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ABSTRACT 

Abstract of thesis entitled:  Fault Detection and Diagnosis Methods for Building HVAC 

Systems 

Submitted by            :    Zhao Yang 

For the degree of      :    Doctor of Philosophy 

at The Hong Kong Polytechnic University in May, 2013 

Faults in Heating, Ventilation and Air-conditioning (HVAC) systems would lead to 

uncomfortable indoor environment, poor indoor air quality, occupant complains and 

energy waste. Fault detection and diagnosis (FDD) tools are helpful to detect and isolate 

faults timely. Therefore, they are essential for reliable indoor environment control, 

saving maintenance efforts, and eliminating the associated energy waste. There is a 

growing interest in developing FDD tools for HVAC systems. Over the last decades, a 

considerable amount of FDD methods have been developed for chillers, air handling 

units (AHUs) and variable air volume (VAV) terminals. However, there is still a lack of 

reliable, affordable and scalable solutions. 

The main objective of this PhD project is to develop enhanced and reliable FDD 

methods for HVAC systems in buildings. Firstly, a comprehensive literature review is 

made. Then, the methodologies of four FDD methods are proposed for different 

applications. The first two methods are improvements of conventional FDD methods. 

The latter two methods are new ones. 

A simplified model-based FDD method with its customization tool is proposed. It is 

preferable when there are limited fault-free data to train models. The basic idea is to 
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identify model parameters using limited training data, and then to generate benchmarks 

for fault detection using the calibrated models. It provides good applicability and 

convenience for actual applications. Based on this method, a simplified FDD strategy 

for centrifugal chillers is proposed. It adopts a simplified physical chiller model which 

can be calibrated using very limited operation or performance test data. Four schemes 

are developed to identify chiller model parameters based on available information and 

data from tests or from manufacturers. A new semi-physical sub-cooling model is 

adopted by the chiller model. Comparisons are made with four typical conventional 

FDD strategies using ASHRAE RP-1043 experimental data. The results show that this 

strategy has much higher detection and diagnosis ratios. 

An enhanced statistical FDD method is proposed to enhance incipient fault detection 

and diagnosis performance of the conventional gray-box model-based methods. It is 

suitable when measurements are sufficient. Support vector regression (SVR) algorithm 

is adopted to improve accuracies of reference performance index (PI) models. It is a 

non-linear regression approach which is based on structural risk minimization from 

statistical learning theory. Exponentially weighted moving average (EWMA) control 

charts are introduced to detect faults in a statistical way to improve the ratios of 

correctly detected points. The EWMA control charts reduce the Type II error ratios 

through taking into account the time series information using the weighting factor. This 

method is applied to a centrifugal chiller FDD strategy and a system-level FDD strategy 

respectively. Results show that the chiller FDD performance is improved significantly, 

especially at low severity levels. For example, in the case of condenser fouling, the 

proposed strategy achieved the ratios of correctly diagnosed points of 7.7%, 45.2%, 60.7% 
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and 100.0% at four severity levels (SL-1 to SL-4) respectively at the confidence level of 

99.73%. Using the conventional gray-box model-based method, this fault could not be 

correctly diagnosed at level SL-1, SL-2 and SL-3. The application on system-level fault 

detection is evaluated on a simulated commercial building at four severity levels and 

two uncertainty levels. Similar improvements are also observed. 

A new pattern recognition-based FDD method is proposed using support vector data 

description (SVDD) algorithm. It is suitable when fault data are available. This method 

transforms the FDD problem as a typical one-class classification problem. The task of 

fault detection is to detect whether the process data are outliers of the fault-free class. 

The task of fault diagnosis is to find to which fault class do the process data belong. It 

overcomes shortcomings of available pattern recognition-based FDD methods in HVAC 

field. Evaluations are made using ASHRAE RP-1043 experimental data. It shows more 

powerful FDD capacity than other pattern recognition-based FDD methods, e.g., multi-

class SVM-based FDD method and PCA-based fault detection method.  

A generic diagnostic Bayesian network (DBN)-based FDD method is proposed to 

simulate the actual diagnostic thinking of HVAC experts. It has better performance than 

other FDD methods when the diagnostic information is uncertain and incomplete. It 

benefits to allow merging different types of knowledge and information from diverse 

sources. The structure of the DBN is a graphical and qualitative illustration of the 

intrinsic causal relationships among causal factors, faults and fault symptoms. The 

parameters of the DBN represent the quantitative probabilistic relationships among 

them. It is effective in diagnosing faults based on uncertain, incomplete and conflicting 

information. DBNs are developed for chiller FDD and VAV terminal FDD respectively. 
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A three-layer DBN is developed to detect and diagnose component faults in a 90-ton 

water-cooled centrifugal chiller as described in ASHRAE RP-1043. Only using 

measurements from building management system (BMS), the DBN has similar accuracy 

as rule-based chiller FDD methods when BMS measurements are complete. When BMS 

measurements are incomplete, the DBN still provides meaningful fault believes but 

rule-based chiller FDD methods fail to work. The diagnosis ratios are increased when 

evidences of nodes in additional information layer are used. Refrigerant overcharge and 

non-considerable gas can be correctly diagnosed with the help of evidences of nodes in 

additional information layer. A DBN is developed to detect and diagnose faults of the 

pressure independent VAV terminals in an office building located in Hong Kong. It is 

evaluated through conducting the ten typical VAV terminal faults on a dynamic 

simulation platform of an office building. All faults are correctly diagnosed with high 

confidences. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivations 

Buildings contribute to about 20%-40% worldwide energy consumption in 

developed countries (Pérez-Lombarda et al. 2008). Significant amount of energy is 

wasted in the case of design problems, operation faults, equipment and control system 

performance degradation and malfunction. Mills (2009) concluded that the median 

whole-building energy through commissioning savings were 16% in existing non-

residential buildings and 13% in new construction, and more than a quarter of 

investigated buildings saved in excess of 30%. Similar conclusions can be found in 

Cibse (2000), Claridge et al. (2000), Liu et al. (2003), Katipamula and Brambley (2008), 

etc. 

Heating, Ventilation and Air-conditioning (HVAC) systems contribute to a 

significant portion of energy consumption in buildings. For instance, it is estimated that 

HVAC systems consume about 40-60% of total electricity consumption in buildings in 

sub-tropical climates by an early energy audit and site survey by Lam and Chan (1995). 

Faults in HVAC systems would lead to uncomfortable indoor environment, poor indoor 

air quality, occupant complains and energy waste. Fault detection and diagnosis (FDD) 

are helpful to detect and isolate faults timely. They are essential for reliable indoor 

environment control, saving maintenance efforts, and eliminating the associated energy 

waste. Figure 1.1 illustrates the energy savings by monitoring-based commissioning 

with the help of FDD tools. This figure originally derives from Mills’ report (Mills 

2009). Modifications are made to show contributions of FDD tools.  
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Figure 1.1 The role of FDD tools in monitoring-based commissioning 

The development of FDD tools in HVAC field has been an active area of research 

for more than two decades. However, there is still a lack of reliable, affordable and 

scalable solutions (Najafi et al. 2012). FDD researchers have recognized challenges in 

developing FDD tools for HVAC systems: 

 Firstly, there are generally very few sensors equipped. Only the necessary sensors 

to control the components/systems are commonly installed (Qin and Wang 2005). It is 

data rich but information poor. The measurements are generally insufficient which 

makes it difficult to detect and diagnose faults. What is worse, the measurements are 

often not accurate due to low quality sensors and poor maintains.  

Secondly, some faults may be propagated by control loops, which lead to complex 

relationships between faults and symptoms (Xiao 2004). For instance, supposing that 

supply air temperature sensor in an AHU is faulty with a positive bias in summer, the 
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control signal to the cooling coil will increase to maintain the supply air temperature at 

the set-point. This fault would be hidden if both supply air temperature and indoor air 

temperature are maintained at their set-points. If this fault is detected, it is hard to 

exclude the suspected faults using limited measurements, e.g., cooling coil fouling, 

heating coil valve leakage, cooling coil valve stuck, chilled water leakage and 

undersized cooling coil, etc.  

Thirdly, extra complexities are added for the number of different types of equipment 

and lack of standardized control sequences (Schein 2006).  

FDD is usually a complex inference process to map the symptoms to faults in fault 

diagnosis. In most cases, one fault may result in multiple symptoms, and meanwhile 

different faults may result in similar symptoms. Due to above challenges, it is still a 

difficult task to develop reliable, affordable and scalable FDD tools for HVAC systems. 

1.2 Aim and Objectives 

The aim of this PhD thesis is to develop enhanced and reliable FDD methods for 

HVAC systems in buildings. Conventional FDD methods will be comprehensively 

surveyed firstly. Then, new solutions will be proposed through addressing the following 

four objectives: 

i. Develop a simplified model-based FDD method with its customization tool. The 

basic idea is to identify model parameters using limited training data, and then to 

generate benchmarks for fault detection using the calibrated models. It is suitable 

when there are limited fault-free data to train models. 
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ii. Develop an enhanced statistical FDD method to detect and diagnose incipient faults. 

The basic idea is to improve accuracy of reference models and to reduce Type II 

error ratios (more details refer to Section 3.2.2). It aims to improve performance of 

conventional gray-box model-based methods. 

iii. Develop a new pattern recognition-based FDD method to overcome shortcomings 

of available pattern recognition-based FDD methods. The basic idea is to transform 

the FDD problem as a typical one-class classification problem. It is suitable when 

data are rich and fault data are available. 

iv. Develop a generic FDD framework to merge different types of knowledge and 

information from diverse sources. The basic idea is to simulate the actual diagnostic 

thinking of HVAC experts. The outstanding achievements of previous publications 

can be integrated into the framework in an information fusion way. It is suitable to 

deal with incomplete or even conflicting information.  

Finally, the four methods will be demonstrated and applied on chiller FDD, VAV 

terminal FDD and system-level FDD respectively.  

The proposed methods belong to the marked categories respectively in Figure 1.2, 

according to the classification of FDD methods for HVAC systems (Katipamula and 

Brambley 2005a). The forth method (in objective iv) does not belong to any specified 

category since it can be used to merge methods of different categories. 
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Figure 1.2 Classification of FDD methods in HVAC field 

1.3 Organization of This Thesis 

The organization of this thesis is shown in Figure 1.3.  

 

Figure 1.3 Organization of the thesis 
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This chapter represents the motivation and objectives of developing FDD methods 

for HVAC systems. The benefits of FDD methods are illustrated. The challenges of 

developing FDD methods are critically reviewed. Then, the objectives of this thesis are 

proposed. The organization of the other chapters is as follows. 

Chapter 2 presents a comprehensive literature review about FDD methods for 

chillers, AHUs and VAV terminals. 

Chapter 3 introduces the four proposed FDD methods, including a simplified model-

based FDD method with its customization tool, an enhanced statistical FDD method to 

detect and diagnose incipient faults, a new pattern recognition-based FDD method and a 

generic FDD framework based on diagnostic Bayesian networks.  

Chapter 4 presents the application of the simplified model-based FDD strategy with 

its customization tool for centrifugal chillers. It provides good applicability and 

convenience for actual applications. It adopts a simplified physical chiller model 

calibrated using very limited operation or performance test data. 

Chapter 5 presents the application of the proposed incipient FDD method on 

centrifugal chillers. It is to propose a robust statistical FDD strategy suitable for the 

detection and diagnosis of chiller faults at low severity levels. Three innovations are 

adopted to overcome the shortcomings of the conventional gray-box model-based 

chiller FDD strategies. 

Chapter 6 presents the application of the proposed incipient FDD strategies on 

system-level incipient faults in HVAC systems. It is an improvement on the system-

level FDD strategy proposed by Zhou et al. (2009a). Three typical 
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subsystems/component are considered in this chapter, i.e. cooling tower system, chillers 

and heat exchanger system. 

Chapter 7 presents the application of the proposed SVDD-based FDD strategy on 

centrifugal chillers. It considers the chiller FDD problem as a typical one-class 

classification problem. Fault-free data is considered as fault-free class. Each type of 

fault is considered as an individual fault class. The task of fault detection is to detect 

whether the process data are outliers of the fault-free class. The task of fault diagnosis is 

to find which fault class does the process data belong to. 

Chapter 8 presents the application of the proposed diagnostic Bayesian network on 

centrifugal chiller. A three-layer diagnostic Bayesian network is developed to diagnose 

chiller faults. 

Chapter 9 presents the application of the proposed diagnostic Bayesian network on 

VAV terminals. It is evaluated through conducting the ten typical VAV terminal faults 

on a dynamic simulation platform of an office building. 

Chapter 10 summaries the work reported in this thesis, and provides 

recommendations for further application and research in the related area.  



8 

 

CHAPTER 2 LITERATURE REVIEW 

This chapter presents a comprehensive literature review on FDD researches for 

HVAC systems. It mainly focuses on researches in the last decade, especially the last 

ten years. 

Section 2.1 presents a literature review on chiller FDD methods, including physical 

model-based methods in Section 2.1.1, gray-box model-based methods in Section 2.1.2, 

and pattern recognition-based methods in Section 2.1.3. 

Section 2.2 presents a literature review on AHU FDD methods. The methods 

concerned by most researchers are reviewed in details, i.e. rule-based methods in 

Section 2.2.1, gray-box model-based methods in Section 2.2.2, and pattern recognition-

based method in Section 2.2.3. 

Section 2.3 presents a literature review on VAV terminal FDD methods. There are 

few researches conducted on this topic in the last decades. Detailed literature reviews on 

the rule-based methods are presented. 

2.1. Literature Review on Chiller FDD Methods 

Over the last decades, there have been many publications concerning chiller FDD 

methods, e.g., Grimmelius el al. (1995), Stylianou (1997), Rossi and Braun (1997), 

Bailey (1998), McIntosh (1999), Jia and Reddy (2003), Wang and Cui (2005), Reddy 

(2007a; 2007b), Zhou et al. (2009a; 2009b), Han et al. (2012), etc. Detailed literature 

reviews on this subject can be found in the papers of Comstock et al. (2002), Reddy et al. 

(2001), Dexter and Pakanen (2001), Katipamula and Brambley (2005a; 2005b), Xiao et 
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al. (2009). ASHRAE has processed several projects to develop chiller FDD methods, 

such as ASHRAE Projects RP-1043 (Comstock and Braun 1999a; Comstock and Braun 

1999b), RP-1139 (Reddy et al. 2001), RP-1275 (Reddy 2006) and RP-1486 (Li and 

Zhao 2011).  

 

Figure 2.1. A brief classification of chiller FDD methods 

 

The project RP-1043 made valuable efforts in generating a series of fault test data on 

a laboratory centrifugal chiller. A dynamic chiller model was developed for the 

performance simulation of fault-free and faulty chillers. RP-1139 aimed at evaluating 
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the mathematical models and developing an on-line training technique. An evaluation 

methodology was proposed by RP-1275 for chiller FDD methods. Four typical FDD 

methods were evaluated using steady-state performance data. The project RP-1486 

evaluated the effectiveness of three typical FDD methods for centrifugal chillers online 

in laboratory and field environments. 

Chiller FDD methods can be classified into three categories according to the 

comprehensive classification scheme by Katipamula and Brambley (2005a), as shown in 

Figure 2.1. A new subcategory, i.e. pattern recognition-based FDD method, is added 

here since more publications of this topic were found in recent years. Detailed literature 

reviews on the most commonly used methods are presented, i.e., physical model-based 

methods in Section 2.1.1, gray-box model-based methods in Section 2.1.2, and pattern 

recognition-based methods in Section 2.1.3. 

2.1.1 Physical Model-Based Chiller FDD Methods 

Physical model-based FDD methods include quantitative model-based methods and 

qualitative model-based methods. There are two kinds of physical chiller models, i.e. 

detailed chiller models and simplified physical chiller models. Detailed chiller models 

are developed on the basis of detailed information on component parameters and control 

loops. They can simulate some typical chiller faults (Bendapudi 2004). However, when 

the detailed chiller model is applied to other chillers, it will need a lot of detailed 

information on the chillers concerned involving serious efforts. Simplified physical 

chiller models are easy to be calibrated while providing major functions as detailed 

chiller models.  
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Compared with the gray-box model, simplified physical chiller models can provide 

more information - such as internal variables of the refrigeration process for the needs of 

various FDD schemes. There are some simplified physical chiller models such as the 

Primary HVAC Toolkit (Bourdouxhe et al. 1999), McIntosh et al.’s model (2000), 

Wang and Wang’s model (2000). They do not include the prediction of the sub-cooling 

temperature, which is a necessary performance index (PI) in most of the chiller FDD 

methods. There are very few publications on using simplified physical chiller model for 

chiller FDD applications so far. 

2.1.2 Gray-Box Model-Based Chiller FDD Methods 

There are more publications about gray-box model-based chiller FDD methods. 

Typical works can be found at Grimmelius et al. (1995), McIntosh et al. (2000), Chen 

and Braun (2001) and Li and Braun (2003), Jia and Reddy (2003), Cui and Wang 

(2005) , Reddy (2007a, 2007b, 2007c). 

Generally, these methods are developed as the following steps: 1) Reference PI 

models development. It is generally on the basis of linear regression algorithm-based 

models, e.g., MLR (Multiple Linear Regression) algorithm. 2) Confidence intervals 

(thresholds) calculation. They are usually gained through the t-statistic approach at a 

certain confidence level, e.g. 4.6% false alarm. 3) Fault detection. The residuals between 

benchmark PIs and current ones are calculated. A fault is detected as soon as the 

residuals are out of the confidence intervals. 4) Fault diagnosis. The fault is diagnosed 

according to the fault pattern rule table. The lessons learnt from the success of these 

methods can be concluded as follows. Firstly, the performance indexes (also named 
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characteristic quantities or characteristic parameters in some studies) can account for 

existing chiller faults efficiently. Secondly, the statistical approaches are introduced to 

detect faults, which can properly handle the uncertainties of both model-fitting errors 

and measurement errors. In the end, the expert knowledge is used to diagnose fault using 

rule tables. 

The low severity level is defined in this thesis as the level at which chiller 

performance is affected slightly. The available methods failed to detect and diagnose 

chiller faults at low severity levels (SL). For instance, the ratios of correctly diagnosed 

points were 0%, 0%, 0% at SL-1 and 25%, 0%, 0% at SL-2 respectively for the 

refrigerant leakage, condenser fouling and excess oil in Cui and Wang (2006). The MLR 

and t-statistic-based method in AHSRAE RP-1275 was reported that the ratios of 

correctly diagnosed points were 3.7%, 0%, 0% at SL-1 and 7.4%, 0%, 0% at SL-2 the 

refrigerant leakage, condenser fouling and refrigerant overcharge  respectively (Reddy 

2007a). It means that the operators have to wait for the fault alarms until the fault 

archives at a serious severity level. Obviously, significant amount of energy might have 

been wasted. The chiller might have been damaged. Hence, removing faults at low 

severity levels is crucial for chiller maintenance and costs saving. 

The linear regression algorithm and t-statistic-based methods have better FDD 

performance among all chiller FDD methods (Reddy 2006). It is valuable to analyze the 

reasons which might contribute to their poor FDD performances at low severity levels: 

i. The Type II errors in the t-statistic-based approaches. Generally, a fault is detected 

when the residuals of PIs are outside of the confidence intervals. However, the 
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residuals are still within the confidence interval at the low severity levels. This is 

the Type II error (more details can be found in Section 3.2.2). 

ii. The accuracy of linear regression algorithm-based reference models. They have 

better accuracy than physical models in most of conditions. It is widely used, e.g., 

RP-1043 (Comstock and Braun 1999a; Comstock and Braun 1999b), Cui and Wang 

(2006), etc. However, chillers are typical non-linear systems. The accuracy can be 

improved using non-linear regression algorithms. The accuracy is important to the 

width of confidence interval. The lower the accuracy is, the wider the confidence 

interval will be, and then the FDD performance will be poor. 

iii. The improper performance index for the condenser fouling. The condenser fouling 

has similar fault patterns with the refrigerant overcharge and non-condensable gas. 

To distinguish it with other faults, it is generally assumed that the deviation of sub-

cooling temperature is within conference intervals or a positive value. Actually, the 

deviation is sometimes positive (mostly in low severity levels) and sometimes 

negative (mostly in serious severity levels), as shown in RP-1043 data. Such 

assumptions always lead to higher false diagnosis ratios.  

2.1.3 Pattern Recognition-Based Chiller FDD Methods 

Pattern recognition is the science of making inferences based on data. In the HVAC 

field, the pattern recognition-based methods, which are of the category of history-based 

methods, have been attracting researchers’ attentions in recent years. 

Principle component analysis (PCA) is the dominant algorithm among the pattern 

recognition algorithms in HVAC field. PCA can be used to detect fault using statistical 
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analysis, and to diagnose sensor faults using reconstruction algorithm. It has been 

applied to air handling unit sensor FDD (Du and Jin 2007; Du et al. 2008; Wang and 

Xiao 2004), variable air volume system sensor FDD (Du et al. 2007a, 2009a, 2009b), air 

distribution loop FDD (Xiao et. al 2006), system level FDD (Zhou et al. 2009a; Du et al. 

2007b). Chen and Lan (2009) found that PCA-based fault detection method is applicable 

and effective to detect faults in air-source heat pump water chiller/heaters. Wang and 

Cui (2006) introduced PCA to detect and diagnose chiller sensor faults. Their method 

consisted of a model-based chiller FDD scheme and a sensor fault detection, diagnosis, 

and estimation (FDD&E) scheme, which handle chiller faults and sensor faults, 

respectively. The sensor FDD&E scheme uses a PCA-based method to capture the 

correlations among the major measured variables in centrifugal chillers, as it performs 

well even in the presence of typical chiller faults. The two parameters in PCA-based 

methods, i.e. the selected component count and the confidence level, are easy to be 

arranged. Therefore, the PCA-based methods are feasible to be applied. PCA-based 

methods have estimations that variables are Gaussian distributed and linear. Their FDD 

accuracy reduces when the ranges of variables are wider. Such estimations could not be 

satisfied. For instance, the experimental data in RP-1043 are highly non-Gaussian 

distributed, non-linear and wide-range distributed (as shown in Chapter 7). 

Han et al. (2012) introduced support vector machine (SVM) algorithm to detect and 

diagnose chiller component fault. The chiller FDD problem is considered as a multi-

class classification problem. The correct diagnosis ratios are generally over 90%, which 

are obviously higher than that of the conventional methods. Multi-class classification 

algorithms generally aim to classify an unknown object into one of several pre-defined 
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categories. A problem arises when the test data does not belong to any of those 

categories, as discussed by Khan and Madden (2010). The multi-class SVM-based 

chiller FDD works well when the fault data of all faults are available. If the full-set fault 

data are not available, the multi-class classification algorithms might be not robust 

(detail analysis can be found in Chapter 7). 

Pattern recognition-based FDD methods benefit to adopt powerful algorithms which 

are derived from artificial intelligence field. Compared with conventional FDD methods, 

the pattern recognition-based FDD methods have following advantages: Firstly, the 

pattern recognition-based methods are flexible to be applied, which can save time and 

efforts significantly. It just needs to retrain the data-driven models using new data. They 

do not require the developers to have a deep understanding of the physics of the chillers 

concerned. It is not necessary to develop chiller models to generate benchmark data. 

Secondly, they have better FDD performance than conventional methods. They learn 

fault patterns from fault-free data and fault data. A well-trained pattern recognition-

based model can effectively distinguish data of different classes, even when the changes 

of variables caused by faults are small or even tiny. Thirdly, the pattern recognition-

based methods may still work well when some important variables are not available. 

They could learn fault patterns which might still be uniquely represented by the limited 

variables. Most of conditional FDD methods could not work in such situations. Finally, 

the pattern recognition theories and algorithms are mature, with a wealth of documented 

information and tools available. The tools are generally accessible from open-source 

software packages. Developers can focus on the applications of the algorithms rather 

than coding the algorithms themself. The fault-free data are usually easy to be obtained 
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from building management systems or on-site tests. When there are only fault-free data, 

the pattern recognition-based FDD methods could have better fault detection 

performance than conventional methods.  

Pattern recognition-based FDD methods have following weaknesses: firstly, most 

models cannot be used to extrapolate beyond the range of the training data; secondly, a 

large amount of training data is needed, representing both normal and “faulty” operation; 

thirdly, the models are specific to the system for which they are trained and rarely can 

be used on other systems. Fault data are necessary if the pattern recognition-based 

methods are used for the purpose of fault diagnosis. 

2.1.4 Discussions and Recommendations 

Model-based methods are preferable when the training data are not enough. First-

principle physical models consist of priori knowledge about chiller systems. It benefits 

to overcome the shortage of training data and to utilize more information (e.g., physical-

meaningful parameters) in the models. For instance, parameters of the simplified 

physical chiller model of Wang and Wang (2000) can be identified using very limit of 

test data from tests or from manufacturers. A simplified physical model-based and 

customization FDD tool can be developed to provide good applicability and 

convenience for actual applications. 

Gray-box model-based methods are suitable when there are sufficient training data. 

Generally, gray-box models could obtain better accuracy than physical models. Statistic 

approaches could be introduced to detect and diagnose incipient fault using the abundant 

of data. The major difference between model-based methods and gray-box model-based 
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methods is that how the benchmark models are developed. They do not need fault data 

for fault diagnosis since fault patterns can be obtained through first-principle analysis.  

Pattern recognition-based methods are suitable to diagnose fault when fault data are 

available. They are new solutions for chiller FDD. The research on pattern recognition-

based methods is still very limited. 

2.2. Literature Review on AHU FDD Methods 

AHU FDD has been attracting most of the attentions of FDD researches in HVAC 

field. A considerable amount of research has been carried out in the field of FDD in 

HVAC systems over the last decades, e.g., quantitative model-based methods (Xu et al. 

2005; Seem and House 2009; Li 2009; Wang et al. 2012), rule-based methods (House et 

al. 2001; Schein, 2006; Schein et al. 2006; Li et al. 2012), gray-box model-based 

methods (Norford et al. 2000; Yoshida et al. 2001; Shaw et al. 2002; Lee et al. 2004; 

Fan et al. 2010; Brambley et al. 2011), data-driven methods (Wang and Xiao 2004; Xiao 

et al. 2006; Du et al. 2007a; Xiao et al. 2009;  Najafi et al., 2012; Wall et al., 2011), as a 

brief classification in Figure 2.2. 

The most widely researched subcategories are reviewed in details, i.e. rule-based 

methods in Section 2.2.1, gray-box model-based methods in Section 2.2.2, pattern 

recognition-based method in Section 2.2.3. 
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Figure 2.2 A brief classification of AHU FDD methods 

 

2.2.1 Rule-Based AHU FDD Methods 

The rules in the rule-based methods are generated from expert 

knowledge/experience and first-principle. The rule-based methods use if…then… logic 

or fault pattern tables to diagnose fault. 
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Schein et al. (2006) proposed a comprehensive set of AHU performance assessment 

rules (APAR) to detect AHU faults. There are 28 pieces of rules which derived from 

mass and energy balances. Each rule is expressed as a logical statement to indicate the 

presentence of a fault. Four subsets of the rules are applied to four modes because the 

mass and energy balances are different for each operating mode. There are also some 

rules which are independent of the operating mode. As discussed by Yang et al. (2008), 

the APAR rules can only be used to detection fault. They proposed sequential rule based 

algorithms for temperature sensor fault detection in AHUs which is an extended 

application of APAR rules. However, the method would be not robust when component 

faults occur. It also has to declare that some rules will not be avoided only when fault 

severity levels are high. 

The main advantage of rule-based methods is that they are easy to apply. However, 

the simplicity of the methods is lost quickly as problem complexity grows or when 

new/additional rules are added (Katipamula and Brambley 2005a; Brambley et al. 2011; 

Najafi et al 2012). The rule-based methods do not consider uncertainties in AHU FDD. 

They require the measurements used in rule sets for diagnosing a fault are complete. 

They could not diagnose faults when some measurements are missing or unavailable. 

They only provide Boolean results, i.e. a fault exists or not. Actually, due to the 

uncertain and incomplete information, it is more reasonable to provide probabilities of 

faults than Boolean results. The fuzzy logic algorithm is a suitable solution for 

reasoning under uncertainty. However, as the problem complexity grows, a large 

number of fuzzy sets and fuzzy rules are required, which lead to the difficulty on 

adjusting and tuning fuzzy sets (Najafi et al 2012). 
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2.2.2 Gray-Box Model-Based AHU FDD Methods 

Different from physical model-based AHU FDD methods, the gray-box model-

based methods used regression algorithms to develop reference models. Then, the 

deviations between predicted values and benchmarks were used to detect fault. A main 

advantage is that the model is easier to be developed. 

Norford et al. (2002) and Shaw et al. (2002) described models which are gray-box 

correlations of electrical power with exogenous variables such as airflow or motor speed, 

e.g., correlations of fan power with air flow rate, correlations of chilled-water pump 

power with cooling-coil valve position. The method showed advantages compared with 

first-principle model-based methods. Brambley et al. (2011) introduced similar models 

in their self-correcting controls for VAV system faults filter/fan/coil and VAV box 

sections. Electrical power responses fast to dynamics in systems which can be 

accurately measured. Such electrical power correlation models generally have high 

accuracy. 

Lee et al. (2004) introduced general regression neural-network (GRNN) to develop 

four reference models corresponding to the supply-air temperature control system, the 

mixed-air temperature control system, the static-pressure control system, and the airflow 

difference control system. For instance, the predicted cooling coil valve control signal is 

a function which is regressed by supply air temperature, mixed air temperature, mixed 

air humidity ratio and supply air flow rate. Similarly, Yang et al. (2012) proposed a 

method to detect supply air temperature sensor fault in AHUs using support vector 

regression (SVR) algorithm. A main difference from the electrical power correlation 

models is that they need more measurements. These measurements are not as accurate as 
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electrical power measurements and also do not response fast to dynamics. The false 

FDD risk is higher since the FDD results would be totally wrong when any 

measurement is faulty. No comprehensive on-site tests were provided to validate their 

robustness in these publications. 

2.2.3 Pattern Recognition-Based AHU FDD Methods 

House et al. (1999) demonstrated the application of several classification algorithms 

on AHU FDD, i.e., k-nearest neighbor classifier, k-nearest prototype classifier, artificial 

neural network classifier, rule-based classifier and Bayes classifier. The Bayes classifier 

had the best performance at fault detection. The rule-based classifier had the best 

performance at fault diagnosis.  

Wang and Xiao (2003; 2004) proposed PCA-based AHU sensor FDD method. 

Sensor faults are detected using the Q statistic (squared prediction error, SPE). They are 

isolated using the Q statistic and Q contribution plot supplemented by simple expert 

rules. Two models are employed to deal with the heat balance and pressure flow balance 

separately to reduce the effects of the system nonlinearity and to ensure the PCA 

method's validity in different control modes. The fault isolation ability of the PCA 

method is also improved using the multiple models. Evaluations showed that the PCA-

based strategy was effective to monitor instrumentations and detect/isolate AHU sensor 

faults under typical operating conditions. Wang and Xiao (2006) further improved the 

PCA-based sensor FDD method using condition-based adaptive scheme to follow the 

normal shifts in the process due to changing working conditions, where the outdoor air 

temperature and humidity are selected to represent the outdoor operating conditions. The 
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scheme overcomes the shortcomings of the time-based adaptive scheme and improves 

the detectability of the PCA-based sensor FDD method in detecting slowly developing 

faults. Rules are built to determine the time when the PCA models need to be updated. 

PCA models generated in the adaptive process are stored in a model database. Du and 

Jin (2008) used PCA and Fisher discriminant analysis (FDA) to detect and diagnose 

multiple faults diagnosis for sensors in AHUs. The PCA-based sensor FDD methods are 

efficient and effective to detect and diagnose sensor faults. Due to their pure data-driven 

nature, additional solutions should be made to correctly isolate sensor faults when the 

sensors are adopted in control loop. And, PCA-based FDD methods also need solutions 

to avoid false diagnosis when component faults occur.  

Najafi et al. (2012) proposed a static Bayesian Networks-based AHU method in 

machine learning way. It is based on analysing the observed behaviour of the system 

and comparing it with a set of behavioural patterns generated based on various faulty 

conditions. The FDD problem is formulated as an estimation of the posterior distribution 

of a Bayesian probabilistic model. Wall et al. (2011) used dynamic Bayesian network to 

learn the behaviour of AHU in fault and fault-free conditions. Compared with classifier-

based method (House et al., 1999) and PCA-based method, the Bayesian network-based 

machine learning method can take into consideration more physical meanings into the 

structure of Bayesian network. 

As discussed in Section 2.1.3, the pattern recognition-based FDD methods are 

suitable when full-set fault data are available. When only fault-free data are available, 

pattern recognition-based methods have good fault detection performance only. 

2.2.4 Discussions and Recommendations 
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The main challenge in AHU FDD is the lack of sensor quantity and quality. The 

current sensor system is designed for local control purposes. The BMS measurements 

are rich but information poor. The fault detection problem has been solved properly in 

publications. However, there are few fault diagnosis methods. Fault diagnosis is still a 

problem in AHU FDD field. 

Fault diagnosis can be considered to be an information fusion problem. Fault 

diagnosis might be more efficient and reliable if all information is utilized. A variety of 

information resources besides sensor measurements are helpful for fault diagnosis, e.g. 

maintenance records, health status of related equipment, etc. For instance, AHU is at a 

higher risk of filter fouling if the filter has not been properly treated for a long time. If 

the ΔPfilter is larger at a certain Fsa, the filter fouling fault is more suspected than the 

fault that Fsa sensor is positive biased. The features of measurements in the time 

dimension are also useful for diagnosis. For instance, a sensor is at higher risk of frozen 

fault if its value has not changed for 2 hours, especially at starting period and power off 

period. Conditional AHU fault diagnosis methods always use sensor measurements at 

current time slice only. There is a lack of an effective mathematic method to fuse 

different kinds of information methodologically. 

The incomplete and uncertain information leads to one of the main challenges in 

AHU fault diagnosis. Firstly, it is data rich but information poor. There are limited 

sensors equipped in AHUs due to cost considerations. Only the necessary sensors to 

control the equipment are commonly installed. The measurements are generally 

insufficient which makes it difficult to diagnose the faults. Secondly, various 

uncertainties exist in measurements and fault patterns, etc., which cause the fault 
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diagnosis results unreliable. The fault-symptom relationships are uncertain. The 

measurements are generally low qualities due to low quality sensors and poor maintains. 

One fault may result in a symptom at a certain probability. One piece of evidence 

(observed symptom) may support the existence of several faults at different probabilities. 

The FDD results would be more reasonable if they are presented in the form of 

probabilities of fault according to the available evidences and uncertainties, rather than 

Boolean results (i.e., Normal or Faulty) resulted from the conventional methods. 

Passive AHU FDD methods only use available measurements/information of the 

AHU concerned. Different from passive FDD methods, the proactive FDD methods 

obtain some symptoms through disturbing the normal operating of AHUs (Brambley, et 

al., 2011). Proactive FDD methods are good solutions to diagnose faults when 

information is incomplete to identify faults. Passive FDD can provide suspected fault 

list for decision support which can make proactive FDD to be more effective. An action 

of passive FDD can be saved if the fault can be diagnosed only using passive FDD tools. 

