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Abstract 

Construction equipment owners and equipment contractors often face the difficulties 

of forecasting the behaviour of maintenance cost as breakdown of equipment can 

come in sudden during its servicing period. This poses an uncertainty to equipment 

owners that future maintenance costs may have severe discrepancy with the estimated 

maintenance cost under the routine maintenance schedule. This uncertainty in turn 

adversely affects the financial management and replacement decision making for 

construction equipment by the owners. This study, which attempts to provide a better 

solution to this problem, applies a time series analysis based on General Regression 

Neural Networks (GRNN) model to address the modelling and prediction of 

construction equipment maintenance costs. The research covers modelling of both 

fleet maintenance cost and equipment lifecycle maintenance cost to provide a 

comprehensive analytical modelling framework for construction equipment 

maintenance cost problem. The results show that the use of time series approach 

based on GRNN gives a satisfactory result for maintenance cost modelling and 

prediction for both fleet maintenance cost and equipment lifecycle maintenance cost 

with some important implications derived by global sensitivity analysis based on the 

model. And the use of the GRNN model in optimal replacement model provides a 

near-optimal timing for equipment replacement. 
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1. Introduction 

1.1. Overview 

Construction equipment maintenance cost is crucial to different parties for the 

construction industry. First, it forms an important element to budgeting of the 

construction contractors, especially for those specialized in equipment-intensive 

construction activities. Construction equipment, with functions of earth moving, 

roadwork, etc., is subject to various forms of maintenance like condition-based 

maintenance and fixed-time maintenance, which all accumulate a substantial amount 

of cost to the company. More or less the same, the equipment rental companies face 

similar circumstance as the maintenance cost contributes to a large part of operation 

cost of the company. Second, equipment maintenance cost is essential for resources 

planning of the company. The maintenance cost dynamics virtually play a large role 

for optimal decision making for equipment replacement. While it is natural that 

maintenance cost increases throughout the lifecycle of equipment, when the rise of 

marginal maintenance cost will offset the marginal revenue and result in negative 

marginal net revenue of equipment are still essential questions for equipment owners. 

Thus analysis of the behaviour of maintenance costs of different equipment categories 

or individual equipment can provide information on determination of optimal 

equipment replacement timing and future resources allocation.  
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Traditionally, construction industry practitioners estimate and predict future 

maintenance cost of various construction equipment based on experience. A lot of 

related indicators can be taken into consideration by them, including the fuel 

consumption, machine age, weight, working environment etc. Such judgment based 

on intuition came from the above indicators could be unreliable. While no consensus 

of the methodology or systematic approach for prediction are made by practitioners, 

statistical modelling of construction equipment maintenance cost serves to provide a 

better and more systematic quantitative approach for prediction of future values.  

 

Previous research in this area, which commonly employed linear regression by 

ordinary least square method, have been conducted (e.g. Manatakis and Drakatos 

(1993); Edwards et al. (2000a), (2000b), (2000c); Edwards and Holt (2001); and 

Gillespie and Hyde (2004)). Apart from these conventional statistical approaches, use 

of time series approach in this area or related field has been advocated with evidence 

by prior study. Moore (1976) showed the existence of positive autocorrelation in 

equipment maintenance cost time series, which demonstrates the existence of 

influence from past behaviour on future maintenance cost behaviour. And the previous 

applications of time series method for maintenance cost modelling provide some 
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further insights for development of maintenance cost modelling. For example, 

Edwards et al. (2000b) employed moving centred average as a time series approach to 

investigate the construction equipment maintenance cost time series. Zhao et al. (2007) 

also used an autoregressive moving average model (ARMA), which is a benchmark 

time series technique developed by Box and Jenkins (1976), to analyse the failures of 

equipment. All these attempts which successfully analysed the behaviour of 

equipment performance and maintenance cost showed the plausibility of employment 

of time series approach on maintenance cost modelling. 

 

While time series analysis has been traditionally conducted using Box-Jenkins 

Approach, Artificial Neural Networks (ANN) is also recognized to be capable in 

equipment and plant maintenance cost modelling and analysis. Prior researches have 

presented the use of ANN in field of modelling of construction equipment 

maintenance cost and related areas. Edwards et al. (2000a) used multilayer perceptron 

(MLP) to predict the future values of maintenance cost of construction plants with 

better performance over other modelling algorithms such as multiple regression. Hong 

and Pai (2006) modelled and predicted engine reliability by a various forms of models 

including General Regression Neural Networks (GRNN), Support Vector Machine 

and ARIMA and compared the performance among them. These prior works serve to 
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demonstrate that the application of neural networks in equipment maintenance cost 

and related researches provide meaningful results. 

 

Under the insight that the equipment maintenance cost behaviour is influenced by its 

historical values of maintenance cost (Moore, 1976) and prior studies applying neural 

networks give encouraging prediction results, the research aims to develop time series 

models for construction equipment maintenance cost based on GRNN, which is 

believed to be able to appropriately model the input-output mapping between lagged 

values of variables and the future maintenance costs. The study includes two main 

aspects of construction equipment maintenance cost modelling and analysis. The first 

phase of the study considers the modelling of the equipment fleet maintenance cost 

time series to examine the lagged relationship of construction equipment maintenance 

cost. The study also investigates the impact of fuel consumption on maintenance cost 

modelling by referring to the improvement of modelling ability made by this addition 

of variable. Apart from formation of models, this study also aims to investigate how 

the total maintenance cost of construction equipment depends on each of the input 

variables in the model. A global sensitivity analysis is then conducted on the 

multivariate GRNN models to examine the sensitivities of each variable included. The 

second phase of research studies the development of model for individual equipment 
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lifecycle maintenance cost. The phase of study provides important knowledge on role 

of lifecycle maintenance cost on optimal replacement decision making. The modelling 

of lifecycle maintenance cost employs the same algorithm with results presented with 

discussions. The GRNN model developed in this phase will be incorporated into a 

simple optimal replacement model and this integration will be examined based on 

how the predictions of lifecycle maintenance cost by GRNN can indicate replacement 

timing of construction equipment.  

 

1.2. Objectives 

In this study, several objectives are aimed as follow: 

 

i. Development of model for construction equipment fleet maintenance cost 

behaviour that can facilitate financial management for construction 

equipment owners 

ii. Analysis of influences of different parameters on the movement of 

construction equipment fleet maintenance cost for better understanding of 

dynamics of fleet maintenance cost 
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iii. Development of model for construction equipment lifecycle maintenance 

cost behaviour that can provide vital information for optimal equipment 

replacement decision making 

iv. Investigate the effectiveness of GRNN model for lifecycle maintenance 

cost for optimal replacement decision making 

 

1.3. Organization of thesis 

This thesis is organized as follow: Chapter 1 briefly describes the construction 

equipment maintenance cost problem with the main difficulty of practitioners in 

handling the problem and the objectives of this research aimed to fulfil for equipment 

maintenance cost problem. Chapter 2 focuses on the review of literature related to the 

scope of this research. It includes the prior works of maintenance cost modelling of 

construction equipment and related equipment of other industries and optimal 

equipment replacement approach. This chapter also provides a description of 

fundamental knowledge about equipment maintenance cost. Chapter 3 covers the 

General Regression Neural Network (GRNN) in-depth by its structure and statistical 

meaning in model development. Its implication for application in time series is also 

discussed. Chapter 4 presents the first phase of the study which develops time series 

models for fleet maintenance cost based on GRNN and discusses different aspects of 
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the results. It also describes the conventional time series methods and uses these 

methods for comparison to the GRNN model to investigate the modelling 

performance of each. It then shows the use of global sensitivity analysis based on 

GRNN developed for fleet maintenance cost. The results are discussed and interpreted. 

Chapter 5 covers the development of lifecycle maintenance cost model based on 

GRNN. The results are illustrated by different statistical methods. This chapter then 

elaborates the integration of lifecycle maintenance cost GRNN model into an optimal 

replacement model and illustrates the effectiveness of GRNN model prediction as 

information for optimal equipment replacement decision making. Chapter 6 concludes 

the research, with description of limitations and outlines of future works. 
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2. Literature Review 

2.1. Fundamentals of Construction Equipment Maintenance Costs 

Maintenance can be defined as any activity, including but not limited to tests, 

replacements of parts, repairs and measurements, to restore the functional unit to a 

specified state such that the unit can carry out the required function (General Services 

Administration, 1991). In general, maintenance activities can be classified into 

preventive maintenance and corrective maintenance. Preventive maintenance provides 

suitable measures to equipment before breakdown of equipment in order to prevent 

the failure or breakdown of the equipment. Corrective maintenance, on the other hand, 

gives equipment maintenance after breakdown of equipment. It involves repairs and 

replacements of parts. Both of these maintenance processes contribute to the 

formation of total maintenance cost, though in different proportion. In sense of 

maintenance costing, the part of corrective maintenance holds a substantial proportion 

of total maintenance cost compared to preventive maintenance. In the following, a 

review on fundamental components of maintenance cost of construction equipment 

will be conducted. 

 

Edwards et al. (1998) provided a comprehensive review of maintenance management 

of construction equipment. Equipment maintenance cost can be divided into two parts: 
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direct and indirect maintenance cost. The direct cost of maintenance for construction 

equipment involves a variety of components: labour cost, consumables cost, 

component part cost and overhead cost. The labour cost refers to the direct cost of 

employment of a recognized technician or professional to perform the required 

maintenance works. Edwards et al. (1998) suggested that the actual gross wage for the 

employed is dynamic and is subject to a wide range of variables. For cost of 

consumables, it includes the costs of some supplementary materials for operation of 

construction equipment such as engine oil, hydraulic oil and vehicle grease. These 

kinds of equipment lubricants cost only a very small portion of total maintenance cost 

and typically rise with size and complexity of machine (Edwards et al., 1998). 

Regular inspection and replacement of lubricants and grease is very cost-effective in 

the sense that it also provides important information on how machine is deteriorating 

as the condition of lubricants reflects the condition of machine under Used Oil 

Analysis. Component part cost plays a major part for formation of maintenance cost 

of construction equipment. Edwards et al. (1998) indicates that, using tracked 

hydraulic excavator as an example, replacement of a small proportion of components 

inside the machine can almost cost as much as a new machine. Under this example, it 

reflects that maintenance decision can be uneconomical when the components needed 

to be repaired or replaced are too much, resulting in an unjustified maintenance 
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decision. Finally, the overhead cost in maintenance management refers to cost of 

purchasing and operating maintenance facilities. While purchase of maintenance 

facilities is a sunk cost and does not affect long term maintenance decision, operation 

cost of facilities incurs a substantial amount of total cost. For small company, the 

overhead cost is generally smaller as it tends to contract its maintenance activities to 

specialized maintenance contractors but it can be very high for larger company which 

carry out in-house maintenance. On the other hand, indirect maintenance cost refers to 

time cost of maintenance activity. It usually includes monetary return the equipment 

can otherwise obtain if the maintenance would have not been carried out. This indirect 

maintenance cost, along with the direct cost, forms the total maintenance cost of a 

single maintenance activity. 

