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ABSTRACT

The effects of deteriorating atmospheric visibility are more profound in rapidly
growing and densely populated urban areas like Hong Kong. Existing methods to
measure atmospheric visibility using ground based instruments have proven
ineffective to depict regional visibility scenarios because a dense ground based
network involving large cost and time is required. Previous efforts for satellite
remote sensing of surface level visual range have mainly focused on stratified layers
of fog, and all lack appropriate validation measurements for very clear and highly
polluted days. In addition, their application in a highly polluted region like Hong
Kong is untested. This study was designed to develop a remote sensing based
methodology for measuring at-or-near ground level visual range (VR). The
relationship between the surface extinction coefficient and columnar Aerosol Optical
Depth (AOD) from four space borne sensors (MODIS, MISR, CALIPSO and OMI)
was examined at two visibility recording stations; the Hong Kong Observatory
(HKO) and the Hong Kong International Airport (HKIA). The highest correlation is
for MISR AOD followed by MODIS AOD. MODIS AOD along with climatic data
Relative Humidity (RH), Mixing Layer Height, Wind Speed (WS), Wind Direction
(WD), Temperature (T), Pressure (P), V and U component of wind, advection terms
VT and UT, mixing ratio (Q) and temporal change in T and P were subjected to
regression analysis. A regression model using MODIS AOD, RH, VT and Q
explained 84.0 % of the variance in VR with high accuracy demonstrated by a low
RMSE of 0.27 km. The results of this study suggest that Q alone can explain the
combined effect of P, T and RH on VR, whereas VT is sufficient to explain the
effects of WS and WD on dispersion of aerosols and hence on VR. This study also
proposes a new methodology to estimate VR using column-integrated aerosol
physical properties from MODIS, ground-based LIDAR and AERONET sun
photometer measurements of AOD. Results suggest that models utilizing satellite
observations together with the near surface extinction coefficient from a visibility
meter and LIDAR deployed at the Hong Kong Polytechnic University could reliably
to estimate VR 35 km away at HKIA. VR estimates from the proposed models were




found to be within 20 % of ground values which is consistent with requirements of
the International Civil Aviation Organization. The models did not overestimate or
underestimate VR for clean and/or polluted days, as exhibited by previous studies.
Results demonstrate the potential for applying passive satellite depictions of broad-
scale aerosol optical properties, and suggest that passive remote sensing exhibits the
potential for enhancing the performance of pre-existing ground level visibility

networks.
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Chapter 1: Introduction and Literature
Review

The world’s population is increasing by 1.2 % per year whereas 51 % of the
world’s population lives in urban areas (Population Reference Bureau, 2012). People
living in cities of developing countries face worse air quality than in developed
countries mainly due to the use of unclean fuel for domestic and commercial routine
activities (Chow et al., 2004). Most of the time they cannot escape from the urban
jungle, but sometimes they feel a strong need to escape to a place with a view of
distant hills, mountains or sea. Therefore, they try to compensate by observing the
blue sky or try to see a skyscraper. Their efforts for visual escape from their
immediate surroundings are sometimes unsuccessful because of a grey-brown layer
obscuring the view. Consequently, they start analysing the conditions of atmospheric

visibility of their surroundings.

The lucidity and vibrancy in a view can affect the information extracted by the
observer irrespective of his scientific knowledge. Particulates suspended in the
atmosphere can degrade the clarity of the scene, and this clarity is generally
evaluated in terms of atmospheric visibility. Visibility is usually expressed as Visual
Range (VR) - “the greatest distance at which an observer can see a black object
against horizon” (Middleton, 1952). It deals with the reception of light reflected from
the objects around us. The amount of light entering our eyes, along with other

factors, determines the clarity of the scene under observation.

1.1 IMPORTANCE OF UNDERSTANDING ATMOSPHERIC VISIBILITY

Visibility as a problem to be investigated gained the attention of the scientific
community in early 1950s when London experienced its worst smogs due to
industrial coal combustion (Brimblecombe, 1981 and 1987). Two decades later, in
1970s Los Angeles also suffered from poor visibility due to emissions from
automobiles (Tiao et al, 1975). Since then, efforts have been made to improve visual
air quality by identifying the factors responsible for the degradation of visibility.

Such efforts have forced policy makers to implement certain “Clean Air Acts” for

Estimation of Surface Visibility over Hong Kong Using Remote Sensing
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many countries, such as the United States of America (CRS, 2005), United Kingdom
(Clean air act, 1993) and Hong Kong (HKEPD, 2007).

1.1.1 Human perception

Appreciation of visibility depends on the aesthetic sense of the observer
(Howes, 1913; Aesthetics, 2011) because a plume of the smoke can be taken as a
sign of development, or on the other hand, as a sign of air pollution in the same
region. The human aesthetic sense is influenced by the different elements and
attributes driven by personal experience, society and education (Hyslop, 2009).
Therefore, people appreciate the air quality around them according to their own

perception.

1.1.2 Health

Recent rapid development and industrialization, especially in developing
countries, are associated with degradation in air quality and health of the people
(Dockery et al., 1993; Pope et al., 1995; EPA, 2011; Thach et al., 2010). Visual range
has decreased all over the world from 1973 to 2007 except in Europe (Wang et al.,
2009). It has often been used to study the effect of Particulate Matter (PM) level on
Health (Thatch et al., 2010; Huang et al., 2009) because VR is often more accessible
than PM. China, the world’s second largest economy, experiences frequent episodes
of poor air quality in its big cities (Chan and Yao, 2008; Huang et al., 2012). Huang
et al., (2009) reported 2.17 % increase in mortality for each 8 km decrease in VR.

Lee and Savtchenko (2006) reported a strong association between air pollution
in Hong Kong and the Pearl River Delta (PRD) region, where many manufacturing
as well as service industries are established. Studies in the same region, have shown
a strong correlation between respiratory illness (Peters et al., 1996; Wong et al.,
1998), premature deaths due to heart disease (Wong et al., 2001, 2002a, 2002b,
2008a) and decreasing VR due to increase in PM. Also in Hong Kong, Thach et al.,
(2010) reported a high correlation (R = - 0.78) between VR and the concentration of
fine particulates. This explains the subsequent high correlation of R = 0.80 between
mortality due to respiratory infections and reduced visibility (Thach et al., 2010). The
authors reported a 1.13 % increase in the risk of mortality for each 6.5 km reduction
in VR in Hong Kong (Thach et al., 2010) suggesting that improvements in VR can

improve life expectancy.
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1.1.3 Value of visibility

A cost benefit analysis for improving VR can help to set air quality objectives
for a region. Such analysis can also help to estimate the social price tag for the forth-
coming strategy for improving regional air quality and may reveal some alternatives
to promote efficient use of public funds. Valuation of visibility is important because
the relationship between the costs of reducing the emission of PM does not linearly
relate to the cost of improvement in visibility (Hyslop, 2009). Delucchi et al., (2002)
and Loehman et al., (1994) deduced that improving visibility can cost 10 % to 40 %

of the total cost for improving health and air quality.

It is perhaps surprising that there has not been any study to evaluate visibility
in Hong Kong because according to Hong Kong Tourism Board (HKTB), site seeing
is the second most popular activity after shopping by tourists (HKTB, 2003).
Reduction in visibility can affect tourism and hence the economy of Hong Kong in
many ways, such as by shortening or diverting the tourist’s stay, by lowering
property prices and reducing local investment in areas affected by reduced visibility.
Therefore, visibility can be considered not only a meteorological phenomenon, but

also a commercial product or an economic indicator.

1.1.4 Navigation and transportation

Reduced visibility is a well-known problem in the field of navigation and
transportation as it often makes drivers behave inappropriately, which has frequently
resulted in fatal accidents (Kang et al., 2008; Caro et al., 2009). Accidents may result
in road closures and hence diversions of the traffic route, entailing higher cost in the

form of fuel and time to passengers.

In the skies, reduced visibility causes disruption and delays in air traffic as
well, which sometimes leads to the closure of airports resulting in heavy losses to the
aviation industry (Pejovic et al., 2009). Kulesa, (2002) reported that reduced
visibility caused 24 % of general aviation accidents in the air and 37 % on the ground
during taxiing. Unanticipated visibility problems in the design of the airport runways
can cause heavy losses and sometimes become a key factor in relocation of the whole
airport. For example, runway 13’s approach at the old Hong Kong airport was
impossible in low visibility (http://en.wikipedia.org/wiki/Kai Tak Airport#Runway

_13_approach). Similar situations have also occurred in naval navigation (Morel and
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Chauvin, 2006) and eight vessels collided in August 2004 in Hong Kong due to
reduced visibility (Hogg, 2004).

According to road traffic accident statistics of 2010, Hong Kong has 2,076 km
length of road with 594,723 licensed vehicles. On average these vehicles faced 7.2
accidents per km in 2010 (Road traffic accidents statistics, 2010). In 2010, Hong
Kong’s air space was used by 306,534 aeroplanes and more than 420,000 vessels
passed through Hong Kong’s waters (Road traffic accidents statistics, 2010). A
reliable and convenient method to estimate VR can increase the safety of commuters

in the presence of this huge road, sea and air traffic.

1.1.5 Indicator of air quality

Degradation in atmospheric visibility is “the pollution that people can see” or
the visual air quality (Yuan et al., 2002; Hyslop, 2008) and many studies have
reported the inverse relationship between the concentration of aerosols and changes
in VR (e.g. Wan et al., 2011, Chan et al., 2008; Wang et al., 2003). Therefore, these
changes in VR can be used to indicate air quality (Watson, 2002).

Table 1.1. *Indexing system to estimate the PM level using VR.

VR (Miles ) Levels of Health Concern Hourly Average PM Levels
Greater than 11 Good 0-38
6t010 Moderate 39-88
3to5 Unhealthy for Sensitive Groups 89-138
1.5t02.75 Unhealthy 139-350
1to 1.25 Very Unhealthy 351-526
Less than 1 Hazardous Greater than 526

* modified from (www.co.shasta.ca.us/.../ Visually Estimating PM_Levels. sflb. Ashx)

Vajanapoom et al., (2001) estimated PM, (Particulate matter with radius less
than 10 wm) in Bangkok using VR data with R* = 0.51. Such studies enabled some
cities, such as Shahsta in Canada (www.co.shasta.ca.us), to use VR to develop an

index for estimating PM levels (Table 1.1).

1.2 PHYSICS OF ATMOSPHERIC VISIBILITY

It is important to understand the Physics involved in the process of visibility

because the process of human perception of visibility involves a complex interaction
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of light, atmosphere, the human eye and the brain (Henry et al., 2000; Mahadev and
Henry, 1999). When the atmosphere is clear and there is no, or less light than that
coming from the object, then the human eye can see up to 200 km in the horizontal
direction and can even detect light coming from the stars (Watson, 2002). Human
vision uses the contrast between the object under observation and its surroundings to
detect the edges of the object. Therefore, the human eye works more efficiently if
there is high contrast (Malm et al., 1982). Along with the sensitivity of the human
eye to the contrast, the threshold for the spatial visual frequency (repetition of
structures per unit distance) is also important because sometimes we have to move
further away from the object (like a tree line on a hill) to increase the visual
distinction by increasing the visual frequency (of the trees) (Watson, 2002).
Therefore, the unique thresholds of contrast and spatial visual frequency for each
observer give rise to the differences in their visual observations. Moreover, such
differences in visual observation can increase in the presence of aerosols as the

incoming light disperses away from the observer (Ross et al., 1997).

Interaction between light and the atmosphere has been discussed since 569 B.C
(Zanjonc, 1993). Later, Koschmieder, (1924) presented the most practical
explanation with the help of his famous “Koschmieder’s Equation” (Eq 1.1), which
is still being used to explain the combined effect of contrast and extinction on
visibility.

VR = InC

-~ (1.1)

Here, C is the contrast threshold of the human eye (0.02 — 0.05) that depends
on the health of the eye, and Bey, (km™) is the coefficient of extinction for light

coming from the object to the eye. The application of the equation is possible if

(Horvath, 1971)

e  The illumination in the atmosphere is uniform otherwise, an error up to 5

% can occur.

e  The composition of the air in which light is travelling is uniform making
the coefficient of extinction constant over large distances to make it closer
to the real atmosphere, if the average of the extinction coefficient over a

distance is used then the occurrence of the error is zero.
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e The object under observation is ideally black (i.e. its reflectivity is zero)
giving an error up to 50 % if a non-black object is illuminated in the

sunlight.

e By using Eq. 1.1 in the above-mentioned ideal conditions, one can

estimate visibility with a maximum error of 10%.

All the wavelets reflected or emitted from the object are unable to reach the
observer and may be scattered and or absorbed in different directions. The amount of
light lost on its way to the observer is called extinction (absorption + scattering).
Other than relative humidity, scattering also depends on the size of the particle (van
de Hulst, 1957; Finlayson-Pitts and Pitts, 2000), whereas absorption depends on the
chemical composition of the particles e.g. NO,, and Black and Elemental Carbon
(BC and EC) absorb light (Wang and Martin, 2007). Usually, the coefficient of
absorption is ignored because light absorption has an overall share of 5 to 10 % in
rural areas and 20 to 30 % in polluted urban areas due to EC, in the total extinction of
light (White, 1990; Jacobson, 2002). Scattering becomes stronger when the
concentration of particles with size corresponding to visible wavelengths increases,
and more and more light energy is transmitted in the forward direction. Therefore,
the presence of aerosols and gases in the air reduces the contrast by adding noise in
the form of scattered light into the signal (light reflected from the target). Hence, the
light received at the observer’s eyes contains a small portion of the actual light
reflected from the target. Total extinction (Bgy) is the sum of absorption and

scattering due to particles and gases in the air (Eq 1.2).

Bext = Bsca(p) + Bsca(g) + Babs(p) + Babs(g) (12)

Here B y and Bgc,(g) are coefficient of scattering due to particles and gases

sca(p

respectively. Baps(py and Baps(g) are coefficient of absorption due to particles and

gases respectively.
1.3 MEASUREMENT OF VISUAL RANGE

There are different scales and units for measuring VR because the perception
of visibility and its appreciation is somewhat subjective to the psychology of the
observer. Each measuring unit and scale for measuring atmospheric visibility is

assessed for its proximity for human perception but all methods have some
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limitations. Because of these limitations, the obtained readings do not match human
observations. The limitations in the measuring methods are difficult to mitigate due
to the involvement of the complex synergistic process between human vision and the
brain system (Henry, 2006). Methods for measuring atmospheric visibility are

compared below.
1.3.1 Human eye observation

The most commonly used and easiest method to estimate VR is spotting and
identifying a most distant object across the horizon. The object to be spotted is
preferred to be black in order to get maximum contrast with the background but in
common practice manmade objects, like trees, mountains, buildings or natural
objects at known distances are used as a target, whereas illuminated targets are used

at night time. The distance of the farthest spotted target will be VR.

The human observer method may not have high accuracy under certain
atmospheric conditions that alter the contrast of the target with the horizon, e.g.
bright or dark cloud behind the target, target under the cloud, the sun in front of or
behind the observer or the target roofed by snow or dust. In addition, consistency
among the readings is difficult due to the difference in the contrast threshold of the
individual observer. Most importantly, human observation for estimating VR is a
subjective approach and mechanical as well as electronic methods have replaced it

since 1990 (Hyslop, 2009).

