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Abstract 

Vibration and noise control of equipment have been a long-standing research topic 

because of its effect on people’s health and comfort. The common characteristics of 

building services equipment pose great challenges to current methods of 

structure-borne sound control. Some of building services equipment experience 

frequent transient excitations which may disable the spring isolators traditionally 

designed for steady-state vibration isolation. Besides, broadband vibration isolation 

is desirable when the vibratory system has high modal density and the frequency of 

interest fluctuates in a wide band. In addition, the oversimplification of time-varying 

systems as time- invariant systems may lead to the failure of an active vibration 

control system. These problems is not only limited to the area of building service 

engineering, but can be commonly seen in the field of machine-induced vibration 

and acoustics. To solve these problems, this research aims to present a power 

transmissibility approach for the assessment of transient vibration isolation by spring 

isolators, develop adaptive-passive methods for broadband vibration control using 

periodic structures, and propose an active control system for the suppression of 

periodically time-varying vibration. 

 

Firstly, a transient power transmissibility approach is proposed to assess the 
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performance of isolators in the situation of a transient vibration excitation. The 

numerical study demonstrates the necessity of using transient power transmissibility 

in the selection of isolators for a system that experiences a transient vibration. 

 

Secondly, this part focuses on the broadband vibration attenuation by 

adaptive-passive methods of periodic structures with smart materials. The 

application of a dual-beam periodic structure with SMA branches to broadband 

vibration control is explored, and two methods are developed to determine the 

optimal Young’s modulus of the SMA branches. As this semi- two-dimensional 

periodic structure is a realistic simulation of a real- life problem, this study provides 

an insight into the general problem of broadband vibration control using smart 

periodic structures. 

 

Thirdly, an active control system is proposed to attenuate periodically time-varying 

vibration. It is characterized by an adaptive process for system identification and a 

nonadaptive process for controller design to avoid the coupling effect between the 

two adaptive processes in many AVC systems. The convergence and the stability of 

proposed system are proved by rigorous derivation and numerical simulation. 
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Nomenclature 

( )d n     Primary disturbance applied on a system 

kND      Mean-square deviation (MSD) in the thk  period of a periodically 

time-varying system       

( )e n      Present identification error with additive noise 

( )fe n     Tuned present identification error 

( )e n      Predicted identification error  

( )fe n     Tuned predicted identification error  

 E        Young’s modulus 

( )f ⋅      Self-tuning function of the active control system 

LF       Column vector of general forces including forces and moments of the 

foundation 

MUF      Column vector of general forces including forces and moments of the 

mount at the interface of the mount and the foundation 

MLF      Column vector of general forces including forces and moments of the 

mount at the interface of the mount and the foundation 

UF       Column vector of general forces including forces and moments of the 

machine 

UeF       Column vector of the external excitations 
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UcF      Column vector of internal forces of the machine 

LG      Matrix of mobilities of the foundation  

cH      Controller 

rH      Reference path 

sH      Secondary path 

poH     Primary path 

pH      Equivalent primary path of poH . 

UH      Matrix of mobilities of the machine  

sP       Power transmitted to the floor with a spring isolator 

nsP      Power transmitted to the floor without a spring isolator 

wvP      Matrix governing wave propagation 

( )r n     Reference signal  

FVS      Matrix of the relation between wave motion and vibration 

T       Transfer matrix of one periodic cell from the machine to the foundation 

1,
fin

m m+T     Relation between 1,m j+Y  and mjY  

1,
fin

m m+Τr    Transfer matrix from the mth junction to the next junction of a finite 

periodic structure 

finTr     Common matrix of 1,
fin

m m+Tr  

finT      Common matrix of 1,
fin

m m+T  

T        Force transmissibility  
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1t        Duration of a transient vibration 

( )u n     Control signal  

( )v n     Additive noise  

LV      Column vector of general velocities including translations and rotations of 

the foundation  

MUV     Column vector of general velocities including translations and rotations of 

the mount at the interface of the mount and the foundation 

MLV     Column vector of general velocities including translations and rotations of 

the mount at the interface of the mount and the foundation 

UV      Column vector of general velocities including translations and rotations of 

the machine 

ˆ ( )po nw   Finite impulse response (FIR) adaptive estimator of poH  

ˆ ( )s nw    FIR adaptive estimator of sH .  

( )nw    Optimal FIR estimator of the primary and secondary paths of the controlled 

system 

ˆ ( )nw    Real-time FIR estimator of the primary and secondary paths of the 

controlled system 

mjY      Matrix of mobility from forces at jth junction to velocities at mth junction of 

a finite periodic structure  

W      Matrix coupling the sub-structures in a periodic cell 
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( )y n    Output of a controlled system 

ˆ( )y n    Estimated output of a controlled system 

( )k
MZ     Transfer matrix of the kth mount from the foundation to the machine 

MZ     Transfer matrix of all mounts from the foundation to the machine 

mjZ     Matrix of transfer function from forces at jth junction to forces at mth 

junction of a finite periodic structure 

χ       Transient power transmissibility 

nε       Model error 

ˆnε       Approximated model error  

 γ       Steady-state power transmissibility 

 η       Loss factor 

µ       Adjustable parameter in adaptive algorithms 

 υ       Poisson’s Ratio 

ρ       Density 

nτ       Natural period of the oscillator   

ω       Angular forcing frequency 

nω       Angular natural frequency 

( )nξ     Identification error without additive noise 
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Chapter 1 

Introduction  

1.1 Background 

People are now very concerned about the problems of machine- induced noise and 

vibration, especially those problems in modern buildings, as they relate to general 

well-being and comfort. Due to the concerns, a great number of studies have been 

conducted to investigate these problems [1-10].  Yun [1-2] has examined the 

coupled flexural- longitudinal wave propagation in building structures through a 

semi-two-dimensional multi- layer periodic structure, and then investigated the 

vibration transmission from two coherent machines to a two-floor (two- layer) 

building structure. Ou [3-4] has studied the vibroacoustic responses of plate- like 

structures which serve as the fundamental representation of realistic structures, such 

as walls, floors and ceilings of buildings. Wang [5-7] has proposed a periodic duct 

loaded by Helmholtz resonators and developed its application to broadband noise 

control and ventilation. Mak et al. [8-10] has studied the flow-generated noise 

produced by in-duct elements, and the flow noise in air ducts is a significant problem 

in a ventilation systems. Their extensive studies of vibratory and acoustic behavior 

of building structures and building services structures inspire this author to 



investigate other problems for the same purpose of general health and well-being.  

 

This study is devoted to providing solutions to the fundamental problems resulted 

from the common characteristics of building services equipment, which pose great 

challenges to current methods of vibration control. Many building services 

equipment undergo transient excitations, like frequent starting and stopping 

operation, but existing references focus on the study of steady-state vibration 

isolation [11-18]. Besides, methods for the broadband vibration control of non-rigid 

machines and foundations are desirable in the situation of fluctuating frequency of 

interest and high modal density of the foundation. The frequency of interest may be 

the frequencies of a disturbance and the resonances of the vibratory system. A 

welcomed solution may be periodic structures, a class of band-stop filter-type 

mechanical isolators [19] which place the frequency of interest in certain frequency 

bands (stop bands) where the characteristic waves decay exponentially and thus 

mechanical wave propagation is suppressed. However, the traditionally simplified 

models (including the models using periodic structures as isolators) neglect the 

coupling between directions of motion at mounting points, which may lead to 

erroneous prediction of structural dynamics [20-31]. In addition, active vibration 

control approaches applicable for time-varying systems [32-34] is expected when the 

assumption of these systems as time- invariant models cannot be satisfied. The 
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difference between a time-varying system and a time–invariant system is manifested 

by the analysis of a periodically time-varying system [35]. This difference may be a 

positive property in some other areas [36-37], but may result in the invalidity of 

many active vibration control (AVC) algorithms based on that assumption of the 

time- invariant system. These three problems are not only limited to building services 

equipment, but widely exist in the research field of machine- induced noise and 

vibration. 

1.2 Performance Indicators of Vibration Isolation 

Building services equipment is one of the common vibratory and acoustic sources 

within structures. Vibration isolation plays an important role in controlling this noise 

because the structure-borne sound radiation emanating from the floor where the 

vibratory machine is located is a significant source of it. The performance of 

vibration isolation in an industrial context has commonly been assessed using the 

force transmissibility [11-13] in the situation where there is negligible floor mobility. 

Given this limitation, power transmissibility was then proposed. This index assesses 

the performance of vibration isolation by taking into account the effect of floor 

mobility and the interaction of the mounting points between machine and floor 

[14-18]. However, both the force and power transmissibility approaches only 

consider the steady-state vibration problem.  

 3 



 

In reality, building services equipment often experiences a transient excitation, a 

rapid enhancement of vibration energy followed by an abrupt release. For example, a 

potable water pump in a water supply system will start and stop frequently, and a 

standby generator will start operating suddenly in an emergency. Although the power 

transmissibility proposed by Mak [14] can evaluate the performance of the 

steady-state vibration isolation more accurately than force transmissibility, it may not 

be effective to assess the performance of transient vibration isolation, since the index 

does not take any transient excitation into consideration. In a transient vibration 

context, the maximum peak response (that is, the maximum of peaks on the time 

response curve) is of particular interest. The shock response spectrum is defined as a 

plot of the maximum peak response of a single-DOF oscillator against its natural 

period [38-39], which is a measure of the influence of transient excitations on the 

isolated structure. Nonetheless, like the definition of the force transmissibility, the 

shock-response spectrum also adopts the assumption of an immovable floor. 

Moreover, the parameter used in the shock response spectrum to measure the 

severity of impacts is not as accurate as transmitted power to the floor in terms of 

predicting the structure-borne sound radiation. 
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1.3 Broadband Vibration Control of Non-rigid 

Systems Using Periodic Structures 

The investigation of the problem of vibration isolation between nonrigid machines 

and/or foundations has a long history. Many authors simplify it by assuming the 

machine- isolator- foundation arrangement is a single-mount system [20-22]. This 

assumption is only valid where the system is symmetrical and moves with a 

unidirectional translation, and also where there is decoupling between the mounting 

points for both the mounted object and the foundation [23]. Erroneous resonances 

are observed, however, when this assumption is applied to the analysis of the 

vibration transmission between nonrigid machines and foundations [23]. Owing to 

the limitations of the single-mount assumption, other authors have investigated the 

effect of multiple mounts on vibration transmission [24-26]. Despite the inclusion of 

the transfer mobility between the mounting points, only the translational motion 

normal to the surface of the foundation is considered in these multi-mount systems. 

Moments, and their cross coupling with forces, are also omitted in these studies, thus 

preventing the energy exchange between wave components governed by such cross 

coupling and resulting in different wave transmission and reflection at the mounting 

points. Several researchers have also studied the effect of moments, or combined 

forces and moments, on the total power transmission to a flexible structure and 

drawn helpful conclusions [27-31]. White and Goyder [27-28] show that the power 

 5 



resulting from a moment excitation to a beam or plate is more severe in the 

high-frequency region than that caused by a force excitation. If the location of the 

excitation source is at or close to a discontinuity, Petersson and Gibbs [29-30] find 

that moment excitation plays an important role in vibrational energy transmission, 

even at low frequencies. Additionally, Koh and White [31] demonstrate that by 

optimizing the moment arms, the power due to the combined force and moment 

input to the foundations, at low to medium frequencies, might be smaller than that 

from a force alone. Therefore, it is suggested that it would be valuable to consider 

the coupling of forces and moments and the multiple directions of motion at every 

mounting point during the analysis of vibration isolation problems so that the 

resultant energy exchange will not be neglected. 

 

A periodic structure, or a spatially periodic structure, is composed of a number of 

identical structural components which are coupled together side-by-side (like in a 

bridge) or layer-by- layer (like in a building) to form a whole complex. Periodic 

structures can be divided into three classes [40] 1) the periodic medium, for example, 

the periodically supported beams [1]; 2) the periodically inhomogeneous medium, 

like a fluid with its ambient density or sound speed varying periodically [40]; 3) the 

periodically bounded medium, for instance, the air duct loaded periodically with 

Helmholtz resonators [5]. This type of structures has been studied for many decades 
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because of the interesting wave phenomenon – wave propagation is allowed in some 

frequency bands (called pass bands) while is forbidden in other bands (called stop 

bands). In stop bands, or band gaps, characteristic waves decay exponentially in the 

near field of the driving point and thus cannot generate the propagation of 

mechanical waves. The studies of periodic structures mainly focus on two aspects -  

the theoretical solution of the characteristic waves and application of the pass-band 

or stop-band property. The approaches to study characteristic waves are various, 

including the two most common methods - transfer matrix method [1, 5] and 

propagation wave method [41-43], Z-transform method, energy method and Fourier 

transform method [44]. However, compared to the abundant literatures of these 

systematic approaches for characteristic waves, the studies of the application seem 

less extensive.   

 

Periodic structures, as alternatives to the rubber- like isolators (springs or rubber rods 

with stiffness and damping, as used in the research referred to above), are more 

useful when the system has high modal density or is excited by a source with 

wideband or fluctuating frequency [45]. This is because the band-gap characteristic 

of periodic structures guarantees that the attenuation ability of periodic mounts 

cannot be affected by these factors, provided they are located in the stop bands. 

Besides, although rubber-like mounts can attenuate vibration in a wide frequency 
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band (from the natural frequency to high frequency), and although vibration 

absorbers or other anti- resonance vibration isolators may realize broadband control if 

active or passive-adaptive control is applied [19], it is much likely that the 

transmission loss due to these structures is significantly lower than that due to 

periodic isolators since periodic isolators can lead to the exponential attenuation of 

characteristic waves. Nonetheless, when the operating and environmental conditions 

change, the fixed stop bands may no longer cover the change in frequency of interest, 

for example, a fluctuating exciting frequency or a variation in resonances of systems; 

the original stop bands may become pass bands of the current frequency of interest, 

making the isolator a band-pass filter. Hence, researchers are working towards the 

design of periodic structures with broad stop bands [46-49] or the development of 

periodic structures with controllable or tunable parameters such that their band-gap 

characteristic can be adjusted [50-51]. Arish [50] proposes a 1-D hybrid periodic rod 

composed of several periodic cells with a short rod and piezoelectric insert in each, 

and install four parallel hybrid periodic rods between two plates to control the 

vibration transmission from the upper to the lower plate. A new type of periodically 

layered isolator with embedded fluid elements is developed by Szefi [51] and applied 

to minimize the vibratory power transmission from meshing gear pairs to fuselage. 

Many other reports of the utilization of smart periodic structures, periodic structures 

with smart materials as their tunable components, can now be found in the field of 
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control of structural wave propagation [52-53]. All of the work [45-53] focuses on 

the isolation of power transmission solely via unidirectional translation or the 

attenuation of a longitudinal wave along the waveguide. 

 

A semi- infinite dual-beam periodic structure with all degrees of freedom (DOF) of 

motion in a plane is proposed by Yun and Mak [1], but its application as a periodic 

isolator has not yet been explored. This study therefore focuses on developing 

passive control methods for the application of this semi- two-dimensional structure to 

broadband vibration isolation and exploring the problem of broadband vibration 

control using periodic structures. To adjust and widen the stop bands, shape memory 

alloy (SMA) components are incorporated into the periodic structure. The reason for 

this is that the Young’s modulus of the SMA can be increased to three times its 

original value on a change of temperature, due to crystalline phase transformation 

[50-51, 54]. With this property, it is possible to create a stop band covering the 

frequency band of interest by tuning the Young’s moduli of the SMA 

components.The limitation of SMA for vibration control is the problem of hysteresis 

[55-56]. The hysteresis may be desirable in other applications, but generally should 

be mitigated or avoided in the application of vibration control because it may 

destabilize the control system. 
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1.4 Active Control of Periodically Time-varying 

Systems 

This study focuses on one special category of time-varying system - periodically 

time-varying (PTV) systems. PTV systems fall into the category of 

parameter-varying systems whose dynamic parameters change with time or other 

independent variables [32]. The phenomenon of varying dynamic parameters can be 

found in various fields [32-34]; for instance, some parameters of unsymmetrical 

rotating machines vary with time, and the propagation parameters of wave 

propagation in periodic media vary with distance. This class of structures is 

governed by differential equations of motion with PTV coefficients, making the 

systems exhibit remarkable dynamics which is difficult to control. Take linear 

periodically time-varying (LPTV) systems as an example. According to Claasen and 

Mecklenbräuker’s review [35], the input-output relation for LPTV systems 

is ( ) ( ) ( )
k

lptv k
k

X f H f k T F f k T
=∞

=−∞

= − −∑ . The input-output relation for LPTV systems 

shows that the input spectrum F(f) has an infinite number of shifted versions F(f-k/T), 

where T is the period of the parametric variation. Consequently, the output spectrum 

Xlptv(f) is composed of the weighed input spectrum F(f) and its shifted versions at 

other frequency values. That is to say, an LPTV system is different from a linear 

time- invariant (LTI) system in which the response at one frequency only comes from 

the input spectrum at the same frequency: for example, ( ) ( ) ( )ltiX f H f F f= . As a 
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result, Xlptv( f ) is characterized by a series of separate peaks with an interval of 1/T at 

the two sides of one frequency because a peak at that frequency can be moved to 

other frequencies and create those side peaks at f-k/T. This difference can be utilized 

for active control, such as feedback control incorporating PTV components [36-37]. 

