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Abstract

Resource Description Framework (RDF) is a World Wide Web Consortium (W3C)

data model for the Semantic Web. RDF data are RDF triples, and an RDF triple is

a triple (subject, property, object). RDF Schema (RDFS) extends RDF by providing

a vocabulary to describe application-specific classes and properties, class and prop-

erty hierarchies, and which classes and properties are used together. RDFS reasoning

leverages the vocabulary to derive additional RDF triples from the data.

In recent years, probabilistic models for RDF have been proposed to better rep-

resent the real-life information, which is full of uncertainties. Existing models either

have limited capabilities to model correlated data or ignore the semantics of the data.

We argue that being able to model correlated RDF data is necessary. First, RDF data

using the RDFS vocabulary are correlated. Second, correlated data occur in practice.

Hence, we introduce a probabilistic model called probabilistic RDFS (pRDFS), which

encodes statistical relationships among correlated RDF triples and satisfies the RDFS

semantics. Representing and performing probabilistic inference on correlated data are

expensive. We use Bayesian networks to represent the correlated data and probabilistic

logic sampling to perform approximate inference.

Since there may exist some truth value assignments that violate the RDFS seman-

tics, we devise a consistency checking algorithm for pRDFS. The algorithm checks

that the probabilities of all inconsistent truth value assignments for the correlated RDF

triples are zeros. It is executed once on static data. For data that are frequently updated,

we propose an incremental approach that provides fast rechecking each time the data

are updated.

SPARQL is a W3C query language for RDF. The pattern of a SPARQL query is a

conjunction of triple patterns, and a triple pattern is an RDF triple any member of which

can be replaced with a variable. A solution to the query is the bindings of the query

variables such that the query pattern matches the data or the data derived through the

RDFS reasoning. We extend the query by including truth values in the triple patterns
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to match the uncertain data. Apart from the bindings of the query variables, an answer

to the extended query includes the probability of the bindings, which is equal to the

probability of the matched data. pRDFS fully specifies the probability distribution of

declared data, but not derived data. A single probability value may not be able to

specify the probability of the matched data containing derived data, and we show how

to compute the probability bounds of the matched data in this case.

Finally, we present an experimental evaluation of the running time performance of

our proposed algorithms with respect to the data size, the percentage of uncertain data,

the size of correlated data (by varying the number of nodes in a Bayesian network),

and the complexity of the probability distributions (by varying the degree of nodes in a

network). The algorithms were tested on the Berlin SPARQL Benchmark, the Lehigh

University Benchmark, and random uncertain data.
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Chapter 1

Introduction

1.1 Motivation of Research

Resource Description Framework (RDF) [39] is a basic data model for the Semantic

Web [7], the contents of which are machine-readable. An RDF dataset is a set of RDF

triples, and an RDF triple is a triple (subject, property, object), where the subject is a

resource, the object is a resource or a literal, and the property (also called predicate)

specifies the relationship between the subject and the object. Uniform Resource Identi-

fier (URI) references [6] are used to name the resources and the properties of the RDF

triples.

RDF Schema (RDFS) [11] is an extension of RDF. It provides a vocabulary to de-

scribe application-specific classes and properties, class and property hierarchies, and

which classes and properties are used together. This defines the meaning of data and

enables machines to perform automated reasoning on the data. Table 1.1 shows five

RDF triples and their meanings, where abbreviations are used for URI references and

1



Symbol RDF triples Meaning
d1 (University, rdf:type, rdfs:Class) University is a class.
d2 (degreeFrom, rdf:type, rdf:Property) degreeFrom is a property.
d3 (degreeFrom, rdfs:range, University) The range of degreeFrom is a University.
d4 (John, degreeFrom, PolyU) John has a degree from PolyU.
d5 (PolyU, rdf:type, University) PolyU is a University.

Table 1.1: RDF triples and their meanings.

the words with prefixes rdf: and rdfs: are in the RDF and RDFS vocabularies respec-

tively. In this example, RDF triples d3 and d4 entail RDF triple d5 by RDFS reasoning.

In recent years, RDF has become popular. The inter-linked RDF datasets published

following the Linked Data practices [5] form the Web of Data. As of August 2013,

there are 62 billion RDF triples from 870 datasets [2]. The contents of these datasets

are diverse. They include data extracted from Wikipedia [1], bioinformatics data [4],

book data [9], music, television and radio programmes [40], etc.

Many applications produce uncertain data. For example, an automatic data integra-

tion system [23] may return a ranked list of alternative RDF triples for the same piece

of information because of the conflicting data obtained from different data sources.

A score is computed for each alternative based on the accuracy, reliability, and inter-

dependence of the data sources, and it reflects the degree of belief that the alternative is

the correct one. In automatic information extraction [31], a system may return a list of

alternative RDF triples and their probabilities of being true for each piece of extracted

information because of the imperfect extraction process. In sensor networks [22], data

from the sensors are approximate as they are acquired at discrete time and space. More-

over, they are correlated. Temperature data from sensors in close proximity to each

other are likely to be correlated. Temperature and voltage data from a single sensor

could also be correlated.
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Probabilistic models [27, 28, 59, 37, 44] have been proposed for the uncertain RDF

data. However, they either have limited capabilities to model correlated data [59, 37]

or ignore the semantics of the data [27, 28, 44]. We argue that being able to model

correlated RDF data is necessary. First, RDF data using the RDFS vocabulary are

correlated. Assume that the RDF triples in Table 1.1 are uncertain. If both d3 and d4

are true, then d5 is also true according to the RDFS semantics. Hence, the probability

that d3 = true, d4 = true, and d5 = false should be zero. RDF triples d3, d4, and d5

are correlated. Second, correlated data occur in practice. The data generated in the

applications mentioned earlier are correlated.

The work described in this thesis is about modeling uncertain correlated RDF data.

It also examines the issues arising from the RDFS semantics like the consistency of

the uncertain data and the probability calculation of derived data.

1.2 Contributions

The first contribution of this thesis is a probabilistic model for RDF which models

the uncertainties of correlated RDF data. Representing and performing probabilistic

inference on correlated data are expensive. We use Bayesian networks to represent the

correlated data and probabilistic logic sampling to perform approximate inference.

The second contribution is a consistency checking algorithm which checks if the

probability distribution of the correlated RDF data satisfies the RDFS semantics. More-

over, for data that are frequently updated, we provide an incremental consistency

checking algorithm which performs fast rechecking each time the data are updated.
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The third contribution is a query evaluation algorithm. We extend the query to

the uncertain data, and an answer to the extended query includes the solutions to the

query pattern and the probabilities of the solutions. For solutions that contain derived

data, their probabilities cannot be specified using a single probability value because

the probability distribution of the derived data is not fully specified. In this case, the

probability bounds of the solutions are computed.

The forth contribution is the notion of minimal justifications for RDF triples, which

is used to reduce the computations of both the consistency checking and query evalua-

tion algorithms.

The final contribution is an experimental evaluation of the running time perfor-

mance of consistency checking and query evaluation with respect to the data size,

the percentage of uncertain data, the size of correlated data, and the complexity of

the probability distributions. Moreover, we present three models for predicting the

average-case running time of probability calculations in consistency checking, query

evaluation with and without RDFS reasoning.

1.3 Organization

The remainder of this thesis is organized as follows.

• Chapter 2 presents the background knowledge of this research, which includes

RDF, RDFS, SPARQL, a review of probabilistic models for RDF, and Bayesian

networks.

• Chapter 3 describes the syntax and semantics of our proposed probabilistic model
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for RDF. It also introduces the notion of justifications and describes how to com-

pute them. Justifications are used in consistency checking and query evaluation.

• Chapter 4 presents a consistency checking algorithm to check if the uncertain

data in our model satisfy the RDFS semantics or not. For data that are frequently

updated, it presents an incremental consistency checking algorithm which per-

forms fast rechecking each time the data are updated.

• Chapter 5 extends the SPARQL queries for our proposed model. It defines the

answers to the extended queries and describes how to compute them.

• Chapter 6 presents an experimental evaluation of the running time performance

of the consistency checking algorithms in Chapter 4 and the query evaluation

algorithm in Chapter 5.

• Chapter 7 concludes this thesis and suggests some future work.
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Chapter 2

Background

This chapter presents the background knowledge of this research, which includes Re-

source Description Framework (RDF), RDF Schema (RDFS), and SPARQL, which is

the World Wide Web Consortium (W3C) query language for RDF. It also reviews the

probabilistic models for RDF. Finally, it describes Bayesian networks and probabilis-

tic logic sampling, which are chosen in our proposed probabilistic model for RDF to

represent probability distributions and perform probabilistic inference respectively.

2.1 RDF and RDFS

Resource Description Framework (RDF) [39] is a World Wide Web Consortium (W3C)

Recommendation. It is a data model that uses Uniform Resource Identifier (URI)

references [6] to identify things and uses RDF triples to make statements. In the latest

development of RDF [17], URIs are replaced by Internationalized Resource Identifiers

(IRIs) [24], which are a generalization of URIs.
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Vocabulary Uses
rdf:type, rdfs:Class Define classes

rdf:type, rdf:Property Define properties
rdfs:subClassOf Define class hierarchies

rdfs:subPropertyOf Define property hierarchies
rdfs:domain, rdfs:range Define which classes and properties are used together

Table 2.1: RDFS vocabulary and its uses.

Let U be a set of URI references and contain three mutually disjoint sets: classes

C, properties P, and individuals I. Let L be a set of literals. An RDF triple is defined

as follows.

Definition 1 (RDF Triple). An RDF triple is a triple (s, p, o) in U × P × (U ∪ L),

where U, P, and L are sets of URI references, properties, and literals respectively.

The elements of the RDF triple s, p, and o are called the subject, property, and object

respectively.

RDF triples are classified according to their subjects. An RDF triple is a schema

triple if its subject is in (C ∪ P). It is an instance triple if its subject is in I. Schema

triples describe classes and properties, and they are more permanent and definitional.

Instance triples describe individuals, and they are more dynamic.

RDF data are a set of RDF triples. They can be viewed as a directed graph. The

subject and object of each RDF triple represent vertices of the graph. The (subject,

object) pair of each RDF triple represents a directed edge of the graph, and the label of

the directed edge is the property of the RDF triple.

RDF Schema (RDFS) [11] is an extension of RDF. It provides a vocabulary to

describe application-specific classes and properties, class and property hierarchies, and

which classes and properties are used together. Table 2.1 shows the RDFS vocabulary
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1 If (?p, rdfs: domain, ?x), (?u, ?p, ?w) ∈W , then (?u, rdf: type, ?x) ∈W .
2 If (?p, rdfs: range, ?x), (?u, ?p, ?v) ∈W , then (?v, rdf: type, ?x) ∈W .
3 If (?p, rdfs: subPropertyOf, ?q), (?q, rdfs: subPropertyOf, ?r) ∈W ,

then (?p, rdfs: subPropertyOf, ?r) ∈W .
4 If (?p, rdf: type, rdf: Property) ∈W , then (?p, rdfs: subPropertyOf, ?p) ∈W .
5 If (?p, rdfs: subPropertyOf, ?q), then (?p, rdf: type, rdf: Property),

(?q, rdf: type, rdf: Property) ∈W and ∀ ?u ∀ ?w ((?u, ?p, ?w) ∈W ⇒ (?u, ?q, ?w) ∈W ).
6 If (?x, rdfs: subClassOf, ?y), then (?x, rdf: type, rdfs: Class),

(?y, rdf: type, rdfs: Class) ∈W and ∀ ?u ((?u, rdf: type, ?x) ∈W ⇒ (?u, rdf: type, y) ∈W ).
7 If (?x, rdf: type, rdfs: Class) ∈W , then (?x, rdfs: subClassOf, ?x) ∈W .
8 If (?x, rdfs: subClassOf, ?y), (?y, rdfs: subClassOf, ?z) ∈W ,

then (?x, rdfs: subClassOf, ?z) ∈W .
9 RDFS axiomatic triples ⊆W .

Table 2.2: RDFS semantic conditions.

(rdfs:Resource, rdf:type, rdfs:Class) (rdf:type, rdf:type, rdf:Property)
(rdfs:Literal, rdf:type, rdfs:Class) (rdf:type, rdfs:domain, rdfs:Resource)
(rdfs:Class, rdf:type, rdfs:Class) (rdf:type, rdfs:range, rdfs:Class)

(rdf:Property, rdf:type, rdfs:Class) (rdfs:subPropertyOf, rdf:type, rdf:Property)
(rdfs:domain, rdf:type, rdf:Property) (rdfs:subPropertyOf, rdfs:domain, rdf:Property)

(rdfs:domain, rdfs:domain, rdf:Property) (rdfs:subPropertyOf, rdfs:range, rdf:Property)
(rdfs:domain, rdfs:range, rdfs:Class) (rdfs:subClassOf, rdf:type, rdf:Property)
(rdfs:range, rdf:type, rdf:Property) (rdfs:subClassOf, rdfs:domain, rdfs:Class)

(rdfs:range, rdfs:domain, rdf:Property) (rdfs:subClassOf, rdfs:range, rdfs:Class)
(rdfs:range, rdfs:range, rdfs:Class)

Table 2.3: RDFS axiomatic triples.

and its uses. RDFS reasoning leverages the vocabulary to derive additional RDF triples

from the RDF triples explicitly declared in the data.

2.1.1 Semantics

An RDFS interpretation denoted by W is a set of RDF triples that satisfies the semantic

conditions [39] in Table 2.2. For simplicity, we ignore the semantics of blank nodes,

containers, and datatypes. Among these conditions, ?x, ?y, and ?z are variables for

classes. ?p, ?q, and ?r are variables for properties. ?u and ?v are variables for indi-

viduals. Finally, ?w is a variable for both individuals and literals. The last semantic
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Names Rules

rdfs2
(?p, rdfs: domain, ?x) (?u, ?p, ?w)

(?u, rdf: type, ?x)

rdfs3
(?p, rdfs: range, ?x) (?u, ?p, ?v)

(?v, rdf: type, ?x)

rdfs5
(?p, rdfs: subPropertyOf, ?q) (?q, rdfs: subPropertyOf, ?r)

(?p, rdfs: subPropertyOf, ?r)

rdfs6
(?p, rdf: type, rdf: Property)
(?p, rdfs: subPropertyOf, ?p)

rdfs7
(?p, rdfs: subPropertyOf, ?q) (?u, ?p, ?w)

(?u, ?q, ?w)

rdfs9
(?x, rdfs: subClassOf, ?y) (?u, rdf: type, ?x)

(?u, rdf: type, ?y)

rdfs10
(?x, rdf: type, rdfs: Class)
(?x, rdfs: subClassOf, ?x)

rdfs11
(?x, rdfs: subClassOf, ?y) (?y, rdfs: subClassOf, ?z)

(?x, rdfs: subClassOf, ?z)

Table 2.4: RDFS inference rules.

condition says that RDFS axiomatic triples are in all RDFS interpretations. RDFS ax-

iomatic triples define the classes, domains, and ranges of the RDFS vocabulary, and

they are shown in Table 2.3.

An RDFS interpretation W satisfies an RDF triple d iff d ∈ W . W satisfies a set

of RDF triples D iff W satisfies every d ∈ D. A set of RDF triples D is consistent

iff it has a satisfying interpretation. A set of RDF triples D rdfs-entails (|=rdfs) an

RDF triple d iff every satisfying interpretation of D is a satisfying interpretation of d.

A set of RDF triples D rdfs-entails another set of RDF triples D′ iff every satisfying

interpretation of D is a satisfying interpretation of D′.

2.1.2 Inference Rules

Table 2.4 shows the RDFS inference rules [39] that correspond to the semantic condi-

tions shown in Table 2.2. Among these rules, the things that the variables ?x, ?y, ?z,

?p, ?q, ?r, ?u, ?v, and ?w stand for are the same as those in the semantic conditions.
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RDF triples above the line are called the premises, and RDF triples below the line are

called the conclusions.

These rules can be divided into two groups. Rules rdfs5, rdfs6, rdfs10 and rdfs11

derive schema triples, and their premises contain schema triples only. Rules rdfs2,

rdfs3, rdfs7 and rdfs9 derive instance triples.

2.1.3 RDFS Closure

Definition 2 (RDFS closure). The RDFS closure of data D denoted by rdfs-closure(D)

is the union of D, the set of RDFS axiomatic triples, and the set of RDF triples gener-

ated by applying the rules in Table 2.4 recursively.

2.1.4 Other Terms

An RDF triple d is called an entailed triple in data D if it is entailed by (D \ {d}).

It is called an entailing triple in data D if a subset of D containing d entails an RDF

triple in (D \ {d}), but the subset cannot entail the RDF triple in the absence of d. An

RDF triple can both be an entailed and entailing triple in D.

An RDF triple is called a declared triple if it is in data D. It is called a derived

triple if it is entailed by D and is not in D.
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2.2 SPARQL

2.2.1 SPARQL Query

SPARQL [50] is the W3C query language for RDF. We focus on one common form

of SPARQL queries, which is defined as follows. Other query languages for RDF

include RDF Data Query Language (RDQL) [51] and Sesame RDF Query Language

(SeRQL) [12].

Definition 3 (Triple Pattern). A triple pattern is an RDF triple any member of which

can be a variable. It is a member of (U ∪ V ) × (P ∪ V ) × (U ∪ L ∪ V ), where U, P,

L, and V are sets of URI references, properties, literals, and variables respectively.

Definition 4 (Graph Pattern). A graph pattern denoted by G is a set of triple patterns.

Definition 5 (SPARQL Query). We denote by Q(Vsel, G, isDistinct) a SPARQL query

with a syntax “SELECT (DISTINCT) Vsel WHERE G”, where G is a graph pattern, Vsel

is a subset of query variables in G, and isDistinct is a Boolean variable with a domain

{T, F}. The DISTINCT keyword is optional, and the variable isDistinct assigned T

and F indicates the presence and absence of the DISTINCT keyword respectively.

2.2.2 Answer to a SPARQL Query

An answer to a SPARQL query Q(Vsel, G, isDistinct) on RDF data D is a sequence of

solutions, and a solution is the restriction of a solution to G on D to the set of query

variables Vsel. The answer does not contain duplicate solutions if the variable isDistinct

is true. A solution to G on D denoted by µ is a partial function from V to (U∪L) such
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that D |=rdfs µ(G) or equivalently rdfs-closure(D) ⊇ µ(G) (with RDFS reasoning) or

D ⊇ µ(G) (without RDFS reasoning), where V , U, and L are sets of query variables,

URI references and literals respectively. µ(G) is the set of RDF triples obtained by

replacing every variable v in G with µ(v).

2.2.3 Evaluation of a SPARQL Query

An evaluation of a SPARQL query Q(Vsel, G, isDistinct) on RDF data D consists of

four steps.

1. Find the set of all solutions to the graph pattern G on D. In SPARQL algebra,

the set of solutions is BGP(G).

2. Convert the set of solutions BGP(G) into a sequence of solutions MToList. In

SPARQL algebra, MToList = ToList(BGP(G)).

3. Convert the sequence of solutions MToList into a sequence of solutions MProject,

where the ith solution in MProject is the restriction of the ith solution in MToList

to the set of query variables Vsel. In SPARQL algebra, MProject = Project(MToList,

Vsel).

4. If the variable isDistinct is true, create a sequence of solutions MDistinct by re-

moving duplicate solutions from the sequence of solutions MProject. In SPARQL

algebra, MDistinct = Distinct(MProject). Otherwise, leave the sequence MProject un-

modified, that is, MDistinct = MProject.

The answer to the SPARQL query is the sequence of solutions MDistinct.
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2.3 Review of Probabilistic Models for RDF

This section reviews the probabilistic models for RDF. In relational databases, RDF

data can be modeled as a relation with attributes “subject”, “property”, and “object”.

However, RDFS reasoning is not supported. Probabilistic models for relational databases

encode the uncertainty about the attribute of a tuple [3] or about the existence of a tu-

ple [19, 26, 20, 52]. The model in [3] associates possible attribute values of a tuple

with probability values. The models in [19, 26, 20] associate each tuple with a proba-

bility value. In [19, 26], tuples are assumed to be independent of each other. In [20],

tuples are partitioned into blocks. Tuples from the same block are mutually exclusive,

and tuples from different blocks are independent of each other. The model in [52] as-

sociates each tuple with a random variable, and the joint probability distribution of all

the variables is described compactly using a factored representation [48].

An RDF vocabulary is proposed in [27, 28] to represent the uncertainty about the

truth values of correlated n-ary relations [46]. A n-ary relation is represented by a

group of RDF triples, and an RDF triple is a special case of a n-ary relation. The

probability distributions of correlated n-ary relations are represented by Bayesian net-

works [48], and the nodes of the networks are n-ary relations. RDFS reasoning is

not supported. A query for this representation is asking the probability of some n-ary

relation of interest given the truth values of some n-ary relations.

Probabilistic RDF (pRDF) [59] models the uncertainty about the object of an RDF

triple. The probability of a conjunction of RDF triples is computed using triangular

norms in fuzzy logic [25]. pRDF supports the inference of the property rdfs:subPropertyOf
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from the RDFS vocabulary (rules rdfs5 and rdfs7 in Table 2.4) and application-specific

transitive properties. If a property pt is transitive, then the RDF triple (x, pt, z) can be

derived from the RDF triples (x, pt, y) and (y, pt, z). The query proposed for pRDF has

a query pattern of the form (s, p, o, λ), where (s, p, o) is an RDF triple, λ is a probabil-

ity value, and at most one member of the query pattern can be a variable. A solution to

the query is a binding of the query variable such that the query pattern matches the de-

clared data or the data derived by the inference of subproperties or transitive properties

and the probability of the matched data is above λ.

Probabilistic RDF database (pRDFDB) [37] models the uncertain RDF triples that

are statistically independent of each other. It assigns a probability value to each uncer-

tain RDF triple. pRDFDB supports the inference of transitive properties. However, the

independence assumption among the RDF triples may violate the RDFS semantics if

the RDFS vocabulary is used. Take the uncertain RDF triples d1 = (PolyU, rdf: type,

University), d2 = (degreeFrom, rdfs: range, University), and d3 = (John, degreeFrom,

PolyU) as an example. In pRDFDB, probability values p1, p2, and p3 are assigned to

these uncertain RDF triples respectively. The probability that d1 = false, d2 = true, and

d3 = true is (1 − p1)p2p3, which could be non-zero. However, it should be zero since

{d2, d3} rdfs-entails d1 by rule rdfs3. See Table 2.4 for the rule. The SPARQL query

with a basic graph pattern is proposed for pRDFDB. The answer to the query includes

the solutions to the basic graph pattern and the probabilities of the solutions.

Probabilistic RDF graph database (pRDFGDB) [44] views RDF data as a directed

graph. It assumes the directed edges of the graph are deterministic and models the

uncertainty of the label of a vertex of the graph given the labels of its parent vertices,
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Probabilistic model Uncertainty modeled Inference supported Query
Probabilistic Element of an RDF triple [3]; None SQL

relational database Truth values of independent
[3, 19, 26, 20, 52] RDF triples [19, 26];

Truth values of mutually
exclusive RDF triples [20];
Truth values of correlated

RDF triples [52]
Fukushige’s Truth values of correlated None Probability of the

vocabulary [27, 28] n-ary relations n-ary relation of
interest given the

truth values of some
n-ary relations

Probabilistic RDF Object of an RDF triple rdfs:subPropertyOf Triple pattern
(pRDF) [59] property,

transitive property
Probabilistic RDF Truth values of independent Transitive property Graph pattern

database RDF triples
(pRDFDB) [37]

Probabilistic RDF Label of a vertex given None Graph pattern
graph database the labels of its parent

(pRDFGDB) [44] vertices
Probabilistic RDFS Truth values of correlated RDFS (Table 2.4) Graph pattern

(pRDFS) (Chapter 3) RDF triples

Table 2.5: Comparison among the probabilistic models for RDF.

which are vertices pointing to the vertex via directed edges. pRDFGDB does not sup-

port any inference. The SPARQL query with a basic graph pattern is proposed for

pRDFGDB. The answer to the query is the solutions to the graph pattern, the probabil-

ities of which are greater than a user-specified value.