 

The dynamics of maintenance cost of construction equipment poses a vital criterion 

for decision of ownership of construction equipment. Generally, maintenance cost 

rises along the life span of a machine (Edwards et al., 1998). On the other hand, net 

present value of a machine generally depreciates due to natural deterioration. As such, 

there will be a point which the maintenance cost exceeds the net present value of 

equipment, making the ownership of machine unjustifiable. As maintenance cost 

dynamics of construction equipment is essential to determination of life cycle decision 
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of equipment, an adequate model of maintenance cost formation is crucial to facilitate 

such a decision. In the following, related methodology of maintenance cost modelling 

and equipment optimal replacement modelling will be reviewed. 

 

2.2. Prior Works on Equipment Maintenance Cost Modelling 

Construction equipment maintenance cost
1
 is made of several components including 

regular maintenance (e.g. refill lubricants and fluids), predictive maintenance and 

corrective maintenance. Considering equipment maintenance cost constitutes a major 

fraction of the total life cycle cost of the equipment, a satisfactory model for 

behaviour of cost is crucial for management of equipment. Therefore, much previous 

works were developed on modelling the maintenance cost of equipment, both for 

construction and other industries. 

 

A series of construction equipment maintenance cost modelling has been conducted 

by Edwards et al. First, Edwards et al. (1999) developed a maintenance cost model for 

tracked hydraulic excavator based on Used Oil Analysis and altitude towards 

maintenance management. Their results showed that used oil analysis is able to 

                                                 
1
 While the maintenance cost is divided into direct maintenance cost and indirect maintenance cost as 

stated above, in the following context of the thesis, maintenance cost refers to the direct maintenance 

cost, unless indirect maintenance cost is involved in the related context, making the context more 

understandable. 
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provide certain degree of prediction accuracy of mechanical faults but the model fails 

to explain a large proportion of maintenance cost variations and therefore they 

suggested alternative methodology should be employed for better performance. 

Second, Edwards et al. (2000c) used multiple regression to model the maintenance 

cost by incorporating several exogenous inputs including machine weight, type of 

industry and company attitude towards predictive maintenance. They found that these 

three are all important and the operator skill is not significant as an explanatory factor. 

Third, another research conducted by Edwards et al. (2000b) involved combination of 

time series analysis and cubic equation estimation, in which time is used as 

independent variable, to model the cumulative construction equipment maintenance 

cost. Fourth, Edwards et al. (2000a) studied the performance of modelling based on 

neural networks and multiple regression and revealed that neural networks provide a 

better performance with smaller variance of residuals. They conclude that both forms 

of model successfully model and predict the maintenance cost and further suggested 

the use of NN can provide information on judgment of maintenance policy. Fifth, 

Edwards and Holt (2001) introduced a stochastic model by using random number 

technique to predict the cost of next maintenance event for tracked hydraulic 

excavators. The results suggested that the methodology gives a practical management 

mechanism for future maintenance costs and resource allocation. 
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Apart from these studies, some research works have been devoted to construction 

equipment life cycle and its operation costing. Gillespie and Hyde (2004) conducted a 

statistical modelling of life cycle cost of heavy equipment, which is composed of 

labour and parts cost for maintenance and fuel cost for equipment usage. They 

successfully found that the logarithmic model of life cycle cost as function of fuel cost 

gives a satisfactory modelling and discovered that machine age is not quite useful in 

prediction of life cycle cost while with the use of fuel cost for equipment the model 

fitted the data the best. Matthew and Kennedy (2003) developed a theoretical 

framework for optimal equipment replacement to achieve a maximum net benefit 

from the equipment by essentially assuming the failure rate is increasing. Crowder 

and Lawless (2007) studied distribution and costs of replacement cycle for equipment 

and investigated scheme for preventive maintenance. Manatakis and Drakatos (1993) 

proposed a model of change in operating cost as a function of operating hours, engine 

capacity and machine power of the dump truck. van Noortwijk (2003) presented an 

explicit formulas for computing the variances of discounted life cycle costs which can 

be applied on unbounded time horizon for optimal design of maintenance 

management. Edwards et al. (2002) developed a linear regression model for 
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construction equipment downtime cost by using machine weights as independent 

variable.  

 

Moreover, maintenance and life cycle cost of equipment from industries other than 

construction were also investigated and these works provide some useful insight on 

modelling of construction equipment maintenance cost. Rohani et al. (2011) modelled 

the repair and maintenance costs for tractor by using neural networks. They employed 

Declining Learning-Rate Factor algorithm in Back Propagation Learning for 

Multilayer Perceptron and found that the prediction accuracy is promising and 

suggested neural networks as a robust tool to model and predict maintenance costs. 

Popova et al. (2006) presented a multiple regression model for the behaviour of total 

maintenance cost of nuclear power plant by using variables including the number of 

previous repairs, level of risk to loss of electrical generation, etc. Jun and Kim (2007) 

developed a life cycle cost model including modelling of annual maintenance cost of 

railway system and made use of the model to apply on brake module of the system. 

Christian and Pandeya (1997) investigated the operation and maintenance costs of 

facilities in university by using neural networks, regression and random deviation 

detection method and developed a decision-support system based on the above models 

for prediction of operation and maintenance costs. Neely and Neathammer (1991) 
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developed various databases for building facilities and applied the databases for 

analysis of high maintenance cost components and tasks. Li et al. (2009) proposed a 

generalized partial least square regression model for warship maintenance cost with 

relatively few samples. Parra et al. (2009) introduced a stochastic model, known as 

Non-homogeneous Poisson Process, for life cycle cost analysis of industrial 

equipment with estimation of failure costs. They also provided a decision making tool 

based on the model for maintenance managers to optimize the life cycle costing. 

 

2.3. Optimal Equipment Replacement Policy and Modelling 

This section reviews the prior effort in optimal equipment replacement studies and 

discusses the approaches of handling maintenance cost in their optimal replacement 

models. Many of the optimal equipment replacement models are constructed based on 

maximization of net revenue generated by the equipment. While both revenue and 

cost of equipment include many components, the approaches for combinations of 

revenue and cost among different models vary. Bellman (1955), who sets pioneered 

work in equipment replacement modelling, studied the replacement problem by a 

return maximization model. The model considers three variables as components of 

return: Output level, maintenance cost and resale value, in which each of them is 

assumed to be a function of machine age. Matthew and Kennedy (2003) developed a 
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model for optimal replacement model with only considering residual value of 

equipment after depreciation and maintenance cost respectively as revenue and cost of 

equipment. Tanchoco and Leung (1987) proposed a wealth maximization model in 

which wealth, that is defined as discounted value of total net revenue, generated by 

the machine depends on the input given by the. The wealth of machine depends on the 

output value produced, maintenance cost and depreciation rate which the former twos 

are function of input level. Eilon et al. (1966) developed equipment replacement 

model which takes more revenue and cost components the equipment faces during its 

service life into consideration. It includes acquisition cost, resale value, maintenance 

cost, capital allowance and tax rate. This model provides more consideration on actual 

revenue and cost that equipment will face in real life such as capital allowance and tax. 

The design of this model has one distinction to other lifecycle models. It includes 

acquisition cost in the model which seeks to determine the replacement timing before 

purchase of the equipment. Thus the model computes the expected average cost to use 

the equipment before the purchase. The time of minimum expected average cost 

signifies the optimal replacement time. However, this model neglects the output value 

produced by equipment which will virtually alter the net revenue dynamics of 

equipment.  
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The above optimal replacement models were constructed based on net revenue 

maximization. Apart from this form of replacement models, there are some that are 

built by cost minimization. This form of replacement model determines the time when 

the equipment faces the minimum marginal cost. For example, Hritonenko and 

Yatsenko (2007) introduced a continuous model for equipment replacement which 

only takes maintenance cost and purchase price into account. Sebo et al. (2013) 

conducted an optimal replacement time estimation by developing a function for 

equipment lifecycle cost. However, for this condition to be equivalent to optimal 

equipment replacement timing, the cost minimization model is necessary to explicitly 

or implicitly assume the revenue of equipment is constant throughout its lifecycle. 

The assumption of constant revenue however neglects the depreciation of equipment 

which lowers the marginal revenue of equipment and this overlooking may result in a 

prediction of a longer-than-optimal life for equipment. This poses a severe limitation 

for application of replacement decision making. 

 

Within the optimal replacement model, maintenance cost dynamics is one of the most 

complicated components as maintenance cost can be deviated from the planned 

maintenance cost by a large figure (Eilon et al., 1966). This makes the approaches by 

optimal replacement models in handling maintenance cost essential for it to be an 
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applicable model and poses necessity to review these approaches for further insights. 

The modelling for optimal replacement done by prior studies mainly relies on 

assumptions on failure rate and maintenance cost dynamics. Matthew and Kennedy 

(2003) developed an optimal replacement strategy based on assumptions of failure 

rate and the relationship between failure rate and time is assumed to be increasing 

throughout the lifecycle of equipment and provided a numerical example in which the 

maintenance cost is a step-wise linear function. Dreyfus (1960) formulated an optimal 

solution to equipment replacement with postulations on revenue, upkeep and 

depreciation functions in which the upkeep function is assumed to be increasing 

through age of equipment. Tanchoco and Leung (1987) gave the same assumption on 

maintenance cost which is postulated to be monotonically increasing for cost of both 

labour and maintenance input for reflecting the depreciation of equipment. Love and 

Guo (1996) conducted a repair-limit analysis by using Weibull distribution for the 

failure rate in Markovian state-switching process which gives state-dependent failure 

rates across different states of the Markov decision process. Yatsenko and Hritonenko 

(2010) described the equipment replacement problem in a continuous-time model and 

explicitly assumed that maintenance cost increases by a constant factor with increase 

of one unit of time. Reid and Bradford (1983) studied the optimal replacement for 

farm tractor and adopted a uniform work hour for a year for calculation of annual 
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maintenance cost. Ye (1990) proposed a replacement model in which the maintenance 

and operation costs of equipment are under a stochastic process. He assumed these 

costs recurrently increase through age and then back to a fixed cost after a certain 

point of time signifying overhaul and maintenance. However, this kind of assumptions 

for maintenance cost dynamics suffers from the fact that the dynamics of failure rate 

and its corresponding rate of change in maintenance cost depend a lot on actual 

operation condition and amount and can vary for different equipment and so the 

dynamical patterns of actual failure rate. Therefore maintenance cost may differ from 

what have been assumed. This makes the application of a model using uniform 

assumption on dynamical pattern of failure rate and maintenance cost of equipment 

difficult to be applied in every real world problem. 