However, this study focuses on the active control of PTV systems, and this 

difference may lead to the invalidity of many active vibration control (AVC) 

algorithms designed by ignoring the oscillation of time-varying parameters and the 

resultant side peaks. The situation becomes worse if the systems are nonlinear. 

Therefore, much research effort has been devoted to the active control of 

time-varying systems [57-59]. Most of the control schemes are dependent on a 

mathematical or estimated model and cannot converge the moment the model is 

obtained.  

 

Online modeling is usually required for AVC because of the difficulty of measuring 

or recovering systematic parameters and the possible inapplicability of some 

promising methods (AVC methods without modeling) to a high-order system [60-61]. 

The time-varying characteristic of some systematic parameters may require a typical 

AVC system with a fast online modeling process to catch up on systematic changes 

and an efficiently updated controller to create destructive vibration. Hence, the 

filtered-x least mean squares (FXLMS) method, characterized by low computational 
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cost and easy implementation, is potentially a competent candidate for the real-time 

control of time-varying systems. However, it is very difficult to analyze the coupling 

effects between the two adaptive processes – online modeling and controller 

updating. On one hand, the performance of one process may negatively influence the 

other process, leading to accumulated errors, amplified vibration, and destabilized 

systems [62]. On the other hand, after one process converges, it may take several 

samples for the other process to converge. This mismatch in terms of the 

convergence of the two processes makes it hard to tell whether they converge to their 

optimal values under the present systems situation.  

 

Given the above disadvantages, in the most recent literature, an active noise control 

(ANC) system (orthogonal adaptation system) with adaptive system identification 

and nonadaptive controller design was proposed by Yuan to avoid the coupling effect 

[63-64]. Although the applicability of this ANC system is limited in time-invariant 

systems or approximately time- invariant systems, it provided the motivation for this 

study to propose a control system with adaptive system identification and 

nonadaptive controller design for PTV systems. Later, Yuan presented a self- learning 

feedback mechanism, and this mechanism could work as a backup for the orthogonal 

adaptation system [65]. When the stability threat due to modeling errors is detected, 

the orthogonal adaptation block is switched off and the feedback block is triggered to 
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stabilize and optimize the system without using the estimated model. Nonetheless, 

this trial-and-error method inevitably leads to slow convergence and may induce the 

intermittent switch between the two blocks when controlling a time-varying system. 

Therefore, it would be better if a wide range of dynamic uncertainties and external 

disturbances could be tuned and tolerated inside one control system, leaving other 

ones which may not commonly happen to the backup system.  

1.5 Objectives and Scope of Research 

The principle objective of this thesis is to abate the influence of the machine- induced 

noise and vibration on general health and comfort by providing possible solutions to 

the problems of transient vibration isolation, broadband vibration control and 

vibration control of time-varying systems. This main objective has the following 

sub-objectives. 

 

The first sub-objective of this thesis is to present a new performance indicator for the 

assessment of transient vibration isolation. Based on the discussion about 

performance indicators of vibration isolation, it is known that force transmissibility 

and the steady-state power transmissibility may be incapable of predicting the 

isolation performance of transient vibration because the applied models do not 

consider transient excitation. However, the indicator, shock response spectrum, 
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considers transient excitation and uses the maximum peak response to assess the 

severity of the effect of the rapid enhancement and abrupt release of energy caused 

by a transient excitation, which provides a clue to the proposal of the new 

performance indicator in spite of its assumption of immovable floor. 

 

The second sub-objective of this thesis is to examine the problem of the broadband 

vibration control of nonrigid systems employing periodic structures with tunable 

parameters. It investigates this by using a semi-two-dimensional model that applies a 

dual-beam periodic structure [1] with SMA transverse branches as a 

parameter-tunable isolator. Given the previous literature review, it is known that 

conventional study of vibration control problems, including the problem of vibration 

control by periodic structures, usually reduces systems to equivalent single- or 

multi-mount models with only a unidirectional translation at a mounting point. This 

assumption of decoupling leads to the erroneous prediction of vibratory power 

transmission when designing an isolator for a nonrigid system. Such a periodic 

structure involves the coupling of vibrations between different mounting points and 

different directions of motion and is therefore a reasonable simulation of the real- life 

problem. Measures will be taken to make best use of the variable material property 

of SMA and avoid the associated limitation of hysteresis. 
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The third sub-objective of this thesis is to propose an active vibration control system 

for periodically time-varying systems. Considering the coupling effect between the 

two adaptive processes of online modeling and controller optimization, and 

motivated by Yuan’s work [63-65], the objective of this study is to apply this 

decoupling scheme to the active vibration control of PTV systems. The new AVC 

system for PTV systems proposed in this study will bear the following features. It 

will consist of one adaptive process for system identification and one nonadaptive 

process for controller optimization to avoid the coupling effect. Besides, the 

identification process will be able to suppress the negative influence of dynamic 

uncertainties and disturbances and exhibit strong robustness to them. Finally, the 

convergence of one adaptive process and the optimization of the nonadaptive process 

will be synchronized. 
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Chapter 2 

An Indicator for the Assessment of 
Isolation Performance of Transient 
Vibration 

In this chapter, the concept of “transient power transmissibility” is proposed as a 

means of assessing the performance of isolators due to a transient vibration 

excitation. It is a function of the duration of the transient excitation and the natural 

period of the oscillator. Like the definition of the shock response spectrum [38-39], it 

is a measure of the severity of the impact of the rapid enhancement and abrupt 

release of energy. The transient power transmissibility is based on the ratio of powers 

within the whole frequency domain. The powers can be decomposed into a series of 

sub-powers in separate frequency bands, which can be easily realized by wavelet 

transform and reconstruction [66] so as to reveal the contribution that different 

modes and frequency distributions of the transient excitation make to the response. A 

spring-mass-movable floor system is considered in the simulation, and the spring 

isolator is first selected using the steady-state power transmissibility approach of 

Mak and Su. A system disturbed by two transient excitations as typically experienced 

by building services equipment is then analyzed. The results indicate the necessity of 

using transient power transmissibility in the selection of isolators for a transient 
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vibration. 

 

2.1 Theoretical Outline  

A vibration isolation system is described in Fig.2-1. Damping moves a resonant 

frequency from  to , and attenuates the resonant peaks. It does 

not fundamentally change the modes of the vibratory system. Therefore, for the 

assessment of a spring isolator, adding damping only causes unnecessary distractions 

without affecting the analytical results. Hence, the stiffness is modeled as a real 

number and the damping effect is not considered in this study. Besides, if there is a 

need to consider damping, the influence of damping can be included by modeling the 

stiffness as a complex number. 

 

 
Figure 2-1 Model of a vibration isolation system 
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2.1.1 Performance Index for Steady Vibration Isolation – 

the Force and Steady-State Power Transmissibility 

For the vibration isolation system modeled in Fig. 2-1, the force transmissibility, T , 

is usually adopted to evaluate the performance of vibration isolation [11-13]: 

2
0

1T

1

t

n

F
F ω

ω

= =
 

−  
 

                                               (2.1) 

where nω  is the angular natural frequency; ω  is the angular forcing frequency; 

0F  is the exciting force; and  tF  is the force transmitted from the vibrating machine 

to the floor structure when the floor is assumed to be immovable, formulated by: 

( ) 02
1

1 /
t

n

F F
ω ω

=
−

. 

 

In order to take into account the effect of floor dynamics and the interactions of 

mounting points between the floor and the machine, the steady-state power 

transmissibility [14-18],  γ , is proposed as follows:  

( )

2

2
1 γ

1 /
s r

ns n r

P j mY
P j mY

ω
ω ω ω

+
= =

− +
                                    (2.2) 

where 

( )
( )2

022

1 1
2 1 /

s r s

n r

P F Re Y
j mYω ω ω

=
− +

 and ( )2
02

1 1
2 1

ns r
r

P F Re Y
j mYω

=
+

. 

Ps  and Pns  are the powers transmitted to the floor with and without a spring 
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isolator; rY  denotes the floor mobility. 

 

When Y 1rj mω << and 2Y 1 ( / )r nj mω ω ω<< − , the steady-state power 

transmissibility can be approximately equal to the force transmissibility: 

( )
2

22

1γ T
1 / nω ω

≈ =
−

 

Therefore, the condition that force transmissibility is less than unity when 

/ 2nω ω >  does not mean that a satisfactory power transmissibility is guaranteed. 

The limitation of this method is that it neglects the transmitted displacement of the 

floor structure and the interaction of mounting points. In the power transmissibility 

method, however, the transmitted power can directly indicate the structure-borne 

sound radiation. 

 

2.1.2 Performance Index for Transient Vibration Isolation – 

the Shock Response Spectrum and Transient Power 

Transmissibility 

Although the steady-state power transmissibility can effectively describe the 

alleviation or deterioration of the structure-borne sound problem in a given 

frequency domain, it may not be able to predict the isolation performance of a 

transient vibration, since the index does not consider any transient excitation. In a 
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transient vibration scenario, the maximum of peaks on the time response curve (that 

is, the maximum peak response) is of particular interest since it can measure the 

severity of the induced vibration during the rapid enhancement and abrupt release of 

energy in the transient excitation. The shock response spectrum is a plot of the 

maximum peak response of the single-DOF oscillator as a function of the natural 

period of the oscillator [38]. Specifically, the shock response spectrum 
0 /

max

x
F k

 
 
 

 

is plotted as a function of 1 / nt τ where nτ  is the natural period, as shown in Fig. 2-2. 

Similar to the force transmissibility, the shock-response spectrum is based on the 

assumption of an immovable floor. Furthermore, as the transmitted power is closer to 

the structure-borne sound radiation, it cannot be indicated accurately by the 

parameter used in the shock response spectrum.  
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Figure 2-2 Shock response spectrum [38] 
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Therefore, a new performance index, the transient power transmissibility, is defined 

here as the ratio between the transmitted maximum peak powers with and without 

the installation of the vibration isolator. That is: 

( )
( )

1

1

/
χ    

/
s n

ns n

Mp t
Mp t

τ
τ

=                                                  (2.3) 

where 

( ) ( )( )
( )

1 1

1 1

/ max , /
 

/ max( ( , / ))
s n s n

ns n ns n

Mp t p t t

Mp t p t t

τ τ

τ τ

 =


=
, 

where sp  and nsp  are the time-domain equivalents of the frequency-domain 

powers sP  and nsP  in Eq. (2.2), when the excitation is a transient vibration with a 

duration of 1t  and the initial values are zeros; 2 /n nτ π ω= is the natural period of 

the oscillator.   

 

A time-domain power can be easily decomposed into several subpowers in the time 

domain and rendered equal to the superposition of them by wavelet transform and 

reconstruction [66]. The thi  subpower corresponds to the thi  frequency band: 

10 ~
2 sN f for 1i = and 2 1

1 1~
2 2s sN i N if f− + − +

 for  2, ,i N= 
.  sf is the sampling 

frequency and the integer N  is the number of all separate frequency bands, 

depending on the number of considered modes. After the decomposition, the 

maximum peak power of each subpower can be obtained, and the transient power 

transmissibility for thi  frequency band is acquired by Eq. (2.4): 
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where ( )1,s nMp i t τ  and ( )1,ns nMp i t τ  are the maximum peak power for the thi   

frequency band, described by 

( ) ( )( )
( ) ( )( )

1 1

1 1

, / max , /

, / max , /
s n si n

ns n nsi n

Mp i t p t t
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τ τ

τ τ
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=
, 

and  sip  and nsip are the subpowers generated by the decomposition of the total 

transmitted powers sp  and nsp . 

( ) ( )1 1
1

1 1
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( , ) ( , )

N

s n si n
i
N

ns n nsi n
i

p t t p t t

p t t p t t

τ τ

τ τ

=

=


=


 =

∑

∑
. 

In each frequency band, iχ is the function of 1 / nt τ . If either 1t  or nτ  is fixed, the 

range of the other parameter can be determined by the constraint iχ 1< . The 

decomposed powers or the transient power transmissibility in a series of frequency 

bands as expressed in Eq. (2.4) are useful for the analysis of the influence of 

different modes and the frequency-domain distribution of the transient excitation.  

 

Two typical cases of transient vibration will be discussed in the next section to 

demonstrate the importance of the transient power transmissibility. When the upper 

bound of the duration of transient excitation 1t  is known, χ  can be used for the 

selection of a spring isolator because the range of  nτ  or nω  can be determined. 

The steady-state power transmissibility 1γ <  requires n cγω ω<  while the transient 
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power transmissibility 1χ <  requires n cχω ω< , where cγω  and cχω  are critica l 

values. Hence, the qualified angular natural frequency should be lower than the 

minimum of the two critical values, that is, min( , )n c cγ χω ω ω< . 

 

2.2 Numerical Simulation and Analysis 

The analysis is conducted using a mass-spring system on a flexible square concrete 

plate. The physical parameters of the plate are: Young’s modulus 10 2 2.1 10 N mE = × , 

density 3 32.8 1 g0 k mρ = × , Poisson’s Ratio  0.2υ = , and loss factor 2 2 10η −= × . Its 

dimensions are 3.5m (length) ×3.5m (width) × 0.24m (thickness). Only the first two 

modes of the plate are considered in the calculation of the mobility [67] because the 

contribution of the other modes to the transmitted power is negligible by comparison. 

Hence, the total frequency range is divided into two frequency bands for the 

decomposition of the transmitted power: 2

10 ~
2 sf  and 2

1 1~
2 2s sf f , where the 

sampling frequency 600Hzsf = .  

 

If the mass of the machine is 2000kg , the power transmissibility is less than unity at 

/ 2nω ω >  when the natural frequency of the chosen spring is no more than 7Hz . 

The steady-state power transmissibility with the natural frequency set at 6Hz , as 

shown in Fig. 2-3, demonstrates satisfactory vibration isolation performance. 
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However, this may not be guaranteed when transient excitations are considered. 

Accordingly, two cases will now be discussed to confirm the need for assessment 

using the proposed transient power transmissibility. Two typical excitations in the 

cases are shown in Fig. 2-4. In the first case, a signal with a constant magnitude after 

a short rise time as shown in Fig. 2-4(a) is adopted to simulate the starting or 

stopping period of the vibratory machine. In the second case, a triangular pulse as 

shown in Fig. 2-4(b) is chosen to represent the occasional shocks experienced by the 

vibratory machine, as this is often a good approximation to actual pulse shapes. 
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Figure 2-3 Steady-state power transmissibility 
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(a)                               (b)  

Figure 2-4 Two typical excitations [38]: (a) Constant with a rise in time, (b) Triangular 
pulse. 

2.2.1 Case One – A Constant Excitation with Rising Time 

To investigate the vibration transmission when a vibratory machine experiences a 

starting or stopping period followed by a steady-state stage, the constant excitation 

after a short rise time shown in Fig. 2-4(a) is adopted. The maximum peak powers 

with and without the isolator and the transient power transmissibility in Eq. (2.3) are 

shown in Figs. 2-5 and 2-6. For vibration isolation to be achieved, χ must be less 

than unity. Thus, according to Fig. 2-6, for the example of an excitation with a 

constant magnitude after a short rise time, this requires:  

1 0.6 nt τ< . 

In other words, when the duration is less than 0.6 nτ , the design of the spring isolator 

is acceptable according to the transient power transmissibility. For a known transient 

input, we can work out the required angular natural frequency, cχω . The qualified 

angular natural frequency will then be lower than the minimum of the two critical 

values, that is, min( , )n c cγ χω ω ω< . 
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Figure 2-5 Maximum peak power for the 1st case 

 
 

 
Figure 2-6 Transient transmissibility for the 1st case 
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For a further analysis, the transient power transmissibility in two frequency bands is 

calculated according to Eq. (2.4). The maximum peak powers in each band with and 

without the isolator are shown in Fig. 2-7. It can be seen that the two responses in the 

high-frequency band shown in Fig. 2-7(b) are much lower than those in the 

low-frequency band shown in Fig. 2-7(a), and the two maximum peak powers in the 

low-frequency band are considerably closer to those in the whole frequency domain 

shown in Fig. 2-5. The same can be observed in Fig. 2-8, where the transient 

transmissibility in the low-frequency band is also prominent. This implies that the 

maximum peak powers come mainly from the vibration transmission in the 

low-frequency band.  

 

The reason for this might be that both the low-frequency component of the excitation 

and the low-order modes of the system have dominantly high magnitudes which 

coincide in the low-frequency band. This in turn leads to the difference between 

transient and steady dynamics. For this reason, a vibration spring selected for 

steady-state vibration generally cannot isolate the transmission of transient excitation, 

since a steady excitation does not have dominant magnitudes below the natural 

frequency of the designed spring isolator. 
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Figure 2-7 Maximum peak powers in two frequency bands for the 1st case: (a) 
Maximum peak power in the low-frequency band; (b) Maximum peak power in the 
high-frequency band. 
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(a) 
 

 
(b) 

 
Figure 2-8 Transient power transmissibility in two frequency bands for the 1st case: (a) 
Transient power transmissibility in the low-frequency band; (b) Transient power 
transmissibility in the high-frequency band. 
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2.2.2 Case Two –A Triangular Pulse 

To simulate the situation where a vibratory machine undergoes occasional shocks, 

the triangular pulse shown in Fig. 2-4(b) is selected because of its good 

approximation to actual pulse shapes. The maximum peak powers with and without 

the isolator, and the transient power transmissibility, are shown in Figs. 2-9 and 2-10. 

