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ABSTRACT 

 

The purpose of this research project is to develop a loss function by inverting the 

Dirichlet distribution.  The motive is to explore the possibility of developing loss 

functions of higher dimension.  Spiring (1993), Spiring and Yeung (1998) and 

Spiring and Leung (2002) developed a series of Inverted Probability Loss Functions 

(IPLFs), while most of them are univariate.  A multivariate IPLF, which in theory, 

should have the capability of depicting financial loss when more than one quality 

characteristics are concerned. The Dirichlet distribution is chosen because of its 

addictiveness of random variables in nature and its ease to include any number of 

variables.   

 

To depict the long term financial loss of manufacturing a product, it is desired to 

calculate the expected loss by      E L L x g x dx


  .  L(x) is the loss function and 

g(x) is the conjugate function, which describes the measurement of the quality 

characteristic which the manufacturer is interested in.  This research project focuses 

on developing a multivariate inverted probability loss function and some discussion 

will be made about the conjugate function.  The prime objective of this research is to 

develop an inverted multivariate probability loss function.  For this purpose, 

extending the conjugate function into higher dimension will also be discussed. 

 

Although it is highly desired that real data can be collected to form the conjugate 

function, sometimes it is not feasible to do so and simulation may be the solution to 

this situation.  Three common random variate generation methods, namely the 
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conditional approach, acceptance and rejection approach and gamma factors 

approach, are used to invert the Dirichlet distribution. The major distinction between 

the three aforementioned approaches lays in the method in obtaining the estimators, 

respectively, the method of moments, maximum likelihood estimation and a 

modified percentile matching method.   The theory and the procedure underlying the 

methods in obtaining estimators are discussed in details and the sets of estimates 

obtained are then evaluated by the Chi-square goodness-of-fit test to compare the 

acceptability of the three estimation techniques.  Cells arrangement is also discussed 

and verified by Peacock’s two-dimensional Kolmogorov-Smirnov goodness-of-fit 

test, which is known for its conservativeness.  Properties and various probable 

conjugate distributions are examined to compare the univariate IPLF with the 

multivariate IPLF.  At last, the bivariate inverted normal loss function, introduced by 

Spiring (1993) and the inverted Dirichlet loss function are applied to data collected 

in solder paste composition and dimensions of fasteners, as an application of the 

proposed technique in depicting the financial loss due to deviation in production, and 

ultimately, to show the feasibility of such bivariate loss functions.   
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CHAPTER 1 INTRODUCTION 

 

 

1.1 Background 

 

In a flattening world, most industries nowadays are facing fierce competition from 

rivals around the world. Quality control and re-engineering are now crucial to 

survival. A product with poor quality leads to consequences like short life cycle, 

customers complaints, goods return, law suit due to malfunction, damage to 

company's reputation, losses to both manufacturer, buyers, and as well to the society. 

A product with excellent quality, on the other hand, would help in increasing market 

share, reducing scrapping, reworking and repairing works, leading to higher 

production efficiency and eventually higher profit, leaving the company high 

flexibility in pricing and increasing its competitiveness. Moreover, a product with 

excellent quality would theoretically have a longer life cycle, which would in turn 

conserve social resources, for example in the case of public infrastructures. Thus, 

producing a product right at the first time becomes an important issue in 

manufacturing. 
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In quality control literature for example, Crosby (1979), quality is related to the loss 

caused during the life cycle of a product.  A high quality product will have a minimal 

loss to the society as it goes through its life cycle.  This loss being considered is not 

just the loss imposed to the manufacturer, but also to the customers.  For 

manufacturers, a poor quality product will lead to higher warranty cost in 

replacement, return and repairing; quality check will have to be performed more 

frequently and demand additional resources.  On the customer’s side, excessive 

energy may be needed for the product, inconvenience will be caused when the 

product is imperfect, and pollution including heat and noise could also arise.  

Consider a customer purchasing a heater with poor quality; this heater may use 

excessive energy, producing less heat and noise as a by-product.  In the most 

unfortunate scenario, it may explode. 

 

Loss functions are used to measure the financial loss caused by a product.  To be 

specific, costs arise when the measurements of a product deviate from the optimal 

values, and loss functions depict the monetary costs according to the deviation.  

Hazewinkel, M.  (1988)  defined loss function as:  in a problem of a statistical 

decision making, a non-negative function indicating the loss to an experimenter 
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given a particular state of the world and a particular decision.  In manufacturing, 

given the measurement of a product, financial loss is indicated by the loss function. 

 

Loss functions provide useful information about the overall quality of a batch of 

products.  With sampling, an overall financial loss can be estimated.  The decision 

on whether machines or performance of a particular factory needs to be upgraded 

can be based on the estimated loss indicated by the loss function.   

 

 

1.2 Objectives 

 

Through the development of loss functions, economic loss relating to several 

parameters can be developed.  The objectives of this research project are listed as 

follows: 

1.  Develop a loss function based on the inversion of a bivariate probability 

density functions (IbPLF); 

2. Derive the properties linked with such the loss function in objective 1; 

3. Develop a loss function based on the inversion of multivariate probability 

density functions (ImPLF); 
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4. Examine the relationship between loss functions based on inverting 

univariate and bivariate probability density functions – the dependence and 

independence cases; 

5. Demonstrate applications of various IbPLFs. 

 

 This research will develop loss functions, an IbPLF and an ImPLF, based on the 

inversion of a Dirichlet distribution, where, one of its forms is the commonly known 

as the Beta distribution.  Intuitively, more parameters should be able to give a multi-

dimensional picture on how deviations in different aspects would cause the financial 

losses to grow; although, complexity of the function and its calculations will increase 

substantially. 

 

Spiring (1993) introduced a bivariate version of his inverted normal loss function 

(INLF), which is the only bivariate IPLF developed so far.  In this research project, 

Spiring’s IbNLF will be revisited and discussed.  In addition, an IPLF based on the 

Dirichlet distribution will be developed.  The Dirichlet distribution has a domain 

of 1 2 ... 1kx x x    .  In other words, k quality characteristics can be included into 

the depiction of financial loss during the manufacturing process of a certain product.  

Each quality characteristic is related to other quality characteristics and the sum of 
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all quality characteristics must be smaller than one.  This may be useful when a 

manufacturer is keen to find out the long run financial loss of his product when the 

quality characteristics are addictive in nature. 

 

 

1.3 Outline of Thesis 

 

Chapter 2 consists of extensive literature review in loss functions built upon various 

theorems: including the traditional loss function, which is commonly known as the 

goalpost theorem, Taguchi’s quadratic loss function, Spiring’s inverted normal loss 

function, and various inverted probability loss functions developed under the 

influence of Spiring.  Advantages and constraints of these aforementioned loss 

functions were compared. 

 

Since this research project focuses in developing an inverted probability loss 

function based on the Dirichlet distribution.  Chapter 3 first starts with a revision on 

the fundamentals of the Dirichlet distribution.  Ideally, raw data is most welcomed in 

constructing the risk function, which is also known as the conjugate.  However, in 

case of absence of raw data, simulated data may be used.  Therefore, various 
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simulation techniques will also discussed in chapter 3.  Modeling or construction of 

the risk function is needed after raw data is collected or data is being simulated.  

Modeling requires a statistician to estimate the population parameters.  Therefore, in 

this project, various estimation techniques have been used including the method of 

moments and the method of maximum likelihood estimation.  A modified percentile 

matching method is also considered and discussed.  Chi-square goodness-of-fit test is 

then used to justify the proposed distributions estimated by various estimators 

mentioned previously. 

 

The bivariate inverted normal loss function, introduced by Spiring (1993), is 

revisited in Chapter 4.  The major contribution of Chapter 4 lies in the development 

of an inverted Dirichlet loss function, the general form of multi-variates inverted 

Dirichlet loss function, as well as the properties of bivariate inverted probability loss 

functions.  Issues about the conjugate function will also be discussed in Chapter 4. 

 

Applications of the suggested loss functions are included in Chapter 5.  Data of 

solder paste collected by students and samples of fasteners are used to develop loss 

functions and depict financial losses.  Comparison of depicted financial losses is 

done in one of the sample with loss functions built by bivariate normal, bivariate 
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Dirichlet and univariate Dirichlet distributions.  In Chapter 5, result shows that the 

bivariate Chi-square goodness-of-fit test can be applied in justifying a model with 

very vague rules on cells division.  A bivariate Kolmogorov-Smirnov test will be 

used to determine whether these rules are appropriate or not.  Finally, conclusion 

will be drawn in Chapter 6 and potential future extensions to this research will be 

discussed. 
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CHAPTER 2  LITERATURE REVIEW 

 

 

In production nowadays, with fierce competition, quality control is becoming more 

and more important for a company to survive (Taguchi (1986), Grosby (1979)).  

High quality products would not just attract more customers; the higher the quality 

and consistency, manufacturer will save more money and lead to a higher profit.  

The concept to produce a high quality product right in the first time becomes an 

essential notion in manufacturing. 

 

In quality control literature, quality is related to the loss caused by a product during 

its life cycle.  A truly high quality product will have a minimal loss to society as it 

goes through this life cycle.  Loss is imposed to both the manufacturer and the 

customers.  For manufacturers, a poor quality product will involve higher cost in 

quality check as excessive man power is needed, and warranty cost, including 

inspecting, repairing or replacement.  From the standpoint of customers, loss may 

include impairment in energy consumption, inconvenience when the product is not 

working, or even side effects like pollution, noise and heat.   
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Loss functions are used to measure financial loss caused by a product.  In this report, 

theorems regarding quality control are reviewed and different loss functions are 

examined.  At last, updated series of inverted probability loss functions, based on 

various kinds of probability distributions will be discussed.  Statistical properties of 

this IbBLF will be explored.  Real data is collected to demonstrate the feasibility of 

using such an IbBLF. 

 

 

2.1 Goalpost Philosophy 

 

The traditional view of loss, which is also known as the goalpost philosophy, is 

based on tolerancing.  Tolerancing was based on the experience of designers 

regarding what has worked for them satisfactorily.  Experienced designers have 

documented the tolerances that have worked well for different manufacturing 

processes, and assume these tolerances will be adequate and appropriate to be used 

for a new product if the production machinery has the same capability as those used 

in obtaining the standard tolerances. 
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Capability measures the variability about a desired target with which a machine or a 

process is capable of producing, and this capability is usually measured in terms of 

standard deviation,  .  In general, these tolerances are measured by the target T plus 

or minus 3 .  A product is assumed to be satisfactory if all its measurements lie 

inside this tolerance of 3T  .  In Crosby (1979), he supports this view by claiming 

as long as a product is made according to the product engineer, within this permitted 

tolerance, this product is of good quality. 

  

Figure 2-1Goalpost theorem when limits are 1 and 2 

 

Figure 2-1 above is an illustration of the loss function proposed by the goalpost 

theorem. It is very easy to understand and generally welcomed by manufacturers and 

product designers.  This view is very strict, within a permitted tolerance interval 

designed by the product designer; the product is therefore satisfactory and not 
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satisfactory elsewhere.  Graphically, it looks like a discrete function with jumps.  

Assume 1  and 2  are the lower and upper limit of the permitted tolerance, in this 

example, 1 and 2.  For values outside this permitted tolerance, the loss will be the 

cost of rework or scratch since those products are not satisfactory and cannot be 

shipped and sold to the customers.  In this case, there is only one possible amount of 

loss, and that is the cost of rework.   

 

There are a few drawbacks about this goalpost philosophy.  The most obvious is that, 

this goalpost philosophy is manufacturer-oriented.  A product is classified as 

satisfactory just by examining whether it lies within the tolerance interval.  It does 

not consider the financial loss which may be imposed to the customers at all.   

 

Another criticism is that, this philosophy does not value the desired target.  During 

product design, the target is supposed to be the measurement that would give the best 

quality over the product life cycle.  The goalpost theorem concerns about whether 

the measurement is found within the acceptance interval.  In other words, the 

manufacturer is indifferent whether the measurement is close to the target value or 

not, given it is found inside the tolerance limit.  In the customers’ point of view, this 

is another story.  Customers want to purchase a product with the best quality 
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available, and products with small deviation yield a better quality than others.  This 

is a point which is ignored by the goalpost philosophy. 

 

One last criticism lies at the calculation of the tolerance interval 3T  .  The 

standard deviation   is estimated by the process standard deviation during the 

manufacturing process by the production machinery.  In other words, this tolerance 

interval may vary when different machinery is used.  In addition, it does not 

guarantee the quality of the product.  If a production machine is not performing well, 

and it has been producing products with poor quality, under the calculation of the 

tolerance interval, many products with unsatisfactory quality will be accepted since 

the tolerance interval will be enlarged due to the larger standard deviation caused by 

the poor quality, or in other words, the large deviation apart from the desired 

nominal value.  Base on the fact that the tolerance interval is calculated upon the 

performance of an individual machine, the decision on whether a machine should be 

replaced becomes inconclusive.   
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2.2  Taguchi’s Philosophy 

 

Dr. Genichi Taguchi (1986) believes that any deviation away from the desired target 

will lead to financial loss.  His point of view is supported by the desire of customers 

whom purchase products which have high quality and consistency.   

 

Ross (1996) pointed out, as a customer, the closer the amount of closing force is to 

the target value, the happier the customer is.  If the product is a little off from the 

target, the customer would sense some loss.  Even the product is classified as 

satisfactory in the goalpost theorem; the customer may still find the quality of the 

product to be poor, if the deviation is large.  Thus, he suggested using the quadratic 

function to represent the actual loss function.   

 

Taguchi defined his quadratic loss function as: 

 2( ) ( )L y B y T  , (2.1) 

where B is a proportionality constant and T is the desired target.   
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Figure 2-2 Taguchi's quadratic loss function (T=2.5) 

 

The idea behind Taguchi’s quadratic loss function is easily understood, as shown in 

Figure 2-2 above, as the measurement y gets farther away from the desired target, 

there will be a larger financial loss.  If y is close to the nominal value, denoted by T, 

there will be little or no loss.  B  is used to scale how big or small the financial loss 

should be related to the square of variation.   

 

Another admirable advantage of the quadratic loss function is that it does not depend 

on the production machineries.  With the tradition loss functions, the tolerance 

interval is calculated as 3T  , while the standard deviation depends on how well or 

how poorly the machine works.  In Taguchi’s loss function, it does not matter; only 

the measurement between the product’s value and the nominal value will of our 

concern.  This will help in determining whether production machines need to be 

upgraded as the performance of each individual machine can be analyzed and 
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compared.  A large expected financial loss indicates the poor performance of a 

certain machine and the manufacturer can use this information to decide whether or 

not this machine needs to be upgraded or replaced. 

 

As pointed out by Leon and Wu (1992) and Spiring (1993), there are a few 

restrictions on the quadratic loss function.  First of all, the quadratic loss function 

fails to provide a maximum possible loss.  In other words, as the deviation gets 

bigger in either direction, the loss will be approaching infinity, while, in reality, the 

financial loss imposed by a product is usually finite, especially after product 

screening and unsatisfied products are very likely to be screened out and not shipped 

to the customers.  With the help of quality check system, it is not likely that an 

unsatisfied product will be shipped and thus, the financial loss imposed by a 

satisfactory, but poor quality product should not be infinite, as it should have passed 

the basic safety requirement already.   

 

In order to resolve the unreasonable infinite loss over the far ends of specified limits, 

Taguchi (1989) modified the quadratic loss function by truncating the quadratic loss 

function at the points where the function intersects the maximum loss.  The general 

form of this modified quadratic loss function is  
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2( ) , | | /

( )
, | | /

B y T y T K B
L y

K y T K B

    
  ,

 (2.2) 

where K is the maximum loss in monetary terms.  Although this modification gives a 

maximum loss for the quadratic loss function, the function itself is not smooth.  It 

looks like the combination of the loss function based on the goalpost theory and 

Taguchi’s loss function. 

 

Another restriction the quadratic loss function has, lies in the fact that it is quadratic, 

making it hard to model complicated data by a simple function in the quadratic 

functional form.  It is difficult to measure the financial loss when the behaviour of 

loss does not have a quadratic relationship with the measurement.  For example, if 

the relationship between the loss and the deviation is linear, the quadratic loss 

function will not be accurate.  It is obvious that, a simple quadratic function is 

difficult to model complicated data.  It is also clear that, some amendments or 

innovations should be done to improve the quadratic loss function. 

 

Leon and Wu (1992) suggested, for many products and manufacturing processes, 

performance can be conveniently measured in terms of a dispersion measurement 

because it is often easy to centre output around the target once dispersion has been 

reduced.  They suggested when the loss function is non-quadratic, general dispersion, 
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location and off-target measures can to be used.  Expected values and variances are 

used to build loss functions.  In the loss function proposed by Leon and Wu (1992), 

the data no longer needs to be quadratic, and their suggestion is more flexible than 

the quadratic loss function developed by Taguchi (1989). 

 

Taguchi (1989) also introduced loss function for asymmetric tolerances by setting 

two separate functions connecting at the nominal value, m.  It is presented as follow: 

 

21
2
1

22
2
2

( )

( )

( )

B
y m y m

L y
B

y m y m

   
  


 (2.3) 

1  and 2  stand for the lower and upper tolerance limits respectively.  1B  and 2B  

represent the proportionate coefficients for the two sides of the loss function. 
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Figure 2-3 Modified quadratic loss function for asymmetric tolerances (m=2) 
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Figure 2-3 gives the graphical presentation of the asymmetric loss function 

introduced by Taguchi.  This modification is more flexible than the original 

consideration; however, the problem about non-quadratic data remains unsolved.   

 

In his book, Taguchi (1989) introduced The-Smaller-The-Better (S type) and The-

Larger-The-Better (L type) tolerances, with the desired value to be 0m   and 

m  respectively.  An S type tolerance involves a nonnegative characteristic, 

whose ideal value is zero.  The S type tolerance can be applied to wear, shrinkage, 

deterioration, and noise levels.  In this type of tolerance, the upper limit is defined 

and the loss function will be small if the measurements are close to 0.  In contrast, 

the L type tolerance describes characteristics such as the strength of material, fuel 

efficiency, and heat resistance for fire resistance material.  The followings are the 

loss functions for these two types: 

 

a. The-Smaller-The-Better type 

 
2 2 2
1 2

2

... nB y y y
L

n

   
    

 (2.4) 

where B is the proportionate coefficient and   is the tolerance. 
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b. The-Larger-The-Better type 

 
 

2

2

1

1

B
L

y

 
  

  
 (2.5) 

where B is the proportionate coefficient and   is the tolerance. 

 

From the equations of the two loss functions, the financial losses are measured by 

the measurements of some particular characteristic.  In equation (2.4) and (2.5), the 

financial loss is estimated by the actual measurement, instead of the deviation of the 

measurements away from the target value.  All of these modifications give the 

quadratic loss function more flexibility and feasibility; however, its potential 

problems of an unbounded maximum loss and the possibility of non-quadratic data 

remain largely unresolved. 

 

 

2.3 Inverted Probability Loss Function (IPLF) 

 

Spiring (1993) introduced the idea of inverting a normal probability density function 

to build a loss function.  The shape of inverting a normal density function looks 

almost the same as the quadratic function, except the tails of the reflected normal 
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loss function converge to some particular value, representing the maximum possible 

loss.  In addition, with the normal distribution, there are two parameters, namely   

and  .  With two parameters, the model should be more flexible and data can be 

represented more accurately. 

 

Spiring (1993) defined his reflected normal loss function as: 

 
 2

2
( ) 1 exp

2

y T
L y K



           
 (2.6) 

where y represents the quality measurement, T the target value,   a shape parameter 

(or standard deviation), and K the maximum-loss parameter.   

 

 
Figure 2-4 Taguchi's loss function and Spiring's INLF 
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In the Figure 2-4 above, both the quadratic loss function by Taguchi and the 

reflected normal loss function are illustrated.  The blue line represents Taguchi’s 

quadratic loss function and the red curve represents the INLF introduced by Spiring.  

The above graph illustrated that, with the quadratic loss function, as the 

measurement deviates farther away from the target, the financial loss tends to 

infinity, while the reflected normal loss function depicts the financial loss 

approaching to the maximum loss.  In addition, the reflected normal loss distribution 

performs better in the sense that, the magnitude of losses associated with extreme 

deviations from the target is smoother and tends to the maximum loss smoothly.   

 

In comparison to Taguchi’s modified quadratic loss functions, Spiring also 

introduced an asymmetric loss function, to match the situation when the plus and 

minus tolerances are not equivalent.  With the piecewise function, more parameters 

give more flexibility and freedom to the loss function.  In his paper, he used the 

following example: 

 

2

2

5 1 exp , 0
2

( )

3 1 exp , 0
8

y
y

L y
y

y

         
     
            

 (2.7) 
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Figure 2-5 Spiring's piecewise reflected normal loss function 

 

As illustrated in the example above (Figure 2-5), this piecewise reflected normal loss 

function is more satisfactory than the piecewise quadratic loss function.  The shape 

of the function can be amended easily and so is the maximum loss. 

 

 

2.4 Modified Reflected Normal Loss Function 

 

Sun et al. (1996) proposed a modified reflected normal loss function enhancing the 

fundamental contributions of Taguchi and Spiring on quality loss function.  They 

further pointed out that there are two major problems that have impeded the 

acceptance of loss functions as a fundamental means for expressing this important 
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element of quality costs, and they are:  difficult to realistically access the loss to 

society corresponding to a specified deviation of the characteristic from the target, 

and the apparent absence of easy-to-use family of flexible loss functions that 

accurately represent the actual loss. 

 

They introduced this modified reflected normal (MRN) loss function aiming to 

measure the loss to society more realistically.  Instead of setting a maximum 

financial loss, they tried to measure the loss given a particular distance from the 

target, and use that measurement and distance to set up this MRN loss function.   

 

In their paper, they defined the modified reflected normal loss function as: 

 
  

2

2

1
( ) 1 exp

21 exp 1 2

K y T
L y




         
         .

 (2.8) 

 

New parameters are introduced.  K  is no longer the maximum financial loss, it is 

now defined as the value of loss at a specific distance   from the target, and the 

shape parameter   is defined as   divided by some number.  In the Figure 2-6 

below, a family of curves for   ranging from  /0.1 to  /5 are plotted.  Most shape 

parameters give a shape very close to the original reflected normal loss function.   
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Figure 2-6 Various Spiring's INLF 

 

For  /0.1, it looks just like the quadratic loss function.  The other curves,  /2. 

 /3,  /4 and  /5, look like the reflected normal loss function as proposed by 

Spiring.  In fact, significant difference can only be found in the curve of  /2.  The 

advantage of the MRN loss function is that no maximum financial loss is defined or 

needed.  The MRN loss function is built in a fashion that the maximum loss is 

caused by the maximum allowed deviation.  Observed from figure 2-6, most shape 

parameters give the same shape as the original reflected normal loss function.  It may 

be interpreted that the MRN is a RNLF with a greater maximum loss. 
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2.5 Revised Inverted Normal Loss Function 

 

Pan (2000) suggested another modified version of INLF.  His view based on a claim 

that with measurement close to the desired target, there is no financial loss.  Hence, 

his proposed loss function is a mixture of goalpost theorem and Taguchi’s loss 

function, based on the technique developed by Spiring.   

