W, (n) denotes the synaptic weight connecting the output of neuron i

to the input of neuron j at iteration n, and the correction applied to this weight at
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iteration n is denoted by AW, (n).

In any interlayer, a typical neuron j integrates the signals, y,, impinging onto it, and

produces a net effect, &;, according to the neuron dynamics,
gi(n)= Z W, (n)x,(n)) 2.1

The corresponding activation, y,(n) , of the neuron is determined using a transfer

function, f, which converts the total signal into a real number from a bounded

interval:

y,(m)=f(g;(m) = f (Z W, (n)x;(n))) (22)

One popular function used in BP is the basic continuous sigmoid:

F@ = (2.3)
where —0 <& <+, and 0< f <1.
The error signal at the output of neuron j at iteration » is defined by

e (n)=d (n)~y,(n) (2.4)

. . . .1
Defining the instantaneous value of the error function for neuron j as Eejz. (n), the

total error function J of a multiple feed-forward neural network can be written as
15 -
J(n) = Ezej (n) (2.5)
j

BP is based on searching an error surface (error as a function of ANN weights) using
gradient descent for point(s) with minimum error. Each iteration in BP constitutes

two sweeps: a forward activation to produce a solution, and a backward propagation
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of the computed error to modify the weights. Based on this, the derivative of SSE
with respect to weights can be calculated to adjust each weight. The correction
AW ,(n) , which is defined by the data rule, is used to adapt (Haykin 1999).

oJ(n)

AVVji(n) =-n aW..(n)

(2.6)

where 71s the learning rate of the back-propagation algorithm. The use of the minus

sign in Eq.(2.6) accounts for the gradient descent in weight space.

In any interlayer, an arbitrary weight W, (n) at iteration (1) will be updated from its

previous state (n-1) value according to
W,(n) =W, (n=1)+AW (n) (2.7)

This back-propagation technique propagates backward the errors from the output
layer through the hidden layer to the input layer with the modified delta rule until the

stop criteria is satisfied.

The key distinguishing characteristic of the multilayer feed-forward neural networks
with back-propagation learning algorithm is that it forms a nonlinear mapping from a
set of input stimuli to a set of outputs using features extracted from the data patterns.
The neural network can be designed and trained to accomplish a wide variety of
nonlinear mappings, even for the very complex problems (Mellit and Kalogirou

2008).
2.2.4 Development of ANN models

Artificial neural networks are capable of powerful universal function approximation,
modeling the complex problems with many variables easily (Chow, Zhang et al.
2002; Ekici and Aksoy 2009; Esen, Inalli et al. 2008; Wang and Chen 2002; Zhou
and Haghighat 2009), which is the advantage of ANN from other methods. In this
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research, the objective function is built by ANN technique to map the complex non-
linear relationship between working conditions and the chiller outputs. Traditional
modeling methods for chillers mostly relied on the assumptions for model
simplifications, and thus may lead to inaccurate results. The characteristic of the
ANN technique make it suitable for modeling the chiller performance, and therefore
is utilized in this research as the modeling tool.

The performance of ANN is affected by the characteristic of the network, such as
training algorithm and neural network architecture. Neural network architecture
refers to the arrangement of neurons into layers and the connection patterns within
and between layers. The ANN model and its architecture determine how an ANN
transforms its inputs to outputs. Once the architecture has been determined, the
network is trained and then tested.

The main steps involved in developing an ANN to model air-cooled chillers are data
pre-processing and neural network construction. Data pre-processing includes data
specification, organization and analysis. Neural network construction involves
designing a preliminary model, building the model and optimizing the network
architecture during the training process by selecting the appropriate architecture and
the suitable learning rate, momentum and the activation function. If the neural
network does not reach an acceptable error during training, the data pre-processing
step may need to be revisited to improve the training. The procedure for developing

ANN models for air-cooled chillers is shown in Figure 2.8.
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Figure 2.8 ANN design flow process

2.2.4.1 Selection of input and output variables

When building ANN models, the system has to be identified with respect to the input
and output variables that characterize the system. Proper selection of input variables
for accurate prediction of a set of output variables is vital for modeling of any system
using ANN (Fast, Assadi et al. 2009), because they significantly affect the
performance of the weight adaptation algorithm used for the ANN models. System

knowledge to identify the interrelation between the input and output parameters helps
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in this respect. The inputs include the uncontrolled variables specific to the
environment and controlled variables modified by the operators. In the present case
for the air-cooled chillers, the inputs that can influence the performance of chiller
under investigation are outdoor conditions, chiller load, set points of controlled
variables and characteristic parameters of the chiller. The outputs are the related

chiller outputs.
2.2.4.2 Data pre-processing

In this research, one typical meteorological year’s simulation data were obtained for
different condenser features, respectively, and the simulation period covered the
complete operating seasons of the chiller plant of a building, so that the annual
variations could be learned. The lower and upper boundaries of the cases were
covered in a typical meteorological year’s working conditions. It was important to
cover the lower and upper extreme conditions of the cases investigated, as the neural
network learned all the range of possible values and thus extrapolation was not

needed.

The data required for the off-line training of the ANN model were produced using the
TRNSYS simulation. A preliminary analysis of the data would identify any obvious
errors due to equipment or simulation failure. The available simulation data of each
case were randomly divided into three subsets: training (60%), validating (20%) and
testing data (20%) (Beale, Hagan et al. 2011). The first subset was used to perform
the training of the network, computing the gradient and updating the network weights
and biases. The second subset was applied to evaluate the performance of the
network during training. Training continued as long as the network continued
improving on the validation set. The test subset was used for estimating the

performance of the trained network on new data, which was never seen by the
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network during the training. The test set provided a completely independent

evaluation of the ANN accuracy.

Generally, for the neural network, there are a pre-processing block between the input
and the first layer of the network and a post-processing block between the last layer

of the network and the output, as shown in Figure 2.9.

Input Output
——»{ Preprocessing ——{ Neural Network —— Postprocessing [——»

Figure 2.9 Neural network with a pre-processing and post-processing block

Data pre-processing for an ANN involves normalizing the input data and reducing its
dimensionality. Each value of input and output is normalized to ensure all input
parameters initially have the same relative influence on the output of the network, so
that no one set of values dominates the solution. Without normalization, input
variables with a little change could produce significantly different results (Massie,
White et al. 2002). The scaling used is either in the range -1 to 1 or in the range 0 to
1 depending on the type of data and the activation function used (Kalogirou 2003).
One of the simplest and most common methods to normalize data is through a simple
linear rescaling. In this research, to enhance the adaptability of the neural network,
all the input and output values were normalized so that they fell in the interval [-1, 1]
using the following equation (Hosoz, Ertunc et al. 2007):

_,_ p—min(p) (2.8)
max(p)—min(p) .

where p,, is the normalized form of vector p.

When the training completes, the outputs from the neural networks corresponded to

the normalized targets, and the corresponding de-normalization manipulations should
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be reverse transformed back into the units of the original target data when the

network is put to use in the field.
2.2.4.3 Selection of BP algorithm

ANN is based on the working process of human brain in decision making. The most
popular learning algorithms are the backpropagation (BP) and its variants, and the
BP algorithm is one of the most powerful learning algorithms in neural networks
(Kalogirou 2003). During the course of training, many training functions can be
adopted, such as Levenberg-Marquardt backpropagation, batch gradient descent with
momentum, variable learning rate backpropagation, BFGS quasi-Newton
backpropagation, Bayesian regulation backpropagation. In order to achieve the best
result, different training options should be attempted. Improving of the generalization
should be attempted by means of regularization and early stopping. Compared with
other training methods, the Levenberg—Marquardt algorithm gives the fastest
response with a minimum convergence error. The Bayesian regularization approach
involves modifying the usually used objective function, and it forces the network
response to be smoother and less likely to overfit, and hence provides the training
algorithm with a superior generalization capability. Therefore, Bayesian
regularization in combination with Levenberg—Marquardt training was chosen for

this research.
2.2.4.4 Optimization of the ANN structure

The architecture of an ANN is usually divided into three parts: an input layer, hidden
layer(s) and an output layer. The information contained in the input layer is mapped
to the output layer through the hidden layers. The neuron number of the input layer
of the ANN model is determined by the number of input variables selected, and the

neurons of the output layer is determined by the number of the output variables
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selected. It has been proved that in most function approximation problems, one
hidden layer may be sufficient to map an arbitrary function to any degree of accuracy
(Al-Shareef, Mohamed et al. 2008; Xin 1996; Zhang and Morris 1998). In fact,
neural networks with more than one hidden layer are more complex and time
consuming. Adding additional layers can allow for greater flexibility in the model,
which may increase the learning capacity. However, too many hidden layers will
result in overtraining and a loss in generalization capability, and it will also increase
the training time (Nannariello and Fricke 2001). In a Feed-forward neural network,
the hidden layer is made up of sigmoid functions which are capable of simulating the
nonlinear effects, and hence it is sufficient to include one single hidden layer. In this
research three-layer BP neural networks with one hidden layer will be considered.

Next, the number of neurons in the hidden layer is determined.

Generally, the error on training data decreases with increasing number of hidden
neurons or training cycles, as shown in Figure 2.10 (Basheer and Hajmeer 2000). The
initial large decrease in the error is due to learning, but the subsequent slow reduction
in error may be attributed to memorization resulting from the excessively training, or
overfitting due to a large number of hidden neurons. During ANN training, the error
on test subsets also generally shows an initial reduction and a subsequent increase
due to memorization and overtraining of the trained ANN model. The optimal neural

network architecture is obtained with minimum error for test data set.

One method for improving network generalization is to use a network that is just
large enough to provide an adequate fit. To determine the required number of hidden
neurons for sufficient training, many different rules have been proposed. Although
the formulas will suggest different optimal number of hidden neurons in a feed-

forward neural network, they can provide a reference for the possible range of the

42



optimal number of hidden neurons. For the ANN model with only one hidden layer,

the number of neurons in the hidden layer is defined by Eq. (2.9) (Xie 2003).
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Figure 2.10 Selection of optimum network architecture

n=./mn, (2.9)

Yao and Wang (2002) put forward another empirical formula to determine the

number of neurons in the hidden layer as follow.

n=10.13mn, +0.12m* +2.54n, +0.77m +0.86 (2.10)

Two formulas were suggested (Xin 2000) to calculate the required number of

neurons in the hidden layer.

n=.\n+m+c (2.11)
n=log, n, (2.12)

Xu and Chen (2008) proposed an approach for determining the optimal number of

hidden nodes in a feed-forward neural network as shown in Eq. (2.13).
n:C_},(N/(a’logN))”2 (2.13)

In the above five formulas, # is the number of hidden neurons, 7, is the number of
neurons in the input layer, m is the number of neurons in the output layer, c is a
constant which belongs to [1, 10], 4 is the input dimension of the target function f, N
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is the number of training pairs, and Cy is the first absolute moment of the Fourier

magnitude distribution of the target function f.
2.2.5 Performance of the neural network

As the initial weights are randomly given, the outputs of the neural network will be
different from the desired ones each time. With training, the weights of the neural
network are continually updated to reduce the difference between the outputs and the
desired response, which is regarded as the error and can be measured in different
ways. The most common indicator is the mean squared errors (MSE), which is the
square difference between the network's output and the desired response, as defined

in Eq. (2.14).
N
MSE = %Z(g ~a,)’ (2.14)
i=1

where ¢ is the target value, a; is the network output and N is number of input - output

data pairs.

Overfitting is a major problem that occurs during the neural network training. If a
neural network overfits or memorizes the training data, its generalized performance
is likely to be severely compromised and the error becomes larger. The MSE
minimization procedure by itself does not ensure that the trained neural network will
possess the desired generalization ability. To improve the generalization capability,
the performance function of the feedforward neural network model should be
modified by adding a term that consists of the mean squares of the network weights
and biases (MSW), and the new error function is called the generalized error function

(MSEREG) defined as follow (Beale, Hagan et al. 2011).

N

MSW:%ZW? (2.15)

i
i=1
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MSEREG = yMSE +(1— y)MSW (2.16)

where wj is the weight vector, and parameter y is the performance ratio.

This modified performance function causes the neural network to have smaller
weights and biases, which forces the neural network to response smoother and is less
likely to overfit. It is difficult to determine the optimum value for the performance
ratio parameter. It is desirable to determine the optimal regularization parameters in
an automated fashion. Bayesian framework can determine the optimal regularization

function parameters automatically (Beale, Hagan et al. 2011).

Early stopping is also a recommended criterion for stopping the training of a neural
network to improve its generalization and prevent overfitting, which is beneficial to
the network performance (Beale, Hagan et al. 2011; Nguyen, Abbass et al. 2005). It
should be noted that a neural network will always learn the training data set better as
the training is sufficient. Generally, the training set error decreases with increasing
iterations. However, it is not always guaranteed better performance in the test. If the
neural network is trained too much, the neural network memorizes the training
patterns and does not generalize well. Therefore, the criterion to early stop training
should be well determined. In the technique of early stopping, the validation error
normally decreases during the initial phase of training, as does the training set error.
However, when the neural network starts to overfit the data, the error on the
validation set typically begins to rise. When the validation error increases for a
specified number of iterations, the training is stopped, and the weights and biases at

the minimum of the validation error are returned (Beale, Hagan et al. 2011).

The performance of the ANN based prediction is evaluated by a regression analysis
between the network outputs and the corresponding targets. In addition to the

generalized error function (MSEREG), the correlation coefficient (R), mean relative
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error and absolute fraction of variance (R?) can be used for assessing the error of the
neural network. The correlation coefficient is a measure of how well the variation in
the output is explained by the targets, which is defined as follows (Hosoz, Ertunc et
al. 2007):

B cov(a, p)
Ria, p)= Jeov(a,a)cov(p, p) @.17)

where cov(a, p) is covariance between a and p sets that refer to the actual output and
the predicted output sets, respectively. Similarly, cov(a, a) and cov(p, p) are the auto
covariances of a and p sets, respectively. The correlation coefficient evaluates the
degree to which two variables are linearly related, which ranges between -1 and 1.
The R values closer to 1 indicate a stronger agreement of training and predicted

values, while the R values closer to -1 indicate a stronger negative relationship.

The absolute fraction of variance (R?) is determined from Eq.(2.18) (Hosoz, Ertunc et

al. 2007).

B Zl]-v:l(ai _pi)2

R*=1 Y
ZiZIPi

(2.18)

where q; is the actual output, N is the number of points in data set, p; is the predicted
output. The R” values range between 0 and 1. A very good fit yields a R” value of 1,

whereas a poor fit results in a value near 0.
2.3 Genetic algorithm

Genetic algorithms (GAs) are stochastic global search and optimization methods that
mimic the process of natural evolution. In the early 1970s, John Holland, one of the
founders of evolutionary computation, introduced the concept of genetic algorithms

(Holland 1992), and he published the book Adaptation in Natural and Artificial
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Systems in 1975, which described a general framework for understanding the
mechanisms responsible for natural adaptation and designing biologically-inspired
artificial systems in a variety of systems over a broad range of timescales (Booker

and Riolo 2000).

GA is based on Darwin’s theories of natural evolution and natural genetics for the
design and implementation of robust adaptive systems. Over the last decades, GA has
received much attention due to its potential as optimization techniques and GA turns
out to be one of the most promising approaches for dealing with complex systems
(Oswaldo 2005). To date, GAs have been successfully applied to an extensive
number of applications in machine learning (Chi, Ersoy et al. 2007; Sette and
Boullart 2000) and data mining (Koonce and Tsai 2000; Sikora and Piramuthu 2007;
Sorensen and Janssens 2003), most notably classification (Hu 2005; Sarkar, Sana et
al. 2011; Yamany, Khiani et al. 1997), pattern recognition (Alsultanny and Agel 2003;
PN 2002; Polat and Yildirim 2008), reinforcement learning (Kamei and Ishikawa
2006; Koulouriotis and Xanthopoulos 2008) and various complex optimization
(Cook, Ragsdale et al. 2000; Morimoto, De Baerdemaeker et al. 1997; Shen, Wang et
al. 2007). GA is one of the most common global optimization methods in building
applications, including building design optimization (Caldas and Norford 2002;
Ooka and Komamura 2009; Wright, Loosemore et al. 2002), optimal control of
HVAC systems (Chang 2005; Chow, Zhang et al. 2002; Lu, Cai et al. 2005b;
Mossolly, Ghali et al. 2009; Wang and Xu 2006; Zhou and Haghighat 2009),
renewable and sustainable energy (Kalogirou 2004; Varun and Siddhartha 2010). GA
is capable of dealing with multi-objectives optimization with discontinuous variables
and multi-modal problems, and is tolerant to noise, and hence it is robust (Huang and
Lam 1997; Znouda, Ghrab-Morcos et al. 2007). In addition, it is highly efficient and
1s easy to use.
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GAs are search or optimizing algorithms based on the mechanics of natural selection
and natural genetics. They are guided randomized procedures that efficiently exploit
historical information to speculate on the new search points with expected improved
performance. GAs differ substantially from traditional search and optimization

methods in four ways (Goldberg 1989):

(1) GAs search from a population of points in parallel, not a single point, many of

which are likely to provide alternatives to the “best” individuals of the population.

(2) GAs only use the objective function and corresponding fitness levels to determine

the directions of search instead of requiring derivatives or other auxiliary knowledge.

GAs do not require the calculation of the objective function gradient with respect to
the design variables, and continuity of differentiability of problem functions is
neither required nor used in calculations of a GA. This feature is particularly helpful
in some cases such as for multi-objective problems and mixed integer non-linear

programming.

(3) GAs use probabilistic transition rules instead of deterministic rules. Due to the
probabilistic nature, the initial guess has a low incidence on the final result of the

optimization, and GAs are unlikely to converge to a local optimum.
(4) GAs work on an encoding of the parameter set, not the parameter set itself.
2.3.1 GA procedure

Genetic algorithms are typically implemented using computer simulations in which
an optimization problem is specified. In a genetic algorithm, a population of strings
(called chromosomes), which encode candidate solutions (called individuals) to an
optimization problem, evolves toward better solutions. Based on the idea of “survival

of the fittest” and “natural selection”, GA is a class of parallel iterative algorithm
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with certain learning ability (Goldberg 1989). The implementation of the most

traditional genetic algorithm can be briefly illustrated with Figure 2.11.
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Figure 2.11 A basic genetic algorithm

It starts from an initial population of individuals randomly generated according to
some probability distribution. The fitness of each individual chromosome is then
calculated and evaluated, and multiple individuals are randomly selected from the
current population. Then, GA applies the genetic operators to form a new population,
including selection, crossover and mutation. The process is repeated until the
termination criterion is satisfied. GA operates on a population of potential solutions
following the principle of survival of the fittest to produce better and better

approximations to a solution.
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It can be identified that a GA represents an iterative process. Each iteration of this
process is called a generation. A typical number of generations for a simple GA can
range from 50 to 500 or more (Mitchell 1996). The entire set of generations is called
a run. At the end of a run, it is expected to find one or more highly fit chromosomes

in the population.
2.3.2 Elements of the genetic algorithm

Population representation

GAs operate on a number of potential solutions, called a population, consisting of
some individuals simultaneously. The utilization of populations is one of the most
important features of GAs. Increasing the population size enables the genetic
algorithm to search more points and thereby obtain a better result. However, the
larger the population size, the longer the genetic algorithm takes to compute each
generation. Typically, a population size of between 30 and 100 is recommended

(Chipperfield, Fleming et al. 2001).

Each chromosome represents a legal solution to the problem and is encoded of a
string of genes. For most GAs, the candidate solutions are represented by
chromosomes coded by either a binary number system or a real decimal number
system. GAs using binary strings as the chromosomes are called binary-coded GAs.
Whereas GAs using real-number representation of solutions are called real-coded
GAs. The most commonly used representation in GAs is the binary alphabet (0, 1)
(as shown in Figure 2.12 a) but sometimes, depending on the application, integers or
real numbers (as shown in Figure 2.12 b) are used. Any representation can be used
and enables a solution to be encoded as a finite length string. If a numerical
optimization problem has a real value in nature, a real-coded genetic algorithm

perform better than a binary-coded GA in terms of consistency, precision, and faster
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execution (Lin, Li et al. 2000), which increases the level of possible exploration of
the search space without adversely affecting the convergence characteristics
(Chipperfield, Fleming et al. 2001). In this research, real-coded GA is used, and the
variable values are represented as floating-point numbers. This is because the
problems use continuous variables, and it seems more natural to use the real-coded

GA.
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(a) binary representation
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(b) real number representation
Figure 2.12 Chromosomal representation

Fitness functions

A fitness function is used to measure the chromosome’s performance or fitness for
the problem to be solved. The more suitable is the solution, the better is the fitness.
The GA uses a measure of fitness of individual chromosomes to carry out
reproduction (Negnevitsky 2005). The fitness function greatly affects the
convergence speed of a GA process. To drive the GA search process towards the best
solution, the fitness function should be able to reflect the key properties of the model.
If the fitness function contains inadequate information about the model, it cannot
identify a chromosome (solution) with superior characters, the convergence will be
very slow, and the search process will not be able to find the best solution in an
acceptable time period (Chen, Worden et al. 2007). Therefore, the definition of the
fitness function is crucial for the problem to be solved. In addition, the fitness
function has to make the evaluation of each chromosome in an efficient manner due

to a large number of times the function will be called during the execution of the
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genetic algorithm. According to the rule of the GA, the fitness function should be no

less than zero.

GA operators

GA is an optimum search technique based on the concepts of natural selection and
survival of the fittest. During the process of evolution, a population of potential
solutions, termed as chromosomes/individuals, is evolved over successive
generations using three main types of operators: selection, crossover and mutation.
First of all, the selection operator is applied to select chromosomes to be part of a
reproduction process based on fitness evaluation. In the reproduction process, new
individuals of the next generation are created through crossover and mutation
operators. Crossover and mutation do not always occur, and they do with some

probability.

Selection This operator selects relatively ‘fit” chromosomes in the population for
reproduction based on the fitness criterion. The fitter an individual, the larger the
probability it is likely to be selected to reproduce. There are various existing types of
selection operators, including roulette wheel selection, sequential selection,
tournament selection, dominant selection, hybrid selection and kin selection
operators. One of the most frequently used chromosome selection techniques is the
roulette wheel selection (Goldberg 1989; Lipowski and Lipowska 2012). Figure 2.13
illustrates the roulette wheel, and each chromosome is given a slice of a circular
roulette wheel equal in area to the chromosome’s fitness, and the fitness determines
the chromosome’s chance of being selected for mating. It is like spinning a roulette
wheel where each chromosome has a segment on the wheel proportional to its fitness.
When the roulette wheel is spun, the arrow comes to rest on one of the segments, and

the corresponding chromosome is selected.
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Figure 2.13 Roulette wheel selection

Considering N individuals, each is characterized by its fitness. The selection

probability ps(X;) of the i-th individual is defined as follows (Wang 2005).

ps(X,»)=Nf(—X") (2.19)

> S

where f'(Xj) is the fitness value of the individual X;, i=1, 2, ..., N.

Then proportional selection (e.g. round roulette selection) will be used to select
designs. That is, individual X; will be selected if a uniformly random number ¢ in (0,

1) satisfies

i—1

S p(X)<E<Y X))

=0 =0
where ps =0 for j = 0.

Crossover Crossover is an efficient way of adapting the population based on the
crossover probability. The crossover operator randomly chooses a crossover point
where two parent chromosomes ‘break’, and then exchanges the subsequences before
and after that locus between two chromosomes to create two offspring as shown in
Figure 2.14, which combines the features of two parent structures. One-point

crossover or two-point crossover is commonly used as the crossover method. The
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crossover point is randomly selected. The purpose of crossover operator is to produce
new chromosomes that are distinctly different from their parents, yet contain some of
their parents’ characteristics (Anijdan, Bahrami et al. 2006). Without the operator of
crossover, the chromosome cloning takes place, and the offsprings are created as
exact copies of their parents. The crossover operator roughly mimics biological
recombination between two single-chromosome (haploid) organisms (Mitchell 1996),
and blends the genetic information between chromosomes to explore the search

space.
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Figure 2.14 Two point crossover of binary strings

The crossover operation only occurs when the crossover probability is greater or
equal to the randomly generated number between 0 and 1. In binary-coded GA, the
crossover operation can be implemented by using methods like one-point crossover
or two-point crossover. However, in real-coded GA, the blending methods give better
results in crossover operation. In blending method, two individuals are randomly
chosen among the population, and they will perform crossover with crossover
probability p., and then the new generations are produced as the combination of the
variable values from the two parents into new variable values in the offspring as

follows (Randy and Sue 2004):

X'=AX+(1-)Y (2.20)

Y'=(1-)X +AY 2.21)
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where A is a number randomly generated between 0 and 1, X and Yare the parent

chromosomes, and X and Y’ are the next generation chromosomes.

Once the crossover operator is complete, the parenting pool with unchanged and

recombined individuals becomes the offspring population.

Mutation The operation of mutation has the potential to change a gene. The mutation
operator randomly flips some of the bits in a chromosome as shown in Figure 2.15,
which represents a change in the gene. Mutation is used to maintain adequate
diversity in the population of chromosomes to avoid premature convergence and
trapping on a local optimum, which may lead to a significant improvement in fitness
of the individual, but sometimes these random changes will have some harmful
results for some conditions. Without mutation, the population tends to converge to a
homogeneous state where individuals are just slightly different from each other.
Mutation can occur at any gene in a chromosome with some probability, and the
probability of a mutation is equal to the mutation rate. Since mutation rate is very
small in natural evolution, the probability applied for the mutation operator in GAs is
kept quite low, typically ranging from 0.001 to 0.01(Negnevitsky 2005).

1@1 1 1|F1 1

Figure 2.15 Mutation

For the real-coded GA, mutation operator is often performed in the following way by

adding certain random number (Wang 2005).
Xnew = Xold T C (222)

where { is a random number subject to normal distribution N(0, 1).
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2.4 Hybrid artificial neural networks-genetic algorithms technique

The greatest advantage of ANNs over other modeling techniques is their capability to
model complex, non-linear processes without having to assume the form of the
relationship between input and output variables (Tiwari, Dubey et al. 2009). As a
developing and promising technology, ANNs have been widely used in building
industry. GAs are gradient-free, parallel optimization algorithms based on the
concepts of natural selection and survival of the fittest, which are capable of handling
non-linear, complex and irregular solution spaces and are very efficient tools for
optimization. The main drawback of GAs is the computational time to reach optimal
solutions, which hinders GAs for building applications. As the commonly used
simulation programs such as EnergyPlus, TRNSYS or ESP-r are time consuming to
operate. Therefore, it is necessary to take full advantage of GA capabilities while

keeping a reasonable computation time.

Finding the solution to an optimal control problem is generally difficult and time-
consuming even in the presence of complete and correct knowledge of the system
dynamics. Many practical optimization problems have no explicitly known forms of
objective functions, so that they require considerably expensive computational time
or some complicated analysis to evaluate the objective value. Due to their advantages
of ANN and GA, the combination of ANN and GA has been used for integrated
process modeling and optimization. If a hybrid artificial neural networks-genetic
algorithms (ANN-GA) strategy is proposed, where ANN is used as fitness
approximation and GA is applied to perform effective and robust evolutionary
optimization, this hybrid technique will guarantee the efficiency of genetic search

and the optimal solutions.

The hybrid ANN-GA strategy has been applied for prediction of electrical energy
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consumption (Azadeh, Ghaderi et al. 2007; Li and Su 2010), optimization of solar
systems (Mellit, Kalogirou et al. 2010; Soteris A 2004), optimization of ventilation
systems (Zhou and Haghighat 2009), building design (Magnier and Haghighat 2010;
Sun, Fang et al. 2010), and optimization of building central cooling systems (Chow,
Zhang et al. 2002; Gibson 1997). These studies confirm that the integrated algorithm
of artificial neural network and genetic algorithm is powerful and efficient in the
building field, which can save a significant amount of computation time while

keeping the optimization reliable.

Chiller system optimization control is a complicated nonlinear system. In the past,
many optimization control studies related to central cooling plant had been reported,
but the analyses of the research on chiller optimization encountered complex
thermodynamic phenomena and relied on a series of simplifying assumptions. Such
analysis needs a robust numerical solver and is time-consuming to solve under the
diverse weather and operating conditions, and hence is not suitable for rapid
prediction in optimization and process control. The GA and ANN are appropriate to
tackle the chiller system control problems, and the hybrid ANN—GA technique is a
powerful method for process modeling and optimization, which can take full
advantage of ANN and GA capabilities (Chow, Zhang et al. 2002). In this study, a
hybrid ANN-GA strategy is proposed to facilitate modeling and optimization of the
air-cooled chillers, where ANN learns the nonlinear mapping and is used as fitness
approximation, and GA is applied to perform effective and robust evolutionary

optimization to find the global optimum in a bounded parametric searching space.

One of the objectives in this research is to develop the optimal control strategy using
a hybrid ANN and GA under variable condensing temperature control, but there is a

lack of the chiller operating data under variable condensing temperature control.
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Currently nearly all the air-cooled chillers are operating under HPC, there is no reset
for set point of condensing temperature when chiller are operating at various
conditions. In order to study how the set points of condensing temperature influence
the performance of air-cooled chillers, even establish the scheme for optimum set
point of condensing temperature, the detailed simulation of chiller plant is needed.
The simulation results will be treated as database for ANN models to train and test.
When the manufactures do the experiments under CTC, and the related operating
data are recorded, the operating data will easily replace the simulation data and be

used as the database for the ANN models, as the methodologies are the same.

The general approach for the simulation-based optimization strategy of this study is
illustrated in Figure 2.16. It is divided in three sequential steps. First the
representative office building and hotel building models and chiller models are
developed using EnergyPlus and TRNSYS, and the chiller models are validated
using measured operating data. Then, sufficient simulations using these models are
conducted to generate a database under normal operating conditions. Once the
database is created, the simulation results will be used to train and validate the ANN
models. After training and validation, the ANN models are then integrated into the
genetic algorithm serving as the evaluation function, and GA can search for the

optimal or near-optimal controlled variables to operate the chillers efficiently.
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Figure 2.16 Optimization strategy

59



Chapter 3 Building System and Simulation Platform

This chapter presents the generic reference buildings including a representative office
building and a hotel building, and the characteristics of the load-frequency and
weather-load profiles of such buildings. It outlines how these load profiles can be
used to evaluate the numbers of chillers in the chilled water plants serving the
buildings. The representative hotel and office buildings are mainly used to ascertain
the cooling demand for the typical commercial buildings and investigate the
developed optimal strategies in terms of energy performances under various

operating conditions.
3.1 Building and system description

It is widely recognized that commercial buildings account for major electricity
consumption and this strongly influences the environment and world ecosystem
(Lam 2000; Lam, Li et al. 2003; Yu and Chan 2005a). The majority of buildings in
Hong Kong are high-rise and large portion of the total building stocks are
commercial buildings, including office buildings and hotels. These account for
considerable energy consumption in the building sector in Hong Kong. According to
surveys of the electricity consumption of local hotels and office buildings (Deng and
Burnett 2000; Yik, Burnett et al. 2001), hotels have an average energy use intensity
(EUI) of 406 kWh/m® to 427 kWh/m” which is nearly double the amount consumed
by office buildings. The amount of electrical energy consumed by the central chillers
is large, which accounts for as much as 35-40% of the annual total electricity in Hong
Kong (Chan and Yu 2002). Therefore, it is worth investigating the electricity end-use

characteristics of the commercial buildings.
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To formulate strategies for optimizing the efficiency of chilled water plants in
commercial buildings, it is important to understand the interaction between building
cooling load and chiller load profiles. Two buildings are modelled in this research:
one is a representative office building in Hong Kong, and the other is an existing five
star hotel which is representative of the trade. The model buildings are aimed at
ascertaining the cooling load profiles which constitute the inputs of the chiller model

developed in this research.
3.1.1 Description of generic reference buildings

The characteristics of building cooling load greatly influence the determination of

chillers and how these chillers should be staged in implementing chiller sequencing.

As there are various buildings with different designs, shapes and scales, and each
type of building has its own feature such as occupancy schedules, the internal heat
gains, and the requirements for air-conditioning and the chiller system. With regard
to the investigation into the impacts of the chiller power consumption of buildings
with various control strategies, it would be extremely time-consuming and tedious if
the different cooling load patterns of all different types of building are simulated.
Therefore, generic office and hotel buildings are needed to serve as a basis for
comparison and evaluation. The generic buildings should incorporate most of the

design features common in local commercial buildings.

According to a survey of 64 commercial buildings in Hong Kong (Chan and Chow
1998), the construction characteristics of high-rise office buildings in Hong Kong
were identified and a reference building was developed as the basis for simulation.
The reference office building is 40-storey high with building parameters commonly
found in the surveyed buildings. It has a dimension of 36 m X 36 m with curtain-wall

construction and a centralized HVAC system. Figure 3.1 shows the plan of the model
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building, which has a 3.2 m floor-to-floor height and a window height of 1.6 m. This

represents a window-to-wall ratio (WWR) of 50%.

36 m

A
¥ _
— Z

»l
'|

4.6 m
y

A

| I5m |

46m  |Core
«—> (non-air-
conditioned )

I5m 36 m

Interior zone

Perimeter zone

Figure 3.1 Typical floor plan and thermal zones of the office building

As for hotel buildings, the representative hotel building is based on an existing hotel
in Hong Kong. According to the energy surveys for the local hotel sector (Deng and
Burnett 2000), the hotel building adopted in this study has average characteristics in
terms of the number of guestrooms, total floor area and annual -electricity
consumption per unit floor area of the building. It is expected that the hotel has
representative cooling requirement and energy performance for a large group of local
hotels. Figures 3.2 and 3.3 show the hotel configuration and the floor plan. Table 3.1

summarizes the general features of the representative office and hotel buildings.
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Figure 3.2 Hotel configuration
48 m J ﬂN L 48 m J I/
18 m R 27 m
4m} | Lifis 1 I
Core
Void 35m 55m (non-air- 40 m 55m
conditioned)
4 mi Lifts v
Perimeter zone Perimeter zone
Tower block Podium block

Figure 3.3 Floor plan and thermal zones of the tower block and podium block
in the hotel building
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Table 3.1 Basic characteristics and design criteria of office and hotel examples

Building Office Hotel

General Tower Tower Podium

Area Office Guestrooms Shops and restaurants
55 x 48 with a

Floor Dimension (L x W) (m) 36 x 36 central void of 55x48

18 x27

Area per floor (m?) 1296 2154 2640

Air-conditioned area per floor (m?) 1071 2010 1560

Number of floors 40 17 4

Floor to floor height (m) 32 2.6 3.9

Total air-conditioned area (m?) (%GFA) 42840 (82.6) 42420 (85.9)

Gross floor area (GFA) (m?) 51840 49332

Orientation N/E/S/IW NW/NE/SE/SW

Aspect ratio 1.0 1.1

Construction Details

Window to wall ratio 0.5 NW/SE: 0.6, SW/NE: 0.3

U-value (Wall) (W/m®-°C) 23 1.9

U-value (Window) (W/m*°C) 5.7 54

U-value (Roof) (W/m*°C) 0.7 0.7

Glass shading coefficient 0.45 0.55

Design Criteria

Area Office Guestrooms Shops and restaurants

Temperature (°C) 24 24 22

Relative humidity (%) 50 50 50

Ventilation rate (L/s/person) 10 7.5 5

Occupancy (m*/person) 9 18 5

Equipment load (W/m?) 25 12 50

Lighting load (W/m?) 20 18 35

Occupied periods

Weekdays 0900-1700 0100-2400 0800-2300

Saturdays 0900-1300 0100-2400 0800-2300

Sundays Unoccupied 0100-2400 0800-2300

3.1.2 Zones and system description

Due to the complexity of the representative office and hotel buildings, the buildings

are divided into multi-zones, as illustrated in Figure 3.1, Figure 3.3 and Figure 3.4.

The detailed information about the construction of the office and hotel buildings is

shown in Table 3.2 and Table 3.3. After each thermal zone was constructed, the

parameters influencing its thermal environment were specified, namely, infiltration,

ventilation, heating, cooling, and heat gains due to occupancy, computer equipment,

artificial lighting and other heat generating appliances.
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Table 3.2 Construction of fabric and internal structure of the office building

. Thickness Therrr'lal. Density Specific heat Thermal
Layer Material* (mm) conductivity (ke/m’) (J/kg °C) resistance
(W/m-°C) (m*°C /W)
External wall
Granite panel 25 1.802 2242 837 -
Air layer 50 - - - 0.156
Concrete 100 1.731 2243 840 -
Plaster 20 0.38 1120 840 -
Roof
Screeding 25 0.721 1858 837 -
Polystyrene Insulation 37 - - - 1.07
Asphalt 30 - - - 0.026
Screeding 25 0.721 1858 837 -
Concrete 100 1.731 2243 840
Floor
Vinyl tile - - - - 0.0088
Screeding 25 0.721 1858 837 -
Concrete 50 1.731 2243 840 -
Ceiling
Concrete 50 1.731 2243 840 -
Screeding 25 0.721 1858 837 -
Vinyl tile - - - - 0.0088
Partition
Gypsum board 15 0.16 950 840 -
Air layer 50 - - - 0.156
Gypsum board 15 0.16 950 840 -
Core wall
Plaster 20 0.727 1602 840 -
Concrete 250 1.731 2243 840 -
Plaster 20 0.727 1602 840 -
Window

6 mm reflective glass, single pane, shading coefficient = 0.45, U-value = 5.5 W/(m*-°C)

* Layer sequence: top to bottom = outside to inside
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Table 3.3 Construction of fabric and internal structure of the hotel building

Layer Material* Thickness Thermal Density Specific heat ~ Thermal
(mm) conductivity (kg/m®) (J/kg-°C) resistance
(W/m-°C) (m*°C /W)
External wall
Granite panel 25 1.802 2242 837 -
Air layer 50 - - - 0.156
Concrete 200 1.731 2243 840 -
Plaster 20 0.38 1120 840 -
Roof
Screeding 25 0.721 1858 837 -
Polystyrene Insulation 37 - - - 1.07
Asphalt 30 - - - 0.026
Screeding 25 0.721 1858 837 -
Concrete 100 1.731 2243 840
Floor
Vinyl tile - - - - 0.0088
Screeding 25 0.721 1858 837 -
Concrete 50 1.731 2243 840 -
Ceiling
Concrete 50 1.731 2243 840 -
Screeding 25 0.721 1858 837 -
Vinyl tile - - - - 0.0088
Partition
Gypsum board 15 0.16 950 840 -
Air layer 50 - - - 0.156
Gypsum board 15 0.16 950 840 -
Core wall
Plaster 20 0.727 1602 840 -
Concrete 150 1.731 2243 840 -
Plaster 20 0.727 1602 840 -
Window

6 mm tinted glass, single pane, shading coefficient = 0.55, U-value = 5.38 W/m?-°C

* Layer sequence: top to bottom = outside to inside

3.2 Development of the simulation platform

3.2.1 EnegyPlus and its applications

Computer simulation is commonly used to determine the thermal performance of

buildings. Among various simulation programs, EnergyPlus is a new building energy

simulation program (Crawley, Lawrie et al. 2001) that combines the strengths of two

widely used programs, namely BLAST (Al-Rabghi and Hittle 2001) and DOE-2

(Andolsun, Culp et al. 2011), and it represents a significant step forward in terms of

computational techniques and program structures. For the simulation of the thermal

behaviour of the representative buildings under climate change, EnergyPlus has

many desirable features and is employed as the simulation tool in this research.
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The models of the representative office building and hotel building were developed
to ascertain the cooling demand for these typical buildings with the simulation
program EnergyPlus. In the calculation of hourly building cooling loads, detailed
features of these buildings were compiled, including the materials, orientation,
construction, ventilation and air-conditioning requirements, occupancy, equipment
power density and operating schedules, which were set according to EMSD’s
recommendations (EMSD 2007). The schedules for occupancy density, lighting
density and ventilation are presented in Tables 3.4, 3.5 and 3.6, whereby the
variations of cooling demand and heat gains in different periods can be precisely

described.

Table 3.4 Occupancy density, lighting load profiles and operating schedule of

ventilating fans in the office building

Hour Occupancy* Lighting* Lighting* Ventilating fans
(Perimeter) (Interior)
Weekdays
1-7 0.0 0.05 0.05 Off
8 0.05 0.1 0.1 Off
9 0.4 0.5 0.5 On
10 0.95 0.9 1.0 On
11 0.95 0.9 1.0 On
12 0.95 0.9 1.0 On
13 0.95 0.9 1.0 On
14 0.45 0.8 0.9 On
15 0.95 0.9 1.0 On
16 0.95 0.9 1.0 On
17 0.95 0.9 1.0 On
18 0.5 0.8 0.8 On
19 0.25 0.5 0.5 On
20 0.1 0.3 0.3 Off
21 0.05 0.2 0.2 Off
22-24 0.0 0.05 0.05 Off
Saturday
1-7 0.0 0.05 0.05 Off
8 0.05 0.1 0.1 Off
9 0.3 0.5 0.5 On
10-13 0.6 0.75 0.8 On
14-17 0.1 0.2 0.2 Off
18 0.05 0.1 0.1 Off
19-24 0.0 0.05 0.05 Off
Sunday
1-9 0.0 0.05 0.05 Off
10-17 0.05 0.1 0.1 Off
18-24 0.0 0.05 0.05 Off

* Values denote fractions of maximum occupancy and lighting power.
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Table 3.5 Occupancy density, lighting and equipment load profiles and the operating
schedule of ventilating fans of guestrooms in the hotel building

Hour Occupancy* Lighting* Equipment* Ventilating fans
Weekdays
1-8 1.0 0.05 0.05 On
9-21 0.3 0.3 0.3 On
22-24 1.0 0.05 0.05 On
Saturday
1-8 1.0 0.05 0.05 On
9-21 0.3 0.3 0.3 On
22-24 1.0 0.05 0.05 On
Sunday
1-8 1.0 0.05 0.05 On
9-21 0.3 0.3 0.3 On
22-24 1.0 0.05 0.05 On

* Values denote fractions of maximum occupancy, lighting power and equipment power.

