Copyright Undertaking

This thesis is protected by copyright，with all rights reserved．
By reading and using the thesis，the reader understands and agrees to the following terms：
1．The reader will abide by the rules and legal ordinances governing copyright regarding the use of the thesis．

2．The reader will use the thesis for the purpose of research or private study only and not for distribution or further reproduction or any other purpose．

3．The reader agrees to indemnify and hold the University harmless from and against any loss， damage，cost，liability or expenses arising from copyright infringement or unauthorized usage．

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be distributed in this form，or a copyright owner having difficulty with the material being included in our database，please contact lbsys＠polyu．edu．hk providing details．The Library will look into your claim and consider taking remedial action upon receipt of the written requests．

MODELING AND QUERYING PROBABILISTIC RDFS DATA WITH CORRELATED TRIPLES USING BAYESIAN NETWORKS

CHI CHEONG SZETO

Ph.D
The Hong Kong Polytechnic University

The Hong Kong Polytechnic University Department of Computing

Modeling and Querying Probabilistic RDFS Data with Correlated Triples Using Bayesian Networks

Chi Cheong Szeto

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

August 2013

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it reproduces no material previously published or written, nor material that has been accepted for the award of any other degree or diploma, except where due acknowledgement has been made in the text.

Chi Cheong Szeto

Abstract

Resource Description Framework (RDF) is a World Wide Web Consortium (W3C) data model for the Semantic Web. RDF data are RDF triples, and an RDF triple is a triple (subject, property, object). RDF Schema (RDFS) extends RDF by providing a vocabulary to describe application-specific classes and properties, class and property hierarchies, and which classes and properties are used together. RDFS reasoning leverages the vocabulary to derive additional RDF triples from the data.

In recent years, probabilistic models for RDF have been proposed to better represent the real-life information, which is full of uncertainties. Existing models either have limited capabilities to model correlated data or ignore the semantics of the data. We argue that being able to model correlated RDF data is necessary. First, RDF data using the RDFS vocabulary are correlated. Second, correlated data occur in practice. Hence, we introduce a probabilistic model called probabilistic RDFS (pRDFS), which encodes statistical relationships among correlated RDF triples and satisfies the RDFS semantics. Representing and performing probabilistic inference on correlated data are expensive. We use Bayesian networks to represent the correlated data and probabilistic logic sampling to perform approximate inference.

Since there may exist some truth value assignments that violate the RDFS semantics, we devise a consistency checking algorithm for pRDFS. The algorithm checks that the probabilities of all inconsistent truth value assignments for the correlated RDF triples are zeros. It is executed once on static data. For data that are frequently updated, we propose an incremental approach that provides fast rechecking each time the data are updated.

SPARQL is a W3C query language for RDF. The pattern of a SPARQL query is a conjunction of triple patterns, and a triple pattern is an RDF triple any member of which can be replaced with a variable. A solution to the query is the bindings of the query variables such that the query pattern matches the data or the data derived through the RDFS reasoning. We extend the query by including truth values in the triple patterns

to match the uncertain data. Apart from the bindings of the query variables, an answer to the extended query includes the probability of the bindings, which is equal to the probability of the matched data. pRDFS fully specifies the probability distribution of declared data, but not derived data. A single probability value may not be able to specify the probability of the matched data containing derived data, and we show how to compute the probability bounds of the matched data in this case.

Finally, we present an experimental evaluation of the running time performance of our proposed algorithms with respect to the data size, the percentage of uncertain data, the size of correlated data (by varying the number of nodes in a Bayesian network), and the complexity of the probability distributions (by varying the degree of nodes in a network). The algorithms were tested on the Berlin SPARQL Benchmark, the Lehigh University Benchmark, and random uncertain data.

List of Publications

Szeto, C.C., Hung, E., and Deng, Y. Modeling and querying probabilistic RDFS data sets with correlated triples. In APWeb (2011), X. Du, W. Fan, J. Wang, Z. Peng, and M. A. Sharaf, Eds., vol. 6612 of Lecture Notes in Computer Science, Springer, pp. 333-344. (Best Student Paper Award)

Szeto, C.C., Hung, E., and Deng, Y. SPARQL query answering with RDFS reasoning on correlated probabilistic data. In WAIM (2011), H. Wang, S. Li, S. Oyama, X. Hu, and T. Qian, Eds., vol. 6897 of Lecture Notes in Computer Science, Springer, pp. 56-67.

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to my chief supervisor Dr. Edward Hung for giving me the opportunity to do research in semantic web and data mining, the useful discussions, encouragement, guidance, and support. I am indebted to my co-supervisor Dr. Korris Chung for his valuable advice and checking my thesis. Finally, I would like to thank my parents for their understanding and support. Without the assistance of these people, I would not have been able to finish this thesis.

Contents

Abstract i
List of Publications iii
Acknowledgements iv
List of Figures viii
List of Tables x
List of Algorithms xii
Notations xiv
1 Introduction 1
1.1 Motivation of Research 1
1.2 Contributions 3
1.3 Organization 4
2 Background 6
2.1 RDF and RDFS 6
2.1.1 Semantics 8
2.1.2 Inference Rules 9
2.1.3 RDFS Closure 10
2.1.4 Other Terms 10
2.2 SPARQL 11
2.2.1 SPARQL Query 11
2.2.2 Answer to a SPARQL Query 11
2.2.3 Evaluation of a SPARQL Query 12
2.3 Review of Probabilistic Models for RDF 13
2.4 Bayesian Network 16
2.4.1 Representation 16
2.4.2 Inference 17
2.4.3 Learning 18
3 Probabilistic Model pRDFS 19
3.1 Syntax 19
3.2 Semantics 21
3.3 Finding the Data that Entail an RDF Triple of Interest 25
3.3.1 Computing Minimal Justifications for Instance Triples under $H=$ rdfs-closure (H) 28
3.3.2 Computing Minimal Justifications for Schema Triples 31
3.3.3 Computing Minimal Justifications for Instance Triples 35
3.3.4 Time Complexity 37
4 pRDFS Consistency 39
4.1 Consistency Checking 39
4.2 Incremental Consistency Checking 44
4.3 Time Complexity 54
5 pRDFS Query Evaluation 59
5.1 Extended SPARQL Query 59
5.2 Answer to an Extended SPARQL Query 61
5.3 Evaluation of an Extended SPARQL Query 62
5.4 Running Time Analysis 70
6 Experimental Study 74
6.1 Environment 74
6.2 Data 75
6.2.1 Uncertain Data Generation 75
6.2.2 Properties 78
6.3 Queries 80
6.4 Consistency Checking 85
6.4.1 Finding Minimal Justifications 86
6.4.2 Calculating Probabilities 87
6.5 Incremental Consistency Checking 90
6.6 Query Evaluation without RDFS Reasoning 93
6.6.1 Pattern Matching 94
6.6.2 Probability Calculation 96
6.7 Query Evaluation with RDFS Reasoning 98
6.7.1 Pattern Matching 100
6.7.2 Probability Calculation 101
7 Conclusion 108
7.1 Summary and Contributions 108
7.2 Future Research 110
Bibliography 112

List of Figures

6.1 A randomly generated Bayesian network for the instance triples d_{6} to d_{9} in Table 6.2. The dashed edges and probability values v_{1} to v_{7} are randomly generated. 77
6.2 Percentages of RDF triples that are entailed, entailing, and both en- tailed and entailing. 78
6.3 Percentage of uncertain entailed triples. 79
6.4 Average number of minimal justifications per derived instance triple. 79
6.5 Percentage of derived data. 80
6.6 Number of solutions to the BSBM queries $1,5,6$, and 10 and the LUBM queries $6,8,9$, and 14 85
6.7 Running time of finding minimal justifications in consistency checking. 87
6.8 The quantity $E\left(N_{\text {bn(e) }}\right) \times N_{\text {node }}$, which is proportional to the expected running time of calculating probabilities in consistency checking. 88
6.9 Running time of calculating probabilities in consistency checking. 89
6.10 Running time of finding minimal justifications in incremental consis- tency checking. 91
6.11 Running time of calculating probabilities in incremental consistency checking. 92
6.12 Running time of answering queries without RDFS reasoning as a func- tion of the data size $|D|\left(p=50 \%, N_{\text {node }}=10, N_{\text {ideg }}=N_{\text {odeg }}=2\right)$. 93
6.13 Running time of answering queries without RDFS reasoning as a func- tion of the percentage of uncertain data $p\left(|D|=500 \mathrm{k}, N_{\text {node }}=10, N_{\text {ideg }}\right.$ $=N_{\text {odeg }}=2$). 94
6.14 Running time of answering queries without RDFS reasoning as a function of the number of nodes $N_{\text {node }}\left(|D|=500 \mathrm{k}, p=50 \%, N_{\text {ideg }}=N_{\text {odeg }}\right.$ $=2$).
6.15 Running time of answering queries without RDFS reasoning as a function of the in-degree $N_{\text {ideg }}$ or out-degree $N_{\text {odeg }}$ of nodes $(|D|=500 \mathrm{k}, p$ $\left.=50 \%, N_{\text {node }}=10\right)$.
6.16 The quantity $E\left(N_{\mathrm{bn}(\mathrm{m})}\right) \times N_{\mathrm{node}}$, which is proportional to the expected running time of calculating the probabilities of the solutions to a query97
6.17 Running time of answering queries with RDFS reasoning as a function of the data size $|D|\left(p=50 \%, N_{\text {node }}=10, N_{\text {ideg }}=N_{\text {odeg }}=2\right)$. 98
6.18 Running time of answering queries with RDFS reasoning as a function of the percentage of uncertain data $p\left(|D|=50 \mathrm{k}, N_{\text {node }}=10, N_{\text {ideg }}=\right.$ $N_{\text {odeg }}=2$)
6.19 Running time of answering queries with RDFS reasoning as a function of the number of nodes $N_{\text {node }}\left(|D|=50 \mathrm{k}, p=50 \%, N_{\text {ideg }}=N_{\text {odeg }}=2\right)$.100
6.20 Running time of answering queries with RDFS reasoning as a function of the in-degree $N_{\text {ideg }}$ or out-degree $N_{\text {odeg }}$ of nodes $(|D|=50 \mathrm{k}, p=$ $\left.50 \%, N_{\text {node }}=10\right)$
$6.21 E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\text {node }}$ per solution as a function of $|D|, N_{\text {sol }}$, and $N_{j}(p=$ $\left.50 \%, N_{\text {node }}=10, q=19.5 \%,\left|G_{\text {ext }}\right|=4\right)$.102
6.22 $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\text {node }}$ per solution as a function of $p, N_{\text {sol }}$, and $N_{j}(|D|=$ $\left.50 \mathrm{k}, N_{\text {node }}=10, q=19.5 \%,\left|G_{\text {ext }}\right|=4\right)$.103
$6.23 E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\text {node }}$ per solution as a function of $N_{\text {node }}, N_{\text {sol }}$, and $N_{j}(|D|$ $\left.=50 \mathrm{k}, p=50 \%, q=19.5 \%,\left|G_{\text {ext }}\right|=4\right) \ldots \ldots \ldots$

List of Tables

1.1 RDF triples and their meanings. 2
2.1 RDFS vocabulary and its uses. 7
2.2 RDFS semantic conditions 8
2.3 RDFS axiomatic triples. 8
2.4 RDFS inference rules 9
2.5 Comparison among the probabilistic models for RDF. 15
3.1 Example of a consistent pRDFS theory $\left(D_{1}, \mathcal{P}_{1}, \theta_{1}\right)$. 22
3.2 A satisfying interpretation I of the pRDFS theory in Table 3.1, where $A=$ RDFS axiomatic triples $\cup\left\{d_{1}, d_{2}, \ldots, d_{10}\right\}$. 23
3.3 Example of an inconsistent pRDFS theory ($D_{2}, \mathcal{P}_{2}, \theta_{2}$). 24
3.4 Data D_{3} used to illustrate the concepts of justifications and how to find the justifications, where p, q, r, and s are properties. u and v are individuals. 26
3.5 All possible chains of inference rules that derive instance triples given that the schema data H are equal to the RDFS closure of H. 27
4.1 Truth table for $\bigwedge_{j \in J}, \bigwedge_{j \in J^{\prime}} j$, and $\bigwedge_{j \in J} j \vee \bigwedge_{j \in J^{\prime}} j$, where J and J^{\prime} are non-minimal and minimal justifications for an RDF triple respectively and $J \models_{r d f s} J^{\prime}$. 42
4.2 Data D_{4} used to illustrate the operation of IS-CONSISTENT ${ }_{\text {inc }}$ (Algo- rithm 9), where p, q, and r are properties. u and v are individuals. 52
4.3 Data D_{5} used to illustrate the operation of IS-CONSISTENT ${ }_{\text {inc }}$ (Algo- rithm 9), where p, q, r, and s are properties. u and v are individuals. 53
4.4 Time complexity of the consistency checking algorithm IS-CONSISTENT (Algorithm 7). 58
4.5 Time complexity of the incremental consistency checking algorithm IS-CONSISTENT $_{\text {inc }}$ (Algorithm 9). 58
5.1 Example of an extended SPARQL query. 60
5.2 pRDFS theory ($D_{6}, \mathcal{P}_{6}, \theta_{6}$) used to illustrate the evaluation of an ex- tended SPARQL query 68
5.3 Intermediate results of the evaluation of the extended SPARQL query in Table 5.1 on the pRDFS theory $\left(D_{6}, \mathcal{P}_{6}, \theta_{6}\right)$ in Table 5.2. 69
6.1 Data settings. The default values are in bold. 75
6.2 Data D_{7} used to illustrate the generation of uncertain data. 76
6.3 Extended BSBM queries $1,5,6$, and 10 81
6.4 Namespace prefixes. 82
6.5 Number of solutions obtained by executing the LUBM queries with different reasoning against the LUBM data at the data size of 100 k 82
6.6 Extended LUBM queries $1,3,4,5,6,7$, and 8 83
6.7 Extended LUBM queries 9 and 14. 84
6.8 Numbers of solutions to the LUBM queries $1,3,4,5$, and 7. They do not change with the data size $|D|$. 84
6.9 Properties of queries and their solutions (n / a : not applicable). 86
6.10 Settings for $N_{j}, q,\left|G_{\text {ext }}\right|$, and $N_{\text {sol }}$ in the computation of $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right)$, 102
6.11 Probability calculation of the matched data of a solution to LUBM query 9 107

List of Algorithms

1 FIND-MIN-JUST ${ }^{*}$ inst (t, D) finds all minimal justifications for an instance triple t in data D, where the schema data H of D equal the RDFS closure of H. 29

2 FIND-MIN-JUST $_{\text {schema }}(t, D)$ finds all minimal justifications for a schema triple t in data D. 31
3 FIND-MIN-JUST subxof (t, D) finds all minimal justifications for a schema triple t whose property is either rdfs: subPropertyOf or rdfs: subClassOf in data D. 32
$4 \quad \operatorname{IS}^{-M I N I M A L}$ subxof (J, D) checks if a justification J for an RDF triple whose property is either rdfs: subPropertyOf or rdfs: subClassOf in data D is minimal or not.33

5 COMPU-CLOSURE schema (H) computes the RDFS closure of schema data H.33

6 FIND-MIN-JUST inst (t, D) finds all minimal justifications for an instance triple t in data D.36

7 IS-CONSISTENT $((D, \mathcal{P}, \theta))$ determines if a pRDFS theory (D, \mathcal{P}, θ) is consistent or not.43
$8 \quad$ IS-CONSISTENT $_{\text {trueschema }}((D, \mathcal{P}, \theta))$ determines if a pRDFS theory (D, \mathcal{P}, θ) is consistent or not, where the schema data of D are true.43
$9 \quad$ IS-CONSISTENT $\mathrm{inc}_{\text {inc }}((D, \mathcal{P}, \theta), t)$ determines if a consistent pRDFS theory (D, \mathcal{P}, θ) is still consistent after adding an RDF triple $t \notin D$ and its probability information to the theory.45

FIND-TRIPLE-JUST-PAIR inst (t, D) finds all pairs of an RDF triple d in data D and a minimal justification J for d in $((D \cup\{t\}) \backslash\{d\})$ such that $t \in J$, where t is an instance triple not in D47

11 REPLACE-DERIVED-TRIPLE(PAIRS, D) replaces each derived schema triple t in PAIRS with a minimal justification for t in data D. 48

FIND-ITRIPLE-JUST-PAIR schema (t, D) finds all pairs of an instance triple d in data D and a minimal justification J for d in $((D \cup\{t\}) \backslash\{d\})$ such that $t \in J$, where t is a schema triple not in D (Part 1).49

13 FIND-ITRIPLE-JUST-PAIR schema (t, D) finds all pairs of an instance triple d in data D and a minimal justification J for d in $((D \cup\{t\}) \backslash\{d\})$ such that $t \in J$, where t is a schema triple not in D (Part 2).50

14 FIND-STRIPLE-JUST-PAIR schema (t, D) finds all pairs of a schema triple d in data D and a minimal justification J for d in $((D \cup\{t\}) \backslash\{d\})$ such that $t \in J$, where t is a schema triple not in D. 51

Notations

Symbol	Description
\mathbb{C}	set of classes
(D, \mathcal{P}, θ)	pRDFS theory
D	set of schema and instance triples
$D_{\text {ext }}$	instance of a pRDFS theory
$\mathrm{DJ}(x, X)$	disjunction of all justifications for an RDF triple x in data X
\mathcal{F}	propositional formula
G	graph pattern
$G_{\text {ext }}$	extended graph pattern
H	set of schema triples
II	set of individuals
$\operatorname{JUST}(x, X)$	set of all justifications for an RDF triple x in data X
$\operatorname{JUST}_{\text {min }}(x, X)$	set of all minimal justifications for an RDF triple x in data X
\mathbb{L}	set of literals
$M^{\text {op }}$	sequence of solutions after applying SPARQL operator op
$N_{\text {ideg }}$	in-degree of nodes
N_{j}	number of minimal justifications
$N_{\text {node }}$	number of nodes in a Bayesian networks
$N_{\text {odeg }}$	out-degree of nodes
$N_{\text {sol }}$	number of solutions
p	percentage of uncertain data
\mathcal{P}	set of probability distributions
P_{X}	probability distribution over data X
\mathbb{P}	set of properties
$\operatorname{Pr}(x)$	probability of x
$\operatorname{Pr}_{\text {lower }}(x)$	lower probability of x
$P r_{\text {upper }}(x)$	upper probability of x

q	percentage of derived data
Q	SPARQL query
$Q_{\text {ext }}$	extended SPARQL query
R	set of instance triples
rdfs-closure(X)	RDFS closure of data X
\mathbf{T}, \mathbf{F}	true, false
\mathbb{U}	set of URI references
V	set of query variables
W	RDFS interpretation
\mathbb{W}	set of all RDFS interpretations
$\|X\|$	number of elements in the set X
Γ_{μ}	set of alternative matched data of the solution μ
$\mu_{i}^{\text {op }}$	i th solution in the sequence of solutions $M^{\text {op }}$
τ	truth value assignment
θ	function mapping an RDF triple to its probability distribution

Chapter 1

Introduction

1.1 Motivation of Research

Resource Description Framework (RDF) [39] is a basic data model for the Semantic Web [7], the contents of which are machine-readable. An RDF dataset is a set of RDF triples, and an RDF triple is a triple (subject, property, object), where the subject is a resource, the object is a resource or a literal, and the property (also called predicate) specifies the relationship between the subject and the object. Uniform Resource Identifier (URI) references [6] are used to name the resources and the properties of the RDF triples.

RDF Schema (RDFS) [11] is an extension of RDF. It provides a vocabulary to describe application-specific classes and properties, class and property hierarchies, and which classes and properties are used together. This defines the meaning of data and enables machines to perform automated reasoning on the data. Table 1.1 shows five RDF triples and their meanings, where abbreviations are used for URI references and

Symbol	RDF triples	Meaning
d_{1}	(University, rdf:type, rdfs:Class)	University is a class.
d_{2}	(degreeFrom, rdf:type, rdf:Property)	degreeFrom is a property.
d_{3}	(degreeFrom, rdfs:range, University)	The range of degreeFrom is a University.
d_{4}	(John, degreeFrom, PolyU)	John has a degree from PolyU.
d_{5}	(PolyU, rdf:type, University)	PolyU is a University.

Table 1.1: RDF triples and their meanings.
the words with prefixes rdf: and rdfs: are in the RDF and RDFS vocabularies respectively. In this example, RDF triples d_{3} and d_{4} entail RDF triple d_{5} by RDFS reasoning. In recent years, RDF has become popular. The inter-linked RDF datasets published following the Linked Data practices [5] form the Web of Data. As of August 2013, there are 62 billion RDF triples from 870 datasets [2]. The contents of these datasets are diverse. They include data extracted from Wikipedia [1], bioinformatics data [4], book data [9], music, television and radio programmes [40], etc.

Many applications produce uncertain data. For example, an automatic data integration system [23] may return a ranked list of alternative RDF triples for the same piece of information because of the conflicting data obtained from different data sources. A score is computed for each alternative based on the accuracy, reliability, and interdependence of the data sources, and it reflects the degree of belief that the alternative is the correct one. In automatic information extraction [31], a system may return a list of alternative RDF triples and their probabilities of being true for each piece of extracted information because of the imperfect extraction process. In sensor networks [22], data from the sensors are approximate as they are acquired at discrete time and space. Moreover, they are correlated. Temperature data from sensors in close proximity to each other are likely to be correlated. Temperature and voltage data from a single sensor could also be correlated.

Probabilistic models [27, 28, 59, 37, 44] have been proposed for the uncertain RDF data. However, they either have limited capabilities to model correlated data $[59,37]$ or ignore the semantics of the data $[27,28,44]$. We argue that being able to model correlated RDF data is necessary. First, RDF data using the RDFS vocabulary are correlated. Assume that the RDF triples in Table 1.1 are uncertain. If both d_{3} and d_{4} are true, then d_{5} is also true according to the RDFS semantics. Hence, the probability that $d_{3}=$ true, $d_{4}=$ true, and $d_{5}=$ false should be zero. RDF triples d_{3}, d_{4}, and d_{5} are correlated. Second, correlated data occur in practice. The data generated in the applications mentioned earlier are correlated.

The work described in this thesis is about modeling uncertain correlated RDF data. It also examines the issues arising from the RDFS semantics like the consistency of the uncertain data and the probability calculation of derived data.

1.2 Contributions

The first contribution of this thesis is a probabilistic model for RDF which models the uncertainties of correlated RDF data. Representing and performing probabilistic inference on correlated data are expensive. We use Bayesian networks to represent the correlated data and probabilistic logic sampling to perform approximate inference.

The second contribution is a consistency checking algorithm which checks if the probability distribution of the correlated RDF data satisfies the RDFS semantics. Moreover, for data that are frequently updated, we provide an incremental consistency checking algorithm which performs fast rechecking each time the data are updated.

The third contribution is a query evaluation algorithm. We extend the query to the uncertain data, and an answer to the extended query includes the solutions to the query pattern and the probabilities of the solutions. For solutions that contain derived data, their probabilities cannot be specified using a single probability value because the probability distribution of the derived data is not fully specified. In this case, the probability bounds of the solutions are computed.

The forth contribution is the notion of minimal justifications for RDF triples, which is used to reduce the computations of both the consistency checking and query evaluation algorithms.

The final contribution is an experimental evaluation of the running time performance of consistency checking and query evaluation with respect to the data size, the percentage of uncertain data, the size of correlated data, and the complexity of the probability distributions. Moreover, we present three models for predicting the average-case running time of probability calculations in consistency checking, query evaluation with and without RDFS reasoning.

1.3 Organization

The remainder of this thesis is organized as follows.

- Chapter 2 presents the background knowledge of this research, which includes RDF, RDFS, SPARQL, a review of probabilistic models for RDF, and Bayesian networks.
- Chapter 3 describes the syntax and semantics of our proposed probabilistic model
for RDF. It also introduces the notion of justifications and describes how to compute them. Justifications are used in consistency checking and query evaluation.
- Chapter 4 presents a consistency checking algorithm to check if the uncertain data in our model satisfy the RDFS semantics or not. For data that are frequently updated, it presents an incremental consistency checking algorithm which performs fast rechecking each time the data are updated.
- Chapter 5 extends the SPARQL queries for our proposed model. It defines the answers to the extended queries and describes how to compute them.
- Chapter 6 presents an experimental evaluation of the running time performance of the consistency checking algorithms in Chapter 4 and the query evaluation algorithm in Chapter 5.
- Chapter 7 concludes this thesis and suggests some future work.

Chapter 2

Background

This chapter presents the background knowledge of this research, which includes Resource Description Framework (RDF), RDF Schema (RDFS), and SPARQL, which is the World Wide Web Consortium (W3C) query language for RDF. It also reviews the probabilistic models for RDF. Finally, it describes Bayesian networks and probabilistic logic sampling, which are chosen in our proposed probabilistic model for RDF to represent probability distributions and perform probabilistic inference respectively.

2.1 RDF and RDFS

Resource Description Framework (RDF) [39] is a World Wide Web Consortium (W3C) Recommendation. It is a data model that uses Uniform Resource Identifier (URI) references [6] to identify things and uses RDF triples to make statements. In the latest development of RDF [17], URIs are replaced by Internationalized Resource Identifiers (IRIs) [24], which are a generalization of URIs.

Vocabulary	Uses
rdf:type, rdfs:Class	Define classes
rdf:type, rdf:Property	Define properties
rdfs:subClassOf	Define class hierarchies
rdfs:subPropertyOf	Define property hierarchies
rdfs:domain, rdfs:range	Define which classes and properties are used together

Table 2.1: RDFS vocabulary and its uses.

Let \mathbb{U} be a set of URI references and contain three mutually disjoint sets: classes \mathbb{C}, properties \mathbb{P}, and individuals \mathbb{I}. Let \mathbb{L} be a set of literals. An RDF triple is defined as follows.

Definition 1 (RDF Triple). An RDF triple is a triple (s, p, o) in $\mathbb{U} \times \mathbb{P} \times(\mathbb{U} \cup \mathbb{L})$, where \mathbb{U}, \mathbb{P}, and \mathbb{L} are sets of URI references, properties, and literals respectively. The elements of the RDF triple s, p, and o are called the subject, property, and object respectively.

RDF triples are classified according to their subjects. An RDF triple is a schema triple if its subject is in $(\mathbb{C} \cup \mathbb{P})$. It is an instance triple if its subject is in \mathbb{I}. Schema triples describe classes and properties, and they are more permanent and definitional. Instance triples describe individuals, and they are more dynamic.

RDF data are a set of RDF triples. They can be viewed as a directed graph. The subject and object of each RDF triple represent vertices of the graph. The (subject, object) pair of each RDF triple represents a directed edge of the graph, and the label of the directed edge is the property of the RDF triple.

RDF Schema (RDFS) [11] is an extension of RDF. It provides a vocabulary to describe application-specific classes and properties, class and property hierarchies, and which classes and properties are used together. Table 2.1 shows the RDFS vocabulary

1	If (? p, rdfs: domain, ? ${ }^{\text {a }}$, $(? u, ? p, ? w) \in W$, then $(? u$, rdf: type, $? x) \in W$.
2	If (? p, rdfs: range, ? x), (? $u, ? p, ? v) \in W$, then (? 2 , rdf: type, ? x) $\in W$.
3	If (? p, rdfs: subPropertyOf, ? q), (? q, rdfs: subPropertyOf, $? r) \in W$, then $(? p$, rdfs: subPropertyOf, $? r) \in W$.
4	If (? p, rdf: type, rdf: Property) $\in W$, then (? p, rdfs: subPropertyOf, ? p) $\in W$.
5	If (? p, rdfs: subPropertyOf, $? q$), then ($? p$, rdf: type, rdf: Property), $(? q$, rdf: type, rdf: Property $) \in W$ and $\forall ? u \forall ? w((? u, ? p, ? w) \in W \Rightarrow(? u, ? q, ? w) \in W)$.
6	If (? x, rdfs: subClassOf, ? y), then (? x, rdf: type, rdfs: Class), $(? y$, rdf: type, rdfs: Class $) \in W$ and $\forall ? u((? u$, rdf: type, $? x) \in W \Rightarrow(? u$, rdf: type, $y) \in W)$.
7	If (? x, rdf: type, rdfs: Class) $\in W$, then (? 2 , rdfs: subClassOf, ? x) $\in W$.
8	If (? x, rdfs: subClassOf, ? y), (? y, rdfs: subClassOf, ? z) $\in W$, then (? x, rdfs: subClassOf, ? z) $\in W$.
9	RDFS axiomatic triples $\subseteq W$.

Table 2.2: RDFS semantic conditions.

(rdfs:Resource, rdf:type, rdfs:Class)	(rdf:type, rdf:type, rdf:Property)
(rdfs:Literal, rdf:type, rdfs:Class)	(rdf:type, rdfs:domain, rdfs:Resource)
(rdfs:Class, rdf:type, rdfs:Class)	(rdf:type, rdfs:range, rdfs:Class)
(rdf:Property, rdf:type, rdfs:Class)	(rdfs:subPropertyOf, rdf:type, rdf:Property)
(rdfs:domain, rdf:type, rdf:Property)	(rdfs:subPropertyOf, rdfs:domain, rdf:Property)
(rdfs:domain, rdfs:domain, rdf:Property)	(rdfs:subPropertyOf, rdfs:range, rdf:Property)
(rdfs:domain, rdfs:range, rdfs:Class)	(rdfs:subClassOf, rdf:type, rdf:Property)
(rdfs:range, rdf:type, rdf:Property)	(rdfs:subClassOf, rdfs:domain, rdfs:Class)
(rdfs:range, rdfs:domain, rdf:Property)	(rdfs:subClassOf, rdfs:range, rdfs:Class)
(rdfs:range, rdfs:range, rdfs:Class)	

Table 2.3: RDFS axiomatic triples.
and its uses. RDFS reasoning leverages the vocabulary to derive additional RDF triples from the RDF triples explicitly declared in the data.

2.1.1 Semantics

An RDFS interpretation denoted by W is a set of RDF triples that satisfies the semantic conditions [39] in Table 2.2. For simplicity, we ignore the semantics of blank nodes, containers, and datatypes. Among these conditions, $? x, ? y$, and $? z$ are variables for classes. $? p, ? q$, and $? r$ are variables for properties. $? u$ and $? v$ are variables for individuals. Finally, ? w is a variable for both individuals and literals. The last semantic

Names	Rules
rdfs2	
	(? u, rdf: type, ? x)
rdfs3	$(? p$, rdfs: range, $? x)(? u, ? p, ? v)$
	(?v, rdf: type, ? x)
rdfs5	(?p, rdfs: subPropertyOf, ?q) (?q, rdfs: subPropertyOf, ?r)
	(? p, rdfs: subPropertyOf, ? r)
rdfs6	(?p, rdf: type, rdf: Property)
	(? p, rdfs: subPropertyOf, ? p)
rdfs7	(?p, rdfs: subPropertyOf, ?q) (?u, ?p, ?w)
	(? $u, ? q, ? w)$
rdfs9	(?x, rdfs: subClassOf, ? y) (?u, rdf: type, ? x)
	(?u, rdf: type, ?y)
rdfs 10	(? x, rdf: type, rdfs: Class)
	(?x, rdfs: subClassOf, ? x)
rdfs 11	(?x, rdfs: subClassOf, ?y) (?y, rdfs: subClassOf, ?z)
	(? x, rdfs: subClassOf, ?z)

Table 2.4: RDFS inference rules.
condition says that RDFS axiomatic triples are in all RDFS interpretations. RDFS axiomatic triples define the classes, domains, and ranges of the RDFS vocabulary, and they are shown in Table 2.3.

An RDFS interpretation W satisfies an RDF triple d iff $d \in W$. W satisfies a set of RDF triples D iff W satisfies every $d \in D$. A set of RDF triples D is consistent iff it has a satisfying interpretation. A set of RDF triples D rdfs-entails $(\|=r d f s)$ an RDF triple d iff every satisfying interpretation of D is a satisfying interpretation of d. A set of RDF triples D rdfs-entails another set of RDF triples D^{\prime} iff every satisfying interpretation of D is a satisfying interpretation of D^{\prime}.

2.1.2 Inference Rules

Table 2.4 shows the RDFS inference rules [39] that correspond to the semantic conditions shown in Table 2.2. Among these rules, the things that the variables ? $x, ? y, ? z$, $? p, ? q, ? r, ? u, ? v$, and $? w$ stand for are the same as those in the semantic conditions.

RDF triples above the line are called the premises, and RDF triples below the line are called the conclusions.

These rules can be divided into two groups. Rules rdfs5, rdfs6, rdfs 10 and rdfs11 derive schema triples, and their premises contain schema triples only. Rules rdfs2, rdfs3, rdfs7 and rdfs9 derive instance triples.

2.1.3 RDFS Closure

Definition 2 (RDFS closure). The RDFS closure of data D denoted by rdfs-closure(D) is the union of D, the set of RDFS axiomatic triples, and the set of RDF triples generated by applying the rules in Table 2.4 recursively.

2.1.4 Other Terms

An RDF triple d is called an entailed triple in data D if it is entailed by $(D \backslash\{d\})$. It is called an entailing triple in data D if a subset of D containing d entails an RDF triple in $(D \backslash\{d\})$, but the subset cannot entail the RDF triple in the absence of d. An RDF triple can both be an entailed and entailing triple in D.