An AHU can be divided to two subsystems, i.e. heating/cooling coil subsystem and air 

flow subsystem. The heating/cooling coil subsystem maintains supply air temperature at 

its set-point. The air flow subsystem provides the desired amount of air to room with 

designed amount of fresh air. In the air flow subsystem, the speed of supply fan is 

controlled to maintain statistic pressure set-point. The speed of return fan is controlled 

by sequence control strategies which are generally a function of supply fan speed or 

supply air flow rate. The positions of outdoor air (OA) damper, exhaust air (EA) damper 

and recirculation air (RA) damper are controlled to supply a desired flow rate of fresh 
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air. A fault might affect other components or be distributed by control logics, which 

make fault diagnosis to be a complex task. 

2.3. Literature Review on VAV Terminal FDD Methods 

Variable air volume (VAV) air conditioning systems are widely used in offices and 

commercial buildings nowadays. Building professionals usually consider that VAV 

systems have better performance in terms of thermal comfort and energy saving than fan 

coil unit systems and constant air volume systems. However, VAV terminals easily 

suffer from various faults which cause the performance of VAV systems hardly meet the 

high expectations. Qin and Wang found that 20.9% of 1251 VAV terminals were 

ineffective in a site survey conducted in a commercial building in Hong Kong (Qin and 

Wang, 2005). Preventive maintenance of VAV terminals is a difficult task since a large 

number of VAV terminals are installed above ceilings. FDD tools for VAV terminals 

are essential for reliable indoor environment control, saving maintenance efforts, and 

eliminating the associated energy waste. There are few researches conducted on FDD of 

VAV terminals in the last decades. Most of methods are rule-based, as shown in Figure 

2.3.  



26 

 

 

Figure 2.3 A brief classification of VAV terminal FDD methods 

 

2.3.1 FDD Methods  

Yoshida proposed an automatic regressive exogenous (RARX) model and an 

extended Kalman filter model to detect faults in a VAV unit and an Air Handling Unit 

(AHU) cooling coil system (Yoshida et al. 1996; Yoshida and Kumar 1999). Seem et al. 

described a set of indices to assess the performance of control loops and to detect faults 

in VAV terminals and AHUs. The performance indices were embedded in commercial 

VAV terminals controllers to quickly identify terminals that are not operating correctly 

(Seem et al. 1997; Seem et al. 1999). Schein proposed VAV Box Performance 

Assessment Control Charts (VPACC) to assess the performance of pressure independent 

VAV boxes with hydronic reheat coils. VPACC introduced a small number of CUSUM 
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charts to accumulate the error between a process output and the expected value of the 

output (Schein and House 2003; Schein, 2006). Most of the above-mentioned FDD 

methods for VAV terminals focused on fault detection and seldom considered fault 

diagnosis. Qin and Wang proposed a hybrid approach to diagnose ten typical faults in 

VAV utilizing expert rules, performance indexes and statistical process control models 

to address these faults (Wang and Qin 2005). Principal Component Analysis (PCA) was 

used to detect flow sensor biases. Wang et al. designed a rule-based classifier consisting 

of a set of twenty expert rules and fault isolation algorithms to diagnose fifteen faults 

(Wang et al. 2012). It was able to diagnose faults using sensor data and control signals 

which are commonly available in building management systems (BMSs).  

The above FDD methods for VAV terminals can normally provide good results; 

however, they rarely considered the realistic situation where only uncertain and 

incomplete information is available for conducting FDD. Uncertainties widely exist in 

measurements, symptoms, fault-symptom relationships, expert knowledge, FDD results, 

etc. For instance, a fault may exist with certain probability when a symptom is observed. 

It is more reasonable to give the probabilities of faults at given symptoms in FDD 

results. However, most existing FDD methods report the FDD results in the Boolean 

format, i.e. Yes/Present and No/absent. In addition, due to the limited number of 

measuring instruments, incomplete records of system design and operation data, 

insufficient memory capacities of control stations and building automation systems, etc., 

the information available for conducting FDD is incomplete. These FDD methods might 

not work properly using incomplete information. Furthermore, some useful information, 

which is very helpful in FDD, was often overlooked. For instance, the prior probabilities 
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of the temperature sensor fault and the damper actuator failure are 25.3% and 3.8% 

respectively (Qin and Wang 2005). When a VAV terminal is abnormal, the possibility 

of the temperature sensor fault is much higher than that of the damper actuator failure. 

Such prior experience about faults has seldom been used in exiting FDD methods. 

2.3.2 Discussions and Recommendations 

FDD experts have recognized more challenges in FDD of VAV terminals are facing:  

Firstly, there are generally very few sensors equipped in VAV terminals. The 

information is extremely insufficient which makes it difficult to diagnose the faults (Qin 

and Wang 2005). Secondly, faults may be propagated by control loops, which lead to 

complex relationships between faults and symptoms. Thirdly, limitations associated 

with controller memory and communication capabilities further complicate the task 

(Schein 2006). Fourthly, the number of different types of VAV boxes and lack of 

standardized control sequences add extra complexities (Schein 2006). Fifthly, a large 

number of VAV terminals are usually installed above ceiling. There is almost no 

preventive maintenance (Wang et al. 2012).  

It is recommended to make use of expert knowledge/experiences to overcome the 

information poor problems. 

2.5 Summary 

Comprehensive literature reviews are made about chiller FDD methods, AHU FDD 

methods and VAV terminal FDD methods. In the methodology point of view, each kind 

of method has its own suitable applications. 
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Physical model-based methods are preferable when the training data are not 

sufficient. It is possible to develop easy-to-use FDD methods with customization tools 

under training data poor situations. There is a lack of such tools for practical application. 

Gray-box model-based methods are suitable when training data are sufficient. They 

might fail to detect incipient faults due to the Type II errors. Pattern recognition-based 

methods are suitable to diagnose fault when fault data are available. It is a new research 

topic. There is still a long way to go before practical applications. Rule-based methods 

are suitable when model-based methods are not applicable. Their simplicities would be 

lost quickly when problem is complex. They are also lack of capacity to present 

uncertainties in FDD process. 

The development of FDD tools in the HVAC field has been an active area of 

research for more than two decades. However, there is still a lack of reliable, affordable 

and scalable solutions. It indicates that essential innovations are more necessary rather 

than improving conventional methods. 
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CHAPTER 3 AN OVERIEW OF THE PROPOSED FDD 

METHODS 

This chapter presents the methodologies of the four proposed FDD methods: 

Section 3.1 presents a simplified model-based FDD method with its customization 

tool. The basic idea is to identify model parameters using limited training data, and then 

to generate benchmarks for fault detection using the calibrated models. 

Section 3.2 presents an enhanced statistical FDD method for the detection and 

diagnosis of incipient faults. Support vector regression (SVR) algorithm is adopted to 

improve accuracies of reference PI models. Exponentially weighted moving average 

(EWMA) control charts are introduced to detect faults in a statistical way to improve 

the ratios of correctly detected points. It overcomes shortcomings of conventional gray-

box model-based methods. 

Section 3.3 presents a new pattern recognition-based FDD method. Support vector 

data description (SVDD) algorithm is introduced to transform the FDD problem as a 

typical one-class classification problem. The task of fault detection is to detect whether 

the process data are outliers of the fault-free class. The task of fault diagnosis is to find 

to which fault class do the process data belong. It overcomes the shortcomings of the 

available pattern recognition-based FDD methods in HVAC field. It also brings about 

some new potential applications. 

Section 3.4 presents a generic diagnostic Bayesian network (DBN)-based FDD 

method to simulate the actual diagnostic thinking of HVAC experts. The structure of the 
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DBN is a graphical and qualitative illustration of the intrinsic causal relationships 

among causal factors, faults and fault symptoms. The parameters of the DBN represent 

the quantitative probabilistic relationships among them. It is effective and efficient in 

diagnosing faults based on uncertain, incomplete and conflicting information. 

3.1 Simplified Model-Based FDD Method with Customization Tool 

Simplified models are easier to be calibrated, unlike detailed physical models. 

Compared with gray-box models, simplified models show ability being calibrated using 

limit of training data due to their physical meaningful natures. Therefore, simplified 

model-based FDD method is preferable in training data-poor situations. For instance, 

this method has the capability to calibrate a chiller model using manufacturer’s 

catalogue data only. It is meaningful in detecting and diagnosing a chiller when no 

fault-free data are available.  

3.1.1 Customization Tools for Simplified Models 

Effective customization tools should be developed to identify the unknown 

parameters in the simplified models. For instance, Wang and Wang (2000) proposed a 

simplified chiller model based on the basic principles of chillers to ensure the reliability 

and accuracy of the model in a wide working range. The parameters are identified using 

limited performance test data. Four schemes are proposed to identify chiller parameters 

for four different situations. Similar works can be found in the Primary HVAC Toolkit 

(Bourdouxhe et. al, 1999). Such models could provide good applicability and 

convenience for actual applications.  
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3.1.2 Schematic of The Simplified Model-Based FDD Method 

The basic idea of the simplified model-based FDD method is to identify model 

parameters using limited training data, and then to generate benchmarks for fault 

detection using the calibrated models. The structure is shown in Figure 3.1. It includes 

two processes, i.e. online FDD and offline model training.  

 

 

Figure 3.1 Flow chart of the simplified model-based FDD method 

 

The offline model training process consists of three steps including: data processing, 

model parameter identification, and fault pattern analysis. The obvious outlying and 

dynamical data are removed in the step of data pre-processing if the data are obtained 

from BMS history databases. Then, parameters are identified using customization tool. 
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The fault diagnosis rule table is generated based on expert knowledge/experiences 

through analyzing fault patterns. 

In the online FDD, the steps of data pre-processing is the same as that in the model 

training. The benchmarks of performance indexes are calculated using the simplified 

models. A fault is detected if the residuals between the current PIs and benchmark 

values are larger than their thresholds. Then, process of fault diagnosis will be activated 

employing the FDD rule table.   

3.2 Incipient Fault Detection Method 

As discussed in Section 2.1.2, the gray-box model-based methods show advantages 

when there are enough training data. Gray-box models were more widely used than 

physical models. Generally, gray-box models could obtain better accuracy than physical 

models. Even so, they could not detect some incipient faults effectively. There are two 

main reasons: firstly, the adopted gray-box algorithms are linear while HVAC systems 

are generally non-linear. The accuracy of reference models can be improved. Secondly, 

the residuals between predicted values and benchmarks are too small leading to high 

Type II error ratios when fault severity level is low. An incipient fault detection and 

diagnosis method is proposed in this chapter to overcome these two shortcomings.  

3.2.1 Performance Index Model Development 

Reference performance index (PI) models are developed to generate benchmark 

value for fault detection. There are many methods to develop PI models, e.g., 

quantitative physical model-based methods, qualitative model-based methods, black-



34 

 

box/gray-box model-based methods, etc. Among them, the gray-box model-based 

methods are most widely used.  

The gray-box reference PI models are developed as shown in Equation (3.1) (Cui 

and Wang 2006). Where, Y is PI, f is the regression function,            are the 

variables of a subsystem, and ξ is the model error,         . 

                                         (3.1) 

The selection of inputs (          ) is significant to the model performance. The 

selection should be able to determine the unique operating conditions for a certain 

component/subsystem. Meanwhile, the selection should not be affected by typical 

component/subsystem faults. 

The models can be developed using algorithms like MLR, ordinary least squares 

(OLS), artificial neural network (ANN), auto-regressive moving average (ARMA), etc. 

MLR and ANN are the most adopted algorithms. As discussed in Section 2.1.2, MLR-

based PI models are based on estimation that the HVAC systems are linear. However, 

most of HVAC systems are nonlinear. The disadvantages of ANN are that the number of 

hidden layers is difficult to choose and that the calculation may fall into a local 

minimum.  

To improve the accuracy of PI models, a non-linear approach, namely support vector 

regression (SVR), is proposed to build the reference models. It is a new machine 

learning algorithm based on structural risk minimization from statistical learning theory. 

It possesses prominent advantages such as excellent properties in learning limited 

samples, good generalization ability, etc.  It is proven that SVR has outstanding 
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performance according to the comprehensive comparisons of SVR with other regression 

approaches, as concluded in the previous publications, such as Park et al. (2010), Esen et 

al. (2008), Paniagua-Tineo et al. (2011) and Wang et al. (2010). More details can be 

found in Schölkopf et al. (1999). 

3.2.2 Incipient Fault Detection Methods 

In statistical test theory, there are two kinds of errors, i.e. Type I error and Type II 

error. Specialized to the FDD problem, a Type I error occurs when the FDD method 

rejects the normal data (i.e. detects normal data as faulty data), as the yellow part in 

Figure 3.2. A Type II error occurs when it fails to reject the fault data (i.e. fails to detect 

faulty data), as the green part in the figure.  

 

 

Figure 3.2. Illustration of Type I error and Type II error in the t-statistic based fault 

detection method 

 

The t-statistic is widely used in the FDD methods in HVAC field, as described in 

Section 3.3.2.1. It is easy to be applied. The main shortcoming is that the Type II error 

might be too high to detect incipient fault. In this chapter, EWMA control charts are 
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introduced to solve such a problem, as described in Chapter 3.1.2.2. Comparisons 

between two methods will be shown in Chapter 5 and Chapter 6. 

3.2.2.1 t-Statistic-Based Fault Detection 

The t-statistic was introduced in 1908 by Gosset (Fisher Box 1987). It is a ratio of 

the departure of an estimated parameter from its notional value and its standard error. It 

is used in hypothesis testing like Student’s t-test, computation of certain confidence 

interval, etc. In the FDD methods for HVAC systems, t-statistics of residuals between 

predicted values and its benchmarks can be estimated to have asymptotically the 

standard normal distribution. Generally, the empirical rule can be introduced as a simple 

test for outliers. For instance, about 68.27%/95.45%/99.73% of the normal data lie 

within  1σ/ 2σ/ 3σ of the mean μ respectively, as shown in Figure 3.2. Cui and Wang 

(2006) introduced an online adaptive scheme to estimate and update the thresholds for 

detecting abnormal PIs. The adaptive scheme also introduced t-statistic approach. 

In the t-statistic-based FDD methods, the confidence intervals are determined to 

reach a small yellow part (the Type I error) to reduce false alarm ratio, e.g. 2σ at 95.45% 

confidence level. However, when a fault occurs, the faulty data within the green part are 

also considered as normal ones (the Type II error). Particularly for the condensing 

fouling and refrigerant leakage at low severity levels, the deviations of the actual 

distributions from distributions in normal conditions are so small that most of them 

cannot be detected. 
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3.2.2.2 Exponentially Weighted Moving Average Control Chart-Based Fault Detection 

In the field of statistical process control, the control charts are used to determine 

whether or not a process is in a state of statistical control. There are two well-known 

control charts for detecting small-magnitude shifts, i.e. CuSum (Cumulative Sum) and 

EWMA. Both are effective to detect the changes as small as one standard deviation. 

They are widely used in the FDD fields. For instance, Qin and Wang (2005), Wang et al. 

(2011) proposed FDD methods for VAV air-conditioning systems using CuSum control 

charts. Thomson et al. (2000) introduced EWMA control charts for the early detection 

of fouling of the heat recovery system. In this study, EWMA control charts are selected 

for the reason that the EWMA value is physically meaningful and can be used for FDD 

in a quantitative way. 

The EWMA control chart was originally proposed by Roberts (1959) for detecting 

small shifts. It introduces a constant weighting factor λ ( 0 1  ) to determine the 

importance of current group mean ( iX ) as defined in Equation (3.2).  

1(1 )i i iZ X Z           (3.2) 

where, Zi is the ith EWMA value, Z0 = μ0. iX is mean of ith sample group which has 

constant size n, iX = (yni + yni-1 + … + yn(i-1)+11)/n is value of the ith observation. It is 

easy to show that Zi is a weighted average of - 11, , ..., i iX X X :  

 
12

1 2 1 0  (1- ) (1- ) 1- (1- )
i i

i i i iZ X X X X        


       (3.3) 

Weights are decreasing with the age of observations. The weight for current group is 

the highest one. The weights for groups at the beginning of the time series are the lowest. 
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It is meaningful to chiller FDD since the newest observations have more information 

about faults. The control limits are determined using Equation (3.4) and (3.5). 

0
(2 )

UCL L
n


 


 


     (3.4) 

0
(2 )

LCL L
n


 


 


     (3.5) 

where, UCL is the upper control limit. LCL is the lower control limit. L is the width of 

the control limits, which determines the confidence limits (for instance, when L=3, 

99.73% of the plotted points should fall within the control limits in normal conditions). 

The EWMA control chart takes into account the time series information using the 

weighting factor λ. It considers the behaviors of a set of observations rather than one 

(unlike t-statistic) to determine whether the process is abnormal. Therefore, it is 

sensitive to smaller long-term changes. Compared with t-statistic approach, the Type II 

error ratio is reduced.  The fault detection methods using t-statistic approach only use 

the information of the current data. This feature makes it relatively insensitive to small 

shifts when a fault occurs. 

3.2.3 Schematic of The Incipient Fault Detection Method 

The structure of the proposed FDD method is as shown in Figure 3.3. It includes two 

parts, i.e. online chiller FDD and offline model training.  
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Figure 3.3. Flow chart of the incipient fault detection and diagnosis method 

 

The offline model training consists of four steps. In the step of data pre-processing, 

the obvious outlying and dynamical data are filtered by the outlier detector and steady-

state data filter respectively. In the step of performance indexes calculation, the four PIs 

are calculated using the filtered data. In the next step, SVR is adopted to develop the 

reference models. In the last step, the statistical characters of the reference models are 
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calculated, i.e. μ (the expectation) and σ (the standard deviation), which are the 

requirements of the EWMA model.  

In the online FDD part, the steps of data pre-processing and PIs calculation  are the 

same as that in the offline model training part. The benchmarks of performance indexes 

are calculated using the reference models. Then the residuals between the current PIs 

and benchmark values are calculated, which are inputs of the EWMA control charts. If a 

fault is detected, it is further diagnosed using the rule table.  

3.3. Pattern Recognition-based FDD Method 

Fault detection is a typical one-class classification problem. For instance, chiller 

measurements on the fault-free conditions are very easy and cheap to be obtained, e.g. 

from building management systems or on-site tests. However, the measurements on the 

fault conditions (e.g., chillers work with faults), would be very expensive. One-class 

classification algorithms show powerful capacity to solve such problem. Some one-class 

classification algorithms have been developed in the last decade, e.g. support vector data 

description (SVDD), one-class support vector machine (OCSVM), k-nearest neighbor 

data description (kNNDD), etc. (Tax 2012). SVDD was originally proposed by Tax and 

Duin in 1999 for the one-class classification problem (Tax and Duin 1999; Tax and 

Duin 2004), as described in Section 3.3.1.2. It has been successfully adopted to fault 

detections, e.g., microrobotic system monitoring (Cho et al. 2006), bearing performance 

degradation assessment (Pan et al. 2009), bath process monitoring (Ge and Gao 2011), 

pump failure detection (Tax and Duin 1999), analog circuit faults detection (Luo et al. 
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2011), semiconductor etch process motoring (Mahadevan and Shah 2009), etc. Most of 

studies focus on SVDD-based fault detection (process motoring).  

In this Section, a SVDD-based FDD method is proposed, as described in Section 

3.3.2. To evaluate the advantages of this method, the other two pattern recognition-

based methods are also described in Section 3.3.1. Comparisons among these three 

methods are described in Chapter 7. 

3.3.1 Pattern Recognition Algorithms in FDD Applications 

3.3.1.1 Support Vector Machine 

SVM is based on the structural risk minimization principle rooted in the statistical 

learning theory. Its basic idea is to transform the data to a higher dimensional feature 

space and find the optimal hyperplane in the space that maximizes the margin between 

the classes (Cristianini and Shawe-Taylor 2000). Given a two-classes training set S = 

{(x1,y1), (x2,y2),…,(xn,yn)}, where, xi is input vector, and yi is their class label,      , 

yi={-1,1}, i = 1,…,N. Supposed Fault A is class -1 and Fault B is class +1, the 

classification of two classes using SVM is illustrated in Figure 3.4.  SVM tries to the 

optimal hyperplane in Equation (3.6) and Equation (3.7): 

           (3.6) 

     (3.7) 

where,  is the normal to the optimal hyperplane. b is a scalar threshold. By 

solving the constrained optimization problem of minimizing , the optimal 

hyperplane can be found. With the use of Lagrange multipliers , the training process 

0w x b    

( 0) 1, 1,...,iy w x b i N    

( )nw R x

|| ||w

i
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is to solve a convex quadratic problem. where, 0 i C  , C > 0 is a penalty constant 

(also called slack penalty). The solution is a unique globally optimized result, which has 

the properties as Equation (3.8). where, can be called support vector when the 

corresponding . 

       (3.8) 

When the training process of SVM is completed, the decision function can be 

defined as Equation (3.9). 

    (3.9) 

For a linear non-separable case, kernel function  can be introduced to 

perform a non-linear mapping of the input vector x from the input space into a higher 

dimensional Hilbert space, as Equation (3.10). 

    (3.10) 

 

Figure 3.4. Illustration of two-class classification SVM for fault detection and diagnosis 
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 In this study, Gaussian kernel function is selected because it has the best chiller 

FDD performance. The two parameters in SVM, i.e. C and γ (width parameter of 

Gaussian kernel), should be optimized to obtain better classification performance. There 

are generally more than two classes of chiller faults. The one-against-one (1-vs-1) 

algorithm, which constructs one two-class SVM between each pair of classes, is 

introduced in this study to solve this problem. It is proved to have slightly better 

performance than the one-against-all algorithm by Han et al (2012). A complete 

description about SVM can be found in Cristianini and Shawe-Taylor (2000). 

3.3.1.2 Support Vector Data Description 

Tax and Duin proposed the SVDD algorithm in 1999 (Tax and Duin 1999). Given a 

target object set      , i = 1,…,N, the basic idea of SVDD is to find a minimum-

volume hypersphere in high dimensional space with center aF and radius D to enclose 

most of the objects, as Equation (3.11).  

Minimize                ∑   
 
               

Subject to           
       ,                

 (3.11) 

where, C controls the trade-off between the volume of the hypersphere and the errors. 

   are slack variables which allows a probability that some of the training samples can 

be wrongly classified.   is a nonlinear mapping which maps the input objects into a 

high dimensional feature space F. The dual problem of Equation (3.11) is as Equation 

(3.12). Where,          is the kernel function.  
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Maximize         ∑ ∑      (     )
 
   

 
     

  

Subject to ∑   
 
                                    (3.12) 

where, α is Lagrange multiplier. In this study, Gaussian kernel,  (     )        

 (  )               
      , is selected. It is because Gaussian kernel has only one 

free parameter to be tuned and is shown to yield tighter boundaries than other kernel 

choices. According to the Kuhn-Tucker conditions, the objects can be classified into 

three categories: 1) the objects with      are inside of the hypershphere; 2) the objects 

whose        are on the hypershphere boundary; and 3) the objects whose      

fall outside the hypershphere and have nonzero   . The objects with      are the 

support vectors. Objects lying on the hypershphere boundary (      ) are called 

unbounded support vectors. Objects lying outside the hypershphere (    ) are called 

bounded support vectors. The center can be expressed as Equation (3.13). And its radius 

D can be determined by utilizing the distance between    and any support vector x on 

the ball boundary (unbounded support vectors), as Equation (3.14). Finally, for the test 

object x, the output can be obtained by comparing its distance to the center    with 

radius D in F. The SVDD decision function is as Equation (3.15). where,   

       ∑             
  
    is a constant. 
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Figure 3.5. Illustration of SVDD sketch map in two dimensions for FDD 

 

   ∑        
  
                                    (3.13) 

      ∑            ∑ ∑                          
 

 
 

      (3.14) 

               
        ∑          

  
                    (3.15) 

For the purpose of chiller fault detection in this study, a fault is detected when the 

real-time monitoring data x is rejected by fault-free class. For the purpose of chiller fault 

diagnosis, a fault is identified if the real-time monitoring data x is accepted by a fault 

class, as illustrated in Figure 3.5 in two dimensions. Fault A is the target class. If 

process data are within the hypersphere, this fault is detected and diagnosed. If not, this 

fault does not exist. 

In this study, there are two parameters which are needed to be tuned, i.e. C and γ. C 

controls the tradeoff between the volume of the hypersphere and the classification error 

of the model. By changing the value of the width parameter         in the Gaussian 

Hypersphere (Boundary)

Unbounded

support vector

Outlier of Fault A 

class

Fault A

D(x)>D

D(x)<D
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kernel, the description transforms from a solid hypersphere to a Parzen density estimator 

(Ge et al. 2011). The smaller σ is, the tighter the decision boundary is. 

3.3.1.3 Principle Component Analysis 

PCA is the most widely used unsupervised multivariate statistical-analysis 

technique for dimension and feature extraction. It transforms a group of correlated 

variables into a new group of variables which are uncorrelated or orthogonal to each 

other. PCA separates the high dimensional space into a lower dimensional subspace 

capturing the systematic variations of the process and a subspace containing random 

noise. According to PCA, the measurement vector x of the process variables can be 

decomposed into two parts, as Equation (3.16). Where  ̂ is the modeled part which 

represents the projection on the principal component subspace (PCS), as Equation 

(3.17).  ̃ is the un-modeled part on the residual subspace (RS), as Equation (3.18). 

   ̂   ̃          (3.16) 

 ̂                 (3.17) 

 ̃          ̃        (3.18) 

With the respect to fault detection application of PCA, the Q-statistic can be used 

as an index of faulty conditions, which is also known as the squared prediction error 

(SPE). The Q-statistic measures the total sum of variation in the residual vector. 

Therefore, faults can be detected by using the Q-statistic, as Equation (3.19). Where, 

   is the threshold for the Q-statistic and can be statistically determined according to 

measurements of the training matrix.  
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Q-statistic = SPE =   ̃                  (3.19) 

When there is no fault, the correlations among the measurements of variables 

remain unchanged, the Q-statistic will be less than   . When a fault occurs, the 

correlations will be destroyed and value of Q-statistic will be higher. As soon as it 

exceeds   , a fault is detected. More details about PCA-based chiller fault detection 

can be found in Wang and Cui (2006), Cui and Wang (2006) and Xu et al. (2008).  

3.3.2 Schematic of The SVDD-based FDD Method 

In this study, SVDD algorithm is introduced to model the fault-free class and each 

fault class respectively. A fault is detected when the monitoring data are rejected by the 

SVDD-based fault-free class. A fault can be confirmed if the monitoring data are 

accepted by a SVDD-based fault class. An unknown fault is alarmed if the process data 

are rejected by fault-free class and all fault classes. Applications of the proposed SVDD-

based FDD method includes two processes, i.e. offline models training and online FDD. 

3.3.2.1 Offline training of SVDD models 

In the process of offline models training, SVDD models are trained for fault-free 

class and each fault classes respectively, as illustrated in Figure 3.6.  

Firstly, the process data are collected and pre-processed. Fault-free data and fault 

data are collected from historical database or on-site tests. The obvious outlying and 

dynamic data are filtered by an outlier detector and a steady-state data filter respectively. 

Then, the variables are properly selected. This step can be tried many times to get the 

best variable selection. The data of selected variables, including fault-free data and fault 
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data, are normalized to improve FDD performance. Finally, the pre-processed data are 

divided into two parts randomly, i.e. training data and test data. 

Secondly, SVDD models are trained. The confidence level is assigned before model 

training, e.g. 95%. It means that the Type I error is 5% using the training data of its own 

class. The two parameters, i.e. C and γ, are optimized through cross-validation. 

 

Figure 3.6 Flow chart of the offline SVDD models training 
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Thirdly, the models are validated using test data. False diagnosis occurs when a 

SVDD model falsely identifies data of its own class to be outliers (Type I error), or 

falsely identifies fault data to be inliers (Type II error). For each model, the Type I error 

should be lower than 5% when it is validated using test data of its own class. If not, the 

model is retrained through adjusting the two parameters until it satisfies the requirement. 

A good model should reject data of other classes efficiently. The Type II error should be 

as small as possible. However, it might be high when some data of two classes are 

undistinguishable. All models are validated using test data of other classes. The Type II 

error ratios are acceptable when they are lower than a threshold, e.g. 60%. If Type II 

error ratio is higher than the threshold, the SVDD model is retrained through adjusting 

the two parameters. In such condition, the Type I error ratio can be increased, e.g. 10%. 

3.3.2 SVDD-based online FDD method 

In the process of online FDD, the SVDD models are used to detect and diagnose 

fault, as illustrated in Figure 3.7.  

Firstly, the real-time data are pre-processed the same as the offline model training 

process, i.e. data pre-processing, variable selection and data normalization. Secondly, 

the fault-free SVDD model is used to detect fault. The chiller is healthy if the data 

belong to the fault-free class. A fault is detected if the data are outliers of fault-free class. 

Then, the data are diagnosed using all fault SVDD models. A fault is identified if the 

data belongs to any fault classes. If not, an unknown fault is reported. At last, the FDD 

results are inputted to the decision support module. The decision support function 

calculates the ratios that the data belong to fault-free class and each fault class within a 
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moving window. If the fault-free ratio is larger than a threshold (e.g. 90%), the chiller is 

fault-free. If not, it is abnormal. The one with the largest fault ratio is the most suspected 

fault. A fault is reported if its ratio is larger than a threshold (e.g. 75%). 

 

Figure 3.7 Flow chart of online SVDD-based FDD application 
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3.4 Diagnostic Bayesian Network-based FDD Method 

Bayesian belief network (BBN), or Bayesian network, is a probabilistic graphical 

model that represents relationships of probabilistic dependence within a group of 

variables via a directed acyclic graph. Since its introduction by Pearl in early 1980s 

(Pearl 1985; Pearl 1986), it has been successfully applied in the domain of knowledge 

discovery and probabilistic inference. In the medical field, BBN was adopted to develop 

commercial computer-assisted diagnostic decision support systems, e.g., MUNIN 

(Andreassen et al. 1987), ALARM (Beinlich et al. 1989), Sleep Consultant (Nino-

Murcia and Shwe 1991), and QMR-DT (Shwe et al. 1991). In the industrial field, the 

BBN-based diagnostic systems have attracted a lot of interest. Applications can be 

found in nuclear power systems (Kang and Golay 1999), aircraft engines (Sahin et al. 

2007), sensor fault detection and identification (Mehranbod et al. 2005), semiconductor 

manufacturing systems (Yang and Lee 2012), etc. BBN is a powerful tool to represent 

and to reason about complex systems with uncertain, incomplete and conflicting 

information. It has shown superior performance compared with neural networks, support 

vector machines, decision trees, etc. BBN is becoming an increasingly important area of 

research and application in the field of artificial intelligence (Xu 2012). There are few 

applications of BBN in the HVAC field. Najafi et al. (2012) adopted BBN to detect and 

diagnose AHU faults. Wall et al. (2011) adopted dynamic BBN to tackle faults in AHU, 

too. Both works used BBN as a machine learning algorithm to learn the fault patterns 

and required a full set of fault data for the learning. In most conditions, it might be 

difficult or expensive to obtain a full set of fault data. Different from their works, the 

proposed method adopts BBN to diagnose faults mainly based on expert knowledge.  
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3.4.1 Bayesian Network Theory 

3.4.1.1 Bayesian theorem and inference 

Bayesian theorem is used for calculating conditional probabilities. Supposing A and 

B are two random events. The probability of B is larger than zero, i.e., P(B)>0. Given 

the event B, the conditional probability of the event A, denoted by P(A|B), is  

 
( ) ( ) ( | )

|
( ) ( )

P AB P A P B A
P AB

P B P B
      (3.20) 

where P(AB) is the joint probability,      | ( ) ( | )P AB P B P AB P A P B A  .  

Assume that B1,B2,…,Bn are a set of random variables and satisfy: (i) 

 >0, =1,2, ,iP B i n ; (ii) 
=1

=
n

ii
B S , S is the certain event; (iii) they are mutually 

exclusive (Xu 2012). For any given event A, the marginal probability of A is 

 
1

( ) ( | )
n

i i

i

P A P B P A B


          (3.21) 

Bayesian theorem relates the conditional and marginal probabilities of stochastic 

events A and Bi using Equation (3.21).  

 
1

( ) ( ) ( | )
|

( ) ( ) ( | )

i i i
i n

i ii

P AB P B P A B
P B A

P A P B P A B


 


    (3.22) 

The items on the right hand side of Equation (3.22) are prior probabilities which are 

known in advance. The item on the left hand side is the posterior probability. Bayesian 

theorem provides the way to calculate the posterior probability from the prior 
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probabilities. This is the basic idea of the Bayesian inference. When using the Bayesian 

inference for fault diagnosis, Bi represents a fault and A represents a fault symptom. The 

prior probability of the fault Bi (P(Bi)) and the conditional probability of the symptom A 

given Bi (P(A|Bi)) can be obtained from maintenance record, historical data, survey or be 

assigned by experts. Then, the posterior probability P(Bi|A) can be calculated using 

Equation (3.22). If this posterior probability is high, the fault Bi can be confirmed at the 

given symptom A. 

Generally, the actual situation is rather complex. There could be a large number of 

related events (e.g., faults and symptoms in the Bayesian-based fault diagnosis), which 

will expand the required prior probabilities exponentially and cause the computation 

load unaffordable. The BBN theory provides an effective method to handle such 

difficulties. 

3.4.1.2 Topology of BBN 

A BBN is defined by two components, i.e., structure and parameters. The structure 

of a BBN is a graphical and qualitative illustration of the relations among the modeled 

variables. Generally, a node represents a variable. A variable has several possible states 

(e.g., true and false). Each state is an event. When an event occurs, it is an evidence (or 

observed state). A simple example is shown in Figure 3.8, which is illustrated using a 

directed acyclic graph. In Figure 3.8, the nodes (X1, X2… X5) represent random variables 

and arcs represent direct probabilistic dependences among them. Each arc starts from a 

parent node and ends at a child node (e.g., X2 is the parent node of X4 in Figure 3.8). The 

node without any input arc is the root node (e.g., X1 and X2 in Figure 3.8). A BBN 
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represents the quantitative probabilistic relationships among the nodes using 

parameters/probabilities. Each root node has prior probabilities for each state (e.g., 

P(X1=true)=0.7, P(X1=false)=0.3). Each child node has a conditional probability table 

based on parental values.  

 

Figure 3.8. A simple Bayesian network 

 The structure and parameters of a diagnostic BBN can be obtained in two ways: 

deducing from expert knowledge and using machine learning from historical data. These 

two methods can be used individually or jointly.  

3.4.1.3 Independence assumption of BBN 

The independence assumption is introduced to overcome the difficulties in Bayesian 

inference as mentioned in Section 2.1. If event A and event B are independent of each 

other, Equation (3.23) is satisfied.  

