Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

CJK Characters Handling

on Internet for Thin Clients

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTING
OF THE HONG KONG POLYTECHNIC UNIVERSITY
FOR THE DEGREE OF
MASTER OF PHILOSOPHY

By

Lo Chi Wing

The Hong Kong Polytechnic University

2002

- A\ Pao Yue-Kong Library
@ PolyU ¢ Hong kong

i. Abstract

Abstract of thesis entitled “CJK Characters Handling on Internet for Thin
Clients” submitted by Lo Chi Wing for the degree of Master of Philosophy at the

Hong Kong Polytechnic University in October 2002.

Web pages in Chinese, Japanese and Korean (often called CJK) are now
very commonly posted in Asian Web sites. No Web browsers can view CJK
characters without the installation of suitable fonts. However, font installation is
quite complicated and a lot of mf;mory space is required to store fonts, making it
infeasible in the thin-client environments. This thesis presents an Internet-based
font display server called Pelutéch that is primarily intended for display of CJK
characters in image forms without the need for font installation. Pelutech acts as
a display proxy to process requests and responses between client machines and a
Web server. The system relies on the character-to-image conversion technique at
the server side to produce small CJK character images to be sent to client
machines. The comprehensive features of Pelutech include: (1) the ability to
detect font sets on client machines as well as codesets in which requested Web
pages are coded; (2) comprehensive HTML parsing and its unique ability to
handle form controls and searching so as to maintain the ability to interact duri;1g
Web browsing even when characters are converted to images; and (3) the
provision of an Internet based input method engine so that users can browse CJK
Web pages with text input ability independent of the environment of their Web

access devices. The proposed Internet-based solution is highly suitable for

thin-client machines having only limited hardware or software support.

ii. Acknowledgements

I would like to express my sincere thanks to my supervisor, Df. Lu Qin, for
her guidance throughout my study. She provided a lot of advice and assistance
including continuous consultation, meetings, comments and suggestions on this
project and on the thesis preparation. She also allowed a sufficient degree of
flexibility for me to manage the project and to solve problems independently.
In addition, Dr. Lu not only supervised me on academic matters, but also shared
with me a lot life experience on how to be a mature human being and how to
succeed in life as a person. She treated me with respect and as a peer. I will

treasure this for the rest of life.

[would like to thank Dr. James Liu for being my exam panel chair. Special
thanks to Dr. Joseph Kee-Yin Ng, my external examiner, who has given me many
suggestions on the revision of thesis and formation of performance analysis. Also,
my gratitude to Prof. Kam-Fai Wong, my external examiner, who ardently
reviewed my thesis with great details and provided me with useful
recommendation for the improvement of my work. He also shared with me his

experiences and taught me much valuable knowledge for which I am very

thankful.

I would like to thank Kwun-Tak Ng, who helped me a lot on the
experiments and the evaluation work. We’ve also written a few research papers
together. Furthermore, 1 would like to thank all my friends at the Hong Kong
Polytechnic University who made my life here meaningful and enjoyable. I
would like to thank for their input, encouragement, patience, and support. There

have my deepest thanks and appreciation.

Last, but not least, I would like to thank my parents and my friends for

their support and encouragement.

iii. Table of Content

i. AbStract.....ceveerucsinccsscarene ceeerasssressrsnassses st saenasersasaanas SO O——— i
ii. ACknowledgementsccviiirrisniscsssnernirsnnssnessacrsensessrssaesssnasens i
iii. Table 0f COMLENL....crirrriirismninsisnissinssssesssisssssorsessssssssssassssssnssasnssassassssassesseses iii
iV, List Of Figures....cuicciiccrniinsinnsescessnnenssesseressssssacsnsessissenssnssassensens ——
v. List of Tables........uurueecirrsvecsucrissaarsanes . ix
1. INLrodUCHION .ecrerecrsrrvessessurerassernssessssresssassansassasosnesassnassessessassnsrassassassassssassnsse 1
2. Basic Concepts and Related Work4
2.1 The Need for CJK Reading on Intemetc.eeviviecniiiincniiinnccns e 4
2.2 Current Methods for CJK Reading on Internet............ccoooeemmeecmericcieneene, 7
2.2.1 Use of Locally Installed FONtsccoceoeeeiminiciiiiaeininns e ceereeean 7
2.2.1.1 Locally Installed System Fonts..........cccoocveevmmmnnccncniiienccnsirane. 8

2.2.1.2 Locally Installed Browser Specific FONts.........cccccevvevvevverneennne. 10

2.2.1.3 Use of Third-party CJK VIEWETc.ccceormereiiecireceeee et 11

2.2.2 Text-to-Image Replacement.........cccvvvvveieereriiieerieenie e ereeeains 11
2.2.2.1 Whole Page Replacementcccceoeeeiimnnnnccnicniicciieene, 12

2.2.2.2 Character-to-Image Replacementcccoeovvveveirienriccicieeen, 13

2.2.3 Web Page Embedded Fonts..........coccooeeiiiiinin i 13
2.2.3.1 Dynamic FOnt........cccccoiriiiiiiiiiiiiiiiiniierscre e 14
+2.2.3.2 Web Embedding Fonts Toolccooveiiiiiiciiciiiicee, 15

2.3 Discussion on the three methods..........coeevveeriinieiicnin e, 16

3. Design Objectives and System Frameworkc.cccveiseescinicanneressessenessens 19
3.1 Design ODJECtIVEScccoieriiirieiiriiiiieiteite ettt sae e se e sas s 19
3.1.1 Detection of Installed Fonts at the Client-side..........cccceoeeeeiiniinnnn, 19
3.1.2 Automatic Code-set Detectionc.ccocceveeiincrnicnnrrenennes e 20
3.1.3 Wide Style of Converted Image Supportc..ccccooovvvvvvveerneveennee, 20
3.1.4 Handling Complex Structure in an HTML Document........................ 22
3.1.5 Enable Text Searching in a Converted Documentcc.cccoveee. 24
3.1.6 Provide Native Input Method Engine Supportc..cccecvveeeerecnne, 25

3.2 Pelutech GateWaY.......coovuiiieiei ettt eear e e eas 26

3.2.1 SYSLEM OVEIVIEW ..ottt e rtrecr e e e sre e e eabe s e e e e e sne s 26
3.2.2 System Frameworkcciiiiciiniiciiniie e e cnseees 27

4. Locale and Codeset Detection........ccossrasnssasasans S — 30
4.1 Related Locale Identification Techniquecccoevrveererreiecnnierseneeiecnn. 30
4.2 1oCale DELECTIONcocvriiririeriiicsiisesetcisiasesienserereeserereeessaseasssessneeensreessnsanns 32
4.2.1 Design PrinCIPIES ..ottt ase s 33
4.2.2 Design Details and Implementation............cccoveiemeeimnccemneeeciieeeenes 34
4.2.3 Experimental Results and DiSCUSSION.......cccooueveieevcinenreinirnrnnereenieeeen 38

4.3 Encoding Detection of Web Pages.......ccooociiiiiiiniiiniiieceeeieecee 39
4.3.1 Design of the Codeset Detectoroouveeivmieriieennieinnir e eee e 40
4.3.2 Experimental Results and Discussion..........cccceevuveeveeeeieeeceercnerennnen. 42

5. Construction of Character IMAagesvcereercrrercrnsseserserssnesssassacnse R—- ¥ |
5.1 System FIow CONtIolcoocovviiiieiiiniieiecnen et ecviss st ssneseae e e 44
5.2 Character Image Naming Specificationccovveveveveiieecneccree e, 45
5.3 True Type Font File Specification..........c..ccoeccieiiiiinniniieceeeeceeecee e 46
5.4 True Type to Bitmap CONVersioncccvrevrverrueererreenrssiensseesiesesesssseeeenes 47
5.5 Sample OULPULooiiiiiiei it treee s e 48
6. Rebuilding Form Controlsccccceeneensnencncscenssans sssasssassassasessanassrssssessarsae 50
6.1 Elements of the FOrm Tagsc.ccccciieiiiiiiniii e 50
6.2 Handling of Checkbox and Radio Controls...........cccceveeiieiecnccniinnnenn, 52

6.3 Handling of Submit, Reset and Button controlscccoeeecvevvereeenen. 54

6.4 Handling of Text and Password Controlscocecvennieniininncnscasiennnnn, 57

7. Native Input Method ENEINEcc.ccnerrersesscsssersensersssssessessssersssersersssnsessesess 58
7.1 Input Method Enging Designcccomvvimiveveeeieeeeeeeeeeeeeereeeeseeesranseeneeeenn 58
7.1.1 Native INterface. ..o 60
7.1.2The Core Engineccooiviiiiiiiiiiiiierce e eaa e 63

7.2 System IMplementationc..coooviciiircinieiiiee e eeneas 63
7.2.1 Compbsed Key Retrieval Methodologyccoveeiiiiiiiiiiiii 64
7.2.1.1 Retrieve Key Sequence using Data Structureccooeevveennne. 64

7.2.1.2 Retrieve Key Sequence using Database.................ccoevivvrnnenne. 65

7.2.2 System IMplementationocoov.euiiieeieiees e 66
7.2.2.1 Client-side Input Method Engine........ccccocooovviniiiiicciceece 67

7.2.2.2 Server-side Input Method Enginecccoooeeviiviciieccceciieiee, 71

7.2.3 DiSCUSSION .c.o.eevirerienierrnen e e et e e e et et e e e e s neeenrreean 73

8. Character Image Search Engine.......c.cceseiesrncscssnssanssnsessisasssnssesssssansasass 75

8.1 Design of Character Image Search Engine...........ccccooiniiinninn., 76
8.1.1 Input Parameter Decodercoooeiveiiiiieniiierieceeeer e 77

8. 1.2 HTMEL ANALYZETcoeirveiririi it eee e seene s ec e snees s e se e s s seneas 78
8.1.3 Character Reference INtEIpreter........coovvvvvveceiiiincieniinncsseervee e 78
B.1.4 Text S€archer.......covvv et 78
8.1.5 Character Image Searcher.........ccoooiiiiiiiiiiircrec e, 79

8.2 Implementation of the Character Image Search Enginecoccocceevveennnnnn 79
8.2.1 Client-side Approachccccovcmvcininciiniiicnccse e 80
8.2.2 Server-side Approach..........ooeviiiiiiniiniiiv e 84

8.3 Experiments and DESCUSSION c.ecvcve e eeerereeeeesmesseeeeseesesesee e s eeeesesssessssen 85
8.3.1 Multilingual Character Images Mixed Together........c.cccocuveecnnnennnnn, 86
8.3.2 English Text With Character Entity Referencesccocveevvvcveecnnenee. 86
8.3.3 Full-width English Character Imagesc.coccoovviviiiinciincicnrinennne. 87
8.4.4 Partial English WOrd........ccooviviirmiiiiecrire et 87
8.3.5 Search Word Does Not Exist in the Web Pageccoocovvivvernveennenn. 88
8.3.6 Discussion on the Experimental Results..........cccccccoooeiiniveeeeicnnennies 88
8.4 Evaluation of the Client and the Server Approachesccccovveevieecrveennenne 89

9. Evaluation and DiSCUSSIONccouucereevssessesssssnsansssssssasssossasaas cesssussresnassasasen 91
9.1 Evaluation of Software Thin-Client Devices..........cccvevvveivrecreeceiceeneiieenns 91
9.2 Evaluation of Hardware Thin-client Devices........c.ccccoevvviiiriieeiveeciiannnnn, 94
9.3 Analysis of the Response Time of Pelutech..........ccccoovveivrvvioiiciecee, 96
9.4 Server Utilization and Scalabilityc.occcovercrniiicieiecceereeeee e 108
10. ConcluSion a.eiensnsesesnessressssssssssssssosss veevesesusrrenarsansronessessassensrane 113
Referenceccccvmisinisissnissssssnsnssnasssnssanss T 117
A. Appendix L....iiinnnanes bevemeaesssnssrenesstssasesnsrssassassansisesastnasbransisane SO— 123

iv. List of Figures

Figure 3-1: Original page for the Hong Kong Observatory.........ccccceevvcevrnucernnene 21
Figure 3-2: Untidy page after CONVErSIONoovvermiivrniinniiiniecciesiee e 21
Figure 3-3: Original page for the HongKong.com........ccccociviviinnnninccinenniine. 23
Figure 3-4: Web Access Gateway failing to parse the complex structure............ 23
Figure 3-5: Flow of control among Pelutech, Client and Web Server................. 27
Figure 3-6: System Framework of Pelutechcc.ccovvvvinininiininicnnincninee 29
Figure 4-1: The Program Code of the Client Browser Analysis..........ccccociiiie 35
Figure 4-2: The Core Program for the Font Detection.........cccccovveviveininecenninne 37
Figure 4-3: The Program Code of the Installed Korean Fonts Detection 38
Figure 4-4: Screen shot for atested page........cocvvevmirinccnnnc e 38
Figure 4-5: Flow chart of the Codeset Detector.........coveiviviiriiciniieececceeece 40
Figure 5-1: Chinese character ONE 16 by 16 bitmap......c.ccccooveeriniiiniciinnccennnne 47
Figure 6-1: Original Checkbox Control..........c.cccociiiiiiiiiiiiniiicninii 52
Figure 6-2: Simulated Checkbox Control generated by Pelutech........................ 53
Figure 6-3: Original Radio Control and original HTML code.............cccvivnnnneens 53
Figure 6-4: Simulated Radio Control and HTML code generated by Pelutech... 53
Figure 6-5: Original Button Control ... 56
Figure 6-6: Simulated Button Control generated by Pelutech............................. 56
Figure 7-1: Native Input Method Engine Framework 59
Figure 7-2: Trie Tree of the Changjie input methodc.oooviiciin . 65
Figure 7-3: Java Input Method Engine ... 67
Figure 7-4: JavaScript SOUrceoooiviiiiiiiiiccc, v 68

vi

Figure 7-5: Java Applet SOUTCE......cccoviiriiiecee e 69

Figure 7-6: Class Diagram of Trie and Node..........ccocvvervmiiervevinncieeeereeerens 70
Figure 7-7. Same composed key sequence prefix displayedcccoovvvencennnneen. 70
Figure 7-8: Server-side Input Method Enginecccooevvvcvmrevcnnienereenensenernenn.s 73

Figure 8-1: Components of the Character Image Search Engine and their

TElAtIONSIIP. c..vi it 76

Figure 8-2: Client-side Implementation of Character Image Search Engine....... 80

Figure 8-3: Server-side Implementation of Character Image Search Engine 80
Figure 8-4: Class Diagram of HTMLList and HTMLDataccouvvevenee... 82
Figure 8-5: Test Web Page mixed with character image and normal text............ 85
Figure 8-6: Search result of mixed multilingual character image........................ 86

Figure 8-7. Search result of English character with character entity reference... 86

Figure 8-8: Search fesult of full-width English character image.......................... 87
Figure 8-9: Search result of partial-word............cccoininiinininicicece e 87
Figure 8-10: Result of the searching word not exists in the Web page................ 88
Figure 9-1: Original testing page on a CJK supported systemc.ccuveeun... 92
Figure 9-2: No CJK character can be displayed on the testing machine 93
Figure 9-3: Experimental result of the testing page via Pelutech 93
Figure 9-4:.Thc CIK character cannot be displayed on the PDA 95
Figure 9-5: The display of the testing page through Pelutechc.oou..... 95
Figure 9-6: Request and response interaction through Pelutech.......................... 96
Figure 9-7: Normal request and response interaction without Pelutech............... 96

Figure 9-8: Transmission time for retrieving Web pages from a Web server at
different bandwidthsooviiiii e 101

Figure 9-9: Transmission time for retrieving Web page through Pelutech (with

conversion) at different bandwidths..............cooooviinrieeeee e 101

vii

Figure 9-10: Transmission time for retrieving Web page through Pelutech

(without conversion) at different bandwidthsoooemmmoeoeeeeeeeeeeee e, 101

Figure 9-11: Transmission Time for retrieving a Web page directly from a Web
server at different bandwidths............... SRRSO OPURPUPRPNt 102

Figure 9-12: Transmission Time for retrieving Web page through Pelutech (with
conversion) at different bandwidths..................ieii e 103

Figure 9-13: Transmission Time for retrieving a Web page through Pelutech
(without conversion) at different bandwidthscccoccvvevevveciiiniireeiiee e, 103

Figure 9-14: Partial Web page extracted from the Hong Kong SAR Government’s

Figure 9-15: Transmission Time for retrieving Web page from original server 106

Figure 9-16: Transmission Time for retrieving Web page through Pelutech with

COTIVETSION 1uvevuveraeensssssssaesmentmememenemaaeeenenneaaaesesaensesnessennnseesssessnsassssessnssnnsseseresssen 106

Figure 9-17. Transmission Time for retrieving Web page through Pelutech

W UL COMVETSION . eivieieiiieetie ettt e e e eeeeeeeeareesesesnsrersessesnnsssnssessrnnsnnn 107

Figure 9-18: Comparison of the Different of the Delay in Response time between
Analytical Model and Experimental Resultsccoccvniieiiininininnenecceceene. 108

Figure 9-19: Average time needed against the number of concurrent user for

PeluteCh With CONMVEISION ..ooi e ee e eee e e s nbnsesnnes 1i1

Figure 9-20: Average time needed against the number of concurrent user for

Pelutech without CONVErsionccooiiiiiiiiici e 111
Figure 10-1: Extension of Pelutech to support XML (Method 1).........cccueneee. 115
Figure 10-2: Extension of Pelutech to support XML (Method 2)...................... 115

viii

v. List of Tables

Table 2-1: The world’s 20 main languagescccoevvrviiniiiiiiiin i S

Table 3-1: Summary of the functions of the Conversion Engine Components ... 28

Table 4-1: Part of the Codeset-required Font Table........cccvvvrvvevvrnriervenncsnnnren, 37
Table 4-2: Experimental Results via Operating Systems..........cccovivneiieninennnn. 39
Table 4-3: Experimental Results via Internet Browserscocccceveciieniinciiinen 39
Table 4-4: Part of the database for domain name via possible encoding............. 41
Table 4-5: Experimental Results for Codeset Detection..............o.eeeeereeeevereseenennn. 42
Table 5-1: Table Name via Tag Name........ccccoeiiiriinciieiicieciecicesecnie s ene e 46
Table 5-2: Experimental Results of English Alphabetsc.coccovevvvevrevcneninnenn. 48
Table 5-3: Experimental Results of Numbers and Symbols ... 49
Table 5-4: Experimental Results of Traditional and Simplified Chinese
CRAFACIETS ... e et er e s ee et ae s es e ee s snsne e e eas 49
Table 5-5: Experimental Results of Japanese and Korean Characters................. 49
Table 6-1: Functionality of each input typeccooiiiiriiiiiieneceece 51
Table 6-2: Summary of the COntrols.........coooeviiiiiiiiiiiiiiie e 52

Table 7-1: Service Levels and Input Style supported by input method client 60

Table 8-1: Parsed HTML code’s data structure in the HTMLList....................... 83
Table 8-2: Experimental Results for the Client-side Approach 89
Table 8-3: Experimental Results for the Server-side Approach..............cccoce. 89
Table 9-1: Hardware and software configuration for the test platform................ 91
Table 9-2: Hardware and software configuration for Pelutech............cccovvenee... 92

Table 9-3: Experimental results for 100 Web pages for the software thin-client. 94

Table 9-4: Hardware and software configuration for the test PDA platform....... 94

X

Table 9-5: Experimental Result for 100 Web pages for hardware thin-client...... 95
Table 9-6: Description of each variableccovviiiiiiiiiece e 97
Table 9-7: Number of Characters in the Tested Web Page for each Test Case .. 106
Table 9-8: Response time against No. of concurrent users with conversion 110
Table 9-9: Response time against No. of concurrent users without conversion 111

Table A-1: Theoretical transmission time for retrieving Web pages from a Web

Table A-2: Theoretical transmission time for retrieving Web pages through

Pelutech Wit COTIVEISION . eeeeeeecee et ee e eeeee e e rameesesennsassee s senssnssansnsesnssssrnnnsn 123

Table A-3: Theoretical transmission time for retrieving Web pages through

PeluteCh WItROUL CONVEISION c.eeeeeeet e ceeeeveiresrvrsersseerssresrenasersasssssnareesasssennnns 123

Table A-5: Actual Transmission Time for retrieving Web page through Pelutech

WITH COMVETSION 1 eeteietiietaieeeiettie e et eee e eeeeme e eeeeeaean e ameesanaeaeaaeeee s s vareennnranssrennnnanrs 124

Table A-6: Actual Transmission Time for retrieving Web page through Pelutech

WL OUL COMY T BIOM e e cee ettt ce e et et s st ases e s eseemeasaessanssesanssaraanresenneeeernn 124

Table A-8: Average Transmission Time for retrieving Web page through Pelutech

WL COMVBTSION « ettt ettt e e et e et e e e e e e eeee et e et eess s iessessanssnsrnseesnnn 124

Table A-9: Average Transmussion Time for retrieving Web page through Pelutech

W OUE COMVEISION et ettee et e e e ee e e e e e e e s e e e e eeeeeem e eee e e e e rrreesesenmnranseeees 125

1. Introduction

Continued globalization and internationalization make the use of the World
~ Wide Web (WWW) grow at a tremendous speed. The Internet has become a
global network and continues to spread all over the world. A vast majority of
Web sites use Western alphabet-based languages, such as English and French,
and the Hypertext Markup Language (HTML) uses the Basic Latin ISO-8859-1
character set by default. The increasing populanty and accessibility of the
Internet, however, creates a great demand for Internet information and HTML
documents to be written in other languages beyond the Latin-based languages [1].
Web pages in Chinese, Japanese and Korean (often called CJK) are now very

commonly used in Asian Web sites, and multi-lingual information sometimes

appears in the same Web page.

Moreover, due to the rapid development of electronic devices in recent
years, people can surf the Internet at any time and anywhere using a mobile
phone or a Personal Digital Assistant (PDA), etc. These mobile devices are
usually called thin-client devices because they have limited resources. By limited
resources we mean either limited hardware such as memory or limited software
such as the lack. of some required software. In addition, software support in the
thin-client environment is still predominantly English-based because most

thin-client devices are developed in Western countries.