For the triangular pulse excitation, effective isolation is possible when: 

1 0.2 nt τ< .  

Therefore, when the pulse time is less than 0.2 nτ , the design of the spring isolator 

according to the transient power transmissibility is acceptable. 

 

For a further analysis, transient power transmissibility in two frequency bands is 

obtained by Eq. (2.4). The maximum peak powers with and without the isolator, and 

the transient power transmissibility in two frequency bands, are plotted in Figs. 

2-11and 2-12. The conclusions which can be drawn from those figures are similar to 

those in the first case. The coincidence of the low-frequency component with the 

high amplitude of the transient excitation and the low-order modes of the system 

indicates that an isolator selected for the attenuation of steady excitation performs 

poorly in the isolation of transient vibration transmission. 
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Figure 2-9 Maximum peak power for the 2nd case 

 

 
Figure 2-10 Transient power transmissibility for the 2nd case 
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Figure 2-11 Maximum peak powers in two frequency bands for the 2nd case:  (a) 
Maximum peak power in the low-frequency band; (b) Maximum peak power in the 
high-frequency band.  
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(a) 
 

 
(b) 

 
Figure 2-12 Transient power transmissibility in two frequency bands for the 2nd case: 
(a) Transient power transmissibility in the low-frequency band; (b) Transient power 
transmissibility in the high-frequency band 
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2.3 Summary 

This chapter sets out an approach to use the transient power transmissibility of the 

vibration isolator to assess the isolation performance of transient vibration in 

building services equipment. It consists of the ratio between the transmitted 

maximum peak powers with and without the installation of vibration isolator. For a 

further analysis, the transient power transmissibility can be decomposed into a series 

of frequency bands to investigate the impact of the frequency-domain distribution of 

transient excitations, and the modal distribution, on the transmitted vibration. Two 

typical cases of transient excitation are presented to demonstrate the importance of 

the transient power transmissibility in the selection of the vibration spring for 

isolating transient vibration. In addition, the failure of the spring for transient 

vibration isolation is shown to result from the fact that the low-frequency component 

of the transient excitation generally has larger amplitudes than in the 

higher-frequency band, and coincides with the low-order modes of the system. 
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Chapter 3 

AAddaappttiivvee--PPaassssiivvee  VViibbrraattiioonn  IIssoollaattiioonn  
bbeettwweeeenn  NNoonn--RRiiggiidd  MMaacchhiinneess  aanndd  
NNoonn--RRiiggiidd  FFoouunnddaattiioonnss  UUssiinngg  aa  DDuuaall--BBeeaamm  
PPeerriiooddiicc  SSttrruuccttuurree  wwiitthh  SSMMAA  TTrraannssvveerrssee  
CCoonnnneeccttiioonn  

This chapter focuses on developing passive control methods for the application of a 

semi-two-dimensional structure to broadband vibration isolation and offering an 

insight to the problem of broadband vibration control using periodic structures. 

Given the discussion in the literature review in chapter 1, the application of this 

dual-beam periodic structure with transverse branches as a periodic isolator has not 

been proposed since it was presented. Non-SMA beams and SMA branches are 

proposed to construct this periodic structure in order to make best use of the 

significantly variable property of SMA and to avoid the associated limitation of 

hysteresis. The two non-SMA beams support the machine, and the SMA branches 

adjust and widen the stop bands. Through this configuration, this structure can 

accentuate the advantage of the significant variation in the SMA’s Young’s modulus 

because the moduli of the branches considerably influence the characteristics of the 

power transmission loss, and can also bypass the disadvantage of possible hysteresis 
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caused by large vertical deflection. Two approaches are proposed to determining the 

optimal Young’s moduli of the SMA branches to maximizing the transmission loss 

after the derivation of the transmitted power of a general vibratory system with 

periodic isolators. One is used to obtain a database from which such moduli can be 

withdrawn in order to isolate vibrations according to the characteristics of the 

frequencies of interest, and the other is applicable to the real-time calculation of 

proper Young’s moduli. Although the problem of broadband vibration control is 

investigated in this chapter through a semi-two-dimensional model, the theoretical 

development can also be expanded to a three-dimensional system. The numerical 

results prove that adaptive SMA branches with proper temperatures can isolate 

vibration transmission in wide-frequency bands. Experimental results indirectly 

verify the derivation of the governing equation of the transmitted vibration and the 

derivation is the basis of the development of the two approaches. 

3.1 The Governing Equation of Transmitted 

Vibration 

A general vibration isolation system may be depicted as Fig. 1 and consists of a 

nonrigid machine and foundation connected by several mounts. This system is 

divided into three substructures for the purpose of deriving the governing equations 

of responses; the machine (the upper substructure H with mobility UH ), the mounts 
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(the middle substructure M with transfer matrix MZ ), and the foundation (the lower 

substructure G with mobility LG ). 

 

periodic cellsMounts Z
x

y
z

FUe(p+1)

Non-rigid machine H

FUe(p+2) FUe(q-1) FUe(q)

FUe(1) VUe(1)

FMU(1) VMU(1)

FUe(2) VUe(2)

FMU(2) VMU(2)

FUe(p-1) VUe(p-1)

FMU(p-1) VMU(p-1)

FUe(p) VUe(p)

FMU(p) VMU(p)

Non-rigid foundation G

FL(1) VL(1)

FML(1) VML(1)

FL(2) VL(2)

FML(2) VML(2)

FL(p-1) VL(p-1)

FML(p-1) VML(p-1)

FL(p) VL(p)

FML(p) VML(p)

 
Figure 3-1 A general vibration isolation system with periodic mounts 

 

3.1.1 A linear time-invariant (LTI) system 

If there are q contact points with s DOF at each, and the q points include p mounting 

points and (q-p) externally excited points, the governing equation of the machine can 

be formulated as 

U U U=V H F                                                       (3.1) 

where UH is a (s ×q)th square matrix of mobilities, 1 2, , , ,
TT T T T

U U U Up Uq =  V V V V V 
 

and 1 2, , , ,
TT T T T

U U U Up Uq =  F F F F F 
 are column vectors of general velocities and 

forces. UjV , 1j q= 
, is a s ×1 column vector of general velocities including 
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translations and rotations; UjF , 1j q= 
, is a s ×1 column vector of general forces 

including forces and moments. Letting UeF and UcF  represent external excitations 

and internal forces at the mounting points, respectively. Eq. (3.1) can be partitioned 

as  

11 12

21 22

Uc Uc

Ue Ue

    
=    
    

V FH H
H HV F

                                           (3.2) 

where 11H  is (s ×q)th square matrix representing the mobilities of the machine at the 

mounting points. Similarly, the input-output relation of the foundation is  

L L L=V G F                                                        (3.3) 

where LG  is (s ×q)th square matrix representing mobilities of the foundation; LV  

and LF  are column vectors of general velocities and forces at the mounting points 

on the foundation. If the periodic structure applied as a mount has n mounting points 

and r periodic cells, the p mounting points can be divided into p n  groups. The kth 

periodic mount ( 1k p n= 
) is governed by 

( ) ( ) ( )
1 1( )

( ) ( ) ( )
1 1

k k k
Mr M Mk r

Mk k k
Mr M M

     
= =     

          

F F F
Y T

V V V
                                     (3.4a) 

where ( )k r
M =Y T is the transfer matrix of a periodic structure of which each identica l 

cell has a transfer matrix T; ( )
1 ( 1) ( ), ,

Tk T T
M U kn n U kn− + =  F F F

 and 

( )
1 ( 1) ( ), ,

Tk T T
M U kn n U kn− + =  V V V

 are column vectors of general velocities and forces at 

the contacting points between the machine and the kth mount.  

( )
( 1) ( ), ,

Tk T T
Mr L kn n L kn− + =  F F F

 and ( )
( 1) ( ), ,

Tk T T
Mr L kn n L kn− + =  V V V

 are column vectors 

 38 



of general velocities and forces at the contacting points between the foundation and 

the kth mount.  

 

When the ideal periodicity of a periodic structure is disordered by design 

imperfections, material and geometrical variability, and installation and 

manufacturing errors, its wave transmission ability within the pass bands decreases 

significantly. In other words, structural vibration is confined to the vicinity of the 

driving point, owing to the resulting disorder. This phenomenon is a vibratory or 

acoustic analogue to the so-called Anderson localization in solid-state physics 

[68-70]. Irregularities or disorders can be intentionally introduced into a strict 

periodic structure to generate significant attenuation of the wave propagation in pass 

bands. When irregularities are introduced to a periodic mount, the transfer matrix 

Eq.(3.4a) becomes 

( ) ( ) ( )
1 1( )

2 1( ) ( ) ( )
1 1

k k k
Mr M Mk

M rk k k
Mr M M

     
= =     

          

F F F
Y T T T

V V V


                                (3.4b) 

where lT , 1l r=   is the transfer matrix of each periodic cell of an imperfect 

periodic structure. The transfer matrix of the kth periodic mount, ( )k
MY  , is a 2 ×s×n 

square matrix. Let ( )k
MZ  represent the inversion of the transfer matrix, and partition 

it into four square submatrices, so 

( ) ( )
( ) 11 12

( ) ( )
21 22

k k
k

M k k

 
=  
 

Z Z
Z

Z Z  
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Thus, for all periodic mounts 1 to p/n, we have 

( ) ( )
( ) ( )

( ) ( )
11 12

( ) ( )
21 22

k k
MU ML

k k
MU ML

     =         

diag Z diag ZF F
V Vdiag Z diag Z

                              (3.5) 

where ( )( )kdiag Z is a (s ×p)th order partitioned diagonal matrix having sub-matrices 

( )kZ , (1) (2) ( )
1 1 1, , ,

Tp n
MU M M M =  F F F F

, (1) (2) ( )
1 1 1, , ,

Tp n
MU M M M =  V V V V

, 

(1) (2) ( ), , ,
Tp n

ML Mr Mr Mr =  F F F F
 ,  and (1) (2) ( ), , ,

Tp n
ML Mr Mr Mr =  V V V V

are column 

vectors of forces and velocities. Employing the compatibility condition for the 

velocities and the equilibrium condition for the forces at the junctions (see Fig. 3.1), 

=Uc UM

Uc UM

L UL

L UL

= −
=
=

V V
F F
V V
F F

                                                        

and substituting these conditions into Eqs. (3.2), (3.3) and (3.5), the transmitted force 

to the foundation is solved. 

[ ] 1
21 22 11 11 11 12 12

1
1 12

1

L M M L M M L Ue

Ue

L

−

−

= + + +

=

F Z Z G H Z H Z G H F

R H F
F

                    (3.6) 

Thus, the governing equation of transmitted power is  

( )1 1 1
1 Re
2

H
wL L L LP = F G F                                              (3.7) 

where H denotes conjugate transpose. The transmission loss is given 

1

1

10log wU
TL

wL

PP
P

=                                                   (3.8) 

where ( )1
1 Re
2

H
wU Ue UeP = F V . 
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3.1.2 A system with linear time-varying (LTV) substructures 

Systems possessing time-varying parameters frequently occur in practice. For 

example, there are time-varying stiffness existing in a system of an asymmetrical 

rotating machine and time-varying masses in rotating crankshafts and conveyor 

systems. The solving process of the response of a system composed of a LTV 

machine and a LTV foundation and LTI mounts is formulated herein in order to 

provide an example for the derivation of a LTV system. 

 

A causal linear time-varying system is characterized by an impulse response h(t,τ) 

which describes the response at the observation time t to an impulse applied at the 

time of excitationτ, according to Claasen and Mecklenbräuker’s review [35]. They 

present the time-domain input–output relation for the class of LTV systems as  

( ) ( , ) ( )y t h t x dτ τ τ
∞

−∞
= ∫  

where x(t) and y(t) are the time-domain input and output signals of the system. This 

impulse response h(t,τ) corresponds to a bifrequency transfer function ( , )H ω Ω  

which is the Fourier Transform of h(t,τ) with respect to t andτ. 

( )( , ) ( , ) i tH h t e dtdω τω τ τ
∞ ∞ − −Ω

−∞ −∞
Ω = ∫ ∫  

Therefore, the frequency-domain input–output relation for the LTV systems is 

1ˆ ˆ( ) ( , ) ( )
2

y H x dω ω
π

∞

−∞
= Ω Ω Ω∫  

As the frequency band/bands of interest is the main concern, this infinite integral can 
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be truncated and approximated by  

1ˆ( ) ( , ) ( )
2

m N

m m
m N

y H xω ω
π

=

=−

= Ω Ω ∆Ω∑  

where 0 =0Ω  represents rigid modes and [ ]N Nω −∈ Ω Ω， denotes the frequency 

region of interest which covers a frequency band or all separate frequency bands of 

interest. The frequency region therefore consists of the frequency band/bands of 

interest and irrelevant frequencies. These irrelevant frequencies can be excluded if 

necessary. For the convenience of denotation, this discrete expression of the above 

frequency-domain input-output relation can be re-written as 

[ ][ ]ˆ ˆ( ) ( , ) ( )
2

T
N N N Ny H xω ω

π − − − −

∆Ω
= Ω Ω Ω Ω− −

 

By the same denotation, the time-varying substitution of Eqs. (3.2) - (3.3) and (3.5) 

become  

[ ] [ ]
[ ] [ ]

[ ]
[ ]

11 12

21 22

( )( ) ( , ) ( , )
( , ) ( , )( ) 2 ( )

Uc N NUc N N N N

N N N NUe Ue N N

κ κ κ

κ κκ

ω ω ω
ω ωω π

− −− − − −

− − − − − −

 Ω Ω Ω Ω Ω Ω  ∆Ω
=     Ω Ω Ω Ω Ω Ω      

FV H H
H HV F

−

− −

− −

−

 (3.9) 

[ ][ ]( ) ( , ) ( )
2L L N N L N Nκ κω ω
π − −

∆Ω
= Ω Ω Ω ΩV G F− −

                     (3.10) 

and 

( ) ( )
( )

( ) ( )
MU ML

M
MU ML

κ κ
κ

κ κ

ω ω
ω

ω ω
   

=   
  

F F
Z

V V
                                    (3.11) 

where ( , )ij N Nκω − − Ω Ω H −
, i,j=1,2, denotes the horizontal concatenation of 

matrices ( , ) ( , )ij N ij Nκ κω ω−Ω ΩH H  , and column vectors, like [ ]( )Uc N N− −Ω ΩF − , 

denotes the vertical concatenation of the values of original column vectors in Eqs. 

(2)-(3) and (5) at [ ]N N− −Ω Ω . Similarly, ( , )ij N N N Nω ω− − − Ω Ω H − −
denotes the 

 42 



vertical concatenation of matrices ( , )ij N Nκω − − Ω Ω H −

where N Nκ = − 
. Letting 

[ ] [ ]N N N Nω ω− −= Ω Ω− −
and combining Eqs. (3.9)-(3.11) and the compatibility and 

equilibrium conditions, the solution of the transmitted force to the foundation is 

solved. 

[ ][ ]1
2 12

2

[ ( )]

( , ) ( )

[ ( )]

L N N

N N N N Ue N N

L N N

ω ω
− −

−
− − − − −

− −

Ω Ω

= Ω Ω Ω Ω

Ω Ω

F
R H F

F

−

− − −

 −

                         (3.12) 

where  

[ ] [ ]2 11 2( , )
( )N N N N

L N N N N

ω ω
ω ω− − −

− −

 
 = Ω Ω    Ω Ω 

I
R H I Θ

G
− −

− −，
 

( ) ( )

( ) ( )

11 12

2

21 22

( ) ( )
2

2( ) ( )

M m M m

M m M m

π
π

∆Ω Ω Ω 
=  
 Ω Ω  ∆Ω 

diag Z diag Z
Θ

diag Z diag Z
 

Then, the total transmitted power in the frequency region of interest is obtained (see 

(Eq. (3.13))). The values at the irrelevant frequencies in this region can be excluded 

from [ ( )]L N N− −Ω ΩF −
 if they have significant influence on the total power 2wLP . 

[ ] [ ][ ]( )2 2 2
1 Re ( ) ( , ) ( )
2

H
wL L N N L N N N N L N NP ω ω− − − − −= Ω Ω Ω Ω Ω ΩF G F− − − −

(3.13) 

The transmission loss of this LTV system is given 

2

2

10log wU
TL

wL

PP
P

=                                                  (3.14) 

where [ ] [ ]( )2
1 Re ( ) ( )
2

H
wU Ue N N Ue N NP − −= Ω Ω Ω ΩF V− −

. 
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3.2 Vibration Control Using SMA Components in a 

Periodic Structure 

SMAs are a class of alloys well known for their shape memory effect - the ability to 

recover from plastic deformations to the original shape through the application of 

heat. This effect occurs when the material undergoes martensitic transformation – a 

phase transformation between a low-temperature-state martensite and a 

high-temperature-state austenite. During this transformation, the Young’s modulus 

will increase as much as three times, a distinct effect which runs alongside the shape 

memory phenomena. Accompanying it is the temperature hysteresis that may 

destabilize the vibration control system. However, this can be avoided if the 

displacement and stress are small [51, 54]. Therefore, this property of significantly 

varying modulus induced by martensitic transformation can be applicable to 

vibration control if the assumption of small displacement and stress is satisfied.  