  ( ) ( )P AB P A P B       (3.23) 

There are generally three cases under the assumption (Xu, 2012). (i) All of the root 

nodes are independent of each other. For example, for the two root nodes X1 and X2 in 

Figure 3.8, it satisfies P(X1X2)=P(X1)P(X2). (ii) If two nodes have common immediate 

parent nodes and there is no direct arc between these two nodes, they are conditionally 

X1 X2

X3 X4

X5
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independent of each other given the states of their immediate parent nodes. For instance, 

X1 is parent of X3 and X4. Given X1, X3 and X4 are conditionally independent of each 

other, i.e. P(X3|X1X4)=P(X3|X1). (iii) For any non-root node, it is conditionally 

independent of its non-immediate parent nodes given the states of all of its immediate 

parent nodes. For instance, when the immediate parent node X4 is given, X5 is 

independent of X1, X2, X3, P(X5|X1X2X3X4)=P(X5|X4). The independence assumption is 

of particular importance to the Bayesian inference. 

For the simple BBN shown in Figure 3.8, the joint probability distribution of all 

nodes can be calculated by Equation (3.24). 

   

         
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



 
       (3.24) 

Based on the independence assumption, the joint probability distribution can be 

simplified using Equation (3.25). 
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

     

(3.25) 

where, iPa  are all the immediate parent nodes of the node Xi. Assuming that all nodes 

are Boolean, which have only two states, the number of the BBN parameters (the prior 

probabilities of root nodes and the conditional probabilities of non-root nodes) required 

in this case is reduced from 31 to 10 by introducing the independence assumption.  
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The independence assumption brings two benefits. Firstly, it simplifies the inference 

procedure. Secondly, it significantly reduces the number of parameters required. Besides, 

the joint probability distribution can be solely determined only if the two kinds of prior 

probabilities on the right hand side of Equation (3.25) are given, i.e. the prior 

probabilities of all root nodes and the conditional probabilities of all non-root nodes 

given all possible combinations of their immediate parent nodes. However, the number 

of parameters required in the conditional probability table might be still too large to be 

assigned by chiller experts. 

3.4.1.4 Noisy-MAX node 

The conditional probability table of a child node should consider all of the possible 

combinations of states of its parent nodes. The number of parameters needed in the 

conditional probability table exponentially grows with the number of its parents. In case 

of a child node with two Boolean states has n parents which are also Boolean, 2
n+1

 

parameters are to be specified. For instance, in the BBN in Figure 3.8, if X4 is a fault 

symptom and X1, X2 are two chiller faults, chiller experts can easily assign the 

conditional probabilities of X4 given X1, X2 separately. However, it is difficult for them 

to assign P(X4 = true | X1=true, X2=true). 

Noisy-MAX is a solution to reduce the number of parameters needed to specify 

conditional probability distributions. It is based on the assumption that parent nodes act 

independently in producing the effect on a child node. If a node is considered as a 

Noisy-MAX node, the number of parameters is reduced from exponential to linear in the 

number of parents. Assume all nodes in a BBN are Boolean, only 2*(n+1) parameters 
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are needed, rather than 2
n+1

. More details about Noisy-MAX can be found in (Zagorecki 

and Druzdzel 2006). 

3.4.1.5 BBN-based inference  

The inference using a BBN is to calculate the posterior probability P(Xq|Xe), where 

Xq is the node of interest (e.g. the fault concerned) and Xe is the node or a set of nodes in 

which a state has been observed. The probabilities of observed states are set to 100%. 

With the joint probability distribution, it is possible to calculate any types of posterior 

probabilities in principle. For instance, the probability of X4 is true in the BBN shown in 

Figure 3.8 can be calculated by Equation (3.26). 

   
1 2 3 5

4 1 2 3 4 5, , , ,
X X X X

P X true P X X X X true X           (3.26) 

If X4 is a node representing a certain fault, and X5 is a symptom caused by X4 directly, 

the probability of X4 given X5 can be calculated by Equation (3.27). 
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           (3.27) 

There are many algorithms for performing the inference, which can be classified into 

two categories: exact algorithms and approximate algorithms. The exact algorithms 

calculate the exact probabilities of nodes. It is suitable for simple networks. When it 

comes to complex network, the calculation is an N-P hard problem (Pearl 1988). The 

approximate algorithms calculate the approximate probabilities of nodes using statistical 
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methods. In the chiller FDD application, the BBN is generally not very complex. The 

exact algorithms are applicable. 

3.4.2 Schematic of The Diagnostic Bayesian Networks 

3.4.2.1 Structure of a DBN 

All nodes in a DBN can be classified into three groups: fault nodes, BMS evidence 

nodes, and additional information nodes. Fault nodes represent the faults concerned. 

BMS evidence nodes represent symptoms which can be identified from data recorded in 

BMSs. Additional information nodes are introduced to represent the evidences which 

can be obtained by on-site investigation and maintenance records.  

The structure of a DBN qualitatively illustrates the relationships among faults, BMS 

symptoms and additional information. It is worth noticing that the structure of a DBN 

for a problem is not unique. It is an expression of diagnostic thinking of experts. 

Different expert might have different diagnostic thinking. To develop an efficient DBN, 

the developer should have enough experience/knowledge about HVAC systems, and 

fully utilize the available diagnostic information. There are already a significant amount 

of publications about FDD methods for HVAC systems. The outstanding achievements 

can be integrated into a DBN in an information fusion way. For instance, the APAR 

(AHU performance assessment rules) proposed by NIST can be used in a DBN for AHU 

(Schein 2006). The if…then… logics in APAR rules can be represented as the 

relationships between BMS evidence nodes and fault nodes.  
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3.4.2.2 Parameters of the DBN 

The parameters of a DBN represent the quantitative dependences in probabilities 

among faults, BMS evidence nodes and additional information nodes. There are two 

kinds of parameters, i.e., prior probabilities of root nodes and conditional probabilities 

between nodes. Root nodes are generally BMS evidence nodes and additional 

information nodes. The prior probabilities of root nodes can be obtained by survey or 

estimated by experts. A conditional probability table represents all possible 

combinations of states of a child node and states of its parent nodes. The conditional 

probabilities can be obtained by two means. If the full-set fault data are available, the 

conditional probabilities can be obtained by statistical calculation or using machine 

learning algorithms. If the full-set of fault data are not available, the conditional 

probabilities can be estimated by experts. It is easy to obtain conventional probabilities 

when a node has only one parent node. However, it is generally difficult to obtain 

conditional probabilities when a node has more than one parent nodes. Such node is 

suggested to be Noisy-MAX nodes. 

3.4.2.3 DBN-Based FDD 

The DBN-based FDD is to calculate the posterior probabilities of fault nodes on the 

basis of observed evidences. The inputs of the DBN are the observation of BMS 

evidence nodes and additional information nodes which are obtained from operation and 

maintenance records, in-situ investigation and the fault detection process. The observed 

states of nodes are set to be 100%. The outputs are the posterior probabilities of fault 

nodes, which are also named believes. Diagnostic rules are needed to isolate a fault 
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depending on the component concerned. Taking chiller FDD for instance, a fault will be 

reported if one of the following two rules is satisfied: 

Rule 1: The one with the largest fault probability and such largest fault probability is 

larger than a certain threshold ε1 (e.g. ε1 = 80%); or  

Rule 2: The difference between the largest fault probability and the second one is larger 

than a certain threshold ε1 (e.g. ε2 = 30%). 

3.5 Summary 

Four FDD methods are proposed in this chapter for different applications. 

The proposed simplified model-based FDD method is suitable when there are 

limited fault-free data to train models. The method has advantages compared with gray-

box model-based FDD method and SVDD-based FDD method. However, a 

customization tool is needed to identify unknown model parameters. 

The proposed incipient fault detection and diagnosis method is suitable when 

measurements are sufficient. The use of EWMA control charts reduces the Type II 

errors through taking into account the time series information using the weighting factor. 

Therefore, the EWMA-based methods can achieve much higher diagnosis ratios 

compared with the t-statistic-based methods. SVR could be more efficient than MLR 

approach since it is a non-linear regression approach based on structural risk 

minimization from statistical learning theory. 

The proposed SVDD-based FDD method is suitable when fault data are available. 

When fault data and fault-free data are available, it is expected that this method has 
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better fault detection and fault diagnosis performance compared with gray-box model-

based FDD methods and Bayesian network-based FDD methods. It might also work 

when some important sensors are unequipped. In theory, this method has advantages 

compared with PCA-based fault detection method and SVM-based FDD method. 

The proposed Bayesian network-based FDD method might have better performance 

compared with other FDD methods when the diagnostic information is uncertain and 

incomplete. It has the benefit in merging different types of knowledge and information 

from diverse sources. It also has a strong ability in dealing with incomplete or even 

conflicting information. It can be used to simulate the diagnostic thinking and diagnosis 

process of HVAC experts.   
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CHAPTER 4 A SIMPLIFIED MODEL-BASED CHILLER 

FDD STRATEGY AND ITS CUSTOMIZATION TOOL 

This chapter presents a simplified FDD strategy for centrifugal chillers, which 

provides good applicability and convenience for practical applications. It adopts a 

simplified physical chiller model calibrated using very limited operation or performance 

test data and a customization tool. Four schemes are developed to identify chiller model 

parameters based on available information and data from tests or from manufacturers. A 

new semi-physical sub-cooling model is adopted by the chiller model. The overall heat 

transfer coefficient of condenser is assumed consisting of two parts, including one 

presenting the condensing section and the other presenting sub-cooling section. By 

analyzing the changing trends of two proposed performance indexes (i.e. the normalized 

heat transfer performance and the fictitious sub-cooling temperature), the patterns in 

fault conditions can be obtained.  

4.1 Outline of The FDD Strategy 

The structure of the proposed FDD strategy is shown in Figure 4.1. It consists of two 

major groups of tasks, i.e. offline model training and online FDD.  
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Figure 4.1 Flow chart of the FDD strategy and associated customization tool 

 

 

The offline model training task consists of four steps including: data processing, 

model parameter identification, benchmark generation and fault pattern identification. 

The available information and measurements might be various for different chillers. To 
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simplify the model development in practice, a customization tool is introduced to 

identify chiller parameters effectively in different situations. The situations are 

determined by the availability of the geometric parameters of chiller compressor (U, A, 

), as well as the evaporating temperature and condensing temperature (Tev and Tcd) in 

the chiller performance catalogue or field measurement data, as shown in Table 4.1. For 

each situation, an identification scheme is developed to estimate the unknown 

parameters respectively. Multiple input data files (Data-1, Data-2 and Data-3) are 

required for each scheme. Data-1 contains full load condition performance data. Data-2 

contains both full and part load condition performance data. Data-3 contains the chiller 

performance data of those working points at which the evaporator and condenser 

temperatures (Tcd, Tev) are given.The step of data processing is to obtain Data-1, Data-2 

and Data-3 (for Scheme I and III) as inputs of the customization tool. It includes scheme 

selection, performance test and data processing. A suitable scheme is selected according 

to available information and measurements. Then, experimental tests are designed and 

conducted to generate chiller performance data in both full and partial load conditions. 

Before the data are used, a data filter is used to rule out those data with significant 

dynamics or outliers (Rossi, 1995). At the step of model parameter identification, the 

customization tool is used for the chiller model parameter identification. At the step of 

benchmark generation, the chiller model is used to generate the fault-free performance 

data. Using the chiller model, the two proposed PIs can be calculated, which are used at 

the later step as benchmarks. One of the performance indexes - α (the normalized heat 

transfer performance in condensing section) is used for fault detection. The threshold is 

decided according to a given false alarm rate in fault-free condition using t-statistic 
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approach. At the step of fault pattern identification, four typical important faults are 

considered, i.e. condenser fouling, non-condensable gas, refrigerant overcharge and 

discharge. The impacts of the faults on the system performance depend on the system 

design and the type of heat exchangers. Expansion valves and control strategies also 

have important impacts. Based on expert knowledge, the fault patterns of different kinds 

of faults can be obtained as qualitative FDD rules. 

The online FDD consists of two major steps, including data processing and FDD. 

The step of data processing aims to get steady-state data of selected performance 

variables. At the FDD step, firstly, faults of condenser and evaporator reduced water 

flow rate are detected using the flow measurements directly. Secondly, the fault-free 

performance is generated using the calibrated chiller model. Then, benchmarks of the 

performance indexes are calculated. If α is outside its threshold region, process of fault 

diagnosis, employing a FDD rule table, will be activated.  

4.2 Description of The Physical Chiller Model 

4.2.1 Chiller Model 

The chiller model used in this study is developed on the basis of the simplified 

physical chiller model of Wang and Wang (2000). It is based on the basic principles of 

chillers to ensure the reliability and accuracy of the model in a wide working range. The 

parameters are identified using limited performance test data. The equations for 

compressor model and power consumption refer to Wang and Wang (2000). The 

evaporator is simulated using the classical heat exchanger efficiency method assuming 

constant temperature at the refrigerant side. The overall heat transfer coefficient, UAev, 
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is represented empirically considering the effects of water flow rate and heat flux by 

Equations (4.1)-(4.3). The first term on the right-hand side of Equation (4.3) represents 

the effect of water flow rate on the water side. It can be obtained by assuming a small 

wall-fluid temperature difference and turbulent flow pattern with constant water thermo-

physical properties in the evaporator. The second term represents the effects of heat 

transfer rate (Qev) on the boiling process of refrigerant in evaporator. It is derived from 

the correlation of heat flux as a function of wall superheat (Stephan and Abdelsalam 

1980) and pool boiling (Garey 1992). Where, C1, C2, C3 are constants, which can be 

identified by the pre-processor using chiller performance data. 

, ,

1 exp( )ev
ev

p w w ev

UA

c M
          (4.1)

  

, , ,( )ev p w w ch ev ch in evQ c M T T       (4.2)

  0.8 0.745 1

1 , 2 3[ ]ev w ch evUA C M C Q C              (4.3) 

In the condenser, it can be divided into two parts, i.e., condensing section and sub-

cooling section. The condensing section is represented by Equations (4.4)-( 4.9). The 

subscript ‘cd,cd’ is the condensing section in the condenser. The first term on the right-

hand side of Equation (4.6) is obtained using the same assumptions in the evaporator 

model. The second term on the right-hand side represents the effects of the condenser 

heat transfer rate (Qcd) on the condensing process of the refrigerant in the condenser. 

Film condensation is assumed neglecting the effect of vapour superheat on condensation 

heat transfer. Since the sub-cooling section does not have an obvious effect on 

condenser load, Equation (4.5) was used directly to estimate the load of the condensing 

section. Where, C4-C6 are constant coefficients. 
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A new empirical sub-cooling model is developed in this study by taking into account 

the effects of water flow rate and refrigerant flow rate as in Equation (4.3). The 

subscript ‘cd,sc’ is the sub-cooling section in the condenser. The exponents -0.8 and -

0.99 in 
0.8

,w chM 
 and 

0.99

evQ
of Equation (4.7) were calibrated by using the test data in fault-

free condition from RP-1043 (Comstock and Braun 1999). Equation (4.8) and Equation 

(4.9) are developed for chillers in which the bottoms of condensers are used for sub-

cooling and the cooling water enters into the sub-cooling section firstly, as the chiller 

used in RP-1043. Equation (4.8) is the computation model of the heat exchanger 

efficiency of sub-cooling section, which is defined as Equation (4.9). It is assumed to be 

applicable to pass arrangements commonly used in sub-cooling section.  
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Since the sub-cooling model is developed based on rules of heat transfer theory, it 

would be suitable to apply to chillers with shell-and-tube condenser and keep a similar 

accuracy as the condenser and evaporator models used previously.  
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4.2.2 Customization Tool For Parameter Identification 

A customization tool is developed to identify the parameters of the chiller model. 

The required input data for the pre-processor, i.e. evaporator and condenser water flow 

rates, evaporator outlet and inlet water temperatures and condenser inlet water 

temperature, are generally available in practice, as shown in Figure 4.2. Four schemes 

are proposed to identify chiller parameters for four different situations as shown in 

Table 4.1.  

Table 4.1 Four schemes for chiller parameters estimation based on available 

information. 

Scheme  Available parameters Required Dataset 

I U, A,  and Tcd, Tev  Data-1, Data-2, Data-3 

II U, A,  Data-1, Data-2 

III Tcd, Tev  Data-1, Data-2, Data-3 

IV / Data-1, Data-2 
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Figure 4.2. Sensors needed for model training and FDD 

 

 

The flow charts of the identification schemes are reported in a previous work (Wang 

and Wang 2000). The parameters of the chiller model can be estimated with a small 

amount of chiller performance test data or using catalogue data in full load. This is an 

obvious advantage comparing with the gray-box model, the empirical chiller model and 

the FDD strategies based on progress history data. 

In this study, Tcd and Tev are available for model training. Scheme III is selected 

accordingly to perform the chiller parameter identification. The input variables of the 

model are shown in Figure 4.2. The output variables include condensing temperature, 

evaporating temperature, refrigerant flow rate, internal compression power, power 

consumption, compressor pre-rotation vane angle, etc.  
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There are two faults which are easy to be diagnosed, i.e. reduced condenser water 

flow rate and reduced evaporator water flow rate which can be detected and diagnosed 

by flow measurements directly. The other four faults are difficult to be handled, which 

make chiller FDD more complex and hard for applications. Such faults include 

condenser fouling, non-condensable gas, refrigerant overcharge and refrigerant leakage. 

Therefore, in this study, special attention is paid to find an easy-to-use solution for them. 

The overall heat transfer conductance of condensing section UAcd,cd and sub-cooling 

section UAcd,sc are found to be the essential physical reason for the deviations of 

condensing and sub-cooling temperatures in fault conditions. Based on them, two 

important performance indexes are proposed, i.e. α (normalized heat transfer 

performance) and T'sc (fictitious sub-cooling temperature). A FDD rule table is proposed 

as illustrated in Table 4.2. This rule table works for typical centrifugal chillers with 

tube-and-shell heat exchangers, as shown later in Section 4.3.3.  

Table 4.2 The fault pattern rule table for fault detection and diagnosis 

  Fault type Mcd
 

Mev
 

T'sub α 

1 Reduced condenser water flow rate - ▼ * * 

2 Reduced evaporator water flow rate ▼ - * * 

3 Condenser fouling - - ▼ ▼ 

4 Refrigerant leakage - - ▼ ▲ 

5 Refrigerant overcharge - - ▲ ▼ 

6 Non-condensable gas - - ▲ ▼ 
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Note: The ▲and ▼indicate the changes of characteristic features compared to its 

fault-free state. The - indicates no obvious change. The * indicates faults are detected 

and diagnosed in the beginning and no condensation in following FDD steps. 

4.3.1 Normalized Heat Transfer performance 

UAcd,cd is reduced in the case of any of the faults: condenser fouling, refrigerant 

overcharge and non-condensable gas. It is increased in the case of refrigerant leakage as 

analysed in more details in Section 4.3.3 (Description and analysis of the FDD rule 

table). A normalized heat transfer performance, α, is defined as Equation (4.10) to 

indicate the relative level of heat transfer coefficient. [α1, α2] is the confidence interval 

for the fault free conditions with a particular confidence level. Generally, confidence 

level of 95.4% is acceptable for chiller FDD (Reddy 2006). The confidence interval is 

calculated based on the fault free samples using t-statistic approach (Manly, 2005). If 

the actual value of α is outside of the confidence interval, a fault is detected. 

,

, , .

cd cd
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 

  

1 2

1 2

Health: [ , ]

Fault: [ , ]

  
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



    (4.10) 

where, UAcd,cd,ref. is the reference value of UAcd,cd, which is generated using its 

benchmark chiller model. According to the value of α, the test data can be classified into 

three categories including: 1): fault free (α[α1, α2]), 2): refrigerant leakage (α >α2), 3): 

refrigerant overcharge, condenser fouling or non-condensable gas (α <α1). A fault can be 

confirmed when its diagnosed ratio is larger than a threshold (e.g. 15%).  

4.3.2 Fictitious Sub-cooling Temperature 
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Sub-cooling temperature is a good candidate to distinguish the above three faults 

which have the same pattern (α<α1). In the case of refrigerant overcharge or non-

condensable gas, Tsc will be larger than Tsc,ref. (the reference value of Tsc). However, it 

cannot be used to diagnose condenser fouling since Tsc is sometimes larger than Tsc,ref. 

and sometimes smaller or equal to Tsc,ref.. Therefore, it is not a good approach if 

employing Tsc directly. In this study, T'sc (the fictitious sub-cooling temperature) is 

adopted to overcome the problem. 

According to Equation (4.9), in case of fault, ΔTsc is affected by two factors (i.e. 

Δεcd,sc and ΔTcd) as shown in Equation (4.1).  

, , . , , . ,( ) ( )sc cd sc ref cd sc cd ref cd cl inT T T T         (4.11) 

Assuming that Δεsc is zero, the fictitious sub-cooling temperature is obtained as 

defined in Equation (4.12). 

, , . , . , , , , . ,( ) ( )sc cd sc ref cd ref cd cd water in cd sc ref cd cl inT T T T T T        
 

(4.12) 

Δεcd,sc is negative (T'sc < Tsc) in the case of condenser fouling. Δεcd,sc is positive (T'sc > 

Tsc) in the case of refrigerant overcharge or non-condensable gas. Therefore, T'sc can be 

used to distinguish condenser fouling with refrigerant overcharge or non-condensable 

gas when a fault is detected to be outside [α1, α2]. 

4.3.3 Description and Analysis of the FDD Rule Table 

Based on the above analysis, a fault diagnosis rule is proposed as shown in Table 4.2. 

The refrigerant overcharge fault and non-condensable gas have similar patterns and 

cannot be uniquely identified when chillers are working. The non-condensable gas is the 
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easiest fault to be detected since the condenser pressure is obviously higher than the 

saturated pressure at the power off condition. 

If rule table (i.e. Table 4.2) can work in typical centrifugal chillers with tube-and-

shell heat exchangers, the proposed FDD strategy could be applied in these chillers 

without fault data. This rule table is therefore analysed theoretically and a qualitative 

analysis is made on a 90 ton centrifugal chiller in ASHRAE RP-1043 as an example.  

The physical reason for the deviations of condensing and sub-cooling temperatures 

in fault conditions can be analysed in theory using Equations (4.13) and (4.14). 
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Where, hr is the heat transfer coefficient at refrigerant side. hw is the heat transfer 

coefficient at water side. Ao 
is the outside tube surface area. Ai is the inside tube surface 

area. ff represents the thermal resistance including tube resistance and fouling.  

Condenser fouling 

In the case of condenser fouling, ffcd,cd and ffcd,sc are larger than normal ones. It leads 

to smaller UAcd,cd and UAcd,sc definitely. Condensing temperature will be higher to build 

a larger temperature difference to reject the same account of heat. According to 

Equation (4.8) and (4.9), there are two factors affecting the sub-cooling temperature. 

One is UAcd,sc, which has a lower value in case of fouling. The second factor is the 

condensing temperature. In the case of fouling, the condensing temperature will be 

higher which leads to larger difference between water inlet and refrigerant temperatures. 
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The eventual trend of the sub-cooling temperature change depends on which factor is 

dominant. It is also the reason why T'sc is used instead of Tsc in the rule table. 

Refrigerant charge overcharge and refrigerant leakage  

The refrigerant charge level has a significant effect on the performance of chiller. 

The sensitivity of the sytem performance to charge level depends on the design of the 

system and the type of heat exchangers as well as their refrigerant storage capacities 

(Grace 2005). Conclusion can be made on the basis of many literatures that the degree 

of super heat, sub-cooling temperature and condensing temperature are the most 

sensitive indexes. Different expansion valves and control strategies also have different 

effects on the level of charge faults (Reddy 2007b). When overcharge or leakage occurs, 

refrigerant level in evaporter or condenser will change sygnificantly, disregarding 

system design and control strategies (Zhao 2011).  

When the refrigerant overcharge occurs, there is more tube surface area below the 

liquid level since the refrigerant level in condenser is higher. There is more tube surface 

area in sub-cooling section. The Acd,sc is larger. It leads to a larger UAcd,sc according to 

Equation (4.14). Hence, the heat transfer capacity of sub-cooling section increases and 

more heat (Qcd,sc) is transferred from refrgerant to water. Under the same operating 

condition, the Mr is almost unchanged in case of refrigerant overcharge or refrigerant 

leakage (Cui and Wang 2006). Therefore, Tsc will be higher according to Equation 

(4.15).  
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At the same time, there is less Acd,cd left for condensing section. UAcd,cd is smaller 

according to Equation (4.13). It leads to a smaller εcd,cd according to Equation (4.4). Tcd 

increases to maintain a same Qcd,cd according to Equatioin (4.5). In the case of 

refrigerant leakage, the refrigerant level is lower. There is an opposite trend. Tsc will be 

lower, and Tcd will be higher. 

Non-condensable gas 

Chiller system performance is very sensitive to the fault of non-condensable gas. 

Even 1% non-condensable gas by weight can cause some chillers completely unusable. 

Non-condensable gas tends to accumulate in the condenser. Generally, the condensing 

temperature is calcluated on the base of the saturated pressure. When it occurs, the 

calculated condensing temperature is higher than actural value dramatically. Meanwhile, 

the heat transfer resistance hr,cd in condensing sectioin is increased and worsens the heat 

transfer capacity. As a result, the temperature difference between inlet cooling water and 

condensing temperatures is larger. Consequently, an obvious higher sub-cooling 

temperature occurs.  

Reduced water flow rate in condenser and evaporator 

Reduced water flow rates in condenser and evaporator can be detected and 

diagnosed using flow measurements directly. According to Euqations (4.3) and (4.6), 

the reduced water flow rates reduce water-side heat transfer coefficients and lead to 

lower UAcd or UAev. However, the effects of variable water flow rates are included in the 

models of the chiller evaporator, condenser and subcooling, and therefore, the FDD 

outputs will not be affected when the reduced water flow rate occurs.  
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4.4 Evaluation Using Experimental Data 

In this section, the proposed customization tool and FDD strategy are evaluated 

using experiment data on a real chiller.  

4.4.1 RP1043 Experimental Data Description 

The experimental data from ASHRAE Research Project 1043 (RP-1043) are 

introduced here to validate the proposed strategy. These data were generated on a 90-ton 

centrifugal water-cooled chiller, which was equipped with a shell-and-tube evaporator 

and condenser and controlled by a thermostatic expansion valve (TXV). For each type 

of faults, four severity levels (measured in percentage) were tested. Different strategies 

were employed to generate these fault data as illustrated in Table 4.3. For instance, the 

condenser fouling fault was introduced though plugging 12%, 20%, 30% and 45% of 

tubes in the condenser for SL-1, SL-2, SL-3 and SL-4, respectively. 

Table 4.3 Severity levels (SL) conduction in the ASHRAE Project 1043 

Fault Type SL-1 SL-2 SL-3 SL-4 Faults Generation Strategy 

Reduced condenser water 

flow 

-

10% 

-

20% 

-

30% 

-

40% 

Reducing water flow by 

percentage 

Reduced evaporator water 

flow 

-

10% 

-

20% 

-

30% 

-

40% 

Reducing water flow by 

percentage 

Condenser fouling 

-

12% 

-

20% 

-

30% 

-

45% 

Plugging tubes by percentage 

Refrigerant overcharge 10% 20% 30% 40% 

Overcharging refrigerant by 

weight 
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Refrigerant leakage 

-

10% 

-

20% 

-

30% 

-

40% 

Discharging refrigerant by 

weight 

Non-condensable gas 

1.0

% 

1.7

% 

2.4

% 

5.7

% 

Adding nitrogen by volume 

 

Seven typical chiller faults are concerned in this thesis which account for a 

significant frequency of the service calls according to Comstock and Braun’ survey 

(2002). The faults include: condenser fouling (CdFoul), refrigerant overcharge 

(RefOver), refrigerant leakage (RefLeak), non-condensable gas (Ncg), reduced 

evaporator water flow rate (RedEvW), reduced condenser water flow rate (RedCdW) and 

excess oil (ExOil). For each fault, four severity levels (SLs) were considered, i.e. SL-1, 

SL-2, SL-3 and SL-4, from lower severity level to higher level. Each fault at every SL 

was tested under 27 operating conditions. Each operating condition lasted about 30 

minutes to archive a steady-state. Each test lasted about 864 minutes in total. There are 

three data sets for each test, i.e. ‘Complete data set’, ‘Reduced data set’, ‘Steady States’. 

The only difference between two data sets is their sampling rate, i.e. ten seconds and 

two minutes respectively. ‘Complete data set’ has 5191 series of data. The sampling 

interval was 10 seconds. ‘Reduced data set’ has 433 series of data. The sampling 

interval was 2 minutes. ‘Steady States’ has 27 series of data. It selected a series of 

steady-state data for each operating condition. More details can be found in Comstock 

and Braun (1999). 

In this study, four sets of data tested in fault-free conditions, i.e. ‘Normal’, 

‘Normal1’, ‘FWC20’ and ‘FWE20’, were used for chiller model parameter 
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identification. ‘Normal’ and ‘Normal1’ are the sets of data tested in the fault free 

conditions. ‘FWC20’ is the data tested through reducing the condenser water flow rate 

by 20%. ‘FWE20’ is the data tested through reducing the evaporator water flow rate by 

20%.  

The data sets, i.e. ‘Normal1’, ‘Normal2’, ‘Normal_CF’ and ‘Normal_R1’, were 

employed to determine the confidence interval in fault free conditions. ‘Normal_CF’ 

and ‘Normal_R1’ are another two sets of data tested in the fault free conditions. The 

data sets of four severity levels for each fault type were used to evaluate the 

performance of the FDD strategy proposed.  

 

 

4.4.2 Chiller Model Evaluation 

According to the available information and parameters in the RP-1043 report, 

Scheme III was used to identify chiller model parameters. All these data were re-

partitioned into three parts including Data-1, Data-2 and Data-3 as follows: (1) Data-1 is 

composed of the full load condition performance data. (2) Data-2 is composed of the 

chiller performance data in both full and part load conditions. (3) Data-3 is composed of 

the chiller performance data in which the evaporating and condensing temperatures (Tev, 

Tcd) are available. All these three sets of data were used as the inputs of the pre-

processor defined. The outputs include compressor parameters (U2, AI, β, ζ, Ψ1), heat 

exchanger parameters (C1-C9) and power consumption parameters (γ, W1, Ψ2).  
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Figure 4.3 Comparison between measured and predicted condensing temperatures 

 

Figure 4.4 Comparison between measured and predicted sub-cooling temperatures 

Once the model parameters were identified, ‘Normal2’, which was tested in the fault 

free condition, was then used for model evaluation. The model evaluation results are 

illustrated in Figure 4.3 and Figure 4.4 in terms of the condensing and sub-cooling 

temperature, respectively. R
2 

is a measure of the goodness of the fitting. The higher the 

R
2 

is, the better the fitting result is. As shown in both figures, the R
2
 of the condensing 

temperature is 0.9917 and the R
2
 of the sub-cooling temperature is 0.9613. It 
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demonstrates that the model has good performance in prediction and can be used and is 

acceptable for FDD purpose. 

4.4.3 Evaluation of UAcd,cd Variations in Fault Conditions 

The four types of faults described previously with four severity levels were used to 

evaluate the UAcd,cd variations in fault conditions. The normalized heat transfer 

performance for a severity level of the fault, named α', is used to describe the effects of 

faults in various operating conditions. It is calculated by the least square method. Using 

α', the predicted condensing temperatures can be calculated. The results are summarized 

in in Table 4.4.  

Table 4.4 Normalized heat transfer performance (α' ) and their goodness-of-fit (R
2
) at 

each severity level for different types of faults 

  
Cdfoul RefOver RefLeak Ncg 

α' R
2
 α' R

2
 α' R

2
 α' R

2
 

SL 1 0.9 0.993 0.85  0.993 1.0 0.987 0.6 0.976 

SL 2 0.9 0.991 0.83  0.994 1.1 0.989 0.4 0.972 

SL 3 0.8 0.988 0.62 0.976 1.3 0.989 0.4 0.956 

SL 4 0.7 0.991 0.5 0.991 1.5 0.993 0.4 0.927 

 

From Table 4.4, it can be found that the R
2
 was above 0.95 for most cases, which 

indicates the good fitting results. In the case of the condenser fouling, the average R
2 

was 0.9907. The value of α' decreased with the increased severity level, i.e. 0.93, 0.90, 

0.83 and 0.74 for SL-1, SL-2, SL-3 and SL-4, respectively. This demonstrated that the 

heat transfer coefficient is reduced when the condenser suffered from the condenser 

fouling. In the case of the refrigerant overcharge, the average R
2 

was 0.9885 and the 
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values of α' were 0.85, 0.83, 0.62 and 0.50 for SL-1 to SL-4, respectively. In the case of 

the refrigerant leakage, the average R
2
 was 0.9894 and the values of α' were 1.01, 1.08, 

1.34 and 1.53 for SL-1 to SL-4, respectively. This indicated that the liquid refrigerant 

level in the condenser is directly affected by the amount of the refrigerant, resulting in a 

lower (in case of overcharge) or higher (in case of leakage) heat transfer coefficient in 

the condenser. In the case of the non-condensable gas, although the R
2
 were relatively 

low as compared with the other cases, the lowest R
2 

was still higher than 0.90, which is 

acceptable the FDD strategy in this study as illustrated at Figure 9. The values of α' were 

0.59, 0.44, 0.42 and 0.38 respectively. It indicates that performance is degraded 

significantly even at the slight severity level of non-condensable gas 

The above results are consistent with the assumptions described in Section 4.3.3. 

Namely, the value of α' decreases when the operation of chillers suffer from condenser 

fouling, refrigerant overcharge or non-condensable gas, while it increases when the 

refrigerant leakage happens. Therefore, the normalized heat transfer performance α is a 

suitable performance index to describe the effects of faults on the condenser.  

4.4.4 Evaluation of the FDD Strategy 

As presented earlier, in this study, there are four data sets, i.e. ‘Normal1’, ‘Normal2’, 

‘Normal_CF’ and ‘Normal_R1’, were used to obtain the confidence interval [α1, α2]. 

Both model errors and measurement uncertainties are taken into consideration using the 

confidence interval. A fault is detected when the residual between measured value and 

its benchmark is out of confidence interval. The larger the model errors and 

measurement uncertainties are, the wider the confidence interval will be. In this study, 
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the confidence interval is obtained using t-statistic at a confidence level of 95.4% (false 

alarm ratio was 4.6% in the fault free condition). 

Each severity level of each fault consists of 27 observation points, for which the α 

(the normalized heat transfer performance) and T
’
sc (the fictitious sub-cooling 

temperature) were calculated respectively and graphically shown in Figures (4.5)-(4.9). 

It can be found that the confidence interval [α1, α2] divided the 2-demensional space into 

three categories, i.e. 1) refrigerant leakage, 2) fault-free and, 3) refrigerant overcharge, 

condenser fouling and non-condensable gas. The T
’
sc curve further divided the category 

(3) into two sub-categories, i.e. a) condenser fouling and b) refrigerant overcharge and 

non-condensable gas. The FDD results are summarized in Table 4.5. As illustrated in 

Figure 4.5, in the fault free conditions, four observation points among 108 series of data 

(4/108) were falsely diagnosed as the condenser fouling, while the rest one was falsely 

diagnosed as the refrigerant leakage. 

