
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 

The Hong Kong Polytechnic University 

Department of Building Services Engineering 

 

 

Development of An Interactive Building 

Energy Demand Management Strategy for 

Smart Grid 

 

 

 

Xue Xue 

 

 

 

A thesis submitted in partial fulfillment of the requirements 

for the Degree of Doctor of Philosophy 

 

August, 2014

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.




 i

CERTIFICATE OF ORIGINALITY 

 

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it reproduces no materials previously published or written, nor material that 

has been accepted for the award of any other degree or diploma, except where due 

acknowledgement has been made in the text. 

I also declare that the intellectual content of this thesis is the product of my own work, 

except to the extent that assistance from others in the project’s design and conception 

or in style, presentation and linguistic expression is acknowledged. 

 

 

 

 

 

 

Xue Xue 

Department of Building Services Engineering 

The Hong Kong Polytechnic University 

Hong Kong, China 

August, 2014



 i

ABSTRACT 

Abstract of thesis entitled:    Development of An Interactive Building Energy 

Demand Management Strategy for Smart Grid 

Submitted by          :    Xue Xue 

For the degree of       :    Doctor of Philosophy 

at The Hong Kong Polytechnic University in August, 2014 

 

This thesis presents an interactive building energy demand management strategy for 

the interaction of commercial buildings with a smart grid and facilitating grid 

optimization. A simplified building thermal storage model is developed for predicting 

and characterizing power demand alteration potentials of individual buildings together 

with a model for predicting the normal power demand profiles of buildings. The 

implementation details of the interactive strategy for the complex building central 

chilling systems are also investigated for ensuring their controllability and energy 

efficiency. 

To analyze and quantify the power demand and the demand alteration characteristics 

of commercial buildings in a smart grid, a dynamic simulation platform for the 

complex building central chilling systems was built by considering passive and active 

building thermal storages. To formulate the interactive building energy demand 

management strategy, simplified models of the simulation platform were employed 

(e.g., chillers, pumps, air handling units, etc.) or developed (e.g., the simplified 

building thermal storage, pricing mechanism, etc.). A genetic algorithm-based (GA) 

method is also developed to identify the parameters of the simplified building thermal 
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storage model. 

The simulation test results show that commercial buildings can contribute 

significantly and effectively in power demand management or alterations with 

building power demand characteristics identified properly. The demand alterations 

from building demand side can help effectively in releasing the grid power imbalance 

under an interactive operation. 

To design and develop a fast chiller power demand response control strategy for smart 

grid applications (e.g., make use of the power demand of HVAC systems as operating 

reserves for relieving grid power imbalance), the chiller sequence control and the 

control logic of the building central chilling systems need to be rearranged. Compared 

with conventional indoor temperature set-point reset strategy, the developed strategy 

can provide an accurate estimation of power demand reduction in advance, and enable 

a fast response fulfilling the operation requirements of the grid on the premise of 

indoor thermal comfort. Simulation tests are also conducted to estimate the potential 

of reserve and investigate the impact on the thermal comfort when adopting the 

developed strategy. The resulting imbalance distributions of the chilled water flow 

rate and the indoor and air temperature caused by the chiller demand limiting control 

strategy are also investigated and solved. 

Based on the simplified building thermal storage model, online and offline 

applications of active thermal storages (e.g., PCM tank and chilled water tank, etc.) in 

buildings for smart grid are discussed and tested on the simulation platform. 

Lastly, the software tools (i.e., TRNSYS and MATLAB) and implementation details 

for conducting online and offline application tests are presented.
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NOMENCLATURE 

A effective area [m2] 

B operation energy cost 

C thermal capacitance [J/m2K] 

COP coefficient of performance 

E effective storage capacity [kWh] 

E Euler's number 

J objective function 

N number of frequency points 

P power demand or power capacity [kW or MW] 

Q cooling/heating load or heat [kW] 

R thermal resistance [m2K/W] 

R electricity price or price rate 

T temperature [°C] 

T time [minute or hour] 

Σ summation 

Greek symbols 

Τ time constant [hour] 

Η storage efficiency [%] 

Δ variation 

Superscripts 

′ associated with interaction process 
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K number of iteration 

Subscripts 

act actual 

bui building 

C charging 

cont controllable 

conv convective heat 

D discharging 

ew associated with external wall 

est estimated 

fr fresh air 

im associated with building internal mass 

i, in inside, indoor air 

K the kth data 

la latent heat 

o, out outside 

rf roof 

rad radiation 

set associated with temperature set-point reset strategy 

sys associated with HVAC system 

shed sheddable 

tot total 
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CHAPTER 1 INTRODUCTION 

 

1.1 Motivation 

Over the last decade, smart grid has become an attractive and new concept for power 

grid industry and the other related disciplines. With increasing concern on energy 

shortage and environment protection, as well as the integration of renewable energy, 

traditional power grid cannot serve the energy users in an efficient, green and safe 

manner any more. In order to address these issues, smart grid, with new characteristics 

(e.g. energy efficiency, low emission, flexibility, reliability, high quality, security, 

cost-effective, etc.), has been considered as a promising solution for future grid in plans 

of many countries (DOE 2003; European Commission 2006; Ha and Nakata 2006; Yuan 

and Hu 2011). 

Recent efforts focused mainly on infrastructure upgrading (e.g. power electronic 

equipment (Rahim 2004; Hong et al. 2007; Gulez 2008; Suvire and Mercado 2010; 

Vachirasricirikul et al. 2010; Nayeripour et al. 2011), superconducting devices (Goto et 

al. 2001; Yagi et al. 2008; Mukoyama et al. 2009; Hu et al. 2010), distributed 

generation/storage (Khattam and Salama 2004; Rújula 2009; Heyd 2010; Järventausta et 

al. 2010; Márquez et al. 2010; Toledo et al. 2010; Nair and Garimella. 2010; Virulkar et 

al. 2011), micro-grid (Tanrioven 2005; Obara 2007; Li et al. 2008; Morais et al. 2010; 

Kamel et al. 2010; Notton et al. 2011; Kamel et al. 2011), smart meter (Hartway et al. 

1999; Hor and Crossley 2006; Faruqui et al. 2010; Olmos et al. 2011; Depuru et al. 2011; 
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Sadinezhad and Agelidis 2011) and new technology application (e.g. information and 

communication technologies (ICT) (Wang et al. 2011; Gao et al. 2011; Wissner 2011), 

advanced metering infrastructure (AMI) (NYSEG 2007), development of control 

strategy/platform (e.g. distribution automation (Kokai et al. 1998; Thukaram et al. 1999; 

Su et al. 2000; Bouhouras et al. 2010; Oshiro et al. 2010; Popovic et al. 2011), 

supervisory control and data acquisition (Igure et al. 2006; Torriti et al. 2010; Kang et al. 

2011; Korres 2011), demand response (Sezgen et al. 2007; Stadler 2008; Cappers et al. 

2010; Wang et al. 2010; Faria and Vale 2011; Moghaddam et al. 2011; Wang et al. 2011; 

Orecchini and Santiangeli 2011), and grid energy management system (Al-Hamadi and 

Soliman 2005; DeGroff 2010; Zhang et al. 2010; Meliopoulos et al. 2011; Bazmi and 

Zahedi 2011; Berredo et al. 2011). However, studies and applications mostly concern on 

updating of devices and applying new technologies at power generation, transmission 

and distribution processes. Few studies were reported on power usage process at 

demand side, where electricity users’ behavior and characteristics affect the operation 

and performance of the entire smart grid significantly. 

In general, power grid plans its expansion schedule and generation arrangement 

according to electricity load forecasting (Padmakumari et al. 1999; Xie et al. 2000; 

Kandil et al. 2001; Kandil et al. 2001; Al-Hamadi and Soliman 2004; Ghiassi et al. 2006; 

Amjady and Keynia 2008; Niu et al. 2009; Xia et al. 2010; AlRashidi and EL-Naggara 

2010; Pedregal and Trapero 2010; Nazih and Fawwaz 2011). Accuracy of short-term 

load forecasting is an important indicator for ensuring electricity service quality and 

energy saving. In order to improve electricity quality/efficiency, studies have been 
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conducted on uncertainty of renewable energies (Hammons 2008; Deshmukh and 

Deshmukh 2008; Alsayegh et al. 2010; Silva 2010; Beaudin et al. 2010; Mitchell et al. 

2010; George and Banerjee 2011; Arnulf et al. 2011; Glasnovic and Margeta 2011; 

Athanasios et al. 2011) and voltage/frequency variations elimination (Hingorani and 

Gyugyi 2000; Metke and Ekl 2010; Li et al. 2010; Sarwar and Asghar 2011; 

Aquino-Lugo et al. 2011; Seethalekshmi et al. 2011) when “plug-in” smart grid. 

Distributed generation is usually consisted by main power plants supplemented with 

renewable energy resources, which satisfies the electricity demand of the entire grid. 

Distributed storage also helps buffer energy surplus and shortage in smart grid. 

Micro-grid is developed with autonomic and self-healing functions by combining 

distributed generation and storage (Cleveland 2007; Thananunsophon et al. 2011; 

Pearson. 2011). With the integration of renewable energy sources and application of 

distributed generation technologies, the accuracy of load prediction, the electricity 

quality and security of smart grid have become more and more important for the 

operations of grids. Moreover, individual load predictions at demand side may play their 

roles in improving the accuracy of the load prediction of the entire grid which is usually 

conducted at supply side nowadays. 

Smart gird cannot be “smart” without an intelligent and autonomic energy network 

(Goldman et al. 1997; Meliopoulos et al. 2007; Hart. 2008; Sood et al. 2009). Smart 

meter, which communicates with smart grid and controls electrical equipment 

automatically, plays an important role in AMI (Advanced Metering Infrastructure). 

Supported by ICT (Lallement et al. 2006; Tuite 2010; Røpke et al. 2010; Kume and 
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Rissanena 2011), smart grid can achieve transmission efficiently and correctly with a 

large amount of data. Studies have been conducted on time-based pricing optimization 

(Gungor and Lambert 2006; Herter 2007; Lijesen 2007) and a kind of comprehensive 

control platform for overall smart grid real time optimization (Baladi et al. 1998; 

Oliveira et al. 2010). These studies have resulted in that the smart power grid can set 

electricity price more reasonable, guide users’ behavior more proper, eliminate grid peak 

demand and delay new power plants expansion. However, information flow (i.e. the 

communication between generators and users) is transferred only in “one-way” direction 

in the past. More and more attention (Brazier et al. 2002; Zhang and Meng 2010; 

Marijic et al. 2010) has been paid on the “two-way” direction information flow due to its 

more effective communication and interactions between users in the networks. The 

performance of power grids can be greatly improved by adopting ICT, smart meters and 

intelligent energy networks. However, some important information (e.g. dynamic 

pricing (Baladi et al. 1998), potentials and costs of demand responses) from both supply 

and demand sides, which could be very beneficial for enhancing the performance of the 

smart grid, has not been addressed yet. 

Demand response (i.e. price-based or incentive-based) has been becoming a necessary 

measure for changing gird load profile and fulfilling the grid’s expectation from the 

supply side because of electricity users’ participation. The basic function of power 

supply is to meet the need of users and optimize energy usage in a grid (Omer 2008). 

The interaction between supply and demand sides is a crucial and attractive aspect in 

smart grid application. In fact, smart meters have been successfully used in many 
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countries for residential buildings by adopting real time pricing (Depuru et al. 2011). 

However, very limited studies can be found on the grid optimizations and the 

interactions/ between commercial buildings and smart grids. Interfacing building 

automation systems to smart metering systems seems to be an obvious and attractive 

option for establishing the interaction between smart grids and commercial buildings 

and for implementing interactive control strategies. 

Accurate short-term load predictions of whole districts/regions are important for 

optimizing the operation and production of a smart grid which improve both the grid 

efficiency and the electricity service quality. Most of the existing load prediction 

methods used by electricity grids are mainly based on the history data of the overall 

energy consumption (Chan et al. 2006; Soares et al. 2008; Wang et al. 2008; Mamlook et 

al. 2009; Amjady and Keynia 2009; Zio and Aven 2011; Li et al. 2011). The accuracy of 

existing methods may not satisfy the need of a smart grid. The main reason is that the 

history data cannot correctly reveal real demand in future due to the active interactions 

between smart grid and the demand side. In addition, most existing methods treat 

different types of users as a whole by which the different load characteristics of each 

type of users cannot be utilized effectively. On the contrast, the load prediction of 

individual buildings can handle these problems better and the prediction results can be 

sent to the control center of smart grid in real time. A more accurate overall load 

prediction then can be obtained by aggregating all these prediction results of a large 

number of individual buildings. 

Many efforts have been made on individual building cooling load prediction. The 
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prediction methods basically can be grouped into three categories: physical model 

(Henze et al. 1997; Braun and Chaturvedi 2002; Braun 2003), black box model (Henze 

et al. 2004; Zhou et al. 2005; Lee and Braun 2008) and grey box model (Wang 1998; 

Braun et al. 2001; Lee and Braun 2008). Due to the need for real time communication in 

smart grids, using physical models seems to be not practical because of their high 

computation loads and great complexities in model construction and parameters fitting. 

In addition to the requirement of large amount of training data, black box models cannot 

guarantee reliable outputs especially when the application situation is beyond the 

training data range. Compared with physical models and black box models, grey box 

models appear to be more promising for its acceptable reliability and lower requirements 

of computation load and training data. The existing grey box models, however, are still 

inadequate in terms of the integration of weather prediction and adaptive capability. 

Hence, efforts are still needed to develop methods with a better accuracy for predicting 

the load of large number of buildings that are connected to a smart grid. In fact, the load 

characterization of both residential buildings and commercial buildings is identified as 

one of the main subtasks for smart grid applications in Annex 58, a newly proposed IEA 

ECBCS research program (Roels 2011). 

Demand response has been considered as an essential means for improving the 

performance of power grids. It generally refers to the actions or controls taken by the 

users for changing their load profiles under a specified pricing policy (Luis et al. 2008). 

With such controls (e.g. load shifting or peak demand limiting), cost saving can be 

achieved by participants. Basically, demand response methods are classified into two 
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main categories, i.e. incentive-based programs and price-based programs (Albadi and 

El-Saadany 2008). Previous studies mainly addressed efforts on the impacts and benefits 

of different programs (e.g. load shifting or peak demand limiting) when a particular 

electricity policy is applied (Goldman and Kito 1995; Gungor and Lambert 2006; Herter 

2007; Lijesen 2007). The main limitation of these studies is that the demand response 

was operated in a unidirectional pattern which cannot meet the requirements of active 

interaction between smart grid and users. 

1.2 Aim and Objectives 

The aim of this study is to develop an interactive building energy demand 

management strategy for facilitating smart grid applications. Active interactions 

between the supply side (i.e., suppliers of smart grid) and the demand side (i.e., 

customers of smart grid) are essential for realizing the overall benefit. Smart grid 

can optimize the electrical network performance (e.g., improving the power 

reliability/quality, energy efficiency and economics) by collecting and analyzing 

historic/real time data (e.g., generation capacities, operating reserves, load profiles, 

storage efficiencies, electricity prices, etc.) of all the participants (e.g., suppliers, 

delivers, customers, etc.). 

In practice, there is a reciprocal relationship between the power supply and power 

demand: the supply capacity of power strongly depends on the costs of generation and 

delivery (e.g., fuel cost, capital and operation costs of power devices/systems, 

environmental cost, etc.) while the final retail price restrict the power demand of 
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individual end-users. Power demand characteristics and control strategies of end-users 

are valuable for smart grids when setting power generation plans and arranging 

operation schedules. According to the needs of characterizing power demand 

potentials of end-users and developing the interactive strategy commercial buildings 

in this study, the detailed objectives and subtasks are listed as follows: 

(1)  Identify the key characteristic indices and functions of buildings and heating, 

ventilation and air-conditioning (HVAC) systems for representing their thermal 

storage capabilities and the realization costs associated with load profile 

alterations; 

(2)  Develop and validate an altered building load profile prediction algorithm for 

setting proper dynamic pricing; 

(3)  Develop and validate an optimal control strategy for achieving the maximum cost 

savings to buildings under a given dynamic pricing; 

(4)  Develop a test platform for real time communication and interactions between a 

smart metering system and a building automation system (BAS); 

(5)  Develop a fast chiller power demand response control strategy for grid operating 

reserve with building passive and active thermal storages. 

1.3 Organization of This Thesis 

This chapter outlines the motivation of the research by presenting the need of 

developing an interactive building energy demand management strategy for the smart 

grid. The recent studies on load prediction and demand response of end-users are also 
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presented. The feasibility of developing an interactive energy demand management 

strategy between buildings (especially commercial buildings with large scale HVAC 

systems) and smart grid is discussed as well. It presents the aim and objectives of this 

thesis. The subsequent chapters are organized as follows. 

Chapter 2 presents a comprehensive literature review on the state of the art of the 

developments and applications of power management in smart grid, as well as the 

impacts and benefits of demand response actions and activities of end-users in 

different building sectors. The critical issues (e.g., peak load and power imbalance) 

and electricity tariffs (e.g., time-based and incentive-based programs) of electrical 

grid are also discussed. 

Chapter 3 presents a simplified building thermal storage model, which is developed 

for predicting and characterizing power demand alteration potentials of individual 

buildings. A genetic algorithm-based (GA-based) method is developed for identifying 

the parameters of the simplified thermal storage model. Together with a model for 

predicting the normal power demand profiles of buildings, the power demand 

characteristics and the demand alteration potentials of buildings are investigated and 

estimated.  

Chapter 4 presents the validation of the developed simplified building thermal storage 

model for different weighted building envelopes (i.e., light, medium and heavy weight 

buildings) under different weather conditions (i.e., spring, summer and winter)with 

different control strategies (i.e., pre-cooling and temperature reset). 
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Chapter 5 presents the typical configuration and specification of HVAC systems and 

the building model in building systems and dynamic test platform. The use of the 

simplified building thermal storage model is also introduced. The test conditions and 

control strategies are introduced in this chapter. The test condition includes the 

weather data and characteristics of buildings. The control strategies include normal 

control, pre-cooling control, temperature reset control and demand limiting control. 

Chapter 6 presents an interactive building power demand management strategy for 

facilitating smart grid optimization. Commercial buildings can contribute significantly 

and effectively in power demand management or alterations with building power 

demand characteristics identified properly. Benefits (e.g., energy and cost savings) 

can be achieved by obtaining the power demand alteration potentials of buildings and 

energy information of grids, and conducting their interactions and optimizations. A 

simple dynamic electricity pricing mechanism is also introduced. 

Chapter 7 presents a fast chiller power demand response control strategy for operating 

reserves in smart grid. In order to maintain the balance between power supply and 

demand, a demand limiting strategy is developed to treat the power demands of 

chillers as cost-effective operating reserves instead of extra generation capacities of 

power plants. The possibility of providing operating reserves (e.g., frequency 

controlled reserve) at power demand side is discussed. The developed strategy can 

provide an accurate estimation of power demand reduction in advance, and enable a 

fast response fulfilling the operation requirements of the grid. The impact on the 

thermal comfort when implementing the demand limiting strategy is studied. 
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Imbalance issues of chilled water distribution and indoor air temperature are also 

investigated and solved. 

Chapter 8 summarizes the main work and contributions of this study, and gives 

recommendations for future applications and further research in the subject area such 

as the online and offline smart grid applications of active thermal storages in 

commercial buildings. 
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CHAPTER 2 BUILDING POWER DEMAND RESPONSE 

METHODS: A REVIEW 

 

Smart grid has been drawing more and more attentions particularly when more 

renewable generations are integrated. In order to ensure the power reliability and 

energy efficiency in an electrical grid, many researches and applications have been 

conducted at power supply side to solve the critical issues of grids, e.g. peak load and 

power imbalance. Buildings, as the major end-users at the power demand side, can 

also play a significant and cost-effective role by making use of their power demand 

responses. Different demand response programs (e.g., time-based and incentive-based) 

have been developed and applied for encouraging end-users to change their energy 

usage behaviors expected by the grids. Generally, buildings are able to limit and/or 

shift the power demands under specific incentives. Although many researches and 

applications have been investigated and conducted on power demand aspects 

concerning the building system configuration and the control strategies of power 

demand optimization, a systematic review on building power demand response 

methods is still missing. This chapter therefore presents a comprehensive review on 

the strategies, impacts and benefits of building power demand response in a grid in 

order to systematically evaluate and make better use of their demand response 

potentials. 

Section 2.1 presents an overview of the existing studies concerning on power 

management in smart grid. Section 2.2 presents the current researches and 
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applications on grid power management especially focusing on two critical issues: 

peak load issue and power imbalance issue. Section 2.3 presents the state of the art of 

the actions and activities of building power demand response in residential, 

commercial and industrial sectors. Section 2.4 introduces different types of electricity 

tariff for building power demand responses. Section 2.5 discusses on the future trend 

of building power demand response. A summary of this chapter is given in Section 

2.6. 

2.1 An Overview 

The power balance between supply and demand sides of an electrical grid is one of 

the most important issues in the grid operation. The forecasting of power generations 

and power demands is the essential premise for generation arrangement and power 

management. It is not difficult to obtain the regular power generations (e.g., 

fossil-fuel, hydraulic and nuclear generations, etc.) and the load of end-users with a 

very high accuracy for the conventional electrical grid (Alfares and Nazeeruddin 2002; 

Aung et al. 2011; Siwek et al. 2009). However, when the integration of renewable 

energies is considered as the important aspect in the development of the smart grid by 

many countries (DOE 2003; European Commission 2006; Yuan and Hu 2011), the 

accurate forecasting of the power generations becomes a big challenge involving with 

a large amount of uncertain and intermittent renewable generations (Hammer et al. 

1999; Mellit et al. 2006; Wang et al. 2011). 

The power imbalance and peak load have become two critical issues in an electrical 
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grid operation, which can significantly affect the power reliability and quality, as well 

as the energy efficiency. The grid operation arrangement is usually planned based on 

the day-ahead predictions of power generations and demands while the actual power 

generations (e.g., wind generation) and demands (e.g., building demands) change 

dynamically and might be quite different with the predicted ones. Once a large 

amount of wind power is involved, the power imbalance could frequently happen 

particularly when the operating reserves of a grid are inadequate. The peak load is 

usually resulted by the power demand characteristics of the end-users (e.g., the power 

usage patterns and schedules of lightings, air conditioners, traffics and industrial 

productions, etc.). Although the duration of peak load may be relatively short (e.g., 

only 1% of load hours account for 11% peak load in a year (Earle et al. 2009)), the 

huge redundant capacities of power plants are still required as standby to ensure that 

the power demand can be met at any time. 

In order to maintain the balance of power supply and demand cost-effectively, besides 

developing the efficient and low-cost operating reserves, many efforts have been paid 

on other two aspects: 1) Employ energy storage devices/systems (e.g., batteries, 

flywheels and pumped-storage power stations, etc.) to change/discharge the power for 

relieving the power imbalance and/or peak load. 2) Encourage end-users to change 

their power usage behaviors through incentive benefits (i.e., implement the power 

demand response programs). The application of the former aspect is usually subject to 

either the high initial/operation costs and the low storage capacities, or the geographic 

conditions. The application of the latter aspect strongly depends upon the capabilities 
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and the voluntaries of end-users. Therefore, the power demand response programs 

(i.e., time-based and incentive-based) should be carefully designed in order to incent 

the abilities of the end-users at power demand side. In fact, the potentials of the 

end-users in the power management are very comparative with those of the power 

supply side. For instance, the end-users can be contributed as the major effort in peak 

load shaving instead of a huge capacity of grid energy storages (e.g., 7.5MW/100 

minutes (Vazquez et al. 2010)). 

The end-users at power demand side (e.g., buildings) can not only help the electrical 

grid to shift their peak loads from peak periods to off-peak periods, but also can treat 

their demands as “operating reserves” in a more cost-effective manner than using the 

extensively employed thermal storages. Buildings, as the major end-users, consume 

around 40% of total end-use energy all over the world (Kolokotsa et al. 2011) and 

over 90% of total electricity in high density urban areas, such as Hong Kong (Hong 

Kong EMSD, 2012). Buildings therefore can play an active and important role in 

power balance regulation and grid operation. Buildings actually have considerable 

flexibility/elasticity in power demands (e.g., cooling load shifting and peak power 

demand limiting) due to its huge thermal storage capacity using building thermal 

masses, water/ice storages and phase change materials, etc. 

Most of the existing power demand control methods and strategies for buildings only 

consider the impacts and cost benefits of buildings rather than the actual needs of the 

grid (e.g., response time and response quantity). There is still no systematical review 

on the participation and interaction of the building power demand response when 
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involved in the grid-scale power management. This chapter therefore presents a 

comprehensive review on the researches and applications on or related to building 

power demand response in building sectors including residential buildings, 

commercial buildings and industrial sector. The feasibility of developing proper 

building power demand response strategies for online and offline applications of 

smart grids is also discussed. 

2.2 Power Management in Grid 

The power management of an electrical grid is essential to the safety, the power 

reliability and quality, and the energy efficiency of the grid. Through power 

management, the power balance between the supply and demand side should be 

maintained in all different time scales such as long-term (e.g. yearly), medium-term 

(e.g. monthly) and short-term (e.g. daily, minutely) as shown in Figure 2.1 (Faria and 

Vale 2011). The power demand response programs are mainly developed for 

addressing the medium-term power management (e.g., the price-based demand 

response) and the short-term power management (e.g., the incentive-based demand 

response). Among them, the short-term (i.e. daily, hourly and minutely) power 

management is especially concerned by the grid due to its significant impacts on the 

next-day generation arrangement (e.g., peak load issue) and the real time operation 

(power imbalance issue). It is worth mentioning that, the price-based (or time-based) 

demand response can contribute to the daily peak load reduction while the 

incentive-based demand response can contribute to either the daily peak load 
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reduction or the real time power balance (DOE 2006). 

 
Figure 2.1 Power generation planning and operation scheduling in different time 

scales (Faria and Vale 2011). 

2.2.1 Power Management for Peak Load Issue 

In an electrical grid, load factor is usually employed to represent the level of peak 

loads (e.g., daily peak load), which is defined as the average load divided by the peak 

load in a specific time period, as shown in Equation (2.1). 

peak

avg

load
P

P
f           (2.1) 

Where, fload is the load factor. Pavg is the average electrical load of a grid in the given 

time period. Ppeak is the peak electrical load of the grid in the same time period. A high 

load factor is preferred by the grid because it represents higher energy efficiency and 

less required generation and transmission capacities/costs. The load factor is 

determined by the power demand characteristics of electrical terminal 

devices/systems and the energy usage behaviors of the end-users. Different manners 

of demand side management can be conducted to improve the load factor, as 

summarized in Figure 2.2 (Gellings 1985). 
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Figure 2.2 Demand side management categories in an electrical grid (Gellings 1985). 