In Hong Kong, human observation is used at the HKO and at the HKIA on an
hourly basis by two trained observers. At the HKIA, this method is used when
atmospheric visibility is less than 8 km, whereas, normally VR is measured from six
forward scatterer visibility meters (FDP) installed along each runway and a scanning

Light Detection and Ranging (LIDAR) installed between two runways.
1.3.2 Ground based optical measurements

Transmissometer
A Transmissometer measures attenuation during the forward scattering of the
light (from LED, infrared or laser) transmitted from a transmitter and received by a

transceiver over a certain distance (Eq 1.3; Horvath, 1981).
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1
In(72)

T

(1.3)

Here “I,” is the actual irradiance at transmitter and “I,” is the recorded

ext —

irradiance at the receiver. Malm et al., (1981) found a linear relationship between the
human observation and Bey;. There are two types of transmissometers; short range, in
which the receiver and transmitter are fixed at a short distance on a metallic arm and
long range, in which the receiver and transmitter are placed at some distance

(meters).

Such instruments can replace human observation in order to get VR at minute
intervals. However, they are limited by using a light source of lower power in order
to avoid affecting the optical properties of nearby air by a heating effect, and also a
Transmissometer cannot measure VR at longer distances (more than 50 km) than

human observation (Watson, 2002).

Nephelometer

A Nephelometer measures the scattering coefficient (Bgc,t) by filling it in with
a sample of air and heating it before exposing the air sample to light of known
wavelength. The scattered light is measured at an angle 90° with respect to the
incident light. B,,s can be computed by subtracting the bge,r from bgy. A
Nephelometer can also be used to study optical properties of aerosols of any size

using filters of different sizes (Anderson, 1998, Han et al., 2009).

This device has some structural design limitations, which make it impossible to
measure scattering beyond 170°. In addition, it is calibrated at a unique index of
refraction of a gas, which gives the biased scattering properties (Horvath and Kaller,

1994).

Teleradiometer

A Teleradiometer measures the changes in the inherent contrast of a target with
the horizon and perceived contrast at the radiometer over a certain distance by
focusing a telescope coupled with photodiode on the target (Malm, 1981; Watson,
2002). Therefore, its measurements can be representative of human observations.
The advanced form of this instrument is the telephotometer (Horvath, 1981). Such
photometric devices for the measurement of the VR require frequent maintenance

and calibration to reduce signal attenuation.
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Digital camera

Instruments mentioned above have a common disadvantage of high cost of
their installation and operation (Babari et al., 2011). Therefore, a well-developed low
cost method to estimate atmospheric visibility using ordinary cameras is often used
(Baumer et al., 2008; Duda and Hart, 1972). Visibility is derived by computing the
contrast of the target with its background using advanced techniques of digital image
processing. The HKO has installed sixteen digital cameras all over Hong Kong but

these are for weather monitoring only (Fig 1.1).

The availability of portable devices such as mobile phone and handy camera makes estimation of VR
economical and more mobile as compared to the above instruments but they still cannot give full
representation across a region. Additionally, it is usually necessary to develop an algorithm according
to local atmospheric conditions for increasing the accuracy of estimated VR (Baumer et al., 2008).

Kadoorie Farm and
Botanic Garden Tsim Sha Tsw
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L-?'El FRB Sh:m. the NE\.\' 'l::all'{ncn:es} 3 the west)

H

Tsim Sha Tsui
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northemn Lantau) the east) )

Central
(Victoria Harbour)

Peng Chan Waglan Eland
(overlooking (lookmg towards
. Dimeyiand) the orthaortwest)

Peng Chau Cheung Chau " Waglan Island
{overiookmg (looking towards 2 Gﬁm Swiss (looking towards
Victoria i;{a:bomgj the north) g Imemanoaallsdu}ol ) the west)

Figure 1.1. Digital cameras installed by HKO in Hong Kong
(http://www.weather.gov.hk/wxinfo/ts/index_e webcam.htm)
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1.3.3 Physic-chemical measurements

Visibility is measured in the USA’s national parks using chemical speciation
method in a campaign called IMPROVE (Malm et al, 1994), where extinction
coefficient of the respective species are calculated by selecting a regression fit (Eq

1.4).

Bexe = 2.2 X f;(RH) X [Small (NH,), SO,] + 4.8 X f,(RH) X
[Large (NH,), SO,] + 2.4 X f,(RH) X [Small NH, NOs]+ 5.1 X
fL(RH) X [Large NH, NO;] + 2.8 X [Small POM] + 6.1 X

[Large POM] + 10 X [EC] + 1 X Fine Soil] + 1.4 X f,c(RH) X
[Sea Salt] + 0.6 X [Coarse Mass] + Rayleigh Scatering +
EEpno, X NO, (1.4)
This method can be used as an empirical formula (Malm et al., 2003). In spite
of its successful use in the USA, this formula underperforms by 30 % in the PRD
region (Jung et al., 2009). Recently Bian (2011) has modified this formula (Eq 1.5)
for the PRD and Hong Kong region but it still underestimates visibility with an
uncertainty of = 10 %. This formula needs validation over large time series of ground
data before becoming operational. The method is also expensive and time-consuming

as ground level aerosol mass concentrations over a region are required.

Boyxe = a X [[(NHy), S0,] + [NH,NO3] + [NH,HSO,]] X f(RH) +
b[OC x 1.6] +7.70 X [EC] + CM + Soil (1.5)

1.3.4 Estimation of VR from space

From the above discussion, it is clear that all methods for measuring visibility
are representative of only a specific cylinder of the nearby air and they assume the air
across a whole region to be identical to that near the measuring instrument. However,
in reality, it is common to find different concentrations of aerosol in adjoining areas.
Therefore, a method for estimation of visibility over a large region is required that
can report VR representing both locale and direction without integrating a local

result (representative of a small area of few hundred m?).

Modern advancements in the field of satellite meteorology have enabled us to
estimate large numbers of climatic parameters at high temporal and spatial

resolutions (Hadjimistsis et al., 2010). Atmospheric visibility is also an important
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climatic parameter and a number of studies have been reported in the literature for
estimation of VR from satellite remote sensing (Williams and Cogan, 1991; Bendix,
1995; Vincent, 2003; Haung et al., 2006; Yang et al., 2008; Riffler et al., 2009;
Nichol et al., 2010; Hadjimistsis et al., 2010). However, these satellite-based
techniques are not yet able to fill the data gaps due to insufficient and rather
impossible deployment of ground instruments over a big region (Williams and

Cogan, 1991).

Efforts have been reported to supplement surface networks with satellite
remote sensing to estimate surface level atmospheric VR (Kaufman and Fraser,
1983; Hadjimitsis et al., 2010), using one, or a combination of approaches. Some
relevant examples are; (1) The use of solar albedo for deriving geometric and optical
thickness of fog from the Advanced Very High Resolution Radiometer (AVHRR;
Mishchenko et al., 2003) and SOnic Detection And Ranging (SODAR), including a
radiative transfer model for calculating the extinction coefficient (Bendix, 1995). (2)
The use of luminance and contrast in spatial and frequency domains derived from
radiative transfer models from satellite images (Diner, 1985; Williams and Cogan,
1991). (3) Atmospheric transmittance derived from satellite Aerosol Optical Depth
(AOD) measurements (Hadjimitsis et al., 2010; Nichol et al., 2010) and (4) The use
of statistical regressions with different combinations of band radiances to estimate

VR (Haung et al., 2006).

Bendix (1995) estimated visibility in the fog from NOAA-AVHRR band 1, 4
and 5 and calculated the spectral and geometrical depths. He computed fog spectral
depth using surface and top of fog albedo with a radiation transfer model, and
geometrical fog depth by superimposing a digital elevation model (DEM) over a
binary image of fog layer with uniform thickness. Although he reported results with
accuracy of R* = 0.82, R = 0.9 and standard deviation = 100 m his findings are valid
only if the fog layer is of uniform thickness. Therefore, his approach lacks
consideration of the vertical extinction profile of the non-homogeneous layer of the
fog. In addition, this approach is not reliable in the case of aerosols that have almost
similar reflectance to that of urban surfaces. Therefore it can be challenging to use

this method when there is no well-defined stratified layer of fog.

Williams and Cogan, (1991) used the luminance and contrast in RS images

over a time series to measure the effects of atmospheric attenuation in the
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degradation of the VR. They assumed that the transmittance of the beam to the
sensor is dependent on an attenuation length (L(z)) and zenith angle (6). The authors
assumed zenith and azimuth angles to be same for a given region in all images.
Minimum computed contrast range from each image in the time series, was
designated as the inherent contrast of the atmosphere, which was used to compute
L(z) and hence VR for each image. In their work, there was no validation with the
ground data and hence its operational use is untested. Moreover, using the same
azimuth and zenith angle for each image was not realistic. In addition, the method is
highly sensitive to the cloud contaminated images as clouds can mask true
transmittance of the beam. Therefore, such an algorithm may not be a good choice
for Hong Kong that experiences frequent cloud cover. Moreover, this algorithm was

computationally expensive.

Hadjimistsis et al. (2010) used a graph between AOD and VR proposed by
(Turner and Spenser, 1972) to report VR from the retrieved AOD through an
algorithm based on the Darkest-pixel approach using Landsat images at Heathrow
Airport, England. They assumed zero reflectance from the selected dark pixel and the
radiance recorded for that pixel was assumed to be from the aerosols in that pixel. In
addition, they oversimplified their algorithm by ignoring the effects of multiple
scattering, Relative Humidity (RH), water vapour and ozone in the atmosphere.
Although, they reported an estimated VR with an accuracy of R* = 0.97 based on
only seven images but so many assumptions in algorithm development question its

reliability for highly polluted and humid regions like Hong Kong.

The only study using satellite retrieved AOD to estimate VR over the Hong
Kong was by Nichol et al., (2010), which used the MODIS AOD computed from the
minimum reflectance technique (MRT) at 500m resolution (Wong et al., 2010) to
estimate the 3D VR (Eq 1.6).

VR = (3912 x Z)/A0OD (1.6)

Here Z is the scaling height where the extinction due to the vertical distribution

of AOD becomes zero. This height was used to estimate the vertical profile of the
VR corresponding to the n™ floor of any building in the region. More over this was
the first study considering the importance of visibility in terms of direction, location,
and height. Their results still lack the validation from real time ground VR, as large

differences are expected, as reported by other studies discussed above.
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Haung et al., (2006) used principal component regression (PCR) for computing
VR from the radiance of five channels of NOAA-AVHRR over 458 images during
2001- 2002 and found a high correlation for low visibility (< 5 km) with Chl, Ch2
andCh1/Ch2 (Visible and NIR), possibly due to absorption and scattering from water
vapour. The correlation for high visibility (> 15 km) and the NIR channel was
highest, whereas for moderate visibility it had the same correlation values for all
channels. The results were reported with accuracy of 94.98 % (R = 0.82) for the
foggy conditions and the computed visibility with PCR method underestimated the

high visibility and overestimated the low visibility.

The studies mentioned above focus only on stratified layers of fog, and all lack
appropriate validation measurements for very clear or highly polluted (i.e., high
AOD) days or cases. Therefore, their use for a highly polluted and humid region like
Hong Kong is untested.

1.4 VISIBILITY IN HONG KONG

Rapid urban industrial development in China mainland has given rise to
megalopolises like the Yangtze River Delta (YRD) and the PRD region, and created
visibility problems for their own areas as well as neighbouring regions such as Hong
Kong. Hong Kong’s skyline and mountain horizons are frequently obscured due to
reduced visibility (HKO, 2012). This is primarily the result of high aerosol
particulate loading, with mean annual AOD values exceeding 0.60 at 550 nm (Wu et
al., 2005). Air quality in urban Hong Kong is considered worse than in surrounding
rural areas (Louie et al., 2005), and, for context, is worse than in most urbanized

coastal areas of eastern USA (Yuan et al., 2002).

Several studies have shown that Hong Kong’s declining visibility is closely
related to local and regional air pollution (Chan and Yao, 2008), as light extinction
correlates strongly with concentrations of respirable suspended particles (RSP -
particles with a diameter of less than 10 pm) within the planetary boundary layer
(PBL) (Chin, 1997; Lee and Gervat, 1995; Sequeira and Lai, 1998). It is a continuing
debate in Hong Kong, whether low visibility is due to regional transport of pollutants
under the prevailing meteorological conditions (Lee and Hills, 2003; Lee and
Sequeira, 2002; Zhuang et al., 1999) or due to local sources (Ho et al., 2006; Lu and
Wang, 2004; Wang et al., 2003). Some researchers suggested both regional and local
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sources (Lind and Kok, 1999; Chan et al., 1998, Xiao et al., 2006). Local
anthropogenic activities, as well as aerosol particle transport, most commonly in the
form of sulphate (SO4) from neighbouring China, are primary contributors (Cheung
et al., 2005; Qun et al., 2009; Zhuang et al., 1999). Lai and Sequeira (2001) showed
that NO, and RSP are responsible for 79 % of light extinction in Hong Kong. In
comparison, Wan et al., (2011) reported a high correlation between visibility and
PMo between 2001 and 2008, when the latter decreases by 0.004 mg/m’ and with
NO, when NO, decreases from 0.05 to 0.02 mg/m’ in the nearby PRD region.
Deteriorating visibility has prompted concern for health as well as for transportation,
aviation and other routine civil operations (Thach et al., 2010). Therefore Wan et al.,

(2011) defined the degradation of visibility in Hong Kong as a multifaceted problem.
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Figure 1.2. Long range (left) and short range (centre) Transmissometers at HKIA. Locations of four
visibility-monitoring stations (right) in Hong Kong.

Surface VR is measured operationally at five locations in and around Hong
Kong’s main land areas by qualified weather observers, forward scattering
radiometers and transmissometers. These include an urban site at the Hong Kong
Observatory (HKO at 22.301° N, 114.174° E) across Victoria Harbor, as well as in
the outer suburbs at the Hong Kong International Airport (HKIA at 22.309° N,
113.922° E; Fig 1.2). Although, these monitoring sites have contributed a number of
new and important data sets for better characterization of visibility, they are not
sufficient to cover all of Hong Kong. In addition, such estimates are valid only for a

specific sample of space or direction (Anderson et al., 2003).
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1.5 OBJECTIVES OF THIS STUDY

It is evident from the discussion in previous sections that none of the methods
to estimate VR has addressed the estimation of visibility at regional scale effectively
because it requires a dense ground based network that is costly and time consuming.
Although satellite remote sensing has played a vital role in the field of meteorology,
it cannot yet be fully utilized because VR is horizontally measured and satellite
measures attributes of the atmosphere vertically. However, these different viewing
perspectives can also present an opportunity to estimate VR more effectively over a

region.

Therefore, the main objective of this study is to develop a remote sensing based
methodology for measuring atmospheric visibility at or near ground level. Such a
method can improve understanding of the effects of atmospheric visibility in the field
of transportation, navigation, health, tourism, and air quality. The following

secondary objectives arise from the stated main objective;

e  To examine the relationship between columnar AOD and ground visibility;
one being measured horizontally and the other being measured vertically.
o To evaluate the potential of space borne optical sensors for remote sensing

of VR at surface level.
e To identify the parameters required to estimate VR using ground and
satellite remote sensing.
1.6 ORGANIZATION OF THESIS
This thesis is organised in five chapters as follows

o Chapter 1 describes the background, reviewed literature, research gaps,

motivation and objectives.
o  Chapter 2 depicts study area and data used.

o  Chapter 3 evaluates the satellite sensors for estimation of surface visibility
using their AOD products. This chapter further identifies the parameters

required to improve the estimation of visual range.
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Chapter 4 presents the methods to estimate surface visibility using AOD
from MODIS, AERONET and LIDAR. This chapter also describes the

validation of each method.