An RDF triple is called a declared triple if it is in data D. It is called a derived triple if it is entailed by D and is not in D.

2.2 SPARQL

2.2.1 SPARQL Query

SPARQL [50] is the W3C query language for RDF. We focus on one common form of SPARQL queries, which is defined as follows. Other query languages for RDF include RDF Data Query Language (RDQL) [51] and Sesame RDF Query Language (SeRQL) [12].

Definition 3 (Triple Pattern). A triple pattern is an RDF triple any member of which can be a variable. It is a member of $(\mathbb{U} \cup V) \times(\mathbb{P} \cup V) \times(\mathbb{U} \cup \mathbb{L} \cup V)$, where \mathbb{U}, \mathbb{P}, \mathbb{L}, and V are sets of URI references, properties, literals, and variables respectively.

Definition 4 (Graph Pattern). A graph pattern denoted by G is a set of triple patterns.

Definition 5 (SPARQL Query). We denote by $Q\left(V_{\text {sel }}, G\right.$, isDistinct) a SPARQL query with a syntax "SELECT (DISTINCT) $V_{\text {sel }}$ WHERE G ", where G is a graph pattern, $V_{\text {sel }}$ is a subset of query variables in G, and isDistinct is a Boolean variable with a domain $\{\boldsymbol{T}, \boldsymbol{F}\}$. The DISTINCT keyword is optional, and the variable isDistinct assigned \boldsymbol{T} and \boldsymbol{F} indicates the presence and absence of the DISTINCT keyword respectively.

2.2.2 Answer to a SPARQL Query

An answer to a SPARQL query $Q\left(V_{\text {sel }}, G\right.$, isDistinct) on RDF data D is a sequence of solutions, and a solution is the restriction of a solution to G on D to the set of query variables $V_{\text {sel }}$. The answer does not contain duplicate solutions if the variable isDistinct is true. A solution to G on D denoted by μ is a partial function from V to $(\mathbb{U} \cup \mathbb{L})$ such
that $D \models_{r d f s} \mu(G)$ or equivalently rdfs-closure $(D) \supseteq \mu(G)$ (with RDFS reasoning) or $D \supseteq \mu(G)$ (without RDFS reasoning), where V, \mathbb{U}, and \mathbb{L} are sets of query variables, URI references and literals respectively. $\mu(G)$ is the set of RDF triples obtained by replacing every variable v in G with $\mu(v)$.

2.2.3 Evaluation of a SPARQL Query

An evaluation of a SPARQL query $Q\left(V_{\text {sel }}, G\right.$, isDistinct) on RDF data D consists of four steps.

1. Find the set of all solutions to the graph pattern G on D. In SPARQL algebra, the set of solutions is $\operatorname{BGP}(G)$.
2. Convert the set of solutions $\operatorname{BGP}(G)$ into a sequence of solutions $M^{\text {ToList }}$. In SPARQL algebra, $M^{\text {ToList }}=\operatorname{ToList}(\operatorname{BGP}(G))$.
3. Convert the sequence of solutions $M^{\text {ToList }}$ into a sequence of solutions $M^{\text {Project }}$, where the i th solution in $M^{\text {Project }}$ is the restriction of the i th solution in $M^{\text {ToList }}$ to the set of query variables $V_{\text {sel }}$. In SPARQL algebra, $M^{\text {Project }}=\operatorname{Project}\left(M^{\text {ToList }}\right.$, $V_{\text {sel }}$).
4. If the variable isDistinct is true, create a sequence of solutions $M^{\text {Distinct }}$ by removing duplicate solutions from the sequence of solutions $M^{\text {Project }}$. In SPARQL algebra, $M^{\text {Distinct }}=\operatorname{Distinct}\left(M^{\text {Project }}\right)$. Otherwise, leave the sequence $M^{\text {Project }}$ unmodified, that is, $M^{\text {Distinct }}=M^{\text {Project }}$.

The answer to the SPARQL query is the sequence of solutions $M^{\text {Distinct }}$.

2.3 Review of Probabilistic Models for RDF

This section reviews the probabilistic models for RDF. In relational databases, RDF data can be modeled as a relation with attributes "subject", "property", and "object". However, RDFS reasoning is not supported. Probabilistic models for relational databases encode the uncertainty about the attribute of a tuple [3] or about the existence of a tuple [19, 26, 20, 52]. The model in [3] associates possible attribute values of a tuple with probability values. The models in $[19,26,20]$ associate each tuple with a probability value. In [19, 26], tuples are assumed to be independent of each other. In [20], tuples are partitioned into blocks. Tuples from the same block are mutually exclusive, and tuples from different blocks are independent of each other. The model in [52] associates each tuple with a random variable, and the joint probability distribution of all the variables is described compactly using a factored representation [48].

An RDF vocabulary is proposed in $[27,28]$ to represent the uncertainty about the truth values of correlated n-ary relations [46]. A n-ary relation is represented by a group of RDF triples, and an RDF triple is a special case of a n-ary relation. The probability distributions of correlated n -ary relations are represented by Bayesian networks [48], and the nodes of the networks are n-ary relations. RDFS reasoning is not supported. A query for this representation is asking the probability of some n-ary relation of interest given the truth values of some n-ary relations.

Probabilistic RDF (pRDF) [59] models the uncertainty about the object of an RDF triple. The probability of a conjunction of RDF triples is computed using triangular norms in fuzzy logic [25]. pRDF supports the inference of the property rdfs:subPropertyOf
from the RDFS vocabulary (rules rdfs5 and rdfs7 in Table 2.4) and application-specific transitive properties. If a property p_{t} is transitive, then the RDF triple (x, p_{t}, z) can be derived from the RDF triples $\left(x, p_{t}, y\right)$ and $\left(y, p_{t}, z\right)$. The query proposed for pRDF has a query pattern of the form (s, p, o, λ), where (s, p, o) is an RDF triple, λ is a probability value, and at most one member of the query pattern can be a variable. A solution to the query is a binding of the query variable such that the query pattern matches the declared data or the data derived by the inference of subproperties or transitive properties and the probability of the matched data is above λ.

Probabilistic RDF database (pRDFDB) [37] models the uncertain RDF triples that are statistically independent of each other. It assigns a probability value to each uncertain RDF triple. pRDFDB supports the inference of transitive properties. However, the independence assumption among the RDF triples may violate the RDFS semantics if the RDFS vocabulary is used. Take the uncertain RDF triples $d_{1}=($ PolyU, rdf: type, University), $d_{2}=($ degreeFrom, rdfs: range, University $)$, and $d_{3}=($ John, degreeFrom, PolyU) as an example. In pRDFDB, probability values p_{1}, p_{2}, and p_{3} are assigned to these uncertain RDF triples respectively. The probability that $d_{1}=$ false, $d_{2}=$ true, and $d_{3}=$ true is $\left(1-p_{1}\right) p_{2} p_{3}$, which could be non-zero. However, it should be zero since $\left\{d_{2}, d_{3}\right\}$ rdfs-entails d_{1} by rule rdfs3. See Table 2.4 for the rule. The SPARQL query with a basic graph pattern is proposed for pRDFDB. The answer to the query includes the solutions to the basic graph pattern and the probabilities of the solutions.

Probabilistic RDF graph database (pRDFGDB) [44] views RDF data as a directed graph. It assumes the directed edges of the graph are deterministic and models the uncertainty of the label of a vertex of the graph given the labels of its parent vertices,

Probabilistic model	Uncertainty modeled	Inference supported	Query
Probabilistic relational database $[3,19,26,20,52]$	Element of an RDF triple [3]; Truth values of independent RDF triples [19, 26]; Truth values of mutually exclusive RDF triples [20]; Truth values of correlated RDF triples [52]	None	SQL
Fukushige's vocabulary [27, 28]	Truth values of correlated n-ary relations	None	Probability of the n-ary relation of interest given the truth values of some n-ary relations
Probabilistic RDF (pRDF) [59]	Object of an RDF triple	rdfs:subPropertyOf property,	Triple pattern
Probabilistic RDF database (pRDFDB) [37]	Truth values of independent RDF triples	Transitive property	Graph pattern
Probabilistic RDF graph database (pRDFGDB) [44]	Label of a vertex given the labels of its parent vertices	None	Graph pattern
Probabilistic RDFS (pRDFS) (Chapter 3)	Truth values of correlated RDF triples	RDFS (Table 2.4)	Graph pattern

Table 2.5: Comparison among the probabilistic models for RDF.
which are vertices pointing to the vertex via directed edges. pRDFGDB does not support any inference. The SPARQL query with a basic graph pattern is proposed for pRDFGDB. The answer to the query is the solutions to the graph pattern, the probabilities of which are greater than a user-specified value.

Table 2.5 compares the probabilistic models for RDF in terms of the uncertainty modeled, inference supported, and query. Our proposed model probabilistic RDFS (pRDFS) is described in Chapter 3.

2.4 Bayesian Network

Bayesian networks [48] are widely used in modeling uncertain knowledge. The application domains include medical diagnosis [33, 32, 34], information retrieval [21], ecosystem services [41], forensic DNA profiling evidence [8], dependability, risk analysis, and maintenance [60].

2.4.1 Representation

A Bayesian network is a directed, acyclic graph. Each node in the network represents a random variable X_{i} and is annotated with a conditional probability distribution $\mathrm{P}\left(X_{i}\right.$ $\left.\mid \operatorname{Parents}\left(X_{i}\right)\right)$, where $\operatorname{Parents}\left(X_{i}\right)$ are the parents of X_{i}. A node X_{j} is a parent of X_{i} if there is a directed edge from X_{j} to X_{i}. The in-degree of a node X_{i} is the number of edges whose heads are X_{i}, and the out-degree of a node X_{i} is the number of edges whose tails are X_{i}.

A Bayesian network over random variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ represents the joint probability distribution over $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ denoted by $\mathrm{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, which is shown in (2.1).

$$
\begin{equation*}
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right) \tag{2.1}
\end{equation*}
$$

The number of values specified for a Bayesian network is usually much smaller than the number of values specified for a full joint probability distribution because of the conditional independence relationships encoded by the structure of the network. A node is independent of its non-descendants given the values of its parents.

2.4.2 Inference

The task of inference generally refers to computing the probability of some assignment of values to the random variables of a Bayesian network given the evidence (an assignment of values to some other random variables of the network). Exact inference like the variable elimination [62] and the conditioning [47] algorithms in unconstrained Bayesian networks is NP-hard [15]. Approximate inference is also NP-hard [18]. We consider one family of approximate inference methods called direct sampling to trade accuracy for speed.

Probabilistic logic sampling [35] creates $N_{\text {sampl }}$ samples of random values for the nodes of a network. For each sample, the random values are generated in the topological ordering, which is an ordering of nodes such that every node comes after its parents in the ordering. The random value for each node is generated from the conditional probability distribution of the node given the random values of its parents that have already been generated. The probability of the assignment of values is approximated by the number of samples matching both the assignment and the evidence divided by the number of samples matching the evidence.

Samples that do not match the evidence are rejected in probability logic sampling. Likelihood weighting [29, 53] makes an improvement to probabilistic logic sampling. It only generates samples that match the evidence, and each sample is weighted by a likelihood term. In this thesis, only the prior probability is computed, so the computations of both methods are the same.

The minimum value of $N_{\text {sampl }}$ depends on the required accuracy of the estimate of
the probability. We use the Hoeffding bound [36] to determine the minimum number of samples, and the equation for this is shown in (2.2). The probability that the estimate deviates from the true value more than ϵ is equal to or less than δ. The minimum number of samples grows logarithmically in $1 / \delta$ and quadratically in $1 / \epsilon$.

$$
\begin{equation*}
N_{\text {sampl }} \geq \frac{\ln (2 / \delta)}{2 \epsilon^{2}} . \tag{2.2}
\end{equation*}
$$

2.4.3 Learning

Bayesian networks are constructed by domain experts, who identify the variables, determine the relationships of direct influence among the variables, and specify the conditional probability table of each variable. They can also be learned from data, and this task is NP-hard [14]. One family of methods is called score-and-search methods [16, 42, 43]. It specifies a scoring function that measures how well a network fits the data and a greedy search procedure that finds the network with the locally best score. Another family of methods is called constraint-based methods [54, 55]. It performs statistical and causal inference tests on the data to discover the conditional independence and dependence relationships among the data and recovers the network structure from these relationships. In this thesis, we assume that the probability distributions of uncertain data encoded by Bayesian networks are given.

Chapter 3

Probabilistic Model pRDFS

This chapter introduces a probabilistic model for RDF called probabilistic RDFS (pRDFS), which allows statistical relationships among correlated RDF triples to be encoded [57]. The syntax and semantics of the model are described in Sections 3.1 and 3.2 respectively. Section 3.3 describes algorithms of finding the data that entail an RDF triple of interest. The algorithms are used in consistency checking and query evaluation described in later chapters.

3.1 Syntax

A probabilistic RDFS (pRDFS) theory has three parts. Firstly, it has a set of RDF triples. Secondly, it has a set of independent probability distributions over subsets of the RDF triples. The RDF triples are treated as random variables with a domain \{true, false $\}$ abbreviated as $\{\mathbf{T}, \mathbf{F}\}$. Thirdly, it has a function that maps each RDF triple to its corresponding probability distribution. A pRDFS theory is formally defined as
follows.

Definition 6 (pRDFS theory). A pRDFS theory is a triple (D, \mathcal{P}, θ), where

1. D is a set of RDF triples. $\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ is a partition of D, any two different elements of which are statistically independent.
2. $\mathcal{P}=\left\{P_{D_{1}}, P_{D_{2}}, \ldots, P_{D_{n}}\right\}$ is a set of probability distributions, where $P_{D_{i}}$: $\{\boldsymbol{T}, \boldsymbol{F}\}^{\left|D_{i}\right|} \rightarrow[0,1]$ is a probability distribution over D_{i}.
3. $\theta: D \rightarrow \mathcal{P}, d \mapsto P_{D_{i}}$ is a function mapping an RDF triple to its probability distribution, where $d \in D_{i}$.

Let $\tau: D \rightarrow\{\mathbf{T}, \mathbf{F}\}$ be a truth value assignment for data D. It maps each RDF triple in D to a truth value. We define the probability of a truth value assignment for D denoted by $\operatorname{Pr}(\tau)$ as $P_{D}\left(d_{1}=\tau\left(d_{1}\right), d_{2}=\tau\left(d_{2}\right), \ldots, d_{|D|}=\tau\left(d_{|D|}\right)\right)$, where P_{D} is the probability distribution over D and $D=\left\{d_{1}, d_{2}, \ldots, d_{|D|}\right\}$. Because of the independence assumption of the elements of the partition $\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}, \operatorname{Pr}(\tau)=$ $\operatorname{Pr}\left(\left.\tau\right|_{D_{1}}\right) \times \operatorname{Pr}\left(\left.\tau\right|_{D_{2}}\right) \times \cdots \times \operatorname{Pr}\left(\left.\tau\right|_{D_{n}}\right)$, where $\left.\tau\right|_{D_{i}}: D_{i} \rightarrow\{\mathbf{T}, \mathbf{F}\}$ is the restriction of τ to D_{i}.

For a small value of $\left|D_{i}\right|$, the probability distribution over D_{i} can be represented by a table listing the probabilities of all possible truth value assignments for D_{i}. For a large value of $\left|D_{i}\right|$, the probability distribution can be modeled using the Bayesian network (Section 2.4).

Not all RDF triples are allowed to be uncertain or false. RDFS axiomatic triples shown in Table 2.3 are always true. Schema triples (?p rdf: type, rdf: Property) and
(? x rdf: type, rdfs: Class) are assumed to be certain, where $? p$ and $? x$ are variables for properties and classes respectively. Otherwise, some RDF triples may be invalid. By rules rdfs6 and rdfs 10 shown in Table 2.4, it follows that schema triples (?p rdfs: subPropertyOf $? p$) and ($? x$ rdfs: subClassOf $? x$) are also certain.

Example 1 (pRDFS theory). A pRDFS theory is shown in Table 3.1. It has 14 RDF triples (Table 3.1a). The first ten RDF triples are certain and true. Their probabilities of being true are one (Table 3.1c). Suppose that professors Tom and May both specialize in the semantic web. Their chances being the teacher of the course semantic web are equal, and this is specified by the probability distribution $P_{\left\{d_{11}, d_{12}\right\}}$ (Table 3.1d). Students John and Mary have the same interest. Their chances to take the course semantic web are described by the probability distribution $P_{\left\{d_{13}, d_{14}\right\}}$ (Table 3.1e).

3.2 Semantics

We define the pRDFS interpretation, pRDFS satisfaction, and consistency of a pRDFS theory as follows.

Definition 7 (pRDFS interpretation). A pRDFS interpretation is a mapping $I: \mathbb{W} \rightarrow$ $[0,1]$ such that $\sum_{W \in \mathbb{W}} I(W)=1$, where \mathbb{W} is the set of all possible worlds (RDFS interpretations).

A world (RDFS interpretation) W satisfies a truth value assignment τ for data D if and only if the RDF triples assigned true by τ are in W, and the RDF triples assigned false by τ are not in W. Mathematically, W satisfies τ iff $\forall d \in D((\tau(d)=\mathbf{T} \Rightarrow d \in$ $W)) \wedge(\tau(d)=\mathbf{F} \Rightarrow d \notin W))$.

Symbol	RDF triple
d_{1}	(Student, rdf: type, rdfs: Class)
d_{2}	(Professor, rdf: type, rdfs: Class)
d_{3}	(Course, rdf: type, rdfs: Class)
d_{4}	(takesCourse, rdf: type, rdf: Property)
d_{5}	(teacherOf, rdf: type, rdf: Property)
d_{6}	(semanticWeb, rdf: type, Course)
d_{7}	(Tom, rdf: type, Professor)
d_{8}	(May, rdf: type, Professor)
d_{9}	(John, rdf: type, Student)
d_{10}	(Mary, rdf: type, Student)
d_{11}	(Tom, teacherOf, semanticWeb)
d_{12}	(May, teacherOf, semanticWeb)
d_{13}	(John, takesCourse, semanticWeb)
d_{14}	(Mary, takesCourse, semanticWeb)

(a) Set of RDF triples, D_{1}.

d_{i}	Probability
\mathbf{T}	1
\mathbf{F}	0

(c) Probability distribution over d_{i}, $P_{\left\{d_{i}\right\}}$, where $i=1$, $2, \ldots, 10$.

d_{11}	d_{12}	Probability
\mathbf{T}	\mathbf{T}	0
\mathbf{T}	\mathbf{F}	0.5
\mathbf{F}	\mathbf{T}	0.5
\mathbf{F}	\mathbf{F}	0

(d) Probability distribution over $\left\{d_{11}, d_{12}\right\}, P_{\left\{d_{11}, d_{12}\right\}}$.

Probability distribution
$P_{\left\{d_{1}\right\}}$
$P_{\left\{d_{2}\right\}}$
$P_{\left\{d_{3}\right\}}$
$P_{\left\{d_{4}\right\}}$
$P_{\left\{d_{5}\right\}}$
$P_{\left\{d_{6}\right\}}$
$P_{\left\{d_{7}\right\}}$
$P_{\left\{d_{8}\right\}}$
$P_{\left\{d_{9}\right\}}$
$P_{\left\{d_{10}\right\}}$
$P_{\left\{d_{11}, d_{12}\right\}}$
$P_{\left\{d_{13}, d_{14}\right\}}$

(b) Set of probability distributions, \mathcal{P}_{1}.

d_{13}	d_{14}	Probability
\mathbf{T}	\mathbf{T}	0.4
\mathbf{T}	\mathbf{F}	0.1
\mathbf{F}	\mathbf{T}	0.1
\mathbf{F}	\mathbf{F}	0.4

(e) Probability distribution over $\left\{d_{13}, d_{14}\right\}, P_{\left\{d_{13}, d_{14}\right\}}$.

x	$\theta(x)$
d_{1}	$P_{\left\{d_{1}\right\}}$
d_{2}	$P_{\left\{d_{2}\right\}}$
d_{3}	$P_{\left\{d_{3}\right\}}$
d_{4}	$P_{\left\{d_{4}\right\}}$
d_{5}	$P_{\left\{d_{5}\right\}}$
d_{6}	$P_{\left\{d_{6}\right\}}$
d_{7}	$P_{\left\{d_{7}\right\}}$
d_{8}	$P_{\left\{d_{8}\right\}}$
d_{9}	$P_{\left\{d_{9}\right\}}$
d_{10}	$P_{\left\{d_{10}\right\}}$
d_{11}, d_{12}	$P_{\left\{d_{11}, d_{12}\right\}}$
d_{13}, d_{14}	$P_{\left\{d_{13}, d_{14}\right\}}$

(f) Function θ_{1} mapping an RDF triple to it probability distribution.

Table 3.1: Example of a consistent pRDFS theory $\left(D_{1}, \mathcal{P}_{1}, \theta_{1}\right)$.

Definition 8 (pRDFS satisfaction). A pRDFS interpretation I satisfies a pRDFS theory (D, \mathcal{P}, θ) iff the probability of any truth value assignment $\tau: D \rightarrow\{\boldsymbol{T}, \boldsymbol{F}\}$ computed

W	$I(W)$
$A \cup\left\{d_{11}, d_{13}, d_{14}\right\}$	0.2
$A \cup\left\{d_{11}, d_{13}\right\}$	0.05
$A \cup\left\{d_{11}, d_{14}\right\}$	0.05
$A \cup\left\{d_{11}\right\}$	0.2
$A \cup\left\{d_{12}, d_{13}, d_{14}\right\}$	0.2
$A \cup\left\{d_{12}, d_{13}\right\}$	0.05
$A \cup\left\{d_{12}, d_{14}\right\}$	0.05
$A \cup\left\{d_{12}\right\}$	0.2
All other worlds	0

Table 3.2: A satisfying interpretation I of the pRDFS theory in Table 3.1, where $A=$ RDFS axiomatic triples $\cup\left\{d_{1}, d_{2}, \ldots, d_{10}\right\}$.
from the theory satisfies the following equation.

$$
\operatorname{Pr}(\tau)= \begin{cases}\sum_{W \in \mathbb{W}_{\tau}} I(W) & i f\left|\mathbb{W}_{\tau}\right|>0 \tag{3.1}\\ 0 & i f\left|\mathbb{W}_{\tau}\right|=0\end{cases}
$$

where $\mathbb{W}_{\tau}=\{W \in \mathbb{W} \mid W$ satisfies $\tau\}$ is the set of worlds that satisfies τ.

Definition 9 (Consistent pRDFS theory). A pRDFS theory is consistent iff it has a satisfying interpretation.

Example 2 (Consistent pRDFS theory). The pRDFS theory in Table 3.1 has a satisfying interpretation shown in Table 3.2, so it is consistent. The interpretation satisfies (3.1) for all truth value assignments. For example, the truth value assignment τ for the situation that Tom is the teacher of the course semantic web and both John and Mary do not take the course semantic web is $\left\{\left(d_{11}, \boldsymbol{T}\right),\left(d_{12}, \boldsymbol{F}\right),\left(d_{13}, \boldsymbol{F}\right),\left(d_{14}, \boldsymbol{F}\right)\right\}$. The probability of τ is computed as $P_{\left\{d_{11}, d_{12}\right\}}\left(d_{11}=\boldsymbol{T}, d_{12}=\boldsymbol{F}\right) \times P_{\left\{d_{13}, d_{14}\right\}}\left(d_{13}=\boldsymbol{F}, d_{14}=\right.$ $\boldsymbol{F})=0.5 \times 0.4=0.2$. The world that corresponds to this situation is (RDFS axiomatic triples $\left.\cup\left\{d_{1}, d_{2}, \ldots, d_{10}\right\} \cup\left\{d_{11}\right\}\right)$ shown in the forth row of Table 3.2. It is mapped by the interpretation to 0.2, which is the same as the one computed from the theory.

Symbol	RDF triple
d_{1}	(Professor, rdf: type, rdfs: Class)
d_{2}	(Department, rdf: type, rdfs: Class)
d_{3}	(worksFor, rdf: type, rdf: Property)
d_{4}	(headOf, rdf: type, rdf: Property)
d_{5}	(headOf, rdfs: subPropertyOf, worksFor)
d_{6}	(Tom, rdf: type, Professor)
d_{7}	(departmentOfComputing, rdf: type, Department)
d_{8}	(Tom, headOf, departmentOfComputing)
d_{9}	(Tom, worksFor, departmentOfComputing)

(a) Set of RDF triples, D_{2}.

(b) Set of probability distributions, \mathcal{P}_{2}.

d_{i}	Probability
\mathbf{T}	1
\mathbf{F}	0

(c) Probability distribution over d_{i}, $P_{\left\{d_{i}\right\}}$, where $i=1$, $2, \ldots, 7$.

d_{8}	Probability
\mathbf{T}	0.7
\mathbf{F}	0.3

(d) Probability distribution over d_{8}, $P_{\left\{d_{8}\right\}}$.

d_{9}	Probability
\mathbf{T}	0.8
\mathbf{F}	0.2

(e) Probability distribution over d_{9}, $P_{\left\{d_{9}\right\}}$.

x	$\theta(x)$
d_{1}	$P_{\left\{d_{1}\right\}}$
d_{2}	$P_{\left\{d_{2}\right\}}$
d_{3}	$P_{\left\{d_{3}\right\}}$
d_{4}	$P_{\left\{d_{4}\right\}}$
d_{5}	$\left.P_{\left\{d_{5}\right\}}\right\}$
d_{6}	$P_{\left\{d_{6}\right\}}$
d_{7}	$P_{\left\{d_{7}\right\}}$
d_{8}	$P_{\left\{d_{8}\right\}}$
d_{9}	$P_{\left\{d_{9}\right\}}$

(f) Function θ_{2} mapping an RDF triple to it probability distribution.

Table 3.3: Example of an inconsistent pRDFS theory $\left(D_{2}, \mathcal{P}_{2}, \theta_{2}\right)$.

Example 3 (Inconsistent theory). This example shows that the pRDFS theory $\left(D_{2}\right.$, $\left.\mathcal{P}_{2}, \theta_{2}\right)$ shown in Table 3.3 is not consistent. The pRDFS theory has nine RDF triples (Table 3.3a). The first seven RDF triples are true, and their probability distributions are described in Table 3.3c. The last two RDF triples d_{8} and d_{9} are uncertain, and their probability distributions $P_{\left\{d_{8}\right\}}$ and $P_{\left\{d_{9}\right\}}$ are specified in Tables $3.3 d$ and $3.3 e$ respectively.

Consider the truth value assignment $\tau=\left\{\left(d_{1}, \boldsymbol{T}\right),\left(d_{2}, \boldsymbol{T}\right),\left(d_{3}, \boldsymbol{T}\right),\left(d_{4}, \boldsymbol{T}\right),\left(d_{5}\right.\right.$, $\left.\boldsymbol{T}),\left(d_{6}, \boldsymbol{T}\right),\left(d_{7}, \boldsymbol{T}\right),\left(d_{8}, \boldsymbol{T}\right),\left(d_{9}, \boldsymbol{F}\right)\right\}$. There is no world that contains d_{5} and d_{8}, but does not contain d_{9}. It is because $\left\{d_{5}, d_{8}\right\} \mid={ }_{r d f s} d_{9}$ by the RDFS inference rule rdfs 7
(Table 2.4). By the definition of pRDFS satisfaction (Definition 8), the probability of τ should be zero for any satisfying pRDFS interpretation. However, the probability of τ computed from the theory is $P_{\left\{d_{8}\right\}}\left(d_{8}=\boldsymbol{T}\right) \times P_{\left\{d_{9}\right\}}\left(d_{9}=\boldsymbol{F}\right)=0.7 \times 0.2=0.14$. The theory does not have any satisfying interpretations, so it is inconsistent.

A theory (D, \mathcal{P}, θ) prdfs-entails $\left(\models_{\text {prdfs }}\right)$ another theory $\left(D^{\prime}, \mathcal{P}^{\prime}, \theta^{\prime}\right)$ iff every satisfying interpretation of (D, \mathcal{P}, θ) is a satisfying interpretation of $\left(D^{\prime}, \mathcal{P}^{\prime}, \theta^{\prime}\right)$.

3.3 Finding the Data that Entail an RDF Triple of In-

terest

This section examines two special subsets of data that entail an RDF triple of interest. One is called a justification. It is used to check the consistency of a pRDFS theory (see Chapter 4). It is also used to compute the probability of a solution to a query, where the solution contains derived RDF triples (see Chapter 5). The other special subset is called a minimal justification, which is used to reduce computations (see Propositions 4 and 5).

A justification for an RDF triple t is a subset of data that entails t, and the subset cannot entail t in the absence of any triple in the subset. This term is formally defined in OWL-DL [38]. It is defined similarly in RDFS as follows.

Definition 10 (Justification). A justification for an RDF triple t in data D denoted by J is a subset of D such that $J \models_{r d f s} t$ and $\nexists J^{\prime} \subset J\left(J^{\prime} \models_{r d f s} t\right)$.

(p, rdf: type, rdf: Property $)$
(q, rdf: type, rdf: Property $)$
$(r$, rdf: type, rdf: Property $)$
$(s$, rdf: type, rdf: Property $)$
$(p$, rdfs: subPropertyOf, $q)$
$(q$, rdfs: subPropertyOf, $r)$
$(q$, rdfs: subPropertyOf, $s)$
$(r$, rdfs: subPropertyOf, $s)$

(a) Schema data of D_{3}, H_{3}.

(u, p, v)

(b) Instance data of D_{3}, R_{3}.

$(p$, rdf: type, rdf: Property)
$(q$, rdf: type, rdf: Property $)$
$(r$, rdf: type, rdf: Property $)$
$(s$, rdf: type, rdf: Property $)$
$(p$, rdfs: subPropertyOf, $q)$
$(q$, rdfs: subPropertyOf, $r)$
$(q$, rdfs: subPropertyOf, $s)$
$(r$, rdfs: subPropertyOf, $s)$
$(p$, rdfs: subPropertyOf, $r)$
$(p$, rdfs: subPropertyOf, $s)$
$(p$, rdfs: subPropertyOf, $p)$
$(q$, rdfs: subPropertyOf, $q)$
$(r$, rdfs: subPropertyOf, $r)$
$(s$, rdfs: subPropertyOf, $s)$

(c) RDFS closure of schema data H_{3}, rdfs-closure $\left(H_{3}\right)$.

Table 3.4: Data D_{3} used to illustrate the concepts of justifications and how to find the justifications, where p, q, r, and s are properties. u and v are individuals.

Example 4 (Justification). Consider data D_{3} shown in Table 3.4, where p, q, r, and s are properties. u and v are individuals. $J_{1}=\{(p, r d f s$: subPropertyOf, $q),(q, r d f s$: subPropertyOf, r), (r, rdfs: subPropertyOf, $s)\}$ and $J_{2}=\{(p, r d f s$: subPropertyOf, $q),(q, r d f s$: subPropertyOf, s)\} are both justifications for the RDF triple ($p, r d f s$: subPropertyOf, s) in D_{3} because each of them is a subset of D_{3} and entails ($p, r d f s$: subPropertyOf, $s) .\{(p, r d f s:$ subPropertyOf, $q),(q, r d f s:$ subPropertyOf, $s),(r, r d f s$: subPropertyOf, s)\} is a subset of D_{3} and also entails ($p, r d f s$: subPropertyOf, s), but it is not a justification for (p, rdfs: subPropertyOf, s) in D_{3} because its subset $\{(p$, rdfs: subPropertyOf, q), (q, rdfs: subPropertyOf, s) \} is sufficient to entail ($p, r d f s$: subPropertyOf, s).

A minimal justification for an RDF triple is a justification for the triple, and it cannot entail other justifications for the triple. It is defined as follows.

Definition 11 (Minimal Justification). A justification J for an RDF triple t in data D

Names	Rules
rdfs7	(?q, rdfs: subPropertyOf, ?p) (?u, ?q, ?w)
	(? $u, ? p, ? w)$
rdfs9	(?x, rdfs: subClassOf, ?y) (?u, rdf: type, ?x)
	(?u, rdf: type, ?y)
rdfs $2+r d f s 9$	(?x, rdfs: subClassOf, ?y) (?p, rdfs: domain, ? x) (?u, ?p, ?w)
	(?u, rdf: type, ?y)
rdfs $7+r d f s 2+r d f s 9$	(?x, rdfs: subClassOf, ? y) (?p, rdfs: domain, $? x$) (?q, rdfs: subPropertyOf, $? p$) ($? u, ? q, ? w)$
	(?u, rdf: type, ?y)
rdfs $3+r d f s 9$	(?x, rdfs: subClassOf, ? 4) (?p, rdfs: range, ? x) (?v, ?p, ?u)
	(?u, rdf: type, ?y)
rdfs $7+r d f s 3+r d f s 9$	(? x, rdfs: subClassOf, ? y) (? p, rdfs: range, $? x$) $(? q$, rdfs: subPropertyOf, ?p) $(? v, ? q, ? u)$
	(? u, rdf: type, ?y)
rdfs2	(?p, rdfs: domain, ?x) (?u, ?p, ?w)
	(?u, rdf: type, ? x)
rdfs $7+r d f s 2$	(?p, rdfs: domain, ? ${ }^{\text {) }}$ (? q, rdfs: subPropertyOf, ? p) (? $\left.u, ? q, ? w\right)$
	(?u, rdf: type, ? x)
rdfs3	(? p, rdfs: range, ? x) (?v, ? $p, ? u$)
	(? u, rdf: type, ? x)
rdfs $7+r d f s 3$	(? p, rdfs: range, ? ${ }^{\text {) }}$ (? q, rdfs: subPropertyOf, $? p$) $(? v, ? q, ? u)$
	(? u, rdf: type, ? x)

Table 3.5: All possible chains of inference rules that derive instance triples given that the schema data H are equal to the RDFS closure of H.
is minimal if $\nexists J^{\prime} \in J U S T(t, D)\left(J \models_{r d f s} J^{\prime}\right.$ and $\left.J \neq J^{\prime}\right)$, where $\operatorname{JUST}(t, D)$ is the set of all justifications for t in D.