 

In addition to the martensitic transformation, a rhombohedral phase (R-phase) 

transformation may be observed with the application of appropriate heat treatment. A 

little or none temperature hysteresis, but a significant variation of modulus, can be 

achieved by this R-phase transformation [55-56]. Another limitation of SMAs may 

be their relatively low yielding strength, for example SMA Nitinol [55]. Such plastic 

yielding may augment the hysteretic effect. Nonetheless, this shortcoming can be 
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circumvented by not supporting heavy structures or by adding non-SMA material 

with high yielding strength in parallel to the SMA structure. These two measures are 

conducive to satisfying the assumption of small deflection and stress which are 

indirectly required by this limitation. To sum up, with reasonable assumptions or 

appropriate heat treatment in place, SMAs can exploit their advantages of 

significantly varying modulus and bypass their disadvantages of temperature 

hysteresis and relatively low yielding strength, all for the purpose of vibration 

control. The assumption of small deflection and stress is adopted in this investigation. 

The hysteretic behavior indicates a complex elastic modulus, so a little hysteresis 

enables the material to be modeled by a real elastic modulus. To obtain proper 

Young’s moduli and achieve significant vibration attenuation, two methods are 

developed to take advantage of SMA materials and apply them to broadband 

vibration control. 

 

3.2.1 A Database Method for Static Regulation  

This approach is based on Eq. (3.8) or (3.14), and can be divided into the following 

steps for practical purposes. 

 

Firstly, based on the values obtained for the Young’s modulus of the SMA at 

different temperatures, the relation between the Young’s modulus E and temperature 
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T, E(T), can be established. The method to establish the relation E (T) is found in the 

work of Williams [56]. The Young’s modulus of the SMA can be changed to any 

value in the range of [E1, E2] with the change of temperature, where E1 and E2 are 

the lower and upper bounds of the Young’s modulus.  

 

Secondly, the relation PTL (E) in the range of [E1, E2] can be established by applying 

a unit impulse excitation (transformed as a unit load in frequency domain) 

correspondent to each DOF of motion being considered and calculating the 

transmission loss PTL at every value in the range. Subsequently, a database can be 

built to save the relation PTL (E) or PTL (T). It is suggested that the transmission loss 

PTL under other excitations is normalized to the PTL under a unit impulse excitation. 

 

Thirdly, for different PTL (T) curves, there are different pass and stop bands, and peak 

frequencies. The most proper PTL (T) curve, which covers the frequencies of interest, 

can be selected from the database according to the characteristics of the vibratory 

source (such as the peak frequencies of the power spectral density (PSD) and the 

frequency bands where energy is most intense). 

 

Finally, the temperature which corresponds to the most proper PTL (T) curve can be 

obtained, which leads to the maximum energy attenuation in the frequency region of 
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interest. 

3.2.2 Frequency-domain Steepest Gradient Method for 

Real-time Calculation 

The Young’s modulus of SMA may vary with temperature nonlinearly, but it is not 

necessary that the Young’s modulus of the SMA components changes with time 

nonlinearly. For a linear system, the optimal Young’s modulus of the SMA 

components is a fix value or a linearly time-varying value. Many numerical methods 

exist to solve an optimal parameter and minimize the transmitted power especially 

when its derivative is available [71]. One possible method is the steepest gradient 

algorithm. The frequency-domain steepest gradient algorithm is chosen herein 

because its principle is to achieve real-time updating by using the data in contain 

frequency bands or in whole frequency domain [72]. Before applying this algorithm 

to the systems examined in Section 3.1, Eq. (3.5) of a LTI system and Eq. (3.11) of a 

system with LTV sub-structures should be replaced by Eq. (3.15) such that the 

influence of continuously updated transfer matrix of periodic mounts on the response 

can be taken into account. 

11 12

21 22

ˆ ˆ( , ) ( , )( ) ( )
( ) ( )ˆ ˆ 2( , ) ( , )

M N N M N NMU ML N N

MU ML N NM N N M N N

κ κκ

κ κ κ

ω ωω
ω πω ω

− − − − − −

− −− − − −

    Ω Ω Ω Ω Ω Ω    ∆Ω    =     Ω Ω      Ω Ω Ω Ω    

Z ZF F
V VZ Z

− −

−

−

− −

 (3.15) 

where  

( )
( , ) ( )M n m M m E E n t
t

= ∆
Ω = ΩZ Z  

 47 



0 0

( )
ˆ ( , ) ( , ) ( )

c cn N n N
i n t i n t

M m M n m M m E E n t
n N n N

t e t e tκ ω κ ω
κω

= =
− ∆ ∆ − ∆ ∆

= ∆
= =

Ω = Ω ∆ = Ω ∆∑ ∑Z Z Z  

where t∆ is the sampling time, 
cNt is the current time and 

0Nt is the previous time; 

ˆ ( , )M mκω ΩZ , the discrete Fourier Transform of ( , )M n mt ΩZ , includes or is equal to 

ˆ ( , )M mκω ΩZ , the part of ˆ ( , )M mκω ΩZ  in the frequency region of interest. This is 

realized by guaranteeing ω∆ , the difference between κω  and 1κω + , is the integral 

multiple  of ω∆ . Combining Eqs. (3.2)-(3.3) and (3.15) and the compatibility and 

equilibrium conditions together, the transmitted force of a system with LTV mounts 

is obtained.  

[ ] ( )[ ] [ ]1
3 12 3

2( ) ( ) ( ) ( )T
L N N m Ue N N L N N

π−
− − −Ω Ω = Ω Ω Ω Ω Ω

∆Ω
F R diag H F F− −  −

    (3.16) 

where  

( ) ( )3 11 3( )m
L

 
= Ω    

 

I
R diag H I Θ

diag G
 

11 12

3

21 22

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

M N N N N M N N N N

M N N N N M N N N N

ω ω ω ω

ω ω ω ω

− − − −

− − − −

    Ω Ω Ω Ω    =
    Ω Ω Ω Ω    

Z Z
Θ

Z Z

− − − −

− − − −

， ，

， ，
 

Then, the total transmitted power of this class of systems in the frequency region of 

interest is solved, as a modification of Eq. (3.7). 

[ ] ( )[ ]( )3 3 3
1 Re ( ) ( )
2

H
wL L N N L L N NP − −= Ω Ω Ω ΩF diag G F− −

               (3.17) 

In a similar way, the transmitted force (as a modification of Eq. (13)) and the total 

transmitted power of a system with LTV machine foundation and mounts in the 

frequency region of interest are solved, by combing Eqs. (3.9)-(3.10) and (3.15) and 
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the compatibility and equilibrium conditions.  

[ ]

[ ][ ]

[ ]

1
4 12

4

( )
2 ( , ) ( )

( )

L N N

N N N N Ue N N

L N N

π ω ω

−

−
− − − − −

−

Ω Ω

= Ω Ω Ω Ω
∆Ω
Ω Ω

F

R H F

F

−

− − −

 −

                        (3.18) 

[ ] [ ][ ]( )4
1 Re ( ) ( ) ( )
2

H
wL L N N L N N N N L N NP ω ω− − − −= Ω Ω Ω Ω Ω ΩF G F− − − −，  (3.19) 

where  

[ ] [ ]4 11 4( , )
( )N N N N

L N N N N

Iω ω
ω ω− − −

− −

 
 = Ω Ω    Ω Ω 

I
R H Θ

G
− −

− −，
 

11 12

4

21 22

ˆ ˆ( ) ( )
2

2ˆ ˆ( ) ( )

M N N N N M N N N N

M N N N N M N N N N

ω ω ω ω
π

πω ω ω ω

− − − −

− − − −

∆Ω    Ω Ω Ω Ω    
=  
    Ω Ω Ω Ω     ∆Ω 

Z Z
Θ

Z Z

− − − −

− − − −

， ，

， ，

. 

 

As the purpose of this analysis is to obtain the optimal Young’s modulus of periodic 

components in the mounts, the power is differentiated with respect to E. 

( )( ) ( )( )3 3 3
3 3

1 Re Re
2

H
HwL L L

L L L L
dP d d
dE dE dE

 
= + 

 

F Fdiag G F F diag G              (3.20a) 

[ ] [ ]( )[ ]

[ ] [ ]( ) [ ]

4
4

4

4
4

( )
Re ( ) ( )1

2 ( )
( ) Re ( )

H
L N N

L N N N N L N N
wL

H L N N
L N N L N N N N

d
dP dE
dE d

dE

ω ω

ω ω

−
− − −

−
− − −

 Ω Ω
 Ω Ω Ω Ω
 =
 Ω Ω
+ Ω Ω Ω Ω 
 

F
G F

F
F G

−

− − −

−

− − −

，

，

   (3.20b) 

For the periodic structure with perfectly identical cells, the derivative of 3LF  is 

given,  

( ) 1( )k r −
=Z T  

( )
1

k
rd dr

dE dE
− −= −

Z TT  
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( ) ( )
11 12

( ) ( )
21 22

k k

M
k k

d d
dE dEd

dE d d
dE dE

    
    

    =              

Z Zdiag diag
Z

Z Zdiag diag
 

11 12

3

21 22

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

M N N N N M N N N N

M N N N N M N N N N

d d
d dE dE
dE d d

dE dE

ω ω ω ω

ω ω ω ω

− − − −

− − − −

    Ω Ω Ω Ω    
 =     Ω Ω Ω Ω    
  

Z Z
Θ

Z Z

− − − −

− − − −

， ，

， ，
 

( ) ( )
3 3

11( )
L

d d
dE dEκω

 
=     

 

IR Θdiag H I
diag G

 

( )[ ]1 13 3
3 3 12

2= ( ) ( ) TL
Ue N N

d d
dE dE κ

πω ω ω
ω

− −
−−

∆
F RR R diag H F −

 

Similarly, the derivative of 4LF  is solved. 

11 12

4

21 22

ˆ ˆ( ) ( )

2
ˆ ˆ( ) ( )2

M N N N N M N N N N

M N N N N M N N N N

d d
d dE dE
dE d d

dE dE

ω ω ω ω

π
ω ω ω ωπ

− − − −

− − − −

    Ω Ω Ω Ω ∆Ω    
 =     Ω Ω Ω Ω    
 ∆Ω 

Z Z
Θ

Z Z

− − − −

− − − −

， ，

， ，

[ ] [ ]
4 4

11( , )
( )N N N N

L N N N N

d dI
dE dE

ω ω
ω ω− − −

− −

 
 = Ω Ω    Ω Ω 

IR ΘH
G

− −

− −，
 

[ ][ ]1 14 4
4 4 12

2= ( , ) ( )L
N N N N Ue N N

d d
dE dE

π ω ω− −
− − − − −− Ω Ω Ω Ω

∆Ω
F RR R H F− − −

 

The optimal Young’s modulus of a mount with strictly identical cells can be 

approximately solved by the frequency-domain steepest gradient method [72]: 

*

1( ) ( )
T

w w
n n

dP dPE t E t IFFT
dE dE

µ+

    = +        
                           (3.21) 

where µ  is an adjustable parameter in the steepest gradient algorithm and 3w wLP P=  
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or 4w wLP P= , and ( )IFFT  represents the inverse FFT of which only the causal 

part (first half of the result) is used in the adaptation. The Young’s modulus of all the 

identical SMA inserts is updated in time domain by frequency-domain data, 

specifically by the total vibratory power in the frequency region of interest. wdP
dE

can 

be solved by Eq. (3.20) when the models of the machine, the foundation and the 

mounts are available, or can be approximated by numerical differentiation when it is 

lack of the information of these models.  When these models are available, the heat 

energy can be applied after the algorithm Eq. (3.21) converges (meanwhile the 

optimal Young’s modulus is obtained) rather than after each step of adaptation. This 

is why it can be called adaptive-passive control. When it is lack of model 

information and the heat energy has to be applied to the SMA components after each 

step of adaptation such that the response corresponding to every newly adapted 

Young’s modulus can be measured to approximately calculate the derivative wdP
dE

, 

the method can be called active control. The adaptive-passive control method is 

adopted here. 

 

To take advantage of the localization effect, disorder is intentionally introduced to 

the periodic inserts, and all inserts in a periodic mount may have different moduli. 

For the mounts whose periodic inserts are not identical in terms of the Young’s 

modulus, the derivative of power becomes 
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1 2

=w w w w

r

dP P P P
d E E E

 ∂ ∂ ∂
 ∂ ∂ ∂ E

， ， ，                                          (3.22) 

Since 3w wLP P=  or 4w wLP P= , the partial derivatives are governed by either one o f 

Eq. (3.23). 
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(3.23b) 

where the partial derivatives of 3LF  and 4LF are solved by the following steps. 
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The optimal Young’s moduli of a disordered periodic mount can be approximately 

obtained by the frequency-domain steepest gradient method [72]: 

*

1( ) ( )
T

w w
l n l n l

P PE t E t IFFT
E E

µ+

  ∂ ∂  = +    ∂ ∂    
                          (3.24) 

where lµ  is an adjustable parameter in the steepest gradient algorithm and 

( )IFFT  represents the inverse FFT of which only the causal part (first half of the 

result) is used in the adaptation. The Young’s moduli of all the disordered SMA 

inserts are updated in time domain by frequency-domain data, specifically by the 

total vibratory power in the frequency region of interest. Similar with wdP
dE

, 

w

l

P
E
∂
∂

can be solved by Eq. (3.23) when the models of all structures of the whole 

system are available, or can be approximated by numerical differentiation when 

these models are not available. The two adaptation modes, adaptive-passive mode 

and active mode, can be used to apply the algorithm Eq. (3.24) to control the system, 
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in the same way as used by Eq. (3.21). Whether it is adaptive-passive control or 

active control depends on when the heat energy is applied to the SMA inserts - after 

the visual adaptation of the Young’s modulus converges or after each step of 

adaptation. The adaptive-passive method is adopted here. 

 

For both the adaptive-passive adaption and the active adaptation of Eqs. (3.21) and 

(3.24), the variation of the structural parameters of the machine and foundation 

should be slower than the adaptation rate. For the adaptive-passive adaption, the 

speed of the crystalline phase transform of the SMA material should be faster than 

the convergence speed; for the active adaptation, this speed of the crystalline phase 

transform of the SMA material should be faster than the adaptation speed of the 

algorithm. The adjustable parameters µ and lµ  can be varied according to the 

transmitted power and the range of the Young’s modulus, according to the theory of 

the steepest gradient algorithm. If it is a time-varying system, µ and lµ  should be 

time-varying parameters. By adjusting µ and lµ , this method and the first method 

described in Section 3.2.1 can achieve same control effect. However, they are 

different in some aspects. The first method provides normalized transmission loss, 

but needs to examine the characteristics of the fluctuating external excitation 

frequently such that an optimal parameter can be selected based on these 

characteristics. The second method is exempted from this concern, but requires 
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adaptation. Additionally, when models become less valid because of the unexpected 

change occurring to the system, the database of PTL (T) obtained by the first method 

needs to be recalculated. However, the algorithm governing the second method can 

solve this problem because it is applicable to the situation without accurate models if 

shifting the mode of adaptive-passive adaptation to the mode of active adaptation. 

3.3 The Semi-two-dimensional Model 

To apply the above theory more extensively and offer an insight into the problems of 

the vibration isolation of three-dimensional nonrigid systems using periodic 

structures, a semi-two-dimensional model is provided (see Fig. 3-2(a)). The free-free 

beam on the top and the clamped-clamped beam on the bottom represent a machine 

and a foundation, respectively. Beams are the kind of uncomplicated structures 

which can be mathematically analyzed easily but possess an infinite number of 

modes. Hence, they are chosen here to form a realistic representation of nonrigid 

machines and foundations. The middle part lying between the free-free and the 

clamped-clamped beams is the modified version of Yun and Mak’s periodic structure 

[1]. This is chosen to be an isolating mount because: (1) the periodic structure has 

more than one mounting point and thus it is adequate to use one such structure to 

simulate the multi-mount situation; (2) it is complicated to the extent that it involves 

all the DOF of motion in a plane, namely the translational vibrations along the x and 

 55 



y axes and the rotation in the x-y plane; but (3) it is also simple to the extent that an 

analytical solution can be obtained without approximation. Therefore, this structure 

is a reasonable simulation for testing the vibration isolation problem of nonrigid 

systems. To realize broadband vibration control, it is proposed to use SMA 

transverse branches to create variable stop bands. It is further proposed that the two 

parallel beams vertically supporting the machine are of a non-SMA elastic material 

with high modulus so that the gravity of the machine cannot undermine the 

assumption of small deflection and stress. All the beams in this model have 

rectangular cross-sections for the convenience of derivation and numerical 

simulation. 
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(a)                              (b) 

Figure 3-2 The semi-two-dimensional system (a) and the compared system (b) 
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In this investigation, the translation along the x and y axes and the rotation in the x-y 

plane are considered as part of the employment of the semi- two-dimensional model. 