Chapter 5 highlights the overall outcome and recommendation of this

research.
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2.1 STUDY AREA

The Hong Kong domain studied here represents an aggregate surface area of
1104 km?, located in a sub-tropical region surrounded by the South China Sea to the
east, south and west, and bordering Shenzhen, China mainland to the north (Fig. 2.1).
The maximum altitude above mean sea level (MSL) is 957 m and approximately 40
% of the land area is preserved as country parklands. Hong Kong experiences local
as well as regional trans-boundary air pollution. In the warm summer months,
southwesterly winds bring fresh marine air, resulting in a relatively clean, hot and
humid atmosphere (Cheng et al., 2006). From October to April, cold air masses from
South China mainland transport regional pollutants (Cheng et al., 2006) making air
quality poor. Local visibility is highest in the hot humid summer, with southerly
winds from the South China Sea, and lowest in the winter and spring, with dry

northerly winds from continental China mainland (Chang and Koo, 1986; Mui et al.,
2009).
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Figure 2.1 Locations of the visibility monitoring stations in Hong Kong, (HKO and HKPU are 0.5 km
apart.)

Estimation of Surface Visibility over Hong Kong Using Remote Sensing



18 Chapter 2: Research Tools

2.2 DATA USED
A brief description of the data used is given below (Tab. 2.1);

Table 2.1 Summary of the data use in the study.

Data Type Level/Resolution Wavelength (nm) Period
2000 - 2009
MODIS AOD 10 (km) 550
Apr, 2011 — Sep, 2012
MISR AOD 17.6 (km) 558 2005 — 2009
OMI AOD 27.8 (km) 483 2006 — 2009
LIDAR (B,,:, MLH, AOD) 355 Apr, 2011 — Sep, 2012
Level 2.0 550 Apr, 2011 - Oct, 2011
AERONET AOD
Level 1.5 550 Nov, 2011 — Sep, 2012
Human observation 550 2002 - 2009
Visual Range
Visibility meter 875 Apr, 2011 — Sep, 2012
Climatic Surface level 2005 - 2008

2.2.1 AERONET

Direct level 2.0 AOD from Aerosol Robotic NETwork (AERONET) station of
HKPU (operating from 2005 onwards) is used in this study. The HKPU AERONET
station (22.303° N, 114.179° E) is on the rooftop (5™ floor) of a building. The
AERONET sun photometer database includes AOD over a range of wavelengths
(0.35 to 1.05 pm), with an accuracy of £ 0.015 (Rainwater and Gregory, 2005).
Generally, instruments are calibrated annually. Typically, measurements are
collected and reported at 15 min resolution. Value added Level 2 products aside from
AOD include aerosol single scattering albedo, size distribution, fine and coarse mode
fraction, phase function and asymmetric function (Dubovik and King, 2000).
AERONET data are widely used for the validation of satellite AOD retrievals and
model simulations (Yu et al., 2003).

We note recent work suggesting that Level 2 AERONET screening algorithms
may be limited by optically-thin cirrus clouds, most common in tropical and sub-

tropical locales, thus leading to a positive definite AOD bias of 0.03 to 0.06 when
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such clouds go unscreened (Chew et al., 2011). In Singapore, for instance, this can
approach 35 % of the Level 2 sample. In this study however, we apply the Level 2
archive directly and presume the cloud screening procedures are robust.
Atmospheric Lidar System (ALS; Lolli et al., 2011) data (discussed in the next
section) is also used in this study. Despite the presence of ALS measurements, during
daytime, when the passive radiometric observations used here are available, the ALS
proves insensitive to cloud presence at heights and temperatures most commonly
associated with optically thin tropical cirrus. Thus, no consideration of potential

cloud bias in the AERONET sample is possible.

2.2.2 Atmospheric LIDAR System (ALS)
The ALS at HKPU collects data at 15 m and 1 min spatial and temporal

resolutions, respectively. The ALS is a single channel elastic backscatter LIDAR,
operated at 355 nm, with an outgoing energy pulse near 16 pJ at 20 Hz. The ALS
data used in this study do not account for Rayleigh scattering and gas and particle
absorption. Signals are processed for a relative backscattering coefficient (B; m™'sr”
", which can be interpreted for significant aerosol particle layers, such as the
surface-detached mixed aerosol layer (referred to as Mixing layer low; ML-Low) and
diffuse elevated layers decoupled from the primary surface layer (ML-High) and
advecting within the free troposphere. Further processing can yield an estimated
extinction coefficient (Lidar extinction coefficient at HKPU; 6, - m™"), where AOD
(Lidar AOD at HKPU; t;y) is either constrained and extinction solved iteratively
through an inversion solution to the Lidar equation (Fernald, 1984; Klett, 1985), or
by setting the relationship between extinction and backscatter coefficients (Lidar
ratio) constant within an assumed turbid layer and again constraining total

transmission to solve extinction bin-by-bin from the top of the layer to the surface.

In this work, the latter technique for solving the extinction is applied using
built-in software provided by the ALS manufacturer that includes a predefined set of
extinction-to-backscatter ratios that limited the choices of extinction-to-backscatter
ratios. The extinction-to-backscatter ratio can fluctuate depending on the region of
interest, particularly in Southeast Asia (Campbell et al., 2013). At Hong Kong, it is
found to fluctuate seasonally between 18 sr to 44 sr at 532 nm (He, 2006). In this
study, a value ratio of 36 sr was chosen from the available list in LIDAR’s built-in

software because it was the most appropriate choice among the available predefined
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set. This value ratio of 36 sr (e.g., Ackerman et al., 1998) reflects urban pollution as

the primary aerosol type regionally.

Note that overlap of the ALS system is achieved at a range approximating 170
m. Thus, in order to estimate near surface VR effectively, we use data as close to the
surface as possible and extrapolate downward (described below). Therefore, the
hourly average extinction coefficient (Lidar extinction coefficient at HKPU; o, ) at
355 nm is retrieved from the LIDAR measurements at heights between 75 m and 150

m.

2.2.3 Image data from satellite

The objective of this study is to estimate the atmospheric visibility using the
AOD retrieved from the satellite. Therefore, in order to select the most appropriate
sensor and its AOD product a comparison is also carried out between potential AOD
retrieving sensors. This study used all available satellite data: (i) MODIS 10 km
AOD product at 550nm from 2000 to 2009, (ii) MISR 17.6 km AOD product at 558
nm from 2005 to 2009, (iii)) OMI 27.8 km AOD product at 483 nm from 2004 to
2009 and (iv) CALIPSO 5 km AOD product at 532 nm from 2006 to 2009.
Following is the brief description of each sensor and their AOD products used in this

study;

MODIS

The MODerate resolution Imaging Spectroradiometer (MODIS) is a sensor
aboard the Terra and Aqua satellites. Terra was launched in 1999 and passes from
north to south in the morning (ca. 10:30 a.m. local time) and Aqua was launched in
2001, passing from south to north in the afternoon (ca. 1:30 p.m. local time). With 36
wavebands at 250 m, 500 m and 1 km resolution, MODIS can be used for
atmospheric, oceanic and land studies at both global and local scales. MODIS also
provides specific products such as atmospheric aerosols, ocean colour, land cover
maps and fire products. The MODIS aerosol operational product (MODO04) devised
with the 10 km resolution has been upgraded from collection 4 (Kaufman et al.,
1997; Kaufman and Tanré, 1998) to collection 5 (Levy et al., 2005) with more
consideration of aerosol types and dark pixel selection during retrieval. The rationale
of multi-wavelength algorithm used in MODIS is to take advantage of different

aerosol scattering properties at different wavelengths. Thus, by virtue of their
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spectral differences, the amount of aerosol reflectances can be inferred from a
combination of longer and shorter wavelengths. Then fit the derived aerosol

reflectances in Look-Up Tables created from different aerosol types to derive AOD.

MISR

Multi-angle Imaging SpectroRadiometer (MISR) was launched in 1999 in a
polar orbiting sun-synchronous satellite (Terra) at an altitude of 705 km with
temporal resolution of 16 days, nine cameras with four spectral bands (446, 558, 672
and 867nm) are used for observing forward, nadir and rear 9 different viewing angles
(Diner et al., 1998). The spatial resolution of MISR is 250 m, 275 m and 1.1 km
respectively. The radiances at 1.1 km resolution are processed in the standard level 2
MISR aerosol product at 17.6 km* pixel size. The heterogeneous land algorithm has
been developed by Martonchik et al. (1997) for application with multiple view angle
sensors when no Dense Dark Vegetation (DDV) is present and when sufficient
spatial contrast is present in a scene. It differs from the dark water and DDV retrieval
methods in that it does not use the observed radiances directly, but instead uses the
presence of spatial contrasts to derive an Empirical Orthogonal Function (EOF)
representation of the angular variation of the scene reflectance. This is then used to
estimate the scene path radiance (the radiance field reflected from the atmosphere
without interacting with the surface), which is used in turn to determine the best

fitting aerosol models (Martonchik et al., 1997; Diner et al., 1998).

omi1

The Ozone Monitoring Instrument (OMI) was launched in 2004 on a 705 km
sun synchronous polar orbit with an ascending node equator crossing time of 13:45
(LST). The OMI instrument (Levelt et al., 2006) with advance viewing capabilities is
an inheritor of the instruments such as the Total Ozone Mapping Spectrometer
(TOMS; Bhartia and Wellemeyer, 2002; Heath and Park, 1978), the Solar
Backscatter Ultraviolet Instrument (SBUV; Heath and Park, 1978), the Global Ozone
Monitoring Instrument (GOME; Burrows et al., 1999) and the Scanning Imaging
Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY; Burrows et
al., 1995; Bovensmann et al., 1999). The OMI instrument is a push broom nadir
viewing ultraviolet to visible (ultraviolet: 270-365 nm and visible part: 365-500 nm)
imaging spectrometer with a wide instantaneous across track field of view (115°).

These wavelengths range are used to retrieve the OMI data products that are
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available at four processing levels (level 0, level 1B, level 2, and level 3). The OMI
operational algorithms to retrieve these data products heavily depend on experience
gained from TOMS, GOME, SBUV and SCIAMAMCHY. There are two aerosol
operational products developed for OMI sensor: OMAERUYV aerosol product (near-
UV algorithm) and OMAERO aerosol product (multi-wavelength algorithm). The
near-UV algorithm derives AOD from 342.5 and 388nm. Its rationale is first deriving
aerosol index from these two wavelengths, then using aerosol index to determine the
corresponding aerosol type. Lastly, it uses the corresponding aerosol types to
generate look up table and making use of look up table to derive AOD and Single
Scattering Albedo (SSA). The multi-wavelength algorithm derives AOD using eight
UV and visible wavelengths from 340 to 500 nm. Its rationale is by fitting the
spectrum to fifty aerosol models, and find the model with the least systemic error
(Root Mean Square Error - RMSE), then further derive AOD value from the
appropriate aerosol model (Torres et al., 2005). In this study, the OMAERO aerosol
grid product by multi-wavelength algorithm (at 27.8 km spatial resolution) was used
since it provides AOD values at visible wavelengths that are compatible with human

observation of VR.

CALIPSO
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation)

spacecraft was launched in 2006 to observe the vertical structure and properties of
clouds and aerosols (Winker et al., 2003, 2007, 2010). CALIPSO is the first
polarization LIDAR in a 705 km sun-synchronous polar orbit providing global
coverage between 82° N and 82° S with a local afternoon equator crossing time at
13:30 (ascending node). CALIPSO payload consists of the CALIOP (Cloud-Aerosol
Lidar with Orthogonal Polarization), an active and polarization sensitive lidar
instrument with passive visible and infrared sensors (Winker et al., 2003). The main
objective of CALIPSO is to provide the high-resolution vertical profiles, and spatial
and optical properties of aerosols and clouds to improve the global climate, weather
forecast and air quality models (Winker et al., 2007). The accuracy of CALIOP data
products depend on the calibration of the 532 nm backscatter profiles and these
products are divided into level 1 and level 2 (King et al., 2004). The level 1 data
products consist of geo-located and calibrated profiles. The level 2 data products

have three types of data: layer products (provide properties of clouds and aerosols
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layers), profile products (provide backscatter and extinction profiles), and vertical
feature mask (provide location and types of aerosol and clouds). In this study, the

column AOD from level 2 products with spatial resolution at 5 km was used.

2.2.4 Climatic data

Climatic data from HKO for the years 2004 to 2008 were used in this study.
Meteorology plays an important role in dispersion and accumulation of aerosols. For
instance, northerly winds reaching Hong Kong in winter are mostly polluted.
Regional pollutants combined with local are trapped under an inversion layer
developed within height of few hundred meters. On the other hand, southwesterly
winds in summer bring marine air mass to region. Mostly pollutants are vertically
dispersed due to increased surface temperature in summer. This results in to
increased VR due to decreased mass concentration of particulates near the surface.
Therefore, Mixing Layer Height (MLH), wind speed (WS), wind direction (WD),
temperature (T), pressure (P), V and U component of wind, advection terms VT and
UT, mixing ratio (Q) and temporal change in T and P (AT and AP) were used to
further explore the physics of their relationship with visibility.

Visibility studies are often performed under dry conditions as relative humidity
(RH) impacts the aerosol optical properties (Charlson et al., 1992). Increase in RH
can cause many fine particles with diameters less than 1 pm to grow up to 1 pm and
hence increase the scattering (Bohren and Huffman, 2004; Seinfeld and Pandis,
2006). The extent of the effect of RH on the optical properties of the aerosols
depends on the size and chemical composition whereas other influential factors are
difficult to identify for the region (e.g. Hong Kong) where there is a frequent
exchange of large air masses (Zieger et al., 2011). The effect of RH some time
dominates the role of aerosols in the visibility degradation, for example, visibility in
Beijing is reported to degrade under the effect of RH when PM level and visibility
both are found to decrease simultaneously (Chan and Yao, 2008). Therefore, hourly
values of the RH were also used in this study to analyse the effect of RH on
visibility.

Sequeira and Lai, (1998) mentioned PBL height and seasonality in the Hong
Kong as the key climatic parameter to affect the aerosol loading. Significant
relationship (R* = 0.82 - 0.85) between acrosol and visibility are reported when PBL
height is lower (Zieger et al., 2011, Liu et al., 2009) and the atmosphere is stable. In
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Hong Kong PBL height is measured twice daily (0800 and 2000 HKT) at King’s
Park using Balloon Radiosonde. It is also useful to have the PBL data from the
LIDAR of the HKPU because some data of the Radiosonde and LIDAR have shown
good agreement below the height of 12 km in Hong Kong (Keckhut et al., 1993).
Therefore, PBL and ML height data from the NCEP FNL Operational Model Global

Tropospheric Analyses dataset and lidar were also used.