A justification J for an RDF triple t in data D is called a minimal justification in the sense that for every $J^{\prime} \in \operatorname{JUST}(t, D)$ such that $J^{\prime} \models_{r d f s} J,|J| \leq\left|J^{\prime}\right|$. A justification is non-minimal if it is not minimal. The set of all justifications for an RDF triple is the union of the sets of all minimal and non-minimal justifications.

Example 5 (Minimal Justification). Both J_{1} and J_{2} in Example 4 are justifications for the RDF triple (p, rdfs: subPropertyOf, s) in data $D_{3} . J_{2}$ is minimal, but J_{1} is not because J_{1} entails J_{2}.

3.3.1 Computing Minimal Justifications for Instance Triples under

$$
H=\text { rdfs-closure }(H)
$$

This section describes a method of computing all minimal justifications for an instance triple in data D under the condition that the schema data H of D are equal to the RDFS closure of H. The RDFS inference rules that derive instance triples are rdfs2, rdfs3, rdfs7, and rdfs9. See Table 2.4 for these rules. We use backward chaining to find all possible chains of these rules that derive instance triples, and they are shown in Table 3.5. For example, the rule rdfs $2+$ rdfs 9 in row 3 of Table 3.5 is formed by chaining rules rdfs 2 and rdfs 9 . The set of RDF triples in the premises of each rule is a justification for the instance triple in the conclusion of the rule. These possible chains of rules do not include those formed by repeated applications of rules rdfs7 and rdfs 9 because any justification found by repeated applications of these rules is not minimal. This is proved as follows.

Proposition 1. Given that the schema data H in data D are equal to the $R D F S$ closure of H, any justification for an instance triple t in D found by repeated applications of rule rdfs 7 or rule rdfs9, or both is not minimal.

Proof. Let J be a justification for t in D found by repeated applications of rule rdfs 7 or rule rdfs 9 , or both. J is of the form $\left\{\left(p_{m}\right.\right.$, rdfs: subPropertyOf, $\left.p_{m-1}\right),\left(p_{m-1}\right.$, rdfs: subPropertyOf, $\left.p_{m-2}\right), \ldots,\left(p_{1}\right.$, rdfs: subPropertyOf, $\left.\left.p_{0}\right)\right\} \cup\left\{\left(x_{n}\right.\right.$, rdfs: subClassOf, $\left.x_{n-1}\right),\left(x_{n-1}\right.$, rdfs: subClassOf, $\left.x_{n-2}\right), \ldots,\left(x_{1}\right.$, rdfs: subClassOf, $\left.\left.x_{0}\right)\right\} \cup J_{\text {remain }}$, where $p_{0}, p_{1}, \ldots, p_{m}$ are properties, $x_{0}, x_{1}, \ldots, x_{n}$ are classes, m and n are the numbers of times rules rdfs 7 and rdfs 9 are applied respectively, and $J_{\text {remain }}$ is a set that contains the

```
Algorithm 1 FIND-MIN-JUST \({ }_{\text {inst }}(t, D)\) finds all minimal justifications for an instance
triple \(t\) in data \(D\), where the schema data \(H\) of \(D\) equal the RDFS closure of \(H\).
Input: \(t\), instance triple; \(D\), data.
Output: \(\mathbb{J}\), set of all minimal justifications for \(t\) in \(D\).
    \(H \leftarrow\) schema data of \(D ; R \leftarrow\) instance data of \(D\).
    \(s \leftarrow\) subject of \(t ; p \leftarrow\) property of \(t ; o \leftarrow\) object of \(t\).
    \(\mathbb{J} \leftarrow \emptyset\).
    if \(t \in R\) then
        \(\mathbb{J} \leftarrow \mathbb{J} \cup\{\{t\}\}\).
    else if \(p \neq\) rdf:type then
        \(\mathbb{J} \leftarrow \mathbb{J} \cup\{\{(? q\), rdfs: subPropertyOf, \(p),(s, ? q, o)\} \mid(? q\), rdfs: subPropertyOf, \(p) \in H,(s, ? q\),
        \(o) \in R\}\). // rule rdfs7
    else
        \(X_{\text {rdfs } 9} \leftarrow\{? x \mid(? x\), rdfs: subClassOf,\(o) \in H,(s\), rdf: type, \(? x) \in R\}\).
        \(\mathbb{J} \leftarrow \mathbb{J} \cup\left\{\{(? x\right.\), rdfs: subClassOf, \(o),(s\), rdf: type, \(\left.? x)\} \mid ? x \in X_{\text {rdfs } 9}\right\} . / /\) rule rdfs9
        \(X_{\text {rdfs } 2+9} \leftarrow\{(? x, ? p, ? w) \mid(? x\), rdfs: subClassOf, \(o) \in H,(? p\), rdfs: domain, \(? x) \in H,(s, ? p\),
        \(\left.? w) \in R, ? x \notin X_{\text {rdfs } 9}\right\}\).
        \(\mathbb{J} \leftarrow \mathbb{J} \cup\{\{(? x\), rdfs: subClassOf, \(o),(? p\), rdfs: domain, \(? x),(s, ? p, ? w)\} \mid(? x, ? p, ? w) \in\)
        \(\left.X_{\text {rdfs } 2+9}\right\}\). // rule rdfs2+rdfs9
        \(\mathbb{J} \leftarrow \mathbb{J} \cup\{\{(? x\), rdfs: subClassOf, \(o),(? p\), rdfs: domain, \(? x),(? q\), rdfs: subPropertyOf, \(? p),(s\),
        \(? q, ? w)\} \mid(? x\), rdfs: subClassOf, \(o) \in H,(? p\), rdfs: domain, ? \(x) \in H,(? q\), rdfs: subPropertyOf,
        \(\left.? p) \in H,(s, ? q, ? w) \in R,(? x, ? p, ? w) \notin X_{\mathrm{rdfs} 2+9}, ? x \notin X_{\mathrm{rdfs} 9}\right\}\). // rule rdfs7+rdfs2+rdfs 9
    14: \(\quad X_{\text {rdfs } 3+9} \leftarrow\{(? x, ? p, ? v) \mid(? x\), rdfs: subClassOf, \(o) \in H,(? p\), rdfs: range, \(? x) \in H,(? v, ? p, s)\)
        \(\left.\in R, ? x \notin X_{\text {rdfs }}\right\}\).
15: \(\quad \mathbb{J} \leftarrow \mathbb{J} \cup\left\{\{(? x\right.\), rdfs: subClassOf, \(o),(? p\), rdfs: range, \(\left.? x),(? v, ? p, s)\} \mid(? x, ? p, ? v) \in X_{\text {rdfs } 3+9}\right\}\).
        // rule rdfs3+rdfs9
16: \(\mathbb{J} \leftarrow \mathbb{J} \cup\{\{(? x\), rdfs: subClassOf, \(o),(? p\), rdfs: range, ? \(x),(? q\), rdfs: subPropertyOf, ?p), (?v,
        \(? q, s)\} \mid(? x\), rdfs: subClassOf, \(o) \in H,(? p\), rdfs: range, \(? x) \in H,(? q\), rdfs: subPropertyOf,
        \(\left.? p) \in H,(? v, ? q, s) \in R,(? x, ? p, ? v) \notin X_{\text {rdfs } 3+9}, ? x \notin X_{\text {rdfs } 9}\right\}\). // rule rdfs7+rdfs3+rdfs9
        \(X_{\text {rdfs } 2} \leftarrow\{(? p, ? w) \mid(? p\), rdfs: domain, \(o) \in H,(s, ? p, ? w) \in R\}\).
        \(\mathbb{J} \leftarrow \mathbb{J} \cup\left\{\{(? p\right.\), rdfs: domain, \(\left.o),(s, ? p, ? w)\} \mid(? p, ? w) \in X_{\text {rdfs } 2}\right\}\). // rule rdfs2
        \(\mathbb{J} \leftarrow \mathbb{J} \cup\{\{(? p\), rdfs: domain, \(o),(? q\), rdfs: subPropertyOf, ?p), \((s, ? q, ? w)\} \mid(? p\), rdfs:
        domain, \(o) \in H\), (?q, rdfs: subPropertyOf, ? \(\left.p) \in H,(s, ? q, ? w) \in R,(? p, ? w) \notin X_{\mathrm{rdfs} 2}\right\}\). // rule
        rdfs7+rdfs2
        \(X_{\text {rdfs } 3} \leftarrow\{(? p, ? v) \mid(? p\), rdfs: range, \(o) \in H,(? v, ? p, s) \in R\}\).
        \(\mathbb{J} \leftarrow \mathbb{J} \cup\left\{\{(? p\right.\), rdfs: range, \(\left.o),(? v, ? p, s)\} \mid(? p, ? v) \in X_{\text {rdfs } 3}\right\}\). // rule rdfs3
        \(\mathbb{J} \leftarrow \mathbb{J} \cup\{\{(? p\), rdfs: range, \(o),(? q\), rdfs: subPropertyOf, ? \(p\) ), \((? v, ? q, s)\} \mid(? p\), rdfs: range, \(o\) )
        \(\in H,(? q\), rdfs: subPropertyOf, \(\left.? p) \in H,(? v, ? q, s) \in R,(? p, ? v) \notin X_{\text {rds } 3}\right\}\). // rule rdfs7+rdfs3
    end if
    return \(\mathbb{J}\).
```

remaining RDF triples of $J . m>1$ or $n>1$, or both.
Since H is equal to the RDFS closure of H, schema triples (p_{m}, rdfs: subPropertyOf $\left.p_{0}\right)$ and $\left(x_{n}\right.$, rdfs: subClassOf, $\left.x_{0}\right)$ are in H. ($\left\{\left(p_{m}\right.\right.$, rdfs: subPropertyOf, $\left.p_{0}\right)$, (x_{n}, rdfs: subClassOf, x_{0}) $\} \cup J_{\text {remain }}$) is a justification for t in D and is entailed by J. Therefore, J is not minimal.

FIND-MIN-JUST ${ }_{\text {inst }}$ (Algorithm 1) uses the chains of rules in Table 3.5 to find all minimal justifications for an instance triple t in data D. If t is in D, the only minimal justification for t is $\{t\}$ itself. (Line 5). If t is not in D, FIND-MIN-JUST ${ }^{*}$ inst uses the first rule in Table 3.5 for t whose property is not rdf: type (Line 7) and the rest of the rules in Table 3.5 for t with property rdf: type (Lines 9-22). FIND-MIN-JUST ${ }_{\text {inst }}$ substitutes the conclusions of these rules with t and searches for all substitutions for the variables in the premises of these rules such that the premises are in D. Then, the premises are minimal justifications for t.

For rules rdfs2+rdfs9, rdfs7+rdfs2+rdfs9, rdfs3+rdfs9, rdfs7+rdfs3+rdfs9, rdfs7+rdfs2, and rdfs7+rdfs3, we exclude substitutions obtained by other rules because justifications formed from these substitutions are not minimal. For example, for rule rdfs $2+r d f s 9$ (Lines 11-12), we exclude substitutions $X_{\text {rdfs }}$ obtained by rule rdfs9 (Line 9).

Example 6 (Excluded Substitutions). This example illustrates why some substitutions found in FIND-MIN-JUST* ${ }_{\text {inst }}$ (Algorithm 1) are excluded. Suppose FIND-MIN-JUST* ${ }_{\text {inst }}$ is used to find all minimal justifications for the instance triple $t=(s, r d f:$ type, $o)$ in data $\left\{\left(x^{\prime}, r d f s:\right.\right.$ subClassOf, o), ($s, r d f:$ type, $\left.\left.x^{\prime}\right),\left(p^{\prime}, r d f s: d o m a i n, x^{\prime}\right),\left(s, p^{\prime}, w^{\prime}\right)\right\}$. x^{\prime} is a substitution for the variable ?x in the premises of rule rdfs9 (Line 9), and $J_{1}=\left\{\left(x^{\prime}\right.\right.$, rdfs: subClassOf, o), (s, rdf: type, $\left.\left.x^{\prime}\right)\right\}$ is a minimal justification for t (Line 10). $\left(x^{\prime}, p^{\prime}, w^{\prime}\right)$ is a substitution for the variables (? $\left.x, ? p, ? w\right)$ in the premises of rule rdfs $2+r d f s 9$, and $J_{2}=\left\{\left(x^{\prime}, r d f s: ~ s u b C l a s s O f, o\right),\left(p^{\prime}, r d f s: d o m a i n, x^{\prime}\right),\left(s, p^{\prime}, w^{\prime}\right)\right\}$ is a justification for t. However, J_{2} is not minimal because $J_{2} \models_{r d f s} J_{1}$. Therefore, the substitution $\left(x^{\prime}, p^{\prime}, w^{\prime}\right)$ is excluded in Line 11.

```
\(\overline{\text { Algorithm } 2 \text { FIND-MIN-JUST }}\) schema \((t, D)\) finds all minimal justifications for a schema
triple \(t\) in data \(D\).
Input: \(t\), schema triple; \(D\), data.
Output: \(\mathbb{J}\), set of all minimal justifications for \(t\) in \(D\).
    \(H \leftarrow\) schema data of \(D\).
    \(\mathbb{J} \leftarrow \emptyset\).
    if \(t \in H\) then
        \(\mathbb{J} \leftarrow\{\{t\}\}\).
    else
        if property of \(t \in\{\) rdfs: subPropertyOf, rdfs: subClassOf \(\}\) then
            \(\mathbb{J} \leftarrow\) FIND-MIN-JUST \(_{\text {subXOf }}(t, H)\). (See Algorithm 3)
        end if
    end if
    return \(\mathbb{J}\).
```


3.3.2 Computing Minimal Justifications for Schema Triples

This section describes an algorithm called FIND-MIN-JUST schema (Algorithm 2), which computes all minimal justifications for a schema triple t in data D. If t is in D, the only minimal justification for t is $\{t\}$ itself (Line 4). The RDFS inference rules that derive schema triples are rules rdfs 5, rdfs6, rdfs 10 , and rdfs 11 . See Table 2.4 for these rules. Only schema triples with properties rdfs: subPropertyOf and rdfs: subClassOf can be derived, and they are entailed by schema triples only. If t is not in D and the property of t is either rdfs: subPropertyOf or rdfs: subClassOf, FIND-MIN-JUST ${ }_{\text {subXOf }}$ (Algorithm 3) is called to find the justifications for t (Line 7). Otherwise, there are no justifications for t.

FIND-MIN-JUST ${ }_{\text {subXOf }}$ (Algorithm 3) uses backward chaining of rules rdfs5, rdfs6, rdfs 10 , and rdfs 11 to find all minimal justifications for a schema triple t whose property is either rdfs: subPropertyOf or rdfs: subClassOf. FIND-MIN-JUST ${ }_{\text {subXOf }}$ first applies rules rdfs 5 and rdfs 11 for t with properties rdfs: subPropertyOf and rdfs: subClassOf respectively. It searches for all substitutions for the variable ?a in the premises of

```
Algorithm 3 FIND-MIN-JUST subXof \((t, D)\) finds all minimal justifications for a
schema triple \(t\) whose property is either rdfs: subPropertyOf or rdfs: subClassOf in
data \(D\).
Input: \(t\), schema triple whose property is either rdfs: subPropertyOf or rdfs: subClassOf; \(D\), data
Output: J, set of all minimal justifications for \(t\) in \(D\).
    \(s \leftarrow\) subject of \(t ; p \leftarrow\) property of \(t ; o \leftarrow\) object of \(t\).
    \(H \leftarrow\) schema data of \(D\).
    \(\mathbb{J} \leftarrow \emptyset\).
    if \(t \notin H\) then
        for all \(? a \in\left\{? a \mid((s, p, ? a),(? a, p, o)) \in \operatorname{rdfs}-\operatorname{closure}(H)^{2}, ? a \neq s, ? a \neq o\right\}\) do
            \(\mathbb{J}_{1} \leftarrow\) FIND-MIN-JUST \(_{\text {subXOf }}((s, p, ? a), H)\).
            \(\mathrm{J}_{2} \leftarrow\) FIND-MIN-JUST \(_{\text {subXOf }}((? a, p, o), H)\).
            for all \(\left(J_{1}, J_{2}\right) \in \mathbb{J}_{1} \times \mathbb{J}_{2}\) do
                if \(\operatorname{IS}-\operatorname{MINIMAL}_{\text {subXof }}\left(J_{1} \cup J_{2}, H\right)=\) true then (See Algorithm 4)
                    \(\mathbb{J} \leftarrow \mathbb{J} \cup\left\{J_{1} \cup J_{2}\right\}\).
                end if
            end for
        end for
        if \(p=\) rdfs: subPropertyOf and \(s=o\) then
            \(\mathbb{J} \leftarrow \mathbb{J} \cup\{\{(s\), rdf: type, rdf: Property \()\}\}\).
        else if \(p=\mathrm{rdfs}\) : subClassOf and \(s=o\) then
            \(\mathbb{J} \leftarrow \mathbb{J} \cup\{\{(s\), rdf: type, rdfs: Class \()\}\}\).
        end if
    else
        \(\mathbb{J} \leftarrow\{\{t\}\}\).
    end if
    return \(\mathbb{J}\).
```

rule rdfs 5 or rdfs 11 such that the premises are in the RDFS closure of the schema data (Line 5). It calls itself recursively until the premises are all in the schema data (Lines 67). Justifications found in this way may not be minimal. IS-MINIMAL (Algorithm 4) is called in Line 9 to check if a justification is minimal. FIND-MIN-JUST subxof then applies rules rdfs6 and rdfs10 in Lines 15 and 17 for t whose subject and object are equal.

IS-MINIMAL $_{\text {subXOf }}$ (Algorithm 4) is used in Line 9 of FIND-MIN-JUST subXof to check if a justification J for an RDF triple whose property is either rdfs: subPropertyOf or rdfs: subClassOf in data D is minimal or not. It applies rule rdfs 5 or rdfs 11 to check if any part of J entails an RDF triple in D. If it does, J is not minimal.

```
Algorithm 4 IS-MINIMAL \(\operatorname{subXOf}(J, D)\) checks if a justification \(J\) for an RDF triple
whose property is either rdfs: subPropertyOf or rdfs: subClassOf in data \(D\) is minimal
or not.
Input: \(J\), justification for an RDF triple whose property is either rdfs: subPropertyOf or rdfs: subClas-
    sOf in data \(D ; D\), data.
Output: true or false.
    Let \(J\) be \(\left\{\left(a_{1}, p, a_{2}\right),\left(a_{2}, p, a_{3}\right), \ldots,\left(a_{m}, p, a_{m+1}\right)\right\}\).
    for \(i=1\) to \((m-1)\) do
        for \(j=(i+2)\) to \((m+1)\) do
            if \(\left(a_{i}, p, a_{j}\right) \in D\) then
                return false.
            end if
        end for
    end for
    return true.
```

```
Algorithm 5 COMPU-CLOSURE \(_{\text {schema }}(H)\) computes the RDFS closure of schema
data \(H\).
Input: \(H\), schema data
Output: \(H_{c}\), RDFS closure of \(H\).
    \(H_{c} \leftarrow H\).
    for all \(p \in\{\) rdfs: subClassOf, rdfs: subPropertyOf \(\}\) do
        \(D_{\text {ex }} \leftarrow \emptyset\).
        \(D_{\text {notex }} \leftarrow\) RDF triples with property \(p\) in \(H\).
        while \(D_{\text {not_ex }} \neq \emptyset\) do
            \(D_{\text {tem } p} \leftarrow\left\{(? a, p, ? c) \mid((? a, p, ? b),(? b, p, ? c)) \in\left(D_{\text {notex }} \times D_{\text {not_ex }} \cup D_{\text {notex }} \times D_{\text {ex }} \cup D_{\text {ex }} \times\right.\right.\)
            \(\left.\left.D_{\text {not_ex }}\right)\right\} \backslash\left(D_{\text {ex }} \cup D_{\text {not_ex }}\right)\).
            \(D_{\text {ex }} \leftarrow D_{\text {ex }} \cup D_{\text {not_ex }}\).
            \(D_{\text {not_ex }} \leftarrow D_{\text {temp }}\).
        end while
        \(H_{c} \leftarrow H_{c} \cup D_{\mathrm{ex}}\).
    end for
    \(H_{c} \leftarrow H_{c} \cup\{(? p\), rdfs: subPropertyOf, ? \(p) \mid(? p\), rdf: type, rdf: Property \() \in H\}\).
    \(H_{c} \leftarrow H_{c} \cup\{(? x\), rdfs: subClassOf, ? \(x) \mid(? x\), rdf: type, rdfs: Class \() \in H\}\).
    return \(H_{c}\).
```

COMPU-CLOSURE $_{\text {schema }}$ (Algorithm 5) is used in Line 5 of FIND-MIN-JUST subXof to compute the RDFS closure of schema data. COMPU-CLOSURE schema first applies rules rdfs5 and rdfs 11 repeatedly until no more RDF triples can be derived (Lines 5-9). Variables $D_{\text {ex }}$ and $D_{\text {notex }}$ hold the RDF triples that have and have not been examined respectively. In Line 6, COMPU-CLOSURE schema only examines the pairs of RDF triples in $D_{\text {notex }} \times D_{\text {notex }}, D_{\text {notex }} \times D_{\text {ex }}$, and $D_{\text {ex }} \times D_{\text {notex }}$ because the pairs of RDF triples in $D_{\text {ex }} \times D_{\text {ex }}$ have been examined in the previous iterations. COMPU-CLOSURE ${ }_{\text {schema }}$
then applies rules rdfs6 and rdfs 10 to the properties and classes in the schema data to complete the closure.

Example 7 (RDFS Closure of Schema Data). This example illustrates the use of COMPU-CLOSURE schema (Algorithm 5) to find the RDFS closure of schema data of data D_{3} (Table 3.4). COMPU-CLOSURE $E_{\text {schema }}$ initially assigns all schema data with property rdfs: subPropertyOf to the variable $D_{\text {notex }}$ (Line 4). In the first iteration of the while loop (Lines 5-9), all pairs of RDF triples in $D_{\text {notex }} \times D_{\text {notex }}$ are examined, and two additional RDF triples (p, rdfs: subPropertyOf, r) and ($p, r d f s: ~ s u b P r o p e r t y O f, ~ s)$ are derived. ($p, r d f s$: subPropertyOf, r) and ($p, r d f s$: subPropertyOf, s) are derived from the pairs (($p, r d f s$: subPropertyOf, $q),(q, r d f s: s u b P r o p e r t y O f, r))$ and $((p, r d f s$: subPropertyOf, $q),(q$, rdfs: subPropertyOf, s)) respectively. No additional triple is derived in the second iteration of the while loop, and the loop ends. Then, COMPUCLOSURE $_{\text {schema }}$ derives four additional RDF triples ($p, r d f s$: subPropertyOf, p), (q, rdfs: subPropertyOf, q), (r, rdfs: subPropertyOf, r), and ($s, r d f s: ~ s u b P r o p e r t y O f, ~ s)$ for properties p, q, r, and s respectively in Line 12 to complete the closure, which is shown in Table 3.4c.

Example 8 (Minimal Justifications for a Schema Triple). This example illustrates the operation of FIND-MIN-JUST schema $($ Algorithm 2) to find all minimal justifications for the schema triple $t=(p, r d f s$: subPropertyOf, $s)$ in data D_{3} (Table 3.4). Since t is not in D and its property is rdfs: subPropertyOf, FIND-MIN-JUST subXOf (Algorithm 3) is called to find the minimal justifications.

In Line 6 of FIND-MIN-JUST subXOf, two pairs of RDF triples, which entail t, are
found in $\left(r d f s \text {-closure }\left(\mathrm{H}_{3}\right)\right)^{2}$, where rdfs-closure $\left(\mathrm{H}_{3}\right)$ is the RDFS closure of the schema data H_{3} of D_{3} and is computed in Example 7. One pair is (($p, r d f s$: subPropertyOf, $\left.q\right)$, (q, rdfs: subPropertyOf, s)). FIND-MIN-JUST subxof is called recursively in Lines 6-7 to find the sets of all minimal justifications for the elements of the pair in H_{3}. The sets are $\{\{(p, r d f s$: subPropertyOf, $q)\}\}$ and $\{\{(q$, rdfs: subPropertyOf, $s)\}\}$, and they are assigned to \mathbb{J}_{1} and \mathbb{J}_{2} respectively. The justification for t formed from \mathbb{J}_{1} and \mathbb{J}_{2} is $\{(p$, rdfs: subPropertyOf, q), (q, rdfs: subPropertyOf, s)\}. It is passed to IS-MINIMAL subXOf (Algorithm 4) in Line 9 to check if it is minimal. IS-MINIMAL subXof checks ift is in D_{3}. t is not in D_{3}, so the justification is minimal.

The other pair is ((p,rdfs: subPropertyOf, r), (r, rdfs: subPropertyOf, s)). The sets of all minimal justifications for the elements of the pair are $\{\{(p, r d f s$: subPropertyOf, $q),(q, r d f s$: subPropertyOf, $r)\}\}$ and $\{\{(r, r d f s$: subPropertyOf, $s)\}\}$. The justification for t formed from them is $\{(p, r d f s$: subPropertyOf, $q),(q, r d f s: ~ s u b P r o p e r t y O f, r),(r$, rdfs: subPropertyOf, s)\}. It is passed to IS-MINIMAL subXof $^{\text {to }}$ check if it is minimal. IS-MINIMAL $L_{\text {subXof }}$ checks if ($p, r d f s$: subPropertyOf, r), t, and (q, rdfs: subPropertyOf, s) are in D_{3}. (q, rdfs: subPropertyOf, s) is in D_{3}, so the justification is not minimal. Therefore, the set of all minimal justifications for t in D_{3} is $\{\{(p, r d f s$: subPropertyOf, q), (q, rdfs: subPropertyOf, s)\}\}.

3.3.3 Computing Minimal Justifications for Instance Triples

This section describes an algorithm called FIND-MIN-JUST inst (Algorithm 6), which makes use of FIND-MIN-JUST ${ }_{\text {inst }}$ and FIND-MIN-JUST ${ }_{\text {schema }}$ described in Sections 3.3.1 and 3.3.2 to find all minimal justifications for an instance triple t in data D. Un-

```
\(\overline{\text { Algorithm } 6 \text { FIND-MIN-JUST }}\) inst \((t, D)\) finds all minimal justifications for an instance
triple \(t\) in data \(D\).
Input: \(t\), instance triple; \(D\), data.
Output: \(\mathbb{J}\), set of all minimal justifications for \(t\) in \(D\).
    \(H \leftarrow\) schema data of \(D\).
    \(J_{\text {final }} \leftarrow \emptyset\).
    \(\mathbb{J}_{\text {inst }} \leftarrow\) FIND-MIN-JUST \({ }_{\text {inst }}(t, D \cup\) rdfs-closure \((H))\). (See Algorithm 1)
    for all \(J \in \mathbb{J}_{\text {inst }}\) do
        \(H_{\text {derived }}=\{x \in J \mid x \notin H\}\).
        if \(H_{\text {derived }}=\emptyset\) then
            \(\mathbb{J}_{\text {final }} \leftarrow \mathbb{J}_{\text {final }} \cup\{J\}\).
        else
            \(J_{\text {derived }}=\prod_{h \in H_{\text {derived }}}\) FIND-MIN-JUST schema \((h, H) .(\) See Algorithm 2)
            for all \(j_{\text {derived }} \in J_{\text {derived }}\) do
                    \(\mathbb{J}_{\text {final }} \leftarrow \mathbb{J}_{\text {final }} \cup\left\{\left(J \backslash H_{\text {derived }}\right) \cup\left(\right.\right.\) union of all elements in tuple \(\left.\left.j_{\text {derived }}\right)\right\}\).
            end for
        end if
    end for
    return \(\mathbb{J}_{\text {final }}\).
```

like FIND-MIN-JUST* ${ }_{\text {inst }}$ (Algorithm 1), FIND-MIN-JUST ${ }_{\text {inst }}$ does not require that the schema data H of D equal the RDFS closure of H.

FIND-MIN-JUST ${ }_{\text {inst }}$ first calls FIND-MIN-JUST ${ }_{\text {inst }}$ in Line 3 to find all minimal justifications for t in the union of D and the RDFS closure of H. Minimal justifications found in this way may contain derived schema triples. FIND-MIN-JUST inst then calls FIND-MIN-JUST schema in Line 9 to find all minimal justifications for each of the derived schema triples. Finally, it replaces the derived schema triples with the minimal justifications for them in Line 11 to give the minimal justifications for t in D.

Example 9 (Minimal Justifications for an Instance Triple). This example illustrates the operation of FIND-MIN-JUST inst (Algorithm 6) to find all minimal justifications for the instance triple $t=(u, s, v)$ in data D_{3} (Table 3.4). FIND-MIN-JUST inst first calls FIND-MIN-JUST ${ }_{\text {inst }}$ (Algorithm 1) in Line 3 to find all minimal justifications for t in $\left(D_{3} \cup r d f s\right.$-closure $\left(H_{3}\right)$), where rdfs-closure $\left(H_{3}\right)$ is the RDFS closure of the schema data H_{3} of D_{3} and is computed in Example 7. There is only one minimal justification
for t in $\left(D_{3} \cup r d f s\right.$-closure $\left.\left(H_{3}\right)\right)$, and it is $\{(p, r d f s$: subPropertyOf, $s),(u, p, v)\} .(p$, rdfs: subPropertyOf, s) in the minimal justification is a derived schema triple.

FIND-MIN-JUST inst then calls FIND-MIN-JUST schema $($ Algorithm 2) in Line 9 to find all minimal justifications for the derived schema triple (p, rdfs: subPropertyOf, s) in H_{3}, and the only minimal justification for it is $\{(p, r d f s$: subPropertyOf, $q),(q, r d f s$: subPropertyOf, s)\}, which is computed in Example 8.

At last, FIND-MIN-JUST inst replaces the derived schema triple with the minimal justification for it in Line 11 to give the minimal justification for tin D_{3}, which is $\{(p$, rdfs: subPropertyOf, $q),(q, r d f s$: subPropertyOf, $s),(u, p, v)\}$.

3.3.4 Time Complexity

Three algorithms of finding minimal justifications (FIND-MIN-JUST ${ }_{\text {inst }}$, FIND-MIN$\mathrm{JUST}_{\text {schema }}$, and FIND-MIN-JUST ${ }_{\text {inst }}$) have been described. This section examines the time complexities of them with respect to the data size $|D|$. We assume that the size of schema data $|H|$ is fixed and the size of instance data $|R|$ grows with $|D|$. Moreover, we assume that the schema data H are separated from the instance data R. Otherwise, separating data D by checking the subjects of all RDF triples in D runs in linear time.

FIND-MIN-JUST ${ }^{*}$ inst (Algorithm 1) is about finding substitutions for the variables in the premises of the rules in Table 3.5. We build two indexes for each of the schema and instance data for finding substitutions using the binary search algorithm. One index is sorted by the subjects, properties, and objects of RDF triples. It is used to search for RDF triples and RDF triples with unknown objects. The other index is sorted by the properties and objects of RDF triples. It is used to search for RDF triples with
unknown subjects.
There are at most three schema triples and one instance triple in the premises of each rule. The order of finding substitutions for the variables is as follows. We find substitutions for the variables in the schema triples first since $|H|$ is usually much smaller than $|R|$. If there is more than one schema triple, schema triples with fewer variables are chosen. For example, in Line 13 of FIND-MIN-JUST ${ }^{*}$ inst, the order of finding substitutions for rule rdfs7+rdfs2+rdfs9 is the variable $? x$ in (? x, rdfs: subClassOf, o), the variable $? p$ in (? p, rdfs: domain, $? x)$, the variable $? q$ in (? q, rdfs: subPropertyOf, $? p$), and the variable $? w$ in $(s, ? q, ? w)$.

The time complexity of finding substitutions for each rule is $\mathrm{O}(\log |D|)$. There are at most nine rules to apply. Hence, the overall time complexity of FIND-MIN-JUST ${ }^{*}$ inst is still $\mathrm{O}(\log |D|)$.

FIND-MIN-JUST $_{\text {schema }}$ (Algorithm 2) works with schema data only since schema data are entailed by schema data only. It does not depend on $|D|$ and runs in constant time.

FIND-MIN-JUST ${ }_{\text {inst }}$ (Algorithm 6) makes use of FIND-MIN-JUST ${ }_{\text {inst }}$ and FIND-MIN-JUST $_{\text {schema }}$ and runs in logarithmic time.

Chapter 4

pRDFS Consistency

A pRDFS theory is inconsistent if it does not have any satisfying interpretation. This chapter describes a method of checking the consistency of a given pRDFS theory, which is based on [57]. Moreover, for pRDFS theories that are frequently updated, it describes an incremental approach to the consistency checking. The approach does not check the consistency of an updated pRDFS theory anew. It only checks the part affected by the update on the theory and saves the time of unnecessary checking.