 

Figure 4.5 Graphic illustration of fault detection and diagnosis results for fault-free 

condition 
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In the case of condenser fouling, the successfully diagnosed ratios are 1/27, 1/27, 

6/27 and 20/27 for SL-1 to SL-4 respectively, as illustrated in Figure 4.6. It is hard to 

detect and diagnose this kind of fault at slight severity levels, which is the same as 

conclusion from RP-1275.  

 

 

Figure 4.6 Graphic illustration of fault detection and diagnosis results for condenser 

fouling at four severity levels 

In the case of refrigerant leakage, the successfully diagnosed ratios are 4/27, 5/27, 

22/27 and 24/27, while the falsely diagnosed ratios are 4/27, 3/27, 0/27 and 0/27, for 

SL-1, SL-2, SL-3 and SL-4 respectively, as illustrated in Figure 4.7. At the SL-1, the 

falsely diagnosed ratio is the same to the correctly ones. However, 2/27 was falsely 

diagnosed under the condenser fouling and the remained 2/27 under the refrigerant 

overcharge. The correctly diagnosed ratio (4/27) is obvious larger than any others, 

which can be used as criteria for FDD. Similarly results were observed at the SL-2. At 

the SL-3 and SL-4, the fault was diagnosed successfully. 
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Figure 4.7 Graphic illustration of fault detection and diagnosis results for refrigerant 

leakage at four severity levels 

 

Figure 4.8 Graphic illustration of fault detection and diagnosis results for refrigerant 

overcharge at four severity levels 
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In the case of the refrigerant overcharge, the successfully diagnosed ratios are 12/27, 

18/27, 26/27 and 27/27, while the falsely diagnosed ratios are 2/27, 0/27, 1/27 and 0/27, 

for SL-1, SL-2, SL-3 and SL-4 respectively, as illustrated in Figure 4.8.The fault can be 

easily diagnosed at each severity level. 

In the case of the non-condensable gas, the faults were 100% correctly diagnosed for 

each severity level, as illustrated in Figure 4.9. It has the same pattern as the refrigerant 

overcharge. However, it should be the easiest fault to be detected since the condenser 

pressure is obviously higher than the saturated pressure during the power off condition 

when there is non-condesable gas in the system. 

 

 

Figure 4.9 Graphic illustration of fault detection and diagnosis results for non-

condensable gas at four severity levels 

It should be noted that some fault data might fall into the confidence interval. 

Particularly at lower severity levels, most of the data are within the confidence interval. 
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This is the typical II error in statistical test theory which fails to reject fault data (more 

details refer to Section 3.2.2). The typical II error cannot be avoided theoretically. In this 

study, the fault diagnosis ratio is introduced to enhance the robustness of FDD results. A 

fault is confirmed when its diagnosis ratio is larger than a threshold, i.e. 15% in this 

study.   

 

It is worthwhile to point out that the virtual T
’
sc lines in Figure (4.4)-(4.8) are used for 

easy understanding only. Under different operating conditions, the observation points 

with the same α might have different fictitious sub-cooling temperatures. The fictitious 

temperature was not used when α>α2. This is because there is only refrigerant leakage in 

this area. It is worthwhile to point out that most small and mid-size chiller systems do 

not have flow meters because they are costly and require annual calibration. In this case, 

the water flow rate can be estimated through simulation or field tests. In the literatures, 

there are some strategies that have already been available for simulating the water flow 

rates, such as Sun (2010) and Zhao (2011).  
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Table 4.5  Successful detection and diagnosis numbers of the proposed FDD strategy using RP-1043 data – Sample number: 

27 for each severity level (SL). Confidence level: 95.4%. 

Fault type Normal 
Condenser 

fouling 

Refrigerant 

leakage 

Refrigerant 

overcharge  

Non-condensable 

gas 

Severity level (SL) 
N

2 

N

1 

NC

F 

NR

1 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Fault detected 1 1 1 2 1 2 6 23 5 6 22 24 8 10 25 27 27 27 27 27 

Condenser fouling 1 1 1 1 1 1 6 20 0 0 0 0 2 0 1 0 0 0 0 0 

Refrigerant leakage 0 0 0 1 0 1 0 0 4 5 22 24 0 0 0 0 0 0 0 0 

Refrigerant 

overcharge  
0 0 0 0 0 0 0 3 1 1 0 0 6 10 25 27 27 27 27 27 

Non-condensable gas 0 0 0 0 0 0 0 0 0 0 0 0 6 10 25 27 27 27 27 27 

 

 

Table 4.6  Successful detection and diagnosis numbers of the proposed FDD strategy using RP-1043  data  – Sample number: 

27 for each severity level (SL). Confidence level: 90.7%. 

Fault type Normal 
Condenser 

fouling 

Refrigerant 

leakage 

Refrigerant 

overcharge  

Non-condensable 

gas 

Severity level (SL) 
N

2 

N

1 

NC

F 

NR

1 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Fault detected 3 4 1 2 3 5 13 25 8 8 22 24 14 18 27 27 27 27 27 27 

Condenser fouling 3 3 1 1 3 4 12 21 2 1 0 0 2 0 1 0 0 0 0 0 

Refrigerant leakage 0 1 0 1 0 1 0 0 4 5 22 24 0 0 0 0 0 0 0 0 

Refrigerant 

overcharge  
0 0 0  0 0 0 1 4 2 2 0 0 12 18 26 27 27 27 27 27 

Non-condensable gas 0 0 0  0 0 0 0 0 0 0 0 0 12 18 26 27 27 27 27 27 
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4.4.5 Comparison with Four Typical FDD Strategies 

The training data sets and confidence level of the evaluation are the same as 

ASHRAE Project 1275 (RP-1275). A comparison was made between the proposed 

strategy and other four strategies studied in RP-1275. One main objective of RP-1275 

was to evaluate the four typical chiller FDD strategies (#1, #2, #3 and #4) against 

steady-state chiller performance data (both fault-free data and fault data) gathered from 

RP-1043 with the intention of identifying the “best” one for subsequent field evaluation 

(Reddy, 2006). FDD#1 is the model-free fault detection strategy with a diagnosis table. 

FDD#2 is the MLR (Multiple Linear Regression) gray-box model based strategy with a 

diagnosis table. FDD#3 is the PCA (Principal Component Analysis) model based 

strategy with a diagnosis table. FDD#4 is the linear discrimination and classification 

strategy. The outputs from the RP-1275 report indicated that the FDD capabilities from 

the best to poorest of the four strategies are FDD#1 > FDD#2 > FDD#4 > FDD#3.  

Table 4.7  Comparison between the successful detection and diagnosis numbers using 

the proposed strategy and the four typical FDD strategies – Sample number: 27 for each 

severity level (SL) 

FDD 

Strategy 
CdFoul RefLeak RefOver Ncg 

Severity 

level 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

FDD#1 5 8 13 24 4 5 21 27 14 20 26 27 27 27 27 27 

FDD#2 0 0 0 1 1 2 10 21 0 0 20 25 27 27 27 27 

FDD#3 1 0 2 14 2 1 1 1 0 0 0 0 0 0 0 2 

FDD#4 7 12 22 27 2 3 21 27 0 0 13 25 0 0 4 27 

Proposed 

strategy 
1 1 6 20 4 5 22 24 6 10 25 27 27 27 27 27 
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FDD#1: Model-free fault detection with diagnosis table strategy, FDD#2: MLR 

gray-box model with diagnosis table strategy, FDD#3: PCA model with diagnosis 

table strategy, FDD#4 Linear discrimination and classification strategy. 

Table 4.7 summaries the successful fault detection and diagnosis numbers of 

different strategies. It can be observed that the proposed strategy has the best 

performance when the operation of the system suffers from the refrigerant leakage and 

non-condensable gas. It is the second best choice in the case of the refrigerant 

overcharge. Although the performance is at an intermediate level in the case of the 

condenser fouling, it is still better than MLR and PCA based strategies. Therefore, it can 

be concluded that the proposed strategy to be superior in fault detection and diagnosis 

ratio. However, the proposed strategy does not require the fault data for training, which 

is the obvious advantage in practice, as compared to the other strategies. 

4.5 Summary 

A novel chiller FDD strategy was developed in this study, which is convenient for 

practical applications without requiring any fault data for model training. The four 

typical faults, which are difficult to handle, (i.e. condenser fouling, refrigerant 

overcharge, refrigerant leakage and non-condensable gas) are detected and diagnosed 

based on two new performance indexes, i.e. α (the normalized heat transfer performance) 

and T'sc (the fictitious sub-cooling temperature). The ASHRAE RP-1043 data were used 

to validate the proposed strategy and make qualitative comparisons with the four typical 

FDD strategies studied in the ASHRAE RP-1275.  
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The test results showed that the proposed strategy is capable of detecting and 

diagnosing the non-condensable gas (successfully ratios were 100% at each severity 

level) and refrigerant overcharge (22%, 37%, 93% and 100% for SL-1, SL-2, SL-3 and 

SL-4). Although the performances were not perfect for the refrigerant leakage (15%, 

19%, 81% and 89% for SL-1 to SL-4) and condenser fouling (4%, 4%, 22% and 74% 

for SL-1 to SL-4), it was still better than most of the referred strategies. More important, 

the proposed strategy does not require any fault data for model training, which is 

essentially important for practical applications.  

A customization tool was developed based on a simplified physical chiller model in 

order to identify the unknown chiller parameters. The customization tool and FDD 

strategy can be used in typical centrifugal water-cooled chillers equipped with the shell-

and-tube evaporator and condenser and controlled by thermostatic expansion valves. 
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CHAPTER 5 AN INCIPIENT FAULT DETECTION AND 

DIAGNOSIS STRATEGY FOR CHILLERS 

This chapter presents the application of the proposed incipient FDD strategy on 

centrifugal chillers. Three innovations are adopted to overcome the shortcomings of the 

commonly used strategy based on MLR and t-statistic. Firstly, SVR is adopted to 

develop the reference PI models. A new PI, namely the heat transfer efficiency of the 

sub-cooling section (εsc), is proposed to improve the FDD performance. Secondly, 

EWMA control charts are introduced to detect faults in a statistical way to improve the 

ratios of correctly detected points. Thirdly, when faults are detected, diagnosis is 

conducted, which is based on a proposed FDD rule table. Six typical chiller component 

faults are considered in this chapter. This strategy is validated using the real-time 

experimental data from the ASHRAE RP-1043. 

5.1 Overview of The Chiller FDD Strategy 

5.1.1 Performance Indexes and FDD Rule Table 

A new performance index, namely the heat transfer efficiency of sub-cooling section 

(εsc), which has the same definition as heat exchanger efficiency commonly used for 

heat exchangers, is proposed in this study as Equation (5.1). The heat transfer efficiency 

is defined as the ratio of the heat transfer in the actual heat exchanger to the heat transfer 

in the ideal heat exchanger. It is calculated using data from the commonly available 

sensors. 
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=
-

sub
sc

cd ecw

T

T T
       (5.1) 

Four performance indexes are introduced in this study as illustrated in Table 5.1. 

They are physically meaningful and sensitive to one or several faults. They indicate the 

health state of chillers. It is noted that the selections of PIs might be different for 

different types of chillers. Virtual sensors can also be used as PIs (Li and Braun 2007). 

The performance indexes can be calculated directly from measurements which are 

generally available in the building management systems (BMSs). 

Table 5.1 Definitions of performance indexes 

 Performance indexes Formulations 

1 Evaporator water temperature 

difference 
chw chwr chwsT T T  

 

2 Condenser water temperature 

difference 
cw lcw ecwT T T  

 

3 Heat exchanger efficiency of 

the Sub-cooling section 
    sub

sc

cd ecw

T

T T
 


 

4 Logarithm mean temperature 

difference of condenser ln( )

lcw ecw
cd

ecw cd

lcw cd

T T
LMTD

T T

T T








 

 

Six typical faults are condered in this study, which account for a major portion of the 

service calls according to the survey conducted by Comstock and Braun (2002), 

including: reduced evaporator water flow rate, reduced condenser water flow rate, 

condenser fouling, refrigerant leakage, refrigerant overcharge, non-condensable gas.  
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The fault patterns are illustrated in Table 5.2. Where, the sign ▲ and ▼ indicate the 

changes of performance index compared to its benchmark of normal state. The sign - 

indicates no obvious change. The sign * indicates that the faults are detected and 

diagnosed in the beginning which are not considered in following steps. The correlations 

in Table 5.2 are based on the impacts of the faults on the performance indexes, which 

are interpreted as follows:  

Table 5.2 Fault detection and diagnosis rule table 

 Fault type ΔTchw ΔTcw εsc LMTDcd 

1  Reduced evaporator 

water flow rate 
▲ - * * 

2 Reduced condenser 

water flow rate 
- ▲ * * 

3 Condenser fouling - - ▼ ▲ 

4 Refrigerant leakage - - ▼ ▼ 

5 Refrigerant overcharge - - ▲ ▲ 

6 Non-condensable gas - - ▲ ▲ 

 

i. Reduced evaporator water flow rate. The evaporator water temperature difference 

ΔTchw is significantly increased to keep the same amount of cooling load when the 

evaporator water flow rate is reduced (
,

=
evap

chw

w evap w

Q
T

c M
 ). In this study, a constant 

threshold is set for the residuals of 
chwT . 
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ii. Reduced condenser water flow rate. Similar to the previous fault, the condenser 

water temperature difference ΔTcw is increased (
,

= cond
cw

w cond w

Q
T

c M
 ). In this study, a 

constant threshold is set for the residuals of ΔTcw.  

iii. Condenser fouling.  When this fault exists,  the overall heat transfer conductance of 

condensing section (UAcd) and sub-cooling section (UAsc) will be reduced. Thus, 

this results in larger LMTDcd and smaller εsc. 

iv. Refrigerant leakage. The decreased liquid refrigerant level in the condenser results 

in less heat transfer surface area for sub-cooling. Therefore the εsc is reduced. 

Meanwhile, the corresponding surface area is used for condensing section. The 

UAcd is increased, which leads to a smaller LMTDcd. For more analysis about this 

fault refer to Tassou (Tassou and Grace 2005). 

v. Refrigerant overcharge. It is opposite to the leakage fault patterns. Both εsc and 

LMTDcd are larger than normal values. 

vi. Non-condensable gas. The non-condensable gas is gathered at the condenser and 

leads to a higher condensing pressure. The condensing temperature increases 

substantially because it is usually calculated based on the measured condensing 

pressure. Therefore, both calculated LMTDcd and εsc increase dramatically. It has the 

same fault patterns as the refrigerant overcharge. However, it is the easiest fault to 

be diagnosed (Chen and Braun 2001). Non-condensable gas tends to accumulate in 

the condenser.  Techinicians can detect this fault when the chiller is turned off. The 

condenser pressure reading is higher than the actual saturation pressure when non-

condensable gas exists in the chiller system (Comstock and Braun 1999a). The 
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actual saturation pressure can be derived based on the measured saturation 

temperature. 

5.1.2 Reference Models of Performance Indexes 

The reference models are developed to calculate the benchmarks of performance 

indexes in normal condition. Assuming the water flow rates are constant in condenser 

and evaporator, the chiller performance is primarily a function of three variables, i.e. Qev 

(evaporator cooling load), Tecw (entering condenser water temperature) and Tchws 

(leaving evaporator water temperature (Comstock and Braun 2002). A simple chiller 

reference model is presented as shown in Equation (5.2). Where, Y = [ΔTchw, ΔTcw, εsc, 

LMTDcd], 
2~(0, )  . 

= ( , , )+evap ecw chwsY f Q T T       (5.2) 

To develop such models, the polynomial gray-box Multiple Linear Regression 

(MLR) approach has been widely used by Cui and Wang (2006), Li and Braun (2003), 

Reddy (2007a) and so on. However, the chiller is a typical non-linear system. The 

limitation of MLR is that it is a linear approach. To improve the accuracy, a non-linear 

approach namely the Support Vector Regression (SVR) is adopted to build the reference 

models. It is a new machine learning algorithm based on structural risk minimization 

from statistical learning theory. It possesses prominent advantages such as excellent 

properties in learning limited samples, good generalization ability, etc. 
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5.1.2 Configuration of the EWMA Control Charts 

In this study, the sample group size n of EWMA control charts is set to be 1 to 

obtain more groups at each operating condition, considering that the amount of the 

experimental data at each operating condition is small (about 5 data in average). If n is 

set to be a larger value, e.g. 5, there will be only 1 group at each operating condition in 

average. Also, when the moving window moves from one operating condition to another, 

the physical meaning is also not clear to calculate the average value iX  of the sample 

group which contains samples of different operating conditions. In practice, the amount 

of operating data at an operating condition is generally large enough. It is advised to use 

a larger sample group size n because it is better to use group mean to reduce noises in 

measurements. When the weighting factor λ is smaller, the chart is more sensitive to 

smaller long-term deviations caused by the gradually generated faults, e.g. condenser 

fouling and refrigerant leakage. In this study, the λ is optimized using fault data of 

condenser fouling and refrigerant leakage at SL 1. The best performance is obtained 

when λ is 0.15. The L is assigned to be 2 (confidence level is 95.45%) and 3 (confidence 

level is 99.73%) respectively in the case studies. The 95.45% confidence level is 

acceptable for actual application as discussed in previous studies (Reddy 2006). The 

training data used in the offline FDD process are residuals between predicted PIs and 

actual values. σ is the standard deviation of the residuals.    is the expectation of the 

residuals. 
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5.2 Evaluation of the FDD Strategy 

5.2.1 Experimental Data and Data Pre-processing 

The ‘Reduced data set’ from RP-1043 is introduced here. It included transient data 

between the different steady-state operating conditions. The steady-state data filter 

developed by Rossi (Rossi 1995) is used to remove the obvious dynamic data. It 

regresses samples of a variable using the OLS (Ordinary Least Squares) strategy with a 

fixed moving time window length, and then obtains the slope of the regression line, 

which can also indicate the change rate of the variable. Actually, only not more than 10% 

data are in steady-state if all performance variables are selected as state characteristics. 

It is too few for fault detection and diagnosis. Therefore, there is a compromise between 

the amount of remaining data and the steady-state level of remaining data. In this study, 

the chilled water supply temperature (Tchws), the chilled water return temperature (Tchwr) 

and the entering condenser water temperature (Tecw) are used by the filter for steady-

state detection. They are actually the inputs of reference models. About 30%-40% data 

were remained eventually. It is worth noting that the sub-cooling temperature (Tsc) in the 

remained data might be not steady all the time. They are only closed to steady states 

sometimes. It is because Tsc hardly archives steady state. If Tsc is also required to be 

steady in the data pre-processing process, there would be only about 10% data remained 

eventually. The amount is too small for the purpose of FDD. Although Tsc is not 

absolutely steady most of the time, the deviations of Tsc caused by the remained 

dynamics are still obviously smaller than the deviations caused by faults. The dynamics 

will reduce fault detection ratios of the PI εsc.  
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5.2.2 Development of The Reference Models 

The normal data set ‘normal2’ from the RP-1043 are used to train the reference 

models. Comparisons between the predicted values (using SVR models) and the current 

values of performance indexes are shown in Figure 5.1. The R-squares (R
2
) show 

desirable goodness-of-fits of the SVR models. The R
2
 is 0.8355 for εsc. It was poor for 

the reason that the sub-cooling temperatures are not steady at most of the time. The 

threshold for this PI will be larger which might lead it to be not sensitive to faults.  

However, it is still acceptable for chiller FDD application.  

 
Figure 5.1 Comparisons between predicted and calculated values of performance 

indexes using ASHRAE RP-1043 data 
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Table 5.3 Fitness SVR-based and MLR-based performance index models applied to 

ASHRAE RP-1043 data 

   ΔTchw ΔTcw εsc LMTDcd 

MLR 
R

2
 0.9999 0.9950 0.8181 0.9782 

σMLR 0.0141 0.0961 0.0341 0.1945 

SVR 
R

2
 0.9999 0.9968 0.8355 0.9868 

σSVR 0.0139 0.0776 0.0325 0.1517 

σSVR/σMLR 98.6% 80.7% 95.4% 78.0% 

 

The accuracy of SVR models and MLR models are illustrated in Table 5.3. The 

performances of SVR models are better in all PIs. The R-squares were improved. The 

standard deviations are smaller obviously. The ratio of standard deviations, σSVR/σMLR, of 

the two important PIs (i.e. εsc and LMTDcd) were 95.4% and 78.0% respectively. 

Therefore, the confidence intervals are narrowed down by the same ratio. 

5.2.3 Comparison of Fault Detection and Diagnosis Between Four Strategies 

In order to validate the advantages of SVR and EWMA on chiller FDD, comparisons 

are made between four strategies, which were different combinations of regression 

approaches (MLR or SVR) and fault detection approaches (t-statistic or EWMA), i.e., 

Strategy #1, MLR + t-statistic; Strategy #2, MLR + EWMA; Strategy #3, SVR + t-

statistic; Strategy #4, SVR + EWMA. Among them, Strategy #1 is the commonly used 

chiller FDD strategy. It is the same as the MLR-FDD strategy used in ASHRAE RP-

1275, while the difference is that the proposed rule table is used. Strategy #4 is the 

proposed strategy in this chapter, which will be analyzed in detail. The confidence level 
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was 99.73% (3σ). The ratio of correctly diagnosed points is the amount of correctly 

diagnosed points divided by the total amount of test points. The ratio of false diagnosed 

points is the amount of false diagnosed points divided by the total amount of test points. 

Normal condition 

Table 5.4 Diagnosis ratios of four different strategies at confidence level of 99.73% in 

normal condition 

FDD Strategy 
Normal Normal1 Normal2 

Correct False Correct False Correct False 

Strategy #1 96.2% 0.0% 92.3% 0.0% 98.9% 0.0% 

Strategy #2 86.2% 0.0% 79.8% 0.0% 92.1% 0.0% 

Strategy #3 93.7% 0.0% 90.5% 0.0% 98.3% 0.0% 

Strategy #4 86.2% 0.0% 76.2% 0.0% 98.9% 0.0% 

 

Three normal experimental data sets from the ASHRAE RP-1043 are introduced to 

evaluate the four strategies in normal conditions, i.e. ‘normal’, ‘normal1’ and ‘normal2’. 

The results are illustrated in Table 5.4. It can be found that all of the false alarm ratios 

are 0.0% and all of the four strategies are robust in the normal conditions.  
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Figure 5.2. Operating conditions and control charts using normal data set ‘normal2’. 

(a) Operating condition, (b) EWMA control chart of LMTDcd, (c) EWMA control chart 

of ε 

It is also noticed that the ratios of health points (both PIs were within the confidence 

intervals) of the t-statistic-based strategies (Strategy # 1 and #3) are about 8% higher 

than that of the EWMA-based ones (Strategy #2 and #4) in average. It is because that 

the EWMA control chart is more sensitive to the small shifts of the deviations. The 

MLR-based strategies (Strategy #1 and #2) are slightly better than the SVR based ones 

(Strategy #3 and #4). It is because that the MLR-based strategies have wider confidence 

intervals. However, it does not mean that the strategies using EWMA and SVR are not 
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0 20 40 60 80 100 120 140 160
0

100

200

300

400

Samples
C

o
o
lin

g
 L

o
a
d
 (

k
W

)

 

 

0 20 40 60 80 100 120 140 160
0

10

20

30

40

T
e
m

p
e
ra

tu
re

 (
o
C

)Qev Tchws Tecw

0 20 40 60 80 100 120 140 160
-0.5

0

0.5

E
W

M
A

 o
f 

L
M

T
D

c
d
 (

o
C

)

Samples

0 20 40 60 80 100 120 140 160
-0.05

0

0.05

E
W

M
A

 o
f 
 s

c

Samples

 

 

Center LCL/UCL Point in control Detected only

(a)

(b)

(c)



102 

 

the false alarm ratio in normal condition. Generally, if the sensitivities to shifts of 

deviations are higher and the confidence intervals are narrower, the strategy will be able 

to detect more faulty points. But it will be hard to keep low false alarm ratios in normal 

conditions. The strategy using EWMA and SVR (Strategy #4) has higher diagnosis 

ratios of faulty points and 0.0% false alarm ratios. Therefore, it is the best one.  

Figure 5.2 illustrates the FDD results when using Strategy #4 for the normal data set 

‘normal2’. The control charts of LMTDcd and εsc are not violated at the same time and 

therefore the false alarm ratio was 0.0%. 

Condenser fouling 

Using the EWMA-based strategies (Strategy #2 and #4), the highest ratios of 

correctly diagnosed points are 7.7%, 45.2%, 68.4% and 100.0% at SL-1, SL-2, SL-3 and 

SL-4 respectively at both confidence levels, as shown in Table 5.5. Using the t-statistic-

based strategies (Strategy # 1 and #3), the highest ratios of correctly diagnosed points 

are 0.7%, 1.3%, 2.6% and 54.7% at SL-1, SL-2, SL-3 and SL-4 respectively at both 

confidence levels. The t-statistic-based strategies cannot correctly diagnose this fault 

until SL-4. Comparing the strategies using EWMA (Strategy #2 and #4), the SVR 

approach improves 5% correctly diagnosed points at SL-1 and SL-2.  

The FDD results when using Strategy #4 are as shown in Figure 5.3. The points are 

labeled by four classes, i.e., the correctly diagnosed, the wrongly diagnosed, the detected 

only and the normal point. The ‘detected only’ means that a point only violated one 

control chart and it could not be diagnosed. The ratios of correctly diagnosed points are 

7.7%, 45.2%, 60.7% and 100% for SL-1, SL-2, SL-3 and SL-4 respectively. The 

corresponding false diagnosis ratios are 3.3%, 8.3%, 3.8% and 0.0% respectively. 
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Table 5.5 Diagnosis ratios of four different strategies at confidence level of 99.73% 

FDD 

Strategy 

Severity Level 

1 

Severity Level 

2 

Severity Level 

3 

Severity Level 

4 

Correct False Correct False Correct False Correct False 

  Condenser fouling 

Strategy #1 0.7% 0.0% 0.0% 1.9% 0.7% 0.7% 53.3% 0.0% 

Strategy #2 1.9% 0.7% 40.0% 3.2% 68.4% 0.0% 100.0% 0.0% 

Strategy #3 0.0% 0.0% 1.3% 4.5% 2.6% 4.5% 54.7% 0.0% 

Strategy #4 7.7% 3.2% 45.2% 8.3% 60.7% 3.8% 100.0% 0.0% 

  Refrigerant leakage 

Strategy #1 5.2% 0.0% 13.5% 0.0% 41.9% 0.0% 90.4% 0.0% 

Strategy #2 21.4% 3.9% 34.8% 5.7% 87.2% 1.7% 100.0% 0.0% 

Strategy #3 10.4% 0.0% 17.0% 0.0% 46.9% 0.0% 96.6% 0.0% 

Strategy #4 20.1% 2.6% 36.2% 7.1% 88.3% 1.1% 100.0% 0.0% 

  Refrigerant overcharge 

Strategy #1 6.6% 0.0% 12.7% 0.0% 76.1% 0.0% 89.4% 0.0% 

Strategy #2 89.5% 0.0% 98.7% 0.0% 100.0% 0.0% 100.0% 0.0% 

Strategy #3 4.0% 0.0% 15.2% 0.6% 78.6% 0.0% 90.2% 0.0% 

Strategy #4 90.1% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 

  Non-condensable gas 

Strategy #1 37.2% 0.0% 61.3% 0.0% 77.7% 0.0% 93.4% 0.0% 

Strategy #2 97.4% 0.0% 99.3% 0.0% 99.3% 0.0% 100.0% 0.0% 

Strategy #3 36.5% 0.0% 64.2% 0.0% 79.7% 0.0% 100.0% 0.0% 

Strategy #4 98.7% 0.0% 99.3% 0.0% 100.0% 0.0% 100.0% 0.0% 

 

In the case of SL-1, the 3.3% false diagnosis might be caused by two possible 

reasons. One possible reason is the dynamics of the sub-cooling temperature in both 

training and testing data sets. Another possible reason is the way how this fault is 
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conducted in the experiment. It might not be proper to simulate the effects of condenser 

fouling on sub-cooling section at SL-1 by plugging 12% tubes in the condenser. 

However, the false diagnosis ratio is not more than 50% of the ratio of correctly 

diagnosed points. This threshold can be used as the criteria to report faults in practice. 

Refrigerant leakage 

Using the EWMA-based strategies (Strategy #2 and #4), the ratios of correctly 

diagnosed points are more than two times of that of the t-statistic-based strategies 

(Strategy # 1 and #3) at SL-1, SL-2 and SL-3, as shown in Table 5.5. Even at SL-1, 20.1% 

points are correctly diagnosed by the EWMA-based strategies. When used in the t-

statistic-based strategies (Strategy #1 and #3), the SVR approach improves the correct 

diagnosis ratio for about 5% at four severity levels. It improves about 2% of the correct 

diagnosis ratios when used in the EWMA-based strategies (Strategy #2 and #4).  

The FDD results when using Strategy #4 are as shown in Figure 5.4. The ratios of 

correctly diagnosed points are 20.1%, 36.2%, 88.3% and 100.0% at SL-1, SL-2, SL-3 

and SL-4 respectively. The corresponding false diagnosis ratios are 2.6%, 7.1%, 1.1% 

and 0.0% respectively. It is also noticed that 49.4% and 7.8% of points exceed the UCL 

of the LMTDcd control charts at SL-1 and SL-2 in spite of exceeding the LCL (in Figure 

5.4b). However, these points are not wrongly diagnosed for the reason that the εsc is in 

control at that time. 
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Figure 5.3 Operating conditions and control charts in the case of condenser fouling at four severity levels. 

(a) Operating condition, (b) EWMA control chart of LMTDcd, (c) EWMA control chart of εsc. 
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Figure 5.4 Operating conditions and control charts in the case of refrigerant leakage at four severity levels. 

(a) Operating condition, (b) EWMA control chart of LMTDcd, (c) EWMA control chart of εsc. 
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Figure 5.5 Operating conditions and control charts in the case of refrigerant overcharge at four severity levels. 

(a) Operating condition, (b) EWMA control chart of LMTDcd, (c) EWMA control chart of εsc. 
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Figure 5.6 Operating conditions and control charts in the case of Non-condensable gas at four severity levels. 

(a) Operating condition, (b) EWMA control chart of LMTDcd, (c) EWMA control chart of εsc.
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Refrigerant overcharge 

Using the EWMA-based strategies (Strategy #2 and #4), the highest ratios of 

correctly diagnosed points are 90.1%, 100.0%, 100.0% and 100.0% at SL-1, SL-2, SL-3 

and SL-4 respectively, as shown in Table 5.5. However, the best results for the t-

statistic-based strategies (Strategy # 1 and #3) are 6.6%, 15.2%, 78.6% and 90.2% at 

SL-1, SL-2, SL-3 and SL-4 respectively. The SVR approach has limited improvements 

at the correctly diagnosed points for the two strategies.  

The FDD results by Strategy #4 are as shown in Figure 5.5, the ratios of corrected 

points are 90.1%, 100.0%, 100.0% and 100.0% at SL-1, SL-2, SL-3 and SL-4 

respectively. The falsely diagnosed ratios aer 0.0% at all of the four severity levels. 

Even at SL-1, the average deviations of LMTDcd and εsc are 4.5 and 1.9 times of the 

corresponding thresholds (UCL).  

Non-condensable gas 

Using the EWMA-based strategies (Strategy #2 and #4), the ratios of correctly 

diagnosed points are more than 97.0% at four severity levels. However, the best results 

for the t-statistic-based strategies (Strategy # 1 and #3) are 37.2%, 64.2%, 79.7% and 

100.0% at SL-1, SL-2, SL-3 and SL-4 respectively, as shown in Table 5.5. The SVR 

approach also has limited improvements at the correctly diagnosed points for the 

EWMA-based strategies, i.e. about 2% improvement when used in the t-statistic-based 

strategies in average.  

The results when using Strategy #4 are as shown in Figure 5.6, the ratios of correctly 

diagnosed points are 98.7%, 100.0%, 100.0% and 100.0% at SL-1, SL-2, SL-3 and SL-4 
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respectively. The falsely diagnosed ratios are 0.0% at all of the four severity levels. At 

SL-1, the average deviations of LMTDcd and εsc are 17.9 and 3.0 times of the 

corresponding thresholds (UCL). Conclusion can be made that the proposed strategy can 

detect and diagnose the non-condensable gas without any problem. 

Reduced water flow rate faults 

The reduced condenser water flow rate and reduced evaporator water flow rate are 

the two faults which are most easily handled. In most studies, both faults can be 100.0% 

detected and diagnosed. It is no necessary to detect the small shifts in the water flow 

rates, e.g., the water flow rate reduced by 1%, 3%, or even 5%. The proposed strategy 

can handle these two faults easily. The EWMA values of ΔTcw and ΔTchw were several 

times of the confidence intervals in the cases of reduced condenser water flow rate and 

reduced evaporator water flow rate. In average, it was 5.5 times when evaporator water 

flow rate was reduced by 10%. It was 5.2 times in the case when condenser water flow 

rate was reduced by 10%. In this study, the constant thresholds for ΔTcw and ΔTchw were 

set to be 2.0K as confidence intervals. Both faults were more than 95% correctly 

diagnosed at all of the four severity levels.  

5.2.4 Discussions 

The false diagnosis ratios of the t-statistic-based strategies (Strategy # 1 and #3) are 

high at low severity levels. It is caused by two factors, i.e. 1) the dynamics in the test 

data which are not removed completely, and 2) the uncertainties of both model-fitting 

errors and measurement errors. Using the EWMA control charts, it is good in weakening 

the dynamics and errors through the weighting factor. The small shifts of deviations 
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caused by faults can be correctly detected using the time series information of historical 

data in a statistical way. Therefore, the EWMA-based strategies (Strategy # 2 and #4) 

are more effective than the t-statistic-based ones at low severity levels. The SVR 

approach improves 5.6% and 22.2% of the accuracy of the two PIs (i.e. εsc and LMTDcd) 

respectively in the normal data set. It is found that the ratios of correctly diagnosed 

points are improved for about 5% at low severity levels for condenser fouling and 

refrigerant leakage. 

The performance indexes are sensitive to the operating conditions. Generally, the 

lower the Tchws is, the higher the deviation of LMTDcd would be. In contrast, the lower 

the Tchws is, the lower the deviation of εsc would be. Qev and Tecw affected the deviations 

of performance indexes too. For instance, in the case of the condenser fouling, the 

curves of LMTDcd are similar at the same operating condition (when Tchws is about 10℃) 

of different severity levels. The deviation increased as the severity level is higher, as 

shown in Figure 5.2-5.6. It is worthy of note that the EWMA values in Figure 5.3-5.6 

are calculated without breaks between different severity levels in order to represent the 

trends of PIs from SL-1 to SL-4. 