Table 2.5 compares the probabilistic models for RDF in terms of the uncertainty

modeled, inference supported, and query. Our proposed model probabilistic RDFS

(pRDFS) is described in Chapter 3.
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2.4 Bayesian Network

Bayesian networks [48] are widely used in modeling uncertain knowledge. The ap-

plication domains include medical diagnosis [33, 32, 34], information retrieval [21],

ecosystem services [41], forensic DNA profiling evidence [8], dependability, risk anal-

ysis, and maintenance [60].

2.4.1 Representation

A Bayesian network is a directed, acyclic graph. Each node in the network represents

a random variable Xi and is annotated with a conditional probability distribution P(Xi

| Parents(Xi)), where Parents(Xi) are the parents of Xi. A node Xj is a parent of Xi

if there is a directed edge from Xj to Xi. The in-degree of a node Xi is the number

of edges whose heads are Xi, and the out-degree of a node Xi is the number of edges

whose tails are Xi.

A Bayesian network over random variables {X1, X2, ..., Xn} represents the joint

probability distribution over {X1, X2, ..., Xn} denoted by P(X1, X2, ..., Xn), which is

shown in (2.1).

P (X1, X2, ..., Xn) =
n∏

i=1

P (Xi | Parents(Xi)). (2.1)

The number of values specified for a Bayesian network is usually much smaller

than the number of values specified for a full joint probability distribution because of

the conditional independence relationships encoded by the structure of the network. A

node is independent of its non-descendants given the values of its parents.
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2.4.2 Inference

The task of inference generally refers to computing the probability of some assignment

of values to the random variables of a Bayesian network given the evidence (an assign-

ment of values to some other random variables of the network). Exact inference like

the variable elimination [62] and the conditioning [47] algorithms in unconstrained

Bayesian networks is NP-hard [15]. Approximate inference is also NP-hard [18]. We

consider one family of approximate inference methods called direct sampling to trade

accuracy for speed.

Probabilistic logic sampling [35] creates Nsampl samples of random values for the

nodes of a network. For each sample, the random values are generated in the topologi-

cal ordering, which is an ordering of nodes such that every node comes after its parents

in the ordering. The random value for each node is generated from the conditional

probability distribution of the node given the random values of its parents that have

already been generated. The probability of the assignment of values is approximated

by the number of samples matching both the assignment and the evidence divided by

the number of samples matching the evidence.

Samples that do not match the evidence are rejected in probability logic sampling.

Likelihood weighting [29, 53] makes an improvement to probabilistic logic sampling.

It only generates samples that match the evidence, and each sample is weighted by a

likelihood term. In this thesis, only the prior probability is computed, so the computa-

tions of both methods are the same.

The minimum value of Nsampl depends on the required accuracy of the estimate of
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the probability. We use the Hoeffding bound [36] to determine the minimum number of

samples, and the equation for this is shown in (2.2). The probability that the estimate

deviates from the true value more than ϵ is equal to or less than δ. The minimum

number of samples grows logarithmically in 1/δ and quadratically in 1/ϵ.

Nsampl ≥
ln(2/δ)

2ϵ2
. (2.2)

2.4.3 Learning

Bayesian networks are constructed by domain experts, who identify the variables, de-

termine the relationships of direct influence among the variables, and specify the con-

ditional probability table of each variable. They can also be learned from data, and

this task is NP-hard [14]. One family of methods is called score-and-search meth-

ods [16, 42, 43]. It specifies a scoring function that measures how well a network

fits the data and a greedy search procedure that finds the network with the locally

best score. Another family of methods is called constraint-based methods [54, 55]. It

performs statistical and causal inference tests on the data to discover the conditional

independence and dependence relationships among the data and recovers the network

structure from these relationships. In this thesis, we assume that the probability distri-

butions of uncertain data encoded by Bayesian networks are given.

18



Chapter 3

Probabilistic Model pRDFS

This chapter introduces a probabilistic model for RDF called probabilistic RDFS (pRDFS),

which allows statistical relationships among correlated RDF triples to be encoded [57].

The syntax and semantics of the model are described in Sections 3.1 and 3.2 respec-

tively. Section 3.3 describes algorithms of finding the data that entail an RDF triple

of interest. The algorithms are used in consistency checking and query evaluation

described in later chapters.

3.1 Syntax

A probabilistic RDFS (pRDFS) theory has three parts. Firstly, it has a set of RDF

triples. Secondly, it has a set of independent probability distributions over subsets of

the RDF triples. The RDF triples are treated as random variables with a domain {true,

false} abbreviated as {T, F}. Thirdly, it has a function that maps each RDF triple

to its corresponding probability distribution. A pRDFS theory is formally defined as
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follows.

Definition 6 (pRDFS theory). A pRDFS theory is a triple (D, P , θ), where

1. D is a set of RDF triples. {D1, D2, ..., Dn} is a partition of D, any two different

elements of which are statistically independent.

2. P = {PD1 , PD2 , ..., PDn} is a set of probability distributions, where PDi
:

{T, F}|Di|→ [0, 1] is a probability distribution over Di.

3. θ : D → P , d 7→ PDi
is a function mapping an RDF triple to its probability

distribution, where d ∈ Di.

Let τ : D → {T, F} be a truth value assignment for data D. It maps each RDF

triple in D to a truth value. We define the probability of a truth value assignment

for D denoted by Pr(τ) as PD(d1 = τ(d1), d2 = τ(d2), ..., d|D| = τ(d|D|)), where

PD is the probability distribution over D and D = {d1, d2, ..., d|D|}. Because of the

independence assumption of the elements of the partition {D1, D2, ..., Dn}, Pr(τ) =

Pr(τ |D1) × Pr(τ |D2) × · · · × Pr(τ |Dn), where τ |Di
: Di → {T, F} is the restriction

of τ to Di.

For a small value of |Di|, the probability distribution over Di can be represented

by a table listing the probabilities of all possible truth value assignments for Di. For

a large value of |Di|, the probability distribution can be modeled using the Bayesian

network (Section 2.4).

Not all RDF triples are allowed to be uncertain or false. RDFS axiomatic triples

shown in Table 2.3 are always true. Schema triples (?p rdf: type, rdf: Property) and
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(?x rdf: type, rdfs: Class) are assumed to be certain, where ?p and ?x are variables

for properties and classes respectively. Otherwise, some RDF triples may be invalid.

By rules rdfs6 and rdfs10 shown in Table 2.4, it follows that schema triples (?p rdfs:

subPropertyOf ?p) and (?x rdfs: subClassOf ?x) are also certain.

Example 1 (pRDFS theory). A pRDFS theory is shown in Table 3.1. It has 14 RDF

triples (Table 3.1a). The first ten RDF triples are certain and true. Their probabilities

of being true are one (Table 3.1c). Suppose that professors Tom and May both special-

ize in the semantic web. Their chances being the teacher of the course semantic web

are equal, and this is specified by the probability distribution P{d11,d12} (Table 3.1d).

Students John and Mary have the same interest. Their chances to take the course

semantic web are described by the probability distribution P{d13,d14} (Table 3.1e).

3.2 Semantics

We define the pRDFS interpretation, pRDFS satisfaction, and consistency of a pRDFS

theory as follows.

Definition 7 (pRDFS interpretation). A pRDFS interpretation is a mapping I : W →

[0, 1] such that
∑

W∈W I(W ) = 1, where W is the set of all possible worlds (RDFS

interpretations).

A world (RDFS interpretation) W satisfies a truth value assignment τ for data D if

and only if the RDF triples assigned true by τ are in W , and the RDF triples assigned

false by τ are not in W . Mathematically, W satisfies τ iff ∀d ∈ D((τ(d) = T ⇒ d ∈

W )) ∧ (τ(d) = F⇒ d /∈ W )).
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Symbol RDF triple
d1 (Student, rdf: type, rdfs: Class)
d2 (Professor, rdf: type, rdfs: Class)
d3 (Course, rdf: type, rdfs: Class)
d4 (takesCourse, rdf: type, rdf: Property)
d5 (teacherOf, rdf: type, rdf: Property)
d6 (semanticWeb, rdf: type, Course)
d7 (Tom, rdf: type, Professor)
d8 (May, rdf: type, Professor)
d9 (John, rdf: type, Student)
d10 (Mary, rdf: type, Student)
d11 (Tom, teacherOf, semanticWeb)
d12 (May, teacherOf, semanticWeb)
d13 (John, takesCourse, semanticWeb)
d14 (Mary, takesCourse, semanticWeb)

(a) Set of RDF triples, D1.

Probability distribution
P{d1}
P{d2}
P{d3}
P{d4}
P{d5}
P{d6}
P{d7}
P{d8}
P{d9}
P{d10}

P{d11,d12}
P{d13,d14}

(b) Set of probability dis-
tributions, P1.

di Probability
T 1
F 0

(c) Probability dis-
tribution over di,
P{di}, where i = 1,
2, ..., 10.

d11 d12 Probability
T T 0
T F 0.5
F T 0.5
F F 0

(d) Probability distribution
over {d11, d12}, P{d11,d12}.

d13 d14 Probability
T T 0.4
T F 0.1
F T 0.1
F F 0.4

(e) Probability distribution
over {d13, d14}, P{d13,d14}.

x θ(x)
d1 P{d1}
d2 P{d2}
d3 P{d3}
d4 P{d4}
d5 P{d5}
d6 P{d6}
d7 P{d7}
d8 P{d8}
d9 P{d9}
d10 P{d10}

d11, d12 P{d11,d12}
d13, d14 P{d13,d14}

(f) Function θ1 mapping
an RDF triple to it prob-
ability distribution.

Table 3.1: Example of a consistent pRDFS theory (D1, P1, θ1).

Definition 8 (pRDFS satisfaction). A pRDFS interpretation I satisfies a pRDFS theory

(D,P , θ) iff the probability of any truth value assignment τ : D → {T, F} computed
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W I(W )
A ∪ {d11, d13, d14} 0.2
A ∪ {d11, d13} 0.05
A ∪ {d11, d14} 0.05
A ∪ {d11} 0.2

A ∪ {d12, d13, d14} 0.2
A ∪ {d12, d13} 0.05
A ∪ {d12, d14} 0.05
A ∪ {d12} 0.2

All other worlds 0

Table 3.2: A satisfying interpretation I of the pRDFS theory in Table 3.1, where A =
RDFS axiomatic triples ∪ {d1, d2, ..., d10}.

from the theory satisfies the following equation.

Pr(τ) =


∑

W∈Wτ
I(W ) if |Wτ | > 0

0 if |Wτ | = 0

(3.1)

where Wτ = {W ∈W |W satisfies τ} is the set of worlds that satisfies τ .

Definition 9 (Consistent pRDFS theory). A pRDFS theory is consistent iff it has a

satisfying interpretation.

Example 2 (Consistent pRDFS theory). The pRDFS theory in Table 3.1 has a satis-

fying interpretation shown in Table 3.2, so it is consistent. The interpretation satisfies

(3.1) for all truth value assignments. For example, the truth value assignment τ for the

situation that Tom is the teacher of the course semantic web and both John and Mary

do not take the course semantic web is {(d11, T), (d12, F), (d13, F), (d14, F)}. The

probability of τ is computed as P{d11,d12}(d11 = T, d12 = F)× P{d13,d14}(d13 = F, d14 =

F) = 0.5× 0.4 = 0.2. The world that corresponds to this situation is (RDFS axiomatic

triples ∪ {d1, d2, ..., d10} ∪ {d11}) shown in the forth row of Table 3.2. It is mapped by

the interpretation to 0.2, which is the same as the one computed from the theory.
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Symbol RDF triple
d1 (Professor, rdf: type, rdfs: Class)
d2 (Department, rdf: type, rdfs: Class)
d3 (worksFor, rdf: type, rdf: Property)
d4 (headOf, rdf: type, rdf: Property)
d5 (headOf, rdfs: subPropertyOf, worksFor)
d6 (Tom, rdf: type, Professor)
d7 (departmentOfComputing, rdf: type, Department)
d8 (Tom, headOf, departmentOfComputing)
d9 (Tom, worksFor, departmentOfComputing)

(a) Set of RDF triples, D2.

Probability distribution
P{d1}
P{d2}
P{d3}
P{d4}
P{d5}
P{d6}
P{d7}
P{d8}
P{d9}

(b) Set of probability dis-
tributions, P2.

di Probability
T 1
F 0

(c) Probability dis-
tribution over di,
P{di}, where i = 1,
2, ..., 7.

d8 Probability
T 0.7
F 0.3

(d) Probability dis-
tribution over d8,
P{d8}.

d9 Probability
T 0.8
F 0.2

(e) Probability dis-
tribution over d9,
P{d9}.

x θ(x)
d1 P{d1}
d2 P{d2}
d3 P{d3}
d4 P{d4}
d5 P{d5}
d6 P{d6}
d7 P{d7}
d8 P{d8}
d9 P{d9}

(f) Function
θ2 mapping an
RDF triple to
it probability
distribution.

Table 3.3: Example of an inconsistent pRDFS theory (D2, P2, θ2).

Example 3 (Inconsistent theory). This example shows that the pRDFS theory (D2,

P2, θ2) shown in Table 3.3 is not consistent. The pRDFS theory has nine RDF triples

(Table 3.3a). The first seven RDF triples are true, and their probability distributions

are described in Table 3.3c. The last two RDF triples d8 and d9 are uncertain, and

their probability distributions P{d8} and P{d9} are specified in Tables 3.3d and 3.3e

respectively.

Consider the truth value assignment τ = {(d1, T), (d2, T), (d3, T), (d4, T), (d5,

T), (d6, T), (d7, T), (d8, T), (d9, F)}. There is no world that contains d5 and d8, but

does not contain d9. It is because {d5, d8} |=rdfs d9 by the RDFS inference rule rdfs7
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(Table 2.4). By the definition of pRDFS satisfaction (Definition 8), the probability of τ

should be zero for any satisfying pRDFS interpretation. However, the probability of τ

computed from the theory is P{d8}(d8 = T) × P{d9}(d9 = F) = 0.7 × 0.2 = 0.14. The

theory does not have any satisfying interpretations, so it is inconsistent.

A theory (D,P , θ) prdfs-entails (|=prdfs) another theory (D′,P ′, θ′) iff every satis-

fying interpretation of (D,P , θ) is a satisfying interpretation of (D′,P ′, θ′).

3.3 Finding the Data that Entail an RDF Triple of In-

terest

This section examines two special subsets of data that entail an RDF triple of interest.

One is called a justification. It is used to check the consistency of a pRDFS theory (see

Chapter 4). It is also used to compute the probability of a solution to a query, where

the solution contains derived RDF triples (see Chapter 5). The other special subset is

called a minimal justification, which is used to reduce computations (see Propositions 4

and 5).

A justification for an RDF triple t is a subset of data that entails t, and the subset

cannot entail t in the absence of any triple in the subset. This term is formally defined

in OWL-DL [38]. It is defined similarly in RDFS as follows.

Definition 10 (Justification). A justification for an RDF triple t in data D denoted by

J is a subset of D such that J |=rdfs t and @J ′ ⊂ J(J ′ |=rdfs t).
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(p, rdf: type, rdf: Property)
(q, rdf: type, rdf: Property)
(r, rdf: type, rdf: Property)
(s, rdf: type, rdf: Property)
(p, rdfs: subPropertyOf, q)
(q, rdfs: subPropertyOf, r)
(q, rdfs: subPropertyOf, s)
(r, rdfs: subPropertyOf, s)

(a) Schema data of D3, H3.

(u, p, v)

(b) Instance
data of D3,
R3.

(p, rdf: type, rdf: Property)
(q, rdf: type, rdf: Property)
(r, rdf: type, rdf: Property)
(s, rdf: type, rdf: Property)
(p, rdfs: subPropertyOf, q)
(q, rdfs: subPropertyOf, r)
(q, rdfs: subPropertyOf, s)
(r, rdfs: subPropertyOf, s)
(p, rdfs: subPropertyOf, r)
(p, rdfs: subPropertyOf, s)
(p, rdfs: subPropertyOf, p)
(q, rdfs: subPropertyOf, q)
(r, rdfs: subPropertyOf, r)
(s, rdfs: subPropertyOf, s)

(c) RDFS closure of schema
data H3, rdfs-closure(H3).

Table 3.4: Data D3 used to illustrate the concepts of justifications and how to find the
justifications, where p, q, r, and s are properties. u and v are individuals.

Example 4 (Justification). Consider data D3 shown in Table 3.4, where p, q, r, and

s are properties. u and v are individuals. J1 = {(p, rdfs: subPropertyOf, q), (q, rdfs:

subPropertyOf, r), (r, rdfs: subPropertyOf, s)} and J2 = {(p, rdfs: subPropertyOf,

q), (q, rdfs: subPropertyOf, s)} are both justifications for the RDF triple (p, rdfs:

subPropertyOf, s) in D3 because each of them is a subset of D3 and entails (p, rdfs:

subPropertyOf, s). {(p, rdfs: subPropertyOf, q), (q, rdfs: subPropertyOf, s), (r, rdfs:

subPropertyOf, s)} is a subset of D3 and also entails (p, rdfs: subPropertyOf, s), but

it is not a justification for (p, rdfs: subPropertyOf, s) in D3 because its subset {(p,

rdfs: subPropertyOf, q), (q, rdfs: subPropertyOf, s)} is sufficient to entail (p, rdfs:

subPropertyOf, s).

A minimal justification for an RDF triple is a justification for the triple, and it

cannot entail other justifications for the triple. It is defined as follows.

Definition 11 (Minimal Justification). A justification J for an RDF triple t in data D
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Names Rules

rdfs7
(?q, rdfs: subPropertyOf, ?p) (?u, ?q, ?w)

(?u, ?p, ?w)

rdfs9
(?x, rdfs: subClassOf, ?y) (?u, rdf: type, ?x)

(?u, rdf: type, ?y)

rdfs2+rdfs9
(?x, rdfs: subClassOf, ?y) (?p, rdfs: domain, ?x) (?u, ?p, ?w)

(?u, rdf: type, ?y)

rdfs7+rdfs2+rdfs9

(?x, rdfs: subClassOf, ?y) (?p, rdfs: domain, ?x)
(?q, rdfs: subPropertyOf, ?p) (?u, ?q, ?w)

(?u, rdf: type, ?y)

rdfs3+rdfs9
(?x, rdfs: subClassOf, ?y) (?p, rdfs: range, ?x) (?v, ?p, ?u)

(?u, rdf: type, ?y)

rdfs7+rdfs3+rdfs9

(?x, rdfs: subClassOf, ?y) (?p, rdfs: range, ?x)
(?q, rdfs: subPropertyOf, ?p) (?v, ?q, ?u)

(?u, rdf: type, ?y)

rdfs2
(?p, rdfs: domain, ?x) (?u, ?p, ?w)

(?u, rdf: type, ?x)

rdfs7+rdfs2
(?p, rdfs: domain, ?x) (?q, rdfs: subPropertyOf, ?p) (?u, ?q, ?w)

(?u, rdf: type, ?x)

rdfs3
(?p, rdfs: range, ?x) (?v, ?p, ?u)

(?u, rdf: type, ?x)

rdfs7+rdfs3
(?p, rdfs: range, ?x) (?q, rdfs: subPropertyOf, ?p) (?v, ?q, ?u)

(?u, rdf: type, ?x)

Table 3.5: All possible chains of inference rules that derive instance triples given that
the schema data H are equal to the RDFS closure of H .

is minimal if @ J ′ ∈ JUST(t,D) (J |=rdfs J
′ and J ̸= J ′), where JUST(t,D) is the set

of all justifications for t in D.

A justification J for an RDF triple t in data D is called a minimal justification in the

sense that for every J ′ ∈ JUST(t,D) such that J ′ |=rdfs J , |J | ≤ |J ′|. A justification

is non-minimal if it is not minimal. The set of all justifications for an RDF triple is the

union of the sets of all minimal and non-minimal justifications.

Example 5 (Minimal Justification). Both J1 and J2 in Example 4 are justifications for

the RDF triple (p, rdfs: subPropertyOf, s) in data D3. J2 is minimal, but J1 is not

because J1 entails J2.
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3.3.1 Computing Minimal Justifications for Instance Triples under

H = rdfs-closure(H)

This section describes a method of computing all minimal justifications for an instance

triple in data D under the condition that the schema data H of D are equal to the

RDFS closure of H . The RDFS inference rules that derive instance triples are rdfs2,

rdfs3, rdfs7, and rdfs9. See Table 2.4 for these rules. We use backward chaining to

find all possible chains of these rules that derive instance triples, and they are shown

in Table 3.5. For example, the rule rdfs2+rdfs9 in row 3 of Table 3.5 is formed by

chaining rules rdfs2 and rdfs9. The set of RDF triples in the premises of each rule is a

justification for the instance triple in the conclusion of the rule. These possible chains

of rules do not include those formed by repeated applications of rules rdfs7 and rdfs9

because any justification found by repeated applications of these rules is not minimal.

This is proved as follows.

Proposition 1. Given that the schema data H in data D are equal to the RDFS closure

of H , any justification for an instance triple t in D found by repeated applications of

rule rdfs7 or rule rdfs9, or both is not minimal.

Proof. Let J be a justification for t in D found by repeated applications of rule rdfs7

or rule rdfs9, or both. J is of the form {(pm, rdfs: subPropertyOf, pm−1), (pm−1, rdfs:

subPropertyOf, pm−2), . . . , (p1, rdfs: subPropertyOf, p0)} ∪ {(xn, rdfs: subClassOf,

xn−1), (xn−1, rdfs: subClassOf, xn−2), . . . , (x1, rdfs: subClassOf, x0)} ∪ Jremain, where

p0, p1, . . . , pm are properties, x0, x1, . . . , xn are classes, m and n are the numbers of

times rules rdfs7 and rdfs9 are applied respectively, and Jremain is a set that contains the

28



Algorithm 1 FIND-MIN-JUST*
inst(t, D) finds all minimal justifications for an instance

triple t in data D, where the schema data H of D equal the RDFS closure of H .
Input: t, instance triple; D, data.
Output: J, set of all minimal justifications for t in D.
1: H ← schema data of D; R← instance data of D.
2: s← subject of t; p← property of t; o← object of t.
3: J← ∅.
4: if t ∈ R then
5: J← J ∪ {{t}}.
6: else if p ̸= rdf:type then
7: J← J ∪ {{(?q, rdfs: subPropertyOf, p), (s, ?q, o)} | (?q, rdfs: subPropertyOf, p) ∈ H , (s, ?q,

o) ∈ R}. // rule rdfs7
8: else
9: Xrdfs9 ← {?x | (?x, rdfs: subClassOf, o) ∈ H , (s, rdf: type, ?x) ∈ R}.