4.1 Consistency Checking

We first define a truth value assignment for RDF triples that is not consistent with the RDFS semantics. There are no worlds (RDFS interpretations) that satisfy this assignment.

Definition 12 (Inconsistent truth value assignment). A truth value assignment $\tau: D \rightarrow$ $\{\boldsymbol{T}, \boldsymbol{F}\}$ is inconsistent iff $\{d \in D \mid \tau(d)=\boldsymbol{T}\}$ rdfs-entails any $R D F$ triple in $\{d \in$
$D \mid \tau(d)=\boldsymbol{F}\}$, where D is a set of RDF triples.

The following proposition follows from the definitions of pRDFS satisfaction (Definition 8) and a consistent pRDFS theory (Definition 9).

Proposition 2. A pRDFS theory (D, \mathcal{P}, θ) is inconsistent iff $\exists \tau(\operatorname{Pr}(\tau)>0)$, where τ is an inconsistent truth value assignment and $\operatorname{Pr}(\tau)$ is the probability of τ computed from the theory.

Proof. Assume $\exists \tau(\operatorname{Pr}(\tau)>0)$ is true. Let τ^{\prime} be an inconsistent truth assignment such that $\operatorname{Pr}\left(\tau^{\prime}\right)>0$. There is no world that satisfies τ^{\prime}. By the definition of pRDFS satisfaction (Definition 8), for any pRDFS interpretation that satisfies the theory, $\operatorname{Pr}\left(\tau^{\prime}\right)=0$, but $\operatorname{Pr}\left(\tau^{\prime}\right)>0$. The theory does not have any satisfying interpretation and is inconsistent.

We prove the contrapositive of the statement that if a pRDFS theory is inconsistent, $\exists \tau(\operatorname{Pr}(\tau)>0)$ is true. Suppose $\exists \tau(\operatorname{Pr}(\tau)>0)$ is false, or equivalently $\forall \tau$ $(\operatorname{Pr}(\tau)=0)$ is true. We can construct a satisfying interpretation I of the theory. The interpretation I maps each world W in $\mathbb{W}_{\tau^{\prime \prime}}$ to the probability value $\operatorname{Pr}\left(\tau^{\prime \prime}\right) /\left|\mathbb{W}_{\tau^{\prime \prime}}\right|$ for all consistent truth value assignments $\tau^{\prime \prime}$, where $\mathbb{W}_{\tau^{\prime \prime}}$ is the set of worlds that satisfies $\tau^{\prime \prime}$. Therefore, the theory is consistent.

Proposition 2 suggests that we can perform consistency checking of a pRDFS theory by checking that the probabilities of all inconsistent truth value assignments are zeros. Mathematically, the condition for the consistency of a theory with data D is (4.1).

$$
\begin{equation*}
\forall d \in D \forall K \in\left\{X \subseteq(D \backslash\{d\}) \mid X \models{ }_{r d f s} d\right\} \operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{k \in K} k=\mathbf{T}\right)=0 \tag{4.1}
\end{equation*}
$$

(4.1) can be simplified as (4.2) by means of justifications defined in Definition 10. This is proved in Proposition 3.

$$
\begin{equation*}
\forall d \in D \forall J \in J U S T(d, D \backslash\{d\}) \operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{j \in J} j=\mathbf{T}\right)=0 \tag{4.2}
\end{equation*}
$$

Proposition 3. If $\forall d \in D \forall J \in J U S T(d, D \backslash\{d\}) \operatorname{Pr}\left(d=\boldsymbol{F} \wedge \bigwedge_{j \in J} j=\boldsymbol{T}\right)=0$, then $\forall d \in D \forall K \in\left\{X \subseteq(D \backslash\{d\}) \mid X \models_{r d f s} d\right\} \operatorname{Pr}\left(d=\boldsymbol{F} \wedge \bigwedge_{k \in K} k=\boldsymbol{T}\right)=0$, where D is the data of a pRDFS theory and $\operatorname{JUST}(x, X)$ is the set of all justifications for an $R D F$ triple x in data X.

Proof. For any $d \in D$ and any $K \in\left\{x \subseteq(D \backslash\{d\}) \mid x \models_{r d f s} d\right\}$, if $K \in \operatorname{JUST}(d, D \backslash$ $\{d\})$, it is given that $\operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{k \in K} k=\mathbf{T}\right)=0$. If $K \notin \operatorname{JUST}(d, D \backslash\{d\})$, $\exists K^{\prime} \in \operatorname{JUST}(d, D \backslash\{d\})$ such that $K^{\prime} \subset K . \operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{k \in K} k=\mathbf{T}\right) \leq \operatorname{Pr}(d=$ $\left.\mathbf{F} \wedge \bigwedge_{k \in K^{\prime}} k=\mathbf{T}\right)=0$.
(4.2) can be further simplified as (4.3) by means of minimal justifications defined in Definition 11. This is proved in Proposition 4.

$$
\begin{equation*}
\forall d \in D \forall J \in J U S T_{\min }(d, D \backslash\{d\}) \operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{j \in J} j=\mathbf{T}\right)=0 \tag{4.3}
\end{equation*}
$$

Proposition 4. If $\forall d \in D \forall J \in J U S T_{\min }(d, D \backslash\{d\}) \operatorname{Pr}\left(d=\boldsymbol{F} \wedge \bigwedge_{j \in J} j=\boldsymbol{T}\right)=0$,

$\bigwedge_{j \in J}$	$\bigwedge_{j \in J^{\prime}} j$	$\bigwedge_{j \in J} j \vee \bigwedge_{j \in J^{\prime}} j$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}

Table 4.1: Truth table for $\bigwedge_{j \in J}, \bigwedge_{j \in J^{\prime}} j$, and $\bigwedge_{j \in J} j \vee \bigwedge_{j \in J^{\prime}} j$, where J and J^{\prime} are non-minimal and minimal justifications for an RDF triple respectively and $J \models{ }_{r d f s} J^{\prime}$.
then $\forall d \in D \forall J \in J U S T(d, D \backslash\{d\}) \operatorname{Pr}\left(d=\boldsymbol{F} \wedge \bigwedge_{j \in J} j=\boldsymbol{T}\right)=0$, where D is the data of a pRDFS theory, $\operatorname{JUST}(x, X)$ is the set of all justifications for an RDF triple x in data X, and $\operatorname{JUST}_{\text {min }}(x, X)$ is the set of all minimal justifications for an RDF triple x in data X.

Proof. For any d in D and any J in $\operatorname{JUST}(d, D \backslash\{d\})$, if $J \in \operatorname{JUST}_{\min }(d, D \backslash\{d\})$, it is given that $\operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{j \in J} j=\mathbf{T}\right)=0$. If $J \notin \mathbf{J U S T}_{\min }(d, D \backslash\{d\})$, by the definition of a minimal justification (Definition 11), there exists a J^{\prime} in $\operatorname{JUST}_{\text {min }}(d, D \backslash\{d\}$) such that $J \models_{r d f s} J^{\prime}$.

$$
\begin{align*}
& \operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{j \in J} j=\mathbf{T}\right) \tag{4.4}\\
\leq & \operatorname{Pr}\left(d=\mathbf{F} \wedge\left(\bigwedge_{j \in J} j \vee \bigwedge_{j \in J^{\prime}} j\right)=\mathbf{T}\right) \tag{4.5}\\
= & \operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{j \in J^{\prime}} j=\mathbf{T}\right)=0 \tag{4.6}
\end{align*}
$$

The expression $\left(\bigwedge_{j \in J} j \vee \bigwedge_{j \in J^{\prime}} j\right.$) in (4.5) is equivalent to $\bigwedge_{j \in J^{\prime}} j$ in (4.6). See the truth table for them in Table 4.1. When $\bigwedge_{j \in J} j$ is true, $\bigwedge_{j \in J^{\prime}} j$ is also true because $J \models_{r d f s}$ $J^{\prime} . \bigwedge_{j \in J} j \vee \bigwedge_{j \in J^{\prime}} j=\mathbf{T} \vee \mathbf{T}=\mathbf{T}$ is also true. When $\bigwedge_{j \in J} j$ is false, $\bigwedge_{j \in J} j \vee \bigwedge_{j \in J^{\prime}} j$ $=\mathbf{F} \vee \bigwedge_{j \in J^{\prime}} j=\bigwedge_{j \in J^{\prime}} j$.

IS-CONSISTENT (Algorithm 7) uses (4.3) to check the consistency of a pRDFS

```
Algorithm 7 IS-CONSISTENT \(((D, \mathcal{P}, \theta))\) determines if a pRDFS theory \((D, \mathcal{P}, \theta)\) is
consistent or not.
Input: \((D, \mathcal{P}, \theta)\), pRDFS theory.
Output: true or false.
    for all \(d \in D\) such that \(\operatorname{Pr}(d=\mathbf{F})>0\) do
        if \(d\) is an instance triple then
            \(\mathbb{J} \leftarrow\) FIND-MIN-JUST \(_{\text {inst }}(d, D \backslash\{d\})\). (See Algorithm 6)
            else
            \(\mathbb{J} \leftarrow \operatorname{FIND}^{2}\) MIN-JUST schema \((d, D \backslash\{d\}) .(\) See Algorithm 2)
            end if
            for all \(J \in \mathbb{J}\) do
            if \(\operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{j \in J} j=\mathbf{T}\right)>0\) return false.
            end for
    end for
    return true.
```

```
Algorithm 8 IS-CONSISTENT trueschema \(((D, \mathcal{P}, \theta))\) determines if a pRDFS theory
\((D, \mathcal{P}, \theta)\) is consistent or not, where the schema data of \(D\) are true.
Input: \((D, \mathcal{P}, \theta)\), pRDFS theory, where the schema data of \(D\) are certain.
Output: true or false.
    \(H \leftarrow\) schema data of \(D ; R \leftarrow\) instance data of \(D\).
    for all \(d \in R\) such that \(\operatorname{Pr}(d=\mathbf{F})>0\) do
        \(\mathbb{J} \leftarrow\) FIND-MIN-JUST \({ }^{*}\) inst \((d,(D \cup\) rdfs-closure \((H)) \backslash\{d\}) .(\) See Algorithm 1)
        for all \(J \in \mathbb{J}\) do
            if \(\operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{j \in(J \cap R)} j=\mathbf{T}\right)>0\) return false.
        end for
    end for
    return true
```

theory. The for loop in Lines 1-10 iterates over the RDF triples that are not certainly true. If an RDF triple d^{\prime} is certainly true, the probability $\operatorname{Pr}\left(d^{\prime}=\mathbf{F} \wedge \bigwedge_{j \in J} j=\mathbf{T}\right)$ in Line 8 must be zero. Therefore, we can skip the checking of d^{\prime}. In the for loop, IS-CONSISTENT first finds all minimal justifications in Line 3 or 5. It then checks the probabilities of the inconsistent truth value assignments created from the minimal justifications in Line 8 .

IS-CONSISTENT ${ }_{\text {trueschema }}$ (Algorithm 8) is a simplified version of IS-CONSISTENT
(Algorithm 7) for pRDFS theories whose schema data are true. The for loop in Lines 27 iterates over instance data only. IS-CONSISTENT ${ }_{\text {trueschema }}$ calls a simpler algorithm FIND-MIN-JUST ${ }_{\text {inst }}$ (Algorithm 1) in Line 3 to find minimal justifications. Although
the justifications may contain derived schema data, this does not affect the probability of the inconsistent truth value assignment in Line 5 since both the declared and derived schema data are true.

4.2 Incremental Consistency Checking

The running time of consistency checking could be long if both the data size and the percentage of RDF triples that are not certainly true are large. However, we perform the checking only once on static pRDFS theories. For pRDFS theories that are frequently updated, we provide an incremental approach to the consistency checking. The approach does not check the consistency of an updated pRDFS theory anew. It only checks the part affected by the update on the theory and saves the time of unnecessary checking.

There are two basic operations to update a pRDFS theory. One is removing an RDF triple and its probability information from the theory. This operation does not void the consistency of the theory.

The other operation is adding an RDF triple t and its probability information to the theory. Given that the theory before the addition of t is consistent, the probabilities of the inconsistent truth value assignments that do not contain t are zero. We only need to check the probabilities of the inconsistent truth value assignments that contain t. Mathematically, the conditions for the consistency of a consistent pRDFS theory with data D after adding an RDF triple t and its probability information to the theory are

```
Algorithm 9 IS-CONSISTENT \({ }_{\text {inc }}((D, \mathcal{P}, \theta), t)\) determines if a consistent pRDFS the-
ory \((D, \mathcal{P}, \theta)\) is still consistent after adding an RDF triple \(t \notin D\) and its probability
information to the theory.
Input: \((D, \mathcal{P}, \theta)\), consistent pRDFS theory; \(t\), RDF triple not in \(D\).
Output: true or false.
    if \(t\) is an instance triple then
    \(\mathbb{J} \leftarrow\) FIND-MIN-JUST \(_{\text {inst }}(t, D)\). (See Algorithm 6)
    else
        \(\mathbb{J} \leftarrow\) FIND-MIN-JUST \(_{\text {schema }}(t, D) .(\) See Algorithm 2)
    end if
    for all \(J \in \mathbb{J}\) do
        if \(\operatorname{Pr}\left(t=\mathbf{F} \wedge \bigwedge_{j \in J} j=\mathbf{T}\right)>0\) return false.
    end for
    if \(t\) is an instance triple then
        PAIRS \(\leftarrow\) FIND-TRIPLE-JUST-PAIR inst \((t, D) .(\) See Algorithm 10)
    else
        PAIRS \(\leftarrow\) FIND-ITRIPLE-JUST-PAIR schema \((t, D)\). (See Algorithms 12 and 13)
        PAIRS \(\leftarrow\) PAIRS \(\cup\) FIND-STRIPLE-JUST-PAIR \({ }_{\text {schema }}(t, D)\). (See Algorithm 14)
    end if
    for all \(\left(t^{\prime}, J^{\prime}\right) \in\) PAIRS do
        if \(\operatorname{Pr}\left(t^{\prime}=\mathbf{F} \wedge \bigwedge_{j \in J^{\prime}} j=\mathbf{T}\right)>0\) return false.
    end for
    return true.
```

(4.7) and (4.8).

$$
\begin{align*}
& \forall J \in J U S T_{\min }(t, D)\left(\operatorname{Pr}\left(t=\mathbf{F} \wedge \bigwedge_{j \in J} j=\mathbf{T}\right)=0\right) . \tag{4.7}\\
& \forall d \in D \forall J \in\left\{X \in J U S T_{\min }(d,(D \cup\{t\}) \backslash\{d\}) \mid t \in X\right\} \\
& \left(\operatorname{Pr}\left(d=\mathbf{F} \wedge \bigwedge_{j \in J} j=\mathbf{T}\right)=0\right) . \tag{4.8}
\end{align*}
$$

In (4.7), an inconsistent truth value assignment is constructed from t and a minimal justification for t. In (4.8), it is constructed from an RDF triple and a minimal justification for the RDF triple such that the minimal justification contains t.

IS-CONSISTENT $_{\text {inc }}$ (Algorithm 9) uses (4.7) and (4.8) to check if a consistent
pRDFS theory is still consistent after the addition of an RDF triple t and its probability information. It consists of two parts. The first part of IS-CONSISTENT ${ }_{\text {inc }}$ (Lines 1-8) corresponds to checking (4.7). It finds all minimal justifications for t using FIND-MIN-JUST $_{\text {inst }}\left(\right.$ Algorithm 6) and FIND-MIN-JUST $_{\text {schema }}$ (Algorithm 2), which are described in Section 3.3.

The second part of IS-CONSISTENT inc $_{\text {inc }}$ (Lines 9-17) corresponds to checking (4.8). It finds all ordered pairs of an RDF triple d in data D and a minimal justification J for d in $((D \cup\{t\}) \backslash\{d\})$ such that $t \in J$.

If t is an instance triple, d must be an instance triple because schema triples are entailed by schema data only, and justifications for schema triples do not contain any instance triple. FIND-TRIPLE-JUST-PAIR inst (Algorithm 10) is called to find the pairs. It first finds minimal justifications for d in $((D \cup \operatorname{rdfs}$-closure $(H) \cup\{t\}) \backslash\{d\})$ such that the minimal justifications contain t, so the chains of rules in Table 3.5 can be applied, where rdfs-closure (H) is the RDFS closure of the schema data H of D. FIND-TRIPLE-JUST-PAIR ${ }_{\text {inst }}$ substitutes t for an instance triple in the premises of each rule and searches for all substitutions for the variables in the rules such that the premises of the rules are in $((D \cup \operatorname{rdfs}$-closure $(H) \cup\{t\}) \backslash\{d\})$ and the conclusions of the rules are in D. The premises are the minimal justifications and may contain derived schema data. REPLACE-DERIVED-TRIPLE (Algorithm 11) is called in Line 17. It calls FIND-MIN-JUST schema (Algorithm 2) to find all minimal justifications for the derived schema data in Line 8 and replaces the derived schema data with the minimal justifications for them in Line 10 to give the final result.

If t is a schema triple and d is an instance triple, FIND-ITRIPLE-JUST-PAIR ${ }_{\text {schema }}$

```
Algorithm 10 FIND-TRIPLE-JUST-PAIR \({ }_{\text {inst }}(t, D)\) finds all pairs of an RDF triple \(d\) in
data \(D\) and a minimal justification \(J\) for \(d\) in \(((D \cup\{t\}) \backslash\{d\})\) such that \(t \in J\), where
\(t\) is an instance triple not in \(D\).
Input: \(D\), data; \(t\), instance triple not in \(D\).
Output: PAIRS, set of pairs of an RDF triple \(d\) in \(D\) and a minimal justification \(J\) for \(d\) in \(((D \cup\{t\}) \backslash\)
    \(\{d\})\) such that \(t \in J\).
    PAIRS \(\leftarrow \emptyset\).
    \(s \leftarrow\) subject of \(t ; p \leftarrow\) property of \(t ; o \leftarrow\) object of \(t\).
    \(H \leftarrow\) schema data of \(D ; R \leftarrow\) instance data of \(D\).
    if \(p=\) rdf: type then
        PAIRS \(\leftarrow\) PAIRS \(\cup\{((s\), rdf: type, ? \(y),\{(o\), rdfs: subClassOf, ? \(y), t\}) \mid(s\), rdf: type, \(? y) \in\)
        \(R\), ( \(o\), rdfs: subClassOf, ? \(y\) ) \(\in\) rdfs-closure \((H)\}\). // rule rdfs 9
    else
        PAIRS \(\leftarrow\) PAIRS \(\cup\{((s, ? q, o),\{(p\), rdfs: subPropertyOf, \(? q), t\}) \mid(s, ? q, o) \in R,(p\), rdfs:
        subPropertyOf, \(? q) \in\) rdfs-closure \((H)\}\). // rule rdfs7
        PAIRS \(\leftarrow \operatorname{PAIRS} \cup\{((s\), rdf: type, \(? x),\{(p\), rdfs: domain, \(? x), t\}) \mid(s\), rdf: type, \(? x) \in R,(p\),
        rdfs: domain, \(? x) \in\) rdfs-closure \((H)\}\). // rule rdfs 2
        PAIRS \(\leftarrow\) PAIRS \(\cup\{((s\), rdf: type, \(? x),\{(? q\), rdfs: domain, \(? x),(p\), rdfs: subPropertyOf, \(? q)\),
        \(t\}) \mid(s\), rdf: type, \(? x) \in R,(? q\), rdfs: domain, ? \(x) \in \operatorname{rdfs}-c l o s u r e(H),(p\), rdfs: subPropertyOf,
        \(? q) \in \operatorname{rdfs}-c l o s u r e(H), ? q \neq p\}\). // rule rdfs7+rdfs2
10: \(\quad\) PAIRS \(\leftarrow\) PAIRS \(\cup\{((s\), rdf: type, \(? y),\{(? x\), rdfs: subClassOf, \(? y),(p\), rdfs: domain, \(? x), t\})\)
        \(\mid(s\), rdf: type, \(? y) \in R,(? x\), rdfs: subClassOf, ? \(y) \in \operatorname{rdfs}-c l o s u r e(H),(p\), rdfs: domain, \(? x) \in\)
        rdfs-closure \((H), ? x \neq ? y\}\). // rule rdfs \(2+\) rdfs 9
11: \(\quad\) PAIRS \(\leftarrow\) PAIRS \(\cup\{((s\), rdf: type, ? \(y),\{(? x\), rdfs: subClassOf, \(? y),(? q\), rdfs: domain, \(? x)\),
        \((p\), rdfs: subPropertyOf, \(? q), t\}) \mid(s\), rdf: type, \(? y) \in R,(? x\), rdfs: subClassOf, \(? y) \in\) rdfs-
        closure \((H),(? q\), rdfs: domain, \(? x) \in \operatorname{rdfs}-\operatorname{closure}(H),(p\), rdfs: subPropertyOf, \(? q), \in\) rdfs-
        closure \((H), ? x \neq ? y, ? q \neq p\}\). // rule rdfs7+rdfs2+rdfs9
12: \(\quad\) PAIRS \(\leftarrow\) PAIRS \(\cup\{((o\), rdf: type, \(? x),\{(p\), rdfs: range, \(? x), t\}) \mid(o\), rdf: type, \(? x) \in R,(p\),
        rdfs: range, \(? x) \in\) rdfs-closure \((H)\}\). // rule rdfs 3
13: \(\quad\) PAIRS \(\leftarrow \operatorname{PAIRS} \cup\{((o\), rdf: type, \(? x),\{(? q\), rdfs: range, \(? x),(p\), rdfs: subPropertyOf, \(? q), t\})\)
        \(\mid(o\), rdf: type, \(? x) \in R,(? q\), rdfs: range, \(? x) \in \operatorname{rdfs}-c l o s u r e(H),(p\), rdfs: subPropertyOf, \(? q) \in\)
        rdfs-closure \((H), ? q \neq p\}\). // rule rdfs7+rdfs3
14: \(\quad\) PAIRS \(\leftarrow\) PAIRS \(\cup\{((o\), rdf: type, \(? y),\{(? x\), rdfs: subClassOf, \(? y),(p\), rdfs: range, \(? x), t\})\)
        \(\mid(o\), rdf: type, \(? y) \in R,(? x\), rdfs: subClassOf, ? \(y) \in \operatorname{rdfs}-\operatorname{closure}(H),(p\), rdfs: range, \(? x) \in\)
        rdfs-closure \((H), ? x \neq ? y\}\). // rule rdfs3+rdfs9
15: \(\quad\) PAIRS \(\leftarrow\) PAIRS \(\cup\{((o\), rdf: type, \(? y),\{(? x\), rdfs: subClassOf, \(? y),(? q\), rdfs: range, \(? x)\),
        \((p\), rdfs: subPropertyOf, \(? q), t\}) \mid(o\), rdf: type, \(? y) \in R,(? x\), rdfs: subClassOf, ? \(y) \in\)
        rdfs-closure \((H),(? q\), rdfs: range, \(? x) \in \operatorname{rdfs}-c l o s u r e(H),(p\), rdfs: subPropertyOf, \(? q) \in\) rdfs-
        closure \((H), ? x \neq ? y, ? q \neq p\}\). // rule rdfs7+rdfs3+rdfs9
    end if
    return REPLACE-DERIVED-TRIPLE(PAIRS, \(D \cup\{t\})\). (See Algorithm 11)
```

(Algorithms 12 and 13) is called to find the pairs. It first finds minimal justifications for d in $((D \cup \operatorname{rdfs}$-closure $(H \cup\{t\})\}) \backslash\{d\})$ such that the minimal justifications contain t or any derived schema triple in (rdfs-closure $(H \cup\{t\}) \backslash \operatorname{rdfs}-$ closure $(H))$, so the chains of rules in Table 3.5 can be applied. FIND-ITRIPLE-JUST-PAIR ${ }_{\text {schem }}$

```
Algorithm 11 REPLACE-DERIVED-TRIPLE(PAIRS, \(D\) ) replaces each derived
schema triple \(t\) in PAIRS with a minimal justification for \(t\) in data \(D\).
Input: \(D\), data; PAIRS, set of pairs of an RDF triple \(d\) in \(D\) and a minimal justification for \(d\) in \(((D \cup\)
    \(\operatorname{rdfs}\)-closure \((H)) \backslash\{d\}\) ), where \(H\) is schema data of \(D\).
Output: PAIRS \({ }^{\prime}\), set of pairs of an RDF triple \(d\) in \(D\) and a minimal justification for \(d\) in ( \(D \backslash\{d\}\) ).
    PAIRS \(^{\prime} \leftarrow \emptyset\).
    \(H \leftarrow\) schema data of \(D\).
    for all \((d, J) \in\) PAIRS do
        \(H_{\text {derived }}=\{x \in J \mid x \notin H\}\).
        if \(H_{\text {derived }}=\emptyset\) then
            PAIRS \(^{\prime} \leftarrow\) PAIRS \(^{\prime} \cup\{(d, J)\}\)
        else
            \(J_{\text {derived }}=\prod_{h \in H_{\text {derived }}}\) FIND-MIN-JUST schema \((h, H) .(\) See Algorithm 2)
            for all \(j_{\text {derived }} \in J_{\text {derived }}\) do
                PAIRS \(^{\prime} \leftarrow\) PAIRS \(^{\prime} \cup\left\{\left(d,\left(J \backslash H_{\text {derived }}\right) \cup\left(\right.\right.\right.\) union of all elements in tuple \(\left.\left.\left.j_{\text {derived }}\right)\right)\right\}\).
            end for
        end if
    end for
    return PAIRS \({ }^{\prime}\).
```

substitutes t or a derived schema triple in (rdfs-closure $(H \cup\{t\}) \backslash$ rdfs-closure $(H))$ for a schema triple in the premises of each rule and searches for all substitutions for the variables in the rules such that the premises of the rules are in $((D \cup \operatorname{rdfs}$-closure $(H \cup$ $\{t\})\}) \backslash\{d\})$ and the conclusions of the rules are in D. The premises are the minimal justifications and may contain derived schema data. FIND-ITRIPLE-JUST-PAIR schema calls REPLACE-DERIVED-TRIPLE (Algorithm 11) in Line 35 to replace the derived schema data with the minimal justifications for them to give the final result.

If both t and d are schema triples, FIND-STRIPLE-JUST-PAIR schema (Algorithm 14) is called to find the pairs. It first uses rules rdfs5, rdfs6, rdfs10, and rdfs11 in Table 2.4 to find minimal justifications for d in $((D \cup \operatorname{rdfs}$-closure $(H \cup\{t\})\}) \backslash\{d\})$ such that the minimal justifications contain t. The minimal justifications found may contain derived schema data. FIND-STRIPLE-JUST-PAIR schema then calls REPLACE-DERIVED-TRIPLE (Algorithm 11) in Line 17 to replace the derived schema data with the minimal justifications for them to give the final result.

```
Algorithm 12 FIND-ITRIPLE-JUST-PAIR schema \((t, D)\) finds all pairs of an instance
triple \(d\) in data \(D\) and a minimal justification \(J\) for \(d\) in \(((D \cup\{t\}) \backslash\{d\})\) such that \(t\)
\(\in J\), where \(t\) is a schema triple not in \(D\) (Part 1).
Input: \(D\), data; \(t\), schema triple not in \(D\).
Output: PAIRS, set of pairs of an instance triple \(d\) in \(D\) and a minimal justification \(J\) for \(d\) in \(((D \cup\)
    \(\{t\}) \backslash\{d\})\) such that \(t \in J\).
    PAIRS \(\leftarrow \emptyset\).
    \(H \leftarrow\) schema data of \(D ; R \leftarrow\) instance data of \(D\).
    for all \(\left(s_{h}, p_{h}, o_{h}\right) \in(\{t\} \cup(\) rdfs-closure \((H \cup\{t\}) \backslash\) rdfs-closure \((H)))\) do
        if \(p_{h}=\) rdfs: domain then
            \(X_{\text {rdfs } 2} \leftarrow\left\{(? u, ? w) \mid\left(? u\right.\right.\), rdf: type, \(\left.\left.o_{h}\right) \in R,\left(? u, s_{h}, ? w\right) \in R\right\}\).
            PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left(\left(? u\right.\right.\right.\), rdf: type,\(\left.o_{h}\right),\left\{\left(s_{h}\right.\right.\), rdfs: domain, \(\left.\left.\left.o_{h}\right),\left(? u, s_{h}, ? w\right)\right\}\right) \mid(? u\),
            ?w) \(\left.\in X_{\text {rdfs } 2}\right\}\). // rule rdfs 2
            PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left(\left(? u\right.\right.\right.\), rdf: type, \(\left.o_{h}\right),\left\{\left(s_{h}\right.\right.\), rdfs: domain, \(\left.o_{h}\right),(? q\), rdfs: subProp-
            ertyOf, \(\left.\left.\left.s_{h}\right),(? u, ? q, ? w)\right\}\right) \quad \mid\left(? u\right.\), rdf: type, \(\left.o_{h}\right) \in R,\left(? q\right.\), rdfs: subPropertyOf, \(\left.s_{h}\right) \in\)
            rdfs-closure \(\left.(H),(? u, ? q, ? w) \in R, ? q \neq s_{h},(? u, ? w) \notin X_{\text {rdfs } 2}\right\}\). // rule rdfs7+rdfs2
            \(X_{\text {rdfs } 2+9} \leftarrow\left\{(? u, ? y, ? w) \mid(? u\right.\), rdf: type, \(? y) \in R\), \(\left(o_{h}\right.\), rdfs: subClassOf, ? \(\left.y\right) \in\) rdfs-
            closure \(\left.(H),\left(? u, s_{h}, ? w\right) \in R, ? y \neq o_{h}\right\}\).
            PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left((? u\right.\right.\), rdf: type, ? \(y),\left\{\left(o_{h}\right.\right.\), rdfs: subClassOf, ? \(\left.y\right),\left(s_{h}\right.\), rdfs: domain,
            \(\left.\left.\left.\left.o_{h}\right),\left(? u, s_{h}, ? w\right)\right\}\right) \mid(? u, ? y, ? w) \in X_{\text {rdfs } 2+9\}}\right\}\). // rule rdfs2+rdfs9
10: \(\quad\) PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left((? u\right.\right.\), rdf: type, ? \(y),\left\{\left(o_{h}\right.\right.\), rdfs: subClassOf, ? \(\left.y\right),\left(s_{h}\right.\), rdfs: domain,
            \(\left.o_{h}\right),\left(? q\right.\), rdfs: subPropertyOf, \(\left.\left.\left.s_{h}\right),(? u, ? q, ? w)\right\}\right) \mid(? u\), rdf: type, ? \(y) \in R,\left(o_{h}\right.\), rdfs:
            subClassOf, ?y) \(\in \operatorname{rdfs}-\) closure \((H),\left(? q\right.\), rdfs: subPropertyOf, \(\left.s_{h}\right) \in \operatorname{rdfs}-c l o s u r e(H),(? u\),
            \(\left.? q, ? w) \in R, ? y \neq o_{h}, ? q \neq s_{h},(? u, ? y, ? w) \notin X_{\text {rdfs } 2+9}\right\}\). // rule rdfs7+rdfs2+rdfs9
        else if \(p_{h}=\) rdfs: range then
            \(X_{\text {rdfs }} \leftarrow\left\{(? u, ? v) \mid\left(? u\right.\right.\), rdf: type, \(\left.\left.o_{h}\right) \in R,\left(? v, s_{h}, ? u\right) \in R\right\}\).
            PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left(\left(? u\right.\right.\right.\), rdf: type,\(\left.o_{h}\right),\left\{\left(s_{h}\right.\right.\), rdfs: range, \(\left.\left.\left.o_{h}\right),\left(? v, s_{h}, ? u\right)\right\}\right) \mid(? u, ? v) \in\)
            \(\left.X_{\text {rdfs } 3}\right\}\). // rule rdfs3
14: \(\quad\) PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left(\left(? u\right.\right.\right.\), rdf: type, \(\left.o_{h}\right),\left\{\left(s_{h}\right.\right.\), rdfs: range, \(\left.o_{h}\right),(? q\), rdfs: subProper-
            tyOf, \(\left.\left.\left.s_{h}\right),(? v, ? q, ? u)\right\}\right) \mid\left(? u\right.\), rdf: type, \(\left.o_{h}\right) \in R,\left(? q\right.\), rdfs: subPropertyOf, \(\left.s_{h}\right) \in\) rdfs-
            closure \(\left.(H),(? v, ? q, ? u) \in R, ? q \neq s_{h},(? u, ? v) \notin X_{\text {rdfs }}\right\}\). // rule rdfs7+rdfs3
15: \(\quad X_{\mathrm{rdfs} 3+9} \leftarrow\left\{(? u, ? y, ? v) \mid(? u\right.\), rdf: type, ? \(y) \in R\), \(\left(o_{h}\right.\), rdfs: subClassOf, ?y \() \in\) rdfs-
            closure \(\left.(H),\left(? v, s_{h}, ? u\right) \in R, ? y \neq o_{h}\right\}\).
16: \(\quad\) PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left((? u\right.\right.\), rdf: type, ? \(y),\left\{\left(o_{h}\right.\right.\), rdfs: subClassOf, ? \(\left.y\right),\left(s_{h}\right.\), rdfs: range, \(\left.o_{h}\right)\),
            \(\left.\left.\left.\left(? v, s_{h}, ? u\right)\right\}\right) \mid(? u, ? y, ? v) \in X_{\text {rdfs } 3+9}\right\}\). // rule rdfs3+rdfs9
17: PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left((? u\right.\right.\), rdf: type, ? \(),\left\{\left(o_{h}\right.\right.\), rdfs: subClassOf, ? \(\left.y\right),\left(s_{h}\right.\), rdfs: range,
    \(\left.o_{h}\right),\left(? q\right.\), rdfs: subPropertyOf, \(\left.\left.\left.s_{h}\right),(? v, ? q, ? u)\right\}\right) \mid(? u\), rdf: type, ? \(y) \in R,\left(o_{h}\right.\), rdfs:
    subClassOf, ? \(y) \in \operatorname{rdfs}-\operatorname{closure}(H),\left(? q\right.\), rdfs: subPropertyOf, \(\left.s_{h}\right) \in \operatorname{rdfs}\)-closure \((H),(? v\),
    \(\left.? q, ? u) \in R, ? y \neq o_{h}, ? q \neq s_{h},(? u, ? y, ? v) \notin X_{\text {rdfs } 3+9}\right\}\). // rule rdfs7+rdfs3+rdfs9
```