In order to read CJK characters on the Internet, CJK related fonts must be

installed on the client side. No browsers can view CJK characters without the

installation of suitable fonts [2]. However, the font installation procedure is quite
complicated. A lot of memory space for storage is also required. In the thin-client
environment where memory is very limited, it is not only unsuitable to pre-install
fonts which might noti always be used but also infeasible due to the limited
resources of a thin-client [3]. Therefore, there is a need to investigate some

alternative methods to display CJK characters that are platform independent and

suitable for thin-clients.

In fhis thesis, we investigate methods to improve the service of
character-to-image conversion techniques in terms of its comprehensiveness and
its adequacy for thin-client devices. We present an Internet-based font display
server called Pelutech as an alternative to local CJK font support for CJK
character display. Pelutech acts as a display server to process requests and
responses between client machines and a Web server. The system relies on the
character-to-image conversion technique at the server sidé to produce small CJK

character images before they are sent to client browsers.

The comprehensive features of Pelutech include: (1) the ability to detect
font sets on client machines as well the codesets in which the requested Web
pages are coded; (2) comprehensive HTML parsing and its unique ability to
handle form controls and searching so as to maintain the ability to interact during
Web browsing even when characters are converted to images; and (3) the
provision of an Internet based input method engine so that users can browse CJK

Web pages with text input ability independent of the environment of their Web

access devices.

Pelutech has two major subsystems: the Conversion Engine and the Input

Method Engine. The Conversion Engine analyzes a requested Web page and
2

produces a new Web page with CJK characters converted to embedded images so
that clients can be free from any CJK font installation. The Input Method Engine
provides an interactive interface for users to input CJK characters in order to
facilitate interactive form filling and searching without the need to install any
third-party CJK product on the client side. The proposed Internet-based solution

is highly suitable for thin-clients having only limited hardware and software

support.

The rest of this thesis is organized as follows. Chapter 2 presents the basic
concepts and reviews some current work related to CJK character display
technology. Chapter 3 discusses the design considerations of a good
character-to-image system and gives an overview of the Pelutech system
architecture. The design specifications of the components in Pelutech are
discussed in Chapter 4 through Chapter 8. The evaluation of the system is

discussed in Chapter 9. Chapter 10 gives the conclusions and discusses future

work.

2. Basic Concepts and Related Work

2.1 The Need for CJK Reading on Internet

Multilingual support on the Internet is an important topic because people
of all languages want to access the Web. Table 2-1 lists the twenty major
languages used in the world [4]. It is obvious that nearly one-fourth of the world

population use either Chinese, Japanese or Korean (often called CJK) characters
[51.

However, reading CJK characters on the Internet requires a computer to
have software capable of identifying the internal code of the text and to have the

suitable fonts installed to look up the code to render and display the correct

shapes [6].

It is difficult for Web developers to create and develop Web sites to suit all
users in different countries. Each language usually encodes thé scripts it uses in
one set with code point assignment, which we call code character sets, or codeset
for short. Some languages even have more than one coded character set. For
example, there were three coded character sets for Chinese: Guobiao (GB) for
Simplified Chinese, BIG5 and CNS for Traditional Chinese before Unicode was
available. Usually, different fonts are designed for different codesets, such as the
MingLiu font (#{HAfE) that is designed for Big5, and the SimSun font that is
designed for GB. In addition, Web pages in languages such as CJK are
commonly used in Asian Web sites and they may be mixed together in the same

page, which 1s referred to as a multilingual page [7]. For example, many Chinese

Web sites in Hong Kong contain multilingual pages with both Chinese characters

and English words in the same page.

Language Principal Locations Population (in millions)
Chinese China 885
English North America, Great Britain, 450

Australia, South Africa
Hindi-Urdu India, Pakistan 333
Spanish South America, Spain 260
Portuguese Brazil, Portugal, Angola, 175

Mozambique
Bengali Bangladesh, India 162
Russian Former Soviet Union 153
Arabic North Africa, Middle East 150
Japanese Japan 126
French France, Canada, Belgium, 122

Switzerland, Black Africa
German Germany, Austria, Switzerland 118
Wu China (Shanghai) 17
Javanese Indonesia (Java) 75
Korean Korea 72
Italian Italy 63
Marathi South India 65
Telugu South India 55
Tamil South India, Sri Lanka 48
Cantonese China (Canton) 47
Ukrainian Ukraine 46

Table 2-1: The world’s 20 main languages

To increase the readership of the Web, Web developers usually create
different language versions of the same Web content. In Hong Kong, many Web
- sites are prepared in two versions: English and Traditional Chinese. Sometimes
they may even use Simplified Chinese because they mean to serve people both in
Hong Kong and China. It is up to the user to decide which version to look at. A

more desirable form of Web management is for the server to automatically obtain

5

the font set installed on a client machine and to provide the user with the Web
pages of the correct codeset encoding. That is, a machine having Traditional
Chinese fonts will automatically obtain Web pages coded in Traditional Chinese,

while machines containing simplified Chinese fonts will obtain the Web pages in

Simplified Chinese.

Due to the rapid development of electronic devices in recent years, people
can access the Internet any time and anywhere using a mobile phone or a
Personal Digital Assistant (PDA), etc. These mobile devices are usually called
thin-client devices. In this thesis, a thin-client refers to any computer or device
that has limited resource for Web browsing. Such resource limitation can either

be in hardware or software. We can thus further define hardware thin-client and

software thin-client as follows:

Hardware thin-client — a device that has limited hardware resources such
as limited memory or limited storage. For example, a mobile phone contains

limited memory and it is impossible to install the whole set of CJK fonts.

Software thin-client — a device that has limited software resources. The
device can be a small PDA but it can also be a Personal Computer (PC). The
point is that it is incapable of handling CJK characters either due to the lack of
CJK fonts and input method support or personal user preference to avoid possible
software incompatibility. For example, for a computer installed with English
Windows only, no CJK input and font display is supported although it has
enough memory and storage,. Thus; CJK characters cannot be displayed properly.
There are also cases when people simply do not want to switch to a multilingual
platform because they worry it may not be compatible with some software that

they use for other work.

2.2 Current Methods for CJK Reading on Internet

There are several solutions to help users to read CJK character on the
Internet. These solutions can be divided into three major categories: The first
category is called client-side solutions that rely on setup and configuration on
client machines such as the use of locally instalied fonts [8, 9]. The second
category is called server-side solutions that rely on character display provided by
a server so that no configuration is needed on the client side. Examples include
the Text-to-Image Replacement method on the server-side [10]. The third
category is called client-server solutions that rely on the cooperation of both the

client and the server to display CJK characters. An example is the Web Page

Embedded Fonts method [11, 12].

2.2.1 Use of Locally Instailed Fonts

Displaying CJK characters correctly requires a computer to have software
capable of identifying the internal code of the Web page and to have suitable

fonts installed so that it can look up the internal code to render and display the

correct character images.

The basic method for reading CJK characters on the Internet is the use of
locally installed fonts. Locally installed fonts can be provided in three ways: as
system fonts provided by the local operating system, browser specific fonts
provided by a Web browser, and use of third-party CJK viewer. Chinese
Windows 98 is an example of an operating system that provides locally installed
system fonts. Netscape Browser and the Internet Explorer can provide many
specific fonts independent of the specific system they run on. NJ-Star is an

example of a third-party CJK viewer that assistant users read the CJK text.

2.2.1.1 Locally Installed System Fonts

For operating systems localized for a specific language, such as the
Traditional Chinese version of Microsoft Windows, Traditional Chinese
characters (Big5 and extended Big5 encoding cha_racters) are supported at the
system level with appropriate fonts installéd , such as -MingLiu (HIHA#E) and
PMingLiu (#7#AHEE). Machines running such an operating system have the
ability to display CJK characters in all applications including Internet browsing
[8]. When users access a Traditional Chinese Web site, the browser can display

Traditional Chinese characters using the system fonts installed.

The advantage of this method is that all of the applications including the
Internet browser can display CJK characters. However, if a user does not use a

CJK system, he is not able to view any CJK characters because no pre-installed

CJK fonts are available.

To display text in a different font face and type, users need to install the
corresponding fonts. As a result, operating system vendors and font vendors must
work together to localize the system. and package the fonts for each localized
system. Users can also purchase additional fonts for a localized system. If one
Web site is designed to display in MingLiu (#H8#2) and another in Kaiu (24
#a), a user will have to install both the MingLiu and Kaiu to read the two
different Web sites. Since Asian glyphs such as CJK characters are much more
complex than those of an alphabet-based language, the CJK font file size is much
larger than that of English. The default Chinese font (MingLiu) in Traditional
- Chinese Windows requires 8.23 MB whereas the English font (Times New
Roman) requires only 315 KB. We can observe that the size of the Traditional

Chinese font file is 20 times larger than the English fonts file. Therefore, memory
8

requirements for the CJK font is much more demanding. Suéh large font files are
not suitable for thin-client devices with limited resource since thin-clients most
often rely on the network to provide computing resource and software [13]. With
the development of Unicode, where 60,000 Chinese characters are supported, the

font files will be much larger than Big5, for example, which only contains 13,000

Chinese characters.

In conclusion, locally installed system fonts require Iafge memory space to
store complete font files. Such a space requirement is often unrealistic in a
hardware thin-client environment. For True Type font support under the
Windows environment, the default font file (mingliu.ttc) for the Traditional
Chinese environment requires 8.3MB, the default font file (simsun.ttc) for the
Simplified Chinese environment is 10MB and the default font file (msmincho.ttc)
for the Japanese environment is 8.7MB. If a user plans to use Unicode to replace
the above three files, it would need a 20MB memory space for 20,902 characters.
In addition, the memory needs to be much larger to support over 60,000
characters in Unicode 3.1 which is the latest version of the Unicode standard.
Sometimes, the font file itself is already larger than the memory space provided
in a thin-client device. For example, a standard Palm m100 only contains 2MB of

memory, and it is almost impossible to install the CIK font files.

Besides, the procedure of font installation is not as easy as might be
expected, especially in Macintosh, Unix and PDA systems. Many computer
beginners do not know how to install fonts and how to configure the system even

if they can obtain the fonts.

2.2.1.2 Locally Installed Browser Specific Fonts

For systems that are not specifically designed with CJK support,
particularly in the English Windows environment, the use of browser specific
fonts is a helpful solution. Most browsers support the display of certain language
specific fonts independent of the system itself, provided that the corresponding
fonts are made available inside the browser software.

This method normally requires users. to download the related browser
specific fonts and install them in the local machine. For example, if a user needs
to read CJK Web pages, he/she must go to the site that supplies the browser’s
specific font file and download the required fonts and install them in his machine
for the browser. After the system and the browser are properly configured, CJK
characters can be displayed correctly in his browser. The most popular Internet
browsers: Microsoft Internet Explorer (I.E.) makes use of this method to support
CJK character display under all Windows platforms from versi;)n 4 onwards [9].

The advantage of this method is that the downioading and configuration
only needs to be done once. However, it still requires users to choose the right
font display each time they access a Web page using a different encoding. Also,
the downloaded font file can only be used by a specific browser because different
browsers may require different font files. Furthermore, this method provides
limited font types. For example, .there is only MingLiu for Traditional Chinese
support in the Intemet Explorer under the Windows environment. Besides, not all

browsers support browser specific fonts. Currently, only Microsoft Internet

Explorer supports browser specific fonts under the Windows environment.

10

2.2.1.3 Use of Third-party CJK Viewer

The vse of third-party CJK viewer is another helpful solution for those
systems that are not specifically designed with CJK support. By using these
third-party CJK viewers such as NJ-Star and UnionWay, users can also read the
CJK text in their non-CJK environment.

This method normally requires users to install a so-called “System plug-in”
application and specific fonts in their local machine. For example, if a user wants
to use NJ-Star to read CJK Web pages, he/she must install the viewer application
along with the specific CJK fonts in his machine for the browser. After the
system, font directory and the browser are properly configured, CJK characters
can be displayed correctly in his browser.

The advantage of this method is the same of the locally installed browser
specific fonts that the downloading, installation and configuration only needs to
be done once. However, it still requires users to install the correct version of the
third-party CJK viewer since these applications are Operation System dependent.
Install and incorrect version of third-party viewer might due the to crush of the
System. For example, “NJ-WIN CIJK Viewer” does not fully support Windows
XP. Moreover, most of these viewers only designed for Windows-based system,

there are no any support on MAC, Unix or other operation system.

2.2.2 Text-to-Image Replacement

Text-to-Image replacement is a server-side solution in which HTML pages
are converted to image(s) by using a proxy server before being sent to a client.
There are two approaches for this replacement scheme. The first approach is
called Whole Page Replacement in whi;h the entire content within a Web page is

converted into one large image and then sent to a client. The second approach is

11

called Character-to-Image Replacement in which each CJK character is
converted into one character image. In the latter case, a browser receives an

HTML file instead of the image file used by the Whole Page Replacement

scheme.

2,2.2.1 Whole Page Replacement

The Whole Page Replacement scheme converts the entire Web page to a
single image before it is sent to a client [10]. When a user wants to access a CJK
Web site but does not have a CJK platform, he/she first goes to a proxy site. The
proxy that supports Whole Page Replacement converts the requested page into a

large image and then sends it back to the user.

However, this scheme has some serious problems and it is not feasible for
hardware thin-clients. For example, for a Web page with text occupying a
640x480 pixel space, which requires less than 1KB of memory for display on a
screen, the resulting imaéc file is as large as S0KB. Consequently, it takes quite a
long time to generate the image file and then to download it. This delay is often
very annoying for users [14]. In addition, complex structures in HTML
documents such as the Control Button in the <FORM> tag cannot be handled.
The converted image will disable the interaction related features for such a Web
page preventing users from inputting data or giving feedback. Furthermore,
searching of text in such an image is impossible. Therefore, the Whole Page
Replacement scheme is not feasible for hardware thin-clients and often annoying

to software thin-client users, although it may be helpful sometimes.

12

2.2.2.2 Character-to-lmage Replacement

To overcome the limitation of the Whole Page Replacement Scheme, the
so-called Character-to-Image Replace‘ment Scheme was proposed. The basic idea
of the Character-to-Image Replacement Scheme is the same as that of Whole
Page Replacement except that the Character-to-Image Replacement converts
only CJK characters into separate character images,.which are embedded in an

HTML page before being sent to the client.

Since duplicate characters in a page require only one such image to be
embedded and embedded images in a Web page can be downloaded in parallel
through the HTTP/1.1 protocol [15], the download time is much shorter than that

of the Whole Page Replacement scheme.

2.2.3 Web Page Embedded Fonts

The latest Netscape Communicator and Internet Explorer can create
dynamically downloadable font resources that encode the fonts the Web pages
need so that they can be viewéd as intended on machines without the fonts
installed. The concept of Web Page Embedded Fonts is very simple. When Web
developérs or Web designers, who are called Content Develapers, collectively
creatc a Web page, a separate font definition file containing records of the
characters and the font rendering information of only those characters used in the
Web page is also prepared. When a browser downloads a Web page, the link to
the font definition file is embedded in the HTML page. If the client does not have
the night font, the client browser can automatically download the font definition
file from the server and then render the character fonts on the client side.

Currently, there are two Web Page Embedded Fonts specifications, one is the

13

Dynamic Font proposed by Bitstream and implemented by Netscape [11]; the
other is the Web Embedding Fonts Tool (WEFT) developed by Microsoft and

supported only on Internet Explorer version 4 and above [12].

2.2.3.1 Dynamic Font

The Dynamic Font approach is a Web Page Embedded Fonts method
proposed by Bitstream. Instead of relying on the default fonts that users have in
their browsers, content developers can now create pages using the fonts they
have on their systems with the assurance that those pages will be displayed in a

browser with the font formatting intact [16].

To create Web pages with Dynamic Fonts, a content developer needs to
create a font definition file in PFR format, where PFR stands for Portable Font
Resource and is defined by Bitsteam [17]. A PFR contains representations of all
the characters in a particular font. For example, “Amelia.pfr” includes all the
characters in the Amelia font. The content developer needs to use a <LINK> tag

to link the HTML document with a “PFR” file and specify the fonts in the HTML

document.

There are two ways to use Dynamic Fonts in an HTML document. The
first way is to use the tag within an HTML document to specify
the fonts. In the following example, content developers first specify the dynamic

fonts file in the <LINK> tag, then make use of it through the tag in the
HTML document.

<LINK REL="FONTDEF" SRC="dynamicfont.pfr">

 Text

14

The other way is to use a Cascading Style Sheet (CSS) to specify the fonts
where Cascading Style Sheets is a simple mechanism for adding style (e.g. fonts,
colors, spacing) to Web documents. In the following example, the content
developer first specifies the dynamic fonts file in the <LINK> tag, then uses the

dynamic font by defining the style for the <P> tag.

<LINK REL="FONTDEF" SRC="dynamicfont.pfr">

<STYLE TYPE="text/css">
P { font-family: "dynamicfont";)}
</STYLE>

<p> Text </p>

Although Dynamic Font can display CJK characters without relying on a
client’s locally installed fonts, a content developer must have the related fonts
file and the WebFont Maker software (PFR file Maker) installed in his machine
[17]. In addition, no browser can display Dynamic Font in z; Web page without
the installation of Bitstream's Font Displayer software (WebFont Player) such as

the Character Shape Player [18] on the client, which may be a challenge to both

types of thin clients.
2.2.3.2 Web Embedding Fonts Tool

The Web Embedding Fonts Tool (WEFT) is a stand-alone tool to ldlclp
content developers to create embedded fonts that can be used when displaying
their Web pages. WEFT allows content developers to create “‘font objects” that
are linked to their Web pages so that when an Internet Explorer user views the

pages he can see them displayed in the font style contained within the font object

[19].

15

To use WEFT, a content developer needs to create a font object (.eot file)
by using the “WEFT 3 wizard”, and then he/she adds a STYLE section in the
header section of each HTML page that uses one or more font objects. The code
added should conform to the current Cascading Style Sheet 2 (CSS2)

specification as shown in the following example:

<STYLE>

@font-face {font-family: "WEFTFont";
src: url (WEFTFont.eot)}

Hl {font-family: "Verdana", "WEFTFont"}

</STYLE>

In the above HTML file, the code tells Microsoft Internet Explorer to use a
user specific font object whenever the font “WEFTFont” is specified within the
page. The browser will use the font object regardless of whether the font is

specified using the <FONT FACE: tag or inline Cascading Style Sheet.

The major préblem of WEFT is that this technique only supports Microsoft
Internet Explorer with a built-in WEFT viewer. There is no uniform specification
for Web page embedded fonts, and the current proposals only work in a browser
that contains a built-in Web page embedded fonts rendering tool. The Web page
embedded fonts approach also requires several iterations of client-server
communication, which imposes a fixed communication delay that may not be

acceptable for thin-client devices such as Wireless Application Protocol (WAP)

phones.

2.3 Discussion on the three methods

The three methods mentioned in this chapter provide users with different
ways to read CJK characters. Locally installed fonts and the Web page embedded

fonts methods, however, are not suitable for the thin-client environment because
16

of the excessive resource requirements of the former and the lack of standards
compliance when implementing the latter.

For thin-client browsing, the most important issue is resource control. The
font installation method can help users to read CJK characters on the Internet, but
it requires a lot of space to store CJK fonts and is thus not feasible in the
hardware thin-client environment. Although the Web page embedded font
method requires only character fonts to be downloaded, no hardware thin-client
browser supports this technology currently. There are systems which use Whole
Page Replacement to help users to browse without the need for locally installed
fonts. However, it is not suitable due to its large file size and long download time.
Besides, it cannot handle complex structures such as control buttons in a form.
Searching text in such an image is also impossible. It seems that the only viable
method now for CJK character display in thin-client browsers is the
Character-to-Image scheme. In this thesis we will focus on the
character-to-image conversion technique only.

Based on the technology of the character-to-image scheme, some
Character-to-Image Gateways have been developed for Web content browsing
since 19935, Usually, a Character-to-Image Gateway is a Web-based mediator that
converts the characters of the requested Web page to images before they are sent
to clients. For simplicity, we use the term Gateway to refer to any
character-to-image in the rest of this thesis.

~ The first gateway “HANZIX” was developed by Siu-Chi Hsu, Kin-Hong
Lee, Qin Lu, Man-Fai Wong, and Wing-Shing Wong in 1995. It is an
Unicode-based gateway that convert the input web page to Unicode format [20]

and not yet employ the character-to-image technology.

17

In 1995, Ka-Ping Yee developed “Shodouka” which is a Web mediator that
renders the Kana and Kanji of Japanese Web documents to character GIF images.
It won the ACM Webbie First Prize because of its usefulness and popularity [21].
By using Shodouka, users can view .fapanese documents without the need for
locally installed Japanese fonts.

In 1996, Ka-Ping Yee also developed the “MINSE PolyMediator” for
mathematical notation rendering [22]. MINSE PolyMediator aims to render
wholé mathematical and scientific expressions into a small image so that Web
browsers need not rely on any special mathematical and scientific font.

In 1998, Silas Brown developed the Web Access Gateway based on the
technology from Shodouka [23]. This is a very powerful gateway for the visually
impaired and international users. Web Access Gateway now supports both
Traditional Chinese and Japanese Web pages by converting them into images
[24].

Although these gateways are helpful for Web content accessibility, there
are several limitations in the current character-to-image gateway for the thin-
client environment. Firstly, these systems can neither handle the <FORM> tag
nor provide input methods for user input. Secondly, they require clients to know
the encoding of the target Web page that they want to browse and manually
choose the correct converter. Let us take Web Access Gateway as an example. If
the target Web page is in Traditional Chinese, but the user does not know this, the
gateway only takes the default Japanese characters to the image engine and thus
the target page cannot be rendered successfully.

In Summary, a character-to-image gateway must be mindful of resource

limitations as well as comprehensiveness to make it useful for practical purposes.

18

3. Design Objectives and System
Framework

In this thesis, Vwe aim to design a compressive gateway with full
consideration for the limitations of a thin-client environment. The proposed
gateway is called Pelutech, which stands for PErspicacious and LUciferous
TECHnology. In this chapter, we first discuss the design objectives of Pelutech,
and then present the system architecture and its components. We assume that
Pelutech will handle character-to-image conversion only for HTML Web pages.
At the end of the thesis, we present a brief discussion on how to remove this

limitation and support other Web languages.