10: J← J ∪ {{(?x, rdfs: subClassOf, o), (s, rdf: type, ?x)} | ?x ∈ Xrdfs9}. // rule rdfs9
11: Xrdfs2+9 ← {(?x, ?p, ?w) | (?x, rdfs: subClassOf, o) ∈ H , (?p, rdfs: domain, ?x) ∈ H , (s, ?p,

?w) ∈ R, ?x /∈ Xrdfs9}.
12: J ← J ∪ {{(?x, rdfs: subClassOf, o), (?p, rdfs: domain, ?x), (s, ?p, ?w)} | (?x, ?p, ?w) ∈

Xrdfs2+9}. // rule rdfs2+rdfs9
13: J← J ∪ {{(?x, rdfs: subClassOf, o), (?p, rdfs: domain, ?x), (?q, rdfs: subPropertyOf, ?p), (s,

?q, ?w)} | (?x, rdfs: subClassOf, o) ∈ H , (?p, rdfs: domain, ?x) ∈ H , (?q, rdfs: subPropertyOf,
?p) ∈ H , (s, ?q, ?w) ∈ R, (?x, ?p, ?w) /∈ Xrdfs2+9, ?x /∈ Xrdfs9}. // rule rdfs7+rdfs2+rdfs9

14: Xrdfs3+9 ← {(?x, ?p, ?v) | (?x, rdfs: subClassOf, o) ∈ H , (?p, rdfs: range, ?x) ∈ H , (?v, ?p, s)
∈ R, ?x /∈ Xrdfs9}.

15: J← J ∪ {{(?x, rdfs: subClassOf, o), (?p, rdfs: range, ?x), (?v, ?p, s)} | (?x, ?p, ?v) ∈Xrdfs3+9}.
// rule rdfs3+rdfs9

16: J← J ∪ {{(?x, rdfs: subClassOf, o), (?p, rdfs: range, ?x), (?q, rdfs: subPropertyOf, ?p), (?v,
?q, s)} | (?x, rdfs: subClassOf, o) ∈ H , (?p, rdfs: range, ?x) ∈ H , (?q, rdfs: subPropertyOf,
?p) ∈ H , (?v, ?q, s) ∈ R, (?x, ?p, ?v) /∈ Xrdfs3+9, ?x /∈ Xrdfs9}. // rule rdfs7+rdfs3+rdfs9

17: Xrdfs2 ← {(?p, ?w) | (?p, rdfs: domain, o) ∈ H , (s, ?p, ?w) ∈ R}.
18: J← J ∪ {{(?p, rdfs: domain, o), (s, ?p, ?w)} | (?p, ?w) ∈ Xrdfs2}. // rule rdfs2
19: J ← J ∪ {{(?p, rdfs: domain, o), (?q, rdfs: subPropertyOf, ?p), (s, ?q, ?w)} | (?p, rdfs:

domain, o) ∈ H , (?q, rdfs: subPropertyOf, ?p) ∈ H , (s, ?q, ?w) ∈ R, (?p, ?w) /∈Xrdfs2}. // rule
rdfs7+rdfs2

20: Xrdfs3 ← {(?p, ?v) | (?p, rdfs: range, o) ∈ H , (?v, ?p, s) ∈ R}.
21: J← J ∪ {{(?p, rdfs: range, o), (?v, ?p, s)} | (?p, ?v) ∈ Xrdfs3}. // rule rdfs3
22: J← J ∪ {{(?p, rdfs: range, o), (?q, rdfs: subPropertyOf, ?p), (?v, ?q, s)} | (?p, rdfs: range, o)

∈ H , (?q, rdfs: subPropertyOf, ?p) ∈ H , (?v, ?q, s) ∈ R, (?p, ?v) /∈ Xrdfs3}. // rule rdfs7+rdfs3
23: end if
24: return J.

remaining RDF triples of J . m > 1 or n > 1, or both.

Since H is equal to the RDFS closure of H , schema triples (pm, rdfs: subProper-

tyOf, p0) and (xn, rdfs: subClassOf, x0) are in H . ({(pm, rdfs: subPropertyOf, p0),

(xn, rdfs: subClassOf, x0)} ∪ Jremain) is a justification for t in D and is entailed by J .

Therefore, J is not minimal.
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FIND-MIN-JUST*
inst (Algorithm 1) uses the chains of rules in Table 3.5 to find all

minimal justifications for an instance triple t in data D. If t is in D, the only minimal

justification for t is {t} itself. (Line 5). If t is not in D, FIND-MIN-JUST*
inst uses

the first rule in Table 3.5 for t whose property is not rdf: type (Line 7) and the rest of

the rules in Table 3.5 for t with property rdf: type (Lines 9-22). FIND-MIN-JUST*
inst

substitutes the conclusions of these rules with t and searches for all substitutions for

the variables in the premises of these rules such that the premises are in D. Then, the

premises are minimal justifications for t.

For rules rdfs2+rdfs9, rdfs7+rdfs2+rdfs9, rdfs3+rdfs9, rdfs7+rdfs3+rdfs9, rdfs7+rdfs2,

and rdfs7+rdfs3, we exclude substitutions obtained by other rules because justifications

formed from these substitutions are not minimal. For example, for rule rdfs2+rdfs9

(Lines 11-12), we exclude substitutions Xrdfs9 obtained by rule rdfs9 (Line 9).

Example 6 (Excluded Substitutions). This example illustrates why some substitutions

found in FIND-MIN-JUST*
inst (Algorithm 1) are excluded. Suppose FIND-MIN-JUST*

inst

is used to find all minimal justifications for the instance triple t = (s, rdf: type, o) in

data {(x′, rdfs: subClassOf, o), (s, rdf: type, x′), (p′, rdfs: domain, x′), (s, p′, w′)}.

x′ is a substitution for the variable ?x in the premises of rule rdfs9 (Line 9), and

J1 = {(x′, rdfs: subClassOf, o), (s, rdf: type, x′)} is a minimal justification for t

(Line 10). (x′, p′, w′) is a substitution for the variables (?x, ?p, ?w) in the premises of

rule rdfs2+rdfs9, and J2 = {(x′, rdfs: subClassOf, o), (p′, rdfs: domain, x′), (s, p′, w′)}

is a justification for t. However, J2 is not minimal because J2 |=rdfs J1. Therefore, the

substitution (x′, p′, w′) is excluded in Line 11.
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Algorithm 2 FIND-MIN-JUSTschema(t, D) finds all minimal justifications for a schema
triple t in data D.
Input: t, schema triple; D, data.
Output: J, set of all minimal justifications for t in D.
1: H ← schema data of D.
2: J← ∅.
3: if t ∈ H then
4: J← {{t}}.
5: else
6: if property of t ∈ {rdfs: subPropertyOf, rdfs: subClassOf} then
7: J← FIND-MIN-JUSTsubXOf(t, H). (See Algorithm 3)
8: end if
9: end if

10: return J.

3.3.2 Computing Minimal Justifications for Schema Triples

This section describes an algorithm called FIND-MIN-JUSTschema (Algorithm 2), which

computes all minimal justifications for a schema triple t in data D. If t is in D, the

only minimal justification for t is {t} itself (Line 4). The RDFS inference rules that

derive schema triples are rules rdfs5, rdfs6, rdfs10, and rdfs11. See Table 2.4 for these

rules. Only schema triples with properties rdfs: subPropertyOf and rdfs: subClassOf

can be derived, and they are entailed by schema triples only. If t is not in D and the

property of t is either rdfs: subPropertyOf or rdfs: subClassOf, FIND-MIN-JUSTsubXOf

(Algorithm 3) is called to find the justifications for t (Line 7). Otherwise, there are no

justifications for t.

FIND-MIN-JUSTsubXOf (Algorithm 3) uses backward chaining of rules rdfs5, rdfs6,

rdfs10, and rdfs11 to find all minimal justifications for a schema triple t whose property

is either rdfs: subPropertyOf or rdfs: subClassOf. FIND-MIN-JUSTsubXOf first applies

rules rdfs5 and rdfs11 for t with properties rdfs: subPropertyOf and rdfs: subClassOf

respectively. It searches for all substitutions for the variable ?a in the premises of
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Algorithm 3 FIND-MIN-JUSTsubXOf(t,D) finds all minimal justifications for a
schema triple t whose property is either rdfs: subPropertyOf or rdfs: subClassOf in
data D.
Input: t, schema triple whose property is either rdfs: subPropertyOf or rdfs: subClassOf; D, data.
Output: J, set of all minimal justifications for t in D.
1: s← subject of t; p← property of t; o← object of t.
2: H ← schema data of D.
3: J← ∅.
4: if t /∈ H then
5: for all ?a ∈ {?a | ((s, p, ?a), (?a, p, o)) ∈ rdfs-closure(H)2, ?a ̸= s, ?a ̸= o} do
6: J1 ← FIND-MIN-JUSTsubXOf((s, p, ?a), H).
7: J2 ← FIND-MIN-JUSTsubXOf((?a, p, o), H).
8: for all (J1, J2) ∈ J1 × J2 do
9: if IS-MINIMALsubXOf(J1 ∪ J2, H) = true then (See Algorithm 4)

10: J← J ∪ {J1 ∪ J2}.
11: end if
12: end for
13: end for
14: if p = rdfs: subPropertyOf and s = o then
15: J← J ∪ {{(s, rdf: type, rdf: Property)}}.
16: else if p = rdfs: subClassOf and s = o then
17: J← J ∪ {{(s, rdf: type, rdfs: Class)}}.
18: end if
19: else
20: J← {{t}}.
21: end if
22: return J.

rule rdfs5 or rdfs11 such that the premises are in the RDFS closure of the schema data

(Line 5). It calls itself recursively until the premises are all in the schema data (Lines 6-

7). Justifications found in this way may not be minimal. IS-MINIMAL (Algorithm 4)

is called in Line 9 to check if a justification is minimal. FIND-MIN-JUSTsubXOf then

applies rules rdfs6 and rdfs10 in Lines 15 and 17 for t whose subject and object are

equal.

IS-MINIMALsubXOf (Algorithm 4) is used in Line 9 of FIND-MIN-JUSTsubXOf to

check if a justification J for an RDF triple whose property is either rdfs: subPropertyOf

or rdfs: subClassOf in data D is minimal or not. It applies rule rdfs5 or rdfs11 to check

if any part of J entails an RDF triple in D. If it does, J is not minimal.
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Algorithm 4 IS-MINIMALsubXOf(J , D) checks if a justification J for an RDF triple
whose property is either rdfs: subPropertyOf or rdfs: subClassOf in data D is minimal
or not.
Input: J , justification for an RDF triple whose property is either rdfs: subPropertyOf or rdfs: subClas-

sOf in data D; D, data.
Output: true or false.
1: Let J be {(a1, p, a2), (a2, p, a3), . . . , (am, p, am+1)}.
2: for i = 1 to (m− 1) do
3: for j = (i+ 2) to (m+ 1) do
4: if (ai, p, aj) ∈ D then
5: return false.
6: end if
7: end for
8: end for
9: return true.

Algorithm 5 COMPU-CLOSUREschema(H) computes the RDFS closure of schema
data H .
Input: H , schema data.
Output: Hc, RDFS closure of H .
1: Hc ← H .
2: for all p ∈ {rdfs: subClassOf, rdfs: subPropertyOf} do
3: Dex ← ∅.
4: Dnot ex ← RDF triples with property p in H .
5: while Dnot ex ̸= ∅ do
6: Dtemp ← { (?a, p, ?c) | ((?a, p, ?b), (?b, p, ?c)) ∈ (Dnot ex×Dnot ex ∪Dnot ex×Dex ∪Dex×

Dnot ex) } \ (Dex ∪Dnot ex).

7: Dex ← Dex ∪Dnot ex.
8: Dnot ex ← Dtemp.
9: end while

10: Hc ← Hc ∪Dex.
11: end for
12: Hc ← Hc ∪ {(?p, rdfs: subPropertyOf, ?p) | (?p, rdf: type, rdf: Property) ∈ H}.
13: Hc ← Hc ∪ {(?x, rdfs: subClassOf, ?x) | (?x, rdf: type, rdfs: Class) ∈ H}.
14: return Hc.

COMPU-CLOSUREschema (Algorithm 5) is used in Line 5 of FIND-MIN-JUSTsubXOf

to compute the RDFS closure of schema data. COMPU-CLOSUREschema first applies

rules rdfs5 and rdfs11 repeatedly until no more RDF triples can be derived (Lines 5-9).

Variables Dex and Dnot ex hold the RDF triples that have and have not been examined re-

spectively. In Line 6, COMPU-CLOSUREschema only examines the pairs of RDF triples

in Dnot ex×Dnot ex, Dnot ex×Dex, and Dex×Dnot ex because the pairs of RDF triples in

Dex × Dex have been examined in the previous iterations. COMPU-CLOSUREschema
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then applies rules rdfs6 and rdfs10 to the properties and classes in the schema data to

complete the closure.

Example 7 (RDFS Closure of Schema Data). This example illustrates the use of

COMPU-CLOSUREschema (Algorithm 5) to find the RDFS closure of schema data of

data D3 (Table 3.4). COMPU-CLOSUREschema initially assigns all schema data with

property rdfs: subPropertyOf to the variable Dnot ex (Line 4). In the first iteration of the

while loop (Lines 5-9), all pairs of RDF triples in Dnot ex × Dnot ex are examined, and

two additional RDF triples (p, rdfs: subPropertyOf, r) and (p, rdfs: subPropertyOf, s)

are derived. (p, rdfs: subPropertyOf, r) and (p, rdfs: subPropertyOf, s) are derived

from the pairs ((p, rdfs: subPropertyOf, q), (q, rdfs: subPropertyOf, r)) and ((p, rdfs:

subPropertyOf, q), (q, rdfs: subPropertyOf, s)) respectively. No additional triple is

derived in the second iteration of the while loop, and the loop ends. Then, COMPU-

CLOSUREschema derives four additional RDF triples (p, rdfs: subPropertyOf, p), (q,

rdfs: subPropertyOf, q), (r, rdfs: subPropertyOf, r), and (s, rdfs: subPropertyOf, s)

for properties p, q, r, and s respectively in Line 12 to complete the closure, which is

shown in Table 3.4c.

Example 8 (Minimal Justifications for a Schema Triple). This example illustrates the

operation of FIND-MIN-JUSTschema (Algorithm 2) to find all minimal justifications for

the schema triple t = (p, rdfs: subPropertyOf, s) in data D3 (Table 3.4). Since t is not

in D and its property is rdfs: subPropertyOf, FIND-MIN-JUSTsubXOf (Algorithm 3) is

called to find the minimal justifications.

In Line 6 of FIND-MIN-JUSTsubXOf, two pairs of RDF triples, which entail t, are
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found in (rdfs-closure(H3))2, where rdfs-closure(H3) is the RDFS closure of the schema

data H3 of D3 and is computed in Example 7. One pair is ((p, rdfs: subPropertyOf, q),

(q, rdfs: subPropertyOf, s)). FIND-MIN-JUSTsubXOf is called recursively in Lines 6-7

to find the sets of all minimal justifications for the elements of the pair in H3. The sets

are {{(p, rdfs: subPropertyOf, q)}} and {{(q, rdfs: subPropertyOf, s)}}, and they are

assigned to J1 and J2 respectively. The justification for t formed from J1 and J2 is {(p,

rdfs: subPropertyOf, q), (q, rdfs: subPropertyOf, s)}. It is passed to IS-MINIMALsubXOf

(Algorithm 4) in Line 9 to check if it is minimal. IS-MINIMALsubXOf checks if t is in D3.

t is not in D3, so the justification is minimal.

The other pair is ((p, rdfs: subPropertyOf, r), (r, rdfs: subPropertyOf, s)). The sets

of all minimal justifications for the elements of the pair are {{(p, rdfs: subPropertyOf,

q), (q, rdfs: subPropertyOf, r)}} and {{(r, rdfs: subPropertyOf, s)}}. The justification

for t formed from them is {(p, rdfs: subPropertyOf, q), (q, rdfs: subPropertyOf, r), (r,

rdfs: subPropertyOf, s)}. It is passed to IS-MINIMALsubXOf to check if it is minimal.

IS-MINIMALsubXOf checks if (p, rdfs: subPropertyOf, r), t, and (q, rdfs: subPropertyOf,

s) are in D3. (q, rdfs: subPropertyOf, s) is in D3, so the justification is not minimal.

Therefore, the set of all minimal justifications for t in D3 is {{(p, rdfs: subPropertyOf,

q), (q, rdfs: subPropertyOf, s)}}.

3.3.3 Computing Minimal Justifications for Instance Triples

This section describes an algorithm called FIND-MIN-JUSTinst (Algorithm 6), which

makes use of FIND-MIN-JUST*
inst and FIND-MIN-JUSTschema described in Sections 3.3.1

and 3.3.2 to find all minimal justifications for an instance triple t in data D. Un-

35



Algorithm 6 FIND-MIN-JUSTinst(t, D) finds all minimal justifications for an instance
triple t in data D.
Input: t, instance triple; D, data.
Output: J, set of all minimal justifications for t in D.
1: H ← schema data of D.
2: Jfinal ← ∅.
3: Jinst ← FIND-MIN-JUST*

inst(t, D ∪ rdfs-closure(H)). (See Algorithm 1)
4: for all J ∈ Jinst do
5: Hderived = {x ∈ J | x /∈ H}.
6: if Hderived = ∅ then
7: Jfinal ← Jfinal ∪ {J}.
8: else
9: Jderived =

∏
h∈Hderived

FIND-MIN-JUSTschema(h,H). (See Algorithm 2)
10: for all jderived ∈ Jderived do
11: Jfinal ← Jfinal ∪ {(J \Hderived) ∪ (union of all elements in tuple jderived)}.
12: end for
13: end if
14: end for
15: return Jfinal.

like FIND-MIN-JUST*
inst (Algorithm 1), FIND-MIN-JUSTinst does not require that

the schema data H of D equal the RDFS closure of H .

FIND-MIN-JUSTinst first calls FIND-MIN-JUST*
inst in Line 3 to find all minimal

justifications for t in the union of D and the RDFS closure of H . Minimal justifica-

tions found in this way may contain derived schema triples. FIND-MIN-JUSTinst then

calls FIND-MIN-JUSTschema in Line 9 to find all minimal justifications for each of the

derived schema triples. Finally, it replaces the derived schema triples with the minimal

justifications for them in Line 11 to give the minimal justifications for t in D.

Example 9 (Minimal Justifications for an Instance Triple). This example illustrates

the operation of FIND-MIN-JUSTinst (Algorithm 6) to find all minimal justifications

for the instance triple t = (u, s, v) in data D3 (Table 3.4). FIND-MIN-JUSTinst first

calls FIND-MIN-JUST*
inst (Algorithm 1) in Line 3 to find all minimal justifications for

t in (D3 ∪ rdfs-closure(H3)), where rdfs-closure(H3) is the RDFS closure of the schema

data H3 of D3 and is computed in Example 7. There is only one minimal justification
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for t in (D3 ∪ rdfs-closure(H3)), and it is {(p, rdfs: subPropertyOf, s), (u, p, v)}. (p,

rdfs: subPropertyOf, s) in the minimal justification is a derived schema triple.

FIND-MIN-JUSTinst then calls FIND-MIN-JUSTschema (Algorithm 2) in Line 9 to

find all minimal justifications for the derived schema triple (p, rdfs: subPropertyOf, s)

in H3, and the only minimal justification for it is {(p, rdfs: subPropertyOf, q), (q, rdfs:

subPropertyOf, s)}, which is computed in Example 8.

At last, FIND-MIN-JUSTinst replaces the derived schema triple with the minimal

justification for it in Line 11 to give the minimal justification for t in D3, which is {(p,

rdfs: subPropertyOf, q), (q, rdfs: subPropertyOf, s), (u, p, v)}.

3.3.4 Time Complexity

Three algorithms of finding minimal justifications (FIND-MIN-JUST*
inst, FIND-MIN-

JUSTschema, and FIND-MIN-JUSTinst) have been described. This section examines the

time complexities of them with respect to the data size |D|. We assume that the size of

schema data |H| is fixed and the size of instance data |R| grows with |D|. Moreover,

we assume that the schema data H are separated from the instance data R. Otherwise,

separating data D by checking the subjects of all RDF triples in D runs in linear time.

FIND-MIN-JUST*
inst (Algorithm 1) is about finding substitutions for the variables

in the premises of the rules in Table 3.5. We build two indexes for each of the schema

and instance data for finding substitutions using the binary search algorithm. One index

is sorted by the subjects, properties, and objects of RDF triples. It is used to search

for RDF triples and RDF triples with unknown objects. The other index is sorted by

the properties and objects of RDF triples. It is used to search for RDF triples with
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unknown subjects.

There are at most three schema triples and one instance triple in the premises of

each rule. The order of finding substitutions for the variables is as follows. We find sub-

stitutions for the variables in the schema triples first since |H| is usually much smaller

than |R|. If there is more than one schema triple, schema triples with fewer variables

are chosen. For example, in Line 13 of FIND-MIN-JUST*
inst, the order of finding sub-

stitutions for rule rdfs7+rdfs2+rdfs9 is the variable ?x in (?x, rdfs: subClassOf, o), the

variable ?p in (?p, rdfs: domain, ?x), the variable ?q in (?q, rdfs: subPropertyOf, ?p),

and the variable ?w in (s, ?q, ?w).

The time complexity of finding substitutions for each rule is O(log|D|). There are

at most nine rules to apply. Hence, the overall time complexity of FIND-MIN-JUST*
inst

is still O(log|D|).

FIND-MIN-JUSTschema (Algorithm 2) works with schema data only since schema

data are entailed by schema data only. It does not depend on |D| and runs in constant

time.

FIND-MIN-JUSTinst (Algorithm 6) makes use of FIND-MIN-JUST*
inst and FIND-

MIN-JUSTschema and runs in logarithmic time.
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Chapter 4

pRDFS Consistency

A pRDFS theory is inconsistent if it does not have any satisfying interpretation. This

chapter describes a method of checking the consistency of a given pRDFS theory,

which is based on [57]. Moreover, for pRDFS theories that are frequently updated,

it describes an incremental approach to the consistency checking. The approach does

not check the consistency of an updated pRDFS theory anew. It only checks the part

affected by the update on the theory and saves the time of unnecessary checking.

4.1 Consistency Checking

We first define a truth value assignment for RDF triples that is not consistent with

the RDFS semantics. There are no worlds (RDFS interpretations) that satisfy this

assignment.

Definition 12 (Inconsistent truth value assignment). A truth value assignment τ :D →

{T, F} is inconsistent iff {d ∈ D | τ(d) = T} rdfs-entails any RDF triple in {d ∈
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D | τ(d) = F}, where D is a set of RDF triples.

The following proposition follows from the definitions of pRDFS satisfaction (Def-

inition 8) and a consistent pRDFS theory (Definition 9).

Proposition 2. A pRDFS theory (D,P , θ) is inconsistent iff ∃ τ (Pr(τ) > 0), where

τ is an inconsistent truth value assignment and Pr(τ) is the probability of τ computed

from the theory.

Proof. Assume ∃ τ (Pr(τ) > 0) is true. Let τ ′ be an inconsistent truth assign-

ment such that Pr(τ ′) > 0. There is no world that satisfies τ ′. By the definition

of pRDFS satisfaction (Definition 8), for any pRDFS interpretation that satisfies the

theory, Pr(τ ′) = 0, but Pr(τ ′) > 0. The theory does not have any satisfying interpre-

tation and is inconsistent.

We prove the contrapositive of the statement that if a pRDFS theory is inconsistent,

∃ τ (Pr(τ) > 0) is true. Suppose ∃ τ (Pr(τ) > 0) is false, or equivalently ∀ τ

(Pr(τ) = 0) is true. We can construct a satisfying interpretation I of the theory. The

interpretation I maps each world W in Wτ ′′ to the probability value Pr(τ ′′)/|Wτ ′′ | for

all consistent truth value assignments τ ′′, where Wτ ′′ is the set of worlds that satisfies

τ ′′. Therefore, the theory is consistent.