 

Similar to the goalpost theorem, Pan suggests an upper and lower acceptable range 

of a quality characteristic.  Within this interval between U and L, abbreviated for the 

upper and lower bound, no quality loss is recorded.  Outside the interval of U and L, 

loss is depicted by an inverted normal loss function.  Mathematically, Pan’s loss 

function is given by: 

  

 

 

1

2

2

1 2

2

2 2

1 exp
2

0

1 exp
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
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         
       
               

L

L

y L
K y L

L y L y U

y U
K y U

.

 (2.9) 

 

An example of the loss function is plotted in Figure 2-7 underneath, where L = 1 and 

U = 2.  The variances are set to be 1 and 1 5K  , 2 8K   representing the maximum 

possible loss of such a product. 
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Figure 2-7 An example of Pan's loss function 

 

This loss function is comprehensive in terms of tackling asymmetric loss.  Due to the 

ease in assigning the limiting loss on both sides, financial loss of a quality 

characteristic which is “nominal-the-best”, “smaller-the-better” or “larger-the-better” 

can be derived easily. This revised INLF is modifying the INLF derived by Spiring 

with an interval indicating zero financial loss.   

 

 

2.6 IPLF base on other distributions 

 

In response to the problem of lack of family of flexible and easy-to-use loss 

functions, Spiring and Yeung (1998) proposed a general class of loss functions.  The 
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general class is based on the inversions of common probability density functions.  

This class of loss functions satisfies the criteria of a loss function that the loss must 

always be positive, it is minimized at the target value, it is monotonically increasing 

as the process deviates from target, and it reaches a quantifiable maximum.   

 

Let ( , )g x T  be a probability density function, which bears a unique maximum, used 

in creating the loss function for the process of interest, such that 

  sup ,
x

g x T m


  (2.10) 

where  sup ,
x

g x T


denotes the supremum of ( , )g x T  for the measurement space,  .  

The value of m is then the maximum attainable value of ( , )g x T .  The general form 

of the Inverted Probability Loss Function (IPLF) is defined to be 

 

( , )
( , ) 1

g x T
L x T K

m
   
  , x   (2.11) 

where x denotes the process measurements, K is the maximum loss and T is the 

process target.  Letting ( , )f x   denote the probability density function associated 

with the behaviour of process measurement x, the general form of the expected loss 

function associated will be  

   ( , )
( , ) 1 ( , )

g x T
E L x T K f x dx

m




   
  

.
 (2.12) 
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With the proposed general class of IPLF, Spiring and Yeung (1998) developed the 

Inverted Gamma Loss Function and the Inverted Tukey Loss Function.  In Spiring’s 

reflected normal loss function, the inverted “bell” shape allow practitioners to 

customize a loss function in order to accurately depict losses associated with process 

departures from the target by varying the shape parameter and the targeted value.  

For asymmetric data, the Inverted Gamma Loss Function works better.  In their 

paper, the Inverted Gamma Loss Function is defined to be 

 
  1

exp 1
( , ) 1 .

xx TL x T K
T

            

 (2.13) 

 

In Figure 2-8 below, it is assumed that 2T  , 1.5,1.6,1.7,1.8   and K = 0.4.  From 

the various IGLFs plotted in Figure 2-8, it is obvious that they share the advantages 

of an INLF, in the sense that a maximum loss can be reached and the shape of the 

loss function can be adjusted easily by altering the shape parameter.   
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Figure 2-8 Various Inverted Gamma Loss Functions 

 

From figure 2-8, it is observed that the Inverted Gamma Loss Function works very 

well when there is a small distance between 0 and the target value.  The longer tail, 

on the other hand, may have significantly different shape, depends on the shape 

parameter. 

 

Figure 2-9 Illustration of IGLF's tails 
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Two more IGLFs are plotted in Figure 2-9, one with the assumption of T = 2 and one 

with T = 40.  As the target value gets bigger, the loss function looks more or less like 

a quadratic loss function, with a very long tail on the right side of the target value.   

 

Spiring and Yeung (1998) also built an inverted loss function based on the family of 

distributions defined by the transformation  

 
(1 )

( , )
p p

R p
 




 
  (2.14) 

 

where p is bounded between 0 and 1.  This family of distributions was introduced by 

Tukey (1960) and is known as Tukey’s symmetric lambda distribution, where 

(1 )p p    is a percentile function.  In their paper, Spiring and Yeung defined the 

characteristic of interest to be 
(1 )

( )
p p

x p T
 


 

   and the distribution itself is 

1 1

1
( ( ), )

(1 )
g x p T

p p  
 

, for some   greater than 0, with target value T for all 

p is bounded between 0 and 1.  Due to the symmetry of ( , )R p  , 

 
22 1 2

sup ( ( ), )
1 1 2x

or
g x p T

  






  
 

 
 (2.15) 

 

and the IPLF based on the lambda distribution can be rewritten as 
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

 

  



 

 

  
      

        

 (2.16) 

 

The followings are two plots of the IPLF of Tukey distribution according to different 

values of  : 

 

 

Figure 2-10 Inverted Tukey Loss Function ( 1.5 (above),   2.5 (below)) 
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The   of the two plots are 1.5 and 2.5 respectively.  There is an anomaly occurs for 

1 2  , where the resulting loss function has maximum loss at the target.  Tukey 

(1977) has found that this family of distributions can be used to give useful 

approximations to the percentage points of the normal and the Student’s t 

distributions.  Since the Tukey lambda distribution is approximately equivalent to a 

normal distribution and it is considered to be complicated, the inverted probability 

loss function of Tukey distribution is not widely used. 

 

Leung and Spiring (2002) developed a family of symmetric and asymmetric loss 

functions based on the Beta distribution, the Inverted Beta Loss Function (IBLF).  

The most desirable property of the IBLF is that the shape of the IBLF can be 

modified easily to suit the practitioner’s needs, while providing all the properties of 

the other inverted probability loss functions.  Unlike the Inverted Gamma Loss 

Function, the IBLF can have its shorter tail on either side of the target value, which 

gives a lot more flexibility to practitioners in developing a loss function. 

 

Given a standard beta distribution with 0   and 0   having the functional form, 

 1 11
( ) (1 ) , 0 1

( , )
f x x x x

B
 

 
      (2.17) 
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the modal point and the maxima occurs at  

 
1

2
T


 




  .
 (2.18) 

 

Assume T, the target value, to be fixed.  Using the unique maximum conditions 

associated with the beta distribution, a linear relationship can be established between 

  and   through T.  The relationship can be rewritten as  

 
1 2

1 1

T T

T T
  
 

  .
 (2.19) 

 

Based on the technique of developing Inverted Probability Loss Functions, the IBLF 

can be written as: 

  1(1 )( , ) 1 (1 ) T TL x T K C x x
     .

 (2.20) 
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Figure 2-11 Various Inverted Beta Loss Functions 
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A few IBLFs are plotted above with a fixed target value and various shape 

parameters.  The flexibility of the IBLF is shown in the sense that simple adjustment 

in the shape parameters can compose different loss functions with different shapes.   

 

The tail of an IBLF could be adjusted to look like a quadratic loss function if 1   

or 1   is less than or equal to 1.  From the Figure 2-11 above, the functions with 

tails which look like quadratic functions are set to have either values of   or   to 

be bounded between 1 and 2.  One characteristic which may worth mentioning is that 

the right tail of the loss function must be defined straightly, since the tail may have 

funny looks outside the valid range. 

 

 

2.7 Properties of the Inverted Probability Loss Functions 

 

Leung and Spiring (2004) established some properties for the loss inversion ratio 

(LIR) and the family of inverted probability loss functions.  Let f(x) be a probability 

density function possessing a unique maximum at x.  Let T = x be the value at which 

the pdf attains its unique maximum, where T is the target value.  Let  , ( )x T f x   

and    sup
x X

m f x f T


  , where  ,x T  is the probability density function of X in 
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terms of the target value, T and m is the maximum of  Xf x .    The IPLF takes the 

form of    , 1 , /L x T K x T m    , where K is the maximum loss incurred when 

the target is not attained and  , /x T m  is the loss inversion ratio. 

 

Properties of the LIR follow directly from its definition, they include: 

1. The LIR represents the relative proportional loss associated with any x value 

and hence 1 ( , ) /x T m  represents the proportional penalty paid at any 

value of x. 

2. The r-th moment of the LIR is bounded by 0 and 1 for 1r  .  The 

expectation equals to 1 if 0r  . 

3. The variance of the LIR is: 

    22[ ( , ) / ] [ ( , ) / ] [ ( , ) / ]V X T m E X T m E X T m     

the variance shown above is bounded by 0 and 1. 

 

Properties of IPLF listed in Leung and Spiring (2004) are stated as the following: 

1.  The general form of the risk function for IPLFs is 

       ( , ) 1 , / 1 , /E L X T E K X T m K E X T m            

2. The IPLF is bounded between 0 and K, where K is the maximum loss 

incurred when the target is missed. 
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3. The variance of ( , )L X T  arises from using ( )Rf x  as the process 

characteristic distribution given by 

  22 2[ ( , )] { ( , ) / } { [ ( , ) / ]}V L X T K E X T m E X T m   . 

4. The variance of an IPLF is 2K  times the variance of LIR.  Hence it is 

bounded between 0 and 2K . 

5. The loss inversion ratio is scale invariant under linear transformation. 

6. The shape of IPLF is scale invariant under linear transformation. 

7. The loss function is scale invariant under linear transformation. 

8. The risk function is scale invariant under linear transformation. 

 

The authors gave proofs for most properties listed above.  Out of all these properties 

for the family of IPLFs, scale invariant under a linear transformation enables 

practitioners to model financial loss with actual number and scale of a particular 

characteristic of quality.   

 

Assume IBLF which has unique maximum conditions, then a transformation of the 

form y a bx   results in an IBLF with a similar shape but a different scale and/or 

target.  Leung and Spiring (2002) illustrated this property by plots of two IBLF 

whereas one is based on the transformation of 20 20y x  .   
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The two plots in Figure 2-11 below have the same shape.  In fact, they share the 

same scale parameter of K = 10 and shape parameters of   = 2 and   = 1.54.  

There is only a small adjustment in terms of the loss function itself.  For the first 

IBLF, the IBLF is defined to be 

0.54
1

( , ) 10 1
0.65 1 0.65

x x
L x T

         , and the second 

IBLF, based on linear transformation, is defined to be 

0.54
20 40

'( , ) 10 1
0.65(20) 0.35(20)

x x
L x T

   
   

    .  For the second IBLF, the general form of 

Beta distribution is used and the minimum and maximum of x is set to be 20 and 40 

respectively.  In other words, for the generalized beta distribution, 

1 1
1

( )
( , )( )

y p q y
g y

B q p q p q p

 

 

 
    

          , assuming p = 20 and q = 40, the same 

shape is obtained. 
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Figure 2-12 Illustration of two IBLF with different scales 

 

As illustrated above, under a linear transformation, the IBLF shares the same shape 

as the IBLF associated with the standard beta probability density function.  This 

follows directly from the result that a generalized beta distribution can be 

transformed to a standard beta distribution.  If IBLF is used to assess the loss of a 

process having a normal distribution with mean   and standard deviation , then it 

is possible to generalize the IBLF with p k    and q k   , with 3.5k  , 
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such that it can be used to cover most of the range of the process measurement.  

Leung and Spiring (2002) also demonstrated the feasibility of IBLF when the 

process characteristic follows a gamma distribution in their paper.  In general, the 

scale invariant nature of the IBLF under linear transformation holds for any 

distribution having a unique maximum.  With this property, the IBLF can be used to 

describe financial loss even if the process characteristic follows another distribution. 

 

There are some limitations of the IBLF when the unique maximum conditions do not 

hold.  For example, if both   and   are assumed to equal to one with any target 

value, the loss will be zero over the range (0, 1) when standard beta is the underlying 

distribution, whereas zero loss between the two specification limits is unrealistic. 

 

 

2.8 The Bivariate Inverted Normal Loss Function 

 

In his first paper, Spiring (1993) regarding the inverted normal loss function, Spiring 

showed the possible extension to the case where two characteristics are of interest in 

assessing loss.  The general form of this bivariate loss function is: 

 1( ) {1 exp[ ( ) ( )]}TL K      y y T y T  (2.21) 
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where 
x

y

 
  
 

y  denotes the vector of quality characteristics, K represents the 

maximum loss and x

y

T

T

 
  
 

T  indicates the vector of target values.   is a matrix 

with the form 1 12

12 2

 
 
 

  
 

Γ , where 
2

1 2 2
1 2 12, ,

4 4 16

    
   .  1  and 2 are the 

Euclidean distance from T  to the point where maximum loss occurs along the 

principal and the secondary axis respectively.    represents the slope of the 

principle axis.  He derived the loss function based on two values, the target, where 

zero financial loss should occur and delta, which is the distance between the target 

and the point where maximum financial cost is obtained.  In Leung and Spiring 

(2004), careful work has been done to illustrate the steps to develop an IPLF, with 

only the parameters of a given distribution.  An inverted bivariate normal loss 

function can be reworked with the same procedures. 

 

Consider the probability density function of a bivariate normal distribution: 
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1 1
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  (2.22) 
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and follow the steps similar to other loss functions developed by Leung and Spiring 

(2004): 
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          (2.23) 
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If it is assumed that  0, 0, 1, 2, 1x y x y K          , the loss function will 

have the form:  
2

21
( , ) 1 exp

2 4

y
L x y K x

          
    

 , and the 3-dimensional plot 

will look like: 

 

Figure 2-13 A bivariate INLF 

 

According to figure 2-13, it can be observed that the INLF converges to the 

maximum financial loss; however, with different assumption, for example, 

coefficient of correlation and standard deviations, attention must be given to make 

sure the tolerance limits yield the maximum financial loss.  In Chapter 4, the author 

will discuss the selection of parameters for an IbNLF and IDLF. 
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CHAPTER 3 DIRICHLET DISTRIBUTION  

 

 

This chapter begins with a brief review of the characteristics of the Dirichlet 

distribution and works done on simulating random variates for the Dirichlet 

distribution.  While the Dirichlet distribution is a natural choice for the conjugate 

function when the Inverted Dirichlet Loss Function (IDLF) is applied, its parameters 

need to be estimated.  This chapter will perform the parameter estimation by the 

method of moments, method of maximum likelihood and the method of percentile 

matching, and verify the estimates by the Chi-square goodness-of-fit test and a 

Peacock’s two-dimensional Kolmogorov-Smirnov test. 

 

Simulation proves to be a valuable tool when sufficient real data is difficult to be 

collected.  It provides data in this chapter to illustrate how the method of estimation 

and the two tests are applied.  Various simulation techniques have been developed, 

the three techniques which will be studied in this thesis are:  1) conditional approach, 

2) accept-reject method and 3) the method of gamma variates. 
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3.1 Setup and General Characteristics of the Dirichlet Distribution 

 

Kotz et al. (2000) described the set up of a Dirichlet Distribution.  When there are 

0 1, ,..., mX X X  independent random variables, where jX  is a Chi-square distribution 

with jv  degrees of freedom for 0,1,...,j m   the joint distribution of 1 2, ,..., mY Y Y , 

where 
0

, 1,2, ,k
k m

ii

X
Y k m

X


 


  and 0
0

m

i
i

Y X


  can be found as: 
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  (3.1) 

defined over    0 1
1

, ,..., | 0; 0,1,..., ; 1
m

m j j
j

w y y y y j m y


 
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 

y . 

 

Integrating out 0y , and the joint density of 1 2, , ..., mY Y Y  becomes: 

   

  
0

1

1
1 2

0 2
,.., 1

11

0

1

2
,..., 1

1

2

j

m

m
v

vj m m
j

Y Y m j jm
jj

j
j

v

p y y y y
v

 
    





 
          

       
 





,

  (3.2) 



 

- 46 - 

which is also defined over  1 2
1

( ) , ,..., | 0; 1,2,..., ; 1
m

m j j
j

w y y y y j m y


 
    
 

y .  The 

above density is often known as the Dirichlet distribution.  The standard Dirichlet 

distribution is obtained by letting
1

2 j jv  , and the density will then be given by: 
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under the constraints of 
1

0 ; 1,..., ; 1
m

j j
j

y j m y


 
   

 
 .  Because of the simplicity of 

this standard Dirichlet distribution, it will be referred as the Dirichlet distribution.  

Some authors prefer to write 1m   instead of 0 .  This is only a matter of preference 

and does not change the Dirichlet distribution. 

 

The mixed moment,
1 ,...,'

mr r , of the Dirichlet distribution can be calculated easily and 

found its result to be: 
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   (3.4) 

 

If 
0

m

j
j




  , the following results are obtained: 
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The mode of a standard Dirichlet distribution can be found by the first derivative test.  

Due to the difficulty of differentiating the joint density, it is easier to differentiate the 

log of the joint density.   
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Take derivatives with respect to various variables: 
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By setting the above equations equal to 0, it can be shown that, the modes, with 

respect to each variable, are: 
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It may be worth noting that, when there is only one variable, the standard Dirichlet 

distribution, in this case, is also known as the Beta distribution: 
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where y must be bounded between 0 and 1 and the parameters 0 1,  must be greater 

than or equal to 0.   
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3.2 Conditional Density 

 

Recall the standard Dirichlet distribution, it can be shown that, if 1 , ...,s my y are 

integrated out, the remaining, that is, the variables 
1 2, , ..., ( )sY Y Y s m  have a 

standard Dirichlet distribution with parameters 1 2
1

, ,..., ;
s

s j
j
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 .   

 

Based on the result shown above, the conditional joint distribution of 
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, given
1 2, , ..., sY Y Y , is a standard Dirichlet 

distribution with parameters 1 0, ..., ,s m   .   

 

As an illustration, consider a standard Dirichlet distribution with two variables, 

1X and 2X .  The joint density is: 
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 (3.12) 

 

This density is defined in the region of 1 2 1 20 1,0 1,0 1x x x x       .  Based on 

the bivariate standard Dirichlet distribution, the marginal distributions are: 

 

   

   

2 31

1 32

112 3
1 1 1 1 2 3

2 3

112 3
2 2 2 2 1 3

2 1 3

)
( ) 1 , ,

) )

)
( ) 1 , .

) )

p x x x Beta

p x x x Beta

 

 

     
  
     
  

 



 

  
   
  

  
   
  

 (3.13) 
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The conditional probability of 1X  given 2 2X x  is, therefore, a standard Dirichlet 

distribution with parameters 1  and 3 : 

 
   

1 31 1

1 3 1 1 2
1 2 1 2 2

1 3 2 2 2

1 1
( | ) ,0 1 ,0 1.

1 1 1

x x x
p x x x x x

x x x

 
 
 

 
      

                (3.14) 

 

 

3.3 Random Number Generation 

 

Assume one random number is to be generated, instead of going through complex 

algorithm; mathematics software, like Mathematica and Matlab, can be used to 

generate a random number easily according to specific probability distributions 

including the normal distribution, uniform distribution and distributions of gamma 

family.  In the case of a univariate Dirichlet distribution, which is simply the Beta 

distribution, most mathematical software provides a built-in function to generate a 

random number handily. 

 

Random number generation technique becomes more complicated when higher 

dimension is desired.  Suppose a vector  1 2

T

nx x x x   is to be randomly 

generated, where this n-variable vector is distributed by an n-dimensional probability 
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distribution.  Due to the problem of dependence between various components of this 

random vector, generation of a random vector is often a non-trivial task and built-in 

functions are not available.  Based on the nature of a standard Dirichlet distribution, 

it is obvious that there are some sorts of dependence among its variables, as the 

domain of the distribution is given by 1 20 , , ..., 1nx x x   and 
1

1
n

j
j

x


  when there 

are n variables in total.   

 

In this thesis, three different random number generation techniques are being 

considered:  1) conditional approach; 2) acceptance and rejection approach; and 3) 

gamma factors approach.  Johnson (1987) laid clear steps on the first two approaches 

and the third approach was based on the idea that a Dirichlet variable could be 

computed by a Chi-square variable divided by the sum of Chi-square variables.   

 

 

3.3.1 Conditional Approach 

 

The conditional approach provides a mechanism to generate a series of n univariate 

random numbers to form a random vector.  The general process is listed below: 
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1. Simulate 1x  from a Beta( 1
2

,
n

j
j

 

 ). 

2. For 2,3,..., 1j n  , simulate j  from a Beta(
1

1

,
n

j i
i j

 


 
 ). 

3. For 2,3,..., 1j n  , obtain jx  by 
1

1

1
j

j i j
i

x x 




 
  
 

 . 

4. 
1

1

1
n

n i
i

x x




  . 

  

The process will be continued until all n variants are generated and the random 

vector is filled.  This process is relatively easy to perform and the vast body of 

techniques in generating univariate random variant can be utilized.   

 

Assuming a random vector of Dirichlet distribution of two components 1 2[ ]Tx x x  

with parameters    1 2 3 2 3 4
T T     is desired.   

 

The joint distribution  1 2,p x x  is given by: 

    
       32

1 2 1 2 1 2

2 3 4
, 1 .

2 3 4
p x x x x x x

  
  
  

 (3.15) 

  

With marginal distribution  1 :p x  

    
       11 32

1 1 2 1 2 20

9
1 .

2 3 4

x
p x x x x x dx

 
  

    (3.16) 
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Let   1 2 2
2 1

1 1

1
, 1 1 ,

1 1

 
     

 
x x dx

u x x u du
x x

, (3.16) becomes: 

 

   
           

 
       

     

 
     

 

0 2 2 3
1 1 1 11

16 23
1 1 0

6

1 1

9
1 1 1

2 3 4

9 7
1 1

2 7 3 4

9
1

2 7

2,7 .

p x x x u u x du

x x u u du

x x

Beta


    

  

 
  
   


 
 





  (3.17) 

  

Following the procedure, condition distribution of 2X  given 1 1X x : 

 

   
 

 
       

 
     

 
   

1 2
2 1 1

1

32
1 2 1 2

6

1 1

2

2 1 2
2 1 1

1 1 1

,
|

9
1

2 3 4

9
1

2 7

7 11
,0 1 ,0 1.

3 4 1 1 1

p x x
p x X x

p x

x x x x

x x

x x x
x x x

x x x

 


 

  





 

     
               

(3.18) 

  

Let 2

1 2 1

1
,

1 1

x du
u

x dx x
 

 
, 

 
   

     

 

32
1 1

1

7
| 1

3 4

3,4 ,0 1,0 1.

p u X x u u

Beta u x


  

 

    

 (3.19) 

  

The marginal distribution of 1X  based on such setting gives an univariate 

distribution of Beta(2, 7).  The following result is obtained: 

1. Generate 1x  based on Beta(2,7).  By the RandomReal[BetaDistribution[2,7]] 

command of Mathematica, 0.173531 is obtaind. 
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2. Generate 2  based on Beta(3, 4).  With the RandomReal command in 

Mathematica, 0.486983 is obtained. 

3. 2x  is then obtained by  2 1 0.173531 0.486983 0.402476x    .   