2.2.5 Visual range

In this study, we used VR from Human observation as well as from visibility
meter. Hourly visibility data from human observer were collected from the two
stations of HKO and HKIA whereas VR from visibility meter are collected from two
stations of HKIA and HKPU stations. HKO is located in Tsim Tsa Tsui (TST) within
few hundred meters of the HKPU’s AERONET, LIDAR and visibility monitoring
station in a highly commercialized urban area and HKIA is in the eastern side of
PRD near Tung Chung (TC). Human observation of the visibility was used in the

time series, correlation and regression analyses.
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Chapter 3: Evaluation of Spaceborne
Sensors for Remote Sensing of
Surface Visibility

3.1 INTRODUCTION

In order to explore the potential of different satellite sensors to estimate VR
from their AOD products, a comparison was carried out by extracting the AOD value
from different sensors from the pixels corresponding to the VR monitoring stations.
This part of the study will compare the AOD products from four satellite sensors
(MODIS, MISR, OMI and CALIPSO) with human observations of VR measured at
two stations in Hong Kong. The two stations HKO and HKIA collect VR data for the
urban area and a coastal area respectively. The results from this evaluation can

suggest the best parameters for reliable satellite-based VR estimation.

3.2 IMAGE AND CLIMATIC DATA USED

The study used satellite products for many years from four different sensors,
namely: (i) MODIS 10 km AOD product at 550 nm from years 2000 to 2009, (ii)
MISR 17.6 km AOD product at 558 nm from years 2005 to 2009, (iii)) OMI 27.8 km
AOD product at 483 nm from years 2004 to 2009, and (iv) CALIPSO 5 km AOD
product at 532 nm from years 2006 to 2009. The AOD products in the green or near
green regions of the visible spectrum were compared with hourly human

observations of VR from two stations in Hong Kong i.e. HKO and HKIA.

Climatic data were considered because meteorological conditions affect the
concentration and optical properties of pollutants and hence can influence VR (Du et
al., 2013; Zieger et al., 2011). For instance, relative humidity (RH) causes many fine
particles of < lum to grow in size up to lum and, hence increase the scattering
(Bohren and Huffman, 2004; Seinfeld and Pandis, 2006). The effect of RH may
exceed the role of aerosols in visibility degradation (Chan and Yao, 2008).
Therefore, hourly values of RH were also used in this study to analyse the effect of
RH on visibility. Preliminary analysis in this study (not discussed here) depicted a
decrease in the correlation between AOD and VR by increasing RH until RH = 90 %.

Correlation did not increase for RH above 90 %. This finding is also in line with by

Estimation of Surface Visibility over Hong Kong Using Remote Sensing
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other studies investigating the relationship of VR with climatic data (Chang et al.,
2009; Tsai, 2005). Therefore, data corresponding to RH greater than 90 % and with

rainfall were excluded from the analysis.

Wind speed (WS) can alter the aerosol loading and the aerosol residence time
in a region. Wind direction (WD) can also increase aerosol loading in a region if
wind is coming from an emission source. Lee and Savtchenko (2006) reported that
seasonal variation in regional air quality of Hong Kong is due to seasonal variation
of cyclonic and anticyclonic activities bringing alternatively fresh and polluted air to
the region. Leung and Lam, (2008), did a quantitative analysis on this and proposed
three wind sectors based on wind direction (Fig 3.1): (1) West to North - air enters
from PRD (2) Northeast to Southeast - air enters from southeastern coastal areas of
China mainland (3) South - air enters from South China Sea. They found the highest
number of hours of reduced visibility for Hong Kong Observatory (HKO) to be in
the NE to SE sector (59 - 80 %) followed by W to N (14 - 34 %) and S (2 - 12 %) for
the years 2003 - 2007.
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Figure 3.1. Division of study area into wind sectors of West to North, Northeast to Southeast and
South for HKO (left) and HKIA (right) (Leaung and Lam, 2008).

Both Lee and Savtchenko, (2006) and Leung and Lam, (2008) in Hong Kong
focused on the role of WS and WD in the degradation of VR but they failed to draw
any final conclusion on the use of WS and WD for predicting VR because a detailed
study is required for identifying important wind sectors at a finer scale. Similarly, to
quantify the effect of WS, Wu et al., (2005) combined the role of PBL and wind as
Wind Flux using the U and V component of wind from a wind Profiler. This enabled
them to study the combined effect of MLH and WS at different heights in order to

understand the vertical dispersion of the aerosols. Therefore, it appears that the effect
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of WD and WS on visibility may be quantified using a wind profiler along with
MLH data. Therefore, V and U components of the wind are also used in this study to

analyse the subsidence and dispersion of aerosol.

High temperature can disperse aerosols through thermal turbulence, thus
increasing VR (Lin et al., 2011; Du et al., 2013). Mui et al. (2009) developed a
regression model to estimate VR from climatic parameters and found temperature to
be the only significant parameter, reporting a correlation coefficient of 0.76. In other
studies, the importance of the temperature was discussed by dividing data into
seasons (Zhang et al., 2010). Moreover, in some studies, the advection terms UT,
VT, temporal change in T and P along with mixing ratio (Q), which itself is a
function of P, T and RH, have also proven to be good indicators for convection and
advection of aerosols. Leung et al., (2009) reported that visibility in Hong Kong is
affected as a whole by changes in the source of air masses under the effect of
convergence of horizontal and vertical airflows, temperature inversions, and wind

speed.

Sequeira and Lai (1998) noted that the Mixing Layer Height (MLH) and
seasonality in the Hong Kong were the key climatic parameters affecting aerosol
loading. They reported a more significant relationship (R* = 0.82 - 0.85) between
aerosol and visibility when MLH is low (Zieger et al., 2011, Liu et al., 2009) and the
atmosphere is stable, as scattering of light increases with low MLH because aerosols
are trapped close to the surface. Recently, Yang et al., (2013) reported a decrease in
daytime maximum MLH with decrease in temperature over Hong Kong from May
2003 to Dec 2009. They explained that a decrease in maximum MLH increased the
near surface extinction of light because a decrease in maximum MLH reduces the

volume of air containing aerosols near to the surface.

Therefore, MLH may be used as a scaling height because most of the scattering
occurs within the MLH of 1 to 5 km (Chin et al., 2007). MLH in Hong Kong is
measured twice daily (0800 HKT and 2000 HKT) using Radiosonde at King's Park.
Since, there is a two to three hour difference in the time of sounding and satellite
overpass, during which MLH can change significantly, MLH data from Radiosonde
were not included in this study. However, MLH data corresponding to satellite pass
time was obtained from NCEP FNL Operational Model Global Tropospheric
Analyses dataset (NCEP, 2000).
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Overlapping of cold and warm front due to pressure difference has been
observed to disturb the vertical dispersion of aerosols (Zhang et al, 2009). This
frontal inversion creates a stable temperature inversion layer between the two fronts
that acts as a mixing layer to trap aerosols below it (Zhang et al., 2009). This kind of
situation may occur in Hong Kong in the winter when a high concentration of the
aerosols is trapped under the mixing layer due to prevailing high pressure. Aerosols
can also be trapped in the presence of two MLHs due to frontal inversion. This traps
the majority of aerosols near the ground in a well-mixed layer and the remaining
aerosols reside above the inversion layer forming a secondary mixing layer. Hence,
the effects of P are translated into the changes of MLH and concentration of the

aerosols below it.

Due to the above reasons, climatic data of temperature — T, pressure — P,
relative humidity — RH, wind speed — WS, wind direction — WD, MLH, U and V
component of wind, water vapour mixing ratio (Q), and temporal change in T and P
(AT, AP) from HKO from 2004 to 2008 are used in this study to construct linear
multiple regression against AOD from a potential remote sensor for estimating

visibility.
3.3 METHODOLOGY

This study was conducted in two parts. First, the relationship between AOD
and surface level extinction coefficient (B.x) was analysed to evaluate the potential
of satellite sensors for remote sensing of VR. The relationship was analysed in terms
of correlation coefficient (R), Root mean square error (RMSE) and Mean absolute
deviation (MAD). Secondly, multiple linear regression was implemented with each

satellite AOD along with the climatic data from HKO to simulate Bey;.

3.3.1 Evaluation of satellite sensors

VR values from HKIA and HKO were converted to Surface level extinction
coefficient (Bey) using Koschmieder’s equation. The OMI, MODIS, MISR, and
CALIPSO AOD products were compared with B observations within a period of +
30 minutes of the overpass time (Ichoku et al., 2002). VR can vary significantly over
time and VR may be greater or less than the standard spatial resolution of an AOD
product. This variation can affect the underlying relationship of that AOD product
and VR. Therefore, the AOD from each sensor was extracted at HKO and HKIA
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using kernels (K) of 1 by 1, 3 by 3, 5 by 5 pixels, and so on until the kernel size was
greater than or equal to 50 by 50 km®. The maximum kernel size of 50 by 50 km’
was used because time series analysis showed that VR in Hong Kong did not exceed
50 km throughout the study period. In addition, a kernel window greater than 50 by
50 km* would be unable to separate the AOD extracted at the HKO and HKIA
ground visibility measurement sites. The variable kernel size helps to select an
optimal spatial window for a given satellite AOD product, and to understand its
relationship with surface level VR. The relationship between AOD and By was

analysed statistically using R, RMSE and MAD.

3.3.2 Regression modelling

The AOD product having a significant relationship with By was included in
multiple linear regression along with climatic data for the years 2005 to 2008. Time
matched data for 2005 to 2007 were used for building an empirical model for
simulating By using the satellite retrieved AOD product, and data for the year 2008

were used for validating the simulated By from the empirical model.

Originally, VR and Bex were positively skewed, which could violate the
assumption of ordinary least square (OLS) regression that requires regression
variables to be normally distributed. Therefore several transformations were applied,
including square root (sqrt), natural logarithm (In), square (sqr) and inverse (inv)
transformations, to produce normal distributions. Such transformations were also
applied to the independent variables MODIS AOD, T, P, RH, WS, WD, MLH, UT,
VT, AT, AP and Q. This resulted in a total of ten dependent and fifty five

independent variables.

Anderson-Darling statistics (AD) and correlation coefficients for each of the
independent and dependent variables were computed. The independent and
dependent variables with maximum correlation coefficient at p-value less than 0.1
and minimum AD value were grouped together as potential candidates for multiple
linear regression because correlation value alone cannot completely imply the cause
and effect relationship. A variable with minimum AD value was included in
regression because its distribution would be more normal than others would. The
condition of p-value less than 0.1 was imposed to select a sufficient number of

independent variables to be analysed with regression modelling.




30 Chapter 3: Evaluation of Spaceborne Sensors for Remote Sensing of Surface Visibility

Each group of variables was subjected to multiple linear regression and further
selection of variables from each group was done on the basis of their p-value, T
statistic, F statistic, variance inflation factor (VIF), coefficient of determination (R?)
and error in prediction (PRESS). Independent variables with significantly larger p-
value and VIF as well as variables with smaller T and F statistics were omitted one
by one and regression was repeated until all the variables correspond to p-value less
than 0.001. The basic assumptions of regression (variance of the error population
should be constant, and residuals are independent and normally distributed) were
validated by analysing the standard residual plot and Durbin-Watson statistics
(DWS) where the residual should be randomly distributed without any pattern in
their spread, and DWS should be near to 2.0.

Each statistical set satisfying the above mentioned criteria was further
subjected to two more modelling approaches namely, ‘stepwise’ and ‘best subset’
regression. This helped to examine the principal factors affecting Bex: using climatic
data. Stepwise regression is based on “add” and “drop” approaches where the “add”
approach, allows only those independent variables to enter into regression one by one
that can improve model fitting, based on their p-value of correlation. A variable is
retained in the regression equation until the p-value of its correlation is less than a
threshold value. Inclusion of another variable can reduce the significance of the
previously added variable and hence it will be removed from the regression equation.
A “drop” approach is opposite to the “add” approach (Lin et al, 2011). A
combination of both approaches was used in this study at threshold p-value equal to

0.001 unless otherwise stated.

Stepwise regression adopts a single path through the independent variables
whereas best subset regression explores all pathways to select the best combination
of independent variables (Hudak et al., 2005). Therefore, a regression model with ‘n’
number of variables developed using best subset approach is expected to perform
better than one with the same number of variables developed using a stepwise
approach. Therefore, the set of variables selected using stepwise regression was also
analysed with best subset regression. A model was selected if it’s Cp-value was
approximately equal to the number of independent variables in it (Eq. 3.1; Mallows,

1973).
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SSE
Cp = — —N+2n 3.1

where SSE is the sum of square errors of the model with n parameters including
independent variables and intercept. MSE is the mean square error of the model. N is
the number of samples. The selected model was then validated using the validation

data from the year 2008.

3.4 RESULTS AND DISCUSSION

3.4.1 Columnar AOD and surface level extinction coefficient

OMIAOD and B,,,

The correlations between OMI AOD and By at HKIA and HKO are both low
with R = 0.303 and 0.244 at HKIA (Fig 3.2) and R = 0.418 and 0.386 at HKO
(Figure 3.3) for kernel windows of 1 by 1 and 3 by 3 respectively. The overall low
correlations may be due to OMI's general overestimation of AOD due to sub pixel
cirrus cloud contamination, as reported by Curier et al., (2008) and Livingston et al.,
(2009) because a pixel size of 27.8 km can easily be mixed with cloud cover and thus
underestimate the single scattering albedo (Torres et al., 1998). Therefore, it is
suspected that uncertainty in retrieval of OMI AOD over Hong Kong may be
associated with sub pixel cloud contamination due to frequent cloud cover. Other
than, wavelength (483 nm) of the OMI AOD is expected to experience relatively
more extinction than the human observation at wavelength of 550 nm. This may also

be the cause of high bias for OMI extinction.
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Figure 3.2. Correlation of Extinction Coefficient at HKIA with OMI AOD (27.8 km product at 483
nm) for kernel window of (a) 1 by 1 and (b) 3 x3. Dashed line represents a 1:1 line whereas solid line
is the resultant regression line.
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Figure 3.3. Correlation of Extinction Coefficient at HKO with OMI AOD (27.8 km product at 483
nm) for kernel window of (a) 1 by 1 and (b) 3 x3. Dashed line represents a 1:1 line whereas solid line
is the resultant regression line.

CALIPSO AOD and B,,,

The main objective of the CALIPSO sensor is to measure the aerosol vertical

profile from space-borne LIDAR. The sum of extinction coefficient at different

heights is deemed equal to AOD. Low correlations are observed between CALIPSO
AOD and By at both HKO (R =-0.888, 0.467 and 0.167 for kernel windows of 7 by
7 to 11 by 11 respectively; Fig 3.4 a-c) and at HKIA (R = 0.320, 0.391, 0.248, 0.297,
0.239 and 0.115 for kernel windows of 1 by 1 to 11 by 11 respectively; Fig 3.5 a-f).
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Figure 3.4. Correlation of Extinction Coefficient at HKO with CALIPSO AOD (5 km product at 532
nm) for kernel window of (a) 7 by 7 (b) 9 x9 and (c) 11 by 11. There was no valid AOD retrieval for
kernel windows of 1 by 1 to 5 by 5. Dashed line represents a 1:1 line whereas solid line is the resultant
regression line. * - potential outlier in the data.
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Figure 3.5. Correlation of Extinction Coefficient at HKIA with CALIPSO AOD (5 km product at 532
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line represents a 1:1 line whereas solid line is the resultant regression line. * - potential outlier in data.