3.1 Design Objectives

3.1.1 Detection of Installed Fonts at the Client-side

In order to guarantee correct rendering of characters and graphical objects
on a client machine, a gateway needs to know the type of fonts installed at the
client side. Font detection is an unresolved issue in the current World Wide Web
technology because there is no straightforward method to detect the types of

fonts installed on the client machine due to security reasons [25].

Since no current system can successfully detect what fonts a client has
installed on his/her machine, all current gateways provide full CJK character
images to clients irrespective of their actual need. If a gateway knows all the
client-supported fonts, the gateway can convert characters to images only based

on need, eliminating unnecessary conversions. For instance, if the gateway

19

knows the client has a Traditional Chinese font, then the gateway can pass the
original page directly to the client rather than a converted (character-to-image)
page. This would eliminate unnecessary conversion, and thereby reduce the

workload placed on the gateway, as well as the download time and the user’s

waiting time.

Consequently, the first design objective of Pelutech is to have the ability to
detect the type of fonts available on a client machine. With a successful detection
algorithm, the gateway can convert characters into images only when necessary,

thus saving resources and time.

3.1.2 Automatic Code-set Detection

The existing gateways require users to manually select the preferred Web
page format, either text or graphics. If users think that they have proper fonts,
they can choose the text format. Otherwise, they can choose the graphical format.
The major problem with this approach is that it involves manual operation and it

requires a user to know detailed information about the system and its

configuration.

Methods must be provided in Pelutech to automatically detect character
codesets and font sets supported in a client machine, so that manual selection can

be eliminated. This is the second design objective of Pelutech.

3.1.3 Wide Style of Converted Image Support

Almost all images formed by the current gateways are static in that the
display style and color are set by the gateway regardless of the original page
specification; images cannot be produced in the users’ preferred color and font

face. For example, if the text in the original Web page were in blue Kaiu ({5
20

), it would not be accepisble if the output character images were converied to

black color MingLiu (HHEHE)

Most gateways only generate opague character images without dealing
with background color, occasionally resulting in unclear and messy Web pages.
Figure 3-1 shows an original Web page and Figure 3-2 shows the corresponding

converted Web page with opaque character images.

HEE EBEy i AR (S EEg

s s Bkl 3D WEed W & A

L T T T e ——T TP S e——————_ L |

ERYNLEEY FTEL).
(L EC- AR - L T EEFdm i ®E
4 & I

-
1]
s
m
"
=
[]
-

Figure 3-2: Untidy page aflter conversion

It is our design objective o penerate transparent character images as well
as character images for varous Kinds of font face, type, color, size, and style. The

formatting and the appearance of reformatted Web pages should look similar to

the original. Otherwise, the conversion may lose part of the original information
because font style and color often provide visual cues for users to interpret the

document [26].

3.1.4 Handling Complex Structure in an HTML Document
Nowadays, Web sites have become much more complex. Many Web sites
use not only HTML in Web documents, but also JavaScript, Dynamic HTML and
Cascading Style Sheets (CSS) to enhance the interaction between the client and
the Web site.
The first difficulty the current gateways face is how to handle the poorly
formatted structure of the HTML language. For example when using the table in

a form, the HTML file can be written in well-formatted syntax as shown here:

<form>

<table>

</table>

</form>

However, some Web pages may not be so well formatted, and we could

find a switch in the closing order of the <form> and <table> tags as shown

below:

<form>

<table>

</form>

</table>

Moreover, an HTML document can also be written without closing the

<form> and <table> tags:

<form>

<table>

22

Poorly formatted HTML documents increase the difficulty of parsing these
documents before character-to-image conversion can be carried out. Figure 3-3
shows the onginal page for HongKong.com and Figure 3-4 shows the result
when the Web Access Gateway [ails to parse this Web site.

iy EEL @ eeEiu &R @Ewg

P . -ﬂ-—'h-‘l A ol i & & -

Bl) v ey — i —-— 3] sui

w_"- Ll N0 W) 'Il e |I

| AEATEENR
e’ y.l-

LB | L] .
| I R pams TeaN dEEE L 0 B
" T TTTR [TTEERE
1
'!:1-':._ BERAFEE
BT
: - * AN

AR ¥ b, TS — i
EEE BT] |
Bl L s pooaF
- [|

Figure 3-3: Original page for the HongKong.com

Tl amg
.

iy SraEL 10D WRL

S PR EV Tl e

-'
[Taies
o —] u
L=
PEE ¥ WAL, B9 ERE SN A9 ERAEI
honpksng.com pe. wa ,
T TSy ppgrp— -

FiH knm I.I-IIILI- W.ﬂ.t . T T 1
g map=

sl 8 P, iy RN

T w sl

ot] hnair - i l.m

oy e

T,
T il L“Iﬂ'-'m"”‘l‘l 5 gmuv T

“ Iw'-'ll
T, S A e ey
==y |

T {

Figure 3-4: Web Access Gatewny failing to parse the complex structure

In addition, current gatewavs have only limited methods w parse HTML
tags, and almost all are incapable of handling form controls provided by the
<FORM> clause. The <FORM=> tags such as Text Box, Submit Button and Text
Area in an HTML document are often used to provide user interaction and
selection during browsing. These <FORM=> controls normally have text items
that arc displayed using local fonts. Currently, no browsers can display image

items inside a control. The text-to-image conversion technique, however, is based

on the replacement of each character with the corresponding character image.
Converting the input selection items from the <FORM> control would devastate
the display of these buttons on the client-side, since the buttons cannot take
images as their input on the client machine. Therefore, all existing gateways skip
the conversion of the <FORM> controls. However, a comprehensive system
must have the capability to process CIK character items, otherwise, it would not
be very useful. |

It is our fourth design objective to handle the HTML form controls. If the
label of a button control or a list box contains CJK characters, these form
controls should be specially treated during page transformation.

3.1.5 Enable Text Searching in a Converted Document

In common Internet browsers, a user can search text within a Web page or
a frame that the user is currently reading. The search algorithms used search the
source code of the HTML page, and a browser built-in search program also
highlights the matched words in the browser display. However, when characters
are converted to images, a browser’s built-in search utility no longer works
because it is impossible to search character images in current implementations
[27]. The major challenge for this type of searching is that the original Web
content is converted to images. This means that the word “CAT” might be

converted to the following format:

There 15 a need to investigate some methods to support searching that can

handle converted images. This is our fifth design objective.

24

3.1.6 Provide Native Input Method Engine Support

Natiye Input methods are software components that map an input sequence
into an internal code representation of the text [28]. The most convenient and
common way of inputting text is typing on a keyboard. Although writing
characters by mouse or digital pens is also popular. There are over ten thousand
CJK characters and each character input requires a keyboard input sequence to

map to its internal code.

Operating systems designed for the CJK environment are often equipped
with the Input Method Engine (IME) for CJK character input; for example,
Traditional Chinese Microsoft Windows has an IME. However, non-CJK

platforms often do not have such support.

With the growth of the Internet and the increased mobility of information
users, people can no longer be assumed to have access to systems that have their
native language support at all times. Besides, Web browsing is not just a simple
one-way communication where information is obtained from the server. A client
and a server need to communicate with each other, and Web pages are a means
for the server to obtain information from the client machines too. For instance, a
user may submit a search request to a search engine, post messages and chat on
the Internet using CJK characters. As a result, the provision of an input methqd

becomes quite vital. However, there is no native input method support in the

existing gateways.

For those systems which are not equipped with an input method engine,
users can only install a third party software application or download a vendor’s

language pack for the operating system. However, the configuration of the third

25

party software requires disk storage space and also good computer knowledge
from the users. In addition, due to the popularity of Microsoft Windows, almost
all third party software developers only design input method modules for
Windows. In other words, other operﬁting systems or platforms, like UNIX and

Macintosh, are often neglected.

There is a need to provide a server-side input method engine that allows
user text input through the Internet. The provision of this IME must allow text

input in all form controls.

3.2 Pelutech Gateway
3.2.1 System Overview

Pelutech acts as a proxy server between a Web server and a client. When a
client requests a Web page to be directed to Pelutech, Pelutech sends the request
to the server and obtains the returned Web pages. After the original Web page is
processed and transformed, Pelutech sends the reformatted Web page to the client.
The flow of control is indicated in Figure 3-5 in next page.

In addition, Pelutech and the Web server are not necessarily to host on
different machines. Pelutech can also be installed at a regular Web server to
provide value-added services. But most likely, the proxy will reside on a third

party host machine to provide independent service.

26

o)

Web Server

Pelutech requests the,

web server for the
Web server send

desired web pa
b page the original
requested web
page to Pelutech
Convert CJK Text to
D image and reformat
ata =] the HTML
Pelutech
Client browser Pelutech send the re-
requests the web formatted web page to
page through client browser
Pelutech

Client Browser

Figure 3-5: Flow of control among Pelutech, Client and Web Server

3.2.2 System Framework

Based on the functionalities to be provided by Pelutech, the system is
designed to have three subsystems: the Conversion Engine, the Input Method
Engine and the Search Engine. The Conversion Engine is a character-to-image
conversion server that converts a Web page with CJK characters into a Web page
with embedded CJK character images. The Input Method Engine is an interface
that allows users to input CJK characters without any other input method
installed on the client side. The Search Engine is used to provide character search

functionality in a page with embedded character images.

Furthermore, the Conversion Engine has six components: the Locale
Detector, the HTML Document Parser, the Codeset Detector, the Character

Image Constructor, the Output Document Composer, and the Form Control

27

Builders. The Locale Detector is used to detect the font set supported on a client
machine. The HTML Document Parser analyzes the incoming HTML documents.
The Codeset Detector detects the encoding in the requested Web document. The
Character Image Constructor produces the CJK character images. The QOutput
Document Composer combines all components and forms a new HTML page.
The Form Controls Builder constructs the <FORM> controls that interact with
users. Obviously, it is used only if there are <FORM> clauses in the document.
The functionalities of each component are summarized in Table 3-1 below for

easy reference.

Component Functions

Locale Detector Detect the font support on the client machine.

HTML. Document Parser Parse the original HTML source file.

Codeset Converter Detect the correct codeset of the requesting
document.

Character Image Constructor Construct the CJK character images.

Output Document Compositor Reformat the Web page with the embedded
character images.

Form Controls Builder Convert the original HTML form control to a
format that can be used by the client.

Table 3-1: Summary of the functions of the Conversion Engine Components

The Input Method Engine is responsible for the interaction between the
user and Pelutech. It allows the user to input CJK characters when filling in
forms and when searching, without installing any third party input method. It.is

delivered to the client machine whenever the client browser makes a request for

its services.

The search engine provides not only the text content search function but
also the image search function for the reformatted Web page. In this project, the

client and the server approaches are studied to implement the search engine. This

28

component can either reside at the client machine with the Input Method Engine

or at the Pelutech server.

The overall System Framework of Pelutech is shown in Figure 3-6. Note
that, in the figure the search engine first requires input. Thus the Input Method
Engine interacts with the Search Engine directly. In addition, since form filling
requires input, the Input Method Engine also interacts with the Form Controls
Builder. Therefore, the search engine and input method interface are embedded

into the converted Web page for the client to access.

‘ — — .
Original Web 1 Conversion
Page I :>| Locale Detector Engine
‘Web page and Locale
' information
I HTML Document Parser |
! &Mﬁd Web page
| ’ Codeset Detecter |
Pmeaiﬁrﬁ K
Character
l atribuees
Form controls
Character Image| attributes and
’ Constructor ebuilt image
Converted | a Form
utput Document
Web Page P . Controls
Compositor Builder
‘ Tighlighted Form Lo
results controls .

Result Generator

Search
results Input
l , Search Processor I data
Search
information

i

Input Interface

| Search Engine

— Keysequentes

and mapped
Input Method | 4_word
Core Engine j : Method Interface

L Input Method Engin_eJ

—

Inpu

data

|
|
|
|

—_

l
|

Native Input

Pelutech System

Figure 3-6: System Framework of Pelutech

29

4. Locale and Codeset Detection

In order to display Web conteﬁt correctly, we must first discover ways to
identify not only the encoding of a Web page but also the encoding and fonts
available on the client side. Such information can then be exchanged and
obtained during server-client communication [29]. There are two prerequisites
for displaying a specified font correctly using the locally installed fonts. Firstly,
the font must be installed on the client machine. Secondly, the browser must be
able to locate the font and get the Web page displayed. The term Locale
collectively refers to an encoding and its supported font sets for a given language
environment. Once‘ this locale information is available, the gateway can proceed
with the conversion. The locale information, if available, can also help the

gateway to avoid unnecessary conversions.

4.1 Related Locale Identification Technique

HIML documents for different languages are coded using different
codesets. Even the same language may be coded in different codesets. For
instance, Traditional Chinese can either be encoded in Big5, CNS, or Unicode
[30]. In order to perform character-to-image conversion, two pieces of
information must be obtained before proceeding to conversion. Firstly, we must
know in what codeset an HTML document is encoded. Secondly, we need to
detect the locale supported on.the client machine. Early versions of the HTML
. specification do not contain any mechanism to detect the codeset of a Web page
and all pages are assumed to be in ISO-8859-1 [31]. Starting from the HTML/3.0

specification, <Meta> tag allows content developers to announce the codeset of a

30

text document. For example, a BIG5 encoded document can be announced as:

<meta http-equiv = "Content-Type" content = "text/html;

charset = big5">

Based on this codeset announcement, an Internet browser can find out in
which codeset the Web document is encoded. Consequently, the client machine
can display the contents correctly if it contains the required font. This method,
however, requires the codeset announcement to be made explicitly in every Web

page, which is not often found in existing Web pages.

The encoding information can be exchanged through the HTTP protocol
based on two assumptions: (1) a client machine knows what codesets are
provided locally, and (2) a Web server is aware of the encoding of the Web pages
it maintains, either by default or through other means including codeset
announcement in HTML. From HTTP version 1.1, a Web client and a Web server
can place the encoding information in the header of the protocol [32]. There are
two header fields for this purpose: ACCEPT—CHARSET and
ACCEPT-LANGUAGE. The former specifies more precisely the codeset
information whereas the latter is specific. to the language (but not the codeset)

and provides more flexibility. The syntax is given below:

Accept-Coded character set = "Accept-Coded character set"

":" 1#((coded character set | "*" }[;" "g" "=" gqvalue])

Accept-Language = "Accept-Language" ":" 1#(language-range

[H ; " nqn n_n qv-alue])

language-range = ((1*8ALPHA*("-" 1*BALPHA)) | "=*x")

Please note that the 3™ item “language-range” specifies a language range
that is particularly useful for European Latin-based languages.

31

With the help of these two fields, a Web server knows the supported
codesets in the client browser side. Based on such information, it can find out

which character sets users can accept and convert the text to images only when

necessary [33].

In the current implementation of the HTTP protocols, information can be
exchanged only if users have the right browsers and have configured the
browsers correctly. Even in a Chinese system such as Chinese Windows,
browsers such as Netscape 4.x will not accept Chinese if users do not configure
Netscape manually in the right fashion. In addition, the codeset setting in HTTP
is done manually by users and they are not necessarily linked to any font sets.
Thus it is possible that a browser indicates that it can accept GB, but GB fonts
are not available locally. Therefore, the most direct way to obtain supported
locale information on the client side is to detect the installed font from the client
machine. Once the Web server gets the information, it can provide the page with

the right encoding.

4.2 Locale Detection

Current World Wide Web technology does not provide any mechanism to
do automatic font set detection. As servers do not have the right to access system
resources such as data in the font directory and font registry, there is no dir;:'ct
method for Web servers to identify installed fonts on client machines. In this
thesis, we have devised a novel method to do locale detection by probing client

machines to get locale information automatically through a mechanism built into

HTML.

32

4.2.1 Design Principles

Our method is based on the characteristics of the True Type font. Generally,
a True Type font can be measured by its width, which is often called a font metric
[34]. We assume that the gateway is aware of the names of different True Type
font faces, such as MingLiu and SimSong, which sometimes are simply referred
to as fonts. We also assume that different fonts for the same character have
different widths. Thus, the same text would have different widths when displayed

by different fonts.

In the Web browsing process, HTML allows font display information to be
specified in Web pages. If the specified font in a Web page is not available,
browsers are allowed to find a substitute font for display (35]. Both Internet
browsers, Netscape and Internet Explorer, support the (so-called)
browser-instigated substitution of a font if a Web page specified font does not
exist on the client machine. The substitution proceeds as follows: To display a
Web page in a specified font like MingLiu, the browser must first check whether
the font exists on the client machine. If the specified font is found, it will be used
to display the Web page. Otherwise, the browser will use the browser’s default
font such as Arial to substitute for the specified font MingLiu. We can also opt

for an explicit substitution provided by HTML as follows:

FontDetect

where the text “FontDetect” is to be displayed in MingLiu, and if it is not

available it will be substituted by Arial [34].

33

In order to find out the font information, we make use of the
browser-instigated substitution mechanism and the explicit substitution provided
by HTML. We use the detection of font width to draw a conclusion on whether a
client has installed the right font. To make the method feasible, we create two
display elements to be inserted into an HTML page. The first element has a

predefined text “FontDetect” with a predefined font Arial as shown below:

Element One:
FontDetect

The second element contains the same text, but the specified font (or the

font family) should be the one we want to detect as shown below:

Element Two:
FontDetect

The first item is the name of the font we are checking MingLiu. The
second is the name of the substitute font Arial, which should be the same font

that was specified in the first element.

Since an Internet browser will use the substitute font if the specified font
does not exist on the client machine, MingLiu will be substituted by Arial if it
does not exist. As a result, the width of the second element will then be equal to
that of the first element. However, if MingLiu does exist, the width of the second

element will be different.

4.2.2 Design Details and Implementation

To carry out this method, we must, however, implement the font probing
according to different style sheets supported by different browsers [36]. Thus the
probing must also first identify the browser type and version.

34

Two environment variables are used to help us getting the browser type,
one of them is navigatorappName and the other is navigatorappVersion. The
function for getting the values of these variables is given in Figure 4-1, where a
return value of 1 (Line 9) indicates Microsoft Internet Explorer 4 or above; a
value of 2 (Line 7) indicates Netscape Communicator 4.x and a value of 3 (Line

5) indicates Netscape 6.x or Mozilla 0.x.

1. function CheckBrowserVersion(} {

2. var BrowserType = navigator.appName;

3. wvar BrowserVersion = parselnt(navigator.appVersion);
4. 1if (BrowserType=="Netscape" && BrowserVersion>=5)

5. return 3; // Netscape 6.x or Mozilla
6. else if (BrowserType=="Netscape" && BrowserVersion=4)
7. return 2; // Netscape 4.x

8. else if (BrowserType=="Microsoft Internet Explorer"&&

BrowserVersion>=4)

9. return 1; // IE 4.x or above
10. else

11. return §; // Others browsers
12.)}

Figure 4-1: The Program Code of the Client Browser Analysis

When probing for font types, we use the <LAYER> mechanism provided
in HTML to compare the font metrics, as shown in the function listed in Figure
4-2, Since Netscape 6.x and Internet Explorer do not support the <LAYER> Tag,
<DIV> and are used to ?:afry out the probing. Lines 2 to 9 show the
code for the font detection used in Microsoft Internet Explorer; Lines 10 to 18
show the code for Netscape Communicator 4.x and Lines 19 to 26 show the code
used in Netscape 6.x. Line 28 is used to compare the difference in width between

two layers and return the result.

35

1. function CheckInstalledFont (FontName, BrowserVersion} {

2.
3.

8.
9.
10.
11.

12.

i3.

14.

15.
16.
17.
18.
19.
20.
21.

22.

23.

24,

25.

if (BrowserVersion==1}) { // IE 4.x or above
if ('window.HTMLObject() {
document .write(*<DIV ID=HTMLObject(STYLE='position:absolute;
width:auto; visibility:hidden; font:12pt Courier'>
FontDetect</DIV>"};
document . .write{"<DIV ID=HTMLObjectl STYLE='position:absolute;
width:auto; visibility:hidden: font-size:l2pt’>
FontDetect</DIV>");
}
HTMLObjectl.style.fontFamily = FontName +", Courier";
widthO=HTMLObjectO . .cffsetwidth;
widthl=HTMLObjectl.offsetWidth;
} else if {BrowservVersion==2) {// Netscape 4.x
if (!window.HTMLObject0) {
document .write ("<LAYER VISIBILITY=HIDE><FONT FACE='Courier’
PFOINT-STIZE=12> FontDetect</LAYER>") ;
HTMLOLject0 = document.layers([document.layers.length-11];
document.write("<LAYER VISIBILITY=HIDE><FONT FACE='"+
FontName +",Courier’ POINT-SIZE =12>FontDetect
</LAYER>") ;
HTMLObjectl = document.layers(document.layers.length-1};
}
width0=HTMLObject0.clip.width;
widthl=HTMLObjectl.clip.width;
} else if (BrowserVersion==3) {// Netscape 6.x
if (twindow.HTMLObject0) {
document.write("<DIV ID=HTMLObject0 STYLE='position:absolute;
width:auto; visibility:hidden; font:12pt Courier’':> ?
FontDetect</DIV>") ;
document .write("<DIV ID=HTMLObjectl STYLE='position:absclute;
width:auto; visibility:hidden; font-size:12pt‘ >
FontDetect</DIV>");
}
document .getElementById ("HTMLObjectl") .style. fontFamily=
FontName+",Courier";

width0 =

parselnt {document.getElementById{"HTMLObject0") .offsetWidth) ;

36

26. widthl =

parselnt (document.getElementById ("HITMLObjectl") .offsetWidth};

27. }
28. return (widthQ!=widthl); // compare width different and return
29. }

Figure 4-2: The Core Program for the Font Detection

To detect different fﬁnt types, the probing must be done for each True type
font. Thus the program must repeat the question “Have you installed MingLiu?”’
for each font name. Also, we must probe for the encoding of the font. In other
words, we need to know the locales supported. Thus the question should really i)e
“Have you installed Traditional Chinese font: MingLiu?” For this reason, the
server must keep a table containing the names of all the basic True Type fonts
required to display a specified coded character set. For example, to display
Traditional Chinese correctly, the table must have entries for MingLiu or Kai.
Information on SimSun, Microsoft Sans Serif or SimHei must also be available
for viewing Simplified Chinese. A sample table is shown in Table 4-1 and a
sample program for the installed font detection is shown in Figure 4-3. This
sample program tests the font in the array-based database “TestFont” sequentially

and returns TRUE when the font is found on the client machine.