Therefore, the vectors of velocity and force at the jth contacting point are 

, ,
T

Uj jy j jxV V Vθ =  V and , ,
T

Uj jy jz jxF M F =  F where 1,2 ,j q= 
, and 3q = if only 

one periodic structure is used. For the free-free beam, the matrix of mobilities from 

UiF at an arbitrary position to UjV at another arbitrary position is Uj ji Ui=V B F , 

and ( )
3 3U ji q q×

=H B is the matrix of mobility composed of sub-matrices jiB .For the 

clamped-clamped beam, the matrix of mobilities from LiF at an arbitrary position 

to LjV at another arbitrary position is =Lj ji LiV C F  and ( )
3 3L ji p p×

=G C . jiB  and 

jiC  can be obtained by modal superposition based on the characteristic functions of 

beams [73]. For the periodic mount containing r cells, the transfer matrix (from the 

foundation to the machine) of r identical cells is ( )k r
M

−=Z T  where 

1 2 1 1 2 1
FV wv FV FV wv FV

− −=T S P S WS P S  is the transfer matrix (from the machine to the 

foundation) of one periodic cell. For the periodic structure with different cells, the 

transfer matrix (from the foundation to the machine) of r cells is modified as 

( ) 1( )
2 1

k
M r

−=Z T T T where 1 2 1 1 2 1
l FV wv FV l FV wv FV

− −=T S P S W S P S  is the transfer matrix 

(from the machine to the foundation) of one periodic cell. 

 

wvP , FVS and W  are defined by following parameters. Let subscript A and B 

represent the left and right vertical beams of the periodic mount and subscript C 
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represent the branches. Aρ , Bρ  and Cρ are the densities of them; AD , BD  and CD  

are the bending stiffness of them; Afk  and Bfk  are the flexural wave numbers of 

them; Alk  and Blk  are the longitudinal wave numbers of them; Ac , Bc  are Cc the 

acoustic speeds of the longitudinal waves of them; NL  is the length of the vertica l 

beams in each periodic cell and L  is the length of the branches. Then, the matrix 

governing the propagation of the coupled flexural and longitudinal waves, wvP , is 

expressed as  

( ),= , ,wv Af Al Bf BlP diag P P P P                                          (3.25) 

where ( ), , ,Af N Af N Af N Af Njk L k L jk L k L
Af e e e e− −=P diag , 

( ),Al N Al Njk L jk L
Al e e−=P diag , 

( ), , ,Bf N Bf N Bf N Bf Njk L k L jk L k L
Bf e e e e− −=P diag ,  

and ( ),Bl N Bl Njk L jk L
Bl e e−=P diag .  

 

The matrix describing the relation between the propagating waves and the velocities 

and forces, FVS , is governed by 

3 6

3 6

3 6

3 6

FA

FB
FV

VA

VB

×

×

×

×

 
 
 =
 
 
 

S O
O S

S
S O
O S

                                               (3.26) 

where 

2
A Af

AM
D k

R
jω

= ,
2

B Af
BM

D k
R

jω
= ,

3
A Af

AF
D k

R
jω

= ,
3

B Bf
BF

D k
R

jω
= , Al A AR cρ= , Bl B BR cρ= ,
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Al Al

FA AM AM AM AM

AF AF AF AF

R R
R R R R
jR R jR R

− 
 = − − 
 − − 

S , 

1 1

1 1 1 1
VA Af Af Af Afjk k jk k

 
 = − − 
  

S ,  

Bl Bl

FA BM BM BM BM

BF BF BF BF

R R
R R R R
jR R jR R

− 
 = − − 
 − − 

S , 

and 
1 1

1 1 1 1
VB Bf Bf Bf Bfjk k jk k

 
 = − − 
  

S . 

The matrices coupling the vertical beams A and B and a branch C in a periodic cell is 

1
6

6 6

F V

I

− −
=  
 

I W W
W

O
                                             (3.27) 

By defining Cfk L
Cf ef = , Clk L

Cl ef = ,
2

C Cf
CM

D k
jω

Ω = ,
3

C Cf
CF

D k
jω

Ω = , Cl C CR cρ= , 

sub-matrices FW  and VW take the following expressions 

1

1

CF CF CF CF

CM CM CM CM

cl cl
F j j

Cf CF Cf CFc Cf CF Cf CF
j j

Cf CM Cf CM Cf CM Cf CM
j j

cl Cl cl Cl

j j j

R R
j j

R R

f f f f
f f f f

f f

− − −

− −

−

Ω Ω − Ω Ω 
 Ω −Ω −Ω −Ω 
 −

=  − Ω Ω Ω − Ω 
 − Ω Ω − Ω Ω
 
−  

W , 
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and 1

1

1 1 1 1

1 1
Cf Cf Cf Cf

V j j
Cf Cf Cf Cf

j j
Cf Cf Cf Cf Cf Cf Cf Cf

j j
Cl Cl

jk k jk k

jk k jk k
f f f f

f f f f
f f

− −

− −

−

 
 − − 
 

=  
 
 − −
 
  

W . 

 

3.4 Numerical Simulation and Analysis  

Numerical simulations are conducted on the LTI semi-two-dimensional model (see 

Fig. 3-2(a)) and the LTI system for comparison (see Fig. 3-2(b)), and the first method 

in Section 3.2.1 is applied to examine the adaptive-passive control performance of 

the periodic mount.  Fig. 3-2(b) shares same parameters with Fig. 3-2(a) except that 

it does not have a periodic mount. The non-SMA vertical beams are assumed to have 

the same physical and geometrical parameters in every simulation, and the subscript 

N is used to denote all the parameters which belong to the left (beam A) and right 

(beam B) vertical beams in Section 3.3. All the numerical results are normalized to 

the nondimensional frequency rω ωΩ =  by defining a reference 

frequency ( )4
r N N N N NE I A Lω ρ=  , where ω  is angular frequency, and NL , NA , 

NI and NE  are the vertical length of each periodic cell, the area, the moment of 

inertia of the cross-section, and the Young’s modulus of the non-SMA vertical beams, 

respectively.  
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The three branches shown in Fig. 3-2(a) may be different in terms of their Young’s 

moduli in a simulation. Hereafter, they are referred to as “disordered branches” 

which is the opposite of identical branches, and their correspondent periodic 

structure is called the “disordered periodic structure” which is the opposite of a 

regular periodic structure or a structure with strict periodicity. The physical and 

geometrical parameters of the machine, the vertical beams, the branches, and the 

foundation in Fig. 3-2 are listed in Table 3-1. The physical parameters of the SMA 

material in Table 3-1 are provided by Hodgson [74], and the range of the Young’s 

modulus [E1, E2] is set as [30, 80] Gpa in this section. 

 

Table 3-1 The structural parameters of the systems in Fig. 3-2 

Structure 
Young’s modulus 
 (Gpa) 

Density 
(kg/m3) 

Loss 
factor 

Dimension 
(m×m×m) 

SMA branch 
Martensite 
Austenite 

 
28-41 

 
6450 

 
0 

 
0.03×0.03×0.3 

83 6450 0 0.03×0.03×0.3 

Two non-SMA supporting beams 
83.1 2000 0.02 0.03×0.03×0.9 
8.31 200 0.02 0.03×0.03×0.9 
8.31 2000 0.02 0.03×0.03×0.9 

Machine (free-free beam)  380 1900 0.02 0.03×0.03×0.6 
Foundation (fixed-fixed beam) 380 1900 0.02 0.03×0.03×0.6 

 

The external excitation shown in Fig. 3-2 is expressed as 

3 3 3 3, ,
T

Ue U y z xF M F = =  F F  , which represents the forces along the x and y axes and 
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the moment in the x-y plane. The unit impulse excitations (transformed as unit forces 

in frequency domains) - the vertical force [1,0,0]Ue =F , moment [0,1,0]Ue =F , and 

horizontal force [0,0,1]Ue =F - are separately applied to the systems at the third 

contact point (j = 3). The relationship between the power transmission loss and the 

Young’s moduli of the three branches of the semi- two-dimensional model is 

investigated according to the procedures outlined for the database approach, and the 

curves of the relationship are depicted in Figs. (3-3)-(3-5). Figs. (3-3)-(3-5) 

correspond to the three sets of the parameters of the vertically supporting beams 

listed in Table 3-1 - 83.1NE = Gpa and 2000Nρ = kg, 8.31NE = Gpa 

and 200Nρ = kg, and 8.31NE = Gpa and 2000Nρ = kg. In each of these figures, the 

first two ((a), (b)), the middle two ((c), (d)), and the final two ((e), (f)) graphs 

illustrate the transmission losses under the vertical force, the moment and the 

horizontal force respectively, and the enveloping lines of these transmission losses. 

The first, third, and fifth graphs ((a), (c), and (e)) in Figs. (3-3)-(3-5) depict the 

transmission losses in the situation where the periodic mount has identical branches, 

while the remainder ((b), (d), and (f)) describe the scenario with disordered branches. 

Overall, there are 18 graphs in Figs. (3-3)-(3-5), which correspond to the three sets 

of parameters of the vertical non-SMA beams, the three external loads, and the two 

situations of branches. 
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Transmission losses in the situation of identical branches are calculated at the 21 

values of Young’s modulus equally distributed in the range of [30, 80] Gpa, but only 

the curves when E = [30, 32.5, 42.5, 52.5, 62.5, 72.5] Gpa are depicted in the first, 

third, and fifth graphs in Figs. (3-3)-(3-5). In each graph, the dashed line is the curve 

of the transmission loss when E = 30 Gpa, and the other five lines (thin and solid) 

represent the transmission losses at the other five values. These curves are analyzed 

in the frequency band situated above the value approximately five times the 

reference frequency Figs. (3-3)-(3-4) and approximately ten times that in Figs. 3-5. 

This is because the transmission losses in the lower frequency band are decided 

mainly by the parameters of the vertical beams and the parameters of branches have 

only a minor influence. By comparing the dashed lines in Fig. 3-3(a), Fig. 3-4(a) and 

Fig. 3-5(a), it can be seen that after changing the physical parameters of the 

supporting beams in design stage, the minimum level of transmission losses 

increases but the peaks of the transmission loss curves remain separate. This 

indicates that the stop bands exist separately and the pass bands are not canceled, 

since the former are associated with the peak frequencies. It implies that although the 

structural parameters of the non-SMA components of the periodic mount can be 

selected to cover different frequencies of at design stage, the fixed stop-bands may 

not cover the variations of the frequencies of interest once the isolator is installed. 

Therefore, the effort in design stage may not guarantee a satisfactory control effect 
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after the installation of an isolator since the frequency of interest may change with 

the operating and environmental conditions. Moreover, although the minimum level 

of transmission losses achieved by changing the parameters of the non-SMA 

components in the design stage can be increased, this insignificant increase cannot 

compensate for the drawback caused by the slight extension of the stop bands. This 

is because in stop bands characteristic waves (that is, fundamental waves 

propagating along a periodic structure) decay exponentially and this exponential 

attenuation leads to a significant increase of transmission loss. Hence, in the situation 

that the stop bands cannot widened considerably by selecting the parameters of the 

unadaptable components (like the non-SMA beams) in design stage, adjusting the 

parameters of components made of the smart material after installation is a 

reasonable choice. By comparing the six curves in one of the three graphs, it can be 

seen that with the increase in modulus of the SMA branches after installation, the 

peak frequencies of the transmission loss curves shift from the dashed line on the left 

to the thin solid line on the right. This implies that the stop bands are movable and 

indeed do move to the right with the increase in modulus of the SMA branches. With 

this shift of the stop bands, the frequencies of interest, including the peak frequencies 

of the PSD of the vibratory source, may be covered. Furthermore, by increasing the 

modulus and moving stop bands, the enveloping line (black, thick, and solid) is 

formed. This curve is formed by the combination of the stop bands of all 
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transmission loss curves, and meanwhile by the maxima of all the transmission 

losses at every frequency value. It therefore represents the ability of the SMA 

branches to attenuate broadband vibration transmissions since it has the widest stop 

bands and the maximum transmission loss obtainable in the range of [30 80] Gpa. 

The frequencies of interest can therefore be covered as long as these frequencies are 

located in the broad stop bands of the enveloping line. A similar control effect can be 

observed in the other graphs in Figs. (3-3)-(3-5). 

 

Transmission losses in the disordered branches scenario are calculated at the 7 values 

of Young’s modulus that are equally distributed in the range of [30, 80] Gpa, which 

are depicted in the second, fourth, and sixth graphs ((b), (d), and (f)) in Figs. 

(3-3)-(3-5). An enveloping curve is formed in each graph, which also indicates the 

optimal transmission loss obtainable within the range of [30, 80] Gpa. Fig. 3-6 

compares the enveloping curves in the first graphs (the identical branches) and 

second graphs (the disordered branches) in Fig. (3-3)-(3-5) and the transmission loss 

of the compared system in Fig. 3-2(b). In each graph of Fig. 3-6, the transmission 

loss of the compared system, denoted by a thin and solid line, is at a much smaller 

level. Furthermore, the peak frequencies are separate, and the stop bands associated 

with them are narrow. This contrast shows the advantages of the periodic mount over 

two rubberlike mounts (two vertical beams).  
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Figure 3-3 Enveloping lines ( ) and transmission losses when 83.1NE = Gpa 

and 2000Nρ = kg: (a) Vertical force and identical branches; (b) Vertical force and 

disordered branches; (c) Moment and identical branches; (d) Moment and disordered 

branches; (e) Horizontal force and identical branches; (f) Horizontal force and 

disordered branches. 
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(e)                                     (f) 

Figure 3-4 Enveloping lines ( ) and transmission losses when 8.31NE = Gpa 

and 200Nρ = kg: (a) Vertical force and identical branches; (b) Vertical force and 

disordered branches; (c) Moment and identical branches; (d) Moment and disordered 

branches; (e) Horizontal force and identical branches; (f) Horizontal force and 

disordered branches. 
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Figure 3-5 Enveloping lines ( ) and transmission losses when 8.31NE = Gpa 

and 2000Nρ = kg: (a) Vertical force and identical branches; (b) Vertical force and 

disordered branches; (c) Moment and identical branches; (d) Moment and disordered 

branches; (e) Horizontal force and identical branches; (f) Horizontal force and 

disordered branches. 
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(c) 

Figure 3-6 Enveloping line in the situation of disordered branches ( ) , enveloping 
line in the situation of identical branches ( ) , and the transmission loss in the 
situation of no branches ( ): (a) Enveloping lines from Fig. 3-3(a) and Fig. 3-3(b); 
(b) Enveloping lines from Fig. 3-4(a) and Fig. 3-4(b);  (c) Enveloping lines from Fig. 
3-5(a) and Fig. 3-5(b). 
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In addition, it can be seen in every graph of Fig. 3-6 that the vibration control 

performance achieved by the disordered periodic mount (the black solid line) is 

better than that achieved by the regular mount (the red dashed line). Only three 

branches are considered here, so the number of random combinations of branches in 

terms of Young’s modulus is the cube of seven. The superiority of the disordered 

branches in a periodic mount will be prominent if more periodic cells are added. 

3.5 Experimental Study 

This experiment is employed to indirectly demonstrate the correctness of the 

derivation about the periodic mount in Section 3.3 through the comparison of 

analytical and experimental characteristic waves of a periodic structure. In this 

section, the relations between the transition and transfer matrices of a finite periodic 

structure and the characteristic waves (Bloch waves) are analyzed. It is found that 

they are varied with the change of the location on the periodic structure. However, 

they can be approximated respectively by two common matrices. One is provided to 

represent the common relation between all the transition matrices at different 

positions and characteristic waves; the other is provided to represent the common 

relation between all the transfer matrices at different positions and characteristic 

waves. Propagation constants of the characteristic waves can be extracted from a 

common matrix, and this common matrix can be constructed by responses. This 
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approach to acquire characteristic waves is a significant departure from the 

theoretical methods, like transfer matrix method [1, 5] and propagation wave 

method[41-43].  

 

3.5.1 Junction moblities 

For a general one-dimensional or semi- two-dimensional infinite periodic structure, 

each periodic sub-structure is coupled with two adjacent sub-structures through n  

motion coordinates. The transmission relation of n  motions from one periodic 

element to the next can be described by the transfer matrix [1, 5, 41], 

1,
1

, 1, 2m m
m m

m+
+

   
= = ∞   

   

V V
T

F F
                                    (3.28) 

where V and F  represent the n-dimensional velocity vector and the force vector, 

and the subscript m  indicates the order number of the coupled location of the n  

motions. The transfer matrix 1,m m+T  can be decomposed as 

11

1,m m

−−
+ − + −

+
+ − + −

    
=     
    

v v v vΛ
T

f f f fΛ
                              (3.29) 

Where Λ  is a n n×  diagonal matrix whose elements are ( 1, 1 )k k k nλ λ ≥ =  . 

1 kλ  is the adjoint eigenvalue of kλ . Here, ( )lnk k Rk Ikiµ λ µ µ= = +  expresses the 

negative-going wave as one member in a pair of characteristic ‘propagation 

constants’ while ( )ln 1k kµ λ− =  is the other member and represents the 

positive-going waves, when Rkµ  and Ikµ  are defined as positive numbers. The real 
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part Rkµ  is the ‘attenuation constant’, describing the exponential attenuating rate, 

and the imaginary part Ikµ  is the ‘phase constant’, representing the change in phase 

of the kth characteristic waves. In the light of the relation between an eigenvalue λ  

and the corresponding propagation constantµ , Λ  is denoted as µ
Λe . 