Other researchers observed that low correlations from CALIPSO may be due to
its limitations in collecting data from near ground level during the day because of
lower signal to noise ratio in the presence of high solar background (Hoff and

Christopher, 2009). This means that the backscatter signal near ground can become
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contaminated by the solar zenith radiance (solar background signals). These
backscatter signals combine to give a backscatter profile using a daytime calibration
constant that is also contaminated due to the above-mentioned reason. Therefore, a
night time calibration constant is used by the CALIPSO team to derive the daytime
profiles to overcome this problem. Even with this amendment, CALIPSO is reported
to underestimate AOD by a factor of two compared with AERONET AOD
(Kacenelenbogen et al., 2011).

MISR AOD and B.,;

The correlations between MISR AOD product and B, at HKIA are R = 0.601
and 0.509 (Fig 3.6 a-b), whereas the observed correlations for HKO are R = 0.260
and 0.631 for kernel windows of 1 by 1 and 3 by 3, respectively (Fig 3.7 a-b). This
correlation is reported after excluding the potential outliers (data shown with *) due
to exceptionally high AOD representing extreme cases for the MISR observations.
Outliers are detected only for MISR observation at HKIA only might be due to
presence of mix pixel. Lower MADs and RMSEs are obtained from HKO site than
for HKIA.
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Figure 3.6. Correlation of Extinction Coefficient at HKIA with MISR AOD (17km product at 558 nm)
for kernel window of (a) 1 by 1 and (b) 3 x3. Dashed line represents a 1:1 line whereas solid line is the
resultant regression line. * - potential outlier in the data.

The higher correlations observed over urban (HKO) and coastal (HKIA) areas
are in line with the findings reported by Liu ef al. (2010) and Jiang et al. (2007) in
China. MISR AOD showed a stronger correlation with By than OMI and CALIPSO,
which may be because a large number of aerosol models, incorporating aerosol

mixtures from different aerosol parameters including shape, size and mass are
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considered in the MISR AOD retrieval algorithm (Martonchik et al., 1998; Kahn et
al., 2001), thus the AOD product is more accurate.
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Figure 3.7. Correlation of Extinction Coefficient at HKO with MISR AOD (17km product at 558 nm)
for kernel window of (a) 1 by 1 and (b) 3 x3. Dashed line represents a 1:1 line whereas solid line is the
resultant regression line.

MODIS AOD and B,,;

The MODIS AOD is better correlated with B¢y at HKO than at HKIA (Fig
3.8). The correlations between MODIS AOD and B, at HKO are R = 0.379, 0.510
and 0.529 (Fig 3.8 d-f), whereas the observed correlations at HKIA are R = 0.112,
0.350 and 0.256 (Fig 3.8 a-c) for kernel windows (K) of 1 by 1, 3 by 3 and 5 by 5
respectively. Similar to MISR, some outliers are also detected at HKIA for MODIS
observation and hence are excluded from calculation of correlation due to probable

presence of mix pixel.
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Figure 3.8. Correlation of Extinction Coefficient with MODIS AOD (10 km product at 550 nm) for
HKIA (left) and HKO (right) for kernel window of 1 by 1 (top row), 3 by 3 (middle row) and 5 by 5
(bottom row). Dashed line represents a 1:1 line whereas solid line is the resultant regression line. * -
potential outlier in the data.
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3.4.2 Evaluation of sensors

Among the different sensors evaluated, there are great differences in the R,
RMSE and MAD for both coastal (HKIA) and non-coastal (HKO) areas (Fig 3.9).
The difference in R, RMSE and MAD may be due to the satellite sensor measuring
columnar value of AOD whereas visibility refers to the value of light extinction
along a horizontal path usually at ground level. Fig 3.9 is a comparison between the
values of R, RMSE and MAD with changing spatial resolution for MODIS, MISR,
OMI and CALIPSO. The highest correlation at HKIA is for MISR AOD for kernel
window of 1 by 1 (R = 0.60) followed by MISR AOD for kernel windows of 3 by 3
(R = 0.51) and Calipso for kernel window of 3 by 3 (R = 0.39) (Fig 3.9 top).
However, the highest correlation at HKO is for MISR AOD for kernel window of 3
by 3 (R = 0.63) followed by MODIS AOD with kernel windows of 5 by 5 (R = 0.53)
and 3 by 3 (R = 0.51) respectively (Fig 3.9 top). Hence, MISR AOD has the highest
correlation with the surface level extinction of coefficient followed by MODIS.
Similarly, MISR has lower RMSE and MAD at both HKO and HKIA than other

SENSors.

Although the correlation, RMSE and MAD at both HKO and HKIA for By
and MISR AOD are slightly higher than MODIS, the high temporal and spatial
resolution of MODIS along with its comparable RMSE and MAD to MISR, makes it
a better potential sensor for operational estimation of surface visibility at Hong
Kong. Therefore, further analyses are done using MODIS AOD products for kernel
windows of 5 by 5.
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Figure 3.9. Variations in R (top), RMSE (middle) and MAD (bottom) at different spatial resolutions of
MISR, MODIS, OMI and CALIPSO for HKIA, HKO and their Average. Spatial resolution (km),
sensors name and size of kernel window is labelled in first, second and third x-axis respectively. The
scales of R, RMSE and MAD are on the y-axis. Negative correlation values for CALIPSO AOD are
not shown.
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3.4.3 Derivation of surface visibility range from AOD
Simple linear regression

MODIS AOD data for kernel window of 5 by 5 and VR at HKO were divided
into a training set (from years 2002 to 2006 and 2008) and validation set (from years
2007 and 2009), to estimate and validate MODIS B.y,. Similar to Fig 3.8, the training
data set also showed significant correlation between MODIS AOD and B, at HKO
(Eq 3.2; Fig 3.10a).

Bex = 0.36 (MODIS AOD) + 0.22 (3.2)

Consequently, Eq 3.2 was designated Model-0 (M1) and was tested against the
validation data set (Fig 3.10b). The result shows a significant agreement between
simulated and observed extinction coefficients suggested by a slope close to 1 and
decreased RMSE and MAD. However, most of the data points in validation fell
outside the 95 % confidence interval, depicting a weak estimation power for M.
Therefore, it was thought that the estimation of By might improve further by adding

climatic data in a multiple linear regression model.
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Figure 3.10. Correlation of Extinction Coefficient with MODIS AOD (10 km product at 550 nm)
using Model-0 for HKO (a) linear regression of training data for years 2002 to 2006 and 2008 (b)
estimated MODIS extinction coefficient using MODIS AOD from years 2007 and 2009. Black dashed
line represents a 1:1 line whereas black solid line is the resultant regression line.

Time series analysis

By and large, a direct relationship of visibility with P, T, VT, Q, RH and AOD
was observed with VR (Fig. 3.11). The values of P, T, VT, Q, RH and AOD were
smoothed and standardised between -1 to +1 to analyse their relationship. The
relationships between P, T, RH, VT, AOD and Q were able to explain the variations

in visibility in terms of subsidence and uplift of the aerosols. The relationship is
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rather seasonal with highest visibility in the summer and lowest in the winter.
Overall, VR is noted to increase with decreasing P, RH and AOD. Low pressure
generally makes the atmosphere turbulent, shortening the aerosol’s residence time,
whereas low RH decreases the aerosol’s scattering efficiencies by inhibiting the
increase in aerosol size. However, VR is noted to increase with increasing T, VT and
Q. Low temperature indicates the prevalence of the winter continental northeast
monsoon bringing regional anthropogenic aerosols to Hong Kong and reducing the
VR, whereas high temperature is associated with summer and early autumn bringing
clean and fresh maritime winds from the southwest (Mui et al., 2009). It is also noted
that the number of hours with reduced visibility (visibility less than 8 km) in winter
and summer are associated with the “-VT” and “+VT”. A total 78% of the reduced
visibility hours during the study period are associated with “-VT” due to advection of
aerosols from the north and northeast. It is also noted that VR increases with
increasing Q due to increased rate of mixing. A high value of Q indicates a turbulent
atmosphere increasing the vertical and horizontal aerosol dispersion, whereas
decrease in Q is associated with a trough due to increase in air density causing
subsidence of aerosols. Situations with low value of Q are commonly associated with
cold season and/or cold air mass, whereas high value of Q suggests warmer weather

conditions. Hence, Q can explain the effect of T, P and RH on VR.
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Multiple linear regression

Climatic data from HKO for years 2005-2008 were divided into a training data
set (years 2005-2007) and a validation data set (2008) to explore the effects of
climatic parameters on VR or B.. Correlation analysis was used to explore the
relationship between By, VR and climatic parameters. It is often instructive to apply
some transformations to data before regression analysis if data do not follow normal
distribution (as discussed in the Methodology). Therefore, transformations (inverse,
square, square root and natural log) were applied to VR, By and climatic data to
obtain a normal distribution. This resulted in a set of ten independent and fifty five
dependant variables. The correlation matrix and AD statistics for these variables was
analysed to select potential parameters for constructing a regression model using
climatic data and MODIS AOD at HKO. Part of the correlation matrix containing
potential parameters is shown in Table 3.1, and the respective p-values are italicized

in next line to each variable.

The correlations improved due to some of the transformations. For example,
the correlation between By and AOD improved from 0.78 to 0.79 when B and
AOD were transformed into In(Bey) and In(AOD). Similarly the correlation between
VR and AOD improved from -0.74 to -0.80 when VR and AOD were transformed
into (VR)"? and In(AOD). The parameters with highest correlation and lowest p-
value from each column were selected for constructing a multiple linear regression
model, followed by stepwise and best subset regression models as described in the
methodology. However, the regression model involving the bold variables in Tab.
(3.1) performed far better than the rest and therefore, only regression models

involving the bold variables will be discussed.

As a first attempt, all the selected variables (bold variables in Tab. 3.1) were
subjected to regression analysis, as the Full model gave a poor fit. Some of the
independent variables with significant correlation (Table 3.1) turned out to be
insignificant in the full model (Table 3.2). The P value for UT, VT, U, V, (T)2 and
(P)* was not significant in the Full model with largest VIF of 68.52. It is to be noted
that a VIF close to zero or one shows no, or minimum colinearity among the
regression variables. Multicolinearity for the Full model was significant and hence a
regression variable, (T)* having highest p-value and VIF was dropped from the

model and the regression was repeated for the remaining variables. The new model is

Estimation of Surface Visibility over Hong Kong Using Remote Sensing
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designated as Model A. This time (P)* was omitted as previously explained, and the
process was repeated until Model E was achieved. The regression statistics of each
model are shown in Table 3.2.

Table 3.1. Correlation matrix for independent and dependent variables in their transformed and

untransformed forms.

VR (VR)' (VR)® (VR In(VR) Bew IN(Be) Bexd”? (Be)' (Bew)

AOD -0.74 078  -0.66  -0.76 -0.78  0.78 0.78 0.78 -0.74  0.74
0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

T 0.12  -0.08 0.13 0.11 0.10 -0.08 -0.10 -0.09 0.12 -0.07
0.09 023 0.06 0.12 0.15 0.23 0.15 0.19 0.09 0.31
P -0.11  0.05 -0.13  -0.09 -0.08  0.05 0.08 0.07 -0.11 0.03

0.13 046 0.07 0.18 0.26 0.46 0.26 0.35 0.13 0.66

RH -0.08 0.16 -0.04 -0.10 -0.13  0.16 0.13 0.15 -0.08 0.19
025 0.02 0.57 0.14 0.07 0.02 0.07 0.04 0.25 0.01

MLH 0.01  -0.07 -0.02 0.03 0.04 -0.07 -0.04 -0.05 0.01 -0.08
088 0.35 0.81 0.72 0.57 0.35 0.57 0.44 0.88 0.26

uT -0.15 0.18 -0.13  -0.16 -0.17  0.18 0.17 0.18 -0.15 0.18
0.03 00! 0.06 0.02 0.01 0.01 0.02 0.01 0.03 0.01

vT 021 -0.18 0.21 0.21 020 -0.18 -0.20 -0.19 0.22 -0.14
0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.04

Q 0.11  -0.02  0.15 0.09 0.07 -0.03 -0.07 -0.05 0.11 0.01
011  0.73 0.03 0.20 0.33 0.73 0.33 0.52 0.11 0.91
U -0.17 020 -0.14  -0.18 -0.19  0.20 0.19 0.19 -0.17 0.20
0.02  0.00 0.05 0.01 0.01 0.00 0.01 0.01 0.02 0.00
\% 0.18 -0.15  0.18 0.18 0.17 -0.15 -0.17 -0.16 0.18 -0.13

0.01  0.03 0.01 0.01 0.01 0.03 0.01 0.02 0.01 0.07

WD 0.02  0.03 0.05 0.01 0.00 0.03 0.00 0.02 0.02 0.05
0.73  0.66 0.49 0.88 0.96 0.66 0.96 0.80 0.73 0.44

WS 0.00 -0.06 -0.01 0.02 0.03 -0.06 -0.03 -0.05 0.00 -0.10
095 036 0.87 0.82 0.67 0.36 0.67 0.51 0.96 0.15

In(AOD) -0.79 0.74 -0.76  -0.80 -0.79  0.74 0.79 0.77 -0.79 0.67
0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

In(RH) -0.09 0.16 -0.05 -0.11 -0.13  0.16 0.13 0.15 -0.09 0.19
021 002 0.50 0.12 0.06 0.02 0.06 0.03 0.21 0.01

(T)* 0.14 -0.09 0.15 0.13 0.11 -0.09 -0.11 -0.10 0.14 -0.08
0.05 018 0.03 0.07 0.10 0.18 0.10 0.14 0.05 0.27

(P)’ -0.11  0.05 -0.13  -0.09 -0.08  0.05 0.08 0.07 -0.11 0.03
0.13 046 0.07 0.18 0.26 0.46 0.26 0.35 0.13 0.67

(Q)* 0.16 -0.06  0.20 0.14 0.11 -0.06 -0.11 -0.09 0.16 -0.02
0.02 039 0.00 0.05 0.11 0.39 0.11 0.22 0.02 0.79

Note: P-value of correlation is italicized in next line to each variable and variables selected for

construction of regression model are shown in bold letters.
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All variables of Model E were significant with P-value of zero and VIF
between 1.0 and 1.62. Moreover the prediction error (PRESS) for Model E was also
the smallest, and F statistics the highest among all models. Therefore, Model E was
further subjected to stepwise and best subset regression analyses to further examine
the principal factors affecting VR as explained in methodology. The regression
statistics remained the same as Model E suggesting Model E as optimal regression
model for estimating VR. Therefore, Model E was designated henceforth as Model 2
(M2; Eq 3.3; Fig 3.11).

VV = 6.43 + 0.00079 VT — 1.96 In(A0D) — 2.30 In(RH) + 0.017 Q? (3.3)
i S b
N @ | @)
I:-i-f.. . '-‘;" a f’l.. 'l:-'.. l.1
o 1 2 3 i 5 1] 1 ) 3 4 5
SQAT{MODIS Visibility) SOAT{MODIS Visibility)

Figure 3.12. Correlation between Square root of MODIS visibility at HKO (SQRT(MODIS
Visibility)) and Square root of ground visibility at HKO (SQRT(HKO Visibility)) using Model 2
(a) linear multiple regression of training data for years 2005 to 2007 (b) simulated MODIS visibility
using validation of data (MODIS AOD and Climatic data) from years 2008. Blue Dotted Dashed lines
show the upper and lower limit of + 20 % of the ground visibility at HKO whereas black solid line is
the resultant regression line.