 

Apart from approach that asserts maintenance cost dynamics to be specific form, 

some replacement models are built with a separate maintenance cost model that is 

based on actual data of individual equipment or a group of equipment under similar 

operation condition for representation of equipment maintenance cost dynamics for 

optimal replacement modelling. Eilon et al. (1966) employed linear regression for 

maintenance cost against age of equipment from sample of ten trucks and used the 

result for optimal replacement modelling. Navon and Maor (1995) studied the optimal 



30 

 

fleet size and used actual recorded maintenance cost data to build a linear relationship 

between age and maintenance cost for optimal size model. 

 

2.4. Summary 

This chapter reviews the literature for fundamentals of maintenance cost, maintenance 

cost modelling and optimal replacement modelling for equipment, including both 

construction equipment and non-construction equipment. The fundamental knowledge 

of maintenance activity and its corresponding maintenance cost is firstly illustrated 

with forms of maintenance and components of maintenance cost described. The prior 

works of maintenance cost modelling are then reviewed. Several comparisons 

demonstrate that neural network is a suitable modelling algorithm for maintenance 

cost problem. The relevant researches also provide important insights for model 

design. Finally, the efforts on optimal equipment replacement modelling are studied. 

The models characterize maintenance cost dynamics mainly by making simplistic 

assumptions that may not be too abstract for real cases. This makes practical 

application difficult and provides some grounds for a more real-case-adaptive 

approach towards maintenance cost problem within the optimal replacement model. 
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3. General Regression Neural Network 

3.1. Overview 

General Regression Neural Network (GRNN) developed by Specht (Specht, 1991) is 

used as model for construction equipment maintenance cost in this study. GRNN has 

shown its wide range application in prediction of equipment-related issues such as 

engine reliability (Hong & Pai, 2006), internal combustion engine fault diagnosis (Wu 

& Liu, 2009), bearing failure of a mechanical equipment (Gebraeel et al., 2004), 

building services fault diagnosis (Lee et al., 2004) and power system fault section 

estimation (Cardoso et al., 2004). For time series modelling and prediction, its 

performance has been recognized (Leung et al., 2000). The advantages of using 

GRNN include its generalization ability and the capability to produce a reasonable 

regression surface even there are only small number of patterns provided (Specht, 

1991), which provides an important edge for conventional construction time series 

studies which normally do not acquire long series length. This algorithm is also 

well-known in handling infrequent outliers (Leung et al., 2000), which are normally 

found in maintenance cost time series. In the following, the mechanism of GRNN will 

be illustrated. 
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GRNN is a non-parametric regression surface estimator which requires only one pass 

computation for each learning event and the training of patterns is parallel in nature. 

For typical GRNN, it estimates the output from an individual input vector as weighted 

average of observed outputs in which the weights are derived nonlinearly and 

non-parametrically from Gaussian radial basis function (RBF) according to both its 

Euclidean distance from observed input vector as well as the smoothing parameter. 

Figure 1 demonstrates an example of weighted sum of RBFs. To train the network, an 

optimal smoothing parameter, or the RBF kernel bandwidth, will be selected through 

iteration which can optimize the network performance. The form of GRNN equation 

is: 

�̂� =
∑ 𝑦𝑖exp(

−(𝑋 − 𝑋𝑖)
′(𝑋 − 𝑋𝑖)

2𝜎2
)𝑛

𝑖

∑ exp(
−(𝑋 − 𝑋𝑖)′(𝑋 − 𝑋𝑖)

2𝜎2
)𝑛

𝑖

 

 

(1) 

 

Where �̂� is the estimate of 𝑦 given 𝑋, (𝑋 − 𝑋𝑖)
′(𝑋 − 𝑋𝑖) is Euclidean distance 

between X and observed input vectors, σ is smoothing parameter and exp(∙) is the 

Gaussian form of radial basis function 
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Figure 1 Weighted sum of three radial basis functions with different smoothing 

parameters 

 

3.2. Architecture of GRNN 

A typical GRNN consists of four layers: Input Layer, Pattern Layer, Summation Layer 

and Output Layer. Each of them carries neurons, the processing units, to perform the 

computational tasks with the ultimate aim to iteratively train for an optimal smoothing 

factor for Eq. (1). For the first layer, Input Layer, it receives the data in form that data 

of each input variables is handled by one and only one input neuron so the number of 

input variables equals the number of input neurons. For Pattern Layer, after receiving 

output from Input Layer, each pattern neuron processes the mapping between input 

vectors and output of one pattern such that the number of pattern neurons equals the 

number of patterns provided. The mapping of each pattern neuron is governed by a 

Gaussian radial basis function:            
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𝜃𝑖 = exp(
−(𝑋 − 𝑋𝑖)

′(𝑋 − 𝑋𝑖)

2𝜎2
) 

 

(2) 

 

Where  𝜃𝑖  is the output from pattern neuron 𝑖. (𝑋 − 𝑋𝑖)
′(𝑋 − 𝑋𝑖) is Euclidean 

distance between 𝑋 and observed input vectors and 𝜎 is smoothing parameter. 

 

Then, Pattern Layer passes the output of Pattern Layer, 𝜃𝑖, to the Summation Layer. In 

this layer, there are two kinds of neurons: summation neurons and weighted 

summation neurons. Their operations are given as follow respectively: 

𝑆𝑠 =∑𝜃𝑖
𝑖

 

 

(3) 

 

𝑆𝑤 =∑𝑦𝑖𝜃𝑖
𝑖

 

 

(4) 

 

Where 𝑆𝑠 and 𝑆𝑤 are outputs from summation neurons and weighted summation 

neurons respectively and 𝑦𝑖 is the observed output corresponding to 𝑋𝑖. The outputs 

of this Summation layer, 𝑆𝑠 and 𝑆𝑤, form the denominator and numerator of Eq. (1) 

respectively. 
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These two values will subsequently be forwarded to the Output Layer, where the 

neuron(s) in this layer produce(s) the approximation of conditional mean of output   

by the following operation: 

𝑦 =
𝑆𝑤
𝑆𝑠

 

 

(5) 

 

Under the operation of four layers of network, it comes up with Eq. (5) which is 

equivalent to Eq. (1). Through iteration of trials of smoothing parameter with 

corresponding error obtained, an optimal smoothing parameter can be selected and the 

regression surface for the problem can be estimated. Figure 2 illustrates the 

architecture and the training process of GRNN. 
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Figure 2 Block diagram of architecture of GRNN (Adopted from D. Specht, “A 

general regression neural network,” IEEE Transactions on Neural Networks, vol. 2, no. 

6, pp. 568 - 576, 1991) 

 

3.3. Application of GRNN on Time Series Analysis 

3.3.1. Overview of Traditional Time Series Methods 

Conventional time series modelling methods mainly rely on the linear models such as 

ARMA and VAR. Both of them represent a linear combination of past values of 

observations within the time series. The Box-Jenkins ARMA is in the following form: 
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𝑦𝑡 = 𝐶 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯

− 𝜃𝑞𝜀𝑡−𝑞 

 

(6) 

 

Where 𝑦𝑡 is the modelled value, 𝜀𝑡 is the error term and 𝜙𝑖 and 𝜃𝑖 are the linear 

autoregressive parameter and moving average parameter respectively. The former part 

involves past values of times series, known as autoregressive part, examines the 

lagged relationship between 𝑦𝑡 and its previous values and the latter involves the 

error terms, known as moving average part, reflecting the relationship between 𝑦𝑡 

and the lagged error terms. 

 

And simple VAR is expressed by: 

𝑌𝑡 = 𝐶 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 +⋯+ 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡 

 

(7) 

 

Where 𝑌𝑡 is a k × 1 vector which contains k observations at time t of k time series, 

𝜀𝑡 is the error term and 𝜙𝑖 is the linear autoregressive parameter. Under this form, 

VAR directly captures the linear relationships of 𝑌𝑡with the k time series as well as 

earlier observations within each time series. 
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To implement these traditional models, several steps are required for identification of 

nature of time series being modelled and the structure of the models. Firstly, one 

important criterion is to ensure the time series being modelled is stationary. The 

conventional test for existence of unit root is by Augmented Dickey-Fuller Test (ADF) 

(Dickey and Fuller, 1979). ADF examines the existence of unit root by estimating a 

linear model involving first differenced value as modelled value and value of time 

series at time t-1 and previous first differenced values as input variables. Then it 

involves a statistical hypothesis testing which its ADF statistics measures the 

estimated coefficient for value at time t-1 over its standard error. Usually this value is 

a negative number. And more negative this number is more likely the hypothesis of 

existence of unit root is rejected. If the times series is tested to be non-stationary, k 

number of differencing is required if there are k unit root(s) existed and the order of 

integration is expressed as I(k).  

 

For multivariate time series model VAR, the multiple time series in the model need to 

be tested for cointegration apart from stationarity of individual time series. 

Cointegration of two or more time series means that the order of integration of linear 

combination of these time series is lower than order of integration of each of them. To 
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test for cointegration, the Johansen procedure (1988) is one of the most common 

methods to use. Comprehensive review of Johansen procedure can be referred to 

Johnes (2000). Johansen procedure provides two likelihood ratio tests as trace test and 

maximum eigenvalue test. Both of them involves hypothesis testing which examines 

the number of cointegrating vector that indicates the number of cointegrated time 

series in the model. If there is cointegrating relationship is not found among the time 

series in the model, Simple VAR can be applied on the time series studied. If 

otherwise, Vector Error Correction Model or Cointegrated VAR shall be used instead 

of the simple VAR.  

 

To identify the suitable structure of ARMA and VAR model, which is their respective 

autoregressive order and moving average order (for ARMA only), some information 

criteria are commonly used in the mean of iteratively testing the possible structure of 

time series models for justification. For example, Akaike Information Criterion (AIC) 

(Akaike, 1974), derived from information entropy, measures the accuracy of candidate 

model forms and simultaneously includes a penalty term which is increasing with 

number of parameters included. AIC is given by: 

 

AIC = 2k − 2ln (L) (8) 
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Where k is the number of parameters and L is the maximum likelihood of the 

candidate model form. The maximum likelihood can be approximated by the 

following expression (Chatfield, 2001): 

𝑁ln(
𝑆

𝑁
) 

 

(9) 

 

Where N is number of observations and S is the residual sum of squares. The 

minimum value of AIC from the candidate model forms gives the most suitable 

structure for ARMA and VAR models. 