Example 10 (Consistency Checking After Adding an Instance Triple). This example illustrates the operation of IS-CONSISTENT $T_{\text {inc }}$ (Algorithm 9) using a consistent theory with data D_{4} (Table 4.2). IS-CONSISTENT $T_{i n c}$ is used to check the consistency of the theory after the instance triple $t=(u, p, v)$ and its probability information are added to the theory, where u and v are individuals and p is a property.

```
Algorithm 13 FIND-ITRIPLE-JUST-PAIR \({ }_{\text {schema }}(t, D)\) finds all pairs of an instance
triple \(d\) in data \(D\) and a minimal justification \(J\) for \(d\) in \(((D \cup\{t\}) \backslash\{d\})\) such that \(t\)
\(\in J\), where \(t\) is a schema triple not in \(D\) (Part 2).
```

```
else if }\mp@subsup{p}{h}{}=\mathrm{ rdfs: subPropertyOf then
```

else if }\mp@subsup{p}{h}{}=\mathrm{ rdfs: subPropertyOf then
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u,\mp@subsup{o}{h}{},?w),{(\mp@subsup{s}{h}{},\mathrm{ rdfs: subPropertyOf, o
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u,\mp@subsup{o}{h}{},?w),{(\mp@subsup{s}{h}{},\mathrm{ rdfs: subPropertyOf, o
o
o
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type,?x), {(oh, rdfs: domain,?x), (sh, rdfs: subPropertyOf
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type,?x), {(oh, rdfs: domain,?x), (sh, rdfs: subPropertyOf
o
o
sh},\mp@code{?w)\inR}.// rule rdfs7+rdfs2
sh},\mp@code{?w)\inR}.// rule rdfs7+rdfs2
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type,?y),{(?x, rdfs: subClassOf, ?y), (oh, rdfs: domain
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type,?y),{(?x, rdfs: subClassOf, ?y), (oh, rdfs: domain
?x),(\mp@subsup{s}{h}{},\mathrm{ rdfs: subPropertyOf, oh), (?u, sh, ?w)}) | (?u, rdf: type, ?y) }\inR,(?x,\mathrm{ rdfs:}
?x),(\mp@subsup{s}{h}{},\mathrm{ rdfs: subPropertyOf, oh), (?u, sh, ?w)}) | (?u, rdf: type, ?y) }\inR,(?x,\mathrm{ rdfs:}
subClassOf, ?y) \in rdfs-closure(H), (oh, rdfs: domain, ?x) \in rdfs-closure(H), (?u, sh, ?w)
subClassOf, ?y) \in rdfs-closure(H), (oh, rdfs: domain, ?x) \in rdfs-closure(H), (?u, sh, ?w)
\inR,?x\not=?y}. // rule rdfs7+rdfs2+rdfs9
\inR,?x\not=?y}. // rule rdfs7+rdfs2+rdfs9
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ?x),{(oo, rdfs: range, ?x), (sh, rdfs: subPropertyOf
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ?x),{(oo, rdfs: range, ?x), (sh, rdfs: subPropertyOf
oh}),(?v,\mp@subsup{s}{h}{},?u)})|(?u, rdf: type,?x)\inR,(oh, rdfs: range, ?x)\in rdfs-closure(H), (?v
oh}),(?v,\mp@subsup{s}{h}{},?u)})|(?u, rdf: type,?x)\inR,(oh, rdfs: range, ?x)\in rdfs-closure(H), (?v
sh,?u)\inR}.// rule rdfs7+rdfs3
sh,?u)\inR}.// rule rdfs7+rdfs3
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type,?y),{(?x, rdfs: subClassOf, ?y), (oh, rdfs: range
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type,?y),{(?x, rdfs: subClassOf, ?y), (oh, rdfs: range
?x),(sh, rdfs: subPropertyOf, ooh),(?v, sh, ?u)}) | (?u, rdf: type, ?y) \inR, (?x, rdfs:
?x),(sh, rdfs: subPropertyOf, ooh),(?v, sh, ?u)}) | (?u, rdf: type, ?y) \inR, (?x, rdfs:
subClassOf, ?y) }\in\operatorname{rdfs-closure(}H),(\mp@subsup{o}{h}{},\mathrm{ rdfs: range, ?x) }\in\operatorname{rdfs-closure(}H),(?v,\mp@subsup{s}{h}{},?u)
subClassOf, ?y) }\in\operatorname{rdfs-closure(}H),(\mp@subsup{o}{h}{},\mathrm{ rdfs: range, ?x) }\in\operatorname{rdfs-closure(}H),(?v,\mp@subsup{s}{h}{},?u)
R,?x\not= ?y}. // rule rdfs7+rdfs3+rdfs9
R,?x\not= ?y}. // rule rdfs7+rdfs3+rdfs9
else if }\mp@subsup{p}{h}{}=\mathrm{ rdfs: subClassOf then

```
        else if }\mp@subsup{p}{h}{}=\mathrm{ rdfs: subClassOf then
```



```
        PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ooh),{(\mp@subsup{s}{h}{},\mathrm{ rdfs: subClassOf, o
```

 PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ooh),{(\mp@subsup{s}{h}{},\mathrm{ rdfs: subClassOf, o
 | ?u\in X rdfs9}. // rule rdfs9
 | ?u\in X rdfs9}. // rule rdfs9
 X rdfs2+9}\leftarrow{(?u,?p,?w)|(?u, rdf: type, ooh)\inR,(?p, rdfs: domain, sh)\in rdfs-closure(H)
    ```
        X rdfs2+9}\leftarrow{(?u,?p,?w)|(?u, rdf: type, ooh)\inR,(?p, rdfs: domain, sh)\in rdfs-closure(H)
```



```
28: PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ooh),{(sh, rdfs: subClassOf, ooh), (?p, rdfs: domain
```

28: PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ooh),{(sh, rdfs: subClassOf, ooh), (?p, rdfs: domain
sh),(?u,?p,?w)})|(?u,?p,?w)\in\mp@subsup{X}{\mathrm{ rdfs }2+9}{}}.// rule rdfs2+rdfs9
sh),(?u,?p,?w)})|(?u,?p,?w)\in\mp@subsup{X}{\mathrm{ rdfs }2+9}{}}.// rule rdfs2+rdfs9
29: PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ooh),{(sh, rdfs: subClassOf, ooh), (?p,rdfs: domain
29: PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ooh),{(sh, rdfs: subClassOf, ooh), (?p,rdfs: domain
sh),(?q, rdfs: subPropertyOf, ?p), (?u, ?q, ?w)}) | (?u, rdf: type, oo) \inR,(?p, rdfs:
sh),(?q, rdfs: subPropertyOf, ?p), (?u, ?q, ?w)}) | (?u, rdf: type, oo) \inR,(?p, rdfs:
domain, sh) \in rdfs-closure(H), (?q, rdfs: subPropertyOf, ?p) }\in\operatorname{rdfs-closure(}H),(?u,?q
domain, sh) \in rdfs-closure(H), (?q, rdfs: subPropertyOf, ?p) }\in\operatorname{rdfs-closure(}H),(?u,?q
?w)\inR,(?u,?p,?w)\not\in\mp@subsup{X}{\mathrm{ rdfs2+9}. // rule rdfs7+rdfs2+rdfs9}}{}=(\mp@code{l}
?w)\inR,(?u,?p,?w)\not\in\mp@subsup{X}{\mathrm{ rdfs2+9}. // rule rdfs7+rdfs2+rdfs9}}{}=(\mp@code{l}
30: }\quad\mp@subsup{X}{\mathrm{ rdfs 3+9}}{}\leftarrow{(?u,?p,?v)|(?u, rdf: type, ooh)\inR,(?p, rdfs: range, sh)\in rdfs-closure(H)
30: }\quad\mp@subsup{X}{\mathrm{ rdfs 3+9}}{}\leftarrow{(?u,?p,?v)|(?u, rdf: type, ooh)\inR,(?p, rdfs: range, sh)\in rdfs-closure(H)
(?v,?p,?u)\inR,?u\not\in X (rdfs }
(?v,?p,?u)\inR,?u\not\in X (rdfs }
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ooh),{(sh, rdfs: subClassOf, ooh), (?p, rdfs: range, sh)
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ooh),{(sh, rdfs: subClassOf, ooh), (?p, rdfs: range, sh)
(?v,?p,?u)})|(?u,?p,?v)\in\mp@subsup{X}{\mathrm{ rdfs 3+9}}. // rule rdfs3+rdfs9}{}
(?v,?p,?u)})|(?u,?p,?v)\in\mp@subsup{X}{\mathrm{ rdfs 3+9}}. // rule rdfs3+rdfs9}{}
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ooh), {(sh, rdfs: subClassOf, ooh), (?p, rdfs: range, sh)
PAIRS }\leftarrow\mathrm{ PAIRS }\cup{((?u, rdf: type, ooh), {(sh, rdfs: subClassOf, ooh), (?p, rdfs: range, sh)
(?q, rdfs: subPropertyOf, ?p),(?v,?q,?u)}) | (?u, rdf: type, ooh) \inR,(?p, rdfs: range, sh)
(?q, rdfs: subPropertyOf, ?p),(?v,?q,?u)}) | (?u, rdf: type, ooh) \inR,(?p, rdfs: range, sh)
rdfs-closure (H),(?q, rdfs: subPropertyOf,?p) \in rdfs-closure(H), (?v,?q,?u)\inR,(?u,
rdfs-closure (H),(?q, rdfs: subPropertyOf,?p) \in rdfs-closure(H), (?v,?q,?u)\inR,(?u,
?p, ?v)\not\in
?p, ?v)\not\in
end if
end if
end for
return REPLACE-DERIVED-TRIPLE(PAIRS, D\cup{t}).(See Algorithm 11).

```
    return REPLACE-DERIVED-TRIPLE(PAIRS, D\cup{t}).(See Algorithm 11).
```

IS-CONSISTENT inc first calls FIND-MIN-JUST inst (Algorithm 6) in Line 2 to find
all minimal justifications for t in D_{4}, but there are no minimal justifications for t in D_{4}.

```
Algorithm 14 FIND-STRIPLE-JUST-PAIR schema \((t, D)\) finds all pairs of a schema
triple \(d\) in data \(D\) and a minimal justification \(J\) for \(d\) in \(((D \cup\{t\}) \backslash\{d\})\) such that \(t\)
\(\in J\), where \(t\) is a schema triple not in \(D\).
Input: \(D\), data; \(t\), schema triple not in \(D\).
Output: PAIRS, set of pairs of a schema triple \(d\) in \(D\) and a minimal justification \(J\) for \(d\) in \(((D \cup\)
    \(\{t\}) \backslash\{d\})\) such that \(t \in J\).
    PAIRS \(\leftarrow \emptyset\).
    \(s_{h} \leftarrow\) subject of \(t ; p_{h} \leftarrow\) property of \(t ; o_{h} \leftarrow\) object of \(t\).
    \(H \leftarrow\) schema data of \(D ; R \leftarrow\) instance data of \(D\).
    if \(p_{h}=\) rdf: type and \(o_{h}=\) rdf: Property then
        PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left(\left(s_{h}\right.\right.\right.\), rdfs: subPropertyOf, \(\left.\left.s_{h}\right),\{t\}\right) \mid\left(s_{h}\right.\), rdfs: subPropertyOf, \(\left.s_{h}\right) \in\)
        \(H\}\). // rule rdfs6
    else if \(p_{h}=\) rdf: type and \(o_{h}=\) rdfs: Class then
        PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left(\left(s_{h}\right.\right.\right.\), rdfs: subClassOf, \(\left.\left.s_{h}\right),\{t\}\right) \mid\left(s_{h}\right.\), rdfs: subClassOf, \(\left.\left.s_{h}\right) \in H\right\}\). //
        rule rdfs 10
    else if \(p_{h}=\) rdfs: subPropertyOf and \(s_{h} \neq o_{h}\) then
        PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left(\left(s_{h}\right.\right.\right.\), rdfs: subPropertyOf, \(\left.? p\right),\left\{t,\left(o_{h}\right.\right.\), rdfs: subPropertyOf, \(\left.\left.\left.? p\right)\right\}\right) \mid\left(s_{h}\right.\),
        rdfs: subPropertyOf, ? \(p) \in H,\left(o_{h}\right.\), rdfs: subPropertyOf, ? \(\left.p\right) \in \operatorname{rdfs}\)-closure \(\left.(H), ? p \neq o_{h}\right\}\). //
        rule rdfs5
        PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left(\left(? p\right.\right.\right.\), rdfs: subPropertyOf, \(\left.o_{h}\right),\left\{\left(? p\right.\right.\), rdfs: subPropertyOf, \(\left.\left.\left.s_{h}\right), t\right\}\right) \mid(? p\),
        rdfs: subPropertyOf, \(\left.o_{h}\right) \in H\), (? \(p\), rdfs: subPropertyOf, \(\left.s_{h}\right) \in \operatorname{rdfs}\)-closure \(\left.(H), ? p \neq s_{h}\right\}\). //
        rule rdfs5
        PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left((? p\right.\right.\), rdfs: subPropertyOf, \(? q),\left\{\left(? p\right.\right.\), rdfs: subPropertyOf, \(\left.s_{h}\right), t,\left(o_{h}\right.\), rdfs:
        subPropertyOf, \(? q)\}) \mid(? p\), rdfs: subPropertyOf, \(? q) \in H,\left(? p\right.\), rdfs: subPropertyOf, \(\left.s_{h}\right) \in\)
        rdfs-closure \((H),\left(o_{h}\right.\), rdfs: subPropertyOf, \(\left.? q\right) \in \operatorname{rdfs}\)-closure \(\left.(H), ? p \neq s_{h}, ? q \neq o_{h}\right\}\). // rule
        rdfs \(5+\) rdfs 5
    else if \(p_{h}=\) rdfs: subClassOf and \(s_{h} \neq o_{h}\) then
        PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left(\left(s_{h}\right.\right.\right.\), rdfs: subClassOf, \(\left.? x\right),\left\{t,\left(o_{h}\right.\right.\), rdfs: subClassOf, \(\left.\left.\left.? x\right)\right\}\right) \mid\left(s_{h}\right.\), rdfs:
        subClassOf, ? \(x) \in H,\left(o_{h}\right.\), rdfs: subClassOf, \(\left.\left.? x\right) \in \operatorname{rdfs}-\operatorname{closure}(H), ? x \neq o_{h}\right\}\). // rule rdfs11
        PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left(\left(? x\right.\right.\right.\), rdfs: subClassOf, \(\left.o_{h}\right),\left\{\left(? x\right.\right.\), rdfs: subClassOf, \(\left.\left.\left.s_{h}\right), t\right\}\right) \mid(? x\), rdfs:
        subClassOf, \(\left.o_{h}\right) \in H\), (? \(x\), rdfs: subClassOf, \(\left.s_{h}\right) \in \operatorname{rdfs}\)-closure \(\left.(H), ? x \neq s_{h}\right\}\). // rule rdfs11
15: \(\quad\) PAIRS \(\leftarrow\) PAIRS \(\cup\left\{\left((? x\right.\right.\), rdfs: subClassOf, ? \(y),\left\{\left(? x\right.\right.\), rdfs: subClassOf, \(\left.s_{h}\right), t,\left(o_{h}\right.\), rdfs: sub-
        ClassOf, \(? y)\}) \mid(? x\), rdfs: subClassOf, \(? y) \in H,\left(? x\right.\), rdfs: subClassOf, \(\left.s_{h}\right) \in \operatorname{rdfs}-\) closure \((H)\),
        ( \(o_{h}\), rdfs: subClassOf, ? \(y\) ) \(\in \operatorname{rdfs}\)-closure \(\left.(H), ? x \neq s_{h}, ? y \neq o_{h}\right\}\). // rule rdfs11+rdfs11
    end if
    return REPLACE-DERIVED-TRIPLE(PAIRS, \(D \cup\{t\})\). (See Algorithm 11).
```

IS-CONSISTENT inc then calls FIND-TRIPLE-JUST-PAIR inst (Algorithm 10) in Line 10 to find all pairs of an RDF triple d in D_{4} and a minimal justification J for d in $\left(\left(D_{4} \cup\{t\}\right) \backslash\{d\}\right)$ such that $t \in J$. FIND-TRIPLE-JUST-PAIR inst first finds all pairs of an RDF triple d in D_{4} and a minimal justification J for d in $\left(\left(D_{4} \cup\right.\right.$ rdfs-closure $\left(H_{4}\right) \cup$ $\{t\}) \backslash\{d\})$ such that $t \in J$, where rdfs-closure $\left(H_{4}\right)$ is the RDFS closure of the schema data H_{4} of D_{4} and is shown in Table 4.2c. The pair $((u, r, v),\{(p, r d f s:$ subPropertyOf, $r), t\}$) is found in Line 7 because (u, r, v) is in D_{4}, and ($q, r d f s$: subPropertyOf, r)

| (p, rdf: type, rdf: Property) |
| :---: |
| $(q$, rdf: type, rdf: Property $)$ |
| $(r$, rdf: type, rdf: Property) |
| $(p$, rdfs: subPropertyOf, $q)$ |
| $(q$, rdfs: subPropertyOf, $r)$ |

(a) Schema data of D_{4}, H_{4}.

$$
(u, r, v)
$$

(b) Instance data of D_{4}, R_{4}.

| (p, rdf: type, rdf: Property $)$ |
| :---: |
| $(q$, rdf: type, rdf: Property $)$ |
| $(r$, rdf: type, rdf: Property $)$ |
| $(p$, rdfs: subPropertyOf, $q)$ |
| $(q$, rdfs: subPropertyOf, $r)$ |
| $(p$, rdfs: subPropertyOf, $r)$ |
| $(p$, rdfs: subPropertyOf, $p)$ |
| $(q$, rdfs: subPropertyOf, $q)$ |
| $(r$, rdfs: subPropertyOf,$r)$ |

(c) RDFS closure of schema data H_{4}, rdfs-closure $\left(H_{4}\right)$.

Table 4.2: Data D_{4} used to illustrate the operation of IS-CONSISTENT ${ }_{\text {inc }}$ (Algorithm 9), where p, q, and r are properties. u and v are individuals.
is in rdfs-closure $\left(H_{4}\right)$. FIND-TRIPLE-JUST-PAIR inst then calls REPLACE-DERIVEDTRIPLE (Algorithm 11) in Line 17 to replace the derived schema triple (p, rdfs: subPropertyOf, r) in the pair with a minimal justification for it. The pair becomes (u, r, $v),\{(p, r d f s$: subPropertyOf, $q),(q, r d f s$: subPropertyOf, $r), t\})$.

Finally, IS-CONSISTENT ${ }_{\text {inc }}$ checks if the probability of the inconsistent truth value assignment created from the pair is zero in Line 16. If so, the theory with the addition of t and its probability information is still consistent.

Example 11 (Consistency Checking After Adding a Schema Triple). This example illustrates the operation of IS-CONSISTENT inc (Algorithm 9) using a consistent pRDFS theory with data D_{5} (Table 4.3). IS-CONSISTENT ${ }_{\text {inc }}$ is used to check the consistency of the theory after the schema triple $t=(p, r d f s$: subPropertyOf, $q)$ and its probability information are added to the theory, where p and q are properties.

IS-CONSISTENT inc $^{\text {first calls FIND-MIN-JUST }}$ schema $($ Algorithm 2) in Line 4 to find all minimal justifications for t in D_{5}, but there are no minimal justifications for t in D_{5}.

IS-CONSISTENT inc then calls FIND-ITRIPLE-JUST-PAIR ${ }_{\text {schema }}$ (Algorithms 12 and

| (p, rdf: type, rdf: Property) |
| :---: |
| (q, rdf: type, rdf: Property) |
| $(r$, rdf: type, rdf: Property $)$ |
| $(s$, rdf: type, rdf: Property) |
| $(p$, rdfs: subPropertyOf, $s)$ |
| $(q$, rdfs: subPropertyOf, $r)$ |
| $(q$, rdfs: subPropertyOf, $s)$ |

(a) Schema data of D_{5}, H_{5}.

| (u, p, v) |
| :--- |
| (u, q, v) |
| (u, r, v) |

(b) Instance data of D_{5}, R_{5}.

| $(p$, rdf: type, rdf: Property $)$ |
| :---: |
| $(q$, rdf: type, rdf: Property $)$ |
| $(r$, rdf: type, rdf: Property $)$ |
| $(s$, rdf: type, rdf: Property $)$ |
| $(p$, rdfs: subPropertyOf, $s)$ |
| $(q$, rdfs: subPropertyOf, $r)$ |
| $(q$, rdfs: subPropertyOf, $s)$ |
| $(p$, rdfs: subPropertyOf, $p)$ |
| $(q$, rdfs: subPropertyOf, $q)$ |
| $(r$, rdfs: subPropertyOf, $r)$ |
| $(s$, rdfs: subPropertyOf, $s)$ |

(c) RDFS closure of schema data H_{5}, rdfs-closure $\left(H_{5}\right)$.

| (p, rdf: type, rdf: Property) | (p, rdfs: subPropertyOf, p) |
| :---: | :---: |
| $(q$, rdf: type, rdf: Property) | $(q$, rdfs: subPropertyOf, $q)$ |
| $(r$, rdf: type, rdf: Property $)$ | $(r$, rdfs: subPropertyOf, $r)$ |
| $(s$, rdf: type, rdf: Property $)$ | $(s$, rdfs: subPropertyOf, $s)$ |
| $(p$, rdfs: subPropertyOf, $s)$ | $(q$, rdfs: subPropertyOf, $r)$ |
| $(p$, rdfs: subPropertyOf, $q)$ | $(q$, rdfs: subPropertyOf, $s)$ |
| $(p$, rdfs: subPropertyOf, $r)$ | |

(d) RDFS closure of schema data H_{5} and the schema triple (p, rdfs: subPropertyOf, q), rdfs-closure $\left(H_{5} \cup\{(p\right.$, rdfs: subPropertyOf, q) $\}$).

Table 4.3: Data D_{5} used to illustrate the operation of IS-CONSISTENT ${ }_{\text {inc }}$ (Algorithm 9), where p, q, r, and s are properties. u and v are individuals.
13) in Line 12 to find all pairs of an instance triple d in D_{5} and a minimal justification
J for d in $\left(\left(D_{5} \cup\{t\}\right) \backslash\{d\}\right)$ such that $t \in J$. FIND-ITRIPLE-JUST-PAIR ${ }_{\text {schema }}$ first finds all pairs of an instance triple d in D_{5} and a minimal justification J for d in $\left(\left(D_{5}\right.\right.$ $\cup r d f s$-closure $\left.\left.\left.\left(H_{5} \cup\{t\}\right)\right\}\right) \backslash\{d\}\right)$ such that J contains t or any derived schema triple in (rdfs-closure $\left(H_{5} \cup\{t\}\right) \backslash r d f s$-closure $\left(H_{5}\right)$), where H_{5} is the schema data of D_{5}. The RDFS closures of the schema data, rdfs-closure $\left(H_{5}\right)$ and rdfs-closure $\left(H_{5} \cup\{t\}\right)$ are shown in Tables 4.3c and 4.3d respectively. There is a derived schema triple (p, rdfs: subPropertyOf, r) in (rdfs-closure $\left(H_{5} \cup\{t\}\right) \backslash r d f s$-closure $\left(H_{5}\right)$). Therefore, two schema triples are considered in the for loop (Lines 3-34). They are t and ($p, r d f s$: subPropertyOf, r). For t, FIND-ITRIPLE-JUST-PAIR schema finds a pair $((u, q, v),\{(u$,
$p, v), t\})$ in Line 19 because both RDF triples (u, q, v) and (u, p, v) are in D_{5}. For ($p, r d f s$: subPropertyOf, r), FIND-ITRIPLE-JUST-PAIR ${ }_{\text {schema }}$ finds a pair $((u, r, v)$, $\{(u, p, v),(p, r d f s:$ subPropertyOf, $r)\})$ in Line 19 because both RDF triples $(u, r$, $v)$ and (u, p, v) are in D_{5}. FIND-ITRIPLE-JUST-PAIR schema finally calls REPLACE-DERIVED-TRIPLE (Algorithm 11) in Line 35 to replace the derived schema triple (p, rdfs: subPropertyOf, r) in the pair with a minimal justification for it. The pairs returned by FIND-ITRIPLE-JUST-PAIR schema are $((u, q, v),\{(u, p, v), t\})$ and $((u, r, v)$, $\{(u, p, v), t,(q, r d f s:$ subPropertyOf, $r)\})$.

IS-CONSISTENT inc then calls FIND-STRIPLE-JUST-PAIR schema $($ Algorithm 14) in Line 13 to find all pairs of a schema triple d in D_{5} and a minimal justification J for d in $\left(\left(D_{5} \cup\{t\}\right) \backslash\{d\}\right)$ such that $t \in J$. FIND-STRIPLE-JUST-PAIR schema finds a pair ($($, rdfs: subPropertyOf, $s),\{t,(q, r d f s:$ subPropertyOf, $s)\})$ in Line 9 because both schema triples (p, rdfs: subPropertyOf, s) and (q, rdfs: subPropertyOf, s) are in H_{5}.

To sum up, the pairs found are $((u, q, v),\{(u, p, v), t\}),((u, r, v),\{(u, p, v), t$, (q, rdfs: subPropertyOf, $r)\}$), and (p, rdfs: subPropertyOf, $s),\{t,(q, r d f s:$ subPropertyOf, s)\}). IS-CONSISTENT ${ }_{\text {inc }}$ checks if the probabilities of the inconsistent truth value assignments created from these pairs are zero in Line 16. If they are all zero, the theory with the addition of t and its probability information is still consistent.

4.3 Time Complexity

This section examines the time complexities of the consistency checking algorithms IS-CONSISTENT (Algorithm 7) and IS-CONSISTENT inc $_{\text {(Algorithm }}$ 9) with respect
to the data size $|D|$.
IS-CONSISTENT (Algorithm 7) consists of two steps. One is finding all minimal justifications for each of the RDF triples that are not certainly true. The time complexities of finding all minimal justifications for an instance triple and a schema triple are $\mathrm{O}(\log |D|)$ and $\mathrm{O}(1)$ respectively. See Section 3.3.4 for the derivation of these complexities. Assume that the number of RDF triples that are not certainly true increases linearly with $|D|$. The time complexity of this step is $\mathrm{O}(|D| \log |D|)$.

The other step is computing the probabilities of the inconsistent truth value assignments created from the minimal justifications. We assume that the probability distributions of the pRDFS theory are represented by Bayesian networks (Section 2.4) with $N_{\text {node }}$ nodes and $N_{\text {node }}$ does not depend on $|D|$. The nodes of the networks are the random variables for the uncertain RDF triples. We use probabilistic logic sampling (Section 2.4.2) and the same set of random samples to compute the probabilities of all inconsistent truth value assignments. Assume that the running time of generating a random value for a node is constant. The worst-case running time of probability calculation is proportional to $N_{\text {sampl }} \times N_{\text {bn }} \times N_{\text {node }}$, where $N_{\text {sampl }}, N_{\text {bn }}$, and $N_{\text {node }}$ are the numbers of samples, Bayesian networks, and nodes per Bayesian network respectively. The minimum value of $N_{\text {sampl }}$ is a constant given the parameters of the approximation error ϵ and δ. See (2.2) for the computation of $N_{\text {sampl }} . N_{\text {bn }}=\frac{p|D|}{N_{\text {node }}}$, where p is the percentage of uncertain data. Hence, the time complexity of this step is $\mathrm{O}(|D|)$. The overall time complexity of IS-CONSISTENT is $\mathrm{O}(|D| \log |D|+|D|)=\mathrm{O}(|D| \log |D|)$.

To estimate the average-case running time of probability calculation, assume that the pRDFS theory is consistent or near consistent. The running time of probability
calculation is proportional to $N_{\text {sampl }} \times N_{\text {bn(e) }} \times N_{\text {node }}$, where $N_{\text {bn(e) }}$ is the number of Bayesian networks containing entailed triples. Assume that the uncertain entailed triples are randomly distributed to the Bayesian networks. The expected value of $N_{\text {bn(e) }}$ denoted by $E\left(N_{\text {bn(e) }}\right)$ is calculated as (4.9) [61].

$$
\begin{equation*}
E\left(N_{\mathrm{bn}(\mathrm{e})}\right)=\frac{p|D|}{N_{\text {node }}}\left(1-\prod_{i=1}^{q|D|} \frac{p|D|-N_{\text {node }}-i+1}{p|D|-i+1}\right) . \tag{4.9}
\end{equation*}
$$

where p and q are the percentages of uncertain RDF triples and uncertain entailed triples respectively.

IS-CONSISTENT $_{\text {inc }}$ (Algorithm 9) performs consistency checking each time an RDF triple t and its probability information are added to a pRDFS theory. It consists of two parts. In the first part (Lines 1-8), an inconsistent truth value assignment is constructed from t and a minimal justifications for t. The time complexities of finding all minimal justifications for t are $\mathrm{O}(\log |D|)$ and $\mathrm{O}(1)$ for t being an instance triple and a schema triple respectively. See Section 3.3.4 for the derivation of these complexities. The running time of calculating the probabilities of all inconsistent truth value assignments is proportional to $N_{\text {sampl }} \times N_{\text {node }}$ since we perform inference on one Bayesian network which contains t. If some RDF triples in the minimal justifications for t are not in the same Bayesian network as t, then the theory is inconsistent. It is because RDF triples in different Bayesian networks are assumed to be independent, but t and the minimal justifications for t are related. The time complexity of probability calculation is $\mathrm{O}(1)$. The overall time complexities of this part are $\mathrm{O}(\log |D|)$ and $\mathrm{O}(1)$ for t being an instance triple and a schema triple respectively.

In the second part of IS-CONSISTENT ${ }_{\text {inc }}$ (Lines 9-17), an inconsistent truth value assignment is constructed from an RDF triple d and a minimal justification J for d such that J contains t. In the same way as finding minimal justifications in Section 3.3.4, We assume that the size of schema data $|H|$ is fixed and the size of instance data $|R|$ grows with $|D|$. We build two indexes for finding substitutions for the variables in the inference rules using the binary search algorithm. One index is sorted by the subjects, properties, and objects of RDF triples. The other is sorted by the properties and objects of RDF triples. If t is an instance triple, we search for all substitutions for the variables in at most three schema triples in the premises and one instance triple in the conclusion of each rule. There are at most nine rules to apply. See FIND-TRIPLE-JUST-PAIR ${ }_{\text {inst }}$ (Algorithm 10). Hence, the time complexity of finding all pairs (d, J) is $\mathrm{O}(\log |D|)$.

If t is a schema triple and d is an instance triple, we search for all substitutions for the variables in at most two schema triples and one instance triple in the premises and one instance triple in the conclusion of each rule. There are at most five rules to apply. See FIND-ITRIPLE-JUST-PAIR ${ }_{\text {schema }}$ (Algorithms 12 and 13). Assume that the number of substitutions resulting from one of the instance triples increases linearly with $|D|$. The time complexity of finding all pairs (d, J) is $\mathrm{O}(|D| \log |D|)$.

If both t and d are schema triples, we work with schema data only to find all pairs (d, J). See FIND-STRIPLE-JUST-PAIR ${ }_{\text {schema }}$ (Algorithm 14). Therefore, the time complexity is $\mathrm{O}(1)$.

Assume that the number of pairs (d, J) increases linearly with $|D|$. The worst-case running time of calculating the probabilities of all inconsistent truth value assignments created from the pairs is proportional to $N_{\text {sampl }} \times N_{\mathrm{bn}} \times N_{\text {node }} . \quad N_{\text {bn }}=\frac{p|D|}{N_{\text {node }}}$, where p

| Finding all minimal justifications | $\mathrm{O}(\|D\| \log \|D\|)$ |
| :---: | :---: |
| Calculating probabilities | $\mathrm{O}(\|D\|)$ |
| Overall | $\mathrm{O}(\|D\| \log \|D\|)$ |

Table 4.4: Time complexity of the consistency checking algorithm IS-CONSISTENT (Algorithm 7).

| | | t is an instance triple | t is a schema triple | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| First part | Finding all minimal justifications | $\mathrm{O}(\log \|D\|)$ | $\mathrm{O}(1)$ | | | |
| | Calculating probabilities | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ | | | |
| Second part | Finding all (triple,
 minimal justification) pairs | $\mathrm{O}(\log \|D\|)$ | $\mathrm{O}(\|D\| \log \|D\|)$ | | | |
| | Calculating probabilities | $\mathrm{O}(\|D\|)$ | $\mathrm{O}(\|D\|)$ | | | |
| Overall | | | | | $\mathrm{O}(\|D\|)$ | $\mathrm{O}(\|D\| \log \|D\|)$ |

Table 4.5: Time complexity of the incremental consistency checking algorithm ISCONSISTENT $_{\text {inc }}$ (Algorithm 9).
is the percentage of uncertain data. The time complexity of probability calculation is $\mathrm{O}(|D|)$. The overall time complexities of the second part of IS-CONSISTENT ${ }_{\text {inc }}$ are $\mathrm{O}(|D|)$ and $\mathrm{O}(|D| \log |D|)$ for t being an instance triple and a schema triple respectively. Combining the time complexities of the both parts, the overall time complexities of ISCONSISTENT $_{\text {inc }}$ are the same as the complexities of the second part.

Tables 4.4 and 4.5 summarize the time complexities of the consistency checking algorithms IS-CONSISTENT (Algorithm 7) and IS-CONSISTENT ${ }_{\text {inc }}$ (Algorithm 9) respectively.

Chapter 5

pRDFS Query Evaluation

This chapter extends SPARQL queries to pRDFS theories. It defines the answer to an extended SPARQL query on a pRDFS theory and describes how to compute it. This chapter is based on [57] and [58].

5.1 Extended SPARQL Query

RDF triples (Definition 1) and triple patterns (Definition 3) are extended by including their truth values.

Definition 13 (Extended RDF Triple). An extended RDF triple is an RDF triple with the addition of the truth value of the RDF triple. It is a member of $\mathbb{U} \times \mathbb{P} \times(\mathbb{U} \cup$ $\mathbb{L}) \times\{\boldsymbol{T}, \boldsymbol{F}\}$, where \mathbb{U}, \mathbb{P}, and \mathbb{L} are sets of URI references, properties, and literals respectively.

Example 12 (Extended RDF Triple). (Tom, worksFor, departmentOfComputing, \boldsymbol{T}) is an extended RDF triple saying that the RDF triple (Tom, worksFor, departmentOfCom-