Proposition 2 suggests that we can perform consistency checking of a pRDFS the-

ory by checking that the probabilities of all inconsistent truth value assignments are

zeros. Mathematically, the condition for the consistency of a theory with data D is

(4.1).
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∀d ∈ D ∀K ∈ {X ⊆ (D \ {d}) | X |=rdfs d}Pr(d = F ∧
∧
k∈K

k = T) = 0. (4.1)

(4.1) can be simplified as (4.2) by means of justifications defined in Definition 10.

This is proved in Proposition 3.

∀d ∈ D ∀J ∈ JUST (d,D \ {d})Pr(d = F ∧
∧
j∈J

j = T) = 0. (4.2)

Proposition 3. If ∀d ∈ D ∀J ∈ JUST(d,D \ {d}) Pr(d = F ∧
∧

j∈J j = T) = 0, then

∀d ∈ D ∀K ∈ {X ⊆ (D \ {d}) | X |=rdfs d}Pr(d = F ∧
∧

k∈K k = T) = 0, where

D is the data of a pRDFS theory and JUST(x, X) is the set of all justifications for an

RDF triple x in data X .

Proof. For any d ∈ D and any K ∈ {x ⊆ (D \ {d}) | x |=rdfs d}, if K ∈ JUST(d,D \

{d}), it is given that Pr(d = F ∧
∧

k∈K k = T) = 0. If K /∈ JUST(d,D \ {d}),

∃K ′ ∈ JUST(d,D \ {d}) such that K ′ ⊂ K. Pr(d = F ∧
∧

k∈K k = T) ≤ Pr(d =

F ∧
∧

k∈K′ k = T) = 0.

(4.2) can be further simplified as (4.3) by means of minimal justifications defined

in Definition 11. This is proved in Proposition 4.

∀d ∈ D ∀J ∈ JUSTmin(d,D \ {d})Pr(d = F ∧
∧
j∈J

j = T) = 0. (4.3)

Proposition 4. If ∀d ∈ D ∀J ∈ JUSTmin(d,D \ {d}) Pr(d = F ∧
∧

j∈J j = T) = 0,
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∧
j∈J

∧
j∈J′ j

∧
j∈J j ∨

∧
j∈J ′ j

T T T
F T T
F F F

Table 4.1: Truth table for
∧

j∈J ,
∧

j∈J ′ j, and
∧

j∈J j ∨
∧

j∈J ′ j, where J and J ′ are
non-minimal and minimal justifications for an RDF triple respectively and J |=rdfs J

′.

then ∀d ∈ D ∀J ∈ JUST(d,D \ {d}) Pr(d = F ∧
∧

j∈J j = T) = 0, where D is the

data of a pRDFS theory, JUST(x, X) is the set of all justifications for an RDF triple x

in data X , and JUSTmin(x, X) is the set of all minimal justifications for an RDF triple

x in data X .

Proof. For any d in D and any J in JUST(d,D \{d}), if J ∈ JUSTmin(d,D \{d}), it is

given that Pr(d = F ∧
∧

j∈J j = T) = 0. If J /∈ JUSTmin(d,D \ {d}), by the definition

of a minimal justification (Definition 11), there exists a J ′ in JUSTmin(d,D \{d}) such

that J |=rdfs J
′.

Pr(d = F ∧
∧
j∈J

j = T) (4.4)

≤Pr(d = F ∧ (
∧
j∈J

j ∨
∧
j∈J ′

j) = T) (4.5)

=Pr(d = F ∧
∧
j∈J ′

j = T) = 0 (4.6)

The expression (
∧

j∈J j∨
∧

j∈J ′ j) in (4.5) is equivalent to
∧

j∈J ′ j in (4.6). See the truth

table for them in Table 4.1. When
∧

j∈J j is true,
∧

j∈J ′ j is also true because J |=rdfs

J ′.
∧

j∈J j ∨
∧

j∈J ′ j = T ∨ T = T is also true. When
∧

j∈J j is false,
∧

j∈J j ∨
∧

j∈J ′ j

= F ∨
∧

j∈J ′ j =
∧

j∈J ′ j.

IS-CONSISTENT (Algorithm 7) uses (4.3) to check the consistency of a pRDFS
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Algorithm 7 IS-CONSISTENT((D,P, θ)) determines if a pRDFS theory (D,P, θ) is
consistent or not.
Input: (D,P, θ), pRDFS theory.
Output: true or false.
1: for all d ∈ D such that Pr(d = F) > 0 do
2: if d is an instance triple then
3: J← FIND-MIN-JUSTinst(d, D \ {d}). (See Algorithm 6)
4: else
5: J← FIND-MIN-JUSTschema(d, D \ {d}). (See Algorithm 2)
6: end if
7: for all J ∈ J do
8: if Pr(d = F ∧

∧
j∈J j = T) > 0 return false.

9: end for
10: end for
11: return true.

Algorithm 8 IS-CONSISTENTtrueSchema((D,P , θ)) determines if a pRDFS theory
(D,P , θ) is consistent or not, where the schema data of D are true.
Input: (D,P, θ), pRDFS theory, where the schema data of D are certain.
Output: true or false.
1: H ← schema data of D; R← instance data of D.
2: for all d ∈ R such that Pr(d = F) > 0 do
3: J← FIND-MIN-JUST*

inst(d, (D ∪ rdfs-closure(H)) \ {d}). (See Algorithm 1)
4: for all J ∈ J do
5: if Pr(d = F ∧

∧
j∈(J∩R) j = T) > 0 return false.

6: end for
7: end for
8: return true.

theory. The for loop in Lines 1-10 iterates over the RDF triples that are not certainly

true. If an RDF triple d′ is certainly true, the probability Pr(d′ = F ∧
∧

j∈J j = T)

in Line 8 must be zero. Therefore, we can skip the checking of d′. In the for loop,

IS-CONSISTENT first finds all minimal justifications in Line 3 or 5. It then checks

the probabilities of the inconsistent truth value assignments created from the minimal

justifications in Line 8.

IS-CONSISTENTtrueSchema (Algorithm 8) is a simplified version of IS-CONSISTENT

(Algorithm 7) for pRDFS theories whose schema data are true. The for loop in Lines 2-

7 iterates over instance data only. IS-CONSISTENTtrueSchema calls a simpler algorithm

FIND-MIN-JUST*
inst (Algorithm 1) in Line 3 to find minimal justifications. Although
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the justifications may contain derived schema data, this does not affect the probability

of the inconsistent truth value assignment in Line 5 since both the declared and derived

schema data are true.

4.2 Incremental Consistency Checking

The running time of consistency checking could be long if both the data size and the

percentage of RDF triples that are not certainly true are large. However, we perform the

checking only once on static pRDFS theories. For pRDFS theories that are frequently

updated, we provide an incremental approach to the consistency checking. The ap-

proach does not check the consistency of an updated pRDFS theory anew. It only

checks the part affected by the update on the theory and saves the time of unnecessary

checking.

There are two basic operations to update a pRDFS theory. One is removing an RDF

triple and its probability information from the theory. This operation does not void the

consistency of the theory.

The other operation is adding an RDF triple t and its probability information to the

theory. Given that the theory before the addition of t is consistent, the probabilities of

the inconsistent truth value assignments that do not contain t are zero. We only need

to check the probabilities of the inconsistent truth value assignments that contain t.

Mathematically, the conditions for the consistency of a consistent pRDFS theory with

data D after adding an RDF triple t and its probability information to the theory are
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Algorithm 9 IS-CONSISTENTinc((D,P , θ), t) determines if a consistent pRDFS the-
ory (D,P , θ) is still consistent after adding an RDF triple t /∈ D and its probability
information to the theory.
Input: (D,P, θ), consistent pRDFS theory; t, RDF triple not in D.
Output: true or false.
1: if t is an instance triple then
2: J← FIND-MIN-JUSTinst(t, D). (See Algorithm 6)
3: else
4: J← FIND-MIN-JUSTschema(t, D). (See Algorithm 2)
5: end if
6: for all J ∈ J do
7: if Pr(t = F ∧

∧
j∈J j = T) > 0 return false.

8: end for
9: if t is an instance triple then

10: PAIRS← FIND-TRIPLE-JUST-PAIRinst(t, D). (See Algorithm 10)
11: else
12: PAIRS← FIND-ITRIPLE-JUST-PAIRschema(t, D). (See Algorithms 12 and 13)
13: PAIRS← PAIRS ∪ FIND-STRIPLE-JUST-PAIRschema(t, D). (See Algorithm 14)
14: end if
15: for all (t′, J ′) ∈ PAIRS do
16: if Pr(t′ = F ∧

∧
j∈J′ j = T) > 0 return false.

17: end for
18: return true.

(4.7) and (4.8).

∀J ∈ JUSTmin(t,D) (Pr(t = F ∧
∧
j∈J

j = T) = 0). (4.7)

∀d ∈ D ∀J ∈ {X ∈ JUSTmin(d, (D ∪ {t}) \ {d}) | t ∈ X}

(Pr(d = F ∧
∧
j∈J

j = T) = 0). (4.8)

In (4.7), an inconsistent truth value assignment is constructed from t and a min-

imal justification for t. In (4.8), it is constructed from an RDF triple and a minimal

justification for the RDF triple such that the minimal justification contains t.

IS-CONSISTENTinc (Algorithm 9) uses (4.7) and (4.8) to check if a consistent
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pRDFS theory is still consistent after the addition of an RDF triple t and its prob-

ability information. It consists of two parts. The first part of IS-CONSISTENTinc

(Lines 1-8) corresponds to checking (4.7). It finds all minimal justifications for t using

FIND-MIN-JUSTinst (Algorithm 6) and FIND-MIN-JUSTschema (Algorithm 2), which

are described in Section 3.3.

The second part of IS-CONSISTENTinc (Lines 9-17) corresponds to checking (4.8).

It finds all ordered pairs of an RDF triple d in data D and a minimal justification J for

d in ((D ∪ {t}) \ {d}) such that t ∈ J .

If t is an instance triple, d must be an instance triple because schema triples are

entailed by schema data only, and justifications for schema triples do not contain any

instance triple. FIND-TRIPLE-JUST-PAIRinst (Algorithm 10) is called to find the pairs.

It first finds minimal justifications for d in ((D ∪ rdfs-closure(H) ∪ {t}) \ {d}) such

that the minimal justifications contain t, so the chains of rules in Table 3.5 can be

applied, where rdfs-closure(H) is the RDFS closure of the schema data H of D. FIND-

TRIPLE-JUST-PAIRinst substitutes t for an instance triple in the premises of each rule

and searches for all substitutions for the variables in the rules such that the premises

of the rules are in ((D ∪ rdfs-closure(H) ∪ {t}) \ {d}) and the conclusions of the

rules are in D. The premises are the minimal justifications and may contain derived

schema data. REPLACE-DERIVED-TRIPLE (Algorithm 11) is called in Line 17. It

calls FIND-MIN-JUSTschema (Algorithm 2) to find all minimal justifications for the

derived schema data in Line 8 and replaces the derived schema data with the minimal

justifications for them in Line 10 to give the final result.

If t is a schema triple and d is an instance triple, FIND-ITRIPLE-JUST-PAIRschema
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Algorithm 10 FIND-TRIPLE-JUST-PAIRinst(t, D) finds all pairs of an RDF triple d in
data D and a minimal justification J for d in ((D ∪ {t}) \ {d}) such that t ∈ J , where
t is an instance triple not in D.
Input: D, data; t, instance triple not in D.
Output: PAIRS, set of pairs of an RDF triple d in D and a minimal justification J for d in ((D∪{t}) \
{d}) such that t ∈ J .

1: PAIRS← ∅.
2: s← subject of t; p← property of t; o← object of t.
3: H ← schema data of D; R← instance data of D.
4: if p = rdf: type then
5: PAIRS← PAIRS ∪ {

(
(s, rdf: type, ?y), {(o, rdfs: subClassOf, ?y), t}

)
| (s, rdf: type, ?y) ∈

R, (o, rdfs: subClassOf, ?y) ∈ rdfs-closure(H)}. // rule rdfs9
6: else
7: PAIRS← PAIRS ∪ {

(
(s, ?q, o), {(p, rdfs: subPropertyOf, ?q), t}

)
| (s, ?q, o) ∈ R, (p, rdfs:

subPropertyOf, ?q) ∈ rdfs-closure(H)}. // rule rdfs7
8: PAIRS← PAIRS ∪ {

(
(s, rdf: type, ?x), {(p, rdfs: domain, ?x), t}

)
| (s, rdf: type, ?x) ∈ R, (p,

rdfs: domain, ?x) ∈ rdfs-closure(H)}. // rule rdfs2
9: PAIRS← PAIRS ∪ {

(
(s, rdf: type, ?x), {(?q, rdfs: domain, ?x), (p, rdfs: subPropertyOf, ?q),

t}
)
| (s, rdf: type, ?x) ∈ R, (?q, rdfs: domain, ?x) ∈ rdfs-closure(H), (p, rdfs: subPropertyOf,

?q) ∈ rdfs-closure(H), ?q ̸= p}. // rule rdfs7+rdfs2
10: PAIRS← PAIRS ∪ {

(
(s, rdf: type, ?y), {(?x, rdfs: subClassOf, ?y), (p, rdfs: domain, ?x), t}

)
| (s, rdf: type, ?y) ∈ R, (?x, rdfs: subClassOf, ?y) ∈ rdfs-closure(H), (p, rdfs: domain, ?x) ∈
rdfs-closure(H), ?x ̸= ?y}. // rule rdfs2+rdfs9

11: PAIRS ← PAIRS ∪ {
(
(s, rdf: type, ?y), {(?x, rdfs: subClassOf, ?y), (?q, rdfs: domain, ?x),

(p, rdfs: subPropertyOf, ?q), t}
)
| (s, rdf: type, ?y) ∈ R, (?x, rdfs: subClassOf, ?y) ∈ rdfs-

closure(H), (?q, rdfs: domain, ?x) ∈ rdfs-closure(H), (p, rdfs: subPropertyOf, ?q), ∈ rdfs-
closure(H), ?x ̸= ?y, ?q ̸= p}. // rule rdfs7+rdfs2+rdfs9

12: PAIRS← PAIRS ∪ {
(
(o, rdf: type, ?x), {(p, rdfs: range, ?x), t}

)
| (o, rdf: type, ?x) ∈ R, (p,

rdfs: range, ?x) ∈ rdfs-closure(H)}. // rule rdfs3
13: PAIRS← PAIRS ∪ {

(
(o, rdf: type, ?x), {(?q, rdfs: range, ?x), (p, rdfs: subPropertyOf, ?q), t}

)
| (o, rdf: type, ?x) ∈ R, (?q, rdfs: range, ?x) ∈ rdfs-closure(H), (p, rdfs: subPropertyOf, ?q) ∈
rdfs-closure(H), ?q ̸= p}. // rule rdfs7+rdfs3

14: PAIRS ← PAIRS ∪ {
(
(o, rdf: type, ?y), {(?x, rdfs: subClassOf, ?y), (p, rdfs: range, ?x), t}

)
| (o, rdf: type, ?y) ∈ R, (?x, rdfs: subClassOf, ?y) ∈ rdfs-closure(H), (p, rdfs: range, ?x) ∈
rdfs-closure(H), ?x ̸= ?y}. // rule rdfs3+rdfs9

15: PAIRS ← PAIRS ∪ {
(
(o, rdf: type, ?y), {(?x, rdfs: subClassOf, ?y), (?q, rdfs: range, ?x),

(p, rdfs: subPropertyOf, ?q), t}
)
| (o, rdf: type, ?y) ∈ R, (?x, rdfs: subClassOf, ?y) ∈

rdfs-closure(H), (?q, rdfs: range, ?x) ∈ rdfs-closure(H), (p, rdfs: subPropertyOf, ?q) ∈ rdfs-
closure(H), ?x ̸= ?y, ?q ̸= p}. // rule rdfs7+rdfs3+rdfs9

16: end if
17: return REPLACE-DERIVED-TRIPLE(PAIRS, D ∪ {t}). (See Algorithm 11)

(Algorithms 12 and 13) is called to find the pairs. It first finds minimal justifications

for d in ((D ∪ rdfs-closure(H ∪ {t})}) \ {d}) such that the minimal justifications

contain t or any derived schema triple in (rdfs-closure(H ∪ {t}) \ rdfs-closure(H)),

so the chains of rules in Table 3.5 can be applied. FIND-ITRIPLE-JUST-PAIRschema
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Algorithm 11 REPLACE-DERIVED-TRIPLE(PAIRS, D) replaces each derived
schema triple t in PAIRS with a minimal justification for t in data D.
Input: D, data; PAIRS, set of pairs of an RDF triple d in D and a minimal justification for d in

(
(D ∪

rdfs-closure(H)) \ {d}
)
, where H is schema data of D.

Output: PAIRS′, set of pairs of an RDF triple d in D and a minimal justification for d in (D \ {d}).
1: PAIRS′ ← ∅.
2: H ← schema data of D.
3: for all (d, J) ∈ PAIRS do
4: Hderived = {x ∈ J | x /∈ H}.
5: if Hderived = ∅ then
6: PAIRS′← PAIRS′ ∪ {(d, J)}.
7: else
8: Jderived =

∏
h∈Hderived

FIND-MIN-JUSTschema(h,H). (See Algorithm 2)
9: for all jderived ∈ Jderived do

10: PAIRS′ ← PAIRS′ ∪ {
(
d, (J \Hderived) ∪ (union of all elements in tuple jderived)

)
}.

11: end for
12: end if
13: end for
14: return PAIRS′.

substitutes t or a derived schema triple in (rdfs-closure(H ∪ {t}) \ rdfs-closure(H))

for a schema triple in the premises of each rule and searches for all substitutions for the

variables in the rules such that the premises of the rules are in ((D ∪ rdfs-closure(H ∪

{t})}) \ {d}) and the conclusions of the rules are in D. The premises are the minimal

justifications and may contain derived schema data. FIND-ITRIPLE-JUST-PAIRschema

calls REPLACE-DERIVED-TRIPLE (Algorithm 11) in Line 35 to replace the derived

schema data with the minimal justifications for them to give the final result.

If both t and d are schema triples, FIND-STRIPLE-JUST-PAIRschema (Algorithm 14)

is called to find the pairs. It first uses rules rdfs5, rdfs6, rdfs10, and rdfs11 in Ta-

ble 2.4 to find minimal justifications for d in ((D ∪ rdfs-closure(H ∪ {t})}) \ {d})

such that the minimal justifications contain t. The minimal justifications found may

contain derived schema data. FIND-STRIPLE-JUST-PAIRschema then calls REPLACE-

DERIVED-TRIPLE (Algorithm 11) in Line 17 to replace the derived schema data with

the minimal justifications for them to give the final result.
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Algorithm 12 FIND-ITRIPLE-JUST-PAIRschema(t, D) finds all pairs of an instance
triple d in data D and a minimal justification J for d in ((D ∪ {t}) \ {d}) such that t
∈ J , where t is a schema triple not in D (Part 1).
Input: D, data; t, schema triple not in D.
Output: PAIRS, set of pairs of an instance triple d in D and a minimal justification J for d in ((D ∪
{t}) \ {d}) such that t ∈ J .

1: PAIRS← ∅.
2: H ← schema data of D; R← instance data of D.
3: for all (sh, ph, oh) ∈

(
{t} ∪ (rdfs-closure(H ∪ {t}) \ rdfs-closure(H))

)
do

4: if ph = rdfs: domain then
5: Xrdfs2 ← {(?u, ?w) | (?u, rdf: type, oh) ∈ R, (?u, sh, ?w) ∈ R}.
6: PAIRS ← PAIRS ∪ {

(
(?u, rdf: type, oh), {(sh, rdfs: domain, oh), (?u, sh, ?w)}

)
| (?u,

?w) ∈ Xrdfs2}. // rule rdfs2
7: PAIRS ← PAIRS ∪ {

(
(?u, rdf: type, oh), {(sh, rdfs: domain, oh), (?q, rdfs: subProp-

ertyOf, sh), (?u, ?q, ?w)}
)
| (?u, rdf: type, oh) ∈ R, (?q, rdfs: subPropertyOf, sh) ∈

rdfs-closure(H), (?u, ?q, ?w) ∈ R, ?q ̸= sh, (?u, ?w) /∈ Xrdfs2}. // rule rdfs7+rdfs2
8: Xrdfs2+9 ← {(?u, ?y, ?w) | (?u, rdf: type, ?y) ∈ R, (oh, rdfs: subClassOf, ?y) ∈ rdfs-

closure(H), (?u, sh, ?w) ∈ R, ?y ̸= oh}.
9: PAIRS ← PAIRS ∪ {

(
(?u, rdf: type, ?y), {(oh, rdfs: subClassOf, ?y), (sh, rdfs: domain,

oh), (?u, sh, ?w)}
)
| (?u, ?y, ?w) ∈ Xrdfs2+9}. // rule rdfs2+rdfs9

10: PAIRS ← PAIRS ∪ {
(
(?u, rdf: type, ?y), {(oh, rdfs: subClassOf, ?y), (sh, rdfs: domain,

oh), (?q, rdfs: subPropertyOf, sh), (?u, ?q, ?w)}
)
| (?u, rdf: type, ?y) ∈ R, (oh, rdfs:

subClassOf, ?y) ∈ rdfs-closure(H), (?q, rdfs: subPropertyOf, sh) ∈ rdfs-closure(H), (?u,
?q, ?w) ∈ R, ?y ̸= oh, ?q ̸= sh, (?u, ?y, ?w) /∈ Xrdfs2+9}. // rule rdfs7+rdfs2+rdfs9

11: else if ph = rdfs: range then
12: Xrdfs3 ← {(?u, ?v) | (?u, rdf: type, oh) ∈ R, (?v, sh, ?u) ∈ R}.
13: PAIRS← PAIRS ∪ {

(
(?u, rdf: type, oh), {(sh, rdfs: range, oh), (?v, sh, ?u)}

)
| (?u, ?v) ∈

Xrdfs3}. // rule rdfs3
14: PAIRS ← PAIRS ∪ {

(
(?u, rdf: type, oh), {(sh, rdfs: range, oh), (?q, rdfs: subProper-

tyOf, sh), (?v, ?q, ?u)}
)
| (?u, rdf: type, oh) ∈ R, (?q, rdfs: subPropertyOf, sh) ∈ rdfs-

closure(H), (?v, ?q, ?u) ∈ R, ?q ̸= sh, (?u, ?v) /∈ Xrdfs3}. // rule rdfs7+rdfs3
15: Xrdfs3+9 ← {(?u, ?y, ?v) | (?u, rdf: type, ?y) ∈ R, (oh, rdfs: subClassOf, ?y) ∈ rdfs-

closure(H), (?v, sh, ?u) ∈ R, ?y ̸= oh}.
16: PAIRS← PAIRS ∪ {

(
(?u, rdf: type, ?y), {(oh, rdfs: subClassOf, ?y), (sh, rdfs: range, oh),

(?v, sh, ?u)}
)
| (?u, ?y, ?v) ∈ Xrdfs3+9}. // rule rdfs3+rdfs9

17: PAIRS ← PAIRS ∪ {
(
(?u, rdf: type, ?y), {(oh, rdfs: subClassOf, ?y), (sh, rdfs: range,

oh), (?q, rdfs: subPropertyOf, sh), (?v, ?q, ?u)}
)
| (?u, rdf: type, ?y) ∈ R, (oh, rdfs:

subClassOf, ?y) ∈ rdfs-closure(H), (?q, rdfs: subPropertyOf, sh) ∈ rdfs-closure(H), (?v,
?q, ?u) ∈ R, ?y ̸= oh, ?q ̸= sh, (?u, ?y, ?v) /∈ Xrdfs3+9}. // rule rdfs7+rdfs3+rdfs9