With the addition of climatic parameters having significant relationship with
VR Model 2 (Eq. 3.3) actually performed better than Model 1, having significantly
high values of R = 84 %, R* = 71.1%, predicted-R? = 69.8% and RMSE = 0.11 km
(Fig. 3.12a). Model 2 was also able to simulate the real time VR at HKO with high
accuracy demonstrated by a low RMSE of 0.27 km (Fig. 3.12b). The selected model
can explain the physical forces behind the influence of regression parameters on
visibility in terms of subsequent changes in air density, turbulence and advection.
Respective signs (+ and -) for the coefficients of regression model M2 suggest that a
unit increase in any one or combination of “T”, “RH”, “VT”, “Qz” also increases the

visibility whereas a unit increase in In(AOD) or P decreases the visibility. This is

Estimation of Surface Visibility over Hong Kong Using Remote Sensing
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also in agreement with the physical forces explained in section “Time series
analysis”. Although In(RH) has the highest coefficient, M2 is highly sensitive to
changes in In(AOD) with F-value of 401.00 followed by Q?, In(RH) and VT with F-
values of 41.10, 28.24 and 10.567 respectively. This may be due to the fact that Q
depends on P, T and RH and therefore acts as a confound variable whose interaction
with VR can also explain the combined effect of P, T and RH on VR. The
performance of M2 also suggests that VT is sufficient to explain the effects of WS
and WD on dispersion of aerosols and hence on VR. The presence of VT, RH and Q
in a model can also increase the multicolinearity but DWS values close to one (Tab.
3.2), suggest no multicolinearity in M2. This explains why M2 was able to accurately
estimate VR at HKO as shown by the summary statistics of real-time and simulated
VR at HKO for the year 2008 (Tab. 3.3).

Table 3.3. Summary statistics for the real-time (HKO VR) and simulated (MODIS VR) VR at HKO
for the year 2008.

HKO VR (km) MODIS VR (km)

Total observations 95 95
Mean 12.25 12.10
Standard Error 0.51 0.40
Mean 4.92 3.94
Median 12.00 12.18
Maximum 25.00 21.93
Minimum 3.20 4.64
Standard Deviation 0.33 0.49
First Quartile 9.00 9.08
Third Quartile 15.00 14.87

Eighty one percent of the simulated VR using M2 was found to be also well
within +£20% of the HKO VR (Fig. 3.13) which is consistent with Annex 3 of the
International Civil Aviation Organization (ICAO) that suggests that an uncertainty of
+20 % in estimated VR is acceptable when actual VR is above 1.5 km. The results of
this study are far better than previous studies on the same topic for Hong Kong and

the Chinese mainland (Tab. 3.4).
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All these previous studies have used expensive and time consuming data of
mass concentrations of pollutants, along with available meteorological data. In
addition these studies used averaged daily data which cannot serve real-time
operational purposes, whereas this study used satellite derived AOD along with

hourly meteorological data.

Table 3.4 Results of the previous studies on the same topic for Hong Kong and China mainland.

Dependant Variable Independent Variables  R”

Lai et al., (2001) Bext NO,, RSP, RH 0.76
Keetal., (2013) VR RH, WS, P, T, Prec.  0.39
Mui et al., (2009) VR T, API 0.77
Mang et al., (2011) VR PM;y, NO,, RH 0.80
Wan et al., (2011) VR SO,, NO,, PMjg 0.51

Note: RSP — Respirable Suspended Particles; Prec. — Precipitation; API — Air Pollution Index

3.5 CONCLUSION

The potential of MODIS, MISR, OMI and CALIPSO AOD products was
evaluated for remote sensing of visibility at two stations for monitoring visibility in
Hong Kong. The highest correlation at HKIA is for MISR AOD for kernel window
of 1 by 1 (R = 0.60) followed by MISR AOD for kernel windows of 3 by 3 (R =
0.51) and Calipso for kernel window of 3 by 3 (R = 0.39) and the highest correlation
at HKO is for MISR AOD for kernel window of 3 by 3 (R = 0.63) followed by
MODIS AOD with kernel windows of 5 by 5 (R = 0.53) and 3 by 3 (R = 0.51)
respectively. Although the correlation, RMSE and MAD for MISR AOD and By is
the highest at HKO and HKIA than MODIS AOD with a kernel window of 5 by 5
but due to higher temporal and spatial resolution of MODIS than MISR and
comparable RMSE and MAD MODIA AOD was used in regression modelling to
simulate VR. A simple linear regression model (M1) with only MODIS AOD was
able to explain 58.1 % of variance in By whereas a multiple linear Regression model
(M2) combining MODIS AOD with climatic data explained 84.0 % of the variance
in VR with a high accuracy, i.e. RMSE of 0.27 km. The results of this study suggest
that Q alone can explain the combined effect of P, T and RH on VR. The Results also
suggest that VT alone is sufficient to explain the effects of WS and WD on

dispersion of aerosols and hence on VR.

Estimation of Surface Visibility over Hong Kong Using Remote Sensing
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Chapter 4: Estimation of Surface Visibility
using Operational Products of
LIDAR, AERONET and
MODIS

4.1 INTRODUCTION

From the discussion in section 1.4, it is evident that recent efforts to estimate
surface visibility have not been successful. This is because passive aerosol remote
sensors do not resolve aerosol distributions vertically with reliably high resolution (in
the order of 1-100 m). Although spaceborne LIDAR instruments, of which the
NASA Cloud Aerosol Lidar with Orthogonal Polarization instrument (CALIOP;
Winker et al,, 2010) is currently the only operational sensor, do offer this
measurement, CALIOP’s limited sensor swath width and orbital track make these
data difficult to apply practically in a routine/daily operational setting relative to
other passive sensors. Instead, we consider the opportunity to combine the benefits of
regional passive satellite aerosol observations with surface-based LIDAR profiling to

better constrain local VR estimates.

Therefore, in this study, the vertical profile of aerosol particle scattering and
distribution is estimated from a single-channel elastic-scattering LIDAR at Hong
Kong Polytechnic University (HKPU at 22.30° N, 114.197° E). Six algorithms are
then described and tested, where regional VR is estimated using coincident ground-
based LIDAR, sun photometer and AOD datasets of the Moderate Resolution
Infrared Spectroradiometer (MODIS; Ackerman et al., 1998). Using the 355 nm
extinction coefficient profile derived from the LIDAR measurements at one location,
MODIS AOD data are scaled down to the surface to generate a regional composite
depiction of surface VR. We assume the vertical distribution of aerosol particle mass
concentration over the Hong Kong study domain is constant relative to its horizontal
distribution. We evaluate this assumption by comparing our results with independent
VR measurements at locations where LIDAR data do not exist. By applying this

technique, it is possible to optimize information from a relatively limited number of
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available ground visibilities to estimate VR across the entire area from passive

remote sensing datasets, which provide the necessary spatial coverage.

4.2 DATA USED

This study considers hourly-averaged datasets collected with a 355 nm elastic
scattering LIDAR instrument, a multi-channel sun photometer, deployed as part of
NASA’s federated Aerosol Robotic Network (AERONET; Holben et al., 1998), and
a Vaisala visibility meter, all installed on the urban campus of HKPU. The data are
evaluated from April 2011, beginning with the availability of routine LIDAR
observations at HKPU, through October 2011, corresponding to the availability of
quality assured Level 2 AERONET products that are cloud screened as well as pre
and post-field calibrated. However, in order to sample a larger number of MODIS
data for validating our method, we extend the study period beyond October 2011 to
September 2012 using only Level 1.5 AERONET data, which are cloud screened but
without a final post-operation calibration applied. Overall, though, only six data

points of these level 1.5 data were available for use for our validation study.

4.2.1 MODIS
The AOD from MODO04 and MYDO04 are extracted for the HKPU () and

HKIA (7p4) sites using spatial windows of 5x5 pixels, which are then compared to
hourly average values of data from AERONET, the LIDAR and visibility meter.
These temporal and spatial windows were designed in accordance with Anderson et
al. (2003), who report a significant correlation (r > 0.90) between AOD
measurements from ground, air and space using a temporal window of less than 3

hours and a spatial window of less than 60 km.

4.2.2 AERONET Data

We used the hourly averaged Level 2.0 and Level 1.5 AOD from the
AERONET station at HKPU. We note recent work suggesting that Level 2
AERONET screening algorithms may be limited by optically-thin cirrus clouds, most
common in tropical and sub-tropical locales, thus leading to a positive-definite AOD
bias of 0.03-0.06 when such clouds go unscreened (Chew et al., 2011). In Singapore,
for instance, this can approach 35% of the Level 2 sample. In this study however, we

apply the Level 2 archive directly and presume the cloud-screening procedures are
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robust. In this study time matched values from ALS and Level 2.0 data from

AERONET were also used to avoid potential cloud bias in the ALS sample.

4.2.3 LIDAR Data
The Atmospheric LIDAR System (ALS; Lolli et al., 2011) at HKPU collects

data at 15 m and 1 min spatial and temporal resolutions, respectively. The ALS is a
single-channel elastic backscatter LIDAR, operated at 355 nm, with an outgoing
energy pulse near 16 pJ at 20 Hz. The ALS data used in this study do not account for
Rayleigh scattering and gas and particle absorption. Signals are processed for a
relative backscattering coefficient (B; m™sr’'), which can be interpreted for
significant aerosol particle layers, such as the surface-detached mixed aerosol layer
(referred to as Mixing layer-low; ML-Low) and diffuse elevated layers decoupled
from the primary surface layer and advecting within the free troposphere (ML-High).
Further processing can yield an estimated extinction coefficient (o.g - m™), where
AOD (t.y) is either constrained and extinction solved iteratively through an
inversion solution to the LIDAR equation (Fernald, 1984; Klett, 1985), or by setting
the relationship between extinction and backscatter coefficients constant within an
assumed turbid layer and again constraining total transmission to solve extinction

bin-by-bin from the top of the layer to the surface.

In this work, the latter technique for solving the extinction is applied using
built-in software provided by the ALS manufacturer which includes a predefined set
of extinction-to-backscatter ratios. The extinction-to-backscatter ratio can fluctuate
depending on the region of interest, particularly in Southeast Asia (Campbell et al.,
2013). At Hong Kong, it is found to fluctuate seasonally between 18 sr to 44 sr at
532 nm (He, 2006). This led us to choose an extinction-to-backscatter ratio of 36 sr
(e.g., Ackerman et al., 1998), reflecting urban pollution as the primary aerosol type
regionally. Note that overlap of the ALS system is achieved at a range approximating
170 m. Thus, in order to estimate near surface VR effectively, we use data as close to
the surface as possible and extrapolate downward (described below). Therefore the
hourly average extinction coefficient (0;y) at 355 nm is retrieved from the LIDAR

measurements at heights between 75 m and 150 m.
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4.2.4 Surface Visibility Data

A Vaisala visibility meter is collocated with the sun photometer and LIDAR at
HKPU. This meter uses a forward-scattering method to estimate Visual Range at 875
nm. Intensity of infrared light scattered at 33° is measured and converted to VR. VR
readings from this station (Vyxpy) are used below to construct model estimates. VR
readings from a similar visibility meter deployed at HKIA (Vyg;4) are used for
validation. Human observations of visibility are also important for such a study but

could not be used, as none was available for HKPU.

43 STATISTICAL ANALYSES

4.3.1 Descriptive statistics

Histograms depicting hourly averages of the parameters (Vyuxpu, Vukia, ML-
High, ML-Low, o1y, T4y and 7;;) used by the various models for estimating VR are
shown in Fig. 4.1. Lognormal distributions are observed in all except for ML-High,
Vukpu and Vygia, which exhibit bimodal distributions. Summary statistics for these
hourly averages, including sample size, mean, median, standard deviation and
maximum/minimum values are given in Table 4.1.

Table 4.1. Summary statistics for hourly averages of visibility, LIDAR AOD, AERONET AOD,

Extinction coefficient and ML heights presenting sample size (N), mean, median, standard deviation

(SD) and maximum/minimum (Max/Min).

Parameter N Mean Median SD° Max Min
Vukpu at 875 nm (km) 489 21.77 20.82 1041 46.17 3.965
Viukia at 875 nm (km) 492 24.28 25.79 1139 44.03 4.28

T,y at 550 nm 183 028 023 024 141 0.0l
T,y at 550 nm 492 039 028 030 1.80 0.04
o at335nm (km’) 181 022 019 016 072 0.008
Zy (km) 216 156 155 072 282 036
Z1 (km) 216 097 076  0.64 251 023

“Standard Deviation, Zy; = ML-High and Z; = ML-Low
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The highest values for ML-High and ML-Low during the study period were
2.82 km and 2.51 km, respectively. The lowest values were 0.36 km and 0.23 km,
respectively. On average, the majority of aerosol particles were present within a
finite layer near the surface. This is suggested by the observation that ML-High (ML-
Low) remained below 1 km 31.01 % (60.01 %) of the time. The average value of
oLy was 0.22 km™', with maximum (minimum) values of 0.72 km™ (0.16 km™) that
correspond to VR of 543 km (24.45 km) according to Koschmieder’s equation.
Although t;; and t,; exhibit log-normal distributions, the lidar-derived AOD,
which is based on an assumption of constant extinction-to-backscatter ratio, was low
compared with AERONET retrievals. Average values of 7, and 7,4, were 0.28 and
0.39, respectively. These smaller values of 7, can be reconciled by using Eq. 4.4 to

represent Vygpy.

We note that VR between 20 and 30 km was more frequent than VR below 20
km or above 30 km for both HKIA and HKPU. The peak frequency at HKPU was
~11-12, and that at HKIA was ~15 and standard deviation and mean values for
Vukpy and Vygia are significantly different (p-value = 0.00) with values of Vygpy
and Vygia of 21.77 £10.41 km and 24.28 +11.39 km, respectively. This supports our

assumption of spatial variability of aerosol mass concentrations in Hong Kong.

4.3.2 Correlation analyses

Scatter plots of Vygpy versus oLy, Ty, ML-Low, 74y and Vggia are shown in
Fig. 4.2, and each shows significant correlation (p-values < 0.05), thus indicating the
relevance of applying these parameters to estimate VR. Studies involving the light
extinction properties of aerosol particles have shown similarly good correlations (R*
=0.82 - 0.85) between ML height and AOD when ML height is relatively low (Liu et
al., 2009; Zieger et al., 2011) and the atmosphere is relatively stable. As noted by
Xue et al (2010), light scattering increases as the height of the ML decreases because
a lower ML reduces the volume of the air containing aerosol particles. Thus
increasing the aerosol loading per unit volume and hence the scattering of light. This
likely explains the positive correlation (R = 0.70) observed for Vugpy with ML-Low.
Therefore, ML height can be approximated as a scaling height. A possible inverse
relationship for Vykpy and gy, T,y and 74y, occurs since an increase in the aerosol
concentration increases the scattering and absorption. This results in increased

extinction of light and hence decreases visibility, which has been shown in various

Estimation of Surface Visibility over Hong Kong Using Remote Sensing



56  Chapter 4: Estimation of Surface Visibility using Operational Products of LIDAR, AERONET and MODIS

studies over Hong Kong (e.g. Wang et al., 2003; Chan and Yao, 2008; Nichol et al.,
2010; Wan et al., 2011). The difference in the number of data points for ML
heights, gy and 7, derived from ALS, is due to the use of a constant extinction-to-
backscatter ratio. This setting caused some retrievals to fail, which is a likely

reflection of its true variance over time. Hence, 7;;; and oy were not retrieved for

every day.
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Figure 4.2. Relationship between visibility at HKPU derived from visibility meter at 875 nm
wavelength and (a) AOD from AERONET (b) AOD from ALS (¢) ML-Low and (d) Extinction
coefficient from ALS for height between 75 m — 150 m at HKPU. Here R is correlation coefficient
and N is the number of data points.