Traditional Chinese Ming Liu
Kaiu
Simplified Chinese SimSun
Microsoft Sans Serif
SimHei
Japanese MS Mincho
Korean . |Batang
Gungsuh

Table 4-1: Part of the Codeset-required Font Table

37

var TestFont=new Array{"Batang",

for (i=0;i<TestFont.length;i++) {
if (checkIfInstalled(TestFont[i],

return True;

}

var BrowserVersion=BrowserChecker(};

"Gungsuh};

BrowserVersion)) {

Figure 4-3: The Program Code of the Installed Korean Fonts Detection

4.2.3 Experimental Results and Discussion

To evaluate the accuracy of this locale detection algorithm, we have

performed the following cxpcﬁments. We set-up a Web site that contained the

Locale Detector, and invited 100 people, who were from Hong Kong, China,

Taiwan, Japan, Korea, Malaysia, United State and Canada, to visit this Web site

and give feedback on the tested results.

In this experiment, the evaluators were asked to enable the JavaScript

option in their browsers before they visited our test Web site. Then they sent back

the result and reported their system configuration to us. We found that the

accuracy was as high as 99%. The sample screen and the results are shown

below:

fﬁ’v"“ﬁ"“‘i

thkns Korean Fonr Bmu NQTFOUND
Checling Koeean Foot: BatangChe..... NOT FOUND
Chreking Rorvm Foat. Gugmih..... HOT FOUND
Checking Korean Fonr GuagndiChe ... NOT FOUND

==> NO KOREAN SUPPORT

Chzelang Stopkfi-d Chinzac Foat HSmSw ., . WOT FOUND
Chaclng Simphfird Chingse Fook Mijgrosoft Sxm Senl , EXIST
Checling Simpifzd Chineso Foot SimHei ... NOT FOUND
Chrecking Stuphifed Chnese Foot, SmnSun ... EXAST

=a> Simplfed Chinese Font Installed

Checkng Teadtion Chmesa Fort MingLis ... BOT FOUND
Checking Traddion Chinese Fort Kan . NOTFOUND '
=s> NO TRADITIONAL CHINESE SUFPORT
Checking Enghah Fant Tenes .. EXIST

Checkmg Enghsh Foot Tanes New Romta . EXIST

Checlang Eagheh Font Arial ..
Checking Engheh Font Courr... Ncﬂ' FOUND

5> Engtish Font Inst
ERTP————————m

Figure 4-4: Screen shot for a tested page

38

Operstion Systen | Namaberof Peole| - Fou Detecion Result
L P T Success' | i Fail
Windows CE 1 1 -
Windows 3.1 1 1 -
Windows 95 12 ‘ 12 -
Windows 98 35 35 -
Windows ME 29 29 -
Windows 2000 20 20 -
Mac OS 8 1 1 -
Linux 1 - 1

Table 4-2: Experimental Results via Operating Systems

- Font Detection Result . - .

Netscape 4.x 29 28 1
Netscape 6.x 3 3 -
Internet Explorer 4.x 10 7 10 -
Internet Explorer 5.x 46 46 -
Internet Explorer 6.x 1 1 -
Pocket IE 1 1 -

Table 4-3: Experimental Results via Internet Browsers

From Table 4-3, we can see that the locale detection results are very good.
There is only 1% fatlure in each experiment. The failure occurred only in a Linux
system because it was not using True Type fonts. For the failure in the Netscape

4.x, it was due to the evaluator not having followed our instructions and that

JavaScript was switched off in the browser.

4.3 Encoding Detection of Web Pages

For matching the encoding of a Web page with the locale on a client
machine, we also need to detect the encoding of the Web pages to be displayed.
As mentioned above, the <META> tag allows content developers to announce

the codeset of the text data. Therefore, it is not difficult to identify in which

39

codeset it is encoded if a Web page contains the character set definition in the

Meta tag as shown below:

<META HTTP-EQUIV = “Content-Type” CONTENT = “text/html;

charset = bigh">
However, when Web pages do not contain the character set definition (the:

CHARSET attribute in the <META> tag) we have to use heuristics to discover

the character set.

4.3.1 Design of the Codeset Detector

This Codeset Detector contains two codeset analysis components. The first
one is used to retrieve the CHARSET announcement in the HTML document
header [37]. The second one is used to analyze the codeset based on the domain

of the requested Web page. The system flowchart ts shown in Figure 4-5.

HTML
Document
Header

p— -
Charset |
‘ Analyzer ‘
Search for Not Found
‘ META tag
' ' Domain Nm;l
Analyzer |
' } Analysis the
CONTENT Requesting ‘
’ atiribute I \ URL Address
| JP——
Parse the Domain ‘
| Retrieve the charset ‘ Name and
information ‘ Retrieve the Country i
-
Optional Text |
Analyzer [
y — —
Encoding
Information

Figure 4-5: Flow chart of the Codeset Detector

40

After the HTML document that is based on a user’s request is obtained, the
HTML document header will be retrieved and parsed. If the Codeset Detector
can successfully find the <META> tag, it will search for “CONTENT” attributes
and identify the CHARSET value. It will also try to search for the “LANG”
attributes in case it fails to find the CHARSET value.

If there is neither a <META> tag nor a codeset announcement in the
HTML document header, the requested URL address will be analyzed. The
detection will take both the URL and the IP address into consideration. The
Codeset Detector will retrieve the local domain name (e.g.
http://www.info.gov.hk) from the complete URL address (e.g.
http://www.info.gov.hk/cisd/cwhatsne.htm). Then it will detect the country
specified keyword (.hk) from the domain name and then check the encoding
against a country database provided at the gateway.

Since some countries might have more than one encoding, for example,
Big5, GB and Unicode are commonly used together in the website of Hong Kong,

an optional text analyzer can install to enhance the accuracy of the encoding

detection.
' Domain Name - - Country. '~ Possible Encoding

Jp Japan Shift_JIS
kr Korea EUC-KR
Aw Taiwan BIGS5
.hk Hong Kong BIG5
£n China GB
.ca ~ Canada ISO-8859-1

Table 4-4: Part of the database for domain name via possible encoding

41

4.3.2 Experimental Results and Discussion

To evaluate the different possibilities and the accuracy of the detection
algorithm, we conducted an evaluation test. We randomly picked 100 Web sites
that are in Traditional Chinese, Simplified Chinese, Japanese, Korean and
English, 20 for each Janguage. Then we used the Codeset Detector to predict the

encoding for the requested Web pages. The result is shown in Table 4-5.

. Web Site Encoding . | Nuihher of:| . Testing Result
T L Web sites .| - Success | . Fail
Traditional Chinese 20 18 2
Simplified Chinese 20 19 1
Japanese 20 17 3
Korean 20 20 -
English 20 20 -

Table 4-5: Experimental Results for Codeset Detection

We found that the accuracy of the result is as high as 95%. Although the
result is not 100% accurate, it is useful as an additional heuristics in codeset
detection and the algorithm is very simple for practical use. After evaluation, we
found that the failed Web sites were the personal Web sites hosted by free Web
servers such as Geocities.com without any codeset announcement in the HTML
document. Then our system analyzed the domain name and returned “Traditional
Chinese” due to the end string “.hk” in the domain. However, when we manually
browsed the Web sites, we found that it was a Simplified Chinese Web site and
we found that even the Web browser could not correctly detect the codeset and it
returned unreadable characters on the screen. To resolve this problem, a more
comprehensive and automatic codeset algorithm based on Web content can be
easily added. Howevér, the processing time will be greatly increased and because
.of that it is not worth implementing,

42

Locale detection and Web page codeset detection require less than 1/10™ of
a second to probe a client machine. Even with this delay, it is still a worthwhile
function compared to blindly doing character-to-image conversion. The major
reason is that by using Locale Detection and Codeset Detection, we can retrieve
locale information from client machines. Thus, whenever the required locale is
available in the client machines, we can give users the original Web documents
rather than the converted character images. This can greatly reduce

server-processing time and minimize server workload.

43

5. Construction of Character Images

5.1 System Flow Control

The Character Image Constructor, or Constructor for short, is designed to
generate a variety of character images. Once the Character Image Constructor
obtains the font face required, it will locate the appropriate True Type font files
and extract the character features. The constructor then uses the internal code of
the character and other attributes such as font size, font color, background color

and font type to render the character image.

The generation of a character image is divided into five steps. Firstly, the
Constructor obtains the internal code and attributes such as style, color and size
of the character. Secondly, the Constructor will convert the internal code of the
character to Unicode by using a Unicode Mapping Table. The reason for Unicode
conversion is that it supports nearly all characters. Since Unicode can support all
Eastern and Western characters the system can be extended easily for other
languages besides CJK characters. Thirdly, the system will generate a skeleton
image based on the specified size. For example, if a character is of the size 12
points, a 16 x 16 pixels raw bitmap will be created. Fourthly, the Constructor
extracts the character features from the True Type font file, and finally it renders

the character image by using a True Type font to bitmap image conversion

function.

44

5.2 Character Image Naming Specification

In order to maintain information on a character such as its $tyle, size and
color after it is converted into an image, we must incorporate such information
into the character image [38]. To facilitate searching, we also need to include the
internal code in the image. Unicode is deliberately chosen as the internal code
because our Pelutech Gateway is designed to support CJK characters. For the
Chinese character “m1”, which is U+4E00 in Unicode, Pelutech will name it as
“4E00.gif”. In fact, to incorporate font, background color and font size into the
rendered character image, all the information required will be embedded into the

constructor script. The format is shown below:

f=[Internal Codel&font=[Font Facel]&style=[Font
Stylel&size=[Font Size]&fc=[Font Color]&bf=[Background

Color] .

In the above specification, fis used to specify the internal code (Unicode)
of the character; font is used to specify the name of the font face; style is used to
specify the font style such as italic, or bold; size 1s used to specify the font size in
points; fc and bc are used to specify the font color and background color in Hex
code, respectively. For example, the Chinese character “H7” in black font color
(#000000), using the MingLiu font face, with Underline style and the default font
size (12 points) with white background color (#FFFFFF) page is scn'ptcdd as

“f=4E00&font=MingLiu&size=12&style=U&fc=000000&bc=FFFFFF”’ in the

Character Image Constructor.

45

5.3 True Type Font File Specification
In order to convert a character to an image, we must first understand the

True Type font file format.

The TrueType font file consists of a sequence of concatenated tables. Each
table must be aligned and padded with zeroes if necessary [39]. The first table is
called the font directory, a special table‘that facilitates access to the other tables
in the font file. The directory is followed by a sequence of tables containing the
font data. These tables can appear in any order. Certain tables are required for all
fonts. Others are optional depending upon the functionality expected of a
particular font. The tables have names known as tags. Currently defined tag
names consist of four characters. Tag names with less than four characters have
trailing spaces. When tag names are shown in text, they are enclosed in straight
quotes. Tables that are required must appear in any valid TrueType font file [40].

The required tables and their tag names are shown in Table 5-1.

cmap Character to glyph mapping
glyf Glyph data

head Font header

hhea Horizontal header

hmtx Horizontal metrics

loca Index to location

maxp Maximum profile

name Naming

post PostScript

Table 5-1: Table Name via Tag Name

After the Constructor obtains all required information for a character in a
True Type font file, the Constructor can convert the True Type font, which is a

vector-based outline font, to a bitmap-based image. Figure 5-2 shows an example
46

of a converted bitmap image of the character “—” from the True Type font file

MingLiu.

- Figure 5-1: Chinese character ONE 16 by 16 bitmap

5.4 True Type to Bitmap Conversion

There are three steps to convert the True Type font information to
browser-supported Web image: (1) retrieve information from True Type font file;
(2) render a draft bitmap, then convert the bitmap to a browser-supported
transparent image such as a GIF; and (3) compress the image for Internet
transfer.

Firstly, we use the Free Type Library [41] to retrieve information from the
True Type font file. The Free Type Library is a software font engine that is
designed to be small, efficient, highly customizable and portable, while also
being capable of producing high-quality output. It is a font service such as text
layout or graphics processing. It greatly simplifies these tasks by providing a
simple, easy-to-use and uniform interface to access the content of font files.

Secondly, we use the GD Graphic Library {42] for the True Type to bitmap
conversion. The GD Graphic Library is a graphics library that is helpful for
coding quickly and also for drawing images that are complete with lines, arcs,
text, multiple colors, graphics cut-and-paste from other images, and flood fills

that are particularly useful in World Wide Web applications.

47

With the help of the GD Graphic Library, the rendering of the character
image can be simplified because the function gdfmageChar can be used to
automatically generate the character images for different sizes and font types.
However, this function does not support CJK characters, which are 2 or more
bytes. To overcome this problem, the function gdfmageStringFT is used to input
each CJK character as a UTF-8 string.

Since we need to reduce the image size for Internet transfer, we use the
official PNG reference library - [libpng [43], and the general-purpose
compression library — z/ib [44] for handling image compression because zlib is a
loss-less data-compression library for use on almost every computer platform and

operating system.

5.5 Sample Output

In order to show the comprehensiveness of our Constructor module, we
show a list of examples of different character images that it generated. Tables 5-2
to 5-5 show the respective character images generated by our Constructor for the
English alphabet, for numbers and symbols, for Traditional and Simplified
Chinese Characters, and for Japanese & Korean Characters. In fact, with the
availability of the True Type font file in Pelutech, we can convert characters in

any language to a bitmap image with minimal distortion.

Internal Code Size Font Color | Expected Result | Output Image
&HO0041 18 Black A A
&HO0041 16 Blue. z Z
&HO0041 14 Red w W
&HO0065 16 Green e e

Table 5-2: Experimental Results of English Alphabets

48

Internal Code | Size Font Color | Expected Result | Output Image
&HO03| T Black | 1
&HO0039 16 “Blue 9 9 |
&HO040 14 Red @ | @ ;
&HO023 16 Gireen - [# |

Table 5-3: Experimental Results of Numbers and Symbaols

Internal Code Sire Font Color | Expected Result | Output Image
&H4E2ZD 1% Black g L
&H6587 16 | Red HE %
&H7535 18 Blue <]

&HS111 16 | Black i 1]

Tahle 5-4: Experimental Results of Traditional and Simplified Chinese Characters

Internal Code Size Font Color | Expected Result | Qutput Image
&H3I0D3 18 Black E
&H3IOBS 16 Red 2 >
&HCS15 18 Blue 2 | Ao

&HBCF4 16 Black - I

Tahle 5-5: Experimental Results of Japanese and Korean Characters

a4

6. Rebuilding Form Controis

Many Web pages contain <FORM> controls that are used to gather
information from users. However, the text inside the controls is normally
rendered by browsers using local fonts because the HTML 4.01 specification
does not support the <FORM:> controls with any embedded image items for text
objects [451 Therefore, our system must regenerate and build simulated forms to
avoid invoking local fonts, and make it free from CJK fonts. The Form Controls

Builder module is designed to do that.

6.1 Elements of the Form Tags

Usually, when a browser uses GET to obtain a Web page, it first parses and
analyzes the HTML code, it then generates the form contrdl on the client side and
display the font for the text items in the controls on the client side based on the
information from the <FORM:> tag. In the HTML 4.01 specification, there are

ten different types of controls in the <INPUT> tag [46], as shown below:

<!ENTITY % InputType "(TEXT | PASSWORD | CHECKBOX | RADIO
| SUBMIT | RESET | FILE | HIDDEN | IMAGE | BUTTON) ">

These ten controls play different roles in form handling in a Web page. The

functions of each control are listed in Tabie 6-1 below:

50

Input Type Function

TEXT Creates a single-line text input control.

PASSWORD (Creates input text that is rendered to hide the actual characters
(usually substituting them for a single character). This control
type is often used for sensitive input such as passwords. Note
that the current value is the text entered by the user, not the text
rendered by the user agent.

CHECKBOX |[Creates a checkbox.

RADIO Creates a radio button.

SUBMIT Creates a submit button that triggers the form action.

IMAGE Creates a graphical submit button. The value of the “sr¢”
attribute specifies the URI of the image that will decorate the
button.

RESET Creates a reset button that resets the form value to initial.

BUTTON Creates a push button. User agents should use the value of the
value attribute as the button’s label.

HIDDEN Creates a hidden control to store form values.

FILE Creates a file select control. User agents may use the value of

the attribute as the initial file name.

Table 6-1: Functionality of each input type

In terms of their functionality, the ten controls can be further divided into

four categories. The first category contains text elements displayed outside the

controls such as the checkbox and radio controls. The second category needs to

embed text into the control; for example, submit, reset and button controls. The

third category includes text and password controls, which contain text fields and

require the user to input text. The fourth category contains neither text nor text

input by the user, and includes elements such as image, hidden and file controls.

A summary of the controls is listed below in Table 6-2.

51

Category Controls Description

1 CHECKBOX, RADIO Text elements are displayed outside
the control
2 SUBMIT, RESET, BUTTON |Text elements are embedded in the
control in the display
3 TEXT, PASSWORD Text input is required from the user
IMAGE, HIDDEN, FILE No text elements need to be '
displayed or input by the user

Table 6-2;: Summary of the controls

Since category four controls do not have any text elements for display and
they do not need any user input, they do not need any special handling by our

gateway. Thus we only need to take care of the seven controls listed under the

first three categories.

6.2 Handling of Checkbox and Radio Controls

The first category includes checkbox and radio controls in which text is
separated from the controls. In fact, these controls support graphic display. Thus,
the only work we need to do is: (1) obtain the text data, (2) convert the text to
character images using the Character Image Constructor, (3) réplace the text with
images, and (4) send the images to the client browser to generate the control at
the client side.

Figure 6-1 and Figure 6-2 show an ex'amp]e of an original check box

control and its converted image generated by our Form Control Builder,

respectively.

& CEL
v G

Figure 6-1: Original Checkbox Control

52

v BB
Eﬁﬁ%ﬁ

Figure 6-2: Simulated Checkbox Control generated by Pelutech

The HTML. source code for the original checkbox control shown in Figure

6-1 is:
<input type="checkbox" checked>® & H#k

<input type="checkbox" checked>®iE{li

The HTML source code for the simulated checkbox control that was

generated by Pelutech is:

<input type="checkbox" checked>

<input type="checkbox" checked:>

The only difference is that the text “€&EH$” and “EELEE” are
displayed using locally installed fonts at the client machine in Figure 6-1,
whereas the same text is displayed by character images in Figure 6-2 where no
locally instalied fonts are needed.

Figure 6-3 and Figure 6-4 show an example of an original radio control

and its converted image based on the control generated by our Form Control

Builder, respectively.

PusEE: © BRI CHEDX

Figure 6-3: Original Radio Control and original HTML code

BLBE «c RETX - FEDX

Figure 6-4: Simulated Radio Control and HTML code generated by Pelutech

53

The text in Figure 6-3 is displayed using a locally installed font but
character images are used for display of the same text in Figure 6-4. The HTML

source code of the original control is:
HBORIE
<input type="radio" checked>¥§2char
<input type="radio">FiEHA

The HTML source code for the simulated radio control generated by

Pelutech is:

<input type="radio" checked>

<input type="radio'">

6.3 Handling of Submit, Reset and Button controls

The second category of form control in which text is embedded includes
submit, reset and button controls. After the HTML Document Parser obtains the
form name and the text from the VALUE attribute in the <INPUT> tag, the
Character Image Constructor generates the CJK character images. Then, the

Form Controls Builder constructs simulated control block images. Consider the

following example:

<FORM NAME = “FormName” ACTION = “FORM.CGIL">
<INPUT TYPE = “SUBMIT" VALUE = “*ﬁﬁ”>
< /FORM> ‘

54

First, the value “f&Z" is retrieved from the tag by the HTML
Document Parser. Then, the images > and “F&” are generated by the Character

Image Constructor. Finally, the Form Controls Builder wili embed the above

character images into a blank button image “l—__F to form the finalized

BE),

image

As the attribute of this control is changed from a button to an image, the
type of the <INPUT> tag needs to be modified. In addition, the rebuilt images
must also specify the tag so that the images can be correctly found by the client

browser and displayed on the client machine. Consequently, the <INPUT> tag is

modified as follows:

<FORM NAME = “FormName” ACTION = “FORM.CGI”>
<INPUT TYPE = “IMAGE” SRC = “FormBuilder?text=#f;3EE "~
VALUE = “f§E&E">

< /FORM>

Since the default action for the IMAGE type <INPUT> control is
SUBMIT, the above method only works in the SUBMIT and BUTTON types of
<INPUT> controls. It cannot be used to process RESET type controls. Instead,
we use the link tag <A> and a JavaScript function to trigger the reset action when

a user clicks the reset button. Consider the following example:

<FORM NAME = “FormName” ACTION = “FORM.CGI”>
<INPUT TYPE = “RESET” VALUE = “HHi§">
< /FORM>

The form “FormName” contains a reset button to reset the form value to
the initial state. After the Form Controls Builder constructs a simulated reset
control image, the <INPUT> tag is replaced by a link and an image tag as shown

below.
55

Note that the function “javascript:document.FormName.reset({)” is used to
reset the Form to its initial value in the HTML document.

The solutions provided in our Form Control Builder can not only generate
the same look and feel of the form control display, but also provide the same
functionality as the original controls. Figure 6-5 shows an original button control

and Figure 6-6 a simulated button control.

l | [BE]

Figure 6-5: Original Button Control

] R
[Tud
b TR T A
H ¥
2

Figure 6-6: Simulated Button Control generated by Pelutech

However, there are some limitations in Pelutech. The current system
cannot handle certain ill-formatted HTML. forms. For example, a well-formatted

text control form should be coded as:

<input type= “text” size=20 name=“Text0l">

An ill-formatted HTML form as quoted directly from the Web site “Yahoo!