Example 10 (Consistency Checking After Adding an Instance Triple). This example

illustrates the operation of IS-CONSISTENTinc (Algorithm 9) using a consistent theory

with data D4 (Table 4.2). IS-CONSISTENTinc is used to check the consistency of the

theory after the instance triple t = (u, p, v) and its probability information are added

to the theory, where u and v are individuals and p is a property.
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Algorithm 13 FIND-ITRIPLE-JUST-PAIRschema(t, D) finds all pairs of an instance
triple d in data D and a minimal justification J for d in ((D ∪ {t}) \ {d}) such that t
∈ J , where t is a schema triple not in D (Part 2).
18: else if ph = rdfs: subPropertyOf then
19: PAIRS← PAIRS ∪ {

(
(?u, oh, ?w), {(sh, rdfs: subPropertyOf, oh), (?u, sh, ?w)}

)
| (?u,

oh, ?w) ∈ R, (?u, sh, ?w) ∈ R}. // rule rdfs7
20: PAIRS← PAIRS ∪ {

(
(?u, rdf: type, ?x), {(oh, rdfs: domain, ?x), (sh, rdfs: subPropertyOf,

oh), (?u, sh, ?w)}
)
| (?u, rdf: type, ?x) ∈R, (oh, rdfs: domain, ?x) ∈ rdfs-closure(H), (?u,

sh, ?w) ∈ R}. // rule rdfs7+rdfs2
21: PAIRS ← PAIRS ∪ {

(
(?u, rdf: type, ?y), {(?x, rdfs: subClassOf, ?y), (oh, rdfs: domain,

?x), (sh, rdfs: subPropertyOf, oh), (?u, sh, ?w)}
)
| (?u, rdf: type, ?y) ∈ R, (?x, rdfs:

subClassOf, ?y) ∈ rdfs-closure(H), (oh, rdfs: domain, ?x) ∈ rdfs-closure(H), (?u, sh, ?w)
∈ R, ?x ̸= ?y}. // rule rdfs7+rdfs2+rdfs9

22: PAIRS← PAIRS ∪ {
(
(?u, rdf: type, ?x), {(oh, rdfs: range, ?x), (sh, rdfs: subPropertyOf,

oh), (?v, sh, ?u)}
)
| (?u, rdf: type, ?x) ∈ R, (oh, rdfs: range, ?x) ∈ rdfs-closure(H), (?v,

sh, ?u) ∈ R}. // rule rdfs7+rdfs3
23: PAIRS ← PAIRS ∪ {

(
(?u, rdf: type, ?y), {(?x, rdfs: subClassOf, ?y), (oh, rdfs: range,

?x), (sh, rdfs: subPropertyOf, oh), (?v, sh, ?u)}
)
| (?u, rdf: type, ?y) ∈ R, (?x, rdfs:

subClassOf, ?y) ∈ rdfs-closure(H), (oh, rdfs: range, ?x) ∈ rdfs-closure(H), (?v, sh, ?u) ∈
R, ?x ̸= ?y}. // rule rdfs7+rdfs3+rdfs9

24: else if ph = rdfs: subClassOf then
25: Xrdfs9 ← {?u | (?u, rdf: type, oh) ∈ R, (?u, rdf: type, sh) ∈ R}.
26: PAIRS← PAIRS ∪ {

(
(?u, rdf: type, oh), {(sh, rdfs: subClassOf, oh), (?u, rdf: type, sh)}

)
| ?u ∈ Xrdfs9}. // rule rdfs9

27: Xrdfs2+9←{(?u, ?p, ?w) | (?u, rdf: type, oh) ∈R, (?p, rdfs: domain, sh) ∈ rdfs-closure(H),
(?u, ?p, ?w) ∈ R, ?u /∈ Xrdfs9}.

28: PAIRS ← PAIRS ∪ {
(
(?u, rdf: type, oh), {(sh, rdfs: subClassOf, oh), (?p, rdfs: domain,

sh), (?u, ?p, ?w)}
)
| (?u, ?p, ?w) ∈ Xrdfs2+9}. // rule rdfs2+rdfs9

29: PAIRS ← PAIRS ∪ {
(
(?u, rdf: type, oh), {(sh, rdfs: subClassOf, oh), (?p, rdfs: domain,

sh), (?q, rdfs: subPropertyOf, ?p), (?u, ?q, ?w)}
)
| (?u, rdf: type, oh) ∈ R, (?p, rdfs:

domain, sh) ∈ rdfs-closure(H), (?q, rdfs: subPropertyOf, ?p) ∈ rdfs-closure(H), (?u, ?q,
?w) ∈ R, (?u, ?p, ?w) /∈ Xrdfs2+9}. // rule rdfs7+rdfs2+rdfs9

30: Xrdfs3+9 ← {(?u, ?p, ?v) | (?u, rdf: type, oh) ∈ R, (?p, rdfs: range, sh) ∈ rdfs-closure(H),
(?v, ?p, ?u) ∈ R, ?u /∈ Xrdfs9}.

31: PAIRS← PAIRS ∪ {
(
(?u, rdf: type, oh), {(sh, rdfs: subClassOf, oh), (?p, rdfs: range, sh),

(?v, ?p, ?u)}
)
| (?u, ?p, ?v) ∈ Xrdfs3+9}. // rule rdfs3+rdfs9

32: PAIRS← PAIRS ∪ {
(
(?u, rdf: type, oh), {(sh, rdfs: subClassOf, oh), (?p, rdfs: range, sh),

(?q, rdfs: subPropertyOf, ?p), (?v, ?q, ?u)}
)
| (?u, rdf: type, oh) ∈ R, (?p, rdfs: range, sh)

∈ rdfs-closure(H), (?q, rdfs: subPropertyOf, ?p) ∈ rdfs-closure(H), (?v, ?q, ?u) ∈ R, (?u,
?p, ?v) /∈ Xrdfs3+9}. // rule rdfs7+rdfs3+rdfs9

33: end if
34: end for
35: return REPLACE-DERIVED-TRIPLE(PAIRS, D ∪ {t}). (See Algorithm 11).

IS-CONSISTENTinc first calls FIND-MIN-JUSTinst (Algorithm 6) in Line 2 to find

all minimal justifications for t in D4, but there are no minimal justifications for t in

D4.
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Algorithm 14 FIND-STRIPLE-JUST-PAIRschema(t, D) finds all pairs of a schema
triple d in data D and a minimal justification J for d in ((D ∪ {t}) \ {d}) such that t
∈ J , where t is a schema triple not in D.
Input: D, data; t, schema triple not in D.
Output: PAIRS, set of pairs of a schema triple d in D and a minimal justification J for d in ((D ∪
{t}) \ {d}) such that t ∈ J .

1: PAIRS← ∅.
2: sh ← subject of t; ph ← property of t; oh← object of t.
3: H ← schema data of D; R← instance data of D.
4: if ph = rdf: type and oh = rdf: Property then
5: PAIRS ← PAIRS ∪ {

(
(sh, rdfs: subPropertyOf, sh), {t}

)
| (sh, rdfs: subPropertyOf, sh) ∈

H}. // rule rdfs6
6: else if ph = rdf: type and oh = rdfs: Class then
7: PAIRS← PAIRS ∪ {

(
(sh, rdfs: subClassOf, sh), {t}

)
| (sh, rdfs: subClassOf, sh) ∈ H}. //

rule rdfs10
8: else if ph = rdfs: subPropertyOf and sh ̸= oh then
9: PAIRS← PAIRS ∪ {

(
(sh, rdfs: subPropertyOf, ?p), {t, (oh, rdfs: subPropertyOf, ?p)}

)
| (sh,

rdfs: subPropertyOf, ?p) ∈ H , (oh, rdfs: subPropertyOf, ?p) ∈ rdfs-closure(H), ?p ̸= oh}. //
rule rdfs5

10: PAIRS← PAIRS ∪ {
(
(?p, rdfs: subPropertyOf, oh), {(?p, rdfs: subPropertyOf, sh), t}

)
| (?p,

rdfs: subPropertyOf, oh) ∈ H , (?p, rdfs: subPropertyOf, sh) ∈ rdfs-closure(H), ?p ̸= sh}. //
rule rdfs5

11: PAIRS← PAIRS ∪ {
(
(?p, rdfs: subPropertyOf, ?q), {(?p, rdfs: subPropertyOf, sh), t, (oh, rdfs:

subPropertyOf, ?q)}
)
| (?p, rdfs: subPropertyOf, ?q) ∈ H , (?p, rdfs: subPropertyOf, sh) ∈

rdfs-closure(H), (oh, rdfs: subPropertyOf, ?q) ∈ rdfs-closure(H), ?p ̸= sh, ?q ̸= oh}. // rule
rdfs5+rdfs5

12: else if ph = rdfs: subClassOf and sh ̸= oh then
13: PAIRS← PAIRS ∪ {

(
(sh, rdfs: subClassOf, ?x), {t, (oh, rdfs: subClassOf, ?x)}

)
| (sh, rdfs:

subClassOf, ?x) ∈ H , (oh, rdfs: subClassOf, ?x) ∈ rdfs-closure(H), ?x ̸= oh}. // rule rdfs11
14: PAIRS← PAIRS ∪ {

(
(?x, rdfs: subClassOf, oh), {(?x, rdfs: subClassOf, sh), t}

)
| (?x, rdfs:

subClassOf, oh) ∈ H , (?x, rdfs: subClassOf, sh) ∈ rdfs-closure(H), ?x ̸= sh}. // rule rdfs11
15: PAIRS← PAIRS ∪ {

(
(?x, rdfs: subClassOf, ?y), {(?x, rdfs: subClassOf, sh), t, (oh, rdfs: sub-

ClassOf, ?y)}
)
| (?x, rdfs: subClassOf, ?y) ∈H , (?x, rdfs: subClassOf, sh) ∈ rdfs-closure(H),

(oh, rdfs: subClassOf, ?y) ∈ rdfs-closure(H), ?x ̸= sh, ?y ̸= oh}. // rule rdfs11+rdfs11
16: end if
17: return REPLACE-DERIVED-TRIPLE(PAIRS, D ∪ {t}). (See Algorithm 11).

IS-CONSISTENTinc then calls FIND-TRIPLE-JUST-PAIRinst (Algorithm 10) in Line 10

to find all pairs of an RDF triple d in D4 and a minimal justification J for d in

((D4∪{t})\{d}) such that t ∈ J . FIND-TRIPLE-JUST-PAIRinst first finds all pairs of

an RDF triple d in D4 and a minimal justification J for d in ((D4 ∪ rdfs-closure(H4) ∪

{t}) \ {d}) such that t ∈ J , where rdfs-closure(H4) is the RDFS closure of the schema

data H4 of D4 and is shown in Table 4.2c. The pair
(
(u, r, v), {(p, rdfs: subPropertyOf,

r), t}
)

is found in Line 7 because (u, r, v) is in D4, and (q, rdfs: subPropertyOf, r)
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(p, rdf: type, rdf: Property)
(q, rdf: type, rdf: Property)
(r, rdf: type, rdf: Property)
(p, rdfs: subPropertyOf, q)
(q, rdfs: subPropertyOf, r)

(a) Schema data of D4, H4.

(u, r, v)

(b) Instance
data of D4,
R4.

(p, rdf: type, rdf: Property)
(q, rdf: type, rdf: Property)
(r, rdf: type, rdf: Property)
(p, rdfs: subPropertyOf, q)
(q, rdfs: subPropertyOf, r)
(p, rdfs: subPropertyOf, r)
(p, rdfs: subPropertyOf, p)
(q, rdfs: subPropertyOf, q)
(r, rdfs: subPropertyOf, r)

(c) RDFS closure of schema
data H4, rdfs-closure(H4).

Table 4.2: Data D4 used to illustrate the operation of IS-CONSISTENTinc (Algo-
rithm 9), where p, q, and r are properties. u and v are individuals.

is in rdfs-closure(H4). FIND-TRIPLE-JUST-PAIRinst then calls REPLACE-DERIVED-

TRIPLE (Algorithm 11) in Line 17 to replace the derived schema triple (p, rdfs: sub-

PropertyOf, r) in the pair with a minimal justification for it. The pair becomes
(
(u, r,

v), {(p, rdfs: subPropertyOf, q), (q, rdfs: subPropertyOf, r), t}
)
.

Finally, IS-CONSISTENTinc checks if the probability of the inconsistent truth value

assignment created from the pair is zero in Line 16. If so, the theory with the addition

of t and its probability information is still consistent.

Example 11 (Consistency Checking After Adding a Schema Triple). This example il-

lustrates the operation of IS-CONSISTENTinc (Algorithm 9) using a consistent pRDFS

theory with data D5 (Table 4.3). IS-CONSISTENTinc is used to check the consistency

of the theory after the schema triple t = (p, rdfs: subPropertyOf, q) and its probability

information are added to the theory, where p and q are properties.

IS-CONSISTENTinc first calls FIND-MIN-JUSTschema (Algorithm 2) in Line 4 to find

all minimal justifications for t in D5, but there are no minimal justifications for t in D5.

IS-CONSISTENTinc then calls FIND-ITRIPLE-JUST-PAIRschema (Algorithms 12 and
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(p, rdf: type, rdf: Property)
(q, rdf: type, rdf: Property)
(r, rdf: type, rdf: Property)
(s, rdf: type, rdf: Property)
(p, rdfs: subPropertyOf, s)
(q, rdfs: subPropertyOf, r)
(q, rdfs: subPropertyOf, s)

(a) Schema data of D5, H5.

(u, p, v)
(u, q, v)
(u, r, v)

(b) Instance
data of D5,
R5.

(p, rdf: type, rdf: Property)
(q, rdf: type, rdf: Property)
(r, rdf: type, rdf: Property)
(s, rdf: type, rdf: Property)
(p, rdfs: subPropertyOf, s)
(q, rdfs: subPropertyOf, r)
(q, rdfs: subPropertyOf, s)
(p, rdfs: subPropertyOf, p)
(q, rdfs: subPropertyOf, q)
(r, rdfs: subPropertyOf, r)
(s, rdfs: subPropertyOf, s)

(c) RDFS closure of schema
data H5, rdfs-closure(H5).

(p, rdf: type, rdf: Property) (p, rdfs: subPropertyOf, p)
(q, rdf: type, rdf: Property) (q, rdfs: subPropertyOf, q)
(r, rdf: type, rdf: Property) (r, rdfs: subPropertyOf, r)
(s, rdf: type, rdf: Property) (s, rdfs: subPropertyOf, s)
(p, rdfs: subPropertyOf, s) (q, rdfs: subPropertyOf, r)
(p, rdfs: subPropertyOf, q) (q, rdfs: subPropertyOf, s)
(p, rdfs: subPropertyOf, r)

(d) RDFS closure of schema data H5 and the schema triple
(p, rdfs: subPropertyOf, q), rdfs-closure(H5 ∪ {(p, rdfs: sub-
PropertyOf, q)}).

Table 4.3: Data D5 used to illustrate the operation of IS-CONSISTENTinc (Algo-
rithm 9), where p, q, r, and s are properties. u and v are individuals.

13) in Line 12 to find all pairs of an instance triple d in D5 and a minimal justification

J for d in ((D5 ∪ {t}) \ {d}) such that t ∈ J . FIND-ITRIPLE-JUST-PAIRschema first

finds all pairs of an instance triple d in D5 and a minimal justification J for d in ((D5

∪ rdfs-closure(H5 ∪ {t})}) \ {d}) such that J contains t or any derived schema triple

in (rdfs-closure(H5 ∪ {t}) \ rdfs-closure(H5)), where H5 is the schema data of D5.

The RDFS closures of the schema data, rdfs-closure(H5) and rdfs-closure(H5 ∪ {t})

are shown in Tables 4.3c and 4.3d respectively. There is a derived schema triple (p,

rdfs: subPropertyOf, r) in (rdfs-closure(H5 ∪ {t}) \ rdfs-closure(H5)). Therefore, two

schema triples are considered in the for loop (Lines 3-34). They are t and (p, rdfs:

subPropertyOf, r). For t, FIND-ITRIPLE-JUST-PAIRschema finds a pair
(
(u, q, v), {(u,
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p, v), t}
)

in Line 19 because both RDF triples (u, q, v) and (u, p, v) are in D5. For

(p, rdfs: subPropertyOf, r), FIND-ITRIPLE-JUST-PAIRschema finds a pair
(
(u, r, v),

{(u, p, v), (p, rdfs: subPropertyOf, r)}
)

in Line 19 because both RDF triples (u, r,

v) and (u, p, v) are in D5. FIND-ITRIPLE-JUST-PAIRschema finally calls REPLACE-

DERIVED-TRIPLE (Algorithm 11) in Line 35 to replace the derived schema triple (p,

rdfs: subPropertyOf, r) in the pair with a minimal justification for it. The pairs re-

turned by FIND-ITRIPLE-JUST-PAIRschema are
(
(u, q, v), {(u, p, v), t}

)
and

(
(u, r, v),

{(u, p, v), t, (q, rdfs: subPropertyOf, r)}
)
.

IS-CONSISTENTinc then calls FIND-STRIPLE-JUST-PAIRschema (Algorithm 14) in

Line 13 to find all pairs of a schema triple d in D5 and a minimal justification J for d

in ((D5 ∪ {t}) \ {d}) such that t ∈ J . FIND-STRIPLE-JUST-PAIRschema finds a pair(
(p, rdfs: subPropertyOf, s), {t, (q, rdfs: subPropertyOf, s)}

)
in Line 9 because both

schema triples (p, rdfs: subPropertyOf, s) and (q, rdfs: subPropertyOf, s) are in H5.

To sum up, the pairs found are
(
(u, q, v), {(u, p, v), t}

)
,
(
(u, r, v), {(u, p, v), t,

(q, rdfs: subPropertyOf, r)}
)
, and

(
(p, rdfs: subPropertyOf, s), {t, (q, rdfs: subProp-

ertyOf, s)}
)
. IS-CONSISTENTinc checks if the probabilities of the inconsistent truth

value assignments created from these pairs are zero in Line 16. If they are all zero, the

theory with the addition of t and its probability information is still consistent.

4.3 Time Complexity

This section examines the time complexities of the consistency checking algorithms

IS-CONSISTENT (Algorithm 7) and IS-CONSISTENTinc (Algorithm 9) with respect
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to the data size |D|.

IS-CONSISTENT (Algorithm 7) consists of two steps. One is finding all minimal

justifications for each of the RDF triples that are not certainly true. The time complex-

ities of finding all minimal justifications for an instance triple and a schema triple are

O(log|D|) and O(1) respectively. See Section 3.3.4 for the derivation of these com-

plexities. Assume that the number of RDF triples that are not certainly true increases

linearly with |D|. The time complexity of this step is O(|D|log|D|).

The other step is computing the probabilities of the inconsistent truth value as-

signments created from the minimal justifications. We assume that the probability

distributions of the pRDFS theory are represented by Bayesian networks (Section 2.4)

with Nnode nodes and Nnode does not depend on |D|. The nodes of the networks are the

random variables for the uncertain RDF triples. We use probabilistic logic sampling

(Section 2.4.2) and the same set of random samples to compute the probabilities of

all inconsistent truth value assignments. Assume that the running time of generating a

random value for a node is constant. The worst-case running time of probability cal-

culation is proportional to Nsampl × Nbn × Nnode, where Nsampl, Nbn, and Nnode are the

numbers of samples, Bayesian networks, and nodes per Bayesian network respectively.

The minimum value of Nsampl is a constant given the parameters of the approximation

error ϵ and δ. See (2.2) for the computation of Nsampl. Nbn = p|D|
Nnode

, where p is the

percentage of uncertain data. Hence, the time complexity of this step is O(|D|). The

overall time complexity of IS-CONSISTENT is O(|D|log|D| + |D|) = O(|D|log|D|).

To estimate the average-case running time of probability calculation, assume that

the pRDFS theory is consistent or near consistent. The running time of probability
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calculation is proportional to Nsampl × Nbn(e) × Nnode, where Nbn(e) is the number of

Bayesian networks containing entailed triples. Assume that the uncertain entailed

triples are randomly distributed to the Bayesian networks. The expected value of Nbn(e)

denoted by E(Nbn(e)) is calculated as (4.9) [61].

E(Nbn(e)) =
p|D|
Nnode

(
1−

q|D|∏
i=1

p|D| −Nnode − i+ 1

p|D| − i+ 1

)
. (4.9)

where p and q are the percentages of uncertain RDF triples and uncertain entailed

triples respectively.

IS-CONSISTENTinc (Algorithm 9) performs consistency checking each time an

RDF triple t and its probability information are added to a pRDFS theory. It consists

of two parts. In the first part (Lines 1-8), an inconsistent truth value assignment is con-

structed from t and a minimal justifications for t. The time complexities of finding all

minimal justifications for t are O(log|D|) and O(1) for t being an instance triple and a

schema triple respectively. See Section 3.3.4 for the derivation of these complexities.

The running time of calculating the probabilities of all inconsistent truth value assign-

ments is proportional to Nsampl × Nnode since we perform inference on one Bayesian

network which contains t. If some RDF triples in the minimal justifications for t are

not in the same Bayesian network as t, then the theory is inconsistent. It is because

RDF triples in different Bayesian networks are assumed to be independent, but t and

the minimal justifications for t are related. The time complexity of probability calcu-

lation is O(1). The overall time complexities of this part are O(log|D|) and O(1) for t

being an instance triple and a schema triple respectively.
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In the second part of IS-CONSISTENTinc (Lines 9-17), an inconsistent truth value

assignment is constructed from an RDF triple d and a minimal justification J for d such

that J contains t. In the same way as finding minimal justifications in Section 3.3.4,

We assume that the size of schema data |H| is fixed and the size of instance data |R|

grows with |D|. We build two indexes for finding substitutions for the variables in the

inference rules using the binary search algorithm. One index is sorted by the subjects,

properties, and objects of RDF triples. The other is sorted by the properties and objects

of RDF triples. If t is an instance triple, we search for all substitutions for the variables

in at most three schema triples in the premises and one instance triple in the conclusion

of each rule. There are at most nine rules to apply. See FIND-TRIPLE-JUST-PAIRinst

(Algorithm 10). Hence, the time complexity of finding all pairs (d, J) is O(log|D|).

If t is a schema triple and d is an instance triple, we search for all substitutions

for the variables in at most two schema triples and one instance triple in the premises

and one instance triple in the conclusion of each rule. There are at most five rules to

apply. See FIND-ITRIPLE-JUST-PAIRschema (Algorithms 12 and 13). Assume that

the number of substitutions resulting from one of the instance triples increases linearly

with |D|. The time complexity of finding all pairs (d, J) is O(|D|log|D|).

If both t and d are schema triples, we work with schema data only to find all pairs

(d, J). See FIND-STRIPLE-JUST-PAIRschema (Algorithm 14). Therefore, the time

complexity is O(1).