Table 3.6 Occupancy density, lighting and equipment load profiles and the operating
schedule of ventilating fans of shops and restaurants in the hotel building

Hour Occupancy* Lighting*  Equipment* Ventilating fans
Weekdays
1-7 0.1 0.05 0.05 Off
8-16 0.8 0.8 0.8 On
17-23 0.7 0.8 0.8 On
23-24 0.1 0.05 0.05 Off
Saturday
1-7 0.1 0.05 0.05 Off
8-16 0.8 0.8 0.8 On
17-23 0.7 0.8 0.8 On
23-24 0.1 0.05 0.05 Off
Sunday
1-7 0.1 0.05 0.05 Off
8-16 0.8 0.8 0.8 On
17-23 0.7 0.8 0.8 On
23-24 0.1 0.05 0.05 Off

* Values denote fractions of maximum occupancy, lighting power and equipment power.

Since the developed optimal control strategies mainly focus on optimizing the
control of multiple chiller systems to improve the chiller efficiency, the thermal
balance is of major concern; therefore, the following simplifications have been made

in the construction of the building models.

(a) The cooling loads calculated from EnergyPlus are simply the idealized
energy required to maintain indoor temperature set points and the results are

not system-specific.
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(b) It is assumed that every piece of air-handling equipment is capable of
delivering the cooling energy required to meet the cooling demand for the
thermal conditions specified in each zone and that the operation of chillers
with different arrangements is able to satisfy perfectly the changing building

cooling load.

(c) The controllability and dynamic response of the airside and water equipment

are disregarded in this steady-state performance analysis.
3.2.2 Building modelling

Google Sketchup is employed to generate building geometry for the EnergyPlus
model, which is a user-friendly 3-D drawing interface. OpenStudio, a plug-in for
Google SketchUp, is an extension to Google’s popular 3D modeling tool that adds
EnergyPlus context to the SketchUp program. The Plug-in allows users to quickly
create geometry for EnergyPlus using the built-in functionality of Google SketchUp
including existing drawing tools, integration with Google Earth, Building Maker, and
Photo Match. Figure 3.5 shows the EnergyPlus building models using Google

SketchUp for the office building and the hotel building, respectively.

(a) Office building (b) Hotel building

Figure 3.5 3D view of office building and hotel building model
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3.2.3 Cooling load profile of office and hotel buildings

Based on the hourly weather data of an Example Weather Year, there are 3051
cooling hours for the office building, which account for 97.8% of the total 3120
office hours. Table 3.7 shows the frequency distribution of hourly building load
ratios (BLRs) in different ranges of outdoor temperatures for the office building,
which is a ratio to the peak building cooling load. Load-frequency means the
percentage of total operating hours at a given range of building load ratios. The
chillers and pumps have to operate at a building load ratio of below 0.5 for 67.7% of
the total cooling hours. The peak load range of 0.9 to 1 accounts for only 1.0% of the

total cooling hours.

For the representative hotel building, there are 8551 cooling hours which accounted
for 97.6% of the total 8760 hours per year. Table 3.8 shows the frequency
distribution of the hourly building cooling load ratios in different ranges of outdoor
temperatures. The chillers and pumps have to operate at a building load ratio of
below 0.5 for 55.9% of the total cooling hours. The peak load range of 0.9 to 1

accounts for only 0.6% of the total cooling hours.

Table 3.7 Frequency distribution of hourly office building cooling loads

Outdoor |(Building load ratio (Building cooling load expressed as a ratio of its peak value)
tem?fgture 0-0.1[0.1-0.2[0.2-0.3[0.3-0.4[0.4-0.5[0.5-0.6[0.6-0.7|0.7-0.8]0.8-0.9]0.9—1|Subtotal

11-13 2 0 0 0 0 0 0 0 0 0 2
13-15 81 0 0 0 0 0 0 0 0 0 81
15-17 158 59 0 0 0 0 0 0 0 0 217
17-19 14 244 37 0 0 0 0 0 0 0 295
19-21 0 113 205 24 0 0 0 0 0 0 342
21-23 0 17 199 108 20 0 0 0 0 0 344
23-25 0 7 63 137 84 16 0 0 0 0 307
25-27 0 1 32 70 121 120 37 1 0 0 382
27-29 0 0 23 35 99 93 109 48 5 0 412
29-31 0 0 8 26 60 24 145 146 71 6 486
31-33 0 0 0 5 12 3 24 48 58 25 175
33-35 0 0 0 0 0 0 2 2 3 1 8

Subtotal | 255 | 441 567 405 396 256 317 245 137 32 3051
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Table 3.8 Frequency distribution of hourly hotel building cooling loads

Outdoor Building load ratio (Building cooling load expressed as a ratio of its peak value)
tem{’fgture 0-0.1[0.1-0.2{0.2-0.3|0.3-0.4/0.4-0.5|0.5-0.6|0.6-0.7|0.7-0.8|0.8-0.9/0.9-1|Subtotal
11-13 82 1 0 0 0 0 0 0 0 0 83
13-15 321 | 81 0 0 0 0 0 0 0 0 402
15-17 143 | 546 25 0 0 0 0 0 0 0 714
17-19 0 409 | 443 9 0 0 0 0 0 0 861
19-21 0 30 614 | 335 10 0 0 0 0 0 989
21-23 0 0 135 [ 411 212 35 0 0 0 0 793
23-25 0 0 3 216 | 410 | 303 56 2 0 0 990
25-27 0 0 0 15 286 | 413 318 117 6 0 1155
27-29 0 0 0 0 47 277 | 454 | 424 | 256 8 1466
29-31 0 0 0 0 0 74 300 180 | 248 | 34 836
31-33 0 0 0 0 0 10 144 70 21 9 254
33-35 0 0 0 0 0 0 6 2 0 0 8
Subtotal | 546 [ 1067 | 1220 | 986 | 965 | 1112 | 1278 | 795 | 531 | 51 | 8551

The characteristics of the building cooling load were expressed as a weather—load
profile, which shows how the hourly building cooling load (expressed as a ratio to its
peak value) changes in response to outdoor temperature throughout a year. Figures
3.6 and 3.7 show the weather-load profiles of the typical office building and hotel
building, respectively. As illustrated in these figures, the building load ratio increase
closely with the outdoor temperature. The weather-load profile of a building could be
used for demonstrating a weather dependent load and an internal load (weather
independent load), and the proportion of the internal load could be separate from the

weather-dependent load by analyzing the weather load profile.

Building load ratio

Outdoor temperature (°C)

Figure 3.6 Weather load profile of the representative office building
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Figure 3.7 Weather load profile of the representative hotel building

Based on the weather-load and load-frequency profiles, the hourly building cooling
load is used to determine how many chillers needed to be staged and the operating
conditions of chillers. To meet the peak cooling load of 7253 kW, the chiller plant of
the office building is designed with seven air-cooled screw chillers, each of which
has a nominal cooling capacity of 1116 kW. The size of these chillers is comparable
to that of the investigated chiller. The use of equally-sized chillers within a multiple
chiller system can facilitate easier implementation of a control strategy and provide
more flexible operation and maintenance (ASHRAE. 2007). As the peak cooling load
of the hotel building is 4476 kW, the hotel building’s chiller plant is designed with
four air-cooled screw chillers, each of which had a nominal cooling capacity of 1116

kW, and also the cooling capacity is compatible to the studied chiller in this research.

To highlight the chiller load profiles, the conventional chiller sequence of a multiple-
chiller system is considered in this study, which is to operate the minimum number
of evenly loaded chillers to meet the required cooling load. With this chiller
sequence, all the staged chillers are operating at the same load, and no additional
chillers started to operate until each of the running chillers is operating at full load.

This means that two, three, and four chillers would operate when the building
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cooling load exceeded 1116, 2232 and 3348 kW for the hotel building, respectively.
It is important to look at how often the chillers operated at or near full load. Table 3.9
demonstrates how the hourly data of chiller part load ratios of the hotel building are
distributed in different ranges of outdoor temperatures, given the schedule of staging
chillers and the hourly building cooling load data shown in Table 3.8. Under the
multiple chiller arrangement, each chiller operates at higher load ratios and 68.2% of
the total chiller load data are at part load ratios of 0.7—1. Furthermore, the chillers are
able to work at a part load ratio of 0.9—1 with outdoor temperatures ranging between

11-35°C for over 18.6% of the operating time.

Table 3.9 Frequency distribution of the hourly data of chiller loads (Hotel)

Outdoor Chiller part load ratio
temgga)t“re 0.1-0.2/0.2-0.30.3-0.40.4-0.50.5-0.6|0.6-0.7/0.7-0.80.8-0.9| 0.9-1 |Subtotal
1113 48 | 33 1 1 0 0 0 0 0 83
1315 | 110 | 101 | 108 | 64 | 16 3 0 0 0 | 402
15-17 3 31 | 108 | 154 | 175 | 138 | 80 | 23 2 | 714
17-19 0 0 0 15 | 187 | 147 | 194 | 193 | 125 | 861
19-21 0 0 0 0 | 368 | 256 | 114 | 107 | 144 | 989
21-23 0 0 0 0 | 126 | 245 | 202 | 125 | 95 | 793
23-25 0 0 0 0 3 | 118 | 395 | 256 | 218 | 990
2527 0 0 0 0 0o | 108 | 361 | 357 | 329 | 1155
27-29 0 0 0 0 0 53 | 447 | 600 | 366 | 1466
29-31 0 0 0 0 0 1 134 | 484 | 217 | 836
31-33 0 0 0 0 0 0 29 | 136 | 89 | 254
33-35 0 0 0 0 0 0 1 4 3 8
Subtotal | 161 | 165 | 217 | 234 | 875 | 1069 | 1957 | 2285 | 1588 | 8551

Table 3.10 shows how the hourly data of chiller part load ratios of the office building
are distributed in different ranges of outdoor temperatures. Given seven steps of
staging chillers to meet the changing building cooling load, the opportunity to
operate the chillers at higher loads increases considerably. 79.3% of the total chiller

load data are at part load ratios of 0.7—1 for the entire range of outdoor temperatures.
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Furthermore, the chillers are able to work at a part load ratio of 0.9—1 with outdoor

temperatures ranging between 11-35°C for over 31.4% of the operating time.

Table 3.10 Frequency distribution of the hourly data of chiller loads (Office building)

Outdoor Chiller part load ratio
temg,ecra)mre 0.1-0.2]0.2-0.3]0.3-0.4{0.4-0.5|0.5-0.6|0.6-0.7|0.7-0.8{0.8-0.9| 0.9-1 | Subtotal
11-13 1 0 1 0 0 0 0 0 0 2
13-15 | 27 | 32 | 18 3 0 0 0 0 81
15-17 0 1 42 | 58 | 51 | 24 | 20 | 15 6 217
17-19 0 0 0 0 81 | 44 | 55 | 60 | 55 | 295
19-21 0 0 0 0 571 73 | 71 ] 78 [ 63 | 342
21-23 0 0 0 0 6 62 | 94 | 92 | 90 | 344
2325 0 0 0 0 1 34 105 | 77 | 90 [ 307
2527 0 0 0 0 0 7 8 | 151 | 142 | 382
27-29 0 0 0 0 0 6 29 | 208 | 169 | 412
29-31 0 0 0 0 0 2 38 | 216 | 230 | 486
31-33 0 0 0 0 0 0 3 63 | 109 | 175
33-35 0 0 0 0 0 0 0 4 4 8
Subtotal | 28 | 33 | 61 | 61 | 197 | 252 | 497 | 964 | 958 | 3051

The cooling load profiles of these representative commercial buildings are used to:

explore the relationship between building cooling load and chiller load;

e ascertain the conditions in which the staging of multiple chillers can be

optimized,

e as an input to a chiller system model to analyse the year-round energy
consumption of chillers under head pressure control and various energy

saving measures.

e develop a benchmark for chiller efficiency under condensing temperature

control.
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3.3 Summary

This chapter describes the details of a representative office and a hotel building and
their central HVAC systems concerned in this research. Based on these details, the
representative office and hotel building models were developed with necessary
simplifications. This chapter also explains how the load-frequency and weather-load
profiles of the office building and hotel buildings varied. Having identified the
operating conditions of the chillers in terms of the weather-load and load-frequency
profiles, the building models together with the chiller models can be used for
evaluating the robustness and energy efficiency of the control strategies which are

reported in the following chapters.
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Chapter 4 Modelling and Simulation of Chiller Systems

This chapter provides information about the chiller plant studied in an institutional
building complex and the evaluation of the operating variables. It describes the
development of a model of the air-cooled screw chiller with twin refrigeration
circuits, which is validated with a wide range of operating data. This chiller model
forms the basis for the comparison of different control strategies and the
development of optimum chiller control strategy. This chapter then investigates how
variable condensing temperature control and variable speed condenser fans can be
applied to enhance the chiller COP. It also presents the investigation on the optimal

load sharing between refrigeration circuits in an air-cooled chiller.
4.1 Field investigation into the performance of chilled water plants
4.1.1 Description of the buildings studied and their chiller plants

In order to identify the operating characteristics and efficiency of air-cooled chillers,
one existing chilled water plant installed in an institutional complex was investigated
at length. The chilled water plant includes five identical air-cooled screw chillers,
which are connected in parallel as shown in Figure 4.1. The chillers operate under
HPC, and heat rejection is regulated by staging minimal number of condenser fans to
maintain the condensing temperature at a high level in most operating conditions. As
shown in Figure 4.1, the chilled water distribution system of the plant is a two-loop
pumping system. Each of the five chillers operates in conjunction with a dedicated
constant speed primary-loop chilled water pump, while three identical variable-speed
chilled water pumps are provided in the secondary-loop for distributing chilled water

to air-side equipments. The rated flow rate and pumping pressure of the primary-loop
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pumps are respectively 50 1/s and 200 kPa, and those of the secondary-loop pumps
are 125 I/s and 430 kPa. Figure 4.2 is a photo of one of the studied chiller of the
chiller plant. To meet the changing building cooling load, conventional chiller
sequencing is implemented so that all the operating chillers share the load equally,

and no additional chiller is started until each of the running chillers is operating at

full load.

Chiller (CH5) |

‘E} Chiller (CH4) |
Chiller(CH3) |
Chiller (CH2) U
—@—Chiller (CHI1) H
N
N ‘P’ 4 4
o] :
A ‘_

Figure 4.2 A photo of the studied chiller
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For this chiller plant, using refrigerant R134a, each chiller has a nominal cooling
capacity of 1116 kW rated under the operating conditions of entering condenser air
temperature at 35°C, entering/leaving chilled water temperatures at 12°C/7°C and
chilled water flow rate at 50 1/s. The chiller comprises two refrigeration circuits in
parallel and each circuit includes one evaporator, one condenser, one electronic
expansion valve and two screw compressors. The air-cooled condenser contains 16
identical condenser fans to deliver a total airflow rate of 85.5 m’/s by eight groups of
condenser fans, and each refrigeration circuit is equipped with four groups of
condenser fans. The power of each fan is 2.4 kW and the total fan power is 38.4 kW
when all the fans are operating. The rated electric power demand of each chiller is
398 kW, and the COP at full load is 2.8. The detailed physical data of the studied
chillers are shown in Table 4.1.

Table 4.1 Details of the chiller model

Refrigerant type HFC-134a
Nominal cooling capacity (kW) 1116
Nominal power input (kW) 398
Refrigerant charge (kg)

Circuit 1 156

Circuit 2 157
Compressors

No. in circuit 1 2

No. in circuit 2

No. of control steps

Minimum step capacity (%)

Evaporator
Type Shell-and-tube flooded
Evaporating temperature (°C) 5
Temperature of supply chilled water (°C) 7
Max. water side operating pressure 1000
Condensers
Condenser fans quantity 16
Fan speed (1/s) 15.8
Total air flow (m’/s) 85.5

To investigate the performance of the air-cooled chiller, the operating data of the

chiller plant were monitored year-round by a building management system, and were
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compiled to provide a basis for the chiller model development and for verification of
the chiller models. The operating data were monitored and logged by the building
management system at one hour intervals over the experimental period. Figure 4.3

shows the graphical screen of the studied chiller plant.

The measured variables included outdoor temperature (7y,), evaporating temperature
and pressure (7., and P.,), condensing temperature and pressure (7¢q and P.q) of each
refrigeration circuit, power of each compressor (E..), chilled water flow rate (my),
temperatures of supply and return chilled water (T¢hws and Tenwr), condenser fan
power of each circuit (Ef), compressor power (E.). Resistance type temperature
sensors were used to measure the temperature of chilled water at an uncertainty of
+0.1°C of readings. The chilled water flow rate was measured by ultrasonic flow
meters with an uncertainty of +1.5% of the flow rate. Compressor power and
condenser fan power were metered by power meters with an uncertainty of £1% of
reading. The chiller COP was calculated by the chiller load divided by the overall

power input, including power input to the compressors and condenser fans.

Building Load

Supply Temp. Setpoint CHWR
Return Temp. Setpoint

12:22:45 PM 04/01/200

Figure 4.3 Graphical screen of the chiller plant
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4.1.2 Evaluation of operating variables

It is expected that experimental data are subject to variability due to errors in their
measurement, and this may influence the accuracy of the chiller model when these
data serve as input of a model to evaluate its undetermined coefficients. An error
analysis was therefore implemented to ascertain how these experimental errors
influenced the modelled results and whether the assumptions made in the chiller

model were adequate.

The chiller COP was not directly measured, but values of several associated variables
were measured. ASHRAE Guideline 2 (ASHRAE 2010) provides a guideline for
reporting uncertainty in results of experimental data as applied to HVAC equipment.
An experimental result denoted as Y is determined from a set of independently
measured variables x;, where i = 1 to n, and #n is the number of measurements related

to Y.

V= f(x,%,x,) (4.1)

Due to the accuracy of measured variables, the uncertainty associated with COP is

determined by the single sample analysis (ASHRAE 2010), as shown in Eq. (4.2).

SCOP,, = \/i[axi -(8COP/ ox,)|
= (4.2)

where x; is the ith independent variable, and dx; is the uncertainty of the variable x;.

Table 4.2 shows the error analysis of operating variables relating to chiller COP. The
root sum square error of chiller COP (6COP ) due to all the uncertainties of the
individual variables was evaluated to be 0.088 in a COP value of 2.8, and the

uncertainty of COP was 3.1%. This was mainly due to the uncertainties in the chilled

water supply and return temperatures.
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Table 4.2 Error analysis of operating variables

Measured Rated Partial Uncertainty Square of product SCOP (s
variable condition derivative d x; [ Sx. - (GCOP /ox )]2
X dCOP |/ ox, ‘ ‘
Tenw: (°C) 12 0.525126 +0.1C 0.002758
Tehws (°C) 7 -0.52513 +0.1C 0.002758
Een (kW) 398 -0.0066 3.98kW (1%) 0.000689
0.75 kg/s

my, (kg/s) 50 0.052513 (1.5%) 0.001551

total 0.007756 0.088066

4.2 Modelling and simulation of the chilled water plant

Computer simulation is an invaluable tool to investigate the performance of chillers
over a wide range of conditions, and it provides a means of optimizing the operation
of the system and implementing fault detection and diagnosis (Jia and Reddy 2003;
Wang, Wang et al. 2000). Many chiller models have been developed using different
principles and approaches, and the various models can generally be divided into three
main categories: empirical models, physical steady state models and physical

dynamic models (Browne and Bansal 2001a).

Empirical models rely heavily on experimental data, and they are ‘black-box’ or
‘grey-box’ models based on curve-fit or thermodynamic models. Empirical models
(Khan and Zubair 1999; King and Potter 1998; Phelan, Brandemuehl et al. 1997; Yik
and Lam 1998) are relatively straightforward to establish but their application is
limited to the specific chillers from which the empirical data are obtained. Physical
steady state models (Browne and Bansal 1998; Ding and Fu 2005; Jia and Reddy
2003; Solati, Zmeureanu et al. 2003) are based on first-principles approaches with
equations for mass and energy conservation, and they are more detailed and more
widely applicable, but they are also more difficult to establish and use, as they

usually involve a wide range of characteristic parameters of the modeled chiller
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which are difficult to quantify. Steady-state models are useful under many conditions;
however, dynamic simulation models are preferable under strongly dynamic
conditions that are often seen in real-life operation. Physical dynamic models
(Browne and Bansal 2002; Haberschill, Gay et al. 2003; Wang 1998; Wang, Wang et
al. 2000) also consider the conservation of energy and mass, and take into account
the rate of change of the system variables with time. For dynamic simulation, the
chiller model is much more sophisticated and usually contains a system of
differential equations, which need to be solved by using numerical integration

techniques.

As both the building cooling load and the weather conditions did not change over
minutes but longer, Chan and Yu (2006) stated that the time constant of the variation
in a building’s cooling-load was large when compared to that of the dynamic
response to a chiller system, and it was reasonable to assume the chiller operation to
be quasi-steady-state (Jia and Reddy 2003). Therefore, steady-state models are

sufficient for the evaluation of the operating variables of chillers.

To improve the performance of air-cooled chillers, some of them are designed with
multiple and separate refrigerant circuits, and each refrigeration circuit has one or
more compressors. This design of multiple refrigerant circuits is to enhance the
reliability and standby capacity, decrease in-rush current at system start-up. Such
design also reduces the power consumption at part load condition and improves the
overall chiller performance. Although a large variety of chiller models have been
developed, very few of these are specifically developed for air-cooled screw chillers
with multiple refrigeration circuits in detail. Gan (2000) investigated the benefits of
using two separate refrigeration cycles to meet demands for both the freezer and

fresh food compartments in domestic refrigerators. Swider (2003) considered a
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single-circuited centrifugal chiller and a twin-circuited screw chiller and presented a
comprehensive comparison of empirically based models. Yu and Chan (2006b)
developed an air-cooled screw chiller model with four refrigeration circuits to
analyze the chiller performance under CTC, in which the chiller with multiple
refrigeration circuits was treated as a chiller with just one refrigeration circuit. Lee
(2010) investigated the performance of air-cooled twin-circuit screw chiller based on
the assumption that the two circuits shared the same cooling output and the overall
heat transfer coefficients of the two sections of the evaporator A were equal. Almost
none of the previous research has investigated the energy efficiency of air-cooled
screw chillers with multiple refrigeration circuits under various operating conditions
and how the performance of these chillers can be improved with variable condensing
temperature control and variable speed condenser fans in response to changes in
outdoor temperature and building cooling load. In this research, a steady-state
thermodynamic model for an air-cooled chiller with two separate refrigerant circuits

is presented, which serves for the analysis on various control strategies.

The simulation program TRNSYS 15 (Solar Energy Laboratory 2000) was used for
the building and chiller system simulation in this study. TRNSYS is a complete and
extensible simulation environment for the transient simulation of thermal energy
systems, whose modular system approach makes it one of the most flexible tools
available. The chiller components are modeled based on a modular approach and
coded in the form of FORTRAN subroutines. By creating an input file of program,
component subroutines are linked up to form the existing chiller. The outputs are
operating variables within the components of compressors, the evaporator and
condenser. They are solved by the different sets of algebraic equations through
iterative procedure. The chiller model, comprising of inputs, constant parameters and
outputs, was developed following the format of standard components in TRNSY'S 15.
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Figure 4.4 shows the flow diagram of modeling the chiller under TRNSYS (Yu and
Chan 2007). The data file contained various set points and weather-load conditions at
which the chiller operated, and each set of data comprised inputs to the chiller
components: an evaporator, a compressor, an expansion valve and a condenser. These
inputs were outdoor temperature (7g), the part-load ratio (PLR) of the chiller, chilled
water flow (my), the temperature of supply chilled water (7chws), the degree of
subcooling (T.4sc), the degree of superheating (7.ysn) and the set point of condensing
temperature (7cqsp) (Zedsp Was used to determine the number of staged condenser fans).
To evaluate the thermodynamic properties of the refrigerant R134a, the physical
coefficients and equations given by Bourdouxhe et al. (1999) were incorporated into
the model. The outputs were operating variables within the evaporator, compressors,

expansion valve and condenser.

Data file of
operating conditions

Ve

! : 1
""""" " Data reader 1 Equations for '
[ ¢ - - - evaluating properties;
1

__________ ! v VvV VY i of refrigerant E

Chiller model —] """""""""
4

Evaporator @ Compressors H Condenser

7 )
é X
———» Printer [« EAlgorithm of E
I staging !
1 condenser fans }
Operating variables in === :

each operating condition

Figure 4.4 Flow diagram of modelling the chiller under TRNSY'S
The following assumptions were made in the development of the chiller model:

e The model chiller operated under the standard vapour compression cycle as

shown in Figure4.5.
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Heat transfer between the chiller system and its surrounding was negligible.

The mass flow rate of the refrigerant was the same throughout the chiller and

equaled to the mass flow rate through the staged compressors.

Pressure losses in the heat exchangers and the refrigerant pipelines were

negligible.

The flow of refrigerant could be controlled perfectly to meet any given

cooling capacity.
The throttling of refrigerant across the expansion valve was isenthalpic.

The degree of evaporator superheat (7eysn) and that of condenser subcooling
(Teasc) were assumed to be 8°C and 3°C in all operating conditions,
respectively, given their possible variations (7eysn: 4-9.5°C; Tedgse: 1-6°C)
would only cause uncertainty of chiller COP up to 0.16% (Yu and Chan

2006b).

Changes in the calculated operating variables were independent of time and

that meant the chiller operated in the steady state.

= Tcd
=9
=
(o]
5
2
&
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Refrigerant specific enthalpy, h (kJ/kg)

Figure 4.5 Vapour compression cycle of the model chiller
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4.2.1 Chiller model

The model was based on an air-cooled chiller with constant speed screw compressors
operating under head pressure control, which had the same configuration as the
experimental chiller. The schematic of the air-cooled chiller with two refrigeration
circuits was shown in Figure 4.6. Each refrigeration circuit of the chiller was
equipped with two compressors, a condenser, an expansion valve and an evaporator.
Though the refrigeration circuits were detached, there was only one chilled water
circuit, and the chilled water passed serially through the respective evaporators of the
first and second circuits. The number of passes directly affects the performance of a
direct expansion shell and tube evaporator. To enhance the heat transfer, tubes were
designed as a two-pass arrangement for chilled water. In this dual-circuit chiller, the
chilled water passed first through the evaporator of circuit 1, then passed into the

evaporator of circuit 2, and then back through the evaporator of circuit 1.

D OO0 OO0 OO D OO0 OO0 OO
AN F ANANANNNNNANNN
Condenser Condenser
Expansion Ex i

pansion
X valve Compressor Compressor valve
Circuit 1 Circuit 2
Tchws « Tchwsl/' >
Tchwr T D —
chwrl™ Byvaporator

Figure 4.6 Schematic of the air-cooled chiller

The models considered the real process phenomena, including the capacity control of
compressors and variations in the overall heat transfer coefficients of an evaporator
and a condenser. The modeled components of the chiller were the compressors, the
evaporators, the condensers and the expansion valves. To realize variable condensing
temperature control for air-cooled screw chillers, it was important to identify the

operating variables of chillers with some realism, and the mechanistic relations
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between chiller components should be taken into account. The mass balance of
refrigerant and energy balance at an evaporator, compressors, an expansion valve and
a condenser have to be satisfied. To control the condensing temperature, an algorithm
to determine the number or speed of staged condenser fans by a set point of
condensing temperature (7c4sp) Was introduced and incorporated into the chiller
model, which was important for variable condensing temperature control. The
outputs were the operating variables of the chiller components and the chiller COP.
They were determined by solving a set of equations in the component models

through an iterative procedure.

For the air-cooled chiller with twin refrigeration circuits, there existed three
operation modes (operation of circuit 1, operation of circuit 2 or operation of both
circuits). As the two refrigerate circuits were identical, the models for the chiller
components of one refrigerate circuit were applicable to the corresponding

components of the other refrigeration circuit.
Evaporator

For the dual-circuit chiller with two-pass arrangement, the chilled water passed first
through the evaporator of circuit 1, then passed into the evaporator of circuit 2, and
then got back through the evaporator of circuit 1. According to the chilled water flow
path, the heat transfer in the evaporator was modeled by three heat exchange sections
in series, and there were two sections for circuit 1 and one section for circuit 2,
respectively. The evaporating temperature and pressure were same for the two heat
exchange sections of circuit 1. The cooling capacity of circuit 1, therefore, was the
sum of the cooling load of the two heat exchange sections of circuit 1. The
evaporator and condenser were simulated using the classical heat exchanger

efficiency method.
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For the evaporator model, the energy balance and cooling output of the chiller is

expressed by the following equations.

Q=m,-c, (T,, —T,,) (4.3)
0=0,+0. (4.4)
Q,=m,-c, (L, ~T,,) (4.5)
Q,=m,-c,(T,,-T,,) (4.6)
Qy=m,-c, (T, ~Th) (4.7)
0=0+0, (4.8)

where m,, is the chilled water mass flow rate, c,y is the specific heat capacity of
water, Tohwsi and Tenwrr are the chilled water temperature entering and leaving

refrigeration circuit 2, respectively.

The effectiveness of the evaporators (e.,) is used to simulate heat and mass transfer
processes in the evaporator as in Egs. (4.9-4.11). The evaporator overall heat transfer
coefficients (4U.,) of the three heat exchange sections of the evaporator are
represented by mechanistic relation in Egs. (4.12-4.14), respectively (Wang 1998),
where c;, ¢; and c¢3 are characteristic parameters and have to be evaluated based on
the performance data of the specific chiller to be modeled. The values of the heat

transfer efficiency of the three heat exchange sections are expressed in Egs. (4.15-

4.17).

Oy =&orm, ¢, (L, =T, (4.9)

O = oy M, €y (L = T0) (4.10)
O, =¢pym, €y (L = 1,,5) (4.11)
where
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1

AU . = (4.12)
evll clmW-O,S+62QCHI—O.745_+_C3
AU, = ! (4.13)
Y clmw-o.s + cchnz_u745 T
AU, = ! (4.14)
v clmw-o‘s +Cch12_0‘745 +e
AU
et = l—exp(——m C"f“ ) (4.15)
w o pw
AU
Eqrp = 1—exXp(——212) (4.16)
w " pw
A
Een =1—eXP(——U”2 ) (4.17)
m,C,,

The Clausius-Clapeyron equation gives the vapour pressure as a function of

temperature.

Pe‘vl = eXp((l + i)
evl (4 1 8)

Compressors

The refrigerant mass flow rate through the compressors of circuit 1 is given by

m, = 9 (4.19)
hll - h14
rl = VdUVI Nc’cl
Vs (4.20)

where Vg is the theoretical displacement volume of compressor, which is 0.12 m?/s
for the studied chiller according to the manufacture’s performance data. 7, is the
volumetric efficiency of the compressor of circuit 1 estimated as a function of the

compression ratio (CR), and they are determined by
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1
Ny = 1- o (CRlni _IJ
14
¢ (4.21)

F, (4.22)

The refrigerant mass flow rate through each compressor of circuit 1 is determined by
Eqgs. (4.23) and (4.24), respectively. The total refrigerant mass flow rate of circuit 1 is

the sum of the refrigerant mass flow rate through the two compressors.

mrll — Qccll
by —=hy, (4.23)

mrlz — Qcch
by —hy, (4.24)
m, =m, +m,, (4.25)

The indicated compressor work per unit mass of refrigerant is given by
L.]
Wi = By VlrL[CRl K 1}
n,—1

(4.26)

where v; is the specific volume of superheated refrigerant at the compressor suction

evaluated by Eq. (4.27) based on saturated specific volume of the refrigerant in the

evaporator.

1 1

—= — —(-0.0007 + 0.0002P, ) T,
Vi Vi

(4.27)

The power input to the staged compressors of circuit 1 (E.;) is the sum of the power
of the two compressors, which can be calculated on the basis of the internal

compression power (Wiy).
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w.

E = my, =
r]isenl ’70011 (428)

W

Eip,=my, :
;/’isenl ;7(:012 (429)
Eccl = Eccll+E0012 (430)

where 7isen1 18 the isentropic efficiency determined by Eq. (4.31), and 7cc11 and 7¢c12
are and the combined motor and transmission efficiency of the compressors given by
Egs. (4.32) and (4.33), respectively. Eq. (4.31) is based on the regression analysis
(Solati, Zmeureanu et al. 2003), and the coefficients a; to ag are constants, which
are —0.0316958, 2.90112, -0.0296849, -1.45279, 0.000321176, 0.00683086,
0.0170575 and —16.5018, respectively. The coefficients of Egs. (4.32) and (4.33)
have to be estimated by regression using chiller operating data, and PLR;; and PLR,;

are the part load ratio of the two compressors in circuit 1, respectively.

2 2 2
Misen1 = 0.01(a1 Tea1” + axTcar + asTevi™ + asTevi + asTear Tevt + asTedi Tovi

+ (17ch1 + ag) (43 1)
Neet1 = b+ boPLR;;+ bsPLR; (4.32)
Neerz = b+ boPLR;;+ b3PLR ;) (4.33)

The specific enthalpy of superheated refrigerant at the suction and discharge of the
compressor (4, and 4;2) can be expressed using Egs. (4.34) and (4.35). Eq. (4.36)

describes the refrigerant enthalpy at the condenser discharge (/;3).

hir=hip + Cprg Tevsh (4.34)

hy = by + — (4.35)
nisenlnccl

h13 = h13’ - C'prl Tcdsc (436)

Thermostatic Expansion valve
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The studied chiller is equipped with an electronic expansion valve, which controls
the refrigerant mass flow rate by sensing the degree of suction vapor superheat
temperature. The expansion valve was modelled as an adiabatic process, so that the
refrigerant enthalpy at the inlet and outlet of the expansion valve are equal. The
refrigerant mass flow rate of circuit 1 through the valve is calculated by the

following equation.
mrl = Kex pexA})ex (437)

where Ky is a characteristic constant of the valve, pe is the refrigerant density at the
inlet of the valve, and AP is the inlet and outlet pressure difference of the expansion

valve.
Condenser

Heat rejection involves the energy and mass balance in the condenser. Heat rejection

of circuit 1 (Q.a1) is described by the following equations

chl = Ql + Eec (438)
Qcar = myy (hy2 — hy3) (4.39)
chl =Va Pa Cpa (Tcdall - Tcdae) (440)
chl :AUcdl LMTDcdl (441)
where
AU, = ! (4.42)
C4I/al-0-5 +¢s mrl_O-S + ¢
IMTD,, = —feim " To (4.43)
i le _Td
ln( C cdae )
Tcdl - Tcdau

The overall heat transfer coefficient of the condenser of circuit 1 (4Uyq;) shown in

Eq. (4.42) (Yu and Chan 2006b), where c4-c¢ can be determined by regression based
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on the performance data of the chiller. Condensing temperature (7¢q) is correlated
with the temperature of entering condenser air (7.4,c) and that leaving the condenser

(Teqa) by the log mean temperature difference (LMTD.4) which is defined in Eq.
(4.43), where (1, -T,,,.) and (T, —T.,,,) are the temperature difference between
the entering and leaving condenser air, the temperature difference between the

condensing temperature and leaving condenser air temperature, respectively.

The condensing pressure is estimated using the Clausius—Clapeyron equation.

P, =exp(a +i) (4.44)

cdl
Chiller COP

The total power of the staged condenser fans (E.f) is equal to the rated power of a

condenser fan (E.¢;) multiplied by the number of staged condenser fans (Ng).
E¢e= Neg ch,r (445)

In order to characterize the performance of the chiller, the COP defined as the ratio
of cooling capacity to the electrical power input is calculated, of which a higher
value represents a higher efficiency of the system. It should be noted that the chiller

power (E) is the sum of compressor power (E..) and condenser fan power (Ecy).

COPZg: Q]+Q2 =mrl'(hl_h2)+mr2'(hl_h2) (446)
Ech Echl +Ech2 Echl +Ech2

4.2.2 Condenser fans control

Air-cooled chillers commonly operate under traditional head pressure control (HPC),
and these chillers have long been considered energy inefficient. Under HPC, the set
point of the condensing temperature (7cqsp) is fixed at 45°C, preventing condensing

the temperature (7.q) from exceeding a maximum level of 52°C (Yu and Chan
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2006b). The condensing temperature is kept high under HPC, and the heat rejection
capacity of the air-cooled condenser is designed to control the condensing
temperature at around 50°C when the outdoor temperature is 35°C. Considering a
local outdoor temperature of 10-34°C, heat rejection airflow will vary for any given
cooling capacity in order to maintain the condensing temperature at around its fixed
set point of 45°C (Yu and Chan 2006b). HPC is incapable of lowering the
condensing temperature to save compressor power, especially when the difference

between T.qsp and the outdoor temperature (7b) is high.

For air-cooled chillers, different number of condenser fans are staged to control the
condensing temperature and to achieve heat rejection. Heat rejection varies with the
outdoor temperature and the chiller load. Under HPC, the control action is based on
some settings of condensing temperature. For the air-cooled chillers with constant
speed condenser fans, the condenser fans are cycled on or off with reference to a
high and a low temperature settings under HPC. When the condensing temperature
exceeds the high temperature setting, more condenser fans will be staged on group
by group until the condensing temperature drops below the high condensing
temperature setting. The number of staged condenser fans will remain unchanged as
long as the condensing temperature is within the dead-band between the high and
low condensing temperature settings. When the condensing temperature drops below
the low temperature setting, the staged condenser fans will be switched off group by
group to reduce the airflow rate, and hence, to raise the condensing temperature
above the low setting. The high condensing temperature setting is 52°C (Yu and
Chan 2006b) and low condensing temperature setting is 42°C (Lee, Yik et al. 2010).
The lowest limit of the condensing temperature is 33°C, and it is due to a situation
where thermostatic expansion valves require a minimum differential of 690 kPa for
proper operation (Yu, Chan et al. 2006). For the chiller with electronic expansion
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valves, the lowest limit is 20°C, which is intended for ensuring proper oil viscosity

for compressor lubrication (Yu, Chan et al. 2006).

Chiller performance is greatly influenced by the condensing temperature, and the
condensing temperature (7.q) can be controlled by adjusting the heat rejection
airflow (V,). To control the condensing temperature, the set point of condensing
temperature (7c4sp) is introduced to determine the number and speed of staged
condenser fans to modulate the heat rejection airflow. If the staged condenser fans
are not sufficient to deliver the needed airflow to keep the condensing temperature
within the dead band between the high and low condensing temperature settings,
more or less condenser fans will be operated. This algorithm is particularly important
in modelling precisely the heat-rejection characteristics of air-cooled condensers and
in assessing the controllability of the condensing temperature under various

operating conditions.

For any given cooling capacity (Q.), either the heat rejection airflow (V,) or the set
point of condensing temperature (7cqsp) can be adjusted to minimize the chiller power
which is equal to the sum of compressor power and condenser fan power. Inequality
(4.48), obtained by transposing Eq. (4.47), shows how T4 can be controlled by using
Teqsp for any given heat rejection (Qcq). By transposing Inequality (4.47), Inequality

(4.48) is established and used to determine the required V.

Tcdal = A + Tcdae < Tcd < Tcdsp (447)
aFa“pa
Qcq <V (4.48)

Pa Cpa (Tcdsp - Tcdae) ’
4.2.2.1 Control algorithm of constant speed condenser fans

Eq. (4.49) gives the relationship between the required V, and the number of staged
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condenser fans (Ncr). The minimum N for any given Ti4y 1s determined using

Inequality (4.50).
Va — Va,tot ch (4.49)
N cf,tot
Netior Qu____ . (4.50)

Va,tot Pa Cpa (Tcdsp - Tcdae)

From inequality (4.50), it can be identified how the number of staged condenser fans
varies according to different outdoor temperatures and different amounts of heat
rejection. If the set point of condensing temperature (7cqsp) 1s fixed at a high level,
fewer condenser fans will be staged on when the chillers are operating at part load
conditions with a low outdoor temperature. When more condenser fans are staged,
the condensing temperature will drop. It is important to adjust the set point of

condensing temperature by some algorithms so as to minimize the chiller power.

The working range of condensing temperature (7q) is governed by inequality (4.51),
where the log mean temperature difference of the condenser (LMTD.q4) correlates
with heat rejection (Q.q) and the overall heat transfer coefficient of the condenser
(AUy) by Eq. (4.52). Ty is the temperature of air entering the condenser, and 7T¢qq 1S

the temperature of air leaving the condenser.