1

1,m m

µ

µ

−−
+ − + −Λ

+
+ − + −Λ

    
=     
    

v v v ve
T

f f f fe
 

 

Based on the above periodic structure theory and parameters, the mobility of each 

junction of N-periodicity finite periodic structures has been derived [75] and the 

general expression of the mobility from jth junction to mth junction, mjY , is  

1 1( )
mj mj j

mj Rmj Ljj RjjI − −

=


= +

V Y F

Y Y Y Y
                                          (3.30) 

where  

1( ) ( )j j j j
Ljj A A

µ µ µ µ− − −
+ Λ − Λ + Λ − Λ= + × − −Y v e r v e f e r f e  , and 

( ) ( ) ( ) ( ) ( ) ( ) 1( ) ( )m j m j N j N j N j N j
Rmj B B

µ µ µ µ µ µ− − − − − − − − − − − −
+ Λ − Λ Λ Λ + − Λ Λ= + × +Y v e v e e r e f f e r e  

and Ar  and Br  are respectively the left and right boundary reflection factors 

related to the left and right boundary impedances. 

 

Using a similar derivation procedure to Friss and Ohlrich, the transfer function 

matrix mjZ  from the applied forces at the jth junction ( jF ) to force responses at the 

mth junction ( mjF ) can be deduced from the conditions of the continuity of velocity 

 72 



and equilibrium between the applied and inner forces. 

1 1( )
mj mj j

mj Rmj Ljj RjjI − −

=


= +

F Z F

Z Z Y Y
                                         (3.31) 

where 

( ) ( ) ( ) ( ) ( ) ( ) 1( ) ( )m j m j N j N j N j N j
Rmj B B

µ µ µ µ µ µ− − − − − − − − − − − −
+ Λ − Λ Λ Λ + − Λ Λ= + × +Z f e f e e r e f f e r e  . 

 

3.5.2 The relation between Transition and Transfer Matrices 

of Finite Periodic Structures and Characteristic Waves 

The transfer matrix method is widely used to analyze characteristic waves within 

infinite periodic structures. For finite structures, a different term, the ‘transition 

matrix method’, is adopted herein to govern the relation between the transfer matrix 

of a finite periodic structure and the characteristic waves. The transition matrix for 

two adjacent periodic cells of a finite periodic structure is defined as the relation of 

their mobilities, 

1, 1,
fin

m j m m mj+ +=Y T Y                                                  (3.32) 

then, based on the formulas of mobilities governed by Eq. (3.30), the relation 

between the transition matrix and the characteristic waves takes the following 

expression [see Eq. (3.33)]. 

[ ] [ ]{ } 1
1, , ,fin

m m

µ

µ

−
−Λ

+ + − + −
Λ

 
= × 

 

e
T v v M v v M

e
                          (3.33) 

where 
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( )

( ) ( ) ( )

m j

m j N j N j
B

µ

µ µ µ

− −
Λ

− − − − −
Λ Λ Λ

 
=  
  

e
M

e e r e
. 

Similarly, the relation between the transfer matrix of a finite system and 

characteristic waves can be described by Eq. (3.34) after some mathematical 

manipulations to Eqs. (3.30) and (3.31).  

1, ,
1,

1, ,

m j m jfin
m m

m j m j

+
+

+

   
=   

      

Y Y
Tr

Z Z
 

where 

1

1,
fin

m m

µ

µ

−−
+ − + −+Λ

+
+ − + −Λ

    
= ×    
    

v v v ve
Tr MM

f f f fe
                       (3.34) 

where the superscript ’+’ represents M-P inverse. 

 

The matrices governed by Eqs. (3.33) and (3.34) have three properties. Based on the 

following discussions about these properties, a common matrix for each of them will 

be defined in terms of the responses of finite periodic structures. 

 

Firstly, the two matrices have smaller ranks. Unlike the transfer matrix of infinite 

periodic structures, the rank of 1,
fin

m m+T  and 1,
fin

m m+Tr  is n , which is equal to the 

degrees of freedom of motion but exactly half the rank of the transfer matrix of 

infinite periodic structures. That is because the negative-going characteristic waves 

are correlated with the positive-going waves. In fact, the former are constructed from 

the latter by the boundary reflection. If the mobilities do not have a full rank due to 
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the incomplete excitation of characteristic waves, the rank of 1,
fin

m m+T  and 1,
fin

m m+Tr  

may be less than n . In this case, the eigenvalues of the transition matrix 

corresponding to the unexcited characteristic waves are zero, but Eqs. (3.33) and 

(3.34) can still represent the relation on the basis of the theory of generalized inverse. 

The generalized inverse of a diagonal matrix whose elements are ( 1, 2 )k k nλ = 
 is 

also a diagonal matrix, and the diagonal elements are ( 1, 2 )k k nλ+ = 
 [75]. kλ

+  is 

defined as 

1 , 0,
0, 0.

k k
k

k

λ λ
λ

λ
+ ≠
=  =

 

Therefore, Eqs. (3.33) and (3.34) can change their forms into Eqs. (3.35) and (3.36), 

in order to explicitly represent both the fully and partly excited situations. 

[ ] ( ) [ ]{ } 1
1, , ,fin

m m

µ

µ

+
−Λ

+ + − + −

Λ

 
 =
  

eT v v M v v M
e

                          (3.35) 

( ) 1

1,
fin

m m

µ

µ

+ −
+ − + −+Λ

+
+ − + −Λ

    
 = ×   
     

v v v veTr MM
f f f fe

                     (3.36) 

 

Secondly, they vary with the change of m . However, the expressions on the 

right-hand of Eqs. (3.35) and (3.36) are nearly in the form of eigenvalue 

decomposition, although m  is a variable. More specifically, the matrix at the right 

side of the diagonal matrix is the least-square approximation of the inverse of the 

matrix at the left side of the diagonal matrix for Eq. (3.35); for the other formula, the 

left matrix of the diagonal matrix is the least-square approximation of the inverse of 
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the right matrix. The process to prove that they are least-square approximations is 

elaborated as follows. 

 

For Eq.(3.35), the product of the left [ ],+ −v v and the right matrix 

[ ]{ } 1
,

−

+ −M v v M of the diagonal matrix in Eq. (3.35) is always a unity matrix (see Eq. 

(3.37)). Also, according to the definition and properties of the generalized inverse 

[76-77] the left matrix is always the {1, 2, 4}- inverse of the right matrix and the right 

matrix is always the {1, 2, 3}-inverse of the left. This kind of reciprocal inverse is 

very close to the unique M-P inverse in terms of properties, since the M-P inverse is 

also called the {1, 2, 3, 4}-inverse. Hence, even if the number m changes, all 

1,
fin

m m+T approach a common unique matrix finT . 

[ ] [ ]{ } 1
, ,

−

+ − + −× =v v M v v M I                                       (3.37) 

 

For Eq. (3.36), a similar analysis also makes sense. The left matrix of the diagonal 

matrix is always the {1,3}-inverse of the right matrix, so the following inequality 

holds, 

1 1
2, nMM C

− −
+ − + − + −+ +

+ − + − + −

       − ≤ − ∈      
       

v v v v v v
MM I x I x

f f f f f f
      (3.38) 

where   denotes the Euclidean norm. That is to say, among all 2nC∈x , the left 

matrix of the diagonal matrix is the least-square solution of Eq. (3.39). 
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1−
+ −+

+ −

 
= 

 

v v
MM x I

f f
                                            (3.39) 

This means the product of the right and left matrices has the least-square error with 

the unity matrix. Therefore, even if the order number of the junction m  is different, 

all 1,
fin

m m+Tr are close to a common unique matrix finTr .  

 

Thirdly, the errors between individual and common transition matrices can be 

decreased by exciting fewer characteristic waves. Another thing worth mentioning is 

that the fewer the excited characteristic waves, the smaller the norm of the difference 

between the reduced matrix of the product of the left and right matrices and the unity 

matrix with the same rank, for any one equation in Eqs. (3.35) and (3.36). The 

reduced matrix is made up of the non-zero rows and columns of the product of the 

right and left matrices in either Eqs. (3.35) and (3.36) by eliminating the zero rows 

and columns of the product. Hence, the smaller the number of excited characteristic 

waves, the closer the right expressions of Eqs. (3.35) and (3.36) approach the ideal 

form of the eigenvalue decomposition, and the smaller the differences between each 

of 1,
fin

m m+T  and finT  and 1,
fin

m m+Tr  and finTr . 

 

Therefore, based on the above mathematical analysis of the three properties of the 

two matrices of finite periodic structures, it is reasonable to describe the common 

transition matrices finT  and finTr  by Eqs. (3.40) and (3.41). In other words, 
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although m  is a variable and the two matrices change with it, it is also feasible to 

construct the common matrix for either Eqs. (3.35) and (3.36). From the responses of 

a finite periodic structure. For a periodic structure with n  coupled motion ( 2n  

characteristic wave-types), n  periodic elements and 1n + junctions are adequate 

for the identification of all characteristic waves by the decomposition of a common 

matrix, implied by Eqs. (3.40) and (3.41).  When the number of excited 

characteristic waves is smaller than n , the number of the response vectors in the 

response matrices can be decreased. As the boundary impedances of different finite 

periodic structures will change considerably, it is difficult to propose a specific 

standard method to simplify the matrix M and then to make the expressions at the 

right side of Eqs. (3.35) and (3.36) explicitly approach the ideal form of eigenvalue 

decomposition as closely as possible. However, the guiding principle is that exciting 

fewer characteristic waves will probably lead to more accuracy. Considering the 

symmetrical feature of the dual- layer structure, responses excited by only two 

symmetrical and antisymmetrical loads can be applied to yield the two common 

matrices in the following section. Moreover, Eqs. (3.40) and (3.41) might produce 

better identification performance of characteristic waves if a finite structure has 

heavy damping materials added, as discussed by Heckl [78]. Nevertheless, the 

method governed by Eqs. (3.40) and (3.41) differs from the traditional approach of 

solving one periodic element independently because performance is not dominated 
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by the added damping. 

1
, 1, 1, 1 2,[ , ] [ , ]fin

n j j n j j j j n j n j j jj
−

+ + − + + − + −= ×T V V V V V V                     (3.40) 

1

, 1, 1, 1, 2,

, , , , , ,fin

n j j n j j j j n j j n j j jj

−

+ + − + + − + −

                 = ×              
                 

V V V V V V
Tr

F F F F F F
 

  (3.41) 

 

This process of derivation can be analogical with substructure coupling in vibration 

modal analysis when each periodic element is regarded as one substructure of the 

finite structure. In addition, for vibration modal analysis, all frequencies of interest 

should be covered, and some modes may be excited separately for the ease and 

accuracy of uncoupling of the equation of motion. Likewise, the method governed by 

Eqs. (3.40) and (3.41) cover all characteristic wave-types, and exciting fewer 

characteristic waves may lead to easier decoupling and higher accuracy. However, 

they are different processes. Vibratory modal analysis is the process to determine 

resonance frequencies, modal coordinates, and mode shapes. But, the decomposition 

of transition matrices is used to determine propagation constants instead of modal 

frequencies. Also, coordinate transformation results in characteristic waves (Bloch 

waves) herein rather than modal coordinates. 

 

3.5.3 Experiment 

An experiment is conducted to directly verify the analysis of the common relation 
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between all the transition matrices (or transfer matrices) at different positions and 

characteristic waves and to indirectly verify the derivation of the transfer matrix of 

the finite periodic mount in Section 3.3. As shown in Fig. 3-7, a dual-beam structure 

is suspended by elastic strings to ensure free vibration. Since three degrees of 

freedom for each junction were considered, the dual-beam structure is designed to 

have six periodic elements and seven junctions because the transition matrix has a 

maximum rank of six, based on the analysis in Section 3.5.2. It consists of two 

parallel beams and seven branches, fastened tightly at the beam-branch connection 

parts by steel screws to retain total coupling. The connection parts have a length of 

around 1.7 mm. The other parameters of the dual-beam finite periodic structure are 

listed in Table 3-2 and some of them are indicatively illustrated in Fig. 3-8, which 

also shows the three degrees of freedom.  

 

 

Figure 3-7 Experimental system 
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The dual- layer periodic structure was excited longitudinally by a vibration exciter 

(Ling Dynamic System Type V403) fed with white noise. A force transducer (PCB 

ICP F-sensor 208C02) was placed between the vibration exciter and the driven beam 

to measure the applied force. Data acquisition (DAQ) was realized by the assembly 

of NI equipment, namely, NI USB-9233 and 9234 embedded in chassis NI 

cDAQ-9174 on the ground and a host PXI-1042Q with embedded controller 

PXI-8187 on the table in Fig.3-7. The Kapro-781 P GENESIS™ Level was used to 

calibrate the horizontality of the suspended structure. When the data were not 

acquired simultaneously, they were normalized by dividing by the exciting force in 

the frequency domain. 

 

Table 3-2 The parameters of each periodic element of the experimental structure 

 
Main 

Material 

Density 

(kg/m3) 

Young’s 

modulus (N/m2) 

Assumed Loss 

factor 

Dimension 

(mm) 

Beam aluminum 2668 5.38×1010 0.01 

Width d1 38.1 

Length d2 500 

Thickness d3 5.9 

Branch iron 7560 1.15×1011 0.01 

Width l1 38.1 

Length l2 320 

Thickness l3 1.5 
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Figure 3-8 Finite dual-layer periodic structure 

 

The junction-responses were measured by several accelerometers of the same type 

(B&K Type 4394), whose layout can be seen in the amplified pictures in Fig. 3-7. 

The horizontal response of each junction was computed as the average of two signals 

from the front and back sides of the beam. The vertical response of each junction 

was represented by the average of the outputs of the eight accelerometers. The four 

sensors at the top surface of the beam were symmetrical with those at the bottom, 

and the left four sensors were symmetrical with those on the right along the virtual 

line between the two screws. Rotational vibration was calculated by the difference 

between the averaged vibration from the left four and that from the right four 

accelerometers, divided by the horizontal distance between them. The positions of all 

accelerometers at the top, bottom, front and back sides of the beam were fixed and 

adjusted by the white design labels on it (see details in Fig. 3-7). 
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In order to show the measurement accuracy and provide support for the response 

superposition in the later part of this section, the responses of the dual- layer finite 

periodic structure under one longitudinal force were measured. The mobilities from 

the force longitudinally applied at the left endpoint of the upper beam, 1F  to the 

velocities of each junction were compared with the theoretical results. The 

comparison included the horizontal (horizontal velocities divided by the force 

applied), vertical (vertical velocities divided by the force applied) and rotational (the 

rotational velocities divided by the force applied) mobilities. A set of comparison 

results, measured mobilities and theoretically predicted mobilities of the sixth 

junction is displayed in Figs. 3-9, 3-10, and 3-11, which demonstrate good 

agreement between experimental and predicted mobilities. 
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Figure 3-9 Comparison of horizontal mobility of the sixth junction: (---) experiment; (—) 
theoretical prediction 
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Figure 3-10 Comparison of vertical mobility of the sixth junction: (---) experiment; (—) 
theoretical prediction 
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Figure 3-11 Comparison of rotational mobility of the sixth junction: (---) experiment; (—) 
theoretical prediction 

 

For this type of periodic structure, responses under symmetrical force excitation are 

equivalent to the superposition of those under single forces applied at the left 

endpoint of the upper and lower beams respectively. When all measurements cannot 

be finished at the same time, acquired data are normalized by dividing the responses 

by the exciting force so that the superposition can be realized. In order to excite 
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fewer characteristic waves and so reach a higher level of accuracy, only two 

independent forces, namely 1F   and 2F  in Fig. 3-8, were separately applied to the 

system. The responses under two simultaneously applied symmetrical longitudinal 

forces were then simulated by the superposition of the normalized responses. In this 

case, Eq. (3.41) was used to obtain symmetrical characteristic waves. The resultant 

data for the decomposition of the common transition matrix were smoothed by 

applying low-order moving filters, since there were some discontinuities of 

propagation constants due to calculation errors. As near-field characteristic waves 

attenuate drastically, it is very hard to extract them accurately from experimental 

responses. Hence, what was obtained for this section was the remaining two pairs of 

symmetrical characteristic waves. The attenuation constants of the two 

positive-going symmetrical characteristic wave-types were compared with those of 

the two negative-going symmetrical characteristic wave-types obtained by the 

decomposition of the transfer matrix represented in Fig. 3-12. It is obvious from 

Fig.3-12 that the attenuation constants of the two types of theoretical negative-going 

characteristic waves are symmetrical with those of the experimental positive-going 

waves.  

 

Similarly, responses under antisymmetrical force excitation were obtained by the 

superposition of normalized responses under two separately applied forces 1F  and 
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2F− . Eq. (3.41) was utilized to obtain two pairs of antisymmetrical characteristic 

waves. The resultant data for the decomposition of the common transition matrix 

were smoothed by low-order moving filters, since there were some discontinuities of 

propagation constants due to calculation errors. Also, the pair of antisymmetrical 

near- field characteristic waves was not gained due to their fast attenuation during 

propagation. The attenuation constants of the two types of positive-going 

characteristic waves extracted from the common transition matrix of the finite 

structure were compared with those of the two types of negative-going waves 

predicted by simulation in Fig.3-13, and also show a very close match. 
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Figure 3-12 Attenuation constants of symmetrical characteristic wave-types: (—) 
experiment; (---) theoretical prediction 
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Figure 3-13 Attenuation constants of antisymmetrical characteristic wave-types: (—) 
experiment; (---) theoretical prediction 

 

In addition, when independent applied forces are not fewer than four, Eq. (3.40) can 

also be utilized to obtain the propagation constants of the four pairs of characteristic 

waves by exciting the dual- layer periodic structure respectively using symmetrical 

loads and antisymmetrical loads. This was not done in this experiment. 

