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Abstract

Three issues in regard to reliability evaluation of power systems incorporating electric

vehicles (EVs) are addressed in this thesis: Well-being analysis of generating systems

considering EVs grid participation as interruptible load and spinning reserves; The

uncertainties of EV charging and their e↵ects on the well-being analysis of gener-

ating systems; Reliability evaluation of distribution systems incorporating EVs grid

contribution.

With increasing demand for EV charging, power grids can take advantage of the

distinctive features of EV charging load. In response to outages, the charging load can

be interrupted with no penalty until additional generation becomes available, as long

as charging requirements can be fulfilled, to improve system health. Moreover, EVs

can further provide emergency capacities back to the grid (i.e. vehicle-to-grid (V2G)).

The generating system operating health analysis is extended by taking EV charging

into consideration. This is the first work that proposes the idea of EV charging being

treated as interruptible load and serving as emergency units to improve system well-

being. Numerical results show that V2G is more e↵ective for well-being improvement

than the interruptible EV charging. In the V2G enabled scenario, EVs are able to

provide more capacities to help the system.

The contribution of EVs is uncertain because they serve both the power system

and the transportation sector. Scheduled EV charging can be a↵ected either by

failures of components such as charging facilities, or by human errors such as punc-
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tuality, rounding of time and errors in forecast of energy consumption. Moreover,

with the introduction of the aggregator, the realization of EVs grid services also plays

an important role. Major uncertainties that can a↵ect EV charging are identified.

They are punctuality, rounding of time, forecast error of energy consumption, charg-

ing component failure and EV absence, and aggregator failure and grid realization.

Methodologies are developed to consider these elements in well-being analysis. As

expected, results show the uncertainties identified directly a↵ect EVs contribution

to the system well-being.

The evaluation of reliability of the classical distribution system is also extended

to incorporate the grid contribution of EVs in di↵erent modes of operation. For each

load point, two topologies—centralized and dispersed EV charging—are considered.

During the islanding mode of operation, household demand can be supported by

vehicle-to-home (V2H) and/or local V2G, depending on the charging topologies ap-

plied. In grid connected mode of operation, energy not supplied can be further

reduced by interregional V2G, which allows energy exchange among load points

through healthy mains and laterals by sectionalizing the failure parts of the grid.

Evaluation methods are proposed to determine the capacity contribution of EVs for

each scenario. For the scenario of interregional V2G, optimal power flow is conducted

to maximize the energy exchange. From the results of a case study, V2H and V2G,

on both local and system levels, show great promise for reliability enhancement.
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Introduction

1.1 Backgrounds

The reliability of power supply is maintained by reserve generation capacity, i.e.

spinning reserve or non-synchronized generation, which is also known as stand-by

generation capacity comprising rapid start and hot reserve units [21]. In response to

outages, a time delay (i.e. system lead time) is required before additional generation

can be made available. On the other hand, electric vehicle (EV) charging is growing

and has come to play a more influential role in the system nowadays. One of the

distinctive features of EV charging is that it can be stopped during the lead time with

no penalty as long as the charging can be compensated afterwards when additional

generation is in service. Moreover, if vehicle-to-grid (V2G) is enabled, EVs are able

to act like rapid start units for neutralizing the generation shortage. However, how

much capacity can be freed by interrupting EV charging or how much power can

be injected back into the grid and to what extent can this help improve the system

reliability are yet to be discovered.

The electricity load becomes more flexible than before due to the rise of smart
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meters and proliferation of EVs population [97, 52, 98, 64]. Beyond being treated as

interruptible load, EVs can even serve as standby units to improve system reliability

through V2G. However, component failures as well as errors in travel schedule making

and energy consumption forecasting makes EV charging uncertain, which have direct

e↵ects on EVs’ capability as a provider of grid services. What the uncertain elements

are and how they a↵ect on EVs’ role to improve system reliability are need to be

found out.

EVs can serve as a source of energy for the grid in the forms of both V2H (vehicle-

to-home) and V2G [85, 98, 64, 52]. During outages, an EV can power the house of

its owner with its stored energy, i.e. V2H, and the surplus energy that goes to the

grid can serve other houses within the local community or even in other regions, i.e.

V2G. How EV charging can contribute to distribution system reliability in di↵erent

modes of operation is yet to be known.