Generally, incentive electricity prices are needed to enable the demand response 

voluntaries of the end-users. Time-based and incentive-based demand response 

programs are two typical incentive programs, which have been developed and 

implemented to help the grid achieving the desired load profile. Direct and indirect 

control approaches of the demand responses in the load management are also 

introduced by Kostková et al. (2013). For the direct load management, the grid has the 

right to directly control the devices/systems of the end-users for reducing peak load 

and/or handling emergency situation. For the indirect load management, the grid does 

not directly control the end-uses but sends the price signals to end-users in order that 

the expectation on the load reduction/shifting can be achieved when end-users reduce 

their power demand subject to the incentive pricing. 

2.2.2 Power Management for Power Imbalance Issue 

To ensure the grid’s safety and to prevent damage of power devices/systems, the 

power balance should be maintained in all different time scales. A sudden loss of 
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power supply may result blackouts (e.g., U.S. blackout in 2003, India and Brazil 

blackouts in 2012) if no proper action is taken. In order to prevent such collapses in 

power systems, effective measures and technologies are required to provide fast and 

accurate load shedding (Laghari et al. 2013). The status of power balance can be well 

reflected by the power frequency of the grid. As a result, the power imbalance 

management is actually the process of maintaining a stable power frequency (e.g., 

50Hz or 60Hz) (Kirby et al. 2008). Operating reserves are the essential backups for 

recovering the frequency drop when power imbalance is happened. The operating 

reserves can be generally grouped into three categories: 1) frequency response reserve, 

2) spinning/non-spinning reserve, and 3) replacement reserve (Kirby 2003). The cost 

of operating reserves is usually very high and could result an extreme electricity price 

increases in a short time (Wang et al. 2011). Energy storage devices/systems (batteries, 

flywheels, electric vehicles and thermal storages, etc.) can be employed in the grid to 

relieve the power imbalance by charging/discharging the power/energy. For instance, 

the molten salt storage for solar thermal power generation has been considered as a 

promising technology by the smart grid for the power management in recent years 

(Yogev and Kribus 2013). 

Smart grid is designed to consider the overall performance in power reliability, energy 

efficiency, economics and sustainability by optimizing the behaviors of all 

participants (e.g., suppliers, delivers and consumers, etc.). The coordination among all 

participants particularly between the power supply side and demand side is therefore 

very essential for achieving a cost-effective power management. With the 
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development of mature technologies such as supervisory control and data acquisition, 

advanced metering infrastructure, smart meters, grid energy management system, and 

building automation systems (BAS), the bidirectional connections (i.e., “two-way” 

power flow and information flow (Rahimi and Ipakchi 2010)) between power supply 

and demand sides can be established effectively. Under such kind of bidirectional 

framework, the grid can achieve a better performance in maintaining the power 

reliability and quality, and the energy efficiency, by properly coordinating the 

distributed generations, storages and demands. 

2.2.3 Demand Response Actions and Activities of End-users 

The demand response voluntaries of end-users (e.g., buildings) are the key issue of the 

power demand response as one of the most important measures for the grid power 

managements. Schweppe et al. (1988) developed a classic pricing model named spot 

pricing (i.e., dynamic pricing) and pointed out the relationship between the electricity 

prices and the power demands. Figure 2.3 shows a compromising process of spot 

pricing through the power supply and demand curves. The supply curve indicates that 

the electricity price increases when the power supply increases. By contrast, the 

demand curve indicates that the power demand decreases when the electricity price 

increases. The basic principle of spot pricing is that the electricity price is eventually 

determined through the compromising between the cost of power supply and the 

status of power balance, which aims to maximize the overall economic benefits. 
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Figure 2.3 An example of price-elastic demand curve (Zhao et al. 2013). 

The power demands of the end-users can be divided into two categories: elastic 

demand (i.e., controllable load) and inelastic demand (i.e., sheddable load). The 

power supply and demand eventually reach an equilibrium at the intersection point 

(dt
b, pt

b), which is corresponding to the maximum economic benefits (i.e., the total 

shadow area in the Figure 2.3). The responsiveness of power demand to electricity 

price is usually defined as demand-price elasticity representing by an elasticity 

coefficient, as defined by Equation (2.2) (Zhao et al. 2013): 
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where, Δd and Δp are the changes in power demand and electricity price respectively. 

d0 and p0 are the base power demand and the base electricity price respectively. Many 

power demand response models (e.g., potential, logarithmic, exponential and linear 

functions (Yousefi et al. 2011)) were developed to represent the demand response 

potentials of the end-users in the grid. However, the actual power demand behaviors 



 32 

of the end-users cannot be represented by simple functions and are also very difficult 

to be predicted. Therefore, the energy information (e.g., power demands and demand 

response potentials) from the end-users is becoming very essential for the grid spot 

pricing and power management. 

The aggregate effect of the different power demand responses is also a critical issue in 

the grid power management, which should be investigated carefully in designing the 

incentive prices. For instance, the peak load of a grid may significantly differ with the 

sum of all the individual peak loads of the end-users since the peak hours of power 

demands for different end-users may not fall in the same peak period. In such cases, 

some demand response programs (e.g., direct load control or peak demand charge) 

cannot achieve their original objectives but affect the satisfactions of consumers 

(Schweppe et al. 1988). Medina et al. (2010) proposed a method on demand response 

scheduling and implementation for aggregating the behaviors of different end-users in 

the grid to solve this problem. Moreover, indices that can represent the demand 

response capabilities of the end-users are needed for obtaining the interactive process 

between power supply and demand sides corresponding to the load factor. A demand 

factor has been already defined to represent the power demand characteristics of the 

end-users, which can also be employed and further developed as an factor indicating 

the potentials of the power demand response. It is defined as the maximum power 

demand divided by the maximum possible power demand in a specific time period, as 

shown in Equation (2.3). Where, Pmax is the maximum power demand of an end-user 

in the given time period. Pcap is the maximum possible power demand of the end-user 
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in the given time period. 

cap

demand
P

P
f max         (2.3) 

2.3 Building Power Demand Response 

The electricity usage patterns of different building end-users are very different in 

practice. Classification of the power demand characteristics and estimation of the 

demand responses for different end-users, not only support the generation planning 

and operation scheduling of a grid, but also allow the end-users to understand their 

power demand potentials in benefiting to themselves (e.g., energy and cost savings) 

and the grid (e.g., valuable power demand responses) (Zhou et al. 2013). Buildings 

have great potentials in power demand response due to the considerable amount of 

elastic demands (e.g., the demands of heating/cooling). Buildings can be roughly 

divided into three sectors: residential, commercial and industrial. Table 2.1 lists the 

responsiveness of different building sectors in the load management of U.S. utility 

(Kueck et al. 2001). The residential and commercial sectors take relative small 

fractions while the industrial sector takes a big fraction of total demand response 

(nearly a half). 

Table 2.1 U.S. utility load management by customer class (Kueck et al. 2001) 

Customer 

Class 

Capability 

(MW) 

Utilization, 

(MW) 

Utilization or 

Capability (%) 

Capability 

of Total (%) 

Utilization of 

Total (%) 

Residential 7583 3888 51.3% 27% 29% 

Commercial 6067 3349 55.1% 22% 25% 

Industrial 13708 6123 44.7% 49% 45% 

Other 473 281 59.4% 2% 2% 

Total 27840 13641 49.0%   
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Although many demand response programs have been successfully implemented in 

residential, commercial and industrial sectors, most of these end-users are respond to 

the electricity prices in a passive meaner which cannot maximize the demand 

response potentials. Meanwhile, the existing demand response programs may not 

fulfill the real time requirements of the electrical grid. The current status of power 

demand response in buildings is therefore investigated to help understanding the role 

and trend of the demand responses towards the future smart grid. In the residential 

and commercial sectors, estimation of power demands and demand response 

potentials are very complicated due to the dynamic outdoor conditions and the indoor 

human comfort requirements. By contrast, it is not difficult to obtain the power 

characteristics and demand response capabilities of the industrial sector, particularly 

the industrial processes. The researches and applications in building power demand 

response of residential and commercial sectors are therefore the main focus. 

2.3.1 Demand Response in Residential Sector 

The residential sector contributes a significant ratio of total peak load in the grid. For 

this reason, critical peak pricing and/or time of use pricing are usually implemented in 

residential buildings for achieving peak load reduction during the specific periods 

(Herter 2007; Herter et al. 2007; Hamidi et al. 2009). For instance, about 4.2% of the 

peak load, which is considerable to the grid, can be reduced by conducting the 

residential demand response in Norway (Saele and Grande 2011). Moreover, the 

residential sector consumes about 63% of total energy in the building sectors (Poel et 

al. 2007; Balaras et al. 2007). 
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With the development and application of smart meters in residential buildings, the 

price information of power supply side and the energy usage behaviors of power 

demand side can be effectively collected and communicated for further power and 

load managements. Smart meters can also be employed as the controllers in 

residential buildings when the renewable generations (e.g., wind turbines and 

photovoltaics) and the energy storages (e.g. electric vehicles and thermal storages) are 

integrated. Conventional energy meters are based on a unidirectional communication 

while smart meter system is based on a bidirectional communication (Depuru et al. 

2011). Conventional meters collect the historical energy consumption data of 

end-users for the electricity bills with a non-negligible time delay. While the smart 

meter system can collect and store the real time/history data for dynamic control and 

optimization of both power supply and demand sides. 

Smart meters, as the terminal elements in advanced metering infrastructure, can be 

considered as the micro electrical “automation systems” for the residential end-users. 

Smart meters can even be used for forecasting the next-day energy usage behaviors 

and electricity loads of the residential end-users by analyzing their historical data (e.g., 

the usage of the house appliances including lightings, refrigerator, air conditioner, 

television, water heater, wash machine and oven, etc.). In order to make use of the 

power demand response of the house appliances, sheddable and controllable loads 

during a certain period need to be clearly noted and scheduled. In other words, 

different house appliances have different priorities in power demand responses 

according to the demand characteristics and schedules. Generally, the demand 
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response priorities of the house appliances can be scheduled from the thermal 

demands (e.g., air-conditioning) to mechanical/visual demands (e.g., washers and 

lights) (Broeer et al. 2014). The demand response potentials of appliances are usually 

affected by human behaviors and outdoor weather conditions. 

An accurate estimation of the residential power demands is the premise of finding out 

the demand response potentials. Javed et al. (2012) considered that the forecasting 

accuracy of the existing short term load forecasting models can be further enhanced 

by considering occupancy behaviors. Therefore, a single multi-dimensional model 

concerning the anthropologic and structural variables has been developed. The 

enhanced model can forecast the power demands and demand responses more 

efficiently and accurately than using the traditional global measures. Modeling and 

aggregate effect of the residential demands are very important for the grid setting 

proper demand response programs (Gyamfi and Krumdieck 2012; Gilbraith and 

Powers 2013). Actually, the responsiveness of the residential demand is very 

dependent on the electricity tariffs and user behaviors. For instance, Darby and 

McKenna (2012) reviewed the residential demand responses in cold climates where 

price-based (e.g., time of use pricing, critical peak pricing and real time pricing, etc.) 

demand response programs are still considered as the effective means for peak load 

reduction and load shifting. 

The responsiveness of power demand is usually defined as a demand-price elasticity 

representing the sensitivity of user demand to the electricity price. The demand-price 

elasticity can be used to establish the relationship between the demand response and 
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the electricity price, the impact on the peak load reduction/shifting load, and the 

influence on the grid voltage and power losses (Fan and Hyndman. 2011; Venkatesan 

et al. 2012; Woo et al. 2013). In (Gyamfi et al. 2013) and (Gottwalt et al. 2011), the 

unresponsiveness of the residential end-users (e.g., constrained by demand behaviors 

and appliance utilization patterns) and the variation of demand elasticity (e.g., 

incented by electricity tariffs) are considered as the major barriers for grid power 

management. In (He et al. 2012), a Monte Carlo simulation was conducted aiming to 

quantify residential demand responsiveness under time of use prices. The results 

indicated that peak demand responsiveness are 8.41% and 21.26% when the 

peak-time price increases by 20% and 40%, respectively. 

Dave et al. (2013) presented a system behavior modeling focusing on the participant 

population size, the household flexibility in terms of demand response, and the 

available size of load shifting/shedding. In this point of view, the aggregate effect of 

the individual loads and demand responses is also important for grid scale control and 

optimization. For instance, aggregate effect of thermostatically controlled loads (e.g., 

loads of air-conditioners and fridges) can affect the overall performance of the load 

management (Perfumo et al. 2012). By considering the characteristics of the 

individual loads and the aggregate effect of the power demand responses, the grid can 

then interact with the residential end-users more effectively. As shown in Figure 2.4, 

the interaction between power supply side (i.e., grid) and power demand side (i.e., 

residential houses), can not only help the grid in conducting power generation 

planning and operation scheduling, but also help the residential houses achieve their 
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own economic benefits. Electricity prices (e.g., time of use pricing and real time 

pricing) are the key medium for facilitating the interaction to reach compromised 

results. It is worth mentioning that, the residential power demand response contributes 

to the grid mainly from two aspects: 1) by conducting optimal scheduling of the 

electrical appliances (i.e., smart metering and smart control), and 2) by optimal 

control and arrangement in power consumptions, storages and generations (i.e., 

integrated renewable generations and energy storages). 

 

Figure 2.4 Overview of a smart grid demonstration project where both suppliers and 

consumers are the participants in the real time electricity market (Broeer et al. 2014). 

Smart Metering and Smart Control 

The available technologies such as home energy management system (HEMS), smart 

meters and smart sensors/controllers, etc. can enable effective communication and 

coordination between the electrical grid and the residential end-users to achieve an 

optimal load management. With the help of home area network such as wireless 

sensor network (Erol-Kantarci and Mouftah 2011), HEMS can play a more efficient 
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role in load management optimization for the grid and energy/cost savings for the 

end-users (A.D. Giorgio and L.P. Pimpinella. 2012; Kailas et al. 2013; Ren et al. 2013; 

Zhang et al.2013). It is also convenient for the end-users and the grid to establish a 

two-way communication based on the advanced metering infrastructure and the 

mature communication protocols. Figure 2.5 shows a schematic of the load 

management for a residential house, with integrating wind turbine, photovoltaics (PV) 

and electric vehicle (EV) (Lujano-Rojas et al. 2012). Predicted and real time 

information of power consumptions, generations, and electricity prices are collected 

by the HEMS for its analysis and optimal controls. In the HEMS, smart meter is 

usually responsible for controlling the terminal devices. 

 

Figure 2.5 Smart houses for its load management (Lujano-Rojas et al. 2012). 

Smart meters, as the key “connectors” between the residential end-users and the grid, 

are generally used to collect and provide day-ahead/real time information (e.g., the 

electricity usage and prices) for optimizing the daily power consumption and 

maximizing the benefits (Jin and Mechehoul 2010; Doostizadeh and Ghasemi 2012; 

Gans et al. 2013). It is worth mentioning that the information and data provided by 
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smart meters are the premise of conducting the corresponding controls. When a 

residential end-user integrates both power generations and energy storages, it can be 

treated as a small “micro-grid” in the grid. Optimal scheduling and coordination of the 

devices/systems in different energy processes (i.e., consumption, storage and 

generation) in the “micro-grid” are very essential in contributing to the grid power 

balance (Pedrasa et al. 2010; Molderink et al. 2010; Kriett and Salani 2012). 

In the optimal load scheduling, peak load reduction of the residential end-users is 

usually achieved by 1) coordinating the timing of frequent intermittent loads and 2) 

moving the time-flexible loads from peak hours to off-peak hours (Dlamini and 

Cromieres 2012). As the variables (e.g., water temperature and indoor air temperature) 

in some residential functions can float in a certain range, Nghiem et al. (2011) 

developed a green scheduling method to reduce the overall peak load demand of 

devices/systems by utilizing the thermal characteristics. In fact, water heaters and air 

conditioners are the major contributors of load management and power demand 

response in the residential sector. Direct load control is a popular means implemented 

for the electric water heaters shaving their power demands in the critical peak periods 

and then restoring the heat demands in the off-peak periods (Ericson 2009; Paull et al. 

2010; Du and Lu 2011). In (Kondoh et al. 2011), simulation results showed that 

approximately 33,000 water heaters can provide a 2 MW regulation service 24 hours 

per day. Figure 2.6 illustrates a typical thermal characteristic curve of an electric 

water heater and dedicated power demand. As mentioned, power demands can be 

easily shifted to fulfill the needs of the electrical grid by properly scheduling thanks to 
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the water temperature can float within a certain range. 

 

Figure 2.6 A typical thermal characteristic curve of an electric water heater power 

demand (Du and Lu 2011). 

Heating, ventilation and air-conditioning (HVAC) systems account for 36% of the 

total building energy usage (Klein et al. 2012). Moreover, 30% of residential 

electricity is consumed by air-conditioning units in some urban areas such as Hong 

Kong (Lam 2000). HVAC systems are the most crucial systems affecting both indoor 

thermal comfort and energy/power consumption in buildings. In order to estimate the 

power demand characteristics of air-conditioning units, El-Ferik et al. (2006) 

developed a physical model. The effect of different outdoor conditions (e.g., outdoor 

humidity and solar radiation) can also be successfully captured by the model. The 

indoor thermal comfort, affected by many factors such as the indoor humidity and air 

temperature, etc., is also concerned during the power demand response periods. The 

comfort level is usually indicated by a predicted mean vote (PMV) value and a 

predicted percentage dissatisfied (PPD) value, and can also be influenced by the 
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clothing and activity intensity of occupancy (Fanger 1970; EN ISO 7730 2005). 

Based on an artificial neural network (ANN), Moon and Kim (2010) developed 

thermal control model for air-conditioning system to ensure the thermal comfort. 

In the residential houses, the power demand responses of HVAC systems are usually 

limited by the indoor thermal comfort. In order to minimize the impact on the thermal 

comfort and maximize the cost benefit of end-users, predictive control and optimal 

arrangement are necessary. Avci et al. (2013) adopted the model predictive control 

(MPC) method in HVAC systems, which can provide an efficient demand response to 

the grid. Tiptipakorn and Lee (2007) developed a residential consumer-centered load 

control strategy for the major appliances (e.g., air-conditioners/heaters) to response 

the grid subject to the different thermal comfort boundaries in summer and winter 

respectively. Significant energy saving (about 20%) and cost saving (about 30%) were 

achieved by conducting the strategy. A price-based thermostat set-point control 

strategy was adopted to reduce the peak demands and save the cost of end-users under 

the time of user prices (Surles and Henze 2012). It is worth noticing that the actual 

grid energy cost saving may be less than the overall cost saving of the end-users if the 

time of use prices are not properly set. Leow et al. (2013) presented an 

occupancy-moderated zonal space-conditioning by considering the number of 

air-conditioning zones and occupancy, the randomness of occupancy patterns and 

thermal mass of the residence. The estimated results showed that costing saving was 

from 20% to 30% under different conditions. 

Niro et al. (2013) presented a practical strategy for large-scale control of residential 
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refrigerators to achieve the peak load reduction in distribution systems. The 

refrigerators can be flexibly disconnected for short periods without impacting on the 

delivered services. Furthermore, average peak load reductions (0.2-0.9 kW per 

household or 10%-35%) were achieved in (Newsham et al. 2011). The authors argued 

that direct load control of air conditioners cannot contribute to the given events 

without proper incentives and arrangement. 

The power demand-price elasticity of the residential end-users is mainly contributed 

by the thermal devices/systems and limited by the behaviors of the occupancy. Smart 

meters and energy management system are essential parts in enabling the power 

demand response of the residential end-users. Generally, they are responsible to 

collect/analyze the historical and real time data, coordinate the power supply and 

demand sides, and conduct the optimal control strategies. In addition, the integration 

of distributed generations (e.g., wind turbines and PV) and storages (e.g., batteries, 

EV and thermal storages) has become a new trend in residential development (e.g., 

zero energy buildings). There are still many challenges and opportunities in 

developing/implementing optimal control strategies especially when power 

consumption, distributed generation and storage are comprehensively integrated in the 

smart gird. 

Integrated Renewable Generations and Energy Storages 

The integrated renewable generations and energy storages are the necessary 

supplements for the residential end-users regulating and optimizing their load profiles. 

Combined heat and power (CHP) plant, located at the power demand side, is 
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considered as one of the promising solutions to achieve peak load reductions. CHP 

plants can fulfill the requirements of the thermal and power demands of the end-users 

simultaneously (Lin and Yi 2000; Peacock and Newborough 2007; Jiang and Fei 2011; 

Chen et al. 2012; Bianchi et al. 2013). The peak load reductions of the end-users 

mainly depend on the capacities and outputs of CHP plants. Compared with the large 

power plants, CHP plants can be flexibly controlled for grid-scale power regulation 

and optimization due to its small generation capacity and wide distribution. The heat 

and power outputs of CHP plants are relatively predictable and controllable compared 

with the renewable generations. 

Due to the intermittent and uncertain characteristics of renewable sources (e.g., wind 

speed and solar radiation), the renewable generations generally have to operate with 

energy storages such as batteries. In PV generation systems, batteries play an 

important role in self-power regulations such as improving individual load factors and 

reducing peak loads (can be up to 65% in some desert areas) (Castillo-Cagigal et al. 

2011; Boehm 2012; Zeng et al. 2013; Zhao et al. 2013). Vokas et al. (2006) designed a 

30 m2 hybrid PV-thermal system which can cover a remarkable percentage of the 

domestic heating (47.79%) and cooling demands (25.03%) and achieve power 

demand reduction accordingly. For grid-connected PV systems, efficiency-enhanced 

design, scheduling/control of generation and storage processes and system monitoring 

can significantly affect the performance of both local and grid-scale power 

generations and load managements (Wong et al. 2008; Matallanas et al. 2012; Ayompe 

and Duffy 2013; Batista et al. 2013). 
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Wind energies, as the other important renewable sources, can usually support the solar 

power generation as the supplement especially in the nighttime. The interoperation of 

wind and solar power generations is very necessary due to their uncertainties and 

intermittences. The optimal configuration of the interoperating system (also called 

hybrid generation system) has attracted more and more attentions from both power 

supply and demand sides (Yang et al. 2007; Zhou et al. 2010). Moreover, the 

coordination between the renewable generations (e.g., wind generation) and 

residential consumptions (e.g., house appliances) is also very important in the power 

demand response (Fitzgerald et al. 2012; Finn et al. 2013). A considerable amount of 

the peak demand reduction (i.e., exceed 60%) was observed in (Finn et al. 2013) by 

properly coordinating the dishwasher usage and the wind power. 

Considering the power balancing requirements and reliability of the grid, the 

penetration of intermittent energy resources are recommended to not exceed 20% or 

25% (Stadler 2008). In order to enlarge the demand response capability of the 

residential end-users, energy storages, are the good choices for the load management 

due to their flexibility in charging and discharging energy/power. In residential 

applications, the electrical energy storages (e.g., batteries and electric vehicles) and 

thermal energy storages (e.g., water heater tank, building thermal masses) are 

commonly adopted. For instance, Leadbetter and Swan (Leadbetter and Swan 2012) 

considered that the battery storage system installed in different electricity intensity 

homes with a capacity ranging from 5 kWh/2.6 kW to kWh/5.2 kW are suitable for 

their peak demand shavings. EVs (electrical vehicles) can contribute great efforts in 
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power balance as a kind of grid frequency controlled reserves. By coordinating the 

charging and discharging processes, the power demands of EVs can be shifted from 

the peak periods to the off-peak periods (Finn et al. 2012; Xu et al. 2013). Druitt and 

Früh (2012) simulated the demand response effect of 1,000 EVs under a scenario with 

30% of UK power demands provided by wind generation. The results showed that 

significant improvements can be achieved in grid load following generation with the 

introduction of EV. Compared with the electrical storages, thermal storages are more 

considerable both in storage capacity and in the initial/operation cost. For instance, 

the structural thermal masses in dwellings can help reducing the electricity usage 

during peak periods by 48.4%-67.5% with different insulation levels (Reynders et al. 

2013). The combination of the heat pumps and thermal storages is also very popular 

in residential demand response (Wang et al. 2012; Arteconi et al. 2013). 

Actually, both the passive design/efficiency improvement (Synnefa et al. 2007; Borg 

and Kelly 2011) and the active system controls (Pietila et al. 2012; Newsham et al. 

2013; Nghiem et al. 2013) in the residential sector can contribute significantly in the 

peak load reductions and/or load shifting. One of the major differences between the 

passive and active power demand responses is that, the passive means usually take 

effect with a static and long-term pattern while the active means usually take effect 

with a dynamic and short-term pattern. In (Synnefa et al. 2007), the test results 

showed that increasing the roof solar reflectance can reduce cooling loads by 18%-93% 

and peak cooling demand 11%-27%. In (Nghiem et al. 2013), 77.8% in peak demand 

and 31.2% in total energy consumption can be saved by applying green scheduling.  
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Using available technologies (e.g., information and communication technologies, 

smart meters and energy management system, etc.), the residential buildings 

integrating the generations, storages and consumptions can act as the distributed 

elements to interact with the grid. In other words, the residential buildings can play a 

more active role in power management especially in real time power balance. 

Residential buildings can either operate in off-grid modes to ensure the basic building 

functions under certain emergent events, or operate in on-grid modes to help grid 

achieving high power reliability/quality and energy efficiency by relieving the peak 

load/power imbalance. Figure 2.7 shows an overall picture of how the residential 

buildings can contribute to a future smart grid in different power/load management 

phases (Williams et al. 2013). The valuable details of both power and information 

flows in the grid, are becoming more and more important for the 

policy/decision-making and the day-ahead/real time controls. 

Most of researches and applications in the residential power demand response are 

mainly focused on the amounts of peak load reduction, electricity usage reduction and 

the corresponding cost saving. Except the direct load control of the house appliances 

can respond to the grid immediately, the response speed of others load management 

approaches is less concerned due to the demand response voluntaries of the end-users 

are usually incented by electricity tariffs. However, for the future smart grid where the 

power demands is an important and cost-effective “operating reserve”, the response 

speed should be highly concerned especially when a large amount of renewable 

generations are “plugged-in”. 
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Figure 2.7 Smart self-regulating distribution systems for the residential houses 

(Williams et al. 2013). 