3.6 Summary   

This chapter has developed the application of a semi-two-dimensional dual-beam 

periodic structure to the broadband vibration isolation, and uses a 

semi-two-dimensional model containing this structure to investigate the general 

problem of broadband vibration control using periodic structures. SMA branches are 

proposed as parameter-tunable components in the periodic structure to adapt the 
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location and broaden the widths of stop bands, and non-SMA supporting beams are 

also presented to avoid the possible hysteresis induced by a large vertical 

displacement. Governing equations of the transmitted responses of a nonrigid system 

isolated by any number of periodic structures is derived. Based on the derived results, 

two methods are proposed to determine the proper Young’s moduli of the SMA 

branches and maximize the power transmission loss. The experiment indirectly 

demonstrates the correctness of the derived results of the non-rigid system. 

Numerical simulations are conducted on this semi- two-dimensional model, and the 

results demonstrate that the dual-beam periodic structure with SMA branches, when 

appropriate heat is applied, can bring about the effective control of the broadband 

vibration of a nonrigid system. This indicates that the methodologies are feasible and 

effective in determining the proper values of the parameter-adjustable components in 

a periodic mount. The numerical results also demonstrate that a periodic mount 

disordered by the random combination of different moduli of branches may achieve 

better performance than the regular periodic mount. This superiority is predicted to 

become increasingly prominent as the number of branches increases because more 

combinations can be created. The method to determine proper Young’s moduli and 

the conclusions of this chapter are also applicable to a three-dimensional nonrigid 

system, because this model is a realistic representation of the general vibratory 

system and the theoretical development set out here is not limited to the 
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semi-two-dimensional system. Nevertheless, a three-dimensional version of the 

dual-beam periodic mount is needed to be proposed in order to explore its practical 

application to the broadband vibration control of a realistic system.  
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Chapter 4 

AAnn  AAccttiivvee  VViibbrraattiioonn  CCoonnttrrooll  SSyysstteemm  ffoorr  
PPeerriiooddiiccaallllyy  TTiimmee--vvaarryyiinngg  SSyysstteemmss  

Based on literature review about the problem of active control, it is known that many 

AVC systems based on the widely applied filtered-x least mean squares (FXLMS) 

algorithm employ two coupled adaptive processes – online modeling or 

identification and controller updating – to track the parametric change and realize the 

real-time updating of the control signal. Errors in one process can affect the other. 

When one process converges, it takes several samples for the other process to 

converge. After they both converge, it is difficult to tell whether the controller is 

optimal or not. Therefore, it is difficult to evaluate the influence of the coupling 

effect and perform a rigorous derivation. In this study, a new AVC system with 

adaptive identification and nonadaptive control to avoid the coupling effect is 

proposed. In this system, the convergence of system identification and the 

optimization of the controller are synchronized: The controller drives the 

identification process to converge, and the controller is optimized the moment the 

identification process converges; the convergence and robustness of the 

identification process make it likely that an optimal controller will be obtained using 

the identified model. The robustness of the identification process and the 
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optimization of the controller are proved by rigorous derivation. Simulation results 

are presented to verify the stability and effectiveness of the proposed AVC system. 

The algorithms for both of these processes will be rigorously derived in sections 4.2 

and 4.3. Numerical results will be presented in section 4.4 to demonstrate the 

stability and effectiveness of the new AVC system. 

4.1 Background Information and Objectives 

A typical AVC system can be described by a block diagram (Fig. 4-1), where 

poH , sH , rH , and cH are the primary path, secondary path, reference path, and the 

controller respectively and ˆ pow  and ˆ sw are finite impulse response (FIR) adaptive 

estimators of poH and sH . With the sensor for the reference signal ( )r n  sufficiently 

collocated with the primary disturbance ( )d n , the reference path rH is a 

minimum-phase system with a stable inverse. Therefore, Fig. 4-1(a) is equivalent to 

Fig. 4-1(b) since the equivalent primary path 1
p r poH H H−= . It is commonly assumed 

by many researcherssta that primary and secondary paths can be approximated, with 

acceptable errors, by FIR filters. This study is based on the same assumption, and so 

the AVC system resulting from it will be applicable to any PTV systems which 

satisfy this assumption. 

 

Assuming that the output under control ( )y n  is governed by the regression model of 
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Eq. (4.1), the estimated output under control ˆ( )y n  can be expressed by Eq. (4.2).  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
p s p sy n y n y n n n n n v n n n v n= + = + + = +w r w u w X      (4.1) 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
p s p sy n y n y n n n n n n n= + = + =w r w u w X                 (4.2) 

In Eqs. (4.1) and (4.2), ( ) ( ), ( )T T T
p sn n n =  w w w  is the optimal estimator with pL  

and sL  as their orders and ˆ ˆ ˆ( ) ( ), ( )T T T
p sn n n =  w w w  is the real- time estimator; 

( ) ( ), ( )T T Tn n n =  X r u is the input made up of ( ) ( 1), , ( )T
pn r n L r n = − + r    and 

[ ]( ) ( 1), , ( )T
sn u n L u n= − +u  ; and ( )nn  is an unknown additive disturbance 

without any assumptions made about its statistical characterization. 

( )ˆ( ) ( ) ( ) ( )Tn n n nξ = −w w X  and ( ) ( ) ( )e n n v nξ= +  are called the undisturbed 

identification error and the disturbed identification error. Therefore, the objective of 

controller design process is to minimize 

2
( ) ( )T

cJ n n= w X , 

and the objective of system identification process is to drive ˆ ( )nw  to converge 

to ( )nw , or specifically to minimize the Euclidean norm of model error 

ˆ( ) ( ) ( )n n nε = −w w  

( ) 2ˆ( ) ( )J n n n= −w w . 

For simplification of denotation, all of the subscripts in the following text except for 

p , s , and ( )f ⋅  denote the variables in the parentheses: for example, ˆny  is ˆ( )y n . 

( )f ⋅  is the function for adjusting the abnormal signal and will be used in the 

identification algorithm in the next section. 
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(a) 

 
 (b) 

Figure 4-1 Block diagram of a typical AVC system: (a) The original system, (b) The 
equivalent system  

4.2 System Identification 

4.2.1 Derivation of Online Path Modeling Algorithm 

With the expectation that the updated model  is close to the 

present optimal model  with negligible error, an objective 

function is constructed as a feasible substitute of , 

.                                 (4.3) 
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where , 1 ,ˆ( )T
f n n n n n f ne y f y y+= − = −w X  is the predicted identification error, 

1ˆ ˆ ˆn n nε += −w w  is the approximated model error, and λ  is the weight; ( )f ⋅  may be 

called a self-tuning function which aims at preventing 

1ˆ T
n n n n n ne y y y+= − = −w X  from exceeding a conservatively preset threshold by 

adjusting 1ˆ T
n n+w X . For a linear system, this function may be a fix value or a 

time-varying value. For a nonlinear system, this function changes with time 

nonlinearly to avoid the divergence of the algorithm, like the way in Ref. [59]. This 

study focuses on the application to linear PTV systems. 

 

The reason for an unacceptable ne  is the additive disturbance nn . Since there are no 

restrictions on or assumptions made about nn , the sources of nn  may cover a wide 

range of dynamic uncertainties and external sources: 

(1) Measurement noise; for example, the noise resulting from imperfect sensors. 

(2) Modeling errors; for example, the error due to the use of an FIR filter to 

approximate an infinite impulse response filter (IIR) system. 

(3) Other disturbances imposed by unknown sources. 

These factors negatively affect identification performance and destabilize a system, 

and thus it is necessary to take some measures, such as introducing ( )f ⋅ , to suppress 

this negative influence. The impact of the self- tuning function ( )f ⋅ on the 

robustness of the system estimator will be discussed after the algorithm of the 
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estimator is derived. 

 

To obtain an optimal updated model, the objective function nJ  is differentiated 

with respect to 1ˆ n+w , leading to  

1 ,ˆ ˆ
nn n y f n nf eλ+ = +w w X




                                              (4.4) 

where ( )
n

n

y
z y

df z
f

dz
=

=




 . To solve the unknown multiplier λ  and obtain an explicit 

expression of Eq. (4.4), three constraint conditions are introduced based on three 

practical concerns: 

(1) The first concern is to avoid the unacceptable predicted identification error ne . 

This means that ne  does not need the adjustment and that the identification 

errors with and without the adjustment by ( )f ⋅ are nearly same. In other words, 

the tuned predicted error ,f ne  and the original predicted error ne  should 

approach each other as much as possible.  

( ) ( )
222

,

2
1 f n ne e∆ = −                                                   (4.5) 

Differentiating Eq. (4.5) with respect to 1ˆ n+w  and setting the result equal to zero,  

,nn y f ne f e=




                                                         (4.6) 

is obtained, where 
( )

n

n

y
z y

f z
f

z
=

∂
=

∂



 . 

(2) The second concern is to avoid the unacceptable present identification error ne  . 

This requires that the tuned present error ,f ne  and the original present error ne  
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should approach each other as much as possible:  

( ) ( )
222

,

2
2 f n ne e∆ = −                                                  (4.7) 

where ˆ, ˆ( )
n

T
f n n n n n ye y f y f= − = −w X  is the tuned present error while 

ˆ ˆT
n n n n n ne y y y= − = −w X  is the present error. Differentiating Eq. (4.7) with respect 

to ˆ nw  and setting the result equal to zero,  

ˆ ,nn y f ne f e=                                                        (4.8) 

is obtained, where ( )
ˆ

ˆ
n

n

y
z y

f z
f

z
=

∂
=

∂
 . 

(3) The third concern is fast convergence. To reach a higher convergence rate, the 

objective is to render 3∆  negative and minimum by appropriately settingλ . 

2 2
3 n ne e=∆ −                                                       (4.9) 

Differentiating Eq. (4.9) with respect to λ , substituting Eqs. (4.6) and (4.8), and 

setting the result equal to zero,  

ˆ ,

,

n

n

y f n
T

y f n n n

f e
f e

λ =
X X









                                                 (4.10) 

is obtained. 

Substituting Eq. (4.10) into Eq. (4.4), the explicit expression  

ˆ ,
1ˆ ˆ ny f n

n n nT
n n

f e
+ = +w w X

X X



                                             (4.11) 

is obtained, which can be slightly modified to  

ˆ ,
1ˆ ˆ ny f n

n n nT
n n

f e
µ
γ+ = +
+

w w X
X X



                                         (4.12) 
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where a small positive parameter γ  is introduced to avoid the numerical difficulties 

caused by a small denominator and a positive real scaling factor µ  is introduced to 

control the misadjustment without changing the direction of nX . From Eq. (4.12), 

we can see that this is a noninvasive process because no probing signal is introduced. 

  

4.2.2 Analysis of robustness by H∞ criterion [79] 

H∞  norm represents the largest energy gain of a system, and energy gain for an 

adaptive estimator may be defined as the ratio of the energy due to model error 

2

,f nξ  or 
2

nξ to the total disturbance energy inputted to the online model 
2

nn and 

2
0ε . According to Eq. (4.1), the present identification error with and without the 

self-tuning mechanism can be expressed as  

, ,f n f n n

n n n

e
e

n

n

ξ

ξ

= + 


= + 
                                                  (4.13) 

where , ˆ= ( )T T
f n n n n nfξ −w X w X  is the undisturbed estimation error after the 

self-tuning adjustment.  

 

To compute the H∞  norm of the estimator, we proceed as follows. For a periodic 

time-varying system with N  samples per cycle, the mean-square deviation (MSD) 

in the thk  period is defined as 

( 1) 1
21 k N

kN n
n kN

D
N

ε
+ −

=

= ∑                                               (4.14) 
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So, 

[ ] [ ]
( 1) 1

( 1) 1 1
1 k N

T
kN k N n n N n n N

n kN
D D

N
ε ε ε ε

+ −

+ + − + −
=

− = − +∑                        (4.15) 

Substituting Eq. (4.12) into Eq. (4.15) and neglecting γ , an inequality is obtained in 

an attempt to bound the energy gain:  

ˆ
( 1) 1 2 2

ˆ ˆ ˆ ˆ ˆ( 1) , ,
1 (2 ) 2(1 2 ) (2 2 )ny

T

n n
n n n n n

k N
T

kN k N y f n y y f n n y y n
n kN

f
D D f f f f f

N
µ

µ µ n µ nξ ξ
+ −

+
=

 − ≥ − − − + − − +  ∑


    

X X

(4.16) 

When the condition 
ˆ

0 2
1

nyf
µ< ≤ −



holds, the inequality of Eq. (4.16) can be recast as 

ˆ
( 1) 1 2 2

( 1) ,
1

ny

T

n n

k N

kN k N f n n
n kN

f
D D

N
µ

nξ
+ −

+
=

 − ≥ −  ∑


X X
                          (4.17) 

If the self- tuning mechanism is not triggered, with the consideration of the second 

constraint in Eq. (4.7), Eq. (4.15) becomes 

( 1) 1
2 2

( 1)
1 (2 ) 2(1 )

T

n n

k N

kN k N n n n
n kN

D D
N

µ
n nµ ξ µ µ

+ −

+
=

 − ≥ − + − − ∑
X X

           (4.18) 

When the condition 0 1µ< ≤ is satisfied, the inequality of Eq. (4.18) is followed by   

( 1) 1
2 2

( 1)
1

T

n n

k N

kN k N n n
n kN

D D
N

µ
nξ

+ −

+
=

 − ≥ − ∑
X X

                            (4.19) 

Suppose the algorithm runs for ( 1)n k N= +  iterations from 0n = with the initia l 

condition ˆ (0)w . Letting max( )T
n nX Xδ =  and ˆmax( )

n

T
f n n yX X fδ =  , starting from 

ˆ (0)w  and summing the two sides of the inequalities in Eqs. (4.17) and (4.19), the 

energy gains fG  and G  are solved.     
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( 1) 1 2

,
0

( 1) 1
2

0

1
(0)

K N

f n
n

f K N
f

n
n

G N
D n

ξ

δ
µ

+ −

=
+ −

=

= ≤
+

∑

∑
                                    (4.20a) 

( 1) 1
2

0
( 1) 1

2

0

1
(0)

K N

n
n

K N

n
n

N
G

Dδ
n

µ

ξ
+ −

=
+ −

=

= ≤
+

∑

∑
                                      (4.20b) 

fG  and G  can be rewritten as Eq. (4.21) by substituting 2
0(0)D ερ =  into Eq. 

(4.20): 

( 1) 1 2

,
0

( 1) 1
2 2

0
0

1

K N

f n
n

f K N
f

n
n

G N
ε n

ξ

δ
ρ

µ

+ −

=
+ −

=

= ≤
+

∑

∑
                                  (4.21a) 

( 1) 1
2

0
( 1) 1

2 2
0

0

1

K N

n
n

K N

n
n

N
G

δ
ε n

µ

ξ

ρ

+ −

=
+ −

=

= ≤
+

∑

∑
 .                                   (4.21b) 

Eqs. (4.20-4.21) show that the output energy (the numerator) caused by the 

identification error never exceeds the total input energy (the denominator) caused by 

the disturbances consisting of the initial model error 0ε and the additive disturbancen . 

 

In the worst case that ( )=- ( )n v nξ  and ( )=- ( )f n v nξ , ( ) (0)D kN D= for all k  

because 0ne = and , 0f ne = stop the adaptive algorithm Eq. (4.12) from updating. 

fG  and G  can arbitrarily approach unity with the increase in N . Therefore, the 

H∞ norm of the estimator or the maximum energy gain is unity. Considering the fact 
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that any filter can never have its maximum energy gain limited below unity, the 

optimal H∞  norm of any filter can never be less than unity. Therefore, the proposed 

estimator is H∞  optimal if 0 1µ< ≤  and ˆ
1

2nyf
µ

≥
−

 . 

4.2.3 Constructing the self-tuning function ( )f ⋅  

The fundamental requirement for the self- tuning function is that it starts to adjust the 

estimated output ˆny  when the estimation error exceeds a conservatively preset 

threshold. So, a preliminary guess may be  

( ) ( )
ˆ

ˆ ˆ ˆ ˆ( ) 1 ,
ˆ

n

n n n n

n

y
f y y y y

y

κ κ
α α κ κ

κ κ

≥
= + − ∈ −
− ≤ −

                         (4.22) 

where nyκ σ= +  is the upper bound of the estimated output and α  is an 

adjustable parameter ( 0 1α≤ ≤ ). When ˆn ny y σ− ≥ , where σ  is threshold, it 

means the model error ˆn n nε = −w w is unacceptable, and so this self-tuning 

mechanism is triggered. A signal processing method ( )h ⋅ , like averaging 1n N ny y− +  , 

may be introduced to alleviate the influence of the additive disturbance v . Therefore, 

κ  can be modified as ( )nh yκ σ= + . When no signal processing is imposed, 

ny nh y= . 