Assume that the number of pairs (d, J) increases linearly with |D|. The worst-case

running time of calculating the probabilities of all inconsistent truth value assignments

created from the pairs is proportional to Nsampl × Nbn × Nnode. Nbn = p|D|
Nnode

, where p
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Finding all minimal justifications O(|D|log|D|)
Calculating probabilities O(|D|)

Overall O(|D|log|D|)

Table 4.4: Time complexity of the consistency checking algorithm IS-CONSISTENT
(Algorithm 7).

t is an instance triple t is a schema triple

First part Finding all minimal justifications O(log|D|) O(1)
Calculating probabilities O(1) O(1)

Second part
Finding all (triple, O(log|D|) O(|D|log|D|)minimal justification) pairs

Calculating probabilities O(|D|) O(|D|)
Overall O(|D|) O(|D|log|D|)

Table 4.5: Time complexity of the incremental consistency checking algorithm IS-
CONSISTENTinc (Algorithm 9).

is the percentage of uncertain data. The time complexity of probability calculation is

O(|D|). The overall time complexities of the second part of IS-CONSISTENTinc are

O(|D|) and O(|D|log|D|) for t being an instance triple and a schema triple respectively.

Combining the time complexities of the both parts, the overall time complexities of IS-

CONSISTENTinc are the same as the complexities of the second part.

Tables 4.4 and 4.5 summarize the time complexities of the consistency checking

algorithms IS-CONSISTENT (Algorithm 7) and IS-CONSISTENTinc (Algorithm 9)

respectively.
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Chapter 5

pRDFS Query Evaluation

This chapter extends SPARQL queries to pRDFS theories. It defines the answer to an

extended SPARQL query on a pRDFS theory and describes how to compute it. This

chapter is based on [57] and [58].

5.1 Extended SPARQL Query

RDF triples (Definition 1) and triple patterns (Definition 3) are extended by including

their truth values.

Definition 13 (Extended RDF Triple). An extended RDF triple is an RDF triple with

the addition of the truth value of the RDF triple. It is a member of U × P × (U ∪

L) × {T,F}, where U, P, and L are sets of URI references, properties, and literals

respectively.

Example 12 (Extended RDF Triple). (Tom, worksFor, departmentOfComputing, T) is

an extended RDF triple saying that the RDF triple (Tom, worksFor, departmentOfCom-
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SELECT DISTINCT ?department
WHERE {

?person rdf:type Professor true .
?person worksFor ?department true}

(a) Syntax.

Qext(Vsel, Gext, isDistinct), where
Vsel = {?department},
Gext = {(?person, rdf:type, Professor, true),

(?person, worksFor, ?department, true)},
isDistinct = true.

(b) Symbol.

Table 5.1: Example of an extended SPARQL query.

puting) is true.

Definition 14 (Extended Triple Pattern). An extended triple pattern is a triple pattern

with the addition of the truth value of the triple pattern. It is a member of (U ∪ V ) ×

(P ∪ V ) × (U ∪ L ∪ V ) × {T,F}, where U, P, L, and V are sets of URI references,

properties, literals, and variables respectively.

Definition 15 (Extended Graph Pattern). An extended graph pattern denoted by Gext is

a set of extended triple patterns.

SPARQL queries are extended such that the patterns of the queries are specified

using extended graph patterns.

Definition 16 (Extended SPARQL Query). We denote by Qext(Vsel, Gext, isDistinct) an

extended SPARQL query with a syntax “SELECT (DISTINCT) Vsel WHERE Gext”,

where Gext is an extended graph pattern, Vsel is a subset of query variables in Gext,

and isDistinct is a Boolean variable with a domain {T, F}. The DISTINCT keyword

is optional, and the variable isDistinct assigned T and F indicates the presence and

absence of the DISTINCT keyword respectively.

Example 13 (Extended SPARQL Query). An extended SPARQL query is shown in

Table 5.1, where Gext is an extended graph pattern having two extended triple patterns.
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It asks for the departments that have at least one professor and their probabilities.

5.2 Answer to an Extended SPARQL Query

A pRDFS theory can be viewed as a probability distribution over instances of the

theory, where an instance of a pRDFS theory is defined as follows.

Definition 17 (Instance of a pRDFS Theory). Given a pRDFS theory (D, P , θ), an

instance of the theory denoted by Dext is a set of extended RDF triples, {(s, p, o,

τ((s, p, o))) | (s, p, o) ∈ D}, where τ is a truth value assignment for data D. The

instance is consistent iff τ is consistent.

The RDFS closure of an instance of a pRDFS theory is the union of the RDFS

closure of RDF triples that take true values and the set of RDF triples that take false

values since the RDFS semantics are defined for RDF triples that take true values.

Definition 18 (RDFS Closure of an Instance of a pRDFS Theory). The RDFS closure

of an instance of a pRDFS theory Dext denoted by rdfs-closure(Dext) is a set of extended

RDF triples, {(s, p, o,T) | (s, p, o) ∈ rdfs-closure({(s′, p′, o′) | (s′, p′, o′,T) ∈ Dext})}

∪ {(s, p, o,F) ∈ Dext}.

An answer to an extended SPARQL query Qext(Vsel, Gext, isDistinct) on an instance

of a pRDFS theory Dext is a sequence of solutions, and a solution is the restriction of

a solution to the extended graph pattern Gext on Dext to the set of query variables Vsel.

The answer does not contain duplicate solutions if the variable isDistinct is true. A

solution to Gext on Dext denoted by µ is a partial function from V to (U ∪ L) such
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that rdfs-closure(Dext) ⊇ µ(Gext) (with RDFS reasoning) or Dext ⊇ µ(Gext) (without

RDFS reasoning), where V , U, and L are sets of query variables, URI references and

literals respectively. µ(Gext) is the set of extended RDF triples obtained by replacing

every variable v in Gext with µ(v).

An answer to an extended SPARQL query Qext(Vsel, Gext, isDistinct) on a pRDFS

theory (D, P , θ) is a sequence of pairs. The first element of a pair is a solution to

the extended SPARQL query on an instance of the theory, and the second element is

the probability of the solution. If the variable isDistinct is true, the answer does not

contain pairs with the same first element.

5.3 Evaluation of an Extended SPARQL Query

An evaluation of an extended SPARQL query Qext(Vsel, Gext, isDistinct) on a pRDFS

theory (D, P , θ) consists of five steps.

1. Find the set of all solutions to the graph pattern G on data D, where G is

obtained by ignoring the truth values of the extended graph pattern Gext. G

= {(s, p, o) | (s, p, o, t) ∈ Gext}. In SPARQL algebra, the set of solutions is

BGP(G). It covers all solutions to all instances of the theory.

2. Convert the set of solutions BGP(G) into a sequence of solutions MToList, and

compute the matched data of each solution in MToList. In SPARQL algebra,

MToList = ToList(BGP(G)). µToList
i denotes the ith solution in MToList. The set

of the matched data of µToList
i denoted by ΓµToList

i
is {µToList

i (Gext)}, where the

matched data µToList
i (Gext) is a set of extended RDF triples obtained by replacing
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every variable v in Gext with µToList
i (v).

3. Convert the sequence of solutions MToList into a sequence of solutions MProject,

where the ith solution in MProject is the restriction of the ith solution in MToList

to the set of query variables Vsel. In SPARQL algebra, MProject = Project(MToList,

Vsel). Compute the matched data of each solution in MProject. µProject
i denotes the

ith solution in MProject. The set of the matched data of µProject
i denoted by Γ

µ
Project
i

is equal to ΓµToList
i

.

4. If the variable isDistinct is true, create a sequence of solutions MDistinct by re-

moving duplicate solutions from the sequence of solutions MProject. In SPARQL

algebra, MDistinct = Distinct(MProject). Otherwise, leave the sequence MProject un-

modified, that is, MDistinct = MProject. Compute the matched data of each solution

in MDistinct. µDistinct
i denotes the ith solution in MDistinct. The set of the matched

data of µDistinct
i denoted by ΓµDistinct

i
is {γ ∈ ΓµProject

j
| µDistinct

i = µProject
j }, the

cardinality of which depends on the number of duplicate solutions.

5. Compute the probabilities of the solutions in MDistinct. The probability of the ith

solution µDistinct
i is equal to the probability of its set of alternative matched data

ΓµDistinct
i

. Pr(µDistinct
i ) = Pr(

∨
γ∈Γ

µDistinct
i

γ).

The answer to the extended SPARQL query is a sequence of pairs, where the ith pair

is (µDistinct
i , Pr(µDistinct

i )).

The probability of the set of alternative matched data can be written as the prob-

ability of the propositional formula F in (5.1), where RDF triples are propositional

variables with domains {true, false}.
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F =
∨

γ∈Γ
µDistinct
i

( ∧
(s,p,o,T)∈γ

(s, p, o) ∧
∧

(s,p,o,F)∈γ

¬ (s, p, o)
)
. (5.1)

If the RDF triples occurring in F are all declared triples, we can specify the prob-

ability of F using a single probability value since a pRDFS theory fully specifies the

probability distribution of all declared triples. However, it is not the case if derived

triples occur in F .

Consider a simple case of computing the probability of a formula F1 = f given a

pRDFS theory (D, P , θ), where f is a derived triple. Let JUST(f , D) be the set of all

justifications for f in data D and DJ(f,D) be the disjunction of all justifications for

f in D,
∨

J∈JUST(f,D)

∧
j∈J j. If DJ(f,D) is true, f is also true by RDFS reasoning.

However, if DJ(f,D) is false, f could be true or false. Therefore, the lower probability

of F1 equals the probability of DJ(f,D), and the upper probability of F1 is 1.

Consider another simple case of computing the probability of a formula F2 = ¬g

given a pRDFS theory (D, P , θ), where g is a derived triple. If the negation of the

disjunction of all justifications for g in data D, ¬DJ(g,D) is false, ¬g is also false by

RDFS reasoning. However, if ¬DJ(g,D) is true, ¬g could be true or false. Therefore,

the lower probability of F2 is 0, and the upper probability of F2 equals the probability

of ¬DJ(g,D).

In general, suppose that derived triples f1, f2, . . . and negations of derived triples

¬g1, ¬g2, . . . occur in a formula F . DJ(x,D) denotes the disjunction of all justifica-

tions for the derived triple x in data D. The probability bounds of F are computed as

(5.2). The lower probability of F denoted by Prlower(F) is computed by substituting
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DJ(fi, D) for fi and T for gj for all i and j. The upper probability of F denoted by

Prupper(F) is computed by substituting DJ(gj, D) for gj and T for fi for all i and j.

Prlower(F) = Pr(F(fi = DJ(fi, D), gj = T for all i, j))

Prupper(F) = Pr(F(fi = T, gj = DJ(gj, D) for all i, j))

(5.2)

We now consider the case that both a derived triple and its negation occur in F .

Take a formula F3 = (¬r ∧ e) ∨ (r ∧ ¬e) as an example, where r is a declared triple

and e is a derived triple. We divide the calculation of the probability of F3 into two

cases DJ(e,D) = true and DJ(e,D) = false by writing Pr(F3) = Pr(F3 ∧ DJ(e,D))

+ Pr(F3 ∧ ¬DJ(e,D)), where DJ(e,D) is the disjunction of all justifications for e in

data D. If DJ(e,D) is true, e is true. Hence, Pr(F3 ∧ DJ(e,D)) = Pr(F3(e = T) ∧

DJ(e,D)). If DJ(e,D) is false, Pr(F3 ∧ ¬DJ(e,D)) is minimum under the following

condition. For every value of r, whenever only one of the expressions F3(e = T)

and F3(e = F) is true, the probability of the expression that is true is 0. If DJ(e,D)

is false, Pr(F3 ∧ ¬DJ(e,D)) is maximum under the following condition. For every

value of r, whenever only one of the expressions F3(e = T) and F3(e = F) is true, the

probability of the expression that is false is 0. Hence, the lower and upper bounds of

Pr(F3 ∧ ¬DJ(e,D)) are Pr(F3(e = T) ∧ F3(e = F) ∧ ¬DJ(e,D)) and Pr((F3(e =

T) ∨ F3(e = F)) ∧ ¬DJ(e,D)) respectively. To sum up, the probability bounds of F3

are (5.3).
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Prlower(F3) = Pr(F3(e = T) ∧ DJ(e,D)) + Pr(F3(e = T) ∧ F3(e = F) ∧ ¬DJ(e,D))

Prupper(F3) = Pr(F3(e = T) ∧ DJ(e,D)) + Pr((F3(e = T) ∨ F3(e = F)) ∧ ¬DJ(e,D))

(5.3)

In general, suppose that derived triples e1, e2, . . . , eNe , f1, f2, . . . and negations of

derived triples ¬e1, ¬e2, . . . , ¬eNe , ¬g1, ¬g2, . . . occur in a formula F . We divide the

calculation of Pr(F) into 2Ne cases by writing Pr(F) =
∑

(x1,x2,...,xNe )∈A
Pr(F ∧∧

i xi), where A = {DJ(e1, D), ¬DJ(e1, D)} × {DJ(e2, D), ¬DJ(e2, D)} × . . . ×

{DJ(eNe , D), ¬DJ(eNe , D)} and DJ(x,D) denotes the disjunction of all justifications

for the derived triple x in data D. The lower and upper bounds of Pr(F) are computed

as (5.4).

Prlower(F) =
∑

(x1,x2,...,xNe )∈A

Pr(
∧

(e1,e2,...,eNe )∈B1(x1)×B2(x2)×···×BNe (xNe ),
fi=DJ(fi,D),gj=T for all i,j

F ∧
∧
i

xi)

Prupper(F) =
∑

(x1,x2,...,xNe )∈A

Pr(
∨

(e1,e2,...,eNe )∈B1(x1)×B2(x2)×···×BNe (xNe ),
fi=T,gj=DJ(gj ,D) for all i,j

F ∧
∧
i

xi)

A ={DJ(e1, D),¬DJ(e1, D)} × {DJ(e2, D),¬DJ(e2, D)} × · · · ×

{DJ(eNe , D),¬DJ(eNe , D)}

Bi(xi) =


{T} if xi = DJ(ei, D)

{T,F} if xi = ¬DJ(ei, D)

(5.4)
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From (5.2) and (5.4), the computation of the probability of a formula F in which

derived triples occur involves the computation of the disjunction of all justifications

for the derived triples. We prove that the disjunction of all justifications for an RDF

triple is equivalent to the disjunction of all minimal justifications for the RDF triple, so

it can be replaced by the latter, simpler expression.

Proposition 5. The disjunction of all justifications for an RDF triple d in data D,∨
J∈JUST (d,D)

∧
j∈J j, is equivalent to the disjunction of all minimal justifications for

d in D,
∨

J∈JUSTmin(d,D)

∧
j∈J j, where JUST(d, D) is the set of all justifications for d

in D and JUSTmin(d, D) is the set of all minimal justifications for d in D.

Proof.

∨
J∈JUST (d,D)

∧
j∈J

j (5.5)

≡
∨

J∈JUSTmin(d,D)

∧
j∈J

j ∨
∨

J∈(JUST (d,D)\JUSTmin(d,D))

∧
j∈J

j (5.6)

≡
∨

J∈JUSTmin(d,D)

∧
j∈J

j (5.7)

The term
∨

J∈(JUST (d,D)\JUSTmin(d,D))

∧
j∈J j in (5.6) disappears because for each J ∈(

JUST(d,D) \ JUSTmin(d,D)
)
, ∃J ′ ∈ JUSTmin(d,D) such that J |=rdfs J

′. If
∧

j∈J j

is true, then
∧

j∈J ′ j is true. Hence,
∧

j∈J j ∨
∧

j∈J ′ j ≡
∧

j∈J ′ j.

Example 14 (Evaluation of an Extended SPARQL Query). This example illustrates the

evaluation of an extended SPARQL query by executing the extended SPARQL query

Qext(Vsel, Gext, isDistinct) in Table 5.1 against the pRDFS theory (D6, P6, θ6) in Ta-
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Symbol RDF triple
d1 (Professor, rdf: type, rdfs: Class)
d2 (Department, rdf: type, rdfs: Class)
d3 (worksFor, rdf: type, rdf: Property)
d4 (headOf, rdf: type, rdf: Property)
d5 (headOf, rdfs: subPropertyOf, worksFor)
d6 (Tom, rdf: type, Professor)
d7 (May, rdf: type, Professor)
d8 (departmentOfComputing, rdf: type, Department)
d9 (Tom, headOf, departmentOfComputing)
d10 (May, worksFor, departmentOfComputing)

(a) Set of RDF triples, D6.

Probability distribution
P{d1}
P{d2}
P{d3}
P{d4}
P{d5}
P{d6}
P{d7}
P{d8}
P{d9}
P{d10}

(b) Set of probability dis-
tributions, P6.

di Probability
T 1
F 0

(c) Probability dis-
tribution over di,
P{di}, where i = 1,
2, ..., 8.

d9 Probability
T 0.8
F 0.2

(d) Probability dis-
tribution over d9,
P{d9}.

d10 Probability
T 0.7
F 0.3

(e) Probability dis-
tribution over d10,
P{d10}.

x θ(x)
d1 P{d1}
d2 P{d2}
d3 P{d3}
d4 P{d4}
d5 P{d5}
d6 P{d6}
d7 P{d7}
d8 P{d8}
d9 P{d9}
d10 P{d10}

(f) Function
θ6 mapping an
RDF triple to
it probability
distribution.

Table 5.2: pRDFS theory (D6, P6, θ6) used to illustrate the evaluation of an extended
SPARQL query.

ble 5.2.

We first find the set of all solutions to the graph pattern G on D6, where G is

obtained by ignoring the truth values of the extended graph pattern Gext. The set

contains two solutions, which are shown in Table 5.3a.

We then convert the set of solutions into a sequence of solutions and compute the

matched data of each solution by substituting the values mapped by the solution for

the variables in Gext. See Table 5.3b for the results.
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Gext {(?person, rdf:type, Professor, T), (?person, worksFor, ?department, T)}
G {(?person, rdf:type, Professor), (?person, worksFor, ?department)}

BGP(G) {{(?person, Tom), (?department, departmentOfComputing)},
{(?person, May), (?department, departmentOfComputing)}}

(a) Step 1: compute BGP(G).

MToList (µToList
1 , µToList

2 )
µToList
1 {(?person, Tom), (?department, departmentOfComputing)}

µToList
2 {(?person, May), (?department, departmentOfComputing)}

ΓµToList
1

{{(Tom, rdf:type, Professor, T), (Tom, worksFor, departmentOfComputing, T)}}
ΓµToList

2
{{(May, rdf:type, Professor, T), (May, worksFor, departmentOfComputing, T)}}

(b) Step 2: compute MToList and ΓµToList
i

for all i.

MProject (µProject
1 , µProject

2 )
µProject
1 {(?department, departmentOfComputing)}

µProject
2 {(?department, departmentOfComputing)}

ΓµProject
1

{{(Tom, rdf:type, Professor, T), (Tom, worksFor, departmentOfComputing, T)}}
ΓµProject

2
{{(May, rdf:type, Professor, T), (May, worksFor, departmentOfComputing, T)}}

(c) Step 3: compute MProject and ΓµProject
i

for all i.

MDistinct (µDistinct
1 )

µDistinct
1 {(?department, departmentOfComputing)}

ΓµDistinct
1

{{(Tom, rdf:type, Professor, T), (Tom, worksFor, departmentOfComputing, T)},
{(May, rdf:type, Professor, T), (May, worksFor, departmentOfComputing, T)}}

(d) Step 4: compute MDistinct and ΓµDistinct
i

for all i.

F
(
(Tom, rdf:type, Professor) ∧ (Tom, worksFor, departmentOfComputing)

)
∨(

(May, rdf:type, Professor) ∧ (May, worksFor, departmentOfComputing)
)

Prlower(F) Pr
((

(Tom, rdf:type, Professor) ∧ (headOf, rdfs: subPropertyOf, worksFor) ∧
(Tom, headOf, departmentOfComputing)

)
∨(

(May, rdf:type, Professor) ∧ (May, worksFor, departmentOfComputing)
))

= 0.94
Prupper(F) Pr

((
(Tom, rdf:type, Professor) ∧ T

)
∨(

(May, rdf:type, Professor) ∧ (May, worksFor, departmentOfComputing)
))

= 1

(e) Step 5: compute the probability of µDistinct
1 , Pr(F).

Table 5.3: Intermediate results of the evaluation of the extended SPARQL query in
Table 5.1 on the pRDFS theory (D6, P6, θ6) in Table 5.2.

We then compute the restriction of each solution to the set of query variables Vsel,

which is {?department}, and the two solutions become the same. The matched data of

each solution remain the same. The results are shown in Table 5.3c.

We then remove duplicate solutions from the sequence of solutions since the vari-

able isDistinct is true. One duplicate solution is removed from the sequence, and there
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is one solution in the sequence. The solution now has two alternative matched data,

one of which comes from the duplicate solution. See Table 5.3d for the results.

The probability of the solution is equal to the probability of the two alternative

matched data, which is written as the probability of the propositional formulaF shown

in Table 5.3e. A derived triple (Tom, worksFor, departmentOfComputing) occurs in F ,

so the probability of F cannot be specified using a single value. There is only one

justification for (Tom, worksFor, departmentOfComputing) in D6, which is {(headOf,

rdfs: subPropertyOf, worksFor), (Tom, headOf, departmentOfComputing)}. We use

(5.2) to compute the the lower and upper probabilities of F . See Table 5.3e for the

results.

Finally, the answer to the extended SPARQL query is a sequence of one pair, and

the pair is ({(?department, departmentOfComputing)}, [0.94, 1]).

5.4 Running Time Analysis

This section analyses the running time of the query evaluation. The time complex-

ity of finding all solutions to the graph pattern of a query is the same as in the non-

probabilistic case. It is O(|Gext||D|) [49] without RDFS reasoning, where |Gext| is the

size of the graph pattern and |D| is the data size.

For the computation of the probabilities of solutions, we assume that the probability

distributions of a pRDFS theory are represented by Bayesian networks (Section 2.4)

with Nnode nodes and Nnode does not depend on |D|. The nodes of the networks are the

random variables for the uncertain RDF triples. We use probabilistic logic sampling
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(Section 2.4.2) and the same set of random samples to compute the probabilities of all

solutions.

Without RDFS reasoning, the running time of probability calculation is propor-

tional to Nsampl × Nbn(m) × Nnode, where Nsampl, Nbn(m), and Nnode are the number of

samples, the number of Bayesian networks that contain any uncertain RDF triple in

the matched data of a solution, and the number of nodes per Bayesian network re-

spectively. The minimum value of Nsampl is a constant given the parameters of the

approximation error ϵ and δ. See (2.2) for the computation of Nsampl. Assume that the

percentage of uncertain data in the matched data is the same as the percentage of un-

certain data in the data and the uncertain RDF triples in the matched data are randomly

drawn from the data. The number of uncertain RDF triples in the matched data of

all solutions is p|Gext|Nsol, where p is the percentage of uncertain data and Nsol is the

number of solutions. The expected value of Nbn(m) denoted by E(Nbn(m)) is computed

as (5.8) [61].

E(Nbn(m)) =
p|D|
Nnode

(
1−

p|Gext|Nsol∏
i=1

p|D| −Nnode − i+ 1

p|D| − i+ 1

)
. (5.8)

If the number of Bayesian networks p|D|
Nnode

is much larger than the number of uncer-

tain RDF triples in the matched data of all solutions p|Gext|Nsol, E(Nbn(m)) is close to

p|Gext|Nsol. With this approximation, the time complexity of probability calculation is

O(|Gext|).

For the query evaluation with RDFS reasoning, the matched data of a solution to a

query may contain both the declared and derived data. Let X be the set of uncertain
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declared triples in the matched data of all solutions and the uncertain RDF triples in

the minimal justifications for the uncertain derived triples in the matched data of all

solutions to the query. The running time of probability calculation is proportional to

Nsampl×N ′
bn(m)×Nnode, where Nsampl, N ′

bn(m), and Nnode are the number of samples, the

number of Bayesian networks that contain any one of the RDF triples in X , and the

number of nodes per Bayesian network respectively.