2.3.2 Demand Response in Commercial Sector 

Commercial buildings consume approximately 40% of the total energy end-use (Omer 

2008). Moreover, about 50% of the whole energy consumption in building is used for 

cooling/heating purposes (Pérez-Lombard et al. 2008). The increase speed of energy 

usage in the commercial sector (i.e., 2.8% on annual average) is also faster than that 

of other sectors in last several decades (Andrews and Krogmann 2009). In some urban 

areas such as Hong Kong, commercial buildings consume about 60% of the total the 

electricity and in which about 50% of the accounted electricity is consumed by 

air-conditioning systems (Qi et al. 2012). Energy savings and demand responses of 
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the commercial sector can mainly be achieved through the following manners: 1) 

improving the performance of building envelope, 2) improving the energy efficiency 

of the devices/systems in buildings, 3) optimizing the schedules and controls of the 

devices/systems in buildings. 

Passive designs of the building (e.g., orientation, shape, shading, envelope, glazing, 

passive systems, etc.) and active controls of the devices/systems (e.g., local and 

supervisory controls) are two important measures in improving energy efficiency and 

achieving energy/cost savings without sacrificing occupancy comforts and system 

functions (Escrivá-Escrivá 2011; Pacheco et al. 2012; Wang and Ma 2008). Sadineni 

et al. (2011) presented a comprehensive review on the energy saving effect of the 

building envelope components including walls, roofs, windows, thermal insulations 

and thermal masses, etc. A significant ratio of the heating/cooling load is resulted by 

the external gains (e.g., heat transfers, radiations and infiltrations, etc.). Windows of 

commercial buildings can significantly affect not only the heating/cooling load but 

also the daylight performance. For instance, the heat loss ratio of the windows to the 

total heat losses of all various envelope parts can be as high as 60% in commercial 

buildings (Grynning et al. 2013). In order to reduce the heating and cooling loads, as 

well as the lighting consumption, new types of windows with up to 68% transmittance 

(e.g., electro-chromic windows) have been developed (Baetens et al. 2010). Smart 

window control and design (e.g., double shin envelope/facade) can reduce a 

considerable heating/cooling load (Dussault et al. 2012). 7.2%-18% of 

heating/cooling load reduction for double skin facade was reported respectively (Kim 
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et al. 2011; Joe et al. 2013). 

Different system configurations and improvements such as radiant cooling systems, 

thermally activated building systems, and compact fluorescent lamps, 

building-integrated photovoltaic (BIPV), etc. contribute another important fraction in 

energy and peak power savings of the commercial sector (Stetiu 1999; Trifunovic et al. 

2009; Sun and Yang 2010; Rijksen et al. 2010; Trifunovic et al. 2011). Lund (2012) 

considered that renewable electricity (e.g., generated by PV) of the urban areas may 

annually satisfy over 30% of all energy and over 70% of all electricity demand by 

properly adopting the thermal storages. Although the renewable generations (e.g., 

wind turbines and PV) (Dalton et al. 2009; Zhang et al. 2012; Cao et al. 2014) and 

CHPs (Mago and Smith 2012; Chua et al. 2012; Smith et al. 2013; Lee et al. 2013) 

play important roles in peak load reduction as well as the heating/cooling load 

reduction of the commercial buildings, the controllability and quantity of the 

renewable demand responses are still limited compared with those of the controllable 

loads and stored thermal energies. 

The total power demand (i.e., electricity load) of a commercial building can be further 

divided into two major parts: inelastic demands and elastic demands. Generally, the 

electricity load of a commercial building is contributed by various building service 

systems including HVAC systems, lightings and electrical equipment, lifts and 

elevators, etc. (Yan et al. 2012). Electricity loads of lightings, electrical equipment, 

transportation and other appliances can be normally categorized as the sheddable 

demands, which can be conveniently obtained by their operation schedules. By 



 51 

contrast, electricity loads of HVAC systems are the controllable loads which are 

possible to be altered by the power demand controls. However, the electricity loads in 

HVAC systems are relatively difficult to predict due to the dynamic characteristics of 

the working conditions (e.g., outdoor weather conditions and variable internal gains). 

Forecasting of building heating/cooling load 

There are many approaches and methods for building heating/cooling load forecasting 

including white box model (i.e., physical model), grey box model (e.g., RC-based 

model) and black box model (e.g., ANN-based model), etc. Yao et al. (2004) 

presented a brief introduction on the linear regression (LR) model, autoregressive 

integrated moving average (ARIMA) model, ANN model and grey model (GM). 

Foucquier et al. (2013) presented different building modeling approaches for 

estimating the energy performance including physical model (e.g., CFD approach, 

zonal approach and multi-zone/nodal approach), statistical methods (e.g., multiple 

LR/conditional demand analysis (CDA), genetic algorithm (GA), ANN and support 

vector machine (SVM) and hybrid models. Grey model especially RC-based model 

appears to be a promising approach for smart grid applications (e.g., for estimating 

and conducting day-ahead/real time power demand response) due to its acceptable 

reliability and lower requirements of computation load as well as the training data 

(Antonopoulos and Koronaki 1998; Braun and Chaturvedi 2002; Wang and Xu 2006; 

Lee and Braun 2008). 

Building thermal masses can significantly affect the estimation of the building 

heating/cooling load due to their considerable capacitances and resistances that may 
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result the reduction and delay of the external heat fluxes (Antonopoulos and Koronaki 

1999; Antonopoulos and Koronaki 2000). When building thermal masses are the only 

thermal storages in buildings, the identification of the thermal characteristics and 

estimation of the thermal performance are the premises of forecasting the building 

heating/cooling load and the basis of estimating the power demand response 

potentials. For instance, thermal parameters of the internal thermal masses can be 

conveniently identified using GA-based method (Wang and Xu 2006). 

Actually, the electricity load forecasting particularly the heating/cooling load 

forecasting of the commercial buildings can provide the effective and supplementary 

energy consumption information (e.g., power demand and demand elasticity) for grid 

conducting efficient power management. In large scale commercial buildings, thermal 

storages including building thermal masses, phase change materials (PCM) and 

water/ice storages can effectively contribute to grid in shifting the peak load and 

relieving the power imbalance. 

Power demand response using thermal storages 

In recent years, thermal storages are considered as one promising technologies of 

commercial buildings for peak load shaving, and treated as the supplementary energy 

sources when integrating with renewable energies (Ban et al. 2012; Arteconi et al. 

2012; Parameshwaran et al. 2012; Tatsidjodoung et al. 2013). The optimal control of 

thermal storages is very important when the building thermal demand is treated as one 

of the potential building power demand responses. Thermal storages in commercial 

buildings can generally be categorized into two categories: active thermal storages 
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(e.g., ice storage, water storage, centralized PCM, etc.) and passive thermal storages 

(e.g., building thermal masses and decentralized PCM). The main difference between 

the active and passive storages is that, active thermal storages can be controlled 

flexibly by a stable control variable (e.g., a fixed temperature for energy 

charging/discharging) freeing from the limitations of the indoor/outdoor conditions. 

By contrast, passive thermal storages generally do not have a fixed phase changing 

temperature and has more constraints. 

Building thermal masses 

Previous researches and applications concerning building thermal masses mainly 

focused on the night precooling process and the daytime peak demand reduction, 

which are generally incented by the time of use prices and/or the peak demand charge 

(Sun et al. 2013). The charging control strategies of the building thermal masses 

during the precooling period (e.g., the off-peak period) (Keeney and Braun 1997; Xu 

et al. 2004; Yang and Li 2008; Yin et al. 2010; Sun et al. 2012), the discharging 

control strategies of the building thermal masses (e.g., resetting the indoor air 

temperature set-point) during the peak period (Xu et al. 2005; Xu and Zagreus 2006; 

Lee and Braun 2008; Sun et al. 2010), as well as the corresponding durations are 

significantly affecting the cooling load profile, the power demands of the HVAC 

systems and the corresponding energy operation cost. For instance, the peak load can 

be effectively reduced by 25% of the cooling capacity (i.e., 3165 kW) by adopting the 

precooling strategy, the capital and operation costs ($500,000 and $25,000 per month) 

of the chiller systems can be achieved accordingly (Keeney and Braun 1997). In (Xu 
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et al. 2004), the indoor air temperature was maintained at the lower boundary of the 

comfort region during the office hours while allowed to float to the upper temperature 

boundary during the peak hours (i.e., 2p.m.-5p.m.). With this strategy, the chiller 

power was reduced by 80%-100% (1 W/ft2-2.3 W/ft2) without causing any thermal 

comfort complaints. In (Yin et al. 2010), precooling tests were conducted on eleven 

buildings, and 15%-30% reduction of the power demand during the peak period was 

reported. In (Sun et al. 2010), a power demand limiting strategy was developed based 

on the prediction of the building monthly peak demand (i.e., the average value in any 

15 minutes), 8.51%-10.45% of the electricity cost saving can be achieved by 

minimizing the peak demand charge. Figure 2.8 shows a typical precooling and 

discharging control strategies of the building thermal masses during unoccupied and 

occupied periods respectively. The indoor air temperature set-point is set to a low 

value aiming to store cold energy in building thermal masses and is set to a high value 

to release the “stored” cold energy. It is worth mentioning that the indoor air 

temperature should be maintained in the specific boundaries to ensure the indoor 

thermal comfort. 

 

(a) 
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 (b) 

Figure 2.8 Indoor air temperature set-points of (a) night setup control strategy (b) 

precooling and demand limiting strategy (Lee and Braun 2008; Sun et al. 2013). 

As the precooling and/or demand limiting control strategies for the building thermal 

masses are developed mainly based on variations of the indoor air temperature, the 

performance of the power demand response is constrained by the following factors: 

the thermal capacitance of building thermal masses, the performance of HVAC 

systems, electricity price structure, weather conditions, occupancy thermal comfort, 

etc. The development of control strategies for the building thermal masses is 

relatively complicated compared with the active thermal storages (e.g., ice /water 

storage) due to the physical properties of the building thermal masses and indoor 

thermal constraints. Although the day-ahead and real time control strategies have been 

developed to achieve load shifting, peak load reduction in (Chen 2001) and (Braun 

2003), the response speed (or response delay) of the power demands (e.g., after 

resetting the indoor air temperature set-point) has not been discussed. 

In (Henze et al. 2004) and (Zhou et al. 2005), different combinations of the active 

and/or passive thermal storages systems for shifting peak loads were investigated. 

Results showed that active plus passive thermal storages systems can save energy cost 
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up to 26% compared with the case without thermal storages. In order to enlarge the 

capability of the power demand response in commercial buildings, heavy-mass 

building and/or larger active thermal storage capacity are strongly recommended for 

thermal demand optimal control and building load management. Moreover, the 

predictive optimal control for active and passive thermal storages is also very 

important for the building load management when suffering the uncertainties from the 

models and weather conditions (Liu and Henze 2004; Henze et al. 2004; Henze et al. 

2005; Morgan and Krarti 2010).  

Ice and water storages 

Both ice storage and water storage are usually employed as the centralized thermal 

storages at chilled water supply side of the HVAC systems to achieve peak load 

shaving and load shifting. For instance, the peak cost savings are 27%-31% by 

employing the ice storage in different climates of U.S. (Sehar et al. 2012). The chiller 

capacity and peak demand could be decreased by 50% and 31.2% respectively by 

employing chilled water storage (Boonnasa and Namprakai 2010). Figure 2.9 and 

Figure 2.10 illustrate the operation principle of a typical thermal storages system for 

cooling application (e.g., ice/water storage or centralized PCM). The thermal storages 

usually charges the cold energy during the off-peak periods (e.g., nighttime) and 

discharges the cold energy during the peak periods (e.g., daytime) to achieve cooling 

load shifting and/or peak load shaving (Sun et al. 2013). It is worth mentioning that, 

the power demand of the HVAC systems is usually determined by their provided 

cooling loads. In this point of view, the power demand response of the HVAC systems 
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is dependent on the cooling demand response of the systems. 

 

Figure 2.9 Schematics of charging and discharging processes using thermal storage 

system (Sun et al. 2013). 

 

Figure 2.10 Storage capacity based control strategies of thermal storages system for 

peak load shaving (Sun et al. 2013). 

Different optimal control strategies and algorithms were developed for improving the 

performance of the ice/water storage systems (Drees and Braun 1996; Massie et al. 

2004; Lee et al. 2009; Hajiah and Krarti 2012; Hajiah and Krarti 2012). However, 

most of these optimal controls are mainly developed based on day-ahead electricity 

prices and operation arrangement. The actual power demand response of the systems 

may not fulfill the requirements of real time applications in the grid (e.g., 

minutes-ahead response) yet. 
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Phase change materials 

Phase change materials (PCM), as one of the major latent heat thermal storages, has 

been considered as a promising energy storage in the following aspects: narrowing the 

gap between the peak and off-peak loads of energy/electricity demand, saving the 

energy operation cost of building under specific electricity tariffs such as time of use 

prices and critical peak prices, reducing diurnal temperature fluctuations concerning 

the indoor thermal comfort, and utilizing the free cooling at night for day peak 

cooling load shaving (Zhang et al. 2007; Zhu et al. 2009; Qureshi et al. 2011; Waqas 

and Din 2013). The modeling and optimal control of the building integrated PCM are 

very essential for accurately estimating the thermal performance. An idealized model 

for peak load shifting and a simplified RC-model have been respectively developed 

for investigating the indoor thermal performance (Halford and Boehm 2007; Zhu et al. 

2010). The results showed that the developed models can represent the thermal 

characteristics of the PCM quite well. Diaconu (2011) pointed out that the energy 

performance of the PCM-enhanced envelope is also influenced by the occupancy and 

ventilation patterns. Walsh et al. (2013) reported that 67% reduction in chiller 

peak-time operation can be achieved by employing PCM tank with free-cooling. 

Figure 2.11 shows an application of PCM integrating into the air supply side of the 

HVAC systems. Three different operation modes (i.e., charging, ordinary and 

discharging operations) are respectively conducted according the 

requirement/arrangement (Yamaha and Misaki 2006). It is worth mentioning that, for 

the building integrated PCM, the indoor air temperature and the phase change 
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temperatures of PCMs are the main constraint in their charging/discharging processes. 

 

Figure 2.11 Schematics of PCM integrating with the air supply side of the HVAC 

systems (Yamaha and Misaki 2006). 

Optimal control strategies of HVAC systems 

Building automation and control provide a possible way for involving the commercial 

buildings into a smart grid. Besides the improvements on thermal performance of 

building envelope and energy efficiency of the devices/systems, the supervisory and 

optimal controls of the devices/systems are also the important means in conducting 

demand side load management for the grid. In commercial buildings, the controls of 

power demand response in lightings, electrical appliances, lifts and elevators are 

relatively simple. For instance, power demand reduction in lighting systems can be 

achieved by properly interact the artificial light and the daylight. Power demand in 

motors (e.g., pumps and elevators) can also be reduced by adopting variable-speed 

drive. However, the amount the power demand alteration contributed from these 

systems is relatively low compared with that of the HVAC systems. 
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The system configuration and optimal control of the HVAC systems in commercial 

buildings are more complicated than those of the other building systems. The energy 

savings of the HVAC systems can be achieved mainly by two approaches: HVAC 

systems fault detection and diagnosis (Cui and Wang 2005), and HVAC supervisory 

and local controls (Wang and Ma 2008). Chiller, as the major component in the 

HVAC systems, consumes a significant electricity ratio and is considered having a 

huge potential in power demand response. For instance, the power demand of chillers 

can dramatically increase during the morning/precooling start period. High peak 

demand charges and aggregated peak load for the electrical grid are usually resulted 

during that period. Therefore, the optimal start control and sequencing control of 

chillers for avoiding the peak demand is very essential for the daily operation of the 

HVAC systems in commercial buildings. Different combinations of the operating 

chiller numbers and precooling lead time can result different power demands (Sun et 

al. 2010). The optimal operating chiller numbers can be identified according to the 

cooling down requirements and the power demand limitations. Behl et al. (2012) 

adopted a green scheduling for chillers and thermal storages aiming to achieve higher 

COPs by improving the PLR of chillers. The maximum peak power demand reduction 

of a university can be as high as 0.9 MW which is quite considerable for grid in its 

power management. When treating the chiller power demand as one of the demand 

response sources, the accurate estimation of the power demand of chillers become an 

important issue. Sun et al. (2009) developed a strategy to improve the control 

reliability in chillers based on a fused cooling load measurement. 
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The optimal control and operation scheduling can also be implemented at 

heating/cooling demand side as the indoor air temperature is allowed to vary within a 

certain range. In fact, the power consumption of the HVAC systems in commercial 

buildings is significantly affected by the indoor air set-points (Wang et al. 2013). 

Figure 2.12 illustrates the control logic of the indoor air temperature set-point reset 

strategy for reducing the peak demand. The set-point is continuously updated 

according the actual power demands of the chiller plants/HVAC systems. 

 

Figure 2.12 The schematics of PID demand limiting algorithm for indoor air 

temperature set-point reset (Sun et al. 2010). 

In order to provide a fast power demand response to the grid from commercial 

buildings especially from HVAC systems, the possibility and the availability of 

treating building power demands (e.g., power demands of air-conditioning) as 

spinning/non-spinning “reserves” is also presented (Kueck et al. 2009; Kiliccote et al. 

2011). For instance, Hao et al. (2013) considered that 15% of fan power capacity in 

the HVAC systems can be deployed for the regulation purposes while having little 

effect on the building indoor air temperature. The estimation results also showed that 

fans in existing commercial buildings in the U.S. can provide about 70% of the 
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existing national regulation reserve in the frequency band [1/600, 1/8]. Figure 2.13 

shows the control logic for regulating the fan power to follow the grid regulation 

signal. 

 

Figure 2.13 The control logic of regulating fan power responding to the regulation 

signal (Hao et al. 2013). 

On-site cogeneration such as the combined cooling, heating, and power (CCHP) 

systems can contribute significantly in peak demand and energy consumption 

reductions (Mago and Hueffed 2010; Siler-Evans et al. 2012). Khan et al. (2004) 

reported that 13% ( 23%) reduction in peak demand, 16% (21%) reduction in energy 

consumption can be achieved by cogeneration (the data in parenthesis are the result 

with thermal storages). 

Both local control and supervisory control in commercial building are usually 

implemented by building automation systems (BAS). BAS work not only to collect 

the detailed energy information such as heating/cooling load of building and the 

power demands of different building devices/systems for further analysis, but also to 

conduct the optimal controls of power demands in buildings, system and component 

levels. With the mature technologies including BAS and information and 
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communication technologies, the communication and interaction between the power 

supply and demand sides can be conveniently established and conducted for the 

overall optimization by considering the power reliability/quality, energy efficiency 

and economic benefits. An agent-based building energy simulation process is 

demonstrated for the interaction between the aggregate load profile of individual 

buildings and the electricity prices of the grid (Zhao et al. 2010). The individual 

energy usage behaviors and power demand potentials of the end-users which are very 

sensitive to the electricity prices can affect the aggregate effect of the demand 

response. 

The possible control strategies for power demand responses in commercial buildings 

are recommended to be developed in HVAC systems and lighting systems (Watson et 

al. 2006). HVAC-based demand response strategies contain fan speed regulation, fan 

quantity variation, supply air temperature reset and central chiller plant control, etc. 

Lighting-based demand response strategies contain zone lighting on/off control, 

fixture/lamp on/off control, step and continuous dimming controls, etc. Table 2.2 

gives a summary of field test results responding to demand response events. 

Table 2.2 Average and maximum power demand savings during automated DR tests 

(Watson et al. 2006) 

Results by 

Year 

Number of 

sites 

Duration of 

Shed (Hours) 

Average 

Savings (%) 

Maximum 

Savings (%) 

2003 5 3 8% 28% 

2004 18 3 7% 56% 

2005 12 6 9% 38% 
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2.3.3 Demand Response in Industrial Sector 

The industrial sector consumes about 37% of the total end-use energy of world 

(Abdelaziz et al. 2011). Moreover, the electricity consumed by the industrial sector 

can be as high as 60% of the total generation in the developing countries such as India 

(Ashok and Banerjee 2000). As mentioned in the Table 2.1, the industrial sector 

contributes a significant ratio in grid power management due to its considerable 

power capacities of the devices/systems. The power demands in industrial sector are 

usually prescheduled, most of which are not constrained by outdoor weather 

conditions and the indoor human comforts. The power demand characteristics and the 

demand response potentials of this sector can then be easily obtained and estimated. 

Generally, the power demand response in the industrial sector can be roughly divided 

into two types based on the control manners: 1) direct load management and 2) 

indirect load management. 

Direct load management 

Direct load management, including direct load control and interruptible load control, 

is usually required to response immediately in reducing peak demands and/or dealing 

with the emergency situations. For the direct load control, the electrical grid can 

directly manage the operation of specific end-use appliances to achieve its desired 

load reduction usually based on the previous agreements. Industrial processes such as 

metal works, mine works, wood and chemical processing, etc. have participated the 

direct load control programs for many years (Bailey 1998; Nolde and Morari 2010; 

Zhao et al. 2011). For the interruptible load control, the main difference is that the 
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grid notifies the participated end-users its load curtailment in advance while the 

end-users have the right to conduct the control or not. The amount of such type of 

power demand response is usually significant and sometimes ranges from 50 MW to 

1000 MW. 

The direct load control program is usually based on contracts while the interruptible 

load control program usually relying on the electricity tariffs. Actually, the industrial 

end-users prefer to conduct the responses relying on their back-up generations and 

storages rather than on the direct curtailments of energy use (Majumdar et al. 1996; 

CRA 2005; Albadi and El-Saadany 2008). Moreover, the optimal controls for CHP 

and priority of the production processes can also be considered as the effective 

responses in the load shedding (Mitra et al. 2013; Goh et al. 2013). 

Indirect load management 

The indirect load management is mainly developed based on the electricity prices. It 

is not mandatory program as based on contracts and also does not require the fast 

demand responses as the direct load control does. Generally, the grid sends the 

electricity prices to the end-users for the consideration of load management. 

Time-based demand response programs in the industrial sector have already been 

conducted for many years. For instance, significant peak load reductions (e.g., 50% of 

the steel plant) can be achieved under critical peak prices which are designed to 

reduce/shave the peak load during the critical peak periods (Ashok 2006; Pelzer et al. 

2008; Rankin and Rousseau 2008). Considerable energy saving and peak load 

reduction (e.g., 49% cost saving and 8-25% energy reduction during peak hours) can 
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be achieved under time of use pricing which is originally designed to improve the 

load factor of the grid (Lee and Chen 2007; Middelberg et al. 2009; Abdelaziz et al. 

2011). The industrial end-users can also respond to the real time pricing, which is 

used to represent the real time power supply (Zarnikau et al. 2007). It is worth 

mentioning that various forms of storage (e.g., storage in sources, energies and 

productions, etc.) play important roles in the power demand response of the industrial 

sector. 

2.4 Electricity Tariffs for Power Demand Responses 

For decades, the electrical grid can buffer the power imbalance at demand side by 

setting different electricity tariffs. Time-based and incentive-based demand response 

programs have been already developed and applied for encouraging end-users to 

change the energy usage behaviors. With the incentives, buildings can limit and/or 

shift the power demands according to their own considerations. A brief introduction 

on different electricity pricing mechanisms is presented herein. A summary of the 

reviewed the paper under different electricity tariffs is also presented in Table 2.3. 

 Time of use (TOU) pricing is that, the electricity prices are set for the specific 

time periods (e.g., peak period and off-peak periods). These price settings aim to 

incent end-users to shift their loads from peak period to off-peak period for cost 

benefits, and to help the grid achieving load factor improvement and generation 

capacity reduction. 

 Critical peak pricing (CPP) is that, the TOU pricing in effect but with special 



 67 

prices for the peak demand days/hours when the prices can be several times higher 

than usual prices. CPP is different from the peak demand charge. Peak demand 

charge accounts the kVA value consumed by the end-users during a certain period 

(e.g., maximum average value during any 15 minutes/30 minutes in a day/month). 

 Real time pricing (RTP), also called dynamic pricing, is that the electricity prices 

may change as often as hourly or even shorter (e.g., 15minutes). The real time 

prices are usually announced a day ahead or a few hours ahead. 

 Direct load control (DLC) program is that, the electricity utilities have the right to 

directly control (e.g., switch off) the specific devices/systems of end-users by 

offering a certain payment based on the previous signed agreements (e.g., 

contracts). Direct load control is usually conducted during high-demand periods or 

emergency situations of the grid. 

 Demand side bidding (DSB) program is that, a competitive and negotiated 

program where end-users offer their availabilities in load reduction quantities and 

the expected cost benefits in advance (e.g., a day ahead or an hour ahead, etc.). 

Once the market accepts the offer, the end-users are expected to reduce the 

declared load and will receive the stated payments. Otherwise, the end-users will 

be penalized if they cannot accomplish the declared load reduction. The main 

difference between the demand side bidding and other demand side management 

measures is that demand side bidding involves the short-term discrete changes 

into individual load profiles of the end-users while other demand side 

managements involve sustainable and permanent changes into the load profiles.
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Table 2.3 Summary of power demand response under different electricity tariffs 

End-user 

Sectors 

Electricity 

Tariffs 

References Adopted Control Strategies Main Results/Achievements 

Residential TOU He et al. 2012; Giorgio 

and Pimpinella 2012 

 

Event driven binary linear 

Programming (Giorgio and 

Pimpinella 2012). 

21.07% cost saving can be obtained by when the smart 

home controller the planning is performed (Giorgio and 

Pimpinella 2012). 

CPP Herter et al. 2007 Event driven temperature 

set-point reset. 

During 5-h critical peak periods, participants without 

control technology used up to 13% less energy than they 

did during normal peak periods. Participants equipped 

with programmable communicating thermostats used 25% 

and 41% less for 5 and 2 h critical events. 

RTP Saele and Grande 

2011; 

Lujano-Rojas et al. 

2012; 

Kriett and Salani 2012; 

Zhang et al. 2013; 

Avci et al. 2013 

Direct load control (Saele 

and Grande 2011); 

Integer linear 

programming (Kriett and 

Salani 2012; Zhang et al. 

2013); 

Model predictive control 

(Avci et al. 2013). 

The observed demand response was 1 kWh/h for each 

end-user with standard electrical water heaters. The 

demand response potential from 50% of Norwegian 

households can be estimated at 1,000 MWh/h (4.2% of 

registered peak load demand in Norway) by aggregating 

this kind of response (Saele and Grande 2011). 

Commercial TOU Chen 2001; 

Henze et al. 2005 

Sequential optimization 

(Chen 2001); 

Priority control (Henze et 

al. 2005) 

Based on total utility cost, savings of about 26% for the 

passive and active thermal storages can be achieved (Chen 

2001); 

The chiller priority system achieves more energy savings 

with 15%, 26% 39% for different climate zones: Seattle, 

Helena and Duluth, respectively (Henze et al. 2005). 
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TOU plus 

PDC 

Keeney and Braun 

1997; 

Liu and Henze 2004 

Precooling control and 

temperature set-point reset 

(Keeney and Braun 1997; 

Liu and Henze 2004). 