 

As ˆ
1

2nyf
µ

≥
−

  is required for the estimator to be H∞  optimal, 1
2

α
µ

=
−

 is set. 

Eq. (4.22) does not have a continuous derivative, and so the sigmoid function is 
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chosen to approximate the second term of Eq. (4.22) because of its similar shape to 

the second term and the continuity of its derivative. Then, the self-tuning function is 

modified as 

ˆ ( )

ˆ ( )

1 1ˆ ˆ( )
2 ( ) 1

n

n

y g

n n y g
ef y y

g e

κ

κ

β
µ κ

−

−

−
= +

− +
                                   (4.23) 

The derivative is  

ˆ ( )

ˆ ˆ ( ) 2

1 2
ˆ 2 (1 )

n

n n

y g

y y g
n

df ef
dy e

κ

κβ
µ

−

−= = +
− +

                                   (4.24) 

where 0β >  and ( ) 0g κ >  are employed to adjust amplitude and threshold. 

Although they are related to ( )1 α− , it is unnecessary to know the analytical 

solution for the relation of ( )1 α− , β , and ( )g κ . This is because the lack of the 

restriction by the analytical solution creates more flexibility for the configuration of 

the self- tuning function. After introducing the sigmoid function, the self-tuning 

function ˆnyf  displays the following properties: when ˆ 0ny = , ˆ ˆ
ny nf y= . When 

ˆ0 n ny y< <  or ˆ0
nn yy h< < , ˆ ˆ

ny nf y≈ , with the increase of ˆny , the increase in 

ˆnyf becomes slower; the larger ˆny  is, the more slowly ˆnyf  increases. 

ˆnyf gradually gets close to the shape of the preliminary guess Eq. (4.22) after 

ˆny κ≥ . This is because the second term of ˆnyf is the derivative of the sigmoid 

function and it is monotonically decreasing with the increase in ˆny . This property 

indicates that ˆnyf becomes very small when ˆny  is unacceptably large, preventing 

the excessive updating of the path model and a larger model error. 
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With this self- tuning function, the applicability of this identification algorithm is not 

only limited to a linear system, but can be extended to some nonlinear systems when 

the sigmoid function can represent that type of nonlinearity. The reason is listed as 

follows. In Eq. (4.23), the first term is a line and it means this one part of this 

function changes linearly, while the second term is sigmoid function which 

represents a nonlinear adjustment when the estimation error exceeds the threshold.  

4.3 Controller Design 

When the identification error ,f ne  converges, the minimization of ny  requires the 

minimization of ˆny since , ˆ( )n f n ny e f y= + . Combining ˆ 0ny =  

and ˆ ,
1ˆ ˆ ny f n

n n nT
n n

f e
+= −w w X

X X



, we get 1ˆ T
n n ny += w X . This result is desirable and also 

expected by the objective function of system identification Eq. (4.3) so that Eq. (4.3) 

can approximate 2ˆn n nJ = −w w with negligible error. Therefore, any controller 

which minimizes ˆny  guarantees that Eq. (4.3) is a reasonable approximation of 

2ˆn n nJ = −w w . Additionally, by minimizing ˆny , the second term of Eq. (4.3) can be 

minimized, which boosts the minimization of Eq. (4.3) and thus drives the proposed 

identification algorithm to converge. Hence, any controller which minimizes ˆny  

can drive the adaptive algorithm Eq. (4.12) to converge. In other words, by 

minimizing ˆny , the controller can drive the adaptive algorithm Eq. (12) to converge, 
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and when the modeling process converges, the optimal controller can be obtained 

simultaneously. Therefore, the convergence of the identification process and the 

optimization of the controller are synchronized. 

 

One possible controller aiming at minimizing ˆny  is solved by minimizing the 

practical objective function: 

2 2ˆ( )
n

c k c n
k no

J n y uλ
=

= +∑ , 

where 1,no n n= −  and cλ  is the weight of control signal. Because of the special 

structure of J , 1no n< −  does not yield a control signal different from the nu  

obtained by setting 1no n= − . ˆky is formulated by 

[ ] [ ]
ˆ

, ,
ˆ

o o o

n n ny u r
     

= +     
     

y u r
H J M N                                      (4.25) 

,

, 1

,

ˆ
ˆ

ˆ (1: 1)

T
s no

T
s no

T
s n N

+

 
 
 =  
 

−  

w
w

H

w


 , ( ) 1

,ˆ ( )
n no

T
s n N
− × 

=  
 

O
J

w
 

,

, 1

,

ˆ
ˆ

ˆ (1: 1)

T
p no

T
p no

T
p n M

+

 
 
 =  
 

−  

w
w

M

w


, ( ) 1

,ˆ ( )
n no

T
p n M

− × 
=  
 

O
N

w
, 

where the subscript o  indicates old signals. nu  is the optimal control signal to be 

determined by the past vibration [ ]1ˆ T
o no ny y −=y  , the past control signal 

1 1s

T

o no L nu u− + − =  u 
, and the past and present reference signals 
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1 1p

T

o no L nr r− + −
 =  r 

and nr . Differentiating Eq. (4.25) with respect to nu  and 

setting the result equal to zero, the optimal control signal nu  is solved. 

( ) ( )1T T
n c p p nu rλ

−
= − + + +J J J Hu Mr N                               (4.26) 

After the solution of control signal is solved by Eq. (26), the derivation of this AVC system is 

completed. It is compared with those AVC systems updated by FXLMS method in the following 

aspects. 1) Those AVC systems are unstable when the phase error during modeling exceeds 90°, 

while the proposed system possesses H∞  robustness and the self-tuning function prevents the 

estimation error from exceeding a preset threshold; 2) FXLMS is an estimation method, and thus 

the solution of the controller is not necessarily optimal, but the optimal controller of the 

presented system can be obtained the moment the modeling process converges; 3) due to the 

coupling effect, after the modeling process converges, it takes several steps for the controller to 

converge despite its low computational burden at one step; when the controller converges, it’s 

difficult to know if it is optimal. However, the proposed system successfully apply Yuan’s  

decoupling scheme to the vibration control of PTV systems so that the optimal controller can be 

obtained the moment the modeling process converges. Therefore, the disadvantages of those 

AVC systems based on FXLMS method are the advantages of the proposed system. 

4.4 Numerical Simulation and Analysis 

To verify the proposed system, a numerical simulation is conducted on a mass-spring 

system installed in the center of a simply supported plate (Fig. 4-2). This system is 
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governed by Eq. (4.27), which consists of a canonical PTV equation with damping 

and the equation of the motion of the plate at the contact point. The external force is 

 and the control force is .  

 
Figure 4-2 The AVC system 

 

          (4.27) 

Assuming the period of stiffness oscillation is 10 seconds, separate peaks with an 

interval of 0.1Hz at the two sides of  are excited. The stiffness of the 

spring varies periodically with an average of , a mass 

weighs , and the damping ratio is . is related to damping  by 

 and .  is the displacement of the mass, and  the 

displacement of the center of the plate in time domain. The transfer function at the 

center of the plate is , and in Eq. (4.27) denotes the Laplace transform. The 

mobility of the simply supported plate, correspondent to , is calculated by its 

physical parameters [80]: Young’s modulus , 

density , Poisson’s Ratio , and loss factor . Its 
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dimensions are 3.5m (length) ×3.5m (width) × 0.24m (thickness). Only the first two 

modes of the plate at about 50Hz and 250 Hz are considered in the calculation of the 

mobility because of their relatively significant contribution to response of the mass. 

 

The system is solved by the Matlab/Simulink model and program. Two simulations 

are conducted with the same parameters, but one simulation employs the proposed 

AVC system while the other does not. The other one utilizes the degraded version of 

the proposed AVC system in which the self- tuning mechanism is not embedded into 

the identification process so the identification process is governed by Normalized 

LMS algorithm. Control results with and without the self- tuning mechanism are 

respectively shown in Fig. 4-3 and Fig. 4-4. From Fig. 4-3(a), it can be seen that 

significant attenuation of vibration happens after 10 seconds – the oscillation period 

of the stiffness. Although Fig. 4-4 also shows alleviated vibration after the control 

system is introduced, significant oscillation and smaller attenuation are observed. 

This is because the estimation error (indicator of model errors) for Fig. 4-3 is limited 

below the preset threshold while that for Fig. 4-4 lacks restriction. Hence, the 

effectiveness of the proposed algorithm with a self- tuning mechanism is verified by 

the superiority of the control performance in Fig. 4-3(a). Fig. 4-3(b) shows the 

separate peaks with an interval of 0.1Hz at the two sides of 70Hzf = , and 

significant attenuation can be observed despite the occurrence of those side peaks 
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which do not exist in a time- invariant system and may invalidate the AVC system 

designed for the time- invariant system. Finally, an impulsive noise lasting 0.1 

seconds is added to the output at around the 27th second to examine the system’s 

stability to additive disturbances besides the model errors. The convergence after the 

system encounters this shock is illustrated in Fig. 4-5, which demonstrates 

the stability of the proposed AVC system to model errors and shock. 
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Figure 4-3 Control performance with the self-tuning mechanism: (a) Time domain, (b) 
Frequency domain. 
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Figure 4-4 Control performance without the self-tuning mechanism 

5 10 15 20 25 30 35 40

-4

-2

0

2

4

6

x 10
-3

Time (s)

D
is

pl
ac

em
en

t (
m

)

 

 
uncontrolled
controlled

 
Figure 4-5 Control performance after encountering a shock 

 

4.5 Summary 

An AVC system is proposed to suppress periodically time-varying vibration, and it 

utilizes a decoupling scheme which is characterized by an adaptive process for 

system identification and a nonadaptive process for controller optimization to avoid 

the coupling effect which exists in many AVC systems based on the FXLMS 
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algorithm. The disadvantages of those systems are the advantages of the presented 

system because of the application of the decoupling scheme and the robustness of the 

modeling process. With the decoupling scheme, the two processes can reach 

synchronous convergence by positively affecting each other. The controller can drive 

the identification process to converge as long as the controller is optimized by 

minimizing the output of the estimated model. When the modeling process 

converges, the controller can be optimized instantly. Therefore, the convergence of 

system identification and the optimization of the controller are synchronized. 

Moreover, with the condition that the derivative of the self-tuning function is no less 

than ( )1 2 µ−  where µ  is the adjustable parameter the H∞  robustness of the 

system is guaranteed. This condition makes it reasonable to assume that an optimal 

controller can be solved based on the identified model. Both rigorous derivation and 

numerical simulation conducted on a periodically time-varying system verifies the 

convergence and stability of the presented AVC system. 
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Chapter 5 

Conclusions and Suggestions for Future 
Work  

5.1 Conclusions 

This thesis has mainly investigated the problems of broadband vibration isolation 

and periodically time-varying vibration isolation of building services equipment. 

Effective solutions have been proposed to these problems, and these solutions are 

applicable to machine- induced vibration and noise control because the theoretical 

development of these solutions are not limited to building services equipment. The 

vibration control performance has been verified mainly by numerical simulations and 

by an experiment conducted in The Hong Kong polytechnic university. 

 

Firstly, a power transmissibility approach has been proposed to assess the isolation 

performance of transient vibration using spring isolator. It is defined as the ratio of 

maximum peak power induced by transient excitation and transmitted through an 

isolator to the foundation to that transmitted to the foundation without an isolator. 

The existing indicators of isolation performance do not take into consideration the 

transmitted power caused by transient excitations which are commonly experienced 
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by some building services equipment. The proposed indicator – transient power 

transmissibility – can be used to design a spring isolator and also can be applied to 

re-assess the performance of the traditionally designed isolator in the situation where 

the isolated system is subjected to transient excitation. The numerical results have 

demonstrated the necessity of re-assessment by this indicator. This is not the main 

work of this study, but deserves to be mentioned because of its significance to 

practical engineering. What’s more, this concept of the ratio between the maximum 

peak powers with and without an isolator is able to be employed to evaluate the 

performances of any passive isolators. 

 

Furthermore, the problem of broadband vibration control of non-rigid systems using 

periodic structures has been investigated through a semi- two-dimensional model 

which employs a dual-beam periodic structure with transverse branches as an isolator. 

The configuration of SMA branches and non-SMA beams has been proposed to fully 

exploit the advantage of the variable material property (Young’s modulus) of SMA to 

adjust and widen the stop bands of this periodic isolator and to prevent the associated 

hysteresis. Two methodologies have been developed to determine the proper Young’s 

moduli of the branches and the correspondent optimal transmission loss, according 

to the characteristics of the vibratory source. Several cases, involving different 

parameters of the supporting beams, different types of external loads and different 
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combination of branches in a mount, were extensively examined in the simulation 

conducted on this semi-two-dimensional model. Numerical results demonstrated that 

SMA branches with the application of appropriate heat can effectively realize 

broadband vibration control of a non-rigid system. This implies the applicability and 

effectiveness of two methodologies that determine the proper values of the 

parameter-adjustable components in a periodic mount. Numerical results also 

demonstrated that the proper combination of branches different in terms of elastic 

moduli in a periodic mount can be obtained and that combination may achieve better 

control performance than that achieved by the mount with identical branches. This 

superiority in control performance is predicted to become increasingly prominent 

with the increase of branches because more combinations can be created. An 

experiment has been conducted and indirectly demonstrated the validity of the 

derivation of the structural response which is the basis of the two methodologies. In 

addition, the theoretical guidance of that experiment, i.e. the relation between the 

characteristic waves propagating in an infinite periodic structure and junction 

responses, provides an alternative way to obtain the characteristic waves. All of 

above conclusions drawn from the numerical results of the semi- two-dimensional 

model are applicable to a three-dimensional non-rigid system, because this model is 

a realistic representation of a general vibratory system and the theoretical 

development of this study is based on the general vibratory system which is 
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non-rigid and has three dimensions. Despite that, broadband vibration control of a 

realistic system cannot be accomplished without the proposal of the 

three-dimensional version of the semi-two-dimensional periodic mount.  

 

Another main work is the active vibration control (AVC) of a periodically 

time-varying (PTV) vibratory system. A control system has been proposed with an 

adaptive process for online modeling and a nonadaptive process for controller 

optimization to avoid the coupling effect which exists in many active control systems 

updated by the filtered-x least mean square (FXLMS) algorithm. The controller can 

drive the modeling process to converge as long as the controller is optimized by 

minimizing the estimated output. When the modeling process converges, the optimal 

controller can be solved at the same time. Therefore, the two processes are 

synchronized. Moreover, the condition for the H∞  robustness of the system was 

presented - the derivative of the self- tuning function is not supposed to be less 

than ( )1 2 µ−  where µ  is the adjustable parameter in the AVC algorithm. Its 

implications are twofold. One is that the identified model is the H∞  optimal 

approximation of the real system once the process of identification converges. The 

other is that this AVC system has strong robustness to dynamic uncertainties and 

disturbances when the condition is satisfied. This H∞  robustness may not be 

guaranteed if it is a general PTV system instead of a rigorous PTV system, but the 
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convergence of the system still can be assured by the derivation. Both rigorous 

derivation and numerical simulation conducted on a periodically time-varying 

vibratory system demonstrated the convergence and stability of the presented AVC 

system. In spite of that, it is lack of experimental verification performed on a strict 

PTV system and a general PTV system. 

5.2 Suggestions for Future Work 

On the basis of the two main studies, future theoretical and experimental work is 

recommended as follows: 

 

1. The proposed methods for the broadband vibration control using periodic 

structures with adjust parameters have not been demonstrated by an experiment 

conducted on a three-dimensional non-rigid system. Hence, it is expected to 

design an experimental system in the future to examine the two approaches. 

2. The three-dimensional version of the semi- two-dimensional periodic structure 

employed to realize broadband vibration control is needed to be proposed so that 

it can be applied in practical engineering.  

3. The transient power transmissibility is applicable to a system with periodic 

mounts, but the work of re-assessing the isolation performance of a periodic 

mount by this indicator has not been performed. This re-assessment is not 
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difficult to conduct if the information of the transient excitation is available. In 

the future, the isolation performance of a periodic structure with tunable 

parameters may be evaluated by this indicator. 

4. The presented AVC algorithm for a PTV system has not been verified by an 

experiment due to the complication of designing a rigorous PTV system. 

However, this experimental system is desirable since the active control of a PTV 

system is a popular research topic. A general PTV may be considered to test 

robustness of the proposed control system to uncertainties caused by the 

differences between a general PTV system and a rigorous PTV system. Two 

possible experimental systems may be considered in future work: 

1) A motor with the unsymmetrical shaft (for example a shaft with an eccentric 

mass) supported by isotropic bearings, and 

2) A motor with the horizontal shaft supported by anisotropic bearings. 

The convergence and robustness will be examined, and the control performance 

will be compared with the FXLMS method.  

5. These experimental systems may not possess strict parametric periodicity, but 

this drawback can be used to test the robustness of proposed control system. 

6. The second one of the two approaches to determine proper parameters for the 

broadband vibration control, a numerical method for the real-time calculation 

developed in Chapter 3, may be combined with the identification algorithm in the 
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AVC system in Chapter 4 to realize online adaptation and control, when the 

machine and the foundation have PTV parameters and they can approximated by 

FIR models with acceptable errors.   
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