 

[0.173531 0.402476]Tx   becomes the random vector as requested for a bivariate 

Dirichlet distribution.   
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Figure 3-1 Scatter plot of 10000 sample points generated by the conditional approach 

 

In Figure 3-1 above, ten thousand random variates are generated and plotted 

according to the procedure mentioned previously.  The horizontal axis represents 1X , 

and the vertical axis represents 2X .  Very small amount of data points are observed 

when 1x  is greater than 0.7.  This can be explained by studying the marginal and 
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conditional probability density functions.  The plot below shows the marginal 

distribution used in this example (i.e., equation (3.17)). 
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Figure 3-2 Plot of Beta(2,7) pdf 

The marginal density gives a rightly skewed distribution, in other words, a thin right 

tail, and very little weight is found when x is greater than or equal to 0.7, which 

reflects on the scatter plot of 10000 random vectors.   
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Figure 3-3 Plot of the conditional distribution, Beta(3,4) 
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The conditional distribution is Beta(3,4), as illustrated in Figure 3-2 above.  It is 

obvious that the curve looks more like a normal curve and weights are split almost 

equally.  In the scatter plot of 10000 normal vectors, one can see that the data on the 

vertical axis are spread evenly, just like the plot of its probability density function. 

Although some characteristics between the scatter plot and probability distribution 

function plot match well, further analysis is required to test whether the random 

number generation is satisfactory, and this will be addressed in the subsequent 

sections. 

 

 

3.3.2 Acceptance and Rejection Approach 

 

If the conditional density or an inverse cumulative distribution function does not 

exist or is not readily available, the conditional approach or the transformation 

approach may not be applicable.  Acceptance and rejection approach is a better 

alternative, requires neither the conditional density nor the inverse cumulative 

distribution function.   
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The acceptance and rejection approach is being used frequently due to its ease of 

application.  For example, one would like to generate a random number from an 

unknown or complex probability density function ( )f x .  Suppose, there is a known 

pdf g(x) in which there is an algorithm to generate random number easily, and 

contains a maximum value similar to ( )f x .  This method requires two random 

numbers, one from g(x) and one from the uniform distribution, they are for the 

domain and the range of ( )f x .  A general procedure is outlined below: 

1. Generate a random number x distributed by g(x). 

2. Generate a random number u from the uniform distribution within the 

interval of 0 and 1. 

3. If 
( )

( )

f x
u

cg x
 , then accept x, otherwise, repeat steps 1 and 2. 

 

c is a constant, which is hoped to be close to 1.  If c = 1, the maximum value of 

 
 

f x
u

g x
  equals to 1 is attained when    f x g x .  The minimum value of u is 0 

when f(x) = 0.  In other words, 0 1u  , which allows the generation of uniform 

distribution between 0 and 1.   
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Figure 3-4 Illustration of acceptance and rejection approach 

Figure 3-4 above display the idea of the acceptance and rejection approach clearly, 

where 
( )

)
( )

f x
x

g x
  .  For an x, generated by g(x), will be compared with the random 

number, u, generated by the uniform distribution and the value given by )x , if c = 

1.  If u is less than the value of )x , x will be accepted; otherwise, the procedure 

will be repeated. 

 

In light of generating a random vector of a standard Dirichlet distribution, this 

procedure of generating a univariate variable must be modified.  Since it is difficult 

to find a function which has a similar shape to a standard Dirichlet distribution, 

uniform distribution will be used instead.  The amended procedure, for generating a 

random vector with two components (bivariate variate), is stated as follow: 

1. Generate a random number x as distributed by the Uniform distribution (0,1). 

2. Generate a random number y as distributed by the Uniform distribution (0, 1-

x). 
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3. Generate a random number z as distributed by the Uniform distribution (0, 

max), where max is the functional value given at the mode of the standard 

Dirichlet distribution. 

4. If z is less than f(x, y), then (x, y) is accepted, otherwise, repeat steps 1 to 3. 

For illustration, consider the generation of a random vector with two components, 

which has a standard Dirichlet distribution with    1 2 3 2 3 4
T T    .  The 

mode can be found easily as 1

1 2 3

1 1

3 6xT


  


 
  

 and 2

1 2 3

1 1

3 3yT


  


 
  

, 

where xT  and 
yT  represent the mode of X and Y respectively.  

2 3 70
( , ) (1 )

(2) (3) (4) 9x y x y x yf T T T T T T


   
  

 gives the maximum value given by 

the specific standard Dirichlet distribution at the mode.  The procedure of generating 

a random vector under this specific setting is listed as follows: 

1.  Generate a random number x which is Uniform(0,1). Using   

 in Mathematica gives an 

0.136482x  . 

2. Generate a random number y which is Uniform(0, 0.863518) and  0.251819 

is returned. 

3. Generate a random number z as distributed by Uniform(0, 70/9), where 

6.4903 is returned. 
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4. Calculate (0.136482,0.251819) 6.65587f  .  Since 6.4903 < 6.65587,  then 

(0.136482,0.251819)  is accepted. 

 

Figure 3-5 Scatter plot of data generated by the acceptance and rejection approach 

 

A similar plot to the one plotted by the conditional approach is attached here, when 

10000 random vectors are generated.  Although specific tool has not been set up to 

compare these two methods, visual inspection shows that the data points with the 

acceptance and rejection approach appears closer to the origin than its outer bound, 

which is the line segment formed by the function x + y = 1. 
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3.3.3 Gamma Factors Approach 

 

Luc Devroye (1986) pointed out that, based on the relationship between a standard 

Dirichlet distribution and a gamma distribution, a Dirichlet random variable 
jX  can 

be expressed as 

1

, 1,2,...,j

m

j
j

Y
j m

Y





, where each random variable jY  is distributed by 

Chi-square distribution with jv  degrees of freedom, 1, 2,...,j m .  Since Chi-square 

distribution is a special case of gamma distribution, therefore, an n-variate standard 

Dirichlet distribution can be expressed by n gamma factors.  The idea of this method 

is to generate n random variables, each by gamma(
j ,1) and 

1

j
j n

i
i

Y
X

Y





.   

 

For example, a random vector with two components which has a standard Dirichlet 

distribution with    1 2 3 2 3 4
T T    is desired.  The generating procedure is 

listed below: 

1.  Generate a random number 1y  which is gamma(2, 1). Using the command 

RandomReal[GammaDistribution[2,1]] in Mathematica gives a random real 

number of 3.28525. 

2. Generate a random number 2y  which is gamma(3, 1).  Mathematica gives a 

number of 5.83422. 
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3. Generate a random number 3y  which is gamma(4, 1).  4.1743 is returned by 

Mathematica. 

4. 1x  is then equated to 
3.28525

0.247127
3.28525 5.83422 4.1743


 

 and 

2

5.83422
0.438869

3.28525 5.83422 4.1743
x  

 
. 

Figure 3-6 is the scatter plot of 10000 random vectors generated by gamma factors. 

 

Figure 3-6 Scatter plot of data generated by gamma factors 

 

The scatter plot obtained by the gamma factors approach (Figure 3-6) looks almost 

identical to the plot given by the acceptance and rejection approach (Figure 3-4).  A 

goodness-of-fit test needs to be performed to compare all three methods.   
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In Mathematica, there is a built-in function Timing[ ], where the time used in 

carrying out a command can be timed.  The following table shows the time used in 

one trial of 10000 random vectors generated by each methods. 

 

Table 3-1 Computational time for the three simulation methods 

 Conditional 

approach 

Acceptance and rejection 

approach 

Gamma factors 

approach 

Time used (seconds) 0.78 2.262 2.277 

If cpu time is the only concern for generating random numbers with a standard 

Dirichlet distribution, the conditional approach seems to be the best.  As mentioned 

before, these approaches will be tested and compared by a goodness-of-fit test.  

Before a goodness-of-fit test can be carried out, estimations on the parameters must 

be done. 

 

 

3.4 Parameter Estimations 

 

The Dirichlet distribution plays an important role in Bayesian statistics as one of the 

popular choices of prior distribution.  Due to its association with the gamma 

functions, parameter estimations have not been easy for the standard Dirichlet 

distribution.  Three common methods of estimating parameters have been studied, 
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and they are:  1) method of moments; 2) method of maximum likelihood estimation 

and 3) percentile matching method.   

 

 

3.4.1 Method of Moments Estimation 

 

Recall the standard bivariate Dirichlet distribution, three parameters, 1 2 3, ,   , are 

involved.  For method of moments with bivariate distributions, ( , )p x y , the first and 

second moments of both variables are required to estimate the method of moments 

estimators.  Johnson and Kotz (2002) gave a brief walkthrough with the method. 

Population moments are: 

   .i
iE X





 (3.20) 

 
 
 

2 1
.

1
i i

iE X
  

     
 (3.21) 

where 
1

k

i
i




   .  Consider a k-variate Dirichlet distribution, k-1 first moments and 

k-1 second moments are available, which leads to 
2 2k

k

 
 
 

 possible combinations 

for estimating the k parameters.   Since method of moments estimation is not unique, 

different combination of moments gives different estimation.  Although calculations 

are not difficult to handle, the non-uniqueness in estimation is not satisfactory. 
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Consider a list of random vectors, being generated by a standard bivariate Dirichlet 

distribution with parameters    1 2 3 2 3 4
T T    , by one of the three 

methods discussed in Section 3.3.  With a bivariate Dirichlet distribution, three 

estimators are needed and the first moments and second moments, expressed by the 

parameters are listed below: 

 

Table 3-2 The first two moments of Beta( 1 2 3, ,   ) 

 First Moment Second Moment 

1X  1

1 2 3


     

1 1

1 2 3 1 2 3

( 1)

( )( 1)

 
     


      

2X  2

1 2 3


     

2 2

1 2 3 1 2 3

( 1)

( )( 1)

 
     


      

 

A table of sample moments are listed below: 

 

Table 3-3 The first two sample moments of empirical data 

 First Moment Second Moment 

1X  
'
11 1

1

1 n

i
i

M X
n 

 
 

' 2
21 1

1

1 n

i
i

M X
n 

 
 

2X  
'

12 2
1

1 n

i
i

M X
n 

 
 

' 2
22 2

1

1 n

i
i

M X
n 

 
 

 

The idea of method of moments is to match the sample moments to the population 

moments, in order to estimate the unknown parameters.  As mentioned previously, 

four equations are available while only three are needed.   
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In the previous example, a standard Dirichlet distribution is chosen as the joint 

distribution function with parameters [2 3 4]T.  Ten thousand random vectors have 

been generated and moments are calculated as follows: 

 

Table 3-4 Table of the first two moments based on 10000 generated random vectors 

 First Moment Second Moment 

1X  
0.2246 0.0675 

2X  
0.3325 0.1328 

 

If the first moments of 1X  and 2X  and the second moment of 1X are used to estimate 

the parameters, the following equations are obtained: 







' ' '
11 21 11

1 ' ' 2 2
21 11

' ' '
11 21 12

2 ' ' 2 2
21 11

' ' ' '
11 21 11 21

3 ' ' 2
21 11

( ) (0.2246 0.0675)0.2246
2.0669

( ) 0.0675 0.2246

( ) (0.2246 0.0675)0.3325
3.0602

( ) 0.0675 0.2246

( )(1 )

( )

(0.2246 0.0675

M M M

M M

M M M

M M

M M M M

M M







 
  

 

 
  

 

  






2

)(1 0.2246 0.3325)
4.0761

0.0675 0.2246

 




 

 

To illustrate the difference, the parameters are estimated again with the first 

moments and the second moment of 2X , the followings are obtained: 
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





' ' '
12 22 11

1 ' ' 2 2
22 12

' ' '
12 22 12

2 ' ' 2 2
22 12

' ' ' '
12 22 11 12

3 ' ' 2
22 12

( ) (0.3325 0.1328)0.2246
2.01641

( ) 0.1328 0.3325

( ) (0.3325 0.1328)0.3325
2.98512

( ) 0.1328 0.3325

( )(1 )

( )

(0.3325 0.13

M M M

M M

M M M

M M

M M M M

M M







 
  

 

 
  

 

  






2

28)(1 0.2246 0.3325)
3.97627

0.1328 0.3325

 




 

 

By substituting the equation involving the second moment of 2X into the one with 

the second moment of 1X , it is observed that the difference of  3  is as large as 0.1 

or approximately 2.5%.   

 

The above example concludes that different choice of equations will definitely affect 

the result in the estimation using method of moments.  Since there is no rule derived 

in which equations should be chosen, a more scientific method should be used to 

determine a unique set of estimators for the standard bivariate Dirichlet distribution. 
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3.4.2 Maximum Likelihood Estimation 

 

Fisher (1920) introduced the maximum likelihood estimator and it became one of the 

most popular statistical techniques to fit data to a model, giving estimates as 

distribution parameters.  The method of maximum likelihood estimation often gives 

a unique set of answer when differentiation is applicable.  Consider the standard 

Dirichlet distribution: 
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The likelihood function, L, is given by, when there are n random vectors of X: 

 
 

1 11
1

11 1 1

1

1 .
k j

n
k

j n k nk
j

j ijk
ji j i

j
j

L x x

 



 


  



  
  

              
  


  


 (3.23) 

 

The log-likelihood and its partial derivatives are therefore: 
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  (3.24) 

 is known as the digamma function.  Due to the difficulty of solving the above 

partial derivatives when they are set equal to 0, numerical techniques are used to 

obtain the maximum likelihood estimators.  Narayanan (1991) applied the Newton-

Raphson method and Ronning (1989) suggested to set all minj iji
X  .  Johnson, 

Kotz and Balakrishnan (2000) used Fisher’s scoring method to perform iterations: 
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The variance-covariance matrix can be found by the inverse of the Fisher 

Information matrix, I, where  
2 log

ij
i j

L
I I E

 
 

    
   

 and 


1

( ) ( ) ( ) log
n

k j k ik
i

g n n x  


      .  The initial guess of   will be based on the 

method of moments estimators.  Although many authors have written different 
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algorithm to find the maximum likelihood estimators, the method mentioned above 

by Johnson, Kotz and Balakrishnan (2000) provided convergent estimation very 

quickly.   

 

For illustration, ten thousand data points are generated by a Dirichlet distribution 

with parameters 2, 3 and 4.  Using the values estimated by the method of moments as 

the initial trial, therefore,     1 2 3
0

2.0155 3.0087 3.9981
T T       and the 

calculation after one trial is: 

2.0277 2.0155 0.0004 0.0004 0.0006 13.3011

3.0329 3.0087 0.0004 0.0010 0.0010 30.9829

4.0165 3.9981 0.0006 0.0010 0.0017 11.9365

       
               
              

 

 

Another trial results in     1 2 3
2

2.0277 3.0329 4.0165
T T       and one more 

run results in     1 2 3
3

2.0277 3.0329 4.0165
T T      , which confirms 

convergence.  Solution usually converges after three trial runs.   
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3.4.3 Percentile Matching Method 

 

Percentile matching method can also be used in parameter estimation even though it 

is not as popular as the method of moments and the maximum likelihood estimation 

method.  The idea of the method is to match the percentile points of the empirical 

and population distribution at two or more particular points, usually 0.05 and 0.95 or 

0.10 and 0.90.  Klugman, Panjer and Willmot (1998) briefly described the method by 

saying that a percentile matching estimate of   in an univariate distribution is any 

solution of the p equations ( ) , 1, 2,...,kk
gg k p    , where 

1 2, , ..., pg g g  are p 

arbitrarily chosen percentiles.  The extension to a bivariate setting is being explored 

in this research project. 

 

The most obvious problem spanning from the percentile matching problem is the 

arbitrarily chosen percentiles mentioned above.  There is no rule in choosing a 

percentile.  In this study, it is necessary to fit vectors to multivariate Dirichlet 

distribution.  The percentiles used in determining the estimators are arbitrary and 

there is more than one point with the same “percentile.”  Consider a standard 

bivariate Dirichlet distribution, which has a triangular domain.  There exists various 

vectors of 1 2( , )x x which satisfy 1 1 2 2Pr( , ) 0.10X x X x   .  This set of vectors is 
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used to estimate the parameters under percentile matching estimation.  In actuarial 

science, since insurance companies are particularly interested in the tail behavior, 

where the probability of a large amount of claim may happen, 0.10 and 0.90 or 0.05 

and 0.95 are often being considered.   

 

Similar idea is being studied in this project.  Since there are three parameters to be 

estimated for the bivariate Dirichlet distribution, three equations have to be formed.  

In other words, three arbitrary points must be pre-determined.   

 

Figure 3-7 Illustration of the setup of the three regions 

 

Consider a smaller triangle with vertices located at (1/3, 1/3), (1/3, 2/3) and (2/3, 1/3).  

Three regions are formed as indicated in the above figure.  The following procedures 

may be used: 
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1. Count the number of vectors less than those three points in both the x and y 

directions respectively. 

2. Find a set of estimators, which gives the same frequency as counted in step 1. 

 

For illustration, 10000 random vectors are simulated using the acceptance and 

rejection approach.  Using the aforementioned setting, it is found that the observed 

frequencies in the three regions are 3773, 7919 and 5222 respectively.  The 

remaining question is to find the set of   
1 2 3

T

   
  , such that the following 

system of equations are satisfied, 

   
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 

 

 

. 

 

The built-in function of “Solve” and “FindRoot” in Mathematica cannot be used in 

this application, due to the complexity of numerical integration in the above system.  

To tackle this problem, consider a cube of 2.00 0.02, 3.00 0.02, 4.00 0.02    and 

dissected into 64000 points.  The point of (2.00, 3.00, 4.00) is estimated by the 

maximum likelihood estimation method.  For the 64000 points, each point will be 
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evaluated by numerical integration within the three sub-domain listed above.  The 

point, which gives the desired set of density, will be the estimated parameters 

obtained by the percentile matching method.   

 

Finding a set of estimated parameters which exactly satisfies the desired density may 

not be possible, the set with the minimum distance from our target is selected as the 

set of estimate.  In this procedure, a set of estimate  1.96 3.02 4.01
T

 
is obtained.   

 

Unlike the method of moments, the percentile matching method does not require 

differentiation techniques and approximation technique like the scoring method; 

however, approximation needed, due to the inaccuracy of numerical integrations, an 

exact set of estimates which satisfies the frequencies given by the three pre-selected 

points are often impossible.  This method of percentile matching offers a lot of 

flexibility to statisticians, as mentioned previously, an unlimited number of set of 

estimates can be found with different selection of points to be estimated.   

 

Recall the generated random vectors and estimates according to the maximum 

likelihood estimation, method of moments and the percentile matching method 

previously, the differences between the three sets of estimates are quite small.  All 
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methods, as discussed, have their respective advantages and disadvantages.  To 

examine these three methods, a test must be employed to determine which method 

gives the better estimates. 

 

 

3.5 Biasedness of the Estimation Methods 

 

Biasedness is an interesting topic in studying an estimator.  An unbiased estimator is 

often preferable.  Statistically speaking, if ̂  is an estimator of a parameter  , then 

ˆE bias      in general.  Consider the bivariate Dirichlet distribution being 

studied; three parameters are to be estimated.  Assume the three parameters of the 

bivariate Dirichlet distribution are 1 2 3, ,    and their corresponding estimators are 

1 2 3, ,a a a . 
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3.5.1 Method of Moments Estimation 

 

Assume the estimators obtained by method of moments depending on the first 

moments of X and Y and the second moment of X, where X and Y are the two 

variables of a bivariate Dirichlet distribution.  The estimators are: 
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Expected values of 1 2 3, ,a a a  are difficult to obtain. 

 

 

3.5.2 Maximum Likelihood Estimation 

 

To study the biasedness of maximum likelihood estimators, formulation of 

maximum likelihood estimators must be obtained.  The following procedures are 

necessary to derive the maximum likelihood estimators: 
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where  . is the digamma function.  The maximum likelihood estimators of 

1 2 3, ,    are the solution to the system of partial derivatives.  Unfortunately, for the 

parameters lie within the digamma functions, it cannot be solved explicitly.  In other 

words, there is no closed form for the estimation of 1 2 3, ,   .  Hence, biasedness 

cannot be evaluated easily for the maximum likelihood estimators. 

 

 

3.5.3 Percentile Matching Method 

 

Statisticians have done very little in studying the biasedness of percentile matching 

method.  As shown in Section 3.4.3, there is no clear expression of the estimators 
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estimated by the percentile matching method.  Thus, biasedness and other 

characteristics including consistency cannot be evaluated. 

 

 

3.6 Goodness-of-Fit Test 

 

Different methods of random vector generation and parameter estimations have been 

discussed in previous sections, a test is needed to examine how well these random 

vectors agree with the standard Dirichlet distribution having the parameter estimates 

obtained.  Although, as D’Agostino and Stephens (1986) pointed out, most 

goodness-of-fit techniques are aimed at univariate data and techniques for 

multivariate data are much less developed.  In this study, it is necessary to employ 

the Chi-Square goodness-of-fit test to test the generated random vectors with the 

estimated standard Dirichlet distribution in a bivariate setting.   

 

In the classical univariate Chi-square goodness-of-fit test, to test the hypothesis that 

a random sample 1 2, , ..., nX X X  has the distribution function ( )F x , Pearson (1900) 

partitioned the range of X into M cells.  If 1 2, , ..., MN N N  are the observed number 

of
jX ’s in these cells, then 

jN  has the binomial distribution with parameters n and 
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Pr( falls in ) ( )
i

j i

E

X E dF x   when the null hypothesis is true.  Pearson reasoned that 

the difference between the observed and expected cell frequencies express lack of fit 

of the data to the distribution F, which is being tested.  The Chi-square test statistic is 

therefore 
2

2

1

( )M
i i

i i

N np

np





 , which approximately follows the 2

1 # of parameters estimatedM    

distribution.  
jX  may also be tested whether it is a member of a parametric family 

 ( | ) : in F    , where   is a p-dimensional parameter space.  The estimate  n  

may be used to estimate   and test the fit to the distribution ( | )nF  .  Thus, the 

estimated cell frequencies become  Pr( falls in ) ( ) ( | )
i

n nj i i

E

n X E np n dF x     and 

the Chi-square test statistic becomes  


2
2

1

( ( ))
( )

( )

M
ni i

n

ni i

N np

np

 



 .  This Chi-square 

goodness-of-fit test possesses great flexibility and it can be applied to univariate or 

multivariate data and any distribution, although it is usually not the most powerful 

test.   

 

An objection to this test has been the arbitrariness of cells division.  Mann and Wald 

(1942) recommended that the number M of equi-probable cells to be used.  They 

found that for a sample of size n, which is significantly large, and at significance 

level , one should use approximately
1/52

2

2
4

( )

n
M

c 
 

  
 

, where ( )c   is the upper 

 -point of the standard normal distribution.  Schorr (1974) reworked the calculation 

by Mann and Wald (1942), with better approximations, confirmed that the optimal M 
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was actually smaller than the one given by Mann and Wald.  A more convenient 

value of M was suggested to be 2/52M n . 

 

In the example, where 10000 random vectors are generated, using the formula by 

Schorr, it is found that the optimal 2/52*10000 39.8M   .  The value given by the 

formula suggested by Schorr does not work, especially when the sub-regions are 

kept equally large or equi-probable.  Due to the triangular shape of domain, sub-

region with equivalent size means that each sub-region must also be triangles.  The 

remaining problem involves, how many sub-regions, or how many triangles should 

be used.  If there are approximately 40 sub-regions, each equal side of isosceles 

triangle would have a length of 1/6 and results in 36 sub-regions.  Due to the three 

parameters being estimated, the degree of freedom for the Chi-square distribution 

becomes 32.  If the level of significance is 0.05, the critical value will be 46.1943.  