The strategy reduced cooling energy use costs by 15% and 

the total cooling electricity demand was reduced by 18% 

(Keeney and Braun 1997). 

TOU, CPP or 

PDC 

Xu et al. 2004; 

Lee and Braun 2008; 

Yin et al. 2010; 

Sun et al. 2012 

Precooling control and 

temperature set-point reset 

(Xu et al. 2004; Lee and 

Braun 2008; Sun et al. 

2012). 

The chiller power was reduced by 80-100% (1-2.3 W/ft2) 

during normal peak hours from 2-5 pm without causing 

any thermal comfort complaints (Xu et al. 2004). 

The demand-limiting strategy resulted in approximately 

30% reductions in peak cooling loads compared to night 

setup control strategy for a 5-h on-peak period of 1 PM to 

6 PM (Lee and Braun 2008); 

Industrial TOU Ashok and Banerjee 

2000; 

Ashok. 2006; 

Mitra et al. 2013 

Interlock control (Ashok 

and Banerjee 2000). 

The individual load factor was improved by 4.5%. The 

reduction in peak demand was 0.85 MW. The electricity 

cost saving was about 2.8% (Ashok and Banerjee 2000). 
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2.5 Discussions 

With the available and mature technologies such as information and communication 

technologies, advanced metering infrastructure, smart meters, home energy 

management system and BAS, bidirectional connections and real time 

communication/interaction between the building end-users and the smart grid can be 

effectively built for the overall optimization of both power supply and demand sides 

(Aung et al. 2012; Khan and Khan 2013). In order to encourage the buildings to play a 

more active role in power demand response in the smart grid, mature electricity 

markets should be established to incent the voluntaries of the end-users,  to optimize 

the costs of power supply and electricity use, and most importantly to ensure the 

reliable operation of the power systems. Actually, NIST has proposed a conceptual 

model for a future smart grid with involving the central operators, markets, service 

providers and different categories of end-users (NIST 2012). As shown in Figure 2.14, 

useful information is exchanged within the power and information flows, and optimal 

controls/arrangements can also be effectively conducted during different power 

processing stages: generation, transmission, distribution and consumption. 
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Figure 2.14 NIST conceptual model for Smart Grid (Khan and Khan 2013). 

In order to meet the requirements (e.g., the quantity and speed of demand response) of 

relieving the peak load and power imbalance at demand side, power demand 

responses of the end-users are recommended to be developed based on different time 

scale: day-ahead (i.e., offline power demand response) and hour-ahead/15 

minutes-ahead (i.e., online power demand response). The offline power demand 

response such as load shifting and peak load shaving (i.e., coarse power demand 

regulation in a relative longer period) is expected to contribute in improving the grid 

load factor. Due to the power/load forecasting errors or emergency events may happen 

at both the power supply and demand sides, the online power demand response is 

therefore expected to contribute in improving the grid reliability and quality by 

treating the power demands as the real time “operating reserves” (i.e., fine power 

balance tuning regulation in a relative longer period). The future smart grid is being 

developed aiming at achieving multiple objectives (e.g., power reliability/quality, 

energy efficiency and costs, etc.) and involving different participants (e.g., power 
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suppliers/delivers, operators and end-users, etc.). The grid power management is also 

becoming more and more complicated. 

2.6 Summary 

This chapter provides a comprehensive review on the current studies on power 

demand responses in building sectors. Peak load and power imbalance, as two critical 

power management issues in electrical grid, are briefly introduced. Power demand 

responses from the end-users are able to help grid in conducting the power 

management such as load shifting, peak demand shaving and dynamic power 

regulation. Conclusive remarks and recommendations for developing more 

cost-effective power demand response in future smart grid are drawn as follows: 

(1)  Buildings can significantly contribute their power demand response potentials to 

relieve peak load and grid power imbalance problems. Incentive demand response 

programs (i.e., electricity tariffs) should be designed to motivate the voluntaries 

of the end-users since the demands responses from the end-users are much more 

cost-effective than operating reserves at power supply side. 

(2) With the developments of the technologies such as information and 

communication technologies, advanced metering infrastructure, smart meters, 

home energy management system and BAS, the communications between the 

power supply and demand sides have been changing from the static “one-way” 

into the dynamic “two-way”. Bidirectional connections and two-way flows (i.e., 

power and information flows) between the smart grid and the end-users bring 

new challenges and opportunities in various aspects such as the overall generation 
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planning, operation control and scheduling, energy and cost optimizations. 

Moreover, the energy information of the end-users (e.g., power demands and 

demand response capacities) can serve the grid as redundant data for its load 

forecasting and operating reserve arrangement. 

(3)  Although there are already many demand response programs (e.g., time-based 

and incentive-based) for encouraging the end-users to change their energy usage 

behaviors, more electricity pricing mechanisms (e.g., offline-based and 

online-based) are still needed to be developed/implemented for different types of 

end-users (e.g., industrial, residential and commercial) with different objectives 

(e.g., improving the load factor and maintaining the power frequency). The 

aggregate effect of changing individual load profiles of a large number of 

end-users should be also carefully considered. 

(4)  Thermal storages of buildings, including the active (e.g., ice and water storages, 

etc.) and passive (e.g., building thermal masses and phase change materials, etc.) 

storages, can actually play an important and active role in building power demand 

response. Thermal storages can not only enable more capabilities of the building 

power demand response by charging/discharging thermal energy, but can also 

self-regulate the individual load profiles of buildings when renewable generations 

are integrated.
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CHAPTER 3 DEVELOPMENT OF A SIMPLIFIED 

BUILDING THERMAL STORAGE MODEL 

 

Distributed thermal storages at power demand side can contribute significantly for 

smart grid power balance in different power processes including generation, 

transmission and consumption, etc. Thermal storages of buildings, as the major 

storage sector at power demand side, usually consist of the active (e.g., ice and water 

storages, etc.) and passive (e.g., building thermal masses and phase change materials, 

etc.) storages. These thermal storages of buildings can play an important and active 

role in power demand response. This chapter investigates the characteristics of passive 

thermal storage (i.e., building thermal masses) in commercial buildings. 

Different commercial buildings have different potentials in power demand alteration 

due to their own thermal storage capabilities and system configurations. The power 

demand management of commercial buildings is usually accomplished by load 

shifting and/or peak demand limiting controls, which need a certain realization cost 

(e.g., increase of the overall energy consumption). The power demand alteration 

potential and the associated realization cost are therefore the essential indices of the 

building characteristics for predicting the power demand response under the specific 

electricity prices of a smart grid, which provide valuable information for smart grid 

optimization. In order to enable the passive thermal storages of buildings to fulfill the 

application requirements of the smart grid, a simple and effective thermal storage 

model is needed to be developed for representing the thermal characteristics of the 

passive thermal storage (i.e., building thermal masses in this study). 
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Section 3.1 presents an introduction of the inspiration and original idea of developing 

a simplified building thermal storage model, which is based on thermodynamics 

analogized to the electric theory. Section 3.2 presents the development of the 

simplified building thermal storage model in detail. Section 3.3 presents the 

specifications of building structures and working conditions for the development of 

the simplified thermal storage model. Section 3.4 presents the parameters 

identification of the simplified thermal storage model in different types of buildings 

including light, medium and heavy weighted buildings. Section 3.5 presents and 

discusses the results of parameters identification. A summary of this chapter is given 

in Section 3.6. 

3.1 Introduction 

Compared with physic model and black model, grey box model (e.g., RC model) is 

suitable for predicting the building heating/cooling load due to its high accuracy and 

low requirements on the history data and computing load. For instance, a 3R2C model 

representing building envelope and a 2R2C model representing building internal 

masses are developed for predicting the cooling load of commercial buildings (Wang 

and Xu 2006). Figure 3.1 shows the configuration of the simplified building energy 

models for a typical building. In the model, a building consists of two parts: 1) building 

envelope including external walls, roof and windows, etc., 2) building internal masses 

including internal walls, floors, ceilings, partitions and furniture, etc. The indoor space 

of the building is assumed to be a single zone, and the indoor air is assumed to be well 

mixed. 
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Figure 3.1 Configuration of the simplified building energy model of a typical building. 

Based on thermal energy balance, the actual cooling load of a building can be 

estimated by the following differential Equations (3.1) to (3.7). 
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where, T and Q are the temperature and heat gain respectively. R and C are thermal 

resistance and thermal capacitance respectively. A is the effective surface area involved 

in the heat exchange process. Qest is the estimated cooling load. Thermal capacitances 

and resistances of building envelope can be obtained by comparing theoretical 

frequency response characteristics with that of the simplified building energy model 

using genetic algorithm (GA). The thermal capacitances and resistances of building 

internal masses can be obtained by minimizing error between actual (i.e., short-term 

historical operation data) and estimated cooling loads using genetic algorithm. Detailed 

procedures can be referred to previous study (Wang and Xu 2006). 

Although the simplified building energy model can predict the building cooling load 

with a high accuracy, this kind of model is usually developed based on the constant 

indoor air temperature which cannot represent the thermal characteristics of building 

thermal masses when indoor air temperature varies during the office hours. Moreover, 

this simplified building energy model is still relatively complicated and difficult for 

dynamic application in smart grid. A more simple and effective model is therefore 

needed to represent the building cooling load variation (i.e., alteration) under different 

indoor temperature control strategies (e.g., precooling and temperature). 

By observing the building cooling load alteration under different indoor temperature 

settings (by simulation tests), trends of the cooling load alteration were found very 

similar with the charging/discharging pattern of electrical battery. Therefore, a 

simplified building thermal storage model (also called “thermal battery” model in this 

study) is developed from the concept of electrical battery. An introduction on the 
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charging/discharging performance of electrical battery is presented in the following 

section. 

Figure 3.2 shows a typical schematic of RC circuit of an electrical battery for 

investigating the charging and discharging processes respectively. The electrical circuit 

contains several key electric devices such as resistances (i.e., Rcharge and Rdischarge), 

capacitance (i.e., ), switch and power source. 

 

Figure 3.2 A typical schematic of RC circuit (electrical battery). 

 For this kind of RC circuit (electrical battery), two scenarios (i.e., charging process 

and discharging process) are discussed respectively. 

(1) The charging process 

When the switch is connected to point a at start (i.e., t=0) and the voltage of the 

capacitance is 0 (i.e., q=0) at same time. Equation (3.8) can be obtained according to 

the energy balance. 

CRS PPP 
charge         (3.8) 

where,  

 iPS          (3.9) 
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charge
2

chargecharge
RiViP RR       (3.10) 

C

q
iViP cC         (3.11) 

dt

dq
i            (3.12) 

As a result, 

C

q

dt

dq
R  charge        (3.13) 

By solving this equation, the characteristics of the charging process can be represented 

by Equations (3.14) and (3.15). Figure 3.3 also shows the changing trends of the 

charging current (i.e., i) and the stored energy (i.e., q). 

  )1()( 1

t

eCtq


        (3.14) 

1

charge

)(

t

e
R

ti


         (3.15) 

where, 

CR  charge1         (3.16) 

The RchargeC (i.e., τ1) is so called capacitive time constant of the charging process. 

When t= τ1, 

q(τ1)=Cε(1-e-1)=0.63 Cε; 

VC(τ1)=ε(1-e-1)=0.63ε; 

i(τ1)=(ε/Rcharge)e
-1=0.37(ε/Rcharge). 

When t=∞,  

q(∞)=Cε(1-1/e∞)=Cε;  

VC(∞)=ε(1-1/e∞)=ε; 

i(∞)=(ε/Rcharge)( 1/e∞)=0. 
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 (a)          (b) 

 

Figure 3.3 Variations of the charging current (a), and the stored energy (b) during the 

charging process. 

(1) The discharging process 

When the switch is connected to point b at start (i.e., t=0), the power source is 

disconnected (i.e., ε=0) and the voltage of the capacitance is assumed as V0 (i.e., q=q0) 

at same time. Then the Equation (3.13) can be rewritten as Equation (3.17). 

C

q
iR  discharge0        (3.17) 

By solving equation, the characteristics of the discharging process can be represented 

by Equations (3.18) and (3.19). Figure 3.4 also shows the changing trends of the 

discharging current (i.e., i) and the stored energy (i.e., q). 

22

00)(


tt

eCVeqtq


         (3.18) 

2

discharge

0)(
)(



t

e
R

V

dt

tdq
ti



        (3.19) 

The RdischargeC (i.e., τ2) is so called capacitive time constant of the discharging process.  

When t= τ2,  

q(τ2)=q0e
-1=0.37q0;  

VC(τ2)= V0e
-1=0.37 V0; 

i(τ2)=-( V0/Rdischarge)e
-1=-0.37(V0/Rdischarge). 
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When t=∞,  

q(∞)=q0/e
∞=0;  

VC(∞)=V0/e
∞=0; 

i(∞)=(V0/Rdischarge)/e
∞=0. 

 
(a)           (b) 

 

Figure 3.4 Variations of the discharging current (a), and the stored energy (b) during 

the discharging process. 

The development of the simplified building thermal storage model (i.e., “thermal 

battery”) is similar with the RC circuit (i.e., electrical battery) presented above due to 

they are based on the similar theories and the same trends. 

3.2 Description of Simplified Building Thermal Storage Model 

In this section, a building thermal storage model is developed in order to predict the 

heating/cooling load alteration potential of a building without active thermal storage 

(i.e., with building thermal masses only). As shown in Figure 3.5, a building (with its 

external and internal masses) is simplified to a lumped thermal mass and assumed to be 

homogeneous. An equivalent temperature ( buiT ) is introduced to represent the energy 

status of the building. In the thermal storage model, heat gains achieved in radiation, 
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convection, sensible and latent heat processes, etc., are assumed not being affected by 

adopting active power demand control strategies. Building thermal characteristics can 

then be simply represented by the identified thermal capacitance and resistances. In 

reality, building heating/cooling load alteration potential is also influenced by the 

indoor air temperature set-point employed and the duration of the adopted power 

demand control. Such effects are considered by involving the building thermal mass 

(Cbui) and the equivalent temperature ( buiT ). The thermal mass of the indoor air volume 

is ignored as it is too small compared with the thermal mass of building structures. 

 

Figure 3.5 Schematic of the building thermal storage model for heating/cooling load 

alteration potential prediction. 

A differential equation can be established according to energy balance in the thermal 

storage model, as shown in Equation (3.20). By solving the Equation (3.20), a 

function indicating the energy status of the building thermal masses can be written as 

Equation (3.21). 

radbui

ibui

buiin
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
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where, 
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
         (3.24) 

where, )0(buiT  is the initial equivalent temperature of building thermal masses. Text is 

the equivalent temperature of external heat sources (e.g., the outdoor and indoor air, 

radiation gains, etc.). Tout and Tin are the outdoor and indoor temperatures. Qrad is the 

radiation gains achieved by both outer and inner surfaces of the building. 

The heat exchange between the building and the indoor air is particularly concerned 

because heating/cooling load alteration potential of the building is determined by the 

processes of energy store/release. By combining the Equation (3.20) and (3.21), the 

heat flux between the building and the indoor air can be written as Equation (3.25). 

 
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   (3.25) 

Similar with the simplified building energy model mentioned previous, the predicted 

building heating/cooling load can be written as shown Equation (3.26) according to 

energy balance. The alteration potential of the building heating/cooling load can then 

be represented by Equation (3.27). It is worth to noticing that, as the gains of a 

building are assumed to be constant in the altered cases and the reference case, the 

gains due to radiation, convection, sensible and latent heat processes, etc. are canceled 

and do not appear in the mathematical formula of the thermal storage model. 

in
in

inbuilafrconvest A
dt

dT
CQQQQQ     (3.26) 

buiest QQ          (3.27) 
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where, Qest is the predicted heating/cooling load of the building. Qconv, Qfr, Qla are the 

convective heat gains, the heat gains from fresh air induction and air infiltration 

respectively. Cin, Tin, Ain are thermal capacitance (per square meter), temperature, 

effective area of indoor air respectively. ΔQest and ΔQbui are the alteration of the 

building heating/cooling load and the changing/discharging rate of the building 

thermal masses. 

The simplified thermal storage model can then be used to predict the 

charging/discharging rate of a building in the form of thermal energy as shown in 

Equation (3.28), and in the form of electrical power demand as shown in Equation 

(3.33). Effective storage capacity and storage efficiency of the building can also be 

predicted, as shown in Equations (3.34) and (3.35) respectively. A detailed description 

on the model development is given in the following section. 

For the scenarios of adopting preheating/precooling and temperature set-point reset 

strategies, the charging/discharging rate (i.e., the heating/cooling load alteration 

potential) of building thermal masses can be summarized in Equations (3.28) to (3.32). 
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where, ΔQpre,c, ΔQset,d, ΔQpre,d are the heating/cooling load alterations corresponding to 

the preheating/precooling and the temperature set-point reset strategies during the 

charging and discharging periods respectively. ΔTin,c and ΔTin,d are the temperature 

set-point differences between the altered cases and the reference case during the 

charging and discharging periods respectively. Rbui,o and Rbui,i are the outer and inner 

thermal resistances of the building respectively.  is a ratio of the outer thermal 

resistance to the inner thermal resistance. tc and td are the durations of charging and 

discharging. τ is the time constant of the building thermal masses. t indicates the time. 

Abui is the effective building surface area involved in the heat exchange process. 

The charging/discharging rate, storage capacity and storage efficiency are considered 

as the key indices of energy storages when integrated with a grid (Eyer and Corey 

2010). The first important index for the building thermal storage is the 

charging/discharging rate. Given the overall COP of the HVAC system, the 

corresponding electrical power demand alteration can be expressed by Equation 

(3.33). 
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where, ΔPe is the electrical power demand alteration of a building. ΔQest is the 

alteration of the building heating/cooling load of the building thermal masses. COPsys is 

the overall COP of the HVAC system. Qpre,c, ΔQset,d, ΔQpre,d are the heating/cooling 
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load alterations corresponding to the preheating/precooling and the temperature 

set-point reset strategies during the charging and discharging periods respectively. 

The other two indices of the building thermal storage are effective storage capacity 

and storage efficiency, which are determined by the thermal characteristics of the 

building and the performance of the HVAC system, as well as the duration of 

charging/discharging. These two indices are given by Equations (3.34) and (3.35). 
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where, Ebui is the effective storage capacity of the building thermal masses. ηbui is the 

storage efficiency of the building thermal masses. 

Although different types of commercial buildings (e.g., light weighted, medium 

weighted and heavy weighted) have different storage capabilities and energy 

performances, the thermal characteristics and the heating/cooling load alteration 

potentials of different types of buildings can be represented by the same thermal 

storage model as well. In the thermal storage model, the thermal capacitance (Cbui) 

and the thermal resistances (Rbui,o and Rbui,i) of a building and the overall COP of the 

HVAC system are the key parameters and coefficient, which need to be identified. 

Identification of the parameters and validation of the thermal storage model will be 

discussed in the simulation case study. Once the parameters and coefficient are 

obtained, effective and reliable indices of the building thermal storage can be 
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characterized accordingly for the day-ahead optimization/interaction and/or 

hour-ahead optimization/interaction of a smart grid. 

It is worth noticing that the thermal storage model is considered to be too simple to 

represent the full characteristics of building heating/cooling load accurately and 

therefore it may be not suitable for predicting building heating/cooling loads. In this 

study, the thermal storage model is only used to predict the building heating/cooling 

load alterations (i.e., the changes of the heating/cooling load referring to 

corresponding reference case) when power demand control strategies are applied. 

3.3 Specifications of Structures and Working Conditions  

For the development of the simplified building thermal storage model, three types of 

building envelope (e.g., external walls and roof, etc.) were selected to investigate the 

performance of the thermal model. Except building envelopes, the other 

configurations of these buildings (i.e., lighted, medium and heavy weighted buildings) 

were all the same: each building has 40 floors with 4m height and 400 m2 area per 

floor, and with window-to-wall ratio of 0.5. The external walls and roof of these three 

types of buildings were selected according to ASHRAE Handbook: Fundamentals 

(1997), as listed in the following Tables. 

Table 3.1 Wall group 2 for composing the light weighted building 

Description 
L 

(mm) 

k 

(W/(m·K)) 

ρ 

(kg/m3) 

C 

(J/(kg·K)) 

R 

(m2·K/W) 

Outside surface resistance 

(A0) 
- - - - 0.059 

13 mm finish (A6) 13 0.415 1249 1090 0.031 

25 mm insulation (B5) 25 0.043 91 840 0.587 

100 mm high density 100 0.813 977 840 0.125 
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concrete block (C3) 

Inside surface resistance 

(E0) 
- - - - 0.121 

Table 3.2 Wall group 17 for composing the medium weighted building 

Description 
L 

(mm) 

k 

(W/(m·K)) 

ρ 

(kg/m3) 

C 

(J/(kg·K)) 

R 

(m2·K/W) 

Outside surface resistance (A0) - - - - 0.059 

150 mm insulation (B15) 150 0.043 91 840 3.520 

100 mm low density concrete block 

(C2) 
100 0.381 609 840 0.266 

100 mm face brick (A2) 100 1.333 2002 920 0.076 

Inside surface resistance (E0) - - - - 0.121 

Table 3.3 Wall group 41 for composing the heavy weighted building 

Description 
L 

(mm) 

k 

(W/(m·K)) 

ρ 

(kg/m3) 

C 

(J/(kg·K)) 

R 

(m2·K/W) 

Outside surface resistance 

(A0) 
- - - - 0.059 

100 mm face brick (A2) 100 1.333 2002 920 0.076 

125 mm insulation (B14) 125 0.043 91 840 2.933 

300 mm high density concrete 

(C11) 
300 1.731 2243 840 0.176 

20 mm plaster or gypsum (E1) 20 0.727 1602 840 0.026 

Inside surface resistance (E0) - - - - 0.121 

A typical summer day with the weather data of Hong Kong (i.e., subtropical climate) 

was adopted for the tests, as shown in Figure 3.6. The overall COPs of the HVAC 

systems in buildings were assumed to be constant (i.e., 2.5). Precooling during 

non-office hours (e.g., precooling at 20°C) and temperature set-point reset during 

office hours (i.e., temperature set-point reset within [22.5°C, 25.5°C]) were selected as 

building power demand control strategies arbitrarily. Office hours were defined from 

09:00 to 18:00, and early start-up (set from 08:30 to 09:00) for the HVAC systems was 

added as well. 



 89 

 

Figure 3.6 Outdoor air temperature and horizontal global solar radiation in a typical 

summer day of Hong Kong. 

Actually, the charging and discharging rate for the building thermal masses are the 

power differences against the reference case corresponding to the increase and 

decrease power demand of the HVAC system. The reference case is that the indoor air 

temperature is fixed to 24°C during office hours and resumes free-floating during 

non-office hours. By comparing the predicted cooling loads of the altered cases and 

the reference case, the cooling load alteration potential of the building can then be 

obtained accordingly. Although there are many options for setting the altered cases 

(i.e., different power demand control strategies for the HVAC system), three scenarios 

are considered when adopting precooling and temperature set-point reset strategies: 1) 

precooling during non-office hours and discharging at the same temperature as the 

reference case (i.e., 24°C) during office hours; 2) no precooling and over-discharging 

at a higher reset temperature (i.e., set-point higher than 24°C) during office hours; 3) 

precooling during non-office hours and over-discharging at a higher reset temperature 
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during office hours. A lower reset temperature (i.e., set-point lower than 24°C) during 

office hours is not considered due to the limited contribution to the cooling load 

alteration. The cooling load alteration potential of the building thermal masses has 

been summarized in Equations (3.28) to (3.32). 

3.4 Parameters Identification of the Simplified Model 

Parameters (i.e., Cbui, Rbui,o and Rbui,i) in the thermal storage model are the key factors 

determining the effective indices and energy characteristics of a building. These 

parameters can be identified using building historical operation data (e.g., a daily 

operation data for the reference case and a daily operation data for the altered case, 

which have similar weather conditions and internal gains). In this case study, genetic 

algorithm-based (GA-based) method was employed to identify the parameters using 

the “actual” cooling load data simulated using TRNSYS. The objective function for 

GA-based parameter identification employed the integrated root-mean-square error for 

the predicted cooling load alteration, as defined in Equation (3.36). 
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Where, J is the objective function of the thermal storage model in GA-based 

identification (i.e., minimization). ΔQact and ΔQest are the “actual” cooling load 

alteration of TRNSYS and the predicted cooling load alteration of the thermal storage 

model respectively. Cbui, Rbui,o and Rbui,i are the parameters of the thermal storage 

model. The searching ranges of thermal capacitance and resistances for the GA-based 

identification are recommended to be between zero and three times the properties of 
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the external wall. A fitness function is also employed for the GA-based identification 

process, as shown in Equation (3.37). 
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Figure 3.6 shows the parameters identification procedure of the simplified building 

thermal storage model based on genetic algorithm. The stop criterion of the GA is 

according to the comparison of the best fitness values of two continuous running 

results. When the relative difference between the maximum fitness values (df) reaches 

a threshold value (εf), the GA then will stop. 
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Figure 3.7 The procedure of GA-based parameters identification for the simplified 

building thermal storage model. 

3.5 Results of Parameters Identification 

Once the first three parameters (i.e., Cbui, Rbui,o and Rbui,i) of the simplified model are 

identified, the rest parameters and coefficients can be calculated accordingly. Storage 

efficiencies can be calculated accordingly for different charging/discharging durations 
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using Equation (3.35). It is worth mentioning that storage efficiency (ηbui) listed in 

table was the minimum one when the longest precooling time (i.e., 8 hours) is set. 

Light weighted buildings had the smallest thermal capacitance and the smallest time 

constant (τ), and heavy weighted buildings had the biggest thermal capacitance and 

the largest time constant. It is worth noticing that medium weighted buildings had the 

highest storage efficiency due to their relatively bigger thermal capacitance and 

medium time constant. The results of parameters identification for three types of 

buildings are listed in Table 3.4. 

Table 3.4 Identified parameters of the simplified building thermal storage model for 

different types of buildings 

Building type Cbui 

(J/m2K) 

Rbui,o 

(m2K/W) 

Rbui,i 

(m2K/W) 

Rbui 

(m2K/W) 

τ 

(hour) 

ηbui 

(-) 

Light weighted 204775 0.3783 0.2303 0.1431 8.14 35.20% 

Medium weighted 248621 0.9236 0.2133 0.1733 11.97 41.61% 

Heavy weighted 400679 0.4333 0.2249 0.1481 16.48 26.47% 

3.6 Summary 

This chapter presents the motivation, inspiration and formulation of developing a 

simplified building thermal storage model for estimating the load alteration potentials 

of passive buildings (i.e., building thermal masses as the only thermal storages). The 

simplified building model (i.e. the 2R1C model), consisting of two resistances (Rbui,o 

and Rbui,i) and one capacitance (i.e., Cbui) was employed to represent thermal 

characteristics of the passive buildings. The specifications of building structures and 

working conditions for the development of the simplified thermal storage model were 

also presented. 