5.3 Comparison between The proposed FDD Strategy and A 

Commonly Used FDD Strategy 

In Section 5.2, the four strategies under study (including the proposed strategy) are 

compared in the condition that they use the same performance indexes and rule table 

proposed in this study. It is great interest to compare the proposed strategy with the 

existing strategies commonly used by researchers. 



112 

 

In the ASHRAE RP-1275, a commonly used strategy was evaluated and 

recommended. The strategy adopts MLR for reference model development, t-statistic for 

fault detection, as well as the rule table specified in Table 5.6 for diagnosis, namely 

Typical MLR-t for short in this paper. In Table 5.6, the sign 0 indicates no obvious 

change. The real-time data generated in the RP-1043 were also used here. Since such 

strategies are usually validated at the confidence level of 95.45% in the related 

publications, comparisons are made at both confidence levels of 95.45% (2σ) and 

99.73% (3σ) respectively. Only four faults are considered here, excluding two faults (i.e. 

reduced evaporator and condenser water flow rate) which are easy to be handled.  

Table 5.6 Fault diagnosis rule table recommended in the RP-1275 (only four faults 

included) 

Fault type Tsc TCA UAcond. 

refrigerant leakage ▼ ▼ ▲ 

refrigerant overcharge ▲ ▲ ▼ 

condenser fouling 0 ▲ ▼ 

non-condensable gas ▲ ▲ ▼ 

 

5.3.1 Normal Condition 

Three normal experimental data sets from the ASHRAE RP-1043 are used in the 

comparison study in normal condition, i.e. ‘normal’, ‘normal1’ and ‘normal2’, as shown 

in Figure 5.7. For both strategies, the performances at the confidence level of 99.73% 

are better than that at 95.45%. False alarm ratios when using the Typical MLR-t strategy 

are about 4.0% and 2.4% at the confidence levels of 95.45% and 99.73% respectively, 

while there are 3.6% and 0.0% only when using the proposed strategy. The proposed 



113 

 

strategy is noticeably better than the Typical MLR-t strategy. It is worth noticing that 

the Typical MLR-t strategy achieved higher ratios within both confidence intervals.  

 
Figure 5.7 Correct diagnosis and false diagnosis ratios using proposed strategy and 

Typical MLR-t strategy under the normal conditions 

5.3.2 Condenser Fouling 

Using the Typical MLR-t strategy, the highest ratios of correctly diagnosed points 

are 0.7%, 5.1%, 14.8%, 53.3% at SL-1, SL-2, SL-3 and SL-4 respectively at both 

confidence levels, as shown in Figure 5.8. The corresponding false diagnosis ratios are 

6.5%, 8.9%, 16.1% and 18.7%. It does not effectively diagnose this fault because the 

ratios of correctly diagnosed points are even lower than the false diagnosis ratios at SL-1, 

SL-2 and SL-3. This is mainly caused by the performance index Tsc, which is assumed 

not being affected by this fault. As shown in same figure, it is obvious that the proposed 

strategy is more effective than the Typical MLR-t strategy. At the confidence level of 
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99.73%, the ratios of correctly diagnosed points are 7.7%, 45.2%, 60.7%, 100.0% at SL-

1, SL-2, SL-3 and SL-4 respectively. 

 
Figure 5.8 Correct diagnosis and false diagnosis ratios using proposed strategy and 

Typical MLR-t strategy in the case of condenser fouling 

5.3.3 Refrigerant Leakage 

Using the Typical MLR-t strategy, the highest ratios of correctly diagnosed points 

are 14.3%, 21.3%, 81.0% and 99.4% at SL-1, SL-2, SL-3 and SL-4 at both confidence 

levels, as shown in Figure 5.9. They are almost half of the ratios of the proposed 

strategy. At the confidence level of 99.73%, the ratio of correctly diagnosed points is 
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not be distinguished with the false diagnosis ratios in the case of condenser fouling (3.2% 

and 6.5% at SL-1 and SL-2 respectively). Using the proposed strategy at confidence 
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and SL-2 respectively. They are about three and two times of the results of the Typical 

MLR-t strategy (6.5% and 17.0%) respectively. 

 
Figure 5.9 Correct diagnosis and false diagnosis ratios using proposed strategy and 

Typical MLR-t strategy in the case of refrigerant leakage 

5.3.4 Refrigerant Overcharge 

Using the Typical MLR-t strategy, the ratios of correctly diagnosed points at SL-1 

and SL-2 are 42.1% and 47.5% at confidence level of 95.45%, and they were 7.2% and 

8.9% at confidence level of 99.73%, as shown in Figure 5.10. For the proposed strategy 

at both confidence levels, the lowest ratios of correctly diagnosed points are 89.5%, 

98.7%, 100.0%, 100.0% at SL-1, SL-2, SL-3 and SL-4 respectively. The wrongly 

diagnosed ratios are 2.6%, 3.9% at SL-1 using the Typical MLR-t strategy at both 

confidence levels. They are 0.0% at four severity levels at both confidence levels using 

the proposed strategy. The improvements of FDD performances are obvious.  
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Figure 5.10. Correct diagnosis and false diagnosis ratios using proposed strategy and 

Typical MLR-t strategy in the case of refrigerant overcharge 

5.3.5 Non-condensable Gas 

Using the Typical MLR-t strategy, the ratios of correctly diagnosed points are 100.0% 

at four severity levels for both confidence levels, as shown in Figure 5.11. Using the 

proposed strategy, the ratios of correctly diagnosed points are 99.4% and 98.7% at SL-1 

at two confidence levels respectively, and they were 100.0% at SL-2, SL-3 and SL-4. 

Both strategies could correctly diagnose the non-condensable gas without any problem. 
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Figure 5.11 Correct diagnosis and false diagnosis ratios using proposed strategy and 

Typical MLR-t strategy in the case of non-condensable gas 

5.4 Summary 

A new statistical fault detection and diagnosis strategy is proposed in this chapter, 

which adopts three main innovations including a new performance index (εsc), the 

EWMA control charts and the SVR based reference models. Two comprehensive 

comparison studies are conducted using the experimental data from the ASHRAE RP-

1043.  

It is found that the proposed strategy improved the FDD performances significantly, 

especially at low severity levels. For example, in the case of condenser fouling, the 
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and 100.0% at four severity levels (SL-1 to SL-4) respectively at the confidence level of 
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not be correctly diagnosed at level SL-1, SL-2 and SL-3. Significant improvements can 

also be found in the cases of other two typical faults (refrigerant leakage and refrigerant 

overcharge). Other three faults (i.e. non-condensable gas, reduced evaporator water flow 

rate and reduced condenser water flow rate) can be easily diagnosed similarly as other 

strategies.  

The EWMA control charts contribute the most to the improvement on FDD 

performance. It reduces the Type II errors through taking into account the time series 

information using the weighting factor. Therefore, the EWMA-based strategies achieves 

much higher correct diagnosis ratios compared with the t-statistic-based strategies. The 

heat transfer efficiency of the sub-cooling section (εsc) is an effective performance index 

to represent the effects of faults on the thermal performance of sub-cooling section. It is 

especially useful in improving the FDD performance for condenser fouling. As a new 

machine learning algorithm based on structural risk minimization from statistical 

learning theory, SVR could be more efficient than MLR approach using the actual site 

data of higher uncertainty level. 
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CHAPTER 6 AN INCIPIENT FAULT DETECTION AND 

DIAGNOSIS STRATEGY FOR HVAC SYSTEMS 

This chapter presents a system-level incipient fault detection and diagnosis strategy 

for HVAC systems. It is an improvement of the system-level FDD strategy proposed by 

Zhou et al. (2009). Evaluations are made on a simulation platform for a super-rise 

commercial building in Hong Kong. Three typical subsystems are considered in this 

chapter, i.e. cooling tower system, chillers and heat exchanger system, at four severity 

levels and two uncertainty levels. Comparisons are made between SVR-based models 

and MLR-based models, as well as the proposed strategy and MLR-t-statistic-based 

strategy. 

6.1 Outline of the System Level FDD Strategy 

Component-level FDD strategies focus on detecting and identifying reasons of faults 

in a targeted component of HVAC systems. In contrast, the system-level FDD strategies 

are developed to identify the components which contribute to the performance 

degradation of HVAC systems. Compared with the component-level FDD, the system-

level FDD mainly focus on the energy consumptions (Zhou et al. 2009). Up to now, 

there are very few practical applications of component-level FDD strategies. System-

level FDD strategies seem to be easier to be applied for energy saving purposes at 

current stage. 

A model-based system-level FDD strategy was proposed by Zhou et al. (2009). It 

was enhanced by considering sensor FDD (Wang, S.W. et al. 2010). MLR was used to 
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develop reference performance index (PI) models to generate benchmarks. PIs can be 

direct measurements, such as power and temperature or the direct products of 

measurements. They usually have physical meanings. A typical example of PI for 

chillers is the coefficient of performance (COP). An online adaptive scheme was 

developed to estimate and update the thresholds for detecting abnormal PIs. The 

uncertainties coming from both model-fitting errors and measurement errors were 

analysed. The FDD performance was good on faults at higher severity levels. However, 

it was poor on the incipient faults which were at lower severity levels. It reveals two 

shortcomings of conventional FDD strategies. Firstly, in the conventional strategies, a 

fault is detected when the residuals of PIs are outside of their predefined confidence 

intervals, which are generated using t-statistic approach, adaptive threshold approach, 

etc. These approaches only use the information of current data. This feature makes these 

strategies relatively insensitive to small shifts of residuals when an incipient fault occurs. 

However, when a strategy is applied to the incipient faults, most of the residuals might 

be still within the confidence interval, which are considered to be normal. This is the so 

called Type II error in statistical test theory. Secondly, HVAC systems show obvious 

nonlinear character. The MLR algorithm, which is widely adopted in HVAC FDD, is 

still a linear regression algorithm. The accuracy of reference models might be improved 

if nonlinear regression approaches are introduced. However, the Type II error 

contributes the most to the poor FDD performance on incipient faults. 

The FDD strategy in this chapter aims to improve fault detection performance 

concerning system-level incipient faults. Firstly, SVR is adopted to develop reference PI 
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models in order to achieve higher accuracy. Secondly, the EWMA control charts are 

implemented to detect the shifts of PI residuals. 

6.2 Case Study: Application on A HVAC System 

6.2.1 Descriptions of the HVAC System 

The HVAC system concerned in this study is in a new super-rise commercial 

building in Hong Kong. In the system, the speeds of cooling tower fans are controlled to 

maintain an optimized outlet water temperature. For the cooling tower system, the 

inputs are total heat rejection, inlet water temperature and inlet air web-bulb temperature. 

For the chillers, the inputs are the chilled water supply temperature, the chilled water 

return temperature and the entering condenser water temperature. The pumps before 

heat exchangers are controlled to maintain the outlet water temperature after heat 

exchangers. The pumps after heat exchangers are controlled to maintain the remote 

differential pressure. For the heat exchanger system, the inputs are water flow rate after 

heat exchangers, inlet water temperatures and outlet water temperatures of heat 

exchangers. 

The building is divided into five zones to avoid the chilled water pipelines and 

terminal units from suffering extremely high pressure. The floors below the sixth floor 

are Zone 1. This study concerns the cooling water subsystem, chillers and chilled water 

system serving Zone 1. There are eleven cooling towers, six chillers, two heat 

exchangers, six constant-speed condenser pumps, six constant-speed primary pumps, 

two secondary variable-speed pumps after/before heat exchangers. The same simulated 

system used in a previous study (Zhou et al. 2009) is used for the evaluation tests in this 
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study. It is a dynamic HVAC simulation platform which was developed by Ma (2008) 

using TRNSYS, as shown in Figure 6.1. More details can be found in Ma (2008).  

 

Figure 6.1 Illustration of the simulation platform and the selected subsystems for 

evaluations  

6.2.2 Data Description 

Both fault-free data and fault data are generated using the simulation platform. Five 

typical days, which are in the third week of July, are selected to validate the proposed 

strategy. In the first three days, fault-free data are generated for reference PI models 
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development. In the other two days, different kinds of faults are conducted at four 

severity levels (SLs) on the subsystems which are marked out in Figure 6.1. Fault-free 

data are also generated in the other two days to evaluate the reference PI models. 

Uncertainties in variables. Uncertainties in variables are significant to fault 

detection performance. In this study, the uncertainties (sensor noises) are assumed to be 

normal distribution (Jaynes 2003). Normally distributed noises are randomly generated 

and added to the variables. The uncertainty levels in actual measurements depend on the 

quality of sensors and their maintenances. They are rather different in different buildings. 

In this study, two uncertainty levels are considered. At uncertainty level 1 (UL-1), the 

standard deviations are 0.2℃ on all temperature sensors, and 3% on all water flow 

meters and power meters. At uncertainty level 2 (UL-2), the standard deviations are 

doubled. 

Fault data description. The fault data are obtained through introducing faults on the 

simulation platform. Three typical subsystems are considered in this study, i.e. cooling tower 

system, chillers and heat exchanger system.  

The typical faults in cooling tower systems are fan motor degradation and heat 

transfer degradation. These two faults result in extra fan power consumption. In this 

study, both faults are simulated by reducing the number of transfer units (NTU). Fan 

motor degradation will increase tower fan power to maintain a certain NTU. Therefore, 

reducing NTU can simulate the effects of fan motor degradation fault on PI. The typical 

faults in chillers are compressor motor degradation, condenser fouling and evaporator 

fouling. When such faults occur, both COP and power consumptions will deviate from 

their healthy values. The degradations are simulated by increasing electromechanical 
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power loss. The typical faults in the heat exchanger systems are tube fouling and 

blockage. Both faults are simulated by reducing the UA of heat exchangers. 

6.2.3 Reference PI Models 

The PIs represent the health statuses of the subsystems. For a subsystem, there 

would be many PIs. In this study, only a typical PI is selected for each subsystem to 

evaluate the proposed strategy. Table 6.1 presents the typical faults concerned on the 

selected subsystems. It shows the way to model the faults as well as the formulations of 

typical PIs. Mw_bfHX is the flow rate of chilled water which is measured before the heat 

exchanger concerned. 

Table 6.1 Typical faults of HVAC subsystems and corresponding performance indexes 

(PIs) 

Subsystem Typical Faults Fault modeling PI formulation 

Cooling tower 

system 

Motor degradation; 

heat transfer 

degradation 

NTU ratio reduction (5%, 

10%, 15%, 20%) 

Wct, measured 

value 

Chiller system 

Compressor motor 

degradation; 

condenser; evaporator 

fouling 

Increase electromechanical 

power loss (5%, 10%, 15%, 

20%) 

COP, 

calculated 

value 

Heat 

exchanger 

system 

Tube fouling; blockage 

Decrease in the heat 

transfer coefficient (5%, 

10%, 15%, 20%) 

 Mw_bfHX, 

measured value 

 

Compared with physical models, such kind of gray-box models have two main 

advantages. One advantage is that the models are easy to be developed. The other 

advantage is that the models might have higher accuracy. SVR offers prominent 

advantages such as excellent learning capability using limited samples and good 
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generalization ability.  The main disadvantage of gray-box models is that they only 

work well within the range of operating conditions of the training data. Therefore, the 

gray-box models should be trained using data of wide range operating conditions. 

6.3 Results and Discussions 

6.3.1 Evaluation of the PI models 

The fault-free data of the first three days are used to train reference PI models. The 

fault-free data of the other two days are used to validate the models. The comparisons 

are made between SVR-based models and MLR-based models using data without the 

normally distributed noises. In this study, it is found that both strategies have rather 

different regression performances (e.g. R
2
 and RMSE) when different noises are added 

which are generated at the same way. For instance, two sets of noises are randomly 

generated using the same noise function. Then, two sets of training data are generated by 

the simulation platform through adding two sets of noises to variables. SVR-based 

models and MLR-based models are trained using the two training data sets respectively. 

Their regression performances are different at each training data set. It is because the 

noises are different each time although they are of the same distribution, e.g. mean and 

standard deviation. Therefore, the comparisons between SVR-based models and MLR 

models are made using the data without noises. 

The evaluation results are as shown in Table 6.2 and Figures 6.2-6.4. R
2 

is a measure 

of the goodness of the fitting. The higher the R
2 

is, the better the fitting result is. From 

Table 6.2, it can be observed that the performance of Wct model is improved obviously. 

Its R
2
 increases from 0.8413 (MLR-based model) to 0.9809 (SVR-based model). The R

2
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of Mw_bfHX model increases from 0.9954 (MLR-based model) to 0.9969 (SVR-based 

model). The R
2
 of COP model reduces from 0.9985 (MLR-based model) to 0.9984 

(SVR-based model). It shows that SVR-based models have better performance overall.  

Table 6.2  Performance of SVR-based PI models and MLR-based PI models 

PI 

SVR-based MLR-based 

R
2
 RMSE R

2
 RMSE 

Wct 0.9809 1.2488 0.8413 3.6020 

COP 0.9984 0.0073 0.9985 0.0069 

Mw_bfHX  0.9969 0.4018 0.9954 0.4837 

 

 
Figure 6.2 Comparison between measured and predicted Wct 
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Figure 6.3 Comparison between calculated and predicted COP 

 

Figure 6.4 Comparison between measured and predicted Mw_bfHX 

 

6.3.2 Evaluation of The Fault Detection Performance 

Comparisons are made between SVR-EWMA-based strategy and MLR-t-statistic-

based strategy at two uncertainty levels, as illustrated in Table 6.3. For each subsystem 

fault at uncertainty level 2, the fault detection results of 100 samples are as shown in 

Figures 6.5-6.7. In this study, fault detection ratio is the percentage that a fault is 

detected, as shown in Table 6.3.  
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Figure 6.5 Fault detection performance on cooling tower fault (NTU is 5% reduced) at 

uncertainty Level 2-(A): MLR-t-statistic-based; (B): SVR-EWMA-based  

Table 6.3 Fault detection ratios on three subsystems using two strategies 

Subsystem Strategy 
Uncertain level 

(UL) 

Severity Level (SL) 

SL-1 SL-2 SL-3 SL-4 

Cooling  

tower 

NTU ratio 0.95 0.9 0.85 0.80 

SVR-EWMA 
UL-1 91% 91% 98% 100% 

UL-2 90% 92% 98% 100% 

MLR-t-statistic 
UL-1 69% 86% 92% 100% 

UL-2 56% 79% 88% 96% 

Chiller 

Power loss ratio 1.05 1.1 1.15 1.20 

SVR-EWMA 
UL-1 89% 100% 100% 100% 

UL-2 77% 100% 100% 100% 

MLR-t-statistic 
UL-1 47% 98% 100% 100% 

UL-2 38% 87% 99% 100% 

Heat  

exchanger 

UA ratio 0.95 0.9 0.85 0.80 

SVR-EWMA 
UL-1 55% 93% 99% 99% 

UL-2 36% 77% 87% 96% 

MLR-t-statistic 
UL-1 8% 51% 90% 100% 

UL-2 5% 19% 41% 80% 
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Figure 6.6 Fault detection performance on chiller fault (power loss is 5% increased) at 

uncertainty Level 2 - (A): MLR-t-statistic-based strategy, (B): SVR-EWMA-based 

strategy 

 

Figure 6.7 Fault detection performance on heat exchanger fault (UA is 5% reduced) at 

uncertainty Level 2 - (A): MLR-t-statistic-based strategy, (B): SVR-EWMA-based 

strategy 

It can be found that the SVR-EWMA-based strategy improves the fault detection 

performance significantly compared with the MLR-t-statistic-base strategy. The control 

Samples

R
es

id
u
al

 o
f 

C
O

P
E

W
M

A
 o

f 
C

O
P

Samples

10 20 30 40 50 60 70 80 90 100

-0.4

-0.2

0

0.2

 

 
Data

Violation

Center

LCL/UCL

10 20 30 40 50 60 70 80 90 100
-0.4

-0.2

0

0.2

 

 
Data

Violation

Center

LCL/UCL

(A)

(B)

Samples

R
es

id
u
al

 o
f 

M
w

_
b
fH

X
E

W
M

A
 o

f 
M

w
_
b
fH

X

Samples

10 20 30 40 50 60 70 80 90 100
-15

-10

-5

0

5

10

15

 

 

Data

Violation

Center

LCL/UCL

10 20 30 40 50 60 70 80 90 100

-5

0

5

10

 

 

Data

Violation

Center

LCL/UCL

(A)

(B)



130 

 

chart is more sensitive to smaller long-term deviations when the weighting factor λ is 

smaller. However, it increases with Type I error ratio in fault free condition. Most of the 

incipient faults in HVAC field are gradually generated faults. λ can be optimized to keep 

Type I error ratio within acceptable level in fault free condition, e.g., around 5%. In this 

study, the fault detection performance in fault free condition is the best when λ is within 

[0.3, 0.4]. The parameters of EWMA control charts are as follows: L is 2.5758 to obtain 

99.0% confidence level. λ is 0.35 to balance the fault detection performance and 

robustness under fault-free condition. The sample group size n is 1.  

The fault-free data of the last two days are used to validate the proposed strategy. 

The Type I error ratios are normally around 5% at two uncertainty levels on three sub-

systems. It is found that the EWMA-based strategy is sensitive to the noise introduced. 

The Type I error ratios would be rather different when introducing different noises 

randomly generated using the same standard deviation. If the noises are not added to the 

test data, most of the Type I errors are 0.0%. Therefore, the outlier detector and steady-

state filter should be properly designed to pre-process the simulated data with noises 

added.  

In the case that the NTU of cooling tower is reduced by 5%, the fault detection ratios 

are improved from 69% to 91% at uncertainty level 1 (UL-1) and from 56% to 90% at 

uncertainty level 2 (UL-2) using the SVR-EWMA-based strategy, as shown in Table 6.3. 

Figure 6.5(A) shows that a significant amount of fault data is within the confidence 

interval using t-statistic. Figure 6.5(B) shows that the EWMA values of Wct are 

obviously outside of the confidence interval most of the time. The Type II error ratio is 

reduced significantly using the EWMA control chart. It is because that EWMA control 
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chart takes into account the time series information to reduce the Type II error. It is 

sensitive to the deviation of the distribution of process. The fault detection ratios are 

also improved when the NTU reduces 10%, 15% and 20%, as shown in Table 6.3. 

In the case when the electromechanical power loss of chiller is increased by 5%, the 

fault detection ratios are improved from 47% to 89% at uncertainty level 1 and from 38% 

to 77% at uncertainty level 2 using the SVR-EWMA-based strategy, as shown in Figure 

6.6. Figure 6.6(A) shows the fault detection performance of MLR-t-statistic-based 

strategy. The distribution of residuals is obviously changed. However, most of residuals 

are still within the confidence interval which causes a higher Type II error ratio. Figure 

6.6(B) shows the fault detection performance of the SVR-EWMA-based strategy. Most 

of EWMA values of COP are outside of the confidence interval. The fault detection 

ratios are improved slightly using the SVR-EWMA-based strategy when the power loss 

is increased by 10% and 15%, as shown in Table 6.3. Both strategies can detect 100% of 

the fault when the power loss is increased by 20%.  

In the case when the UA of heat exchanger is reduced by 5%, MLR-t-statistic-based 

strategy detects 8% and 5% of fault data at uncertainty level 1 and uncertainty level 2 

respectively. Meanwhile, SVR-EWMA-based strategy detects 55% and 36% of the fault 

data at uncertainty level 1 and uncertainty level 2 respectively.  Figure 6.7 shows the 

fault detection performance of both strategies. The SVR-EWMA-based strategy detects 

some fault data which are considered to be fault-free by MLR-t-statistic-based strategy. 

When the UA of heat exchanger is reduced by10%, the fault detection ratios of MLR-t-

statistic-based strategy are still low, i.e. 51% at Level 1 and 19% at Level 2. The ratios 

are 93% and 77% using SVR-EWMA-based strategy.  
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6.4 Summary 

A system-level incipient fault detection strategy is proposed in this chapter. It 

involves two main innovations, i.e. the SVR-based PI models and the EWMA control 

charts, to improve the fault detection performance on incipient faults.  

Evaluations are made on a simulated commercial building at four severity levels and 

two uncertainty levels. The proposed strategy improves the fault detection performance 

significantly especially when incipient faults are concerned. At SL-1 and UL-2, the fault 

detection ratios are 56% and 90%  (cooling tower fault), 38% and 77% (chiller fault), 5% 

and 36% (heat exchanger fault) using the MLR-t-statistic-based strategy and the 

proposed strategy respectively. The EWMA control chart strategy contributes the most 

to the improvements. It takes the time series information into account to reduce the Type 

II error. The SVR-based PI models are slightly better than MLR-based PI models. The 

SVR-EWMA-based strategy achieves much higher fault detection ratio compared with 

MLR-t-statistic-based strategy. To reduce the risk of false alarm, a subsystem is reported 

to be faulty if the fault detection ratio is higher than a threshold, e.g. 30%. 

In this study, only one PI is introduced for each subsystem. Actually, more PIs can 

be introduced to improve the fault detection performance or to diagnose faults. It can 

also be used to develop reference PI models considering a subsystem to be one 

component. The proposed strategy is validated using simulation data in this study. 
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CHAPTER 7 A PATTERN RECOGNITION-BASED FDD 

STRATEGY FOR CHILLERS 

This chapter represents an application of the proposed pattern recognition-based 

FDD strategy on centrifugal chiller. Different from conventional chiller FDD strategies, 

it considers the FDD problem as a typical one-class classification problem. Fault-free 

data are considered as a fault-free class. Each type of fault is considered as an individual 

fault class. The task of fault detection is to detect whether the process data are outliers of 

the fault-free class. The task of fault diagnosis is to find out which fault class does the 

process data belong to. SVDD algorithm is introduced for the one-class classification. 

The basic idea of SVDD-based strategy is to find a minimum-volume hypersphere in a 

high dimensional feature space to enclose most of the data of an individual class. The 

proposed strategy is validated using ASHRAE RP-1043 experimental data. 

7.1 Outline of The SVDD-based Chiller FDD strategy 

As presented in Section 3.3.2, the applications of the proposed SVDD-based FDD 

method includes two processes, i.e. offline models training and online FDD. In the 

process of offline models training, SVDD models are trained for fault-free class and 

each fault classes respectively, as illustrated in Figure 3.6. In the process of online FDD, 

the SVDD models are used to detect and diagnose fault, as illustrated in Figure 3.7. 

More details refer to Section 3.3.2. 
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7.2 Evaluation of The SVDD-based Chiller FDD Strategy 

7.2.1 Experimental Data and Data Pre-processing 

The ‘Complete data set’ from RP-1043 is selected here since pattern recognition-

based strategies need more data for training. A steady-state detector is introduced to 

remove dynamic data, which was developed for vapor compression system (Kim et al. 

2008). Five variables are selected as steady-state indexes in this study, i.e. sub-cooling 

temperature, superheat temperature, evaporating temperature, evaporator approach 

temperature and condenser approach temperature. There are about 1500 data remained 

after data pre-processing (about 30% of 5191) for each dataset. 400 series of data are 

randomly selected for evaluations of online FDD. The rest ones are training data. 

There are 64 variables recorded on the RP-1043 chiller. The variable selection 

affects significantly the accuracies of pattern recognition-based FDD strategies. The 

selecting criterions are as follows: 1) They should be able to determine the unique 

operating conditions; 2) They can be properly information redundancy to enhance the 

robustness of FDD; 3) The number of variables should be not very large to maintain its 

sensitivities to faults at slight severity levels, and to reduce computational complexity. 

Or, feature extraction approaches can be introduced to reduce dimensionality. In this 

study, 16 variables are selected as shown in Table 7.1. At the end of data pre-processing, 

the training data are normalized to improve the performances of SVM models and 

SVDD models (Han et al. 2012).  

The normality of each variable is assessed using the Shapiro-wilk test. The p-value 

for each variable is calculated to quantify the strength of the evidence against the null 
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hypothesis in favor of the alternative. A p-value<0.05 means that the null hypothesis is 

rejected and the data is highly unlikely to be Gaussian distributed. A shown in Table 7.2, 

it can be found that all variables are obviously non-Gaussian distributions. The 

normality tests of Tcd (condensing temperature) and Tsc (sub-cooling temperature) are 

illustrated at Figure 7.1 and Figure 7.2 respectively as examples. The red points 

represent the actual distribution of Tcd (Figure 7.1) and Tsc (Figure 7.2). The blue lines 

represent the Gaussian distribution. 

Table 7.1 Variables selected for validations of SVDD-based method and SVM-based 

method 

No. Measurement No. Measurement 

1 Chilled-water supply temperature 9 Entering condenser water temperature 

2 
Entering evaporator water 

temperature 

10 Chiller electrical power input 

3 
Leaving condenser water 

temperature 

11 Evaporating temperature 

4 Evaporator approach temperature 12 Condensing temperature 

5 Condenser approach temperature 13 Refrigerant suction temperature 

6 Sub-cooling temperature 14 Refrigerant suction superheat  

temperature 

7 Refrigerant discharge temperature 15 
Refrigerant discharge superheat 

temperature 

8 Temperature of oil in sump 16 Pressure of oil feed 

Table 7.2 Shapiro-wilk test for each variable selected for fault detection (p-value<0.05 

means it is highly unlikely to be Gaussian distributed)  

No. p-value Distribution No. p-value Distribution 
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1 4.75E-05 non-Gaussian 9 8.53E-05 non-Gaussian 

2 2.44E-11 non-Gaussian 10 3.61E-06 non-Gaussian 

3 5.49E-10 non-Gaussian 11 8.59E-09 non-Gaussian 

4 2.86E-05 non-Gaussian 12 1.99E-08 non-Gaussian 

5 2.91E-09 non-Gaussian 13 1.17E-05 non-Gaussian 

6 5.19E-05 non-Gaussian 14 2.94E-09 non-Gaussian 

7 4.00E-06 non-Gaussian 15 0.01552 non-Gaussian 

8 7.43E-07 non-Gaussian 16 0.01354 non-Gaussian 

 

 
Figure 7.1 Normality test of Tcd (non-Gaussian distribution) 
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Figure7.2 Normality test of Tsc (non-Gaussian distribution) 

7.2.2 Performance Test of The Proposed SVDD-based FDD Strategy 

7.2.2.1 Optimization of parameters 

Libsvm is a library for support vector machines. The SVDD tool in Libsvm is used 

to validate the SVDD-based FDD strategy. In the SVDD tool, a parameter nu is 

introduced which is equivalent to C. Gaussian radial basis function (RBF) kernel is 

selected. There are two parameters, i.e. nu and γ, should be properly optimized.  

The cross-validation procedure can prevent the over fitting problem when 

optimizing the parameters. In v-fold cross-validation, the training data set is divided into 

v equally-sized subsets firstly. Sequentially, one subset is tested using the classifier 

trained on the remaining v-1 subsets. In this way, each instance of the whole training set 

is predicted once so the cross-validation accuracy is the percentage of data which are 

correctly classified. This study uses a grid-search on nu and γ using 5-fold cross-

validation. Various pairs of nu and γ are tried and the one of the best cross-validation 

accuracy is picked up. Therefore, the accuracies of the SVDD models on training data 
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set are different from their cross-validation accuracies. In this study, the cross-validation 

accuracies on training data set are controlled around 95%. Further discussion can be 

found in Section 7.2.1.  

7.2.2.2 Fault detection results 

The task of fault detection is to detect outliers which do not belong to the fault-free 

class. The fault-free SVDD model is trained using the pre-processed fault-free training 

data which is named ‘normal2’ in RP-1043. The false alarm ratio is 0.4% using training 

data and 0.5% using test data. The fault-free SVDD model is validated using test data of 

the seven typical faults at four severity levels. The results are shown in Table 7.2, where 

R is data set. 

 

 

 

Table 7.3 Fault detection ratios (outlier ratios) of fault data using fault-free SVDD 

model 

Severity Level RCdFoul RRefOver RRefLeak RNcg RRedEvW RRedCdW RExOil 

SL-1 100% 95% 74% 100% 52% 85% 98% 

SL-2 100% 99% 81% 100% 44% 89% 99% 

SL-3 100% 100% 97% 100% 76% 100% 100% 

SL-4 100% 100% 100% 100% 93% 100% 100% 
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The higher the severity level is, the higher detection ratio will be. The fault-free 

SVDD model can successfully detect all faults. The best performances are obtained at 

RCdFoul, RNcg and RExOil. Almost 100% of them are detected at each severity level. The 

worst performance is obtained at RRedEvW, i.e. 52%, 44%, 76% and 93% at Sl-1, Sl-2, 

SL-3 and SL-4 respectively. The ratios are still high enough to alarm a fault. 

7.2.2.3 Diagnosis results when involving all classes in training 

The task of fault diagnosis is to identify to which fault class the data belong. Seven 

fault SVDD models were trained using training data of all the seven faults at SL-1. Then, 

each model was validated using test data of every class (at SL-1). Table 7.3 shows the 

inlier ratio of each fault data set, identified by a SVDD model. For instance, the CdFoul 

SVDD model (MCdFoul) identifies 4% of fault-free data (RNormal) to be condenser fouling. 

Where, M is the fault SVDD model. RNormal is ‘normal2’ data set. Rtraining is the fault data 

set for training. 

Table 7.4 Fault diagnosis ratios (inlier ratios) using SVDD-based strategy at SL-1 

SVDD model Rtraining RNormal RCdFoul RRefOver RRefLeak RNcg RRedEvW RRedCdW RExOil 

MCdFoul 4% 0% 96% 0% 0% 0% 0% 0% 0% 

MRefOver 4% 11% 0% 95% 36% 0% 4% 3% 18% 

MRefLeak 2% 16% 0% 30% 96% 0% 11% 3% 13% 

MNcg 2% 0% 0% 0% 0% 96% 0% 0% 0% 

MRedEvW 2% 42% 0% 2% 5% 0% 95% 25% 0% 

MRedCdW 5% 42% 0% 4% 6% 0% 54% 93% 0% 

MExOil 3% 0% 0% 1% 4% 0% 0% 0% 95% 

 



140 

 

All fault SVDD models correctly identified fault data of their own class with high 

ratios, i.e. 96% (RCdFoul), 95% (RRefOver), 96% (RRefLeak), 96% (RNcg), 95% (RRedEvW), 93% 

(RRedCdW) and 95% (RExOil). The best performances were obtained using MCdFoul and MNcg, 

which are 0% on the other fault classes. Most of false ratios are lower than 30%. The 

worst results are 54% (MRedCdW on RRedEvW), 42% (MRedCdW and MRedEvW on RNormal), 36% 

(MRefLeak on RRefOver). However, the faults can still be diagnosed correctly. It is an 

information fusion task to determine the diagnosis result. Taking RRedEvW for instance, it 

is correctly alarmed with 52% detection ratio using MNormal. Although the false diagnosis 

ratio is 54% by MRedCdW, the correct diagnosis ratio is obviously higher by MRedEvW, i.e. 

95%. RedEvW is still correctly reported. 

Another case is made using test fault data at SL-2, as shown in Table 7.4. The 

performance is better. Taking the same RRedEvW for instance, the false diagnosis ratio 

using MRedCdW dropped from 54% to 42%. 