1.2 Introductions and Literature Reviews

1.2.1 Generating Capacity

The determination of the required amount of system generating capacity to ensure

an adequate supply is an important aspect of power system planning and operat-

ing. The total problem can be divided into two conceptually di↵erent areas designed

as static and operating capacity requirements. The fundamental di↵erence between

static and operating capacity evaluation is in the time period considered. The study

of the static capacity requirements relates to the long-term evaluation of this overall

system requirement. The study of the operating capacity relates to the short-term

evaluation of the actual capacity required to meet a given load level. Both areas

must be examined at the planning level as alternative facilities are evaluated. Once

the decision has been made, however, the short-term requirement becomes an op-

erating problem. As the thesis focuses on the short-term evaluation of the actual
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generating capacity, the assessment of operating capacity reserves is reviewed in the

Subsection 1.2.2.

Static Capacity

The static requirement can be considered as the installed capacity that must be

planned and constructed in advance of the system requirements. The static reserve

must be su�cient to provide for the overhaul of generating equipment, outages that

are not planned or scheduled and load growth requirements in excess of the esti-

mates. A practice that has developed over many years is to measure the adequacy

of both the planned and installed capacity in terms of a percentage reserve. An

important objection to the use of the percentage reserve requirements criterion is

the tendency to compare the relative adequacy of capacity requirements provided for

totally di↵erent systems on the basis of peak loads experienced over the same time

period for each system. Large di↵erences in capacity requirements to provide the

same assurance of service continuity may be required in two di↵erent systems with

peak load of the same magnitude. This situation arises when the two systems being

compared have di↵erent load characteristics and di↵erent types and sizes of installed

or planned generating capacity.

The percentage reserve criterion also attaches no penalty to a unit because of

size unless this quantity exceeds the total capacity reserve. The requirement that a

reserve should be maintained equivalent to the capacity of the largest units on the

system plus a fixed percentage of the total system capacity is a more valid adequacy

criterion and calls for larger reserve requirements with the addition of larger units

to the system. This characteristic is usually found when probability techniques are

used. The application of probability methods to the static capacity problem provides

an analytical basis for capacity planning which can be extended to cover partial or

complete integration of systems, capacity of interconnections, e↵ects of unit size and

3



Generation 
model

Load 
model

Risk
 model

Figure 1.1: Conceptual tasks in generating capacity reliability evaluation

design, e↵ects of maintenance schedules and other system parameters.

The Generation System Model

The basic approach to evaluating the adequacy of a particular generation configura-

tion is fundamentally the same for any technique. It consists of three parts as shown

in Figure 1.1 The generation and load models shown in the figure are combined

(convolved) to form the appropriate risk model.

Generating Unit Unavailability

The basic generating unit parameter used in static capacity evaluation is probabil-

ity of finding the unit on forced outage at some distant times in the future. This

probability was defined as the unit unavailability, and historically in power system
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applications it is known as the unit forced outage rate (FOR).

UnavailabilitypFORq “ �

� ` µ

“ MTTR

MTTF ` MTTR
“ MTTR

MTBF

“
∞rdown times∞rdown times ` ∞rup times

(1.1)

Availability “ µ

� ` µ

“ MTTF

MTTF ` MTTR
“ MTTF

MTBF

“
∞rup times∞rdown times ` ∞rup times

(1.2)

where,

MTTF “ 1

�

MTTR “ 1

µ

MTBF “ MTTF ` MTTR “ T

The concepts of availability and unavailability as illustrated in (1.1) and (1.2) are

associated with the simple two state model as shown in Figure 1.2, which is directly

applicable to a base load generating unit which is either operating or forced out of

service. In the case of generating equipment with relative long operating cycles, the

unavailability (FOR) is an adequate estimator of the probability that the unit under

similar conditions will not be available for service in the future.

1.2.2 Operating Capacity

As discussed in above subsections, the time span for a power system is divided into

two sectors: the planning phase and operating phase. In power system operation,
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Figure 1.2: Two-state model

the expected load must be predicted (short-term load forecasting) and su�cient

generation must be scheduled accordingly. Reserve generation must also be scheduled

in order to account for load forecast uncertainties and possible outage of generating

plant. Once this capacity is scheduled and spinning, the operator is committed for

the period of time it takes to achieve output from other generating plant; this time

may be several hours in case of thermal units but only few minutes in the case of

gas turbines and hydroelectric plant.

A generally accepted definition of spinning reserve is that this is the rotating

capacity in excess of the system load which is synchronized and immediately available

to take up load. Some utilities include only this spinning reserve in their assessment

of system adequacy, whereas others also include one or more of the following factors:

rapid start units such as gas turbines and hydro-plant, interruptible loads, assistance

from interconnected systems, voltage and/or frequency reductions. These additional

factors add to the e↵ective spinning reserve and the total entity is known as operating

reserve.