Chinese” might look like this:

<input size=20 name=“Text(1">

Pelutech cannot handle this code because our HTML parser has difficulty
identifying what type of control this “INPUT” tag belongs to. The only way to

solve this problem at present is to use some predefined rules in the HTML parser.

56

6.4 Handling of Text and Password Controls

The third category of form control includes text and password controls that
require text input from users. Since these controls require input from a client,
some substitute input method must be provided. In this section, we will discuss
how to use the Input Method Engine through thé Input Method Interface. The

design of the Input Method Engine will be discussed in Chapter 7.

When the HTML Document Parser detects the text field in a form, such as

the code in the following example:

Criginal code:
<FORM NAME = "“FormName” ACTION = “FORM.CGI">
<INPUT TYPE = “TEXT” NAME = “TextField”>

< /FORM>

The Form Controls Builder will insert the Input Method Interface to

establish a connection with the Input Method Engine as shown below:

Modified code for the Form:
<FORM NAME = “FormName” ACTION = “FORM.CGI">
<INPUT TYPE = "“TEXT”" NAME = ‘“TextField®” onfocus =

“SetIMEfocus {FormName.TextField) >
</FORM>

For this implementation, the JavaScript built-in function onfocus is
inserted into the <INPUT> tag. The SetIMEfocus is an embedded function
inserted into the modified form to establish a connection with the Input Method
Engine when the user clicks on that field. Finally, the modified control is sent to

the client side, and will be rendered by the Internet browser.

57

7. Native input Method Engine

Without localized input methods installed, applications cannot accept
non-English input from clients. Generally, users are expected to find their own
methods to enter CJK characters. However, in Pelutech we do not assume that a
client has a proper CJK platform. Thus, we cannot assume that the client has a
properly installed local input method engine. For this reason, Pelutech also
provides an Input Method Engine (IME). The primary purpose of this IME is to
facilitate input required by certain interactive Web pages using CJK characters.

IME is also needed to facilitate search for CJK characters in the reformatted Web

pages.
7.1 input Method Engine Design

_ Input methods are software components that make use of the operations on
the input device to produce text input for applications. In Pelutech, since we do
not assume there is a locally installed native input method engine, we need to
provide that function through the Pelutech Input Method Engine (PIME). PIME
also has an input methed interface, which is delivered to the client side with the
Pelutech reformatted Web page. This interface module runs on the client machine
and communicates withl PIME to deliver input method services to clients. The
design of PIME is based on the Input Method Framework defined in the Java 2
Specification [47, 48]. It allows users to input CJK text without installing any

third-party Input Method Engine in the client machines.

58

The framework architecture is modeled as an Object Oriented system.
Components of the framework communicate with each other only through a
well-defined interface. The internal structure and implementation of each
component is hidden and independent of the other components. Each
independent input method is also defined as a component with a well-defined

interface so that it can be plugged into the IME and used by other components

[49].

This Input Method Framework consists of two major components: the
Native Interface and the Core Engine. The Native Interface provides an interface
for a client application, which is called the Application Programming Interface
(API). This API is responsible for handling the communication between user
input in a text input component and the Core Engine, which provides the
different input methods. The Core Engine supplies the different input methods
and it has a Service Provider Interface (SPI) for flexibility in allowing different

input methods to be plugged into the engine.

Native Input Methed Interface

!
1
Ke External ! oK
chueiees :P User Input Interface Communication Ct er

| Interface I

1

: Character Encoded Il

: Images Data I

: Charag 1 ey :

t .

.c cr lmage Sequence Information Encoder :

: Displayer 1
T4 SO | A TS)

Character Mapped

Information Words
R | SR _4 e B e

[nput Method Manager

[
]
']
t i
!]
.)
: Key sequences. '
I Input Method and |'
I
! i
! 1
! I
! I
t I
: t
: I

mapped words

Composed Key Map Builder

Input Method Core Engine :

Figure 7-1: Native Input Method Engine Framework

59

The division of the Native Interface and the Core Engine gives more

flexibility for the implementation of the input method services. The Core Engine

can either be installed at the server-side or the client-side and transparent to the

client. Figure 7-1 shows the major components of the input method engine.

Details of each of the sub-components are explained in the subsequent sections.

7.1.1 Native Interface

The Native Interface provides the input method interface to the client and

it also communicates with the Core Engine on behalf of the client to obtain the

right input method, in the chosen style. It supports two service levels: the

Integrated Text Input User Interface and the Non-Integrated Text Input User

Interface. Each of these service levels has a separate style of input method, which

is summarized in Table 7-1.

Service Level Input Style

Details of the style

Integrated Text On-the-spot
Input User

When composing the text, the current
candidate is highlighted. If a user chooses
a different candidate, the new one
replaces the previous candidate text.

The composed text window is close to the
insertion point of the text components.
The text is inserted after the insertion
point after the composed text has been

committed.

Interface

Below-the-spot
Non-Integrated Root-window
Text Input
Interface

A separate composition window 1§
prepared to accept the composed text.
Then the committed text is sent to the
application. Unlike the Integrated Text
Input Interface, users are required to place

the insertion point.

Table 7-1: Service Levels and Input Style supported by input method client

60

As shown in Figure 7-1, the Input Method Interface component is
composed of four sub-components: the User Input Interface, Character Image
Displayer, Information Encoder and External Communication Interface. The
roles of these sub-components act like a bridge between the Input Method Engine

and the external working environment, such as a Web browser or a Java Applet.

The User Input Interface appears as a text field to receive keyboard input
from the user directly. It provides basic editing functionality so that user can
modify text. It is also connected to the Character Image Displayer to display

retrieved character images.

The Character Image Displayer is responsible for rendering the character
image in the User Interface since local foﬁts are unavailable. It is connected to
the User Input Interface and the Input Method Manager. When it receives
character code from these two (connected) components, it will look for the
correct character glyph and generate the character image. Since there is a
Character Image Constructor inside Pelutech, the major function of the Character
Image Displayer is passing information from the Input Method Engine to the
Character Image Constructor. The Character Image Displayer can be a separate

component when the Input Method Engine is a stand-alone application.

The External Communication Interface communicates with the Web
browser and the Core Engine of Pelutech. It receives data from the Input Method
Engine in its internal format and converts it to a format that the external
environment can understand. This internal data includes character codes in the
text box and the current character encoding information. Therefore, the external
environment can obtain the necessary information from this interface for further

processing, such as searching or submitting a form.
6l

The Information Encoder is used to convert the character encoding and
related information into a standardized format. This standardized format ensures
that the information is transmitted correctly via the Internet and is understood by
other applications. This conversion is used because some special characters and
double-byte characters (especially CJK characters) need to follow an “escape
scheme” before being transmitted via the Internet. For example, a punctuation
mark cannot appear in the Uniform Resource Locator (URL) string, so a string is
converted into a MIME format called the “x-www-form-urlencoded” format [45].
According to these schemes, the Information Encoder converts the data into

various formats in order to conform to standards that are based on the following

rules.

¢ The ASCII characters ‘a’ through 'z', ‘A’ through 'Z', and '0' through 'Y’

remain the same. ’
e The space character ' ' is converted into a plus sign '+'.

e All other characters are converted into the 3-character string "%xy",

where xy is the two-digit hexadecimal representation of the lower

8-bits of the character.

Besides this, character codes of the user text are also converted to
hexadecimal numbers before they are sent through the interface. For exampl;:,
the Traditional Chinese Big5 code for character one is represented by A440. This
prevents misinterpretation of any of the double-byte characters as two separate

ASCII characters,

62

7.1.2 The Core Engine

The Core Engine is responsible for processing the user input and
generating the text output according to a specified input method. It comprises
two main sub-components: the Input Method Manager and the Composed Key
Map Builder. The Input Method Manager manages different input methods and
searches for a character according to the user input data.

The Input Method Manager is the core of the Core Engine. After it
receives a composed key sequence from its user interface, it maps this key
sequence into an actual character based on the user selected input method.

The Composed Key Map Builder locates the input method resource and
builds the input method mapping data structure for the Input Method Manager
search. The Input Method Manager informs the key map buiider that a specific
input method is selected, and then it reads the input method mapping data stored

at the Pelutech server before it builds the mapping table at the client side.

7.2 System Implementation

While the Input Method Manager manages various input methods, the
Composed Key Map Builder builds the composed key-mapping table. After an
input method has been specified by the user, the Input Method Manager calls the
Composed Key Map Builder to build the corresponding mapping table. The
Composed Key Map Builder searches for the mapping table resource at the
Pelutech server. The mapping table resource format is the same as the Textual
Input Table (.tit) format used by the CXTerm for UNIX's X Windows system
[50]. The Textual Input Table file can be downloaded from the Internet, so that
the input method can be updated eésily. It allows new or additional input

methods to be added later.
63

- 7.2.1 Composed Key Retrieval Methodology

After reading the Textual Input Table, the Composed Key Map Builder
stores the map in memory. There. are two approaches for the retrieval of

composed key sequence: using a data structure or a database.

7.2.1.1 Retrieve Key Sequence using Data Structure

With the aim of fast retrieval of the character from the composed key
sequence, a special data structure and searching algorithm should be designed.
The Hash Table and Trie Data Structure were studied during the implementation
of the input method engine.

Although the hash table can look for characters by submitting the
composed key sequence, it can only perform exact matching. For example, the
composed key sequence “P” of the Changjie input method (&%H) is only
mapped to a Chinese word “/[»” but it cannot display other words that start
with the same prefix, such as the Chinese word “|C" with a “PVF"
composed key sequence. However, in the Internet world, it is better to provide
some hints for users to input text because they may not be able to consult a
reference manual for the composed key sequence.

Instead of searching by comparison through the entire composed keys
sequence, each of the characters in the key sequence is used to determine a
muiti-way branch at each step of the trie data structure.

Figure 7-2 shows the Trie tree of the Changjie input method. When the
user enters a composed key character, such as “A” |, the searching function
. (such as trie class’s searchTrie() method in Java) will traverse the tree. From the
figure, it will find characters “H §BH"” because they have the same

composed key sequence prefix “A’.

64

Branch

Headat
Tris Link A 'unh] l [Liak 2

Branch Branch

Link A th!] I —— |I.i|| z Link A l Lin¥@ I Link 2

Figure 7-2: Trie Tree of the Changjie input method

A trie tree is also an efficient algorithm for building the mapping table.

From Robert L. KRUSE [51): |
The number of steps required to search a Trie (or insert into it} is

proportional to the number of characters making up a key, not to a logarithm of
the number of keys, as in éther tree-based searches.”

Since the maximum number of characters in a compos;ed key sequence is
often 5, the number of characters in a sequence is small and it is faster than a
binary tree search. In 5 iterations, it can locate 265 (11,881,376) keys.

The trie data structure was chosen to build the input method mapping table
(in memory) due to certain advantages, which are described above.
7.2.1.2 Retrieve Key Sequence using Database

Another approach for storing the composed key sequence is to use a
database. First, the key sequence mapping table is converted into a database table.
For example, the table TABLE_CIJ is created for the mapping table of Changjie.
There are two columns in this table: KEY_SEQ is used to store the key
‘sequences; and WORDS is used to store words that map from the key sequences.
When a user inputs a key sequence, the system retrieves the matching word using

a SQL statement like the following (for a sequence beginning with “A”):

65

select WORDS
from TABLE_CJ
where KEY_SEQ like ‘A7’

However, if the entire mapping table is inserted into a database table, the
retrieval time for each query takes too much time. Therefore, for faster retrieval
of characters from the composed key sequence, we create 26 materialized views
[52] that store the key sequence that begins A to Z separately. For example, the

materialized view of key sequences that begin with A for Changjie is:,

create materialized view VIEW CJ A
from TABLE_CJ
where KET_SEQ like ‘A_°

By employing this method, the retrieval time for each key sequence can be
reduced to 1/26™ of the time using the original naive method. For example, when
a user inputs the key sequence “A” , then the system can find characters “H
20" from the view VIEW_CI_A, and there is no need to use table
TABLE_CJ. The SQL statement for retrieving matching words for key sequences

that begin with “A” is as follows:

Select WORDS
from VIEW_CJ_A
where KET_SEQ like ‘A2’

7.2.2 System Iimplementation

Since the Native Engine is mainly designed for entering CJK text in the
Web environment, a Web-based programming language is chosen to implement
the Input Method Engine. In this thesis, we implement the input method engine
in two ways: Client-side Input Method Engine and Server-side Input Method
Engine. The Client-side Input Method Engine is designed as a Java Applet and
the trie tree and hash table are used to retrieve key sequences. For the Server-side
Input Method Engine, JavaScript is used together with Active Server Page (ASP)

to connect to the back-end database.
66

7.2.2.1 Client-side Input Method Engine

This Input Method Engine is implemented as a Java applet in a Java Input
Method Engine [53]. The Input Method Engine is downloaded with the
reformatted Web page to the client side. The Java Input Method Engine applet
currently supports the following input methods:

@) Changjie Input Method for the Big 5 Chinese characters

(ii) Simplex Input Method for the Big 5 Chinese characters.

The User Input Interface provides a text field for the user to enter text. In
fact, it is not a regular text field; instead it is the graphically painted canvas of the
downloaded Java Input Method Engine applet. A rectangular text field and the
character images are drawn in the canvas. Moreover, the applet implements the
KeyListener method, so that whenever a user presses a key on the keyboard, it
detects whether it is an action key or a normal character and then performs
different functions depending on the keystroke information. An action key is
used to perform a specified function, such as the backspace key that is defined to
erase the previous entered characters in the text field. If it detects a normal
character keystroke, it will pass the keys_troke information to the Character Image
Displayer to render the character image. If it detects a special combination of
keystrokes such as [Ctrl] — [Alt] — [Tab], it will call an input method window that
allows CJK text to be entered. A user can select the input method from the user

interface as shown in the Figure 7-3.

. I.Zhi.'ne::::- Irpul]»'i-i-ujd '

Composing Key Sequence:]

Figure 7-3: Java Input Method Engine

67

First, the Character Image Displayer makes a request to the server and then
uses an instance of the MediaTracker class to wait for the image from the
Pelutech server. The MediaTracker class is an Abstract Window Toolkit (AWT)
class that keeps track of the status of media objects [54].

To allow communication between the Java Input Method Engine applet
and the external environment, Netscape LiveConnect Technology is used to
connect them together [55]. In this interface implementation, only
JavaScript-to-Java communication is required. This kind of communication can
be used to control the behavior of the Java applet through JavaScript [56]. To
enjoy this feature, the method of the Java class is declared as public. Declaring
the method as public method makes it externally visible so that it can be called
from the JavaScript code. Currently, Netscape version 3.x {or above) and Internet
Explorer 4.x (or above) support this JavaScript-to-Java communication. The
following JavaScript and Java applet source code shows how the Netscape

LiveConnect technology allows this connection.

<SCRIPT LANGUAGE=Javascript:>

<l -

msgWindow = window.open("", "displayWindow”, "menubar=no,

scrollbars=no, status=no, height=10, width=500");
msgWindow.document . write{"\""+ document.KeyApplet.getSrcText() + "\""):
J-=>

</SCRIPT>

<APPLET name="KeyApplet" code="Key.class" width=200 height=30>Applet

Area</APPLET>

Figure 7-4: JavaScript Source

68

import java.lang.*;

public class Key extends Applet{
publiec String getSrcTexmt () {
String srcText = null;

return srcText;

Figure 7-5: Java Applet Source

From the source code above, the embedded JavaScript calls a Java applet
named KeyApplet, which is implemented by the class Key that has the
getSrcText() method. When getSrcText() is called, it returns a string. The
JavaScript code then writes out this string to a newly opened window called
displayWindow.

In addition, since the Information Encoder is required to prepare the
information to conform to a standard MIME format, the Java URLEncoder class
is used to convert all the characters to a string [54].

In the Java Input Method Engine, a hash table and a trie tree are used in the
Composed Key Map Builder. The Java API has a Hashtable class that maps keys
to values. By using Hashtable’s put(} method, the composed key sequences and
the corresponding characters can be put into a hash table.

Two Java classes ate written to implement the trie data structure. They are
the Trie class and the Node class. Their class relationship and their design are
shown in Figure 7-6. The Trie class provides methods to build a trie tree, insert

“nodes and traverse the tree. The Trie tree is composed of Node instances. The

Node class provides methods getData() and setData() to get characters from a

69

node and store characters in a node, respectively. In addition, getBranch() and
setBranch() methods are responsible for traversing and linking the nodes,
respectively. Nodes are linked together by the trie tree. From another perspective,
the branch of a trie tree is a linked list. This can save memory space because a
node does not contain any characters and uses pointers. In addition, using a trie

data structure groups together all the possible candidate characters with the same

composed key sequence prefix.

Trie Node

-maxBranch ; int

[+ Trie) tsbranch : Node

insertTrie() : void 0| [String

+searchiTrie() : Node HNodel)

+searchPossibleTrie(} | Node] +initNode() : void

+isEmpty() : boolean +getNumBranchy) : irt

+getPossibleDatal) : Sting +getData() : String
+setData() : void
+isContainData() : boolean

1 +getBranchy) : Node

+setBranchi() : boolean

Figure 7-6: Class Diagram of Trie and Node

Finally, we perform an experiment on the Java Input Method Engine to not
only tests its functionality and performance, but also to demonstrate how the
image character text field listens for a keystroke.

When the composed key sequence is entered in the text field, it will
display all the possible character candidates that have the same composed key

sequence prefix, as shown in Figure 7-7.

w ! Chinese Input Method . . E

EEE

Composing Key Sequence: Ikb

VB 2B B R oB BB

Figure 7-7: Same composed key sequence prefix displayed

70

From this experiment, it was found that although more composed key
characters are entered into the text field, the time required to load the candidate
characters is reduced. This is because the number of candidates with the same
composed key sequence prefix becomes smaller as the composed key gets longer.

The size of the Input Method Engine applet is around 100 K Bytes. The
loading speed experiment shows that it takes around 20 seconds to load the
applet into the Web browser using a standard modem connection. If a broad
bandwidth connection is used, such as 1.5M bits, it takes a negligible amount of
time to load the applet. This experiment shows that the loading time of the applet
is within acceptable limits for the slow network connection.

Besides this, it is found that Web browsers, Microsoft Internet Explorer
version 5.x or Netscape Navigator version 4.x, may actually store the applet in a
cache, and this dramatically improves subsequent loading time for the applet.
7.2.2.2 Server-side Input Method Engine

The Server-side Input Method Engine is developed in JavaScript and ASP
and uses the database approach. The JavaScript code is used to pass the
information between the original HTML document and the input method window
that is coded in ASP. Then, ASP queries the database and processes the user’s
input.

To implement this method, first, we need to embed a JavaScript file in the

HTML document header as follows:
<SCRIPT language="JavaScriptl.2" SRC="enable.js">
</SCRIPT>

The purpose of this JavaScript file is to provide some useful functions that
'support passing the information between the original HTML document and the

input method window. These functions ask as a bridge to provide a

71

communication channel for passing the input text from the input method window
back to the original form.

To activate the input method, a function OpenlMEWindow() is developed
to open the input method window. There are two parameters in this function: the
first parameter tells the input method engine which input method is to be used,
and the second parameter declares the text field that is used to retrieve text from
the input method engine. Therefore, the function not only opens the input method
window, but also passes the text field that is used to retrieve the text from the
input method. For example, if there is a form called “forml™ and a text field
“textfield]” that receives the text from the input method engine; then the
following code needs to be added:

<form name="forml">

Field 1: <input name="textfieldl" onFocus =

"IMEFocus{'forml.textfieldl') ;">

<input type=button value="CJ" onClick
"OpenIMEWindow ('Changjie', 'forml.textfieldl'):">

There is only one parameter in the function IMEFocus() because this
function is only used to tell the input method engine which text field is to be used
to receive the text input from the user.

When the user inputs a key sequence, the input method engine will query
the database and then retrieve the corresponding characters and display them on
the screen. Then, the user can press the keys “0” to “9” to select the character and
select “Send to Form” after all the characters have been input. The sample screen

for the Server-side Input Method Engine is shown in Figure 7-8.

72

Provymas Paigeo Mrnl Pagy

Choses iof bapul Yecthosd

it P Mothod used

Eohanie aol U Barmaciers
ks heijiende Emced

Figure 7-8: Server-side Input Method Engine

7.2.3 Discussion

The two implementations (described above) provide different approaches
for the development of the Input Method Engine. These Input Method Engines
not only let a user input text without installing the Input Method Engine locally,
but also provide a cross platform input method framework for developer,
However, these Input Method Engines contain some weaknesses.

In the database approach, the server needs to query the database when a
user inpuis a key sequence. The utilization of the server will be quite high when
there are many concurrent users.

In companson, the Client-side Input Method Engine only provides
complete support for both the input method client APl and the input method
engine SPl when the Java Software Development Kit (JSDK) from version |3
onwards 15 used. An older version of JSDK cannot be used on the client. and an
older version for the engine means losing the flexibility of the SPL It should be
noted that, the two dominant browsers, Internet Explorer and Netscape, are most
often equpped with the old version of the Java Virtwal Machine (J%YM), which

only suppons the Java Software Development Kit Version 11 or older. Users

may need to download a Web browser software patch to update the JVM, or they
need to install the latest Java Runtime Environment version 1.3. This installation
work is not an easy task for a normal user since it involves system configuration
and administration work. These backward compatibility issues should be
considered when designing a new input method.

In addition, although Java is designed to fully support the Unicode strings
and Internationalization (I18N), it obviously still needs the Unicode fonts to be
installed in the target platform to display the text properly [57]. I18N is a
software development technique that separates the language elements from the
program logic, so that the program can run in any language environment without
redesign. Java has already provided APIs to support 118N, such as the API for
processing locale, numbers, currency and date [58]. These APIs are designed for
Unicode 2.0. However, the current version cannot display CJK characters
without the CJK fonts being installed. From the Java Developer Connection chat

forum, it was pointed out that CJK fonts would be made available for developers

later [59].