This critical value seems large enough for any well distributed random vectors; 

however, according to the example, 36 sub-regions seem too many, as the Pearson 

statistic increases exponentially as number of sub-regions increases.  This is once 

again, an evidence of opposition against the Chi-square goodness-of-fit test, as the 

choice of number of cells dominates the decision of the test. 
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In the example of 10000 random vectors generated by the method of gamma factors, 

if 9 sub-regions are desired, degrees of freedom equals to 5.  The Chi-square 

goodness-of-fit test is used to verify the maximum likelihood estimates of the 

parameters of the bivariate Dirichlet distribution with values of 

    1 2 3 2.02766 3.03293 4.01645
T T      .   

 

The Chi-square goodness-of-fit test requires the expected frequency within each cell, 

and integration must be employed to obtain the desired values.  Because of the 

complexity in integration, the built-in function of “NIntegrate” in Mathematica is 

used; however, this function can only evaluate square or rectangular regions, 

evaluation of the density when a function of, for example, 
1

3
y x   is not allowed.  

For the proposed cells division method, the idea of Riemann sum is needed.  Within 

each triangle, the density is evaluated by dissecting into 100 rectangles with a width 

of 1/300 and height of 1/300 more or less than the one besides.  The idea can be 

illustrated in the following plot. 
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Figure 3-8 Illustration of integrating a triangular region with Riemann sums concept 

 

In the plot above, to serve as a means to illustrate, 10 rectangles are formed instead 

of 100, which is the actual number of rectangles used in calculation.  The idea is that, 

if the width of each rectangle is small enough, the error incurred will be minimized 

and an accurate estimation of expected frequency can be obtained.  The detail of sub-

regions can be seen in the following plot and for the ease of programming and 

presenting, the cells are named in the following manner: 
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Figure 3-9 Illustration of cells dissection 

 

The result between observed and expected frequencies is found to be: 

 

Table 3-5 Observed versus expected frequency for simulated data 

 Observed Expected   Observed Expected 

Cell 11 864 833.97  1/ 3X   8076 8032.34 

Cell 12 2944 2911.12  1/ 3 2 / 3X   1893 1942.02 

Cell 13 2710 2689.72  2 / 3X   31 25.64 

Cell 14 1357 1402.55  1/ 3Y   5305 5294.98 

Cell 15 201 194.98  1/ 3 2 / 3Y   4494 4510.04 

Cell 21 872 913.32  2 / 3Y   201 194.98 

Cell 22 594 610.93     

Cell 23 427 417.77     

Cell 3 31 25.64     
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Refer to Table 3-5, the value of Pearson statistic obtained is 6.93411 and the critical 

value for 5 degrees of freedom at 0.05   is 11.07 and the critical value at 

0.10   is 9.23636, where the null hypothesis, under both levels of significance, is 

not rejected.   

 

 

3.7 Comparison among different methods and approaches 

 

In order to compare the result of the three simulation techniques and the three 

estimation methods, three sets of parameters are considered, namely [2 3 4], [8 6 4] 

and [1.5 1.5 1.5].  The three sets of parameters cover both ascending and descending 

order of the three parameters and equivalent parameters, while both integers and 

non-integers are considered.  Simulation of 1000 random variates by each simulation 

method and each set of parameters aforementioned will be performed.  This 

experiment will be repeated five times and the results will be compared by both Chi-

square goodness-of-fit test and Peacock’s two-dimensional Kolmogorov-Smirnov 

test.  Readers may be alerted that for the following tables, the p-value calculated by 

Peacock’s two-dimensional Kolmogorov-Smirnov test may be greater than 1 and this 

will be explained in Subsection 3.7.1. 
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Table 3-6 Tests results of random variates simulated by conditional approach with [2 3 4] 

goodness-of-fit test Peacock's 2D K-S test 

  Methods a1 a2 a3 test stat. p-value Max. Diff. Zn p-value

  MME 2.0616 3.11 3.9959 5.4276 0.2462 0.0326 1.0316 1.1338

Trial 1 MLE 2.0646 3.1306 4.0229 5.7101 0.2219 0.0307 0.9713 1.2802

  PM 2.2116 3.208 4.1339 4.6734 0.3225 0.056 1.7711 0.0782

  MME 2.1359 3.2759 4.3405 3.6118 0.4611 0.0299 0.9462 1.3408

Trial 2 MLE 2.0223 3.0869 4.079 4.3223 0.3641 0.0365 1.1531 0.8494

  PM 2.0619 3.1999 4.3205 4.6329 0.3271 0.043 1.36 0.4534

  MME 2.076 3.2372 4.1896 2.5108 0.6427 0.0371 1.1745 0.8024

Trial 3 MLE 2.0848 3.2279 4.186 2.4252 0.6581 0.036 1.1389 0.8814

  PM 2.06 3.1412 4.0496 2.0792 0.7212 0.0446 1.4111 0.3782

  MME 2.086 3.236 4.308 4.3829 0.3567 0.0289 0.9141 1.417

Trial 4 MLE 2.0203 3.1217 4.1278 4.6356 0.3268 0.0273 0.8648 1.5307

  PM 1.948 3.122 4.088 5.371 0.2513 0.0354 1.1206 0.9231

  MME 1.8758 2.8334 3.8025 5.3758 0.2509 0.04 1.2659 0.6161

Trial 5 MLE 1.9906 3.0185 4.0361 2.9668 0.5634 0.0338 1.0696 1.0425

  PM 1.8698 2.8894 3.9005 5.299 0.258 0.0431 1.3623 0.4499
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Table 3-7 Tests results of random variates simulated by conditional approach with [8 6 4] 

goodness-of-fit test Peacock's 2D K-S test 

  Methods a1 a2 a3 test stat. p-value Max. Diff. Zn p-value

  MME 8.2445 6.2247 4.1338 1.5928 0.661 0.0277 0.8756 1.5062

Trial 1 MLE 8.2913 6.2661 4.1576 1.4123 0.933 0.0268 0.8488 1.5661

  PM 8.4025 6.3187 4.2438 1.3117 0.7264 0.0272 0.859 1.5436

  MME 7.5139 5.6462 3.7287 3.3892 0.3354 0.0316 1.0001 1.2102

Trial 2 MLE 7.7711 5.8486 3.8593 4.523 0.6629 0.0316 0.9992 1.2125

  PM 7.2959 5.4262 3.5427 2.6749 0.4445 0.0453 1.4314 0.3508

  MME 7.6938 5.8583 3.9379 3.8419 0.2791 0.0393 1.243 0.6604

Trial 3 MLE 7.5953 5.7756 3.8729 3.5561 0.9964 0.0393 1.243 0.7147

  PM 7.4738 5.6383 3.8239 2.5064 0.4741 0.0345 1.092 0.9895

  MME 8.2183 6.0333 4.072 1.6238 0.654 0.0278 0.8777 1.5015

Trial 4 MLE 7.9436 5.8134 3.9427 1.4799 0.9977 0.0285 0.9025 1.4442

  PM 8.0583 5.8733 3.882 1.6873 0.6398 0.0349 1.1032 0.9633

  MME 7.7121 5.8855 3.8691 1.4743 0.6882 0.0432 1.3646 0.4462

Trial 5 MLE 7.9438 6.0753 3.9913 1.956 0.968 0.0374 1.1829 0.7843

  PM 7.8901 6.0175 4.0191 1.6349 0.6515 0.0383 1.2111 0.7247
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Table 3-8 Tests results of random variates simulated by conditional approach with [1.5 1.5 1.5] 

goodness-of-fit test Peacock's 2D K-S test

  Methods a1 a2 a3 test stat. p-value Max. Diff. Zn p-value

  MME 1.5213 1.4968 1.4684 7.1467 0.21 0.0339 1.0711 1.0389

Trial 1 MLE 1.58 1.5643 1.5447 6.3819 0.2708 0.0354 1.1182 0.9286

  PM 1.6993 1.6448 1.6164 9.8331 0.0801 0.0502 1.588 0.1861

  MME 1.466 1.4513 1.4503 2.2027 0.8204 0.0295 0.9328 1.3728

Trial 2 MLE 1.4881 1.4689 1.4817 2.0311 0.8448 0.03 0.9475 1.3376

  PM 1.624 1.6453 1.5663 5.7006 0.3365 0.0481 1.5197 0.2483

  MME 1.5223 1.4576 1.4776 3.4716 0.6277 0.0273 0.8625 1.5358

Trial 3 MLE 1.4909 1.4328 1.4814 4.0135 0.5475 0.0325 1.0269 1.1451

  PM 1.4923 1.4556 1.4676 4.1436 0.5289 0.0287 0.9083 1.4308

  MME 1.6101 1.6929 1.6429 10.0479 0.0739 0.0354 1.1191 0.9266

Trial 4 MLE 1.5138 1.5779 1.5472 8.2206 0.1445 0.0321 1.0151 1.1739

  PM 1.7841 1.7909 1.7309 20.0164 0.0012 0.056 1.772 0.0779

  MME 1.5212 1.4007 1.4731 2.8829 0.718 0.0287 0.9072 1.4332

Trial 5 MLE 1.5107 1.3894 1.4625 3.2142 0.667 0.0275 0.8697 1.5197

  PM 1.4592 1.3387 1.4471 5.5458 0.353 0.0297 0.94 1.3556
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Table 3-9 Tests results of random variates simulated by gamma factors approach with [2 3 4] 

goodness-of-fit test Peacock's 2D K-S test

  Methods a1 a2 a3 test stat. p-value Max. Diff. Zn p-value

  MME 1.9939 2.9334 3.8905 5.8526 0.2104 0.0289 0.9151 1.4148

Trial 1 MLE 2.0468 3.0382 4.0055 6.8996 0.1413 0.0322 1.0186 1.1653

  PM 2.1219 3.0294 3.9485 6.9242 0.14 0.0441 1.3955 0.4002

  MME 2.067 3.0951 4.1856 10.1999 0.0372 0.0388 1.2278 0.6907

Trial 2 MLE 1.9605 2.9244 3.9349 6.6366 0.1564 0.0331 1.0481 1.0941

  PM 1.877 2.9171 3.9656 3.7103 0.4466 0.0519 1.6416 0.1464

  MME 2.1632 3.3672 4.4039 9.0513 0.0598 0.032 1.013 1.179

Trial 3 MLE 2.0414 3.1569 4.1279 4.7497 0.314 0.0305 0.9657 1.2938

  PM 2.0752 3.1472 4.2439 6.5665 0.1606 0.0331 1.0479 1.0945

  MME 1.9325 2.873 3.8835 3.3085 0.5076 0.0313 0.9895 1.2359

Trial 4 MLE 1.999 2.9818 3.9994 2.6004 0.6268 0.031 0.9817 1.255

  PM 1.8065 2.805 3.8515 4.9056 0.2971 0.05 1.5823 0.1907

  MME 2.0689 3.104 4.1428 6.1423 0.1888 0.0339 1.0729 1.0346

Trial 5 MLE 1.9859 2.9963 3.9839 4.2258 0.3763 0.0416 1.3153 0.5268

  PM 1.9589 2.992 3.9228 3.9334 0.4151 0.0434 1.3718 0.4352
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Table 3-10Tests results of random variates simulated by gamma factors approach with [8 6 4] 

 goodness-of-fit test Peacock's 2D K-S test

  Methods a1 a2 a3 test stat. p-value Max. Diff. Zn p-value

  MME 8.2305 6.2775 4.2718 5.0329 0.1694 0.0299 0.9459 1.3414

Trial 1 MLE 8.3917 6.4062 4.3549 5.3702 0.1466 0.028 0.8846 1.4856

  PM 8.0165 6.1395 4.1318 4.3801 0.2232 0.037 1.1698 0.8128

  MME 8.5646 6.3519 4.2142 1.8941 0.5947 0.0333 1.0537 1.0807

Trial 2 MLE 8.3757 6.2051 4.1078 1.4824 0.6863 0.0308 0.9726 1.277

  PM 8.4946 6.2859 4.2482 0.745 0.8626 0.0294 0.9284 1.3831

  MME 8.2954 6.1063 4.2243 2.393 0.4949 0.0342 1.0827 1.0114

Trial 3 MLE 8.2038 6.028 4.1775 2.4217 0.4896 0.0324 1.0259 1.1477

  PM 8.4734 6.2963 4.3323 4.1943 0.2412 0.0418 1.3233 0.5132

  MME 7.2701 5.5762 3.7771 1.3097 0.7268 0.0343 1.0862 1.0032

Trial 4 MLE 7.2252 5.5365 3.7472 1.3764 0.7111 0.0333 1.0536 1.0808

  PM 7.4681 5.7722 3.9511 1.5669 0.6669 0.0394 1.2453 0.656

  MME 7.6823 5.8069 3.7849 11.863 0.0079 0.0367 1.1595 0.8354

Trial 5 MLE 7.8336 5.9155 3.8837 11.3113 0.0102 0.042 1.3287 0.5041

  PM 7.6003 5.7229 3.9549 15.3432 0.0015 0.0634 2.0037 0.0215
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Table 3-11Tests results of random variates simulated by gamma factors approach with [1.5 1.5 

1.5]  

goodness-of-fit test Peacock's 2D K-S test 

  Methods a1 a2 a3 test stat. p-value Max. Diff. Zn p-value

  MME 1.5305 1.4445 1.4663 6.3589 0.2728 0.0308 0.9753 1.2704

Trial 1 MLE 1.5524 1.4857 1.5112 6.0882 0.2977 0.0291 0.921 1.4008

  PM 1.4925 1.4085 1.4363 7.7396 0.1712 0.0334 1.0556 1.0761

  MME 1.5919 1.6063 1.6121 8.2361 0.1437 0.0267 0.8431 1.5786

Trial 2 MLE 1.5431 1.5602 1.5541 6.68 0.2455 0.0277 0.8762 1.505

  PM 1.4719 1.4343 1.4561 7.2094 0.2055 0.0404 1.2773 0.5949

  MME 1.5052 1.6205 1.5165 15.5917 0.0081 0.0346 1.0956 0.9811

Trial 3 MLE 1.4981 1.6191 1.5383 15.3461 0.009 0.0371 1.1744 0.8027

  PM 1.6992 1.7385 1.5665 26.2427 0.0001 0.0663 2.096 0.0121

  MME 1.5718 1.5527 1.5495 1.1336 0.9511 0.0226 0.714 1.8238

Trial 4 MLE 1.5884 1.5701 1.5748 0.9267 0.9683 0.0218 0.6897 1.86

  PM 1.5238 1.5367 1.5615 1.7694 0.88 0.0274 0.8667 1.5263

  MME 1.4935 1.4829 1.5144 2.257 0.8126 0.0249 0.788 1.6927

Trial 5 MLE 1.4836 1.4679 1.5085 2.496 0.7771 0.0233 0.7371 1.786

  PM 1.4455 1.4749 1.4804 2.4252 0.7877 0.0233 0.7371 1.786
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Table 3-12 Tests results of random variates simulated by acceptance and rejection approach 

with [2 3 4] 

goodness-of-fit test Peacock's 2D K-S test 

  Methods a1 a2 a3 test stat. p-value Max. Diff. Zn p-value

  MME 2.1836 3.2246 4.1157 4.6674 0.3232 0.0252 0.7984 1.6721

Trial 1 MLE 2.0965 3.0795 3.9183 1.4183 0.841 0.0266 0.842 1.581

  PM 2.1276 3.0546 3.8957 1.4691 0.8321 0.0378 1.1959 0.7565

  MME 1.9999 2.9618 3.9037 2.2334 0.6929 0.0243 0.7699 1.7273

Trial 2 MLE 1.9968 2.9409 3.8825 2.3273 0.6758 0.0254 0.8029 1.6629

  PM 1.9439 2.9058 3.7837 2.8529 0.5827 0.031 0.9805 1.2578

  MME 1.9475 2.9225 3.8314 0.8745 0.9282 0.0349 1.1039 0.9616

Trial 3 MLE 1.9526 2.9275 3.8706 1.2344 0.8724 0.0357 1.1285 0.9049

  PM 1.8555 2.7645 3.6714 1.7415 0.7832 0.0353 1.1163 0.9329

  MME 1.9204 2.9671 4.0045 2.6395 0.6198 0.0288 0.9117 1.4226

Trial 4 MLE 1.9231 2.9767 4.0362 2.267 0.6868 0.0291 0.9199 1.4035

  PM 1.9744 3.1211 4.1425 1.3844 0.8469 0.0414 1.3101 0.5358

  MME 2.0167 2.8951 4.0245 7.8972 0.0954 0.0336 1.0636 1.0569

Trial 5 MLE 2.1084 3.0424 4.2148 5.4452 0.2446 0.0317 1.0017 1.2065

  PM 2.0627 3.0491 4.2225 6.0181 0.1978 0.0348 1.1002 0.9704

 

 

 

 

 



 

- 92 - 

Table 3-13Tests results of random variates simulated by acceptance and rejection approach 

with [8 6 4] 

goodness-of-fit test Peacock's 2D K-S test 

  Methods a1 a2 a3 test stat. p-value Max. Diff. Zn p-value

  MME 8.2007 6.0425 4.0832 1.2883 0.7319 0.0392 1.2403 0.6658

Trial 1 MLE 8.2275 6.053 4.0949 1.4757 0.6879 0.0386 1.2218 0.7029

  PM 8.1987 6.1545 4.1532 0.5905 0.8986 0.0418 1.3222 0.5151

  MME 8.5659 6.2581 4.416 10.2116 0.0169 0.0345 1.0917 0.9904

Trial 2 MLE 8.251 6.0172 4.2366 8.1127 0.0437 0.0322 1.017 1.1692

  PM 8.4059 6.1201 4.482 5.523 0.1373 0.051 1.6128 0.1668

  MME 7.5085 5.566 3.784 7.2311 0.0649 0.034 1.0767 1.0257

Trial 3 MLE 7.7185 5.7466 3.8796 8.0083 0.0458 0.0308 0.9747 1.2718

  PM 7.2925 5.506 3.704 6.4465 0.0918 0.0451 1.4273 0.3562

  MME 8.0078 5.9434 4.0014 1.2536 0.7402 0.0328 1.0359 1.1236

Trial 4 MLE 8.0334 5.9675 4.0093 1.4597 0.6916 0.0329 1.0408 1.1117

  PM 7.9578 5.8554 4.0334 0.6425 0.8866 0.036 1.1387 0.8818

  MME 8.2946 6.3467 4.1551 2.9226 0.4037 0.043 1.3598 0.4537

Trial 5 MLE 8.0077 6.0958 4.0064 3.0183 0.3888 0.0447 1.4125 0.3762

  PM 8.1766 6.1867 3.9411 4.0143 0.2599 0.0602 1.9027 0.0386
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Table 3-14Tests results of random variates simulated by acceptance and rejection approach 

with [1.5 1.5 1.5] 

goodness-of-fit test Peacock's 2D K-S test 

  Methods a1 a2 a3 test stat. p-value Max. Diff. Zn p-value

  MME 1.5461 1.5302 1.5182 5.9209 0.314 0.0303 0.959 1.31

Trial 1 MLE 1.5765 1.5844 1.5732 5.2158 0.3901 0.0333 1.0524 1.0837

  PM 1.7441 1.7262 1.6522 10.1572 0.0709 0.0612 1.9349 0.0322

  MME 1.5128 1.5542 1.4968 2.0757 0.8386 0.028 0.8852 1.4843

Trial 2 MLE 1.4921 1.5141 1.4715 2.3644 0.7968 0.0261 0.8243 1.6188

  PM 1.5542 1.5048 1.7108 1.9973 0.8495 0.0264 0.8352 1.5955

  MME 1.5312 1.6597 1.6719 6.6986 0.244 0.0289 0.9142 1.4169

Trial 3 MLE 1.5509 1.6812 1.6844 6.5978 0.2523 0.0292 0.9226 1.3969

  PM 1.5412 1.6317 1.6659 7.3135 0.1984 0.0373 1.178 0.7948

  MME 1.4666 1.5234 1.5047 6.2153 0.2858 0.026 0.8229 1.6216

Trial 4 MLE 1.4442 1.5023 1.4736 7.0022 0.2205 0.0255 0.8072 1.6543

  PM 1.6346 1.7154 1.6827 11.279 0.0461 0.0475 1.5025 0.2663

  MME 1.5511 1.6072 1.5157 5.4878 0.3593 0.0274 0.8669 1.526

Trial 5 MLE 1.5067 1.5524 1.4896 6.6831 0.2453 0.0294 0.9283 1.3835

  PM 1.7351 1.8052 1.6217 10.071 0.0732 0.059 1.8657 0.0475

 

In this simulation exercise, one thousand random variates are generated for each trial.  

The three estimating techniques are then applied to each trial and the Chi-square 

goodness-of-fit test and Peacock’s two-dimensional Kolmogorov-Smirnov test (2D 

K-S test) are applied to obtain the p-value.  Assuming a 0.10 level of significance, 

thus a p-value being less than 0.10 would result in rejection of the proposed model.  
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The aforementioned procedure would be carried out for five times for each random 

seed.  The pre-selected random seeds are [2, 3, 4], [1.5, 1.5, 1.5] and [8, 6, 4] 

respectively.  The selection of random seeds includes scenarios of:  

1 2 3 1 2 3,a a a a a a     and 1 2 3a a a  .  There are three simulating techniques 

being considered in this exercise and they are:  1) acceptance and rejection approach, 

2) conditional approach and 3) gamma factors approach.  In short, there are a total of 

45 trials, 135 sets of estimates and 270 tests being conducted. 

 

 

3.7.1 Discussion on the Two Tests 

 

When reading the results above, one may concern about the last column of in table 3-

6 to 3-14, where there are some p-values greater than 1.  This can be explained by 

the formula given by Peacock (1983), the author who designed this two-dimensional 

Kolmogorov-Smirnov test.  Peacock’s procedure was to: 

i) Obtain Dn, the maximum difference for each point, where the expected 

frequency and observed frequency are compared in four quadrants. 

ii) Calculate Zn by n nZ nD . 
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iii) Calculate Z  by 
0.91 0.53

nZ
Z

n 


. 

iv) P-value is given by:     2
2exp 2 0.5P Z Z 

      . 

 

The procedure can be expressed as a function of p-value versus Dn: 

 

2

0.9
2exp 2 0.5 .

1 0.53
nnD

p
n

  
        

 (3.26) 

 

If n = 1000 is assumed, the following plot is obtained: 

0.00 0.05 0.10 0.15 0.20
Max Difference

0.5

1.0

1.5

2.0
p-value

 

Table 3-15 Relationship between maximum difference and p-value for the 2D K-S test 

 

It is obvious that if the maximum difference is small, the p-value given by Peacock’s 

two-dimensional Kolmogorov-Smirnov test may give a value greater than 1, which 

has already been mentioned in Peacock (1983). 
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Based on the p-values obtained from the Chi-square goodness-of-fit test and the two-

dimensional K-S test, the two tests do not agree with each other in seventeen out of 

one hundred and thirty five sets of estimates.  A smaller p-value is found in the Chi-

square goodness-of-fit test in all but two of these contradicting cases.  In fact, there 

are only eighteen occasions such that the Chi-square goodness-of-fit test has a larger 

p-value than Peacock’s 2D K-S test.  This may be explained by the formulation of 

Peacock’s 2D K-S test and Chi-square goodness-of-test.  The formulation of 

Peacock’s test has just been discussed previously in the preceding paragraph.   