 

Based on the structure of these traditional time series models, the mechanism of them 

maps the past behaviour of a time series to future behaviour linearly. This linear 

algorithm may not suit the nature of construction equipment maintenance cost 

dynamics as prior works have suggested that problems of equipment maintenance are 

characterized by nonlinearity (Hartl (1983); Wang and Pham (1999); van der Weide 

and Pandey (2011); Boyles et al. (2010)). Therefore, alternative algorithm that can 

handle the nonlinearity of system should be considered. 
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3.3.2. GRNN Approach in Time Series Study 

Following a review on the traditional time series approaches, this section illustrates 

how GRNN can be used in time series study and the traditional methods provide 

information for GRNN model design. The mechanism of General Regression Neural 

Networks (GRNN) can be summarized as a memory-based network algorithm that 

estimates an output for an input pattern as a weighted average of outputs of other 

input patterns in which the weights are determined exponentially based on the 

Euclidean Distances from the concerned input pattern and smoothing parameter. On 

the other hand, time series approach is a modelling method that models and predicts 

the future value(s) of time series by the past values of the time series. The dataset of 

time series model conventionally contains n overlapping segments of time series 

which the output for each is immediate next value of the segment and the model 

makes its computation to optimize the predicted n values compared to the actual 

values for n segments of time series. Then, for the algorithm of GRNN to be used in 

time series study, the mechanism is that the algorithm, in parallel, computes the 

Euclidean distances between the concerned segment of time series and all other 

segments of the same time series. Next the Euclidean distances from various input 

patterns, divided by the trained smoothing parameter, will be computed as weights 

and the weights will be subsequently used for weighted average of all observed 
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outputs. This weight average is the estimated output for the concerned segment of 

time series. This mechanism, generically, means that GRNN estimates the output for a 

time series based on the Euclidean Distance between the concerned segment of time 

series and other segments. For closer one segment is, its output will be weighted more, 

vice versa. Thus for a segment closer to the concerned segment of time series, the 

predicted output tends to be similar to observed output from that segment. Also, 

smoothing parameter determines the weighting and influences the smoothness of 

function. Under a smaller smoothing parameter, then weights will drop faster from 

closer patterns to farther patterns than under a larger smoothing parameter. By training 

of GRNN for time series study, it will iteratively select an optimal smoothing 

parameter to map the past values of time series and the estimated value(s) and adapt to 

structure of time series such as noisy or wildly fluctuating.  

 

Based on this mechanism, the edges of using GRNN approach for time series analysis 

are (1) by training of GRNN, it enables to obtain a global minimum of error surface 

(Pal & Deswal, 2008) and form an optimal regression surface for mapping of past 

values of time series and future value while Autoregressive Integrated Moving 

Average (ARIMA) optimized by Conditioned Least Square may converge to local 

minima; (2) even the time series is noisy (which may be common for maintenance 
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cost time series or related time series), GRNN is capable of forming a reasonable 

regression surface as large smoothing parameter can be selected for smoothing out the 

noisy values of the time series (Specht, 1991) while conventional linear time series 

methods like ARIMA may model the time series together with noise within the time 

series and alter the optimal solution; (3) The regression surface formed by GRNN is 

nonlinear which gives an important edge to conventional linear time series method. 

 

While conventional time series methods have been employed in equipment 

maintenance cost time series or related time series analysis (For example, Edwards et 

al. (2000b) made use of moving centred average to analyse the construction 

equipment maintenance cost time series; Zhao et al. (2007) conducted an 

autoregressive moving average model (ARMA) to model the equipment; 

Durango-Cohen (2007) adopted autoregressive moving average with exogenous input 

model (ARMAX) to model the behaviour of transportation facilities), based on this 

above mechanism with a number of advantages over traditional methods, GRNN 

provides a legitimate algorithm for time series study for construction equipment 

maintenance cost modelling. Nevertheless traditional methods still provide some 

important information on model design and development of GRNN time series model. 

Stationarity test like ADF test can examine whether the joint probability distribution 
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of time series is constant over time. If the time series is not stationary, the GRNN 

model may not be able to map the dynamical patterns it should as the mean and 

variance of time series are changing over time. For similar dynamical patterns with 

different means on two different periods of time, when modelling output of each, 

GRNN may weigh output of another as a small value because the Euclidean distance 

is large as the mean difference is large even these two patterns are supposed to be 

useful to each other in determining outputs for each of them as they are similar. In this 

case, a differenced time series will provide a better representation of time series for 

GRNN model as the above issue will be greatly alleviated. Also, in determination of 

lag length for GRNN time series model, optimal AIC selected from a range of lag 

length in traditional methods provides essential reference of lag length selection for 

developing GRNN model. 

 

3.4. Summary 

This chapter describes the algorithm and structure of General Regression Neural 

Network (GRNN) and its application in time series study and analysis. GRNN, as a 

nonlinear regression surface estimator, determines the output based on Euclidean 

Distances from its input pattern to other input patterns as well as the optimized 

smoothing parameter. This mechanism gives some essential advantages for GRNN to 
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be employed in time series study. In the following chapters, time series approach 

based on GRNN will be adopted for construction equipment maintenance cost time 

series modelling and analysis. 
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4. Construction Equipment Fleet Maintenance Cost Modelling 

4.1. Introduction 

This chapter presents the methodology for construction equipment fleet maintenance 

cost modelling and analysis. The modelling of fleet maintenance cost provides 

equipment owners with vital information of aggregate maintenance cost of different 

equipment which essentially facilitates the financial management for the fleet. The 

modelling algorithm for construction equipment fleet maintenance cost time series is a 

time series analysis based on General Regression Neural Networks. The modelling of 

both univariate and multivariate (with time series of fuel consumption of equipment 

as additional input parameters) time series modelling will be employed by algorithm 

of GRNN. The results will be discussed and their performance will be compared with 

traditional time series methods: univariate Autoregressive Integrated Moving Average 

(ARIMA) and multivariate Vector Autoregressive Regression respectively. Then the 

research also investigates the influences of different input parameters including the 

past maintenance costs on the future fleet maintenance cost. This study adopts 

Latin-Hypercube One-Factor-At-a-Time Sensitivity Analysis (LH-OAT) to analyse 

this multivariate GRNN model. Relevant reviews on the sensitivity analysis will be 

provided. Results of sensitivity analysis will be interpreted with possible implications 
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for improvement of financial management and resources allocation for construction 

equipment owners. 

 

4.2. The GRNN Based Time Series Models 

4.2.1. Data 

The data for construction equipment maintenance cost modelling are from a Canadian 

road-building contractor’s maintenance database shared across different operational 

divisions since 1998. The database provides raw data of monthly total maintenance 

cost of equipment for modelling. The total maintenance cost is taken as the sum of 

preventive maintenance cost, work order maintenance cost and running repair cost in 

which all these threes include their respective labour cost and parts cost. The major 

part of the total maintenance cost comes from the running repair cost, which generally 

accounts for more than 90% of the sum, while preventive maintenance cost and work 

order maintenance cost constitutes the remaining. In each maintenance event, on 

average, parts cost is about two to three times of the labour cost. Apart from the total 

maintenance cost, the database contains additional information of fuel consumptions 

of the construction equipment. The maintenance cost and fuel consumption data of 

every equipment provided by the database for each month can be either aggregated or 

averaged to form a time series representing the fleet maintenance cost and fuel 
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consumption dynamics. Figure 3 illustrates the behaviours of maintenance cost time 

series and fuel consumption time series respectively representing the aggregated 

monthly maintenance cost and fuel consumption data of a sample operational division 

fleet. Maintenance cost time series of two operational divisions’ fleet which contains 

all types of equipment (Fleets of Division A and B) are provided by the database. 

Apart from study of fleet at divisional level, this research attempts to model and 

analyse the maintenance cost of fleet made of a single equipment category. The aim of 

study of this equipment group is to investigate the unique property of maintenance 

cost dynamics for the category and examine whether the same modelling 

methodology can be applied on predicting individual equipment category fleet for 

more flexible construction equipment management. In accordance, maintenance cost 

time series of fleet made of a single equipment category is extracted in which the 

equipment category is dump truck (10 wheels). Therefore this research models the 

maintenance cost behaviour of one individual equipment category fleet and two 

divisional fleets: the former is comprised of the same type of equipment in each fleet, 

while the latter constitutes mixed types of equipment in each operational division. For 

fleets made of individual equipment categories, average maintenance cost time series 

is modelled in this study while total maintenance cost time series is modelled for 

divisional equipment fleets. 
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Figure 3 Behaviours of maintenance cost and fuel consumption of a sample fleet 

 

4.2.2. Time Series Models Development by GRNN and traditional methods 

This phase of study on time series modelling of fleet maintenance cost examines how 

GRNN performs for the modelling and uses traditional time series methods as 

reference for comparison. In the following the procedure of model design and 

development of both GRNN and traditional methods (ARIMA and VAR) will be 

presented. 

 



50 

 

4.2.2.1. Stationarity Test 

This study applies Augmented Dickey-Fuller Test (ADF), as described earlier, to 

examine the existence of unit root(s) in the fleet maintenance cost and fuel 

consumption time series. The lag length used in the ADF test is determined by 

Akaike’s Information Criterion. Table 1 shows the results of t-statistic of the three 

maintenance cost time series and their corresponding fuel consumption time series.  

 

Table 1 Unit root test results for maintenance and fuel consumption time series  

Group ADF p-value 

Dump truck fleet maintenance cost ($) -4.322992 0.001210 

Division A fleet maintenance cost ($) -4.569016 0.000771 

Division B fleet maintenance cost ($) -3.874631 0.004439 

Dump truck fleet fuel consumption (litres) -3.842971 0.022752 

Division A fleet fuel consumption (litres) -4.516352 0.004800 

Division B fleet fuel consumption (litres) -4.124388 0.002175 

Notes: The p-value is computed under the algorithm of MacKinnon (1996) one-sided 

p-values 

 

The results show that all the fleet maintenance cost time series included in this study 

have no unit roots as the p-values are all smaller than 0.05. In accordance no 

differencing or detrending are required to transform the time series. 
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4.2.2.2. Univariate Time Series Modeling 

For univariate models for construction equipment maintenance cost, ARMA and 

GRNN are used and their respective lag orders are determined such that the lagged 

orders are sufficient to reflect the influence from earlier observations.  