To develop an expression for the expected value of N ′
bn(m), assume that the per-

centages of uncertain RDF triples and derived triples in the matched data are the same

as those in the data. The number of uncertain declared triples in the matched data of

a solution is (1 − q)p|Gext|, where p and q are the percentages of uncertain data and

derived data respectively. The number of derived triples in the matched data of a so-

lution is q|Gext|. In any justification for an derived instance triple, there is only one

instance triple and all other RDF triples are schema triples. Assume all schema triples

are certain since they are usually definitional in nature. A derived instance triple is

uncertain only if the instance triple in every justification for the derived triple is un-

certain. If the instance triples in the justifications are randomly drawn from the data,

the number of uncertain derived triples in the matched data of a solution is qpNj |Gext|,

where Nj is the average number of minimal justifications for a derived triple. Hence,

|X| is Nsol((1 − q)p|Gext| + qpNj |Gext|Nj). The expected value of N ′
bn(m) denoted by

E(N ′
bn(m)) is computed as (5.9).

E(N ′
bn(m)) = A(

p|D|
Nnode

, Nsol|X|). (5.9)
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where p|D|
Nnode

is the number of Bayesian networks and A(x, y) = x(1 − (x−1
x
)y) is the

expected number of distinct items by picking y items randomly from x distinct items

with replacement.
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Chapter 6

Experimental Study

This chapter presents an experimental evaluation of the running time performance of

the consistency checking algorithms in Chapter 4 and the query evaluation algorithm

in Chapter 5 with respect to the data size, the percentage of uncertain data, the size of

correlated data (by varying the number of nodes in a Bayesian network), and the com-

plexity of the probability distributions (by varying the degree of nodes in a network).

6.1 Environment

The experiments were run on a computer with an Intel Core i7-2670QM processor and

4 GB memory. We wrote the software code in Java and used the RDF toolkit Jena [13],

which includes an RDF/XML parser, reasoners, and a SPARQL query engine.
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Parameter Setting
data size, |D| 250k, 500k, 750k, 1M

percentage of uncertain data, p 25%, 50%, 75%, 100%
number of nodes, Nnode 5, 10, 15, 20

in- and out-degree of nodes, Nideg and Nodeg 1, 2, 3, 4

Table 6.1: Data settings. The default values are in bold.

6.2 Data

Data from the Berlin SPARQL Benchmark (BSBM) [10] and the Lehigh University

Benchmark (LUBM) [30] were used. BSBM contains data about products, offers by

vendors, and reviews by consumers. LUBM contains data about universities as well as

the people and activities within them. Data generators of both benchmarks can output

data of different sizes. The minimum units of data generation for BSBM and LUBM

are products and universities respectively. The data sizes chosen in the experiments are

shown in the first row of Table 6.1, and the default value is in bold.

6.2.1 Uncertain Data Generation

The data in both BSBM and LUBM are certain. Uncertain data are generated as fol-

lows. We assume all schema triples are certain since they are usually definitional in

nature. We randomly select a p percentage of the instance triples to be uncertain. There

is an extra rule to this random selection process. If an instance triple t is picked to be

uncertain, one RDF triple from each justification for t is also randomly selected to be

uncertain. The reason is that if all RDF triples in a justification for t are certain, t

has to be certain. After all uncertain triples have been selected, we randomly divide

them into groups of size Nnode. However, RDF triples related through the RDFS se-
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Symbol RDF triple
d1 (Professor, rdf: type, rdfs: Class)
d2 (Department, rdf: type, rdfs: Class)
d3 (worksFor, rdf: type, rdf: Property)
d4 (headOf, rdf: type, rdf: Property)
d5 (headOf, rdfs: subPropertyOf, worksFor)
d6 (Tom, rdf: type, Professor)
d7 (departmentOfComputing, rdf: type, Department)
d8 (Tom, headOf, departmentOfComputing)
d9 (Tom, worksFor, departmentOfComputing)

Table 6.2: Data D7 used to illustrate the generation of uncertain data.

mantics are forced to be in the same group. Therefore, the sizes of some groups may

be greater than Nnode. RDF triples in the same group are statistically correlated and are

independent of the RDF triples in other groups.

The probability distribution of the uncertain RDF triples in each group is modeled

using the Bayesian Network (Section 2.4). Each node of the network represents an

uncertain RDF triple in the group with a domain {true, false}. Each uncertain RDF

triple in the justifications for an RDF triple t has a direct influence on t, and there

is a directed edge from the uncertain RDF triple to t. The conditional independence

relationships among other uncertain RDF triples are generated randomly. Edges are

randomly added to the network until both the average in-degree Nideg and out-degree

Nodeg of nodes equal a specified value.

The conditional probability table of each node t is generated as follows. If all RDF

triples in any one of the justifications for t are true, the probability of t being true is

one. Otherwise, the probability of t is generated randomly.

Table 6.1 shows the values of p, Nnode, Nideg, and Nodeg used to generate the uncer-

tain data, and the default values are in bold.

Example 15 (Uncertain Data Generation). This example generates uncertain data for
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Figure 6.1: A randomly generated Bayesian network for the instance triples d6 to d9 in
Table 6.2. The dashed edges and probability values v1 to v7 are randomly generated.

the data D7 in Table 6.2 with the following values for the percentage of uncertain data

p, the number of nodes Nnode, and the average in-degree Nideg and out-degree Nodeg of

nodes. p = 100%, Nnode = 4, and Nideg = Nodeg = 1.

RDF triples d1 to d5 are schema triples and are assumed to be certain. Instance

triples d6 to d9 are all uncertain since p is 100%. They are in the same group because

Nnode is four. Their probability distribution is represented by a Bayesian network. The

Bayesian network has four nodes, each of which represents an instance triple. There

is a directed edge from d8 to d9 because {d5, d8} |=rdfs d9. Other edges are randomly

added to the network until both Nideg and Nodeg equal one. Fig. 6.1 shows a randomly

generated Bayesian network, where the dashed edges are randomly generated. Proba-

bility values v1 to v7 in the conditional probability tables are randomly generated. To

satisfy the RDFS semantics, the probability of d9 being true is one whenever d8 is true.
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Figure 6.2: Percentages of RDF triples that are entailed, entailing, and both entailed
and entailing.

6.2.2 Properties

This section examines several properties of the data, which are used later for the analy-

sis of experimental results. These properties include the percentage of entailed triples,

the percentage of entailing triples, the percentage of uncertain entailed triples, the num-

ber of minimal justifications per derived instance triple, and the percentage of derived

data.

Fig. 6.2 shows the percentages of entailed, entailing, and both entailed and entailing

triples under different data sizes. See Section 2.1.4 for the definitions of entailed and

entailing triples. The percentage values of each category are roughly constant except

the value at the smallest data size of BSBM, which is lower than the others. Note that

BSBM contains RDF triples that are both entailed and entailing whereas LUBM does

not have any.

Fig. 6.3 shows the percentage of uncertain entailed triples as functions of the data

size and the percentage of uncertain data. This quantity is an important factor in the

running time of consistency checking because uncertain entailed triples create incon-

sistent truth value assignments. Figs. 6.3a and 6.3b indicate that the percentage of

uncertain entailed triples is roughly constant under different data sizes except the per-
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Figure 6.3: Percentage of uncertain entailed triples.
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Figure 6.4: Average number of minimal justifications per derived instance triple.

centage at the smallest data size of BSBM, which is lower than the others. Fig. 6.3c

shows that the percentage of uncertain entailed triples in BSBM increases faster at

small percentages of uncertain data and slower at large percentages of uncertain data.

Fig. 6.3d shows that the percentage of uncertain entailed triples in LUBM increases

linearly with the percentage of uncertain data.

The number of minimal justifications per derived instance triple affects the amount

of data involved in the probability calculation of a solution to a query if the matched

data of the solution contains derived data. This quantity as a function of the data size

|D| is shown in Fig. 6.4. It increases with |D|, but the rate of increase decreases with
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Figure 6.5: Percentage of derived data.

|D|.

The percentage of derived data defined as |rdfs-closure(D) \D|/|rdfs-closure(D)|

determines the expected proportion of derived data in the matched data of a solution

to a query if the matched data are randomly drawn from the RDFS closure of data D.

This quantity as a function of |D| is plotted in Fig. 6.5. The percentage of derived

schema data does not change with |D| since the schema data are fixed. The percentage

of derived instance data decreases as |D| increases.

6.3 Queries

Benchmark queries from BSBM and LUBM were used. BSBM has 12 queries. 10 of

the queries are of the “select” form. Among these 10 queries, four of them have simple

graph patterns, and the others have complex graph patterns. Complex graph patterns

are formed by combining smaller patterns using SPARQL keywords OPTIONAL and

UNION. The four queries with simple graph patterns were chosen in the experiments.

The triple patterns in the graph patterns are changed to the extended triple patterns,

and the truth values of the extended triple patterns are set to the true values. The

chosen queries are shown in Table 6.3, and the namespace URIs for the prefixes used
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SELECT DISTINCT ?product ?label
WHERE {

?product rdfs:label ?label true .
?product rdf:type %ProductType% true .
?product bsbm:productFeature %ProductFeature1% true .
?product bsbm:productFeature %ProductFeature2% true .
?product bsbm:productPropertyNumeric1 ?value1 true .
FILTER (?value1 > %x%)}

ORDER BY ?label
LIMIT 10

(a) BSBM query 1.

SELECT DISTINCT ?product ?productLabel
WHERE {

?product rdfs:label ?productLabel true .
FILTER (%ProductXYZ% != ?product)
%ProductXYZ% bsbm:productFeature ?prodFeature true .
?product bsbm:productFeature ?prodFeature true .
%ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 true .
?product bsbm:productPropertyNumeric1 ?simProperty1 true .
FILTER (?simProperty1 < (?origProperty1 + 120) && ?simProperty1 > (?origProperty1 − 120))
%ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 true .
?product bsbm:productPropertyNumeric2 ?simProperty2 true .
FILTER (?simProperty2 < (?origProperty2 + 170) && ?simProperty2 > (?origProperty2 − 170))}

ORDER BY ?productLabel
LIMIT 5

(b) BSBM query 5.

SELECT ?product ?label
WHERE {

?product rdfs:label ?label true .
?product rdf:type bsbm:Product true .
FILTER regex(?label, ”%word1%”)}

(c) BSBM query 6.

SELECT DISTINCT ?offer ?price
WHERE {

?offer bsbm:product %ProductXYZ% true .
?offer bsbm:vendor ?vendor true .
?offer dc:publisher ?vendor true .
?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#US> true .
?offer bsbm:deliveryDays ?deliveryDays true .
FILTER (?deliveryDays <= 3)
?offer bsbm:price ?price true .
?offer bsbm:validTo ?date true .
FILTER (?date > %currentDate%)}

ORDER BY xsd:double(str(?price))
LIMIT 10

(d) BSBM query 10.

Table 6.3: Extended BSBM queries 1, 5, 6, and 10.
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Prefixes Namespace URIs
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#

bsbm: http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/
dc: http://purl.org/dc/elements/1.1/
xsd: http://www.w3.org/2001/XMLSchema#
ub: http://www.lehigh.edu/˜zhp2/2004/0401/univ-bench.owl#

d0u0: http://www.Department0.University0.edu/
d1u0: http://www.Department1.University0.edu/

d0u0ap0: http://www.Department0.University0.edu/AssistantProfessor0/

Table 6.4: Namespace prefixes.

LUBM Query
Reasoning 1 2 3 4 5 6 7 8 9 10 11 12 13 14

no 4 0 6 0 0 0 0 0 0 0 0 0 0 5916
RDFS 4 0 6 34 719 6463 61 6463 134 0 0 0 0 5916

OWL-DL [45] 4 0 6 34 719 7790 67 7790 208 4 224 15 1 5916

Table 6.5: Number of solutions obtained by executing the LUBM queries with different
reasoning against the LUBM data at the data size of 100k.

in the queries are shown in Table 6.4. Each query contains some variables enclosed

in the % symbols. An instance of the query is generated by replacing these variables

with random values from their respective domains. 10 instances are generated for each

query, and the running time of answering the query is measured by taking the average

of the running time of answering 10 instances of the query.

The LUBM has 14 queries, all of which are of the “select” form and have basic

graph patterns. Table 6.5 shows the number of solutions obtained by executing the

LUBM queries against the LUBM data at the data size of 100k. The numbers of

solutions to queries 4 to 9 obtained with RDFS reasoning are more than those obtained

without reasoning. This illustrates the usefulness of having reasoning during query

answering.

We selected those queries the answers to which are non-empty. For query evalua-
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SELECT ?X
WHERE {

?X rdf:type ub:GraduateStudent true .
?X ub:takesCourse d0u0:GraduateCourse0 true}

(a) LUBM query 1.

SELECT ?X
WHERE {

?X rdf:type ub:Publication true .
?X ub:publicationAuthor d0u0:AssistantProfessor0 true}

(b) LUBM query 3.

SELECT ?X ?Y1 ?Y2 ?Y3
WHERE {

?X rdf:type ub:Professor true .
?X ub:worksFor <http://www.Department0.University0.edu> true .
?X ub:name ?Y1 true .
?X ub:emailAddress ?Y2 true .
?X ub:telephone ?Y3 true}

(c) LUBM query 4.

SELECT ?X
WHERE {

?X rdf:type ub:Person true .
?X ub:memberOf <http://www.Department0.University0.edu> true}

(d) LUBM query 5.

SELECT ?X
WHERE {

?X rdf:type ub:Student true}
(e) LUBM query 6.

SELECT ?X ?Y
WHERE {

?X rdf:type ub:Student true .
?Y rdf:type ub:Course true .
d0u0:AssociateProfessor0 ub:teacherOf ?Y true .
?X ub:takesCourse ?Y true}

(f) LUBM query 7.

SELECT ?X ?Y ?Z
WHERE {

?X rdf:type ub:Student true .
?Y rdf:type ub:Department true .
?X ub:memberOf ?Y true .
?Y ub:subOrganizationOf <http://www.University0.edu> true .
?X ub:emailAddress ?Z true}

(g) LUBM query 8.

Table 6.6: Extended LUBM queries 1, 3, 4, 5, 6, 7, and 8.

tion without reasoning, the LUBM queries 1, 3, 14 were selected. For query evaluation

with RDFS reasoning, the LUBM queries 1, 3-9, and 14 were selected. Like the BSBM

queries, the triple patterns in the queries are changed to extended triple patterns, and
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SELECT ?X ?Y ?Z
WHERE {

?X rdf:type ub:Student true .
?Y rdf:type ub:Faculty true .
?Z rdf:type ub:Course true .
?X ub:advisor ?Y true .
?X ub:takesCourse ?Z true .
?Y ub:teacherOf ?Z true}

(a) LUBM query 9.

SELECT ?X
WHERE {

?X rdf:type ub:UndergraduateStudent true}
(b) LUBM query 14.

Table 6.7: Extended LUBM queries 9 and 14.

LUBM Query 1 3 4 5 7
Number of solutions, Nsol 4 6 34 719 61

Table 6.8: Numbers of solutions to the LUBM queries 1, 3, 4, 5, and 7. They do not
change with the data size |D|.

the truth values of the extended triple patterns are set to the true values. The selected

queries are shown in Tables 6.6 and 6.7.

The running time of answering a query would increase with the number of solutions

to the query. The numbers of solutions to the LUBM queries 1, 3, 4, 5, and 7 do

not change with the data size |D|, and they are shown in Table 6.8. The numbers of

solutions to the BSBM queries 1, 5, 6, and 10 and the LUBM queries 6, 8, 9, and 14

vary with |D|, and they are plotted in Fig. 6.6.

Table 6.9 shows the properties of the queries and their solutions that would affect

the running time of query evaluation. These properties include the matched data size

|Gext| of a solution, the percentage of derived data q in the matched data, and the

average number of minimal justifications for a derived triple Nj in the matched data.
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Figure 6.6: Number of solutions to the BSBM queries 1, 5, 6, and 10 and the LUBM
queries 6, 8, 9, and 14.

6.4 Consistency Checking

This section examines how the running time of consistency checking scales with the

data size, the percentage of uncertain data, the average number of nodes per Bayesian

network, and the average in- and out-degrees of Bayesian network nodes. Consistency

checking consists of two major components, finding minimal justifications and calcu-

lating the probabilities of inconsistent truth value assignments.
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BSBM query 1 5 6 10
Size of matched data, |Gext| 5 7 2 7
Percentage of derived data, q 0 0 0 0
Average number of minimal n/a n/a n/a n/a

justifications for a derived triple, Nj

(a) BSBM queries.

LUBM query 1 3 4 5 6 7 8 9 14
Size of matched data, |Gext| 2 2 5 2 1 4 5 6 1
Percentage of derived data, q 0 0 20 53 100 25.8 20 37.2 0
Average number of minimal n/a n/a 8.5 3.93 1 1.02 1 5.99 n/a

justifications for a derived triple, Nj

(b) LUBM queries.

Table 6.9: Properties of queries and their solutions (n/a: not applicable).

6.4.1 Finding Minimal Justifications

As discussed in Section 4.3, the time complexity of finding minimal justifications is

O(|D|log|D|), where |D| is the data size. This agrees with the experimental results

shown in Figs. 6.7a and 6.7b that the running time of finding minimal justifications

increases linearly with |D|log|D|.

The running time of finding minimal justifications is proportional to the percentage

of RDF triples that are not certainly true, which is equal to the percentage of uncertain

data in our experiments. This agrees with the experimental results shown in Figs. 6.7c

and 6.7d that the running time increases linearly with the percentage of uncertain data

p.

The running time of finding minimal justifications does not depend on the number

of nodes per Bayesian network and the degree of nodes. The experiment results shown

in Figs. 6.7e to 6.7h also show no trend in the running time with respect to the number

and degree of nodes.
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Figure 6.7: Running time of finding minimal justifications in consistency checking.

6.4.2 Calculating Probabilities

Probabilistic logic sampling (Section 2.4.2) is used to calculate the probability. The

number of samples used in probabilistic logic sampling is determined by setting both

ϵ and δ in (2.2) to 0.01.

As discussed in Section 4.3, the time complexity of probability calculation is O(|D|)

and the quantity E(Nbn(e)) ×Nnode is proportional to the expected running time of the
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Figure 6.8: The quantity E(Nbn(e)) × Nnode, which is proportional to the expected
running time of calculating probabilities in consistency checking.

probability calculation, where |D| is the data size, E(Nbn(e)) is defined in (4.9), and

Nnode is the number of nodes. We plot E(Nbn(e)) × Nnode in Fig. 6.8 and compare it

with the experimental results in Fig. 6.9. The value of the percentage of uncertain

entailed triples q in E(Nbn(e)) is obtained from Fig. 6.3.

Figs. 6.8a and 6.8b show that E(Nbn(e)) × Nnode increases linearly with the data

size. The value at the smallest data size of BSBM deviates from the linear relationship

because the value of q at this data size shown in Fig. 6.3a is lower than the values of

q at the other data sizes. The experimental results shown in Figs. 6.9a and 6.9b also

show that the running time of probability calculation increases linearly with the data
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Figure 6.9: Running time of calculating probabilities in consistency checking.

size.

Figs. 6.8c and 6.8d show that E(Nbn(e)) × Nnode grows sublinearly with the per-

centage of uncertain data p in BSBM and linearly in LUBM. These orders of growth

correspond to the orders of growth of the percentage of uncertain entailed triples shown

in Figs. 6.3c and 6.3d. This matches the experimental results shown in Figs. 6.9c and

6.9d that the running time of probability calculation grows sublinearly with p in BSBM

and linearly in LUBM.
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Figs. 6.8e and 6.8f show that E(Nbn(e))×Nnode increases linearly with the number

of nodes Nnode in BSBM and sublinearly in LUBM. This agrees with the experimental

results shown in Figs. 6.9e and 6.9f that the running time of probability calculation

increases linearly with Nnode in BSBM and sublinearly in LUBM.

The running time of probability calculation is expected to increase with the in-

degree Nideg or out-degree Nodeg of nodes to handle the increased parents of nodes.

Figs. 6.9e and 6.9f show that the running time of probability calculation increases

linearly with Nideg or Nodeg in BSBM and sublinearly in LUBM.

6.5 Incremental Consistency Checking

This section studies the running time performance of incremental consistency checking

with respect to the data size, the percentage of uncertain data, the number of nodes,

and the degree of nodes.

We measure the running time of checking the consistency of a consistent theory

after an RDF triple is added to it. Recall that the operation of removing an RDF

triple from a consistent theory does not void the consistency of the theory. We start

with a consistent theory and remove an RDF triple t from the consistent theory. Then

we add the RDF triple t back and check the consistency of the theory because of the

introduction of t. We repeat this process |D| times, where |D| is the number of RDF

triples in the theory. Each time a different RDF triple t is chosen from the theory.

We divide the running time of consistency checking into two parts, the time of find-

ing minimal justifications and the time of calculating probabilities, which are shown
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Figure 6.10: Running time of finding minimal justifications in incremental consistency
checking.

in Figs. 6.10 and 6.11 respectively. Moreover, we divide the RDF triple t added to the

theory into instance and schema triples.

From Figs. 6.10 and 6.11, the average consistency checking time is under 160ms

in every case. From Fig. 6.10, the time of finding minimal justifications for schema

triples is longer than that for instance triples. It does not change with the data size, the

percentage of uncertain data, the number of nodes, and the degree of nodes.
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Figure 6.11: Running time of calculating probabilities in incremental consistency
checking.

As discussed in Section 4.3, the time complexity of probability calculation is O(|D|),

where |D| is the data size. From Figs. 6.11a and 6.11b, the running time of calculating

probabilities either does not change or increases linearly with |D|. From Figs. 6.11c

and 6.11d, the running time of calculating probabilities increases sublinearly with the

percentage of uncertain data p in BSBM. In LUBM, it increases linearly with p for

the instance triples. It increases exponentially with p for the schema triples because
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Figure 6.12: Running time of answering queries without RDFS reasoning as a function
of the data size |D| (p = 50%, Nnode = 10, Nideg = Nodeg = 2).

the number of inconsistent truth value assignments that contain the schema triples also

increases exponentially with p. From Figs. 6.11e to 6.11h, the running time of calcu-

lating probabilities increases linearly with the number and the degree of nodes.

6.6 Query Evaluation without RDFS Reasoning

In this section, we examine the running time performance of query evaluation without

RDFS reasoning. BSBM queries 1, 5, 6, and 10 and LUBM queries 1, 3, and 14 are

selected in this set of experiments because the answers to these queries are non-empty.

The number of solutions to LUBM query 14 increases rapidly with the data size. The
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Figure 6.13: Running time of answering queries without RDFS reasoning as a function
of the percentage of uncertain data p (|D| = 500k, Nnode = 10, Nideg = Nodeg = 2).

query time at large data size is very long, so we only compute the first 100 solutions

for this query.

Query evaluation consists of two major components, pattern matching and proba-

bility calculation.

6.6.1 Pattern Matching

Fig. 6.12 shows the running time of pattern matching as a function of the data size.

Since the number of solutions to the BSBM queries varies with the data size, the

running time per solution is plotted against the data size. The running time of pat-
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Figure 6.14: Running time of answering queries without RDFS reasoning as a function
of the number of nodes Nnode (|D| = 500k, p = 50%, Nideg = Nodeg = 2).

tern matching increases linearly with the data size for BSBM queries 5 and 6 and for

LUBM queries 1 and 3. For the rest of the queries, there is no trend in the running

time.