 

Peacock’s test requires the maximum difference found between the expected and 

observed frequencies for all points and this maximum difference is then used to 

calculate the p-value.  In Chi-square goodness-of-fit test, the expected and observed 

frequencies are compared in cells formed by the statistician.  Thus, the statistician 

has to apply his or her own judgment in deciding how many cells are required.  As 

discussed, since cells with equal size are preferred, the number of cells for a 

triangular domain would be 9, 16, 25, etc.  Unfortunately, little work has been done 

on selecting cells for the Chi-square goodness-of-test in a bivariate distribution.  9 

cells of equal size are adopted in this study to make sure merging of cells is not 

likely.  This may affect the p-value obtained by the Chi-square goodness-of-fit test 
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and have a bearing on the cases which different conclusion about the proposed 

model interpreted by the two tests. 

 

 

3.7.2 Discussion on the Three Methods of Estimation 

 

In all the tests compiled, fourteen models proposed by the percentile matching 

method give rise to a p-value less than 0.1, implying the proposed model being 

rejected.  Similarly, eight models by the method of moments and four models by the 

maximum likelihood estimation method are rejected with p-value being less than 0.1.  

According to the results of the simulation exercise, the number of rejected model 

indicates the models proposed by the percentile matching method is more likely to 

be rejected.  On the other hand, there are cases where the p-value obtained by the 

percentile matching method is greater than the other two methods.  In table 3-13, 

trial 2, under the Chi-square goodness-of-fit test, the model suggested by the 

percentile matching method overweights the other two models which are not rejected 

with a 0.10 level of significance.  This method of percentile matching outlined in this 

study is not matured in terms of development.  More work being done in this method 

may give statisticians a better estimation. 
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3.8 Discussion and Suggestion on Simulating Techniques and Estimating 

Methods 

 

This chapter has discussed three different simulating techniques and three different 

estimating methods.  Based on the results obtained in this chapter, the gamma factors 

method and maximum likelihood estimators are suggested. 

 

The gamma factors approach is suggested over the other two methods because of its 

simplicity.  The conditional approach requires the conditional probability density 

function, which is a Beta distribution in this case.  A selection procedure must be 

carried because the second random number obtained may not agree with the domain 

of a Dirichlet distribution.  Similar matter arises with the acceptance and rejection 

approach.  A selection criterion must be satisfied or the random variate must be 

simulated again.  The gamma factors approach does not have these problems.  Three 

random numbers distributed by gamma probability density functions can easily be 

simulated and the random variate is then generated. 

 

In order to estimate parameters of the conjugate function, three estimating methods 

have been considered.  The method of maximum likelihood, although without a clear 
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formula for the parameters, is suggested.  Unlike the other two methods, maximum 

likelihood estimation is unique.  Moreover, the experiment demonstrated in Section 

3.7 shows that the method of maximum likelihood estimation accounts for the 

smallest number of rejected models among the three methods of estimation.  For the 

method of moments, although the estimates and the test results are very similar to the 

method of maximum likelihood estimation and the calculation is comparably much 

easier than the method of maximum likelihood estimation, this method gives a set of 

estimates which are not unique, since different choice of moments gives different 

estimates of parameters.  Similarly, different choice of regions gives different 

estimates of parameters for the percentile matching method.  Maximum likelihood 

estimation is the only method which gives a unique estimation. 

 



 

- 100 - 

CHAPTER 4 INVERTED DIRICHLET LOSS FUNCTION  

 

 

Spiring (1993) introduced an innovative Reflected (or Inverted) Normal Loss 

Function (RNLF or INLF).  This loss function penalized deviation from off-

targetness and provided bounded losses at the two far ends.  He further built a 

bivariate RNLF to depict financial loss due to deviations of two quality 

characteristics from their respective target values to measure monetary losses to the 

society as well as the manufacturer.  In this section, the IbNLF of Spiring would be 

revisited and a loss function by inverting the Dirichlet distribution would be 

developed. 

 

The Dirichlet distribution, due to its flexibility in including variables, is an ideal 

study target to begin with in developing a family of loss functions which are 

multivariate.  Unlike other distributions, the Dirichlet distribution can take on as 

many variables as required.  Its characteristic enables quality assurance professionals 

to conveniently build loss functions to evaluate financial loss when multiple 

variables are considered. 

 



 

- 101 - 

The Dirichlet distribution is additive in nature, namely, the domain is defined as long 

as  1 20 ... 1kx x x     , where 1 2, ,..., kx x x  are measurable process characteristics.  

This is a valuable characteristic when the sum of measurements of k variables must 

be less than or equal to a limit.  This distribution may also be applied, for example, 

to depict the financial loss of transportation from a wholesaler to k retailers, within a 

specific amount of time.  Applications will be demonstrated in later sections of this 

chapter to illustrate the feasibility of such loss function developed from the Dirichlet 

distribution. 

 

 

4.1 Spiring’s Inverted bivariate Normal Loss Function  

 

Spiring (1993) introduced the bivariate form of his Inverted Normal Loss Function to 

show the possibility of projecting financial loss when more than one variable was 

being considered.  The general form of this bivariate loss function was given as: 

  1( ) 1 exp ( ) ( )TL K        y y T y T , (4.1)  

where 
x

y

 
  
 

y  represents the vector of quality characteristics being studied, K is the 

maximum loss due to the product of a manufacturing process, X

Y

T

T

 
  
 

T  is the 
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associated vector of target values and 1 12

12 2

 
 
 

   
 

, where 1
1 4
 
 , 2

2 4
 
  and 

2
2

12 16

 


 
represents the shape parameter as presented in Spiring’s initial INLF.  1  

and 2  are the Euclidean distance measured from the target value to the point where 

maximum loss occurs in the principle and secondary axis respectively,    is the 

slope of the principle axis. 

 

 

4.1.1 Procedure of Building a Bivariate INLF 

 

The product engineer specified the target value and tolerance limits of a product 

based on his expertise and experience.  These are the main ingredients to build an 

IbNLF.  Spiring (1993) estimated the shape parameters by approximation and came 

up with 1
1 4
 
 , 2

2 4
 
  and 

2
2

12 16

 
 , where 1  and 2  are the Euclidean 

distance measured from the target value to the point where maximum loss occurs in 

the principle and secondary axis respectively and 1 , 2 , and 12  represent the 

standard deviations of the two variables and the correlation between the two 

variables respectively.  The use of distance between target value and maximum loss 

occurrence was first suggested by Taguchi, Elsayed and Hsiang (1989) as an 
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approximation.    is the slope of the principle axis, which has to be estimated by 

evaluating the slope of the dominating quality characteristic.  Problems may arise 

when both quality characteristics are equally important and thus the slope 

measurement may not be unique.  In view of these probable problems, an alternative 

is considered in this thesis. 

 

Consider a case when the financial loss of a product can only be affected by two 

quality characteristics.  A product engineer specifies the target values of the two 

qualities and four tolerance limits.  These tolerance limits form a rectangular region, 

while the Normal distribution has elliptical contours and the Dirichlet distribution 

has a triangular domain.  In other words, an inverted probability loss function built 

by either a Normal distribution or a Dirichlet distribution will either over-estimate or 

under-estimate the financial loss.  Over-estimation may cause less problems than 

under-estimation because high quality of products may give an unreasonably high 

depicted loss, which may lead to the decision of upgrading production lines by 

mistake.  However, under-estimating the financial loss may lead to low quality 

products having a reasonable loss depicted and affects the reputation of the company, 

eventually lower consumer demand and drives the company out of business. 
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As the discussion extends to the bivariate (or multi-variate case) case, unfortunately, 

information about the correlation of the two (or more) variables is often unavaliable.  

The lack of information about correlation creates problems, especially when an 

Inverted bivariate Normal loss function is desired.  Data collected from samples may 

give some insight about the actual correlation, but nonetheless, the estimation of 

correlation between the two variables, requires assumptions in most occasions.  

Three possible scenarios:  no correlation, negative correlation and positive 

correlation, for which values close to positive and negative one will be considered.    

 

Recall the bivariate Normal density function: 

22

22

1 1
( , ) exp 2

2(1 )2 1

y yx x

x y x yx y

y yx x
f x y

  
      

                                     

  (4.2) 

 

Based on the bivariate Normal distribution, the mode can be calculated as follows: 
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  (4.3) 

 

From equation (4.3), the mode of a bivariate Normal distribution is its mean, and it is 

selected as the target values.  Hence, the maximum value of the function is: 
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


  (4.4) 

 

Using the result of equation(4.4), the general form of an IbNLF was obtained: 
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  (4.5) 

 

Due to the problem of lack of information provided for ,X Y   and  , the 

parameters of the IbNLF,  estimations of ,X Y   and different scenarios of values of  

  will be considered. 

 

4.1.1.1 No Correlation 

If there is no correlation ( 0  ) between the two variables, as is the case that the 

two quality characteristics are independent. From (4.2) the IbNLF is:  

22
1 1

( , ) exp
2 2

yx

x y x y

yx
f x y


   

                    

.  Assuming the target value is set 

at the middle of the tolerance limits and XUL  and YUL  represent the upper limits of 

the two variables respectively.  X  and Y  can be picked from the set where 

22
1 1

( , ) exp 0
2 2

X Y
x y

x y x y

x UL y UL
g  

   

                     

 is satisfied.   
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Figure 4-1  , X yg with xUL =10, yUL =2 

 

Although values of x and y in a normal distribution never assume the values of 0, 

arbitrarily small values, for example, 0.0001, can be determined in advance, and the 

limits will include these arbitrarily small values.   

 

Figure 4-1 above illustrates the function ( , )X Yg   .  According to this plot for 

specific values, any combination of ( , )X Y  , which lay on the xy-plane can be used 

as the scale parameters of the IbNLF for this particular example.  A combination like 

(4, 1) may be favorable since:  1) it lies on the xy-plane and 2) it lies very close to 

the edge of the curly surface given by ( , )X Yg   .  A combination lying on the xy-
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plane is preferable because the probability density is very close to zero, which would 

result in the maximum financial loss by the IPLF.  Being close to the curly surface is 

favorable because In this sense, the elliptical opening for the IbNLF will give the 

maximum unit loss right on the tolerance limits given by the engineer. 

 

4.1.1.2 Positive or Negative Correlation 

Similar to the previous subsection, based on the tolerance limits given by the 

engineer, a function based on ,X Y   and  can be obtained: 

   
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21 1
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2(1 )2 1

X YX Y
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, 

where   is an assumed value lying between -1 and 1.  In this project, values of 

0.95  are used to provide extreme cases. 

 

The loss function of a k-variate Normal distribution can be established as follows: 
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 where 1 2 1 2[ , ,..., ] , [ , ,..., ]T T
k kx x x    x m ,  and   is the variance-covariance 

matrix, given by
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It is known that the mode happens to be the mean vector of normal distribution, thus,  

1 2 1 2k k

T T

X X X X X XT T T           , and the supremum is found at: 
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The loss function is then,  
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 (4.8) 

 

Figure 4-2 to Figure 4-5 are some example plots of the IbNLF with various variances 

and correlation factors: 

 

Figure 4-2 IbNLF with 0, 1, 0X Y X YT T         
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Figure 4-3 IbNLF with 0, 2, 3, 0X Y X YT T         

 

 

 

Figure 4-4 IbNLF with 0, 2, 0.5X Y X YT T         
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Figure 4-5 IbNLF with 0, 2, 0.25X Y X YT T         

 

From the above plots, one can assure that the original assumption of Spiring (1993) 

is indeed correct.  By letting 
4

 
 , or 4 , given any  , the distance between 

the target and where maximum loss occurs can be predicted easily.   

 

IbNLFs and their probable correlation can be illustrated as in the contour plots 

(Figure 4-6): 
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Figure 4-6 Contour plot of two different IbNLFs (above: 0.5  , below: 0.9  ) 

 

Both plots have the target value at the origin and variance of 2 in both axes of X and 

Y.  The only difference is the correlation, 0.5   and 0.9   for the two contour 

plots respectively.  When 0  , in other words, the two variables of X and Y are 

independent of each other, and if variances of the two axes are the same, the contour 
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plot will have the same form of a circle as the IbNLF plotted as in Figure 4-2 and 

Figure 4-3.  Increment of correlation increases the length of the oval along the line of 

x y , where, different variances will result in the increment of length in the 

corresponding axis.   

 

In Chapter 5, estimation of parameters of two IbNLF will be utilized with real data.  

Detail illustration with the idea outlined in this subsection will be demonstrated. 

 

 

4.1.2 Relationship of a Bivariate INLF and its Marginal Loss Functions 

 

The relationship between two univariate probability density functions can be 

measured by its covariance.  Consider a bivariate normal distribution with the 

following form: 
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  (4.9) 
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 is the correlation between X and Y, where X and Y are random variables 

distributed marginally by univariate normal distributions.  Correlation describes the 

dependency of X and Y and their relationship:  positively or negatively correlated.  

However,  alone cannot explain the relationship between loss functions. 

 

Hoeffding (1940) showed that the covariance of two random variables X and Y could 

be written in terms of their joint distribution and respective marginal distributions in 

the following form: 

 
2

cov( , ) ( ( , ) ( ) ( ))
R

X Y H x y F x G y dxdy   (4.10) 

where ( , )H x y  is the continuous joint cumulative density function, ( )F x  and ( )G y  

are the marginal cumulative density functions, and 2R is the two dimensional domain 

which the function is defined.   

 

Expanding on Hoeffding’s work, Sen (1994) found a formula of calculating the 

covariance between two functions and Cuadras (2002) gave a detailed proof of the 

following generalization: 

 
2

cov( ( ), ( )) ( ( , ) ( ) ( )) ( ) ( )
R

X Y H x y F x G y d x d y      (4.11) 

( )x  and ( )y  are two functions defined on [ , ]a b , [ , ]c d  respectively.  Under the 

assumptions of: 
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1.  Both functions are of bounded variation, and 

2.    | ( ) ( ) | , | ( ) |E X Y E X    and  | ( ) |E Y  all finite. 

Then, the covariance function can be rewritten as: 

 cov( ( ), ( )) ( ( , ) ( ) ( )) ( ) ( )
b d

a c

X Y H x y F x G y d x d y       (4.12) 

 

Consider a bivariate Normal distribution, with marginal distributions of two 

univariate Normal distribution.  The cumulative density function (cdf) of an 

univariate normal distribution could be written as 
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   or simply known as the error function encountered in 

integrating the normal distribution.  However, no neat expression of a bivariate 

normal cumulative density function can be formed.  Using the integral form and 

substituting into Sen and Cuadras’ formula gives: 
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The associated loss functions and their derivatives are: 
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Putting all together into Sen and Cuadras formula, the covariance of the two IbNLFs 

can be illustrated as: 
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where ( , )H x y , ( )F x  and ( )G y  are defined previously. 

 

 

4.2 Inverted Dirichlet Loss Function 

 

Extending the IBLF developed by Leung and Spiring (2002), this study explores the 

possibility of developing a multivariate IBLF based on a standard Dirichlet 

distribution, with parameters of 1 2, , ..., k   .  A simpler case of two variables will be 

presented in section 4.2.1 after developing a general case of k variables here.   
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 (4.16) 

The modes, with respect to each dimension, are derived as in (4.16) above.  The 

supremum (m), loss inversion ratio ( ) and the loss function (L), can be obtained as 

follows: 
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where 
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Expected value and variance can be found by the usual formula in statistics.  In the 

derivation below, the conjugate function is assumed to be a standard Dirichlet 

distribution with parameters 1 2 1, , ..., ,k ka a a a  . 
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(4.18) 

 

where C is the constant as defined in (4.17). 

 

 

4.2.1 Bivariate Inverted Dirichlet Loss Function 

 

This subsection illustrates a specific case of k = 2.  With the Dirichlet density 

distribution, 31 2
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, the modal point can be 

obtained by  (4.16) as: 
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Following the above procedure, its supremum, loss inversion ratio and loss function 

are obtained as follows: 
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function (IbBLF): 
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Based on the loss function, the expected loss is: 
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 (4.23) 

 

where C is the expression in (4.21)  and 1 2 3, ,a a a  are the parameters of the conjugate 

function which is assumed to be a Dirichlet distribution. 

 

Developing the IDLF based on the tolerance limits suggested by the product 

engineer would be difficult.  Often a rectangular tolerance region is suggested by the 

product engineer, which does not correspond well to a triangular domain of a 

Dirichlet distribution with two variables.  Linear transformation may be considered, 

but this may not work well in all cases.  More discussion on the selection process of 

parameters in an IDLF will be utilized in Chapter 5 with real data. 

 

 

4.3 Conjugate Functions of the Inverted Dirichlet Loss Function 

 

In Section 4.2, the IDLF has been developed, along with its moments and 

relationships with its marginal functions.  As mentioned previously, a loss function 

is used to depict the financial loss caused by deviation from the desired target over a 
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collection of data.  However, the distribution of deviations or the behavior of 

measurements of the product may be distributed by another probability distribution, 

which is often denoted as the conjugate function.  In this section, a few bivariate 

probability density functions are selected to demonstrate the feasibility of using a 

conjugate function other than a Dirichlet distribution. 

 

In Leung and Spiring (2002), a set of conjugates were discussed, and they were the 

univariate gamma, exponential, beta and uniform distribution.  In this thesis, the 

inverted Dirichlet distribution is also considered.  Unlike the univariate probability 

density functions, statisticians developed a large number of multivariate probability 

distributions for common distributions like gamma and exponential.  For example, in 

Kotz et al. (2000), thirteen bivariate exponential distributions were presented.  Here, 

only one from each of the proposed distributions is being discussed based on the 

simplicity of that particular distribution. 

 

Due to the complexity of multivariate distribution, most of the formulas are given in 

terms of double integrals.  To avoid the mathematical complexity such that clearer 

insights can be obtained, only bivariate distributions and IDLF would be considered.  
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The most natural choice of conjugate would certainly be the Dirichlet distribution 

itself, which had already been discussed section 4.2.   

 

 

4.3.1 Uniform Distribution 

 

The simplest choice of conjugate is the Uniform distribution.  The bivariate uniform 

distribution is defined as: 
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If the behavior of data has a rectangular domain, the expected loss becomes: 
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4.3.2 Inverted Dirichlet Distritubion 

 

Ghorbel (2010) and Tiao and Cuttman (1965) used two different approaches to 

derive the Inverted Dirichlet Distribution.  Ghorbel (2010) considered individual 

random variables to be distributed by the gamma distributions.  On the other hand, 

Tiao and Cuttman (1965) used an inverted transformation to derive the Inverted 

Dirichlet Distribution.  Both approaches lead to the same probability density function 

and the general form is shown below if it has parameters 1 2 1, , ..., ,k ka a a a  :   
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Expected loss of an IDLF with the Inverted Dirichlet distribution acting as the 

conjugate function could be illustrated as: 
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If k = 2, the expected loss would become: 
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 (4.27) 

 

To illustrate graphically, let      1 2 3 1 2 3 2 3 4
T T T

a a a v v v  , a three-

dimensional surface could be obtained as in Figure 4-7: 
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Figure 4-7 Surface of an IbDLF with a conjugate distribution of Inverted Dirichlet 

 

By built-in numerical integration method of Mathematica, an answer of 0.436552 is 

obtained through equation (4.27) by evaluating the volume within our desired 

domain. 

 

 

4.3.3 Bivariate Gamma Distribution 

 

In Kotz et al. (2000), thirteen bivariate gamma distributions were presented.  In this 

study, the McKay’s bivariate gamma is selected due to its simplicity and its common 

application.   
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McKay’s bivariate gamma is defined by the following density function: 

 
      11( , ) ,0 , , , 0

a b
aa cyc

p x y x y x e x y a b c
a b


     

 
 (4.28) 

 

If    2 3 4
T T

a b c  , its probability density can be illustrated as: 

 

Figure 4-8 Surface of McKay’s bivariate gamma[2, 3, 4] 

 

If this probability density function is selected as the conjugate function, the general 

form of the expected loss is obtained as: 
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  (4.29)   
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The above double integral, like the one shown in the Inverted Dirichlet distribution, 

does not have a closed analytical form.  If the parameters of the IDLF are assumed as 

   1 2 3 2 3 4
T T

v v v  , the density would appear as: 

 

Figure 4-9 Surface of an IbDLF with a conjugate distribution of gamma[2, 3, 4] 

 

The expected loss with the above assumptions of parameters would be 0.31439 

obtained by the numerical integration function of Mathematica. 
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4.3.4 Bivariate Exponential Distribution 

 

Gumbel’s Bivariate Exponential distribution is being selected as one of the 

candidates of the conjugate of the IDLF with similar reason as McKay’s bivariate 

gamma.  The joint density function is given by: 

      ( , ) 1 1 , 0, 0, 0x y xyp x y e x y x y                (4.30) 

 

The probability density can be displayed by the following plot if 1  : 

 

Figure 4-10 Plot of McKay's bivariate gamma distribution 
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The expected loss with IDLF is: 

    
2 31

1 111 1
( )
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1
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  
                              

 
  

  (4.31) 

 

Once again, a closed form cannot be obtained by integration.  Assuming 

1 2 31, 2, 3, 4v v v     , the loss function would have the surface as followed: 

 
Figure 4-11 Surface of an IbDLF with a conjugate distribution of Exp[1] 

 

Double integration based on this setting of parameters requires numerical methods to 

solve.  For complex functions like the expected loss with bivariate inverted Dirichlet 

or bivariate gamma, Mathematica is able to evaluate at least one of the two integrals, 

while this is unlikely the case with Gumble’s bivariate exponential as the conjugate 
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of the proposed loss function.  Numerical integration gives an answer of 0.272882 

for the expected loss under previously stated assumptions. 

 

 

4.3.5 Bivariate Normal Distribution 

 

The probability density function of a bivariate normal distribution has the form: 

 22
1 2

1
( , ) exp

2(1 )2 1

z
f x y

  

 
    

,  (4.32) 

 where 

 

2 2
1 2 1 2

2 2
1 2 1 2

( ) ( ) 2 ( )( )x y x y
z

    
   
   

  
 (4.33) 

and 12

1 2

corr( , )
V

x y
 

   is the correlation of x and y and 12V  is the covariance of X 

and Y. 

 

If the covariance between x and y is assumed to be zero, the bivariate density can be 

simplified to 
2 2

1 2
2 2

1 2 1 1

( ) ( )1 1
( , ) exp

2 2

x y
f x y

 
   

   
    

  
.  Using this 

simplified form, the expected loss is: 
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 (4.34) 

 

 

Unfortunately, similar to the case to bivariate gamma, and exponential distributions, 

a closed form cannot be reached.  If the  parameters of the above expression are 

assumed to be: 

 2 2
1 2 1 2 0.5 0.5 1 1

T T        and    1 2 3 2 3 4
T T

v v v  , 

 

Plots of the bivariate normal distribution and the loss function obtained were: 

 
Figure 4-12 Plot of a bivariate Normal Distribution 
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The bivariate normal probability density function together with the assumed 

parameters in the IDLF has the following surface: 

 

Figure 4-13 Surface of an IbDLF with a conjugate distribution of Normal[.5, .5, 1, 1] 

 

A value of 0.127583 for the expected loss with the set of assumed parameters is 

obtained using Mathematica. 
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4.3.6 Section Summary  

 

Different bivariate probability density functions have been selected as the conjugate 

function in order to evaluate the expected loss when an IDLF is applied.  These pdfs 

represent the behavior of process data.  Although the financial loss may be depicted 

efficiently by an IDLF, the process data may be distributed by another probability 

density function.  In other words, to accurately depict the financial loss, a statistician 

may need to consider other probability density function to describe the behavior of 

process data.   