44 METHODOLOGY

4.4.1 ALS Extinction Coefficient Profiles

Although ALS data are collected at 15 m and 1 minute resolution, integrated
profiles can improve the signal to noise ratio (SNR) (e.g., Campbell et al., 2008).
Therefore, hourly averages of the extinction coefficient profile at 75 m resolution
were computed. The arithmetic mean (o(t, 7)) and standard deviation (Aa(t, 1)) for
each 1 minute and 15 m profile were first computed after resolving the profile to 75
m resolution (i.e., 5 bin averages at 15 m resolution). Next, the hourly average of 75

m and 1 minute extinction coefficient profiles was derived by computing, once again
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the arithmetic mean of each 75 m and 1 min profile available in an hour (Eq. 4.1).
The relative uncertainty in the hourly averaged profile was then computed using Eq.

4.2.

Yizs  ot(r)

- (4.1)

o) =

TE8° Ao ()2

Aoy (t,r) = N

(4.2)

Here, N is the total number of profiles in an hour and a;;; and Ao, are the
hourly averaged profiles of extinction coefficient and their corresponding relative
uncertainty at 75 m resolution. Ratio of Egs. 4.1 and 4.2 give the SNR for the

corresponding profile, as

SNR(r) = Zv&). (4.3)

Aoy ()

To extract a representative ALS surface extinction coefficient (Scaled Surface
Extinction Coefficient, og at 355 nm) from signals measured within the overlap
region of the LIDAR, some correction or scaling is necessary due to possible
uncertainty corresponding to the overlap region and use of a static ratio of extinction
and backscatter (as described above) of 36 Sr. To overcome this problem the ratio of
T4y and 7, are used in order to constrain the LIDAR equation and scale extinction

coefficient (o) relative to AERONET as

os = 2« g,y (atr =75m) (4.4)
TLU

where o, (extinction coefficient from LIDAR) is reported at 355 nm. Note
here that 7,; and 7, are scaled up to 550 nm using corresponding values of
Angstrom Exponent (@449 nm —675nm a0d X240 nm —500 nm) ffom the AERONET
Level 2 datasets, since 7,y and 7,y are measured at 500 nm and 355 nm from

AERONET and ALS, respectively.

4.4.2 Nonlinear Regression Analysis

It is assumed that o5 and Vugpy will exhibit an inverse empirical relationship,
in a form similar to Koschmieder’s law (Koschmieder, 1924) that can be applied to
the entire Hong Kong domain under our assumption of constant and persistent
aerosol vertical distributions. Therefore, a formula is proposed to estimate Vpkpu

using og as
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a
0'5+b

(4.5)

Vikpy =

where a (unitless) and b (km™) are constants that can be estimated using a non-
linear regression fit between gg and Vygpy. Values of parameters “a” and “b” are
estimated using the AERONET AOD, LIDAR AOD and LIDAR extinction
coefficient for the time period of March, 2011 to December, 2011 at HKPU only.
These estimated values of “a” and “b” will be used to estimate and validate at HKIA.
The values of parameters “a” and “b” will be different from the 3.912 and 0.0 km™
prescribed by Koschmieder’s equation, which correspond to an assumed visual
contrast of (0.02) and extinction of light due to gases as well as particles, whereas og
in Eq. 4.5 accounts for extinction of light due to particles in air only. Also Vykpy
accounts for scattering due to particles only. Hence values of parameters “a” and “b”
also account for absorption due to gases such as NO, as well as brown and black
carbon, which are important contributors to visibility reduction in an urban

atmosphere.

4.4.3 Modelled Extinction Coefficient

As noted in the previous section (Fig 4.1e and 4.1f), there is significant spatial
variability in VR between HKIA and HKPU, such that a measurement of VR in one
location cannot be representative of another location. Therefore, in this study six
models are developed (Table 4.2) to use MODIS data to spatially extrapolate either
oLy measurements (Models 1 to 3) or VR measurements at HKPU (Models 5 and 6)
to the HKIA. Development of these models is based on the assumption that at any
given time vertical distribution of AOD is constant in Hong Kong compared to their
horizontal distribution at any given time. All proposed models use MODIS AQOD at
HKIA to estimate surface visibility at HKIA. MODIS AOD retrieved at HKIA is
scaled to near surface using LIDAR ML height (Model 4), LIDAR AOD (Model 1),
AERONET AOD (Model 2 and 6) and MODIS AOD (Model 3 and 5) at HKPU.
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Table 4.2. Proposed models for estimating MODIS extinction coefficient (gy4) and MODIS VR

(VI9LY at HKIA.

T
Model 1 OMA = 2« OLy
Ty
Tma
Model 2 oMA — * Oy
Tau
T
Model 3 oMA = 22 Oy
Tymu
Model 4(ab) Owma = oot
ode a, MA =
Z 1)
T
Model 5 Vs = =2 Vikpu
Tmu
mod Tma
Model 6 Vikia = * Vykpu
Tau
MOdel 7 VHKIA = VHKPU

oma = MODIS extinction coefficient at HKIA
Tya = MODIS AOD at HKIA

Ty = MODIS AOD at HKPU

T4y = AERONET AOD at HKPU

T,y = LIDAR AOD at HKPU

Z,my = Low and High ML heights at HKPU
Vykia = VR from visibility meter at HKIA
Vykpy = VR from visibility meter at HKPU

Model 1

MODIS AOD at HKIA

MODIS Ext.Coeff.at HKIA = ALS AOD at HKPU

* ALS Ext. Coeff.at HKPU

Model-1 estimates MODIS derived surface level extinction coefficient at
HKIA at 355 nm using MODIS AOD at HKIA, ALS AOD at HKPU and near
surface ALS extinction coefficient at HKPU. This model first scales the MODIS
AOD at HKIA with ALS AOD at HKPU. Multiplication of the resultant scale factor
with near surface extinction coefficient from the ALS at HKPU gives the near

surface MODIS extinction coefficient at HKIA.
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Model 2

MODIS AOD at HKIA

MODIS Ext. Coeff.at HKIA = —om—oe e

* ALS Ext. Coef f.at HKPU

Model 2 estimates MODIS derived surface level extinction coefficient at HKIA
at 355 nm using MODIS AOD at HKIA, AERONET AOD at HKPU and near
surface ALS extinction coefficient at HKPU. This model first scales the MODIS
AOD at HKIA with AERONET AOD at HKPU. Multiplication of the resultant scale
factor with near surface extinction coefficient from the ALS at HKPU gives the near
surface MODIS extinction coefficient at HKIA. Model 2 is expected to perform
better than Model 1 because the performance of Model 1 depends on the LIDAR
AOD computed by using a fixed backscatter-to-extinction ratio that may not estimate

AOQOD as reliable as AOD from LIDAR.

Model 3

MODIS AOD at HKIA

MODIS Ext.Coeff.at HKIA = 5o

* ALS Ext. Coeff.at HKPU

Model 3 estimates MODIS derived surface level extinction coefficient at HKIA
at 355 nm using MODIS AOD at HKIA, AERONET AOD at HKPU and near
surface ALS extinction coefficient at HKPU. This model first scales the MODIS
AOD at HKIA with MODIS AOD at HKPU. Multiplication of the resultant scale
factor with near surface extinction coefficient from the ALS at HKPU gives the near

surface MODIS extinction coefficient at HKIA.

Model 4(a,b)

MODIS AOD at HKIA

MODIS Ext.Coeff.at HKIA =
xt.Coeff.a ALS Mixing Layer Height at HKPU

Model 4 estimates MODIS derived surface level extinction coefficient at HKIA
at 355 nm using MODIS AOD at HKIA and mixing layer heights (Low and High)
from ALS at HKPU. This is reasonable since on average the majority of AOD
measured at Hong Kong is the result of particle scattering below ML-Low (He et al.,
2008; Campbell et al., 2012). As mentioned above, Eq. 4.5 uses g5 at 355 nm to
derive Vykpy at 875 nm. Therefore oy should also be at 355 nm. Hence, oy from

Model 4 was also scaled to 355 nm using the Angstrom Exponent values from

AERONET.
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MODIS extinction coefficient at HKIA (oys) from Models 1 to 4 simulates
VR at HKIA from MODIS (V/%%4) at 875 nm wavelength when substituted in Eq.

4.6 similar to Eq.4.5, where values of “a” and “b” are the same as in Eq. 4.5.

vingd = —= (4.6)

O'MA+b

It is also important to note that Eq. 4.4 and Eq. 4.5 play imperative roles in
estimating visibility at HKIA (Eq. 4.6) using models 1-4. Therefore, to ensure the
independent and robust validation of the simulated visibility values at HKIA, Eq. 4.4
and Eq. 4.5 do not involve any data from HKIA.

Model 5

MODIS AOD at HKIA

MODIS Visibility at HKIA =
bty a MODIS AOD at HKPU

* Visibility at HKPU

To study the effect of possible uncertainties involved in retrieval of ALS
products due to use of a constant extinction to backscatter ratio, Model 5 was
developed independent of the LIDAR data. This model uses MODIS AOD at HKPU
to scale MODIS AOD at HKIA. The resultant scaling factor when multiplied to
surface level visibility at HKPU from the visibility meter at 875 nm, reports the
modelled MODIS visibility at HKIA without involving Eq. 4.4 - 4.6.

Model 6

MODIS AOD at HKIA

MODIS Visibility at HKIA =
ity a AERONET AOD at HKPU

* Visibility at HKPU

Model 6, like Model 5 is also independent of the LIDAR data. However,
model 6 uses AERONET AOD at HKPU to scale the MODIS AOD at HKIA. Hence,
like Model 5, Model 6 also reports the modelled MODIS visibility for HKIA at 875
nm without involving Eq. 4.4 to 4.6.

Model 7 (Reference Model)
Surface visibility at HKIA = Surface visibility at HKPU

Models 1 to 6 use MODIS data to account for the spatial variability in VR in
Hong Kong with the assumption that this reduces uncertainty in the extrapolation of
VR measured at one location to another. However, MODIS AOD contains some
errors (More et al., 2013) and it is unknown if inclusion of these data adds useful

information to the estimates of VR. Therefore, to evaluate the usefulness of the




62  Chapter 4: Estimation of Surface Visibility using Operational Products of LIDAR, AERONET and MODIS

MODIS data in estimating VR, a “Reference Model” (Model 7) was also developed
where VR at HKIA and HKPU are compared.

4.5 RESULTS AND DISCUSSION

4.5.1 Model fitting

A nonlinear regression model (Eq. 4.5) was fit to the data for the relationship

between VHKPU and o (Fig. 4.3).
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Figure 4.3. Non-linear regression fit for scaled extinction coefficient and visibility at HKPU.
Estimated values of regression coefficients a and b, and N are reported along with root mean square
error (RMSE), Mean absolute deviation (MAD) and coefficient of determination (R?) for 165
measured values of visibility at HKPU and scaled surface extinction coefficient.

The value of the first parameter, a, is approximately two times greater than that
prescribed by Koschmieder’s equation (8.02 compared to 3.912). Koschmieder’s
values assume a visual contrast threshold of the eye at 0.02, where the absorption and
scattering of the optical medium correspond to the 500 nm wavelength. However,
two of the terms in Eq. 4.5 are derived at different wavelengths: the o5 in Eq. 4.5 is
derived at the ultraviolet 355 nm wavelength and visibility at HKPU (Vygpy) is
derived from a forward scattering instrument, considering only scattering in the
infra-red region at 875 nm. Additionally, the calculated values for ‘a’ comply with
the fact that for a given particle with single scattering albedo of 1 (SSA = 1), the

scattering cross-section can increase significantly (Hansen and Travis, 1974) (i.e.
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approx. 2 times in the case of SO4 — a major pollutant reported for Hong Kong;
Cheung et al., 2005; Qun et al., 2009; Zhuang et al., 1999) when the wavelength is
changed from 550 nm to 335 nm.

A larger value of ‘b’ (of 0.2 km™) is also observed in the model, which may
have one or two possible causes, including the extinction of light due to absorption
by gases and particles, or due to the regression analyses which are based on least
squares regression. This does not account for errors in the dependent variable i.e.
Vukpu, Which will result in an overestimated intercept value i.e. ‘b’. The fitting of the
model with Vykia was able to explain only 50 % of the variability in Vukpy, possibly
due to use of the LIDAR extinction coefficient from the overlap region where
reliability may be an issue (Kovalev and Eichinger, 2004). Overall, 95 % confidence
interval (red dotted line in Fig. 4.3) of fitted regression line is fairly narrow
predicting a significant estimation power of the model. This is the reason that only 4
% of data points fall out of the prediction interval (green dotted line in Fig. 4.3). The

estimated error in prediction of the proposed model is 23.59 %.

4.5.2 Validation

Each model requires a valid retrieval of MODIS AOD over HKIA. For the
entire study period there were only 46 MODIS images with valid AOD retrieval, and
only 14 of these (8 from 2011 and 6 from 2012) could be matched to concurrent
LIDAR data as required by Models 1 to 4 in Table 4.1.

Performance of models 1 to 4 depends on the values of estimated parameters
‘a> and ‘b’ based on LIDAR, AERONET and VR data at HKPU whereas
performance of Models 5 and 6 depends on the VR data at HKPU for the period
March 2011 to December 2011. These models are validated for VR from the
visibility meter at HKIA (Vgkia) using MODIS AOD for the period March 2011 to
March 2012. This allows an independent validation of algorithms at HKIA. We
could not include data beyond March 2012 for validation due to unavailability of

LIDAR data at HKPU.

Modelled VR for those 14 days along with visibility meter readings at HKIA
are shown in Fig. 4.4. The error bars for Vukia correspond to the 20 % expected

uncertainty of the visibility meter (from its manual), which is consistent with Annex
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3 of the International Civil Aviation Organization (ICAO) that suggests that an
uncertainty of £20 % in estimated VR is acceptable when actual VR is above 1.5 km.

Most of the proposed models (Table 4.1) are able to reproduce variations in
Vukia. Here, Models 2 and 3 combined with Eq. 4.6 give the best estimate of surface
VR, followed by Models 5 and 6 that estimate VR independent of Eq. 4.6. It can also
be noted that estimation of VR at HKIA is independent of any bias for clear or
polluted days, whereas previous studies (Diner, 1985; Haung et al., 2006; Otterman,
1985; Williams and Cogan, 1991) have overestimated (underestimated) those
conditions. In fact, the modelled visibilities from Models 2, 3, 5 and 6 all fall within

one standard deviation (6.17 km) of Vyxia for validation days.