IMTD.g+ Ty < Toq < LMTD.g + Toqu (4.51)

Qca’ = AUcd LMTDcd (452)

Referring to head pressure control, the set point of condensing temperature is fixed at
a high level of 45°C, which corresponds to an outdoor temperature of 35°C plus a log
mean temperature difference of around 10°C at the condenser side. This is a simple
means to stage a minimum number of condenser fans, such that the condensing

temperature complies with its higher boundary with a designed outdoor temperature
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of 35°C in Inequality (4.51). However, maintaining this set point hinders the
condensing temperature from reaching its lower boundary when the outdoor

temperature is low or the condenser effectiveness can be enhanced at part load.
4.2.2.2 Control algorithm of variable speed condenser fans

Variable speed control for condenser fans is superior to cycling constant speed
condenser fans in steps, with regard to the controllability of condensing temperature.
The power of the condenser fans can drop considerably at lower speed while

producing the required heat rejection airflow at part load operation.

For any given Q. the required heat rejection airflow (V,) was evaluated by using Eq.
(4.49), regardless of the arrangement of condenser fans and whether the fans
operated at a constant speed or a variable speed. This configuration of condenser fans
should be changed in order to implement variable speed control. In the existing
design of an air-cooled condenser with many groups of condenser fans, it would be
difficult to decide whether to reduce the number or speed of the staged condenser
fans if V, drops under part load conditions. It would also be difficult to realize the
actual power savings from the optimum trade-off between the compressor power and
condenser fan power if the fans were improperly staged with inadequate rotating

speed.

In order to tackle the difficulties, one variable speed condenser fan should be
arranged for each refrigeration circuit. Given that the chiller studied had two
refrigeration circuits, the condenser model contained two variable speed fans, each of
which consumed the rated power of 19.2 kW and provided the rated airflow of 85.52
m’/s at the full speed of 15.8 rps. The condenser fans could operate down to 10% of

full speed to give a minimum airflow of 8.55 m’/s. It was assumed that the variable
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speed drive consumed 3% of the total power of the staged condenser fans at all

speeds.

According to the fan law, the fan speed is directly proportional to the airflow and the
fan power is directly proportional to the fan speed cubed. Egs. (4.53) and (4.54) are
derived from this law and used to calculate the rotating speed of each staged
condenser fan (R.) and the total power of staged condenser fans (E.). It was
assumed that all the staged condenser fans operated at the same speed and the same

airflow.

R, =R, (4.53)
NV

cf "ar

NV,

cf " ar

3
ch = ch ch,ea ( I/d J (454)

Using Egs. (4.53) and (4.54), R.s and E.r are computed directly for any V, determined
based on a set point of condensing temperature (7cqsp). The number of staged

condenser fans (N.) is equal to that of the staged refrigeration circuits.
4.2.2.3 Control of condenser fans under CTC

Under head pressure control (HPC), T 1s fixed at 45°C and the condensing
temperature is prevented from exceeding the maximum level of 52°C (Yu and Chan
2006b). When the chiller is operating at part load at a low outdoor temperature, the
condenser load (Qcq) decreases while the the difference between 745, and the outdoor
temperature (74p) increases. This results in a smaller number of staged condenser
fans to enable the condensing temperature (7¢4) to float at slightly below 50°C.
However, maintaining a fixed Tcqp of 45°C cannot take full advantage of the
opportunity to stage the condenser fans at optimal number and speed to minimize the

sum of compressor power and condenser fan power for all operating conditions.
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With the pitfalls of conventional head pressure control (HPC), the need to properly
control the condensing temperature of air-cooled chillers is emphasized. It is
desirable to lower T4, to achieve maximum COP in all operating conditions, and the
condensing temperature should vary in response to outdoor temperatures (Brownell,
Klein et al. 1999; Love, Cleland et al. 2005; Manske, Reindl et al. 2001; Yu and

Chan 2006b).

As HPC is regarded as energy inefficient, variable condensing temperature control
(CTC) is proposed to be an alternative to HPC to considerably improve chiller
efficiency. To implement CTC, the set point of condensing temperature should be
reset according to the chiller load and the ambient air temperature. This reset enables
the number or speed of the running condenser fans to be maximized, allowing
condensing temperature to approach its lower boundary. The lowest possible Tc4sp is
20°C for ensuring proper lubrication for chillers with electronic expansion valves,
given that the lubricant at a T¢q of below 20°C cannot be properly returned to the

staged compressors (Yu, Chan et al. 2006).

For the air-cooled chillers with constant speed condenser fans, a straightforward
approach to reset the set point of condensing temperature is proposed as Eq.(4.55)

(Yu and Chan 2006b), in which T4, is reset in response to Tgp.

T, + 5°C  for T, >15°C
" = {db i (4.55)

20°C otherwise
Resetting the set point of condensing temperature according to Eq. (4.55) allows T¢q
to approach its lower boundary. However, this is not always true for all the operating
conditions for the chillers with constant speed fans or variable speed fans. According
to Eq. (4.47), the set point of condensing temperature (7cqsp) influences directly the

required heat rejection airflow and, in turn, the sum of compressor power input and
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condenser fan power input. For the chillers with variable speed condenser fans, the
maximum chiller COP may not be achieved from resetting the set point of the
condensing temperature at its lower boundary when the fan power demand can drop
considerably at lower speed. It is worth ascertaining an optimum 7qs, to bring about

maximum chiller COP at a given operating condition.

The strategy for implementing CTC is to adjust Tcqsp by a certain means, so that the
trade-off between the compressor power and condenser fan power can be optimized
for any given cooling capacity. Instead of using Eq. (4.55) to determine 745, @
logical argument was included in the algorithm of controlling condenser fans to
determine the optimum 7Tqsp (7edsp,op) When CTC was used together with constant or
variable speed condenser fans. This argument checked the change in chiller power
when T, increased in steps of 0.05°C from its lower level of 20°C or (74, + 3) °C,
whichever was higher. These steps were small enough to trace the change of the
chiller power due to the trade-off between the compressor power and condenser fan
power. For each operating condition, the minimum chiller power along with the
optimum 7.4, Was able to be identified by resetting 7cqsp varying from 20 to 45°C in

steps of 0.05°C.
4.2.3 Procedure to evaluate operating variables of the model chiller

The whole model was programmed in Fortran 90, and the simulated system was
constructed based on a transient simulation program TRNSYS. The flow chart in
Figures 4.7-4.10 present the procedure to determine the operating variables of the
chiller model with constant speed fans under HPC, variable speed fans under HPC,
constant speed fans under CTC and constant speed fans under CTC, respectively.

The programme started with the model initialization using the input data.
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For the air-cooled chiller with twin refrigeration circuits, the cooling load of the
chiller could be shared between the refrigeration circuits randomly. The strategy for
the refrigeration circuit loading sequence (CLS) was specified first, and then one
refrigeration circuit or both refrigeration circuits would be staged according to the
total cooling load. Then, the evaporating temperature and pressure of circuits 1 and 2
(Tevi, Teva, Pevi and Pey;) and the cooling loads of the three heat exchange sections of
the evaporator (Q1, Q12 and Q;) were calculated through an iterative procedure by
assuming a value for Qy; firstly. Once the model had determined the evaporating
temperature and pressure of circuits 1 and 2, it evaluated the state variables of each
refrigeration circuit. As the condensing temperature interacted between the
compressor and condenser components, an iterative procedure was implemented to
solve the operating variables of the two components simultaneously. To control the
condensing temperature, there was another iterative loop for determining the number
or speed of staged condensing fans. The number or speed of staged condenser fans
and the corresponding airflow were computed according to a set point of condensing

temperature.

The iterative procedure for estimating the heat rejection, the operating variables and
the cooling capacity in both circuits of the chiller was similar. There were three
logical arguments in the flow chart of the condenser model to ensure the reliability of
all the calculated variables. In the first argument, if the temperature of air leaving the
condenser (7.qa) exceeded the high setting of the condensing temperature of 52°C,
one more group of condenser fans would be added for chillers with constant speed
fans or the speed of variable speed fans would increase to raise the airflow and to
reduce the condensing temperature consequently. In the second argument, the
convergence criterion for the cooling load shared by the first section of the heat
exchanger in circuit 1 was 0.01 for the relative error. In the third argument, if the
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difference between the condensing temperature and its previous value was within
+0.01°C, all variables would be solved in equilibrium; otherwise the next value of
the condensing temperature would substitute for its previous one to perform the next

iteration until the accuracy criteria were satisfied.
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Figure 4.10 Flow chart of the chiller model with variable speed fans under CTC

4.2.4 Model validation

The primary purpose for the development of a chiller model is to provide a tool for

investigating methods to optimize the performance of the chiller. An essential step

prior to drawing conclusions from a model is to validate the model, which will

provide confidence in the application of the model.
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To verify the effectiveness of the developed modeling technique, the performance of
the model was evaluated by comparing the modelled results with the operating data
of the chiller. The measured data collected for validating the chiller model came
from the chiller operating data under HPC. According to the scheme of load sharing
between the two refrigeration circuits, the chiller model was simulated and the
simulation results were compared with the corresponding experimental data. Figure
4.11 illustrates the comparison between the modeled and the measured chiller COP.
There were two lines in the figure giving the boundary of £10% deviation from the
ideal case. For over 86% of the data, the uncertainty (the difference between the

modeled value and the experimental value) of chiller COP was less than 10%.

Allowing for the experimental uncertainty of COP, being 3.1%, and the dead band
for determining switching on one more or less group of condenser fans, which could
result in the condensing temperature and the COP different from the measured ones,
the deviations were within the allowable tolerance. Overall the chiller model was
verified with an acceptable accuracy, and the simulation results were considered to
be satisfactory. The validated model was used to investigate the chiller efficiency

using different control strategies under various operating conditions.

Predicted COP

35 4 4.5 5 5.5 6 6.5 7
Measured COP

Figure 4.11 Comparison between the modelled and measured chiller COP
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4.3 Chiller COP with various set points of condensing temperature

Variable condensing temperature control (CTC) was proposed as an alternative to
HPC to lower the condensing temperature in response to changes of the ambient and
load conditions (Yu and Chan 2006a), and the adjustment for 7.4, should consider
the constraints on compressor lubrication and the boundaries of the condensing
temperature. The working range of condensing temperature (7.q) was governed by
Inequality (4.49). In this study, the lower limit for the set point of condensing
temperature (7cqsp) Was 20°C or (Tgp + 3) °C, whichever was higher. This limit is
based on the boundaries of condensing temperature given in Inequality (4.51) and the
requirement for ensuring the quality of oil viscosity for compressor lubrication (Yu,
Chan et al. 2006). The highest Tcqsp is 45°C which is normally used under HPC. To
implement variable condensing temperature control, electronic expansion valves
(EXVs) are necessary to allow the condensing temperature to float freely above the
outdoor temperature without any constraints from the differential pressure

requirements.

As shown in Figure 4.12, the COP of the chiller with constant speed condenser fans
varied with a range of condensing temperature set points, under various operating
conditions in terms of combinations of outdoor temperatures (7q»: 15-35°C) and part
load ratios (PLR: 0.125-1). The COP generally increased with the part load ratio of
the compressors. The level of Ty at which one more group of fans was
consecutively staged varied, depending on the operating conditions. There was no
regular trend in the change of chiller COP with the variation of T.4sp. With the
increase of the set point of condensing temperature from its lower boundary, the
chiller COP increased in steps and then the maximum chiller COP could be achieved

when T, increased to a level. Then the chiller COP decreased with further increase
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of the set point of condensing temperature. There existed an optimal set point of
condensing temperature for specific working conditions. However, for each operating
condition, there could be two or more set points of condensing temperature at which
the local maximum points of COP occurred. This was due to the change in the
number of staged condenser fans across the range of 7. For the chiller with
constant speed condenser fans, the condenser fans were cycled on or off group by
group, and the COP remained unchanged when the number of staged condenser fans

did not vary.

When the maximum COP was achieved, the level of Tiqp, signalled the staging of
nearly all condenser fans. In this situation, the reduction of compressor power
outweighed the additional fan power due to staging more condenser fans. All these
findings confirmed the inadequacy of using HPC with a fixed 7cqs, 0f 45°C to control

the staging of condenser fans.

According to the research by Yu and Chan (2006b), for the air-cooled chillers with
constant speed fans, it was recommended to reduce the set point of condensing
temperature to its lower limit in order to maximize chiller COP. The set point of
condensing temperature (7cqsp) should be adjusted following Eq. (4.55), of which the
lower limit was 20°C or (7Tg, + 5) °C, whichever was higher. However, it was not
always true for different air-cooled chillers with different control strategies. For
certain conditions, the saving of the compressor power could not compensate for the
increase of condenser fans power when the condensing temperature approached the
lower boundary. Therefore, the optimum control strategy for the existing air-cooled
may not to stage all the condenser fans to reach the lower boundary of condensing
temperature all the time. As shown in Figure 4.12, the maximum COP could not be

achieved by setting the set point of condensing temperature (7.qsp) to the lower limit

110



as described in Eq. (4.55), and the maximum COP was achieved with various
temperature differences between the optimal set point of condensing temperature and
the outdoor temperature under different working conditions. It should be noted that
this temperature difference was generally greater than 5°C. The relationship between
the optimal set point of condensing temperature and the outdoor temperature could

not be adequately described by Eq. (4.55) for all working conditions.
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Figure 4.12 Variations in chiller COP with the set points of condensing temperature
for chillers using constant speed condenser fans under different outdoor temperature

As shown in Figure 4.13, the COP varied more smoothly across the entire range of
Tqsp for the chiller with variable speed condenser fans. With the increase of the set
point of condensing temperature from its lower boundary, the chiller COP increased
to a maximum value and then decreased gently. The maximum COP could be
achieved from an optimal set point of condensing temperature (Zcqsp,0p)- The locus of
Tqsp,op for each outdoor temperature was plotted in Figure 4.13. It was identified that

111



the minimum chiller power could be achieved by lowering heat rejection airflow
rather than maintaining the highest airflow for certain conditions, as the reduction of
condenser fan power at lower fan speed could exceed the potential increase of
compressor power under these conditions. Therefore, it was not appropriate to set the
set point of the condensing temperature to its lower boundary for all operating

conditions.
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Figure 4.13 Variations in chiller COP with the set points of condensing temperature
for chillers using variable speed condenser fans under different outdoor temperature

From Figures 4.12 and 4.13, it could be found that the chiller COP was best when
PLR was 0.25. As the studied chiller had two refrigerant circuits, and each circuit
was equipped with two compressors. According to the control strategy, when the
chiller part load ratio is less than 0.25, only one compressor was staged. When the
chiller part load ratio is 0.25, the staged compressor was at its full load, and the

compressor efficiency was best. In addition, under such conditions, all the condenser
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fans were available. To provide the needed condenser airflow, one more group of
condenser fans could be staged for the air-cooled chillers with constant speed fans,
and the condenser fans could be staged with larger speed than one fourth of the
designed rotating speed. With higher compressor efficiency and sufficient condenser
airflow rate, therefore, the best COP could be achieved at PLR of 0.25 for the studied

air-cooled chillers with twin refrigeration circuits.
4.4 Optimum set points of condensing temperature

It has been confirmed that the use of HPC with a fixed T, of 45°C leads to a
decline in chiller COP especially under partial load conditions. It is desirable to
lower Te4sp to attain maximum COP in all operating conditions, and it is worth

ascertaining an optimum 7¢4p at a given operating condition.

When constant speed condenser fans were applied, it was adequate to adjust Tcasp
based on any given outdoor temperature alone, as shown in Eq. (4.55), which
enabled the condensing temperature to approach its lower boundary. This adjustment
was straightforward to ensure the highest number of condenser fans staged at any
given chiller load. However, this set point of the condensing temperature may not be
the optimal set point of condensing temperature for some operating conditions.
Figures 4.12 and 4.13 reveal that maximum COP may not be achieved simply by
setting the set point of condensing temperature according to Eq. (4.55), regardless of

the chillers with constant speed fans or variable speed fans.

Having identified the pitfall of using Eq. (4.55) to evaluate maximum chiller COP, a
logical argument was included in the algorithm of controlling condenser fans to
determine the optimal set point of condensing temperature (Zcdsp,op) When CTC was
applied with constant or variable speed condenser fans. For any given chiller part

load ratio, it was possible to identify an optimal set point of condensing temperature
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(Ttasp,op) for maximum COP by checking the variation in chiller COP throughout the
T.qsp range following the procedures in Figure 4.9. For each operating condition, this
argument checked the difference in chiller COP when T4 increased in steps of
0.05°C from its lower level of 20°C or (Tgt5) °C, whichever was higher. These
steps were small enough to trace the change of COP, and the optimal 7.4, could be

identified along with the maximum chiller COP.

As shown in Figure 4.14, the Tcqspop varied under different operating conditions for
the air-cooled chiller with constant speed fans and variable speed fans. When using
constant speed condenser fans, it was noted that there could be two or more set
points of condensing temperature at which the local maximum points of COP
occurred for each operating condition as shown in Figure 4.12. This was due to the
change in the number of staged condenser fans across the 7.4, range. In Figure 4.14
(a), just one of the set points of condensing temperature was presented at which the
maximum COP was achieved. Figure 4.15 illustrates variation of the temperature
difference between one of the optimal set points of condensing temperature and the
outdoor temperature under various operating conditions. There was no regular trend
for the optimal set point of condensing temperature of the chiller with constant speed
fans, and it fluctuated widely for specific outdoor temperature. For the chiller with
variable speed condenser fans, the optimal set point of condensing temperature
increased closely with the chiller part load ratio for specific outdoor temperature as
shown in Figure 4.14 (b), which indicated that T¢q4sp0p should be determined based on
the outdoor temperature and the chiller part load ratio rather than on the outdoor
temperature alone. For the maximum COP, the optimum set point of condensing
temperature could be expressed as a function of outdoor temperature and chiller part
load ratio, and it could be described as Eq. (4.56). It should be noted that the optimal
set point of condensing temperature varied with the staging of the refrigeration
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circuit(s).
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Figure 4.14 Variations in the optimum set point of condensing temperature (Zcqsp,op)
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Figure 4.15 Variations in the difference between the optimum set point of condensing
temperature (7cdsp.op) and the outdoor temperature (7qp)

Heat rejection airflow (V,) is conventionally modulated step by step via staging
different numbers of condenser fans at a constant speed. This kind of condenser fan
staging has long been implemented under HPC, resulting in the imprecise control of
condensing temperature. The use of variable speed condenser fans, on the other hand,
allows the heat rejection airflow to regulate smoothly and helps improve the
controllability of the condensing temperature with reduced power at lower speed (Yu
and Chan 2006b). Variable speed condenser fans can vary V, continuously based on

any given set point of condensing temperature (7cqsp).

Under CTC, the set point of condensing temperature should be adjusted in response
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to the outdoor temperature and the chiller load as the function shown in Eq. (4.56).
The adjustment should consider the constraints on compressor lubrication and the
boundaries of the condensing temperature. It was straightforward to adjust the set
point of condensing temperature for the air-cooled chiller with constant speed fans
using Eq. (4.55), but the set points by this algorithm may not be the optimal ones for
certain conditions. The percentage change of the chiller COP with optimal set point
of condensing temperature was shown in Figure 4.16, in relation to the chiller COP
whose set point was reset based on Eq. (4.55). This figure demonstrated that the set
point of condensing temperature based on Eq. (4.55) could be one of the optimal set
points for most operating conditions. However, it was not true when the chiller part
load ratios were less than 0.3, at which the chiller COP could be improved by up to
9.4% with optimal set point of condensing temperature. Therefore, it is desirable to
adjust Tcgsp With a function of outdoor temperature and chiller PLR following the

procedures in Figure 4.9.
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Figure 4.16 COP percentage change compared with the algorithm of Eq.(4.55)
4.5 Chiller COP under four strategies

In this section, the chiller operated at various outdoor temperatures and load
conditions with operating schemes: (a) HPC with constant speed condenser fans; (b)

HPC with variable speed condenser fans; (c) CTC with constant speed condenser
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fans; (d) CTC with variable speed condenser fans.
4.5.1 Chiller COP

For any given operating condition, the chiller COP varied with different operating
schemes because each scheme had its own unique modulation of heat rejection
airflow based on a set point of condensing temperature. The chiller COP curves for
the four operating schemes were shown in Figure 4.17, for outdoor temperature from

15 to 35°C at intervals of 5°C.

The chiller COP varied following the sequence of operating the two refrigerant
circuits and the sequence of compressors in each refrigeration circuit of the chiller.
This clearly revealed that the chiller COP dropped substantially when an additional
compressor or refrigerant circuit was staged to cope with a rising load, because
compressor efficiency dramatically decreased at low part load ratios under HPC. For
each operating scheme, the chiller COP generally increased with the part load ratio of
the staged compressors (PLR.,m) and approached the highest level at a chiller part
load ratio (PLR) of 0.25, 0.5 and 1 at any given outdoor temperature, as under such
conditions the staged compressor(s) was/were full loaded. The highest chiller COP
was due to the maximum compressor efficiency at its full load and the greatest
overall heat transfer coefficient of the evaporator resulting from the maximum heat

exchange effectiveness between the chilled water and refrigerant.

As shown in Figure 4.17(a), under HPC with constant speed condenser fans, the
chiller COP fluctuated considerably because the heat rejection airflow varied step by
step. It was difficult to assess the chiller COP precisely using a single performance
curve as the curves crossed each other in some operating conditions. Similar findings
were also observed from the evaluations of the existing plants with air-cooled screw

chillers (Yu and Chan 2006a).
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Figure 4.17(b) illustrates the variation of the chiller COP with variable speed
condenser fans under HPC. The chiller COP could rise almost linearly with the
increasing chiller load and varied following the staging of the refrigeration circuit
and the compressor in each refrigeration circuit at any given outdoor temperature,
which was different from the fluctuating COP when using HPC and constant speed
fans. It was possible to use a single performance curve to assess its COP when the
chiller operated under HPC with variable speed condenser fans. This was due to a
situation where the condensing temperature could be controlled better at its set point
by modulating the heat rejection airflow continuously. These findings indicated that a
change in chiller COP was largely dependent on the type of condenser fans and on
how condenser fans were controlled to provide the required heat rejection airflow for

any given cooling load.

Unlike HPC under which the condensing temperature floated around its set point of
45°C regardless of outdoor temperatures, CTC was intended for enhancing heat
rejection airflow, enabling the condensing temperature to float closely above the
outdoor temperature. Although the increased heat rejection airflow caused an
additional fan power, the decreased condensing temperature resulted in an increase in
chiller COP because of a considerable reduction in compressor power. The extent of
which in chiller COP could increase under CTC was identified by comparing the
COP curves in Figure 4.17 (¢) with Figure 4.17 (a) in the case of constant speed fans,
or comparing the COP curves in Figure 4.17 (d) with Figure 4.17 (b) in the case of

variable speed fans.

As illustrated in Figures 4.17 (¢) and 4.17 (d), the chiller COP under CTC could be
described by a set of part load performance curves, regardless of whether the

condenser fans operated at constant or variable speed. These findings corroborate
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Chan and Yu’s results that a set of chiller performance curves should be used to
assess the chiller COP at part load when the condensing temperature is controlled
based on any given outdoor temperature (Yu and Chan 2006b). An upward shift in
COP is found when the outdoor temperature drops. This indicates that chiller COP is

greatly affected by the entering condenser air temperature.
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Figure 4.17 Chiller COP curves for four strategies of condenser fan control
4.5.2 COP Improvements

After identifying the optimum set point of condensing temperature, it affirmed worth
assessing the potential improvements in chiller COP when CTC and variable speed
condenser fans were applied to the existing air-cooled screw chillers. Comparing
with the chiller performance with constant speed condenser fans under HPC, the
COP with variable speed condenser fans under HPC could increase or reduce,

depending on variations in the outdoor temperature and the chiller load, as shown in
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Figure 4.18 in which an increase in chiller COP was expressed as a positive

percentage.

With variable speed condenser fans under HPC, the COP increased by up to 17.1%
when the outdoor temperature was 20°C and the part load ratio was 0.25. When the
outdoor temperature was 35°C, the change of chiller COP was -0.3% to 10.8%.
While the condensing temperature could be maintained close to its set point by using
variable speed fans, the COP could comparatively decline to some extent due to the
traditional head pressure control and the staging of the condenser fans group by
group. The condensing temperature could drop below its set point when the heat
rejection airflow provided by the constant speed fans exceeded the minimum airflow
required to maintain the set point. Under these conditions, the compressor power was
much less than that with variable speed condenser fans. In addition, the chiller COP
drop was due to the fact that the variable speed drive consumed about 3% of the total
power of the staged condenser fans. In general, it appears difficult to identify the

potential benefits of using variable speed condenser fans under head pressure control.
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Figure 4.18 Percentage change in chiller COP under HPC with variable speed
condenser fans

When the chiller operated under CTC with constant speed condenser fans, the chiller

COP could be improved in all operating conditions up to 35.4%, as shown in Figure
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4.19. It would be interesting to identify the extent to which the chiller COP could
increase when CTC and variable speed condenser fans were applied. As illustrated in
Figure 4.20, the use of variable speed condenser fans and CTC enabled the chiller
COP to be improved by up to 51.8%. However, when the chiller operated at outdoor
temperature of 35°C, the COP could slightly drop by up to 0.3% because there was a
3% increase in fan power due to the variable speed drive. The fan power was largest
in this situation because all the condenser fans operated at full speed due to the use of

lower set point of condensing temperature.

It should be noted that the chiller COP percentage change was based on the base case
under HPC and constant speed condenser fans. As shown in Figure 4.17 (a), the
chiller COP fluctuated considerably because the heat rejection airflow varied step by
step, and the chiller COP for outdoor temperature 20°C was smaller than that for
outdoor temperature 25°C and 30°C at some load conditions. Therefore, the chiller
COP percentage change in outdoor temperature 20°C is the highest as shown in

Figures 4.18, 4.19 and 4.20.

Outdoor DBT ‘+ 15 —4—20 —>%—25 —*—30 —*—35

A

N A\ N

AT A

'S
=}

[S] N W W
S G S O

|

COP change (%)
&

S
|

[

i
AL N NI

¥ T T T T

=1

T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PLR

T
0.0 0.1

Figure 4.19 Percentage change in chiller COP under CTC with constant speed
condenser fans

121



Outdoor DBT |—®— 15 —#—20 —%— 25 —%—30 —*—35

60

50 A
40
30

20

COP change (%)

0 T T T ——x

0{0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110

PLR

Figure 4.20 Percentage change in chiller COP under CTC with variable speed
condenser fans

4.6 Optimal load sharing between refrigeration circuits

Many water chillers are designed with multiple refrigeration circuits connected in
parallel, and each refrigeration circuit has one or more compressors. This design of
multiple refrigerant circuits is to enhance the reliability and standby capacity, and it
gives an opportunity to improve the chiller performance. As any one or more of the
circuits in a chiller may be operated at a given conditions, the chiller performance
would be different under different operating mode. This means that proper control
strategy which is used to share the cooling load between the refrigeration circuits and
sequence the compressors in each circuit is critical. For this reason, it is desirable to
identify operating strategies on proper circuit loading sequence (CLS) that improve
the efficiency of the chiller with multiple refrigeration circuits, which can minimize
the sum of compressor power and condenser fan power of the staged chillers for all

operating conditions.
4.6.1 Circuit loading sequence

For the chillers with multiple refrigeration circuits, there exist various modes of
circuit staging which yield fluctuating efficiency under various cooling load

conditions. As the chiller efficiency dramatically decreases at low part load ratios
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under HPC, circuit sequencing is crucial to improve energy efficiency of chillers
with multiple refrigeration circuits. If a chiller had two identical refrigeration circuits,
as was the studied chiller, the cooling load could be shared by the two refrigeration
circuits randomly; hence there existed an optimal load distribution between the
refrigeration circuits rather than sharing the load equally. In this section, the
simulation analysis considered both individual and mixed uses of three control
schemes: circuit loading sequence, variable speed fan control and variable

condensing temperature control.
4.6.1.1 Constant speed fan control

Circuit loading sequence (CLS) of the chillers with constant speed condenser fans
was investigated firstly. Six operating schemes were considered for chillers with
constant speed fans as shown in Table 4.3. Operating scheme CSF1 was the
conventional circuit sequence control and served as the baseline. For the schemes
CSF1 to CSF4, the two compressors in each refrigerate circuit operated with even
load when the cooling load of the circuit was more than 25% of the rated chiller

capacity, or one compressor operated in this refrigeration circuit.
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Table 4.3 Operating schemes for the chiller with constant speed fans

Operating schemes Description Notes

CSF1 Loading priority was given to the lead circuit when
chiller load was less than half of the rated chiller
capacity, and kept the capacity of circuits 1 and 2 be
equal when the total chiller load was more than half of
the rated chiller capacity.

CSF2 Balanced circuit loading that the control system kept
the capacity of circuits 1 and 2 be equal at any time
when the chiller operated.

CSF3 Loading priority was given to the lead circuit until fully HPC
loaded, and then the other circuit met the balance of the
load when the total chiller load was more than half of
the rated chiller capacity

CSF4 Optimal CLS, in which cooling load was optimally
shared by the two refrigeration circuits.

CSF5 Optimal CLS and optimal compressor sequence, in
which cooling load was optimally shared by the two
refrigeration circuits, and also the load of each circuit
was optimally shared by the two compressors in a
refrigeration circuit.

CSF6 CSF4+CTC CTC

Figure 4.17(a) illustrates the chiller COP curves with constant speed condenser fans
under HPC. Figure 4.21 shows the percentage change of chiller COP relative to
scheme CSF1 under different circuit loading schemes. For the operating scheme
CSF2, the chiller COP dropped significantly when the PLR was less than 0.25, and it
could drop up to 54.3%. For PLR in the ranged of 0.25 to 0.5, chiller COP could be
improved up to 12.9%. For the scheme CSF4, using optimal CLS, the chiller COP
was improved when PLR was greater than 0.25, and it could be improved by various
degrees up to 56.4%. It revealed that the optimal CLS could obviously improve the
chiller COP for the chillers with multiple refrigeration circuits. When the operating
scheme CSF5 was applied, the chiller COP could be improved further, especially
when the PLR ranged from 0.5 to 0.75. Under such conditions, the load within one

refrigeration circuit was optimally shared by the compressors in each refrigeration
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circuit. There was no noticeable improvement when scheme CSF5 was compared

with scheme CSF4. However, it was much more complicated and extremely time-

consuming for implementing the two-level optimization in scheme CSFS5.

Considering the computation cost, it was recommended to implement scheme CSF4

with optimal CLS.

COP change (%)

COP change (%)

>y
3

w
3

I
S

w
=3

)
S

Outdoor DBT ‘+ 15 ——20 =25 —*—30 —+—35

Outdoor DBT | —*— 15 ——20 —%—25 —%—30 —*—35

x_

0 T T T T T T T T
IOQO 0.1 02 3 0.4 0.5 0.6 0.7 0.8 0.9 1
=20
/

COP change (%)
8

h |/
-40
-50 A

PLR

(a) CSF2

Outdoor DBT | ~=— 15 —4—20 ——25 —x— 30 —— 35|

PLR

(b) CSF3

Outdoor DBT ‘+ 15 —4—20 —>—25 30 +35\

=

COP change (%)
8

/R

. N
X

SN

(c) CSF4

0.0 0.1 0.2 03 0.4

0.5 0.6 0.7 0.8 0.9 1.0
PLR

(d) CSF5

Outdoor DBT | —*— 15 —4— 20 —%— 25 —%— 30 +35‘

80

70

o g
LI ===
N A g
N7 e \
JE e oN e ———
(¢) CSF6

Figure 4.21 Percentage change of chiller COP relative to CSF1 under different CLSs

When the optimal CLS and variable condensing temperature control were applied

together, the chiller COP could be obviously improved for all operating conditions
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up to 66.7%. As shown in Figure 4.21 (e), the extent of improvement of the chiller
COP was much larger for the range of PLR from 0.5 to 0.75, as under such
conditions the optimal load sharing between the two refrigeration circuits could

greatly improve the chiller efficiency.

4.6.1.2 Variable speed fan control

It would be interesting to investigate the effect of circuit loading sequence on the
performance of chillers with variable speed condenser fans. There were also six
operating schemes considered for the chiller with variable speed fans as shown in
Table 4.4. Figure 4.22 demonstrates the percentage change of chiller COP relative to
VSF1 under different circuit loading sequences. Similar to the results of the cases
with constant speed condenser fans, the optimal CLS could obviously improve the
chiller COP for chillers with multiple refrigeration circuits, and COP could be
improved by up to 38.0% for scheme VSF4 as shown in Figure 4.22(c). When the
operating scheme VSF5 was applied, the chiller COP could be improved further, but
there was no significant improvement when comparing scheme VSF5 with scheme
VSF4, and the computation in scheme VSF5 was very time-consuming. Considering
the computation cost, VSF4 was preferred for the optimal load sharing between two
refrigeration circuits if it was applied to on-line control.

Table 4.4 Operating schemes for the chiller with variable speed fans

Operating schemes Description Notes
VSF1 CSF1+VSF (baseline)
VSF2 CSF2+VSF
VSF3 CSF3+VSF HPC
VSF4 CSF4+VSF
VSF5 CSF5+VSF
VSF6 CSF6+VSF CTC

When the optimal CLS and variable condensing temperature control were applied
together, the chiller COP could be improved further under operating scheme VSF6 as
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shown in Figure 4.22 (e), especially when the PLR ranged from 0.5 to 0.75. Under
such conditions, the optimal load sharing between the two refrigeration circuits and
CTC enabled the chiller COP to improve considerably. Figure 4.22 (e) also revealed
that the outdoor temperature had a great influence on the chiller performance and, the

lower the outdoor temperature, the greater extent of the COP improvement could be

achieved.
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4.6.2 Potential benefits from optimal circuit loading sequence

From Figures 4.21 and 4.22, it was identified that the optimal CLS could obviously
improve the chiller COP for the chillers with multiple refrigeration circuits. It was
desirable to evaluate the cooling energy saving potential for a representative office

building when different control strategies of CLS were implemented.

For the representative office building, the peak cooling load was 7338 kW as
described in Chapter 3. To meet the peak cooling load, the office building’s chiller
plant was designed with seven air-cooled screw chillers, each of which had a nominal
cooling capacity of 1116 kW. The size of these chillers was comparable to that of the
model chiller. To highlight the effect of the CLS, the traditional chiller sequencing of
a multiple-chiller system was considered in this study, which was to operate the

minimum number of evenly loaded chillers to meet the required cooling load.

Having identified the cooling load profile of the office building and the scheme of
staging chillers, it was possible to employ the chiller model to investigate the energy
saving potential by the optimal CLS for air-cooled screw chillers with multiple

refrigeration circuits.

The annual electricity consumption of the chillers under different control strategies
was evaluated, as shown in Table 4.5. Average chiller COP was the annual cooling
load divided by the annual chiller electricity consumption. The chiller performance
under strategy CSF2 was inferior to that under CSF1 with annual electricity
consumption increasing by 0.1%. For CSF4, optimal CLS enabled the total
electricity consumption of the chillers to drop by 4.2%. When optimal CLS and
optimal compressor sequence in a refrigeration circuit were implemented, as in
scheme CSF5, 6.0% of the annual chiller electricity consumption was achieved.

Based on the local weather, chillers operate in part load conditions with an outdoor
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temperature of below 25°C for half of the time. Consequently, there is a considerable
scope for lowering the condensing temperature. It was expected that the COP
improvements would be more considerable with CLS and CTC. Under CTC with
optimal CLS, substantial power consumption could be saved by 9.6% in the scheme

CSFé.

When the studied air-cooled chillers were retrofitted with variable speed condenser
fans replacing the constant speed fans, annual electricity consumption under VSF1
was saved only by 0.3% under CSF1, which mainly resulted from the traditional
head pressure control. This indicated that HPC could not take full advantage of the
energy saving potential of using variable speed condenser fans. It was desirable to
operate the chiller with variable speed condenser fans under CTC. When the variable
speed condenser fans and CTC were applied together to the studied chillers, it

enabled the chiller plant to save annual electricity consumption up to 10.3%.

Table 4.5 Energy performance of chillers under different control strategies

Annual electricity Energy saving

Cases consumption (kIVh) Average COP %) Notes
CSF1 3.52x10° 2.86 - Base case
CSF2 3.52x10° 2.85 0.1

CSF3 3.42x10° 2.94 2.7

CSF4 3.37x10° 2.98 4.2

CSF5 3.31x10° 3.04 6.0

CSF6 3.18x10° 3.16 9.6

VSF1 3.51x10° 2.86 0.3

VSF2 3.51x10° 2.86 0.2

VSF3 3.40%x10° 2.96 3.5

VSF4 3.39x10° 2.96 3.5

VSF5 3.37x10° 2.98 4.2

VSF6 3.16x10° 3.18 10.3

4.7 Summary

This chapter investigated the chiller plant in one institutional building complex, and

the operating data were measured for validating the developed chiller model. The
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sophisticated model of the air-cooled screw chiller with twin refrigeration circuits
was developed, and it was validated with the operating data. The chiller model forms
the basis for the comparison of different control strategies and the development of
optimum chiller control strategy. This chapter then investigates how variable
condensing temperature control and variable speed condenser fans can be applied to
enhance the chiller COP. When the chiller operated under CTC with constant speed
condenser fans, the chiller COP could be improved in all operating conditions up to
35.4%. The use of variable speed condenser fans and CTC enabled the chiller COP to
be improved by up to 51.8%. The investigation on the optimal load sharing between
refrigeration circuits in an air-cooled chiller was also presented. When the optimal
CLS and variable condensing temperature control were applied together, the chiller
COP could be obviously improved for all operating conditions up to 66.7%. When
the variable speed condenser fans and CTC were applied together to the studied
chillers, it enabled the chiller plant to save annual electricity consumption up to

10.3%.
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Chapter 5 Experimental and Simulation Study on Water

Mist System

This chapter outlines the methodologies of the experimental and simulation study on
water mist system. It first describes how the experiment on an air-cooled screw
chiller with water mist system is conducted, and the operating data are evaluated. It
then presents the model of water mist, which is incorporated into the chiller model
developed under the TRNSYS platform. The model for an air-cooled chiller with
water mist system forms the basis for simulating and analysing the improvement of
chiller efficiency with various control strategies. This chapter also reports a detailed
analysis on the energy saving potential of the chillers serving the representative
office building and hotel building with enhanced condenser features, and determines
the possible contribution in reducing the total chiller electricity consumption of the

building sector in Hong Kong.
5.1 Description of water mist system

Figure 5.1 illustrates a schematic of a typical water mist system, which comprises of
a high pressure pump, a filter unit, atomization nozzles, high pressure and low
pressure tubing. The high pressure pump can operate to deliver water at a high
pressure of around 70 bars, and the water is forced through micro nozzles to create a
mist of 10 micron droplets. When the tiny water droplets are sprayed into the
atmosphere, they quickly absorb the heat in the environment and evaporate, and then

the air temperature decreases due to evaporative cooling effect.

When the water mist system is coupled to an air-cooled chiller, the temperature of the

entering condenser air will drop, which results in lowering the condensing
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temperature and pressure, as shown in Figure 5.2. The refrigeration cycle of the
chiller system with water mist system is changed from the cycle 1-2-3-4-1 to 1-2'-3'-
4'-1. With the decrease of the condensing pressure, the compressor power is reduced.
However, the cooling capacity increases, hence the COP of the chiller system will
increase. Theoretically, the energy efficiency of air-cooled chillers coupling with a
water mist system will be improved, but the degree of effectiveness is dependent on

the climatic conditions, chiller load ratios and operational control strategies.
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Figure 5.1 Schematic of the water mist system

1. Evaporator 2.Compressor 3.Condenser 4. Expansion valve 5.High pressure pump 6. Nozzles

Pe| 3.3
g:?P'cd 3" /
=
)

2
8
&
Pev— 4 4

Refrigerant specific enthalpy, 4 (kl/kg)

Figure 5.2 Vapour compression cycle of the refrigeration circuit

132



5.2 Description of studied chiller coupling water mist

One pragmatic approach to improving the chiller COP is to lower the condensing
temperature to a level that enables the trade-off between compressor power and
condenser fan power to be optimized. Using water mist pre-cooling to enhance the

COP of air-cooled chillers is not common, even though the concept is not new.

In this research, an experiment was carried out on an air-cooled screw chiller to
evaluate the improvement of chiller performance with water mist system. A chiller
plant installed in an institutional complex comprising of three larger and one small
screw chillers connected in parallel was investigated, in which the three lager chiller
were identical. The arrangement of the chiller system was illustrated in Figure 5.3. A
single-loop pumping system was used in which there was a differential pressure
bypass pipe to balance the flow between the water side and air side system. There
were four constant speed pumps, and each pump set delivered the design chilled
water flow rate for an operating chiller operating matched to the pump. The chillers
were staged one by one in response to the changing building cooling load, and the

smaller chiller operates in the night mode, as shown in Figure 5.4.