 

General closed form for expected loss usually cannot be found due to the complexity 

of the bivariate densities with different parameters.  However, with the advanced 

computing power, as long as parameters can be numerically estimated, expected loss, 

variance and covariance can be calculated by numerical integration with computing 

software. 
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4.4 Properties of Multivariate Inverted Probability Loss Functions 

 

Leung and Spiring (2004) developed a list of associated properties of the loss 

inverted ratio and inverted probability loss functions, which were covered in Section 

2.7 of this thesis.  In this section, investigation will be done to determine whether 

these properties are also legitimate for higher dimension loss functions.  

 

 

4.4.1 Properties of the Loss Inversion Ratio (LIR) 

 

The Loss Inversion Ratio (LIR) is defined as follow.  Let X be the quality of interest 

of a process.  Let  ,x T  be the probability density function of X in terms of the 

target value, T and m is the maximum of  Xf x .  Then the ratio 
 ,x T

m


 is the 

percentage of the x values that are missed with respect to the target, and it is called 

the Loss Inversion Ratio.  It is bounded between 0 and 1.  The percentage loss 

 ,
1

x T

m


  is the penalty it pays subject to the maximum loss incurred in the 

process. 
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Properties of the LIR under the univariate case stated by Leung and Spiring (2004) 

are listed as follows: 

1. The LIR represents the relative proportional loss associated with any x value 

and hence 1 ( , ) /x T m  represents the proportional penalty paid at any 

value of x. 

2. The r-th moment of the LIR is bounded by 0 and 1.  The expectation equals 

to 1 if 0r  . 

3. The variance of the LIR is: 

    22[ ( , ) / ] [ ( , ) / ] [ ( , ) / ] ,V X T m E X T m E X T m     

and the variance shown above is bounded by 0 and 1. 

 

For multivariate inverted probability loss functions, due to the fact that more 

variables are included, the loss inversion ratio becomes slightly more compact.  If x


 

represent values within the domain of some qualities of a process which the 

manufacturer desires to depict loss from and T


 represent the target values of those 

qualities.  The multivariate LIR (mLIR) becomes ( , )x T m


 and the properties 

showed by Leung and Spiring (2004) can be extended as: 
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1.  The LIR represents the relative proportional loss associated with any set of 

values x


 and hence 1 ( , )x T m


 represents the proportional penalty paid at 

this specific set of values x


. 

2. The r-th moment of the LIR is bounded by 0 and 1.  The expectation equals 

to 1 if 0r  . 

3. The variance of the loss inversion ratio is 

   22[ ( , ) / ] [ ( , ) / ] [ ( , ) / ]V X T m E X T m E X T m   
     

, and it is bounded 

between 0 and 1. 

 

Proof: 

1. Since  ,x T m 


, hence  
 ,

0 1 1
x T

m


   .   

2. With the r-th moment: 
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 

 
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x T m f x dx f x dx

E x T m









 

   

   

   

  





    



 

When 0r  ,     0
, / 1 ( ) 1X

R

E x T m E f x dx         
.  

3. Due to the properties of variance, maximum value of second moment is 1 and 

the minimum value of the first moment is 0, thus, it is proved that the 

variance of mLIR is always bounded between 0 and 1. 
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4.4.2 Properties of the Inverted Probability Loss Functions 

 

Leung and Spiring (2004) also showed various properties of the Inverted Probability 

Loss functions and have been listed in Section 2.7.  Since the inverted probability 

loss function introduced in this thesis is based on multivariate probability density 

function, these properties of the inverted probability loss functions are thus modified 

as follows: 

1. The general form of the risk function for multivariate IPLFs (ImPLFs) is 

       ( , ) 1 , / 1 , /E L X T E K X T m K E X T m               
 

2. The ImPLF is bounded between 0 and K, where K is the maximum loss 

incurred when the target vector is missed. 

3. The variance of ( , )L X T
 

 arises from using ( )Rf x


 as the process 

characteristics distribution given by 

  22 2[ ( , )] { ( , ) / } { [ ( , ) / ]}V L X T K E X T m E X T m  
     

. 

4. The variance of an ImPLF is 2K  times the variance of mLIR.  Hence it is 

bounded between 0 and 2K . 

5. The loss inversion ratio is scale invariant under linear transformation. 

6. The shape of IPLF is scale invariant under linear transformation. 

7. The loss function is scale invariant under linear transformation. 



 

- 140 - 

8. The risk function is scale invariant under linear transformation. 

 

Property 2 can be proved easily with a similar technique as illustrated in Section 

4.4.1.  Since  0 , 1x T m 


, by the following: 

 
 

 
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    

    

 

 






    

 

 

 

Another interesting property of ImPLF is that the variance is always bounded 

between 0 and 2K (Property 4).  According to the definition of variance, the 

following is obtained: 

       
     
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            
          

     

   

   

 

 

With Property 2 of Section 4.4.1, it can be concluded that the variance of an inverted 

multivariate probability loss function will be bounded between 0 and 2K . 
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Scale invariant (Property 7) is an important feature in the inverted probability loss 

functions introduced by Leung and Spiring (2004).  If  ,x T


 is a continuous 

multivariate pdf, having unique maximum at T


, then under any linear 

transformation, the loss inversion ratio, the IPLF and its shape and the risk function 

are all scale invariant.  Under the linear transformation in multiple variants, 
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by ( )f x
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 (4.35) 

 

Thus, 1 2 1 2 1 2( , , ..., ) ( , , ..., )k k kf x x x a a a g y y y  , and 

 1 2 1 2 1 2 1 2 1 2sup ( , ,..., ) sup ... ( , ,... ) ... sup ( , ,..., )k k k k kf x x x a a a g y y y a a a g y y y  . 
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Since, 1 2sup ( , , ..., )km f x x x , and if 1 2' sup ( , , ..., )km g y y y , it follows that  

1 2 ... 'km a a a m  or 
1

'
| |

m m
J

 .  As 
1

| |J
 is a scalar, with the following calculation: 

 

1 2 1 2 1 2 1 2( , ,..., ) ( , ,..., ) ( , ,..., ) | | ( , ,..., )

' | | | |
k k k kg y y y g y y y f x x x J f x x x

m J m J m m
  

(4.36) 

 

It is proved that the loss inversion ratio before and after the linear transformation are 

indeed equivalent. 

 

To prove the multivariate IPLF (Property 6) is also scale-invariant, Property 5 may 

be applied: 

 
     1 2 1 2, ' 1 ( , ,..., ) / ' 1 ( , ,..., ) / ,k kL y T K g y y y m K f x x x m L x T          

  (4.37) 

 

The risk function, ( , ')E L y T  
 can be shown to be equivalent to  ( , )E L x T


by the 

followings: 
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 (4.38) 
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The above proofs have shown the properties of IPLF also work for loss functions 

built on multivariate probability density functions. 

 

 

4.5 Fitting an Inverted Probability Loss Function 

 

Spiring (1993) gave an approximation for fitting his Inverted Normal Loss Function.  

Fitting the INLF requires estimators for mean and standard deviation.  Spiring 

suggested to use the target value as the estimator for mean.  For the standard 

deviation, one quarter of the Euclidean distance from the target value to the point 

where maximum loss occurred was suggested.  Similar procedure was introduced for 

his IbNLF.  For a bivariate Normal distribution, covariance would also be required 

and 
2
2

12 16
  

 .    was the slope of the principal axis and 2  was the Euclidean 

distance from the target value to the point where maximum loss occurred on the 

secondary axis.  Estimation of the covariance factor might be difficult since the slope 

of the principal axis might be hard to identify.   

 

Sun et al. (1996) commented on the inverted normal loss function and suggested to 

fit parameters of an INLF by a method similar to the least squared method.  This 
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method would require a set of measured quality characteristic and the actual loss 

corresponded to those measured points. 

 

Leung and Spiring (2002) demonstrated an easy way to obtain the estimators of an 

IPLF by using the point where half of the maximum loss was depicted.  This method 

required less information, since usually there is insufficient information obtained 

from the product engineer. 

 

In this research project, it is assumed that the only information given by the product 

engineer is the target values and tolerance limits.  Investigation will be done, with 

this little amount of information, on how to come up with reliable estimations for the 

parameters of IbPLFs.  Detailed work will be illustrated through the examples in 

Chapter 5. 
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CHAPTER 5 APPLICATIONS 

 

The applications of loss functions in quality assurance settings have grown 

remarkably among practitioners and quality assurance researchers as well as the 

important recognition of off-targetness by both customers and manufacturers.  

Kulkarni and Prybutok (2004) applied the exact form of loss function in Sun et al. 

(1996) in optimizing process investment and variance reduction decision for process 

improvement.  Pan (2007) used a modified inverted normal loss function to assess 

manufacturing and environmental risks.  Kulkarni (2008a, 2008b) examined a joint 

lot-sizing and processing investment problem with random yield and back orders 

using a modified form of inverted normal loss function.  In this chapter, applications 

of inverted bivariate probability loss functions (IbPLF) in a wave soldering process 

and a manufacturing process of fasteners will be examined.  The distribution of the 

process data will be used to build the conjugate distribution for the application of 

IbPLF.  Parameters of the conjugate distribution will be estimated using method of 

maximum likelihood, method of moments and percentile matching method.  Hence, 

the assumed distribution will be verified using bivariate Chi-square goodness-of-fit 

test and bivariate Kolmogorov-Smirnov test. 
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5.1 Wave Soldering Process 

 

Wave soldering is a process by which electronic components are soldered to a 

printed circuit board (PCB) to form an electronic assembly.  The PCB first enters a 

fluxing zone, a fluxer applies flux to the underside of the board.  The process uses a 

tank to hold a quantity of molten solder which is monitored by the viscosity level.  

The components are inserted into or placed on the PCB and the loaded PCB is 

passed across a pumped wave or waterfall of solder.  The solder wets the exposed 

metallic areas of the board, creating a reliable mechanical and electronic connection.  

Some defects may occur during the soldering process if the amount of solder and the 

viscosity level deviate from the pre-determined level.  Cracks occur due to 

mechanical stress and can cause loss of conductivity.  Cavities are caused from either 

contaminated surfaces, lack of flux or insufficient heating which will decrease in 

strength and conductivity.  If the wrong solder thickness is produced, the product 

may be susceptible or too thin for the load placed upon it.  The manufacturer 

believes the amount of solder used and the level of viscosity of the molten solder are 

the two quality characteristics which have the strongest impact to the quality of 

solder paste. 
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A sample of fifty specimens is collected and the weight of solder powder and the 

viscosity level are recorded.  The tolerance limits of weight of solder powder and 

percentage of viscosity are (180g, 220g) and (10.5%, 12.5%) respectively.  The 

target values are given by the engineers at the midpoint of the tolerance limits. 

 

Data collected is shown in the following table: 

 

Table 5-1 Collected data of solder paste 

Solder 

Powder Viscosity 

Solder 

Powder Viscosity 

Solder 

Powder Viscosity 

202.3 11.5 200.2 11.45 204.1 11.49 

200.4 11.55 184.2 11.82 211.6 11.37 

195.3 11.61 196.4 11.65 217.4 11.26 

206.2 11.43 192.7 11.55 186.2 11.74 

206.3 11.44 189.8 11.63 180.9 11.83 

210.7 11.37 202.4 11.46 218.4 11.27 

220.8 11.21 205.4 11.47 209.4 11.34 

207.6 11.34 196.4 11.53 206.5 11.45 

201.6 11.56 219.6 11.28 210.1 11.43 

181.6 11.82 214.5 11.31 208.2 11.42 

185.4 11.77 212.4 11.39 206.3 11.41 

218.5 11.26 201.8 11.46 205.5 11.4 

186.2 11.73 218.2 11.26 210.8 11.37 

199.5 11.55 205.6 11.47 188.4 11.61 

198.1 11.56 201.4 11.48 203.4 11.5 

197.2 11.56 196.1 11.61 200.2 11.49 

202.4 11.51 193.7 11.51   
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Figure 5-1 showed the scatter plot of the collected data: 

 

Figure 5-1 Scatter plot of solder paste data 

 

Although a triangular shape is shown in the scatter plot, the data can also fit to a 

bivariate Normal distribution in order to select parameters of an IbNLF.  For the 

conjugate function, parameters will be estimated by the method of maximum 

likelihood and the percentile matching method. 
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5.1.1 Maximum Likelihood Estimators 

 

The maximum likelihood estimators for the parameters of a bivariate normal 

distribution are: 
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 (5.1) 

 

Using fifty data points, the maximum likelihood estimates are 

 ˆ 202.366 11.4896 10.1532 0.151234 0.96559X Yx y s s      . 

 

 

5.1.2 Percentile Matching Method 

 

For the univariate case, the percentile matching method requires to equate, for 

example, the 5th and 95th percentiles of the empirical distribution and population, in 
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order to yield estimates on the parameters of a certain probability density function.  

For the bivariate case, extending the idea of univariate case, the percentile matching 

method requires to build a number of regions, which the observed frequency and the 

expected frequency in each region have to be matched.  A potential list of estimates 

will be considered.  For each set of potential estimates, the expected frequency of 

each pre-determined region will be compared to the observed frequency and the set 

of potential estimates which yield the smallest difference will be confirmed as the 

estimates obtained by the percentile matching method. 

   

 

Figure 5-2 Illustration of regions used in the modified percentile matching method 

 

Three regions are built encompassing most of the samples.  (See Figure 5-2.) 



 

- 151 - 

 The maximum likelihood estimates are used as a starting point and 20840 sets of 

values near to this starting point are considered as the potential set of estimates.  For 

each set of the estimates estimated by mle, plus and minus ten percent of each 

estimates are used as the upper and lower limit.  For each variable, each interval 

between plus and minus ten percent is then dissected into 8 equal sub-intervals, 

except for the estimate of correlation, since correlation cannot be less than -1.  After 

lengthy calculation, the set of percentile matching estimates for the parameters of a 

bivariate normal distribution obtained is: 

   ˆ 202.366 11.4896 10.407 0.136111 0.869031X Yx y s s      . 

 

 

5.1.3 Chi-Square Goodness-of-Fit Test 

 

As discussed previously in Chapter 3, the Chi-Square goodness-of-fit test requires 

the region being tested to be dissected into sub-regions.  The problem with our data 

is that equal-sized sub-regions cannot be formed due to the fact that the data points 

are packed closely together.  With the equal-probability principle, the 50 data points 

are dissected into ten sub-regions, each with approximately the same expected 

frequency.  Ten sub-regions are chosen because there are five parameters to be 
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estimated.  In other words, more than six sub-regions must be formed because the 

degrees of freedom for a Chi-square goodness-of-fit Test equal to n-k-1, where n 

denotes the number of sub-regions and k denotes the number of parameters to be 

estimated.  Bearing in mind those sub-regions with expected frequency less than five 

must be merged with a nearby sub-region, ten seems to be a reasonable pace to start 

with. 

 

The detail structure of the ten sub-regions is shown in Figure 5-3.  Numerical 

integration is performed to find out the expected values of each sub-region, based on 

the two set of estimates, namely maximum likelihood estimators and percentile 

matching estimators.   

 
Figure 5-3 Illustration of cells dissection in the Chi-square goodness-of-fit test 
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Chi-square goodness-of-fit test statistics are then obtained in the following table: 

 

Table 5-2 Observed versus expected frequency for the solder paste example with maximum 

likelihood estimates 

Maximum 

Likelihood 

Estimates 

202.366, 11.4896,

ˆ10.1532, 0.151234, 0.96559X Y

x y

s s 
 
     

Before combining cells After combining cells 

Region 

Expected 

Frequency Region 

Expected 

Frequency

Observed 

Frequency 

Test 

Statistic 

1 1.9304 1 9.5595 10 0.020298 

2 7.6291 2 6.4301 5 0.318064 

3 6.4301 3 5.6447 5 0.073633 

4 5.6447 4 4.1271 5 0.184622 

5 4.1271 5 5.0732 5 0.001056 

6 5.0732 6 4.7594 5 0.012163 

7 2.3851 7 5.8681 5 0.128423 

8 5.8681 8 8.5379 10 0.250382 

9 7.092   Sum 0.988642 

10 1.446     

Remaining 2.3742     
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Table 5-3 Observed versus expected frequency for the solder paste example with estimators 

obtained by the modified percentile matching method 

Percentile 

Matching 

Method 

202.366, 11.4896,

ˆ10.407, 0.136111, 0.869031X Y

x y

s s 
 
     

Before combining cells After combining cells 

Region 

Expected 

Frequency Region 

Expected 

Frequency

Observed 

Frequency 

Test 

Statistic 

1 1.1981 1 9.7873 10 0.004622 

2 8.5892 2 6.2986 5 0.267736 

3 6.2986 3 5.5137 5 0.04786 

4 5.5137 4 5.9529 5 0.152534 

5 5.9529 5 4.5868 5 0.037223 

6 4.5868 6 4.4068 5 0.079851 

7 1.8684 7 4.9547 5 0.000414 

8 4.9547 8 8.4993 10 0.264975 

9 6.8214   Sum 0.855215 

10 1.6778     

Remaining 2.5384     

 

After combining cells, the test statistics obtained are 0.9887 and 0.8552 respectively 

for the method of maximum likelihood estimation and the method of percentile 

matching estimation.  Each test is based on a Chi-square goodness-of-fit test with 2 

degrees of freedom and the critical value of 4.60517 when 0.1  .  Hence, the null 

hypothesis of data coming from a bivariate normal distribution is not rejected. 

 

The shape of the conjugate function built from using maximum likelihood estimates 

is shown in (Figure 5-4) while the one using percentile matching estimates can be 

seen in (Figure 5-5). 
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Figure 5-4 Conjugate function based on the maximum likelihood method 

 

 

Figure 5-5 Conjugate function based on the modified percentile matching method 
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Both plots show that the density lie within the upper and lower limits of the weight 

of solder powder and of the level of viscosity. 

 

 

5.1.4 Expected Loss 

 

According to the information provided, target values are designed to be 200 grams 

and 11.5% for the weight of solder powder and viscosity respectively, with tolerance 

limits of (180, 220) and (10.5, 12.5) for the two quality characteristics.  Assumed no 

further information is available, the choices of parameters for the IbNLF, such that 

non-negative losses can be collected over the appropriate region of the process data, 

will be discussed in this chapter.  

  

Often, correlation is a measurement with little information provided.  For this 

specific application, three scenarios are considered:  no correlation, positive and 

negative correlation.   

 

Consider the case with no correlation.  Maximum financial loss of K will occur as 

the measurement reaches either end of the tolerance limits.  Substituting the upper 
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limits into the bivariate normal distribution with zero correlation, and the following 

is obtained: 

22
1 220 200 12.5 11.5

( , ) exp
2x y

x y x y

g s s
s s s s

                   

(5.2) 

 

Assuming ( , ) 0x yg s s  , all possible sets of estimates can be identified by plotting 

the function and its contour plot.  The function ( , )x yg s s  and its contour plot are 

plotted as follows: 

 

Figure 5-6 Three-dimensional plot of  ,x yg s s  in solder paste example 
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Figure 5-7 Contour plot of  ,x yg s s  in solder paste example 

 

As illustrated in the contour plot (Figure 5-7), it can be seen that any combination of 

Xs  and Ys  in the region colored in deep purple would be an appropriate selection.  A 

combination close to the boundary is flavorable, or right at the edge of the surface 

which strikes out from the xy-plane.  Hence, a combination of relatively large 

standard deviations and yet obtaining maximum financial loss will be a good choice. 

 

Similar procedure can be done to the scenarios when the correlation of the conjugate 

function is assumed to be 0.95 and -0.95.  Estimates of the conjugate function and 

the IbNLF under different scenarios are recorded in Table 5-4.  Given the estimates 
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of both conjugate function and IbNLF, expected losses are depicted and are located 

in the last row of Table 5-4. 

 

The proposed IbNLF when correlation is assumed to be zero are illustrated as 

follows: 

 

 
Figure 5-8 Plot of IbNLF when correlation is assumed to be zero 
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When correlation is assumed be -0.95, the IbNLF becomes: 

 
Figure 5-9 Plot of IbNLF when correlation is assumed to be -0.95 

 

Table 5-4 Table of estimators of the conjugate function and the IbNLF 

  MLE 

Percentile 

Matching  

Method MLE 

Percentile 

Matching  

Method MLE 

Percentile 

Matching  

Method 

Conjugate  

  

  

  

 X   202.366 202.366   202.366 202.366   202.366 202.366  

 Y   11.4896  11.4896  11.4896  11.4896  11.4896  11.4896 

 XS   10.1532  10.407  10.1532  10.407  10.1532  10.407 

 YS   0.151234  0.136111  0.151234  0.136111  0.151234  0.136111

 r   -0.96559  -0.869031  -0.96559  -0.869031  -0.96559  -0.869031

IbNLF 

  

  

  

 X   200 200   200 200   200 200  

 Y   11.5  11.5  11.5  11.5  11.5  11.5 

 XS   3  3  3  3  3  3 

 YS   0.3  0.3  0.24  0.24  0.24  0.24 

 r   0  0 0.95 0.95 -0.95 -0.95 

Expected Loss    0.674118  0.676977 0.869268 0.864375 0.841244 0.844254 
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From the above table, the largest depicted financial loss for any one unit of solder 

paste is obtained when a positive correlation is assumed and its value is 0.869268.  

The smallest financial loss depicted is 0.674118 when the parameters of the 

conjugate function are estimated by the maximum likelihood estimators and zero 

correlation is assumed for the IbNLF.  An interesting finding is that the financial loss 

depicted with assumptions of positive and negative correlations are not different too 

much. 

 

Similar expected losses obtained with positive and negative correlation can be 

explained by plotting the relationship between expected loss and correlation, and the 

relationship between the IbNLF and correlation if all other variables are held 

constant. 
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Figure 5-10 Plot of volume of IbNLF versus correlation 
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Figure 5-11 Plot of E[L] versus correlation 

 

The volume under the IbNLF within the tolerance limits is  a parabolic function.  

This can be explained analytically.  When the correlation is positive, the two 

variables have a positive slope.  There are two possible cases under this scenario:   i) 

x is greater than x  and y is greater than y  and ii) x is smaller than x  and y is 

smaller than y .  Both cases end up with a negative sign inside the exponential 

function of the IbNLF.  When the correlation is negative, the two possible cases 

would be:  i)  x is less than x  and y is greater than y  and ii) x is greater than x  and 

y is smaller than y .  Both cases once again end up with a negative sign inside the 

exponential function of the IbNLF.  Based on this analysis, the IbNLF will always be 
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positive.  As the magnitude of correlation increases, the quotient of (1- r 2) becomes 

very small and lead to a larger expected loss.  Thus, the two expected losses depicted 

with correlation of positive and negative 0.95 are similar to each other. 