```
SELECT DISTINCT ?department
WHERE {
    ?person rdf:type Professor true .
    ?person worksFor ?department true}
```

(a) Syntax.
$Q_{\text {ext }}\left(V_{\text {sel }}, G_{\text {ext }}\right.$, isDistinct $)$, where $V_{\text {sel }}=\{$?department $\}$,
$G_{\text {ext }}=\{$ (?person, rdf:type, Professor, true), (?person, worksFor, ?department, true)\}, isDistinct $=$ true.
(b) Symbol.

Table 5.1: Example of an extended SPARQL query.
puting) is true.

Definition 14 (Extended Triple Pattern). An extended triple pattern is a triple pattern with the addition of the truth value of the triple pattern. It is a member of $(\mathbb{U} \cup V) \times$ $(\mathbb{P} \cup V) \times(\mathbb{U} \cup \mathbb{L} \cup V) \times\{\boldsymbol{T}, \boldsymbol{F}\}$, where $\mathbb{U}, \mathbb{P}, \mathbb{L}$, and V are sets of URI references, properties, literals, and variables respectively.

Definition 15 (Extended Graph Pattern). An extended graph pattern denoted by $G_{\text {ext }}$ is a set of extended triple patterns.

SPARQL queries are extended such that the patterns of the queries are specified using extended graph patterns.

Definition 16 (Extended SPARQL Query). We denote by $Q_{\text {ext }}\left(V_{\text {sel }}, G_{\text {ext }}\right.$, isDistinct) an extended SPARQL query with a syntax "SELECT (DISTINCT) $V_{\text {sel }}$ WHERE $G_{\text {ext }}$ ", where $G_{\text {ext }}$ is an extended graph pattern, $V_{\text {sel }}$ is a subset of query variables in $G_{\text {ext }}$, and isDistinct is a Boolean variable with a domain $\{\boldsymbol{T}, \boldsymbol{F}\}$. The DISTINCT keyword is optional, and the variable isDistinct assigned \boldsymbol{T} and \boldsymbol{F} indicates the presence and absence of the DISTINCT keyword respectively.

Example 13 (Extended SPARQL Query). An extended SPARQL query is shown in Table 5.1, where $G_{\text {ext }}$ is an extended graph pattern having two extended triple patterns.

It asks for the departments that have at least one professor and their probabilities.

5.2 Answer to an Extended SPARQL Query

A pRDFS theory can be viewed as a probability distribution over instances of the theory, where an instance of a pRDFS theory is defined as follows.

Definition 17 (Instance of a pRDFS Theory). Given a pRDFS theory (D, \mathcal{P}, θ), an instance of the theory denoted by $D_{\text {ext }}$ is a set of extended RDF triples, $\{(s, p, o$, $\tau((s, p, o))) \mid(s, p, o) \in D\}$, where τ is a truth value assignment for data D. The instance is consistent iff τ is consistent.

The RDFS closure of an instance of a pRDFS theory is the union of the RDFS closure of RDF triples that take true values and the set of RDF triples that take false values since the RDFS semantics are defined for RDF triples that take true values.

Definition 18 (RDFS Closure of an Instance of a pRDFS Theory). The RDFS closure of an instance of a pRDFS theory $D_{\text {ext }}$ denoted by rdfs-closure $\left(D_{\text {ext }}\right)$ is a set of extended RDF triples, $\left\{(s, p, o, \boldsymbol{T}) \mid(s, p, o) \in r d f s-\right.$ closure $\left.\left(\left\{\left(s^{\prime}, p^{\prime}, o^{\prime}\right) \mid\left(s^{\prime}, p^{\prime}, o^{\prime}, \boldsymbol{T}\right) \in D_{\text {ext }}\right\}\right)\right\}$ $\cup\left\{(s, p, o, \boldsymbol{F}) \in D_{\text {ext }}\right\}$.

An answer to an extended SPARQL query $Q_{\text {ext }}\left(V_{\text {sel }}, G_{\text {ext }}\right.$, isDistinct $)$ on an instance of a pRDFS theory $D_{\text {ext }}$ is a sequence of solutions, and a solution is the restriction of a solution to the extended graph pattern $G_{\text {ext }}$ on $D_{\text {ext }}$ to the set of query variables $V_{\text {sel }}$. The answer does not contain duplicate solutions if the variable isDistinct is true. A solution to $G_{\text {ext }}$ on $D_{\text {ext }}$ denoted by μ is a partial function from V to $(\mathbb{U} \cup \mathbb{L})$ such
that rdfs-closure $\left(D_{\text {ext }}\right) \supseteq \mu\left(G_{\text {ext }}\right)$ (with RDFS reasoning) or $D_{\text {ext }} \supseteq \mu\left(G_{\text {ext }}\right)$ (without RDFS reasoning), where V, \mathbb{U}, and \mathbb{L} are sets of query variables, URI references and literals respectively. $\mu\left(G_{\text {ext }}\right)$ is the set of extended RDF triples obtained by replacing every variable v in $G_{\text {ext }}$ with $\mu(v)$.

An answer to an extended SPARQL query $Q_{\text {ext }}\left(V_{\text {sel }}, G_{\text {ext }}\right.$, isDistinct $)$ on a pRDFS theory (D, \mathcal{P}, θ) is a sequence of pairs. The first element of a pair is a solution to the extended SPARQL query on an instance of the theory, and the second element is the probability of the solution. If the variable isDistinct is true, the answer does not contain pairs with the same first element.

5.3 Evaluation of an Extended SPARQL Query

An evaluation of an extended SPARQL query $Q_{\text {ext }}\left(V_{\text {sel }}, G_{\text {ext }}\right.$, isDistinct) on a pRDFS theory (D, \mathcal{P}, θ) consists of five steps.

1. Find the set of all solutions to the graph pattern G on data D, where G is obtained by ignoring the truth values of the extended graph pattern $G_{\text {ext }} . G$ $=\left\{(s, p, o) \mid(s, p, o, t) \in G_{\text {ext }}\right\}$. In SPARQL algebra, the set of solutions is $\operatorname{BGP}(G)$. It covers all solutions to all instances of the theory.
2. Convert the set of solutions $\operatorname{BGP}(G)$ into a sequence of solutions $M^{\text {ToList }}$, and compute the matched data of each solution in $M^{\text {ToList. }}$. In SPARQL algebra, $M^{\text {ToList }}=\operatorname{ToList}(\operatorname{BGP}(G)) . \mu_{i}^{\text {ToList }}$ denotes the i th solution in $M^{\text {ToList }}$. The set of the matched data of $\mu_{i}^{\text {ToList }}$ denoted by $\Gamma_{\mu_{i}^{\text {Toist }}}$ is $\left\{\mu_{i}^{\text {ToList }}\left(G_{\text {ext }}\right)\right\}$, where the matched data $\mu_{i}^{\text {ToList }}\left(G_{\text {ext }}\right)$ is a set of extended RDF triples obtained by replacing
every variable v in $G_{\text {ext }}$ with $\mu_{i}^{\text {ToList }}(v)$.
3. Convert the sequence of solutions $M^{\text {ToList }}$ into a sequence of solutions $M^{\text {Project }}$, where the i th solution in $M^{\text {Project }}$ is the restriction of the i th solution in $M^{\text {ToList }}$ to the set of query variables $V_{\text {sel }}$. In SPARQL algebra, $M^{\text {Project }}=\operatorname{Project}\left(M^{\text {ToList }}\right.$, $\left.V_{\text {sel }}\right)$. Compute the matched data of each solution in $M^{\text {Project }} . \mu_{i}^{\text {Project }}$ denotes the i th solution in $M^{\text {Project }}$. The set of the matched data of $\mu_{i}^{\text {Project }}$ denoted by $\Gamma_{\mu_{i}^{\text {Project }}}$ is equal to $\Gamma_{\mu_{i}^{\text {ToList }}}$.
4. If the variable isDistinct is true, create a sequence of solutions $M^{\text {Distinct }}$ by removing duplicate solutions from the sequence of solutions $M^{\text {Project. In SPARQL }}$ algebra, $M^{\text {Distinct }}=\operatorname{Distinct}\left(M^{\text {Project }}\right)$. Otherwise, leave the sequence $M^{\text {Project }}$ unmodified, that is, $M^{\text {Distinct }}=M^{\text {Project }}$. Compute the matched data of each solution in $M^{\text {Distinct }} . \mu_{i}^{\text {Distinct }}$ denotes the i th solution in $M^{\text {Distinct }}$. The set of the matched data of $\mu_{i}^{\text {Distinct }}$ denoted by $\Gamma_{\mu_{i}^{\text {Distinct }}}$ is $\left\{\gamma \in \Gamma_{\mu_{j}^{\text {Project }}} \mid \mu_{i}^{\text {Distinct }}=\mu_{j}^{\text {Project }}\right\}$, the cardinality of which depends on the number of duplicate solutions.
5. Compute the probabilities of the solutions in $M^{\text {Distinct. }}$. The probability of the i th solution $\mu_{i}^{\text {Distinct }}$ is equal to the probability of its set of alternative matched data $\Gamma_{\mu_{i}^{\text {Distinct. }}} \operatorname{Pr}\left(\mu_{i}^{\text {Distinct }}\right)=\operatorname{Pr}\left(\bigvee_{\gamma \in \Gamma_{\mu_{i}^{\text {Distinct }}}} \gamma\right)$.

The answer to the extended SPARQL query is a sequence of pairs, where the i th pair is $\left(\mu_{i}^{\text {Distinct }}, \operatorname{Pr}\left(\mu_{i}^{\text {Distinct }}\right)\right)$.

The probability of the set of alternative matched data can be written as the probability of the propositional formula \mathcal{F} in (5.1), where RDF triples are propositional variables with domains $\{$ true, false $\}$.

$$
\begin{equation*}
\mathcal{F}=\bigvee_{\gamma \in \Gamma_{\mu_{i}^{\text {Distinct }}}}\left(\bigwedge_{(s, p, o, \mathbf{T}) \in \gamma}(s, p, o) \wedge \bigwedge_{(s, p, o, \mathbf{F}) \in \gamma} \neg(s, p, o)\right) \tag{5.1}
\end{equation*}
$$

If the RDF triples occurring in \mathcal{F} are all declared triples, we can specify the probability of \mathcal{F} using a single probability value since a pRDFS theory fully specifies the probability distribution of all declared triples. However, it is not the case if derived triples occur in \mathcal{F}.

Consider a simple case of computing the probability of a formula $\mathcal{F}_{1}=f$ given a pRDFS theory (D, \mathcal{P}, θ), where f is a derived triple. Let $\operatorname{JUST}(f, D)$ be the set of all justifications for f in data D and $\operatorname{DJ}(f, D)$ be the disjunction of all justifications for
 However, if $\mathrm{DJ}(f, D)$ is false, f could be true or false. Therefore, the lower probability of \mathcal{F}_{1} equals the probability of $\mathrm{DJ}(f, D)$, and the upper probability of \mathcal{F}_{1} is 1 .

Consider another simple case of computing the probability of a formula $\mathcal{F}_{2}=\neg g$ given a pRDFS theory (D, \mathcal{P}, θ), where g is a derived triple. If the negation of the disjunction of all justifications for g in data $D, \neg \mathrm{DJ}(g, D)$ is false, $\neg g$ is also false by RDFS reasoning. However, if $\neg \mathrm{DJ}(g, D)$ is true, $\neg g$ could be true or false. Therefore, the lower probability of \mathcal{F}_{2} is 0 , and the upper probability of \mathcal{F}_{2} equals the probability of $\neg \mathrm{DJ}(g, D)$.

In general, suppose that derived triples f_{1}, f_{2}, \ldots and negations of derived triples $\neg g_{1}, \neg g_{2}, \ldots$ occur in a formula \mathcal{F}. $\mathrm{DJ}(x, D)$ denotes the disjunction of all justifications for the derived triple x in data D. The probability bounds of \mathcal{F} are computed as (5.2). The lower probability of \mathcal{F} denoted by $\operatorname{Pr}_{\text {lower }}(\mathcal{F})$ is computed by substituting
$\operatorname{DJ}\left(f_{i}, D\right)$ for f_{i} and \mathbf{T} for g_{j} for all i and j. The upper probability of \mathcal{F} denoted by $\operatorname{Pr}_{\text {upper }}(\mathcal{F})$ is computed by substituting $\mathrm{DJ}\left(g_{j}, D\right)$ for g_{j} and \mathbf{T} for f_{i} for all i and j.

$$
\begin{align*}
& \operatorname{Pr}_{\text {lower }}(\mathcal{F})=\operatorname{Pr}\left(\mathcal{F}\left(f_{i}=\mathrm{DJ}\left(f_{i}, D\right), g_{j}=\mathbf{T} \text { for all } i, j\right)\right) \tag{5.2}\\
& \operatorname{Pr}_{\text {upper }}(\mathcal{F})=\operatorname{Pr}\left(\mathcal{F}\left(f_{i}=\mathbf{T}, g_{j}=\mathrm{DJ}\left(g_{j}, D\right) \text { for all } i, j\right)\right)
\end{align*}
$$

We now consider the case that both a derived triple and its negation occur in \mathcal{F}. Take a formula $\mathcal{F}_{3}=(\neg r \wedge e) \vee(r \wedge \neg e)$ as an example, where r is a declared triple and e is a derived triple. We divide the calculation of the probability of \mathcal{F}_{3} into two cases $\mathrm{DJ}(e, D)=$ true and $\mathrm{DJ}(e, D)=$ false by writing $\operatorname{Pr}\left(\mathcal{F}_{3}\right)=\operatorname{Pr}\left(\mathcal{F}_{3} \wedge \mathrm{DJ}(e, D)\right)$ $+\operatorname{Pr}\left(\mathcal{F}_{3} \wedge \neg \mathrm{DJ}(e, D)\right)$, where $\mathrm{DJ}(e, D)$ is the disjunction of all justifications for e in data D. If $\mathrm{DJ}(e, D)$ is true, e is true. Hence, $\operatorname{Pr}\left(\mathcal{F}_{3} \wedge \mathrm{DJ}(e, D)\right)=\operatorname{Pr}\left(\mathcal{F}_{3}(e=\mathbf{T}) \wedge\right.$ $\mathrm{DJ}(e, D))$. If $\mathrm{DJ}(e, D)$ is false, $\operatorname{Pr}\left(\mathcal{F}_{3} \wedge \neg \mathrm{DJ}(e, D)\right)$ is minimum under the following condition. For every value of r, whenever only one of the expressions $\mathcal{F}_{3}(e=\mathbf{T})$ and $\mathcal{F}_{3}(e=\mathbf{F})$ is true, the probability of the expression that is true is 0 . If $\mathrm{DJ}(e, D)$ is false, $\operatorname{Pr}\left(\mathcal{F}_{3} \wedge \neg \mathrm{DJ}(e, D)\right)$ is maximum under the following condition. For every value of r, whenever only one of the expressions $\mathcal{F}_{3}(e=\mathbf{T})$ and $\mathcal{F}_{3}(e=\mathbf{F})$ is true, the probability of the expression that is false is 0 . Hence, the lower and upper bounds of $\operatorname{Pr}\left(\mathcal{F}_{3} \wedge \neg \mathrm{DJ}(e, D)\right)$ are $\operatorname{Pr}\left(\mathcal{F}_{3}(e=\mathbf{T}) \wedge \mathcal{F}_{3}(e=\mathbf{F}) \wedge \neg \mathrm{DJ}(e, D)\right)$ and $\operatorname{Pr}\left(\left(\mathcal{F}_{3}(e=\right.\right.$ $\left.\left.\mathbf{T}) \vee \mathcal{F}_{3}(e=\mathbf{F})\right) \wedge \neg \mathrm{D}(e, D)\right)$ respectively. To sum up, the probability bounds of \mathcal{F}_{3} are (5.3).

$$
\begin{align*}
& \operatorname{Pr}_{\text {lower }}\left(\mathcal{F}_{3}\right)=\operatorname{Pr}\left(\mathcal{F}_{3}(e=\mathbf{T}) \wedge \mathrm{DJ}(e, D)\right)+\operatorname{Pr}\left(\mathcal{F}_{3}(e=\mathbf{T}) \wedge \mathcal{F}_{3}(e=\mathbf{F}) \wedge \neg \mathrm{DJ}(e, D)\right) \\
& \operatorname{Pr}_{\text {upper }}\left(\mathcal{F}_{3}\right)=\operatorname{Pr}\left(\mathcal{F}_{3}(e=\mathbf{T}) \wedge \mathrm{DJ}(e, D)\right)+\operatorname{Pr}\left(\left(\mathcal{F}_{3}(e=\mathbf{T}) \vee \mathcal{F}_{3}(e=\mathbf{F})\right) \wedge \neg \operatorname{DJ}(e, D)\right) \tag{5.3}
\end{align*}
$$

In general, suppose that derived triples $e_{1}, e_{2}, \ldots, e_{N_{e}}, f_{1}, f_{2}, \ldots$ and negations of derived triples $\neg e_{1}, \neg e_{2}, \ldots, \neg e_{N_{e}}, \neg g_{1}, \neg g_{2}, \ldots$ occur in a formula \mathcal{F}. We divide the calculation of $\operatorname{Pr}(\mathcal{F})$ into $2^{N_{e}}$ cases by writing $\operatorname{Pr}(\mathcal{F})=\sum_{\left(x_{1}, x_{2}, \ldots, x_{N_{e}}\right) \in A} \operatorname{Pr}(\mathcal{F} \wedge$ $\bigwedge_{i} x_{i}$, where $A=\left\{\mathrm{DJ}\left(e_{1}, D\right), \neg \mathrm{DJ}\left(e_{1}, D\right)\right\} \times\left\{\mathrm{DJ}\left(e_{2}, D\right), \neg \mathrm{DJ}\left(e_{2}, D\right)\right\} \times \ldots \times$ $\left\{\mathrm{DJ}\left(e_{N_{e}}, D\right), \neg \mathrm{DJ}\left(e_{N_{e}}, D\right)\right\}$ and $\mathrm{DJ}(x, D)$ denotes the disjunction of all justifications for the derived triple x in data D. The lower and upper bounds of $\operatorname{Pr}(\mathcal{F})$ are computed as (5.4).

$$
\left.\begin{array}{rl}
\operatorname{Pr}_{\text {lower }}(\mathcal{F})= & \sum_{\substack{\left(x_{1}, x_{2}, \ldots, x_{N_{e}}\right) \in A}} \operatorname{Pr}\left(\bigwedge_{\substack{\left(e_{1}, e_{2}, \ldots, e_{N_{N}}\right) \in B_{1}\left(x_{1}\right) \times B_{2}\left(x_{2}\right) \times \ldots \times B_{N_{e}}\left(x_{N_{e}}\right), f_{i}=\operatorname{DJ}\left(f_{i}, D\right), g_{j}=\mathbf{T} \text { for all } i, j}} \mathcal{F} \wedge \bigwedge_{i} x_{i}\right) \\
\operatorname{Pr}_{\text {upper }}(\mathcal{F})= & \sum_{\substack{\left(x_{1}, x_{2}, \ldots, x_{N_{e}}\right) \in A}} \operatorname{Pr}\left(\bigwedge_{\substack{\left(e_{1}, e_{2}, \ldots, e_{N_{N}}\right) \in B_{1}\left(x_{1}\right) \times B_{2}\left(x_{2}\right) \times \ldots \times B_{N_{e}}\left(x_{N_{e}}\right), f_{i}=\mathbf{T}, g_{j}=\mathrm{DJ}\left(g_{j}, D\right) \text { for all } i, j}} \bigwedge_{i} x_{i}\right) \\
A= & \left\{\operatorname{DJ}\left(e_{1}, D\right), \neg \operatorname{DJ}\left(e_{1}, D\right)\right\} \times\left\{\mathrm{DJ}\left(e_{2}, D\right), \neg \operatorname{DJ}\left(e_{2}, D\right)\right\} \times \cdots \times
\end{array}\right\} \begin{array}{ll}
B_{i}\left(x_{i}\right)= & \begin{cases}\left\{\mathbf{T J}\left(e_{N_{e}}, D\right), \neg \operatorname{DJ}\left(e_{N_{e}}, D\right)\right\} & \text { if } x_{i}=\operatorname{DJ}\left(e_{i}, D\right) \\
\{\mathbf{T}, \mathbf{F}\} & \text { if } x_{i}=\neg \operatorname{DJ}\left(e_{i}, D\right)\end{cases}
\end{array}
$$

From (5.2) and (5.4), the computation of the probability of a formula \mathcal{F} in which derived triples occur involves the computation of the disjunction of all justifications for the derived triples. We prove that the disjunction of all justifications for an RDF triple is equivalent to the disjunction of all minimal justifications for the RDF triple, so it can be replaced by the latter, simpler expression.

Proposition 5. The disjunction of all justifications for an RDF triple d in data D, $\bigvee_{J \in J U S T(d, D)} \bigwedge_{j \in J} j$, is equivalent to the disjunction of all minimal justifications for d in $D, \bigvee_{J \in J U S T}^{\min (d, D)} \bigwedge_{j \in J} j$, where $\operatorname{JUST}(d, D)$ is the set of all justifications for d in D and $J U S T_{\text {min }}(d, D)$ is the set of all minimal justifications for d in D.

Proof.

$$
\begin{align*}
& \bigvee_{J \in J U S T(d, D)} \bigwedge_{j \in J}{ }^{j} \tag{5.5}\\
& \equiv \bigvee_{J \in J S T T_{\text {min }}(d, D)} \bigwedge_{j \in J} j \vee V_{J \in\left(J U S T(d, D) \backslash U S T_{\text {min }}(d, D)\right)} \bigwedge_{j \in J} j^{j} \tag{5.6}\\
& \equiv \bigvee_{J \in J U S T_{\min }(d, D)} \bigwedge_{j \in J} j \tag{5.7}
\end{align*}
$$

The term $\bigvee_{J \in\left(J U S T(d, D) \backslash J U S T_{\min }(d, D)\right)} \bigwedge_{j \in J} j$ in (5.6) disappears because for each $J \in$ $\left(\operatorname{JUST}(d, D) \backslash \operatorname{JUST}_{\min }(d, D)\right), \exists J^{\prime} \in \operatorname{JUST}_{\min }(d, D)$ such that $J \models_{r d f s} J^{\prime}$. If $\bigwedge_{j \in J} j$ is true, then $\bigwedge_{j \in J^{\prime}} j$ is true. Hence, $\bigwedge_{j \in J} j \vee \bigwedge_{j \in J^{\prime}} j \equiv \bigwedge_{j \in J^{\prime}} j$.

Example 14 (Evaluation of an Extended SPARQL Query). This example illustrates the evaluation of an extended SPARQL query by executing the extended SPARQL query $Q_{\text {ext }}\left(V_{\text {sel }}, G_{\text {ext }}\right.$, isDistinct $)$ in Table 5.1 against the pRDFS theory $\left(D_{6}, \mathcal{P}_{6}, \theta_{6}\right)$ in Ta-

| Symbol | RDF triple |
| :---: | :---: |
| d_{1} | (Professor, rdf: type, rdfs: Class) |
| d_{2} | (Department, rdf: type, rdfs: Class) |
| d_{3} | (worksFor, rdf: type, rdf: Property) |
| d_{4} | (headOf, rdf: type, rdf: Property) |
| d_{5} | (headOf, rdfs: subPropertyOf, worksFor) |
| d_{6} | (Tom, rdf: type, Professor) |
| d_{7} | (May, rdf: type, Professor) |
| d_{8} | (departmentOfComputing, rdf: type, Department) |
| d_{9} | (Tom, headOf, departmentOfComputing) |
| d_{10} | (May, worksFor, departmentOfComputing) |

(a) Set of RDF triples, D_{6}.

| Probability distribution |
| :---: |
| $P_{\left\{d_{1}\right\}}$ |
| $P_{\left\{d_{2}\right\}}$ |
| $P_{\left\{d_{3}\right\}}$ |
| $P_{\left\{d_{4}\right\}}$ |
| $P_{\left\{d_{5}\right\}}$ |
| $P_{\left\{d_{6}\right\}}$ |
| $P_{\left\{d_{7}\right\}}$ |
| $P_{\left\{d_{8}\right\}}$ |
| $P_{\left\{d_{9}\right\}}$ |
| $P_{\left\{d_{10}\right\}}$ |

(b) Set of probability distributions, \mathcal{P}_{6}.

| d_{i} | Probability |
| :---: | :---: |
| \mathbf{T} | 1 |
| \mathbf{F} | 0 |

(c) Probability distribution over d_{i}, $P_{\left\{d_{i}\right\}}$, where $i=1$, $2, \ldots, 8$.

| d_{9} | Probability |
| :---: | :---: |
| \mathbf{T} | 0.8 |
| \mathbf{F} | 0.2 |

(d) Probability distribution over d_{9}, $P_{\left\{d_{9}\right\}}$.

| d_{10} | Probability |
| :---: | :---: |
| \mathbf{T} | 0.7 |
| \mathbf{F} | 0.3 |

(e) Probability distribution over d_{10}, $P_{\left\{d_{10}\right\}}$.

| x | $\theta(x)$ |
| :---: | :---: |
| d_{1} | $P_{\left\{d_{1}\right\}}$ |
| d_{2} | $P_{\left\{d_{2}\right\}}$ |
| d_{3} | $P_{\left\{d_{3}\right\}}$ |
| d_{4} | $P_{\left\{d_{4}\right\}}$ |
| d_{5} | $P_{\left\{d_{5}\right\}}$ |
| d_{6} | $P_{\left\{d_{6}\right\}}$ |
| d_{7} | $P_{\left\{d_{7}\right\}}$ |
| d_{8} | $P_{\left\{d_{8}\right\}}$ |
| d_{9} | $P_{\left\{d_{9}\right\}}$ |
| d_{10} | $P_{\left\{d_{10}\right\}}$ |

(f) Function θ_{6} mapping an RDF triple to it probability distribution.

Table 5.2: pRDFS theory ($D_{6}, \mathcal{P}_{6}, \theta_{6}$) used to illustrate the evaluation of an extended SPARQL query.

ble 5.2.

We first find the set of all solutions to the graph pattern G on D_{6}, where G is obtained by ignoring the truth values of the extended graph pattern $G_{\text {ext }}$. The set contains two solutions, which are shown in Table 5.3a.

We then convert the set of solutions into a sequence of solutions and compute the matched data of each solution by substituting the values mapped by the solution for the variables in $G_{\text {ext }}$. See Table 5.3b for the results.

| $G_{\text {ext }}$ | $\{$ (?person, rdf:type, Professor, T), (?person, worksFor, ?department, T) $\}$ |
| :---: | :---: |
| G | $\{($?person, rdf:type, Professor), (?person, worksFor, ?department) $\}$ |
| $\operatorname{BGP}(G)$ | $\{\{$?person, Tom), (?department, departmentOfComputing), |
| | $\{$?person, May), (?department, departmentOfComputing) $\}\}$ |

(a) Step 1: compute $\operatorname{BGP}(G)$.

| $M^{\text {ToList }}$ | $\left(\mu_{1}^{\text {ToList }}, \mu_{2}^{\text {ToList }}\right)$ |
| :---: | :---: |
| $\mu_{1}^{\text {ToList }}$ | \{(?person, Tom), (?department, departmentOfComputing) $\}$ |
| $\mu_{2}^{\text {ToList }}$ | $\{($?person, May $),($?department, departmentOfComputing $)\}$ |
| $\Gamma_{\mu_{1} \text { ToList }}$ | $\{\{($ Tom, rdf:type, Professor, T $),($ Tom, worksFor, departmentOfComputing, $\mathbf{T})\}\}$ |
| $\Gamma_{\mu_{2}^{\text {ToList }}}$ | $\{\{($ May, rdf:type, Professor, T $),($ May, worksFor, departmentOfComputing, $\mathbf{T})\}\}$ |

(b) Step 2: compute $M^{\text {ToList }}$ and $\Gamma_{\mu_{i}^{\text {ToList }}}$ for all i.

| $M_{\text {Project }}^{\text {Pro }}$ | $\left(\mu_{1}^{\text {Project }}, \mu_{2}^{\text {Project }}\right)$ |
| :---: | :---: |
| $\mu_{1}^{\text {Project }}$ | $\{($?department, departmentOfComputing $)\}$ |
| $\mu_{2}^{\text {Project }}$ | $\{($?department, departmentOfComputing $)\}$ |
| $\Gamma_{\mu_{1}^{\text {Project }}}$ | $\{\{($ Tom, rdf:type, Professor, T), (Tom, worksFor, departmentOfComputing, T $)\}\}$ |
| $\Gamma_{\mu_{2}^{\text {Project }}}$ | $\{\{($ May, rdf:type, Professor, T $),($ May, worksFor, departmentOfComputing, $\mathbf{T})\}\}$ |

(c) Step 3: compute $M^{\text {Project }}$ and $\Gamma_{\mu_{i}^{\text {Proect }}}$ for all i.

| $M^{\text {Distinct }}$ | $\left(\mu_{1}^{\text {Distinct }}\right)$ |
| :---: | :---: |
| $\mu_{1}^{\text {Distinct }}$ | $\{($?department, departmentOfComputing $)\}$ |
| $\Gamma_{\mu_{1}^{\text {Distinct }}}$ | $\{\{($ Tom, rdf:type, Professor, $\mathbf{T}),($ Tom, worksFor, departmentOfComputing, T $)\}$, |
| | $\{($ May, rdf:type, Professor, T $),($ May, worksFor, departmentOfComputing, $\mathbf{T})\}\}$ |

(d) Step 4: compute $M^{\text {Distinct }}$ and $\Gamma_{\mu_{i}^{\text {Distinct }}}$ for all i.

(e) Step 5: compute the probability of $\mu_{1}^{\text {Distinct }}, \operatorname{Pr}(\mathcal{F})$.

Table 5.3: Intermediate results of the evaluation of the extended SPARQL query in Table 5.1 on the pRDFS theory $\left(D_{6}, \mathcal{P}_{6}, \theta_{6}\right)$ in Table 5.2.

We then compute the restriction of each solution to the set of query variables $V_{\text {sel }}$, which is $\{$?department $\}$, and the two solutions become the same. The matched data of each solution remain the same. The results are shown in Table 5.3c.

We then remove duplicate solutions from the sequence of solutions since the variable isDistinct is true. One duplicate solution is removed from the sequence, and there
is one solution in the sequence. The solution now has two alternative matched data, one of which comes from the duplicate solution. See Table 5.3d for the results.

The probability of the solution is equal to the probability of the two alternative matched data, which is written as the probability of the propositional formula \mathcal{F} shown in Table 5.3e. A derived triple (Tom, worksFor, departmentOfComputing) occurs in \mathcal{F}, so the probability of \mathcal{F} cannot be specified using a single value. There is only one justification for (Tom, worksFor, departmentOfComputing) in D_{6}, which is $\{($ headOf, rdfs: subPropertyOf, worksFor), (Tom, headOf, departmentOfComputing)\}. We use (5.2) to compute the the lower and upper probabilities of \mathcal{F}. See Table 5.3e for the results.

Finally, the answer to the extended SPARQL query is a sequence of one pair, and the pair is (\{(?department, departmentOfComputing)\}, [0.94, 1]).

5.4 Running Time Analysis

This section analyses the running time of the query evaluation. The time complexity of finding all solutions to the graph pattern of a query is the same as in the nonprobabilistic case. It is $\mathrm{O}\left(\left|G_{\text {ext }}\right||D|\right)$ [49] without RDFS reasoning, where $\left|G_{\text {ext }}\right|$ is the size of the graph pattern and $|D|$ is the data size.

For the computation of the probabilities of solutions, we assume that the probability distributions of a pRDFS theory are represented by Bayesian networks (Section 2.4) with $N_{\text {node }}$ nodes and $N_{\text {node }}$ does not depend on $|D|$. The nodes of the networks are the random variables for the uncertain RDF triples. We use probabilistic logic sampling
(Section 2.4.2) and the same set of random samples to compute the probabilities of all solutions.

Without RDFS reasoning, the running time of probability calculation is proportional to $N_{\text {sampl }} \times N_{\text {bn(m) }} \times N_{\text {node }}$, where $N_{\text {sampl }}, N_{\text {bn(m) }}$, and $N_{\text {node }}$ are the number of samples, the number of Bayesian networks that contain any uncertain RDF triple in the matched data of a solution, and the number of nodes per Bayesian network respectively. The minimum value of $N_{\text {sampl }}$ is a constant given the parameters of the approximation error ϵ and δ. See (2.2) for the computation of $N_{\text {sampl }}$. Assume that the percentage of uncertain data in the matched data is the same as the percentage of uncertain data in the data and the uncertain RDF triples in the matched data are randomly drawn from the data. The number of uncertain RDF triples in the matched data of all solutions is $p\left|G_{\text {ext }}\right| N_{\text {sol }}$, where p is the percentage of uncertain data and $N_{\text {sol }}$ is the number of solutions. The expected value of $N_{\mathrm{bn}(\mathrm{m})}$ denoted by $E\left(N_{\mathrm{bn}(\mathrm{m})}\right)$ is computed as (5.8) [61].

$$
\begin{equation*}
E\left(N_{\mathrm{bn}(\mathrm{~m})}\right)=\frac{p|D|}{N_{\text {node }}}\left(1-\prod_{i=1}^{p\left|G_{\text {ex }}\right| N_{\text {sol }}} \frac{p|D|-N_{\text {node }}-i+1}{p|D|-i+1}\right) . \tag{5.8}
\end{equation*}
$$

If the number of Bayesian networks $\frac{p|D|}{N_{\text {node }}}$ is much larger than the number of uncertain RDF triples in the matched data of all solutions $p\left|G_{\text {ext }}\right| N_{\text {sol }}, E\left(N_{\mathrm{bn}(\mathrm{m})}\right)$ is close to $p\left|G_{\text {ext }}\right| N_{\text {sol }}$. With this approximation, the time complexity of probability calculation is $\mathrm{O}\left(\left|G_{\text {ext }}\right|\right)$.

For the query evaluation with RDFS reasoning, the matched data of a solution to a query may contain both the declared and derived data. Let X be the set of uncertain
declared triples in the matched data of all solutions and the uncertain RDF triples in the minimal justifications for the uncertain derived triples in the matched data of all solutions to the query. The running time of probability calculation is proportional to $N_{\text {sampl }} \times N_{\mathrm{bn}(\mathrm{m})}^{\prime} \times N_{\text {node }}$, where $N_{\text {sampl }}, N_{\mathrm{bn}(\mathrm{m})}^{\prime}$, and $N_{\text {node }}$ are the number of samples, the number of Bayesian networks that contain any one of the RDF triples in X, and the number of nodes per Bayesian network respectively.

To develop an expression for the expected value of $N_{\mathrm{bn}(\mathrm{m})}^{\prime}$, assume that the percentages of uncertain RDF triples and derived triples in the matched data are the same as those in the data. The number of uncertain declared triples in the matched data of a solution is $(1-q) p\left|G_{\text {ext }}\right|$, where p and q are the percentages of uncertain data and derived data respectively. The number of derived triples in the matched data of a solution is $q\left|G_{\text {ext }}\right|$. In any justification for an derived instance triple, there is only one instance triple and all other RDF triples are schema triples. Assume all schema triples are certain since they are usually definitional in nature. A derived instance triple is uncertain only if the instance triple in every justification for the derived triple is uncertain. If the instance triples in the justifications are randomly drawn from the data, the number of uncertain derived triples in the matched data of a solution is $q p^{N_{j}}\left|G_{\text {ext }}\right|$, where N_{j} is the average number of minimal justifications for a derived triple. Hence, $|X|$ is $N_{\text {sol }}\left((1-q) p\left|G_{\text {ext }}\right|+q p^{N_{j}}\left|G_{\text {ext }}\right| N_{j}\right)$. The expected value of $N_{\mathrm{bn}(\mathrm{m})}^{\prime}$ denoted by $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right)$ is computed as (5.9).

$$
\begin{equation*}
E\left(N_{\mathrm{bn}(\mathrm{~m})}^{\prime}\right)=\mathcal{A}\left(\frac{p|D|}{N_{\mathrm{node}}}, N_{\mathrm{sol}}|X|\right) . \tag{5.9}
\end{equation*}
$$

where $\frac{p|D|}{N_{\text {node }}}$ is the number of Bayesian networks and $\mathcal{A}(x, y)=x\left(1-\left(\frac{x-1}{x}\right)^{y}\right)$ is the expected number of distinct items by picking y items randomly from x distinct items with replacement.

Chapter 6

Experimental Study

This chapter presents an experimental evaluation of the running time performance of the consistency checking algorithms in Chapter 4 and the query evaluation algorithm in Chapter 5 with respect to the data size, the percentage of uncertain data, the size of correlated data (by varying the number of nodes in a Bayesian network), and the complexity of the probability distributions (by varying the degree of nodes in a network).

6.1 Environment

The experiments were run on a computer with an Intel Core i7-2670QM processor and 4 GB memory. We wrote the software code in Java and used the RDF toolkit Jena [13], which includes an RDF/XML parser, reasoners, and a SPARQL query engine.

| Parameter | Setting |
| :---: | :---: |
| data size, $\|D\|$ | $250 \mathrm{k}, \mathbf{5 0 0 k}, 750 \mathrm{k}, 1 \mathrm{M}$ |
| percentage of uncertain data, p | $25 \%, \mathbf{5 0 \%}, 75 \%, 100 \%$ |
| number of nodes, $N_{\text {node }}$ | $5, \mathbf{1 0}, 15,20$ |
| in- and out-degree of nodes, $N_{\text {ideg }}$ and $N_{\text {odeg }}$ | $1, \mathbf{2}, 3,4$ |

Table 6.1: Data settings. The default values are in bold.

6.2 Data

Data from the Berlin SPARQL Benchmark (BSBM) [10] and the Lehigh University Benchmark (LUBM) [30] were used. BSBM contains data about products, offers by vendors, and reviews by consumers. LUBM contains data about universities as well as the people and activities within them. Data generators of both benchmarks can output data of different sizes. The minimum units of data generation for BSBM and LUBM are products and universities respectively. The data sizes chosen in the experiments are shown in the first row of Table 6.1, and the default value is in bold.

6.2.1 Uncertain Data Generation

The data in both BSBM and LUBM are certain. Uncertain data are generated as follows. We assume all schema triples are certain since they are usually definitional in nature. We randomly select a p percentage of the instance triples to be uncertain. There is an extra rule to this random selection process. If an instance triple t is picked to be uncertain, one RDF triple from each justification for t is also randomly selected to be uncertain. The reason is that if all RDF triples in a justification for t are certain, t has to be certain. After all uncertain triples have been selected, we randomly divide them into groups of size $N_{\text {node }}$. However, RDF triples related through the RDFS se-

| Symbol | RDF triple |
| :---: | :---: |
| d_{1} | (Professor, rdf: type, rdfs: Class) |
| d_{2} | (Department, rdf: type, rdfs: Class) |
| d_{3} | (worksFor, rdf: type, rdf: Property) |
| d_{4} | (headOf, rdf: type, rdf: Property) |
| d_{5} | (headOf, rdfs: subPropertyOf, worksFor) |
| d_{6} | (Tom, rdf: type, Professor) |
| d_{7} | (departmentOfComputing, rdf: type, Department) |
| d_{8} | (Tom, headOf, departmentOfComputing) |
| d_{9} | (Tom, worksFor, departmentOfComputing) |

Table 6.2: Data D_{7} used to illustrate the generation of uncertain data.
mantics are forced to be in the same group. Therefore, the sizes of some groups may be greater than $N_{\text {node }}$. RDF triples in the same group are statistically correlated and are independent of the RDF triples in other groups.

The probability distribution of the uncertain RDF triples in each group is modeled using the Bayesian Network (Section 2.4). Each node of the network represents an uncertain RDF triple in the group with a domain $\{$ true, false $\}$. Each uncertain RDF triple in the justifications for an RDF triple t has a direct influence on t, and there is a directed edge from the uncertain RDF triple to t. The conditional independence relationships among other uncertain RDF triples are generated randomly. Edges are randomly added to the network until both the average in-degree $N_{\text {ideg }}$ and out-degree $N_{\text {odeg }}$ of nodes equal a specified value.

The conditional probability table of each node t is generated as follows. If all RDF triples in any one of the justifications for t are true, the probability of t being true is one. Otherwise, the probability of t is generated randomly.

Table 6.1 shows the values of $p, N_{\text {node }}, N_{\text {ideg }}$, and $N_{\text {odeg }}$ used to generate the uncertain data, and the default values are in bold.

Example 15 (Uncertain Data Generation). This example generates uncertain data for

Figure 6.1: A randomly generated Bayesian network for the instance triples d_{6} to d_{9} in Table 6.2. The dashed edges and probability values v_{1} to v_{7} are randomly generated.
the data D_{7} in Table 6.2 with the following values for the percentage of uncertain data p, the number of nodes $N_{\text {node }}$, and the average in-degree $N_{\text {ideg }}$ and out-degree $N_{\text {odeg }}$ of nodes. $p=100 \%, N_{\text {node }}=4$, and $N_{\text {ideg }}=N_{\text {odeg }}=1$.
$R D F$ triples d_{1} to d_{5} are schema triples and are assumed to be certain. Instance triples d_{6} to d_{9} are all uncertain since p is 100%. They are in the same group because $N_{\text {node }}$ is four. Their probability distribution is represented by a Bayesian network. The Bayesian network has four nodes, each of which represents an instance triple. There is a directed edge from d_{8} to d_{9} because $\left\{d_{5}, d_{8}\right\} \not \models_{r d f s} d_{9}$. Other edges are randomly added to the network until both $N_{\text {ideg }}$ and $N_{\text {odeg }}$ equal one. Fig. 6.1 shows a randomly generated Bayesian network, where the dashed edges are randomly generated. Probability values v_{1} to v_{7} in the conditional probability tables are randomly generated. To satisfy the RDFS semantics, the probability of d_{9} being true is one whenever d_{8} is true.

Figure 6.2: Percentages of RDF triples that are entailed, entailing, and both entailed and entailing.

6.2.2 Properties

This section examines several properties of the data, which are used later for the analysis of experimental results. These properties include the percentage of entailed triples, the percentage of entailing triples, the percentage of uncertain entailed triples, the number of minimal justifications per derived instance triple, and the percentage of derived data.

Fig. 6.2 shows the percentages of entailed, entailing, and both entailed and entailing triples under different data sizes. See Section 2.1.4 for the definitions of entailed and entailing triples. The percentage values of each category are roughly constant except the value at the smallest data size of BSBM, which is lower than the others. Note that BSBM contains RDF triples that are both entailed and entailing whereas LUBM does not have any.

Fig. 6.3 shows the percentage of uncertain entailed triples as functions of the data size and the percentage of uncertain data. This quantity is an important factor in the running time of consistency checking because uncertain entailed triples create inconsistent truth value assignments. Figs. 6.3a and 6.3 b indicate that the percentage of uncertain entailed triples is roughly constant under different data sizes except the per-

Figure 6.3: Percentage of uncertain entailed triples.

Figure 6.4: Average number of minimal justifications per derived instance triple.
centage at the smallest data size of BSBM, which is lower than the others. Fig. 6.3c shows that the percentage of uncertain entailed triples in BSBM increases faster at small percentages of uncertain data and slower at large percentages of uncertain data. Fig. 6.3d shows that the percentage of uncertain entailed triples in LUBM increases linearly with the percentage of uncertain data.

The number of minimal justifications per derived instance triple affects the amount of data involved in the probability calculation of a solution to a query if the matched data of the solution contains derived data. This quantity as a function of the data size $|D|$ is shown in Fig. 6.4. It increases with $|D|$, but the rate of increase decreases with

Figure 6.5: Percentage of derived data.
$|D|$.
The percentage of derived data defined as \mid rdfs-closure $(D) \backslash D|/|$ rdfs-closure $(D) \mid$ determines the expected proportion of derived data in the matched data of a solution to a query if the matched data are randomly drawn from the RDFS closure of data D. This quantity as a function of $|D|$ is plotted in Fig. 6.5. The percentage of derived schema data does not change with $|D|$ since the schema data are fixed. The percentage of derived instance data decreases as $|D|$ increases.

6.3 Queries

Benchmark queries from BSBM and LUBM were used. BSBM has 12 queries. 10 of the queries are of the "select" form. Among these 10 queries, four of them have simple graph patterns, and the others have complex graph patterns. Complex graph patterns are formed by combining smaller patterns using SPARQL keywords OPTIONAL and UNION. The four queries with simple graph patterns were chosen in the experiments. The triple patterns in the graph patterns are changed to the extended triple patterns, and the truth values of the extended triple patterns are set to the true values. The chosen queries are shown in Table 6.3, and the namespace URIs for the prefixes used