One of the three greater chillers was investigated. The studied chiller had two
refrigeration circuits as shown in Figure 5.5, namely circuit 1 and circuit 2, using
refrigerant R134a. The chiller was equipped with one compressor for circuit 1 and
two compressors for circuit 2. The nominal cooling capacity of the studied chiller
was 705 kW, rated under the operating conditions of entering condenser air
temperature at 35°C and entering/leaving chilled water temperatures at 12°C /7°C.
The rated power of the studied chiller was 242 kW. The condensers comprised of 10
identical condenser fans arranged with a total air flow rate of 53.45 m’/s, including

four fans serving circuit 1 and six fans serving circuit 2. The fan speed was 15.8 1/s,
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and each fan consumed a power of 2.4 kW. Table 5.1 shows the details of the chiller

model.
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Table 5.1 Details of the chiller model

Refrigerant type HFC-134a
Nominal cooling capacity (kW) 705
Nominal power input (kW) 242
Refrigerant charge (kg)

Circuit 1 81

Circuit 2 124
Compressors

No. in circuit 1 1

No. in circuit 2 2

No. of control steps 8

Minimum step capacity (%) 16
Evaporator

Type Shell-and-tube flooded

Evaporating temperature (°C) 5

Temperature of supply chilled water (°C) 7

Max. water side operating pressure 1000
Condensers

Condenser fans quantity 10

Fan speed (1/s) 15.8

Total air flow (m’/s) 53.5

The air-cooled screw chiller plant was installed to provide space cooling several
years ago. In order to improve the chiller efficiency, water mist systems were
installed in July 2009. Each chiller was served by a separate water mist system
comprising of two water mist circuits, as shown in Figure 5.1. The two water mist
circuits contained high pressure pumps at rating of 0.75 kW and 1.25 kW dedicated

for refrigeration circuits 1 and 2, respectively. The flow rate of the high pressure
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pumps were 2 I/min and 4 1/min at 1500 rpm for circuit 1 and circuit 2, respectively,
discharging through a total of 58 nozzles. According to the layout of the condenser
coil, the nozzles were evenly distributed in front of the entire condenser surface to
ensure better evaporative effect. The DBT and relative humidity (RH) of entering
condenser air were measured with a data logger system, and the other variables
related to chiller performance were recorded by the building management system
(BMS). Figure 5.6 shows the experimental setup of the air DBT and RH sensors at
the inlet to the condensers of the studied chiller. A distance of 750 mm was
maintained between the nozzles and the condenser surface to ensure better cooling
effect by full evaporation of water mist. The distance between the nozzles and the
condenser face was determined based on the configuration of the condenser coil and
preliminary on-site tests, which depended on the ambient air conditions, heat
rejection airflow, water mist generation rate, layout of nozzles, etc. The numerical
study by Tissot et al. (Tissot, Boulet et al. 2011) confirmed that almost all the
sprayed water mist fully evaporated after a distance of 0.7 m from the injection point.
The detailed experiment on the distance between the nozzles and the condenser face
will be a future research work. With the water mist data and the chiller data, the

chiller performance could be analyzed.
5.3 Experimental study of the chiller with water mist system
5.3.1 Experiment setup and data acquisition

The studied air-cooled screw chiller was operated under head pressure control.
Experiments were conducted to investigate the performance of the air-cooled chiller
with or without water mist system over a representative range of ambient
temperature (Ty,: 23.8-33.5°C), relative humidity (RH: 31.3-90.1%) and part load

ratios (PLRs: 0.1-1.0) in the local climate, over a period of 4 months from July to
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November 2009. The experimental data were used to determine the parameters of
equations in the chiller model and to verify the developed chiller model

incorporating the water mist model.

To investigate the performance of the air-cooled chiller with or without water mist
system, there were many parameters needed to be measured, including evaporating
temperature (7.,) and condensing temperature (7.4) of each refrigeration circuit,
power of each compressor (E.), condenser fan power of each circuit (E.), chilled
water flow rate (my), temperatures of supply and return chilled water (7hws and
Tenwr), Water mist generation rate (mym), condenser air temperature and relative
humidity at 3 locations: before the water mist (ambient air), at the inlet of the
condenser coil and leaving the condenser coil. The operating data were monitored
and logged at 10-minute or 15-minute intervals over the experimental period.
Resistance type temperature sensors were used to measure the temperature of chilled
water with an uncertainty of £0.1°C. The chilled water flow rate was measured by an
ultrasonic flow meter with an uncertainty of +0.5% of the measured value.
Compressor power (E.), condenser fan power (E.f) and high pressure pump power
(Ewp) were metered by power analysers with an uncertainty of +0.1 kW. The DBT and
RH of ambient air were monitored by a transmitter with an uncertainty of £0.1°C for
air temperature and +£2% for relative humidity, which were used to control the
operation of the water mist systems. To measure the DBT and RH of entering
condenser air, data loggers were installed at the inlet of the condenser as shown in
Figure 5.6, which were weatherproof sensors with an uncertainty of +0.2°C for air
temperature and +3% for relative humidity. One data logger was installed at the
condenser outlet to measure the DBT and RH of the air leaving the condenser, whose
uncertainty was +0.3°C for air temperature and +2.5% for relative humidity. Figure
5.7 shows some of the data loggers used in the experiments.
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Figure 5.6 Photograph of the water mist system with data loggers
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Figure 5.7 Data loggers for the experiments

As the chiller COP was not directly measured but calculated from the measured
variables, an uncertainty analysis on the chiller COP was carried out. The chiller load
(Q) could be calculated by Eq. (5.1). The chiller COP was calculated by the chiller
load divided by the total power input, including the chiller power (Eq) and high
pressure pump power (Ey,) for generating water mist, and it was described as Eq.
(5.2). The chiller power included the compressor power (E..), condenser fan power

(Ecr) and lubrication pump power (Ej,). As the lubrication pump power was very
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small, it was included in the measured compressor power.

Q = mw'pr' (Tchwr - Tchws) (5 1)

COP=QNE,+E,)=m, C, (T

chwr

T ) (E,+E,+E,) (5.2)

ASHRAE Guideline 2 (ASHRAE 2010) provides a guideline for reporting
uncertainty in results of experimental data as applied to HVAC equipment. An
experimental result denoted as Y is determined from a set of independently measured

variables x;, where i = 1 to n, and n is the number of measurements related to Y.
Y= f(x,x,,"x,) (5.3)

Due to the accuracy of measured variables, the uncertainty associated with COP was

determined by the single sample analysis (ASHRAE 2010), as shown in Eq. (5.4).

(rms) —

SCOP,, = \/Z[&ci -(6CoP /x|
il (5.4)
where x; is the ith independent variable, dx; is the uncertainty of the variable x;.

Using Egs. (5.1) to (5.4), the root sum square error of chiller COP (3COP ) due to
all the uncertainties of the individual variables was evaluated to be 0.099 in a COP
value of 2.9 at the design condition, and the uncertainty of COP was 3.4%. This was

mainly due to the uncertainties in the chilled water supply and return temperature.
5.3.2 Experiment results analysis

A detailed analysis is reported in the following section on how water mist pre-
cooling improve the performace of air-cooled chillers and what parameters should be

considered to optimize the operation of the mist system coupled to the chiller.

5.3.2.1 Temperature drop
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The thermodynamic properties of the entering condenser air are vital for analyzing
the performance of water mist system. Water mist pre-cooling system lowers the
entering condenser air temperature, and the psychrometric chart shown in Figure 5.8
illustrates the evolution of condenser air through the water mist system and the
condenser coil. The evaporative cooling process by the water mist is assumed to be
adiabatic. Therefore, the process can be expressed as from Point A to Point B in
Figure 5.8, which follows a constant wet-bulb temperature line. Points A, B and C
represent the state of the outdoor air, the state of the entering condenser air and the
wet-bulb temperature of the outdoor air, respectively. The wet bulb temperature
approximates the temperature of adiabatic saturation and so is the lowest temperature
that can be achieved by spraying water mist into the air. As shows in Figure 5.8 as
point D, the temperature and RH of air leaving the condenser are also monitored to
evaluate the operating balance on heat rejection of the condenser. The process from
Point B to Point D represents the change of state of the entering condenser air from
the inlet to outlet of the condenser, carrying away heat of condensation from the

refrigerant.

When the water mist system was operated, the evaporative cooling effect reduced the
temperature of the entering condenser air. Figure 5.9 shows the temperature change
of the entering condenser air against the wet bulb depression (WBD) which is the
difference between DBT and WBT of the ambient air. The scattered points are
grouped with different levels of approach to WBT (at 1 K interval). Approach is the
temperature difference between the dry bulb temperature of entering condenser air
(Teca) and the wet bulb temperature of ambient air (7y), which can be as low as 0.5
K. It illustrates that the air temperature may decrease by varying degrees up to 9.4 K.
It was observed that the WBD had a great impact on the temperature drop. The
greater the WBD of the ambient air was, the greater the temperature drop could be
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achieved when water mist was operated. When the DBT was high and RH was low,
the temperature could drop more, as the evaporation process occurred intensively
under such conditions. Therefore, water mist system is especially suitable for dry and

hot area, and can be sized smaller for a given heat load under such weather

conditions.
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Figure 5.9 Impact of ambient air WBD on temperature change of entering condenser
air due to water mist pre-cooling
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5.3.2.2 Condensing temperature

For any given cooling capacity, the condensing temperature depends on the chiller
load, heat rejection airflow and ambient air temperature. When the chiller operated
without water mist, the condensing temperature was above 50°C for more than half
of the operating conditions during the experimental period. When water mist system
was operated, the condensing temperature was less than 55°C for all operating
conditions and was below 45°C for more than half of the time. The lowest
condensing temperature was 37.8°C during the experimental period. Figures 5.10 and
5.11 show the change of refrigerant condensing temperature with the ambient air
temperature under different range of RH at part load ratios of 0.4-0.5 and 0.9-1.0 for
circuits 1 and 2 respectively, which was due to the effect of water mist pre-cooling.
The positive numbers represent a condensing temperature increase while the negative
numbers represent a condensing temperature drop. According to the control strategy
of the studied chiller, only circuit 2 was operated at part load ratios of 0.4—0.5. For
refrigeration circuit 1, the condensing temperature drop varied regularly by up to 7.2
K. When the RH was lower, the condensing temperature drop could be larger.
However, for refrigeration circuit 2, the condensing temperature varied irregularly,
which could increase by up to 3.3 K or drop by up to 5.6 K during the experimental
period. The variation of the condensing temperature changes was caused by the HPC
with constant speed condenser fans and the specific configuration of the studied
chiller having two refrigeration circuits. Circuit 1 was simpler and equipped with one
compressor only. It was more complicated to control circuit 2 which was equipped
with two compressors and six condenser fans. Under HPC with constant speed
condenser fans, the condensing temperature could fluctuate considerably because the

heat rejection airflow varied in steps by staging pairs of condenser fans.
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When the condensing temperature exceeded the high condensing temperature setting,
one more group of condenser fans would be switched on to increase heat rejection
airflow, which enabled the condensing temperature to fall below the high setting.
Because water mist pre-cooling would reduce the temperature of entering condenser
air, the condensing temperature could fall below the high setting even if the number
of staged condenser fans remained unchanged. For certain conditions, when the
condensing temperature exceeded the high setting, both staging on more condenser
fans and operating water mist could enable the condensing temperature to drop
below the high setting, but the extent to which the condensing temperature could
drop depended on the working conditions. As shown in Figure 5.10, when the
ambient temperature varied from 31 to 33°C at part load ratios of 0.4-0.5, there was
no obvious condensing temperature difference by staging on one more group of
condenser fans and operating water mist, although the condensing temperature of
chiller with mist pre-cooling could be slightly higher than that of chiller staging on
more condenser fans without water mist when ambient DBT was 32°C and RH was

above 70%.

In the case without water mist, when one more group of condenser fans was cycled
on under some conditions, the heat rejection airflow provided by the constant speed
fans could exceed the airflow required to maintain the set point of condensing
temperature, and the reduction of the condensing temperature was more significant
than that due to the evaporative cooling effect of water mist when the number of
staged condenser fans remained unchanged. Hence the condensing temperature of the
chiller with water mist could be higher than that of the chiller without water mist
under HPC for certain conditions, as indicated by positive values of change of
refrigerant condensing temperature in Figure 5.11 when ambient temperature varied
from 27 to 30°C and chiller load ratios were close to one.
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It should be noted that the condensing temperature dropped significantly for the
chiller with water mist compared with the case without water mist, when the number
of staged condenser fans were the same in both cases. These figures reveal that the
condensing temperature of an air-cooled chiller with constant speed condenser fans
may decrease or increase due to water mist pre-cooling under HPC, and the RH has a
greater impact on the reduction of condensing temperature than the DBT of the
ambient air. Compressor power can be saved by decreasing the condensing

temperature, and the chiller performance is improved.
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Figure 5.10 Change in refrigerant condensing temperature (AT) due to water mist
pre-cooling at part load ratios of 0.4—0.5 (Circuit 2)
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Figure 5.11 Change in refrigerant condensing temperature (AT) due to water mist
pre-cooling at part load ratios of 0.9-1.0

5.3.2.3 Thermal Effectiveness

144



A suitable means of assessing the thermal performance of the water mist is the
thermal effectiveness (€), which is defined as a fraction of the maximum possible

cooling of the ambient air, and is given by the following equation:

g:M (5.5)
Tdb -T b

where T4y 1s the DBT of the ambient air, T4 is the DBT of entering condenser air,

and T, 1s the WBT of the ambient air.

The thermal effectiveness involves both the approach and the range condition, as
they are the two key determinants of energy performance. Range is the temperature
difference between the ambient air and the entering condenser air. The thermal

effectiveness can be expressed as Eq. (5.6).

Tdb_T

ecd

oo _ Range
c,-1,,)+T,,-T,) Range+ Approach

(5.6)

The 'Approach’ is a better indicator of water mist performance, which is an important
parameter in determining the capacity and optimizing the operation of the water mist
system. Figure 5.12 shows the impact of thermal effectiveness on the approach to
WBT for typical range temperatures at various operating conditions in this
experimental investigation. The thermal effectiveness could be as high as 0.91 when
the approach temperature was 0.5 K. For evaporative cooling, the ability to generate
cooling medium approaching the WBT of ambient air is crucial. A well designed
cooling tower can give an approach to WBT of 3 K. Costelloe et al. (Costelloe and
Finn 2007) reported that a low primary approach temperature varying from 0.5 to 2.0
K could be achieved. The approach to WBT for both water mist system and cooling
towers can be as low as 0.5 K, but the water mist system will give larger approach

temperature in many conditions due to the designed water mist generation rate.
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In this experiment, the water mist cooling could provide an approach to WBT as low
as 0.5 K, and 52.3% of the approach temperatures were less than 2 K as shown in
Figure 5.12. The thermal effectiveness of the water mist was higher than 0.6 for more
than half of the working conditions during the experimental period. It was found that
the thermal effectiveness could be lower than 0.4 due to the fact that the designed
mist generation rate was much smaller than the required peak mist generation rate. If
the water mist system was designed with larger water mist generation rate, there

would be more chances to achieve higher thermal effectiveness.

It was reported that the thermal effectiveness of a direct evaporative pre-cooler with
corrugated holed aluminum foil under the climatic conditions of Tianjin varied from
0.65 to 0.85 when the water sprinkling density increased from 0.2 to 1.2 Kg m™s™
(Zhang, You et al. 2000). The variation of the thermal effectiveness of water mist
and an evaporative pre-cooler indicates that the effectiveness of evaporative cooling
by both methods is greatly affected by the ambient air conditions, heat rejection
airflow, design of the water mist system, water sprinkling intensity and water mist

generation rate.

Range Temp. | ¢ 2~3 = 3~4  4~5 < 5~6 x 6~7 « 7~8

N
)
3
.

Approach temperature (K
ES

0

T T T T
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

Thermal effectiveness

Figure 5.12 Variation of approach temperature with thermal effectiveness

It should be noted that thermal effectiveness of the water mist system coupling to the

air-cooled chiller could be different with the same approach temperature, which was
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greatly affected by the range temperature as shown in Figure 5.12. With a certain
approach temperature, the thermal effectiveness would be higher with larger range
temperature. To achieve certain thermal effectiveness with a low approach

temperature, a relatively lower range temperature was required.
5.3.2.4 Chiller COP

The COP of the chiller operating with water mist pre-cooling was compared with the
COP of the chiller without water mist pre-cooling under similar working conditions,
and the chiller COP improvement resulting from the lower entering condenser air
temperature and hence lower condensing temperature could be identified. Figure
5.13 illustrates the percentage change of the chiller COP under different RH ranges
of ambient air at part load ratios of 0.4-0.5 and 0.9-1.0, relative to the base case
without water mist pre-cooling. A positive number means a chiller COP increase
while a negative number means a chiller COP reduction. It was observed that the
chiller COP with water mist was improved noticeably from the baseline for most
operating conditions, and could be improved in varying degrees by up to 18.6%
when the reduction in compressor power exceeded the additional power of high
pressure pump generating water mist. The chiller COP could be improved more
when RH was lower, as shown in Figure 5.13, because evaporation was dependent
on the RH of ambient air. With lower RH, evaporation process occurred more
intensively, and a greater temperature drop could be achieved. Therefore, the
improvement of chiller COP could be more significant for chillers operating in hot

and arid regions.

However, the chiller COP could decrease by 3.8% when the staged condenser fans
with water mist were more than that without water mist pre-cooling due to the

traditional HPC. This indicated that water mist pre-cooling had both positive and
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negative effects on chillers operating under HPC. The casual drop of the chiller COP
was due to HPC and the extra pump power generating water mist. For the air-cooled
chillers with constant speed condenser fans, the condenser fans would be cycled on
and off with reference to a high and a low condensing temperature settings under
HPC. For certain operating conditions, due to the pre-cooling effect, more groups of
condenser fans would be staged without water mist to let the condensing temperature
drop below the high setting than that operating with water mist. With more
condenser fans, the reduction of the condensing temperature could be more
significant than that due to the evaporative cooling effect of water mist when the
number of staged condenser fans remained unchanged. Under such conditions, the
compressor power without mist pre-cooling was less than that with water mist pre-
cooling, and hence the chiller COP without water mist could be higher than that with
water mist pre-cooling, as shown in Figure 5.13 when ambient temperature varied
from 27 to 30°C at part load ratios of 0.9-1.0. To make maximum advantage of the
water mist pre-cooling, it is undesirable to operate the air-cooled chiller under HPC,
and HPC should be replaced by variable condensing temperature control (CTC),
whereby the condensing temperature can approach its lower boundary via staging all
condenser fans in most operating conditions. Under CTC, the sum of compressor
power and condenser fan power can be minimized by staging condenser fans with
optimal number or speed for all operating conditions. Variable speed control for
condenser fans is another complement to water mist pre-cooling, which is superior to
cycling constant speed condenser fans in steps, with regard to the controllability of
condensing temperature. When the variable condensing temperature control and
variable speed condenser fans are applied to air cooled screw chillers, the COP could

increase by 4.0-127.5% (Yu and Chan 2006b). When the water mist system is
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coupled to the air-cooled chillers with variable speed condenser fans and CTC, the

chiller COP will be improved further.

Zhang et al. (2000) investigated the evaporative precooler filled with corrugated
holed aluminum foil and reported that COP of the chiller could be improved by
14.7% under the climatic conditions of Tianjin. Hajidavalloo (Hajidavalloo and
Eghtedari 2010) studied the effect of incorporating evaporative cooler in the
window-air-conditioner by injecting water on the media pad installed in both sides of
the air conditioner in very hot regions of about 50°C, and reported that the power
consumption decreased by about 16% and the COP increased by about 55%.
According to a reported simulation study (Yu and Chan 2009), the use of water mist
pre-cooling enabled an increase of chiller COP in various degrees up to 7.7%, but it
could drop from the baseline by up to 1.3% for an air-cooled screw chiller operating
under HPC in subtropical regions. Compared with these studies on evaporative
cooling, both the evaporative cooler device and the water mist system could improve
the COP of air-cooled chillers, but the improvement of the chiller efficiency
depended on the ambient air conditions, size of the evporative pre-cooler, design of
the water mist system, layout of the mist nozzles, chiller load ratios and control

strategies of the chillers.

The strategy to operate the water mist system is vital. It was suggested to operate the
water mist system only when DBT was greater than 28°C and RH was less than 75%.
Under this criteria, the chiller efficiency could be improved, but many operating
hours were screened out. As shown in Figure 5.13, the water mist system worked
effectively even when the chiller operated beyond the above criteria so as to
maximize its energy saving potential. At RH of 80-90% and part load ratios of 0.9-

1.0, the chiller COP could be improved by 6.6% and 9.8% when the chiller operated
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at ambient temperatures of 24°C and 32°C, respectively. The criteria for operating
air-cooled chillers with water mist system for optimal efficiency have to be
investigated further with more experiments conducted at various combinations of

PLR, weather parameters, water mist generation rates and droplet sizes.
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Figure 5.13 Chiller COP percentage change at various conditions due to water mist
pre-cooling

5.3.2.5 Water consumption

The designed flow rate of each nozzle was 1.25x107 1/s when the high pressure
pumps operated to deliver water through the tubing at a high pressure of 70 bars. The
water mist system was designed to provide a total water mist generation rate of 0.073
/s for the studied air-cooled screw chiller. For water-cooled chillers, the total water
losses from cooling tower are the sum of drift losses, evaporation losses and blow
down losses. According to Standard 550/590 (ARI 2003), the total water losses can
be calculated based on an assumption that the water losses accounts for 1.5% of the
cooling water flow rate, which is designed at 0.054 1/s per kW cooling capacity. For
the water-cooled chiller with same cooling capacity as the studied air-cooled chiller,
whose capacity is 708 kW, the designed cooling water flow rate is 38.2 1/s and the

expected water loss is 0.57 I/s. Comparatively, the water consumption rate of the
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water mist system is much smaller, and is about 9.5% of the water losses for an

open-loop cooling tower serving a water-cooled chiller with same cooling capacity.

The advantages of applying water mist pre-cooling have been investigated for air-
cooled chillers operating in a subtropical climate. As WBD is associated with the
maximum possible lowering of air temperature, it is expected that energy savings
from this technology are more significant when WBD of ambient air is higher during
the cooling season. As the water mist system consumes less than 10% of the water
losses required by an open-loop cooling tower system, this technology of water mist
pre-cooling is beneficial for wide application, especially for cities challenged by
shortage of water. It occupies an intermediate position between air-cooled chillers
and water-cooled chillers, and is particularly applicable in a hot and arid environment

where water is scarce and the WBD is significant.

In the condenser air stream, the water mist generated may not fully evaporate before
entering the condenser coil, and the unevaporized or excessive mist may cause
damping of the condenser fins and coil. On the other hand, any presence of water
mist in the air stream passing through the condenser coil may provide further
evaporation and reject more heat from the refrigerant. This is an unknown process

which deserves further research.
5.4 Integrated chiller model with water mist
5.4.1 Water mist system model

To improve the chiller performance, a water mist system is coupled to the air-cooled
condensers. When water mist is sprayed into the air stream entering the condenser,
the air temperature will drop due to the evaporative cooling effect, and the RH and
the humidity ratio of the air will increase, approaching saturation. At a given DBT

and RH of the ambient air, the addition of moisture in the air sream due to water mist
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spray is determined by Eq. (5.7). The humidity ratio of the ambient air is expressed

as Eq. (5.8), then the humidity ratio of air at the inlet of condenser is computed by Eq.

(5.9).
OW = mmis/(Va pa) (5.7)
W =0.622P_/(P—P.) (5.8)
W= W+ §W (5.9)

where W in kg/(kg dry air) is the air humidity ratio, 6/ is the additon of humidity
ratio of the air in kg/(kg dry air), P is the total barometric pressure of the moist air in

Pa, and Py is the saturation pressure of water vapor in Pa.

The saturation pressure of water vapor in relation to the temperature is given by

(ASHRAE 2009)
InP,s = C/T+ Cy+ C3T+ C4T> + CsT> + Cg InT (5.10)
where T is absolute temperature, K, and C,, C,, Cs, C4, Cs, and Cs are coefficients.

C = —5.800x10°

¢, =1.391

C3 = —4.864x107

C4=4.176x107

Cs=—1.445x10"

Cs = 6.546

The specific enthalpy of the moist air in kJ/(kg dry air) is

h=1.006¢ + W (2501 + 1.86%) (5.11)

where 7 is the DBT of outdoor air in °C.
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As the evaporation of water mist into the air is adiabatic, the specific enthalpy of the
moist air is constant, and the temperature of entering condenser air (7cgae) 1S

calculated as follow:
Tedae = (h - 2501 W)/(1.006+1.86 W) (5.12)

The relative humidity ¢ is a function of degree of saturation (n) as follow:
¢=ul(l-(1-pu)(P,/P)) (5.13)

where P, is the partial pressure of water vapor in the moist air at the given

temperature 7gae.

Degree of saturation p is the ratio of the humidity ratio /¥ of moist air to the humidity

ratio W; of saturated moist air at same temperature and pressure:

p=wiw|, (5.14)

Before calculating the relative humidity ¢ of the air at the inlet of the condenser coil,
the air humidity ratio W and the humidity ratio W, of saturated air have to be
calculated. The air humidity ratio W at the temperature of the air entering the
condenser (7.4qe) 1s determined by Eq. (5.15) (ASHRAE 2009). The humidity ratio
W of saturated air at the temperature of 7.4, is computed using Egs. (5.8) and (5.10)

based on the temperature 7ge.

y _ (2501-2.326T,,)T,

vb

2501+1.867,

cdae

~1.006(T.,. ~T.,)
—4.186T,,

(5.15)

When the calculated humidity ratio W is greater than the maximum allowable
humidity ratio at the saturation state or the calculated relative humidity ¢ is greater
than 1 or equal to 1, the air at the inlet of condenser becomes saturated and Tcgse 18

equal to WBT (7). Under such conditions, the generation rate of the water mist
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system is more than that needed, and the surplus water mist droplets will fall down to

the ground or be carried to the condenser coil.

Figure 5.14 shows the procedure for computing the thermal properties of entering

condenser air for the air-cooled chiller with water mist pre-cooling.

A

:Tcdae

| Tcdaep:T wb, RH=1 |

Abs((Tcdaep'Tcdae)/ Tcdae)<0- 0

Y
Tcdal

Figure 5.14 Flow chart of the water mist model

5.4.2 Integrated chiller model

Referring to Eq. (5.7), the increase of the air humidity ratio and the resulting air
temperature 7.4, at the condenser inlet are related to the airflow rate passing through
the condenser coil. To evaluate the chiller performance, the water mist model shown

in Figure 5.14 was incorporated into the chiller model developed in Chapter 4 and
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solved through an iterative procedure, as illustrated in Figure 5.15 for the chiller
model with water mist and constant speed condenser fans under HPC. The integrated
chiller model was programmed in Fortran 90, and the simulated system was
constructed based on the transient simulation program TRNSYS. The programme
started with the model initialization using the input data. For the air-cooled chiller
with twin refrigeration circuits, the cooling load of the chiller could be shared within
the refrigeration circuits randomly. The scheme for load sharing between the
refrigeration circuits was specified first, and then one refrigeration circuit or both
refrigeration circuits would be staged according to the total cooling load. Then, the
evaporating temperature and pressure of circuits 1 and 2 (7ey1, Tev2, Pevi and Peyz) and
the cooling loads of the three heat exchange sections of the evaporator (Q;;, Q01> and
Q) were calculated through an iterative procedure by assuming an initial value of
0O11. Once the model had determined the evaporating temperature and pressure of
circuits 1 and 2, it evaluated the other operating variables of each refrigeration circuit.
As the condensing temperature interacted between the compressor and condenser
components, an iterative procedure was implemented to solve the operating variables
of the two components simultaneously. To control the condensing temperature, there
was another iterative loop for computing the number of staged condensing fans. The
number of staged condenser fans and the corresponding airflow were determined

according to the set point of condensing temperature.

The iterative procedures to estimate the heat rejection, the operating variables and the
cooling load in both refrigerant circuits of the chiller were similar. The convergence
criterion for computing condensing temperature and evaporating temperature in this
model was 0.01°C. When a converged solution was obtained, all the variables of the

model would be computed with the required accuracy.
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Figure 5.15 Flow chart of the chiller model with water mist and CSF under HPC
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5.4.3 Validation of the integrated chiller model

An essential step prior to drawing conclusions from a model was to verify the model.
To verify the effectiveness of the developed modeling technique, the performance of
the model was evaluated by comparing the modeled results with the operating data of
the chiller system. The measured data collected for validating the chiller model came
from the chiller operating data under HPC. According to the scheme of load sharing
between the two refrigeration circuits, the chiller model was simulated and the
simulation results were compared with the corresponding experimental data. Figure
5.16 illustrates the comparison between the modeled and measured chiller COP.
There were two lines in the figure giving the boundary of £10% deviation from the
ideal case. For over 86% of the data, the uncertainty (the difference between the
modeled value and the experimental value) of chiller COP was less than 10%. With
regard to the uncertainty of DBT of the entering condenser air, the uncertainty for
more than 85% of the data was less than 5% as shown in Figure 5.17 (a), and the
uncertainty for all the data was less than 10%. For the RH of the entering condenser
air, more than 93% of the data lied within an error band of +10% as shown in Figure

5.17 (b). The simulation results, therefore, were considered to be satisfactory.
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Figure 5.16 Comparison between the modeled and measured chiller COP
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Figure 5.17 Comparison between the modeled and measured DBT and RH of
entering condenser air

Drawing on the integrated chiller model, the validated chiller model was used to
investigate how the individual and mixed condenser features of CTC and water mist
pre-cooling influenced the chiller performance with respect to prevailing range of
operating conditions. Each operating condition referred to a combination of chiller
part load ratios (from 0.125 to 1 at 0.0625 intervals), dry bulb temperatures (Tq, from
15 to 35°C at 5°C intervals) and relative humidity levels (RH from 40% to 90% at

10% intervals).

However, the experimentally investigated chiller with water mist was not a standard
chiller, which included one compressor in refrigeration circuit 1 and two
compressors in refrigeration circuit 2. For generality, the studied chiller should be
more representative. The studied chiller shown in Figure 4.6 was more representative,
as it comprised of two identical refrigeration circuits and each refrigeration circuit
contain two identical compressors. In fact, water mist system was installed for the
studied chiller reported in Chapter 4. However, the operating data for the water mist
system of such chillers failed to be monitored due to the BMS system error.
Fortunately, the operating data of the chillers before water mist installation was
recorded and could be used to analyze the chiller performance without water mist

pre-cooling, as described in Chapter 4.
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As the water mist model developed had been validated satisfactorily, the water mist
model could be incorporated to the chiller models developed in Chapter 4, and then
the integrated model for the generic chiller with water mist was used to investigate
the advanced control of condensing temperature (e.g. CTC) and alternative
condenser designs using variable speed fans and water mist pre-cooling. To highlight
the effect of water mist, the conventional refrigeration circuit sequence control was
implemented in this paper, under which only circuit 1 was staged when the chiller
load was less than half of the rated chiller capacity, and two circuits operated evenly

when the chiller load was great than half of the rated chiller capacity.
5.5 Performance of the chiller with HPC and mist pre-cooling

Three operating schemes (CS1 to CS3) were considered. CS1 referred to the
conventional HPC without water mist pre-cooling, which served as the baseline.
Schemes CS2 and CS3 referred to different strategies for the air-cooled chiller: CS2
was HPC with designed water mist generation rate; CS3 was HPC with optimal
water mist generation rate. A straightforward strategy to operate the water mist
system was applied by interlocking the operation of the high pressure water pumps
and the chillers for schemes CS2 and CS3. The pre-cooling effect produced by the
water mist system is best when the DBT of ambient air approaches to WBT due to
evaporation of water. Therefore, the optimal generation rate of water mist should
vary in response to the working conditions to bring the DBT down to the WBT and

no surplus water mist is generated.

Under the optimal water mist control, all the potential penalties associated with
incomplete evaporation of mist were eliminated. To evaluate the optimal mist
generation rate under HPC or CTC, the model first examined whether the RH of the

entering condenser air pre-cooled by the designed water mist rate was greater than
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one. If this was the case, the water mist generation rate reduced step by step to avoid
surplus water mist. If the RH of the entering condenser air after mist pre-cooling was
less than one, the water mist generation rate increased step by step to allow the pre-
cooled dry bulb temperature to approach to the wet bulb temperature. Figure 5.18
illustrates the procedure for evaluating the optimal mist generation rate under HPC or

CTC.

Tcdae:wa
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Figure 5.18 Procedure for evaluating optimal water mist generation rate

Figure 5.19 illustrates the part load performance curves for the chiller without water
mist pre-cooling for the operating scheme CS1. The curves show how the chiller
COP varies with different PLRs at outdoor temperature ranging from 15 to 35°C.
Under HPC with constant speed condenser fans, the chiller COP fluctuated

considerably because the heat rejection airflow varied by staging groups of
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condenser fans step by step. Following the sequencing of the two refrigerant circuits
and the compressors in each refrigeration circuit, the chiller COP dropped
considerably when one more compressor or refrigeration circuit was staged due to
the poor compressor efficiency at low part load ratios. It also revealed that the
outdoor temperature greatly affected the chiller performance, and the chiller COP
tended to be higher with lower outdoor temperature, which reinforced the need of

water mist pre-cooling.
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Figure 5.19 Chiller performance curves for scheme CS1
5.5.1 Thermal properties of air entering the condenser

Figure 5.20 shows the temperature change of the entering condenser air due to water
mist evaporative cooling. As the two refrigeration circuits were identical, the thermal
properties of air entering the condenser of refrigeration circuit 1 were analyzed. The
temperature of the entering condenser air under scheme CS2 could drop by up to
6.5°C when only two condenser fans were staged with the designed water mist

generation rate.

It was observed that the wet bulb depression (WBD) of ambient air had great
influence on the cooling effect of the water mist system, and the temperature of the

entering condenser air could drop more with greater WBD. In particular, when the
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condenser airflow rate was low and WBD was less than 6.5°C, the temperature drop
of the entering condenser air was linear with the WBD for scheme CS2. It should be
noted that the temperature change of air entering the condenser was not only
dependent on the WBD, but also on the condenser airflow rate, DBT and the water
mist generation rate. As shown in Figure 5.20, the temperature drop of the entering
condenser air tended to be smaller when more condenser fans were staged. Under
such conditions, the airflow rate was larger, but the designed water mist generation
rate was insufficient to bring the DBT of the entering condenser air to approach the

WBT, hence the temperature drop was smaller.

With optimal water mist generation rate for scheme CS3, the DBT of the entering
condenser air approached to the WBT under all working conditions, taking
maximum advantage of the WBD. For scheme CS3, the temperature drop of the

entering condenser air could be up to 8.8°C when outdoor RH was 50%.

Number of operating condenser fans |¢2 A4 816

0.0

o 2 4 6 8 10 2
T -1.0 *
= 3
q
gg % a a a a a
qc) 2.0 £ 3
g Py
g 3
o *
“63‘0 % 4 A as aaAs aa N N
® S
D
g 40 .
S -
(0]
ERU s
*
g *
£ -60
S e%e o0 o . .

-7.0

Wet bulb depression ("C)

Figure 5.20 Temperature change of air entering the condenser for scheme CS2
5.5.2 Condensing temperature

For any given cooling capacity, the condensing temperature depends on the chiller

load, heat rejection airflow and ambient air temperature. Owing to the evaporative
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cooling effect of the water mist, the temperature of entering condenser air drops, and

the condensing temperature of the chiller changes accordingly.

Figures 5.21 and 5.22 demonstrate the change of the condensing temperature under
schemes CS2 and CS3 compared with that under scheme CSI1, respectively. The
positive numbers represent a condensing temperature increase while the negative
numbers represent a condensing temperature drop. The condensing temperature
could drop by up to 7.8°C when RH was 50% under scheme CS2. With optimal
water mist generation rate, the condensing temperature could drop further, by up to
9.5°C when RH was 50% under scheme CS3. However, Figures 5.21 and 5.22 also
indicated that the condensing temperature would casually increase for certain
conditions up to 9.7°C. The increase of the condensing temperature was caused by
the HPC with constant speed condenser fans. For the air-cooled chiller operating
under HPC with constant speed fans, the condenser fans was staged group by group
to meet the required heat rejection airflow, and the heat rejection airflow varied step
by step, which resulted in fluctuation of the condensing temperature. The condenser
fans would be cycled on and off with reference to a high and a low condensing

temperature settings under HPC.

When the condensing temperature exceeded the high condensing temperature setting,
one more group of condenser fans would be switched on to increase heat rejection
airflow, which enabled the condensing temperature to fall below the high setting.
Because water mist pre-cooling reduced the temperature of the entering condenser air,
the condensing temperature would fall below the high setting even if the number of

staged condenser fans remained unchanged.

For certain conditions, when the condensing temperature exceeded the high setting,

both staging on more condenser fans and operating water mist caused the condensing
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temperature to drop below the high setting, but the extent to which the condensing
temperature could drop depended on the working conditions. In the case without
water mist, when one more group of condenser fans was cycled on, the heat rejection
airflow provided by the constant speed fans might exceed the airflow required to
maintain the set point of condensing temperature, and the reduction of the
condensing temperature was more significant than that due to the evaporative cooling
effect of water mist when the number of staged condenser fans remained unchanged.
Hence the condensing temperature of the chiller with water mist could sometimes be

higher than that of the chiller without water mist under HPC.

From Figures 5.21 and 5.22, it was also observed that the extent of the condensing
temperature drop was constrained by the temperature of entering condenser air. With

lower relative humidity, the condensing temperature could drop more.
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Figure 5.21 Condensing temperature change for scheme CS2
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Figure 5.22 Condensing temperature change for scheme CS3
5.5.3 Chiller COP

Water mist pre-cooling enabled a reduction of temperature of air entering condensers,
and improved the chiller performance differently under various operating schemes.
The potential benefits of each condenser feature were identified by a comparison on
how the system COP varied under different operating schemes in relation to the
baseline. A positive percentage meant a chiller COP increase while a negative

percentage meant a chiller COP drop.

Figures 5.23 and 5.24 show the percentage change of COP of schemes CS2 and CS3
from the baseline under head pressure control, respectively. Chiller COP could
increase or decrease relative to the baseline depending on the working conditions
under HPC. When the chiller operated under HPC with designed water mist
generation rate, the chiller COP would increase in varying degrees by up to 21.3%

and 9.8% when the RH was 50% and 80%, respectively. With optimal water mist
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generation rate, the chiller COP under HPC would increase in varying degrees by up
to 25.8% and 10.9% when the RH was 50% and 80%, respectively. In such
conditions, the additional power of high pressure pump generating water mist was
insignificant comparing to the reduction in compressor power due to the drop of the
entering condenser air temperature. These results revealed that there existed great
potential to improve the chiller efficiency by coupling water mist system with air-
cooled chillers, and the chiller performance could be improved more with optimal

mist generation rate.

In contrary to the general trend of improved efficiency in schemes CS2 and CS3,
there were casual occurrences of decreased chiller COP due to unfavourable fan
staging under HPC and extra pump power consumed for generating water mist. The
studied chiller was equipped with 8 pairs of constant speed fans which were staged
by pair with reference to a high and a low condensing temperature settings under
HPC. For certain operating conditions without water mist, more groups of condenser
fans would be staged to drive the condensing temperature below the high setting than
that operating with water mist. With more condenser fans, the reduction of the
condensing temperature could be more significant than that due to the evaporative
cooling effect of water mist but less staged fans. Under such conditions, the
compressor power without mist pre-cooling was less than that with water mist pre-
cooling, and hence the chiller COP without water mist could be higher than that with
water mist pre-cooling. This indicated that HPC was energy inefficient, and it was

undesirable to operate the chiller with water mist under HPC.

The impact of the ambient air RH on the improvement of chiller COP was revealed
in Figures 5.23 and 5.24, indicating that the water mist system worked more

effectively at lower levels of RH. The chiller COP increased more noticeably at
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higher outdoor temperature and lower RH, as the water mist evaporated effectively to
bring the DBT of the entering condenser air to approach the WBT. This, in turn,
lowered the compressor power considerably. This indicates that water mist pre-

cooling is especially suitable for dry and hot regions.

From Figures 5.23 and 5.24, it could be found that the chiller COP could be
improved for most operating conditions, and the water mist system worked
effectively at lower levels of relative humidity. Therefore, operating the water mist
system was an efficient way to improve the COP of the air-cooled chiller. However,
it was undesirable to operate the chiller with water mist under HPC, as the energy
saving potential of mist pre-cooling could not be fully utilized of under HPC.
Variable speed condenser fans and CTC are favorable complements to water mist

pre-cooling.
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Figure 5.23 Chiller COP change for scheme CS2
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Figure 5.24 Chiller COP change for scheme CS3
5.6 Effect of mist pre-cooling on the chiller with variable speed condenser fans

Variable speed control for condenser fans (VSF) is superior to cycling constant speed
condenser fans in steps, with regard to the controllability of condensing temperature.
The power of the condenser fans can drop considerably at lower speed while
producing the required heat rejection airflow at part load operation. The use of VSF
has a significant influence on the trade-off between compressor power and fan power
and hence the chiller COP, and it is worth considering how the use of variable speed
condenser fans can improve the COP of air-cooled chillers with water mist operating
in various outdoor temperatures and load conditions. To implement variable speed
control, the current configuration of condenser fans should be changed (Yu and Chan
2006b). Given that the chiller studied had two refrigeration circuits, a new condenser
fan arrangement within the chiller model was proposed, under which eight groups of

constant speed condenser fans were replaced by two variable speed fans, and each of
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the variable speed fans consumed a rated power of 19.2 kW and provided a rated
airflow of 42.76 m’/s at the full speed of 15.8 rps. It was assumed that the variable
speed drive consumed 3% of the total power of the staged condenser fans at all
speeds. An algorithm to compute the speed of condenser fans staged to meet any

given heat-rejection based on a set point of condensing temperature was considered.