Genetic algorithm-based method was employed to identify the model parameters on 

resistances and capacitance of the simplified 2R1C building model. The model 
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parameters can be identified by minimizing the errors of the “actual” cooling load 

alteration of TRNSYS Type 56 building model and the predicted cooling load 

alteration of the simplified thermal storage model. In other words, it is recommended 

that GA-based parameters identification of 2R1C model to be performed by 

approaching a higher fitness. The procedure of the typical genetic algorithm was 

introduced.
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CHAPTER 4 VALIDATION OF SIMPLIFIED BUILDING 

THERMAL STORAGE MODEL 

 

This chapter presents the validation of the simplified building thermal storage model 

developed in the previous chapter. A complicated building model (i.e., Type 56 as the 

“actual” building) of TRNSYS was employed as reference for this validation. If the 

thermal characteristics (i.e., the load alteration characteristics in this study) of these 

building models agree very well under the same outdoor and indoor conditions, then 

the developed thermal storage model is considered to be an effective model as the 

complicated one. 

A total of twelve test cases, including different weighted structures (i.e., external walls 

and roofs) of buildings under different weather conditions (i.e., summer and spring) 

and indoor air temperature settings are conducted. The parameters of the simplified 

2R1C building thermal model were identified using the Hong Kong weather data and 

shown as Figure3.6 in Chapter 3. Section 4.1 gives an introduction about the indoor 

temperature set points in the simulation tests. Section 4.2 presents the light weighted 

building validation cases. Section 4.3 presents the medium weighted building 

validation cases. Section 4.4 presents the heavy weighted building validation cases. 

Section 4.5 also briefs the application issues of simplified building thermal storage 

model. A summary of this chapter is given in Section 4.6. 

4.1 Introduction 

For summer identification and spring validation cases, the precooling time was set to 8 
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hours and the indoor air temperature set-point was set to 25.5°C during office hours. 

For summer 4 hours precooling validation case, the precooling time was set from 

00:00 to 04:00, the indoor air temperature set-point was set to 25.5°C during office 

hours. For summer temperature set-point reset validation case, no precooling was 

adopted. The indoor air temperature set-point was set to 25.5°C from 08:30 to 11:00 

and from 16:00 to 18:00, 23°C from 12:00 to 14:00, and 24°C for the rest of office 

hours. Comparisons between the “actual” and the predicted cooling load alterations 

for different scenarios are presented in the following sections. 

4.2 Light Weighted Building Validation Cases 

For the light weighted buildings, the physical parameters of the adopted external walls 

and roofs are presented in Table 3.1 of Chapter 3. Comparisons between the “actual” 

and the predicted cooling load alterations of the light weighted building are conducted 

under different demand response control strategies., as shown in Figure 4.1 to Figure 

4.4. –It can be observed that the predicted cooling alterations are a little bit less than 

the “actual” cooling alteration during the precooling period (i.e., charging period) 

while the cooling alterations are a little bit bigger than the “actual” cooling alteration 

during the office hours (i.e., discharging period). The average errors of the simplified 

thermal storage model in predicting the load alteration for light weighted buildings 

was 14.40%. 
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Figure 4.1 The “actual” and the predicted cooling load alterations of the light 

weighted building (parameter identification - Summer 8 hours precooling case). 

 

Figure 4.2 The “actual” and the predicted cooling load alterations of the light 

weighted building (validation - Spring 8 hours precooling case). 
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Figure 4.3 The “actual” and the predicted cooling load alterations of the light 

weighted building (validation - Summer 4 hours precooling case). 

 

 

Figure 4.4 The “actual” and the predicted cooling load alterations of the light 

weighted building (validation - Summer temperature set-point reset case). 
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are conducted under different demand response control strategies., as shown in Figure 

4.5 to Figure 4.8. The predicted cooling alterations are a little bit less than the “actual” 

cooling alteration during the precooling period (i.e., charging period) while the 

cooling alterations are a little bit bigger than the “actual” cooling alteration during the 

office hours (i.e., discharging period). However, the load alterations of the medium 

buildings were more closed to the “actual” alterations that those of the light and heavy 

weighted buildings. The average errors of the simplified thermal storage model in 

predicting the load alteration for medium weighted buildings was 4.88%. 

 

Figure 4.5 The “actual” and the predicted cooling load alterations of the medium 

weighted building (parameter identification - Summer 8 hours precooling case). 
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Figure 4.6 The “actual” and the predicted cooling load alterations of the medium 

weighted building (validation - Spring 8 hours precooling case). 

 

 

Figure 4.7 The “actual” and the predicted cooling load alterations of the medium 

weighted building (validation - Summer 4 hours precooling case). 
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Figure 4.8 The “actual” and the predicted cooling load alterations of the medium 

weighted building (validation - Summer temperature set-point reset case). 
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Figure 4.9 The “actual” and the predicted cooling load alterations of the heavy 

weighted building (parameter identification - Summer 8 hours precooling case). 

 

Figure 4.10 The “actual” and the predicted cooling load alterations of the heavy 

weighted building (validation - Spring 8 hours precooling case). 
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Figure 4.11 The “actual” and the predicted cooling load alterations of the heavy 

weighted building (validation - Summer 4 hours precooling case). 

 

Figure 4.12 The “actual” and the predicted cooling load alterations of the heavy 

weighted building (validation - Summer temperature set-point reset case). 
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external walls (physical properties and window-wall ratio as well) as the external 

walls play important roles in external heat gain and indoor thermal energy storage. In 

this study, the default window-wall ratio is set to be 0.5, the building types consists of 

three weighted levels: light, medium and heavy. Except light weighted buildings (the 

average error is 14.40%), the model accuracy are quite high (the average errors are 

4.88% for medium weighted buildings and 6.37% for heavy weighted buildings). 

Actually, new constructed commercial buildings in the urban areas usually have high 

window-wall ratios and light weighted external walls due to the building architecture 

design (e.g., facade design). This kind of building design may result low storability of 

the external walls. The developed building thermal storage model may be not suitable 

for buildings with light building thermal masses (i.e., low amount of the total building 

thermal capacitance especial the thermal capacitance of the building envelope). 

The simplified building thermal storage model can well represent thermodynamic 

performance (e.g., “charge” and “discharge” processes) of the building envelope and 

the internal thermal masses (the window-wall ratio is lower than 0.5, the average 

thermal capacitance is larger than 204775 J/m2K). In addition, this simplified building 

thermal storage model is not suitable for predicting the whole building heating/cooling 

load because the node placement in this 2R1C model is too simple represent the 

thermodynamic of the building. 

The indoor air temperature set point of the preheating/precooling strategy during the 

off-peak period (e.g., the night) should be carefully selected because the set point can 

significantly affect the power consumption of HVAC systems, as well as the storage 

efficiency (the energy loss of the building thermal masses is difficult to be controlled 
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due to the building envelope has already been constructed). Although the simulation 

and validation cases of the simplified building thermal storage model were conducted 

with the subtropical weather data (e.g., Hong Kong), it is also suitable for the other 

weather conditions. It is worth mentioning that the dehumidification of indoor air (i.e., 

relative humidity control) is not considered in the developed storage model. It is 

necessary to modify the model if the prediction error of the heating/cooling load 

alteration cannot be ignored. 

4.6 Summary 

Twelve test cases are conducted for the validation of the developed simplified building 

thermal storage model through the comparisons of thermal characteristics between the 

predicted results from the model and the “actual” results of TRNSYS. Comparison 

results shown that the predicted cooling load alterations agreed well with the “actual” 

ones. The average errors of the thermal storage model for light weighted, medium 

weighted and heavy weighted buildings were 14.40%, 4.88% and 6.37% respectively. 

The simplified building thermal storage model can well represent the thermodynamic 

performance (i.e., heat transfers among the building, indoor and outdoor space) of 

different types of building envelopes (e.g., external walls and roofs) including light, 

medium and heavy weighted walls under different weather data. It is worth 

mentioning that, the simplified building thermal storage model is suitable for 

predicting the heating/cooling load alteration potentials of the passive building under 

different indoor air temperature settings while it is not suitable for predicting the 

building heating/cooling load. In addition, the simplified building thermal storage 
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model is relatively simple in programming and has low computation load. It is 

therefore suitable for the applications of building load alteration estimation, system 

optimal control and smart grid interaction, etc. 
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CHAPTER 5 BUILDING SYSTEMS AND DYNAMIC 

TEST PLATFORM 

 

A dynamic simulation platform, based on TRNSYS and MATLAB, is constructed in 

this study for both the commercial buildings with complex building central chiller 

plant systems and the smart grid with the electricity pricing mechanism. The platform 

is used to demonstrate the interactive between buildings and the grid, and to evaluate 

the overall energy performance of buildings and the grid under the optimal control 

strategy developed in this study. Case studies focusing on active thermal storage 

systems are also conducted based on the EnergyPlus and this platform, respectively. 

Section 5.1 presents the introduction of the simulation platform for commercial 

buildings and the smart grid. Section 5.2 presents the development of the dynamic 

simulation platform. The major component models and their 

interconnections/interactions used to construct the complex dynamic simulation 

platform are also presented. Section 5.3 presents an electricity pricing mechanism 

adopted in this study. Section 5.4 introduces the test conditions and control strategies 

for the simulation platform. A summary of this chapter is given in Section 5.4. 

5.1 Introduction 

Power suppliers and consumers are located in power upstream and downstream of a 

traditional grid respectively. The power flow and information flow work in a 

unidirectional way which may cause power imbalance since the energy information 

cannot be exchanged in time. With increasing the integration of distributed 
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generations (e.g. power generated by kinds of renewable energies) and the wide 

application of information technology, the smart grid enables both the power flow and 

the information flow to work in a bidirectional way which may bring energy 

optimization potentials by taking proper interactions within participants (e.g., power 

suppliers and consumers, etc.). Estimation and optimization of building electrical 

demand response potentials are based on a bidirectional operation infrastructure 

between the smart grid and buildings. 

In order to estimate demand response potentials of buildings, building electricity 

sheddable load (e.g., building heating/cooling load) prediction is therefore becoming 

an important premise. As shown in Figure 5.1, individual buildings in different 

districts predict their own loads (e.g. a day-ahead) for further load aggregation. The 

aggregate load of an electrical grid can be expressed by the Equation (5.1). Actually, 

the aggregate load profile will affect electricity prices (e.g. marginal cost of generation 

and transmission) setting once dynamic pricing is adopted in smart grid. In reverse, 

electricity prices setting will also affect buildings to change their energy behaviors by 

considering operation cost. 





M

j
jtottot pP

1
,         (5.1) 

where, Ptot and ptot,j indicate the aggregate load and the electricity load of individual 

buildings respectively. M indicates the total number of buildings being aggregated. j 

indicates the jth building. ptot,j consists of two parts of load: 1) controllable load 

(Pcont,j), and sheddable load (Pshed,j). 
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Figure 5.2 shows a process of building altering their electricity load with different 

control strategies when facing dynamic prices given in advance (e.g., a day-ahead). 

Dynamic load alteration of building and dynamic pricing mechanism of smart grid are 

need to be addressed for developing interactive control strategy and characterizing 

building thermal energy storages. 

 
Figure 5. 1 Schematic of interactive framework between smart grid and commercial 

buildings - load aggregation for dynamic pricing. 
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Figure 5.2 Schematic of interactive framework between smart grid and commercial 

buildings - demand response under dynamic prices. 
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active thermal mass (e.g. ice storage), and passive thermal mass (e.g. building thermal 

mass). Load management of commercial buildings is focused on heating, ventilation, 

and air conditioning (HVAC) systems mainly because of two reasons: (1) the 

percentage consumption for HVAC systems is over 45% of total electricity in most 

commercial buildings (Lam et al. 2004), (2) the load management flexibility for 

HVAC systems can be controlled due to the extensive use of building automation 

systems (BAS). Proper control strategies of HVAC systems were developed and 

implemented under a certain electrical pricing for operation cost optimization. 

However, previous building load management was conducted in a passive and 

unidirectional way without interacting with electrical pricing. Moreover, study on 

integrating commercial buildings into smart grid was seldom found. This chapter 

therefore develops a simulation platform for the interactive load management of 

HAVC systems in commercial buildings by considering dynamic pricing, dynamic 

load management and the interactions between them, in order to achieve overall 

optimization of load management and operation cost for both power supply and 

demand sides. Building energy information, such as load shifting potentials of 

individual buildings and aggregated load profile of these buildings, have profound 

influence on power generation arrangement and electrical pricing at the supply side. 

Building energy information can generally be obtained by BAS. Meanwhile, BAS can 

also provide a communication platform for integrating commercial buildings into 

smart grid. 

5.2 A Dynamic Simulation Platform for Buildings and Smart Grid 
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A simulation platform for simulating the complex chilling systems as mentioned 

previously is developed based on TRNSYS and MATAB. TRNSYS is a complete and 

extensible simulation environment for the transient simulation of systems, including 

multi-zone buildings. It is widely used by energy engineers and researchers to validate 

new energy concepts, from simple domestic hot water systems to the design and 

simulation of buildings and their equipment, including control strategies, occupant 

behavior, alternative energy systems (wind, solar, photovoltaic, hydrogen systems), etc. 

The TRNSYS library includes a great number of commonly used components of 

thermal and electrical energy systems, as well as component routines to handle inputs 

of weather data or other time-dependent forcing functions and outputs of simulation 

results. The modular nature of TRNSYS endows the program with tremendous 

flexibility, by which the mathematical models that are not included in the standard 

TRNSYS library can be developed and added into the program by users. One of the 

key factors in TRNSYS’ is its open, modular structure. The source code of the kernel 

as well as the component models is delivered to the end users. This simplifies 

extending existing models to make them fit the user’s specific needs. The DLL-based 

architecture allows users and third-party developers to easily add custom component 

models, using all common programming languages (C, C++, PASCAL, FORTRAN, 

etc.). In addition, TRNSYS can be easily connected to many other applications, for 

pre- or post-processing or through interactive calls during the simulation (e.g. 

Microsoft Excel, MATLAB, COMIS, etc.). 

MATLAB (matrix laboratory) is a numerical computing environment and 

fourth-generation programming language. It allows matrix manipulations, plotting of 
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functions and data, implementation of algorithms, creation of user interfaces, and 

interfacing with programs written in other languages, including C, C++, Java, and 

FORTRAN. In this study, MATLAB is employed to simulate the dynamic electricity 

pricing and compute the energy operation cost of individual buildings, as well as 

accomplish the interactions and communication between the buildings and the smart 

grid. 

The commercial buildings, with the complex chilling systems constructed in the 

simulation platform, employ the detailed physical models of components including 

chillers, pumps, air handling units (AHU) and preliminary air handling units (PAU), 

controllers, etc. to represent the energy and power performance of the HVAC systems.  

As presented previously, the central chilling system consumes most of energy of the 

overall air-conditioning system. Therefore, the dynamic simulation platform 

constructed in this study is mainly concerning on the central chilling system. The 

multi-zone building model (i.e., Type 56) of TRNSYS 16 is employed to simulate the 

thermal behavior of the buildings. The heat load from the occupants, equipment and 

lighting system and weather data are also considered in the simulation as input files. 

The weather condition used is the data of the typical year in Hong Kong. Dynamic 

simulation of HVAC systems provides a convenient and low cost tool in testing, 

commissioning and evaluating the control strategies of HVAC systems or the control 

programs implemented in building automation systems (BAS). Dynamic models, 

which are convenient to use and well represent the dynamic characteristics in all the 

aspects of concern, are the basis for practical applications. 
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5.2.1 Building Model 

The Type 56 multi-zone building model provides a more efficient way to calculate the 

interactions between external environment and internal zones, as well as within the 

internal zones by solving the coupled differential equations utilizing matrix inversion 

techniques. The effects of both short-wave and long-wave radiation exchange are 

accounted for with an area ratios method. The walls, ceilings, and floors are modeled 

according to the SHRAE transfer function approach. The building model also provides 

detailed description of a multi-zone building that is simplified with the use of the 

visual interface TRNBUILD in TRNSYS. 

Due to the complexity of a multi-zone building the parameters of Type 56 are not 

defined directly in the TRNSYS input file. Instead, two files are assigned containing 

the required information, the building description (*.BLD) and the ASHRAE transfer 

function for walls (*.TRN). TRNBUILD (formerly known as PREBID) has been 

developed to provide an easy-to-use tool for creating the *.BLD and *.TRN files. 

Starting with some basic project data, the user describes each thermal zone in turn. 

Finally, the desired outputs are selected. All data entered are saved in a so called 

building file (*.BUI), a readable ASCII text file. The BUI file is very handy for 

checking data entered in TRNBUILD. It is worth mentioning that the thermal comfort 

calculation is a new feature in TRNBUILD 1.0 based on EN ISO 7730. The user can 

switch the comfort module on and define a comfort type for the zone by selecting a 

previously defined type or a new type. 
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5.2.2 Simplified Building Thermal Storage Model 

The simplified building thermal storage model is developed based on the simplified 

building energy model developed by the Wang and Xu (2006). According to the 

equivalence principle, the simplified building energy model (3R2C+2R2C model as 

shown in Figure 5.1) can be transferred to the simplified building the model (2R1C 

model as shown in Figure 5.2). 

For the simplified building energy model, 3R2C model is employed to represent 

building envelope (including external walls, roof and windows, etc.) and 2R2C model 

is employed to represent building internal masses (including internal walls, floors, 

ceilings, partitions and furniture, etc.). For the simplified building thermal storage 

model, a building (including its external and internal masses) is simplified to a lumped 

thermal mass and assumed to be homogeneous. An equivalent temperature (Tbuilding or 

Tbui) is employed to represent the energy status of the building. An operation 

temperature (Toperation or Topt) is employed to represent the indoor thermal environment 

of the building. Building thermal characteristics can then be simply represented by the 

overall building thermal capacitance (Cbuilding or Cbui), the overall external thermal 

resistance (Rexternal or Rext) and the overall external thermal resistance (Rinternal or Rint). 
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Figure 5.1 Restructuring of the simplified building energy model. 

 

 

Figure 5.2 The simplified building thermal storage model based on equivalence 

principle. 
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According to the energy balance, 
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The detailed derivation process of the simplified building thermal storage model can 

refer to the Chapter 3. The thermal comfort is calculated according to the program 

developed by Håkan Nilsson (2005), more details of program code are listed in 

Appendix A. 

5.2.3 Major Component Models of HVAC Systems 

Chillers 

The chiller model employed in this study is used to simulate the chiller dynamic 

performance under various working conditions, which is based on the model 

developed by Wang et al. (2000). The physical parameters of chillers such as the 

impeller tip speed (u2), impeller exhaust area (A), impeller blades angle (β) and other 

coefficients/constants are considered in the chiller model. The compressor of chiller is 

modeled on the basis of mass conservation, Euler turbo-machine equation and energy 

balance equation. The Euler equation is modified by considering the impeller exit 

radial velocity (cr2) distribution and derived as in Equation (5.7). Energy balance 

equations are applied to the compressor control volume and impeller control volume 
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resulting in Equations (5.8) and (5.9), respectively. The hydrodynamic losses (hhyd,com 

and hhyd,imp) in the two control volumes are considered to be composed of three 

elements, i.e., flow friction losses, inlet losses and incidence losses, as shown in 

Equations (5.10) and (5.11), respectively. 
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where hth is the compressor theoretical head, hhyd is the hydrodynamic losses, hpol is the 

polytrophic compression work, B is the ratio of the impeller channel depth at the 

intake to that at exhaust, υ1 and υi are the specific volumes at the impeller intake and 

exhaust, respectively, ci is the vapor velocity at the impeller exhaust, θ is the inlet 

guide vane angle, ζ, ψ1, ψ2, χ are the introduced constants, and subscripts com and imp 

indicate compressor and impeller, respectively. 

The evaporator and condenser are simulated using the classical heat exchanger 

efficiency method. The chiller power consumption (W) is calculated on the basis of 

the internal compression power (Winter), as shown in Equation (5.12), which consists 

of three elements, i.e., internal compression power, a variable part of the losses 

proportional to the internal compression power and a constant part of the losses (Wl). 

Two thermal storage units (one at the cooling water inlet of the condenser and the 
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other at the chilled water inlet of the evaporator) are used to represent the dynamic 

responses of the chiller to the changes of working conditions (inlet temperatures) and 

the dynamic effects of the working condition changes on the compressor load. They 

are mathematically represented by two first-order differential equations as shown in 

Equations (5.13) and (5.14), respectively. 
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where α is a coefficient, T is the temperature, T′ is the temperature after introducing 

dynamic effects, and the subscript in indicates inlet. 

Pumps 

The variable speed pump is simulated by a steady-state pump, a steady-state 

frequency inverter and a dynamic actuator of the inverter (Wang 1998). The frequency 

at the outlet of the inverter is linear to the input signal from the actuator. The 

efficiency of the inverter is included within the model of the pump energy 

performance. The energy performance and pump characteristics at various speeds are 

simulated using fourth-order polynomial functions as shown in Equations (5.15) and 

(5.16), respectively. The coefficients in the equations can be determined by regression 

using the performance data from the manufacturer catalogues. 
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where Wpu and Ppu are the pump power consumption and pressure head, respectively, 

Freq is the frequency input to the pump, Mpu is the water flow rate through a pump, G 

and E are coefficients. 

AHU/PAU coils 

The AHU and PAU coil model is simulates the outlet water and outlet air states. In 

this study, the physical model developed by Wang (1998) is used. The AHU coil is 

modeled using a dynamic approach. A first-order differential equation, as shown in 

Equation (5.17), is used to represent the dynamics of a coil with lumped thermal mass. 

The dynamic equation based on the energy balance ensures that the energy is 

conserved. The outlet air and water temperatures (ta,out, tw,out) are computed using 

Equations (5.18) and (5.19) respectively, by the heat balances of both sides. The heat 

transfer calculation applies the classical number of transfer units (NTU) and heat 

transfer effectiveness methods. The classical method to calculate the effect of the fins 

in the air side on the thermal resistance is used. 
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where, Tc is the mean temperature of the coil, Ta,in and Tw,in are the inlet air and water 

temperatures, Cc is the overall thermal capacity of the coil, Ca and Cw are the capacity 

flow rates of air and water, R1 and R2 are the overall heat transfer resistances at air and 
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water sides, SHR is the sensible heat ratio. 

5.2.4 Smart Grid Model 

MATLAB is employed to communicate the information of buildings and a smart grid, 

optimize the buildings power demands. MATLAB is also used to schedule the grid 

power generations and set the dynamic electricity prices. In the simulation, a 

small-scale smart grid is simulated for serving a total of 400 passive commercial 

buildings covering three different weighted buildings (including 100 light weighted 

buildings, 200 medium weighted buildings and 100 heavy weighted buildings). The 

power supply sources of the smart grid are assumed to consist of three categories (i.e., 

1,000 MW of wind and solar generations, 1,000 MW of coal-fired generation and 500 

MW of gas-fired generation. An optimal generation profile (i.e., the grid operates at a 

load level 1000 MW during non-office hours and 1,500 MW during office hours) is 

also defined. It is worth mentioning that, in the smart grid model, uncertainty and 

intermittence of renewable energies were not considered in detail for the overall 

power supply management. 

The power characteristics of buildings such as power demands, power demand 

alterations and storage efficiencies are required for smart grid optimization. The smart 

grid is also required by the end-users (i.e., buildings) to set proper dynamic electricity 

prices in order to incent the power demand controls of individual buildings. 

5.2.5 Electricity Pricing Mechanism 

The cost of electricity (i.e., electricity price) depends on many factors including cost 

of fuels, marginal cost of generation, maintenance and transmission, profits, 
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economics, etc. In fact, there are already many pricing mechanisms applied in the 

reality such as time-of-use pricing (TOU), critical peak pricing (CPP), real time 

pricing (RTP), etc. The basic idea of these pricing mechanisms is that, the electricity 

price is used to represent the marginal cost of electricity and the balance status of 

power supply and demand, and aims to maximize the overall economic benefits. 

Schweppe et al. (1988) developed a classic electricity pricing principle and pointed 

out the relationship between the electricity price and the power demand. The 

relationship is represented and compromised by two curves: supply curve and demand 

cure. The details will be described in Chapter 6 and shown in Figure 6.3. 

Although dynamic pricing is a very complicated process related to many factors (e.g., 

technical, economic, and operational, etc.), a simple dynamic pricing mechanism is 

developed and adopted in the simulation platform, as shown in Equation (5.20). 
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where, r is the dynamic price of electricity. P is the aggregate electricity load of 

end-users. ri is the pricing factor of the ith power supply source. Pi is the generation 

capability of the ith power supply sources. The power supply sources are arranged to 

generate at a specific sequence (i.e., the number order from 1 to n) by considering 

their availabilities and marginal costs. In other words, the grid prefers to consume the 

energy sources with lower cost and/or lesser controllability (e.g., renewable energy 

sources). The dynamic pricing mechanism can be described as follows: The electricity 

price decreases when the power supply is surplus and/or the supply cost is cheap while 
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the electricity price increases when the power supply is inadequate and/or the supply 

cost is expensive. It is worth mentioning that, in order to incent the activities of 

end-users in specific cases, the factors of power supply sources in determining the 

price should be set very carefully. 

5.3 Test Conditions and Control Strategies 

For the commercial buildings simulated in TRNSYS, the schedule of internal heat 

gains come from the occupancy, lighting, equipment, fresh air and infiltration air, etc., 

as shown in the Figure 5.3. The peak of heat gains usually falls in the office hours, and 

results a peak cooling load in the buildings combined with the external heat gains. 

 

Figure 5.3 The daily schedule of different heat internal gains. 

In order to find out the charging/discharging trends and the thermal characteristic of 
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strategies are proposed for individual buildings against reference control strategy (i.e. 

night setback) in a typical summer day in Hong Kong. Temperature setting of night 

setback is 23.0°C during office hours (from 9:00 a.m. to 6:00 p.m.), and 26.5°C during 

non-office hours (from 6:00 p.m. to 9:00 a.m.). Settings for precooling control 

strategies are listed in Table 5.1, which consists of three precooling modes (light, 

moderate, and deep precooling respectively) and three precooling temperature set 

points (20.5°C, 19.5°C and 18.5°C respectively). Temperature remains 23.0°C during 

office hours and is accordingly set to different precooling patterns during non-office 

hours for precooling control strategies. For instance, column of moderate precooling 

at 19.5°C means temperature is set to 19.5°C from 3:00 a.m. to 9:00 a.m. (6 hours 

precooling before office hours), and then set to 23.0°C during office hours and set 

back to 26.5°C during the rest hours. The results of the simulation tests showing the 

energy performance for different indoor air temperature control strategies are listed in 

Table 5.2. 