74

8. Character Image Search Engine

Most Web browsers provide functions for content search. Sometimes,
when given a large Web page, the user may want to look for a specific topic or
word in that page. The content search is designed for text search in the current
page and it makes browsing much easier. The search function works very much
the same way as in any word processor where the words found are highlighted. It

is well known that the search functions can be applied only to text content.

Therefore, Web browser search functions cannot find CJK characters in the
reformatted Web pages from Pelutech because CJK characters are now converted
to character images. Their content type is also changed because all CJK
characters are labeled in HTML by the image tag. Character—to-lmagé
replacement without the function for character search would make such schemes
less useful. To maintain the same search functionality, the Character Image

Search Engine is designed in Pelutech to overcome this limitation.

It should be noted that the reformatted Web pages might be mixed with
text and character images because the Conversion Engine in Pelutech will not
convert all the characters in a Web page if the client already has the
corresponding font. As a result, this Character Image Search Engine must be
capable of performing both text search and character image search and also
mixed-mode search. In addition, words found as a result of a search should also

be highlighted to give visual cues to the user.

75

8.1 Design of Character Image Search Engine

The Character Image Search Engine (CISE) comprises three parts: the

Input Interface, the Searching Processor and the Result Generator. The major

components of the CISE are shown in Figure 8-1.

Search Engine Input Interface '
1

I
i

I /L Input Parameter 4: Search

: HTML Source Loader }J'EL-— Decoder Words

' encoding

i

1

|
information and :
target word |

HTML Source
of target page

HTML Analyzer N————]
HTML source

HTML source, "‘t‘.‘d Cm“: Character
target word Feference entity Reference

Interpreter

!

Image Font
Searcher

1

1

|

1

[}

|

)

)

}

I

|

I

i

: 1
Text Searcher : :
: 1
|

1

1

I

1

1

]

]

)

]

]

1

Convert Wcb Page
with highlighted
Results

Figure 8-1: Components of the Character Image Search Engine and their

relationship

The Input Interface is rcsponsible for retrieving necessary information
from the user, so it is located at the client side. It consists of a Native Input
Method Engine and an Input Parameter Decoder. The Native Input Method
Engine, which was mentioned in the previous chapter, is used to gather the user
input. The Input Parameter Decoder decodes those parameters passed by the
client browser, such as the current URL address, encoding support and the word

that is the target of the search.

76

The Searching Processor is the key component of the CISE. It looks for
the words given in the Input Interface. The Searching Processor is composed of
an HTML Analyzer, a Character Reference Interpreter, a Text Searcher and a
Character Image Searcher. The HTML Analyzer is responsible for analyzing the
HTML tags and content. The Character Reference Interpreter interprets the
character reference entity for use in the HTML Analyzer. The Text Searcher and
the Character Image Searcher are responsible for text search and character image
search, respectively. Unlike the Input Interface, the Searching Processor can be
located at either the client-side or the server-side. When it is located at the
server-side, the search can be performed using the original HTML source page,
otherwise, at the client side it can only perform searching in the converted page.

The Search Result Generator is responsible for presenting the word found
in the Web page. If the word is found, it will highlight the word found. Otherwise,
it will report to the user that the word is not found.

We will first talk about the components inside the Input Interface and the
Searching Processor, and the searching approaches will be discussed in Section
8.2.

8.1.1 Input Parameter Decoder

The Input Parameter Decoder is responsible for decoding the input
parameters. The input parameters are often encoded in
“x-www-form-urlencoded” format when using a GET HTTP Request. Special
characters and punctuation are encoded. Therefore, the Input Parameter Decoder
has to decode this. The input parameters are the URL address, the current
encoding, and the word that is target of the search. To prevent any
misinterpretation of lthe double-byte CJK characters during transmission, the

Search Engine Input Interface accepts search words in a hexadecimal string
17

format. As a result, the Input Parameter Decoder needs to convert the
hexadecimal string back into the original characters for further processing.
8.1.2 HTML Analyzer

The HTML Analyzer is responsible for analyzing the source HTML
structure. It parses the entire HTML source code. and distinguishes between
different HTML tags in the source code. Then, it builds up a linked list data
structure according to the parsed result. From the attribute of the node in the
linked list, it can tell whether the tag is or is not a character image.

8.1.3 Character Reference Interpreter

The Character Reference Interpreter is responsible for interpreting the
character entity references in HTML. It should be noted that, HTML character
entity references appear in two forms: Numeric Character References and
Character Entity References [435].

Numeric Character References specify the code position for a character in
the document character set. For example, the numeric reference å (in
decimal) represents “4”. Instead of using a meaningless numeric code to
represent a character, HTML offers a set of character entity references. For
example, “&It;” is used to represent the < (less than) sign.

Therefore, the Character Reference Interpreter converts these references
back into the actual numeric reference codes.

8.1.4 Text Searcher

The Text Searcher is responsible for text searching. It provides text search

function like the Web browser’s search function. It skips those special tag

elements from the HTML source code, such as <SCRIPT>, <OPTION>,

<HEAD>, etc.

78

8.1.5 Character Image Searcher

The Character Image Searcher is responsible for character image searching.
It is based on a tag-pattern matching technique. It searches for the IMAGE tag of
the corresponding text. To facilitate the image character search, the Conversion
Engine in Pelutech provides a character-image indexing scheme. It uses the
following scheme to represent characters: the Big 5 Traditional Chinese character

“—" has an IMG tag <img src= “http://Pelutech/f?7A440" width=16
height=16 ------ alt = “—" >. The image name A440 is the Big5 code for

“—" . Therefore, the CJK character can be indexed using the actual image
name.

Therefore, the Character Image Searcher is required to handle CJK
character images and English word images differently. Firstly, the character
image searcher scans the entire source and looks for the character image’s IMG
tag produced by Pelutech. Then, it checks whether the words that is going to try
and find contain an English word token or CJK characters. It will search for the
word according to the corresponding IMG tag pattern. For example, if it searches
for character “—" , it will try to match the tag pattern <img src=
“http://Pelutech/f?A440” in the HTML source, and then notify the Search Result

Generator to highlight the image.
8.2 Implementation of the Character Image Search
Engine

The CISE is mainly designéd for text searching and character image

searching by Pelutech. There are two approaches to implement the Character

Image Search Engine: the client-side approach and the server-side approach.

79

In the client-side approach, CISE is provided with a re-formatted Web page
and executes on the client side host machine. Whenever there is a search request,

it will do all the processing on the client host machine. This is shown in the

Figure 8-2.
Client N
Browser 2. Request for the w
Character Ima ge current page source ’\‘_‘__—__’_/
S et o Pelutech:

1. Get user input.
4. Search for the text.

Character image and

reformatted web page

3. Reply with the
HTML source

5. Present the result o
provision.

N

]
Figure 8-2: Client-side Implementation of Character Image Search Engine

In the server-side approach, the search engine runs on the Pelutech server.

Client search requests are sent to the server program through the Internet. This is

illustrated in the Figure 8-3.

T
. e]
Client I ____'_______,____'/—/
Browser 2. Send the search word
t Pelutech:
1. Get search word Character image and
5. Present the result reformaited web page
- provision
3. Reply with the HTML
source with the
highlighted finding Character Image

Search Engine:
3. Search for text

S

Figure 8-3: Server-side Implementation of Character Image Search Engine

8.2.1 Client-side Approach

In the client-side approach, CISE is integrated with the Input Method
Engine. To integrate seamlessly in this implementation, the Java Input Method
Engine is embedded into the search engine and the Java programming language

is used for implementation.

80

Based on the search engine design mentioned in Section 8-1, it has to
retrieve the current HTML source so that it can perform the search operation.
However, the Java applet cannot access the current source Web page stored at the
local cache due to security issues [60]. Java applets can only access resources
from its originating server [61]. Therefore, the search engine applet malges an
HTTP connection to the Pelutech Server to obtain the current HTML source. The
applet then originates from the Pelutech server; otherwise, it cannot access the
remote resources.

First, the CISE obtains the current URL address from the Web browser
environment. This can be done using the LiveConnect Technology [55]. A
section of JavaScript code embedded in the reformatted Web page gets the
current URL address and then passes that address to the Java applet. Using
Netscape LiveConnect technology, JavaScript can pass parameters to a Java
applet. After getting the address from the JavaScript, the apl;let makes a URL
connection to the Petutech server and retrieves the HTML source.

The Java URL class is used to implement the HTML Loader. Using URL
instance method openStream(), it opens a connection to the given URL and then
uses InputStream() to read from that connection. Using this URL class, it is
possible to cache the retrieved file content. Therefore, after the Web content has
been stored in the cache the first t1:me, the same Web page access will be loaded
from the cache to reduce any subsequent access times.

With the HTML source, the Search Processor of the Character Image

Search Engine can search for the text in the HTML source at the client side. It

performs both text search and character image search.

8l

In addition, the HTMLList and HTMLData classes are designed to
manipulate and store the parsed HTML information. Indeed, HTMLList is the
actual implementation of the HTML Analyzer. The class diagram is shown in
Figure 8-4. HTMLList is a linked list data structure that stores the HTML source
in an organized manner. Its parse method determines four types of HTML
elements: the HTML element tag, element content, character reference entity and
spécial element tag (e.g., <SCRIPT>, <OPTION>, <AREA>). This classification
scheme helps the HTMLList to look for words in the HTML source

systematically and efficiently.

HTMLData
HMTLList ype it
|-headOfList : HTMLData -convDate : HTMLData
‘ML List() -dara : String
IEMO - void ’_-prev : HTMLData
: 0.*| toext: HTMLData
+getHeadOfLisa() : HTMLDaraf SymbolReference
+2dd() : HTMLData H+HTMLData()
Hscarch() : HTMLData +getConvinfo() : String
| +insertHighlightTag() : void +getNextData() : HTMLData) +SymbolReference()()|
+toString() : String +getPrevData() : HTMLDat +get() : String
-lookInto() : void +setNextDatal) : void
| skipSpecialTag() : void +setPrevData(} : void
-skipSpace() : void L+ getinfo() : String
’ sctConvData() : void
H+sct Type() : void
1 +get Type() : int
-conventEscChar() : String

Figure 8-4: Class Diagram of HTMLList and HTMLData

For example, if the HTML source code is like that:

<HTML>
<BODY>&1t; abe</BODY>
< /HTML>

It can parse the HTML code and store it in a linked list. An example of the
structure of the parsed HTML is shown in Table 8-1. Each table entry represents
an HTMLData instance. Class attributes “Data” and “convData” store the
original HTML token and the actual character that is represented by the character

- entity reference, respectively.

82

Data convData type
<HTML> NULL 0
<HEAD></HEAD:>> NULL 4
<BODY> NULL 0
< L 2

A NULL 1

* Notes:

Type 0: Normal HTML Text Tag
Type 1: Tag Element content
Type 2: Reference Entity
Type 3: Highlight Tag
Type 4: Special Tag which needs to skip when searching
Table 8-1: Parsed HTML code’s data structure in the HTMLList

The SymbolReference class stores the complete list of the character entity
references defined in HTML 4.01 [35]. The convEscChar() method in
HTMLData can refer to this class when it needs to convert the character entity
references into the actual character.

Highlighting tags are used to highlight the search result. Cascading Style
Sheet (CSS) technology is employed for this purpose. For example, if a user

looks for a string “Polytechnic” in a sentence “Hong Kong Polytechnic

University”, then the result will be highlighted using the following HTML code:

Hong Kong <b style = "background-image:url (yellow.gif) ;">

Polytechnic University.

Using a linked list like structure in HTMLList, means that the highlighting
tag can be inserted into the source HTML efficiently because the Character
Image Search Engine only needs to find the insertion position and manipulate the
object references.

The role of the Java Input Method Engine is to obtain the target search
word from the user and then trigger the Character Image Search Engine.

83

8.2.2 Server-side Approach

The CISE is embedded into Pelutech when the server-side approach is used.
As shown in Figure 8-3 in the previous section, the search engine is executed in
the Pelutech server. When there is a search request from a user, it reads the
original HTML source at the server side. If the search word is found in the Web
-page, the search engine will highlight the word found. Then, it will send the
reformatted Web page, after using the highlight effect, to client browser.

The core-search algorithm of the server-side approach is the same as the
client-side approach. Unlike the client approach, the Character Image Search
Engine is separate from the Native Input Method Engine. After the user inputs
the target search text into the Input Method Engine, the Input Method Engine
passes the information to the Pelutech server. They communicate with each other
through their interfaces. Pelutech performs the search using the original HTML
document, and then reformats the output page containing the highlighted search
result. Then, the reformatted page is sent to the user, and the client browser is
triggered to refresh for the newly converted page.

In addition, CISE can also accept search requests from other input method
engines or client browsers. So it is not necessary for the Character Image Search
Engine to be integrated with the Input Method Engine, and this reduces the

download time for the user.

84

8.3 Experiments and Discussion

In this section, we evaluate the performance and accuracy of the Character
Image Search Engine. The following experiments show how the search engine
deals with different kinds of target search words. The five test cases are:

i1 Multilingual character images mixed together.
(i) English Text with character entity references.
{iii) Full-width English character images.

{iv) Partial English word search.

{vi Search word does not exist in the Web page.

A sample test page is shown in Figure 8-5 to illustrate the test cases. This
test page contains mixed character images and normal text, so that it can be used
to carry out different test cases. The testing method is described briefly through

Sections 8.3.1 to 8.3.5, and the experimental results are discussed in Section 8.4,

g

Heading 1 ¥

11 mnese

AN — — ||Chamscter
TAIN Loies ||tmage
WAIN -y ——— |
Erigint sor s parag =T e

— Mirermal
EAIR — = =Hived T 2hCkinnan Faragriagh] Enghish Texi
FAIN ===l and WuTH | weps Faraerash 910k ppacs bervaas Chinmmn charme s
e Sankal ! F1E

B Mgeeyin) 1 3HEETED

Bkl 20N et -l

FTaubaABC

% Full-wadth Engkish
charseier |isigs

Figure §-3: Test Web Page mixed with character image and normal text

RA

8.3.1 Multilingual Character Images Mixed Together
In this test case, the Character Image Search Engine looks for words: "o
mix123" which is in mixed-mode: Chinese character images and English

character images, The sample scarch result is shown in Figure 8-6 below,

-

E- - e T e L = e W [—

Figure 8-6: Search result of mixed multilingual character image.

8.3.2 English Text With Character Entity References

In this test case, the Character Image Search Engine looks for words:
“<only=". It should be noted that, “<™ and *>=" are character entity references. In
the HTML source, they are “&I1t;" (<) and >" (>). The sample search result is

shown in Figure 8-7.

L Ie pm g e

Heading | B 30

Eim
ESN lang

ESN . s

| e e @R

S 4ln = il v 0 1B D s Faragree

Figure 87: Search result of English character with character entity reference

By

8.3.3 Full-width English Character Images
In this test case, the Character Image Search Engine looks for full-width

words: "A B C7 . The sample search result is shown in Figure 8-8.

P b e [g
Weading 1§k 30

EilN
AN idia
ESIN L

Lo e i® g

Eal oy | 2 Wiwed Wi Dl it Faniginph

FuN Z Wimd F100 Do v Fun st B 0) V0 i v e T i i b
B et | 1

e (I

|111r:ﬂnt

{1 T e = -I

Figure 8-8: Search result of full-width English character image

B.4.4 Partial English Word

In this test case, the Character Image Search Engine looks for
partial-words: “ara”. The sample search is shown in Figure 8-9. It should be
noted that, the word “Paragraph™ and “Character™ are character images and
“paragraph™ is normal text. As a result, with normal text only the target is

highlighted but with character images the entire image is highlighted.

e ——

iH:adlng] i

I=n

AN lad

EEE e

Sl | -

E4 W (] F -

TN Faiali gl

L BEECTY B] =

T I

a5 M = 5
BE i B a2
[5 T i

Figure 8-9: Search result of partinl-word.

L

8.3.5 Search Word Does Not Exist in the Web Page

In this test case. the Character Image Search Engine looks for words:
“KEKKK"™ which are not contained in the HTML document. Not found message

is displayed for user in this case. The result is shown in Figure 8-10.

] Yearch lexl Mol Fowund Macrozolfl Intemnel F aploser

| He E# Vew Fagoue: ook Heb

Search Applet Result

Searched text "KKKKK™ 15 not found in the page!

Figure §-10: Result of the searching word not exists in the Web page

8.3.6 Discussion on the Experimental Results

We chose ten Web pages for each of the test cases and the expenmental
results for the client-side approach and the server-side approach for the above
five tests are shown in Table 8-2 and Table 8-1.

From the experimental resulis in Table 8-2 and Table 8-3, we notice that
the result of the server-side approach is better than the client-side approach. The
better results come from the server-side approach because it searches the original
document. Therefore, the server-side approach performs a direct text-search.

We notice that there are some failures for the client-side approach in Table
#-3. The failure in search for the English text with character entity references is
because that character entity reference has not been added to our character entity
database. Only after we added the missing reference could we continue the test

The failure in the full-width English character image occurs when a word
has the combination of both full-width and half-width characters. such as " A

pple” wherethe A is a full-width character and remaining “pple” are

k]

half-width characters. To resolve this failure, we must convert all characters to a

normalized format that is either half-width or full-width.

Test Case Success Fail
Multilingual characters image ' 10 0
English Text with character entity reference 9 1
Full-width English character image 9 1
Partial English word 10 0
Search word not exist ' 10 0

Table 8-2: Experimental Results for the Client-side Approach

Test Case Success Fail
Multilingual characters image 10 0
English Text with character entity reference 10 0
Full-width English character image 10 0
Partial English word 10 0
Search word not exist 10 0

Table 8-3: Experimental Results for the Server-side Approach

8.4 Evaluation of the Client and the Server

Approaches

Both the client-side and server-side search algorithms are similar in the
way that they use the Character Image Search Engine design. However, it should
be noted that the client host machine is an unknown factor in the client approach.
Pelutech cannot know the hardware and software configuration of the client
machine before sending the re-formatted Web page. For the hardware thin client
that has limited hardware resources, memory and processing power, it is not
desirable to execute the Character Image Search Engine at the client side.
Especially, when the reformatted Web page contains a lot of content, the search
process could use up most of the system memory and CPU time because it needs

to parse the HTML source and store it in memory.

89

Moreover, the software thin client browser may not execute the Character
Image Search Engine as it is designed and implemented. Different versions of a
Web browser often have different support for Java. For example, version 3.x Web
browser only support Java version 1.0. Even if the Web browser supports the
correct version of Java, the client side may have other Java enabled plug-ins
installed that change the behavior of the working environment. Therefore, the
behavior of the Character Image Search Engine could sometimes be not as
expected.

The server approach is a feasible solution to reduce the uncertainties at the
client side, although the server may demand more resources. For the server
approach, the Character Image Search Engine runs on the Pelutech server that is
under the developer’s and the administrator’s control. The system administrator
or developer can monitor the loading of the Pelutech server and assign resources

for the Character Image Search Engine.

In summary, the server approach is preferred in the thin client environment.

It saves resources and time at the client side.

90

9. Evaluation and Discussion

In the previous chapters, we have presented a discussion on the issues that
affect the performance of each of the components in Pelutech, and we have also
presented some experimental results on the performance of each component. In
this chapter, we present a series of experiments that are used to evaluate the
overall performance and usability of Pelutech. The experiments are conducted in
two parts, in which we aim to evaluate Pelutech separately for software

thin-clients (part one) and for hardware thin-clients (part two).

9.1 Evaluation of Software Thin-Client Devices

To simulate a software thin-client environment, an old model of PC was
set up to run the tests. The configuration of this machine is shown in Table 9-1
and the conﬁgurétion of Pelutech server is listed in Table 9-2. Please note that the
testing machine is not only a low-end hardware specification, but also a low-end
oﬁerating system (Windows 95), which supports only English. The only
additional software available on this machine is Internet Explorer 5.0. The main
reason for this configuration for tﬁe testing machine is to simulate a thin-client

environment with less computation power and storage capacity.

CPU: Intel 80486 DX2 - 66MHz
RAM: 16MB RAM

Hard Disk: 420MB

Modem: 156K Modem

Operation System: Windows 95 (English)
Internet Browser: Internet Explorer 5

Table 9-1: Hardware and software configuration for the test platform.

91

\CPU: Intel Pentium T 500 MHz |

|—

RAM: |28MB RAM |
Modem: Cable Modem (maximum |.5Mbps)
Operation System: Windows 20040 Server

Table 9-2: Hardware and software configuration for Pelutech

The tests are designed to access different CIK Web pages to sec whether
our Pelutech server, which is installed on a different host, can support viewing
CJK pages via the Web browser. We used the Hong Kong SAR Government’s
Web sites to perform these tests for Chinese and Yahoo's Japan Web site for
Japanese. For systems that support CIK characters, the results should be very
similar to those shown in Figure 9-1, However, since the test machine does not
support the display of any CIK characters, all the CJK characters become
unreadable, as shown in Figure 9-2, When we use Pelutech as a proxy server, the
Chinese characters as well as the Japanese Hiragana and Katakana is correctly
displayed after they are converted to character images, as shown in Figure 9-3.
Note that, not only all of the CJK characters are readable, the converted Pelutech
Web pages also look similar to the original pages (Please refer to Figure 9-1 and

Figure 9-3).