It should be mentioned that most of the model-based/rule-based chiller FDD 

strategies did not work well at SL-1 and SL-2. For instance, using the ASHRAE RP-

1043 experimental data, the correct diagnosis ratios were 0%, 0%, 0% at SL-1 and 25%, 

0%, 0% at SL-2 respectively for the RefLeak, CdFoul and ExOil in Cui and Wang 

(2005). The MLR and t-statistic-based strategy in AHSRAE RP-1275 was reported that 

the ratios of correctly diagnosed points were 3.7%, 0%, 0% at SL1 and 7.4%, 0%, 0% at 

SL2 the RefLeak, CdFoul and ExOil respectively (Reddy 2006). 
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Table 7.5 Fault diagnosis ratios (inlier ratios) using SVDD-based strategy at SL-2 

SVDD model Rtraining RNormal RCdFoul RRefOver RRefLeak RNcg RRedEvW RRedCdW RExOil 

MCdFoul 2% 0% 96% 0% 0% 0% 0% 0% 0% 

MRefOver 6% 2% 0% 93% 8% 0% 0% 2% 2% 

MRefLeak 4% 13% 0% 14% 97% 0% 5% 3% 18% 

MNcg 4% 0% 0% 0% 0% 94% 0% 0% 0% 

MRedEvW 2% 50% 0% 2% 30% 0% 96% 12% 0% 

MRedCdW 2% 47% 0% 8% 7% 0% 42% 96% 0% 

MExOil 3% 0% 0% 1% 5% 0% 0% 0% 94% 

 

7.2.2.4 Diagnosis results when not involving all classes in training 

The fault diagnosis ratios in this test are the same as that in the tests when involving 

all classes in training. It is because that SVDD models are robust naturally when using 

data of classes which are not involved in training since the purpose of one-class 

classification algorithm is to reject all data of other classes. As shown in Table 7.3 and 

Table 7.4, each SVDD model accepts more than 90% of their own class data. 

Meanwhile, they effectively reject data which do not belong to their own classes. At SL-

1, RCdFoul and RNcg are rejected with 100% ratio by SVDD models of other classes. 

Similar conclusions can be found at SL-2. The top 3 false diagnosis ratios are 54% 

(RRedCdW using MRedCdW) and 42% (RNormal using MRedCdW and MRedEvW). However, three 

faults are still correctly reported since they are identified, by their own SVDD models, 

with higher ratios. 
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7.2.3 Comparisons With SVM-based FDD Strategy 

7.2.3.1 SVM tool and parameters optimization 

There are many types of SVMs. In this study, C-SVC is selected from Libsvm 

(Chang and Lin 2011). Gaussian radial basis function (RBF) kernel is selected. The two 

parameters in each C-SVC model, i.e. C and γ, are also optimized using 5-folder cross-

validation through grid-search. 

7.2.3.2 Fault diagnosis performance by SVM-based FDD strategy 

A SVM model was trained using the same training data. Then, the SVM model was 

validated using same test data. The fault diagnosis results are shown in Table 7.5. Take 

RCdFoul for instance, 94% of the data are classified to CdFoul and the rest 6% are 

classified to Normal. The correct diagnosis ratios are classes are 94% (CdFoul), 95% 

( RefOver),  94% ( RefLeak), 94% ( Ncg), 96% (RedEvW), 95% (RedCdW), 95% (ExOil) 

and 100% (Normal) respectively. They are similar to the results using SVDD models. 

 

Table 7.6 Fault diagnosis ratios using SVM-based FDD strategy at SL-1 

Fault data CdFoul RefOver RefLeak Ncg RedEvW RedCdW ExOil Normal 

RCdFoul 94% 0% 0% 0% 0% 0% 0% 6% 

RRefOver 0% 95% 0% 0% 0% 0% 0% 5% 

RRefLeak 0% 0% 94% 0% 0% 0% 0% 6% 

RNcg 0% 0% 0% 94% 0% 0% 0% 7% 

RRedEvW 0% 0% 0% 0% 96% 0% 0% 4% 
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RRedCdW 0% 0% 0% 0% 0% 95% 0% 5% 

RExOil 0% 0% 0% 0% 0% 0% 95% 5% 

RNormal 0% 0% 0% 0% 0% 0% 0% 100% 

 

Similarly, a SVM model was trained and validated at SL-2. The fault diagnosis 

results are shown in Table 7.6. The performance is similar to that at SL-1. The diagnosis 

ratios improve slightly from 95%, 95% to 96%, 100% for RefOver, and RedCdW 

respectively. The other diagnosis ratios drop slightly from 94%, 94%, 96%, 95% and 

100% to 93%, 91%, 94%, 94% and 99% for RefLeak, Ncg, RedEvW, ExOil and Normal 

respectively. All faults are correctly detected and diagnosed. 

 

Table 7.7 Fault diagnosis ratios using SVM- based FDD strategy at SL-2 

Fault data CdFoul RefOver RefLeak Ncg RedEvW RedCdW ExOil Normal 

RCdFoul 94% 0% 0% 0% 0% 6% 0% 0% 

RRefOver 0% 96% 0% 0% 0% 4% 0% 0% 

RRefLeak 0% 0% 93% 0% 0% 6% 0% 2% 

RNcg 0% 0% 0% 91% 0% 9% 0% 0% 

RRedEvW 0% 0% 0% 0% 94% 5% 0% 2% 

RRedCdW 0% 0% 0% 0% 0% 100% 0% 0% 

RExOil 0% 0% 0% 0% 0% 7% 94% 0% 

RNormal 0% 0% 0% 0% 0% 1% 0% 99% 
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Using SVM-based strategy, a series of data is only classified to one class. It is rather 

different using SVDD-based strategy, in which a series of data could be classified to 

more one class. 

7.2.3.3 Diagnosis results when not involving all classes in training 

Same training data sets and test data sets as in the tests of session 4.2.3 are used here. 

In fact, when training each SVM model, data of one fault class were not involved. The 

SVM model was then validated using all the test data at SL-1. The evaluation results are 

shown in Table 7.7.  

 

 

 

Table 7.8 Fault diagnosis ratios of new classes using SVM-based strategy at SL-1 

Fault data CdFoul RefOver RefLeak Ncg RedEvW RedCdW ExOil Normal 

RCdFoul - 0% 0% 38% 1% 20% 42% 0% 

RRefOver 0% - 86% 0% 0% 5% 2% 7% 

RRefLeak 0% 13% - 0% 10% 5% 11% 62% 

RNcg 4% 33% 0% - 0% 63% 0% 0% 

RRedEvW 0% 0% 1% 0% - 14% 0% 85% 

RRedCdW 0% 8% 3% 0% 27% - 0% 62% 

RExOil 1% 5% 94% 0% 0% 0% - 1% 
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The fault diagnosis results are totally wrong. RCdFoul is identified to be Ncg (38%) 

and ExOil (42%). RRefOver is identified to be RefLeak (86%). RRefLeak is identified to be 

Normal (62%). RNcg is identified to be RedCdW (63%). RRedEvW is identified to be 

Normal (85%). RRedCdW is identified to be Normal (62%). RExOil is identified to be 

RefLeak (94%). 

The SVM-based model has good FDD performance when it is used to classify data 

whose classes are included in training datasets. However, when it is used to classify data 

whose classes are not included in training, the results are totally wrong. There are more 

than twenty chiller faults including the typical seven faults. It is almost impossible to 

obtain fault data of all faults. Therefore, SVM-based chiller FDD strategy will likely not 

be robust when not all faults are included in training data. 

 

7.2.4 Comparisons With PCA-based Fault Detection Strategy 

Both PCA model and SVDD model are trained using the same fault-free training 

data. The PCA model retained the first three largest eigenvalues because they can 

explain 96.7% of the total variance of the training data. The false ratio is 3.9% when 

using the fault-free training data and 0.0% when using the fault-free test data. Then, 

both modes were validated using test data of each fault at four severity levels, as shown 

in Table 7.8. 

Table 7.9 Comparisons between SVDD-based and PCA-based fault detection strategy 

Fault Type SL-1 SL- 2 SL-3 SL-4 
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PCA SVDD PCA SVDD PCA SVDD PCA SVDD 

CdFoul 100% 100% 100% 100% 100% 100% 100% 100% 

RefOver 64% 95% 63% 99% 95% 100% 99% 100% 

RefLeak 36% 74% 27% 81% 88% 97% 96% 100% 

Ncg 100% 100% 100% 100% 100% 100% 100% 100% 

RedEvW 14% 52% 6% 44% 3% 76% 14% 93% 

RedCdW 28% 85% 28% 89% 100% 100% 100% 100% 

ExOil 94% 98% 94% 99% 100% 100% 100% 100% 

 

The SVDD-based strategy shows more powerful fault detection capacity, 

particularly at lower severity levels (i.e. SL-1 and SL-2) where it improves the fault 

detection ratios significantly. For instance, fault detection ratios increase from 64%, 

36%, 14%, 28% to 95%, 74%, 52%, 85% for RefOver, RefLeak, RedEvW and RedCdW 

respectively at SL-1. Similarly, the ratios increase from 63%, 27%, 6%, 28% to 99%, 

81%, 44%, 89% for the same faults at SL-2. The most significant improvements are 

observed on RedEvW. Fault detection ratios are improved from 14%, 6%, 3%, 14% to 

52%, 44%, 76%, 93% at SL-1, SL-2, SL-3 and SL-4 respectively. Similar comparison 

was also reported in the authors’ previous work [7] with similar observations. However, 

the amount of data used in this study is ten times larger than that used in the previous 

study.  

7.3 Optimization of Parameters and Application Issues 

7.3.1 Optimization of Parameters 
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The two parameters, i.e. nu and γ, have significant effects on the FDD performance 

of SVDD models. Grid-search can be used to optimize nu and γ based on v-fold cross-

validation. As discussed by Hsu et al. (2003), trying exponentially growing sequences of 

nu and γ is a practical strategy to identify good parameters. A complete grid-search may 

be time-consuming. A coarse grid is suggested first. After identifying a “better” region 

on the grid, a finer grid search on that region can be conducted. The cross-validation 

procedure is suggested to calculate the classification ratio at each nu and γ. It helps to 

prevent the over fitting problem and to obtain good generalization performance. 

nu controls the tradeoff between the volume of the hypersphere and the classification 

error of the model. The smaller nu is, the larger radius of the hypersphere will be. γ 

controls the shape of the hypersphere. The smaller γ is, the less tighter the decision 

boundary will be. A case was made on fault-free data set. It introduced grid-search on 

nu [2
-10

, 2
-1

] and γ [2
-10

, 2
10

] using 5-fold cross-validation, as shown in Figure 7.3.  

 

Figure 7.3 Grid-search on nu [2
-10

, 2
-1

] and γ [2
-10

, 2
10

] using 5-fold cross-validation 
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Actually, parameters optimization is a common problem when applying support 

vector machine in many fields, and some solutions have been proposed for specific 

applications. On the basis of mature solutions, the criteria to determine the “better” 

region for chiller FDD in this study include: the cross-validation accuracy is higher than 

90%; and the nu and γ are the higher the better. When using the RP-1043 experimental 

data, cross-validation accuracy is larger than 90% within a wide range of [nu, γ]. The 

finer grid searches are made in the regions of nu [2
-5

, 2
-4.5

] and γ [2
-3

, 2
-2

] to train every 

SVDD models. 

It is recommended to validate the fault-free SVDD model using fault data. If there 

are only fault-free data available, the fault data could be obtained through conducting 

the fault of RedCdW which would be easy to be conducted. High Type II error ratios 

indicate that the parameters are not good enough and adjustment is necessary. 

7.3.2 Robustness of the SVDD-based FDD Strategy 

It was pointed out that pattern recognition-based FDD strategies generally have 

following weaknesses (Katipamula and Brambley 2005a; 2005b). Firstly, most models 

cannot work well beyond the range of the training data. Secondly, a large amount of 

training data is needed, including normal data and fault data. Thirdly, the models, which 

are trained for a specific system, can rarely be used on other systems.  

The SVDD-based strategy inherits the main weaknesses of pattern recognition-based 

FDD strategies. The following are the possible solutions to enhance its performance. 

The first weakness can be overcome through introducing an operating condition filter. 
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FDD will not be processed, if the filter detect that the process operating conditions are 

far from the operating conditions for model training. The second weakness cannot be 

avoided if fault data are not available. Generally, there are sufficient fault-free data from 

building management systems. In such condition, SVDD-based strategy can still be used 

for fault detection. For the third weakness, further evaluations are needed to check 

whether SVDD models trained on a chiller are adoptable to chillers of the same mode. 

However, as discussed in the Introduction, if training data are enough, SVDD models 

would be easier to be applied to new systems compared with conventional FDD 

strategies. 

In this study, the training data are evenly distributed in 27 operating conditions. It is 

possible in practical applications that, data are abundant in some ranges of operating 

conditions but few in other ranges of operating conditions. The minorities would be 

regarded to be outlier during SVDD model training process which will cause false 

detection or false diagnosis. This is another common problem of pattern recognition-

based FDD strategies. Solutions can refer to (Li 2011; Tian et al. 2011). In this study, 

only 27 discrete operating conditions are considered. Further evaluations are necessary 

using data of more operating conditions. 

7. 3.3 Potential Applications of the SVDD-based FDD Strategy 

The SVDD-based strategy is a pure data-driven strategy. It has several potential 

applications as follows. If fault data of all typical faults are available (Case-1), which is 

the best situation, SVDD models can be trained to detect and diagnose these faults. If 

there is no fault data available (Case-2), fault-free SVDD model can be developed to 
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detect faults. The fault-free data are easy to be obtained from historical database of 

building management systems. If a fault has been confirmed (Case-3), the data of the 

fault can be obtained. Using the fault data, a fault SVDD model can be trained. When 

the same fault occurs in the next time, it can be diagnosed effectively using the model. If 

some faults (e.g. CdFoul and RefLeak) are strongly concerned by owners or 

manufacturers (Case-4), the fault data can be obtained by on-site tests or factory tests. 

For instance, the CdFoul data can be obtained through blocking some fin area if the 

chillers are air-cooled. Then, SVDD models can be developed for the concerned faults. 

In this study, only chiller component faults are studied. However, FDD results 

would be unreliable if any sensor is faulty (Li and Zhao 2011). There are few 

publications about chiller sensor FDD using PCA algorithm (Wang and Cui 2005, 2006; 

Xu et al. 2008). One-class classification algorithms can also be used for sensor FDD. 

One basic idea is to do a simple feature selection which involves identifying the 

optimum subset of the variables in the dataset that gives the best separation or 

classification accuracy between the normal data and the fault data. Mahadevan and Shah 

provide a solution using SVM Recursive Feature Elimination algorithm, which is 

similar to that of PCA contribution to residuals plots (Mahadevan and Shah 2009). 

7.4 Summary 

This chapter presents a SVDD-based chiller FDD strategy which transforms the 

chiller FDD problem into a typical one-class classification problem. The test results 

show that the fault-free SVDD model could identify 99.5% of fault-free data correctly 

and detect all faults involved. The fault SVDD models can correctly identify more than 
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90% data of their own classes to be inliers and also effectively reject data of other 

classes.  

Compared with the existing FDD strategies which use multi-class classification 

algorithms, the SVDD-based strategy is robust when the process data do not belong to 

any class involved in training. In such case, the SVM-based strategy could not report 

any correct FDD result. For instance, 94% data of ExOil is diagnosed to be RefLeak 

when the fault data of ExOil are not involved in training. Using the SVDD-based 

strategy, this fault is detected correctly but not diagnosed. The false FDD report is 

avoided.  

Compared with the PCA-based strategy, the SVDD-based strategy has no Gaussian 

assumption and is effective for nonlinear process modeling. That results in more 

powerful capacity in describing process data. The fault detection ratios are improved 

significantly. For instance, using the PCA-based strategy, fault detection ratios are 64%, 

36%, 14% and 28% for RefOver, RefLeak, RedEvW and RedCdW respectively at SL-1. 

Using the SVDD-based strategy, the ratios increase to 95%, 74%, 52% and 85% 

respectively.  

Compared with model-based and rule-based FDD strategies, SVDD-based strategy 

has much higher FDD ratios, particularly at low fault severity levels, where those FDD 

strategies usually do not work well. For instance, using the MLR and t-statistic-based 

strategy, the ratios of correctly diagnosed points were 3.7%, 0%, 0% at SL-1 and 7.4%, 

0%, 0% at SL-2 for RefLeak, CdFoul and ExOil respectively. Using SVDD-based 

strategy, such ratios are all increased to over 90% at both severity levels. 
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It is flexible for practical fault diagnosis applications.  If the fault data can be 

obtained by on-site tests or manufactory tests, the proposed SVDD-based strategy can 

be used for both fault detection and diagnosis. It can be used for fault detection if only 

fault-free data are available. 
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CHAPTER 8 A DIAGNOSTIC BAYESIAN NETWORK 

FOR CHILLER FDD 

A generic intelligent FDD strategy is proposed in this chapter to simulate the actual 

diagnostic thinking of chiller experts. A three-layer diagnostic Bayesian network is 

developed to diagnose chiller faults based on the Bayesian belief network theory. The 

structure of the DBN is a graphical and qualitative illustration of the intrinsic causal 

relationships among causal factors in Layer 1, faults in Layer 2 and fault symptoms in 

Layer 3. The parameters of the DBN represent the quantitative probabilistic 

relationships among the three layers. To diagnose chiller faults, posterior probabilities of 

the faults under observed evidences are calculated based on the probability analysis and 

the graph theory. Compared with other FDD strategies, the proposed strategy can make 

use of more useful information of the chiller concerned and expert knowledge. It is 

effective and efficient in diagnosing faults based on uncertain, incomplete and 

conflicting information. Evaluation of the strategy was made on a 90-ton water-cooled 

centrifugal chiller reported in ASHRAE RP-1043. 

8.1 A Generic Strategy for The DBN-Based Chiller FDD 

In this section, a generic framework of DBN is developed for intelligent chiller FDD, 

as shown in Figure 8.1. In this framework, all useful information about target chiller and 

expert knowledge are merged into the DBN to simulate what FDD experts do in practice. 

Therefore, information collection and expert knowledge expression are prerequisite. For 

FDD applications, the task is to correctly identify a fault according to one or multiple 
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symptoms observed. It can be easily understood that faults and fault symptoms should 

be included in the DBN as different layers. Fault diagnosis in previous chiller FDD 

strategies is mainly based on fault symptoms which are abnormal sensor measurements 

or deduced performance indices. It resulted that a lot of meaningful information has 

been overlooked, such as the maintenance records. Therefore, the first layer is 

developed in the DBN to utilize other qualitative information. The details of the three 

layered DBN and its application for FDD as well as its advantages are introduced as 

follows.  

 

Figure 8.1 Flow chart of the intelligent fault detection and diagnosis strategy 

 

8.1.1 Structure of The Proposed DBN 

Different from DBNs for AHU FDD and VAV terminal FDD, the proposed DBN for 

chiller FDD has a clear structure which consists of three layers, including additional 

information layer (Layer 1), fault layer (Layer 2) and fault symptom layer (Layer 3). 

The nodes at each layer depend on available information and selected fault detection 

strategies. Layer 1 includes factors which are directly related to the probabilities of 

occurrence of faults, e.g., repairing service, abnormal operation records, the healthy 
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states of the related equipment, routine maintenances. Information included in Layer 1 

helps to diagnose the faults in Layer 2 more accurately. For instance, refrigerant 

overcharge (one typical fault in Layer 2) is impossible to occur if it had been eliminated 

during refrigerant charging service (information in Layer 1). The risk of condenser 

fouling (one typical fault Layer 2) is lower if the condensing water has been properly 

treated recently (information in Layer 1). Layer 1 usually composes qualitative 

information which is available through checking service records/history or conducting 

on-site investigation. The fault layer composes the faults in chiller concerned. The fault 

symptom layer contains the sensor measurements and performance indices which are 

sensitive to corresponding faults.  

8.1.2 Parameters of The Proposed DBN 

In the proposed DBN, prior probabilities of root nodes are needed. Besides, 

conditional probabilities are needed to represent direct probabilistic dependences among 

nodes in the three layers. Generally, the nodes in Layer 3 have complex relationships 

with the nodes in Layer 2. To simplify the development of the DBN, the nodes in Layer 

3 can be considered as Noisy-MAX nodes. Nodes in Layer 2 can be considered as 

general nodes (non-Noisy-MAX). For a general child node, the parameters are specified 

in a conditional probability table. For a Noisy-MAX node, the parameters include the 

conditional probabilities and LEAK probabilities.  

The conditional probabilities can be obtained in two ways. (i) If the full-set fault 

data are available, the conditional probabilities can be obtained by statistically 

calculation or using machine learning algorithms (Pearl, 1985). In the chiller FDD 
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application, it is usually difficult to obtain the full-set fault data. The equipment 

manufacturers and building owners are reluctant to perform such experiments as 

manually introducing faults to their equipment and systems. Therefore this strategy is 

ruled out here. (ii) If the full-set of fault data are not available, the conditional 

probabilities can be estimated by chiller experts. Chiller FDD experts normally have an 

in-depth knowledge about chiller concerned and know the possibility of a fault given 

symptoms observed. What they need to do is to quantify those conditional probabilities. 

This sounds to be subjective; however experts’ knowledge ensures those conditional 

probabilities reliable. Previous research on chiller FDD also provides valuable 

experiences in setting the parameters. The same conditional probabilities between fault 

layer nodes and fault symptom layer nodes are usually applicable for chillers of the 

same type. However, it is worthwhile to note that the conditional probabilities among 

root nodes and fault layer nodes are different even for the same type of chiller which 

depends on the operation and maintenance of the chiller concerned. To handle this 

diversity, the states of root nodes may be defined using levels, such as good, medium 

and poor. Different conditional probabilities can be assigned to each state. The states 

should be clear enough for chiller professionals to select according to the maintenance 

records, in-site inspection and various documentations.  

Prior probabilities of faults are the normalized frequencies of faults. It is obvious 

that a fault with higher prior probability is more suspected to occur than one with lower 

prior probability. The prior probabilities of faults are useful for FDD, especially when 

information is incomplete. For instance, the prior probability of condenser fouling is 2.9 

times of refrigerant overcharge in the survey of ASHRAE RP-1043. Both faults lead to a 
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higher condensing temperature. When only one piece of evidence is available, i.e. the 

condensing temperature is higher, the condenser fouling should be more suspected than 

refrigerant overcharge. However, in the proposed DBN, the probabilities of faults are 

actually posterior probabilities calculated on the basis of prior probabilities of root 

nodes and conditional probabilities between nodes of three layers. When no evidences 

are considered, it represents a condition that the chiller concerned is used and 

maintained at average level. In such a condition, the probabilities of faults should equal 

to the prior probabilities of faults. 

The prior probabilities of root nodes can be obtained by the following strategies: set 

by chiller experts based on their knowledge and experiences, calculated as posterior 

probabilities in case the prior probabilities of fault nodes are available, and the hybrid 

strategy of these two strategies. Therefore, when develop the DBN, prior probabilities of 

root nodes and conditional probabilities usually need fine-tune to ensure that the 

posterior probabilities of them calculated from the prior probabilities and conditional 

probabilities are consistent with the prior probabilities of faults obtained from survey or 

estimated by chiller experts. 

8.1.3 Fault Detection  

In this framework, the fault detection process can examine whether the system is 

normal and specify the states of nodes in the fault symptom layer. A number of chiller 

fault detection strategies have been developed over the last decades. In principle, the 

framework doesn’t rule out any fault detection strategy, which is one of the main 

purposes of developing this framework. It is also possible to adopt more than one fault 
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detection strategy in the framework. When designing the DBN, the fault detection 

strategy adopted will influence both the structure and parameters of the DBN. In Section 

4 of this paper, a detailed example is given to show how to determine the nodes at each 

layer.  

8.1.4 Fault Diagnosis 

The DBN-based inference is to calculate the posterior probabilities of unobserved 

nodes on the basis of evidences of observed nodes. While using the DBN for chiller 

fault diagnosis, the inputs of the DBN are the evidences, i.e. the states of nodes in Layer 

1 and Layer 3, obtained from operation and maintenance records, in-situ investigation 

and the fault detection process. The observed states of nodes are set to be 100%. The 

outputs are the posterior probabilities of nodes at the fault layer. Basically, two rules can 

be used to isolate a fault as follows: 

Rule 1: The one with the largest fault probability and its fault probability is larger than 

a certain threshold ε1 (e.g. ε1 = 80%); or  

Rule 2: The difference between the largest fault probability and the second one is larger 

than a certain threshold ε1 (e.g. ε2 = 30%). 

All faults concerned are filtered by the rules. The thresholds ε1 and ε2 are constant 

values. Their initial values can be determined by experts. They can be optimized during 

the FDD process. They are suggested to be 80% and 30% respectively in the beginning. 
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8.1.5 Advantages of the Strategy 

The proposed framework based on DBN has following advantages: 

i. It is robust against uncertainties in various information and data used in the chiller 

FDD. The use of probabilities to quantify the occurrence possibilities of faults 

enables the DBN-based strategy to be tolerant of uncertainties which widely exist in 

casual relationships (between casual factors and faults, faults and fault symptoms), 

expert knowledge, measurements, symptoms, FDD results, etc. Fault inference is 

based on probability analysis and graph theory. FDD results are probabilities of 

concerned faults and they are more reasonable than Boolean results (i.e., Normal or 

Faulty) which adopted in most of previous FDD strategies.  

ii. It provides an effective approach to merge different types of knowledge and 

information from a diversity of sources in one network, including physical laws, 

experts’ knowledge/experiences, operation and maintenance records, historical and 

real-time measurements, observed symptoms, etc. It utilizes all kinds of useful 

knowledge and information as fully as possible to infer fault just like the actual 

diagnostic thinking of chiller experts.  

iii. It has a strong ability to deal with incomplete or even conflicting information. The 

reasoning results provide the most reasonable explanation for observed evidences of 

nodes in additional information layer and fault symptom layer. Of course, the more 

evidences are used, the more reliable the results are. 

In addition, from a methodological point of view, the framework can also embrace 

all outstanding achievements of the previous FDD research works, and makes a further 
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step by intelligently merge various knowledge and information. The framework also 

provides a possible solution to detect and diagnose multiple simultaneous faults in 

chiller, which is a prominent problem in chiller FDD (Li and Braun 2007). 

8.2. Evaluation of the DBN-Based Chiller FDD  

In this section, a DBN is developed according to the framework introduced above 

for the 90-ton water-cooled centrifugal chiller used in ASHRAE RP-1043. The chiller 

system consisted of a shell-and-tube evaporator, a shell-and-tube condenser, a pilot-

driven expansion valve, a centrifugal compressor and other fittings. Both the evaporator 

and condenser were flooded-type 2-pass shell-and-tube heat exchangers and used water 

as the secondary-coolant. The water flowed in the tubes and the refrigerant flowed 

outside. The refrigerant was R134a. The compressor was driven by a constant speed 

motor. The controller adjusted the compressor’s inlet guide vanes to maintain a 

specified water outlet temperature at the evaporator. More detailed information about 

the chiller system can be found in Comstock and Braun (2002). 

The development of DBN structure and the way to obtain its parameters are 

described step by step in detail. Evaluations were made in different ways.  

8.2.1 Structure of the DBN 

The structure of the DBN is shown in Figure 8.2. The nodes in the fault layer are 

determined firstly. It consists of six nodes representing six typical faults, which account 

for a major portion of the service calls according to the survey conducted by Comstock 

and Braun (2002), i.e., Ncg, RefOver, RefLeak, Cdfoul, RedCdW, RedEvW. Each node 
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has two states, i.e. Present and Absent, indicating presence and absence of the 

corresponding fault given observed evidences, respectively. 

 

 Figure 8.2 Structure of the Bayesian diagnostic network for the chiller in ASHRAE RP-

1043 

The nodes in the additional information layer are determined secondly. It is desirable 

to include all possible causal factors. In this study, five major casual factors are selected, 

as shown in Table 8.1. The states of each node are defined in the fourth column, and the 

major considerations of including each factor are given in the third column. It should be 

declared that information about those casual factors is not available in ASHRAE RP-

1043 report. Among them, CompRS, RefCS and WT represent the services on the 

chiller which can usually be easily obtained from facility management records. CondWS 

and ChWS represent the healthy states of the condensing water pump system and chilled 

water pump system respectively. These two systems work together with the chiller, and 

their healthy states surely affect the operation of the chiller. 
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Table 8.1 The nodes and their states in the additional information layer  

Node State 
Prior 

probability 
Event Major considerations 

CompRS 

Yes 0.15 

Component 

repairing service 

Many refrigerant is leaked or non-

condensable gas is charged during 

the service, e.g., repairing or 

replacing evaporator, condenser, 

compressor, valve, etc. 

No 0.85 

RefCS 
Yes 0.1 Refrigerant 

charging service 

Refrigerant is overcharged or leaked, 

and non-condensable gas is charged. No 0.90 

WT 
Yes 0.80 Water treatment 

service 

The water treatment has not been 

done; 

No 0.20 The service quality is poor. 

CondWS 

Sick 0.05 The health status of 

the condensing 

water pump system 

The performance degradation of 

condensing water pumps; 

The valve position was changed; 

False pump sequence control. 
Healthy 0.95 

ChWS Sick 0.05 

The health status of 

the chilled water 

pump system 

The performance degradation of 

condensing water pumps; 

The valve position was changed; 

False pump sequence control. 

 

The nodes in the fault symptom layer are determined at last, which are usually 

performance indices (PIs). The selection of fault symptoms or PIs depends on available 

sensor measurements and the FDD strategies adopted. The fault patterns in the selected 

FDD strategies are described using arcs and parameters (the conditional probability 

table). Different FDD strategies could be integrated. In this study, the FDD strategy 

based on multiple linear regression (MLR) was adopted which have been widely used in 

previous research on chiller FDD. More details about the MLR-based strategy are given 

in Section 4.3. For the purpose of generalization, seven PIs from sensor measurements 

which are easy to be obtained are selected, i.e., saturation temperature difference (ΔTsat), 

refrigerant suction superheat temperature (Tsh_suc), refrigerant discharge superheat 

temperature (Tsh_dis), condensing temperature (Tcd), sub-cooling temperature (Tsc), 



163 

 

condenser water temperature difference (ΔTcw), and evaporator water temperature 

difference (ΔTchw). ΔTsat is the temperature difference between the tested saturation 

temperature and the calculated value using the condenser pressure when the chiller is 

power off. Each node, except for ΔTsat, has three states, i.e. Higher, Lower and Normal. 

The ΔTsat has two states, i.e. Present and Absent.  

8.2.2 Parameters of The DBN 

Firstly, the conditional probability tables among nodes in the additional information 

layer and nodes in the fault layer are set based on the knowledge and experiences of 

authors. The sick severity levels of CondWS and ChWS are considered to 30% reduced 

water flow rate of condenser and evaporator. Each node has two states, i.e., Yes/No, or 

Sick/Healthy. It is worthwhile to note that the nodes in the additional information layer 

are generally necessary but not sufficient for detecting and diagnosing the faults in the 

fault layer. For instance, when RefCS and ComRS are NO, RefLeak is also possible to 

occur due to other factors, e.g. sealing problems of chiller system. Those factors are not 

represented using individual nodes in Layer 1 in the DBN. In this case, the effects of 

unconcerned factors on faults are represented using the conditional probabilities 

between states No/Healthy of nodes in Layer 1 and states of faults in Layer 2. When 

casual factors of a fault are absent (states No/Healthy), there would be still a probability 

of fault. It means that the value of P(fault = present | casual factor = absent) plus 

P(fault = present | unconcerned factors) was used instead of P(fault = present | 

unconcerned factors). The conditional probabilities are set as shown in Table 8.2-8.6. 
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Table 8.2 Conditional probability table of RefCS, CompRS and Ncg, RefLeak 

  RefCS   YES   NO 

Fault CompRS   YES NO   YES NO 

Ncg 

Present 

 

0.13 0.1 

 

0.06 0.02 

Absent 

 

0.87 0.9 

 

0.94 0.98 

RefLeak 

Present 

 

0.25 0.23 

 

0.2 0.15 

Absent   0.75 0.77   0.8 0.85 

 

Table 8.3 Conditional probability table of RefCS and RefOver 

Fault RefCS Yes NO 

RefOver 

Present 0.3 0 

Absent 0.7 1 

 

Table 8.4 Conditional probability table of WT and CdFoul  

Fault WT YES NO 

CdFoul  

Present 0.05 0.25 

Absent 0.95 0.75 

 

Table 8.5 Conditional probability table of CondWS and RedCdW 

Fault CondWS Healthy Sick 

RedCdW 

Present 0.05 0.95 

Absent 0.95 0.05 
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Table 8.6 Conditional probability table of ChWS and RedEvW 

Fault ChWS Healthy Sick 

RedEvW 

Present 0 0.95 

Absent 1 0.05 

 

Secondly, the conditional probabilities among the nodes in the fault layer and the 

nodes in the symptom layer are statistically calculated using 2/3 experimental data of 

each fault at severity level 3 from ASHRAE RP-1043, as the bold quantities in Table 8. 

7. The rest 1/3 are used for evaluation of FDD results as presented in Section 4.5. Many 

fault nodes connect to Tsh_dis , Tsh_suc, Tcd, Tsc nodes in Layer 3. It is almost impossible to 

obtain conditional probabilities of all combinations. Therefore, the nodes in the 

symptom layer are set to Noisy-MAX nodes. The conditional probabilities in Table 8.7 

are used as parameters for those Noisy-MAX nodes. An example of Tcd is provided here 

as Table 8.8. The LEAK probabilities represent the influences of fault nodes that are not 

explicitly included in the Niosy-MAX, i.e. all parent nodes were Absent. In this study, 

the LEAK is considered to be normal. 

Thirdly, the prior probabilities of root nodes are calculated as posterior probabilities 

using prior probabilities of faults from ASHRAE survey. In the ASHRAE RP-1043, the 

frequencies of faults were surveyed from 170 service records detailing the various kinds 

of faults that occur in centrifugal chillers. From the results, the normalized probabilities 

of typical faults are shown in Figure 8.3. The normalized probabilities are used as prior 

probabilities of faults directly, as shown in Table 8.9. RefOver was ignored in the 

survey and the prior probability is estimated to be 3.0% in this study.  
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Table 8.7 Parameters for the Noisy-MAX node Tcd 

Parent CdFoul RefOver Ncg RefLeak RedCdW 

LEAK 

State Present Present Present Present Present 

Higher 0.75 0.97 1 0 0.74 0 

Lower 0.06 0 0 0.92 0.16 0 

Normal 0.19 0.03 0 0.08 0.1 1 

 

 

Figure 8.3 Detailed survey results sorted by frequency from ASHRAE RP-1043 report 

for Centrifugal chiller 
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Table 8.8 The conditional probabilities among nodes in the fault layer and nodes in the 

symptom layer  using ASHRAE RP-1043 data at severity level 3. 