Table 5.1 Indoor air temperature control strategies for charging/discharging of 

building thermal masses 

Indoor Air Temperature 

Set 

Point during Precooling 

(°C) 

Precooling Modes 

Light 

Precooling 

(hours) 

Moderate 

Precooling 

(hours) 

Deep 

Precooling 

(hours) 

20.5 3.0 (CS7) 6.0 (CS8) 9.0 (CS9) 

19.5 3.0 (CS4) 6.0 (CS5) 9.0 (CS6) 

18.5 3.0 (CS1) 6.0 (CS2) 9.0 (CS3) 

Table 5.2 Energy performance of building thermal masses under different indoor air 

temperature control strategies 

Control Strategies of 

Precooling 

Energy Performance of Building Thermal 

Mass 
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Set Point and Precooling 

Time 
Storage 

Efficiency 

Energy 

Increase 

Load Shift 

20.5°C 

3 hours 80.66% 1.00% 3.77% 

6 hours 64.32% 2.96% 4.78% 

9 hours 54.38% 4.94% 5.32% 

19.5°C 

3 hours 79.60% 1.24% 4.32% 

6 hours 63.43% 3.54% 5.50% 

9 hours 53.70% 5.84% 6.13% 

18.5°C 

3 hours 81.05% 1.30% 5.03% 

6 hours 64.51% 3.92% 6.37% 

9 hours 54.52% 6.54% 7.10% 

5.4 Summary 

This chapter describes a dynamic simulation platform based on TRNSYS and 

MATLAB programs. Building models, major components of HVAC systems models 

and smart grid model are also introduced in this chapter. A simple dynamic pricing 

mechanism is developed for the interactions between buildings and smart grid. 

Different indoor air temperature control strategies are developed to investigate the 

energy performance especially the energy storage characteristics of building thermal 

masses. The interactive power demand management strategy of the passive buildings 

for smart grid application, the chiller demand limit control strategy are developed, 

tested and validated based on this dynamic simulation platform. 
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CHAPTER 6 AN INTERACTIVE BUILDING POWER 

DEMAND MANAGEMENT STRATEGY 

 

With the increasing use and integration of renewable energies, the power imbalance 

between the supply side and demand side has become one of the most critical issues in 

the developing smart grid. As the major power consumers at the demand side, 

buildings can perform as distributed thermal storages to help relieving power 

imbalance of a grid. However, power demand alteration potentials of buildings and 

energy information of grids might not be effectively predicted and communicated for 

interaction and optimization. This chapter presents an interactive building power 

demand management strategy for the interaction of commercial buildings with a smart 

grid and facilitating the grid optimization. The simplified building thermal storage 

model is employed for predicting and characterizing the power demand alteration 

potentials of individual buildings together with a model for predicting the normal 

power demand profiles of buildings. The simulation test results show that commercial 

buildings can contribute significantly and effectively in power demand management 

or alterations with building power demand characteristics identified properly. 

Section 6.1 presents an introduction of the existing studies on smart grid and discusses 

the feasibility of developing an interactive building power demand management 

strategy. Section 6.2 presents the concept and formation of interactive building power 

demand management strategy. The developed interactive management strategy 

consists of three parts: interaction with grid by adopting dynamic pricing, optimization 

of building power demand management, and implementation structure of the 
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interactive strategy. Section 6.3 presents the validation of the interactive strategy with 

a case study. A summary of this chapter is given in Section 6.4. 

6.1 Introduction 

Smart grid is considered as a promising solution concerning its improvements and 

benefits in power reliability, energy efficiency, economics and sustainability (DOE 

2003; European Commission 2006; Yuan and Hu 2011). In recent years, many efforts 

have been made on different aspects of smart grid including but not limited to 

micro-grid (California Energy Commission 2003), distributed generation and 

distributed storage (Toledo et al. 2010), smart meter (Depuru et al. 2011), information 

and communication technologies (Wissner 2011), advanced metering infrastructure 

(RG&E 2007), supervisory control and data acquisition (Kang et al. 2011), demand 

response (Faria and Vale 2011) and energy management system (Kokai et al. 1998). 

By conducting efficient acquisition of energy information and optimal controls of 

operation, smart grid can achieve a better power reliability and a higher overall energy 

performance when integrating different energy sources, storages and loads. 

Although smart grid researches and applications have involved end-users (e.g., 

buildings) in the form of demand response (i.e., incentive-based and price-based 

(Albadi and El-Saadany 2008)), buildings can only conduct their power demand 

controls in a passive and static means by receiving signals (e.g., electricity prices) and 

controls (e.g., direct load controls) from the grid. Moreover, attention has been seldom 

paid on the considerable thermal energy capacities of buildings, which can be 

considered as distributed storages to help relieving power imbalance caused by 
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renewable generations or other scenarios. Actually, buildings have been becoming the 

major energy consumers with consuming around 40% of total end-use energy all over 

the world (Kolokotsa et al. 2011) and over 90% of total electricity in some urban areas, 

such as Hong Kong (Hong Kong EMSD 2012). Buildings can help improving energy 

performance of an electrical grid by shifting loads and reducing peak demands. 

Previous studies mainly focused on the impacts and benefits of adopting different 

power demand control strategies under specific electricity prices in buildings (Braun 

et al. 2001; Henze 2005; Sun et al. 2010). However, characterization of power demand 

alteration potentials of buildings and their aggregate effect for grid dynamic 

optimization have rarely been addressed. 

With the development and extensive use of building automation systems, information 

and communication technologies and grid energy management system, a bidirectional 

communication between buildings and a grid can be widely established and used for 

interacting and optimizing the power supply and the demand. It is worth mentioning 

that, power demands of end-users and electricity prices of the grid are the key 

information for interaction and optimization between power supply and demand sides 

(Schweppe et al. 1988). Buildings, as one of the most important participants involved 

in a smart grid, can provide useful information such as energy behaviors, power 

demand and the corresponding alteration potentials for grid optimal arrangement. In 

fact, smart meters have been successfully applied for residential buildings in many 

countries for collecting detailed energy data (Olmos et al. 2011). However, energy 

behaviors and power demand alteration potentials of commercial buildings have not 

been studied and quantified for grid scale interaction and optimization (Guan et al. 
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2010). 

This chapter therefore proposes an interactive building power demand management 

strategy, which includes three major parts/steps: 1) prediction of building power 

demand and characterization of the corresponding alteration potential, 2) interaction 

with grid by adopting dynamic pricing, 3) optimization of building power demand 

control. The interactive strategy quantifies the thermal characteristics and power 

demand alteration potentials of passive buildings (i.e., buildings without active 

thermal energy storages) by adopting a building thermal storage model developed in 

Chapter 3. Simulation case study is also conducted for testing the interaction and 

optimization between a group of commercial buildings and a small-scale smart grid. 

6.2 The Interactive Building Power Demand Management Strategy 

Buildings are the major energy (especially power) consumers today and their shares are 

still increasing due to the urbanization. Buildings can benefit an electrical grid by 

relieving the pressure of power imbalance during different energy processes, 

particularly with the application of energy storages. Compared with traditional grids, 

smart grids enable a bidirectional operation (i.e., “two-way” connection with power 

flow and information flow) to improve power reliability and energy performance. A 

generic interactive framework is proposed in this chapter for establishing the 

bidirectional communication between supply and demand sides of a smart grid, as 

shown in Figure 6.1. Different participants such as power suppliers, deliverers and 

consumers are involved and connected by an information and data communication 

network. An information management and control center is employed by the smart grid 
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for data and information collection, reliability and performance analysis, generation 

management and optimal control. It is worth mentioning that, the bidirectional 

connection and communication between smart meter and building automation system 

of commercial building are more complicated than that of the other two sectors. The 

requirements of information exchange and control logics for integrating building 

automation system and smart metering system need to be further addressed due to their 

different system configurations, communication protocols and time delays, etc. A 

generic integration framework, obtaining building automation system and smart 

metering system, therefore needs to be developed for involving commercial buildings 

in smart grid. 

 

Figure 6.1 Communication framework for power supply and demand sides of the 

smart grid. 
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Commercial buildings and their thermal masses are investigated by considering the 

availabilities of thermal storage capability, energy information acquisition and control 

strategy implementation. Figure 6.2 illustrates a bidirectional power and information 

connections of suppliers and consumers (i.e., commercial buildings). Commercial 

buildings and their thermal masses are considered as thermal storages storing/releasing 

energy in form of thermal energy. By having power information (e.g., generation 

capabilities and power demand alteration potentials) and incentive programs (e.g., 

dynamic prices) of power supply and demand sides, the overall energy performance 

can be improved with active participant of buildings. It is worth noticing that only 

simple pricing algorithm and generation capability profile are adopted in this study to 

test the buildings-grid interactive operation particularly the potentials and effects of 

buildings. 

 

Figure 6.2 Schematic of interaction between commercial buildings and the smart grid. 

The interactive building power demand management strategy is proposed for 

integrating commercial buildings into the smart grid involving four main steps: 1) 

prediction of building power demand, 2) characterization of the building demand 

alteration potential and associated efficiency degradation, 3) grid dynamic prices 
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accomplishment, and 4) optimization of building power demand control, as shown in 

Figure 6.3. 

 

Figure 6.3 Schematics of the interactive power demand management strategy for 

commercial buildings. 

In this interactive strategy, predictions of reference and altered building power 

demands are accomplished by the following three schemes: building power demand 

predictor, characterization of building power demand alteration potential and altered 

building power demand predictor. Building power demand predictor is employed 

online to predict the reference electricity load profiles of buildings (Pi) (i.e., the 

original power demand without active power demand controls). Characterization of 

building power demand alteration potential is performed offline to identify the 

parameters of the simplified building thermal storage model. Altered building power 
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demand predictor is employed online to predict the altered electricity load profiles of 

buildings (Pi′) when adopting given active power demand controls. 

The interaction between buildings and the smart grid results in the optimized incentive 

dynamic prices based on the possible altered power demand profiles and the available 

power generations including efficiency issues. Optimization of the grid incentive 

dynamic prices is accomplished when a compromised balance between the power 

supply and the demand is established. Finally, having the incentive prices determined 

by the grid through interacting the buildings and the grid, optimal building power 

demand control aims to achieve maximum operation energy cost savings of individual 

buildings. 

6.2.1 Estimation of Building Power Demand and Its Alteration 

Smart grid requires effective and reliable predictions of the power demands and their 

alteration potentials, as well as the corresponding realization costs of a large number of 

buildings for the grid generation management and energy optimization. Therefore, 

these prediction methods or models should be generic, simple and suitable for online 

applications when a large number of buildings are involved in a grid. Convenience in 

using the models and identifying the model parameters (i.e., building characteristic 

indices) is crucial when implementing the interactive strategy. 

There are many methods available for both supply and demand sides to obtain the 

power demands of end-users (e.g., buildings). In this study, power demand 

characteristics of commercial buildings in an interactive smart grid are quantitatively 
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represented by the reference power demands and the corresponding alteration 

potentials. 

Building power demand prediction using the simplified building energy model 

The total power demand (i.e., electricity load) of a commercial building can be divided 

into two parts: the sheddable power demand and controllable power demand. 

Generally, the electricity load of a commercial building is contributed by building 

service systems including heating, ventilation and air-conditioning (HVAC) systems, 

lighting and electrical equipment, lifts and elevators, etc. Electricity loads of lighting, 

electrical equipment, transportation and other appliances can be considered as the 

sheddable demands, which can be conveniently obtained according to their operation 

schedules. By contrast, electricity loads of HVAC systems are controllable loads which 

are possible to be altered by power demand controls. They are complex to be predicted 

due to the dynamic nature of their working conditions. The total power demand of a 

commercial building can then be represented by Equation (6.1). 

shedconttot PPP          (6.1) 

where, Ptot is the total power demand of a building. Pcont is the controllable power 

demand of the building which is mainly contributed by HVAC systems. Pshed is the 

sheddable power demand of the building which is contributed by the building service 

systems other than HVAC systems and other electrical appliances. 

The thermal storage of a building (e.g., building thermal masses, phase change 

materials, water/ice storages, etc.) is the major contributor of the power demand 

alteration potential. Different power demand control strategies of the HVAC system 

result in different electricity load profiles. The predicted power demand of a HVAC 
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system is the function of the predicted heating/cooling load of the building and the 

HVAC overall coefficient of performance (COP), as shown in Equation (6.2). 

sys

est
cont

COP

Q
P          (6.2) 

where, Qest is the predicted heating/cooling load of a building. COPsys is the overall 

COP of the HVAC system. It is because buildings may purchase heating and cooling 

in other ways such as heating/cooling from the district heating/cooling system. Many 

methods and models are developed for building load prediction, including physical 

model, black box model and grey box model. In this study, a simplified building 

energy model (i.e., grey box model) was selected and employed for predicting the 

heating/cooling load of a building without active thermal storage (Wang and Xu 2006), 

as shown in Equation (6.3). Model details were already presented in Chapter 3. 
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where, T and Q are the temperature and heat gain respectively. R and C are thermal 

resistance and thermal capacitance respectively. A is the effective surface area 

involved in the heat exchange process.  

Building power demand alteration potential prediction using the simplified building 

thermal storage model 

In this chapter, the simplified building thermal storage model developed in Chapter 3 is 

used to predict the power demand alteration potential of the passive buildings. 

For the scenarios of adopting preheating/precooling and temperature set-point reset 

strategies, the corresponding electrical power demand alteration (i.e., 
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charging/discharging rate) of a passive building (i.e., a building with building thermal 

masses only) can be expressed by Equation (3.33). More details can refer to the 

development and the validation of the simplified building thermal storage model in 

Chapter 3 and Chapter 4, respectively. 

6.2.2 Interaction with Grid by Adopting Dynamic Pricing 

As the energy behaviors of electricity end-users (e.g., power demands of buildings) 

could be dramatically influenced by electricity pricing, electricity pricing is the other 

key factor in an interactive strategy for grid interaction and optimization. The 

electricity pricing is affected by many factors including cost of fuels, marginal cost of 

generation, transmission and maintenance, utility profits, economics, etc. There are 

already many pricing mechanisms applied such as time-of-use pricing (TOU), critical 

peak pricing (CPP), real time pricing (RTP, i.e., dynamic pricing), etc. Schweppe et al. 

(1988) developed a classic pricing model named spot pricing (i.e., dynamic pricing) 

and pointed out the relationship between the electricity price and the power demand. 

Figure 6.4 shows two curves with a simple compromising process. Supply curve 

indicates that the electricity price increases when the power supply increases. Demand 

curve indicates that the power demand decreases when the electricity price increases. 

The basic idea of dynamic pricing is that the electricity price is used to represent the 

marginal cost of electricity and the balance status of power supply and demand, and 

aims to maximize the overall economic benefits. 
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Figure 6.4 Dynamic pricing principle for interaction between power supply and 

demand (Schweppe et al. 1988). 

The interactive strategy proposed in this chapter aims at developing an effective 

approach in communicating the quantitative power demand potentials of buildings to a 

smart grid, which can help the grid in relieving the stress of power imbalance and 

maximizing the overall economic benefits. Generally, an electrical grid desires to 

operate with an optimal operation profile (e.g., a daily profile), which is drawn by 

comprehensively considering power reliability, operation cost and energy performance, 

etc. Figure 6.5 illustrates an interaction process between power supply and demand 

with adopting incentive prices. The grid encourages end-users to help altering the 

aggregate electricity load profile by setting proper electricity prices. End-users change 

their energy behaviors and alter individual electricity load profiles according to their 

own considerations (e.g., minimizing operation energy cost). A win-win situation (i.e., 

energy saving of the grid and cost saving of end-users) can be achieved when the 

aggregate electricity load profile is approaching to the optimal operation profile. 
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Figure 6.5 Illustration of interaction between the grid and end-users when adopting 

incentive prices. 

In order to demonstrate the interactive strategy with focus on alteration potential of 

building power demand, complex electricity market is not considered in this study. A 

simple dynamic pricing mechanism was adopted in the validation tests, which was 

based on the theory of spot pricing (Schweppe et al. 1988), as shown in Equation 

(5.20) of Chapter 5. 

6.2.3 Optimization of Building Power Demand Management 

Commercial buildings generally conduct their optimal power demand controls or 

management in order to achieve the minimum operation energy cost. On the premise 

of ensuring expected building services functions and indoor environment, buildings 

can alter their power demands as needed using building automation systems. An 

operation energy cost function is employed for setting the optimal power demand 
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control strategy, as shown in Equation (6.4). 
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where, Btot is the total operation energy cost of a building. r(t) is the electricity price 

during time interval. Ptot(t) is the total power demand of the building during time 

interval. N is the total number of dynamic pricing time intervals. Comparing the costs 

resulted by different power demand control strategies, the optimal one (i.e., the control 

strategy corresponding to the lowest operation energy cost) can be identified for 

building system controls for the next day). 

An interactive relationship between commercial buildings and the smart grid can then 

be established. The power demand alterations of buildings are influenced by 

electricity pricing while the electricity pricing is also influenced by the altered 

aggregate power demand of buildings conversely. Figure 6.6 shows an optimization 

process between commercial buildings and a smart grid under dynamic pricing. 

Having the reference electricity load profiles, buildings can predict their altered 

electricity load profiles accordingly by predicting their power demand alterations. The 

altered electricity load profile of each building is then aggregated and used by the grid 

to set proper electricity prices. Further adjustments on the electricity prices and the 

altered electricity load profiles will continue until a near optimal operation profile of 

the grid is approached. It is worth mentioning that the electricity load profiles of 

buildings will be altered when operation energy cost savings can be achieved. 

Otherwise no changes will be made. 
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Figure 6.6 Optimization process of commercial buildings and a smart grid under 

dynamic pricing. 

6.2.4 Implementation Structure of the Interactive Strategy 

The proposed interactive building power demand management strategy relies on an 

information and communication platform, which can communicate energy information 

and implement control strategies effectively. Although the bidirectional 

communication between smart meters and grids has been established and 

demonstrated in several trial projects for residential buildings, the development of 

communication and interaction between commercial buildings and a smart grid has 

rarely been reported. 

Based on the latest available technologies such as building automation systems, smart 

meters, and grid energy management system, this case study proposes an 
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implementation structure for the interactive strategy by integrating smart meters into 

building automation systems, as shown in Figure 6.7. The building automation system 

provides various energy information of a building (e.g., HVAC systems, lighting 

systems, etc.), and conducts controls and optimizations for building service systems. 

The smart meter collects useful information from both power supply and demand 

sides (e.g., electricity prices and building power demands), and communicates the 

information (e.g., day-ahead and/or hour-ahead) for further interaction and 

optimization. Furthermore, open protocols (e.g., TCP/IP, BACnet, etc.) are also 

recommended for establishing the information and communication platform by 

considering the compatibility and convenience of the Internet. 

 

Figure 6.7 Implementation structure of the interactive building power demand 

management strategy. 

6.3 Validation of the Interactive Strategy 

6.3.1 Simulation Test Setup 

Simulation software TRNSYS (2004) and MATLAB (2006) were employed to 
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establish a virtual communication and control platform for the interactive building 

power demand management strategy. TRNSYS was used to simulate the “actual” 

heating/cooling loads of buildings and validate the developed building thermal storage 

model in this study. MATLAB was used to communicate the information of both 

commercial buildings and a small-scale smart grid, and optimize the power demands 

of buildings and the electricity prices of the grid. Power generation scheduling of the 

grid and the dynamic pricing mechanism were programmed in MATLAB. MATLAB 

also obtained the building loads and possible power demand alterations from 

TRNSYS for setting dynamic prices according to the desired generation profile. The 

interaction process was completed in MATLAB and the communication was assumed 

to be instant without any time delay. 

In the simulation, three types of total 400 passive commercial buildings including 100 

light weighted buildings, 200 medium weighted buildings and 100 heavy weighted 

buildings were simulated. The configurations of these buildings are all the same: 40 

floors with 4m height and 400 m2 area per floor, window-to-wall ratio was set to 0.5. 

The overall COPs of the HVAC systems in buildings were assumed to be constant (i.e., 

2.5). Except HVAC systems, the electricity loads of the rest building service systems 

were added to represent the basic electricity load (i.e. uncontrollable load) for each 

individual building. The building power demand control strategies and office hours 

and the operation schedule of HVAC systems were presented in Chapter 3. Power 

demands of buildings were assumed to be provided by the smart grid, which had three 

different kinds of energy sources (i.e., wind/solar, coal-fired and gas-fired power 

plants). According to the proposed dynamic pricing mechanism, Equation (5.20) can 
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then be rewritten as Equation (6.5). 
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where, P1, P2, P3 are the generation capacities of renewable generation (i.e., 

wind/solar), general generation (i.e., coal-fired) and extra generation (i.e., gas-fired) 

respectively. r1, r2, r3 are the pricing factors of renewable generation, general 

generation and extra generation respectively. The pricing factor ri can be obtained 

from the initial and operation costs of the corresponding generation and power supply. 

It also depends on the availability and controllability of the generation (e.g., 

generation for operating reserves has a higher pricing factor compared with the regular 

generation). In the tests, the uncertainty and intermittence of renewable energies (i.e., 

wind and solar) were not considered in this study. Constant capacities of different 

generations in the grid were assumed to be 1,000 MW of wind and solar generations 

(P1), 1,000 MW of coal-fired generation (P2), and 500 MW of gas-fired generation 

(P3). An optimal generation profile was also assumed to operate at 1000 MW during 

non-office hours and 1,500 MW during office hours. The simplified building 

energy model was employed to predict the cooling loads of reference buildings, and 

the developed building thermal storage model was used to predict cooling load 

alteration potentials of buildings. Building energy characteristic information including 

power demands, power demand alteration potentials and realization costs (e.g., storage 

efficiency) are required for grid optimization. The grid is also required to set proper 

electricity prices in order to incent the power demand controls of buildings. 
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6.3.2 Validation of The Interactive Strategy 

The identified parameters of thermal storage model for different types of buildings 

were presented in Table 3.4. COPsys was assumed to be unchanged during the 

charging/discharging process. 

These parameters are the essential information for obtaining the effective indices of 

buildings. Table 6.1 lists an example of power demand alterations for three types of 

buildings when different precooling durations (i.e., no precooling, 4 and 8 hours 

precooling) were applied. The power demand alteration and the total altered electricity 

energy increased when the precooling duration increased while the longer precooling 

duration was, the lower energy efficiency building had. 

Table 6.1 Power demand alterations of buildings during office hours 

Building 

type 

Precooling 

Time 

(hours) 

Power demand alterations (kW) Total 

altered 

energy 

(kWh) 

08:30 

09:00 

09:00 

10:00 

10:00 

11:00 

11:00 

12:00 

12:00 

13:00 

13:00 

14:00 

14:00 

15:00 

15:00 

16:00 

1600 

17:00 

17:00 

18:00 

Light 

weighted 

0 924 371 313 277 245 216 191 169 150 132 2527 

4 1674 1079 940 831 735 650 575 508 450 398 7002 

8 2171 1549 1355 1199 1060 938 829 733 649 574 9971 

Medium 

weighted 

0 1098 417 365 336 309 284 262 241 221 204 3189 

4 1867 1165 1053 968 891 819 754 693 638 587 8501 

8 2457 1739 1581 1454 1337 1230 1132 1041 957 881 12579 

Heavy 

weighted 

0 1377 414 363 341 321 302 285 268 252 237 3472 

4 1828 861 783 737 694 653 615 578 544 512 6892 

8 2204 1232 1133 1066 1003 944 889 836 787 741 9733 

 

The thermal characteristics of buildings with different ratios of internal masses were 

also investigated. Table 6.2 and Table 6.3 show the details of parameters and power 

demand alterations for medium weighted buildings with different ratios of internal 

masses. Results shown that buildings with higher ratios of internal masses were 
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identified having higher thermal capacitances. Buildings with lower ratio of internal 

masses had higher storage efficiency due to the smaller time constant. In other words, 

buildings with smaller time constant could store and release energy more effectively 

due to their less thermal inertia. However, buildings with higher ratios of internal 

masses had more power demand alterations. 

Table 6.2 Identified parameters and coefficients of the thermal storage model for 

different types of buildings with different ratios of internal masses 

Building 

type 

Internal 

masses ratio 

Cbui 

(J/m2K) 

Rbui,o 

(m2K/W) 

Rbui,i 

(m2K/W) 

Rbui 

(m2K/W) 

τ 

(hour) 

COPsys 

(-) 

ηbui 

(-) 

Medium 

weighted 

Low 248621 0.9236 0.2133 0.1733 11.97 2.5 41.61% 

Middle 467878 0.6551 0.1477 0.1205 15.66 2.5 35.31% 

High 696082 0.5266 0.1134 0.0933 18.03 2.5 32.33% 

Table 6.3 Power demand alterations of buildings with different ratios of internal 

masses during office hours 

Building 

type 

Internal 

Masses 

ratio 

Power demand alterations (kW): 8 hours precooling case Total 

altered 

energy 

(kWh) 

8:30 

9:00 

9:00 

10:00 

10:00 

11:00 

11:00 

12:00 

12:00 

13:00 

13:00 

14:00 

14:00 

15:00 

15:00 

16:00 

1600 

17:00 

17:00 

18:00 

Medium 

weighted 

Low 2457 1739 1581 1454 1337 1230 1132 1041 957 881 12579 

Middle 3216 2126 1967 1845 1731 1624 1523 1429 1341 1258 16451 

High 3962 2547 2374 2246 2125 2010 1902 1799 1702 1610 20296 

The grid obtained the reference aggregate load of buildings by giving the trial 

electricity prices (i.e., a fixed electricity price in this test). In order to encourage the 

aggregate load profile of buildings to approach the optimal operation profile of the 

grid, dynamic prices of next day were finalized by setting the pricing factors at r1=0.5 

HKD/kWh, r2=0.5 HKD/kWh, r3=25 HKD/kWh. As shown in Figure 6.8, the fixed 

electricity price (i.e., 2.28 HKD/kWh) was obtained by calculating the average 

marginal cost of total power generations in the next day. Dynamic prices were much 

lower than the fixed price because significant reduction in the marginal cost of total 
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power generations was achieved when adopting the interactive strategy. 

 

Figure 6.8 The trial electricity prices and the finalized dynamic prices in the 

interactive strategy. 