Three operating schemes (VS1 to VS3) were considered for the chiller with variable
speed condenser fans. VS1 referred to the conventional HPC without VSF and water
mist pre-cooling, which served as the baseline. Schemes VS2 and VS3 referred to
different strategies for the air-cooled chiller: VS2 was HPC with VSF and designed
water mist generation rate; VS3 was HPC with VSF and optimal water mist
generation rate. A straightforward strategy to operate the water mist system was
applied by interlocking the operation of the high pressure water pumps and the

chillers for schemes VS2 and VS3.

The variation of the COP under various PLRs and ambient DBT was shown in
Figure 5.25 when the chiller operated with variable speed fans without water mist
pre-cooling. This figure clearly demonstrated that the chiller COP varied with the

staging of refrigeration circuits and the compressors in each refrigeration circuit.
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Figure 5.25 Chiller performance curves for scheme VSI
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5.6.1 Thermal properties of air entering the condenser

With designed water mist generation rate, Figure 5.26 shows the temperature change
of the entering condenser air due to water mist evaporative cooling. The temperature
of the entering condenser air under scheme VS2 could drop by up to 8.0°C when the
rotating speed of the staged condenser fans was smaller than 2.0 Hz with the

designed water mist generation rate.

As shown in Figure 5.26, the wet bulb depression (WBD) of ambient air had great
influence on the cooling effect of the water mist system, and the temperature of the
entering condenser air could drop more with greater WBD. It should be noted that
the temperature change of air entering the condenser was not only dependent on the
WBD, but also on the condenser airflow rate, DBT and the water mist generation rate.
When the rotating speed of the staged condenser fans (R.f) was smaller than 2.0 Hz,
the temperature drop of the entering condenser air was linear with the WBD for
scheme VS2. As shown in Figure 5.26, the temperature drop of the entering
condenser air tended to be smaller when rotating speed of the staged condenser fans
was larger. Under such conditions, the airflow rate was larger, but the designed water
mist generation rate was insufficient to bring the DBT of the entering condenser air

to approach the WBT, hence the temperature drop was smaller.

With optimal water mist generation rate for scheme VFS3, the DBT of the entering
condenser air approached to the WBT under all working conditions, taking
maximum advantage of the WBD. For scheme VS3, the temperature drop of the

entering condenser air could be up to 8.8°C when outdoor RH was 50%.
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Figure 5.26 Temperature change of air entering the condenser for scheme VS2
5.6.2 Condensing temperature

It was worth investigating how the water mist affected the performance of the chiller
with variable speed fans. Figures 5.27 and 5.28 illustrate the change of the
condensing temperature under schemes VS2 and VS3 compared with that under
scheme VSI1, respectively. The condensing temperature dropped in relation to VS1
for all operating conditions, and it could drop more when the outdoor DBT was
higher. The condensing temperature drop was less than 0.2°C when the outdoor DBT
was less than 35°C for scheme VS2. When the outdoor DBT was 35°C, the
condensing temperature could drop by up to 1.9°C, which was much smaller than
that of the chiller equipped with constant speed fans. As shown in Figure 5.28 for
scheme VS3, the condensing temperature drop was less than 0.5°C when the outdoor
DBT was less than 35°C. When the outdoor DBT was 35°C, the condensing
temperature could drop by varying degrees up to 5.1°C, which was much smaller

than that of the chiller equipped with constant speed fans.

As the variable speed condenser fans allowed the heat rejection airflow to be
regulated smoothly, the condensing temperature could be controlled around the set
point of condensing temperature closely. When the chiller operated without water

mist pre-cooling and the outdoor dry bulb temperature was 35°C, the variable speed
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fans operated at their full speed to prevent the condensing temperature to exceed the
high setting, but the condensing temperature was slightly above the set point (say,
45°C). As there was a dead band for the condensing temperature, under which the
high setting was 52°C and the low setting was 42°C. With evaporative cooling effect,
the temperature of entering condenser air decreased, and the condenser fans could
operate with lower fan speed to provide the required heat rejection airflow to control

the condensing temperature to the set point.

The condensing temperature change was affected by the rotating speed of the
condenser fans. Figures 5.29 and 5.30 show the fan speed change due to the water
mist pre-cooling, which varied with the same pattern as the condensing temperature.
With higher outdoor dry bulb temperature, the rotating speed of the condenser fans

reduced noticeable, especially when outdoor DBT was 35°C.
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Figure 5.30 Fan speed change for scheme VS3

5.6.3 Chiller COP

With the decreased rotating speed of the condenser fans, the condenser fan power

was reduced significantly. For the operating scheme VS2 with designed water mist

generation rate, the percentage change of COP from the baseline under HPC was

illustrated in Figure 5.31, which increased up to 5.7%. With optimal water mist

generation for VS3 as shown in Figure 5.32, the chiller COP increased more up to

23.0% and 10.9% when outdoor RH was 50% and 80%, respectively. However, the

chiller COP could slightly decrease in certain working conditions. The casual COP

decrease resulted from the additional power for the high pressure pumps generating

water mist and the variable speed drive, which consumed 3% of the total power of

the staged condenser fans at all speeds.
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5.7 Improved chiller COP with CTC and water mist

As HPC is regarded as energy inefficient, variable condensing temperature control
(CTC) i1s proposed as an alternative to HPC to lower the condensing temperature in
response to changes of the ambient and load conditions, whereby compressor power
can decrease considerably by allowing the condensing temperature to approach its

lower boundary.
5.7.1 Optimal set point of condensing temperature

It has been confirmed that the use of HPC with a high set point of condensing
temperature leads to a decline in chiller COP especially under partial load conditions.
The use of combination of variable speed condenser fans (VSF), water mist and CTC,
is a feasible means to improve the chiller COP. It is worth ascertaining the optimal
set points of condensing temperature to achieve maximum chiller COP for all

operating conditions.

A logical argument was included in the algorithm of controlling condenser fans when
the condenser was designed with an water mist system and variable speed fans,
which was to determine the optimal set point of condensing temperature (Zcqsp,op) for
maximum chiller COP. For any given chiller part load ratio, it was possible to
identify the Teqspop by checking the variation in chiller COP throughout the T4
range. For each operating condition, this argument checked the difference in chiller
COP when T, increased in steps of 0.05°C from its lower level of 20°C or (T¢gae +
5) °C, whichever was higher. The lower boundary was intended for ensuring proper
oil viscosity for compressor lubrication (Yu, Chan et al. 2006) and the upper
boundary was based on HPC. The high T4y was 45°C which was normally used
under HPC (Yu and Chan 2006b). These steps were small enough to trace the change

of COP so as to identify Tcqsp,op along with the maximum chiller COP.
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Figure 5.33 illustrated how the optimum 7.4, varied under different operating
conditions for the air-cooled chiller with constant speed fans and designed water mist
generation rate, at different combinations of outdoor dry bulb and wet bulb
temperatures. It should be noted that there could be more than one set point of
condensing temperature at which the local maximum COP occurred for each
operating condition. This was due to the change in the number of staged condenser
fans across the range of set point of condensing temperature. In Figure 5.33, just one
of the set points of condensing temperature was presented at which the maximum
COP was achieved for specific working condition. Figure 5.34 illustrated the
variation of the temperature difference between one of the optimal set points of
condensing temperature and the outdoor wet bulb temperature. The wet bulb
temperature of outdoor air was generally considered as one of the parameters to
specify the heat rejection capacity of condensers with evaporative cooling. As shown
in Figures 5.33 and 5.34, there was no regular trend for the optimal set point(s) of
condensing temperature for the chiller with constant speed fans and water mist,
which fluctuated widely with chiller part load ratios and wet-bulb temperature under
various operating conditions. For certain operating conditions, the optimal set point
of condensing temperature increased closely with the part load ratios, as shown in

Figure 5.33 (c) when the outdoor temperature was 30°C.
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When the water mist system generated designed or optimal water mist generation
rate, as shown in Figures 5.35 and 5.36, respectively, the optimal set point of
condensing temperature (7.4spop) Increased closely with the chiller part load ratio if
the chiller operated with variable speed condenser fans. It should be noted that
Teaspop varied with the staging of the refrigeration circuit for specific outdoor
condition. The optimal set point of the condensing temperature tended to increase
with the wet bulb temperature regardless of designed water mist rate or optimal water
mist rate. As shown in Figure 5.35, the optimal set point of condensing temperature
with designed water mist rate could be nearly described with one curve for a certain
outdoor dry-bulb temperature regardless of the outdoor wet-bulb temperature.
However, the optimal set point of condensing temperature with optimal water mist
rate should be described with one set of curves for an outdoor dry-bulb temperature
with different wet bulb temperature, as shown in Figure 5.36. The reason for that was
due to the designed water mist generation rate, which was less than the required mist
rate to let the dry bulb temperature to approach to the wet bulb temperature for most
of the operating conditions, and there was no great difference on the temperature
drop of entering condenser air. With optimal water mist generation rate, the
temperature of the entering condenser air approached to the wet bulb temperature,
and the temperature reduction would be considerable at a given dry bulb temperature
with different wet bulb temperature, which resulted in noticeable change of the

optimal set point of condensing temperature.
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Figures 5.37 and 5.38 illustrated that the temperature difference between the optimal
set point of condensing temperature and the outdoor wet bulb temperature tended to
increase linearly with chiller part load ratios and varied following the sequence of the
refrigeration circuit, regardless of the chiller operating with designed or optimal
water mist generation rate, which indicated that 7¢qp should be determined based
on the outdoor wet bulb temperature and the chiller part load ratio rather than on the
outdoor wet-bulb temperature alone. To implement CTC, the reset strategy for set
point of condensing temperature supposed by Briley (2003) was that the set point of
condensing temperature should be fixed at 5°C, or somewhere between 3 and 8°C,
above the wet bulb temperature of outdoor air. This strategy was straightforward, but
the optimal set point of condensing temperature might not be obtained. For
maximum COP, the optimum set point of condensing temperature should be
expressed as a function of outdoor wet bulb temperature and chiller PLR, as
described in Eq. (5.16). It should be noted that the optimal set point of condensing

temperature varied with the staging of the refrigeration circuit(s).
Tcdsp,op:f(PLRa Tiw) (5.16)

It should be noted that the optimal set points of condensing temperature for various
operating conditions were specific to a particular condenser design. When condenser
fans were of the high static type requiring larger power, higher optimum set points of
condensing temperature might be required to minimize the sum of compressor power
and condenser fan power. The optimum set point should be calibrated against the
designed difference between the condensing temperature and outdoor wet bulb

temperature for an air-cooled condenser with water mist.
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5.7.2 Improved chiller COP with enhanced condenser features

After identifying the optimum set point of condensing temperature, it appeared worth
assessing the potential improvements in chiller COP when the optimum set point,
variable speed condenser fans and water mist pre-cooling were applied to the
existing air-cooled screw chillers. The validated model was sophisticated enough to
assess how the different condenser features (CTC, CSF, VSF, WM and their
combinations) would influence the steady-state behaviour of chiller COP at various

combinations of chiller loads and outdoor temperatures.

There is a lack of economic analysis to support the implementation of the condenser
features of CTC, VSF and WM. This section focuses on evaluating the economic
benefits of air-cooled chillers with the individual and mixed condenser features,

including 12 cases. The detailed information about the cases was given in Table 5.2.

Table 5.2 Case study of individual and mixed condenser features

Case Description

HPC (base case)  Head pressure control with constant speed condenser fans
HPC+VSF HPC and the use of variable speed condenser fans
HPC+CSF+WM1 HPC with designed water mist generation rate
HPC+CSF+WM2 HPC with optimal water mist generation rate

HPC and the use of variable speed condenser fans with designed water

HPC+VSF+WM1 . .
mist generation rate

HPC and the use of variable speed condenser fans with optimal water

HPC+VSF+WM2 . .

mist generation rate
CTC+CSF Condensing temperature control with constant speed condenser fans
CTC+VSF CTC and the use of variable speed condenser fans

CTC+CSF+WM1 CTC with designed water mist generation rate
CTC+CSF+WM2 CTC with optimal water mist generation rate

CTC and the use of variable speed condenser fans with designed water

CTC+VSF+WM1 . .
mist generation rate

CTC and the use of variable speed condenser fans with optimal water

CTC+VSF+WM2 . .
mist generation rate
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The part load performance curves of the model chiller operating under HPC without
water mist pre-cooling were given in Figure 5.19. Based on the models, performance
curves of the chiller with various condenser features were established, as shown in
Figure 5.39. When the water mist system was applied, the chiller performance varied
with different RH levels at certain outdoor dry bulb temperature, and 50% relative
humidity level was considered to show the variation of the COP curves under various
operating conditions. These COP curves clearly demonstrated the variation of chiller
COP following the sequence of refrigeration circuits in the studied chiller. With HPC
and CSF, the chiller COP fluctuated regardless of with water mist or without water
mist pre-cooling. With VSF or CTC, the chiller COP varied regularly with the part
load ratios following the staging of refrigeration circuits and the compressors in each

refrigeration circuit.
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Figure 5.39 COP curves of the chiller with different control strategies

The potential benefits of each condenser feature in relation to the baseline could be

identified by a comparison on how the system COP varied under different control

schemes. CTC, WM and VSF had different effects on the increase or decrease in the

power components and the chiller COP.

Figures 5.40 and 5.41, for outdoor air RH of 50% and 80%, respectively,

demonstrated the benefits of each condenser feature described by the percentage

change of chiller COP. A positive percentage meant a chiller COP increase while a
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negative percentage meant a chiller COP drop. The performance of chiller without
water mist pre-cooling was affected by the dry bulb temperature of outdoor air, while
the performance of chiller with water mist pre-cooling was affected by the wet bulb
temperature of outdoor air. Both sensible and latent heat transfers took place for the
air-cooled condensers with water mist pre-cooling. With lower relative humidity of
the ambient air, the evaporative cooling effect would be more significant, and the

chiller performance could be improved more.

Under HPC with constant speed condenser fans, when RH was 50%, the COP of the
chiller with designed water mist rate and optimal water mist generation rate
increased by varying degrees up to 22.6% and 26.8%, respectively. When RH was
80%, the chiller COP was improved by up to 22.1% and 24.6% for the chiller
operated with designed water mist rate and optimal water mist generation rate,
respectively. In such conditions, the additional power of high pressure pump
generating water mist was more than offset by the reduction in compressor power
due to the reduced outdoor temperature by water mist pre-cooling. As shown in
Figures 5.40 and 5.41, the increase in the chiller COP could be higher when the

relative humidity of outdoor air was lower.

The use of VSF has a significant influence on the trade-off between compressor
power and fan power and hence the chiller COP, regardless of HPC and CTC. As
shown in Figure 5.25, the chiller COP could rise almost linearly with the chiller part
load ratio and varied with the refrigeration circuit sequence at any given outdoor
temperature, which was different from the fluctuating COP shown in Figure 5.19.
Under HPC, the COP of the chiller with VSF could increase by up to 17.1%, but it
could drop by 23.1% from the base case. When the chiller operated with VSF and

optimal water mist generation rate, the COP could be improved up to 23.3%.
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It was observed that water mist pre-cooling had both positive and negative impacts
on the chiller COP when the chiller operated under HPC. Although the chiller
condensing temperature could be better managed by using variable speed fans to the
set point, the COP could increase or decline comparing with the HPC case with
constant speed fans in certain operating conditions. The casual decrease of the chiller
COP was due to the HPC with unfavorable staging of constant speed condenser fans.
In addition, the chiller COP drop was due to the fact that the variable speed drive
consumed 3% of the total power of the staged condenser fans. The studied chiller
was equipped with 8 groups of constant speed fans, and the condenser fans were
staged group by group. To prevent the condensing temperature from exceeding the
high temperature setting, one more group of condenser fans were needed to be staged
than that operating with water mist due to the pre-cooling effect. When one more
group of condenser fans were cycled on, the condensing temperature dropped
significantly below the high setting, and could even drop below the set point. This
indicated that head pressure control was energy inefficient, and it was undesirable to
operate the chiller with water mist under HPC, which would result in an increase of
chiller power due to an inadequate trade-off between compressor power and

condenser fan power.

As HPC was considered to be energy inefficient, CTC was proposed as a desirable
alternative to HPC. When the chiller operated under CTC with constant speed fans,
the chiller COP was improved by up to 35.5%. When the chiller operated with VSF
and CTC, the chiller COP was improved further by up to 51.8% because the
compressor power dropped significantly with lower condensing temperature and the
fan power dropped considerably at lower fan speed. It should be noted that there was
high potential for improving the chiller COP under CTC when the outdoor
temperature was low, because CTC enabled the condensing temperature to approach
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the lower boundary of condensing temperature. When the chiller operated with VSF,
CTC, optimal water mist generation rate and the relative humidity was 50%, the
chiller COP was improved most by up to 70.8%. With lower chiller load part load
ratio and lower relative humidity of the outdoor air, the degree of the COP
improvement was more significant. At a low chiller load, the heat rejection airflow
rate could still be high under CTC, allowing water mist to fully vaporize. This, in
turn, brought a further decrease in the temperature of the entering condenser air to

lower the compressor power.

Based on the analysis above, water mist pre-cooling is an effective means to improve
chiller efficiency, but it is undesirable to operate the chiller with water mist under
HPC. CTC should be a compulsory energy efficient measure to improve the
performance of air-cooled chillers, and it is desirable to operate the air-cooled

chillers with VSF, CTC and water mist pre-cooling together.
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5.8 Energy savings of enhanced condenser features

Having identified the chiller performance under various control strategies for
condenser fans, the feasibility of using composite features of CTC, VSF and water
mist pre-cooling were analysed with respect to their energy savings. Chiller plants
serving a representative office building and a hotel building were considered in order
to investigate to what extent each condenser feature would influence the electricity

consumption of the air-cooled chillers.

According to the representative building models described in Chaper 3 and the
weather-load and load-frequency profiles of the reference office building and the
hotel building, the number and capacity of chillers in the chilled water plants serving
the two buildings could be determined. To meet the peak building cooling load of the
reference buildings, the chiller plant of the office building was designed with seven
identical air-cooled screw chillers, and the chiller plant of the hotel building was
designed with four identical air-cooled screw chillers. Each chiller had a nominal
cooling capacity of 1116 kW, which was compatible to the studied chiller reported in
Chapter 4. To meet the changing building cooling load, conventional chiller
sequencing was implemented. All the running chillers equally shared the cooling
load, and no additional chillers started to operate until each of the running chillers
was operating at full load. The schedule of staging chillers and their possible loading

ranges were then determined.

Figures 5.42 and 5.43 illustrated how the chillers were staged to implement chiller
sequencing when the building load reached a certain level. The number inside each
column in the figures indicated the number of staged chillers at a given nominal
cooling capacity. The chilled water plants of the reference buildings were designed

with equally sized chillers, and one more chiller would be staged when the building
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cooling load exceeded the total cooling capacity of the staged chillers. Based on this,
the step of staging chillers was equal to the total number of chillers installed, and
there were 7 steps and 4 steps for staging chillers with different total cooling load for
the typical office building and the representative hotel building, respectively. More
steps meant that the chillers could operate more frequently at higher PLR to meet
various building cooling loads.When more chillers were staged to meet higher
building cooling loads, each of them could operate at higher part load ratio and hence

operate with higher efficiency.
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Figure 5.42 Schedule of staging chillers in the office building
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Figure 5.43 Schedule of staging chillers in the hotel building

HPC is regarded to be energy inefficient, and condensing temperature control (CTC)

is proposed as a viable alternative to improve the efficiency of air-cooled chillers in
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various operating conditions. The variable speed condenser fans and water mist pre-
cooling can complement CTC to further improve the chiller performance. Given that
the operation of chillers generally accounts for a significant percentage of the total
electricity consumption of a commercial building, it is worth considering how
existing chilled water plants benefit from the advanced control with enhanced
condenser features in relation to head pressure control (HPC) in terms of the annual

energy saving of chillers.

In view of a considerable proportion of offices and hotels in the local building sector,
it was justifiable to investigate the cooling demand for these types of buildings and to
examine the energy saving potential of the chilled water plants throughout a year

when CTC, VSF or water mist pre-cooling was applied.

Drawing on the chiller system model, the variations in the annual electricity
consumption of the chillers under different control strategies were evaluated. Figure
5.44 shows the variation of the monthly total electricity consumption, which is the
sum of the compressor power, condenser fan power and high pressure pump power,
for the office building and hotel building with individual and mixed condenser
features of CTC, VSF and water mist. The individual and mixed features had similar
effects on monthly electricity consumptions of the chillers. Distinct seasonal

variations could be observed, which peaked during the hot summer months.
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Figure 5.44 Monthly total electricity consumption of chillers serving the typical
buildings with each condenser feature

Figure 5.45 shows the variation of chiller COP in the reference office building and
hotel building in an example weather year for the HPC base case. This figure clearly
demonstrated that the chiller COP varied with the refrigeration circuit sequence and
the compressor sequence in a refrigeration circuit. The annual average COP and
annual electricity consumption of chillers with each condenser feature serving the
office building and hotel building were summarized in Table 5.3 and Table 5.4,
respectively. It was identified that there was a small decrease on the annual chiller
energy consumption with HPC and variable speed fans from the baseline, and the
annual chiller energy consumption of the office building was saved by only 0.3%.
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Under HPC with variable speed condenser fans for the hotel building, water mist pre-
cooling could incur a 0.3% increase in the annual electricity consumption of chillers.
This was because the condensing temperature was controlled by the variable speed
fans around the set point, but it could not be controlled precisely at the set point for
the chiller with constant speed fans. The staged constant speed condenser fans could
provide more heat rejection airflow than required minimum airflow, which resulted
in considerable drop of condensing temperature, and the compressor power

decreased accordingly.
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Figure 5.45 Variation of chiller COP in reference buildings

It was also interesting to investigate whether the chillers, coupled with water mist
pre-cooling, resulted in a further decrease in their annual energy consumption under
local weather conditions. From Tables 5.3 and 5.4, it was observed that water mist
pre-cooling had no significant impacts on the chiller annual energy consumption
when the chillers operated under HPC. Under HPC, electricity consumption of
chillers was saved by 0.6% and 3.3% when the water mist system generated designed
and optimal water mist rate for the office building, respectively. Under HPC,
electricity consumption of chillers was saved by 1.5% and 3.2% with designed and
optimal water mist rate for the hotel building, respectively. The energy saving
potential by coupling water mist pre-cooling with air-cooled chillers could not be

effectively realized under HPC. Hence, it was not beneficial to apply water mist to
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air-cooled chillers without changing the traditional head pressure control method.

When CTC replaced HPC, the chiller COP was improved noticeably, which helped
reduce the annual electricity consumption. Based on the local weather, chillers
operated at part load condition with an outdoor temperature of below 25°C for half of
the time. Regarding this, there was a considerable scope to decrease the condensing
temperature for better efficiency. For the office building, the annual chiller energy
consumption under CTC could be saved by 7.3% and 7.7% when the chillers were
equipped with constant speed condenser fans and variable speed fans, respectively.
For the hotel building, the annual chiller energy consumption under CTC could be
saved by 8.7% and 9.4% with constant speed fans and variable speed fans,
respectively. When a combination of the advanced condenser features of CTC, VSF
and WM were present, the annual electricity consumption of chillers decreased by
11.0% and 14.8% with designed and optimal water mist rate for the office building,
and that was saved by 12.5% and 14.9% with designed and optimal water mist rate
for the hotel building. These findings indicate that variable speed fan control and

water mist system are favourable complements to CTC.

Water is often mistaken to be an unlimited and renewable resource. To the contrary,
water resource is very limited and precious, especially for crowded cities. It was
desirable to assess the water consumption by the water mist system in the different
operating schemes, and the results were shown in Tables 5.3 and 5.4. For water-
cooled chillers, the total water losses from cooling tower are the sum of drift losses,
evaporation losses and blowdown losses. According to Standard 550/590 (ARI 2003),
the total water loss can be calculated based on an assumption that the water loss
accounts for 1.5% of the condenser water flow rate, which is designed at 0.054 1/s

per kW cooling capacity. For a water-cooled chiller with same cooling capacity as
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the studied air-cooled chiller, whose capacity is 1116 kW, the water loss is 0.91 1/s.

If water-cooled chillers were used in the representative office building, the annual
total water losses from cooling towers were 3.43x10* m’. Comparatively, the water
consumption of the water mist system was very small, which was about 7.3%, 10.5%
and 16.2% of the total water losses for open-loop cooling towers serving the water-
cooled chillers for schemes HPC+CSF+WM1, HPC+CSF+WM2 and CTC+VSF+WM2,
respectively. The amount of water consumption for schemes HPC+VSF+WMI,

CTC+CSF+WM1 and CTC+VSF+WM1 were same as scheme HPC+CSF+WM1.

Table 5.3 Energy performance of chillers under different control strategies (Office)

Case S1 S2 S3 S4 S5 S6
HPC (base case) 2.83 3.52x10° 0 3.52x10° 0
HPC+VSF 2.81 3.51x10° 0 3.51x10° 0.3 0
HPC+CSF+WM1 2.87 3.48x10°  1.57x10*  3.50x10° 0.6 2.52x10°
HPC+CSF+WM2 2.94 3.39x10°  1.57x10*  3.40x10° 3.3 3.60x10°
HPC+VSF+WM1 2.85 3.44x10°  1.57x10*  3.45x10° 1.9 2.52x10°
HPC+VSF+WM?2 2.87 3.40x10°  1.57x10*  3.42x10° 2.9 3.28x10°
CTC+CSF 3.13 3.26x10° 0 3.26x10° 73 0
CTC+VSF 3.16 3.25%10° 0 3.16x10° 7.7 0
CTC+CSF+WM1 3.23 3.14x10°  1.57x10*  3.16x10° 10.2 2.52x10°
CTC+CSF+WM2 3.36 3.01x10°  1.57x10*  3.02x10° 14.1 5.57x10°
CTC+VSF+WM1 3.28 3.12x10°  1.57x10*  3.13x10° 11.0 2.52x10°
CTC+VSF+WM2 3.40 2.98x10°  1.57x10*  3.00x10° 14.8 4.91x10°

Notes on S1 to S6:

S1: Average chiller COP

S2: Annual electricity consumption of chillers (kWh)

S3: Annual electricity consumption of high pressure pump (kWh)

S4: Annual total electricity consumption of chillers and high pressure pumps (kWh)

S5: Percentage saving in annual electricity consumption of chillers and high pressure pumps (%)
S6: Water consumption by the water mist system the chiller plant (m®)

Table 5.4 Energy performance of chillers under different control strategies (Hotel)

Case S1 S2 S3 S4 S5 S6
HPC (base case) 2.69 6.36x10° 0 6.36x10° 0
HPC+VSF 2.65 6.38x10° 0 6.38%10° 0.3 0
HPC+CSF+WMI1 2.75 6.24x10°  2.89x10*  6.27x10° 1.5 4.65%10°
HPC+CSF+WM2 2.79 6.13x10°  2.89x10*  6.16x10° 3.2 5.21x10°
HPC+VSF+WM1 2.66 6.31x10°  2.89x10*  6.34x10° 0.3 4.65%10°
HPC+VSF+WM2 2.68 6.25x10°  2.89x10*  6.28x10° 1.3 4.58x10°
CTC+CSF 2.99 5.81x10° 0 5.81x10° 8.7 0
CTC+VSF 3.03 5.77x10° 0 5.77x10° 9.4 0
CTC+CSF+WMI1 3.08 5.62x10°  2.89x10*  5.64x10° 11.3 4.65x10°
CTC+CSF+WM2 3.16 5.45x10°  2.89x10*  5.48x10° 13.9 8.54x10°
CTC+VSF+WM1 3.13 5.54x10°  2.89x10*  5.57x10° 12.5 4.65x10°
CTC+VSF+WM2 3.22 5.39x10°  2.89x10*  5.42x10° 14.9 7.17x10°
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5.9 Evaluation of chiller energy saving potential in the local building sector

The experimental and simulation results in this research confirm that variable
condensing temperature control and water mist pre-cooling are promising energy
efficient measures for air-cooled chillers. Having presented the methods to improve
chiller efficiency, it is worth investigating how this improvement help reduce the

growing electricity demand for the commercial sector.

Energy consumption statistics of the residential, commercial, industrial and transport
sectors in Hong Kong are provided by the Census and Statistics Department (C&SD)
and the Electrical and Mechanical Services Department (EMSD). EMSD has
established an energy end-use database for the past years, which contains
breakdowns of different energy end-uses for each segment in these sectors. With
regard to the commercial sector, the electricity use for air-conditioning went up from
2584 to 7570 GWh (a 193% increase), and the total electricity consumption rose
from 9081 to 31461 GWh (a 246% increase), over the years 1984-2009 (EMSD
2004; EMSD 2011). The commercial sector includes four segments: the office

segment, the restaurant segment, the retail segment and other commercial segments.

According to the statistical data, it is possible to directly determine the overall
electricity demand and the proportion taken up by air-conditioning (as one of the
energy end-uses) for the office segment. Table 5.5 shows the trend of energy use of
office buildings from 1985 to 2009 (EMSD 2004; EMSD 2011). EUI means the
annual electricity use in kWh per unit floor area of a building in m*. A/C EUI is the
annual electricity use by air conditioning system in kWh per unit floor area of a

building in m”.
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Table 5.5 Summary of energy use of office buildings from 1985 to 2009
(Source: Hong Kong Energy End-use Data, EMSD, Hong Kong)

Year Floor area Total Energy use Air conditioning EUI A/C EUI
(<10°m?) (GWh)) (GWh) (kWh/m’) (kWh/m’ )

1984 4067.6 683 336.7 167.9 82.8
1985 4375.8 743.6 352.8 169.9 80.6
1986 4176.5 809.2 376.4 193.7 90.1
1987 4420.4 959.2 483.6 217.0 109.4
1988 4657.4 1165.3 600.8 250.2 129.0
1989 4896.8 1514.7 796.7 309.3 162.7
1990 5085.2 1691.1 864.7 332.6 170.0
1991 5541.8 1854.2 895.0 334.6 161.5
1992 6099.1 2084.4 948.1 341.8 155.4
1993 6390.8 2365.8 1054.2 370.2 165.0
1994 6849.5 2765.3 1321.7 403.7 193.0
1995 7188.6 2937.8 1403.9 408.7 195.3
1996 7416.8 3041.1 1453.1 410.0 195.9
1997 7889.3 3246.1 1551.1 411.5 196.6
1998 8603.5 3388.1 1619.4 393.8 188.2
1999 8970.9 3642.5 1741.4 406.0 194.1
2000 9085.5 3857.8 1844.4 424.6 203.0
2001 9131.9 3868.6 1850.0 423.6 202.6
2002 9286.5 3864.7 1848.1 416.2 199.0
2003 9540.7 3849.4 1840.8 403.5 192.9
2004 9794.9 3979.7 1903.1 406.3 194.3
2005 9769.7 3838.3 1986.1 392.9 203.3
2006 9812.8 3663.9 1996.1 3734 203.4
2007 10106.7 3491.7 1936.1 345.5 191.6
2008 10392.3 3303.9 1776.1 317.9 170.9
2009 10529 3274.4 1760.3 311.0 167.2

However, a breakdown for the electricity consumption of hotels was absent, and
hotels were aggregated into the other commercial segments, which included hotels,
education, health, storage, and other miscellaneous commercial or public services.
Extensive surveys of the electricity end-use by other researchers had shown that the
electricity end-use for air-conditioning in hotels rose from 194.7 GWh in 1988 to
405.4 GWh in 2000 (Chan and Lam 2002), and this increasing rate was the same as
that in the overall electricity consumption. Accordingly, the electricity end-use for
air-conditioning in hotels increased by an average rate of 16.2 GWh per annum, and
the average rate of increase in the total electricity consumption was 36.8 GWh per
annum. The operation of chillers accounted for 24.8 to 28.6% of the overall

electricity consumption of hotels (Yu and Chan 2005a). Under this scenario, the
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electricity demand of chillers could grow by 9.1-10.5 GWh per annum for hotels.
With these average rates of increase in electricity consumption, it was possible to

forecast the growth of electricity demand for hotels in the long term.

The analysis reported in Section 5.8 showed that the annual electricity consumption
of air-cooled chillers dropped by up to 14.8% and 14.9% for the typical office
building and hotel building when the improved condenser features of CTC, VSF and
WM were implemented together. Having identified the annual growth rate of total
electricity consumption due to air-conditioning in hotels and office buildings, it was
worth estimating how the improved condenser features would help reduce the
electricity demand in the office and hotel sector in future. According to the
simulation results of this research, when air-cooled chillers operate with the
composite energy efficient measures, the EUI of the chillers was reduced from 82.1
kWh/m® to 70.0 kWh/m? for office buildings and from 139.7 kWh/m* to 118.9

kWh/m? for hotels.

Given a close relationship between the increasing stock of office and hotel premises
and their growing electricity use, a forecast was made on the overall electricity
demand for the local office and hotel sector in 2012-2016. Figure 5.46 illustrates the
variation of the total stock of offices in Hong Kong from 1985 to 2010 referring to
the past reports of Hong Kong Property Review (RVD 2011). The trend of the total
stock of offices in Hong Kong could be determined with the correlation equation
shown in Figure 5.46, and the prediction of the supply of the office building in terms
of total floor area in a 5-year period could be obtained. The high value of the
correlation coefficient (R*=0.9833) confirmed that the agreement between the

statistical data and modeling data was pretty good.
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Figure 5.46 Variation of the total stock of offices in Hong Kong (x10° m?)

Considering that half of the local commercial buildings were installed with air-
cooled chillers, the overall annual chiller energy use was 878.5 GWh in the office
segment or 348.9 GWh in the hotel segment in 2011, based on the local energy end-
use database and the predicted supply of office buildings and hotels. The likely
annual electricity savings of chillers in the office and hotel sector from 2012 to 2016
were calculated, as shown in Table 5.6, assuming that half of new office and hotel
buildings would be installed with air-cooled chillers with the condenser features of
VSF, CTC, WM or combination of them. When variable condensing temperature
control was implemented, the electricity demand of air-cooled chillers in new offices
and hotels could decrease by 16.3 GWh and 5.5 GWh in the next 5-year period,
respectively. When the air-cooled chillers operated with CTC, VSF and optimal
water mist rate, the electricity savings of air-cooled chillers in new offices and hotels
could be 32.8 GWh and 9.5 GWh in the next 5-year period, respectively. It was
expected that the electricity savings could be much higher if air-cooled chillers in
existing office and hotel buildings would have been retrofitted with the improved

condenser features.
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Table 5.6 Electricity savings of air-cooled chillers in new offices and hotels due to
improved condenser features in 2012-2016

Year Estimated electricity | Likely reduction of annual chiller electricity consumption (GWh)
demand (GWh) CTC CTC +VSF |CTC+HCSF+WMI|CTC+VSF+WM?2
Office Hotel | Office | Hotel | Office | Hotel | Office | Hotel | Office | Hotel
2012 3298.4 1252.6 1.0 0.4 1.1 0.4 2.0 0.6 2.1 0.6
2013 3327.7 1286.1 2.3 0.7 2.4 0.8 4.5 1.2 4.7 1.3
2014 3349.8 1319.5 3.3 1.1 3.4 1.2 6.3 1.8 6.6 1.9
2015 3374.1 1352.9 4.3 1.5 4.6 1.6 8.4 2.4 8.7 2.5
2016 3396.3 1386.3 5.3 1.8 5.6 2.0 10.3 2.9 10.7 32
Accumulative reduction (GWh) | 16.3 5.5 17.1 6.0 31.5 8.9 32.8 9.5

5.10 Summary

This chapter described the experiment on an air-cooled screw chiller with water mist
system, and the experimental data were evaluated in detail. It then presented the
methodologies of the water mist model, and the water mist model was incorporated
into the chiller model developed in Chapter 4 under the TRNSY'S environment. With
the validated integrated chiller models, the effect of combinations of water mist pre-
cooling, variable speed condenser fans and variable condensing temperature control
on the air-cooled chillers was investigated. This chapter also conducted detailed
analysis on the energy saving potential of the chillers serving a representative office
building and a representative hotel building with improved efficiency of air-cooled
chillers, and determined the potential contribution in reducing the future total

electricity consumption of commercial buildings in Hong Kong.
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Chapter 6 Neural Network Based Optimal Control of Air-

Cooled Chillers

Chapters 4 and 5 put forward the simulation-based optimization schemes aiming to
improve the air-cooled chillers with advanced condenser features, including CTC,
VSF and WM. Chiller operation is vital for building energy efficiency in the
commercial buildings. However, chiller operation is complicated because nonlinear
relationships and interactions may occur among parameters. A different approach to
optimize the chiller operation based on artificial intelligence methods is proposed
here. This chapter builds on the foundation established before and demonstrates the
implementation and application of the simulation-based hybrid artificial intelligence
control method combining both ANN and GA. The idea is to apply genetic
algorithms to find the optimum set point of condensing temperature or water mist
generation rate, which will minimize the chiller energy consumption. For this
purpose, ANN is used to establish a complex and non-linear function of the air-

cooled chillers relative to the controlled and the uncontrolled variables.

The hybrid ANN—GA technique consists of three steps: generation of the databases,
training and evaluation of ANN model, searching and evaluation of optimum using
GA. The chiller database has been provided from the simulations of chiller models
using TRNSYS reported in Chapters 4 and 5. This chapter first presents the ANN
models for the air-cooled chillers under different operating schemes. The trained and
validated ANN models are then integrated into the genetic algorithm serving as the
evaluation function, and GA can search for the optimal or near-optimal controlled

variables to operate the chillers efficiently. The optimization results are verified by
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using the data obtained from TRNSYS simulation to ensure that the hybrid

ANN—-GA technique is suitable for the optimal control.
6.1 Optimization method

Due to the drawbacks of the conventional mathematical and empirical methods, in
this research, a hybrid intelligent system is developed to achieve optimal control for
the air-cooled chillers with advanced condenser features. The objective of
optimization of the chiller operation is to select the optimal control variables under
given constraints, in order to minimize the electricity consumption by chillers. The
hybrid artificial intelligent control combines a BP neural network to model the air-
cooled chiller and a genetic algorithm to find the optimal values for the controllable
variables to reach the system objectives. The concept of a controller that applies GA
to optimize the values of the controlled parameters with the neural network is shown
in Figure 6.1. The intelligent controller can not only predict the chiller performance
(using ANN), but also find the optimal set points of the condensing temperature and
water mist generation rate that will minimize the chiller power consumption. The BP
neural network works like an emulator to predict the chiller performance. Once the
ANN model is developed with desired level of precision after training, the ANN
model is integrated into the GA method as an evaluation function. When GA is
performed, the optimal solutions can be found within the constraints, as GA employs

a ‘natural selection’ guided parallel search under pre-specified constraints.
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Figure 6.1 Hybrid intelligent control using ANN and GA

6.1.1 Formulation of optimization problem

The difference between normal operation and optimal operation is that in optimal
operation, the system is controlled not only to satisfy certain physical constraints but
also a predefined performance index or cost function is minimized or maximized at
the same time, which is a function of controlled and uncontrolled variables. An
optimization model consists principally of three ingredients: an objective function,

variables and constraints.

Genetic algorithms search for the best solution dependent on the fitness function of
each individual in the population, and hence the fitness function should reflect the
individual’s performance in the current problem. In terms of building energy
efficiency, the most important concern is the energy consumed by the chillers to
achieve the desired indoor environment, the smaller the energy use, the better it is.
Therefore, the objective in this research is to minimize the total energy consumption
of the chillers and the high pressure pumps generating water mist, and it is selected

as the performance index for the optimization analysis.

Based on the mathematical models of related components, the operating
characteristics of condenser fans and the energy efficiency of the chillers can be
maximized by variable condensing temperature control and water mist pre-cooling.

There are three types of devices which consume energy, including compressors,
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condenser fans and high pressure pumps. To simplify the model and optimization
analysis, the energy consumption by chilled water pumps is neglected. Therefore, the
objective function is to minimize the total energy consumption of the compressors,
condenser fans and the high pressure pumps generating water mist. In the
development of optimal control strategy, quasi steady-state load is assumed during

each optimization step.
6.1.2 Process of the hybrid ANN-GA optimization algorithm

Figure 6.2 illustrates the flowchart of the proposed optimization scheme based on
combined ANN-GA algorithm which is used in this investigation. The optimization

scheme is summarized as follows:
(1) An initial population is generated at random.

(2) The fitness function based on ANN model is used to calculate the fitness for all
initial individuals. It will be assigned a fitness value for each individual by the well-

trained ANN model.