 

 

5.2 Fasteners 

 

A local merchandising company, who serves as the agent of a metal parts company 

in Germany, provided samples of two types of fasteners for this study.  This German 

company specializes in fastening technology with state-of-the-art production 

facilities.  The two types of fasteners provided are:  i) Self-tapping Threaded Insert 

and ii) Pressed-in Threaded Insert. 

 

 

5.2.1 Self-tapping Threaded Insert 

 

Threaded insert is a self-tapping fastener for the creation of wear-free, vibration 

resistant screw joints with high loading capacity in materials with low shearing 
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strength.  It is suitable for installation in duroplastics, thermost plastics, aluminum, 

aluminum and magnesium alloys.  Self-tapping inserts provide chip-free installation, 

but still provide strong holding power.  The design of the self-tapping threaded insert 

is shown in the following diagram: 

 
Figure 5-12 Design of the Self-tapping Threaded Insert 

 

Measurements are collected by a Mitutoyo caliper, model number CD-6”C.  Error of 

the caliper is about 0.001  inch, according to similar but later product.  The two 

qualities under monitor are the length and diameter.  Data collected from 51 samples 

are recorded in Table 5-5: 

 

 

 



 

- 165 - 

 

Table 5-5 Collected data of the self-tapping threaded inserts in mm 

Length Diameter Length Diameter Length Diameter 

13.94 11.94 14 11.89 13.92 11.9 

13.92 11.88 13.88 11.94 13.95 11.94 

13.95 11.84 13.94 11.95 13.9 11.88 

13.93 11.93 14.01 11.89 13.94 11.94 

13.94 11.95 13.95 11.96 13.95 11.94 

13.94 11.92 13.94 11.96 13.93 11.95 

14.02 11.96 13.92 11.92 13.93 11.93 

13.91 11.93 13.96 11.9 13.94 11.95 

13.94 11.93 13.95 11.95 13.93 11.92 

13.96 11.95 13.95 11.96 13.95 11.94 

13.93 11.92 13.95 11.95 13.94 11.93 

13.94 11.95 13.93 11.91 13.95 11.93 

13.95 11.94 13.97 11.96 14.01 11.87 

13.95 11.94 14.02 11.93 14.02 11.93 

13.94 11.96 13.98 11.97 13.95 11.93 

13.95 11.93 13.94 11.92 13.94 11.94 

13.94 11.92 13.96 11.94 13.93 11.94 
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Based on the data collected, a scatter plot was done as the following: 

 

Figure 5-13 Scatter plot of Self-tapping Threaded Inserts data in mm 

 

Data points are spreading out near the centre of the tolerance, which are (13.85mm, 

14.15mm) and (11.8mm, 12.0mm) for the length and diameter respectively.  As the 

measurements spread out nicely, a bivariate inverted normal loss function is 

suggested to depict the financial loss with this self-tapping threaded inserts.   
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Using the approach similar to the solder paste example, maximum likelihood 

estimates are: 

    ˆˆ ˆ 13.9486 11.9304 0.0286301 0.0258169 0.0204941X Y X Ys s     .   

 

Using the maximum likelihood estimates as the starting values for the percentile 

matching method, a set of estimates is obtained: 

   ˆˆ ˆ 13.9486 11.9304 0.0257671 0.0232352 0.0184447X Y X Ys s     . 

 

Based on the two sets of estimates, two conjugate functions are obtained.  Their plots 

are displayed below: 

 

Figure 5-14 Conjugate function of self-tapping threaded insert by mle 
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Figure 5-15 Conjugate function of self-tapping threaded insert by percentile matching method 

 

Because of the smaller standard deviations and a correlation of smaller magnitude, 

the conjugate function in (Figure 5-15) has a larger supremum than the conjugate 

function plotted in (Figure 5-14).   

 

From the scatter plot (Figure 5-13), duplications are observed at various points.  The 

setup of sub-regions for the Chi-Square goodness-of-fit test becomes very 

complicated as the number of sub-regions must be greater than the degrees of 

freedom with five parameters to be estimated.  Since the sample indicates that the 

products are very precise and sticks to the arithmetic mean closely, 10 sub-regions 

are a reasonable setup.  The detail setup can be seen in Figure 5-16: 
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Figure 5-16 Illustration of cells dissection in the Self-tapping Threaded Inserts example 

 

The expected and observed number of observations after cells being combined is: 

Table 5-6 Observed versus expected frequency with the two estimation methods 

Maximum Likelihood Method   Percentile Matching Method 

Region Expected Observed  (Ei-Oi)
2/Ei   Region Expected Observed  (Ei-Oi)

2/Ei 

1 8.48834 6 0.729452   1 7.74511 6 0.393204 

2 4.71092 6 0.352739   2 4.23094 6 0.739687 

3 2.46866 5 2.595611   3 2.85807 5 1.605232 

4 3.54175 5 0.600407   4 3.5178 5 0.624514 

5 3.8429 5 0.348404   5 4.27866 5 0.121611 

6 3.81958 5 0.364802   6 3.92054 5 0.297213 

7 4.1681 6 0.805129   7 4.84566 6 0.274989 

8 10.9613 5 3.242051   8 11.8663 5 3.973107 

9 6.01218 5 0.170405   9 5.27239 5 0.014073 

10 2.98627 3 6.31E-05   10 2.38926 3 0.156117 

  

  

Chi-square Test Stat. 9.209065     

  

Chi-square Test Stat. 8.199745 
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The test statistics obtained by our two models are 9.209065 and 8.199745 for the 

maximum likelihood method and percentile matching method respectively.  The p-

values for the two models are 0.0561 and 0.0845.  With 0.10  , the critical value 

for a Chi-square distribution with 4 degrees of freedom is 7.77944, and 9.48773 if 

0.05  .  In other words, the two models obtained by the maximum likelihood 

method and percentile matching method are not rejected with 95% confidence. 

 

In the test above, cells with expected frequency less than five were not merged with 

nearby cells.  In order to perform the Chi-square goodness-of-fit test without bending 

this rule of thumb, a test with 8 sub-regions is then performed and the sub-regions 

are distributed as below: 
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Figure 5-17 Illustration of cells distribution when number of cells are assumed to be 8 

Calculation of the Chi-square goodness-of-fit test statistic can be found in the 

following table: 
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Table 5-7 Calculation of Chi-square goodness-of-fit test statistic 

Before Merging 

Maximum Likelihood Method  Percentile Matching Method 

Region Expected Observed    Region Expected Observed   

1 7.73304 6 0.729452  1 7.14903 6 0.393204 

2 8.76959 7 0.352739  2 8.87431 7 0.739687 

3 5.36232 6 2.595611  3 4.71142 6 1.605232 

4 1.757 7 0.600407  4 2.06239 7 0.624514 

5 6.86008 8 0.348404  5 8.25394 8 0.121611 

6 6.63196 6 0.364802  6 7.23156 6 0.297213 

7 7.7689 5 0.805129  7 7.26926 5 0.274989 

8 5.91342 6 3.242051  8 5.37279 6 3.973107 

               

After Merging 

Maximum Likelihood Method  Percentile Matching Method 

Region Expected Observed    Region Expected Observed   

1 7.73304 6 0.388389  1 7.14903 6 0.18467819 

2 and 4 10.73027 14 0.99635277  2 8.87431 7 0.39586604 

3 5.36232 6 0.07583206  3 and 4 6.84911 13 5.52384876 

5 6.86008 8 0.18941727  5 8.25394 8 0.0078127 

6 6.63196 6 0.06021952  6 7.23156 6 0.20973898 

7 7.7689 5 0.98685878  7 7.26926 5 0.70839961 

8 5.91342 6 0.00126764  8 5.37279 6 0.07321939 

     Test Stat. 2.69833704       Test Stat. 7.10356367 
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After merging the sub-regions with expected frequency less than 5, there is one 

degree of freedom for the Chi-square goodness-of-fit test.  According to the obtained 

test statistics, the model built by maximum likelihood method has a p-value of 0.10 

and the model built by percentile matching method has a p-value of 0.0077. 

 

Based on the results of the two Chi-square goodness-of-fit tests with different 

number of sub-regions, one can conclude that the proposed models are not very good.  

The results also show that:  i)  different way of setting up the sub-regions will lead to 

a different test statistic and thus, the result is not unique among all statisticians who 

perform the test;  ii)  the rule of merging of sub-regions with expected frequency less 

than five may not be as important as in the univariate case.  The p-values obtained 

from the models built by maximum likelihood method are very similar, which may 

indicate loosening of this rule may be compensated by building of sub-regions. 

 

Arguments have been made against the Chi-Square goodness-of-fit test in assigning 

cells and being less stringent.  A bivariate Kolmogorov-Smirnov test is performed to 

verify the conclusions given by the Chi-square goodness-of-fit test. 
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Peacock (1983) extended the well known Kolmogorov-Smirnov test to a bivariate 

case.  His procedure requires calculation to be done at each sample point.  For each 

sample point, Peacock suggested to use the sample point as the origin and considered 

the four quadrants around it.  For all four quadrants, calculation of the difference 

between the observed density and expected density has to be done, based on the 

distribution with proposed estimates.  The maximum absolute difference becomes 

the test statistics to test whether the hypothesized distribution is acceptable or not. 

 

Calculations have been done by Mathematica.  A maximum absolute difference is 

found to be 0.264707 in the model with maximum likelihood estimates.  This 

maximum difference, also known as nD , is then handled with the following 

procedures: 

 

 

   

0.9

2

51 0.264707 1.89039

1.91995
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2exp 2 0.5 0.035493
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Z
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n

P Z Z

 

 
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 


      

 (5.3) 

 

A p-value of 0.0354593 is then obtained.  Indicating, if 0.05  , our proposed 

model will be rejected, while, if 0.01  , our model will not be rejected.  Similarly, 

for the modified percentile matching method, a p-value of 0.0236954 is obtained.  A 

conclusion of not rejecting when 0.01   is thus being made. 
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If the result from Chi-square goodness-of-fit test is to be recalled, although the 

conclusion does not exactly agrees with the bivariate Kolmogorov-Smirnov test 

(rejection for 0.05  ), it is well known that the Kolmogorov-Smirnov test is meant 

to be more conservative and more powerful than the Chi-square goodness-of-fit test.   

 

If the two set of estimates obtained above are not rejected with significance level 

0.05   from the Chi-square goodness-of-fit test, they can be used in obtaining the 

conjugate function and deriving the expected loss as in the solder paste example. In 

order to obtain the estimates of the standard deviations for the IbNLF, similar 

procedures from the previous application of solder paste can be applied.  A function 

with the target values given and expressed in terms of the standard deviations and 

correlation can be set up as: 

  

2

2 2

2

1

2 1

2 14.05 13.95 12 11.91 14.05 13.95 12 11.9
exp

2(1 )

X Y

X Y X Y

f
S S r

r

r S S S S






                        (5.4).   

 

Due to the fact that there is almost zero correlation obtained in the conjugate 

function, a correlation coefficient of zero is assumed and the result is obtained and 

showed in the following table: 
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Table 5-8 Estimates of the conjugate function and IbNLF 

  MLE 

Percentile 

Matching  

Method MLE 

Percentile 

Matching  

Method 

Conjugate 

  

  

  

  

 X   13.9486  13.9486  13.95  13.95 

 Y   11.9304  11.9304  11.9  11.9 

 XS   0.0286301  0.0257671  0.0286301  0.0257671 

 YS   0.0258169 0.0232352  0.0258169 0.0232352 

 r   -0.0204941  -0.0184447  -0.0204941  -0.0184447 

IbNLF 

  

  

  

  

 X  13.95 13.95 13.95 13.95 

 Y   11.9  11.9  11.9  11.9 

 XS   0.0275  0.0275  0.0275  0.0275 

 YS   0.0275  0.0275  0.0275  0.0275 

 r   0  0  0  0 

Expected  

Loss    5.18134 4.8671 3.95475 3.53967 

 

The last two columns assume that if the manufacturer can fix up the machine and 

shift the mean dimension of X and Y back to the target.  Results show, for a piece of 

fastener which costs approximately HK$8, although the sample standard deviations 

are found to be very small already, the expected financial loss seems to be a little 

high.  This may be caused by over-estimating the standard deviations for the IbNLF.  

Once again, neither the standard deviations nor the correlation coefficient can be 

found precisely.  Statisticians can only come up with close estimation based on their 

own judgment and experience. 
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5.2.2 Pressed-in Threaded Inserts 

 

A pressed-in threaded insert can be installed into the receiving hole by either a hand 

lever or a small press.  Ultrasonic or heat equipment are not required to install this 

particular insert into material like hard plastic.  Detail design can be seen in the 

following diagram: 

 
Figure 5-18 Design diagram of the pressed-in threaded insert 

 

The length of an insert is an important quality characteristic of a fastener as it 

contributes to the amount of pullout strength that it resists.  The total length of such a 

fastener can be separated into the length of head and length of body.  If x denotes the 

length of body and y denotes the length of head, x y z  , where z stands for the 
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total length.  This relationship, if linear transformations are performed, will end up as 

' ' 1x y  , which is a triangular region which is suitable to the domain of a Dirichlet 

distribution.  Thus, an IDLF will be used to depict the financial loss due to the 

deviation of these two quality characteristics away from their target values. 

 

Measurements of 60 samples are recorded as: 

 

Table 5-9 Collected data on the pressed-in threaded inserts in mm 

 

Length of 

Body 

Length of 

Head 

Length of 

Body 

Length of 

Head 

Length of 

Body 

Length of 

Head 

12.72 1 12.75 1 12.68 1.06 

12.8 0.94 12.73 0.97 12.73 1.02 

12.7 1 12.72 1 12.78 0.93 

12.73 0.99 12.66 1.04 12.71 1.04 

12.72 0.99 12.68 1.04 12.73 0.98 

12.65 1.01 12.75 0.95 12.66 1.02 

12.67 1.03 12.7 1.03 12.71 1.01 

12.69 1.02 12.78 0.98 12.69 1.03 

12.68 1.03 12.69 0.99 12.66 1.06 

12.78 0.94 12.72 1 12.69 1.01 

12.71 0.98 12.75 0.97 12.71 0.97 

12.72 1.01 12.71 1 12.68 1.05 

12.65 1.05 12.71 1.02 12.68 1.02 

12.7 1.01 12.71 1.01 12.71 1.02 

12.73 0.96 12.72 1 12.73 1.03 

12.77 0.94 12.75 0.98 12.66 1.06 

12.74 1.02 12.7 0.99 12.74 0.95 

12.77 0.99 12.79 0.96 12.72 0.99 

12.72 1.01 12.73 0.98 12.75 0.99 

12.77 0.97 12.63 1.11 12.78 0.97 
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5.2.2.1 Transformation 

 

The product engineer provided the tolerance limits for the total length and the body 

length of the pressed-in self inserts.  The limits given for the total length are (13.6, 

13.8) and the limits for the length of head are (0.9, 1.1) in unit mm.  In order to 

demonstrate the feasibility of the IDLF, the financial loss depicted by the body 

length and the length of head are being studied.  Because the domain of a Dirichlet 

distribution is defined as 0, 0, 1x y x y    , a linear transformation is performed 

to show that the length of body and the length of head can be well described by a 

Dirichlet distribution. 

 

13.68 13.70 13.72 13.74 13.76
Full Length

1.00

1.05

1.10

Head Length

 

Figure 5-19 Scatter plot of the original measurements 
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Figure 5-20 Scatter plot of length of head vs length of body 

 

According to Leung and Spiring (2002), if Y has a generalized beta distribution with 

parameters 0,     and y is bounded between p and q, where p and q are the 

lower and upper tolerance limits of the measurement of Y, then Y could be 

transformed to a standard beta distribution, which is the same distribution used to 

develop the inverted beta loss function.  The probability density function of Y was 

given as: 

  
1

( ) , ,
( )

y p q y
g y p y q

B q p q p q p

 

 

 
    

             (5.5) 

based on the linear transformation of ,
Y p dy

X J q p
q p dx


   


. 
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For the bivariate case, similar procedure can be followed.   If 1 2,X X  are distributed 

by a Dirichlet distribution with parameters of 1 2 30, 0, 0     , 1 2,Y Y  can be 

transformed into 1 2,X X  by   1 1 2 2
1 2 1 1 2 2

1 1 2 2

, ,
Y p Y p

X X J q p q p
q p q p

 
    

 
, 

where 1 1,p q  are the lower and upper tolerance limits of 1X  and 2 2,p q  are the lower 

and upper tolerance limits of 2X .  Thus, the bivariate probability density function of 

1 2,Y Y  is: 

   
     

  

1 2 31 1 1

1 2 3 1 1 2 2 1 1 2 2
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y p y p y p y p
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q p q p q p q p

p y q p y q
q p q p

  
  

  

  
           

                  

    
  (5.6) 

 

It is  easy to show that: 

 

 
        31 2

11 2 3 1 1
1 2 1 2 1 2 1 2

1 2 3

( , ) ( , ) 1f x x g y y J x x x x
   

  
   

   
   . (5.7) 

 

According to the tolerance limits given by the product engineer, 

1 1 2 212.6, 12.9, 0.9, 1.2p q p q    , and based on the above setting, the transform 

data are demonstrated in Figure 5-21. 

 



 

- 182 - 

0.0 0.2 0.4 0.6 0.8 1.0
Transformed Body Length0.0

0.2

0.4

0.6

0.8

1.0
Transformed Head Length

 
Figure 5-21 Scatter plot of transformed data collected from pressed-in threaded inserts 

 

5.2.2.2 Construction of conjugates 

 

After performing the linear transformation, the following three sets of estimates are 

obtained: 

1 2 3
ˆ ˆ ˆ

Method of Moments 5.3257 4.65618 3.71277

Maximum Likelihood 6.86421 6.04221 5.02687

Percentile Matching 5.5057 4.83618 3.51277

  

 

 

A Chi-square goodness-of-fit test is performed with 9 sub-regions.  The detail setup 

of sub-regions can be seen in Figure 5-17. 
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Figure 5-22 Illustration of cell dissections for the Chi-square goodness-of-fit test 

 

Table 5-9 illustrates the test statistics obtained from the three proposed models. 

 

Table 5-10 Observed versus expected frequency for the three estimation methods 

Method of Moments Maximum Likelihood Estimators Modified Percentile Matching 

Expected Observed (Ei-Oi)^2/Ei Expected Observed (Ei-Oi)^2/Ei Expected Observed (Ei-Oi)^2/Ei

8.068046 10 0.462620899 10.06256 10 0.000388942 9.924255 10 0.000578109

11.47539 9 0.533975169 10.73085 9 0.279180281 11.16416 9 0.419520009

5.58461 6 0.030897207 7.03511 6 0.152300776 6.66182 6 0.065748656

18.41349 23 1.142427317 17.3751 23 1.820967937 16.8348 23 2.257804728

16.4584 12 1.207731648 14.79632 12 0.528469616 15.41494 12 0.756526798

    3.377652241     2.781307553     3.500178301

 

There is one degree of freedom for each of the three models.  As indicated in Table 

5-9, test statistics of 3.38, 2.78, and 3.5 are obtained for the three models 

respectively.  The critical value of one degree of freedom is 3.84146  when 0.05  , 
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and 2.7 when 0.10  .  In other words, all three models are not rejected by the Chi-

square goodness-of-fit test with 0.05 level of significance. 

 

The followings are three plots of conjugate functions built by the fore-mentioned sets 

of estimates: 

 
Figure 5-23 Conjugate function built by method of moments estimates 
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Figure 5-24 Conjugate function built by mle estimates 

 

 

Figure 5-25 Conjugate function built by percentile matching estimates 

 

Peacock’s 2-Dimensional Kolmogorov-Smirnov test is applied to verify whether the 

dissection into nine sub-regions is appropriate.  Based on the calculation similar to 
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the previous section, a maximum distance calculated inside the four quadrants 

around each point is equal to 0.147138.  With the test statistic developed by Peacock,  

 

 

 
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 

  

 


      

 (5.8) 

 

The significance level being calculated equals to 0.76808, which results in a failure 

to reject the hypothesized model with the method of moments.  A summary of the 

test statistics and their p-values can be found in the following table: 

Table 5-11 Calculation for Peacock’s 2D K-S test 

 Method of Moments 
Maximum Likelihood 

Method 

Percentile Matching 

Method 

nD  0.151807 0.170832 0.151426 

nZ  1.17589 1.32326 1.17294 

Z  1.19174 1.3411 1.18875 

p-value 0.76808 0.485901 0.774447 

 

According to the table above, all three sets of estimates are not rejected based on 

Peacock’s 2D Kolomogorov-Smirnov tests.  The conclusions of not rejecting models 

with the three sets of estimates agree with the Chi-square goodness-of-fit test with 

nine triangular sub-regions.  This result confirms the assumption of dissecting the 

triangular domain into equal-sized triangles is indeed reasonable and feasible. 



 

- 187 - 

5.2.2.3 Expected Loss 

 

Based on the assumed target values and tolerances in this example, and making use 

of the results yielded from Chapter 3, the followings are obtained after 

transformation: 

1

1 2 3

2

1 2 3

112.7 12.6 1
,

0.3 3 3

11 0.9 1
.

0.3 3 3

X

Y

a
T

a a a

a
T

a a a


  

  


  
  

 

 

Setting the two equations equivalent, a relationship of 1 2 3a a a   is obtained. 

 

Given the relationship of 1 2 3a a a  , there are infinite sets of parameters satisfying 

the relationship while giving the desired target values.   

Assume 1 2 3 3a a a   and K=1, the expected losses depicted by the three 

estimation methods listed as follows: 

 

Table 5-12 Expected loss depicted by the three estimation methods 

Estimation Method Method of Moments MLE Percentile Matching 

Expected Loss 0.351154 0.28814 0.368964 
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As mentioned before, there are many possible sets of parameters which may be 

adopted as the parameters for our IDLF.  According to the calculation in the 

preceding paragraph in this subsection, the three parameters are found to be 

equivalent.  Expected loss can be viewed as a function of the parameters and the 

following plot is therefore obtained: 

 
Figure 5-26 Expected loss vs. values of parameters 

 

As shown in Figure 5-26, maximum likelihood estimation gives the smallest 

expected loss among the three methods of estimation.  In other words, the most 
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conservative depiction of financial loss, in this case, is given by the maximum 

likelihood estimates. 

 

An assumption of all parameters of the IDLF be equal to three is made previously in 

this subsection.  Leung and Spiring (2002) demonstrated how to select the 

parameters of an IBLF when the exact measurement where one half of the maximum 

loss would result is known.  In the remaining of this sub-section, a similar approach 

is used. 

 

Assume the product designer agrees that half of the maximum loss would be 

obtained when 
1

6
x   and 

1

6
y  .  In other words, aside from the given tolerances, an 

IDLF will be formed, which will depict half of maximum loss when the 

measurements obtained are approximately 
1

6
x   and  

1

6
y  .  The Dirichlet 

probability density function, if 1 2 3a a a a   , can then be expressed as: 
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which can be solved easily and 2a   is obtained.  A plot showing the relationship 

between the value of parameter and the expected loss under the specified setting can 

be seen below: 

 

1 2 3 4 5
a

-1.0

-0.5

0.5

Loss

 

Figure 5-27 Relationship between the estimator and loss 

 

Based on this finding, the parameters of the proposed IbDLF are formed as 

 1 2 3Dirichlet 2a a a    and the loss function becomes: 

 

2 1 2 1 2 1
1

2 1
1X Y X Y

x y x y
L

T T T T

         
                , (5.10) 

where the unit cost of one such fastener is US$2. 