LA R e e] EUE T]] d — e I T LT

i e el Dl g Mgtuic B3 BEacl AP o Inidad AN H BE .l
e R P T, oo L i el i S P oy

o | f EEl B AW R A 1 | P AEE St Gl I miTEs Wees G

e . SRR ¢ 8 -il'-l"! Al il E - EE TN L Imd RS Coaon
SRR ETARTIE Y LA REIEE s AR =

EEEHL AT ol R cE e o B Rl T P

m T rOREAEEEE N e e (AL [TECT I TR EETE e s

P e T T 4 -

i B L | & ———— . —

Figure 9-1: Original testing page on a CJK supported system

‘.-_-!E.E_—‘i'm

|.|. — _u is ||_ a.- a_.. | .T ._
-—--|_--------—--i- = = ¢ I q-.._i.u.,._.__.. = =
- —_— : A —— = |
— $® & 06 .
1 e el s WL EEekt L - =
@ram arase f**'--'"*.ﬁ ﬁm.. miaAi =
=il a0 B ik TN g =

Bl T T, Dy
e e
[me= 1 tTHaadliis --Eﬂrill

P eimay - IEE ED sl R FEomin DARERE Ls O Wl

i Rl "l B A TS s g PR [=4

I._:I,._. : 7. r--||-\.u'-. v gl vin [T TETRN el ki o Bl Gy iel N

VT el A Ll P By e R e
I il ST W,] Skl e TR P Wi i O™ . oam ol B ol Gl ST PR, dES

1= Mk A Vi B —

+ il e, < W B ot = g A o g i

B R e o T e L £] T u
i i —— ol i | R

Figure 9-2: No CJK character can be displayed on the testing machine

= e i e B e g e -

o f & & om & Rl B e I R ERSC
- R -S| SRt S e e T B '+ T — T ol ey Gwam | ek Frevs e Sw e
PR, - s T S A———————— ey [T (| - e erre—]] =
e o e :
- —
: & & Q a2 @
e Sy Emer L& =
- _—Ega = b -
Weimdn aEnEd -—ME?—' 'Hl"-r '-h"- ==

.
arew i DT AT
W - W el ek BN cmmein 0 B B B el

anpe DpEoeEaiSEEle= 0

Sl
L] e R - ooy - Ll - il Ll
-_"_u-= W H.-u.ln_tr-uu:__._.-_.l.ll
u_rq L'—-..n.ll'l.l:...l.l.iﬂu.-.x
anmanaan s
| s migmeREED Y - o s g ALEAYE el
LLE T 1] II!II.'IH. 4 T LTER | B | TESE ™ T4 T =] FRIZ e mETa o
£h.' B T ——— e - -.'. -y — ..{ ﬂ"—“ = —-—;-l - — —‘

Figure 9-3: Experimental result of the testing page vin Pelutech

We also performed the test on a set of 100 different Web pages using the
seven performance indicators that are listed in Table 9-3. From this table, we can
ohserve that only a single failure occurs in all the tests, and that falure 15 on a
character image scarch. The main reason for that failure is that the target word is
a combination of both full-width and half-width characters from English, such
as™ A pple™. In this case, “ A" 15 a full-width character and “pple” are half-width
characters. This is a known limitation of our current system and can be fixed by

implement a converier between full-width characters and half-widih characters.

a3

Feature Success Fail
Original Image display 100 -
CJK character display 100 -
~ |Hyperlink function 100 -
Client-side Installed Font Detection 100 -
Requested Web-page Encoding Detection 100 -
Searching in Page (Server Approach) 99 1
Input Method Engine 100 -

Table 9-3: Experimental results for 100 Web pages for the software thin-client

9.2 Evaluation of Hardware Thin-client Devices

To test the adequacy of Pelutech on hardware thin-clients, we conducted a
set of tests using a personal digital assistant (PDA). We chose a Palm Illc
because it can support up to 256 colors. To enable wireless Internet browsing, a
Nokia 8250 was used as the external modem. By using its infrared
communication capabilities, the Palm Ilc can use the internal modem in the
mobile phone to gain access to the Internet. The hardware configuration of this

testing platform is shown in Table 9-4.

Model: Palm Illc

Memory: E§MB

Operation System: Palm OS v3.5 (English)
Internet Browser: PalmScape 3.03E

Modem: Nokia 8250 internal modem

Table 9-4: Hardware and software configuration for the test PDA platform

When we luse the Palm PDA to view the Hong Kong Government’s web
site, the Chinese characters cannot be displayed correctly without Pelutech. As
shown in Figure 9-4, all the Chinese characters become unreadable symbols.
When we use Pelutech as the proxy server to view the Web site again, the
Chinese characters can be correctly displayed, as shown in Figure 9-5. Please

note that in the Web page on the left hand sides, the second line of the frame

94

below the headline picture 15 & bitmap that 15 not being converted.

We use the same set of Web pages to test the other functions. The summary

of the results is given in Table 9-5,

-Feioe¥o 00 giXi0

LS]

[L ON

~F@lpe¥o UG g toR Y OATLO A
e RN

T8 [5 T 0 B Y N (B R (B S A |
@ -F R RIS I LI G TR O, &

PEeea[G]e » ADF(a

phe¥o OO gIXFO

@5 A aR¥~ABe¥STETIW B0, gAU|
Hﬁ@*én 1EEG, gpadA A

COAT Lo, NPe- -G G*2¥N A
¥5 ARG VIV EG~ D@ Heke
A% A~ AL~

@ @TITIWYNT-%A_eH S2E2D723--
Ha¥g¥Dautid, .;lmmww'n“'
I, 3R, g%~ JA% 3R heM-» aTT@o
pn#ﬁa’i!ﬂ@uﬁdhfu#a,{te "% L ELE
& @ISR ONT IS r:.m uihﬂ@

Phcealoie » A0 Fota

Figure 9-4; The CIK character cannot be displayed on the PDA

-Fefse¥o FOO gix* O

.111; 2E= I.l

B EEEAESHR
AMEAREREAE

o W W R W OF Rk W
W W R E W W W W

PO 3 A0 ta

-F@tia¥o EOO gIXZ0..

BERRERGR |

oW R F K R W W W W

oW R W W W W W

Fliw ot O e — e i e

i@j@-F@ 0ulls [2OOGILT ﬁQﬁ‘]

E{Silﬂf[@l“l" * a0 ta

Figure 9-5; The display of the testing page throngh Pelotech

Feature

Elngm.il Image display
CJIK character -;.1|'~]'||.|;".

H"rpl...fhl'llv.. |'J[!l.l|l'-rl

E'IL-:'.I'H gide rnwnllul | ont lJ'I.I!LLtuIn

Success : I-':ii

100 | :

T |

(LR -
T

[Ri.quu.unb Weeh-page Encodin g Detection

|5u.1r-.,hmg in Page
||r|]1-u1 Method Engine

(LK
- 1030

Table 9-5: Experimenial]-lnu!lr for 10M1 “-uh pages for ha r-l:lu- are thin-client

LR

We found that Pelutech failed completely in three functional tests using the
PDA: Client-side Installed Font Detection, Searching in Page, and Input Method
Engine. The failure of these three functions is due to the lack of support for
HTML in PDA environments. All of these three functions require the support of
the HTML 4.0 specification, while all existing Internet browsers for the Palm OS
only support versions up to HTML 3.2, therefore, these functions cannot be
executed properly. However, with future support for HTML 4.0 or above in a
PDA browser, we do not foresee any problem in supporting these functions

because they are software dependent, not hardware dependent.

9.3 Analysis of the Response Time of Pelutech

Pelutech acts as a proxy between a client and a Web server, as shown in
Figure 9-6. Pelutech causes an extra relay requesting a Web page to client from
Web server when compared to a direct connection from the client to a server. In
this section, we analyze the delay caused by Pelutech (see Figure 9-7) when a

client connects to a Web server though Pelutech.

[

%ﬁ

- e

Client Pelutech Web Server

Figure 9-6: Request and response interaction through Pelutech

B ' R
Client Web Server

Figure 9-7: Normal request and response interaction without Pelutech

96

Before evaluate the actual performance, we first calculate the response
time based on the analytical calculation. In this calculation, we first assume that
the latency caused by the slow-start effect and connection tear down, and the
Round Trip Time (also called TCP connection time) as well as the server

processing time is constant. The description of each variable are listed in Table

9-6.
Term Description
B Average transmission speed of the network (bits per second)
C Delay cause by the slow-start effect and the Round Trip Time
as well as the server processing time for Normal Browsing
C’ Delay cause by the slow-start effect and the Round Trip Time

as well as the server processing time through Pelutech
Number of CJK character in the web document

Size of original web page

Size of the character image
Size of the additional code per character

Table 9-6: Description of each variable

DK [~|=

T

For a Web site comprises one main HTML page, which contains N CJK
characters, stored in L bits. We assume that the average transmission speed of the

network is B bps, Therefore, the transmission time, Tn,ma. tO retrieve the

original Web page is:
L
TNmmnf = _E + C

In other word, the response time for normal web browsing is proportional
to the page length and invert proportional to the bandwidth plus a contact factor
related to the server processing time and delay. We label it as Baseline Model.

When browsing through Pelutech with conversion, an extra delay is caused
because the total distance is composed the propagation delay between client and

Pelutech and the propagation delay between Pelutech and web Server. In addition,

97

since the HTML code is different after conversion, with converted character

images, the page length of the converted HTML will be extended to

N
E(a,. +f3,) where £ is the size of the additional modified HTML code that is

i=l

required to support each CJK character as an image and o is the size of the
converted character image. Furthermore, when a user connects to a Web server,
his connection is via Pelutech. There is an additional request and response time
during the communication and processing between Pelutech and the Web server.
Therefore, thé resﬁonse time, TPetutech_conversion, TOT @ USET connection to retrieve
the converted Web page from a Web server via Pelutech is equal to the

summation of two delays. Thus,

N
L+Y (e +8)
TP tutech _ conversi = £ + = + C,
elu - fon B B

. N
2L+ (@, +B)
= i=1 _'_C,
B

We found that the response time is directly proportional to the sum of the

N
original page length L and the modified page length E(ai. + B,). Assuming

i=1

every character image has the same size, @, + i, can be substituted by ¢. The

response time becomes:

. _2LtN§ .

Pelutech _conversion — B
If the client contains the required font for the Web page so that no

conversion is needed (¢ = 0), the response time is reduce to

T =2’-+C’

Pelutech _noe _ conversion B

98

If we assume that C’ is twice as long as C, then

_-2—L+2C
B

A{Lec)

= 2T yormat

T,

Pelutech _ no _ conversion

This is the best case, Pelutech will introduce twice the delay as the normal

browsing.
The time difference, Dconversion, between retrieving a Web page directly from

a Web server and retrieving a converted Web page through Pelutech is:

=T,

Pelutech_conversion TNarmaI

D

Conversion

_(2L+Ng) (L, .
B B
:(w+zc)_(£+c]
B B

_L+Ng .
B

If the original page is in English or the client contains CJK fonts, there is

no need to perform the conversion. The Time difference, Dy, _conversions 1S then:

Converswn - .Pelulcch ne _conversion TNarmai

(Tc] [5+¢)
b

Normal

“Lic
B

To calculate the delay that affects the user when they use Pelutech, we
calculate the response time for different transmission speeds (bandwidths): 9.6
Kbps (mobile internal modem speed), 56 Kbps (computer modem speed), 128
Kbps (GPRS — general packet radio service) and 1.5 Mbps (broadband speed)

for Web page with different number of CJK characters. General speaking, the

99

normal number of CJK characters in Web page can be classified into follow
catalogues: (1) a notice window contains about 50 CJK characters; (2) a normal
Web page contain about 100 to 200 CJK characters; (3) a longer Web page such
as story or comment often contains near 500 CJK characters; (4) and the longest
Web page contains as most as 1,000 CJK characters.

We assume that the normal page length of a Web page is 1K bytes, and
each CJK character is 2 bytes long. Therefore, we use five different scenarios: (i)
50 CJK characters (V) inside a Web page, and the page size (L) is assumed to be
1.1 Kbytes; (ii) 100 CJK characters inside a Web Page, and the page size (L) is
assumed to be 1.2 Kbytes; (iii) 200 CJK characters inside a Web Page, and the
page size (L) is assumed to be 1.4 Kbytes; (iv) 500 CJK characters inside a Web
Page, and the page size (L) is assumed to be 2 Kbytes; (v) 1,000 CJK characters
inside a Web Page, and the page size (L) is assumed to be 3 Kbytes. In addition,
the average size of a converted image (&) is assumed to be 1 Kbyr(tes, because the
actual size is between 760 — 1280 bytes. The average size of the additional code
() is assumed to be 20 bytes (the actual code size is between 17 — 22 bytes). The
response times (in seconds) for direct connection and proxy connection via
Pelutech are shown in Figure 9-8 and Figure 9-9, respectively. Figure 9-10 shows
the response via Pelutech when no character conversion is required. The
analytical data is for Figure 9-8 to Figure 9-10 is listed in Table A-1, Table A-2

and Table A-3 respectively in Appendix L.

100

[0 1 ime fron origingl server

L5
= |9
»
£
& 3
> —— U AR
: —— ik
S I 200 500§D —a— 128K
Mumber of CIK characters #— | Shlbps

Figure 9-8: Transmission time for retrieving Web pages from a Web server at
different bandwidths

Transmission Time through Pelutech with conversion

= 1000
E Rk =
i i
=+l
i 20 :
£ & —— B AN
2 ~—— §6Kbm
S0 Iy 200 00 1D — | 1¥Kbys
Mumber of CIK charncters —s— | S\

Figure 9-9: Transmission time for retrieving Web page through Pelutech (with
conversion) at different bandwidiths

Transmuission Time through Peluwtech witbow

COnvErsion

210

T —— 1]
=

4] [e
p =56k

i (] 200 A0 | e} = | IR
Numdher of CIK characiers el BT -

Figure 9-10: Transmission time for retrieving Web page through Pelutech {without
conversion) af different handwidihs

Lot

To evaluate the real performance of Pelutech, we perform actual response
time tests to examine the validity of the analytical model presented above. We
use the PDA for the experiment at 9.6 Kbps, since the current internal modem
technology can only support up to 9.6 Kbps in a mobile phone, for the hardware
thin-client environment. We use a computer modem and a broadband connection
to test the speed at 56 Kbps and at 1.5 Mbps for software thin-chient
environments, Figure 9-11, Figure 9-12 and Figure 9-13 show the experimental
results for retrieving a Web page directly from a Web server, retrieving a page via
Pelutech with conversion, and retrieving a page via Pelutech without conversion,
respectively and the experimental data is shown in Table A-3, Table A-4 and
Table A-5 in Appendix respectively. Note that, our test Web page is generated
using a special program so that each character within the same page 15 unique,

and Pelutech has to transfer an image for every character.

Transmission Time from origingl server

5

20
{1
b

T oot [}
=

L1} a0 200 S0 | (8 —i— 4 Ry
—— S0kl
—— 1 Anibps

Mumber of CJK characiers

Figure %-11: Transmission Time for retrieving a Web page directly from a Weh
server at different bandwidths

o2

@Fll‘l Yue-kong Library
& PolvU = Honeg Kong

Tramsmission Time throogh Pelutech with conversion

LI

. //
100

-

T metotect comenion (8}
(=

0 104 20h 00 1000 =0 fikhyn
== SHKb

Mumber of CJK characters
=l | ShIbys

Figure 9-12: Transmission Time for retrieving Web page through Pelutech (with
conversion) at different bandwidths

Transmission Time through Felutech withoui conversion

=n
=

2 & 2

Tp'l_:h i cmeenam {8
=

| ———e——3

1] 1on 200 S I eI —a— 9 hkbp

—— nkla
™
wmiber of CIE characters |_SMbps

Figure 9-13: Transmission Time for retrieving a Web page through Pelutech
{without conversion) at different bandwidths

From all of the graphs above, we can see the performance of Pelutech 1s
near linear at the fixed page size up to S0KB. This means that the transmission
time increases linearly with the number of characters transmitted.

In general, it is possible that when the page sizes become so large, the
response time will deteriorate much faster. However. consider that most of Web
page size for thin-clients is always smaller than the normal Web page because the
Web page is normal reconstructed at a much smaller file, say less than 10KB.

The near linear performance is reasonable.

103

In addition, we find that a “time out” error occurs wheﬁ browsing the Web
page that contains 1,000 CJK characters. After examining the execution of this
test in detail, we found that the error was due to the Palm Web browser server.
For Web browsing on a Palm OS device, the current technology uses a
transparent proxy to convert the Web page content to a Palm supported format,
such as converting images to the “pdb” format. Therefore, when browsing the
Web page containing 1,000 CJK characters, Pelutech first converts the CJK
characters to character images. The Palm browser proxy then retrieves those
1,000 CJK character images and converts them to the “pdb” format. This is a
time consuming activity for the Palm browser server, and a “Time out error”
occurs when the Palm browser cannot retrieve the data from its own proxy within
a certain time limit. The normal time out error occurs after waiting 300 seconds.

To solve this problem, we can separate the Web page into several smaller
and more manageable sets of data. Since the screen size of the current PDA can
show only a limited part of the Web page (without scrolling), we can deliver the
Web page content to a PDA in pieces rather than send the entire page [62]. For
example, a particular Web page requires 5 screens of content to show the whole
page. We can deliver the first 2 screens of content to the browser first, and as the
user starts to scroll down the screen the server delivers further screens of content
(until the page is complete). By using this method, the waiting time for a user can
be decreased significantly, and it also reduces the overhead of using a proxy
server for the Palm browser.

As shown by the experimental results above, the response time for a user
browsing via Pelutech is more than 7 times the direct Web server response.
However, we must also take into account that the experimental results involve

pages that contain only unique CJK characters. In other words, 200 conversions
i04

are needed for a page containing 200 CJK characters. Although in practical cases,
for a Web page containing 200 CJK characters, there might only be 100 to 150
unique characters. For larger pages containing over 1000 CIK characters, we

usually find that less than 300 characters are unique. Consider the text example

”"

shown in Figure 9-14, even the “—" and “+" characters each occur 4
times in this short essay containing a total of 180 Chinese characters. Other

characters are also duplicated several times in this short essay.

Hld A —HiE SRS SEEFTAGRRE D OSSR TR R
IR ZHE - TR R EEN TR B R SRS (AR AEFHREEE
— - HA—% +—RE R LT A\RE > FERERNEBEAR > B
T+ E - T R BRI T R BRI T A e BT R R A I
R - BRSBTS ETHIREER - A AR TR
BER & B A+ -
Figure 9-14: Partial Web page extracted from the Hong Kong SAR Government’s
Web site

Since the occurrences of the characters in different Web pages are
obviously different, it is difficult to calculate the average percentage of unique
characters. However, we can conclude that the proportion of characters that are
unique in a page will generally decrease as the page size increases. Therefore, the
practical response times when using Pelutech will be slightly less than the
experimental results seem to suggest.

To evaluate the actual situation of browsing through Pelutech, we perforrq
actual response time experiments again by visiting the 20 web pages for each test
cases: 50, 100, 200, 500 and 1,000 CJK characters above. Then each web page is
visited by 10 times and the average time was taken for calculation. Since it is
very difficult to obtain a web page that contains exactly 50, 100, 200, 500 and
1,000 characters, we use the web pages that contains = 10% deviation. The

number of characters for each test case is listed in the Table 9-11 below.

105

I Test Case | Number of characters in the tested Web page
50 CJK characters 45-55
100 CIK characters o0 - 110 1
200 CJK characters 180 - 220
500 CJK characters 450 - 550
1,000 CJK characters | Qo0 - 11040

Tahle 9-7: Number of Characters in the Tested Web Page for each Test Case

By repeat the above experiments using these test cases, we have obtained
the actual performance data shown in Figure 9-15 to Figure 917 and the
experimental data are listed in Table A-7 to Table A-9 in Appendix.

Trumsmission T i

5 [0 I W MG =0 Fop
Muimsher af CHE Charncters A6 Kbpa
—a— 1.5 Mbys

Figure 9-15: Transmission Time for retrieving Web page from original server

T i [} W VErinm
M
= 250
] 2 —a— s Kbps
X |50 i B B e
'I 1 —i— |5 Wibps
= 5
i
L] 100 200 0 W0

Mumber ol C K Chirmicrs

Figure 9-16: Transmission Time for retrieving Web page through Pelutech with

CoOnversion

104

Transmission Time through Pelutech withiout

COnVersion
LT
-
i L1 .
-~
| W -
I] E
2 a4 e
i 20 nme=i¥
== — ==

&0 M M0 S00 K00 #— 55 Khps
—— 44 Khps

== .5 Mg

Musier of CIE Churacters

Figure 9-17: Transmission Time for retrieving Web page through Pelutech without
conversiomn

From the graph above, we found that some results are a little bit lower than
the performance in Figure 9-11 to 9-13. The reason is that the testing page in the
previous experiment are generated by a program with the same HTML code
embedded, while the Web pages are not the same in this set and the HTML code
embedded is different.

From the observation in the above result, we also found out that the
downloading ume for 500 and 1,000 CJK characters are less than those in the
previous experiments. This is due to the duplication of the character in the essay.
The fact when the length of a Web page increase, the number of duplicated
characters increase too. This can greatly decrease the downloading time for the
converted page.

On the other hand, we have compared the difference of the delay in
response time between analytical model and expeniments and the diagram is

shown in Figure 9-18.

17

I3

T (secomd)

(1] KEY

Tih Cepreywan

— N kb

| = | i
0 = | 5l

40 TiTH] 1| 40 T W M
— P AKhps

Mumber of CIK Charschers — mAkhpa
— 1 Sl
Figure 9-18: Comparison of the Different of the Delay in Response time between

Analytical Model and Experimental Resules

When the client browses through Pelutech without conversion, we found
that the experimental result is very close to the analytical model. For the case that
the client browses through Pelutech with conversion, the difference between the
analytical model and the experimental result is nearly constant except the
experimental result by the 9.6Kbps modem. This is beeause we using the current
browser in PDA require an additional proxy to handle the HTML document in
current stage. In conclusion, the actual resuli is acceptable because the

transmission tme 15 near linear.

9.4 Server Utilization and Scalability

Beside the evaluation of the performance in the delay of response tme, we
also need o consider server utilization and scalability of Pelutech. Server
utilization indicates how busy the server CPU. When it is close to 100% utilized,
jobs will have to be queved up, and thus it directly affects the response tme o
client request. Scalability refers to the system’s ability w expand iis support on
an increasing number of concurrent users without degradation of performance.
Scalahility is best accomplished when Pelutech is hosted on a cluster of servers.
When a request comes in, that request is routed to the least busy processor,

108

To evaluate server utilization, we can use the stochastic model in queuing
theory to see when the system will be saturated. By Saturation we mean when
the number of requests to the server reaches certain level at regular time intervals,
the CPU utilization will reach a saturation point where additional requests may
not be handled in first in first out fashion anymore. In other words, the system
will not be able to respond to their requests. At this point, system must spawn
additional servers to entertain these requests.