In this simulation test, power was surplus during non-office hours due to sufficient 

renewable generation, and power was inadequate during office hours when renewable 

generation could not afford power demand and extra power plants (e.g., coal-fired 

and/or gas-fired) needed to be turned on. Actually, off-peak period always falls in 

non-office hours while peak demand usually happens during office hours in urban 

areas. In off-peak period, end-users (e.g., buildings) are encouraged to consume 

renewable energies as much as possible in efficient means due to the difficulties and 

the high cost of electricity storage. 
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Figure 6.9 Aggregate electricity load profiles of buildings under (a) the trial electricity 

prices, (b) the finalized dynamic prices 

Figure 6.9 shows the test results of commercial buildings and the grid when adopting 

the interactive strategy. The aggregate electricity load profile of buildings was 

approaching to the optimal profile, as indicated by approaching from (a) to (b). 

Building thermal storage model can predict power demand alterations of buildings 

with acceptable accuracy. The difference between the predicted and the “actual” loads 

during lunch hours (i.e., 12:00-14:00) might be resulted from the errors between the 

simplified and the complex building energy models, while operation data of internal 

gains had not been trained individually. Energy saving for the grid and cost saving for 

commercial buildings can be achieved by adopting the interactive power demand 

management strategy. Compared with the reference case (i.e., the case without 

interaction), 2,979 MWh energy was saved per day for the grid in a daily operation. 

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20 22

P
o

w
e

r 
Su

p
p

ly
 a

n
d

 D
e

m
an

d
 C

ap
ac

it
ie

s 
(M

W
)

Time (hours)
(a)

the optimal operation profile of grid

the predicted aggregate load profile of buildings

the "actual" aggregate load profile of buildings

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20 22

P
o

w
e

r 
Su

p
p

ly
 a

n
d

 D
e

m
an

d
 C

ap
ac

it
ie

s 
(M

W
)

Time (hours)
(b)

the optimal operation profile of grid

the predicted aggregate load profile of buildings

the "actual" aggregate load profile of buildings



 148

50,274 HKD, 47,311 HKD, 50,021 HKD (note: 1 USD = 7.8 HKD) operation energy 

costs were saved per day for each light weighted, medium weighted and heavy 

weighted building respectively. In other words, the cheaper and surplus renewable 

generation was properly utilized during non-office hours, while the expensive and 

extra generation was dramatically reduced during office hours. It is worth mentioning 

that, different pricing mechanisms (e.g., time of use pricing, critical peak pricing, 

dynamic pricing, etc.) may lead to different optimal results when implementing the 

proposed interactive strategy. It is because different building thermal storages have 

different capabilities (e.g., storage capacity, efficiency and charging/discharging rate, 

etc.) in responding to the electricity prices. However, the dynamic pricing is 

considered as the most reasonable one to represent the power supply cost and power 

balance status especially in developing a smart grid. Indoor thermal comfort was still 

acceptable during office hours when adopting the interactive strategy (i.e., temperature 

was reset to 25.5°C in the test). Figure 6.10 shows predicted mean vote (PMV) values 

of a medium weighted building, which indicates that the indoor thermal comfort level 

after demand control was not affected significantly compared with that before demand 

control. 
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Figure 6.10 Comparison of indoor thermal comfort before and after demand control. 

6.4 Summary 

This chapter proposed an interactive building power demand management strategy for 

communicating effective power demand alteration information of commercial 

buildings to facilitate grid scale optimization. The simulation test results shown that 

the power imbalance could be significantly reduced when the effective interaction 

between the power supply and the demand was established. The energy storage 

efficiency of building thermal masses for commercial buildings was up to 41.61% 

which was considerable for practical application in the smart grid. 

The simplified building thermal storage model was employed to provide effective and 

very simple indices of buildings for the use of grid interaction and optimization. Tests 

results also shown that building thermal masses, as the ubiquitous thermal storage, can 

be utilized to help relieving grid power imbalance caused by renewable generations or 

other scenarios. In order to achieve higher energy storage efficiency, high thermal 

resistances for the outer construction materials and low thermal resistances for the 

inner construction materials are recommended for new building constructions and 
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existing building renovations.
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CHAPTER 7 A FAST CHILLER POWER DEMAND 

RESPONSE CONTROL STRATEGY 

 

In order to maintain the balance between power supply and demand, extra generation 

capacities of power plants are usually reserved by the grid at the supply side. The 

possibility of providing operating reserves at power demand side (i.e., industrial and 

residential sectors) has been discussed and approved in previous studies. However, the 

alteration potential and the control strategy of large-scale power demand systems (e.g., 

HVAC systems) in commercial buildings are seldom studied. This chapter therefore 

investigates the cooling demand alternation potential of commercial buildings and 

estimates the power demand reduction potential of the chiller(s) aiming at providing 

effective power information for grid operation. On the premise of indoor thermal 

comfort, a fast chiller power demand response control strategy is developed based on 

building thermal models. Compared with conventional indoor temperature set-point 

reset strategy, the developed strategy can provide an accurate estimation of power 

demand reduction in advance, and enable a fast response fulfilling the operation 

requirements of the grid. Simulation tests have been conducted to estimate the 

potential of reserve and investigate the impact on the thermal comfort when adopting 

the developed strategy. Imbalance issues of chilled water flow and indoor air 

temperature are also investigated and solved. 

Section 7.1 presents an introduction of the operating reserve in smart grid and the 

background of developing a fast chiller power demand response control strategy at 

building demand side for smart grid application. Section 7.2 presents the concept and 
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formation of a fast chiller power demand response control strategy with addressing the 

demand reduction and limiting duration. Section 7.3 presents the impact of the 

developed limiting strategy on the water side and air side of the HVAC systems and 

the corresponding solutions. Section 7.4 presents the simulation test results of 

addressing the water deficit flow and indoor air temperature unevenness issues. A 

summary of this chapter is given in Section 7.5. 

7.1 Introduction 

As peak load and power imbalance are the critical issues concerned in an electrical grid, 

operating reserve avoiding power shortage (e.g., generator random outages, load 

fluctuations, etc.) becomes an essential part in power systems (Wang et al. 2005). 

Operating reserve can provide a certain generating capacity available to the grid within 

a short interval of time in order to meet demand when the normal power supply is 

insufficient. Operating reserve is generally composed of four types of reserves (i.e., 

frequency controlled, spinning, non-spinning, and replacement) classified by different 

time scales (i.e., seconds, minutes and hours). The cost of operating reserve is 

extremely high due to extra generators should be turned on during peak hours and/or 

imbalance periods. In addition, the cost increases dramatically when the shorter 

response time is required. Kirby (2013) pointed out that responsive load can be treated 

as spinning reserve in the electrical grid and listed the desired characteristics (e.g., 

storage, control capability, response speed and restoration, etc.). In order words, 

end-users (e.g., building sectors) at power demand side can contribute their effort in 

operating reserve. For instance, the industrial sectors conventionally contributed their 



 153

responses to the grid by direct load control. Xu et al. (2011) proposed that the 

generation and demand can contributed equally to the frequency control as reserves. 

The test results shown that the considerable frequency controlled responses of 

residential sectors can be achieved by adopting temperature reset or on/off control of 

house appliances. Similarly, commercial buildings with air-conditioning system as the 

major responsive loads have significant potentials in contributing as operating reserve 

due to their preferred characteristics of thermal systems. 

Smart grid has involved end-users (e.g., buildings) in the form of the demand response 

(e.g., time-based and incentive-based), which can contribute their efforts by 

shifting/reducing loads to help improve grid performance. Henze (2005) investigated 

the energy and cost benefits of adopting active and passive thermal storage in buildings 

under specific electricity tariff. With a certain incentive, buildings can achieve their 

own benefits by properly charging/discharging the thermal energy. Lee and Braun 

(2008) developed kinds of methods to determine indoor air temperature set-point 

concerning peak demand limiting. Sun et al. (2010) conducted case studies concerning 

on the peak demand reduction to compromise energy cost and peak demand charge 

using indoor air temperature set-point reset strategy. However, previous studies mainly 

focused on the impacts and benefits of different load control strategies from the point 

of view of building side, which did not consider the high requirements and huge 

benefits of fast demand response to the electrical grid. Due to the uncertainty and 

intermittence of renewable energies (e.g., wind and solar), operating reserve 

(especially the frequency controlled reserve responding in seconds and minutes) needs 

more and more participant from power demand side, particularly when a large amount 
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of renewable generations integrated into the smart grid. Chiller, as the major energy 

consumer of air-conditioning system in commercial buildings, can be treated as a 

responsive load in frequency controlled reserve due to its considerable power demand 

alteration ability. 

This chapter therefore aims to develop a fast chiller power demand response control 

strategy for enabling chiller demand as frequency controlled reserve. The simplified 

building energy model is employed for estimating building cooling demand, while the 

simplified building thermal storage model is employed for estimating chiller demand 

reduction and the corresponding limiting period. The demand limiting strategy is 

designed not only fulfilling the grid operation requirement but also considering the 

indoor thermal comfort. Compared with the conventional demand limiting strategy 

(i.e., indoor air temperature set-point reset), the developed strategy has an immediate 

response and relative stable power demand reduction (i.e., serving as frequency 

controlled reserve).  

7.2 The Fast Chiller Power Demand Response Control Strategy 

In commercial buildings, the power demand limiting measures includes passive 

improvement (e.g., adopting electrical equipment with high energy efficiency) and 

active control (e.g., shifting load within different periods, limiting demand with 

sacrificing convenience/comfort of end-users). In order to respond dynamically to the 

needs of an electrical grid in specific periods, cooling demand of commercial buildings 

can be shifted or limited due to thermal characteristics of building and its systems by 

adopting active control properly. Actually, a significant ratio of power demand is 
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contributed by heating, ventilation and air-conditioning (HVAC) systems in 

commercial buildings. Specially, chiller is the major component of HVAC systems 

having great potential in power demand limiting control due to its large power capacity. 

The active control for chiller demand limiting therefore becomes very important when 

its demand response is designed for real time application of the electrical grid. Figure 

7.1 shows a typical power demand profile of a chiller plant in a commercial building. 

For workdays, the chiller was requested to switch on at 8:00 a.m. for precooling down 

the indoor space although the office hour of building starts from 9:00 a.m. During the 

morning start period, a significant increment of chiller power demand appeared (from 

8:40 a.m. to 9:20 a.m.) until the power demand become stable and the indoor air 

temperature reached the set-point (after 9:20 a.m.). In other words,  a visible time 

delay (around 40 minutes) exits between the time of chiller power reduction (demand 

response) and the time of indoor air temperature variation (i.e., from the free floating 

status to approaching the set-point). Not only the chiller(s) but the other components in 

HVAC systems concerning on power demand response have a relatively long time 

delay which cannot fulfill the requirement of frequency controlled reserved. 
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Figure 7.1 Power demand of a chiller responding to indoor air temperature setting in a 

real commercial building. 

In this chapter, a reverse concept in active control is therefore developed for enabling a 

fast power demand of chiller(s) as frequency controlled reserve. The major difference 

between the conventional strategy (i.e., the indoor air temperature set-point reset 

strategy) and the reverse demand limiting strategy is the responding sequence: 

responding from the “cooling supply” or the “cooling demand” side. Once building 

receives the signal from the electrical grid (e.g., dynamic prices, direct load control 

signal), the conventional method is to reset indoor air temperature set-point (i.e. 

responding from the demand side) and result power demand reduction of chiller(s) with 

a certain time delay, while the reverse method is to switch off chiller(s) directly (i.e. 

responding from the supply side) to generate an immediate demand reduction without 

any delay. As shown in Figure 7.2, the chiller control panel, which can directly control 

the chiller(s), is responsible for receiving the signal from the electrical grid (i.e., power 

shortage signal) and results power demand reduction with proper estimations. The 

estimations include two main steps: 1) estimation of building cooling demand 

reduction based on indoor thermal comfort limitation (i.e., indoor air temperature upper 
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boundary); and 2) estimation of chiller power demand reduction with calculated COP. 

The final estimated results will send to chiller control panel for chiller operation 

including on/off and duration controls when responding to the request of the grid. 

It is no difficult in directly implementing on/off control of chiller(s). However, the 

estimation of the reduced building cooling demand and the duration of demand limiting 

period are very difficult. In order to ensure indoor thermal comfort and solve 

mentioned issues, a simplified building model is employed to estimate the original 

cooling demand of building and a simplified building thermal storage model is 

developed to estimate the additional cold energy released from building thermal masses 

with the increase of indoor air temperature. The variation of COP of chiller(s) and the 

thermal characters of HVAC systems are also considered during the power demand 

limiting period since they are different from the normal operation. 

 

Figure 7.2 Schematic of the developed chiller demand limiting strategy. 
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On the premise of indoor thermal comfort, cooling demand of a commercial building 

therefore should be estimated in advance for conducting demand limiting. By 

considering computing time and operation data availability, a simplified building 

energy model (i.e., grey box model presented in Chapter 3) is employed to estimate 

cooling demand of a commercial building (Wang and Xu 2006). As shown in Figure 

3.1, building cooling demand can be obtained by Equation (3.7) according to the 

energy balance. 

As the cooling supplied for the building is generated by chiller(s) and delivered by the 

whole HVAC systems, the supplied cooling need to cover the cooling demand of 

building in order to main an acceptable indoor thermal comfort (e.g., a constant indoor 

air temperature during office hours). The supplied cooling and cooling demand should 

be equal in principle (i.e., Qsup=Qest). A relationship between power demand(s) of 

chiller(s), and supplied cooling can then be descripted as Pchi= Qsup/COP. Qsup is the 

supplied cooling provided by chiller(s). Qest is the estimated cooling demand of a 

building. COP is coefficient of performance of chiller. Pchi is the estimated power 

demand of chiller. While the COP of chiller(s) can be obtained from catalogue or 

calculated by Equation (7.1) using regression method. 
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where, a0, a1, a2, a3, a4 are the coefficients which can be identified using historical 

operation data, PLR is part load ratio of a chiller which is defined as PLR=Qsup/Qrated. 

Qrated is the rated cooling capacity of a chiller. It is worth mentioning that PLR is 

normally a value between zero and one, however, PLR might exceed one in some 

special cases when supplied cooling is more than the rated cooling capacity. 
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Estimation of building power demand reduction 

In order to estimate the load-shifting capability of building thermal masses, the 

simplified building thermal storage model is employed for investigating the effect of 

load variation responding to the change of indoor air temperature. The details of the 

simplified thermal storage model and the estimation method were presented in 

Chapter 3. 

7.2.2 Chiller Power Demand as Operating Reserves 

Estimation of chiller power demand reduction is the major objective of the developed 

demand limiting strategy. The situation of demand limiting period in this chapter is a 

little different with the case in developing the building thermal storage model as 

present in Chapter 3 and 4 due to the indoor latent heat load decrease (i.e., the indoor 

air moisture increase) with insufficient cooling capacity provided by limiting power 

demand of chiller(s). At the same time, the indoor air temperature will vary if the 

supplied cooling capacity cannot maintain a constant temperature set-point. Then a 

relationship between supplied cooling capacity and cooling demand can be modified 

based on Equation (3.26) and Equation (3.27), and as shown in Equation (7.3). The 

trajectory of indoor air temperature can then be calculated by solving Equation (7.3) 

and used for estimating demand limiting period on the premise of indoor thermal 

comfort. 

 sup.sup. LNtot QQQ         (7.2) 

in
in

inbuilaest A
dt

dT
CQQQ  -

     (7.3) 
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where, Tin is the indoor air temperature during the demand limiting period. Cin is the 

thermal capacity of the indoor air. QN.sup is the cooling supply capacity provided by 

chillers under normal operation. QL.sup is the cooling supply capacity provided by 

chillers in cooling supply limiting operation. Min is the mass of the indoor air. 

During demand limiting period, PLR always exceeds one due to the high return chiller 

water temperature and the consequent overdrawing of the rated cooling capacity. 

However, PLR during demand limiting period can be regressed by operation data (i.e., 

PLRavg=1.234 in this study). Finally, the chiller power demand reduction and the 

duration of demand limiting period can be summarized by Equations (7.4) and (7.5) 

respectively. 
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where, ΔPchi is the power demand reduction. COPN.sup and COPL.sup are the COPs of 

chillers under normal operation and cooling supply limiting operation respectively. t is 

the allowed duration of demand limiting. Tin(0) and Tin,upper are the initial indoor air 

temperature and its upper limit respectively. 

7.2.3 Results of Case Study 

In this case study, simulation software TRNSYS is employed to simulate the “actual” 

cooling demand and associated cooling demand alteration of a commercial building 

and validate the developed building thermal storage model. A typical summer day with 

weather data of Hong Kong (i.e., subtropical weather) is adopted in the tests, as shown 

in Figure 7.3. The upper boundary of the indoor air temperature set-point is 25.5°C. 

Office hours of the commercial building are defined from 9:00 a.m. to 7:00 p.m. 
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Parameters of the thermal storage model for the adopted commercial building (i.e., a 

medium weighted building) were identified as: Cbui=263,141 J/m2K, Rbui,o=0.3783 

m2K/W, Rbui,i=0.2303 m2K/W, and the rest calculated coefficients are listed in Table 

7.1. 

Table 7.1 Identified parameters and coefficients of the thermal storage model for a 

commercial building 

Building 

type 

Cbui 

(J/m2K) 

Rbui,o 

(m2K/W) 

Rbui,i 

(m2K/W) 

Rbui 

(m2K/W) 

α 

(-) 

τ 

(hour) 

Medium 

weighted 
263141 0.3783 0.2303 0.1501 0.8783 10.97 

Table 7.2 Identified coefficients for estimating COP and PLR of chiller(s) 

Identified coefficients a0 a1 a2 a3 a4 

Value 3.6667 -4.5387 -7.3603 12.668 0 

For the relationship between the COP and PLR of chiller(s), coefficients were 

identified using historical operation data, as listed in Table 7.2. It is worth mentioning 

that, PLR exceeded one (PLRavg=1.234) when implement chiller power demand 

limiting strategy during the tests. Figure 7.3 shows a comparison of the chiller power 

demands of normal operation and demand limiting operation. Immediate (i.e., respond 

in seconds) power demand reductions (average value listed here) can be achieved for 

the specific periods: 556 kW from 10:00 a.m. to 11:00 a.m., 771 kW from 12:00 a.m. 

to 3:00 p.m., 551 kW from 4:00 p.m. to 5:00 p.m. However, a significant power 

rebound is always followed after each power demand reduction since the limited 

cooling demands need to be restored for the use of next time. The total power demand 

of the HVAC systems (including pumps, AHU fans, chillers, etc.) was almost 
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unchanged after adopting the chiller power demand strategy (e.g., a difference within 

1%). 

 

Figure 7.3 A power demand comparison of chiller(s) in normal operation and demand 

limiting operation. 

A comparison of between “actual” and estimated power demand reductions of 

chiller(s) during the limiting period has also been made, as shown in of Figure 7.4. 

The chiller demand limiting strategy can estimate the reduction potential of chiller 

power demand quite well. Meanwhile, in order to estimate the demand limiting 

duration which is mainly based on indoor thermal comfort (i.e., only considering the 

constraint of indoor air temperature in this study), estimation of indoor air temperature 

variation is therefore the another important job in the developed chiller demand 

limiting strategy. Figure 7.5 shows the estimated result of indoor air temperature 

variation during a demand limiting period (i.e., from 12:00 a.m. to 3:00 p.m.). The 

chiller demand limiting strategy is also suitable for real application with acceptable 

accuracy compared with the “actual” indoor air temperature. As indoor thermal 
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comfort is especially concerned in the chiller demand limiting strategy, predict mean 

vote (PMV) values were also monitored before and after adopting the strategy. As 

shown in Figure 7.6, the indoor thermal comfort level after adopting active control 

(i.e., demand limiting) was not affected significantly compared with that before active 

control. 

 

Figure 7.4 Comparisons between the “actual” and the estimated power demand 

reductions of chiller(s). 
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Figure 7.5 Comparisons between the “actual” and the estimated indoor air temperature 

variation during the demand limiting period. 

 

Figure 7.6 Comparison of the indoor thermal comfort (e.g., PMV) between the normal 

operation and demand limiting. 

7.3 Imbalance Issues Caused by The Demand Limiting Strategy 

As mentioned before, the distribution of the chilled water flowing into the 

air-conditioning terminals (e.g., AHUs) will be disturbed once implementing the 

demand limiting strategy (i.e., shutting down a certain number of the chillers). 
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Because the total cooling capacity provided by the central chilling systems under the 

demand limiting strategy is not enough compared with the normal working conditions, 

the air-conditioning terminals will strive for more chilled water by opening the valves 

in order to achieve the indoor air temperature set points. The actual indoor air 

temperatures of different zones (e.g., near zones and remote zones) may have big 

difference with each other and result different tolerances for each zone. As a result, the 

overall demand limiting amount and duration will be influenced by these imbalance 

effects. 

As water deficit flow and indoor air temperature unevenness can result low 

performance of HVAC systems during the demand limiting period (e.g., lower pump 

efficiency, shorter limiting duration), the developed control strategy also includes the 

supplementary manners to solve these problems caused by the directly shutting down 

of chiller(s). 



 166

 

Figure 7.7 Flow chart of the fast building power demand response control strategy. 

The basic idea of the fast chiller power demand response control strategy is to limit 

the cooling supply of chiller plants (e.g., shut off some of the operating chillers) so as 

to achieve immediate power reduction. The operating capacities of the other 

air-conditioning components will be modulated to match the limited cooling supply in 

a manner which will achieve stable control and evenly spread to thermal environment 

degradation throughout the building. Figure 7.7 shows a flow chart of the proposed 

fast chiller power demand response control strategy. On receiving a demand reduction 

request, an optimized power reduction threshold will be determined by compromising 

between cost benefit and comfort sacrifice. The operating chiller number/capacity is 

then reduced, resulting in immediate power demand reductions and reduced cooling 

supply. The other main task of the control strategy is to maintain stable control of the 
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entire air-conditioning system to achieve proper cooling distribution and even indoor 

thermal comfort reduction.  

Actually, when the chiller(s) are switched off which is activated by the demand 

response events, the normal operation of the whole HVAC systems will be disordered 

due to the abnormal sequence control of the chillers. As shown in the Figure 7.8, water 

deficit flow will happen due to the chiller(s) are shut down where the dedicated 

constant speed pump(s) are also shut down accordingly. At the same time, the 

secondary pumps will keep their running speed as much as possible due to the 

pressure difference is becoming lower in the terminals (i.e., AHUs) as they are all 

requesting more chilled water by their own setting during the demand response events 

(actually, a kind of energy valve has already been available for this scenario in 

practice). Then, the water deficit flow between primary pumps and secondary pumps 

will happen. Water deficit flow will waste a lot of pump energy which actually can be 

avoided by proper control (Gao et al. 2011). 

Besides water deficit flow, the air temperature unevenness may be happened in 

different air-conditioning zones as the system resistance are different for different 

routes (this effect are more obviously for the direct return system compared with 

revised return system). As the power reduction during the demand response events are 

estimated and implemented based on sacrificing a certain level of the indoor thermal 

comfort, the indoor air temperature (i.e., dry bulb) is most important factor to indicate 

the indoor thermal comfort. If the air temperature unevenness happened, it means the 

power reduction duration has to become shorter than expected due to the indoor 

thermal comfort in some air-conditioning zones may exceed the preset threshold. 
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In order to improve the energy performance of HVAC system during the demand 

response events and achieve the estimated power reduction for a certain period in the 

practical applications, the two issues mentioned above should also be solved in the 

fast chiller power demand response control strategy. There for two additional 

strategies are developed and adopted to eliminate these negative impacts. 

 

Figure 7.8 Schematic of chilled water distribution re-balancing. 

Figure 7.8 shows the system control configurations of HVAC systems on water side 

for the operation arrangement during the demand response events. When the fast 

chiller power demand response control strategy is implemented during specific 

periods, cooling supply of chillers will be limited. On one hand, information of the 

supply chilled water (e.g., measured water flow rate and supply water temperature) 

will be measured and transferred to the water flow predictor for resetting the pressure 

drop set point of the chiller water loop, which indirectly decreases the operation 

number/speed of the secondary pumps. On the other hand, information of the demand 
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cooling side (e.g., estimated cooling capacity of each AHU, measured chilled water 

flow rate, supply and return water temperature) will be predicted and collected 

accordingly, and then transferred to the valve opening predictor for resetting valve 

opening set point of each AHU. A local feed-back control of chilled water distribution 

network is also adopted and responsible for the information collection and local 

controls of the secondary pumps and AHU valves. 

The chilled water distribution re-balancing measure is to ensure the proportional 

distribution of chilled water to individual air-handling units (AHU) with reduced 

cooling supply. A water flow predictor is used to predict the proper upper limit of 

chilled water flow corresponding to the available operating chiller capacity. Then the 

number/speed of operating pumps and the differential pressure set-point are reset for 

energy efficient operation particularly to avoid excessive water supply (i.e., the cause 

of water deficit flow) when chiller cooling supply is limited. In addition, when some 

water unbalance phenomenon occurs (e.g. over-supplies of water flow to near AHUs), 

additional controls will be activated interfere with the AHUs. A valve opening 

predictor is therefore employed to determine the proper ranges and set the limits of the 

valve openings of individual AHUs. 

Space temperature set-point reset measure allows the air temperature set-point of the 

indoor spaces to be set to rise progressively while the total cooling consumed by the 

terminal units is controlled proximately at the pre-determined cooling capacity and 

keeping the same temperature rising profile in all indoor spaces (e.g., near, medium 

and remote zones). If the set-point increases too quickly, the preset cooling capacity is 
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not fully used and the space comfort level cannot be maintained within expected 

levels for the specific period, with resulting in the failure of power limiting control 

(e.g., the demand response period). If the set-point rises too slowly, temperatures of 

some spaces cannot be maintained at the set-point and increase faster than in other 

spaces resulting in destructive competition and uneven distribution of cooling and 

eventually the breakdown of control. 

7.3.1 Measures on The Distribution of Chilled Water Flow 

In the central chilling systems, the chilled water is distributed to the terminal units by 

variable speed pumps (i.e., the secondary pumps) which are controlled by keeping the 

pressure differential between the main supply and return pipelines or the pressure 

differential in the critical loop (e.g., the most remote loop for the direct-return system). 

The pressure differential set-point can be fixed or varied according to the practical 

requirements. The set-point is usually recommended to adjust properly to maintain the 

desired supply air temperature set-points of the terminals with just one control valve 

in a fully open position. 

Figure 7.9 and Figure 7.10 show the general structures of the speed control strategies 

for variable speed pumps distributing water to terminal units for direct-return and 

reverse-return systems respectively. 
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Figure 7.9 The speed control strategy for variable speed pumps distributing water to 

terminal units in direct-return systems (Gao 2012). 