 

For ARMA, both autoregressive and moving average order have to be determined. 

AIC is used in this study for lag determination. For autoregressive order p and 

moving average order q, the maximum of both is set to 12 (one year), i.e., 0 ≤ p ≥

12 and 0 ≤ q ≥ 12. Each combination of p and q for ARMA will be tested under 

AIC and the model with a particular combination which scores the smallest value of 

AIC is selected as the most suitable model structure for ARMA for maintenance cost 

modelling. For GRNN, the selection of lag follows the autoregressive order selected 

by AIC. Table 2 summarizes autoregressive and moving average orders for ARMA 

models and the lag length for GRNN models respectively. 

 

Table 2 Autoregressive and moving orders for ARMA and lag length for GRNN for 

univariate approach 

Group 

ARMA GRNN 

Autoregressive 

order 

Moving average 

order 
Lag length 

Dump truck fleet  5 12 5 

Division A fleet 5 12 5 

Division B fleet 8 12 8 
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4.2.2.3. Multivariate Time Series Modelling with Fuel Consumption 

Apart from the lagged relationship from the concerned time series, other factors are 

considered as exerting important influence on the determination of future values of 

construction equipment maintenance cost. Gillespie and Hyde (2004) showed that the 

fuel expense is crucial to the modelling of the life cycle cost of heavy equipment. 

However, one drawback of using fuel expense as exogenous input is that the fuel 

expense is very likely to fluctuate in a similar manner as the crude oil price such that 

the fuel expense may be unsatisfactory to reflect the exact fuel consumption and in 

turn the amount of equipment usage. In this study, instead of fuel expense, fuel 

consumption time series (in litres) is employed to facilitate the modelling of 

construction equipment maintenance cost in which GRNN and VAR are used for 

multivariate time series modelling. 

 

As all the maintenance cost and fuel consumption time series are stationary 

determined by ADF test, the long term dynamics of time series can be maintained. In 

this case, no cointegration test should be conducted. This result indicates that simple 

VAR is sufficient to model the three pairs of time series. 
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Similar to the procedure for lag determination in univariate approach, the 

autoregressive order of VAR is determined by using AIC, with p ranged from 0 to 12. 

For GRNN, as for VAR, a uniform lag length will be determined for both maintenance 

cost and fuel consumption time series and this lag length follows the autoregressive 

order of VAR. Table 3 summarizes autoregressive order for ARMA model and the lag 

length for GRNN model respectively. 

 

Table 3 Autoregressive order for VAR and lag length for GRNN for multivariate 

approach 

Time series 
VAR GRNN 

Autoregressive order Lag length 

Dump truck fleet  3 3 

Division A fleet 10 10 

Division B fleet 6 6 

 

4.2.2.4. Model Validation 

To validate the performance and provide proxies to compare the performance of 

different time series models employed in this study, twelve out-of-sample values, 

representing maintenance cost of 12 months ahead of time, is predicted and validated 

by measuring the Mean Absolute Percentage Error (MAPE) of the twelve 

out-of-sample series using the predicted values and the actual values. This measure 



54 

 

describes the capability of the models on the maintenance costs of different equipment 

groups with a lower value implying a better model with smaller deviations between 

the predicted values and actual values of time series. 

 

For univariate ARMA, multivariate VAR and GRNN, one-step-ahead approach is used 

for prediction, i.e., the predicted value of each out-of-sample prediction result will be 

used as input for next prediction step; for multivariate GRNN, similar approach is 

used in which the predicted value of each out-of-sample predicted result will be also 

used as input for next prediction step while a separate optimal ARMA developed 

based on fuel consumption data in the training set and selected by lowest AIC, from 

p, q ∈ (1,2,⋯ ,12) where p and q are autoregressive order and moving average order 

respectively, is used to predict the values of fuel consumption for validation set such 

that the model can predict the maintenance cost dynamics of 12 months completely 

ex-ante. Table 4 shows the autoregressive order and moving average order of optimal 

ARMA for fuel consumption prediction which is to be used in validation set of 

multivariate GRNN maintenance cost models for three fleets. 

 

 



55 

 

Table 4 Autoregressive order and moving average order for three optimal ARMA 

models of fuel consumption  

Time series Autoregressive order (p) Moving Average order (q) 

Dump truck fleet  10 2 

Division A fleet 1 1 

Division B fleet 2 2 

 

4.2.3. Results 

4.2.3.1. Comparison of ARIMA, VAR and GRNN models 

Table 5 summarizes the results of Mean Absolute Percentage Error (MAPE) measured 

on the three univariate and multivariate models for construction equipment fleet 

maintenance cost prediction. Figure 4 to Figure 6 show the prediction results 

compared to the actual maintenance cost time series. Overall, the three models predict 

the three time series satisfactorily, with maximum average MAPE to be 24.92% from 

univariate GRNN and minimum to be 21.08% from multivariate GRNN. These results 

imply that though with different accuracies, the three time series models can 

adequately predict the behaviour of construction equipment maintenance cost time 

series. And the results suggest that the use of multivariate GRNN with inputs of both 

the maintenance cost and the fuel consumption time series provides the best model for 

modelling of construction equipment maintenance cost.  
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Table 5 Prediction performance matrix of three models for three equipment 

maintenance cost time series 

𝑀𝐴𝑃𝐸 
ARMA VAR Univariate 

GRNN 

Multivariate 

GRNN 

Dump truck category cost 27.65% 27.46% 25.43% 16.68% 

Fleet A maintenance cost 22.61% 17.31% 24.56% 22.88% 

Fleet B maintenance cost 22.69% 23.42% 24.78% 23.67% 

Average 24.32% 22.73% 24.92% 21.08% 

 

Figure 4 Prediction performance of different models for Dump Truck Fleet 

maintenance cost 

 



57 

 

 

Figure 5 Prediction performance of different models for Division A Fleet maintenance 

cost 

 

 

Figure 6 Prediction performance of different models for Division B Fleet maintenance 

cost 

 

Another important implication from the result is that traditional and neural network 

approach for time series modelling has different suitability towards univariate and 
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multivariate approaches. For univariate approach, ARMA performs similar to GRNN 

while for multivariate approach, GRNN gives a better prediction result than VAR. 

This implies that for univariate approach neural network does not outperform the 

traditional linear model but it does for multivariate approach. An explanation for this 

phenomenon is that for univariate approach a linear and simpler model is sufficient to 

map the lagged relationship of a time series, however for multivariate modelling, a 

nonlinear network-like learning algorithm is needed to adequately and adaptively 

estimate the complex time series structure. 

 

4.2.3.2. The Effect of Fuel Consumption on Time Series Modelling 

Fuel consumption is assumed to be a good proxy for operation duration and intensity 

of the construction equipment which in turn affects their deterioration rate and 

maintenance costs. The addition of fuel consumption time series as an explanatory 

variable in the models has been found to be significant in construction equipment 

maintenance cost modelling. However, in this study, the effect of this addition is only 

significant for individual equipment categories fleet (dump truck) but it does not 

provide significant improvement for modelling of divisional fleet maintenance cost. 

See Table 6 for a comparison of average MAPE on equipment fleet comprised of the 

same types of equipment and divisional fleets comprised of mixed types of equipment. 
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For individual equipment categories fleet, univariate GRNN only scores MAPE of 

25.43% while for multivariate GRNN, its MAPE significantly improves to 16.68%. 

On the other hand, for prediction at the divisional fleet level, the values of MAPE are 

observed with minor difference, showing that for prediction of divisional fleet 

maintenance costs, addition of fuel consumption data does not result in a significant 

improvement on the modelling performance. The reason behind this finding can be 

explained by the fact that different equipment categories have different deterioration 

rate and level of fuel consumption within similar operation time. For individual 

equipment category fleet, the amount of fuel consumption can be a useful indicator on 

equipment tear and wear, and subsequently on the required levels of equipment 

maintenance and repair. For divisional fleet comprised of different types of equipment, 

some types of equipment are more sensitive to intensive operations in tear and wear 

than other types, and some equipment types are more fuel-consuming than others. 

Therefore for divisional fleet cost modelling, the fuel consumption provides very 

limited information on equipment cost variations.  As the amount of fuel 

consumption is closely related to the workload of the equipment, which is in turn 

related to the nature and scale of the jobsite to which the equipment is allocated, the 

fuel consumption of construction equipment can be reasonably estimated during the 

planning period.  Therefore it is both reasonable and practical to incorporate fuel 
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consumption of equipment in a time series model, especially the maintenance cost of 

equipment categories, to account for the amount of work the equipment is expected to 

carry out. 

 

Table 6 Average 𝑀𝐴𝑃𝐸 of prediction results on individual equipment category fleet 

(dump truck) and divisional fleet (Division A and B) maintenance cost 

𝑀𝐴𝑃𝐸 ARMA VAR Univariate GRNN Multivariate GRNN 

Individual Category 27.65% 27.46% 25.43% 16.68% 

Divisional fleet 22.65% 20.37% 24.67% 23.28% 

 

However, the above effect does not hold for traditional linear time series model. 

Chatfield (2001) underlined that while VAR may better fit the training data than 

ARMA, it may not predict better than ARMA. The reason of which traditional linear 

time series method may not model the behaviours of multiple time series is that 

parameter uncertainty is increased with more input parameters incorporated in the 

model (Chatfield, 2001) and thus the prediction performance is affected. Also, the 

linear multivariate approach has more opportunity to over-fit the time series by 

modelling the noise and outliers (Chatfield, 2001). This sufficiently leads to the result 

in this study that VAR fails to adequately model the behaviours of both maintenance 

cost and fuel consumption dynamics and further demonstrate that nonlinear network 
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form of model is a better alternative towards multivariate time series approach for 

construction equipment maintenance cost modelling. 

 

4.3. Sensitivity Analysis 

4.3.1. Latin-Hypercube One-Factor-At-a-Time Sensitivity Analysis (LH-OAT) 

In this study, the Latin Hypercube One-Factor-At-A-Time Method (LH-OAT), 

developed by van Griensven et al. (2006) is employed to perform sensitivity analysis. 