The running time of pattern matching does not depend on the percentage of un-

certain data, the number of nodes, and the degree of nodes. This agrees with the

experimental results shown in Figs. 6.13, 6.14, and 6.15 respectively.
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Figure 6.15: Running time of answering queries without RDFS reasoning as a function
of the in-degree Nideg or out-degree Nodeg of nodes (|D| = 500k, p = 50%, Nnode = 10).

6.6.2 Probability Calculation

Probabilistic logic sampling (Section 2.4.2) is used to calculate the probability. The

number of samples used in probabilistic logic sampling is determined by setting both

ϵ and δ in (2.2) to 0.01.

As discussed in Section 5.4, the time complexity of probability calculation is ap-

proximately O(|Gext|) and the quantity E(Nbn(m))×Nnode is proportional to the expected

running time of the probability calculation, where |Gext| is the size of matched data,

E(Nbn(m)) is defined in (5.8), and Nnode is the number of nodes. We plot E(Nbn(m)) ×

Nnode in Fig. 6.16 and compare it with the experimental results shown in Figs. 6.12,

6.13, and 6.14. We set the size of the matched data |Gext| and the number of solutions

96



2 4 6 8 10
x 10

5

996

997

998

999

1000

data size, |D|
(a)

E
(N

bn
(m

)) 
× 

N
no

de
p = 50%, N

node
 = 10, |G

ext
| = 4, N

sol
 = 50

20 40 60 80 100
0

500

1000

1500

2000

percentage of uncertain data, p
(b)

E
(N

bn
(m

)) 
× 

N
no

de

|D| = 500k, N
node

 = 10, |G
ext

| = 4, N
sol

 = 50

5 10 15 20
0

500

1000

1500

2000

number of nodes, N
node

(c)

E
(N

bn
(m

)) 
× 

N
no

de

|D| = 500k, p = 50%, |G
ext

| = 4, N
sol

 = 50

Figure 6.16: The quantity E(Nbn(m)) × Nnode, which is proportional to the expected
running time of calculating the probabilities of the solutions to a query.

Nsol in E(Nbn(m)) to 4 and 50 respectively. See Table 6.9 for the sizes of matched data

of the tested queries, which range between 1 and 7. See Table 6.8 and Fig. 6.6 for the

number of solutions to the tested queries.

Fig. 6.16a shows that E(Nbn(m))×Nnode increases very slightly with the data size.

This agrees with the experimental results shown in Fig. 6.12, which do not show any

trend in the running time of probability calculation.

Fig. 6.16b shows that E(Nbn(m)) × Nnode increases linearly with the percentage of

uncertain data. This result matches the experimental results shown in Fig. 6.13 that

the running time of probability calculation increases linearly with the percentage of

uncertain data.

Fig. 6.16c shows that E(Nbn(m)) × Nnode increases linearly with the number of

nodes. This agrees with the experimental results shown in Fig. 6.14 that the running

time of probability calculation increases linearly with the number of nodes.

The running time of probability calculation would increase with the in-degree Nideg

or out-degree Nodeg of nodes because of the processing of increased parents of nodes.

Fig. 6.15 shows that the running time of probability calculation increases linearly with

Nideg or Nodeg.

97



2 4 6 8 10 12
x 10

4

0

0.1

0.2

0.3

0.4

data size, |D|

ru
nn

in
g 

tim
e 

pe
r 

so
lu

tio
n 

(s
ec

on
ds

) LUBM query 1

 

 

total
pattern matching
probability calculation

2 4 6 8 10 12
x 10

4

0

0.05

0.1

0.15

0.2

0.25

data size, |D|

ru
nn

in
g 

tim
e 

pe
r 

so
lu

tio
n 

(s
ec

on
ds

) LUBM query 3

 

 

total
pattern matching
probability calculation

2 4 6 8 10 12
x 10

4

0

0.1

0.2

0.3

0.4

data size, |D|

ru
nn

in
g 

tim
e 

pe
r 

so
lu

tio
n 

(s
ec

on
ds

) LUBM query 4

 

 

total
pattern matching
probability calculation

2 4 6 8 10 12
x 10

4

0

0.05

0.1

0.15

0.2

0.25

data size, |D|

ru
nn

in
g 

tim
e 

pe
r 

so
lu

tio
n 

(s
ec

on
ds

) LUBM query 5

 

 

total
pattern matching
probability calculation

2 4 6 8 10 12
x 10

4

0

0.02

0.04

0.06

0.08

0.1

0.12

data size, |D|

ru
nn

in
g 

tim
e 

pe
r 

so
lu

tio
n 

(s
ec

on
ds

) LUBM query 6

 

 

total
pattern matching
probability calculation

2 4 6 8 10 12
x 10

4

0

0.5

1

1.5

data size, |D|

ru
nn

in
g 

tim
e 

pe
r 

so
lu

tio
n 

(s
ec

on
ds

) LUBM query 7

 

 

total
pattern matching
probability calculation

2 4 6 8 10 12
x 10

4

0

0.05

0.1

0.15

0.2

0.25

data size, |D|

ru
nn

in
g 

tim
e 

pe
r 

so
lu

tio
n 

(s
ec

on
ds

) LUBM query 8

 

 

total
pattern matching
probability calculation

2 4 6 8 10 12
x 10

4

0

1

2

3

4

5

6

data size, |D|

ru
nn

in
g 

tim
e 

pe
r 

so
lu

tio
n 

(m
in

ut
es

) LUBM query 9

 

 

total
pattern matching
probability calculation

2 4 6 8 10 12
x 10

4

0

0.02

0.04

0.06

0.08

0.1

0.12

data size, |D|

ru
nn

in
g 

tim
e 

pe
r 

so
lu

tio
n 

(s
ec

on
ds

) LUBM query 14

 

 

total
pattern matching
probability calculation

Figure 6.17: Running time of answering queries with RDFS reasoning as a function of
the data size |D| (p = 50%, Nnode = 10, Nideg = Nodeg = 2).

6.7 Query Evaluation with RDFS Reasoning

In this section, we examine the running time performance of query evaluation with

RDFS reasoning. In this set of experiments, the LUBM data are used because they

produce derived data. Moreover, RDFS reasoning is required for some LUBM queries

to produce non-empty results. The data sizes tested are 10 times smaller than those in

the previous experiments because of the long query time.

Query evaluation time as functions of the data size |D|, the percentage of uncertain

data p, the number of nodes per Bayesian network Nnode, and the in-degree Nideg or

out-degree Nodeg of nodes is plotted in Figs. 6.17, 6.18, 6.19, and 6.20 respectively.
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Figure 6.18: Running time of answering queries with RDFS reasoning as a function of
the percentage of uncertain data p (|D| = 50k, Nnode = 10, Nideg = Nodeg = 2).

These figures also show the running time of pattern matching and probability calcu-

lation, which are the major components of the query evaluation. As mentioned in

Section 6.2.2, the numbers of solutions to some queries do not vary with |D| while

the numbers of solutions to other queries increase linearly with |D|. To eliminate the

effect of the number of solutions, we plot the running time per solution against |D| in

Fig. 6.17.
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Figure 6.19: Running time of answering queries with RDFS reasoning as a function of
the number of nodes Nnode (|D| = 50k, p = 50%, Nideg = Nodeg = 2).

6.7.1 Pattern Matching

Fig. 6.17 shows that the pattern matching time per solution has different orders of

growth for different queries. It does not grow with |D| for the LUBM queries 6 and

14, grows sublinearly for the LUBM query 3, grows linearly for the LUBM queries 1,

4, and 5, grows polynomially for the LUBM queries 7 and 9, and grows exponentially

for the LUBM query 8.

The pattern matching time does not depend on the percentage of uncertain data, the

number of nodes, and the degree of nodes. This agrees with the experimental results

shown in Figs. 6.18, 6.19, and 6.20.
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Figure 6.20: Running time of answering queries with RDFS reasoning as a function of
the in-degree Nideg or out-degree Nodeg of nodes (|D| = 50k, p = 50%, Nnode = 10).

6.7.2 Probability Calculation

The quantity E(N ′
bn(m)) × Nnode is proportional to the expected running time of the

probability calculation, where E(N ′
bn(m)) is defined in (5.9) and Nnode is the number of

nodes per Bayesian network. We set the values of Nj , q, |Gext|, and Nsol as follows,

where Nj is the number of minimal justifications for a derived triple, q is the percentage

of derived data, |Gext| is the size of matched data, and Nsol is the number of solutions.

From Fig. 6.4, the value of Nj in the LUBM data is around 2.8. From Table 6.9, the

values of Nj in the matched data of the solutions to the LUBM queries range between

1 and 8.5. We set Nj to be 1, 4, or 8. From Fig. 6.5, the value of q is between 19% and
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Parameter Setting
Number of minimal justifications 1, 4, 8

for a derived triple, Nj

Percentage of derived data, q 19.5%
Size of matched data, |Gext| 4
Number of solutions, Nsol 1, 50, 1000, 0.001|D|, 0.05|D|

Table 6.10: Settings for Nj , q, |Gext|, and Nsol in the computation of E(N ′
bn(m)).
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Figure 6.21: E(N ′
bn(m)) × Nnode per solution as a function of |D|, Nsol, and Nj (p =

50%, Nnode = 10, q = 19.5%, |Gext| = 4).

20%. We set q to be 19.5%. From Table 6.9, the values of |Gext| range between 1 and

6. We set |Gext| to be 4. From Table 6.8 and Fig. 6.6, the value of Nsol either does not

vary with the data size |D| or increases linearly with |D|. The settings for Nsol include

small and large fixed values (1, 50, and 1000) and values that increase linearly with

|D| at slow and fast rates (0.001|D| and 0.05|D|). Table 6.10 summaries the settings

for Nj , q, |Gext|, and Nsol. The default values are in bold.

To study how the running time of probability calculation per solution varies with

the data size |D|, we plot E(N ′
bn(m)) × Nnode per solution against |D| for different

values of Nsol and Nj in Fig. 6.21 and compare it with the experimental results shown

in Fig. 6.17. From Fig. 6.21, E(N ′
bn(m))×Nnode per solution changes very little except

when Nsol = 50 or 1000. It increases sublinearly with |D| when Nsol = 50 or 1000. This

agrees with the experimental results that the running time of probability calculation per

solution either changes very little or increases sublinearly with |D|.
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Figure 6.22: E(N ′
bn(m))×Nnode per solution as a function of p, Nsol, and Nj (|D| = 50k,

Nnode = 10, q = 19.5%, |Gext| = 4).

To study how the running time of probability calculation varies with the percentage

of uncertain data p, we plot E(N ′
bn(m))×Nnode per solution against p for different values

of Nsol and Nj in Fig. 6.22 and compare it with the experimental results shown in

Fig. 6.18. From Fig. 6.22, E(N ′
bn(m)) × Nnode increases linearly with p when Nj = 1.

The order of its growth increases with Nj and decreases when Nsol is large like 1000.

For LUBM queries 1, 6, 7, 8, and 14, either the percentage of derived data q in

the matched data is 0% or the number of minimal justifications for a derived triple

Nj in the matched data is close to 1. Our model predicts that the running time of

probability calculation for these queries increases linearly with p, and this agrees with

the experimental results shown in Fig. 6.18.

For LUBM query 3, the value of q in the matched data is 0%. Our model predicts

that the running time of probability calculation increases linearly with p. However,

the running time increases sublinearly with p because of the entailment relationships

between the matched data of the solutions. The graph pattern of query 3 consists

of two triple patterns, (?X, rdf:type, ub:Publication) and (?X, ub:publicationAuthor,

d0u0:AssistantProfessor0). The namespace prefixes in these two patterns are described

in Table 6.4. The second triple pattern (?X, ub:publicationAuthor, d0u0:AssistantProfessor0)
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and the schema triple (ub:publicationAuthor, rdfs:domain, ub:Publication) together en-

tail the first triple pattern (?X, rdf:type, ub:Publication) no matter what the value of the

variable ?X is.

One solution to query 3 is {(?X, d0u0ap0:Publication0)}. If the matched data

(d0u0ap0: Publication0, ub:publicationAuthor, d0u0: AssistantProfessor0) and (d0u0ap0:

Publication0, rdf:type, ub:Publication) are both uncertain, they have to be in the same

Bayesian network because of the entailment relationship between them. To compute

the probability of the matched data, we perform inference on only one Bayesian net-

work. However, in our model, the matched data are assumed to be drawn randomly

from the data and no entailment relationship among the matched data is assumed. In-

ference on one or two Bayesian networks may be needed. Hence, our model over-

estimates the amount of inference performed, and the overestimate increases with p.

This explains the sublinear growth of probability calculation time with respect to p for

query 3.

For LUBM queries 4 and 5, Nj in the matched data is large. Our model predicts

that the probability calculation time increases rapidly with p, and this agrees with the

experimental result shown in Fig. 6.18.

For LUBM query 9, the value of Nj in the matched data is large. Our model pre-

dicts that the running time of probability calculation increases rapidly with p. However,

the probability calculation time increases linearly with p because of the entailment re-

lationships among the matched data of the solutions. The graph pattern of query 9

consists of six triple patterns. See Table 6.7a for the triple patterns. The names-

pace prefixes in the triple patterns are described in Table 6.4. The schema data of
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Figure 6.23: E(N ′
bn(m))×Nnode per solution as a function of Nnode, Nsol, and Nj (|D| =

50k, p = 50%, q = 19.5%, |Gext| = 4).

the LUBM data state that the domain and range of ub:teacherOf are ub:Faculty and

ub:Course respectively. Hence, the triple pattern (?Y, ub:teacherOf, ?Z), together with

the schema data, entails both the triple patterns (?Y, rdf:type, ub:Faculty) and (?Z,

rdf:type, ub:Course) no matter what the values of variables ?Y and ?Z are.

One solution to query 9 is {(?X, d1u0: GraduateStudent53), (?Y, d1u0: Associ-

ateProfessor1), (?Z, d1u0: GraduateCourse14)}. The matched data of this solution are

{d1, d2, d3, r1, r2, r3}. r1, r1, and r1 are declared data, and d1, d2, and d3 are derived

data. They are described in Tables 6.11b and 6.11c respectively. The minimal justifi-

cations for the derived data d1, d2, and d3 are shown in Tables 6.11d, and the numbers

of minimal justifications for them are 1, 13, and 2 respectively. The probability bounds

of the matched data are shown in Table 6.11e. The lower bound of the probability ap-

pears to contain a lot of RDF triples because there are 13 minimal justifications for the

derived triple d2. However, the expression for the lower bound of the probability can

be simplified to contain four RDF triples because of the entailment relationship among

the matched data. This explains why the running time of probability calculation does

not increase rapidly with p for query 9.

To study how the running time of probability calculation varies with Nnode, we
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plot E(N ′
bn(m)) × Nnode per solution against Nnode for different values of Nsol and Nj

in Fig. 6.23 and compare it with the experimental results shown in Fig. 6.19. From

Fig. 6.23, E(N ′
bn(m)) × Nnode increases linearly with Nnode except when Nsol is large

like 1000. It increases sublinearly with Nnode when Nsol is large. This agrees with

the experimental results shown in Fig. 6.19. For LUBM queries 1, 3, 4, 7, and 9, the

values of Nsol are small, and the time of probability calculation increases linearly with

Nnode. For LUBM queries 5, 6, 8, and 14, the values of Nsol are large, and the time of

probability calculation increases sublinearly with Nnode.

The running time of probability calculation would increase with the in-degree Nideg

or out-degree Nodeg of nodes because of the processing of increased parents of nodes.

Fig. 6.20 shows that the probability calculation time increases linearly with Nideg or

Nodeg.
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Symbol RDF triple
h1 (ub:teacherOf, rdfs:domain, ub:Faculty)
h2 (ub:teacherOf, rdfs:range, ub:Course)
h3 (ub:ResearchAssistant, rdfs:subClassOf, ub:Student)
h4 (ub:AssociateProfessor, rdfs:subClassOf, ub:Professor)
h5 (ub:Professor, rdfs:subClassOf, ub:Faculty)
h6 (ub:advisor, rdfs:range, ub:Professor)
h7 (ub:GraduateCourse, rdfs:subClassOf, ub:Course)

(a) Schema triples.

Symbol RDF triple
r1 (d1u0:GraduateStudent53, ub:advisor, d1u0:AssociateProfessor1)
r2 (d1u0:GraduateStudent53, ub:takesCourse, d1u0:GraduateCourse14)
r3 (d1u0:AssociateProfessor1, ub:teacherOf, d1u0:GraduateCourse14)
r4 (d1u0:AssociateProfessor1, rdf:type, ub:AssociateProfessor)
r5 (d1u0:UndergraduateStudent312, ub:advisor, d1u0:AssociateProfessor1)
r6 (d1u0:GraduateStudent53, ub:advisor, d1u0:AssociateProfessor1)
r7 (d1u0:UndergraduateStudent152, ub:advisor, d1u0:AssociateProfessor1)
r8 (d1u0:UndergraduateStudent116, ub:advisor, d1u0:AssociateProfessor1)
r9 (d1u0:GraduateStudent89, ub:advisor, d1u0:AssociateProfessor1)
r10 (d1u0:GraduateStudent31, ub:advisor, d1u0:AssociateProfessor1)
r11 (d1u0:UndergraduateStudent106, ub:advisor, d1u0:AssociateProfessor1)
r12 (d1u0:GraduateStudent100, ub:advisor, d1u0:AssociateProfessor1)
r13 (d1u0:AssociateProfessor1, ub:teacherOf, d1u0:GraduateCourse13)
r14 (d1u0:AssociateProfessor1, ub:teacherOf, d1u0:Course16)
r15 (d1u0:AssociateProfessor1, ub:teacherOf, d1u0:Course15)
r16 (d1u0:GraduateCourse14, rdf:type, ub:GraduateCourse)
r17 (d1u0:GraduateStudent53, rdf:type, ub:ResearchAssistant)

(b) Instance triples.

Symbol RDF triple
d1 (d1u0:GraduateStudent53, rdf:type, ub:Student)
d2 (d1u0:AssociateProfessor1, rdf:type, ub:Faculty)
d3 (d1u0:GraduateCourse14, rdf:type, ub:Course)

(c) Derived triples.

Symbol Minimal justifications
d1 {h3, r17}
d2 {h1, r3}, {h4, h5, r4}, {h5, h6, r5} {h5, h6, r6}, {h5, h6, r7}, {h5, h6, r8}

{h5, h6, r9}, {h5, h6, r10}, {h5, h6, r11}, {h5, h6, r12} {h1, r13}, {h1, r14}, {h1, r15}
d3 {h2, r3}, {h7, r16}

(d) Minimal justifications for the derived triples d1, d2, and d3.

F d1 ∧ d2 ∧ d3 ∧ r1 ∧ r2 ∧ r3
Prlower(F) Pr(r17 ∧

∨
i=3,4,...,15 ri ∧ (r3 ∨ r16) ∧ r1 ∧ r2 ∧ r3) = Pr(r17 ∧ r1 ∧ r2 ∧ r3)

Prupper(F) Pr(r1 ∧ r2 ∧ r3)

(e) Probability of the matched data {d1, d2, d3, r1, r2, r3}.

Table 6.11: Probability calculation of the matched data of a solution to LUBM query
9.

107



Chapter 7

Conclusion

This chapter presents a summary of our work and suggests three areas for future stud-

ies.

7.1 Summary and Contributions

In this thesis, we propose a probabilistic model for RDF called probabilistic RDFS

(pRDFS), which models the uncertainties of correlated RDF data. We argue that be-

ing able to model correlated RDF data is necessary. First, RDF data using the RDFS

vocabulary are correlated. Second, correlated data occur in practice. The syntax and

semantics of pRDFS are defined in Chapter 3. Representing and performing probabilis-

tic inference on correlated data are expensive. We use Bayesian networks to represent

the correlated data and probabilistic logic sampling to perform approximate inference.

A pRDFS theory is inconsistent if it does not have any satisfying interpretation.

In Proposition 2, we prove that if the probabilities of all inconsistent truth value as-
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signments are zeros, then the pRDFS theory is consistent. In Propositions 3 and 4,

we prove that it is sufficient to check the inconsistent truth value assignments created

from the minimal justifications so that the computation of consistency checking can be

reduced. We describe a consistency algorithm in Chapter 4. Moreover, for data that are

frequently updated, we provide an incremental consistency checking algorithm, which

performs fast rechecking each time the data are updated.

We extend a common form of SPARQL query to pRDFS by adding the truth value

to each triple pattern of the query. We define an answer to the extended SPARQL query

on pRDFS, which includes the solutions to the query pattern and the probabilities of

the solutions. For solutions that contain derived data, their probabilities cannot be

specified using a single probability value because the probability distribution of the

derived data is not fully specified. In this case, the probability bounds of the solutions

are computed. In Proposition 5, we prove that the computation of the probability

bounds can be reduced using the minimal justifications.

We present an experimental evaluation of the running time performance of the

consistency checking and query evaluation algorithms with respect to the data size |D|,

the percentage of uncertain data p, the number of nodes in a Bayesian network Nnode,

and the degrees of nodes Nideg and Nodeg in a network. The algorithms were tested on

the Berlin SPARQL Benchmark (BSBM), the Lehigh University Benchmark (LUBM),

and random uncertain data. For the consistency checking algorithm, the running time

scales linearly with |D|log|D| and at most linearly with p, Nnode, Nideg, and Nodeg. For

the incremental consistency checking algorithm, the running time in all test cases is

under 160ms. The running time scales at most linearly with |D|, p, Nnode, Nideg, and
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Nodeg. The only exception is that the running time scales exponentially with p in the

LUBM data when a schema triple is added to the theory. For the query evaluation

algorithm without RDFS reasoning, the running time scales at most linearly with |D|,

p, Nnode, Nideg, and Nodeg. For the query evaluation algorithm with RDFS reasoning,

the running time could scale exponentially with |D| for some queries because of the

pattern matching step. It scales at most linearly with p, Nnode, Nideg, and Nodeg.

Finally, we present three models for predicting the average-case running time of

probability calculations in consistency checking, query evaluation without RDFS rea-

soning, and query evaluation with RDFS reasoning. They are E(Nbn(e)) × Nnode,

E(Nbn(m))×Nnode, and E(N ′
bn(m))×Nnode respectively. The computations of E(Nbn(e)),

E(Nbn(m)), and E(N ′
bn(m)) are shown in (4.9), (5.8), and (5.9) respectively. The first two

models match the experimental results. The last model overestimates the running time

for queries, the triple patterns of which are correlated through the RDFS semantics no

matter what the values of the variables in the triple patterns are. The discrepancy is due

to the fact that our model assumes that the matched data of the solutions to the queries

are drawn randomly from the RDFS closure of the data and may not be correlated.

7.2 Future Research

In this section, we outline three areas to enhance this work.

• The first one is the uncertainty supported. pRDFS assumes that the probability

information of the uncertain data is fully specified. However, the probability

information may be incomplete in practice. Moreover, the probabilities of the
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derived data from another pRDFS theories are intervals. Hence, pRDFS would

have wider applications if it is able to handle partially specified probability in-

formation and uncertain data specified using interval probabilities.

• The second one is the inference supported. pRDFS now supports the RDFS

inference. pRDFS could extend its support to other inferences like the inference

of application-specific transitive properties, which is supported and used in [59],

[37], and [56].

• The third one is the query supported. pRDFS currently supports SPARQL queries

with basic graph patterns. pRDFS could extend its support to queries with

complex graph patterns, which are formed by combining smaller patterns us-

ing SPARQL keywords OPTIONAL and UNION. However, solutions found by

ignoring the truth values of the complex graph patterns do not cover all solu-

tions to all instances of a pRDFS theory. Pre-processing and post-processing are

required.
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