Fault Symptom Tsh_suc Tsh_dis Tcd Tsc ΔTcw ΔTchw 

Ncg 

Higher 0.04 0.59 1.00 1.00 0.10 0.18 

Lower 0.56 0.09 0.00 0.00 0.10 0.00 

Normal 0.40 0.31 0.00 0.00 0.80 0.82 

RefOver 

Higher 0.36 0.55 0.97 1.00 0.77 0.12 

Lower 0.10 0.05 0.00 0.00 0.00 0.01 

Normal 0.54 0.40 0.03 0.00 0.23 0.87 

RefLeak 

Higher 0.11 0.02 0.00 0.00 0.18 0.09 

Lower 0.35 0.50 0.92 0.91 0.03 0.02 

Normal 0.54 0.47 0.08 0.09 0.79 0.89 

CdFoul 

Higher 0.11 0.32 0.75 0.25 0.35 0.11 

Lower 0.39 0.14 0.06 0.15 0.01 0.01 

Normal 0.50 0.54 0.19 0.60 0.65 0.88 

RedCdW 

Higher 0.01 0.63 0.74 0.75 0.92 0.01 

Lower 0.92 0.17 0.16 0.16 0.05 0.03 

Normal 0.08 0.21 0.10 0.09 0.03 0.96 

RedEvW 

Higher 0.07 0.66 0.03 0.03 0.08 1.00 

Lower 0.54 0.09 0.44 0.46 0.46 0.00 

Normal 0.39 0.25 0.54 0.50 0.46 0.00 
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Table 8.9 The prior probabilities of six typical faults from RP-1043 survey 

Fault Type NC RO RL CF FWC FEW Total 

Surveyed Value 2.9% 3.0%
*
 17.0% 8.7% 3.8% 2.5% 37.9% 

* The prior probability of RO is an estimated value which is absent in the survey of 

RP-1043. 

 

Up to now, all the necessary specifications for the intelligent DBN-based chiller 

FDD tool are introduced. The performance of the tool is examined below using the rest 

1/3 data at fault severity level 3 in ASHRAE RP-1043 chiller. 

8.2.3 Fault Detection 

Abundant experiment data of the chiller operating under both normal and faulty 

conditions were produced in the ASHRAE RP-1043. The experimental data includes 

transient data between the different steady-state operating conditions. The steady-state 

data filter developed by Rossi (1995) is used to remove the obvious dynamic data. 

About 30%-50% data are remained eventually. The MLR-based fault detection strategy 

is adopted in the intelligent DBN-based chiller FDD tool. The MLR reference models 

use the cooling load (Qev), chilled water supply temperature (Tchws), and the entering 

condenser water temperature (Tecw) as inputs as shown in Equation (8.1).  

 , , +Y f Qev Tecw Tchws      (8.1) 

where, Y = [Tsh_dis, Tsh_suc, Tcd, Tsc, ΔTcw, ΔTchw], ξ~(0,σ
2
). The t-statistic approach is 

used to determine whether a monitored variable was abnormal. In this study, confidence 

level of 95.45% (2σ) is selected. The confidence intervals are doubled (4σ) for ΔTcw and 
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ΔTchw because they are unstable in some tests. Compared with the reference values, the 

monitored PIs are classified to three categories, i.e. higher, lower and normal. A fault is 

detected when the residuals between PIs and its benchmark values (they were calculated 

using MLR reference models) are out of their confidence intervals. 

8.2.4 Fault Diagnosis 

8.2.4.1 Fault diagnosis using only evidences from the fault symptom layer  

Table 8.10 Fault probabilities when only evidences from the symptom layer are used  

  Fault diagnosis result 

Fault Ncg RefOver RefLeak CdFoul RedCdW RedEvW 

Ncg 68% 20% 23% 24% 5% 0% 

RefOver 40% 42% 12% 20% 0% 0% 

RefLeak 0% 0% 100% 1% 0% 0% 

CdFoul 0% 0% 0% 100% 0% 0% 

RedCdW 8% 4% 16% 13% 98% 0% 

RedEvW 0% 0% 3% 35% 0% 98% 

 

This case aims to evaluate the intelligent DBN-based FDD strategy using only nodes 

(except for ΔTsat) at the fault symptom layer as most of previous FDD researchers did. It 

is assumed that each node in the fault symptom layer is observed respectively. The 

evidence provided by a node is that the state of the node with largest probabilities in 

Table 8.9 is observed. For instance, for Ncg fault, the probabilities of Tsh_dis are 0.59, 

0.09, 0.31 for higher, lower and normal respectively. It is similar to the way used by 
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previous researcher in developing expert rules. Given such an evidence, the observed 

state (Tsh_dis is higher) is set to be 95% considering uncertainties in the DBN. The 

posterior probabilities of faults are shown in Table 8.10.  

The fault probabilities are 100% in the cases of RefLeak and CdFoul, and 98% in the 

case of RedCdW and RedEvW. All of these four faults are correctly diagnosed. In the 

case of RefOver, Ncg (40%) and RefOver (42%) are the top two suspected faults. They 

could not be distinguished without ΔTsat. The result is the same as conclusions obtained 

in previous research (Li and Braun, 2007; Chen and Braun, 2001). If additional evidence 

is introduced, i.e. ΔTsat is normal, the fault probability of RefOver increased to 65% and 

that of Ncg reduced to 1%. In the case of Ncg, it is interesting to see that the fault 

probability of Ncg is 68% and it could be distinguished with RefOver correctly. It is 

because that Ncg and RefOver have the same symptoms except for Tsh_suc. The Tsh_suc is 

lower in the case of Ncg and is normal in the case of RefOver. The conditional 

probabilities between fault nodes (Ncg and RefOver) and the state (Tsh_suc is normal) are 

0.40 and 0.54 respectively. The difference is too small to isolate RefOver from Ncg. The 

conditional probabilities between fault nodes (Ncg and RefOver) and the state (Tsh_suc is 

lower) are 0.56 and 0.10 respectively. When Ncg occurrs, it could be isolated from 

RefOver since Tsh_suc is lower.  

Only using nodes (except for ΔTsat) in the fault symptom layer, the FDD 

performance of the proposed strategy is similar to previous rule-based strategies in 

diagnosing the five faults except for Ncg. In the case of Ncg, it has better performance. 
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8.2.4.2 Fault diagnosis using incomplete and uncertain information 

Five cases are studied to evaluate the proposed intelligent FDD strategy using 

incomplete and uncertain information. In practical applications, especially for manual 

FDD, not all the symptoms in Layer 1 and Layer 3 are available and reliable due to 

various uncertainties, shortage of measuring instrument, incomplete records, sensor 

faults, etc. In the five cases, it is assumed only several rather than all nodes in Layer 1 

and Layer 3 are observed. The five cases are listed in Table 8.11.  

Table 8.11 Five fault diagnosis case using incomplete and uncertain evidences  

Case Step Evidence Fault diagnosis result (%) 

      Ncg RefOver RefLeak CdFoul RedCdW RedEvW 

Case-1 
1 Tcd is lower 0% 0% 93% 5% 6% 3% 

2 Tsc is lower 0% 0% 99% 2% 0% 3% 

         

Case-2 
1 ΔTchw is higher 3% 3% 17% 9% 5% 84% 

2 Tsh_dis is higher 5% 4% 17% 11% 7% 97% 

         

Case-3 
1 Tcd is higher 22% 19% 18% 45% 24% 3% 

2 WT is No 13% 11% 17% 73% 15% 3% 

         

Case-4 

1 Tcd is higher 22% 19% 18% 45% 24% 3% 

2 RefCS is Yes 24% 68% 23% 18% 10% 3% 

3 ΔTsat is higher 94% 33% 23% 10% 5% 3% 

         

Case-5 

1 Tcd is higher 22% 19% 18% 45% 24% 3% 

2 Tsc is higher 33% 29% 19% 23% 29% 3% 

3 RefCS is No 38% 0% 16% 31% 42% 3% 

4 
CondWS is 

Healthy 
61% 0% 16% 44% 0% 3% 

5 WT is Yes 74% 0% 16% 30% 0% 3% 

6 ΔTsat is normal 5% 0% 16% 95% 0% 3% 
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In the diagnosis process, evidences are examined one by one according to the steps 

specified in Table 8.11 which is also more like the diagnostic thinking of chiller FDD 

experts. The DBN generates fault probabilities under given incomplete evidences in 

Table 8.11. 

Case 1 assumes only the nodes of Tcd and Tsc are observed. At step 1 (evidence: Tcd 

is lower), the fault probability of RefLeak (93%) is apparently larger than others’. It is 

because that this symptom only occurred in RefLeak. When the other evidence (Tsc is 

lower) is added at step 2, the fault probability increases to 99%. The fault of RefLeak 

surely occurs.  

Case 2 assumes only the nodes of Twev and Tsh_dis are observed. At step 1 (evidence: 

Twev is higher), the fault probability of RedEvW is 84%. At step 2 (added evidence: 

Tsh_dis is higher), the probability increases to 97%. The fault of RedEvW is successfully 

diagnosed with high confidence.  

Case 3 assumes only the node of Tcd and WT (in service records) are observed. At 

step 1 (evidence: Tcd is higher), the fault probability of CdFoul is 45%, which is two 

times of the values of the other three faults (RefOver, Ncg, RedCdW). It is because that 

the prior probability of CdFoul is higher. Therefore, it is the most suspected fault when 

only Tcdis available. At step 2 (added evidence: WT is No), the fault possibility of 

CdFoul increases to 73%. The CdFoul can be diagnosed with a high confidence in this 

case. 

Case 4 assumes the nodes of Tcd, RefCS and ΔTsat are observed. At step 1 (evidence: 

Tcd is higher), the fault probability of Ncg is 22%, which is about half of that of CdFoul 
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(45%). At step 2 (added evidence: RefCS is Yes), RefOver (68%) is the most suspected 

fault. The fault probability of Ncg (24%) is slightly increased under the new evidence. 

RefOver is more likely to occur than Ncg under both evidences. At step 3 (added 

evidence: ΔTsat is higher), the fault probability of Ncg increases from 24% to 95% and 

that of RefOver decreases from 68% to 33%. It is because the new evidence is a unique 

index for Ncg.  

Case 5 assumes existing of complex and even conflicting evidences. The step 1 is 

the same as that in Case 4, which results in CdFoul (45%), RedCdW (24%) and Ncg 

(22%) as the top three suspected faults. At step 2 (added evidence: Tsc is higher), the 

fault probability of CdFoul reduces to 23% and that of Ncg (33%) is the highest one. At 

step 3 (added evidence: RefCS is No), the fault probability of RefOver reduces to 0%, 

while RedCdW (42%) is the most suspected fault. At step 4 (added evidence: CondWS 

is Healthy), the RedCdW reduces to 0%. Ncg (61%) and CdFoul (43%) are the two most 

suspected faults. At step 5 (added evidence: WT is Yes), the fault probability of CdFoul 

reduces to 30% and that of Ncg increases to 74%. Under previous evidences, the 

posterior probability of the state (ΔTsat is normal) is 27%, which is a comparatively 

small probability. However, if it is assumed at step 6, it is interesting to see that the fault 

probability of Ncg reduces to 5%, while that of CdFoul increases from 30% to 83%. 

Such a result is the most plausible explanation according to the six evidences. The 

results of RefOver (0%) and RedCdW (0%) are strongly supported by RCS and CondWS. 

They are eliminated from the suspected fault list. The RefLeak is also eliminated 

because it violates the two evidences at step 1 and step 2. The RedEvW is impossible to 

occur since no evidence supports it. At last, the CdFoul is the only suspected fault. 
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Although the evidence (WT is Yes) is conflicting, CdFoul is still possible to occur under 

this evidence, since the conditional probability is not zero, i.e. P(CdFoul is Present | 

CondWS is Yes ) = 5% as shown in Table 8.4. 

The results show that the proposed strategy can diagnose fault efficiently from 

incomplete information. It is significantly meaningful for the chiller FDD in the 

situations that limited information is available. Previous research on the chiller FDD 

seldom considered this point.  

8.2.4.3 Fault diagnosis using ASHRAE RP-1043 data 

This case aims to evaluate online FDD capacity of the proposed strategy. In each test, 

only one piece of evidence of in Layer 1 is added to evaluate the influences of Layer 1 

nodes on FDD performance. The FDD result should be less accurate when one piece of 

evidence from Layer 1 does not support the occurrence of a target fault (it seldom 

occurs in reality), and be more accurate on the contrast (it happens in most of time). All 

nodes in Layer 3 are observed according to the fault detection results. The test data are 

the left 1/3 steady state data (from section 4.4) of severity level 3 from ASHRAE RP-

1043 experimental data. The FDD results are summarized in Table 8.12. The thresholds 

of ε1 and ε2 are set to be 80% and 30% respectively. The successful diagnosis ratios are 

calculated for test data of each fault. 

In the test of Ncg, the successful diagnosis ratio is 37% without evidence from Layer 

1. It increases to 43% (CompRS is Yes), 61% (RefCS is No), and 99% (ΔTsat is Present). 

When the evidences in Layer 1 do not support Ncg, the diagnosis ratio (ΔTsat is Absent) 

of Ncg is 0% and that of RefOver is 26%. It is because the Ncg would never occur under 
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such evidence. The diagnosis ratio (RefCS is Yes) of Ncg is 0% and that of RefOver is 

53%. It is because RefOver is more likely to exist in such situation. 

Table 8.12 Evaluation results using the rest ASHRAE RP-1043 experimental data 

Fault Node State 

Fault diagnosis result 

N
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Ncg 

- - 37% 9% 0% 0% 0% 0% 53% 

CompRS Yes 43% 9% 0% 0% 0% 0% 48% 

CompRS No 37% 9% 0% 0% 0% 0% 53% 

RefCS Yes 0% 53% 0% 0% 0% 0% 47% 

RefCS No 61% 0% 0% 0% 0% 0% 39% 

ΔTsat Present 99% 0% 0% 0% 0% 0% 1% 

ΔTsat Absent 0% 26% 0% 0% 0% 0% 68% 

RefOver 

- - 1% 13% 0% 7% 47% 0% 32% 

CompRS Yes 3% 3% 0% 7% 40% 0% 48% 

CompRS No 1% 13% 0% 7% 47% 0% 32% 

RefCS Yes 0% 77% 0% 0% 6% 0% 17% 

RefCS No 1% 0% 0% 25% 47% 0% 26% 

RefLeak 

- - 0% 0% 94% 2% 0% 0% 4% 

CompRS Yes 0% 0% 94% 0% 0% 0% 6% 

CompRS No 0% 0% 94% 2% 0% 0% 4% 

RefCS Yes 0% 0% 94% 0% 0% 0% 6% 

RefCS No 0% 0% 94% 2% 0% 0% 4% 

CdFoul 

- - 0% 1% 1% 62% 1% 0% 30% 

WT Yes 1% 1% 7% 55% 1% 0% 35% 

WT No 0% 0% 6% 85% 0% 0% 9% 

RedCdW 

- - 1% 4% 6% 6% 79% 0% 4% 

CondWS Sick 0% 0% 2% 1% 96% 0% 1% 

CondWS Health 16% 10% 12% 20% 0% 0% 43% 

RedEvW 

- - 0% 0% 26% 2% 0% 68% 4% 

ChWS Sick 0% 0% 16% 1% 0% 82% 1% 

ChWS Health 0% 0% 29% 43% 0% 0% 28% 

 



176 

 

In the test of RefOver, the successful diagnosis ratio is 77%. It is because that 

RefOver only occurres when RefCS is Yes. The diagnosis ratio of RefOver is 0% and 

that of RedCdW is 47% under the evidences of CompRS (Yes and No), RefCS (No), or 

no evidence from Layer 1. Actually, the suspected RedCdW could be removed using 

further evidence (e.g. CondWS is health). 

In the test of RefLeak, the successful diagnosis ratio is 94% all the time using 

various evidences or no evidence from Layer 1. It is because the evidences from Layer 3 

strongly support RefLeak. In the test of CdFoul, the successful diagnosis ratio increases 

from 62% (no evidence from layer 1) to 85% (WT is No), and is decreased to 55% (WT 

is Yes). In the test of RedCdW, the successful diagnosis ratio increases from 79% (no 

evidence from layer 1) to 96% (CondWS is Sick), and decreases to 20% (CondWS is 

Health). In the case of RedEvW, the successful diagnosis ratio increases from 68% (no 

evidence from layer 1) to 82% (CondWS is Sick), and decreass to 43% (CondWS is 

Health). 

8.3 Summary 

A novel framework for intelligent chiller FDD is proposed in this chapter using 

Bayesian Diagnosis Network. A three-layer DBN is found to be sufficient for chiller 

FDD. From a methodological point of view, the framework can take advantage of all 

useful information of the chiller concerned and chiller experts’ knowledge. The 

framework can also integrate the outstanding achievements of previous FDD research 

into the development of the structure and parameters of the DBN. The DBN can 

properly account for uncertainties in the chiller FDD based on the probability analysis 
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and graph theory. It allows merging different types of knowledge and information (i.e. 

quantitative and qualitative) from diverse sources. It also has a strong ability in dealing 

with incomplete or even conflicting information. The DBN simulates the diagnostic 

thinking and diagnosis process of chiller expert. It can be used for online automatic 

FDD and manual FDD. The more information is embraced in the development of DBN, 

the more intelligent it would be. Similarly, the more evidences added to DBN in the 

FDD process, the more accurate the results would be.  

A case study of implementing the framework for detecting and diagnosing faults of 

the chiller studied in ASHRAE RP-1043 is conducted. The DBN has similar accuracy as 

rule-based chiller FDD strategies using ideal evidences in symptom node layer. It is 

powerful to diagnose faults using incomplete and even conflicting information. 

Evaluation of its online FDD performance is made using experimental data from 

ASHRAE RP-1043. Except refrigerant overcharge and non-considerable gas, the rest 

four faults are correctly diagnosed only using evidences from fault symptom nodes. The 

diagnosis ratios are increased when evidences of nodes in additional information layer 

are used. Refrigerant overcharge and non-considerable gas can be correctly diagnosed 

with the help of evidences of nodes in additional information layer. It is worth noticing 

that the difficulty in development of DBN is to obtain parameters. Further efforts are 

needed to reduce the difficulty.  
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CHAPTER 9 A DIAGNOSTIC BAYESIAN NETWORK 

FOR VAV TERMINAL FDD 

This chapter presents a diagnostic Bayesian network (DBN) for fault detection and 

diagnosis (FDD) of variable air volume (VAV) terminals. The structure of the DBN 

illustrates qualitatively the casual relationships between faults and symptoms. The 

parameters of the DBN describe quantitatively the probabilistic dependences between 

faults and evidence. The inputs of the DBN are the evidences which can be obtained 

from measurements in building management systems (BMSs) and manual tests. The 

outputs are the probabilities of faults concerned. Two rules are adopted to isolate the 

faults on the basis of the fault probabilities to improve the robustness of the strategy. 

Compared with conventional rule-based FDD strategies, the proposed strategy can  

provide better performance concerning uncertain and incomplete information. The faults 

are reported with probabilities rather than in the Boolean format. Evaluations are made 

on a dynamic simulator of a VAV air-conditioning system serving an office space using 

TRNSYS.  

9.1 VAV Terminal Description and Typical VAV Terminal Faults 

9.1.1 Description of VAV Terminal 

The pressure-independent controller is widely used in large complex VAV air-

conditioning systems due to its better control stability and faster response to load 

changes. The controller consists of two control loops, i.e. the temperature control loop 

and the flow control loop, as shown in Figure 9.1. The temperature control loop resets 
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the flow rate set-point based on the deviation of the measured zone temperature from its 

set-point. The flow control loop adjusts the VAV damper to maintain the measured air 

flow rate at its set-point. The influence of the fluctuation in the supply air pressure is 

eliminated because the flow control loop response quickly to it before the space 

temperature control is affected.  

 

 

Figure 9.1 Control loops of pressure-independent VAV terminals (Qin and Wang 2005)  

9.1.2 Typical VAV Terminal Faults 

Qin and Wang conducted a comprehensive investigation of the 1251 pressure-

independent VAV terminals in a 39-storey commercial building in Hong Kong (Qin and 

Wang, 2005; Wang and Qin, 2005). They found that 20.9% (i.e., 261/1251) of the VAV 

terminals are suspected to be faulty. Through detailed checking, 12 typical faults in 

VAV terminals were identified. The consequences of the faults include poor indoor 

environment quality, waste of energy, unreachable design value and physical damages. 

The ten root faults identified in their study, as shown in Table 9.1, are considered in this 

study.  
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Table 9.1 Ten typical faults and their default prior probabilities 

No. Fault node States  
Rules for defining 

state 

Prior 

probability 

F1 

Zone 

temperature 

sensor reading 

frozen 

Positive frozen 

Tzone is frozen,and 

 Tzone - Tset > εt1 
6% 

Negative frozen 

Tzone is frozen,and 

Tzone - Tset < -εt1 
6% 

Frozen at set-

point 

Tzone is frozen,and 

|Tzone - Tset| ≤ εt1 
2% 

Fault-free Tzone is not frozen 86% 

F2 
Flow sensor 

reading frozen 

Frozen Fair is frozen 12% 

Fault-free Fair is not frozen 88% 

F3 Damper stuck 

Positive stuck  Fair - Fair,set > εF 4% 

Negative stuck  Fair - Fair,set <- εF 4% 

Fault-free |Fair - Fair,set|≤ εF 92% 

F4 
Flow sensor 

biased 

Biased |Fair -Fair,acv|> ελ 16% 

Fault-free |Fair -Fair,acv|≤ ελ 84% 

F5 
Improper supply 

air pressure 

Positive 

Psupply -Psupply,set > 

εPsupply 
2% 

Negative 

Psupply -Psupply,set < -

εPsupply 
4% 

Fault-free 

|Psupply -Psupply,set| ≤ 

εPsupply 
94% 

F6 
Improper supply 

air temperature 

Positive 

Tsupply - Tsupply,set > 

εTsupply 
4% 

Negative 

Tsupply - Tsupply,set < -

εTsupply 
2% 

Fault-free 

|Tsupply -Tsupply,set | ≤ 

εTsupply 
94% 
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F7 
VAV terminal 

undersize 

Undersize Q < 0.8*Qmax,acv 4% 

Fault-free Q  ≥ 0.8*Qmax, acv 96% 

F8 
Extreme cooling 

load 

Positive Q > 1.2* Qmax, acv 3% 

Negative Q < 0.1* Qmax, acv 2% 

Fault-free 

0.1* Qmax ≤ Q ≤1.2* 

Qmax, acv 
95% 

F9 

Zone 

temperature 

sensor biased 

Positive Tzone - Tzone,acv > εTset 8% 

Negative Tzone - Tzone,acv < - εTset 8% 

Fault-free |Tzone - Tzone,acv | ≤ εTset 84% 

F10 

Improper zone 

temperature set-

point 

Positive Tzone - Tzone,acv > εTset 6% 

Negative Tzone - Tzone,acv < - εTset 6% 

Fault-free |Tzone - Tzone,acv | ≤ εTset 88% 

 

9.2 Diagnostic Bayesian Network (DBN) for VAV Terminal FDD 

A DBN is developed for diagnosing the ten root faults in the VAV terminals. The 

development of the structure and parameters of this DBN is explained in the following 

parts. The application of the DBN for FDD of VAV terminals and its advantages are 

also discussed in the later parts.  

9.2.1 Basic Ideas and Structure 

The structure of the DBN is a graphical illustration of experts’ diagnostic thinking, 

which can illustrate qualitatively the relationships among faults and symptoms. There 

are usually two approaches for developing the structure of a DBN, i.e. manually 

developed by experts and machine learning using full data sets (including both normal 

and fault data). The second approach is impractical because the full data sets of VAV 
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terminals are hardly available in practice.  Therefore, the first approach is adopted in this 

study.  

 
Figure 9.2  Diagnostic Bayesian network for fault detection and diagnosis of VAV 

terminals  

In developing the DBN for FDD of VAV terminals, the diagnostic thinking process 

of FDD experts are reflected and simulated. FDD experts usually diagnose faults based 

on the observed fault symptoms. Therefore, the DBN should consist of two types of 

nodes at least, i.e. the fault nodes and the fault symptom nodes. Considering that some 

fault symptoms can be collected from BMS automatically and others may need manual 

inputs, the symptom nodes are further divided into two groups, i.e. the BMS evidence 

nodes and the additional information nodes, as shown in Figure 9.2. Fault nodes 
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represent the ten root faults shown in Table 9.1. BMS evidence nodes represent 

symptoms which can be obtained from BMS database, as summarized in Table 9.2. 

Additional information nodes represent the evidences which can be obtained by site 

investigation, manual test and maintenance records.  

Table 9.2 Twelve BMS evidence nodes 

No. 
BMS evidence 

node 
State Rules for defining state 

E1 Tzone - Tset 

Extremely positive  Tzone - Tset > εt2 

Fairly positive  εt2 ≥ Tzone - Tset > εt1 

Within threshold |Tzone - Tset |≤ εt1 

Fairly negative -εt2 ≤ Tzone - Tset < -εt1 

Extremely negative Tzone - Tset < -εt2 

E2  Fsupply - Fset 

Positive Fair - Fset > εF 

Within threshold |Fair - Fset| ≤ εF 

Negative Fair - Fset < -εF 

E3 
Air flow rate set-

point  

Maximum value |Fset - Fmax|≤ εF 

Within threshold 
| Fset - Fmax |> εF, and 

| Fset - Fmin|> εF 

Minimum value | Fset - Fmin |≤ εF 

E4 
Air flow rate in 

ON period 

Frozen 

Fair reading is unchanged for 3 

hours, and |Tzone - Tset |≤ εt1, and 

|Fair - Fset |≤ εt1, 

Not frozen If Frozen is not detected 

E5 
Air flow rate in 

OFF period 

Frozen 
Fair is unchanged during power off 

period 

Not frozen If Frozen is not detected 

E6 

Air flow rate set-

point reversal 

number 

Too many reversal Larger than  4 within 1.5 hours 

Within threshold Smaller than 4 within 1.5 hours 

E7 

The relationship 

between air flow 

rate and damper 

position 

Positive |Fair - Fmax| ≤ εF, λmax- λ >20% 

Negative |Fair - Fmin| ≤ εF, λ- λmin >20% 

Within threshold If above states are not detected 

E8 Psupply - Psupply,set 

Positive Psupply - Psupply,set > εPsupply 

Negative Psupply - Psupply,set < -εPsupply 

Within threshold |Psupply - Psupply,set| ≤ εPsupply 

E9 Tsupply - Tsupply,set 
Positive Tsupply - Tsupply,set > εTsupply 

Negative Tsupply - Tsupply,set < -εTsupply 
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Within threshold |Tsupply -Tsupply,set | ≤ εTsupply 

E10 Tset - Tset,design 

Positive Tset - Tset,design > εTset 

Negative Tset - Tset,design < - εTset 

Within threshold |Tset - Tset,design| ≤ εTset 

E11 

Zone temperature 

reading in OFF 

period 

Frozen 
Tzone is unchanged for 0.5 hours in 

OFF period  

Not frozen If Frozen is not detected 

E12 

Zone temperature 

reading in ON 

period 

Positive frozen 
Tzone - Tzone, set> εt1, and Tzone reading 

is unchanged for 3 hours 

Negative frozen 
Tzone - Tzone, set < -εt1, and Tzone 

reading is unchanged for 3 hours 

Frozen at set-point 
|Tzone - Tzone, set | ≤ εt1, and Tzone 

reading is unchanged for 3 hours,  

Not frozen If above states are not detected 

 

After determining the nodes, the state of each node should be defined. A fault node 

may have several states, as shown in the third column of Table 9.1. It helps to lower the 

difficulty in estimating the conditional probabilities of the fault evidence given the fault. 

Besides, it can provide the more detailed information of the fault, which helps to bring 

the system back to normal. The rules in the fourth column of Table 9.1 define the 

corresponding states. Taking F1 (zone temperature sensor frozen) for instance, it has 

four states, i.e. Positive frozen, Negative frozen, Frozen at set-point and Fault-free, 

which means the measured zone temperature is higher than, lower than or equal to the 

zone temperature set-point, as well as fault-free, respectively.  

Twelve BMS evidence nodes are used as shown in Table 9.2. Similarly to Table 9.1, 

states of each node and the corresponding rules to determine the states of the nodes are 

also given in Table 9.2. Most of the rules are straightforward and can be understood 

easily. For instance, E12 represents the behavior of the zone temperature sensor (Tzone) 

when the VAV system is in operation (ON period). It has four states, i.e. Positive frozen, 
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Negative frozen, Frozen at set-point and Not frozen. The state of Tzone frozen is 

confirmed if the measurement does not change in 3 hours. The Positive frozen state is 

observed if Tzone is larger than the sum of Tset and εt1.  E6 represents the behavior of the 

flow rate set-point within a moving window. The flow set-point reversal is counted 

when Fset - Fair exceeds the threshold (εF) and the reversal number is added by one once 

Fset - Fair exceeds the threshold at the opposite direction. Within a moving window, the 

reversal number will be larger than a threshold when the flow sensor reading is frozen. 

Qin and Wang (2005) advised the threshold of the reversal number to be 4 in the moving 

window of 1.5 hours.  

Nine additional information nodes are given in Table 9.3. The last column explains 

how to get the additional information. The additional information nodes are useful only 

if faults cannot be distinguished using BMS evidence nodes. For example, there are 

more than one fault are suspected according to the DBN inference from the BMS 

evidence nodes. However, the posterior probabilities of those faults are very close to 

each other which cannot help to isolate the actual fault. In such situation, the additional 

information nodes are needed. The posterior probabilities (believes) of the states of the 

additional information nodes will be inferred from the suspected fault nodes. A manual 

test list selected from the last column of Table 9.3 will be recommended to check those 

states with high posterior probabilities.  
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Table 9.3 Nine additional information nodes 

No. 

Additional information 

node State 

Rules for 

defining state Action 

M1 

Site measured supply air 

flow rate - BMS measured 

supply air flow rate? 

Yes 

|Fsupply,m-Fsupply |> 

εF 
Manual test 

No 

|Fsupply,m-Fsupply |≤ 

εF 

M2 Is damper stuck? 
Yes 

Manual test 
No 

M3 

Does measured supply air 

temperature equal its set-

point? 

Yes 

|Tsupply,m - Tsupply, 

set |≤ εt1 
Manual test 

No 

|Tsupply,m - Tsupply, 

set |> εt1 

M4 

Is temperature in similar 

zones (T’zone) higher or 

lower than its set-point? 

Higher 

T’zone - Tzone, set> 

εt1 
Manual 

test/analyze 

BMS data 
Lower 

T’zone - Tzone, set< 

εt1 

No 

|T’zone - Tzone, set |≤ 

εt1 

M5 

Was VAV terminal 

undersize fault detected 

and reported before? 

Yes 
Facility 

management 

records No 

M6 
Is weather extremely hot 

or extremely cold? 

Extremely hot Toa > Texh 

Site 

investigation 

Extremely 

cold 

Toa < Texl     

Absent Texl ≤ Toa ≤ Texh 

M7 

Is occupant number 

extremely large? Is 

window open?  

Too many 

5 times of 

design occupant 

number Site 

investigation  
Open 

Absent 

M8 

No fault detected, but 

occupants complain zone 

temperature is hot/cold. 

 Too hot Facility 

management 

record 
Too cold 

No complain 

M9 

Does, manually measured 

zone temperature (Tzone,m) 

equal zone temperature 

set-point? 

Yes 
|Tzone,m - Tzone, set 

|≤ εt1 
Manual test 

No 
|Tzone, - Tzone, set |> 

εt1 

 

 

After manually input the states needed, the posterior probabilities of the faults 

suspected will be calculated again and the actual fault will be successfully diagnosed. 



187 

 

Examples on how to utilize additional information nodes are given in the later part.  The 

additional information can help to enhance the reliability of the DBN-based FDD 

strategy considering incompleteness of necessary information. However, considering the 

convenience in obtaining necessary information, the BMS evidence nodes will be used 

firstly and the additional information is not always needed. Meanwhile, a manual test 

list can be recommended by the DBN to check those necessary additional information 

nodes which can substantially reduce the manual work load. 

The DBN for FDD of VAV terminals is shown in Figure 9.2 which illustrates the 

three types of nodes and how they connect with each other. Taking the fault node F1, i.e. 

zone temperature sensor reading frozen, for example, if this fault occurs, the BMS 

evidence nodes E1, E2, E3, E4, E11 and E12 will be influenced. Therefore, F1 connects 

to these BMS evidence nodes directly using arcs. It should be noted that developing 

DBN is usually a complex and time-consuming task. After all, simulating the thinking 

process of FDD experts is not easy. The knowledge and experience of the developer of 

DBN is critically important. However, the DBN developed in this study is not 

customized for a special VAV terminal, but for a large number of similar VAV 

terminals widely used in many VAV systems. The effort is worthwhile.  

9.2.2 Parameters of the VAV Terminal DBN 

Parameters of a DBN represent the quantitative dependences among faults and 

symptoms using probabilities. A conditional probability table is used to define the 

probabilities of all states of a child node given the states of its parent nodes. In this study, 

nodes with only one parent node are considered to be general nodes. Nodes with more 
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than one parent nodes are assumed to be Noisy-MAX nodes. For the Noisy-MAX nodes, 

the conditional probabilities and LEAK probabilities are needed. In the DBN for VAV 

terminal FDD, LEAK probabilities represent the probabilities of each state of child node 

when all parent nodes are at fault-free states. Therefore, there are three kinds of 

parameters in the DBN for FDD of VAV terminals, i.e. prior probabilities of root nodes, 

conditional probability tables of general nodes as well as conditional probabilities and 

LEAK probabilities of noisy-MAX nodes. In the DBN shown in Figure 9.2, the root 

nodes include all fault nodes except for F7, F8 and F10 and the additional information 

nodes M5, M6, and M7 (parent nodes of F7 and F8).  

It is reasonable to assume that the probability of a frequently occurred fault is higher 

than that of a rarely occurred fault when a VAV terminal is abnormal. For instance, 

when the zone temperature is higher than its set-point, F1 (zone temperature sensor 

reading frozen) is more possible to occur than F8 (extremely High/Low cooling load), 

since the former’s prior probability is obviously larger than that of the later as proven in 

Qin and Wang’s survey results. Such kind of prior knowledge is utilized by giving prior 

probabilities to faults in the DBN-based FDD. Field survey is the best way to obtain the 

prior probabilities of faults. However, there were few survey results available. Yoshida 

conducted a survey to collect information on a range of faults in air handling units using 

the reference system diagram. Survey was made from design engineers, fabricating 

engineers and maintenance engineers. There were two VAV terminal related faults 

among the ten most typical faults in air handling units, i.e. too much or less air volume 

at top 5 and false opening signal to a VAV unit controller at top 7. Wang and Qin made 

a survey on the VAV air conditioning system in a 39-storey commercial building in 
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Hong Kong. They found 261 abnormal ones in a total of 1251 VAV terminals. The 

temperature sensor error contributed 25.3% of all faults, which was the largest one. The 

second one was the direct digital controller error (17.6%). 11.5% of VAV boxes were 

not accessible due to unknown reason. In this study, the prior probabilities of faults in 

the last column of Table 9.1 were estimated by authors based on available survey results 

and knowledge and experience of the authors. The assignment of prior probabilities 

seems subjective to some extent. A detailed analysis of the sensitivity of the FDD results 

to the probabilities assigned is given in the later part. 