The combination of Latin Hypercube Sampling and One-Factor-At-A-Time Design 

enables the sensitivity analysis to a near-global measure of sensitivity without 

excessive computation necessary to ensure the near-global characteristics held. This 

method provides a distinct edge over the local methods. While local methods only 

covers a subset of the whole input parameter space, global methods can sample a 

parameter set which covers the entire parameter space. Thus local methods only take 

care of local sensitivity and possibly misjudge the true sensitivity if the model is 

nonlinear (Saltelli et al., 2000). A global sensitivity analysis enables the analysis to 

examine the general effects of variations of input parameters to output even the 

relationship between input and output is nonlinear (Saltelli et al., 2000). Apart from 

having the advantage that makes the analysis cover the whole parameter space, 

LH-OAT method also suits General Regression Neural Networks to perform 
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sensitivity analysis. As GRNN estimates the output for a pattern vector as a weighted 

average of all observed outputs in the training set with each weight based on the 

Euclidean Distance from that pattern, a conventional sensitivity analysis which uses 

the known data or training patterns for perturbation could underestimate the 

sensitivity
2
. For LH-OAT method, it generates a completely new sample to the model 

which can solve the problem of sensitivity underestimation. 

 

Latin-Hypercube sampling is one form of stratified sampling methods. LH divides the 

range of each input parameter 𝑥𝑖, 𝑖 = 1, … , 𝑃 into 𝑁 intervals with each interval 

having equal probability of occurrence 
1

𝑁
. Inside each interval one observation is 

generated randomly. Accordingly, there are 𝑁 non-overlapping observations for each 

of input parameters. Then, for input parameter 𝑥1, one observation is randomly 

selected from 𝑁 observations and is matched with one observation of 𝑥2 which is 

also randomly selected from 𝑁  observations for 𝑥2 , and so on until 𝑥𝑃 . This 

combination of 𝑃 observations forms one LH point. After generating first LH point, 

one of the remaining observations is randomly selected from 𝑁 observations for 𝑥1 

                                                 
2
 If the known pattern for sensitivity analysis is perturbed by a small fraction, it will make the 

perturbed pattern having a minute Euclidean Distance to the original pattern and GRNN will weigh the 

output of the original pattern exponentially high and output of other patterns exponentially low which 

results in the output for perturbed pattern almost identical to the output for the original pattern and 

underestimates the sensitivity. 
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and is matched with one of the remaining observations of 𝑥2 and so on until 𝑥𝑃. 

This process loops for 𝑁 times and eventually 𝑁 LH points are generated. By this 

method, the entire input space is covered for sensitivity analysis.  

 

The 𝑁 LH points are then used for one-factor-at-a-time sensitivity analysis (OAT). 

Standard OAT design performs identically as Finite-Difference Approximation. In this 

design, the effect of varying the values of each input parameter is carried out in turn, 

keeping other parameters constant (or ceteris paribus) (Daniel, 1973). OAT makes use 

of the Latin Hypercube points and perturbs each Latin Hypercube point by a 

designated fraction. For a model with 𝑃 parameters, then by OAT, 𝑃 times of 

perturbation are required to carry out the whole sensitivity analysis procedure. 

Together with the model run with non-perturbed parameter values, for each LH point, 

it requires 𝑃 + 1 model runs. It in turn means the whole LH-OAT sensitivity analysis 

with 𝑁  LH points requires 𝑁 × (𝑃 + 1) model runs. For each parameter 𝑥𝑖 , a 

partial sensitivity for each LH point 𝑗  is calculated. The sensitivity for each 

parameter is then the average of the 𝑁 partial sensitivities.  
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Figure 7 Procedure of generation of random sample and LH points:  (Left) 

Generation of random sample points within each interval; (Right) Generation of LH 

Points which contains sample points of different parameters from different intervals 

 

LH-OAT sensitivity analysis is applied on Multivariate GRNN models. For each 

parameter 𝑥𝑖, a partial sensitivity for each LH point 𝑗, which is derived from the 

sensitivity calculation developed by van Griensven et al. (2006) to allow negative 

sensitivity, is defined as follow: 

𝑆𝑖,𝑗 =
100 ×

𝑓(𝑥1, … , 𝑥𝑖 × (1 + 𝑓𝑖), … , 𝑥𝑛) − (𝑓(𝑥1, … , 𝑥𝑖, … , 𝑥𝑛)
[𝑓(𝑥1, … , 𝑥𝑖 × (1 + 𝑓𝑖), … , 𝑥𝑛) + (𝑓(𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛)]/2

𝑃
 

 

(10) 

 

Where 𝑓(𝑥)  is the model, 𝑃  is the designated fraction for perturbation. The 

sensitivity for each parameter is then the average of the 𝑁 partial sensitivities. 

 

In this study, 𝑃 is set as 0.2 and 𝑁 is set as 100 to ensure that the interval is 

sufficiently small for the analysis to cover the full range of parameter space.  
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The LH-OAT sensitivity analysis in this study not only determines sensitivity of 

lagged maintenance cost and lagged fuel consumption but also identifies the 

differences of sensitivities of different lags of two parameters. In addition, the 

aggregate absolute sensitivity of all lagged maintenance costs and all lagged fuel 

consumptions will also be compared. The results of sensitivity analysis here serve to 

assist the decision making of the practitioners in the equipment maintenance industry. 

 

4.3.2. Results of LH-OAT 

4.3.2.1. The Effects of Parameters to Future Maintenance Cost 

Figure 8 to Figure 10 illustrate the sensitivities of different parameters of maintenance 

cost models for Division A fleet, Division B fleet, dump truck fleet respectively. 
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Figure 8 Sensitivities of various parameters of model for Division A Fleet 

 

 

Figure 9 Sensitivities of various parameters of model for Division B Fleet 
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Figure 10 Sensitivities of various parameters of model for Dump Truck Fleet 

 

The results of LH-OAT sensitivity analysis provide some important implications for 

equipment fleet management and resources allocation. For the sensitivities of past 

maintenance cost, one universal implication for three fleets with different mixture of 

types of equipment is that the sensitivities of past maintenance costs decay very 

quickly with increase of lag. While it is a norm that impact of past values in time 

series decays over time, the sensitivities for past maintenance cost for the three model 

decay exponentially rather than a slow decay to zero. For model for Division A fleet, 

the sensitivities of lagged maintenance cost behave in a U-shape. The sensitivities 

decay rapidly with increase of lags for t-0 to t-6 and rises back to positive for the rest 

of the lags. Similarly for Division B Fleet model, the sensitivities decay exponentially 

as well and at t-5 the sensitivity decreases to nearly zero. Regarding the Dump Truck 
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Fleet model, the sensitivities essentially drop to zero immediately starting from time 

at t-1, which shows that the influences from past maintenance cost diminish rapidly 

for dump truck. From the results shown they provide an essential implication for 

construction equipment maintenance cost dynamics that the positive influences of past 

maintenance cost only last for a very short time (1-5 months) and for farther time the 

influences tend to be negative or nearly zero. This pattern of past maintenance cost 

sensitivity gives equipment owners for budget planning for maintenance cost that the 

very recent maintenance cost record gives an important indication for the planning. 

 

For the sensitivities of past fuel consumption, they tend to reflect the properties of 

equipment type in response to the variations of fuel consumption, which indicates the 

workload of the equipment. Based on the results for dump truck model, the 

sensitivities of past fuel consumption exhibit a positive pattern for time t-0 to t-2. This 

implies that dump truck is a type of equipment that the defects tend to expose 

relatively quickly after the machine experienced a massive amount of workload in 

their servicing period. For the models of Division A and B, as the fleet contains a 

complicated mixture of equipment with a large variety of equipment types, the 

sensitivities of fuel consumption do not give much implication for equipment 

maintenance cost dynamics. 
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4.3.2.2. Comparison between the Overall Effects of Lagged Maintenance Cost 

and Fuel Consumption 

Table 7 compares the aggregated absolute sensitivities of lagged maintenance cost and 

fuel consumption. The aggregated sensitivity of maintenance cost and fuel 

consumption is respectively the sum of absolute sensitivities of all lags of 

maintenance cost and fuel consumption. 

 

Table 7 Aggregated absolute sensitivities of lagged maintenance cost and fuel 

consumption for three fleet maintenance cost models 

 
Dump Truck Division A Division B 

Past maintenance cost 11.01 41.32 22.04 

Past fuel consumption 16.67 34.38 11.43 

 

From Table 7, it shows that the results of comparison between aggregated absolute 

sensitivities of lagged maintenance cost and fuel consumption for individual 

equipment category fleet and divisional fleet are different. For divisional fleet, the 

aggregated absolute sensitivity of lagged maintenance cost apparently is higher than 

that of lagged fuel consumption. But for individual equipment category fleet (dump 

truck), the result is opposite. This result conforms to the explanation provided in 

previous section that divisional fleet contains a mixture of different types of 

equipment which have different deterioration rates. For divisional fleet comprised of 
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different types of equipment, the mixture has equipment are more sensitive to 

operations in tear and wear than others. For individual category fleet, as the 

deterioration rate with respect to workload is uniform or very similar for equipment 

inside the fleet, fuel consumption is a meaningful indicator on equipment overall 

workload, and on the subsequent equipment maintenance and repair amount and cost. 

As suggested in previous section, the fuel consumption provides very limited 

information on equipment cost variations for division fleet maintenance cost 

modelling. However, even for individual category fleet which has aggregated absolute 

sensitivity of fuel consumption than that of maintenance cost, the aggregated 

sensitivity of lagged maintenance cost is still significant which indicates that past 

maintenance cost is an essential input parameter for modelling of fleet maintenance 

cost. 

 

4.4. Summary 

In this chapter, the construction equipment fleet maintenance cost modelling by 

GRNN based time series method is presented. The results show that the GRNN based 

multivariate time series approach provides the most satisfactory prediction 

performance with the least Mean Absolute Percentage Error (MAPE) in prediction 

horizon. They also show that the addition of lagged fuel consumptions as input 
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parameters in the model improves the performance for individual category fleet 

maintenance cost modelling while the same does not apply on divisional fleet 

maintenance cost model as the divisional fleet contains various types of equipment 

which have different deterioration rate. The sensitivity analysis conducted by 

Latin-Hypercube One-Factor-at-a-Time (LH-OAT) method produces the behaviours 

of sensitivities of lagged maintenance cost and lagged fuel consumption to future 

maintenance cost and gives some important implications. 
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5. Construction Equipment Lifecycle Maintenance Cost Modelling 

5.1. Introduction 

This chapter presents the modelling of construction equipment lifecycle maintenance 

cost. While fleet maintenance cost modelling provides important information on 

aggregate maintenance cost of a group of equipment of different age, the modelling of 

lifecycle maintenance cost studies the maintenance cost dynamics of equipment 

throughout its service age. Having conducted the modelling and prediction of 

lifecycle maintenance cost, vital information on determination of optimal equipment 

replacement timing is obtained. In this part of research, the modelling algorithm 

adopted is, as suggested as a method with lowest error for prediction in previous 

chapter, multivariate GRNN based time series method. The results of prediction of 

lifecycle maintenance cost will be discussed and analysed. To examine the 

effectiveness of GRNN model of lifecycle maintenance cost in facilitating the optimal 

replacement decision making, the GRNN model will be fit into a simple optimal 

replacement model which is developed based on net revenue maximization. 