(3) A population for the next generation is reproduced by the genetic operations

(selection, crossover and mutation).
(4) The new individuals replace the parent individuals into the population.

(5) Steps 2 - 4 are executed until the terminating criterion has been satisfied.

MATLAB software is used to develop the above algorithm and optimize the

parameters affecting the chiller performance.
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Figure 6.2 Flowchart of optimization scheme based on combined ANN-GA algorithm

6.2 Optimization case studies

There are 23 cases investigated in Chapters 4 and 5, including the conventional head
pressure control (HPC), variable condensing temperature control (CTC), constant
speed condenser fans (CSF), variable speed condenser fans (VSF) and water mist
pre-cooling (WM). One of the main objectives is to establish the control strategy for
the air-cooled chillers with advanced condenser features, and proposes a hybrid
artificial intelligent technique for chiller modeling and control using neural network

and genetic algorithm to optimize the chiller operation, and demonstrates this
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approach with some illustrative examples. To minimize the chiller energy
consumption, it is essential to set the controlled variables under certain conditions.
ANN-GA technique can be considered to be a model-based method of supervisory
control, in which the values of the controlled variables are obtained by solving an

optimization problem using GA to obtain the desired output.

Two different cases were investigated using the proposed hybrid ANN-GA method
and presented below. The desired output to be optimized in the case studies was the
chiller energy consumption while the input operating parameters to be calculated
were different for different cases. The global optimization of the chiller plant was not
the main concern in the cases. The idea behind the proposed control strategy was to
satisfy a certain chiller demand, and determine the values at which the controlled
input variables had to be set to minimize the chiller energy consumption at the
current ambient and working conditions. The results by ANN-GA control were
compared with simulation data by TRNSY'S to evaluate the accuracy of the proposed

approach.

Two different cases are investigated to demonstrate the hybrid methodology: (1)
variable condensing temperature control and variable speed fan control (CTC+VSF);
(2) variable condensing temperature control coupling variable speed fan control and
variable water mist generation rate (CTC+VSF+VWM). In Case 1 the set points of
the condensing temperature of the two refrigeration circuits were the controlled input
variables which were set to minimize the chiller energy consumption. In Case 2 the
controlled input variables of the chiller system were the set points of the condensing
temperature of the two refrigeration circuits and the optimal water mist generation

rate of each water mist circuit.
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6.2.1 CTC with VSF

For the air-cooled chiller equipped with variable speed condenser fans operating
under variable condensing temperature control, the data for developing the chiller
model were from the simulation data of chillers serving the representative office
building using TRNSYS. For better developing the chiller model using ANN, a
number of simulations were required. It is important to cover the lower and upper
extreme conditions of the cases to be investigated, as the neural network learns all
the range of possible values and hence extrapolation is not needed. For this reason,
all cases were simulated for the working conditions of a typical weather year. In this
way, a database was generated with the combination of the correlation of set point of

condensing temperature on chiller energy consumption for various cases.

The “operating data” would be used to train, validate and test the ANN model, and
there were 3051 data patterns in total for this study. From the operating data set, 60%
was selected randomly for the neural network training, 20% was used for validation
and the remaining 20% of the total data was employed for testing the network. When
the data had been collected and arranged, the next step in training a network was to

create the neural network.

6.2.1.1 Neural network construction

The model was developed with Matlab using the neural network toolbox (Beale,
Hagan et al. 2011). The architecture of the three-layer BP network for this case was
shown in Figure 6.3. As one hidden layer could be sufficient to map an arbitrary
function to any degree of accuracy, the ANN model with just one hidden layer was
investigated in this research. The input parameters of an ANN had to be selected
carefully because they would significantly affect the performance of the ANN. In the

present case, the inputs included the dry bulb temperature (74) of the entering
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condenser air, chiller load sharing by refrigeration circuit 1 (Q.), chiller load
sharing by refrigeration circuit 2 (Q.2), temperature of supply chilled water (7¢hws),
chilled water mass flow rate (mcnw), degree of subcooling (7.gs), degree of
superheating (7.ysh), set point of condensing temperature of refrigeration circuit 1
(Teaspr) and set point of condensing temperature of refrigeration circuit 2 (Zcqsp2). The
outputs from the ANN models were the speed of the variable speed fan of
refrigeration circuit 1 (Ves), the speed of the variable speed fan of refrigeration
circuit 2 (Vi) and the chiller power consumption (Eg,). In this case, the set points of
condensing temperature of refrigeration circuits 1 and 2 were the controlled input

variables which were set to achieve the desired chiller energy consumption.

Figure 6.3 ANN architecture for Case 1

Since there was no explicit rule to determine either the number of neurons in the
hidden layer or the number of hidden layers, the trial and error method was applied
to find the best solution. In order to achieve the optimal result, different training
algorithms and different number of neurons in the hidden layer were performed. The
training algorithms included Levenberg-Marquardt backpropagation, Batch gradient
descent with momentum, Variable learning rate backpropagation, BFGS quasi-
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Newton backpropagation and Bayesian regulation backpropagation, which were
popular training algorithms. For all BP algorithms, a three-layer ANN with a sigmoid
transfer function in the hidden layer and a linear transfer function in the output layer

was developed.

In this research, an iterative process for the proper selection of the number of neurons
in the hidden layer was carried out. It started with a reduced number of neurons, and
then increased this number by one at a time until the addition of a new neuron did not
further improve the performance of the neural network. Egs. (2.9-2.13) in Chapter 2
were introduced for estimating the optimal number of hidden neurons in the ANN
model. Although these five formulas suggested different optimal number of hidden
neurons in the feed-forward neural network, they could provide the possible range of
the optimal number of hidden neurons. According to these equations, it was
recommended that the range of the neuron nodes in the hidden layer for this case was
from 4 to 13. To be sure to achieve the optimal network architecture, the neurons in
the hidden layer varied in larger range from 3 to 15, covering the recommended
range of the neurons in the hidden layer. The results for finding the optimal number
of neurons in a single hidden layer by trial and error were shown in Table 6.1, and
the statistical values of MSE, r R* and the training time were given for different

training algorithms with 3-15 neurons in the hidden layer.

It could be identified in all cases that the training accuracy improved by increasing
the number of hidden neurons, as indicated by the smaller MSE and r values and R’
values approaching to 1. However, when the number of hidden neurons was greater
than a certain value, the training errors and the testing errors began to increase, and

the ANN with larger number of hidden neurons became more complex.

Compared with the different training algorithms with different neurons in the hidden
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layer, the best one with minimum mean square absolute error was selected, which
was the Bayesian regularization backpropagation with 11 neurons in the hidden layer
and the minimum MSE was 0.002. For the Bayesian regularization backpropagation
in this research, it was applied in combination with Levenberg-Marquardt training (in
conjunction with early stopping technique). Bayesian regularization minimizes a
linear combination of squared errors and weights, and then determines the correct
combination so as to produce a neural network with noticeable advantage over other
training algorithms on generalization, especially when the data sets are smaller. The
Bayesian regularization has higher stability together with excellent training
performance and testing performance. However, Bayesian regularization method
generally takes longer to converge. Levenberg-Marquardt algorithm has faster
convergence rate than other training algorithm. To make fully use of their advantages,
Bayesian regularization with Levenberg—Marquardt algorithm was selected to act as
the training function in this research, which updated the weight and bias values

according to Levenberg-Marquardt optimization.
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Table 6.1 Comparison of the candidate network structures

. . R’
BP algorithms Neurons Time(s) MSE "
& ( ) Ech Rcfl Rcf2 Ech Rcfl Rcf2
3 1453 24852  0.9997 0.9994 09998 09988 0.9994  0.9995
4 4525 05542 0.9995 0.9988 0.9999 0.9969 0.9990  0.9997
5 11.97  0.6846  0.9998  0.9998 0.9998 0.9996 0.9996  0.9997
6 942  0.0979 0.9999 0.9999  0.9998  0.9999  0.9998  0.9997
Levenberg-Marquardt 7 2041 02193  1.0000 1.0000 1.0000 1.0000  1.0000  1.0000
8 11.75  0.0608 0.9994 0.9994 1.0000 0.9987 0.9989  0.9999
) 9 1408  0.1817 0.9983 0.9979 1.0000 0.9964 0.9956  1.0000
backpropagation 10 1851 0.0396 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
11 16.81  0.0155 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000
12 1840  0.0551 0.9999 0.9999 1.0000 0.9999 0.9999  1.0000
13 1405  0.0715 1.0000 1.0000 1.0000 1.0000 0.9999  1.0000
14 18.88  0.1391  1.0000 1.0000 1.0000 0.9999  1.0000  1.0000
15 1405 02791 1.0000 1.0000 1.0000 1.0000 0.9999  1.0000
3 7217 174.6957 0.9090 0.8833 0.9200 0.8251 0.7601  0.8448
4 7422  73.75852 0.9690 0.7916 0.9966 0.9330 0.5232  0.9910
5 81.00 156.1097 0.9124 0.9553 0.9506 0.8286 0.9078  0.9022
6 336.76  112.5037 0.9405 09254 0.9751 0.8831 0.8377  0.9491
Batch gradient descent 7 76.80 248.0053 0.8707 0.8012 0.9688 0.7577 0.5629  0.9383
8 7936 124771 09120 07599 09458 0.8281 0.5024  0.8936
. 9 82.15 65.57768 0.9697 0.8823  0.9419 0.9352 0.7687  0.8846
with momentum 10 85.19 146.1974 0.9300 0.8152 0.9651 0.8553  0.5192  0.9286
11 81.68 77.22071 09610 09041 0.9803 0.9235 0.7885  0.9593
12 91.94 102.7911 0.9355 0.8881 0.9743 0.8744 0.7517 0.9492
13 84.94 44.10117 09795 09116 0.9892 0.9530 0.7888  0.9758
14 85.83 85.83246 0.9674 09398 0.9951 09291 0.8768  0.9893
15 91.57 31.50485 0.9856 0.9219 0.9744 0.9708 0.8455 0.9466
3 9.94 136.0684 0.9538 0.8736 0.9901 0.8926 0.7590  0.9800
4 10.62 14.83162 0.9939 09828 09971 09875 0.9558 0.9941
5 11.89 32.00292 0.9880 0.9875 0.9959 09754 0.9703 0.9918
6 11.72 2072765 0.9907 0.9845 0.9951 09816 0.9685  0.9903
Variable ]eaming rate 7 12.53  36.13948 0.9855 0.9763 0.9973  0.9707 0.9479  0.9945
8 12.09 29.10651 0.9869 0.9799 0.9976 0.9699 0.9548  0.9951
) 9 12.53 1719014 0.9930  0.9702 0.9975 0.9857 0.9409  0.9946
backpropagation 10 1545 1674292 0.9931 0.9230 0.9956 0.9862 0.8469  0.9908
11 12.80 27.63442 0.9880 0.9796 0.9974 0.9759 0.9488  0.9949
12 14.06 27.81523 0.9887 0.9054 0.9933 09726 0.7879  0.9859
13 1456  32.15606 0.9860 0.9858 0.9983 09722 09694  0.9965
14 11.50  16.28079 0.9897 0.9776  0.9880 0.9793  0.9554  0.9747
15 11.98 1193889 0.9948 0.9306 09911 0.9887 0.8653 0.9811
3 1050 11.4720 0.9955 09912 09992 09911 009821 0.9984
4 13.12 89750  0.9970 0.9953  0.9997 0.9933  0.9905 0.9994
5 1235 6.8020  0.9971 0.9902 0.9996 0.9941 0.9799  0.9992
BFGS 6 1222 67807 0.9972 09889 0.9997 09941 0.9774 0.9994
7 2144 0.6432  0.9997 0.9994 0.9999 0.9992  0.9987  0.9998
. 8 1596  3.0147 0.9982 0.9973 0.9996 0.9961 0.9942  0.9992
quasi-Newton 9 1349 66763 09969 09934 09998 09938 09865 0.9996
, 10 1270 09841  0.9994 0.9967 0.9996 0.9987 0.9927  0.9993
backpropagation 11 1348 17153 0.9989 0.9973  0.9992 0.9978 0.9946 0.9984
12 1567  2.0228 0.9992 0.9992 09997 09982 0.9983  0.9994
13 1740 13470 0.9995 0.9985 0.9997 0.9989 0.9970  0.9994
14 1585  2.0604 0.9991 0.9980 0.9997 0.9980 0.9959  0.9994
15 1744 07312 0.9997 0.9995 0.9997 09994 0.9987  0.9995
3 39.62 32791  0.9982  0.9979 0.9998 0.9963 0.9950  0.9997
4 2879  1.2250 0.9985 0.9989  0.9997 0.9968 0.9974  0.9995
5 2236 0.8443  0.9999 0.9999 0.9999 0.9998 0.9997  0.9997
6 31.06 05517 0.9999  0.9999  1.0000 0.9998  0.9997  1.0000
Bayesian regulation 7 41,74 04336 1.0000 1.0000 1.0000 1.0000 0.9999  1.0000
8 6626  0.0750 1.0000 0.9999  1.0000 0.9999  0.9999  1.0000
) 9 20.80  0.1895 1.0000 1.0000 1.0000  1.0000  1.0000  1.0000
backpropagation 10 2425  0.1355  0.9999 1.0000 1.0000 0.9999  0.9999  1.0000
11 13552 0.0020 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
12 4272 0.1358  0.9999  0.9997 1.0000 0.9997 0.9994  1.0000
13 4206 0.0511 0.9999 0.9998 1.0000 0.9997 1.0000 1.0000
14 12038 0.2869 1.0000 1.0000 1.0000 0.9999  0.9999  1.0000
15 5826  0.2660 1.0000 1.0000 1.0000 1.0000 0.9999  1.0000

The number of neurons in a hidden layer greatly influences the network performance.
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Figure 6.4 demonstrated how the neural network performance MSE varied with the
number of neurons in the hidden layer for the Bayesian regularization with
Levenberg—Marquardt algorithm. The optimal architecture of the ANN model could
be determined based on the minimum value of the MSE of the training and testing set.
As shown in Figure 6.4, the MSE of the network was much greater (MSE 3.2791) for
the ANN with 3 hidden neurons, and MSE decreased with more neurons in the
hidden layer, and MSE reached its minimum value of 0.002 with 11 hidden neurons.
When the number of neurons was greater than 11, MSE showed a gradual increase
from 0.0551 to 0.2869. Hence, the Bayesian regularization in combination with
Levenberg—Marquardt algorithm with 11 neurons in the hidden layer appeared to be
most optimal topology for this case. That is, in this case, the best ANN model had 9-
11-3 architecture, which meant that there were 9, 11, and 3 neurons in the input,
hidden, and output layers, respectively. Figure 6.3 shows the architecture of the ANN

used for this case.
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Figure 6.4 The networks performance MSE against neurons in the hidden layer
6.2.1.2 Performance analysis of MLP neural network

When the architecture of the ANN model was determined, the neural network model
employing backpropagation was trained, validated and tested with the training set,

validation set and the test set, respectively. Then, an analysis on the training
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performance and testing performance of the neural network was examined. The
neural network would find the input—output map by analyzing the training data set
repeatedly. The neural network's weights were updated during the network training
phase, which was needed to monitor how well the neural network was learning. As
the Bayesian regularization with Levenberg—Marquardt algorithm was applied in this
research, the generalized error function was used as the performance indicators of the

neural network.

The curves of the generalized error of the neural network for this case versus
iteration were shown in Figure 6.5. As the neural network learned, the error was
converging to zero. The training was considered to have reached convergence if both
the sum of squared error (SSE) and the sum of squared weights (SSW) stabilized
after the iterations. The generalized errors in the validation set and the testing set
were also shown on the same figure. As could be identified from Figure 6.5, the

training error, validation error and the testing error decreased similarly.

When the training was completed, it was necessary to check the network
performance and determine if any changes were needed for the training process, the
network architecture or the data sets. During the training, critical observations were
the performance, the magnitude of the gradient and the number of validation checks.
The magnitude of the gradient and the number of validation checks were used to
terminate the training. The number of validation checks represented the number of
successive iterations that the validation performance failed to decrease. When this
number reached 6 (the default value), the training would stop (Beale, Hagan et al.
2011), as shown in Figure 6.6. Figure 6.6 was the training state plot showing the
progress of other training variables, including the gradient magnitude and the number

of validation checks. The validation error reduced in the early phase of training,
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similar to the training set error. However, the error on the validation set would begin
to increase when the neural network tended to overfit the data (Haykin 1999). Figure
6.5 illustrates the changes in the error level for training, validation and testing during
the iterations. The training stopped after 625 iterations for the Bayesian
regularization in combination with Levenberg—Marquardt algorithm after 6
validation checks. The validation performance reached a minimum at the 619"
iteration. The training continued for 6 more iterations as the differences between the

training error and the validation error started to increase.
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Figure 6.6 Training state of the ANN model

After training, the trained neural network was capable of giving a certain output
whenever input factors were offered. The next step was to validate the trained neural
network. The performance of a trained network could be assessed to some extent by
the errors on the training, validation and test sets as shown in Figure 6.5, and it was
also useful to investigate the network response in more detail. One option was to
perform a regression analysis between the outputs of the network and the
corresponding targets, which was one of the most popular techniques for data
analysis. If the training was perfect, the network outputs and the targets would be
exactly equal. The regression correlation coefficient (R-value) between the network
outputs and the corresponding TRNSY'S simulation results were shown in Figure 6.7
for training, validation, testing and the whole datasets. The dashed line in each axis
represented a perfect matching, where the outputs were equal to targets. The solid
line represented the best fit linear regression line between outputs and targets. R-
values of 1, 0.9999, 0.9999 and 0.9999 were obtained for the training, validation,

testing and the whole datasets, respectively. This demonstrated that the ANN
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predicted values were very close to the actual values for all the datasets, and there

was an exact linear relationship between outputs and targets.
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The regression analysis results of each output between the ANN predicted values and
the simulated values by TRNSYS were shown in Figure 6.8 for this case, including
the chiller power consumption, speeds of condenser fans in the refrigeration circuit 1
and refrigeration circuit 2. It should be noted that the comparisons in Figure 6.8 were
made using values only from the test data set, which was not introduced to the ANN
model during the training process. All graphics were provided with a correlation line

indicating the curve fit and a £5% error band.
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Figure 6.8 Comparison of ANN modeled and TRNSY'S simulated values for Case 1

As shown in Figure 6.8(a), the ANN predictions for the chiller power yielded a
correlation coefficient (R) of 0.9999, a coefficient of determination (R%) of 0.9999, a
mean relative error (MRE) of 0.0034% and a root mean square error (RMSE) of
0.0223 kW with the simulated data by TRNSYS. These values revealed that the ANN
predicted chiller power consumption very well in a wide range of operating
conditions. For the speed of the condenser fans, the statistical performances of the
predictions were almost as good as those obtained in chiller power consumption

predictions, as shown in Figure 6.8(b). The ANN predictions for this parameter could
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achieve an R value of 0.9999, a R? of 0.9999, a MRE of 0.0011% and a RMSE of
0.0018 HZ. The results demonstrated that the predictions of ANN to the speed of the
variable speed condenser fan were quite accurate and had good agreement according

to the characteristic parameter R, R* and RMSE, as shown in Figure 6.8.

As indicated in Figures 6.7 and 6.8, a close linear relationship was observed between
outputs and targets simulated by TRNSY'S, and hence the well trained ANN could be
regarded to have achieved the ability to accurately map the chiller performance. The
performance map based on the ANN would be used as the objective function of the

optimization problem.
6.2.1.3 Formulation of optimization problem

In this study, an optimization problem could be formulated to find the solutions
(optimal set points of condensing temperature for two refrigeration circuits) that
would minimize the chiller energy consumption, when the other input parameters
were specified. In addition to the energy use, the operation of the chiller system was
subjected to constraints for proper operation of the mechanical system and
constraints for maintaining indoor thermal comfort. The chilled water supply
temperature T hws should be set properly to avoid freezing in the evaporator and to
provide dehumidification of the air in the cooling coil. For cooling and
dehumidification purpose, the minimum and maximum perturbations of 7Tchys Were 5
and 9°C, respectively (Fong, Lee et al. 2010; Yu and Chan 2006b). The possible
variations in the degree of subcooling (7¢q4sc) and the degree of superheat (7.ysn) were

1-6°C and 4-9.5°C, respectively (Yu and Chan 2006b).
Mathematically the optimal operation problem was stated as follows:

Min J=E, +E, (6.10)
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subject to:  20<T,,

| <45

20<7,, <45

chwr low < chwr < chwr,high

T <T, <

cdsc,low cdsc 7-;dsc,high

evsh,low evsh < T'evsh ,high

Since the aim was to find a feasible optimal solution, penalty functions were used to
penalize infeasible solution for handling the nonlinear constraints whenever one or
more constraints were violated. The penalty was imposed when the set point of
condensing temperature was not within [20, 45]. When this condition occurred, the
objective was penalized for the individual. The fitness function of GA was revised to

accommodate the penalty and was expressed in the following equation.
Min J=E +E,+C (6.11)

In Eq. (6.11), C is a positive constant and should be large enough to avoid the
corresponding chromosome being selected as the optimal value. It is defined as

follow:

cdsp

500 If T, >45or T, <20
o If20<T,, <45

6.2.1.4 Optimization results by GA

A key feature of this work was that the optimal set points of the condensing
temperature were obtained from the Al controller based on the specified values for
the other 7 uncontrolled input variables. The Al controller applied GA to find the
optimal set points of the condensing temperature to minimize the chiller energy
consumption. Each input parameter was specified within a pre-determined range

based on the chiller operation. Therefore, the optimization problem was to find the
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optimal set points of the condensing temperature for the two refrigeration circuits,
while the chiller system satisfied the chiller load with the least compressor and
condenser fan energy consumption. The outline of the hybrid optimization algorithm

using ANN and GA was given in Figure 6.2.

In this stage, GA was performed to optimize the fitness function for obtaining the
optimal response and the corresponding combination values of the control variables
within the feasible solution space of the system. Herein, a possible solution
represented a chromosome; a performance index was served as the fitness value of
the GA. Genes in the chromosome were formed by the values of the controlled
variables and uncontrolled variables, which were set as continuous and fell in the
specified range. The parameter bounds and the precision were determined according

to the characteristics of the system.

There were a large number of conditions for the chiller operating under CTC for one
year in the current study. As one of the objectives of this research was to investigate
the possibility of artificial intelligent control combing ANN and GA to improve the
chiller performance, several working conditions were considered to optimize the
chiller operation as shown in Table 6.2, which were not used for developing the
chiller model. When part load ratio was 0.5, one refrigeration circuit was full loaded.
When the chiller operated at full load, both of the two refrigeration circuits were full
loaded. For these two working conditions, the states of the staged refrigeration
circuit(s) were similar, and hence the comparison between TRNSYS and ANN at part

load ratio of 0.5 was not conducted.

The problem defined in Section 6.3.1.3 was optimized by real-coded GA. The
population size was 50, and the maximum number of generations was 100. The

crossover rate p. was 0.80, and the mutation rate p,, was 0.085. The objective
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function was a minimum problem of the chiller energy consumption. Figure 6.9
shows the evolution of the generations for one of the working conditions in Table 6.2,
Test 7. Through the performance map model based on ANN, the predicted optimal
set points of condensing temperature were obtained by GA. Table 6.2 listed the
predicted optimal set points of condensing temperature and the corresponding values

of variable combination.
6.2.1.5 Verification of the optimization result

There would be some differences between ANN outputs and the simulation results
by TRNSYS, even if the ANN was properly trained. Therefore, using hybrid ANN-
GA methodology, it was important to verify the optimal solutions using TRNSY'S to

ensure whether the solutions were acceptable.

Simulation by TRNSYS was carried out for the working conditions in Table 6.2.
With the simulation results, the chiller electricity consumption obtained with the
hybrid ANN-GA technique was compared with that obtained in the simulation. Table
6.2 shows the comparison between the TRNSYS simulated values and the

parameters estimated by ANN-GA methodology for 12 data sets.

Mathematical validation demonstrated that the comparison between the artificial
control and simulation data had a discrepancy lower than 5.8% in the worst case for
the set point of condensing temperature. For the chiller power consumption, the
discrepancy between the artificial control and simulation data was less than 4.5%.
From this comparison, it demonstrated that the solutions by Al controller were near

optimal.

The CPU runtime for GA to search for the optimal solutions was calculated by
MATLAB, and all tests performed on a same computer, in the absence of any other

major activity. The computer used was equipped with a Genuine Intel(R) CPU
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E6750 @2.66GHz, 4GB of RAM; MATLAB version used is 7.0. Each test was
performed three times for each function and for each algorithm studied. The CPU
time was shown in Table 6.2. The small relative errors for the variables in
conjunction with a computing time of about 80 s indicated that this strategy could be

applied with a high level of confidence for the on-line control of the chiller system.

For the purpose of benchmarking, this study conducted a comparison on the chiller
electricity consumption between the traditional head pressure control and the
proposed advanced control. Table 6.2 revealed that the proposed approach
outperformed the traditional HPC in terms of the chiller energy consumption, and it

could be improved up to 21.5% for the listed conditions in Table 6.2.

Table 6.2 Comparison of ANN-GA with TRNSY'S results (Case 1)

Test No. 1 2 3 4 5 6 7 8 9 10 11 12
PLR 025 025 025 025 075 075 075 075 1.0 1.0 10 1.0
Ta (°C) 20 25 30 35 20 25 30 35 20 25 30 35
meny (I/s) 533 533 533 533 533 533 533 533 533 533 533 533
T (°C) 8 8 8 8 8 8 8 8 8 8 8 8
Tosh(°C) 3 3 3 3 3 3 3 3 3 3 3 3
T (°C) 317 357 403 448 328 373 419 450 350 395 443 450
*Tcdspl (°C) 326 351 413 439 31.6 379 415 447 335 373 421 441
Error (%) 28 -1.7 25 21 -37 16 -10 -07 -43 -56 -49 -20

Teasp2 °C) - - - - 328 373 419 450 350 395 443 450
*TcdspZ(OC) 309 374 416 448 33.6 383 403 439
Error (%) -8 03 07 -04 -40 -30 -45 -23

Eq(kW) 583 651 733 835 2603 2919 3313 381.3 270.7 304.5 346.8 403.5
Eq(kW) 59.6 643 751 81.7 2533 291.7 331.6 3829 258.6 299.0 338.9 387.8
Error (%) 22 -12 25 22 27 -0.1 0.1 04 45 -1.8 -23 -39
"En(kW) 756 764 78.1 837 3227 328.6 341.6 382.1 3173 326.6 348.7 404.3
Sav.(%) 21.2 158 3.8 23 215 112 29 02 185 85 28 4.1
t(s) 81.3 81.6 813 84.1 815 812 81.6 81.7 81.8 81.5 80.6 8I1.5
Note: ~ Values from Al controller;
" Chiller power consumption under head pressure control.
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Figure 6.9 The convergence curve of the GA search for case 1
6.2.2 CTC with VSF and optimal waster mist

For the air-cooled chiller equipped with variable speed condenser fans and water
mist pre-cooling operating under variable condensing temperature control, the data
for developing the chiller model were generated from the simulation data of chillers
serving the representative office building using TRNSYS in Chapter 5. The
difference between this case and Case 1 was that the chiller energy consumption was
controlled by not only the set points of condensing temperature of refrigeration

circuits 1 and 2, but also the water mist generation rate of each water mist circuits.
6.2.2.1 Neural network construction

For the air-cooled chiller under CTC with optimal water mist generation rate, its
performance map model was constructed by a BP neural network. The “operating
data” simulated by TRNSYS would be used to train, validate and test the ANN
model, and there were 3051 data patterns in total for this case. From the chiller
operating data set, 60% were selected randomly for the neural network training, 20%

were used for validation and the remaining 20% of the total data were employed for
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testing the network. All the input—output data pairs were normalized to fall in the

interval [—1, 1] in order to improve the predicted agreement.

As one hidden layer could be sufficient to map an arbitrary function to any degree of
accuracy, the ANN model with just one hidden layer was investigated for this case.
In the present case, the inputs included the dry bulb temperature (74,) and RH of the
entering condenser air, chiller load sharing by refrigeration circuit 1 (Qcn), chiller
load sharing by refrigeration circuit 2 (Q), temperature of supply chilled water
(Tehws), chilled water mass flow rate (mchw), degree of subcooling (7egsc), degree of
superheating (7eysn), set point of condensing temperature of refrigeration circuit 1
(Tcasp1), set point of condensing temperature of refrigeration circuit 2 (7cdsp2), water
mist generation rate of water mist circuit 1 (mym,) and water mist generation rate of
water mist circuit 1 (mym2). The outputs from the ANN models were the condenser
fan speed of refrigeration circuit 1 (Vef), the condenser fan speed of refrigeration
circuit 2 (Vep), the chiller power consumption (E.,) and the power consumption of
high pressure pumps (Ech). In this case, to minimize the chiller energy consumption,
the controlled variables included the set points of condensing temperature of

refrigeration circuits 1 and 2, the water mist generation rate of each water mist circuit.

Bayesian regularization with Levenberg—Marquardt algorithm was selected to act as
the training function. Sigmoid transfer function was used as the activation function
for the hidden layers, and linear function was used for the output layers. The neuron
number of the hidden layer was determined by trial and error with different ANN
configurations. Egs. (2.9-2.13) in Chapter 2 were also introduced for estimating the
optimal number of hidden neurons in the ANN model. Although these formulas
suggested different optimal number of hidden neurons in the ANN model, they could

provide the possible range of the optimal number of hidden neurons, and the
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recommended range of optimal node number in the hidden layer from 4 to 14 for this
case. By comparing the performance of the ANN model with different ANN
configurations, the ANN model with 13 neurons in the hidden layer appeared to be
the most optimal topology for this case, and hence the neural network structure 12-
13-4 with testing RMSE, 0.0776, was selected to obtain a better performance, as
shown in Figure 6.10. The tan-sigmoid transfer function was used as the activation
function for the hidden layer, and linear transfer function was used as the activation

function for the output layer.

Figure 6.10 ANN architecture for Case 2
6.2.2.2 Performance analysis of MLP neural network

When the architecture of the ANN model was determined, the neural network model
was trained, validated and tested with the training set, validation set and the test set,
respectively. Figure 6.11 illustrates the convergence for training, validation and

testing during the iterations. The training was stopped after 224 iterations for the
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Bayesian regularization in combination with Levenberg—Marquardt algorithm after 6

validation checks, as shown in Figure 6.12.
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Figure 6.11 Convergence of training, validation and testing subsets for Case 2
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Figure 6.12 Training state of the ANN model for Case 2

Regression analysis was performed between the outputs of the network and the
corresponding targets, which were the corresponding TRNSYS simulation outputs
for this case, on the training, validation, testing and whole datasets as shown in
Figure 6.13. The dashed line in each axis represented the perfect result, where the
outputs were equal to targets. The solid line represented the best fit linear regression

line between outputs and targets. For this case, R-values of 1, 0.9999, 0.9999 and
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0.9999 were obtained for the training, validation, testing and the whole datasets,
respectively. This demonstrated that the ANN could predict the chiller performance

with higher confidence level.
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Figure 6.13 Performance of the ANN model (Case 2)

The regression analysis results of each output between the ANN predicted values and
the simulated values by TRNSYS were shown in Figure 6.14 for this case, including
the chiller power consumption, high pressure pump power consumption, speed of
condenser fans in the refrigeration circuit 1 and refrigeration circuit 2. The
comparisons in Figure 6.14 were made using values only from the test data set,
which was not introduced to the ANN model during the training process. All

graphics were provided with a correlation line indicating the curve fit and a +5%
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error band. For all the four output parameters, the correlation coefficient (R) was
greater than 0.999, and the MRE was less than 0.05%, which confirmed that the
agreement between outputs and targets was very good, and hence the well trained
ANN could accurately map the chiller performance in wide ranges of operating
conditions. The performance map based on the ANN would be used as the objective

function of the optimization problem.
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Figure 6.14 Comparison of ANN modeled and TRNSYS simulated values for Case 2

6.2.2.3 Formulation of optimization problem
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For this case, an optimization problem could be formulated to find the solutions
(optimal set points of condensing temperature for two refrigeration circuits and water
mist generation rate of each water mist circuit) that would minimize the energy
consumption by chillers and high pressure pumps, under given working conditions.
In addition to the energy use, the operation of the chiller system was subjected to
constraints for proper operation of the mechanical system and constraints for
maintaining indoor thermal comfort. The optimal operation problem for this case is

stated as follows:

Min J=E +E,+E (6.12)

pump

subject to:  20<T, <45

20<7;

cdsp

, <45

chwr,low < T;hwr < Tchwr,high

cdsc,low < cdsc < T;‘dsc,high

evsh,low ];vsh < T;vsh Lhigh

Since the aim was to find a feasible optimal solution, penalty functions were applied
to penalize infeasible solution whenever one or more constraints were violated. The
set point of condensing temperature should be within [20, 45]. When any constraints
were violated, the objective was penalized for the individual. The fitness function of

GA was accordingly revised to accommodate the penalty expressed as follow.

Min J=E +E,+E, +C (6.13)

where C had the same meaning as defined in Eq. (6.11).

6.2.2.4 Optimization results by GA
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With the trained ANN model, the artificial intelligent controller applied GA to find
the optimal set points of the condensing temperature and water mist generation rate
to minimize the energy consumption by chillers and high pressure pumps, while the
chiller system satisfied the chiller load. GA was performed to optimize the fitness
function for obtaining the optimal response and the corresponding combination
values of the control variables within the feasible solution space of the system. A
possible solution represented a chromosome, and a performance index was the
fitness value of the GA. Genes in the chromosome were formed by the values of the
controlled variables and the values of the uncontrolled variables, which were set as

continuous and fell in the specified range.

As in the previous cases, several working conditions were considered to optimize the
chiller operation as shown in Table 6.3, which were not used for developing the
chiller model. The problem of this case was optimized by real-coded GA. The
population size was 50, and the maximum number of generations was 100. The
crossover rate p, was 0.80, and the mutation rate p,, was 0.085. Figure 6.15 illustrates
the evolution of the generations for Test 13 in Table 6.3. Through the performance
map model based on ANN, the predicted optimal set points of condensing
temperature and water mist generation rate were obtained for the corresponding

values of variable combination, as shown in Table 6.3.
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Figure 6.15 The convergence curve of the GA search for case 2

6.2.2.5 Verification of the optimization result

In order to test the Al control strategy, the results by Al control were compared with
the simulation data by TRNSYS. Again, the mathematical validation of the Al
control strategy demonstrated very satisfactory with the simulation data, as shown in
Table 6.3. The percentage error compared to the simulation data was, as in Case 1,
less than 10% for most conditions. The CPU runtime for GA to search for the
optimal solutions was calculated by MATLAB, shown in Table 6.3. As expected,
this methodology took longer time, above 90 s, to find the optimal parameters, but it

was still acceptable for implementation in on-line control.

From the above two cases, the mathematical validation showed that the Al control,
comparing to the simulation data, had a discrepancy less than 10% for most
conditions. It is affirmed that this artificial intelligent methodology using ANN and
GA can be successfully implemented in the chiller systems as an on-line control

strategy.
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Table 6.3 Comparison of ANN-GA with TRNSYS results (Case 2)

Test No. 1 2 3 4 5 6 7 8 9 10 11 12
PLR 025 025 025 025 025 025 025 025 075 075 075 0.75
T4 (°C) 20 20 25 25 30 30 35 35 20 20 25 25
RH (%) 50% 80% 50% 80% 50% 80% 50% 80% 50% 80% 50% 80%
My (Us) 533 533 533 533 533 533 533 533 533 533 533 533
Tedse (°C) 8 8 8 8 8 8 8 8 8 8 8 8
Tn(°C) 3 3 3 3 3 3 3 3 3 3 3 3
Teaspi (°C) 255 29.0 292 333 329 377 368 420 272 30.7 309 350
*Tcdspl °C) 263 27.8 283 339 321 369 375 41.1 279 31.6 30.1 338
Error (%) 3.1 -4.1 -3.0 1.8 24 2.1 1.9 2.1 2.6 2.9 26 -34
Toasp2 (°C) - - - - - - - - 27.1 307 309 35.0
T2 (°C) 278 29.1 299 357
Error (%) 26 52 32 20
Mymi(1/s)  0.072  0.029 0.086 0.034 0.102 0.040 0.118 0.047 0.101 0.040 0.120 0.048
*mwml(l/s) 0.068 0.031 0.081 0.038 0.106 0.037 0.111 0.051 0.107 0.036 0.127 0.049
Error (%) -5.6 6.9 -5.8 11.7 3.9 -7.5 -5.9 8.5 59 -9.8 5.8 2.1
Mymo(1/3) - - - - - - - - 0.100 0.040 0.120 0.048
“Mym(1/8) 0.103 0.043 0.115 0.049
Error (%) 3.0 75 41 2.1
En(kW) 51.8 558 56.0 61.5 609 683 669 768 2293 248.1 249.1 274.8
*Ech(kW) 53.6 537 541 653 585 661 693 73.6 2337 253.8 2419 260.3
Error (%) 3.5 -3.8 34 6.2 -39 32 3.6 -4.2 1.9 2.3 29 53
Enw(kW) 756 756 764 764 78.1 78.1 83.7 83.7 322.7 322.7 328.6 328.6
Sav.(%) 29.1 29.0 292 145 25.1 154 172 12.1 276 214 264 20.8
t(s) 90.9 90.8 904 919 90.5 897 902 913 90.5 903 91.1 90.5
Table 6.3 cont. Comparison of ANN-GA with TRNSYS results (Case 2)

Test No. 13 14 15 16 17 18 19 20 21 22 23 24
PLR 075 075 0.75 0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
T4 (°C) 30 30 35 35 20 20 25 25 30 30 35 35
RH (%) 50% 80% 50% 80% 50% 80% 50% 80% 50% 80% 50% 80%
maw (1/s) 533 533 533 533 533 533 533 533 533 533 533 533
Teasc (°C) 8 8 8 8 8 8 8 8 8 8 8 8
Tevsn (°C) 3 3 3 3 3 3 3 3 3 3 3 3
Tosp1 (°C) 347 393 385 432 295 329 331 371 368 413 405 45
*Tcdspl °C) 369 416 376 425 313 341 315 355 373 439 43,6 433
Error (%) 6.3 59 2.3 -1.6 6.1 3.6 4.8 -4.3 14 6.3 7.7 -3.8
Tusp2 (°C) 347 393 385 436 295 329 331 371 368 413 405 45
*Tcdspz(c’C) 36,6 413 388 42.6 31.5 338 31.0 353 38.1 431 44.1 43.7
Error (%) 5.5 5.1 0.8 2.3 6.8 2.7 -6.3 -4.9 3.5 44 8.9 -2.9
Mymi(I/s)  0.141 0.056 0.166 0.068 0.109 0.043 0.130 0.051 0.153 0.061 0.179 0.068
*mwml(l/s) 0.131 0.061 0.156 0.077 0.116 0.049 0.121 0.053 0.151 0.067 0.168 0.073
Error (%) -7.1 8.9 -6.0 13.2 6.4 140 -6.9 39 -1.3 9.8 -6.1 7.4
mym2(1/s)  0.141 0.056 0.166 0.068 0.109 0.043 0.130 0.051 0.153 0.061 0.179 0.068
*mwmz(l/s) 0.143 0.059 0.16 0.071 0.113 0.047 0.123 0.055 0.156 0.066 0.166 0.075
Error (%) 1.4 5.4 -3.6 4.4 3.7 9.3 54 7.8 2.0 8.2 -7.3  10.3
E; (kW) 2725 307.7 300.6 348.3 237.5 257.5 258.7 286.2 283.7 321.3 313.7 3652
*Ech(kW) 282.3 323.3 293.6 334.6 251.8 269.1 2439 271.5 2939 339.5 336.2 380.1
Error (%) 3.6 5.1 2.3 -39 6.0 4.5 -5.7 -5.1 3.6 5.7 7.2 4.1
E, (kW) 341.6 341.6 382.1 382.1 317.3 317.3 326.6 326.6 348.7 348.7 404.3 4043
Sav.(%) 17.4 5.4 232 124 206 152 253 169 157 2.6 16.8 6.0
£(s) 971.3 938 929 927 905 899 903 90.6 90.5 91.1 913 90.8

Note: ~ Values from Al controller;

" Chiller power consumption under head pressure control.
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6.3 Sensitivity analysis

As shown in Tables 6.2 and 6.3, the chiller efficiency might in fact be very sensitive
to particular operating parameters, which need to be given particular attention during
operation. Therefore, in order to improve the chiller efficiency, sensitivity analysis is
conducted to identify the most influential factors that affect the energy consumption

of the chiller system.

Sensitivity analysis consists of quantitative comparison of changes in outputs to
changes in inputs (Lam and Hui 1996). In this study, the main output was the chiller
COP while the inputs were eight parameters that were individually varied to reflect
the impact of the variables on the chiller performance. Tables 6.4 and 6.5 summarize
the considered inputs with their initial values used in the base case model and the
possible range over which they were varied, when the chiller was operating at full
load and at a part load ratio of 0.3, respectively. Upon the base model, the input
variables were then adjusted individually to examine the effect of each factor on the

chiller performance.