```
SELECT DISTINCT ?product ?label
WHERE {
    ?product rdfs:label ?label true .
    ?product rdf:type %ProductType% true .
    ?product bsbm:productFeature %ProductFeature1% true .
    ?product bsbm:productFeature %ProductFeature2% true .
    ?product bsbm:productPropertyNumeric1 ?value1 true .
    FILTER (?value1 > %x%)}
ORDER BY ?label
LIMIT 10
```

(a) BSBM query 1.

```
SELECT DISTINCT ?product ?productLabel
WHERE {
    ?product rdfs:label ?productLabel true .
    FILTER (%ProductXYZ% != ?product)
    %ProductXYZ% bsbm:productFeature ?prodFeature true .
    ?product bsbm:productFeature ?prodFeature true.
    %ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 true .
    ?product bsbm:productPropertyNumeric1 ?simProperty1 true .
    FILTER (?simProperty 1 < (?origProperty1 + 120) && ?simProperty1 > (?origProperty1 - 120))
    %ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 true .
    ?product bsbm:productPropertyNumeric2 ?simProperty2 true .
    FILTER (?simProperty2 < (?origProperty2 + 170) && ?simProperty2 > (?origProperty2 - 170))}
ORDER BY ?productLabel
LIMIT 5
```

(b) BSBM query 5.

```
SELECT ?product ?label
WHERE {
    ?product rdfs:label ?label true .
    ?product rdf:type bsbm:Product true .
    FILTER regex(?label, "%word1%")}
```

(c) BSBM query 6 .

```
SELECT DISTINCT ?offer ?price
WHERE {
    ?offer bsbm:product %ProductXYZ% true .
    ?offer bsbm:vendor ?vendor true .
    ?offer dc:publisher ?vendor true .
    ?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#US> true .
    ?offer bsbm:deliveryDays ?deliveryDays true .
    FILTER (?deliveryDays <= 3)
    ?offer bsbm:price ?price true .
    ?offer bsbm:validTo ?date true .
    FILTER (?date > %currentDate%)}
ORDER BY xsd:double(str(?price))
LIMIT 10
```

(d) BSBM query 10 .

Table 6.3: Extended BSBM queries 1, 5, 6, and 10 .

| Prefixes | Namespace URIs |
| :---: | :---: |
| rdf: | http://www.w3.org/1999/02/22-rdf-syntax-ns\# |
| rdfs: | http://www.w3.org/2000/01/rdf-schema\# |
| bsbm: | http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/ |
| dc: | http://purl.org/dc/elements/1.1/ |
| xsd: | http://www.w3.org/2001/XMLSchema\# |
| ub: | http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl\# |
| d0u0: | http://www.Department0.University0.edu/ |
| d1u0: | http://www.Department1.University0.edu/ |
| d0u0ap0: | http://www.Department0.University0.edu/AssistantProfessor0/ |

Table 6.4: Namespace prefixes.

| Reasoning | LUBM Query | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| no | 4 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5916 |
| RDFS | 4 | 0 | 6 | 34 | 719 | 6463 | 61 | 6463 | 134 | 0 | 0 | 0 | 0 | 5916 |
| OWL-DL [45] | 4 | 0 | 6 | 34 | 719 | 7790 | 67 | 7790 | 208 | 4 | 224 | 15 | 1 | 5916 |

Table 6.5: Number of solutions obtained by executing the LUBM queries with different reasoning against the LUBM data at the data size of 100 k .
in the queries are shown in Table 6.4. Each query contains some variables enclosed in the \% symbols. An instance of the query is generated by replacing these variables with random values from their respective domains. 10 instances are generated for each query, and the running time of answering the query is measured by taking the average of the running time of answering 10 instances of the query.

The LUBM has 14 queries, all of which are of the "select" form and have basic graph patterns. Table 6.5 shows the number of solutions obtained by executing the LUBM queries against the LUBM data at the data size of 100k. The numbers of solutions to queries 4 to 9 obtained with RDFS reasoning are more than those obtained without reasoning. This illustrates the usefulness of having reasoning during query answering.

We selected those queries the answers to which are non-empty. For query evalua-

```
SELECT ?X
WHERE {
    ?X rdf:type ub:GraduateStudent true .
    ?X ub:takesCourse d0u0:GraduateCourse0 true}
```

(a) LUBM query 1.

```
SELECT ?X
WHERE {
    ?X rdf:type ub:Publication true .
    ?X ub:publicationAuthor d0u0:AssistantProfessor0 true}
```

(b) LUBM query 3 .

```
SELECT ?X ?Y1 ?Y2 ?Y3
WHERE {
    ?X rdf:type ub:Professor true .
    ?X ub:worksFor <http://www.Department0.University0.edu> true .
    ?X ub:name ?Y1 true
    ?X ub:emailAddress ?Y2 true .
    ?X ub:telephone ?Y3 true}
```

(c) LUBM query 4.

SELECT ? X
 WHERE \{

?X rdf:type ub:Person true .
?X ub:memberOf http://www.Department0.University0.edu true\}
(d) LUBM query 5.

(e) LUBM query 6.

SELECT ? X ?Y
WHERE \{
?X rdf:type ub:Student true . ?Y rdf:type ub:Course true . d0u0:AssociateProfessor0 ub:teacherOf ?Y true . ?X ub:takesCourse ?Y true\}
(f) LUBM query 7.

```
SELECT ?X ?Y ?Z
WHERE {
    ?X rdf:type ub:Student true .
    ?Y rdf:type ub:Department true .
    ?X ub:memberOf ?Y true .
    ?Y ub:subOrganizationOf <http://www.University0.edu> true .
    ?X ub:emailAddress ?Z true}
```

(g) LUBM query 8.

Table 6.6: Extended LUBM queries $1,3,4,5,6,7$, and 8.
tion without reasoning, the LUBM queries $1,3,14$ were selected. For query evaluation with RDFS reasoning, the LUBM queries $1,3-9$, and 14 were selected. Like the BSBM queries, the triple patterns in the queries are changed to extended triple patterns, and

```
SELECT ?X ?Y ?Z
WHERE {
    ?X rdf:type ub:Student true
    ?Y rdf:type ub:Faculty true .
    ?Z rdf:type ub:Course true
    ?X ub:advisor ?Y true .
    ?X ub:takesCourse ?Z true
    ?Y ub:teacherOf ?Z true}
```