Discussion will be provided on the effectiveness of GRNN model of maintenance cost 

for optimal replacement. 
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5.2. The Lifecycle Maintenance Cost Model 

5.2.1. Data 

The data for the modelling of construction equipment lifecycle maintenance cost are 

from the same Canadian contractor’s maintenance database as described in the 

previous chapter. The database provides the maintenance cost records of each 

equipment included every month. For each month the raw data contain maintenance 

cost records of equipment of different ages. To use the data to represent the lifecycle 

maintenance cost time series, the data is transformed as maintenance cost against age 

instead of maintenance cost against calendar time and a lifecycle time series is formed 

by a sequence of maintenance cost with equipment service age as time domain. The 

same processing applies on the fuel consumption records to form a lifecycle fuel 

consumption time series. In order to examine the general behaviour of maintenance 

cost of construction equipment lifecycle, the time series of all equipment units of a 

category will be averaged and this averaged time series will be used for modelling. In 

this study, the selected equipment category for analysis is dump truck (10 wheels). 
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5.2.2. Lifecycle Maintenance Cost Time Series Modelling by GRNN 

5.2.2.1. Stationarity test 

This study applies Augmented Dickey-Fuller Test (ADF), which is described above, 

to examine the existence of unit root(s) in the dump truck lifecycle maintenance cost 

and fuel consumption time series. The lag length used in the ADF test is determined 

by Akaike’s Information Criterion. Table 8 shows the result of t-statistic of the three 

maintenance cost time series and their respective fuel consumption time series. 

 

Table 8 Unit root test results for Dump truck lifecycle time series 

Time Series ADF P-value 

Dump Truck Maintenance Cost -1.397692 0.574373 

Dump Truck Fuel Consumption -0.251662 0.588294 

Notes: The p-value is computed under the algorithm of MacKinnon (1996) one-sided 

p-values 

 

The results show that the dump truck lifecycle maintenance cost and fuel consumption 

time series have at least one unit root at 95% confidence level as all the p-values 

shown are larger than 0.05. By first differencing to the time series, the result of ADF 

test of the differenced time series is listed in Table 9. 
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Table 9 Unit root test results for differenced Dump truck lifecycle time series 

Time Series ADF P-value 

Dump Truck Maintenance Cost -7.327780 0.000001 

Dump Truck Fuel Consumption -5.502633 0.000001 

Notes: The p-value is computed under the algorithm of MacKinnon (1996) one-sided 

p-values 

 

The results for first differenced time series indicates that all the lifecycle time series 

for dump truck have one and only one unit root such that first differencing is 

sufficient to transform the non-stationary time series to stationary. 

 

5.2.2.2. Model Design and Validation 

In this study, a multivariate time series model based on General Regression Neural 

Network will be developed to model the behaviour of construction equipment 

lifecycle maintenance cost. The input parameters used for the model are lagged 

maintenance cost and lagged fuel consumption of dump truck. The use of multivariate 

time series model by GRNN corresponds to results suggested by the previous finding. 

 

In order to determine a suitable lag length for GRNN models, a separate Vector 

Autoregressive (VAR) modelling is conducted for each with autoregressive order p 

ranged from 1 to 12 and the Akaike Information Criterion (AIC) of VAR for each p is 
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recorded. The lag length of time series for GRNN models is then determined as the 

autoregressive order of VAR with the lowest AIC. Table 10 shows the AIC values for 

different lag length and the result suggests that lag length of 12 is the optimal 

selection for the time series model. 

 

Table 10 AIC for different lag lengths 

Lag Length AIC 

12 20.64689 

4 21.10447 

1 21.15464 

5 21.17642 

6 21.34313 

2 21.34369 

3 21.39524 

7 21.44767 

8 21.67495 

9 21.76719 

10 21.86585 

11 21.97285 

 

In this maintenance cost modelling, the first 36 months will be used for model training 

and 37-48 months of equipment lifecycle will be used for validation. For validation 

set (37-48 months), the predicted value of each pattern will be used as input for next 

patterns while a separate optimal ARMA developed based on fuel consumption time 

series in training set and selected by lowest AIC, from p, q ∈ (1,2,⋯ ,12) and 

d ∈ (0,1,2) where p, q and d are autoregressive order, moving average order and 
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order of difference respectively, is used to predict the values of fuel consumption for 

validation set such that the model can predict the maintenance cost dynamics of 12 

months completely ex-ante. The optimal ARMA selected for fuel consumption 

prediction for validation set of maintenance cost model is in form of (2,1,3). To 

validate the performance and provide proxies to compare the performance of GRNN 

model on maintenance cost time series in this study, twelve out-of-sample values, 

representing differenced maintenance cost of 12 months ahead of time, is predicted 

and integrated to reflect the practical prediction of maintenance cost. The integrated 

predicted values of maintenance costs will be validated by measuring the Mean 

Absolute Percentage Error (MAPE) and coefficient of determination (  2 ) by 

comparing the predicted values and the actual values. 
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5.2.3. Results 

 

Figure 11 Actual and predicted maintenance cost for out-of-sample prediction horizon 

 

Table 11 MAPE and    for GRNN prediction 

Equipment Age (Month) Absolute Percentage Error 

37 3.68% 

38 2.88% 

39 29.90% 

40 38.81% 

41 3.52% 

42 19.94% 

43 18.79% 

44 3.29% 

45 15.73% 

46 22.30% 

47 15.76% 

48 20.50% 

MAPE 16.26% 

 2 0.832178 
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Table 11 and Figure 11 illustrate the performance of prediction by GRNN for 

equipment maintenance cost. GRNN model provides a  2 as 0.832178 and MAPE as 

16.26% and it suggests that GRNN can adequately model and predict the behaviour of 

construction equipment maintenance cost time series and provide important information for 

optimal equipment replacement modelling.  

 

5.3. Optimal Equipment replacement modelling 

5.3.1. Overview 

This section describes incorporation of GRNN prediction of equipment maintenance 

cost into a simple and realistic model for optimal equipment replacement decision 

making and demonstrates the optimal equipment life can be known prior to when it 

actually happens, based on GRNN prediction with no assumptions on the failure 

frequency and probability distribution of equipment. The modelling for optimal 

replacement done by prior studies mainly relies on assumptions on failure rate and 

maintenance cost dynamics (For example, Matthew and Kennedy (2003), Dreyfus 

(1960), Love and Guo (1996), Yatsenko and Hritonenko (2010), etc.). These 

assumptions can cast significant difficulty in real-life application if the assumption of 

dynamics of maintenance cost does not conform to the reality. The attempt of use of 

GRNN based time series model in optimal replacement model will be presented with 
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purpose to examine the effectiveness of use of statistical model built by actual data 

(GRNN model in this study) for optimal replacement decision making without any 

explicit assumptions on maintenance cost dynamics.  

 

In this study, a simple optimal equipment replacement model which is based on net 

revenue maximization of equipment is developed based on the ideas of Gransberg et 

al. (2006) which introduces an optimal replacement policy that maximizes the wealth 

generated by equipment over its whole life. This model assumes no technological 

advancement of equipment to examine endogenous dynamics of equipment lifecycle. 

 

5.3.2. The Optimal Replacement Model 

The total net revenue,𝑁, for time 𝑡 is defined by: 

𝑁𝑡 = 𝑁𝑡−1 + 𝑌𝑡 − 𝐶𝑡 

 

(11) 

 

where 𝑌𝑡 and 𝐶𝑡 are marginal revenue and marginal cost at time 𝑡 respectively. 
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Equation (11) displays an accumulated net revenue of equipment in which the 

marginal revenue and marginal cost determines the change of wealth for the 

construction equipment.  

 

𝑌𝑡 is determined mainly by its return. It can be in form of direct return which is 

derived from its usage for the owner and also be in form of rental return which the 

owner rents the equipment out. In this study, the latter is used as the equipment within 

the database is chiefly for rental. The rental return 𝑅 is given by: 

𝑅𝑡 =  𝑆𝑡 

 

(12) 

 

Where   is the reference rental rate and 𝑆𝑡 is the resale value of equipment at time 

𝑡. Therefore, Equation (12) can be interpreted as rental return of equipment is a linear 

function of the resale value and indirectly the depreciation of construction equipment. 

The reference rental rate is provided by Nova Scotia Road Builders Association (2012) 

which suggests a monthly rental rate for equipment and produces a monthly rental 

estimates by multiplying the rental rate and the value of the equipment.  
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Apart from return of the equipment, capital allowance also forms a part of revenue 

from equipment (Eilon et al., 1966). For Canada, where is the source of database, the 

owner is able to receive annual allowance for equipment under reducing balance 

method. Adjustments may be required for application of this model under different 

regulatory arrangements. 

 

In sum, 𝑌𝑡 can be defined as: 

𝑌𝑡 = 𝑅𝑡 + 𝐴𝑡 

 

(13) 

 

Where 𝐴𝑡 is the capital allowance at 𝑡. 

 

𝐶𝑡 is mainly divided into cost of ownership and cost of operation
3
. Ownership cost of 

equipment includes capital cost and loss of resale value of equipment. The capital cost 

describes the financing cost for equipment investment. In this study, annual interest 

                                                 
3
 Vorster and Sears (1987) suggested that failure of equipment forms extra cost on whole production 

process by increasing the cost of the same production as the whole resources allocation for that 

production may be altered with additional costs. However, in this study, this cost is not included in the 

model because the equipment in the database is used for rental purpose but not in-house production and 

their failures will only incur negligible cost of resources allocation for production. 
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rate is assumed to be 5% and repayment of equipment purchase cost is assumed to be 

subject to monthly repayment. 

 

The loss of resale value or depreciation is modelled as a decreasing function of age by 

reducing balance method. The use of reducing balance method has been suggested as 

a method for modelling of depreciation of equipment as it tends to reduce the value of 

equipment faster in its younger age which fits the typical depreciation pattern of 

equipment (Edwards et al., 1998). The loss of resale value of construction equipment 

is given by: 

Δ𝑆𝑡 = 𝑑𝑆𝑡−1 

 

(14) 

 

Where 𝑑 is depreciation rate. Reference depreciation rate for Canadian equipment is 

provided by Patry (2007) in which the author offers actual depreciation rate of 

different kinds of equipment and assets using the data of Capital Expenditure Survey. 