The temperature of the supply chilled water (7chws) could deviate by 1 °C from its
nominal set point of 7 °C, so its minimum and maximum perturbations were 6 and 8
°C, respectively (Yu, Chan et al. 2006). Outdoor dry bulb temperature (74 could
vary from 15 to 35 °C, and the outdoor relative humidity (RH) could vary from 40%
to 100% for chillers operating in Hong Kong. The range of the chilled water flow
rate (my) is related to its lower and upper limits given in the chiller specifications.
The mist systems were designed to provide a mist generation rate of 0.0335 I/s for
each refrigeration circuit, and 0,067 1/s for each refrigeration circuit was computed
based on the calculation of peak mist generation rate. The degree of evaporator

superheat (7..s) and that of condenser subcooling (7.4sc) Were assumed to be 6°C
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and 3°C in the base case, as the possible variations for Teysp and  Tegse Were 4—8°C
and 1-6°C, respectively (Yu and Chan 2006b). In this study, the set point of the
condensing temperature (7cqsp) 1S 45°C, which is normally used under HPC. The
lower limit for T¢qgp 15 20 °C or (Tegae + 5) °C, whichever is higher, and the highest

Teqsp 15 50°C (Yu and Chan 2006b).

After completion of the analysis, the sensitivity influence coefficients (IC) were
calculated to quantitatively measure the sensitivity of the models to changes in the
inputs presented in Tables 6.4 and 6.5. IC is a ratio of the percentage change in
output to the percentage change in input as shown in Eq. (6.14) (Lam and Hui 1996;
Lam, Wan et al. 2008), where OPgc and IPgc are the base case output and input
values, respectively, and AOP is the change in output resulting from a AIP change in
input.

- _AOP/OP, 6.14)
AIP/IP,,

Tables 6.4 and 6.5 show the sensitivity analysis results for various operating
conditions, and Figure 6.16 shows the sensitivity influence coefficients of the eight
studied operating parameters in terms of chiller performance, which indicate a high
consistency in the outputs at full load and part load conditions. The negative IC
values for Ty, RH, Tevsh, Mmchw and Tegpr suggest that chiller efficiency would

decrease as these factors increase.

Outdoor dry bulb temperature has a dominating influence on the performance of air-
cooled chillers with high values for both full load and part load conditions. It is
ascertained that chiller efficiency tends to be sensitive to the set point of the
condensing temperature. 7. is responsible for 14.3% of the chiller performance at
full load when the outdoor temperature is 35°C. When the outdoor temperature is

28°C and the part load ratio is 0.3, T4 is responsible for 27.2% of the chiller
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performance. It reveals that the variable set point of the condensing temperature is
significant to improve the chiller performance, especially when the chillers are
operating at part load ratio with mild weather conditions. For the air-cooled chillers
with water mist pre-cooling, RH is also an important factor affecting the chiller
performance, which is responsible for 9.5% and 5.8% of the chiller performance
when the outdoor temperature is 35°C and 28°C, respectively. It reveals that water
mist pre-cooling effect would be more significant with higher outdoor dry bulb
temperature and lower relative humidity.

Table 6. 4 Variable list and input ranges for sensitivity analysis and IC (PLR=1).

Input Parameters Base case value Range  Sensitivity influence coefficient

Ta» (°C) 33 15-35 -0.297
RH (%) 60 40-100 20.051
T (°C) ; 6q 0.029
Tedse (°C) 3 1-6 -0.027
Tevsn (°C) 6 4-8 0.012
Meny (Us) 53.3 23.0-91.9 -0.019
Mt (US) 0.0335 0-0.067 0.022
M2 (US) 0.0335 0-0.067 0.022
Teasp1 (°C) 45 38-50 -0.076
Teasp2 (°C) 45 38-50 -0.076

Table 6.5 Variable list and input ranges for sensitivity analysis and IC (PLR=0.3).

Input Parameters Base case value Range  Sensitivity influence coefficient

T (°C) 28 15-35 -0.104
RH (%) 60 40100 20.016
T °C) , 6q 0.031
T (°C) ; L6 20.021
Tevsn (°C) 6 4-8 0.012
Mty (U/s) 53.3 23.0-91.9 -0.013
Myt (1/s) 0.0335 0-0.067 0.007
Myma (1/s) 0.0335 0-0.067 0.007
Toisp1 (°C) 45 33-50 ~0.076
Tegsp2 (°C) 45 33-50 ~0.076
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Figure 6.16 Sensitivity influence coefficients
6.4 Summary

An approach to optimize the chiller operation based on artificial intelligence methods
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was reported in this chapter. This chapter demonstrated the implementation of the
simulation-based hybrid artificial intelligence control method combining ANN and
GA. ANN was used to construct the performance map model of a chiller, and GA
was then applied to find the parameter settings with an optimal response based on the

ANN models.

The chiller database was generated from the simulation of chiller models using
TRNSYS in Chapters 4 and 5. To demonstrate the possibility of artificial intelligent
control combing ANN and GA to improve the chiller performance, two different
cases were considered. The ANN models for the air-cooled chillers under different
operating schemes were developed. The trained and validated ANN models were
then integrated into the genetic algorithm serving as the evaluation function, and GA
could search for the optimal or near-optimal controlled variables to operate the
chillers efficiently. The optimization results were verified with simulation data using
TRNSYS, and it confirmed that the hybrid ANN—GA technique was suitable for the

optimal control for the air-cooled chillers.
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Chapter 7 Conclusions and Recommendations

This chapter draws conclusions on the field investigation, experimentation and
simulation for air-cooled chillers with advanced condenser features, including
variable condensing temperature control, variable speed condenser fan control and
water mist pre-cooling. A variety of studies have been performed, which has proved
the promising application of the advanced condenser features. This research has also
affirmed the feasibility of the hybrid intelligent control using ANN and GA for
optimal control of air-cooled chillers for energy efficiency. The contributions of this
research are summarized, and some research works requiring further investigations in

the future are suggested.
7.1 Conclusions

Air-cooled chillers are widely used to provide space cooling in air-conditioned
buildings due to their flexibility. The operation of chillers usually takes up the
highest proportion of the total electricity consumption of buildings in regions of hot
or warm climate. Low operational efficiency and undesirable control are part of the
reasons for such high energy consumption. The deficient performance of air-cooled
chillers is mainly due to the traditional head pressure control (HPC) under which the
condensing temperature is kept high. New methods for improving chiller operation

and energy efficiency are necessary.

This research focused on the optimal operation of air-cooled chillers with variable
condensing temperature control (CTC) to lower the condensing pressure and reduce
chiller power. The optimization problem was formulated and solved to find the

optimal set point of condensing temperature and optimal water mist generation rate
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under various conditions with least chiller energy consumption. To achieve this
objective, a combination of field investigation, experimentation and system
simulation was conducted. Through this research, how the operational efficiency of
air-cooled chillers could be improved was demonstrated, and the implication of this

improvement on the energy saving in the commercial building sector was assessed.

Field investigation has been conducted to identify the operating characteristics and
energy performance of two existing chiller plants with and without water mist pre-
cooling. Based on the detailed evaluation of the existing chilled water plants in the
PolyU campus, it has been found that the condensing temperature fluctuates widely
under traditional head pressure control, which results in an inadequate control of
chiller operation. An experiment has been conducted on an air-cooled chiller with
water mist system. When the water mist system was coupled to the air-cooled
chillers, the condensing temperature dropped by up to 7.2°C, and the chiller COP
could be improved in varying degrees by up to 18.6 during the experimental period.
This affirms the benefit of applying water mist pre-cooling in the subtropical climate,

let alone the hot and dry climate.

With the operating characteristics of the studied chillers, the thermodynamic models
for the air-cooled chillers with twin refrigeration circuits with or without water mist
system were developed using TRNSYS and validated using a wide range of
operating data. Within the chiller models, the mass balance of refrigerant and energy
balance are satisfied and the mechanistic relations between chiller components are
taken into account. An algorithm is introduced to compute the number and speed of
staged condenser fans by a set point of condensing temperature for the chiller
operating under variable condensing temperature control or head pressure control.

The integrated model for the chiller with water mist pre-cooling is sophisticated and
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capable of controlling the optimal set point of condensing temperature and optimal
water mist generation rate. With the aid of TRNSYS, extensive simulations were

performed for various operating schemes, and the chiller performance was analyzed.

Under HPC with constant speed condenser fans, water mist pre-cooling enabled the
condensing temperature drop by up to 7.8°C and 8.8°C with designed and optimal
water mist generation rate, respectively. When RH was 50%, the COP of the chiller
with designed and optimal water mist generation rate increased by varying degrees
up to 22.6% and 26.8%, respectively. When the chiller operated under HPC but with
VSF and optimal water mist generation rate, the COP could be improved up to
23.3%. When the chiller operated under CTC with constant speed condenser fans, the
chiller COP could be improved in all operating conditions up to 35.4%. The use of
variable speed condenser fans and CTC enabled the chiller COP to be improved

further up to 51.8%.

It was noted that there were casual occurrences of decreased chiller COP due to
unfavourable fan staging under HPC and extra pump power consumed for generating
water mist. This indicated that it was undesirable to operate the chiller with water
mist under HPC. To take full advantage of the water mist, HPC should be replaced
by CTC and VSF. When the chiller operated with VSF, CTC, optimal water mist
generation rate and the relative humidity was 50%, the chiller COP was improved
most by up to 70.8%. The water consumption of the water mist system was small
comparing to the total water losses for an open-loop cooling tower system with
equivalent heat rejection capacity. This research demonstrates that a combination of
CTC, VSF and water mist system coupled to air-cooled chillers is an energy-efficient

and environmentally green technique.

The building and air-conditioning system of the representative office and hotel
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buildings in Hong Kong have been developed using EnergyPlus. Simulation analyses
were carried out to assess the electricity savings and cost effectiveness of individual
and mixed uses of the measures, including variable condensing temperature control,
variable speed condenser fans and water mist pre-cooling for the entering condensers
air. The simulation results showed that the annual electricity consumption of air-
cooled chillers dropped by up to 14.8% and 14.9% for the typical office building and
hotel building when the improved condenser features of CTC, VSF and WM were
implemented together. These energy effective measures would yield a long-term

significance on reducing the electricity consumption by the commercial sector.

Many air-cooled chillers are designed with multiple refrigeration circuits connected
in parallel to enhance the reliability improve the chiller performance, for which
proper control for load sharing in the refrigeration circuits (CLS) is critical. Optimal
CLS enabled the total electricity consumption of the chillers to drop by 4.2% under
HPC. Under CTC with optimal CLS, the annual power consumption by chillers

serving the typical office building could be saved by 9.6%.

Due to the complex nonlinear characteristics of chiller systems, an intelligent control
technique, including neural network and genetic algorithm, was adopted in this
research for the optimal control of the air-cooled chillers under various operating
conditions. The neural network was applied to map the chiller performance, and
genetic algorithm was adopted in searching optimal set points of condensing
temperature and optimal water mist generation rate based on the predicted fitness
values. The ANN predictions for the chiller power yielded a correlation coefficient
(R) and coefficient of determination (R”) greater than 0.99, which demonstrated that
the predictions of ANN model were quite accurate. The chiller energy consumption

could be saved up to 21.5% when CTC and VSF were applied. The saving was
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further improved to 29.2% when CTC, VSF and optimal water mist generation rate
were implemented. The results reveal that the hybrid ANN-GA approach is workable,
and it outperforms the conventional HPC in achieving chiller energy saving. This
intelligent control technique enables optimal condensing temperature control
successfully, and the energy consumed by the compressors, condenser fans and high
pressure pumps generating water mist can be minimized. The control performance is

superior to the conventional head pressure control.
7.2 Recommendations

Major efforts of this study are made on the development of the variable condensing
temperature control to improve the efficiency of air-cooled chillers. It would be

desirable and valuable to make further efforts on the following three related aspects.

Experiment on water mist pre-cooling

The criteria for operating air-cooled chillers with water mist system for optimal
efficiency should be investigated further with more experiments conducted at various
combinations of chiller part load ratio, weather conditions, water mist generation
rates and droplet sizes. Droplet sizes and distance between the nozzles and the

condenser face shall be investigated in details in the future research work.

In the condenser air stream, the water mist generated may not fully evaporate before
entering the condenser coil, and the unevaporized or excessive mist may cause
damping of the condenser fins and coil. On the other hand, any presence of water
mist in the air stream passing through the condenser coil may provide further
evaporation and reject more heat from the refrigerant. This is an unknown process

which deserves further research.

Experiment on variable condensing temperature control
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The analyses performed in this research show that it is viable to implement variable
condensing temperature control with regard to the potential of energy savings.
Experimental tests should be carried out by the chiller manufactures to analyse how
the control of condensing temperature with variable set points interacts with the
capacity control, refrigerant flow control, condensing fan operation and compressor
lubrication. It is important to ascertain the likely effects of lowering the condensing
temperature on the precision of controlling the chilled water supply temperature and
degree of superheat at compressor suction, and on the viscosity of lubricant to ensure
proper compressor lubrication. In-site implementation and validation of the proposed
variable condensing temperature control on chiller system are needed. More
sophisticated control logic may be required to ensure stable operation with more

precise control of the parameters in response to various ambient and load conditions.

Experiment on application of the hybrid ANN-GA control strategy

In this research, a hybrid artificial intelligent control using ANN and GA was
proposed, and satisfactory preliminary results were achieved. The future work will be
to refine the Al controller design and apply it to the control of an actual air-cooled
condenser, and compare its performance with the one of the conventional controller.
The experimental tests and field investigation will determine the applicability of the
Al controller when applied to different chillers operating under conventional head
pressure control. The Al controller in this research was developed based on the
simulation data by TRNSYS. The benefit of the research work presented, however,
will be realized when the neural network is initially trained by manufacturer’s
measured data, while subsequent on-line training will allow for continuous

improvement of the desired condenser features through optimal control.
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Appendix A - Chiller Model under HPC

SUBROUTINE TYPE391 (TIME,XIN,OUT,T,DTDT,PAR,INFO,ICNTRL,*)

C********

st sfe sfe sfe sk sk ske sk sie sk sk sk sk sk ste sk st she she she sk ske sk ske st sk sk sk sk sk st she sk she sk sk ske sk ske sk st sk sk sk sk sk sk sk sk skeoskeoskoskeoskoskokokoskokok skekok

C* Developer:  Yang Jia

C*
C*

O wkksk*

Department of Building Services Engineering
The Hong Kong Polytechnic University

sk sk otk sk sk ok ok sk skt ok sk ok okok ok okosk sk okl sk sk ook sk skokoksk kot okok ook sk ook sk ok ook sk kR kR kR ok K

C* PROGRAM: TYPE 391
C* PURPOSE: Parameter evaluation of screw chiller

Csokskeskokoksk

C*

s sk s s s sk sk sk sk sk sk sk sk st st sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk s s sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk skoskoskoskoskok kol sk kokosk

C* INPUT VARIABLE

C* Ifluid
C*

C*

C*

C*

C*

C*

C*

C* Fw
C*N
C*PLR
C* Tcdae
C* Tedsc
C* Tedsp
C* Tchws
C* Tevsh
C*

Selection of the refrigerant )
If Ifluid
=1: Refrigerant 12
=2: Refrigerant 134a
=3: Refrigerant 114
=4: Refrigerant 22
=5: Refrigerant 502
=6: Refrigerant 717 (Ammonia)

Chilled water mass flow rate (kg/s)
Number of operating conditions -)

Part load ratio of a chiller )

Outdoor temperature (dry bulb) (0C)
Degree of subcooling (0C)
Set point of condensing temperature (0C)
Supply chilled water Temperature (0C)
Degree of superheat (00)

C* REFRIGERANT PROPERTIES

C* Acl First coefficient in the Clausius-Clapeyron quation (-)

C* Bcel Second coefficient in the Clausius-Clapeyron equation (K)

C*b Coefficient used in the calculation of the aporization enthalpy (-)

C* ¢pliq Mean specific heat in saturated liquid state (J/kg/K)

C*cpvap  Mean specific heat at constant pressure  (J/kg/K)

C* in superheated vapor state for saturation temperatures ranging from 253 K to 283 K
C* cpvapcd Mean specific heat at constant pressure  (J/kg/K)

C* in superheated vapor state for saturation temperatures ranging from 303 K to 333 K
C* Gamma Mean isentropic coefficient )

C* hfgb Vaporization enthalpy at standard boiling point (101325 Pa) (J/kg)

C* hfo Enthalpy of the saturated liquid at the reference temperature (J/kg)

C*r Gas constant J/kg/K)

C*Tb Standard boiling temperature (K)

C*Tc Critical temperature (K)

C* To Reference temperature (K)

C* Zeta Mean compressibility factor for saturation )

C* temperatures ranging from 253 K to 283 K

C* Zetacd Mean compressibility factor for saturation temperatures ranging from 303 K to 333 K (-)
C********************************************************************

C* OUTPUT VARIABLES

C*AUcd  Condenser heat transfer coefficient (kW/oC)

C* AUev  Evaporator heat transfer coefficient (kW/0C)

C* CR Compression ratio )

C* Ecc Compressor power kW)

C* ecd Condenser heat exchange effectiveness (-)

C* Ecf Total condenser fan power (kW)

C* Ech Total chiller power (kW)
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C* eev Evaporator heat exchanger effectiveness -)

C* Effcc Combined motor and transmission efficiency (-)
C* Effis Isentropic efficiency )

C* Eftv Volumetric efficiency )

C* Frtot Total refrigerant mass flow (kg/s)

C* hl Refrigerant enthalpy at compressor suction (kJ/kg)
C* h2 Refrigerant enthalpy at compressor discharge (kJ/kg)
C* h3 Refrigerant enthalpy at condenser discharge (kJ/kg)
C* kton Chiller operating efficiency in kW/kW (kW/kW)
C* Pcd Saturated condensing pressure (kPa)

C* Pev Saturated evaporating pressure (kPa)

C* Qcd Total heat rejection (kW)

C* Qcl Cooling capacity (kW)

C* qrf Refrigeration effect (kJ/kg)

C* Ted Saturated condensing temperature (0C)

C* Tcdal  Leaving condenser air temperature (00)

C* Tchwr  Return chilled water temperature (0C)

C* Tev Saturated evaporating temperature (0C)

C* Va Heat rejection airflow (m3/s)

C* win Indicated work done by a compressor (kJ/kg)
C* Xce Number of operating compressors )

C* Xcf Number of operating condenser fans )

(C 3t s e st st s e she st s ke she st s s she st s s sfe ks s ke ke st s st st st sk st shestesi ke sheste stk stestesioste st stk ste sttt st skokolk stk kokoskokokokokoskokok

C* CONSTANT PARAMETERS

C* Cpa Specific heat of outdoor air (kJ/kg/K)

C* Cpw Specific heat of liquid water (kJ/kg/K)

C* Dena Density of air (kg/m3)

C* Ecfr Rated total condenser fan power (kW)
C* Nccer Maximum number of compressors )
C* Nefr Maximum number of condenser fans )
C* ni Index of reversible polytropic expansion process (-)
C* Qcr Rated cooling capacity (kW)

C* Tedr Maximum condensing temperature (0C)
C* Var Rated heat rejection airflow (m3/s)
C*Vp Piston displacement of each compressor (m3/s)

C********************************************************************

INTEGER*4 INFO

Integer Iterl,Iter2,Iter3,Iter4,IterS,Iter6,Iter7,Iter8

DOUBLE PRECISION XIN,out

PARAMETER (M=8760)

REAL Ifluid,N,Vp,Den1,ni,Cpw,Cpa,Dena,v1

REAL Qcr,Var,Ncfr,Ecfr,Nccr, Tedr, Tedrlow,h X, Tedsp, Ted, Xcf

DIMENSION PLR(M),PLR1(M),PLR2(M),PLR11(M),PLR12(M),PLR21(M)
DIMENSION PLR22(M),Tcdae(M),Fw(M),Tchws1(M),Tchwrl(M),Tchwrl1(M)
DIMENSION Tcdsc(M),Qcl(M),Qcl1(M),Qcl2(M),Tev(M),Tevl(M),Tev2(M)
DIMENSION Pev1(M),Pev2(M),AUev11(M),AUev12(M),AUev2(M),eev11(M)
DIMENSION eev12(M),eev2(M),Fr1 1(M),Fr12(M),Fr21(M),Fr22(M)
DIMENSION EFFv1(M),EFFv2(M),EFFis1(M),EFFis2(M),Fr1(M),Fr2(M)
DIMENSION EFFccl(M),EFFcc2(M),CR1(M),CR2(M),Xcc(M),Xccl(M),Xcc2(M)
DIMENSION Ecc(M),Ecc1(M),Ecc2(M),Tcd1(M),Tcd2(M),Xccl1(M),Xcc12(M)
DIMENSION Tcdall(M),Tcdal2(M),Qcd1(M),Qcd2(M),AUcd1(M),AUcd2(M)
DIMENSION Val(M),Va2(M),Xcf1(M),Xcf2(M),Ecf(M),Ecf1(M),Ecf2(M)
DIMENSION qrf1(M),qrf2(M),Ech(M),Ech1(M),Ech2(M),h11(M),h21(M)
DIMENSION Tchwr(M),Frtotl (M),Frtot2(M),win1(M),win2(M),Fcc(M)
DIMENSION Tcdsp(M),Pcd1(M),Pcd2(M),h31(M),h12(M),h22(M),h32(M)
DIMENSION Tchws(M), COP1(M),COP2(M),Tevsh(M),ecd1(M),ecd2(M)
DIMENSION Xcf(M),Ts1(M),Effcc11(M),Effcc12(M),Effec21(M),COP(M)
DIMENSION Effcc22(M),Ecc11(M),Ecc12(M),Ecc21(M),Ecc22(M),Qcll 1p(M)
DIMENSION Qcl11(M),Qcl12(M),Qcl21(M),Qcl22(M),Tevip(M),AUev1(M)
DIMENSION Mal(M),Ma2(M)
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DIMENSION PAR(14),XIN(8),0ut(60),INFO(15)

COMMON /LUNITS/ LUR,LUW,IFORM,LUK

COMMON /SIM/ TIMEO,TFINAL,DELT,IWARN

COMMON /CONFIG/ TRNEDT,PERCOM,HEADER,PRTLAB,LNKCHK,PRUNIT,IOCHEK,
& PRWARN

INFO(6)=60

C1*** PARAMETERS

ITIME=INT(TIME)
N=par(1)
Cpw=par(2)
Cpa=par(3)
Dena=par(4)
ni=par(5)
Qcr=par(6)
Vp=par(7)
Var=par(8)
Ncfr=par(9)
Ecfr=par(10)
Ncer=par(11)
Tcdr=par(12)
Tcdrlow=par(13)

C1*** For each operating condition:

DO 60 L=1,N
Ifluid= xin (1)
PLR(L)=xin(2)
Tcdae(L)=xin(3)
Tchws(L)=xin(4)
Fw(L)=xin(5)
Tevsh(L)=xin(6)
Tedsc(L)=xin(7)
Tedsp(L)=xin(8)

C2*** Selection of the refrigerant

CALL PROPERTY (Ifluid, To,cplig,hfo,cpvap,cpvapcd,hfgb,Tb,Tc,
& b,r,Zeta,Zetacd,Gamma,Acl,Bcl,*10)
10 CONTINUE

C1***Compute operating parameters at evaporator side
200 Qcl(L)=PLR(L)*Qcr
C*** Load sharing strategy

IF (Qcl(L).GT.0.5*Qcr) THEN
Qcl1(L)=0.5*Qcl(L)
Qcl2(L)=Qcl(L)-Qcl1(L)
ELSE
Qcl1(L)=Qcl(L)

Qcl2(L)=0

ENDIF

PLR1(L)=Qcl1(L)/(0.5*Qcr)
PLR2(L)=Qcl2(L)/(0.5*Qcr)
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C  Chilled water return temperaturte
Tchwr(L)=Tchws(L)+Qcl(L)/Fw(L)/Cpw
1t3=0
Qcl11(L)=0.5*Qcl1(L)

C1*** Calculate the cooling capacity of section 2 of circuit A
11 Qcl12(L)=Qcl1(L)-Qcl11(L)

C*** Calculate the evaporator effectivenesses
AUev1 1(L)=1/(0.027*Fw(L)**(-0.8)+0.934*Qcl11(L)**(-0.745))
eevl1(L)=1-EXP(-AUev11(L)/Fw(L)/Cpw)
AUev12(L)=1/(0.027*Fw(L)**(-0.8)+0.934*Qcl12(L)**(-0.745))
eev12(L)=1-EXP(-AUev12(L)/Fw(L)/Cpw)

C2*** calculate the chilled water temperature entering circuit B
Tchwrl(L)=Tchwr(L)-Qcl11(L)/Fw(L)/Cpw

C2*** Calculate the chilled water temperature leaving circuit B
Tchws1(L)=Tchwrl(L)-Qcl2(L)/Fw(L)/Cpw

C1*** Calculate the evaporating temperature
Tev1(L)=Tchws1(L)-Qcl12(L)/Fw(L)/Cpw/eev12(L)

C1*** Recalculate the cooling capacity of section 1 of circuit A
Qcll1p(L)=eev1 1(L)*Fw(L)*Cpw*(Tchwr(L)-Tev1(L))

IF (Qcl11p(L).GT.0.5*Qcl1(L)) THEN
Qcl11p(L)=0.5*Qcl1(L)

ELSE

CONTINUE

ENDIF

TF (abs((Qel11p(L)-Qel11(L))/Qcl11(L)).GT.0.01)THEN
Qcl11(L)=Qcl11p(L)

GOTO 11

ELSE

CONTINUE

ENDIF

C*** Calculate the evaporator effectivenesses

C1*** Calculate the refrigerant state 1at the evaporator exhaust
dhfg1=(hfgb/1000)*((Tc-(Tev1(L)+273.15))/(Tc-Tb))**b
hX1=(hfo/1000)+(cpliq/1000)*(Tev1(L)+273.15-T0)+dhfg1
h11(L)=hX1+(cpvap/1000)*Tevsh(L)
v11=Zeta*r*(Tev1(L)+273.15)/(Pev1(L)*1000)
Denl1=1/v11-(-.0007+.0002*Pev1(L))*Tevsh(L)

Iterl=1
Tcd01=55

C*** Calculate the condensing pressure
52 Pcdl(L)=EXP(Acl+Bcl/(Tcd01+273.15))

C1***Compute operating parameters at compressor

h31(L)=(hfo/1000)+(cpliq/1000)*(Tcd01+273.15-T0-Tedsc(L))
qrfl(L)=hX1-h31(L)

249



CRI(L)=Pcd1(L)/Pev1(L)

Effv1(L)=.925-.009*CR1(L)

Effis1 1=-.0316958*Tcd01#*2+2.90112*Tcd01-.0296849* Tev1(L)**2
Effis21=-1.45279*Tev1(L)+.000321176*Tcd01**2*Tev1(L)
Effis31=.00683086*Tcd01*Tev1(L)+.0170575%0.5%Qcr-16.5018
Effis1(L)=(Effis| 1+Effis2 1 +Effis31)/80

Fr1(L)=Eftv1(L)*Denl1*Vp
Xeel(L)=INT(Qcl1(L)/Fr1(L)/qrfl1(L)+0.95))

IF (Xccl(L).LT.1) THEN
Xceel(L)=1
ENDIF

IF (Xccl(L).GT.(0.5*Nccr)) THEN
Xcel(L)=0.5*Nccer
ENDIF

C*** Loading sharing between compressors
IF (PLR1(L).LE.0.5) THEN
Xcel(L)=1
ELSE
Xcel(L)=0.5*Ncer
ENDIF

C*** Equally shared
IF (PLR1(L).LE.0.5) THEN
PLR11(L)=Qcl1(L)/(0.25*Qcr)
PLR12(L)=0
ELSE
PLR11(L)=0.5*Qcl1(L)/(0.25*Qcr)
PLR12(L)=PLR11(L)

ENDIF

C1*** Calculate the refrigerant mass flow rate
Frtot1(L)=Qcl1(L)/qrf1(L)

C1*** Calculate the refrigerant mass flow rate
Fr11(L)=PLR11(L)*0.25*Qcr/qrf1(L)

C1*** Calculate the refrigerant mass flow rate
Fr12(L)=PLR12(L)*0.25*Qcr/qrf1(L)

C1*** Calculate the internal compression power
winl(L)=Pev1(L)/Denl1*(ni/(ni-1))*(CR1(L)**(1-1/ni)-1)

C*** compressor efficiency
Effcc11(L)=0.0258+0.8214*PLR11(L)+0.1932*PLR11(L)**2
Effcc12(L)=0.0258+0.8214*PLR12(L)+0.1932*PLR12(L)**2

IF (PLR11(L).GT.0) THEN
Eccl1(L)=Fr11(L)*winl(L)/Effis1(L)/Effcc11(L)
ELSE
Eccl1(L)=0
ENDIF

IF (PLR12(L).GT.0) THEN
Ecc12(L)=Fr12(L)*win1(L)/Effis1(L)/Effcc12(L)
ELSE
Eccl12(L)=0
ENDIF

Eccl(L)=Ecc11(L)+Eccl2(L)
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C1***Compute operating parameters at condenser side
Qcd1(L)=Qcl1(L)+Frtot1(L)*(cpvap/1000)*Tevsh(L)+Eccl(L)

IF (Tedsp(L).LE.Tedae(L)) THEN
Xcf1(L)=0.5*Ncfr
GOTO 51

ENDIF

Nefr1=0.5*Ncfr
Xefl(L)=INT(Qcd1(L)*Nefr/(Var*Dena*Cpa*(Tcdsp(L)-Tedae(L)))+0.5)

IF (Xcf1(L).GT.Ncfrl) THEN
Xcfl(L)=Ncfrl
GOTO 51
ENDIF

DO 80 P=1,INT(Ncfrl)
IF (Xcfl(L).LE.P) THEN
XcfI(L)=P
GOTO 51
ENDIF
80 CONTINUE

Xcfl(L)=Ncfrl

Iter3=0
Iter4=0

51 Val(L)=Xcfl(L)*(Var/Ncfr)
Tedall(L)=Tcdae(L)+Qcd1(L)/(Val(L)*Dena*Cpa)

IF (Tedall(L).GT.Tedr. AND.XcfI(L).LT.Ncfr1) THEN
Xcfl(Ly=Xcfl(L)+1

GOTO 51

ENDIF

C1*** Calculate the condenser effectivenesses
AUcd1(L)=1/(0.049*Val(L)**-.5+.006*Frtot1(L)**-.8)
ecdl(L)=1-EXP(-AUcd1(L)/Val(L)/Dena/Cpa)

C1*** Calculate the condensing temperature
Ted1(L)=Tcdae(L)+(Tcdall(L)-Tcdae(L))/ecd1(L)

IF (Ted1(L).GT.Ted01) THEN
Xcfl(Ly=Xcf1(L)+1
GOTO 51

ENDIF

IF ((Tcd01-Ted1(L)).GT.0.05) THEN
Ted01=Ted1(L)
GOTO 52
ENDIF

IF (Ted1(L).GT.Tedr) THEN
Xcfl(Ly=Xcf1(L)+1
GOTO 51

ENDIF

C1*** Calculate the power consumed by the condenser fans of circuit A
Ecfl(L)=Xcf1(L)*Ecft/Ncfr
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C1*** Calculate the power consumed by the circuit A
Echl(L)=Eccl(L)+Ecfl(L)

C1*** Calculate the coefficient of performance
COP1(L)=Qcl1(L)/Ech1(L)

IF (Qcl2(L).LE.0.0) THEN
Xcf2(L)=0
Ecf2(L)=0
Ech2(L)=0
Tchwrl(L)=Tchwrl(L)
Tev2(L)=0
AUev2(L)=0
Frtot2(L)=0
Effv2(L)=0
Effis2(L)=0
Effcc2(L)=0
Xcee2(L)=0
win2(L)=0
Ecc2(L)=0
Ted2(L)=0
Pcd2(L)=0
Tcdal2(L)=Tcdae(L)
Qcd2(L)=0
AUcd2(L)=0
Va2(L)=0
COP2(L)=0
GOTO 29

ELSE
CONTINUE
ENDIF

Cr****Cir B

C1*** Calculate the evaporator effectivenesses
AUev2(L)=1/(0.027*Fw(L)**(-0.8)+0.934*Qcl2(L)**(-0.745))
eev2(L)=1-EXP(-AUev2(L)/Fw(L)/Cpw)

C1*** Calculate the evaporating temperature
Tev2(L)=Tchwrl(L)-Qcl2(L)/Fw(L)/Cpw/eev2(L)

C1*** Calculate the evaporating pressure
Pev2(L)=EXP(Acl+Bcl/(Tev2(L)+273.15))

Cl***refrigerant state 1
dhfg2=(hfgb/1000)*((Tc-(Tev2(L)+273.15))/(Tc-Tb))**b
hX2=(hfo/1000)+(cpliq/1000)*(Tev2(L)+273.15-T0)+dhfg2
h12(L)=hX2+(cpvap/1000)*Tevsh(L)
v12=Zeta*r*(Tev2(L)+273.15)/(Pev2(L)*1000)
Den12=1/v12-(-.0007+.0002*Pev2(L))*Tevsh(L)

CI***Compute operating parameters at compressor
Iter2=1
Tcd02=55

53 Pcd2(L)=EXP(Acl+Bcl/(Tcd02+273.15))
h32(L)=(hfo/1000)+(cpliq/1000)*(Tcd02+273.15-T0-Tedsc(L))
qrf2(L)=hX2-h32(L)

CR2(L)=Pcd2(L)/Pev2(L)
Effv2(L)=.925-.009*CR2(L)
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Effis12=-.0316958*Tcd02**2+2.90112*Tcd02-.0296849* Tev2(L)**2
Effis22=-1.45279*Tev2(L)+.000321176*Tcd02**2*Tev2(L)
Effis32=.00683086*Tcd02* Tev2(L)+.0170575%0.5*Qcr-16.5018
Effis2(L)=(Effis 1 2+Effis22-+Effis32)/80

Fr2(L)=Eftv2(L)*Denl12*Vp

Xcel2(L)=Qcl2(L)/Fr2(L)/qrf2(L)+0.95
Xee2(L)=INT(Xccl12(L))

IF (Xcc2(L).LT.1) THEN
Xcee2(L)=1
ENDIF

IF (Xcc2(L).GT.(0.5*Nccr)) THEN
Xce2(L)=0.5*Ncer
ENDIF

C*** Loading sharing between compressors
IF (PLR2(L).LE.0.5) THEN
Xce2(L)=1
ELSE
Xcc2(L)=0.5*Ncer
ENDIF

C*** Equally shared
IF (PLR2(L).LE.0.5) THEN
PLR21(L)=Qcl2(L)/(0.25*Qcr)

PLR22(L)=0

ELSE
PLR21(L)=0.5*Qcl2(L)/(0.25*Qcr)
PLR22(L)=PLR21(L)
ENDIF

C*** Loading shared
Qcl21(L)=PLR21(L)*Qcr/4
Qcl22(L)=PLR22(L)*Qcr/4

C1*** Calculate the refrigerant mass flow rate
Frtot2(L)=Qcl2(L)/qrf2(L)

C1*** Calculate the refrigerant mass flow rate
Fr21(L)=Qcl21(L)/qrf2(L)

C1*** Calculate the refrigerant mass flow rate
Fr22(L)=Qcl22(L)/qrf2(L)

C1*** Calculate the internal compression power
win2(L)=Pev2(L)/Den12*(ni/(ni-1))*(CR2(L)**(1-1/ni)-1)

C*** compressor efficiency
Effcc21(L)=0.0258+0.8214*PLR21(L)+0.1932*PLR21(L)**2
Effcc22(1)=0.0258+0.8214*PLR22(L)+0.1932*PLR22(L)**2

IF (PLR21(L).GT.0) THEN
Ecc21(L)=Fr21(L)*win2(L)/Effis2(L)/Effcc21(L)
ELSE
Ecc21(L)=0

ENDIF

IF (PLR22(L).GT.0) THEN
Ecc22(L)=Fr22(L)*win2(L)/Effis2(L)/Effcc22(L)
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ELSE
Ecc22(L)=0
ENDIF

Ecc2(L)=Ecc21(L)+Ecc22(L)

C1***Compute operating parameters at condenser side
Qcd2(L)=Qcl2(L)+Frtot2(L)*(cpvap/1000)*Tevsh(L)+Ecc2(L)

IF (Tedsp(L).LE.Tedae(L)) THEN
Xcf2(L)=0.5*Ncfr
GOTO 54

ENDIF

Nefr2=0.5*Ncfr
Xcf2(L)=INT(Qcd2(L)*Nefr/(Var*Dena*Cpa*(Tedsp(L)-Tedae(L)))+0.5)

IF (Xcf2(L).GT.Ncfr2) THEN
Xcf2(L)=Ncfr2
GOTO 54

ENDIF

DO 90 P=1,INT(Ncfr2)
IF (Xcf2(L).LE.P) THEN
Xcf2(L)=P
GOTO 54
ENDIF
90 CONTINUE

Xcf2(L)=Ncfr2

Iter5=0
Iter6=0

54 Va2(L)=Xcf2(L)*(Var/Ncfr)
Tcdal2(L)=Tcdae(L)+Qcd2(L)/(Va2(L)*Dena*Cpa)

IF (Tcdal2(L).GT.Tcdr., AND.Xcf2(L).LT.Ncfr2) THEN
Xcf2(L)=Xcf2(L)+1

GOTO 54

ENDIF

C1*** Calculate the condenser effectivenesses
AUcd2(L)=1/(0.049*Va2(L)**-.5+.006*Frtot2(L)**-.8)
ecd2(L)=1-EXP(-AUcd2(L)/Va2(L)/Dena/Cpa)

C1*** Calculate the condensing temperature
Tcd2(L)=Tcdae(L)+(Tcdal2(L)-Tcdae(L))/ecd2(L)

IF (Ted2(L).GT.Tcd02) THEN
Xcf2(L)=Xcf2(L)+1
GOTO 54

ENDIF

IF ((Ted02-Ted2(L)).GT.0.05) THEN
Ted02=Tcd2(L)
GOTO 53
ENDIF

IF (Tcd2(L).GT.Tcdr) THEN
Xcef2(Ly=Xcf2(L)+1
GOTO 54
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ENDIF

C1*** Calculate the power consumed by the condenser fans of circuit B
Ecf2(L)=Xcf2(L)*Ecfr/Ncfr

C1*** Calculate the power consumed by the circuit B
Ech2(L)=Ecc2(L)+Ecf2(L)

C1*** Calculate the coefficient of performance of Circuit B
COP2(L)=Qcl2(L)/Ech2(L)

C1*** Calculate the coefficient of performance

29  Ecf(L)=Ecfl(L)+Ecf2(L)
Ech(L)=Ech1(L)+Ech2(L)
Xcf(L)y=Xcf1(L)+Xcf2(L)
COP(L)=Qcl(L)/Ech(L)

C*** Qutputs of 30 operating variables

out(1)=DBLE(Qcl(L))
out(2)=DBLE(Tchwr(L))
out(3)=DBLE(Qcl1(L))
out(4)=DBLE(Tev1(L))
out(5)=DBLE(Tchwrl(L))
out(6)=DBLE(Tchws1(L))
out(7)=DBLE(AUev11(L))
out(8)=DBLE(Frtot1(L))
out(9)=DBLE(Xcc1(L))
out(10)=DBLE(Ecc1(L))
out(11)=DBLE(Tcd01)
out(12)=DBLE(Tecdall(L))
out(13)=DBLE(AUcd1(L))
out(14)=DBLE(Tcd1(L))
out(15)=DBLE(Val(L))
out(16)=DBLE(2*Xcf1(L))
out(17)=DBLE(Ecf1(L))
out(18)=DBLE(Frtot2(L))
out(19)=DBLE(Tev2(L))
out(20)=DBLE(AUev2(L))
out(21)=DBLE(Xcc2(L))
out(22)=DBLE(Ecc2(L))
out(23)=DBLE(Tcd02)
out(24)=DBLE(Tcd2(L))
out(25)=DBLE(AUcd2(L))
out(26)=DBLE(Va2(L))
out(27)=DBLE(Tcdal2(L))
out(28)=DBLE(2*Xcf2(L))
out(29)=DBLE(Ecf2(L))
out(30)=DBLE(Ech(L))

60 CONTINUE
RETURN 1

END

SUBROUTINE PROPERTY (Ifluid, To,cplig,hfo,cpvap,cpvapcd,hfgb,Tb,Tc,
& b,r,Zeta,Zetacd,Gamma,Acl,Bcl, *)
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REAL Ifluid
To=233.15

IF (Ifluid.EQ.1) THEN
cplig=917
hfo=0
cpvap=641.6
cpvapcd=779
hfgb=165300
Tbh=243.4
Tc=385.2
b=0.37
r=68.7539
Zeta=0.9403
Zetacd=0.8670
Gamma=1.086
Acl=14.669
Bcl=-2443.13

ENDIF

IF (Ifluid.EQ.2) THEN
cplig=1265
hfo=0
cpvap=892.5
cpvapcd=1144
hfgb=215100
Tb=246.9
Tc=374.3
b=0.376
=81.4899
Zeta=0.9411
Zetacd=0.8610
Gamma=1.072
Acl=15.489
Bcl=-2681.99