 
Figure 7.10 The speed control strategy for variable speed pumps distributing water to 

terminal units in reverse-return systems (Gao 2012). 

As illustrated in the above figures, the imbalance issues of reverse-return systems are 

less serious than those of direct-return systems because of the similar resistances in 

each loop. The possible solution for the imbalance distribution of chilled water is to 

overwrite the original control strategies (e.g., replace the original PID settings by 

calculating the dedicated chilled water flow corresponding to cooling capacity 

reduction). The possible solutions should coordinate with the controls of the 
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secondary pumps. For instance, the speed and number of the secondary pumps can be 

properly reduced when chillers are shut down under the demand limiting strategy. 

7.3.2 Measures on The Distribution of Indoor Air Temperature 

The major reason of resulting indoor air temperature unevenness is that, the indoor air 

temperature is free-controlled under the demand limiting strategy as pervious designed 

and the resulted cooling capacity reductions are not proportional as expected in 

different zones due to the imbalance distribution of chilled water flow. According to 

the principle of the demand limiting strategy, the chillers are switched off for a certain 

period responding to the grid emergency events, the indoor air temperature of the 

building can free float in the comfortable range as the estimated in advance. However, 

the air temperature unevenness in different zones (i.e., different trajectories of 

temperature rising) may still happen if no further controls implemented after carrying 

out the demand limiting strategy. 

Besides the additional controls at water side (i.e., chilled water flow control), the 

possible solution for the indoor air temperature unevenness issue is that, dynamically 

resetting the indoor air temperature set point of each zone at same time during the 

demand limiting periods. The basic idea of indoor air temperature set point reset 

strategy is to make sure the indoor air temperatures of individual zones rise 

synchronously, which is convenient for accurately estimating the power reduction and 

its duration of the demand limiting. 

7.4 Simulation Tests 

Since validation experiments on real buildings in real smart grid is nearly impossible, 
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computer-based simulation for validation seems the only choice. In this study, 

simulation software TRNSYS is employed to build a virtual to test the fast chiller 

power demand response control strategy. This platform will employ detailed models 

of the building envelope and the main components of a central air-conditioning system 

(e.g. chillers, pumps, air-handling units, etc.). The process of heat transfer, mass 

transfer, energy conversion and controls among building systems will be accurately 

simulated. The “actual” cooling demand/associated cooling demand alteration of a 

commercial building can be estimated as well. A typical summer day with weather 

data of Hong Kong (i.e., subtropical weather as shown in Figure 3.6) is adopted in the 

tests. The upper boundary of the indoor air temperature set-point is set to 26.5°C. 

Office hours of the commercial building are defined from 08:00 to 19:00. Three 

demand response periods are selected in advance for the test (i.e., 09:00 to 10:00, 

12:00 to 13:00, 15:00 to 16:00). It is worth mentioning that the water network pressure 

drop model (Ma 2008) is employed in the simulation. The overall pressure drop of the 

water loop can be modelled and calculated by counting the pressure drops of the 

pipelines, fittings, pumps, sub-branches and AHUs, etc. respectively.  

Figure 7.11 shows a comparison of the chiller power demands of normal operation 

and the operation adopting the fast chiller demand response strategy. The immediate 

response (i.e., respond within seconds) in power demand reductions (average value 

listed here) can be achieved for the specific periods: 4,018 kW (61.68%) from 09:00 

to 10:00, 2,611 kW (32.04%) from 12:00 to 13:00, 3,112 kW (35.50%) from 15:00 to 

16:00, however, the limited cooling demands need to be restored for the use of next 

time. Actually, the total power consumption of the HVAC systems (including pumps, 

AHU fans, chillers, etc.) was also saved about 5.48% after adopting the chiller power 
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demand strategy. The fast chiller power demand response control strategy not only can 

give a quick and valuable power response to the grid which allows the owner achieve 

a significant incentive benefits in power demand, but also can save energy cost from 

the overall electricity consumption.  

 

Figure 7.11 Comparison between power demands of chillers in normal operation and 

the demand response - Conventional controls at water and air sides. 

Table 7.3 lists a comparison of power demand reductions of total six studies cases, 

without additional measures on water and air sides, the fast chiller demand response 

strategy achieve the lowest power reductions in specific periods. The additional water 

side control can help increase power demand reductions due to energy saving in 

secondary pumps. While the exponent air temperature reset strategy on air side can 

achieve the highest power reductions in different demand response periods due to the 

lower cooling capacity required by the indoor spaces. In addition, the water side 

control can also eliminate water deficit flows which may also cause pump energy 

waste. Figure 7.12 shows a comparison of water flow in bypass pipe in free control 
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case and water side control case during the demand response events. For the free 

control case, water deficit flow happened in the morning demand response, however, 

the major energy saving resulted by water side control are mainly contributed by 

reducing the operation number/speeds of the secondary pumps.  

Table 7.3 presents a comparison between power demand reductions of total six test 

cases with different options of chilled water side and air side controls after limiting the 

chiller cooling supply, including:  

Test Case #1: conventional control, without any measures adopted at water side or air 

side; 

Test Case #2: adopting flow limiting control of secondary pumps at water side only; 

Test Case #3: adopting indoor air temperature set point reset (linear trajectory) at air 

side only; 

Test Case #4: adopting flow limiting control of secondary pumps at water side, and 

indoor air temperature set point reset (linear trajectory) at air side; 

Test Case #5: adopting indoor air temperature set point reset (exponent trajectory) at 

air side only; 

Test Case #6: adopting flow limiting control of secondary pumps at water side, and 

indoor air temperature set point reset (exponent trajectory) at air side. 

Table 7.3 Power demand reductions of HVAC systems in different studied case during 

the demand response periods 

Studied cases 09:00-10:00 12:00-13:00 15:00-16:00 

Test Case #1 4,018 kW 2,611 kW 3,112 kW 

Test Case #2 4,107 kW 2,963 kW 3,491 kW 

Test Case #3 4,020 kW 2,743 kW 3,181 kW 

Test Case #4 4,133 kW 3,128 kW 3,599 kW 

Test Case #5 4,227 kW 2,967 kW 3,415 kW 

Test Case #6 4,329 kW 3,335 kW 3,812 kW 
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Figure 7.12 A comparison between water flows in bypass in conventional control case 

and water side flow limiting control case in demand response. 

As mentioned in Section 7.2, through the fast chiller power demand response control 

strategy, the power demand reductions are achieved by scarifying a certain level of 

thermal comfort. As the indoor thermal comfort is an important factor and especially 

concerned by the end-users, predict mean vote (PMV) values were also monitored 

before and after adopting different strategies. As shown in Figure 7.13, the indoor 

thermal comfort level after adopting demand response control (including free control, 

linear and exponent air temperature set point reset) was not affected significantly (i.e., 

the thermal comfort still falls in the acceptable range). 
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(a) normal operation (b) demand response with conventional control 

 

 

 

 
(c) demand response with 

linear temperature set point reset 

(d) demand response with 

exponent temperature set point reset 

Figure 7.13 Indoor thermal comfort comparisons in different cases. 

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22

In
do

o
r 

A
ir

 T
em

pe
ra

ut
e 

(℃
) 

an
d 

R
H

 (
%

)

Time (Hours)

Tindoor RH

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22

P
M

V

Time (Hours)

PMV

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22

In
d

o
o

r 
A

ir
 T

em
p

er
au

te
 (
℃

) 
an

d
 R

H
 (

%
)

Time (Hours)

Tindoor RH

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22

P
M

V

Time (Hours)

PMV

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22

In
d

o
o

r 
A

ir
 T

em
p

er
au

te
 (
℃

) 
an

d
 R

H
 (

%
)

Time (Hours)

Tindoor RH

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22

P
M

V

Time (Hours)

PMV

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22

In
d

o
o

r 
A

ir
 T

em
pe

ra
ut

e 
(℃

) 
an

d
 R

H
 (

%
)

Time (Hours)

Tindoor RH

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22

P
M

V

Time (Hours)

PMV



 178

The simulation results show that the developed fast chiller demand response control 

strategy can effectively respond to the requirement of grid immediately with a 

considerable amount of power demand reductions which are about 32.04%-66.45% of 

the overall power demand of HVAC systems. Such power demand reduction is 

significant and meaningful which can be estimated in advance and used as a kind of 

cost-effective operating reserve for future smart grid. The additional measures adopted 

on water side and air side can further save the energy of secondary pumps and 

eliminate the unevenness of the air temperature in different zones. Moreover, the 

indoor thermal comfort can be maintained in an acceptable range during the demand 

response periods. 

7.5 Summary 

With the development of smart grid, critical issues such as peak load and power 

imbalance need more efforts from power demand side (e.g., buildings). This chapter 

presented a fast chiller power demand response control strategy for enabling chiller 

demand as frequency controlled reserve, which can respond to the electrical grid 

rapidly compared with conventional indoor air temperature set-point reset strategy. 

Chiller power demand reduction and duration of the limiting period were estimated 

respectively based on the building thermal models. The simulation results shown that 

the power demand reduction of chiller(s) can be estimated with an acceptable 

accuracy by the developed strategy. The indoor thermal comfort level was not affect 

significantly when conducting the chiller demand limiting strategy. However, it is 

worth mentioning that, possible problems (e.g., deficit flow of chilled water and 
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uneven temperature distribution in different air conditioned zones) may be caused due 

to the direct control on chiller(s) rather than the setting of indoor air temperature 

set-point. Possible solutions are also recommended to solve these problems.
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

 

In this PhD project, an interactive building energy demand management strategy was 

developed to enable the interaction between commercial buildings and the smart grid. 

A simplified building thermal storage model is developed for characterizing the power 

demand alteration potentials of passive buildings (i.e., with thermal masses only). 

Genetic algorithm-based (GA-based) method was employed to identify the model 

parameters. Test results shown that the GA-based method is an effective approach in 

identifying the model parameters, and the simplified building thermal storage model 

can be used to estimate the load alteration potentials of different weighted buildings 

with high accuracy. 

The interactive building energy demand management strategy consists of four main 

parts: 1) the prediction of building power demand, 2) the characterization of building 

demand alteration potential and associated efficiency degradation, 3) the 

accomplishment of grid dynamic prices, and 4) the optimization of building power 

demand management. 

A fast chiller power demand response control strategy was also developed for practical 

application in building HVAC systems towards smart grid. The possible power 

demand reduction of chiller can be treated as the operating reserves for handling smart 

grid emergency situations. The impact of implementing the demand limiting strategy 

on the thermal comfort was also concerned. The caused imbalance issues (e.g., 

imbalances in chilled water flow and indoor air temperature are) were considered and 

solved. 
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Besides the passive thermal storage systems, the active thermal storage systems (i.e., 

the chilled water storage system and the PCM storage tank) in commercial buildings 

are also presented for demonstrating the online and offline in smart grid. Energy and 

cost savings can be achieved by interacting and optimizing the power demand 

alteration potentials of buildings and energy information of a smart grid. 

8.1 Conclusions 

The Simplified Building Thermal Storage Model 

A passive building (with its external and internal masses) can be simplified to a lumped 

thermal mass and assumed to be homogeneous. An equivalent temperature ( buiT ) is 

introduced to represent the thermal energy status of the building. The simplified 2R1C 

building thermal storage model consisting of two resistances (Rbui,o and Rbui,i) and one 

capacitance (i.e., Cbui) was employed to represent the thermal characteristics of the 

building. Test results show that the simplified building thermal storage model (2R1C) 

can accurately estimate the thermal demand alteration potentials of passive buildings. 

A genetic algorithm-based (GA) method is employed to identify the parameters of the 

simplified building thermal storage model. These parameters were identified by 

minimizing the deviations between  the “actual” cooling load alteration of TRNSYS 

Type 56 building model (i.e., ΔQact) and the predicted cooling load alteration of the 

simplified thermal storage model (i.e., ΔQest). Therefore, it is suggested that parameters 

identification of the simplified building thermal storage model should be performed by 

minimizing objective function J as it is simpler and gives a higher fitness. The 

simplified building model can well represent thermodynamic performance of different 
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weighted building (light, medium and heavy weighted buildings which mainly defined 

by the physical properties of the external structures). The average errors of the 

simplified thermal storage model in predicting the load alteration for light, medium and 

heavy weighted buildings were14.40%, 4.88% and 6.37% respectively. 

The Interactive Control Strategies 

The interactive building power demand management strategy was developed for 

enabling the demand alteration potentials of commercial buildings to further 

facilitating smart grid optimization. Commercial buildings can contribute significantly 

and effectively in power demand management or alterations with building power 

demand characteristics identified properly. The simulation test results shown that the 

power imbalance could be significantly reduced when the effective interaction 

between the power supply and the demand was established. The energy storage 

efficiency of building thermal masses for commercial buildings was up to 41.61% 

which was considerable for practical application in the smart grid. 

A simple dynamic electricity pricing mechanism was also developed based on the spot 

pricing theory. The basic idea of dynamic pricing is that the electricity prices represent 

the marginal costs of electricity and the power balance status, and aims to maximize 

the overall social benefits. 

In order to maintain the balance between power supply and demand, a fast chiller 

power demand response control strategy was developed to treat the power demands of 

chillers as cost-effective operating reserves instead of extra generation capacities of 

power plants. Compared with conventional indoor temperature set-point reset strategy, 

the developed strategy can provide an accurate estimation of power demand reduction 
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in advance, and enable a fast response fulfilling the operation requirements of the grid 

on the premise of indoor thermal comfort. The chiller sequence control and the control 

logic of the building central chilling systems have been rearranged. 

With the available and mature technologies such as information and communication 

technologies, advanced metering infrastructure, smart meters, home energy 

management system and building automation systems, bidirectional connections and 

communication/interaction between the building end-users and the smart grid can be 

effectively built for the overall optimization of both power supply and demand sides. 

The possibility of online and offline applications of building active thermal storages 

for smart grid were also discussed and tested in the simulation platform. 

8.2 Further Work 

The Simplified Building Thermal Storage Model 

The simplified building thermal storage model is suitable for estimating the 

heating/cooling load alteration of the passive building rather than the building 

heating/cooling load. Moreover, the accuracies of the model for light weighted 

buildings are not as good as those of the medium and heavy weighted buildings. There 

is a need to analyze if the simplified building thermal storage model can be improved 

to be suitable for lighted heavy walls. 

As the development of the simplified building thermal storage model is focused on the 

building thermal masses only, the model may not suitable for the applications of the 

other thermal storages (e.g., internal walls integrated with PCM). The simplified 

model needs to be further adjusted when applied to the combination of the passive 
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thermal storages and the active thermal storages. 

Actually, the parameters of the simplified building thermal storage model are 

identified by two scenarios (i.e., the precooling control strategy and the demand 

limiting control strategy) under different weather condition. For future study, the 

model can be further improved for estimating the energy performance of both the 

precooling control strategy (i.e., the charging process) and the demand limiting control 

strategy (i.e., the discharging process). 

In the simplified thermal storage model, the prediction average error of the light 

weighted buildings was 14.40%, which was higher than the medium and heavy 

weighted buildings. The main reason may be due to the conflict between the selected 

window-to-wall ratio (i.e., 0.5 in this study)/wall type (i.e., wall group 2 according to 

the ASHRAE, which has a thin thickness, low thermal resistances and low thermal 

capacitances) and the more simplified building thermal storage model (i.e., 2R1C 

model is employed to represent a whole building). However, the simplified thermal 

storage model is capable to predict the medium and heavy weighted buildings, as well 

as the lighted weighted buildings with a lower window-to-wall ratio (e.g., less than 0.5) 

and/or more heavy building walls (i.e., more thermal masses than wall group 2). The 

major application of this simplified thermal storage model can be used to represent the 

thermal characteristics of residential/commercial buildings (e.g., with an average 

building thermal masses more than 204775 J/m2K). While the limitation of this 

simplified thermal storage model is the parameter identification. The parameters of the 

simplified thermal storage model need to be identified by training the operation data 
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of at least two similar days, which have the similar external and internal conditions 

(e.g., solar radiation and internal gains). 

The Interactive Control Strategies 

For the interactive building power demand management strategy, the current study is 

mainly focused on the power demand potentials of the HVAC systems. Actually, the 

interactive concept for smart grid is also suitable for the other building services 

systems (e.g., the artificial lighting systems). In addition, this interactive management 

strategy can also be modified for the applications in the thermal grid (e.g., the district 

heating/cooling system). 

The simplified building thermal storage model is very important for the interactive 

strategy because of the model provides effective and very simple indices of buildings 

for the use of grid interaction and optimization. Tests results also shown that building 

thermal masses, as the ubiquitous thermal storage, can be utilized to help relieving 

grid power imbalance caused by renewable generations or other scenarios. In order to 

achieve higher energy storage efficiency, high thermal resistances for the outer 

construction materials and low thermal resistances for the inner construction materials 

are recommended for new building constructions and existing building renovations. 

The interactive control strategy therefore can be further developed for the applications 

of different thermal storages in buildings. 

Although the chiller demand limiting strategy proved the possibility of treating the 

power demands of chillers as the operating reserves especially the frequency 

controlled reserve for smart grid, the estimated chiller power demand reduction is not 
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controlled at a constant value which is not convenience for grid optimization. Actually, 

electrical grid prefers the end-users to provide a fixed demand response (i.e., give a 

fixed power demand reduction during the specific period). Therefore, the chiller 

demand limiting strategy should be further revised especially modified to be 

applicable for both the passive and active thermal storages. Furthermore, the power 

demand restoration (resulting from the heating/cooling load restoration) should be 

carefully controlled after the power demand limiting period. Indoor air temperature 

control and the central chilled water system control can be considered for solving the 

restoration issue. For the water side of HVAC systems, the centralized thermal storage 

system and the associated control strategy can be applied for improving the 

performance of the chiller power demand response control strategy. For the air side of 

HVAC systems, the indoor air temperature set points can be optimized in the 

acceptable range for the needs of the power profile regulation. It is interesting and 

needed to study the effects and impacts of the indoor air temperature set-point 

trajectory. More importantly, the optimization on the indoor air temperature set-point 

can be used to achieve the energy/cost savings especially for online applications in 

smart grid. 

Air-Conditioning System With Proactive Demand Control 

The building online and offline applications for smart grid are possible thanks to the 

available and mature technologies including as information and communication 

technologies, smart meters and building automation systems. The building end-users 

and the smart grid can be effectively interacted and optimized with each other 

especially when the bidirectional connections and real time communication are 
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established. Effective information is exchanged within the power and information 

flows at both power supply and demand sides. 

As the power reliability and quantity are especially concerned by the smart grid (e.g., 

the peak load and power imbalance issues), power demand responses at demand side 

are suggested to be applicable for the different time scales: offline power demand 

response (e.g., day-ahead application) and online power demand response (e.g., 

hour-ahead/15 minutes-ahead). The offline power demand response is scheduled to 

improve the grid load factor in the coming daily operation (i.e., the coarse tuning), 

while the online power demand response is used to improve the grid reliability and 

quality by treating the power demands as the transient “operating reserves” (i.e., the 

fine tuning) and serving for emergency events. This chapter respectively introduces 

the offline and online applications of the active thermal storage systems in commercial 

buildings. The energy performance of the systems and the practical effects of the 

demand responses will also be investigated. 

PCMs Storage System for Smart Grid Application 

Spinning reserves, as important parts of the ancillary services, are designed to 

maintain the electric grid stability in response to system shocks such as generation and 

transmission outage. They are typically required to respond within a minute of 

notification and ramp up to deliver the full resource within 10 minutes (Josh et al. 

2012). Demand response resources (DRRs) can provide a lower cost alternative to 

spinning reserves. Loads with control devices can also respond more quickly than 

most generation facilities and ramp up to full capacity in usually less than 5 minutes. 

Some Regional Transmission Operators (RTOs), such as PJM, NYISO, ISO-NE, 
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Midwest ISO et al, have already allowed DRRs to participate in the energy and 

ancillary service markets. Midwest ISO divides the responsive loads into two 

categories: Type-1 DRR and Type-2 DRR. 

Actually, HVAC loads can be the ideal suppliers of spinning reserves. As a kind of 

DRRs, the HVAC loads are capable of suffering numerous, short and infrequent 

curtailments. These responsive loads do not have the constraints of the traditional 

generators (e.g., ramping time, minimum on/off time, etc.). The required load 

curtailment is usually instantaneous, while traditional power generation needs a 

relatively long time (e.g., 10 minutes) to fully respond the grid (Kirby et al. 2008). 

Several programs have demonstrated how to use the existing HVAC load as DRRs to 

provide spinning reserves. The control of HVAC load can quickly respond to the grid 

curtailment request, and result little impact on customers at the same time. These 

programs encourage the customers to provide spinning reserve services (i.e., the load 

curtailment of HVAC systems) by providing incentives (Eto et al. 2007). 

An optimal control strategy of HVAC systems aiming to provide spinning reserve 

services by comprehensively utilizing building passive and active storages can be 

further developed for the smart grid application. On the premise of shutting a certain 

number of chillers down, the power demand-shifting and demand-shedding potentials 

of buildings with the cold storages have been also investigated. Compared with 

conventional passive-only and active storage control strategies, the developed strategy 

can provide a fast and stable power demand reduction once receive the curtailment 

notification from a RTO company. 

The Midwest Independent System Operator (MISO) defines two types of DRR: 
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Type-1 DRR and Type-2 DRR (Chen and Li 2011). The type-1 DRR can be defined as 

supplying energy with a fixed target reduction at MW level when committed, or to 

provide spinning or supplemental reserves when not committed. Type-1 DRRs are 

mainly the interruptible loads, which can be qualified as spinning reserves. The 

customers will receive credits or debits from MISO for their power demand reduction 

which is specified in the previous service agreement. The duration of spinning 

reserves provided by DRRs is required to be 2 hours and the full response time is 

required less than 10 minutes. 

In order to respond dynamically and rapidly to the curtailment notification from MISO, 

the cooling demand of commercial buildings has to be shifted and shed accordingly 

due to the thermal characteristics of building and its storage systems. Chiller(s), as the 

major component in HVAC systems taking a large amount of power demand, can be 

shut down once the buildings receive the curtailment notification from the grid. The 

active storage system can then be activated in order to keep a fixed power demand 

reduction, and make sure the building indoor temperature rising on the range of indoor 

thermal comfort. 

Extra energy is usually needed after the DR events in order to bring the building and 

its systems back to normal conditions. The post DR event spike in demand is generally 

known as “rebound”. To eliminate the negative effects on the electric grid, rebound 

avoidance should be considered.  The developed strategy allows the HVAC systems 

to slowly ramp up, and limits the power demand rising after the DR event. The 

method for estimation of cooling demand reduction and power demand reduction after 

switching off chiller(s) without employing the active storage system has been 
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developed by Xue et al. (2013). However, the profile of the power reduction amount 

can be changed by utilizing the controllability of active storage (e.g., by adjusting the 

discharge flow rate of PCM tank in this study). Furthermore, the use of active storage 

system can obviously increase the amount of power demand reduction and extend the 

dedicated DR duration. 
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APPENDIX A MATLAB M. FILE CODE FOR THERMAL 

COMFORT ESTIMATION 

 

function [PMV,PPD]=ThermalComfort (CLO,TA,TR,MET,VEL,RH) 

% Choose "Tools-Macro-Security-Mean". 

% This version is scanned with Symantec Antivirus Definition File 2005-09-15 rev.23 

% Modified by Håkan Nilsson 

% Department of Technology and Built Environment 

% Laboratory of Ventilation and Air Quality 

% University of Gävle 

% Re-coded in m.file by Xue Xue 

% ****************Input Parameters**************** 

% CLO=1.10; % variable, clothing (Closing, clo, range in [0, 2]) 

% TA=24.0; % variable, indoor air temperature (Celsius, C, range in [10, 30]) 

% TA=Tin(i); 

% TR=22.0; % variable, mean radiation temperature Celsius, C, range in [10, 40]) 

% MET=1.0; % variable, activity (Metabolic, met, range in [0.8, 4]) 

% VEL= 0.15; % variable, air velocity (m/s, range in [0, 1]) 

% RH=50.0; % variable, relative humidity (%, range in [30, 70]) 

% RH=55.0; % variable, relative humidity (%, range in [30, 70]), recommend RH 

value is 55.0 

% ****************Calculation Processes**************** 

FNPS=exp (16.6536-4030.183/(TA+235)); 



 192

PA=RH*10*FNPS; 

ICL=0.155*CLO; 

M=MET*58.15; 

if (ICL<0.078) 

    FCL=1+1.29*ICL; 

else 

    FCL=1.05+0.645*ICL; 

end     

HCF=12.1*VEL^0.5; 

TAA=TA+273.15; 

TRA=TR+273.15; 

TCLA=TAA+(35.5-TA)/(3.5*(6.45*ICL+0.1)); 

P1=ICL*FCL; 

P2=P1*3.96; 

P3=P1*100; 

P4=P1*TAA; 

P5=308.7-0.028*M+P2*(TRA/100)^4; 

XN=TCLA/100; 

XF=TCLA/50; 

% XF = XN 

N=0; 

EPS=0.0015; 

while (abs(XN-XF)>EPS) 
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    XF=(XF+XN)/2; 

    HCF=12.1*VEL^0.5; 

    HCN=2.38*abs(100*XF-TAA)^0.25; 

    if (HCF>HCN) 

        HC=HCF; 

    else 

        HC=HCN; 

    end 

    XN=(P5+P4*HC-P2*(XF^4))/(100+P3*HC); 

    N=N+1; 

end 

TCL=100*XN-273.15; 

% skin diff loss 

HL1=3.05*0.001*(5733-6.99*M-PA); 

% sweat loss 

if (M>58.15) 

    HL2=0.42*(M-58.15); 

else 

    HL2=0; 

end 

% latent respiration loss 

HL3=1.7*0.00001*M*(5867-PA); 

% dry respiration loss 
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HL4=0.0014*M*(34-TA); 

% radiation loss 

HL5=3.96*FCL*(XN^4-(TRA/100)^4); 

% convection loss 

HL6=FCL*HC*(TCL-TA); 

% thermal sensation to skin tran coef 

TS=0.303*exp(-0.036*M)+0.028; 

if (VEL<0.2) 

    TPO=0.5*TA+0.5*TR; 

else 

    if (VEL<0.6) 

        TPO=0.6*TA+0.4*TR; 

    else 

        TPO=0.7*TA+0.3*TR; 

    end 

end 

% ****************Output Results**************** 

PMV=TS*(M-HL1-HL2-HL3-HL4-HL5-HL6); % output, thermal comfort index 

(Predicted Mean Vote, PMV, -) 

PPD=100-95*exp(-0.03353*PMV^4-0.2179*PMV^2); % output, thermal comfort 

index (Predicted Percentage Dissatisfied, PPD, %)
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