 

Cost of operation includes costs of maintenance, fuel and consumables (Vorster & 

Sears, 1987). These costs are divided into direct maintenance cost and indirect 

maintenance cost (Edwards et al., 1998). The former includes all monetary or nominal 
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costs of maintenance. The latter refers to the time cost of maintenance activities for 

equipment. It includes the return it can otherwise earn if this maintenance does not 

happen. This indirect maintenance cost, 𝐼𝑀𝑡, can be defined as: 

𝐼𝑀𝑡 =  ℎ𝑑𝑡𝑡𝑆𝑡 

 

(15) 

 

Where  ℎ is the reference hourly rental rate and 𝑑𝑡𝑡 is the amount of downtime of 

equipment at time 𝑡. 𝑑𝑡𝑡 can be interpreted as average monthly downtime amount of 

samples in the database. Figure 12 displays time series of average monthly downtime. 

 

 

Figure 12 Average monthly downtime along equipment lifecycle 
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Thus the maintenance cost time series plus the downtime cost represents the marginal 

operation cost for the equipment lifecycle. The marginal cost of equipment lifecycle 

can be summarized as: 

𝐶𝑡 = 𝐼𝑡 + Δ𝑆𝑡 +𝑀𝑡 + 𝐼𝑀𝑡 

 

(16) 

 

Where 𝐼𝑡 and 𝑀𝑡 are capital cost and maintenance cost at 𝑡 respectively. 

 

Substituting Eqs. (8) and (11) into Eq. (6), 

𝑁𝑡 = 𝑁𝑡−1 + 𝑅𝑡 + 𝐴𝑡 − 𝐼𝑡 − Δ𝑆𝑡 −𝑀𝑡 − 𝐼𝑀𝑡 

 

(17) 

 

And 

 

Maximum 𝑁𝑡 is given as: 

𝑁𝑡𝑜 = 𝑁𝑡𝑜−1 + 𝑅𝑡𝑜 + 𝐴𝑡𝑜 − 𝐼𝑡𝑜 − Δ𝑆𝑡𝑜 −𝑀𝑡𝑜 − 𝐼𝑀𝑡𝑜 

 

(18) 
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Where 𝑡𝑜 represents optimal equipment replacement time. 

 

By this model, an optimal equipment replacement can be determined with maximum 

net revenue generated by the equipment. As this model is assumption-free for the part 

of direct maintenance cost, the results of GRNN model of direct maintenance cost can 

be directly employed into this model. Using the prediction of 𝑀𝑡  by GRNN 

modeling described in previous section, the incorporation of prediction of 𝑀𝑡 into Eq. 

(18) offers an early prediction of 𝑡𝑜 which facilitates an early planning for equipment 

replacement as equipment transaction is not perfectly liquid. In the following section, 

the 𝑡𝑜 predicted by using the predicted direct maintenance cost by GRNN model will 

be compared to actual 𝑡𝑜, with other variables can be estimated by the reference data 

prior to the beginning of service of equipment, to examine the effectiveness of the 

combination of GRNN modelling into optimal replacement model. 

 

5.3.3. Results 

Table 12 illustrates the comparison between optimal equipment life and predicted 

optimal equipment life. The actual optimal life is 41 months while the predicted value 

of optimal life based on prediction of maintenance cost by GRNN model is 42 months. 



87 

 

This gives similar values between optimal equipment life and predicted optimal 

equipment life. It shows that the use of GRNN prediction of direct maintenance cost 

on optimal equipment replacement decisions provides an early and near-optimal 

indication on replacement timing. This near-optimal prediction suggests that with aid 

of GRNN equipment owners are able to plan for equipment replacement in a 

near-optimal timing 6 months earlier. Figure 13 and Figure 14 display the total and 

marginal net revenue for out-of-sample prediction period. 

 

Table 12 Comparison between actual optimal equipment life and predicted optimal 

equipment life 

 Length (months) 

Optimal equipment life 41 

Predicted optimal life 42 

 

 

Figure 13 Total net revenue for out-of-sample prediction period 
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Figure 14 Marginal net revenue for out-of-sample prediction period 

 

This finding demonstrates a successful attempt to incorporate a statistical model of 

maintenance cost into an optimal replacement model. The results show a couple of 

advantages of this combination: First, The GRNN model helps to provide a 

near-optimal prediction of replacement timing of dump truck; Second, this form of 

optimal replacement model is assumption-free which avoids the potential discrepancy 

between the actual dynamics and the assumptions if made; Third, the development of 

GRNN maintenance cost model inside optimal replacement model completely 

depends on the actual data of maintenance cost records which provides a better 

representation of dynamics of maintenance cost as the GRNN based time series model 

provides a good modelling and prediction results. 
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5.4. Summary 

Existing optimal equipment replacement models generally need assumptions on 

equipment failure rate and probability distribution and so the maintenance cost 

dynamics of equipment. This kind of assumption can severely limit the applicability 

of models if these assumptions fail to reflect the reality of equipment failures as the 

optimal equipment life predicted by this kind of models can be significantly different 

to the actual optimal life. In this study, a more direct approach is used to handle the 

equipment maintenance cost for optimal replacement decision making. Instead of 

assuming how the equipment fails or how the pattern of maintenance cost is, this 

study adopts General Regression Neural Networks (GRNN) in multivaraite time 

series modelling and prediction of maintenance cost and makes use of this prediction 

in a simple optimal replacement model. The results show that the GRNN model is an 

adequate modelling algorithm for lifecycle maintenance cost with satisafactory 

prediction performance and the combination of GRNN and optimal replacement 

model provides a near-optimal prediction for equipment replacement prior to when 

the optimal timing happens. This suggests that the incorporation of prediction of 

maintenance cost by GRNN in optimal replacement model is a meaningful algorithm 

for optimal replacement decision making without risks caused by assumptions if 

unrealistic. 
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6. Conclusions 

6.1. Summary of Findings 

A comprehensive study of construction equipment maintenance cost modelling and 

analysis is conducted in this research. The general purpose of the research is to model 

and understand the equipment maintenance cost dynamics so as to provide important 

information for related stakeholders including equipment owners and equipment 

rental companies on financial management and resources allocation such as 

equipment replacement and budget planning. The use of General Regression Neural 

Network in time series model is the core algorithm adopted in this study for modelling 

of construction equipment maintenance cost. 

 

The first part of the study, which is on construction equipment fleet maintenance cost 

modelling, produces several important findings and implications for management of 

equipment fleet. Recalling that fleet maintenance cost time series is a sequence of the 

aggregate maintenance cost of a group of different equipment over time, the 

modelling of this cost serves to give related stakeholders of construction equipment a 

valuable methodology to predict future values of time series for practical application. 

To examine the most appropriate form of time series model, the study investigates the 

modelling performance of traditional univariate model (ARIMA), traditional 
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multivariate model (VAR), univariate GRNN model and multivariate GRNN model. 

The comparison of prediction accuracy suggests that the GRNN based multivariate 

time series model outperforms the univariate GRNN model and two traditional time 

series methods with least prediction error and in turn indicates that this model is an 

appropriate type of time series model for construction equipment maintenance cost 

modelling. The results also indicate that addition of fuel consumption improves the 

performance of modelling of individual equipment category fleet (dump truck fleet) 

compared to univariate modelling as it helps to represent the workload and in turn 

model the deterioration rate with respect to workload in the model. 

 

Based on the multivariate GRNN model, Latin-Hypercube One-Factor-at-a-Time 

Sensitivity Analysis (LH-OAT) is conducted to examine the influence of each input 

parameter in the model. An important implication of the results of LH-OAT is that the 

sensitivities of lagged fleet maintenance cost decay very quickly as number of lag 

increases. The sensitivity of lagged maintenance cost decays to zero quickly by 1-5 

months from t-0. This provides vital information for budget planning for maintenance 

cost of construction equipment fleet as it indicates that significantly positive 

autocorrelation only comes from the very recent fleet maintenance cost records. Apart 

from this implication, LH-OAT gives implications on properties of deterioration with 



92 

 

respect to workload of certain kind of construction equipment. It reflects that the 

dump truck is more likely to experience failures quickly after increase of workload, 

which is represented by fuel consumption, as the sensitivities of lagged fuel 

consumption for closer lags (t-0 to t-2) are significantly positive. These findings also 

provide information of fleet management of equipment owners.  

 

The second phase of research is to study the GRNN based multivariate time series 

model on construction equipment lifecycle maintenance cost and the use of this model 

for optimal equipment replacement decision making. By rearranging the time domain 

of maintenance cost records as age instead of actual time, a lifecycle maintenance cost 

time series can be extracted for the modelling by GRNN. The results suggest that the 

model satisfactorily predicts the lifecycle maintenance cost with prediction horizon as 

12 months.  

 

The GRNN based multivariate time series model for lifecycle maintenance cost is 

then incorporated into a simple optimal replacement model in which the optimal 

replacement timing is determined by time when maximum net revenue of the 

equipment is attained. Comparing the actual optimal replacement timing with the 

predicted optimal timing by using the predictions of lifecycle maintenance cost, it 
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shows that the incorporation of GRNN model into optimal replacement model 

provides a near-optimal prediction of replacement timing. This result suggests that 

this combination for optimal replacement timing prediction gives meaningful 

practicability and at the same time, as the GRNN model is assumption-free, without 

any risks of unrealistic assumptions that conventional optimal replacement models 

may face. 

 

6.2. Limitations 

This study faces a limitation of insufficient data of maintenance records of different 

equipment categories. While the divisional fleet comprises of a variety of equipment 

categories, a lot of equipment types contain only a few number of equipment which 

do not sufficiently provide a meaningful sample for modelling of individual category 

fleet and lifecycle maintenance cost modelling. And for lifecycle maintenance cost 

modelling, the purchase dates of equipment of categories other than dump truck are 

generally absent in which the age of equipment cannot be computed for optimal 

replacement modelling. Nevertheless, the framework used for maintenance cost 

modelling is shown with evidence that it can adequately model the maintenance cost 

dynamics in this study and it is expected that the equivalent can be applied to other 

equipment categories for maintenance cost modelling with satisfactory performance. 
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6.3. Futures Works 

Based on the findings of this research, the use of this framework is recommended to 

expand to other equipment categories for both individual category fleet and lifecycle 

maintenance cost modelling so that the research can cover more categories of 

construction equipment. Also, this framework can be applied on modelling of 

downtime cost of equipment during maintenance activity, as mentioned in the section 

of optimal replacement model that downtime cost, as indirect maintenance cost, is a 

crucial component of optimal replacement determination. 
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