In order to have a good estimate of CPU time for each web request, we
send a number of requests to Pelutech simultaneously. In this experiment, we
turn off the thread inside Pelutech and send out 50 conversion requests from
client to Pelutech, and count the time that requested to finish all conversion
sequentially. The number of characters in each Web page is 1,000 characters. We
found that the CPU use 13 seconds to finish 50 incoming conversion tasks. This
means Pelutech can finish each conversion in 26ms. In other word, the service
rate of Pelutech is 1/0.26 (3.85) jobs per second. This is the best-case scenario
because the server is dedic;ated to handle one job only. To consider scalability
issue, the CPU utilization is can be set to a rate of no more than 80% for handling
conversions. Other overhead will also consume CPU power such as thread

management, fragmentation, switching, or other operating system related

. e . . A
overhead. Since the server utilization p for a single processor is p =—, where A
H

denotes the arrival rate and @ denotes the service rate. For 80% utilization,

A
1
0.26
40

AS—
13

< 80%

109

Therefore, the arrival rate should be less than 40/13 (3.08) jobs per second
in order to have a maximum of 80% server utilization. In other word, if there are
more than 185 incoming requests per minute, more powerful processors is
recommended or spawning to additional servers must be started.

Another factor that would affect scalability issue is the response time to
client requests because most Internet browser automatic time-out a request at 300
seconds (or 5 minutes) by default. In other word, a client browser must download
all required file within 300 seconds in order to display the whole page for user
correctly. Otherwise, resubmission is needed and previous submissions are
considered lost even if they are still in the queue at the server side.

In order to have a good estimate of response time for each web request
versus the number of concurrent users (or requests), we send a number of
requests to Pelutech simultaneously. In this experiment, the number of threads in
Pelutech is set to 10 and the number of CJK characters in the requested web page
is 1,000.The number of threads is set to 10 here because Pelutech must be a
multi-thread server in production environment. In addition, the experimental
result will not be affect by the number of threads in a single CPU environment.
The experimental results for the average response time needed for user against
the number of concurrent users per second for Pelutech with and without

conversion are shown in Figure 9-19 and Figure 9-20 and the experimental data

is listed in Table 9-8 and Table 9-9.

Number of concurrent Users (per second) 1 2 3 4 5
Average Times needed (s) - 10 11 13 15 32
Number of concurrent Users (per second) 6 7 8 9 10
Average Times needed (s) 103 290 | Error | Error | Error

Table 9-8: Response time against No. of concurrent users with conversion

10

Number of concurrent USers (per second) 1 2 3 4 5
Average Times needed (s) 5 6 7 13 19
Number of concurrent users (per second) 6 7 8 9 10
Average Times needed (s) 25 45 112 263 | Error

Table 9-9: Response time against No. of concurrent users without conversion

300
250
200
150
100

50

Average Response Times needed (s

0 2 4 6 8 10

Number of concurrent users (per second)

Figure 9-19: Response time against the no. of concurrent user with conversion

300
250
200
150
100

Average Response Times needed (s’

0 2 4 6 8 10

Number of concurrent users {per second)

Figure 9-20: Response time against no. of concurrent users without conversion

Note that the rate of change in the average response time against the
number of concurrent users is changed from a near constant to a step up function
f (x) when there are more than 4 concurrent users per second (240 concurrent
users per minutes) in both figures. Besides, as shown in Table 9-8, we find that
the client browser get a time out error when there are over 7 concurrent users per

second (420 concurrent users per minute). Moreover, as shown in Table 9-9, the

11

time out error also occurs when there are over 9 concurrent users per second (560
concurrent users per minute) without conversion. This indicates the system will
become saturated at this point. Additional CPU is recommended to install for
handling extra process.

We can increase the number of threads in a multi-CPU environment to
improve the system throughput. However, when the number of threads is
increased, larger memory space is needed for the creation of server process. In
our observation, we found that each additional thread required 5~10MB memory
resource. Therefore, with memory space pf 512MB, the server can in principle
support up to 50 threads since the Operating System also needs about 150MB. In
reality, however, considering the saturation point of no more than 10 current
requests as resulted from the above experiment, there is no need to set the
number of threads over 10. From the above experiments we can see that system
can give very reasonable response time when concurrent requests are around 4
per second (about.240 concurrent ﬁses per minutes). It would start to deteriorate
until the number of concurrent requests reaches 7 per second (about 400
concurrent uses per minutes). Hypothetically speaking, if one expects 1,000

connections per minute, a four processors server cluster is suggested for life

production because the maximum capacity is up to 1,600 concurrent users.

112

10. Conclusion

In this thesis, we have presented a novel server-based technique to support
CJK character display using character images, and implemented this technique in
the Pelutech system. This is a comprehensive Web-based thin-client technology
that does not need to retrofit the existing Web pages. It provides not only an
efficient way to display CJK characters without installing fonts, but also the
ability to detect font sets on client machines and the codeset for the requested
Web pages. In addition, the comprehensive HTML parsing and handling
algorithm provides the unique ability to handle complex form controls and the
provision of searching interaction during Web browsing even when characters are
converted to images. In addition, it has virtually unlimited character-set support
since all character images are generated on the server side. Furthermore, the
provision of an Internet-based input method engine allow users to input text
independent of the language environment of their Web access devices. Besides,
the portable design of the input method engine provides the extension for other
applications. On the other hand, it is compatible with Windows, Macintosh,
UNIX, set-top boxes and other Web appliances. The end-users can potentially
save the cost of purchasing the client-side localize software. Since this
technology provides a frustration-free experience in accessing CJK Web sites and
achieves significant cost reduction for manufacturers of localized Web appliances,

it is the best solution for thin-client devices which only have limited hardware

and software support.

113

There are still some limitations in using the current version of Pelutech.
Although Pelutech provides almost full support in the software thin-client
environment, there are some constraints in the support for hardware thin-client
devices. One limitation is due to the screen size of the current thin-client devices.
Current PDA can only support a resolution up to 320 x 240 pixels. However,
Web pages are predominantly designed for desktop computers using resolutions
of 800 x 600 pixels or higher [62]. The PDA browser downloads the whole Web
page to the device, but the user can only view a portion at any time (roughly, this
might be 10%). Therefore, there is a need to design an additional Pelutech
component to automatically break down web pages into smaller pages for PDA
viewing. It is also said that new PDA with higher resolution screens will be
launched within a year. It is also helpful to extend Pelutech to support different
XML because XML might replace HTML in the future. We do see the advantage
of XML because it is syntactically more restrictive. Web pages written in XML
are better formatted with less arbitrary written styles. In order to support XML,
we can apply the current technique to XML for the XSL Transformation (to
HTML document). There are two methodologies for this extension and the

framework design for the extension of Pelutech to support XML are shown in

Figure 10-1 and Figure 10-2.

In Method 1, Pelutech can be migrated to support XML by adding a
conversion process to handle the output of the HTML document after the XML
Transformation so that users can read the XML page without the installation of

local font. This method can be easily implemented since our Pelutech is ready to

support HTML document.

114

In Method 2, the XSL document is converted instead of the output HTML
document. Although this method sound much more complicated than Method 1,

this allows us to change the user interface because we can directly handle the

style sheet (XSL document).

XSL
| Document
’ Transformation
| m— | I
Request XML Document HTML I
Ee=a_ l Document
" Send back converted | Pelutech
HTML Document CEECL I Conversion
with character images J‘paﬁla,— Process
XML Server
Converted HTML
Document with

Figure 10-1: Extension of Pelutech to support XML (Method 1)

XSL
Document

Conversion

Process

‘ Pelutech
|

Converted
XSL
Document

XML
Document

Request XML Document

Client Browser Send back converted - |

HTML Document I I
with character images — Pelutech
XML Server |

Transformation

Converted HTML

’ Document with

j
|
|
|
|
|
|
|

Figure 10-2: Extension of Pelutech to support XML (Method 2)

115

In conclusion, Pelutech provides a frustration-free experience in accessing
CJK Web sites, and it achieves significant cost reductions for manufacturers of
localized Web appliances. It is also provides the most comprehensive solution for

thin-client devices which only have limited hardware or software support.

116

Reference

1. Xian-Ping Li, Wei Li, Chi-To Lam. “Statistics in the Study of Chinese
Characters”, In Proceedings of the 1997 Internet Conference on Computer
Processing of Oriental Languages (ICCPOL’'97), Hong Kong, 2-4 April
1997, pp.510-513 (1997) |

2. Sun Jianhua, Shen Vicent Y. “Browsing and Creating Chinese Web Pages”,
In Proceeding of The Second Asia Pacific Web Conference (APWEB’99),

Hong Kong, 28-30 Sep 1999, pp. 285 — 288 (1999)
3. Joseph T. Sinclair. Thin Clients: Clearly Explained. Academic Press (2000)

4. Barbara F. Grimes and Joseph E. Grimes, Ethnologue, Volume 1: Languages
of the World, Fourteenth Edition, 2000. SIL International, Dallas, USA

(2000)

5. United Nations Population Division, Department of Economic and Social
Affairs World Population Prospects: The 2000 Revision - Annex Tables of

the Highlights. USA (2000)

6. David K. Jordan, The Chinese Language(s),
http://weber.ucsd.edu/~dkjordan/chin/hbehilang-u.html, 14 July 2001, USA

(2001)

7. Edberg Peter. “Survey of Character Encodings”, In Pre-Conference Tutorial
of the Thirteenth International Unicode Conference, San Jose, California,

8-11 Sep 1998, TA4 pp. 1-23 (1998)

8. Fraase, Michael, The Windows Internet Tour Guide: Cruising the Internet

the Easy Way. Ventana Press (1995)

9. Feldman Boris, Microsoft Internet Explorer 5 Web Programming Unleashed.
Sams Publishing, Indianapolis, USA (2000)

117

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Price-Wilkin John. “Using the World Wide Web to Deliver Complex
Electronic Documents: Implications for Libraries”. The Public-Access
Computer Systems Review 5, no. 3, 1994, pp. 5-21, USA (1994)

TrueDoc Inc, http://www.truedoc.com/

Microsoft ~ Corporation, Font embedding for the Web,
http://microsoft.com/OpenType/web/embedding/, 26 Feb 2001, USA (2001)

Ken Lunde. CJKV Information Processing. O’Reiily. (1998)

Ralf Steinmetz, Klara Nahrstedt. Multimedia Computing, Communications
and Applications. Prentice-Hall (1995)

The Internet Society, Hypertext Transfer Protocol — HTTP/1.1, June 1999,
USA (1999)

Welch Jim. “Platform Independent Font Support”, In Proceeding of the
Eighth International Unicode/ISO 10646 Conference, Hong Kong, 18-19

Apr, 1996, A3 pp. 1-21 (1996)

Bitstream Inc, “What Are Dynamic Fonts?”,
http://www.truedoc.com/webpages/getstart/get_startl.htm

Luke Duncan and Sean Michaels, Official Netscape Technologies
Developer’s Guide. Ventana Communications Group, USA (1997)

Microsoft Corporation, Font Embedding on the World Wide Web,
http://www.w3.org/Printing/pennock.html, April 19, 1996, USA (1996}

Siu Chi Hsu, Kin Hong Lee, Chin Lu, Man Fai Wong, and Wing Shing
Wong, “The HANZIX Open System”, Communications of COLIPS, An
International Journal of The Chinese & Oriental Languages Information
Processing Society, Vol. 5, Number 1, Dec. 1995, pp. 29 — 36 (1995)

Shodouka, http://web.lfw.org/shodouka/

MINSE PolyMediator, http://web.1fw.org/math/

118

23.

24,

25.

26.

27.

28.

29.

30.

31.

Web Access Gateway, http://www.cus.cam.ac.uk/~ssb22/access.html

Silas S Brown and Peter Robinson, “A World Wide Web Mediator for Users
with Low Vision”, In Proceeding of the Workshops on the Conference on
Human Factors in computing Systems, Washington, USA, 31 March - 5

April 2001 (2001)

Asmus Freytag, “Character Set Guessing”. In Proceeding of the Thirteenth
Intemnational Unicode Conference, San Jose, California, 8-11 Sep, 1998, B7

pp. 1-23 (1998)

Alan J. Dix, Janet E. Finlay, Gregory D. Abowd, Russell Beale,
Buman-Computer Interaction, Second Edition. Prentice Hall, New York

(1998)

Martin J. Durst, Gavin Thomas Nicol, Francois Yergeau, “Weaving the
Multilingual Web: Standards and their Implementation”. In Proceeding of
the Sixteenth Intemational Unicode Conference, Amesterdam, The

Netherlands, 27-30 March 2000, TA3 pp.1-48 (2000)

r

Cathyann Swindlehurst, “Globalization, Internationalization and
Localization: An Introduction”. In Proceeding of the Sixteenth International
Unicode Conference, Amesterdam, The Netherlands, 27-30 March 2000,

TC1 pp.1-16 (2000)

Balachander Krishnamurthy, Jennifer Rexford, Web Protocols and Practice:
HTTP/1.1, Networking Protocols, Caching, and Traffic Measurement.
Addison Wesley Longman, Inc (2001)

Yean Fee Ho, “Creating a Multilingual Unicode WWW Homepage”. In
Proceeding of the Eighth International Unicode/ISO 10646 Conference,

~Hong Kong, 18-19 April 1996, A6 ppl-7 (1996)

I.S. Graham, The HTML Source Book. John Wiley, New York (1995)

119

32.

33.

34.

35.

36.

37.

38.

39.

40.

41,

42.

43.

44,

45,

Balachander Krishnamurthy, Jeffrey C. Mogul, David M. Kiristol, “Key
Differences between HTTP/1.0 and HTTP/1.1”. In Proceeding of the Eight
International World Wide Web Conference, Toronto, Canada, 11-14 May

1999 (1999)

Lu Qin, Lee Kin-Hong & Yao Jian. “Chinese Information Access Through
Internet”, In Proceeding of The World Conference of the WWW, Internet &
Intranet 1997 (WebNet 97), Toronto, Canada, 1-5 November, 1997 (1997)

Peter Belesis, Identifying Installed Fonts,
http://www.webreference.com/dhtml/column30, (2000)

Raggett Dave, Amaud Le Hors, Jacobs Ian, HTML 4.01 Specification. 24
Dec 1999, W3C, USA (1999)

Chris Wilson, Philippe Le Hégaret, Vidur Apparao. Document Object Model
(DOM) Level 2 Style Specification, W3C, USA (2000)

Elizabeth Castro, HTML 4 for the World Wide Web, Peachpit Press (2000)

Laurel. B, The Art of Human-Computer Interface Design, Addison Wesley
(1992)

Edwin Hart, What you need to know about Processing and Rendering
Multilingual Text. In Proceeding of Thirteenth International Unicode
Conference, San Jose, California, 8-11 September 1998 TA4 ppl-21 (1998)
The TrueType Specification, http://www.truetype.demon.co.uk/ttspec.htm
The FreeType Homepage, http://www.freetype.org/

GD Graphic Library, http://www.boutell.com/gd/

libpng Home Page, http://www.libpng.org/pub/png/libpng.html

Info-zip Home Page, http://www.info-zip.org/pub/infozip/zlib/

Murray, William H., HTML 4.0: User's resource, Prentice Hall, (1998)

120

46.

47.

48.

49,

50.

51.

52.

53.

54.

55.

56.

Castro, Elizabeth, HTML 4 for the World Wide Web, Peachpit Press, (2000)

Leong Kok Yong, Liu Hai, Oliver P. Wu, “Web Internationalization and Java
Keyboard Input Methods”, In Proceeding of The Internet Global Summit
Conferences Conference (INET’98), Geneva, Switzerland, 21-24 July 1998

(1998)

Norbert Lindenberg. “Java Input Method Framework”, In Proceeding of the
Fifteenth International Unicode Conference, San Jose, California, 30
August — 2 September 1999, C16 ppl-13. (1999)

Tom McFarland, “Developing Internationalized Software with JDK 1.17, In
Proceeding of the Thirteenth International Unicode Conference, San Jose,
California, 8-11 September 1998, TC2 ppl-72. (1998)

M. Pong and Y. Zhang. Cxterm: A Chinese terminal emulator for the X
Window system. Software — Practice and Experience, October 1992.

Robert L. Kruse. Trees and Graphs. Data Structures and Program Design.
Second Edition. Prentice-Hall (1987)

Jian Yang, Kamalakar Karlapalem and Qing Li, “Algorithms for
Materialized View Design in Data Warehousing Environment”, Proceedings
of 23rd International Conference on Very Large Data Bases (VLDB'97),
August 25-29, 1997, Athens, Greece. (1997)

Leong Kok Yong, Liu Hai, Oliver P. Wu, “Java Input Method Engine”, In
Proceeding of The Seventh International World Wide Web Conference.
Brisbane, Australia, 14-18 April, 1998 (1998)

Java 2 SDK, Standard Edition Documentation. Sun Microsystems (2000)

Core Javascript Guide Version 1.4. Netscape Communications Corporation
(1998)

Reaz Hoque, Technology Evangelist. Java, Javascript And Plug-in
Interaction Using Client-side LiveConnect. Netscape Corporation (1999)

121

57.

58.

59.

60.

61.

62.

John O’Conner, “Displaying Unicode with Java’s Composite Fonts”, In
Proceeding of The Fifteenth International Unicode Conference, San Jose,
California, 30 August - 2 September 1999, C17 pp1-70. (1999)

Richard Gillam, “Developing Global Application in Java”, In Proceeding of
The Sixteenth International Unicode Conference, Amsterdam, The
Netherlands, 27-30 March 2000, TB3, pp1-88 (2000)

Norbert Lindenberg, Brian Beack. Java Developer Connection: Java Live!

Internationalization,
http://developer.java.sun.com/developer/community/chat/JavaLive/2000/j10

321.htmlMarch 21, 2000 (2000)

Raghavan N. Srinivas. Java security evolution and concepts, Part 3: Applet
security, Java World, December 2000 (2000)

Laura Werner, “Unicode Text Searching in Java”, In Proceeding of The
Sixteenth International Unicode Conference, Amsterdam, The Netherlands,

27-30 March 2000, TB3, pp1-88 (2000)

Ka-Kit Hoi, Dik-Lun Lee, “Document Visualization on Small Display”, In
Proceeding of The Tenth International World Wide Web Conference, Hong

Kong, 1-5 May 2001 (2001)

A. Appendix |

8.6 Kbps | 56 Kbps | 128 Kbps | 1.5 Mbps
50 CJK characters (1 KB) 0.83 0.14 0.06 (.01
100 CJK characters (3 KB) 2.50 0.43 0.19 0.02
200 CJK characters (5 KB) - 4.17 0.71 0.31 0.03
500 CJXK characters (9 KB) 7.50 1.29 0.56 0.05
1,000 CJK characters (15 KB) 12.50 2.14 0.94 0.08

Table A-1: Theoretical transmission time for retrieving Web pages from a Web

server

9.6 Kbps | 56 Kbps | 128 Kbps | 1.5 Mbps
50 CJK characters (1 KB) 44.17 1.57 3.31 0.28
100 CJK characters (3 KB) 90.00 15.43 6.75 0.56
200 CJK characters (5 KB) 178.33 30.57 13.38 1.11
500 CJK characters (9 KB) 440.00 75.43 33.00 2.75
1,000 CJK characters (15 KB) 875.00 150.00 65.63 5.47

Table A-2: Theoretical transmission time for retrieving Web pages through

Pelutech with conversion

9.6Kbps | S6Kbps | 128Kbps | 1.5Mbps
50 CJK characters (1IKB) 1.67 0.29 0.13 0.01
100 CJK characters (3KB) 5.00 0.86 0.38 0.03
200 CJK characters (SKB) 8.33 1.43 0.63 0.05
500 CJK characters (9KB) 15.00 2.57 1.13 0.09
1,000 CJK characters (15KB) 25.00 4.29 1.88 0.16

Table A-3: Theoretical transmission time for retrieving Web pages through

Pelutech without conversion

9.6Kbps | S6Kbps | 1.5Mbps
50 CJK characters (1 KB) 8 2 |
100 CJK characters (3 KB) 11 3 I
200 CIJK characters (5 KB) [3 4 1
500 CJK characters (9 KB) 28 7 2
1,000 CIK characters (15 KB) 49 9 3

Table A-4: Actual Transmission Time for retrieving Web page from original server

123

9.6 Kbps 56 Kbps 1.5 Mbps
50 CJK characters (1 KB) 63 10 2
100 CJK characters (3 KB) 131 23 3
200 CJK characters (5 KB) 253 43 5
500 CJK characters (9 KB) ERROR 101 7
1,000 CJK characters (15 KB) ERROR 186 10

Table A-5: Actual Transmission Time for retrieving Web page through Pelutech

with conversion

9.6 Kbps 56 Kbps 1.5 Mbps
50 CJK characters (1 KB) 11 4 2
100 CJK characters (3 KB) 19 6 2
200 CJK characters (5 KB) 26 8 3
500 CIK characters (9 KB) 55 10 4
1,000 CJK characters (15 KB) 75 13 5

Table A-6: Actual Transmission Time for retrieving Web page through Pelutech

without conversion

96Kbps | 56Kbps | 1.5Mbps
50 CJK characters 10.00 3.10 2.00
100 CJK characters 15.60 4.20 2.00
200 CJK characters 18.60 5.00 2.00
500 CJK characters 30.60 8.50 3.40
1,000 CJK characters 53.60 10.60 5.60

Table A-7: Average Transmission Time for retrieving Web page from original

server

9.6 Kbps 56 Kbps 1.5 Mbps
50 CJK characters 59.30 12.50 2.50
100 CJK characters 128.60 24.30 3.00
200 CJK characters 255.30 40.60 4.90
500 CJK characters ERROR 86.30 7.10
1,000 CJK characters ERROR 162.30 11.20

Table A-8: Average Transmission Time for retrieving Web page through Pelutech

with conversion

124

9.6 Kbps 56 Kbps 1.5 Mbps
50 CIJK characters 11.30 4.20 2.00
100 CJK characters 23.20 7.50 2.20
200 CJK characters 26.30 8.60 2.50
500 CJK characters 56.30 10.40 3.80
1,000 CJK characters 76.70 13.20 6.00

Table A-9: Average Transmission Time for retrieving Web page through Pelutech

without conversion