The conditional probabilities between the fault nodes and the BMS evidence nodes 

or the additional information nodes are estimated by the authors.  Taking the general 

nodes E11 and E12 for example, the assignment of conditional probabilities is explained 

as follows. Table 9.4 illustrates the conditional probability table between F1 and E11. 

When Tzone reading is frozen, a higher value, i.e. 0.98, is given to the conditional 

probability of E11 at the state of Frozen, considering the close cause-effect relationship 

between F1 and E11. It leaves 0.02 for various uncertainties, such as induced electrical 

noise, sensor wiring fault, etc. When the Tzone sensor is normal, there is still a little 

chance that its reading is frozen during the power OFF period. In view of this, a small 

value, i.e. 0.1, is given to this probability. Similarly，the conditional probability table 

between F1 and E12 is defined by Table 9.5.  

Table 9.4 Conditional probability table between F1 and E11 

E11 
F1: Tzone reading frozen 

Higher Lower Tset Absent 

Frozen 0.98 0.98 0.98 0.1 

Not frozen 0.02 0.02 0.02 0.9 
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Table 9.5 Conditional probability table between F1 and E12 

E12 
F1: Tzone reading frozen 

Positive 

frozen 

Negative 

frozen 

Frozen at 

set-point 

Fault-

free 

Positive frozen 0.98 0 0 0.01 

Negative frozen 0 0.98 0 0.01 

Frozen at set-point 0 0 0.98 0.03 

Not frozen 0.02 0.02 0.02 0.95 

 

 

E2 is assumed to be a noisy-MAX node. Due to the space limitation, Table 9.6 only 

shows the conditional probabilities of E2 given F2 and F5 as well as its LEAK 

probabilities. The assignment of the conditional probabilities is similar to Table 9.4 and 

9.5. For a noisy-MAX node, the state Fault-free of each fault should be in Boolean 

format, i.e. Yes (0) and No (1). LEAK represents the probabilities when both F4 and F5 

are Fault-free. If E2 is a general node, it should consider all of the possible 

combinations of states of its parent nodes in the conditional probability table, e.g. 

P(E2=Positive|F4=Fmax, F4= Biased).  It is reasonable to assume that at one moment 

there is only one fault occurring; therefore E2 can be assumed to be a noisy-MAX node. 

It shows that the assumption saves efforts significantly without sacrificing the FDD 

reliability. 

Table 9.6 Conditional probabilities of Noisy-MAX node E2 given F4 and F5 and its 

LEAK probabilities 

E2 

Fsupply - Fset 

F4: Flow sensor 

bias fault 
F5: Supply air pressure fault 

LEAK 

Biased Fault-free Positive Negative Fault-free 

Positive 0.01 0 0.8 0 0 0.01 

Negative 0.01 0 0 0.8 0 0.01 

Within the threshold 0.98 1 0.2 0.2 1 0.98 
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9.2.3 DBN-Based Fault Detection and Diagnosis 

The flow chart of the proposed DBN-based VAV terminal FDD strategy is illustrated 

in Figure 9.3.  
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Figure 9.3 Flow chart of the DBN-based VAV terminal FDD strategy 

The evidences from the BMS measurements are used firstly since they can usually be 

obtained conveniently from BMS. The real-time measurements are collected and stored 

in BMS. Then, the data are pre-processed to remove obvious outliers. The rules in Table 

9.2 are used to determine the states of all BMS evidences nodes. If all of them are 

normal (i.e. within the threshold or Not frozen as shown in Table 9.2), the VAV terminal 

is considered to be fault-free. If not all of the states are normal, fault is alarmed and fault 

diagnosis is conducted. All of the observed states of the BMS evidence nodes are 

inputted into the DBN. The probabilities of the observed states of nodes are set to be 1.0. 

The DBN calculates the believes (posterior probabilities) of each fault under inputted 

evidences. Usually, the larger the fault belief is, the higher the possibility of the 

corresponding fault is. To improve the robustness of the diagnosis, the following two 

rules are used to determine the FDD results in this study: 

Rule A: if the largest fault belief is larger than 0.7, then the fault with the largest 

belief is reported; or, 

Rule B: if the largest fault belief is 0.3 larger than the second largest one, then the 

fault with the largest probability is reported. 

If the DBN inference results cannot meet either of the two rules, the zone temperature 

(Tzone) needs to be checked to see if it is maintained at its set-point (Tset). The VAV 

serving that zone is considered to be fault-free if Tzone is maintained at Tset. Otherwise, a 

recommended check list is generated according to the posterior probabilities of the 

additional information nodes. The states of the additional information nodes obtained by 

the manual tests are then inputted to the DBN as new evidences to infer the belief of the 
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suspected faults again and the actual fault can be successfully diagnosed. The 

recommended check list minimizes the manual tests needed and is a good guide for 

repairing works. 

9.3 Evaluations of the DBN-Based VAV Terminal FDD Strategy 

9.3.1 Descriptions of The Simulation Platform 

A dynamic simulator of an office building VAV air-conditioning system built on the 

TRNSYS platform was used to evaluate the proposed DBN-based FDD strategy for 

VAV terminals. The prototype of the simulated VAV system comes from the typical 

floor of a forty-six commercial building located in Hong Kong (Wang, 1999). In the 

simulator, half of a floor is considered. It consists about 1166 m
2
 floor office area which 

is divided into eight zones. It was served by a central AHU, 40 VAV terminals, and over 

a hundred air diffusers. The VAV terminals are pressure-independent type. 

The PID control was used by the local DDC controllers. The pitch angel of the VAV 

supply (axial) fan is moderated to control the supply air statistic pressure. The return 

(axial) fan controls the exfiltration flow rate by maintaining the difference between the 

total supply and return air flow rates within threshold through moderating the pitch 

angle of return fan. Wang developed a simulation model to dynamically simulate the 

VAV air-conditioning system of the half of a floor using TRNSYS as platform (Wang, 

1999), as shown in Figure 9.3. It includes simplified building model, duct model, fan 

model, cooling coil model, sensor and actuator models, DDC controller. A fluid flow 

rate and pressure calculation model was introduced to simulate the pressure-flow 
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balance. The model parameters were determined using manufacturer catalogues, and/or 

empirical correlations given in handbooks, and on-site performance data.  

In the simulated system, a ‘realistic’ controller model was developed to simulate the 

DDC controllers representing the follow functions: DDC functions, discrete-time 

operation of digital controllers and supervisory control strategies. The time scheduling 

of a sampling cycle is considered to be four steps, i.e. process variable sampling, control 

outputs computation, control signal output, and waiting time for the next sampling cycle. 

The ISA algorithm was used in the PID control function in DDC loops. The actuator 

considered the hysteresis in the linkage between actuators and valves or dampers. The 

dynamics sensor model was used to simulate the temperature, pressure and flow using 

the time constant strategy.  

The daily operation of the simulated air-conditioning system is from 7:45 to 20:00. 

The supply air temperature set-point is 13℃. The statistic pressure is 750 Pa. The chilled 

water temperature to cooling coil is 8℃. The zone temperature set point is 24
o
C. The 

weather data of a typical day in summer is selected as simulation conditions. In this 

study, the generally available measurements/parameters are selected to detect and 

diagnose faults, including: zone temperature sensor measurement, air flow meter 

measurement, air flow rate set-point, zone temperature set-point, maximum air flow rate 

and minimum air flow rate. Fault data were obtained through introducing the ten faults 

concerned into the simulated system. 
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9.3.2 Evaluations of The DBN-Based VAV Terminal FDD Strategy 

9.3.2.1 Detecting and diagnosing the ten typical faults in VAV terminals  

In this section, the performance of the DBN-based FDD strategy is evaluated using 

simulation tests. In each test, one of the ten typical faults is introduced to the simulator. 

In the simulator, the measurements are sampled at the interval of 5 minutes. The BBN 

inference is computationally efficient; therefore the DBN-based FDD is conducted on 

each sample.  Table 9.7 gives the values of parameters needed in Table 9.1-9.3 for 

determining the states. Some parameters are obtained from design values, such as FMax, 

FMin, Psupply,set, Tsupply,set, Tset and Tset,design. Some parameters are estimated according to 

the domain knowledge and experiences, such as εTset, εt2, ελ, εPsupply and εTsupply. Some 

parameters are obtained using the t-statistic analysis with confidence level of 95.45%, 

such as εF and εt1. 

Table 9.7 Parameters used in the DBN-based FDD strategy 

Parameter Value Parameter Value 

FMax 727 L/s εt1 0.18 K 

FMin 170 L/s εt2 2 K 

Psupply,set 700 Pa εF 34 L/s 

Tsupply,set 13 ℃ εPsupply 200 Pa 

Tset 24 ℃ εTsupply 4 K 

εTset  3 K m 4 

 

F1: Zone temperature sensor reading frozen 

This fault is simulated by fixing the output of the dynamic sensor model in Zone 6 at 

23℃, 24℃ and 25℃ respectively from 11:30 to 20:00. The VAV terminal is totally out 
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of control. The flow set-points obtained in the cascade control loop are fixed at the 

minimum (frozen at 23℃), maximum (frozen at 25℃) and a small range at partial 

position (frozen at set-point, 24℃) respectively. The FDD result of the zone temperature 

sensor frozen at 25
o
C is shown in Figure 9.4. 

 

Figure 9.4 Temperature sensor reading is frozen at 25℃ from 11:30 in zone 6.  

(a) Behaviour of the VAV terminal ; (b) FDD results. 

The behavior of the VAV terminal when the zone temperature reading is frozen at 25℃ 

is as shown in Figure 9.4(a). The top 3 suspected faults inferred by the DBN are shown 

in Figure 9.4(b). The fault is successfully detected by E12 three hours later and then 

diagnosed with a belief of 1.00 (at 14:35). Probabilities of the other two most suspected 

faults are obviously lower, i.e. 0.11 for F2 and 0.06for F4. When zone temperature 

reading frozen at 22℃, the FDD results are similar. 

When the zone temperature reading is frozen at the set-point, i.e.24℃, the fault 

symptoms are similar to those of the flow sensor reading frozen fault (F2). It could not 
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be distinguished until the Positive frozen state of E12 is observed 3 hours later, or E11 

was observed 0.5 hour after the system is shut down. 

F2: VAV flow sensor reading frozen 

This fault is simulated by fixing the flow sensor reading of the VAV terminal in Zone 

6 at 402 L/s (corresponding to 52% opening position) from 11:30 to 20:00. The behavior 

of the VAV terminal is shown in Figure 9.5(a). The VAV terminal control loop 

oscillates when this fault exists. The zone temperature oscillates around the set-point 

within a small range. The FDD results (top 3 suspected faults) are shown in Figure 

9.5(b). This fault is correctly diagnosed at belief of 0.75 from 14:45.  

 

Figure 9.5 VAV flow sensor reading is frozen at 402 L/s at 11:35 in zone 6. (a) Behavior 

of the VAV terminal ; (b) FDD results. 
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F3: VAV damper stuck 

This fault is introduced to the simulator by fixing the control signal of the VAV 

damper in Zone 6 at 40% from 11:35 to 20:00. The behavior of the VAV terminal is 

shown in Figure 9.6(a). The VAV terminal controller does not have the ability to 

actively control the air flow rate. The FDD results are shown in Figure 9.6(b). This fault 

is successfully diagnosed from 14:35 at belief of 1.00. 

 

Figure 9.6 VAV damper is stuck at 40%  

(a) Behaviour of the VAV terminal; (b) FDD results 
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F4: Flow sensor reading deviation to maximum/minimum 

 

Figure 9.7 VAV flow sensor is 464 L/s bias  

(a) Measured VAV terminal performance; (b) FDD results 

This fault is introduced to the simulator adding 464 L/s (64% of Fmax) bias at the flow 

sensor reading of VAV terminal in Zone 6 from 11:20.  The behavior of the VAV 

terminal is shown in 10.7(a). The control process is ruined. It is correctly diagnosed 

from 11:45 when the air flow set-point is at maximum and zone temperature raised, as 

shown in Figure 9.7(b).  

F5: Supply air temperature is too high/low, and F6: Supply air pressure is too high/low 

Both F5 and F6 are diagnosed easily through comparing supply air 

temperature/pressure measurement from BMS with its set-point respectively. Both faults 

are removed at the beginning of FDD. 

F7: VAV terminal under capacity, and F8: Extreme high cooling load 

F4 is correctly diagnosed
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Both faults have same symptoms. They are introduced to the simulator by increasing 

cooling load to be 1.5 times higher from 11:30 to 20:00. The behavior of the VAV 

terminal is shown in Figure 9.8(a). Four scenarios (A, B, C and D as shown in Figure 

9.8) are considered, and each scenario adopts different evidences from the BMS 

evidence nodes and additional information nodes.  In period A, only evidences of all 

BMS evidence nodes are observed and inputted to DBN. The information is incomplete 

to isolate the faults. In additional to the observed BMS evidence nodes, extra evidences 

from additional information nodes are added in periods B, C and D respectively to 

demonstrate how additional information can help to distinguish the two faults. 

 

Figure 9.8 Cooling load is 1.5 times higher.  

(a) Measured VAV terminal performance; (b) FDD results. 

In period A, both faults have low believes. In period B, two extra evidences are 

added, i.e. M5=No (the under capacity fault was not found in history) and M6= 

Extremely hot (the weather was very hot). The fault probability of F8 increases to 0.89, 
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and that of F7 reduces to 0.35. F8 is correctly diagnosed. In period C, one extra evidence 

is added while evidences from part B are removed, i.e., M5=Yes (the under capacity 

fault was found in history). The fault probability of F7 increases to 0.97, and that of F8 

reduces to 0.02. In part D, two extra evidences are added while evidences from part B 

and C are removed, i.e. M5=No (the under capacity fault is not found in history) and 

M7=Too many (there are too many occupants in the zone). The fault probability of F8 

increases to 0.95, and that of F7 reduces to 0.02. The evidences from additional 

information nodes are helpful to distinguish the two faults. 

 

F9: Zone temperature sensor bias and F10: Zone temperature set-point is higher/lower 

These two faults Zone temperature sensor bias (F9) would not affect the zone 

temperature control if it is compensated by resetting the zone temperature set-point 

(F10). Therefore, the root reason might be F9 if F10 is diagnosed. If zone temperature 

set-point is not reset, F9 might not be detected only using the system characteristics. 

However, occupants would complain (M8) since the actual zone temperature leads to 

discomfort. 



202 

 

 

Figure 9.9 Zone temperature sensor is +2.0 ℃ bias.  

(a) Measured VAV terminal performance; (b) FDD results. 

F9 is conducted from 11:30 as shown in Figure 9.9(a) and 9.9(b). The VAV terminal 

adjusts Fset to maintain measured zone temperature Tzone to be Tset. There is no fault 

detected. M8=Cool is added to represent occupant complaint from 14:10 to 15:50. F9 is 

diagnosed at 85% probability. Tset is set to 26℃ from 15:50 to 20:00. M8 is removed, 

and E10= Positive is added. F10 is diagnosed at belief of 1.00. Fault probability of F9 

reduces to 0.00. 

In summary, all typical faults have been correctly diagnosed. The fault diagnosis is 

mainly based on BMS evidence nodes. Seven faults (F1-F6, and F10) can be diagnosed 

by only using BMS evidence nodes. The additional information nodes are helpful when 

faults cannot be isolated. The remainder three faults (F7, F8 and F9) can be diagnosed 

with the help of additional information nodes, i.e. VAV terminal under capacity, 

extreme high cooling load and zone temperature sensor bias. The evidences of these 

additional information nodes are easily to be obtained.  
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9.3.2.2 FDD results considering incomplete information 

Two cases (F3 and F4 as presented in Section 4.1) are elaborated in detail to show 

how the DBN-based FDD strategy works when only incomplete information is available.  

In each case, a new piece of evidence is added at a step. The DBN infers the fault 

probabilities under current available evidences (ψ). The top three suspected faults in 

each step are listed as shown in the last column of Table 9.8 and Table 9.9. It can be 

found that the more evidences are inputted, the more accurate the FDD results would be. 

Table 9.8 Fault diagnosis results considering incomplete information - Case-1 

Step 

Added 

evidence Top three suspected faults 

Step 1 

E1=Fairly 

positive 

P(F1=Larger|ψ) = 0.17, P(F2=Present|ψ) = 0.14, P(F4=Max|ψ) = 

0.10 

Step 2 E2=Negative 

P(F5=Low|ψ) = 0.45, P(F3=Lower|ψ) = 0.37, P(F10=Higher|ψ) = 

0.12 

Step 3 E3=Max value 

P(F5=Low|ψ) = 0.49, P(F3=Lower|ψ) =0.44, P(F10=Higher|ψ) = 

0.14 

Step 4 

E8=Within 

threshold 

P(F3=Lower|ψ) = 0.81, P(F10=Higher|ψ) = 0.17, P(F9=Positive|ψ) 

= 0.13 

 

Case-1 aims to diagnose F3 (damper stuck), as shown in Table 10.8. In Step 1, Step 2 

and Step 3, the evidences are insufficient to isolate this fault. F5 and F3 are the most 

suspected faults. In Step 4, E9=Within threshold does not support F5. The fault 

probability of F3 increases to 0.81. F3 is confirmed to be the root fault.  
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Table 9.9 Fault diagnosis results considering incomplete information - Case-2 

Step Added evidence Top three suspected faults 

Step 1 

E1= Fairly 

negative 
P(F10=Higher|ψ) = 0.34, P(F9=Positive|ψ) = 0.29, P(F4=Min|ψ) 

= 0.14 

Step 2 

E2=Within 

threshold 

P(F10=Higher|ψ) = 0.44, P(F9= Positive|ψ) = 0.39, P(F4=Min|ψ) 

= 0.19 

Step 3 E3=Min value 

P(F4=Min|ψ) = 0.38, P(F1=Lower|ψ) = 0.29, P(F6=Lower|ψ) = 

0.19 

Step 4 E4=Not frozen 

P(F4=Min|ψ) = 0.38, P(F1=Lower|ψ) = 0.29, P(F6=Lower|ψ) = 

0.19 

Step 5 M4=No 

P(F4=Min|ψ) = 0.69, P(F8=Too low|ψ) = 0.15, P(F6=Lower|ψ) = 

0.07 

 

Case-2 aims to diagnose F4 (Flow sensor bias), as shown in Table 9.9. From Step 3 

to Step 5, F4 is the most suspected fault. However, it could not be distinguished because 

its fault probability is not obviously higher than those of other faults. In Step 5, the 

belief of F4 increases to 0.69. F4 is confirmed to be root fault.  

9.3.3 Sensitivity analysis 

The prior probabilities of faults and conditional probabilities are very important to 

the fault diagnosis. However, the experts’ estimations are subjective to some extent. For 

example, when FDD experts consider the probability of a fault at given symptom is low, 

they may assign 0.02, 0.05, 0.06 or others to the probability.  Therefore, this section 

aims to analyze the sensitivity of the DBN-based FDD strategy to the pre-assigned 

probabilities.  

9.3.3.1 Sensitivities analysis of prior probabilities  

To analyze the sensitivities of the DBN-based strategy to prior probabilities of faults, 

different values are assigned to the prior probabilities to test the performance of the 
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DBN-based strategy. Case-3 is made in the same way as Case-1. In this case, the prior 

probabilities of all fault states of F3 in the DBN are doubled, e.g. from 0.04 to 0.08; and 

the prior probabilities of Fault-free changes to 84% accordingly. The results are shown 

in Table 9.10. At each step, the list of top three suspected faults does not changed 

significantly. F3 can still be diagnosed correctly. It is found that the fault diagnosis 

performance of the DBN-based strategy is more sensitive to the qualitative relationships 

among prior probabilities of faults than prior probabilities themself. The qualitative 

relationship is that the prior probability of one fault is larger/smaller than or equal to the 

prior probability of another fault. FDD experts usually have common views on this kind 

of large or small probabilities even though they may assign different values to them. 

Table 9.10 Fault diagnosis results in Case-3 

Step 

Added 

evidence Top three suspected faults 

Step 1 

E1=Fairly 

positive 

P(F2=Present|ψ) = 0.25, P(F1=Larger|ψ) = 0.19, P(F4=Max|ψ) = 

0.12 

Step 2 E2=Negative 

P(F5=Low|ψ) = 0.48, P(F3=Lower|ψ) = 0.41, P(F2=Present|ψ) = 

0.22 

Step 3 E3=Max value 

P(F5=Low|ψ) = 0.50, P(F3=Lower|ψ) = 0.45, P(F2=Present|ψ) = 

0.22 

Step 4 

E8=Within 

threshold 

P(F3=Lower|ψ) = 0.80, P(F2=Present|ψ) = 0.22, P(F10=Higher|ψ) 

= 0.21 

 

9.3.3.2 Sensitivities of conditional probabilities  

Case-4 and Case-5 aim to evaluate the fault diagnosis performance when conditional 

probabilities among faults and symptoms are in the Boolean format. Case-4 is made in 

the same way as Case-1, and Case-5 is made in the same way as Case-2 in Section 4.2. 

The results are shown in Table 9.11 and Table 9.12 respectively. The results at each step 
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are not changed significantly compared with Table 9.8 of Case-1 and Table 9.9 of Case-

2. Both faults are correctly diagnosed at higher believes than those in Case-1 and Case-2. 

Table 9.11 Fault diagnosis results in Case-4 

Step 

Added 

evidence Top three suspected faults 

Step 1 

E1=Fairly 

positive 

P(F1=Larger|ψ) = 0.20, P(F4=Max|ψ) = 0.13, P(F6=Higher|ψ) = 

0.13  

Step 2 E2=Negative 

P(F3=Lower|ψ) = 0.52, P(F5=Low|ψ) = 0.51, P(F2=Present|ψ) = 

0.12 

Step 3 E3=Max value 

P(F3=Lower|ψ) = 0.52, P(F5=Low|ψ) = 0.51, P(F2=Present|ψ) = 

0.12 

Step 4 

E8=Within 

threshold 

P(F3=Lower|ψ) = 1.00, P(F2=Present|ψ) = 0.12, P(F10=Higher|ψ) 

= 0.11 

 

Table 9.12 Fault diagnosis results in Case-5 

Step 

Added 

evidence Top three suspected faults 

Step 1 

E1= Fairly 

negative 
P(F9=Positive|ψ) = 0.43, P(F10=Higher|ψ) = 0.31,  P(F4=Min|ψ) = 

0.20 

Step 2 

E2=Within 

threshold 

P(F57=Positive|ψ) = 0.43, P(F10=Higher|ψ) = 0.41,  P(F4=Min|ψ) = 

0.27 

Step 3 

E3=Min 

value 

P(F4=Min|ψ) = 0.59, P(F6=Lower|ψ) = 0.29, P(F2=Present|ψ) = 

0.12 

Step 4 

E4=Not 

frozen 

P(F4=Min|ψ) = 0.59, P(F6=Lower|ψ) =0.29, P(F5=Too high|ψ) = 

0.06 

Step 5 M4=No P(F4=Min|ψ) = 0.75, P(F8=Too low|ψ) = 0.15, P(F6=Lower|ψ) = 0.07 

 

Table 9.13 Conditional probability table between F1 and E11 for Case-6 

E11 
F1: Tzone reading is frozen 

Positive 

frozen 

Negative 

frozen 

Frozen at 

set-point 

Fault 

free 

Frozen 1 1 1 0 

No frozen 0 0 0 1 
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Table 9.14 Conditional probability table between F1 and E12 for Case-6 

E12 
F1: Tzone reading is frozen 

Positive 

frozen 

Negative 

frozen 

Frozen at 

set-point Fault free 

Positive frozen 1 0 0 0 

Negative frozen 0 1 0 0 

Frozen at set-point 0 0 1 0 

Not frozen 0 0 0 1 

 

 

Case-6 aims to show the benefits of using probabilities. As shown in Figure 9.3, F1 

has casual relationships with E11 and E12. Using parameters in Table 9.5 and Table 9.6, 

the belief of F1 at Fault-free is 0.96 when E11 is frozen and E12 is Not frozen. Tzone 

reading is possible to be frozen for 0.5 hours in the power OFF period when this sensor 

is not frozen. If the conditional probabilities are Boolean type (0 and 1) as shown in 

Table 9.13 and Table 9.14, the belief of F1 at Fault-free is 0.0 when E12 is Not frozen. 

In such condition, it is impossible to set frozen in E11 to be observed since the belief of 

E12 at Not frozen is 0 (in the BBN, if the probability of state is 0, it means that such 

state never occurs. So, it will never be observed). The DBN can be robust if the 

uncertainties are considered in conditional probabilities. It also shows the information 

fusion capacity of the DBN using conflicting evidences. 

Case-4 and Case-5 show that the conditional probabilities can be in the Boolean 

format if it is very difficult to estimate them. In such situation, the DBN-based FDD 

method works like the if…then… rule-based methods and fault tree-based methods. The 

major difference is that the DBN might still work well when information is incomplete; 

however, the rule-based methods and fault tree-based methods hardly work properly in 

such condition.  
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9.4. Summary 

This chapter presents a robust DBN-based FDD strategy based on probability 

analysis and graph theory for VAV terminals. The strategy is evaluated using simulation 

tests where ten typical faults of VAV terminal are introduced. All faults are correctly 

diagnosed with high believes.  

The prior probabilities and the conditional probabilities need to be assigned by the 

experts, which may be subjective to some extent. This study also analyzes the 

sensitivities of the DBN-based FDD strategy to the pre-assigned probabilities. The 

results show that small variations in the probabilities will not change the FDD results so 

long as the qualitative probability relationships between the states of one node (prior 

probabilities) or between the faults and symptoms (conditional probabilities) are correct, 

i.e. assign a large value to the high probability event and assign a small value to the low 

probability event.  

The DBN-based strategy is tolerant with various uncertainties, such as measurement 

noises, considering that uncertainties are usually low probability events. The DBN is 

applicable to VAV terminals of the same type because it is developed based on the 

intrinsic relationships between faults and symptoms. The DBN-based strategy can be 

used for on-line and off-line FDD of VAV terminals.  
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CHAPTER 10 CONCLUSIONS AND 

RECOMMENDATIONS 

FDD tools are essential for reliable indoor environment control, saving maintenance 

efforts, and eliminating the associated energy waste. The aim of this PhD project is to 

develop enhanced and reliable FDD methods for HVAC systems in buildings. This 

chapter presents the main contributions of this thesis in Section 10.1, summary of 

performance of the proposed four methods in Section 10.2, and recommendations for 

further works in Section 10.3. 

10.1 Main Contributions 

The main contributions of this thesis are summarized as follows: 

i. A simplified model-based FDD method with its customization tool is proposed to 

identify model parameters using limited training data, and then to generate 

benchmarks for fault detection using the calibrated models. It is preferable when 

there are limited fault-free data to train models. 

ii. An enhanced statistical FDD method is proposed to improve the performance of 

conventional gray-box model-based FDD methods for the detection and diagnosis 

of incipient faults. Support vector regression (SVR) algorithm is adopted to improve 

accuracies of reference PI models. Exponentially-weighted moving average 

(EWMA) control charts are introduced to reduce the Type II error ratios. It is 

preferable when residuals are generated to detect and diagnose faults. 
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iii. A pattern recognition-based FDD method is proposed using support vector data 

description (SVDD) algorithm which transforms the FDD problem as a typical one-

class classification problem. It shows some advantages to the available pattern 

recognition-based FDD methods in HVAC field. This method has some new 

potential applications. It is preferable when fault data are available. 

iv. Diagnostic Bayesian networks (DBNs) are proposed for chiller FDD and VAV 

terminal FDD. The DBN-based FDD method benefits to simulate the diagnostic 

thinking and diagnosis process of HVAC experts mathematically. It is effective in 

diagnosing faults based on uncertain, incomplete and conflicting information.  

10.2 Performance of The Proposed FDD Methods 

10.2.1 The Simplified Mode-Based Method with Its Customization Tool 

A customization tool was developed based on a simplified physical chiller model in 

order to identify the unknown chiller parameters. Evaluations are made on water-cooled 

centrifugal chiller as described in ASHRAE RP-1043. The customization model can be 

trained using limited measurements and has good performance in prediction. The 

ASHRAE RP-1043 data were used to validate the proposed method and made 

qualitative comparisons with the four typical FDD methods studied in the ASHRAE RP-

1275. The test results show that the proposed method is capable of detecting and 

diagnosing the non-condensable gas (successfully ratios were 100% at each severity 

level) and refrigerant overcharge (22%, 37%, 93% and 100% for SL-1, SL-2, SL-3 and 

SL-4). Although the performances are not perfect for the refrigerant leakage (15%, 19%, 
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81% and 89% for SL-1 to SL-4) and condenser fouling (4%, 4%, 22% and 74% for SL-1 

to SL-4), it is still better than most of the four referred typical FDD methods. 

10.2.2 The Incipient Fault Detection and Diagnosis Method 

An enhanced chiller FDD strategy is proposed as an improvement of conventional 

gray-box model-based chiller FDD method. Evaluations are made on the chiller as 

described in ASHRAE RP-1043. It is found that the proposed strategy improves the 

FDD performances significantly, especially at low severity levels. For example, in the 

case of condenser fouling, the proposed strategy achieves the ratios of correctly 

diagnosed points of 7.7%, 45.2%, 60.7% and 100.0% at four severity levels (SL-1 to 

SL-4) respectively at the confidence level of 99.73%. Using the conventional gray-box 

model-based strategy, this fault could not be correctly diagnosed at level SL-1, SL-2 and 

SL-3. Significant improvements can also be found in the cases of other two typical 

faults (refrigerant leakage and refrigerant overcharge). Other three faults (i.e. non-

condensable gas, reduced evaporator water flow rate and reduced condenser water flow 

rate) can be easily diagnosed similarly as the conventional gray-box model-based. 

A system-level incipient fault detection strategy is proposed. Evaluations are made 

on a simulated commercial building at four severity levels and two uncertainty levels. 

The proposed strategy improves the fault detection performance significantly especially 

when incipient faults are concerned. At SL-1 and UL-2, the fault detection ratios are 56% 

and 90%  (cooling tower fault), 38% and 77% (chiller fault), 5% and 36% (heat 

exchanger fault) using the conventional gray-box model-based strategy and the proposed 
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strategy respectively. The SVR-EWMA-based strategy achieves much higher fault 

detection ratio compared with the conventional gray-box model-based methods.  

10.2.3 The SVDD-Based Method 

The SVDD-based method is validated using experimental data of seven typical 

chiller faults from RP-1043. The fault-free SVDD model correctly identifies 99.5% 

fault-free data. It has good fault detection performance. The fault SVDD models 

correctly identify more than 90% data of their own classes. They also correctly reject 

most data of other classes. 

Compared with the existing FDD methods which use multi-class classification 

algorithms, the SVDD-based method is robust when the process data do not belong to 

any class involved in training. In such case, the SVM-based method could not report any 

correct FDD result. For instance, 94% data of excess oil is diagnosed to be refrigerant 

leakage when the fault data of excess oil are not involved in training. Using the SVDD-

based method, this fault is detected correctly but not diagnosed. The false FDD report is 

avoided.  

Compared with the PCA-based method, the SVDD-based method has no Gaussian 

assumption and is effective for nonlinear process modeling. That results in more 

powerful capacity in describing process data. The fault detection ratios are improved 

significantly. For instance, using the PCA-based method, fault detection ratios are 64%, 

36%, 14% and 28% for refrigerant overcharge, refrigerant leakage, reduced evaporator 

water flow rate and reduced condenser water flow rate respectively at SL-1. Using the 

SVDD-based method, the ratios increase to 95%, 74%, 52% and 85% respectively.  
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Compared with model-based and rule-based FDD methods, SVDD-based method has 

much higher FDD ratios, particularly at low fault severity levels, where those FDD 

methods usually do not work well. For instance, using the MLR and t-statistic-based 

method, the ratios of correctly diagnosed points were 3.7%, 0%, 0% at SL-1 and 7.4%, 

0%, 0% at SL-2 for refrigerant leakage, condenser fouling and excess respectively. 

Using SVDD-based method, such ratios are all increased to over 90% at both severity 

levels. 

10.2.4 The DBN-Based FDD Method 

The DBN-based FDD method is evaluated on a chiller, an AHU and VAV terminals 

respectively. It shows advantages compared with conventional FDD methods. 

A DBN is developed to detect and diagnose component faults on a 90-ton water-

cooled centrifugal chiller as described in ASHRAE RP-1043. Only using BMS 

measurements, the DBN has similar accuracy as rule-based chiller FDD methods when 

BMS measurements are complete. If BMS measurements are incomplete, the DBN still 

provides meaningful fault believes, while the rule-based chiller FDD methods fail to 

work. The diagnosis ratios increase if evidences of nodes in additional information layer 

are used. Refrigerant overcharge and non-considerable gas can be correctly diagnosed 

with the help of evidences of nodes in additional information layer. 

Similarly, a group of DBNs are developed to detect and diagnose typical device 

faults and sensor faults in the air side of a typical single duct dual fan AHU of variable 

air volume as described in ASHRAE RP-1312 final report. Evaluations are made using 

experimental data in RP-1312 report. The DBNs enhance the fault diagnosis capacity 
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significantly. They provide plausible expect fault list with their believes when 

information is incomplete. 

A DBN is developed to detect and diagnose faults of the pressure independent VAV 

terminals in an office building located in Hong Kong. It is evaluated through conducting 

the ten typical VAV terminal faults on a dynamic simulation platform of an office 

building. All faults are correctly diagnosed at high confidences. 

10.3 Recommendations for Future Work 

Major efforts of this PhD project are made on the development of enhanced and new 

FDD methods. It would be very desirable and valuable to make further efforts on the 

following aspects related to the research presented in this thesis: 

i. DBN is an effective mathematical tool to erase gaps among methods of different 

natures. Therefore, it is possible to be a framework to merge the other three methods 

proposed in this thesis. For instance, the incipient fault detection method can enhance 

the sensitivities of some BMS evidence nodes (also see Section 3.4.2.1). New BMS 

evidence nodes can be added into DBNs to represent evidences which are found by 

the SVDD-based FDD method. 

ii. On the basis of available evidences, DBN can provide a list of suspected faults in 

descending order of fault belief, as well as a list of additional information nodes for 

check in descending order of necessary. Therefore, it is possible to develop FDD 

assistants based on the proposed DBNs in this thesis to help users to find root faults 

of devices efficiently. For instance, a chiller FDD assistant can be developed using 

both DBN and the simplified model-based FDD method with its customization tool. 
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iii. The proposed methods mainly adopt diagnostic information of the components 

concerned. Actually, the measurements in the systems/subsystems might also be 

helpful for FDD. For instance, the health status of cooling water pumps is significant 

to the fault of reduced condenser water flow rate. It is suggested to develop bottom-

to-up system-level FDD solutions based on component FDD methods.  
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