Model 1 underestimates VR most of the time, primarily because AOD
estimates from the ALS are found to be biased low relative to AERONET. This is the
reason that when 7,4, replaces 7, in Model 2 the modelled VR is fairly close to
Vukia for most days. A similar argument is also valid for Model 3, whose

performance is similar to Model 2.
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Figure 4.4. MODIS derived modelled visibility at HKIA from the proposed models listed in Table
land actual visibility (Histogram bars) from visibility meter at HKIA. In addition to MODIS AOD,
Model 1-4 uses AOD, ML heights as well as extinction coefficients from ground based instruments at
HKPU whereas Model 5-6 uses visibility readings from visibility meter at HKPU. Error bars are
+20% of the visibility at HKIA from the manual of visibility meter.
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Models 4a and 4b underestimate Vykia most of time. There are two primary
reasons for this. The first is that the atmosphere was not well mixed for days with
underestimated modelled VR. The second is that Models 4a and 4b depend on ML
heights estimated from the ALS at HKPU. ML heights were derived from the
LIDAR extinction profile based on a constant extinction-to-backscatter ratio, and we
have seen that 7,5 is lower than 7,;. Hence, the retrieved vertical distribution of
AOD from ALS is expected to be lower, which influences the computation of ML.
Results for Models 4a and 4b may suggest that underestimated ML heights caused

overestimation in the corresponding ;4 and hence decrease the modeled VR.

It is noted that Models 1-4 are unable to estimate VR on 26 May 2011 and 31
May 2011 when Vpkia is much lower than on other days. In addition, Models 1 and 4
underestimate Vykia for most days, which are thought to be due to uncertainties
associated with ALS data. Therefore, Models 5 and 6, which are independent of ALS
data, were introduced, as they isolate the effect of possible uncertainties in oy
because both depend on AOD from MODIS and AERONET along with surface VR
at HKPU. Both gave better estimates of Vykia than Models 2 and 3. In addition,
Model 6 was also able to estimate Vpgia for both 26 May 2011 and 31 May 2011,
whereas Model 5 was only able to estimate Vugia for 31 May 2011, in addition to
other days. No other model was able to estimate Vygja for 26 May 2011 and 31 May
2011. Overall, the highest correlation between modelled and ground visibilities is for
these two models (Fig. 4.5), which overall, are best able to reproduce variations of

VHKIA .

Further assessments of the respective models are shown by scatter plots of
modelled VR versus ground VR estimated at HKIA (Fig. 4.5). Model 1 (Fig. 4.5a)
shows a strange inverse relation between estimated and ground visibility at HKIA.
Further analysis showed that there is an inverse relation between AOD from LIDAR
and MODIS at HKIA for 8 days that also caused an inverse relationship between
estimated and ground visibility at HKIA for Model 1. Discrepancy in the LIDAR
AOD may be attributed to the use of fixed backscatter-to-extinction ratio, which can
be avoided by calculating a dynamic backscatter-to-extinction ratio by constraining
the LIDAR AOD with AERONET AOD. This is the reason that Model 2 (Fig. 4.5b)
has performed far better than Model 1, showing a direct linear relationship between

estimated and ground visibility. Most of the time estimated visibility from Models 2,
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3,5 and 6 (Fig. 4.5 b, c, fand g) falls within the expected error range of the proposed
model (Blue Dashed lines) as well as the upper and lower limit of + 20 % of the
ground visibility at HKIA (Green Dotted lines). VR estimates using Models 5 and 6
are concentrated closest to the 1:1 line. Hence, if we rank the models based on R% R,

RMSE and MAD, Model 5 performs best followed by Models 6 and 3.
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Figure 4.5. Scatter plot of Vs and MODIS derived visibility at HKIA for each proposed model
(Table 1). Black Dash-Dot line displays the 1:1 line, Blue Dashed lines show the upper and lower
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limit of estimated error in the model, Green Dotted lines show the upper and lower limit of + 20 % of
the ground visibility at HKIA, Red solid line displays the fitted regression line and rectangles
encompass data for 26 May 2011 and 31 May 2011. R*, RMSE and MAD are described in Figure 4.3.

Performance of the proposed models greatly improves (Table 4.3) if we
remove 26 May 2011 and 31 May 2011 from the validation, based on unusually low
values of Vykia corresponding to low MODIS AOD for these anomalous days at
HKIA. MODIS AOD for these two days was 0.18 (0.17) and 0.20 (0.35) respectively
at HKIA (HKPU), whereas AERONET AOD was 0.33 and 0.32, respectively, at
HKPU. Values of 7,4 and Vykia are low for these days relative to 74, and Vygpu.
This shows unusually low visibilities at HKIA when 7,4, was also low. Comparing
values of R%, R, RMSE and MAD, Model 3 replaces Model 5 as the strongest
performer. Again, the only difference between Models 3 and 5 (Table 4.1) is the use
of surface extinction from the ALS in Model 3. This once again shows that LIDAR
data processed without using static Extinction-to-Backscattering ratio may result in

better estimates of surface VR.

Table 4.3. Comparison of model performance before and after removal of data for 26 May 2011 and
31 May 2011. Note that an underlined value represents that of the best model.

Before removal After removal

R° RMSE R MAD R° RMSE R MAD
Model 1 046 11.24 -0.68 891 0.28 1145 -0.53 8.80
Model 2 0.09 5.78 030 4.08 049 335 0.70 2.65
Model 3 0.17 4.75 041 359 044 2.96 0.66 248
Model 4a 0.00 13.05 -0.07 12.12 0.22 13.29 046 12.25
Model 4b 0.03 10.50 -0.17 9.16 0.05 9.85 0.22 8.40
Model 5 042 4.63 0.65 379 059 477 0.77 3.95
Model 6 0.48 5.22 0.69 4.47 049 5.61 0.63 5.03
Model 7 0.29 4.73 0.54 4.06 0.59 4.67 0.77 3.89

From Table 4.1, Models 4a and 4b depend on concurrent values of ML heights
and MODIS AOD, whereas Model 5 and 6 depend on concurrent values of Vyxpuy,
AERONET AOD and MODIS AOD. Therefore, being independent of 7;;; and a1y, a
larger validation dataset for Models 4-6 can be arranged separately because Models 4
— 6 are independent of 7, and g;yy. Hence, Models 4-6 were further analysed using
respective extended validation datasets with corresponding numbers of data points

(N) of 16, 16, 28 and 29 respectively (Fig 4.6). Model 5 still shows the best result,
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followed by Model 6. This demonstrates the robustness of the respective models. For
a region where the vertical spatial distribution of aerosol physical properties can be
considered constant, Models 3 and 5 are more applicable. Therefore passive satellite
remote sensing has the potential to estimate the surface VR to within an uncertainty

of 20%, or that prescribed for a relatively simple visibility meter.
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Figure 4.6. Scatter plot of Vg and MODIS derived visibility at HKIA for Models 4-6 with extended
validation data sets. Lines are described in Fig. 4.5. R>, RMSE and MAD are described in Figure 4
and N is the available number of data points for validation.

Although HKIA and HKPU are 35 km apart, there is a significant difference in
the visibilities at these locations (Fig. 4.1e, 4.1f and 4.5h). This suggests that a very
dense ground based visibility-monitoring network is necessary in order to monitor
the visibility of the entire Hong Kong domain. This is the reason that the reference
model (Model 7) was unable to represent VR at HKIA (Fig. 4.5). Models 2, 3, 5 and
6 using MODIS data performed better than the reference model, which indicates that




Chapter 4: Estimation of Surface Visibility using Operational Products of LIDAR, AERONET and MODIS 69

inclusion of MODIS data is necessary for estimating VR at regional level. It also
shows the merits of the proposed methods for estimating VR. Hence, passive satellite
remote sensing techniques can be applied to optimize the use of a ground-based
network and to fill gaps where no instruments are deployed. This will potentially
help in reducing cost in monitoring regional air quality since VR estimates can be
used as a surrogate for mass concentration of fine particulates (PM;s5) (Chow et al.,

2002; Vajanapoom et al., 2001).

4.5.3 Model Selection

The predictive power of a model is indicated by the uncertainties in its inputs
as well as the deviation of its output from actual values. It is good to note that the
outputs of the proposed models are within = 20 % of the ground values. However,
uncertainties in the input parameters applied have reduced the performance of some
models. Among the input parameters the LIDAR data represents the greatest
uncertainties due to the use of a static extinction-to-backscatter ratio. The extinction-
to-backscatter ratio is necessary for retrieving the LIDAR extinction coefficient and
LIDAR AOD as well as for scaling of LIDAR signal to the surface due to optical
overlap of the instrument. In contrast, AOD from AERONET is considered to have
the least uncertainty, though again we stress that the potential impact of optically thin
cloud contamination of these data, and MODIS was ignored, due to the limited
profiling range (175 m) during the daytime of the ALS. VR measurements from the
visibility meter are also prone to uncertainty since they do not consider light
absorption factors. However, the primary source of uncertainty involved in the
estimation of VR in our models is the error term corresponding to the nonlinear
regression step, since it is found to explain only 50% of the variations in og and
Vukpu. A larger data set of o5 and Vykpy is needed to further improve the regression

fitting.
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Figure 4.7. Pattern statistics (Taylor diagram; Taylor, 2001) describing the visibilities from the six
models compared to observed visibilities at HKIA. The radial distance from the origin at *0.0
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HKIA. RMS difference for the modelled visibilities is proportional to the radial distances from origin
at “Obs’ (units same as normalized standard deviation). Normalized Pearson’s correlation between
observed and modelled visibilities is represented along the azimuthal position along the outer
hemisphere. Color bar scales the normalized bias (%) in each model.

For better understanding of the performance of the proposed models a Taylor’s
diagram (Taylor, 2001) was built (Fig. 4.7). Taylor diagrams depict a statistical
summary of how well patterns of estimated and observed values match based on their
correlation, standard deviation and root mean square error. The radial distance from
the origin at ‘0.0” represents the normalized standard deviation. ‘Obs’ represents the
statistics of observed visibilities at HKIA. RMS differences for the modelled
visibilities are proportional to the radial distances from the origin at ‘Obs’ (units
same as normalized standard deviation). Normalized Pearson’s correlations between
observed and modelled visibilities are represented along the azimuthal position along

the outer hemisphere. The color bar scales the bias (%) in each model.

Pattern statistics describing the six modelled visibilities compared to observed
visibilities at HKIA show that Models 2, 3, 5 and 6 outperform models 1, 4a and 4b.
The correlations for Models 5 and 6 are higher than for Models 2 and 3, whereas
normalized standard deviations for Models 2, 3 and 6 are similar and higher for
Model 5. Models 2 and 3 can be improved by using ALS data of better quality.
However, the percentage biases for Models 5 and 3 are less than for Models 2 and 6.

Overall Model 5 appears to be the best model for the estimation of VR using MODIS
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AOD at HKPU and HKIA along with VR from HKPU (Fig. 4.7). Performance of
these models is expected to further improve by retrieving AOD from MODIS at a
high spatial resolution such as 3 by 3 km?, which is planned for MODIS Collection 6
products (Levy, et al., 2013).

4.6 CONCLUSIONS

This study was designed to model and estimate VR using column-integrated
aerosol physical properties from MODIS, ground-based LIDAR and AERONET sun
photometer measurements of aerosol optical depth. Six models were developed under
the assumption that the vertical distribution of aerosol physical properties for the
study domain is constant regionally on any particular day, but that the aerosol
amount may vary spatiotemporally and the shape of aerosol vertical profile may vary
temporally. Results suggest that models utilizing satellite observations together with
the near surface extinction coefficient from a visibility meter and ALS deployed at
HKPU are reliable for estimation of VR 35 km away at HKIA. VR estimates from
the proposed models were found to be within = 20 % of ground values. The models
did not overestimate or underestimate VR for clean and/or polluted days, as exhibited

by previous studies of visibility modelling.
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Chapter 5: Overall Conclusion and
Recommendations

This study was designed to develop a remote sensing based methodology for
measuring at-or-near ground level atmospheric visibility (Visual Range — VR). The
relationship between the surface extinction coefficient (Bex) and columnar Aerosol
Optical Depth (AOD) from four spaceborne sensors (MODIS, MISR, CALIPSO and
OMI) was examined. The potential of MODIS, MISR, OMI and CALIPSO AOD
products for monitoring visibility in Hong Kong was evaluated at two visibility
recording stations; the Hong Kong Observatory (HKO) and the Hong Kong
International Airport (HKIA). The highest correlation at HKIA is for MISR AOD for
kernel window of 1 by 1 (R = 0.60) followed by MISR AOD for kernel windows of 3
by 3 (R =0.51) and Calipso for kernel window of 3 by 3 (R = 0.39) and the highest
correlation at HKO is for MISR AOD for kernel window of 3 by 3 (R = 0.63)
followed by MODIS AOD with kernel windows of 5 by 5 (R =0.53)and 3 by 3 (R =
0.51) respectively. Although the correlation, RMSE and MAD for MISR AOD and
Bex: 1s the highest at HKO and HKIA, the higher spatial and temporal resolution of
MODIS AOD along with comparable RMSE and MAD made it a better candidate for
use in regression modelling to simulate B.x and VR. Selected MODIS AOD product
was then subjected to regression analyses. A simple linear regression model M1was
able to explain 58.1 % of variance in B¢, whereas a multiple linear regression model
(M2) with climatic data (VT, RH and Q) explained 84.0 % of the variance in VR
with a high accuracy depicted by a low RMSE of 0.27 km. The results of this study
suggest that Q alone can explain the combined effect of P, T and RH on VR whereas
VT alone is sufficient to explain the effects of WS and WD on dispersion of aerosols

and hence VR.

This study also proposed another methodology to model and estimate VR using
column-integrated aerosol physical properties from MODIS, ground-based LIDAR
and AERONET sun photometer measurements of AOD. Six models were developed
under the assumption that the vertical distribution of aerosol physical properties for

the study domain is constant regionally on any particular day, but that the aerosol
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amount may vary spatiotemporally and the shape of aerosol vertical profile may vary
temporally. Using a 355 nm extinction coefficient profile solved from the LIDAR,
MODIS AOD was scaled down to the surface to generate regional composite
depictions of surface visibility. Results suggest that models utilizing satellite
observations together with the near surface extinction coefficient from a visibility
meter and LIDAR deployed at the Hong Kong Polytechnic University (HKPU) were
reliable to estimate the VR 35 km away at HKIA. VR estimates from the proposed
models were found to be within 20 % of ground values which is consistent with
requirements of the International Civil Aviation Organization (ICAQO). The models
did not overestimate or underestimate VR for clean and/or polluted days, as exhibited
by previous studies of visibility modelling. Results of the study demonstrate the
potential for applying passive satellite depictions of broad-scale aerosol optical
properties, and suggest that passive remote sensing exhibits the potential for

enhancing the performance of pre-existing ground level visibility networks.

Results of this study can help devise methodologies for governments to more
efficiently estimate VR at regional level. In addition to improvement in estimation of
VR, this work can also lead to better understanding of environmental and health
effects of ambient air quality in terms of atmospheric visibility for areas with no
existing air pollution monitoring stations. The integration of the remotely estimated
VR into a real time database network, such as Infusing Satellite Data into
Environmental Applications (IDEA) by National Oceanic and Atmospheric
Administration (NOAA) and Environment/Environmental Central Facility (ENVF)
Environmental and Atmospheric Database in Hong Kong, can help civil authorities
both in improving policy regulation and for control of transportation and navigation.
With that in mind, our continuing goal is to facilitate the implementation and further
testing of such infrastructure in order to meet the growing air quality-related issues

faced by one of the world’s largest metropolitan cities
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