ENDIF

IF (Ifluid.EQ.3) THEN
cplig=925
hfo=0
cpvap=693.6
cpvapcd=784
hfgb=136100
Tb=276.9
Tc=418.9
b=0.359
r=48.6393
Zeta=0.9757
Zetacd=0.9260
Gamma=1.056
Acl=15.107
Bcl=-2908.73

ENDIF

IF (Ifluid.EQ.4) THEN
cplig=1144
hfo=0
cpvap=710.4
cpvapcd=936
hfgb=233700
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Tb=232.4
Tc=369.2
b=0.369
r=96.1426
Zeta=0.9300
Zetacd=0.8440
Gamma=1.114
Acl=15.070
Bcel=-2421.94
ENDIF

IF (Ifluid.EQ.5) THEN
cplig=1090
hfo=0
cpvap=732
cpvapcd=965
hfgb=172500
Tb=227.8
Tc=355.4
b=0.374
=74.4752
Zeta=0.9130
Zetacd=0.8150
Gamma=1.065
Acl=14.809
Bel=-2312.21

ENDIF

IF (Ifluid.EQ.6) THEN
cpliqg=4575
hfo=0
cpvap=2447.1
cpvapcd=3159
hfgb=1372900
Tb=239.8
Tc=405.6
b=0.396
r=488.2214
Zeta=0.9570
Zetacd=0.8960
Gamma=1.230
Acl=16.204
Bcl=-2772.39

ENDIF

RETURN 1

END
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Appendix B - Chiller Model under CTC with Water Mist

Pre-cooling

SUBROUTINE TYPE411 (TIME,XIN,OUT,T,DTDT,PAR,INFO,ICNTRL,*)
C***********************************************************************
C* Developer:  Yang Jia
C* Department of Building Services Engineering
C* The Hong Kong Polytechnic University
C***********************************************************************
C* PROGRAM: TYPE 411

C* PURPOSE: Parameter evaluation of screw chiller under CTC with water mist
C***********************************************************************

C*
C* INPUT VARIABLE

C* Ifluid Selection of the refrigerant (-)

C* If Ifluid

Cc* =1: Refrigerant 12

C* =2: Refrigerant 134a

C* =3: Refrigerant 114

C* =4: Refrigerant 22

C* =5: Refrigerant 502

C* =6: Refrigerant 717 (Ammonia)

C* N Number of operating conditions )

C* PLR Part load ratio of a chiller )

C* Tcdae  Outdoor dry bulb temperature (0C)
C* Twb Outdoor wet bulb temperature (0C)
C* Tchws  Supply chilled water Temperature (00C)
C* Fw Chilled water mass flow rate (kg/s)
C* Tevsh Degree of superheat (00C)
C* Tedsc Degree of subcooling (0C)
C* Tedsp Set point of condensing temperature (0C)
C*

C* REFRIGERANT PROPERTIES

C* Acl First coefficient in the Clausius-Clapeyron quation (-)
C* Bel Second coefficient in the Clausius-Clapeyron equation (K)
C*b Coefficient used in the calculation of the aporization enthalpy (-)

C* cpliq Mean specific heat in saturated liquid state (J/kg/K)
C* cpvap  Mean specific heat at constant pressure  (J/kg/K)

Cc* in superheated vapor state for saturation temperatures ranging from 253 K to 283 K
C* cpvapcd Mean specific heat at constant pressure  (J/kg/K)
Cc* in superheated vapor state for saturation temperatures ranging from 303 K to 333 K

C* Gamma Mean isentropic coefficient
C* hfgb Vaporization enthalpy at standard boiling point (101325 Pa) (J/kg)

C* hfo Enthalpy of the saturated liquid at the reference temperature (J/kg)
C*r Gas constant (J/kg/K)

C*Tb Standard boiling temperature (K)

C*Tc Critical temperature (K)

C* To Reference temperature (K)

C* Zeta Mean compressibility factor for saturation )

C* temperatures ranging from 253 K to 283 K

C* Zetacd Mean compressibility factor for saturation temperatures ranging from 303 K to 333 K (-)
Ok ks ot sk koot ak otk sk stk sk iRk iRk ik sk ok skt shok sk ik ook ks ks ok sk sk ok ko

C* OUTPUT VARIABLES

C* AUcd  Condenser heat transfer coefficient (kW/oC)
C* AUev  Evaporator heat transfer coefficient (kW/oC)
C* CR Compression ratio )
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C* Ecc Compressor power kW)

C* ecd Condenser heat exchange effectiveness )
C* Ecf Total condenser fan power (kW)

C* Ech Total chiller power (kW)

C* eev Evaporator heat exchanger effectiveness -)

C* Effcc ~ Combined motor and transmission efficiency )
C* Effis Isentropic efficiency )

C* Effv Volumetric efficiency -)

C* Frtot Total refrigerant mass flow (kg/s)

C*hl Refrigerant enthalpy at compressor suction (kJ/kg)
C* h2 Refrigerant enthalpy at compressor discharge (kJ/kg)
C* h3 Refrigerant enthalpy at condenser discharge (kJ/kg)
C* kton Chiller operating efficiency in kW/kW (KW/kW)
C* Pcd Saturated condensing pressure (kPa)

C* Pev Saturated evaporating pressure (kPa)

C* Qcd Total heat rejection (kW)

C* Qcl Cooling capacity kW)

C* qrf Refrigeration effect (kJ/kg)

C* Ted Saturated condensing temperature (00)

C* Tedal Leaving condenser air temperature (0C)

C* Tchwr  Return chilled water temperature (00C)

C* Tev Saturated evaporating temperature (0C)

C* Va Heat rejection airflow (m3/s)

C* win Indicated work done by a compressor (kJ/kg)
C* Xcc Number of operating compressors )

C* Xcf Number of operating condenser fans )

C********************************************************************

C* CONSTANT PARAMETERS

C* Cpa Specific heat of outdoor air (kJ/kg/K)

C* Cpw Specific heat of liquid water (kJ/kg/K)

C* Dena Density of air (kg/m3)

C* Ecfr Rated total condenser fan power (kW)
C* Nccr Maximum number of compressors (-)
C* Ncfr Maximum number of condenser fans )
C* ni Index of reversible polytropic expansion process (-)
C* Qcr Rated cooling capacity (kW)

C* Tedr Maximum condensing temperature (0C)
C* Var Rated heat rejection airflow (m3/s)
C*Vp Piston displacement of each compressor (m3/s)

C********************************************************************

INTEGER*4 INFO

Integer Iterl,Iter2,Iter3,Iter4,IterS,Iter6,Iter7,Iter8

DOUBLE PRECISION XIN,out

PARAMETER (M=8760)

REAL Ifluid,N,Vp,Den1,ni,Cpw,Cpa,Dena,v1

REAL Qcr,Var,Ncfr,Ecfr,Ncer, Tedr, Tedrlow,h X, Tedsp, Ted, Xcf

DIMENSION PLR(M),PLR1(M),PLR2(M),PLR11(M),PLR12(M),PLR21(M)
DIMENSION PLR22(M),Tcdae(M),Fw(M),Tchws1(M),Tchwrl(M),Tchwrl1(M)
DIMENSION Tcdsc(M),Qcl(M),Qcl1(M),Qcl2(M),Tev(M),Tevl(M),Tev2(M)
DIMENSION Pev1(M),Pev2(M),AUev11(M),AUev12(M),AUev2(M),eev]1(M)
DIMENSION eev12(M),eev2(M),Fr1 1(M),Fr12(M),Fr21(M),Fr22(M)
DIMENSION EFFv1(M),EFFv2(M),EFFis1(M),EFFis2(M),Fr1(M),Fr2(M)
DIMENSION EFFccl(M),EFFcc2(M),CR1(M),CR2(M),Xcc(M),Xccl(M),Xcc2(M)
DIMENSION Ecc(M),Eccl1(M),Ecc2(M),Tcd1(M),Tcd2(M),Xccl1(M),Xccl2(M)
DIMENSION Tcdal1(M),Tcdal2(M),Qcd1(M),Qcd2(M),AUcd1(M),AUcd2(M)
DIMENSION Val(M),Va2(M),Xcf1(M),Xcf2(M),Ecf(M),Ecf1(M),Ecf2(M)
DIMENSION qrf1(M),qrf2(M),Ech(M),Ech1(M),Ech2(M),h11(M),h21(M)
DIMENSION Tchwr(M),Frtot1(M),Frtot2(M),win1(M),win2(M),Fcc(M)
DIMENSION Tcdsp(M),Pcd1(M),Pcd2(M),h31(M),h12(M),h22(M),h32(M)
DIMENSION Tchws(M), COP1(M),COP2(M),Tevsh(M),ecd1(M),ecd2(M)
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DIMENSION Xcf(M),Ts1(M),Effccl1(M),Effcc12(M),Effcc21(M),COP(M)
DIMENSION Effcc22(M),Ecc11(M),Ecc12(M),Ecc21(M),Ecc22(M),Qcll 1p(M)
DIMENSION Qcl11(M),Qcl12(M),Qcl21(M),Qcl22(M),Tevip(M),AUev1(M)
DIMENSION Twb(M),Fm1(M),Fm2(M),Wdb(M),Pws(M),Wdbp1(M),Wdbp2(M)
DIMENSION Tcdaep1(M),Tcdaep2(M),Pt(M),RH(M),Hdb(M)

DIMENSION DeltaW 1(M),DeltaW2(M),RH1(M),RH2(M)

DIMENSION Pwswb(M),Wswb(M),Wcdaep1 (M), Wedaep2(M),Pws1(M),Pws2(M)
DIMENSION Wscdaep1(M),Wscdaep2(M),DOS1(M),DOS2(M),Pw1(M),Pw2(M)
DIMENSION Mal(M),Ma2(M)

DIMENSION PAR(14),XIN(13),0ut(60),INFO(15)

COMMON /LUNITS/ LUR,LUW,IFORM,LUK

COMMON /SIM/ TIMEO,TFINAL,DELT,IWARN

COMMON /CONFIG/ TRNEDT,PERCOM,HEADER,PRTLAB,LNKCHK,PRUNIT,IOCHEK,
& PRWARN

INFO(6)=60
C1*** PARAMETERS

ITIME=INT(TIME)
N=par(1)
Cpw=par(2)
Cpa=par(3)
Dena=par(4)
ni=par(5)
Qcr=par(6)
Vp=par(7)
Var=par(8)
Ncfr=par(9)
Ecfr=par(10)
Ncer=par(11)
Tedr=par(12)
Tcdrlow=par(13)

C1*** For each operating condition:

DO 60 L=1,N
Ifluid= xin (1)
PLR(L)=xin(2)
Twb(L)=xin(3)
Fm1(L)=xin(4)
Fm2(L)=xin(5)
RH(L)=xin(6)
Pt(L)=xin(7)
Tcdae(L)=xin(8)
Tchws(L)=xin(9)
Fw(L)=xin(10)
Tevsh(L)=xin(11)
Tedsc(L)=xin(12)
Tedsp(L)=xin(13)

C2*** Selection of the refrigerant

CALL PROPERTY (Ifluid, To,cplig,hfo,cpvap,cpvapcd,hfgb,Tb,Tc,
& b,r,Zeta,Zetacd,Gamma,Acl,Bcl,*10)
10 CONTINUE

C1***Compute operating parameters at evaporator side
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200 Qcl(L)=PLR(L)*Qcr
C  Qcl=Qcl(L)

C*** Joad sharing strategy

IF (Qcl(L).GT.0.5*Qcr) THEN
Qcl1(L)=0.5*Qcl(L)
Qcl2(L)=Qcl(L)-Qcl1(L)
ELSE
Qcl1(L)=Qcl(L)
Qcl2(L)=0
ENDIF

PLR1(L)=Qcl1(L)/(0.5*Qcr)
PLR2(L)=Qcl2(L)/(0.5*Qcr)

C  chilled water return temperaturte
Tchwr(L)=Tchws(L)+Qcl(L)/Fw(L)/Cpw
Qcl11(L)=0.5*Qcl1(L)

C1*** Calculate the cooling capacity of section 2 of circuit A
11 Qcl12(L)=Qcl1(L)-Qcl11(L)

C*** Calculate the evaporator effectivenesses
AUev11(L)=1/(0.027*Fw(L)**(-0.8)+0.934*Qcl11(L)**(-0.745))
eevl1(L)=1-EXP(-AUev11(L)/Fw(L)/Cpw)

AUev12(L)=1/(0.027*Fw(L)**(-0.8)+0.934*Qcl12(L)**(-0.745))
eev12(L)=1-EXP(-AUev12(L)/Fw(L)/Cpw)

C2*** calculate the chilled water temperature entering circuit B
Tchwrl(L)=Tchwr(L)-Qcl11(L)/Fw(L)/Cpw

C2*** Calculate the chilled water temperature leaving circuit B
Tchws1(L)=Tchwrl(L)-Qcl2(L)/Fw(L)/Cpw

C1*** Calculate the evaporating temperature
Tev1(L)=Tchws1(L)-Qcl12(L)/Fw(L)/Cpw/eev12(L)

C1*** Recalculate the cooling capacity of section 1 of circuit A
Qcll1p(L)=eev1 1(L)*Fw(L)*Cpw*(Tchwr(L)-Tev1(L))

IF (Qcl11p(L).GT.0.8*Qcl1(L)) THEN
Qcl11p(L)=0.5*Qcl1(L)
ELSE
CONTINUE

ENDIF

TF (abs((Qcl11p(L)-Qel11(L))/Qcl11(L)).GT.0.01) THEN
Qcl11(L)=Qcl11p(L)
GOTO 11
ELSE
CONTINUE
ENDIF

C1*** Calculate the evaporating pressure
Pev1(L)=EXP(Acl+Bcl/(Tev1(L)+273.15))

Cl1#***Cir A
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C1*** Refrigerant state 1 at the evaporator exhaust
dhfg1=(hfgb/1000)*((Tc-(Tev1(L)+273.15))/(Tc-Tb))**b
hX1=(hfo/1000)+(cpliq/1000)*(Tev1(L)+273.15-T0)+dhfg1
h11(L)=hX1+(cpvap/1000)*Tevsh(L)
v11=Zeta*r*(Tev1(L)+273.15)/(Pev1(L)*1000)
Denl1=1/v11-(-.0007+.0002*Pev1(L))*Tevsh(L)

CI***Compute operating parameters at compressor
Iter1=1
Tcd01=55
Echlopt=500

Tcdspl(L)=Tcdae(L)+15

IF (Tcedspl(L).LT.20) THEN
Tedsp1(L)=20
ENDIF

Tcdaepl(L)=Twb(L)
C*** Calculate the condensing pressure
52 Pcd1l(L)=EXP(Acl+Bcl/(Tcd01+273.15))

h31(L)=(hfo/1000)+(cplig/1000)*(Ted01+273.15-T0-Tedsc(L))
qrfl(L)=hX1-h31(L)

CRI(L)=Pcd1(L)/Pev1(L)

Effv1(L)=.925-.009*CR1(L)

Effis] 1=-.0316958*Tcd01#*2+2.90112%Tcd01-.0296849* Tev1(L)**2
Effis21=-1.45279*Tev1(L)+.000321176*Tcd01**2*Tev1(L)
Effis31=.00683086*Tcd01*Tev1(L)+.0170575%0.5*Qcr-16.5018
Effis 1 (L)=(Effis1 1+Effis2 1-+Effis31)/80

Frl(L)=Eftv1(L)*Denl1*Vp

Xcel 1(L)=Qcl1(L)/Fr1(L)/qrf1(L)+0.95
Xcel(L)=INT(Xceel 1(L))

IF (Xccl(L).LT.1) THEN
Xcecl(L)=1
ENDIF

IF (Xccl(L).GT.(0.5*Nccer)) THEN
Xcel(L)=0.5*Ncer
ENDIF

IF (PLR1(L).LE.0.5) THEN
Xcel(L)=1
ELSE
Xcel(L)=0.5*Nccer
ENDIF
C*** Equally shared
IF (PLR1(L).LE.0.5) THEN
PLRI11(L)=Qcl1(L)/(0.25*Qcr)
PLRI12(L)=0
ELSE
PLR11(L)=0.5*Qcl1(L)/(0.25*Qcr)
PLR12(L)=PLR11(L)
ENDIF

C1*** Calculate the refrigerant mass flow rate
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Frtot1(L)=Qcl1(L)/qrf1(L)

C1*** Calculate the refrigerant mass flow rate
Fr11(L)=PLR11(L)*0.25*Qcr/qrf1(L)

C1*** Calculate the refrigerant mass flow rate
Fr12(L)=PLR12(L)*0.25*Qcr/qrf1(L)

C1*** Calculate the internal compression power
winl(L)=Pev1(L)/Denl1*(ni/(ni-1))*(CR1(L)**(1-1/ni)-1)

C*** compressor efficiency

Effec11(L)=0.0258+0.8214*PLR11(L)+0.1932*PLR11(L)**2
Effec12(L)=0.0258+0.8214*PLR12(L)+0.1932*PLR12(L)**2

IF (PLR11(L).GT.0) THEN
Eccl1(L)=Fr11(L)*winl(L)/Effis1(L)/Effcc11(L)
ELSE
Eccl1(L)=0

ENDIF

IF (PLR12(L).GT.0) THEN
Ecc12(L)=Fr12(L)*win1(L)/Effis1(L)/Effcc12(L)
ELSE
Eccl12(L)=0

ENDIF

Eccl(L)=Eccl11(L)+Eccl2(L)
CI***Compute operating parameters at condenser side
Qcd1(L)=Qcl1(L)+Frtotl(L)*(cpvap/1000)*Tevsh(L)+Ecc1(L)

IF (Tedspl1(L).LE.Twb(L)) THEN
Xcf1(L)=0.5*Ncfr
GOTO 51

ENDIF

Ncfr1=0.5*Ncfr
Xef1(L)=INT(Qcd1(L)*Ncfr/(Var*Dena*Cpa*(Tcdsp1(L)-Tcdaep1(L)))+0.5)

IF (Xcf1(L).GT.Ncfrl) THEN
Xcfl(L)=Ncfrl
GOTO 51

ENDIF

DO 80 P=1,INT(Ncfrl)
IF (Xcfl(L).LE.P) THEN
XcfI(L)=P
GOTO 51
ENDIF
80 CONTINUE

Xcfl(L)=Ncfrl

Iter3=0
Iterd=0

51 Val(L)=Xcfl(L)*(Var/Ncfr)
C Evaporative cooling
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@)

@)

@)

DeltaW1(L)=Fm1(L)/(Val(L)*Dena)

The saturation pressure of water vapor
C1=-5.8002206*10%*3
C2=1.3914993
C3=-4.8640239*0.01
C4=4.1764768*0.00001
C5=-1.4452093*0.00000001
C6=6.5459673
Pws(L)=exp(C1/(Tcdae(L)+273.15)+C2+C3*(Tcdae(L)+273.15)
&+C4*(Tedae(L)+273.15)**2+C5%*(Tcdae(L)+273.15)**3
&+C6*LOG((Tcdae(L)+273.15)))

the increased moisture content Wdb'
Wdb(L)=0.622*RH(L)*Pws(L)/(Pt(L)-RH(L)*Pws(L))
Wdbp1(L)=Wdb(L)+DeltaW1(L)

The moist air specific enthalpy in kJ/kgda is
Hdb(L)=1.006*Tcdae(L)+Wdb(L)*(2501+1.86*Tcdae(L))

The temperature of the air at the inlet of condensing ciol
Tedaep1(L)=(Hdb(L)-2501*Wdbp1(L))/(1.006+1.86*Wdbp1(L))

Pws (twb)
Pwswh(L)=exp(C1/(Twb(L)+273.15)+C2+C3*(Twb(L)+273.15)
&HCH*(Twb(L)H+273.15)%*2+C5*(Twb(L)+273.15)%*3
&+C6*LOG((Twb(L)+273.15)))

Humidity ratio W at twb
Wswb(L)=0.622*Pwswb(L)/(Pt(L)-Pwswb(L))

Humidity ratio W at tcdaep
Wedaepl(L)=((2501-2.326*Twb(L))*Wswb(L)-1.006*(Tcdaep1(L)-Twb(L)))
&/(2501+1.86*Tcdaepl(L)-4.186*Twb(L))

The saturation pressure of water vapor at Tcdaepl
Pws1(L)=exp(C1/(Tcdaepl(L)+273.15)+C2+C3*(Tcdaep1(L)+273.15)
&+C4*(Tedaepl(L)+273.15)**2+C5*(Tedaep1(L)+273.15)**3
&+C6*LOG((Tedaepl(L)+273.15)))

Humidity ratio W at saturation of tcdaep
Wscdaep1(L)=0.622*Pws1(L)/(Pt(L)-Pws1(L))

Degreee of saturation
DOSI(L)=Wcdaep1(L)/Wscdaep1(L)

Pw
Pw1(L)=Pt(L)*Wcdaep1(L)/(0.622+Wcdaep1(L))

RHI1
RHI(L)=DOS1(L)/(1-(1-DOS1(L))*(Pw1(L)/Pt(L)))

IF(RHI(L).GE.1.or.Tcdaep1(L).LE.Twb(L)) THEN
Tcdaep1(L)=Twb(L)
RH1(L)=1

ENDIF

Tcdall(L)=Tcdaep1(L)+Qcd1(L)/(Val(L)*Dena*Cpa)

IF (Tcdall(L).GT.Tcdr. AND.Xcf1(L).LT.Ncfrl) THEN
Xcfl(L)=Xcfl(L)+1
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GOTO 51
ENDIF

C1*** Calculate the condenser effectivenesses
AUcd1(L)=1/(0.049*Val(L)**-.5+.006*Frtot1(L)**-.8)
ecdl(L)=1-EXP(-AUcd1(L)/Val(L)/Dena/Cpa)

C1*** Calculate the condensing temperature
Ted1(L)=Tcdaepl(L)+(Tcdall(L)-Tedaepl(L))/ecd1(L)

IF (Ted1(L).GT.Ted01) THEN
Xcfl(Ly=Xcf1(L)+1
GOTO 51

ENDIF

IF ((Tcd01-Ted1(L)).GT.0.05) THEN
Tcd01=Ted1(L)
GOTO 52

ENDIF

C1*** Compare Ted(L) with Tcdr and Tedrlow
IF (Tcd1(L).GT.Tcdr) THEN
Xcfl(L)=Xcfl(L)+1
GOTO 51
ENDIF

C1*** Calculate the power consumed by the condenser fans of circuit A
Ecfl(L)=Xcf1(L)*Ecft/Ncfr

C1*** Calculate the power consumed by the circuit A
Echl(L)=Eccl(L)+Ecf1(L)

C1*** Calculate the coefficient of performance
COP1(L)=Qcl1(L)/Ech1(L)

IF (Ech1(L).LE.Echlopt(L)) THEN
Echlopt(L)=Echl1(L)
Qcllopt(L)=Qcl1(L)
Tchwrlopt(L)=Tchwrl(L)
Tchwslopt(L)=Tchws1(L)
Tevlopt(L)=Tev1(L)
Pevlopt(L)=Pev1(L)
AUevllopt(L)=AUevl1(L)
AUev12opt(L)=AUev12(L)
eevllopt(L)=eevl1(L)
eev12opt(L)=eev12(L)
Frtotlopt(L)=Frtot1(L)
Effvlopt(L)=Effv1(L)
Effislopt(L)=Effis1(L)
Effccllopt(L)=Effccl11(L)
Effcc12opt(L)=Effcc12(L)
CRl1opt(L)=CR1(L)
Xcclopt(L)=Xccl(L)
winlopt(L)=winl(L)
Ecclopt(L)=Eccl(L)
Tedlopt(L)=Tecd1(L)
Pcdlopt(L)=Pcd1(L)
Tcdallopt(L)=Tcdall(L)
Qcdlopt(L)=Qcd1(L)
AUcdlopt(L)=AUcd1(L)
ecdlopt(L)=ecd1(L)
Valopt(L)=Val(L)
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Xcflopt(L)=Xcfl(L)
Veflopt(L)=Vefl(L)
Ecflopt(L)=Ecf1(L)
Echlopt(L)=Echl1(L)
COPlopt(Ly=COP1(L)
qrflopt(L)=qrf1(L)
Tcdaeplopt(L)=Tcdaepl(L)
RH1opt(L)=RHI1(L)
Tedsplopt(L)=Tcdspl(L)
ENDIF

al=max(Twb(L)+5,20.05)

IF (Tedsplopt(L).LT.al) THEN
goto 55
ENDIF

IF (Tedspl(L).GT.al) THEN
Tedspl(L)=Tcdsp1(L)-0.05
goto 52

ENDIF

55 TIF (Qcl2(L).LE.0.0) THEN
Tchwrlopt(L)=Tchwrl(L)
Ech2opt(L)=0
Qcl2opt(L)=0
Tev2opt(L)=0
Pev2opt(L)=0
AUev2opt(L)=0
eev2opt(L)=0
Frtot2opt(L)=0
Effv2opt(L)=0
Effis2opt(L)=0
Effcc21opt(L)=0
Effcc22opt(L)=0
CR2opt(L)=0
Xcc2opt(L)=0
win2opt(L)=0
Ecc2opt(L)=0
Tcd2opt(L)=0
Pcd2opt(L)=0
Tedal2opt(L)=Tcdae(L)
Qcd2opt(L)=0
AUcd2opt(L)=0
ecd2opt(L)=0
Va2opt(L)=0
Xcf2opt(L)=0
Ecf2opt(L)=0
Ech2opt(L)=0
COP2opt(L)=0
qrf2opt(L)=0
Tedsp2opt(L)=0
Vef2opt(L)=0

GOTO 29
ELSE
CONTINUE
ENDIF

C1#***Cir B

C1*** Calculate the evaporator effectivenesses
66 AUev2(L)=1/(0.027*Fw(L)**(-0.8)+0.934*Qcl2(L)**(-0.745))
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eev2(L)=1-EXP(-AUev2(L)/Fw(L)/Cpw)

C1*** Calculate the evaporating temperature

Tev2(L)=Tchwrl(L)-Qcl2(L)/Fw(L)/Cpw/eev2(L)

C1*** Calculate the evaporating pressure

Pev2(L)=EXP(Acl+Bcl/(Tev2(L)+273.15))

Cl***refrigerant state 1

dhfg2=(hfgb/1000)*((Tc-(Tev2(L)+273.15))/(Tc-Th))**b
hX2=(hfo/1000)+(cplig/1000)*(Tev2(L)+273.15-T0)+dhfg2
h12(L)=hX2+(cpvap/1000)*Tevsh(L)
v12=Zeta*r*(Tev2(L)+273.15)/(Pev2(L)*1000)
Den12=1/v12-(-.0007+.0002*Pev2(L))*Tevsh(L)

C1***Compute operating parameters at compressor

53

Iter2=1

Tcd02=55

Ech20pt=500
Tcdsp2(L)=Tcdae(L)+15

IF (Tcdsp2(L).LT.20) THEN
Tedsp2(L)=20
ENDIF

Tcdaep2(L)=Twb(L)

Ped2(L)=EXP(Acl+Bel/(Ted02+273.15))
h32(L)=(hfo/1000)+(cpliq/1000)*(Tcd02+273.15-T0-Tedsc(L))
qrf2(L)=hX2-h32(L)

CR2(L)=Pcd2(L)/Pev2(L)
Effv2(L)=.925-.009*CR2(L)
Effis12=-.0316958*Tcd02**2+2.90112*Tcd02-.0296849* Tev2(L)**2
Effis22=-1.45279*Tev2(L)+.000321176*Tcd02**2* Tev2(L)
Effis32=.00683086*Tcd02*Tev2(L)+.0170575%0.5*Qcr-16.5018
Effis2(L)=(Effis 1 2+Effis22+Effis32)/80

Fr2(L)=Eftv2(L)*Denl2*Vp

Xceel2(L)=Qcl2(L)/Fr2(L)/qrf2(L)+0.95
Xcc2(L)=INT(Xccl12(L))

IF (Xcc2(L).LT.1) THEN
Xce2(L)=1
ENDIF

IF (Xcc2(L).GT.(0.5%Ncer)) THEN
Xce2(L)=0.5*Ncer
ENDIF

C*** Loading sharing between compressors

IF (PLR2(L).LE.0.5) THEN
Xcec2(L)=1
ELSE
Xce2(L)=0.5*Ncer
ENDIF

C*** Equally shared
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IF (PLR2(L).LE.0.5) THEN
PLR21(L)=Qcl2(L)/(0.25*Qcr)
PLR22(L)=0

ELSE
PLR21(L)=0.5*Qcl2(L)/(0.25*Qcr)
PLR22(L)=PLR21(L)

ENDIF

C*** Loading shared
Qcl21(L)y=PLR21(L)*Qcr/4
Qcl22(L)=PLR22(L)*Qcr/4

C1*** Calculate the refrigerant mass flow rate
Frtot2(L)=Qcl2(L)/qrf2(L)

C1*** Calculate the refrigerant mass flow rate
Fr21(L)=Qcl21(L)/qrf2(L)

C1*** Calculate the refrigerant mass flow rate
Fr22(L)=Qcl22(L)/qrf2(L)

C1*** Calculate the internal compression power
win2(L)=Pev2(L)/Den12*(ni/(ni-1))*(CR2(L)**(1-1/ni)-1)

C*** compressor efficiency
Effec21(L)=0.0258+0.8214*PLR21(L)+0.1932*PLR21(L)**2
Effec22(1L)=0.0258+0.8214*PLR22(L)+0.1932*PLR22(L)**2

IF (PLR21(L).GT.0) THEN
Ecc21(L)=Fr21(L)*win2(L)/Effis2(L)/Effcc21(L)
ELSE
Ecc21(L)=0

ENDIF

IF (PLR22(L).GT.0) THEN
Ecc22(L)=Fr22(L)*win2(L)/Effis2(L)/Effcc22(L)
ELSE
Ecc22(L)=0

ENDIF

Ecc2(L)=Ecc21(L)+Ecc22(L)

CI***Compute operating parameters at condenser side
Qcd2(L)=Qcl2(L)+Frtot2(L)*(cpvap/1000)*Tevsh(L)+Ecc2(L)
IF (Tedsp2(L).LE. Twb(L)) THEN

Xcf2(L)=0.5*Ncfr
GOTO 54
ENDIF
Ncfr2=0.5*Ncfr
Xef2(L)=INT(Qcd2(L)*Ncfr/(Var*Dena*Cpa*(Tcdsp2(L)-Tcdaep2(L)))+0.5)
IF (Xcf2(L).GT.Ncfr2) THEN
Xcf2(L)=Ncfr2
GOTO 54
ENDIF
DO 90 P=1,INT(Ncfr2)

268



90

54

C

@)

(@)

C

C

C

IF (Xcf2(L).LE.P) THEN
Xcf2(L)=P
GOTO 54
ENDIF
CONTINUE

Xcf2(L)=Ncfr2

Iter5=0
Iter6=0

Va2(L)=Xcf2(L)*(Var/Ncfr)

Evaporative cooling
DeltaW2(L)=Fm2(L)/(Va2(L)*Dena)

The saturation pressure of water vapor
C1=-5.8002206*10**3
C2=1.3914993
C3=-4.8640239*0.01
C4=4.1764768*0.00001
C5=-1.4452093*0.00000001
C6=6.5459673
Pws(L)=exp(C1/(Tcdae(L)+273.15)+C2+C3*(Tcdae(L)+273.15)
&+C4*(Tcdae(L)+273.15)**2+C5%(Tcdae(L)+273.15)**3
&+C6*LOG((Tedae(L)+273.15)))

the increased moisture content Wdb'
Wdb(L)=0.622*RH(L)*Pws(L)/(Pt(L)-RH(L)*Pws(L))
Wdbp2(L)=Wdb(L)+DeltaW2(L)

The moist air specific enthalpy in kJ/kgda is
Hdb(L)=1.006*Tcdae(L)+Wdb(L)*(2501+1.86*Tcdae(L))

The temperature of the air at the inlet of condensing ciol
Tedaep2(L)=(Hdb(L)-2501*Wdbp2(L))/(1.006+1.86*Wdbp2(L))

Pws (twb)
Pwswhb(L)=exp(C 1/(Twb(L)+273.15)+C2+C3*(Twb(L)+273.15)
&+C4*(Twb(L)+273.15)**2+C5*(Twb(L)+273.15)**3
&+C6*LOG((Twb(L)+273.15)))

Humidity ratio W at twb
Wswb(L)=0.622*Pwswb(L)/(Pt(L)-Pwswb(L))

Humidity ratio W at tcdaep

Wedaep2(L)=((2501-2.326*Twb(L))*Wswb(L)-1.006*(Tcdaep2(L)-Twb(L)))

&/(2501+1.86*Tedaep2(L)-4.186*Twb(L))

The saturation pressure of water vapor at Tcdaepl

Pws2(L)=exp(C1/(Tcdaep2(L)+273.15)+C2+C3*(Tcdaep2(L)+273.15)

&+C4*(Tedaep2(L)+273.15)**2+C5*(Tcdaep2(L)+273.15)**3
&+C6*LOG((Tcdaep2(L)+273.15)))

Humidity ratio W at saturation of tcdaep
Wscdaep2(L)=0.622*Pws2(L)/(Pt(L)-Pws2(L))

Degreee of saturation
DOS2(L)=Wcdaep2(L)/Wscdaep2(L)

Pw
Pw2(L)=Pt(L)*Wcdaep2(L)/(0.622+Wcdaep2(L))
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C RH2
RH2(L)=DOS2(L)/(1-(1-DOS2(L))*(Pw2(L)/Pt(L)))

IF(RH2(L).GE.1.or.Tcdaep2(L).LE. Twb(L)) THEN
Tcdaep2(L)=Twb(L)

RH2(L)=1

ENDIF

Tcdal2(L)=Tcdaep2(L)+Qcd2(L)/(Va2(L)*Dena*Cpa)

IF (Tcdal2(L).GT.Tedr.AND. Xcf2(L).LT.Ncfr2) THEN
Xcf2(L)=Xcf2(L)+1

GOTO 54

ENDIF

C1*** Calculate the condenser effectivenesses
AUcd2(L)=1/(0.049*Va2(L)**-.5+.006*Frtot2(L)**-.8)
ecd2(L)=1-EXP(-AUcd2(L)/Va2(L)/Dena/Cpa)

C1*** Calculate the condensing temperature
Tcd2(L)=Tcdaep2(L)+(Tcdal2(L)-Tcdaep2(L))/ecd2(L)

IF (Tcd2(L).GT.Tcd02) THEN
Xcf2(L)=Xcf2(L)+1
GOTO 54

ENDIF

IF ((Tcd02-Ted2(L)).GT.0.05) THEN
Ted02=Ted2(L)
GOTO 53

ENDIF

IF (Ted2(L).GT.Tedr) THEN
Xcf2(L)=Xcf2(L)+1
GOTO 54

ENDIF

C1*** Calculate the power consumed by the condenser fans of circuit B
Ecf2(L)=Xcf2(L)*Ecfr/Ncfr

C1*** Calculate the power consumed by the circuit B
Ech2(L)=Ecc2(L)+Ecf2(L)

C1*** Calculate the coefficient of performance of Circuit B
COP2(L)=Qcl2(L)/Ech2(L)

IF (Ech2(L).LE.Ech2o0pt(L)) THEN
Ech2opt(L)=Ech2(L)
Qcl2opt(L)=Qcl2(L)
Tev2opt(L)=Tev2(L)
Pev2opt(L)=Pev2(L)
AUev2opt(L)=AUev2(L)
eev2opt(L)=eev2(L)
Frtot2opt(L)=Frtot2(L)
Effv2opt(L)=Effv2(L)
Effis2opt(L)=Effis2(L)
Effcc21opt(L)=Effcc21(L)
Effcc22opt(L)=Effcc22(L)
CR2opt(L)=CR2(L)
Xcc2opt(L)=Xcc2(L)
win2opt(L)=win2(L)
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Ecc2opt(L)=Ecc2(L)
Tcd2opt(L)=Tcd2(L)
Pcd2opt(L)=Pcd2(L)
Tcdal2opt(L)=Tcdal2(L)
Qcd2opt(L)=Qcd2(L)
AUcd2opt(L)=AUcd2(L)
ecd2opt(L)=ecd2(L)
Va2opt(L)=Va2(L)
Xcf2opt(L)=Xcf2(L)
Vcf2opt(L)=Vef2(L)
Ecf2opt(L)=Ecf2(L)
Ech2opt(L)=Ech2(L)
COP2opt(L)=COP2(L)
qrf2opt(L)=qrf2(L)
Tcdaep2opt(L)=Tcdaep2(L)
RH2opt(L)=RH2(L)
Tedsp2opt(L)=Tcdsp2(L)
ENDIF

a2=max(Twb(L)+5,20.05)

IF (Tcdsp2opt(L).LT.a2) THEN
goto 29
ENDIF

IF (Tedsp2(L).GT.a2) THEN
Tedsp2(L)=Tcdsp2(L)-0.05
goto 53

ENDIF

C1*** Calculate the coefficient of performance

29  Ecfopt(L)=Ecflopt(L)+Ecf2opt(L)
Echopt(L)=Echlopt(L)+Ech2opt(L)
Xcfopt(L)=Xcflopt(L)+Xcf2opt(L)
COP(L)=Qcl(L)/Echopt(L)

C*#*  OUTPUTS 30

out(1)=DBLE(Qcl(L))
out(2)=DBLE(Tchwr(L))
out(3)=DBLE(Qcllopt(L))
out(4)=DBLE(Tevlopt(L))
out(5)=DBLE(Tchwrlopt(L))
out(6)=DBLE(Tchwslopt(L))
out(7)=DBLE(AUev!11opt(L))
out(8)=DBLE(Frtotlopt(L))
out(9)=DBLE(Xcclopt(L))
out(10)=DBLE(Tcdaeplopt(L))
out(11)=DBLE(Tcdsplopt(L))
out(12)=DBLE(Tcdallopt(L))
out(13)=DBLE(AUcdlopt(L))
out(14)=DBLE(Tcdlopt(L))
out(15)=DBLE(RH1opt(L))
out(16)=DBLE(2*Xcflopt(L))
out(17)=DBLE(Ecclopt(L))
out(18)=DBLE(Frtot2opt(L))
out(19)=DBLE(Tev2opt(L))
out(20)=DBLE(AUev2opt(L))
out(21)=DBLE(Xcc2opt(L))
out(22)=DBLE(Tcdaep2opt(L))
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out(23)=DBLE(Tcdsp2opt(L))
out(24)=DBLE(Tcd2opt(L))
out(25)=DBLE(AUcd2opt(L))
out(26)=DBLE(RH2opt(L))
out(27)=DBLE(Tcdal2opt(L))
out(28)=DBLE(2*Xcf2opt(L))
out(29)=DBLE(Ecc2opt(L))
out(30)=DBLE(Echopt(L))

CONTINUE
RETURN 1

END

SUBROUTINE PROPERTY (Ifluid, To,cpliq,hfo,cpvap,cpvaped,hfgb,Tb,Tc,

& b,r,Zeta,Zetacd,Gamma,Acl,Bcl,*)
REAL Ifluid

To=233.15

IF (Ifluid.EQ.1) THEN
cplig=917
hfo=0
cpvap=641.6
cpvapcd=779
hfgb=165300
Tbh=243.4
Tc=385.2
b=0.37
r=68.7539
Zeta=0.9403
Zetacd=0.8670
Gamma=1.086
Acl=14.669
Bcl=-2443.13

ENDIF

IF (Ifluid.EQ.2) THEN
cplig=1265
hfo=0
cpvap=892.5
cpvapcd=1144
hfgb=215100
Tb=246.9
Tc=374.3
b=0.376
=81.4899
Zeta=0.9411
Zetacd=0.8610
Gamma=1.072
Acl=15.489
Bcl=-2681.99

ENDIF

IF (Ifluid.EQ.3) THEN
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cplig=925
hfo=0
cpvap=693.6
cpvapcd=784
hfgb=136100
Tb=276.9
Tc=418.9
b=0.359
=48.6393
Zeta=0.9757
Zetacd=0.9260
Gamma=1.056
Acl=15.107
Bcl=-2908.73
ENDIF

IF (Ifluid. EQ.4) THEN
cplig=1144
hfo=0
cpvap=710.4
cpvapcd=936
hfgb=233700
Tbh=232.4
Tc=369.2
b=0.369
1=96.1426
Zeta=0.9300
Zetacd=0.8440
Gamma=1.114
Acl=15.070
Bcl=-2421.94

ENDIF

IF (Ifluid.EQ.5) THEN
cplig=1090
hfo=0
cpvap=732
cpvapcd=965
hfgb=172500
Tb=227.8
Tc=355.4
b=0.374
=74.4752
Zeta=0.9130
Zetacd=0.8150
Gamma=1.065
Acl=14.809
Bel=-2312.21

ENDIF

IF (Ifluid.EQ.6) THEN
cpliqg=4575
hfo=0
cpvap=2447.1
cpvapcd=3159
hfgb=1372900
Tb=239.8
Tc=405.6
b=0.396
r=488.2214
Zeta=0.9570
Zetacd=0.8960
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Gamma=1.230

Acl=16.204

Bcl=-2772.39
ENDIF

RETURN 1

END
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