```
SELECT ?X
WHERE {
    ?X rdf:type ub:UndergraduateStudent true}
```

(b) LUBM query 14.
(a) LUBM query 9.

Table 6.7: Extended LUBM queries 9 and 14.

| LUBM Query | 1 | 3 | 4 | 5 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number of solutions, $N_{\text {sol }}$ | 4 | 6 | 34 | 719 | 61 |

Table 6.8: Numbers of solutions to the LUBM queries $1,3,4,5$, and 7 . They do not change with the data size $|D|$.
the truth values of the extended triple patterns are set to the true values. The selected queries are shown in Tables 6.6 and 6.7.

The running time of answering a query would increase with the number of solutions to the query. The numbers of solutions to the LUBM queries $1,3,4,5$, and 7 do not change with the data size $|D|$, and they are shown in Table 6.8. The numbers of solutions to the BSBM queries $1,5,6$, and 10 and the LUBM queries $6,8,9$, and 14 vary with $|D|$, and they are plotted in Fig. 6.6.

Table 6.9 shows the properties of the queries and their solutions that would affect the running time of query evaluation. These properties include the matched data size $\left|G_{\text {ext }}\right|$ of a solution, the percentage of derived data q in the matched data, and the average number of minimal justifications for a derived triple N_{j} in the matched data.

Figure 6.6: Number of solutions to the BSBM queries 1, 5, 6, and 10 and the LUBM queries $6,8,9$, and 14 .

6.4 Consistency Checking

This section examines how the running time of consistency checking scales with the data size, the percentage of uncertain data, the average number of nodes per Bayesian network, and the average in- and out-degrees of Bayesian network nodes. Consistency checking consists of two major components, finding minimal justifications and calculating the probabilities of inconsistent truth value assignments.

| BSBM query | 1 | 5 | 6 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| Size of matched data, $\left\|G_{\text {ext }}\right\|$ | 5 | 7 | 2 | 7 |
| Percentage of derived data, q | 0 | 0 | 0 | 0 |
| Average number of minimal
 justifications for a derived triple, N_{j} | n / a | n / a | n / a | n / a |

(a) BSBM queries.

| LUBM query | 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size of matched data, $\left\|G_{\text {ext }}\right\|$ | 2 | 2 | 5 | 2 | 1 | 4 | 5 | 6 | 1 |
| Percentage of derived data, q | 0 | 0 | 20 | 53 | 100 | 25.8 | 20 | 37.2 | 0 |
| Average number of minimal
 justifications for a derived triple, N_{j} | n / a | n / a | 8.5 | 3.93 | 1 | 1.02 | 1 | 5.99 | n / a |

(b) LUBM queries.

Table 6.9: Properties of queries and their solutions (n / a : not applicable).

6.4.1 Finding Minimal Justifications

As discussed in Section 4.3, the time complexity of finding minimal justifications is $\mathrm{O}(|D| \log |D|)$, where $|D|$ is the data size. This agrees with the experimental results shown in Figs. 6.7a and 6.7b that the running time of finding minimal justifications increases linearly with $|D| \log |D|$.

The running time of finding minimal justifications is proportional to the percentage of RDF triples that are not certainly true, which is equal to the percentage of uncertain data in our experiments. This agrees with the experimental results shown in Figs. 6.7c and 6.7 d that the running time increases linearly with the percentage of uncertain data p.

The running time of finding minimal justifications does not depend on the number of nodes per Bayesian network and the degree of nodes. The experiment results shown in Figs. 6.7e to 6.7 h also show no trend in the running time with respect to the number and degree of nodes.

Figure 6.7: Running time of finding minimal justifications in consistency checking.

6.4.2 Calculating Probabilities

Probabilistic logic sampling (Section 2.4.2) is used to calculate the probability. The number of samples used in probabilistic logic sampling is determined by setting both ϵ and δ in (2.2) to 0.01 .

As discussed in Section 4.3, the time complexity of probability calculation is $\mathrm{O}(|D|)$ and the quantity $E\left(N_{\text {bn(e) }}\right) \times N_{\text {node }}$ is proportional to the expected running time of the

Figure 6.8: The quantity $E\left(N_{\mathrm{bn}(\mathrm{e})}\right) \times N_{\text {node }}$, which is proportional to the expected running time of calculating probabilities in consistency checking.
probability calculation, where $|D|$ is the data size, $E\left(N_{\mathrm{bn}(\mathrm{e})}\right)$ is defined in (4.9), and $N_{\text {node }}$ is the number of nodes. We plot $E\left(N_{\text {bn(e) })}\right) \times N_{\text {node }}$ in Fig. 6.8 and compare it with the experimental results in Fig. 6.9. The value of the percentage of uncertain entailed triples q in $E\left(N_{\text {bn(e) }}\right)$ is obtained from Fig. 6.3.

Figs. 6.8a and 6.8 b show that $E\left(N_{\text {bn(e) }}\right) \times N_{\text {node }}$ increases linearly with the data size. The value at the smallest data size of BSBM deviates from the linear relationship because the value of q at this data size shown in Fig. 6.3a is lower than the values of q at the other data sizes. The experimental results shown in Figs. 6.9a and 6.9 b also show that the running time of probability calculation increases linearly with the data

Figure 6.9: Running time of calculating probabilities in consistency checking.
size.
Figs. 6.8c and 6.8 d show that $E\left(N_{\mathrm{bn}(\mathrm{e})}\right) \times N_{\text {node }}$ grows sublinearly with the percentage of uncertain data p in BSBM and linearly in LUBM. These orders of growth correspond to the orders of growth of the percentage of uncertain entailed triples shown in Figs. 6.3c and 6.3d. This matches the experimental results shown in Figs. 6.9c and 6.9 d that the running time of probability calculation grows sublinearly with p in BSBM and linearly in LUBM.

Figs. 6.8e and 6.8 f show that $E\left(N_{\mathrm{bn}(\mathrm{e})}\right) \times N_{\text {node }}$ increases linearly with the number of nodes $N_{\text {node }}$ in BSBM and sublinearly in LUBM. This agrees with the experimental results shown in Figs. 6.9e and 6.9f that the running time of probability calculation increases linearly with $N_{\text {node }}$ in BSBM and sublinearly in LUBM.

The running time of probability calculation is expected to increase with the indegree $N_{\text {ideg }}$ or out-degree $N_{\text {odeg }}$ of nodes to handle the increased parents of nodes. Figs. 6.9 e and 6.9 f show that the running time of probability calculation increases linearly with $N_{\text {ideg }}$ or $N_{\text {odeg }}$ in BSBM and sublinearly in LUBM.

6.5 Incremental Consistency Checking

This section studies the running time performance of incremental consistency checking with respect to the data size, the percentage of uncertain data, the number of nodes, and the degree of nodes.

We measure the running time of checking the consistency of a consistent theory after an RDF triple is added to it. Recall that the operation of removing an RDF triple from a consistent theory does not void the consistency of the theory. We start with a consistent theory and remove an RDF triple t from the consistent theory. Then we add the RDF triple t back and check the consistency of the theory because of the introduction of t. We repeat this process $|D|$ times, where $|D|$ is the number of RDF triples in the theory. Each time a different RDF triple t is chosen from the theory.

We divide the running time of consistency checking into two parts, the time of finding minimal justifications and the time of calculating probabilities, which are shown

Figure 6.10: Running time of finding minimal justifications in incremental consistency checking.
in Figs. 6.10 and 6.11 respectively. Moreover, we divide the RDF triple t added to the theory into instance and schema triples.

From Figs. 6.10 and 6.11, the average consistency checking time is under 160 ms in every case. From Fig. 6.10, the time of finding minimal justifications for schema triples is longer than that for instance triples. It does not change with the data size, the percentage of uncertain data, the number of nodes, and the degree of nodes.

Figure 6.11: Running time of calculating probabilities in incremental consistency checking.

As discussed in Section 4.3, the time complexity of probability calculation is $\mathrm{O}(|D|)$, where $|D|$ is the data size. From Figs. 6.11a and 6.11 b , the running time of calculating probabilities either does not change or increases linearly with $|D|$. From Figs. 6.11c and 6.11 d , the running time of calculating probabilities increases sublinearly with the percentage of uncertain data p in BSBM. In LUBM, it increases linearly with p for the instance triples. It increases exponentially with p for the schema triples because

Figure 6.12: Running time of answering queries without RDFS reasoning as a function of the data size $|D|\left(p=50 \%, N_{\text {node }}=10, N_{\text {ideg }}=N_{\text {odeg }}=2\right)$.
the number of inconsistent truth value assignments that contain the schema triples also increases exponentially with p. From Figs. 6.11e to 6.11 h, the running time of calculating probabilities increases linearly with the number and the degree of nodes.

6.6 Query Evaluation without RDFS Reasoning

In this section, we examine the running time performance of query evaluation without RDFS reasoning. BSBM queries $1,5,6$, and 10 and LUBM queries 1,3 , and 14 are selected in this set of experiments because the answers to these queries are non-empty. The number of solutions to LUBM query 14 increases rapidly with the data size. The

Figure 6.13: Running time of answering queries without RDFS reasoning as a function of the percentage of uncertain data $p\left(|D|=500 \mathrm{k}, N_{\text {node }}=10, N_{\text {ideg }}=N_{\text {odeg }}=2\right)$.
query time at large data size is very long, so we only compute the first 100 solutions for this query.

Query evaluation consists of two major components, pattern matching and probability calculation.

6.6.1 Pattern Matching

Fig. 6.12 shows the running time of pattern matching as a function of the data size. Since the number of solutions to the BSBM queries varies with the data size, the running time per solution is plotted against the data size. The running time of pat-

Figure 6.14: Running time of answering queries without RDFS reasoning as a function of the number of nodes $N_{\text {node }}\left(|D|=500 \mathrm{k}, p=50 \%, N_{\text {ideg }}=N_{\text {odeg }}=2\right)$.
tern matching increases linearly with the data size for BSBM queries 5 and 6 and for LUBM queries 1 and 3. For the rest of the queries, there is no trend in the running time.

The running time of pattern matching does not depend on the percentage of uncertain data, the number of nodes, and the degree of nodes. This agrees with the experimental results shown in Figs. 6.13, 6.14, and 6.15 respectively.

Figure 6.15: Running time of answering queries without RDFS reasoning as a function of the in-degree $N_{\text {ideg }}$ or out-degree $N_{\text {odeg }}$ of nodes $\left(|D|=500 \mathrm{k}, p=50 \%, N_{\text {node }}=10\right)$.

6.6.2 Probability Calculation

Probabilistic logic sampling (Section 2.4.2) is used to calculate the probability. The number of samples used in probabilistic logic sampling is determined by setting both ϵ and δ in (2.2) to 0.01 .

As discussed in Section 5.4, the time complexity of probability calculation is approximately $\mathrm{O}\left(\left|G_{\text {ext }}\right|\right)$ and the quantity $E\left(N_{\mathrm{bn}(\mathrm{m})}\right) \times N_{\text {node }}$ is proportional to the expected running time of the probability calculation, where $\left|G_{\text {ext }}\right|$ is the size of matched data, $E\left(N_{\mathrm{bn}(\mathrm{m})}\right)$ is defined in (5.8), and N_{node} is the number of nodes. We plot $E\left(N_{\mathrm{bn}(\mathrm{m})}\right) \times$ $N_{\text {node }}$ in Fig. 6.16 and compare it with the experimental results shown in Figs. 6.12, 6.13, and 6.14. We set the size of the matched data $\left|G_{\text {ext }}\right|$ and the number of solutions

Figure 6.16: The quantity $E\left(N_{\mathrm{bn}(\mathrm{m})}\right) \times N_{\text {node }}$, which is proportional to the expected running time of calculating the probabilities of the solutions to a query.
$N_{\text {sol }}$ in $E\left(N_{\mathrm{bn}(\mathrm{m})}\right)$ to 4 and 50 respectively. See Table 6.9 for the sizes of matched data of the tested queries, which range between 1 and 7. See Table 6.8 and Fig. 6.6 for the number of solutions to the tested queries.

Fig. 6.16a shows that $E\left(N_{\mathrm{bn}(\mathrm{m})}\right) \times N_{\text {node }}$ increases very slightly with the data size. This agrees with the experimental results shown in Fig. 6.12, which do not show any trend in the running time of probability calculation.

Fig. 6.16b shows that $E\left(N_{\mathrm{bn}(\mathrm{m})}\right) \times N_{\text {node }}$ increases linearly with the percentage of uncertain data. This result matches the experimental results shown in Fig. 6.13 that the running time of probability calculation increases linearly with the percentage of uncertain data.

Fig. 6.16c shows that $E\left(N_{\mathrm{bn}(\mathrm{m})}\right) \times N_{\text {node }}$ increases linearly with the number of nodes. This agrees with the experimental results shown in Fig. 6.14 that the running time of probability calculation increases linearly with the number of nodes.

The running time of probability calculation would increase with the in-degree $N_{\text {ideg }}$ or out-degree $N_{\text {odeg }}$ of nodes because of the processing of increased parents of nodes. Fig. 6.15 shows that the running time of probability calculation increases linearly with $N_{\text {ideg }}$ or $N_{\text {odeg }}$.

Figure 6.17: Running time of answering queries with RDFS reasoning as a function of the data size $|D|\left(p=50 \%, N_{\text {node }}=10, N_{\text {ideg }}=N_{\text {odeg }}=2\right)$.

6.7 Query Evaluation with RDFS Reasoning

In this section, we examine the running time performance of query evaluation with RDFS reasoning. In this set of experiments, the LUBM data are used because they produce derived data. Moreover, RDFS reasoning is required for some LUBM queries to produce non-empty results. The data sizes tested are 10 times smaller than those in the previous experiments because of the long query time.

Query evaluation time as functions of the data size $|D|$, the percentage of uncertain data p, the number of nodes per Bayesian network $N_{\text {node }}$, and the in-degree $N_{\text {ideg }}$ or out-degree $N_{\text {odeg }}$ of nodes is plotted in Figs. 6.17, 6.18, 6.19, and 6.20 respectively.

Figure 6.18: Running time of answering queries with RDFS reasoning as a function of the percentage of uncertain data $p\left(|D|=50 \mathrm{k}, N_{\text {node }}=10, N_{\text {ideg }}=N_{\text {odeg }}=2\right)$.

These figures also show the running time of pattern matching and probability calculation, which are the major components of the query evaluation. As mentioned in Section 6.2.2, the numbers of solutions to some queries do not vary with $|D|$ while the numbers of solutions to other queries increase linearly with $|D|$. To eliminate the effect of the number of solutions, we plot the running time per solution against $|D|$ in Fig. 6.17.

Figure 6.19: Running time of answering queries with RDFS reasoning as a function of the number of nodes $N_{\text {node }}\left(|D|=50 \mathrm{k}, p=50 \%, N_{\text {ideg }}=N_{\text {odeg }}=2\right)$.

6.7.1 Pattern Matching

Fig. 6.17 shows that the pattern matching time per solution has different orders of growth for different queries. It does not grow with $|D|$ for the LUBM queries 6 and 14, grows sublinearly for the LUBM query 3, grows linearly for the LUBM queries 1 , 4 , and 5 , grows polynomially for the LUBM queries 7 and 9 , and grows exponentially for the LUBM query 8 .

The pattern matching time does not depend on the percentage of uncertain data, the number of nodes, and the degree of nodes. This agrees with the experimental results shown in Figs. 6.18, 6.19, and 6.20.

Figure 6.20: Running time of answering queries with RDFS reasoning as a function of the in-degree $N_{\text {ideg }}$ or out-degree $N_{\text {odeg }}$ of nodes $\left(|D|=50 \mathrm{k}, p=50 \%, N_{\text {node }}=10\right)$.

6.7.2 Probability Calculation

The quantity $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\text {node }}$ is proportional to the expected running time of the probability calculation, where $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right)$ is defined in (5.9) and N_{node} is the number of nodes per Bayesian network. We set the values of $N_{j}, q,\left|G_{\text {ext }}\right|$, and $N_{\text {sol }}$ as follows, where N_{j} is the number of minimal justifications for a derived triple, q is the percentage of derived data, $\left|G_{\text {ext }}\right|$ is the size of matched data, and $N_{\text {sol }}$ is the number of solutions. From Fig. 6.4, the value of N_{j} in the LUBM data is around 2.8. From Table 6.9, the values of N_{j} in the matched data of the solutions to the LUBM queries range between 1 and 8.5. We set N_{j} to be 1,4 , or 8 . From Fig. 6.5, the value of q is between 19% and

| Parameter | Setting |
| :---: | :---: |
| Number of minimal justifications
 for a derived triple, N_{j} | $1, \mathbf{4}, 8$ |
| Percentage of derived data, q | $\mathbf{1 9 . 5 \%}$ |
| Size of matched data, $\left\|G_{\text {ext }}\right\|$ | $\mathbf{4}$ |
| Number of solutions, $N_{\text {sol }}$ | $1, \mathbf{5 0}, 1000,0.001\|D\|, 0.05\|D\|$ |

Table 6.10: Settings for $N_{j}, q,\left|G_{\text {ext }}\right|$, and $N_{\text {sol }}$ in the computation of $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right)$.

Figure 6.21: $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\text {node }}$ per solution as a function of $|D|, N_{\text {sol }}$, and $N_{j}(p=$ $\left.50 \%, N_{\text {node }}=10, q=19.5 \%,\left|G_{\text {ext }}\right|=4\right)$.
20%. We set q to be 19.5%. From Table 6.9, the values of $\left|G_{\text {ext }}\right|$ range between 1 and 6. We set $\left|G_{\text {ext }}\right|$ to be 4. From Table 6.8 and Fig. 6.6, the value of $N_{\text {sol }}$ either does not vary with the data size $|D|$ or increases linearly with $|D|$. The settings for $N_{\text {sol }}$ include small and large fixed values (1,50 , and 1000) and values that increase linearly with $|D|$ at slow and fast rates $(0.001|D|$ and $0.05|D|)$. Table 6.10 summaries the settings for $N_{j}, q,\left|G_{\text {ext }}\right|$, and $N_{\text {sol }}$. The default values are in bold.

To study how the running time of probability calculation per solution varies with the data size $|D|$, we plot $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\text {node }}$ per solution against $|D|$ for different values of $N_{\text {sol }}$ and N_{j} in Fig. 6.21 and compare it with the experimental results shown in Fig. 6.17. From Fig. 6.21, $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\text {node }}$ per solution changes very little except when $N_{\text {sol }}=50$ or 1000. It increases sublinearly with $|D|$ when $N_{\text {sol }}=50$ or 1000 . This agrees with the experimental results that the running time of probability calculation per solution either changes very little or increases sublinearly with $|D|$.

Figure 6.22: $E\left(N_{\text {bn(m) }}^{\prime}\right) \times N_{\text {node }}$ per solution as a function of $p, N_{\text {sol }}$, and $N_{j}(|D|=50 \mathrm{k}$, $\left.N_{\text {node }}=10, q=19.5 \%,\left|G_{\text {ext }}\right|=4\right)$.

To study how the running time of probability calculation varies with the percentage of uncertain data p, we plot $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\text {node }}$ per solution against p for different values of $N_{\text {sol }}$ and N_{j} in Fig. 6.22 and compare it with the experimental results shown in Fig. 6.18. From Fig. 6.22, $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\text {node }}$ increases linearly with p when $N_{j}=1$. The order of its growth increases with N_{j} and decreases when $N_{\text {sol }}$ is large like 1000 .

For LUBM queries $1,6,7,8$, and 14 , either the percentage of derived data q in the matched data is 0% or the number of minimal justifications for a derived triple N_{j} in the matched data is close to 1 . Our model predicts that the running time of probability calculation for these queries increases linearly with p, and this agrees with the experimental results shown in Fig. 6.18.

For LUBM query 3, the value of q in the matched data is 0%. Our model predicts that the running time of probability calculation increases linearly with p. However, the running time increases sublinearly with p because of the entailment relationships between the matched data of the solutions. The graph pattern of query 3 consists of two triple patterns, (?X, rdf:type, ub:Publication) and (?X, ub:publicationAuthor, d0u0:AssistantProfessor0). The namespace prefixes in these two patterns are described in Table 6.4. The second triple pattern (?X, ub:publicationAuthor, d0u0:AssistantProfessor0)
and the schema triple (ub:publicationAuthor, rdfs:domain, ub:Publication) together entail the first triple pattern (?X, rdf:type, ub:Publication) no matter what the value of the variable ? X is.

One solution to query 3 is $\{(? \mathrm{X}, \mathrm{d} 0 \mathrm{u} 0 \mathrm{ap} 0:$ Publication 0$)\}$. If the matched data (d0u0ap0: Publication0, ub:publicationAuthor, d0u0: AssistantProfessor0) and (d0u0ap0: Publication0, rdf:type, ub:Publication) are both uncertain, they have to be in the same Bayesian network because of the entailment relationship between them. To compute the probability of the matched data, we perform inference on only one Bayesian network. However, in our model, the matched data are assumed to be drawn randomly from the data and no entailment relationship among the matched data is assumed. Inference on one or two Bayesian networks may be needed. Hence, our model overestimates the amount of inference performed, and the overestimate increases with p. This explains the sublinear growth of probability calculation time with respect to p for query 3 .

For LUBM queries 4 and $5, N_{j}$ in the matched data is large. Our model predicts that the probability calculation time increases rapidly with p, and this agrees with the experimental result shown in Fig. 6.18.

For LUBM query 9 , the value of N_{j} in the matched data is large. Our model predicts that the running time of probability calculation increases rapidly with p. However, the probability calculation time increases linearly with p because of the entailment relationships among the matched data of the solutions. The graph pattern of query 9 consists of six triple patterns. See Table 6.7a for the triple patterns. The namespace prefixes in the triple patterns are described in Table 6.4. The schema data of

Figure 6.23: $E\left(N_{\text {bn(m) }}^{\prime}\right) \times N_{\text {node }}$ per solution as a function of $N_{\text {node }}, N_{\text {sol }}$, and $N_{j}(|D|=$ $\left.50 \mathrm{k}, p=50 \%, q=19.5 \%,\left|G_{\text {ext }}\right|=4\right)$.
the LUBM data state that the domain and range of ub:teacherOf are ub:Faculty and ub:Course respectively. Hence, the triple pattern (?Y, ub:teacherOf, ?Z), together with the schema data, entails both the triple patterns (?Y, rdf:type, ub:Faculty) and (?Z, rdf:type, ub:Course) no matter what the values of variables ?Y and ? Z are.

One solution to query 9 is $\{(? \mathrm{X}, \mathrm{d} 1 \mathrm{u} 0$: GraduateStudent53), (?Y, d1u0: AssociateProfessor1), (?Z, d1u0: GraduateCourse14) \}. The matched data of this solution are $\left\{d_{1}, d_{2}, d_{3}, r_{1}, r_{2}, r_{3}\right\} . r_{1}, r_{1}$, and r_{1} are declared data, and d_{1}, d_{2}, and d_{3} are derived data. They are described in Tables 6.11b and 6.11c respectively. The minimal justifications for the derived data d_{1}, d_{2}, and d_{3} are shown in Tables 6.11 d , and the numbers of minimal justifications for them are 1,13 , and 2 respectively. The probability bounds of the matched data are shown in Table 6.11e. The lower bound of the probability appears to contain a lot of RDF triples because there are 13 minimal justifications for the derived triple d_{2}. However, the expression for the lower bound of the probability can be simplified to contain four RDF triples because of the entailment relationship among the matched data. This explains why the running time of probability calculation does not increase rapidly with p for query 9 .

To study how the running time of probability calculation varies with $N_{\text {node }}$, we
plot $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\text {node }}$ per solution against $N_{\text {node }}$ for different values of $N_{\text {sol }}$ and N_{j} in Fig. 6.23 and compare it with the experimental results shown in Fig. 6.19. From Fig. 6.23, $E\left(N_{\text {bn }(\mathbf{m})}^{\prime}\right) \times N_{\text {node }}$ increases linearly with $N_{\text {node }}$ except when $N_{\text {sol }}$ is large like 1000. It increases sublinearly with $N_{\text {node }}$ when $N_{\text {sol }}$ is large. This agrees with the experimental results shown in Fig. 6.19. For LUBM queries 1, 3, 4, 7, and 9, the values of $N_{\text {sol }}$ are small, and the time of probability calculation increases linearly with $N_{\text {node }}$. For LUBM queries $5,6,8$, and 14 , the values of $N_{\text {sol }}$ are large, and the time of probability calculation increases sublinearly with $N_{\text {node }}$.

The running time of probability calculation would increase with the in-degree $N_{\text {ideg }}$ or out-degree $N_{\text {odeg }}$ of nodes because of the processing of increased parents of nodes. Fig. 6.20 shows that the probability calculation time increases linearly with $N_{\text {ideg }}$ or $N_{\text {odeg }}$.

| Symbol | RDF triple |
| :---: | :---: |
| h_{1} | (ub:teacherOf, rdfs:domain, ub:Faculty) |
| h_{2} | (ub:teacherOf, rdfs:range, ub:Course) |
| h_{3} | (ub:ResearchAssistant, rdfs:subClassOf, ub:Student) |
| h_{4} | (ub:AssociateProfessor, rdfs:subClassOf, ub:Professor) |
| h_{5} | (ub:Professor, rdfs:subClassOf, ub:Faculty) |
| h_{6} | (ub:advisor, rdfs:range, ub:Professor) |
| h_{7} | (ub:GraduateCourse, rdfs:subClassOf, ub:Course) |

(a) Schema triples.

| Symbol | RDF triple |
| :---: | :---: |
| r_{1} | (d1u0:GraduateStudent53, ub:advisor, d1u0:AssociateProfessor1) |
| r_{2} | (d1u0:GraduateStudent53, ub:takesCourse, d1u0:GraduateCourse14) |
| r_{3} | (d1u0:AssociateProfessor1, ub:teacherOf, d1u0:GraduateCourse14) |
| r_{4} | (d1u0:AssociateProfessor1, rdf:type, ub:AssociateProfessor) |
| r_{5} | (d1u0:UndergraduateStudent312, ub:advisor, d1u0:AssociateProfessor1) |
| r_{6} | (d1u0:GraduateStudent53, ub:advisor, d1u0:AssociateProfessor1) |
| r_{7} | (d1u0:UndergraduateStudent152, ub:advisor, d1u0:AssociateProfessor1) |
| r_{8} | (d1u0:UndergraduateStudent116, ub:advisor, d1u0:AssociateProfessor1) |
| r_{9} | (d1u0:GraduateStudent89, ub:advisor, d1u0:AssociateProfessor1) |
| r_{10} | (d1u0:GraduateStudent31, ub:advisor, d1u0:AssociateProfessor1) |
| r_{11} | (d1u0:UndergraduateStudent106, ub:advisor, d1u0:AssociateProfessor1) |
| r_{12} | (d1u0:GraduateStudent100, ub:advisor, d1u0:AssociateProfessor1) |
| r_{13} | (d1u0:AssociateProfessor1, ub:teacherOf, d1u0:GraduateCourse13) |
| r_{14} | (d1u0:AssociateProfessor1, ub:teacherOf, d1u0:Course16) |
| r_{15} | (d1u0:AssociateProfessor1, ub:teacherOf, d1u0:Course15) |
| r_{16} | (d1u0:GraduateCourse14, rdf:type, ub:GraduateCourse) |
| r_{17} | (d1u0:GraduateStudent53, rdf:type, ub:ResearchAssistant) |

(b) Instance triples.

| Symbol | RDF triple |
| :---: | :---: |
| d_{1} | (d1u0:GraduateStudent53, rdf:type, ub:Student) |
| d_{2} | (d1u0:AssociateProfessor1, rdf:type, ub:Faculty) |
| d_{3} | (d1u0:GraduateCourse14, rdf:type, ub:Course) |

(c) Derived triples.

| Symbol | Minimal justifications |
| :---: | :---: |
| d_{1} | $\left\{h_{3}, r_{17}\right\}$ |
| d_{2} | $\left\{h_{1}, r_{3}\right\},\left\{h_{4}, h_{5}, r_{4}\right\},\left\{h_{5}, h_{6}, r_{5}\right\}\left\{h_{5}, h_{6}, r_{6}\right\},\left\{h_{5}, h_{6}, r_{7}\right\},\left\{h_{5}, h_{6}, r_{8}\right\}$ |
| | $\left\{h_{5}, h_{6}, r_{9}\right\},\left\{h_{5}, h_{6}, r_{10}\right\},\left\{h_{5}, h_{6}, r_{11}\right\},\left\{h_{5}, h_{6}, r_{12}\right\}\left\{h_{1}, r_{13}\right\},\left\{h_{1}, r_{14}\right\},\left\{h_{1}, r_{15}\right\}$ |
| d_{3} | $\left\{h_{2}, r_{3}\right\},\left\{h_{7}, r_{16}\right\}$ |

(d) Minimal justifications for the derived triples d_{1}, d_{2}, and d_{3}.

| \mathcal{F} | $d_{1} \wedge d_{2} \wedge d_{3} \wedge r_{1} \wedge r_{2} \wedge r_{3}$ |
| :---: | :---: |
| $\operatorname{Pr}_{\text {lower }}(\mathcal{F})$ | $\operatorname{Pr}\left(r_{17} \wedge \bigvee_{i=3,4, \ldots, 15} r_{i} \wedge\left(r_{3} \vee r_{16} \wedge \wedge r_{1} \wedge r_{2} \wedge r_{3}\right)=\operatorname{Pr}\left(r_{17} \wedge r_{1} \wedge r_{2} \wedge r_{3}\right)\right.$ |
| $\operatorname{Pr}_{\text {upper }}(\mathcal{F})$ | $\operatorname{Pr}\left(r_{1} \wedge r_{2} \wedge r_{3}\right)$ |

(e) Probability of the matched data $\left\{d_{1}, d_{2}, d_{3}, r_{1}, r_{2}, r_{3}\right\}$.

Table 6.11: Probability calculation of the matched data of a solution to LUBM query 9.

Chapter 7

Conclusion

This chapter presents a summary of our work and suggests three areas for future studies.

7.1 Summary and Contributions

In this thesis, we propose a probabilistic model for RDF called probabilistic RDFS (pRDFS), which models the uncertainties of correlated RDF data. We argue that being able to model correlated RDF data is necessary. First, RDF data using the RDFS vocabulary are correlated. Second, correlated data occur in practice. The syntax and semantics of pRDFS are defined in Chapter 3. Representing and performing probabilistic inference on correlated data are expensive. We use Bayesian networks to represent the correlated data and probabilistic logic sampling to perform approximate inference.

A pRDFS theory is inconsistent if it does not have any satisfying interpretation. In Proposition 2, we prove that if the probabilities of all inconsistent truth value as-
signments are zeros, then the pRDFS theory is consistent. In Propositions 3 and 4, we prove that it is sufficient to check the inconsistent truth value assignments created from the minimal justifications so that the computation of consistency checking can be reduced. We describe a consistency algorithm in Chapter 4. Moreover, for data that are frequently updated, we provide an incremental consistency checking algorithm, which performs fast rechecking each time the data are updated.

We extend a common form of SPARQL query to pRDFS by adding the truth value to each triple pattern of the query. We define an answer to the extended SPARQL query on pRDFS, which includes the solutions to the query pattern and the probabilities of the solutions. For solutions that contain derived data, their probabilities cannot be specified using a single probability value because the probability distribution of the derived data is not fully specified. In this case, the probability bounds of the solutions are computed. In Proposition 5, we prove that the computation of the probability bounds can be reduced using the minimal justifications.

We present an experimental evaluation of the running time performance of the consistency checking and query evaluation algorithms with respect to the data size $|D|$, the percentage of uncertain data p, the number of nodes in a Bayesian network $N_{\text {node }}$, and the degrees of nodes $N_{\text {ideg }}$ and $N_{\text {odeg }}$ in a network. The algorithms were tested on the Berlin SPARQL Benchmark (BSBM), the Lehigh University Benchmark (LUBM), and random uncertain data. For the consistency checking algorithm, the running time scales linearly with $|D| \log |D|$ and at most linearly with $p, N_{\text {node }}, N_{\text {ideg }}$, and $N_{\text {odeg }}$. For the incremental consistency checking algorithm, the running time in all test cases is under 160 ms . The running time scales at most linearly with $|D|, p, N_{\text {node }}, N_{\text {ideg }}$, and
$N_{\text {odeg }}$. The only exception is that the running time scales exponentially with p in the LUBM data when a schema triple is added to the theory. For the query evaluation algorithm without RDFS reasoning, the running time scales at most linearly with $|D|$, $p, N_{\text {node }}, N_{\text {ideg }}$, and $N_{\text {odeg }}$. For the query evaluation algorithm with RDFS reasoning, the running time could scale exponentially with $|D|$ for some queries because of the pattern matching step. It scales at most linearly with $p, N_{\text {node }}, N_{\text {ideg }}$, and $N_{\text {odeg }}$.

Finally, we present three models for predicting the average-case running time of probability calculations in consistency checking, query evaluation without RDFS reasoning, and query evaluation with RDFS reasoning. They are $E\left(N_{\text {bn(e) }}\right) \times N_{\text {node }}$, $E\left(N_{\mathrm{bn}(\mathrm{m})}\right) \times N_{\mathrm{node}}$, and $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right) \times N_{\mathrm{node}}$ respectively. The computations of $E\left(N_{\mathrm{bn}(\mathrm{e})}\right)$, $E\left(N_{\mathrm{bn}(\mathrm{m})}\right)$, and $E\left(N_{\mathrm{bn}(\mathrm{m})}^{\prime}\right)$ are shown in (4.9), (5.8), and (5.9) respectively. The first two models match the experimental results. The last model overestimates the running time for queries, the triple patterns of which are correlated through the RDFS semantics no matter what the values of the variables in the triple patterns are. The discrepancy is due to the fact that our model assumes that the matched data of the solutions to the queries are drawn randomly from the RDFS closure of the data and may not be correlated.

7.2 Future Research

In this section, we outline three areas to enhance this work.

- The first one is the uncertainty supported. pRDFS assumes that the probability information of the uncertain data is fully specified. However, the probability information may be incomplete in practice. Moreover, the probabilities of the
derived data from another pRDFS theories are intervals. Hence, pRDFS would have wider applications if it is able to handle partially specified probability information and uncertain data specified using interval probabilities.
- The second one is the inference supported. pRDFS now supports the RDFS inference. pRDFS could extend its support to other inferences like the inference of application-specific transitive properties, which is supported and used in [59], [37], and [56].
- The third one is the query supported. pRDFS currently supports SPARQL queries with basic graph patterns. pRDFS could extend its support to queries with complex graph patterns, which are formed by combining smaller patterns using SPARQL keywords OPTIONAL and UNION. However, solutions found by ignoring the truth values of the complex graph patterns do not cover all solutions to all instances of a pRDFS theory. Pre-processing and post-processing are required.

Bibliography

[1] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. Dbpedia: a nucleus for a web of open data. In Proceedings of the 6th international The semantic web and 2nd Asian conference on Asian semantic web conference (Berlin, Heidelberg, 2007), ISWC'07/ASWC'07, SpringerVerlag, pp. 722-735.
[2] Auer, S., Demter, J., Martin, M., and Lehmann, J. Lodstats - an extensible framework for high-performance dataset analytics. In Proceedings of the 18th international conference on Knowledge Engineering and Knowledge Management (Berlin, Heidelberg, 2012), EKAW'12, Springer-Verlag, pp. 353362.
[3] Barbará, D., Garcia-Molina, H., and Porter, D. The management of probabilistic data. IEEE Transactions on Knowledge and Data Engineering 4, 5 (1992), 487-502.
[4] Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., and MorisSETTE, J. Bio2rdf: Towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical Informatics 41, 5 (2008), 706-716.
[5] Berners-Lee, T. Linked data - design issues. Retrieved August 21, 2013, http://www.w3.org/DesignIssues/LinkedData.html, 2006.
[6] Berners-Lee, T., Fielding, R., And Masinter, L. Uniform resource identifier (URI): Generic syntax. http://www.ietf.org/rfc/rfc3986.txt, 2005.
[7] Berners-Lee, T., Hendler, J., and Lassila, O. The semantic web. Scientific American 284, 5 (May 2001), 34-43.
[8] Biedermann, A., and Taroni, F. Bayesian networks for evaluating forensic DNA profiling evidence: A review and guide to literature. Forensic Science International: Genetics 6, 2 (2012), 147 - 157.
[9] Bizer, C., Cyganiak, R., and Gauss, T. The RDF book mashup: From web APIs to a web of data. In SFSW (2007), S. Auer, C. Bizer, T. Heath, and G. A. Grimnes, Eds., vol. 248 of CEUR Workshop Proceedings, CEUR-WS.org.
[10] Bizer, C., and Schultz, A. The Berlin SPARQL benchmark. International Journal on Semantic Web and Information Systems 5, 2 (2009), 1-24.
[11] BRICKLEY, D., AND GUHA, R. RDF vocabulary description language 1.0: RDF schema W3C recommendation. http://www.w3.org/TR/rdf-schema/, 2004.
[12] Broekstra, J., and Kampman, A. SeRQL: A second generation RDF query language. SWAD-Europe Workshop on Semantic Web Storage and Retrieval, http://www.w3.org/2001/sw/Europe/events/20031113-storage/positions/, 2003.
[13] Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., AND Wilkinson, K. Jena: implementing the semantic web recommendations. In $W W W$ (Alternate Track Papers \& Posters) (2004), S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills, Eds., ACM, pp. 74-83.
[14] Chickering, D. M. Learning bayesian networks is NP-complete. In Learning from Data: Artificial Intelligence and Statistics V (1996), Springer-Verlag, pp. 121-130.
[15] Cooper, G. F. The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence 42, 2-3 (Mar. 1990), 393-405.
[16] Cooper, G. F., and Herskovits, E. A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 4 (Oct. 1992), 309-347.
[17] Cyganiak, R., and Wood, D. Rdf 1.1 concepts and abstract syntax w3c last call working draft 23 july 2013. http://www.w3.org/TR/rdf11-concepts/, 2013.
[18] Dagum, P., and Luby, M. Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence 60, 1 (Mar. 1993), 141-153.
[19] Dalvi, N., And Suciu, D. Efficient query evaluation on probabilistic databases. In Proceedings of the Thirtieth international conference on Very large data bases - Volume 30 (2004), VLDB ’04, VLDB Endowment, pp. 864-875.
[20] Dalvi, N. N., Ré, C., and Suciu, D. Probabilistic databases: diamonds in the dirt. Communications of the ACM 52, 7 (2009), 86-94.
[21] de Campos, L. M., Fernández-Luna, J. M., and Huete, J. F. Bayesian networks and information retrieval: an introduction to the special issue. Information Processing and Management: an International Journal 40, 5 (Sept. 2004), 727-733.
[22] Deshpande, A., Guestrin, C., Madden, S. R., Hellerstein, J. M., and Hong, W. Model-driven data acquisition in sensor networks. In Proceedings of the Thirtieth international conference on Very large data bases - Volume 30 (2004), VLDB ’04, VLDB Endowment, pp. 588-599.
[23] Dong, X. L., Berti-EQuille, L., and Srivastava, D. Integrating conflicting data: The role of source dependence. PVLDB 2, 1 (2009), 550-561.
[24] Duerst, M., and Suignard, M. Internationalized resource identifiers (IRIs). http://www.ietf.org/rfc/rfc3987.txt, 2005.
[25] Fagin, R. Combining fuzzy information from multiple systems. J. Comput. Syst. Sci. 58, 1 (1999), 83-99.
[26] Fuhr, N., and Rölleke, T. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Transactions on Information Systems 15, 1 (1997), 32-66.
[27] Fukushige, Y. Representing probabilistic knowledge in the semantic web. Retrieved August 21, 2013, http://www.w3.org/2004/09/13Yoshio/PositionPaper.html, 2004.
[28] Fukushige, Y. Representing probabilistic relations in RDF. In ISWC-URSW (2005), P. C. G. da Costa, K. B. Laskey, K. J. Laskey, and M. Pool, Eds., pp. 106107.
[29] Fung, R. M., and Chang, K.-C. Weighing and integrating evidence for stochastic simulation in bayesian networks. In Proceedings of the Fifth Annual Conference on Uncertainty in Artificial Intelligence (Amsterdam, The Netherlands, The Netherlands, 1990), UAI '89, North-Holland Publishing Co., pp. 209220.
[30] Guo, Y., Pan, Z., and Heflin, J. An evaluation of knowledge base systems for large OWL datasets. In International Semantic Web Conference (2004), S. A. McIlraith, D. Plexousakis, and F. van Harmelen, Eds., vol. 3298 of Lecture Notes in Computer Science, Springer, pp. 274-288.
[31] GUPTA, R., AND SARAWAGI, S. Creating probabilistic databases from information extraction models. In VLDB (2006), U. Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and Y.-K. Kim, Eds., ACM, pp. 965-976.
[32] Heckerman, D. E., Horvitz, E. J., and Nathwani, B. N. Toward normative expert systems: Part I. the pathfinder project. Methods of information in medicine 31, 2 (1992), 90-105.
[33] Heckerman, D. E., and Nathwani, B. N. An evaluation of the diagnostic accuracy of pathfinder. Computers and Biomedical Research 25, 1 (1992), 56-74.
[34] Heckerman, D. E., and Nathwani, B. N. Toward normative expert systems: Part II. probability-based representations for efficient knowledge acquisition and inference. Methods of information in medicine 31, 2 (1992), 106-116.
[35] Henrion, M. Propagating uncertainty in bayesian networks by probabilistic logic sampling. In UAI (1986), J. F. Lemmer and L. N. Kanal, Eds., Elsevier, pp. 149-164.
[36] Hoeffding, W. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58, 301 (1963), 13-30.
[37] Huang, H., and Liu, C. Query evaluation on probabilistic RDF databases. In WISE (2009), G. Vossen, D. D. E. Long, and J. X. Yu, Eds., vol. 5802 of Lecture Notes in Computer Science, Springer, pp. 307-320.
[38] Kalyanpur, A. Debugging and repair of OWL ontologies. PhD thesis, University of Maryland at College Park, College Park, MD, USA, 2006.
[39] Klyne, G., and Carroll, J. J. Resource description framework (RDF): Concepts and abstract syntax W3C recommendation. http://www.w3.org/TR/rdfconcepts/, 2004.
[40] Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C., and Lee, R. Media meets semantic web how the bbc uses dbpedia and linked data to make connections. In Proceedings of the 6th European Semantic Web Conference on The Semantic Web: Research and Applications (Berlin, Heidelberg, 2009), ESWC 2009 Heraklion, SpringerVerlag, pp. 723-737.
[41] Landuyt, D., Broekx, S., D’hondt, R., Engelen, G., Aertsens, J., and Goethals, P. L. A review of bayesian belief networks in ecosystem service modelling. Environmental Modelling \& Software 46 (2013), 1 - 11.
[42] Larrañaga, P., Kuijpers, C. M., Murga, R. H., and Yurramendi, Y. Learning bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 26, 4 (July 1996), 487-493.
[43] Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R. H., and KuiJPERS, C. M. H. Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 9 (Sept. 1996), 912-926.
[44] LiAn, X., AND CHEN, L. Efficient query answering in probabilistic RDF graphs. In SIGMOD Conference (2011), T. K. Sellis, R. J. Miller, A. Kementsietsidis, and Y. Velegrakis, Eds., ACM, pp. 157-168.
[45] McGuinness, D. L., and van Harmelen, F. OWL web ontology language overview W3C recommendation. http://www.w3.org/TR/owl-features/, 2004.
[46] Noy, N., and Rector, A. Defining n-ary relations on the semantic web. Retrieved August 21, 2013, http://www.w3.org/TR/swbp-n-aryRelations/, Apr. 2006.
[47] Pearl, J. A constraint-propagation approach to probabilistic reasoning. In UAI '85: Proceedings of the First Annual Conference on Uncertainty in Artificial Intelligence (1985), pp. 357-370.
[48] Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.
[49] Pérez, J., Arenas, M., and Gutierrez, C. Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34, 3 (Sept. 2009), 16:1-16:45.
[50] Prud' hommeaux, E., and Seaborne, A. SPARQL query language for RDF W3C recommendation. http://www.w3.org/TR/rdf-sparql-query/, 2008.
[51] Seaborne, A. RDQL - a query language for RDF W3C member submission 9 January 2004. http://www.w3.org/Submission/RDQL/, 2004.
[52] Sen, P., and Deshpande, A. Representing and querying correlated tuples in probabilistic databases. In ICDE (2007), IEEE, pp. 596-605.
[53] Shachter, R. D., and Peot, M. A. Simulation approaches to general probabilistic inference on belief networks. In Proceedings of the Fifth Annual Conference on Uncertainty in Artificial Intelligence (Amsterdam, The Netherlands, The Netherlands, 1990), UAI '89, North-Holland Publishing Co., pp. 221-234.
[54] Spirtes, P., and Glymour, C. An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review 9 (1991), 62-72.
[55] Spirtes, P., Glymour, C., and Scheines, R. Causation, Prediction, and Search, 2nd edition. The MIT Press, 2000.
[56] Suchanek, F. M., Kasneci, G., and Weikum, G. Yago: a core of semantic knowledge. In Proceedings of the 16th international conference on World Wide Web (New York, NY, USA, 2007), WWW ’07, ACM, pp. 697-706.
[57] Szeto, C.-C., Hung, E., and Deng, Y. Modeling and querying probabilistic RDFS data sets with correlated triples. In APWeb (2011), X. Du, W. Fan, J. Wang, Z. Peng, and M. A. Sharaf, Eds., vol. 6612 of Lecture Notes in Computer Science, Springer, pp. 333-344.
[58] Szeto, C.-C., Hung, E., And Deng, Y. SPARQL query answering with RDFS reasoning on correlated probabilistic data. In WAIM (2011), H. Wang, S. Li, S. Oyama, X. Hu, and T. Qian, Eds., vol. 6897 of Lecture Notes in Computer Science, Springer, pp. 56-67.
[59] Udrea, O., Subrahmanian, V. S., and Majkic, Z. Probabilistic RDF. In IRI (2006), IEEE Systems, Man, and Cybernetics Society, pp. 172-177.
[60] Weber, P., Medina-Oliva, G., Simon, C., and Iung, B. Overview on bayesian networks applications for dependability, risk analysis and maintenance areas. Engineering Applications of Artificial Intelligence 25, 4 (June 2012), 671682.
[61] YaO, S. B. Approximating block accesses in database organizations. Commun. ACM 20, 4 (Apr. 1977), 260-261.
[62] Zhang, N., and Poole, D. A simple approach to bayesian network computations. In Proceedings of the Tenth Canadian Conference on Artificial Intelligence (1994), pp. 171-178.