 

The loss function can be illustrated in the following plot: 
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Figure 5-28 Plot of IDLF with respect to the two transformed measurements 

Therefore, the expected loss can be calculated by integrating the multiple of the loss 

function and the conjugate function obtained above, the following results are 

obtained: 

 

Table 5-13 Estimators for the conjugate function and the IDLF 

    Method of Moments MLE Percentile Matching Method

Conjugate  1  5.3257 6.86421 5.5057 

   2  4.65618 6.04221 4.83618 

   3  3.71277 5.02687 3.51277 

IDLF  1a   2 2 2 

   2a  2 2 2 

   3a  2 2 2 

Expected Loss   0.425886 0.336538 0.452096 

 

The three methods give approximately the same expected loss at between US$0.33 

and US$0.45 when the maximum loss of one pressed-in threat insert.  This relatively 

low expected loss may result from the small sample standard deviations found in the 
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two variants.  In the following section, financial loss is once again being depicted 

using an IbNLF. 

 

5.2.2.4 Expected Loss Calculated by IbNLF 

In order to show the difference in maximum loss obtained from an IbNLF and an 

IDLF, the same sample of pressed-in threaded inserts is being used. Since the three 

methods of computing estimates of the conjugate function give relatively close 

results, only the estimates of MLE are used in this sub-section.  With calculation 

similar to previous sub-sections, following estimates are obtained: 

 

Table 5-14 Table for the estimators obtained by MLE 

x  y  
XS  YS  r  

12.7167 1.002 0.0381517 0.034533 -0.81716 

 

Peacock’s two dimensional KS test gives a maximum difference of 0.119006, which 

results in a p-value of almost 1, indicating no evidence is found to reject the 

proposed distribution.   
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Since X and Y seem to have a strong positive relationship, three different correlation 

coefficients of -0.95, 0 and 0.95 are considered to build the IbNLF.  The expected 

losses due to different scenarios are listed in the following table: 

 

Table 5-15 Expected loss depicted with three different scenarios 

XT  YT  XS  YS  
r Expected 

Loss 

12.7 1 0.04 0.04 0 0.000562065 

12.7 1 0.06 0.06 -0.95 0.000693885 

12.7 1 0.03 0.03 0.95 0.0011366 

 

Based on the result found in this subsection and the previous subsection, it can be 

seen that the expected losses depicted by IbNLF are much lower than those depicted 

by IbDLF.   

 

A few points are worth-mentioning regarding the inspection method suggested here.  

By fixing the target values and upper limits being fed into the bivariate normal 

function, the standard deviations may be varied by the range of potential standard 

deviations used in plotting.  It can be illustrated by the following plot where a 

bivariate normal function with standard deviations between 0 and 2 is plotted. 
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Figure 5-29 Plot of loss versus values of estimates when correlation is assumed to be 0 

 

By inspecting Figure 5-29, it may be suggested that having standard deviations of (1, 

1) would end up with a bivariate normal function similar to the following: 

 
Figure 5-30 The pdf with the estimates obtained 
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It can be observed, although it is not exactly a loss function, when the tolerance 

limits are met, the probability density function does not approach to zero.  Thus, the 

above probability density function does not satisfy the requirement of inverted 

probability loss functions. 

 

 

5.2.2.5 Expected loss calculated by the two univariate IBLF 

 

Aside from comparing the expected loss depicted by the IDLF and the IbNLF, 

comparison between the IDLF and the two IBLFs give an interesting result.   

 

Based on the transformed data obtained in the previous sections, the method of 

moments estimates and maximum likelihood estimates are obtained.  The values of 

estimators can be found in the following table: 

 

Table 5-16 Estimators of the transformed lengths obtained by method of moments and MLE 

 Transformed Body Transformed Head 

 MME MLE MME MLE 

a 5.3257 5.25193 5.41738 5.26459 

b 8.36896 8.27399 10.5161 10.229 
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Since there is no other constraint in building the Inverted Beta Loss Function, the 

same value of 1/6 is chosen as the point where half of the maximum loss will be 

depicted as assumed in constructing the IDLF.  Consider a standard Beta 

Distribution with parameters a and b, in other words, Beta(a, b).  Based on the fact 

that the target value is 1/3, it can be shown that the relationship between the two 

estimators is 2 1b a  .  Adopting this assumption will grant the following function 

and graph: 

 
 3 2 2 1 2 21 2 5 0.5a a aL        (5.11) 
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Figure 5-31 Relationship between loss and values of estimators 

 

Letting the equation to be equivalent to 0.5, parameter a is estimated with a value of 

3.80785, which gives the set of estimators to be [3.80785, 6.6157]. 
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The expected losses calculated by the estimates obtain previously are shown in the 

following table. 

Table 5-17 Expected loss depicted by MME and MLE for the two individual quality 

characteristic 

 Transformed Body Transformed Head 

 MME MLE MME  MLE 

Expected Loss 0.237103 0.238325 0.195292 0.199436 

 

In this section, expected losses of deviations of two individual quality characteristics 

were shown.  Adding the expected losses of transformed body length and 

transformed head length together, would yield similar results as depicted by the 

IDLFs.  Slight differences are observed, which can be explained by correlation 

between the two quality characteristics. 

 

5.2.2.6 Brief comments about the IDLF 

In this chapter, demonstration on how to apply an IbNLF and IDLF are done.  A key 

point worth mentioning is certainly the domain of the quality characteristics.  The 

tolerance limits given by the product engineer usually forms a rectangular region 

with finite values.  This region causes complication for applying either an IbNLF or 

an IDLF.  An IbNLF, based on a normal distribution, has a domain of 2  and the 

IDLF has a domain of a triangular region.  Both loss functions have a domain which 
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are not rectangular.  This problem increases the complexity of obtaining parameters 

for either IPLF.   

 

In terms of domain, the IDLF is more restrictive than the IbNLF.  A triangular 

tolerance region is not common.  As demonstrated in the application of the pressed-

in threaded inserts, an IDLF was chosen because the addition of two quality 

characteristics must be less than or equal to a certain limit.   

 

The setup of Chi-square goodness-of-fit test for a Dirichlet distribution with two 

variables seems to be easier than a bivariate Normal distribution.  This is because:  i)  

the bivariate Normal distribution has more parameters to be estimated than the 

Dirichlet distribution, and ii) the setup of sub-regions for a bivariate Normal 

distribution is arbitrary as it is hard to compose sub-regions with equal probability or 

equal region.   
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5.3 Choosing of Inverted Probability Loss Functions and Conjugate 

Functions 

 

Solder paste and fasteners have been studied to demonstrate the feasibility of 

depicting financial losses by either an IbNLF or an IDLF.  Discussion about how to 

select the appropriate IbPLF and the conjugate function will be discussed in this sub-

section. 

 

To the author’s best knowledge, up to now there are only two IbPLs, including the 

IDLF developed in this project.  The Dirichlet distribution, having a triangular 

domain, in the 2-variable case can only be used when the two quality characteristics 

are also having a triangular domain.  In other words, an IDLF is only useful when the 

sum of two measurements is less than a certain limit.   

 

A bivariate Normal distribution has 2 as its domain.  This feature gives flexibility 

to an IbNLF as any tolerance limits with two quality characteristics must be a subset 

of its domain.  As showed in the application of pressed-in threaded inserts, financial 

loss can also be depicted by an IbNLF.  Although an IbNLF is very flexible, it causes 
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a few problems:  i) difficulty of obtaining parameters for the IbNLF, and ii) the 

rectangular tolerance limits is only a subset of the domain of the IbNLF. 

Choosing a conjugate function is another important aspect in depicting financial loss 

using an IbPLF.  For univariate IPLFs, closed forms may be easily obtained, even 

when the IPLF and the conjugate function do not come from the same probability 

density function.  When the number of variables increases, closed forms are often 

impossible to obtain when the choice of IbPLF and the conjugate function come 

from two different bivariate probability density functions and numerical integration 

is often the only solution.  It is desirable that the IbPLF built by a bivariate 

probability density function and the conjugate function belong to the same family of 

distribution.  Selecting the same probability density function is easier, in terms of 

calculating the expected loss as both functions have the same domain.   
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CHAPTER 6  CONCLUSION 

 

 

Globalization creates enormous economic opportunities to the world.  On the other 

hand, fierce global competition has arisen for manufacturers.  For a manufacturer to 

survive, and to make profit, its product must be precise and durable.  Loss functions 

are used to evaluate and depict financial losses due to variation from the target 

values specified by the product engineer.  Manufacturers will be better off if they can 

make good use of loss functions to assess their risk properly and appropriately. 

 

Goalpost theorem has been the dominating guideline in the field of quality control 

until Dr. Taguchi introduced his quadratic loss function (Taguchi, 1986).  The 

quadratic loss function satisfies the need of depicting financial loss due to 

manufacturing deviation within the tolerance limits.  This is a step forward, since, 

according to the goalpost theorem, financial loss only occurs when the measured 

quality of a product is beyond the tolerance limits.   

 

In this study, a multivariate inverted Dirichlet loss function has been developed.  

Reviews of various inverted probability loss functions (IPLFs), including the 
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multivariate and bivariate inverted normal distribution, properties of inverted 

probability loss functions, have been elaborated.  Process data have been used to 

show the feasibility of bivariate IPLFs.   

 

Works have also been done on simulation, modeling and justification of the 

proposed models.  Three popular methods of simulating Dirichlet distributions have 

been studied, and they are the acceptance and rejection approach, conditional 

approach and the gamma factors approach.  There may be situations which the 

variables are additive, but data may be difficult or impossible to be collected, 

generating random Dirichlet variates may be necessary.     

 

Estimates regarding the simulated and real data, have been obtained with the method 

of moments, maximum likelihood estimation, alongside with the modified percentile 

matching method proposed in this thesis.  Bivariate Chi-square goodness-of-fit test is 

the main tool used in this study to verify the adequacy of models with estimates 

obtained by the three methods mentioned above.  Tables have been set up to 

illustrate, based on the same set of parameters for random variates generation, the 

three methods of simulation are often similar to each another.  One thousand random 

variates have been simulated by each simulation method, with these generated 
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sample points, different estimation methods are performed and verified by the 

bivariate Chi-square goodness-of-fit test and Peacock’s two-dimensional 

Kolomogorov-Smirnov test for each underlying conjugate distribution.  Five trials 

are repeated for each simulation method. 

  

Model verification is critical in developing an IPLF.  This task is tackled by the Chi-

square goodness-of-fit test.   In this project, it is suggested to dissect the domain of a 

Dirichlet distribution into triangles of equal area.  To verify this idea, a two-

dimensional Kolomogorov-Smirnov test has been performed.  Since 1983, various 

scholars have worked on developing two-dimensional K-S tests including Peacock 

(1983), Fasano and Franceschini (1987), Cooke, and Chan (2008).  In this study, the 

bivariate Kolmogorov-Smirnov test developed by Peacock (1983) has been adopted 

because it has the longest history and it is almost distribution-free.  In the two 

demonstrated examples of fasteners, Peacock’s 2-dimensional Kolmogorov-Smirnov 

test resulted in a slightly smaller p-value for the self-tapping threaded inserts and a 

similar p-value for the pressed-in threaded inserts.  Indicating the proposal of 

forming cells based on the contour plot is reasonable.   
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One of the contributions of this project lies in the proposal of the modified percentile 

matching method.  Percentile matching method is often an afterthought in modeling.  

Insurance companies used it to fit models because it takes care of extreme values; 

however, occasionally it does not provide enough information for data in the middle 

part of the distribution.  The approach suggested in this study started with a slightly 

different rationale:  matching up the number of observed points to the number of 

expected points using integration within a rectangle with vertices containing the 

origin and these specific selected points.  The selection criterion is based on 

rectangles being drawn contained the most number of sample points.  The set of 

estimates obtained by method of moments is used as the starting point.  According to 

tables 3-6 to 3-14, the three sets of estimates are usually similar to each other.  With 

the starting point fixed, a cube is formed, for the case of bivariate data, with vertices 

containing plus or minus ten percent of the starting point.  This cube, is then 

dissected into smaller cubes, depends on how precise the investigation is to be done.  

The closest integrated value to the target value done by counting is then selected to 

be the set of estimates.  The beauty of this method is that, as long as integration or 

numerical integration can be done, a set of estimates can be obtained.  The downside 

of this method is obviously a much longer computing time required.  Results based 

on simulated data have shown that, the set of estimates obtained by the percentile 
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matching method usually give the same conclusion of whether to reject a proposed 

model as the other two methods of estimates.  Based on the current set up of regions 

where expected and observed frequencies have to be counted, the result seems 

acceptable.  According to the real data, p-values obtained for the three methods of 

estimations are indeed competitive, which is encouraging for the modified percentile 

matching method.  More work is definitely required to study this modified percentile 

matching method as it remains one of the future research interest of the author. 

 

Extension in IPLFs to multi-dimensional has also been explored.  Spiring (1993) 

introduced the first INLF and IbNLF.  In this project, the bivariate INLF is used to 

depict the financial loss of solder paste and self-tapping threaded inserts.  According 

to the sample data, both examples suggest satisfactory result in terms of modeling 

and an expected loss is depicted based on the IPLF formed.   

 

Upon the completion of this thesis, the author’s research interest remains in 

developing ImPLFs based on other probability distributions including gamma and 

exponential.  The author is keen to dig deeper in two areas discussed in this thesis:  i) 

percentile matching method and ii) Chi-square goodness-of-fit test in higher 
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dimension.  In this thesis, the feasibility of these two approaches is shown; however, 

whether they are one-time wonder or universal true remains a further investigation. 
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APPENDIX 

Mathematica files used to build an IDLF 

 

Calculating moments of the raw data: 

Moments[a_]:=Block[{i}, i=1;x1=0;x2=0;y1=0;y2=0; EX=0;EX2=0;EY=0;EY2=0; 

While[i<=60, 

x1=x1+a[[i,1]]; 

x2=x2+a[[i,1]]^2; 

y1=y1+a[[i,2]]; 

y2=y2+a[[i,2]]^2; 

i++;]; 

EX=x1/60; 

EX2=x2/60; 

EY=y1/60; 

EY2=y2/60; 

]; 

 

Calculating the parameters by method of moments: 

MME[a_,b_,c_,d_]:=Block[{i}, 
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MMEa1=((a-b)*a)/(b-a^2);   

MMEa2=(a-b)*c/(b-a^2); 

MMEa3=(a-b)*(1-a-c)/(b-a^2); 

Print["MMEa1:  ", MMEa1]; 

Print["MMEa2:  ", MMEa2]; 

Print["MMEa3:  ", MMEa3]; 

]; 

 

Calculating the parameters by maximum likelihood estimators 

mle[a_,b_,c_,d_]:=Block[{i}, (* function to calculate the maximum likelihood 

estimators *) 

n=60; 

Iij={n*PolyGamma[1,a],n*PolyGamma[1,b], n*PolyGamma[1,c]}; 

Dia=DiagonalMatrix[Iij]; 

G={{-n*PolyGamma[1,a+b+c],-n*PolyGamma[1,a+b+c],-

n*PolyGamma[1,a+b+c]},{-n*PolyGamma[1,a+b+c],-

n*PolyGamma[1,a+b+c],-n*PolyGamma[1,a+b+c]},{-

n*PolyGamma[1,a+b+c],-n*PolyGamma[1,a+b+c],-

n*PolyGamma[1,a+b+c]}}; 
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V=Inverse[Dia+G]; 

Print["V:  ", V]; 

i=1; 

templogx=0; 

templogy=0; 

templogz=0; 

data=d; 

logdata=N[Log[data]]; 

While[i<=n, 

templogx=templogx+logdata[[i,1]]; 

templogy=templogy+logdata[[i,2]]; 

templogz=templogz+Log[1-d[[i,1]]-d[[i,2]]]; 

i++; 

]; 

u={a,b,c}; 

g={{n*PolyGamma[0,a+b+c]-

n*PolyGamma[a]+templogx},{n*PolyGamma[0,a+b+c]-

n*PolyGamma[0,b]+templogy},{n*PolyGamma[0,a+b+c]-

n*PolyGamma[0,c]+templogz}}; 



 

- 215 - 

Print["g:  ", g]; 

u1=u+V.g; 

Print["first trial:  ", u1]; 

mlea1=u1[[1,1]]; 

mlea2=u1[[2,1]]; 

mlea3=u1[[3,1]]; 

]; 

 

Estimators calculated by the percentile matching method: 

pm[l_,m_,n_]:=Block[{i,j,k}, (* function of percentile matching *) 

list={}; list2={}; 

e=l-.2; a=1/3; b=1/3; c=2/3; d=2/3; f=m-.2; g=n-.2; i=0; j=0; k=0; 

While[i<20, 

j=0; 

While[j<20, 

k=0; 

While[k<20, 
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p=NIntegrate[Gamma[e+i/50+f+j/50+g+k/50]/(Gamma[e+i/5

0]*Gamma[f+j/50]*Gamma[g+k/50])*x^(e+i/50-1)*y^(f+j/50-1)*(1-

x-y)^(g+k/50-1),{x,0,a},{y,0,b}]; 

q=NIntegrate[Gamma[e+i/50+f+j/50+g+k/50]/(Gamma[e+i/5

0]*Gamma[f+j/50]*Gamma[g+k/50])*x^(e+i/50-1)*y^(f+j/50-1)*(1-

x-y)^(g+k/50-1),{x,0,a},{y,0,d}]; 

r=NIntegrate[Gamma[e+i/50+f+j/50+g+k/50]/(Gamma[e+i/50

]*Gamma[f+j/50]*Gamma[g+k/50])*x^(e+i/50-1)*y^(f+j/50-1)*(1-x-

y)^(g+k/50-1),{x,0,c},{y,0,b}]; 

AppendTo[list,{p,q,r,e+i/50,f+j/50,g+k/50}]; 

AppendTo[list2,{p,q,r}]; 

k++;]; 

j++;]; 

i++;]; 

distance[list]; 

]; 
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Calculating the distance between a point and the desired value: 

distance[temp_]:=Block[{i}, i=1; 

dtemp=0; dlist={}; loc=0; Dim=8000; 

While[i<=Dim, 

dtemp=(temp[[i,1]]-counter1/60)^2+(temp[[i,2]]-

counter2/60)^2+(temp[[i,3]]-counter3/60)^2; 

AppendTo[dlist,{dtemp,i}]; 

i++;]; 

i=1; 

bench=dlist[[i,1]]; 

While[i<=Dim, 

If[dlist[[i,1]]<bench,{bench=dlist[[i,1]],loc=i};]; 

i++]; 

Print[list[[loc]],dlist[[loc]]]; 

pma1=list[[loc,4]]; 

pma2=list[[loc,5]]; 

pma3=list[[loc,6]]; 

]; 
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Counting number of observations inside each sub-region for the percentile matching 

method: 

Counter[a_]:=Block[{i}, 

i=1;aa=1/3;bb=1/3;cc=2/3;dd=2/3;counter1=0;counter2=0;counter3=0; 

While[i<=60, 

If[a[[i,1]]<aa && a[[i,2]]<bb,counter1++;]; 

If[a[[i,1]]<aa && a[[i,2]]<dd, counter2++;]; 

If[a[[i,1]]<cc && a[[i,2]]<bb, counter3++;]; 

i++; 

]; 

Print[counter1]; 

Print[counter2]; 

Print[counter3];]; 

 

Counting number of observations for the Chi-square goodness-of-fit test: 

count[a_]:=Block[{i}, (*function to count number of points in specific regions for 

chi-square goodness-of-fit test *) 

i=1; counter1=0; c11=0;c12=0;c13=0;c14=0;c15=0;c16=0;c17=0; 

c21=0;c22=0;c23=0;c24=0;c25=0;c31=0;c32=0;c33=0;c4=0; 
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counter2=0;counter3=0;counter4=0; 

While[i<=60, 

If[a[[i,1]]<=1/4, counter1++;]; 

If[a[[i,1]]<=1/4 && a[[i,1]]+a[[i,2]]<=1/4, c11++;]; 

If[a[[i,1]]<=1/4 && a[[i,1]]+a[[i,2]]>1/4 && a[[i,2]]<=1/4, c12++;]; 

If[a[[i,1]]<=1/4&& a[[i,1]]+a[[i,2]]<2/4 && 1/4<a[[i,2]]<=2/4, c13++;]; 

If[a[[i,1]]<=1/4 && a[[i,1]]+a[[i,2]]>2/4 && 1/4<a[[i,2]]<=2/4, c14++;]; 

If[a[[i,1]]<=1/4&& a[[i,1]]+a[[i,2]]<=3/4 && 2/4<a[[i,2]]<=3/4, c15++;]; 

If[a[[i,1]]<=1/4 && a[[i,1]]+a[[i,2]]>3/4 && 2/4<a[[i,2]]<=3/4, c16++;]; 

If[a[[i,1]]<=1/4 && a[[i,2]]>3/4, c17++;]; 

If[1/4<a[[i,1]]<=2/4,counter2++;]; 

If[1/4<a[[i,1]]<=2/4&& a[[i,1]]+a[[i,2]]<=2/4 && a[[i,2]]<=1/4, c21++]; 

If[1/4<a[[i,1]]<=2/4 && a[[i,1]]+a[[i,2]]>2/4 && a[[i,2]]<=1/4, c22++]; 

If[1/4<a[[i,1]]<=2/4&& a[[i,1]]+a[[i,2]]<=3/4 && 1/4<a[[i,2]]<=2/4, c23++]; 

If[1/4<a[[i,1]]<=2/4 && a[[i,1]]+a[[i,2]]>3/4 && 1/4<a[[i,2]]<=2/4, c24++]; 

If[1/4<a[[i,1]]<=2/4 && a[[i,2]]>2/4, c25++]; 

If[2/4<a[[i,1]]<=3/4,counter3++;]; 

If[2/4<a[[i,1]]<=3/4&& a[[i,1]]+a[[i,2]]<=3/4 && a[[i,2]]<=1/4, c31++]; 

If[2/4<a[[i,1]]<=3/4 && a[[i,1]]+a[[i,2]]>3/4 && a[[i,2]]<=1/4, c32++]; 
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If[2/4<a[[i,1]]<=3/4 && a[[i,2]]>1/4, c33++]; 

If[a[[i,1]]>3/4,counter4++;]; 

If[a[[i,1]]>3/4, c4++]; 

i++; 

]; 

Print["x<1/4:  ", counter1]; 

Print[c11, "   ", c12, "   ", c13, "   ", c14, "   ", c15, "   ", c16, "   ", c17]; 

Print[c11+c12+c13+c14+c15+c16+c17]; 

Print["1/4<x<2/4:  ",counter2]; 

Print[c21, "  ", c22, "   ", c23, "   ", c24, "   ", c25]; 

Print[c21+c22+c23+c24+c25]; 

Print["2/4<x<3/4:  ", counter3]; 

Print[c31, "  ", c32,"   ", c33]; 

Print[c31+c32+c33]; 

Print[c4]; 

Print["y<1/3:  ", c11+c12+c21+c22+c31+c32+c4]; 

Print["1/3<y<2/3:  ", c13+c14+c23]; 

Print["y>2/3:  ", c15]; 

Print["Total:  ", counter1+counter2+counter3+counter4];]; 