Historically, operating reserve requirements have been done by ad hoc or rule-of-

thumb methods, the most frequently used method being a reserve equal to one or

more largest units. In the operational phase, it could lead to overscheduling which,

although more reliable, is uneconomic, or to underscheduling which, although less

costly to operate, can be very unreliable.

A more consistent and realistic method would be one based on probabilistic meth-
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ods. A risk index based on such methods would enable a consistent comparison to

be made between various operating strategies and the economic of such strategies.

Generally two values of risk can be evaluated: unit commitment risk and response

risk. Unit commitment risk (UCR) is associated with the assessment of which units

to commit in any given period of time whilst the response risk is associated with the

dispatch decisions of those units that have been committed. The acceptable risk level

is and must remain a management decision based on economic and social require-

ments. An estimate of a reasonable level can be made by evaluating the probabilistic

risk index associated with existing operational reserve assessment methods. Once

a risk level has been define, su�cient generation can be scheduled to satisfy this

risk level [18]. Baisc probability criteria and indices used in power system reliability

evaluation are summarized in Appendix A.

1.2.3 Reliability Evaluation of Generating Systems—UCR and Well-Being Frame-
work

PJM Methods and Modified PJM Methods

As reviewed in Subsection 1.2.2, operating reserve requirements have been estimated

by deterministic methods, the most frequently used method being a reserve equal to

one or more of the largest units, which does not take into account the probabilistic

or stochastic nature of system behavior and can lead to overscheduling [18]. A more

comprehensive and realistic method would be one based on probabilistic methods.

The PJM approach [7], the first major probabilistic technique, was proposed in 1963

for analysis of UCR.

It has been considerably refined and enhanced since then but still remains a

basic method for evaluating unit commitment risk. In its more enhanced form,

it is probably the most versatile and readily implementable method for evaluating

operational reserve requirements.
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Figure 1.3: Operating states of system

The basis of the PJM method is to evaluate the probability of the committed

generation just satisfying or failing to satisfy the expected demand during the period

of time that generation cannot be replaced. This time period is known as the lead

time. The operator must commit himself at the beginning of this lead time knowing

that he cannot replace and units which fail or start other units, if the load grows

unexpectedly, until the lead time has elapsed. The risk index therefore represents

the risk of just supplying or not supplying the demand during the lead time and can

be re-evaluated continuously through real time as the load and status of generating

units change.

Billinton et al [18, 16] proposed a modified PJM approach, which allows the

inclusion of rapid start and hot reserve units, interruptible load and postponable

outages during the lead time into the risk assessment to compensate the generation

shortage. Fotuhi-Firuzabad et al [44] evaluated the economic benefits of the existence

of interruptible load. Recently, the idea of UCR has been extended for analysis of

systems with wind power penetration [23].
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Well-Being Framework

To address the di�culty of interpreting the numerical risk index and inadequacy of

information provided by a single index, a modified framework for the operating states

and associated definitions based on the security constraints in composite system reli-

ability evaluation was proposed in [27] and is illustrated in Figure 1.3. In that paper,

the framework was examined for application to operating reserve assessment in gen-

erating systems. In this approach the generation system is classified into di↵erent

operating states designated as normal, alert, emergency and extreme emergency. A

system can transfer into the alert, emergency and extreme emergency states from the

normal state due to the loss of certain operating capacity or due to a sudden increase

in the system load. The state definitions are structured to include deterministic cri-

teria used by many operating utilities. Utilization of these operating states to assess

operating reserve requirements can alleviate some of the di�culty often encountered

in interpreting a single risk index and provide useful and comprehensive information

for the system operator.

The operating state framework was then transformed into the well-being analysis

framework [19]. In the well-being analysis framework, the system performance is eval-

uated using deterministic consideration and quantified by probabilistic indices. The

overall well-being of the generation system is identified as being healthy, marginal

or at risk using the designations shown in Figure 1.4 and can be quantified by sys-

tem operating state probabilities. A system is identified as being healthy (normal),

marginal (alert) or at risk [19]. The healthy and marginal states were formerly rec-

ognized as a single state of success or comfort [7]. In the healthy state (normal state)

the generation is adequate to supply the existing total load demand. In this state

there is enough margin such that the loss of any generating unit, specified by the de-

terministic criterion, e.g. any single unit outage, will not result in load curtailment.
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Figure 1.4: Model for system well-being analysis

The marginal state (alert state) is similar to the healthy state in that the system no

longer has su�cient margin to withstand the loss as specified by the deterministic

criterion. In the state of risk the system load is either equal to (emergency state) or

greater than (extreme emergency state) the available generation capacity.

Literature Review

Until recently, the well-being analysis framework has been widely applied to gen-

erating systems [19, 25], operating reserve assessment [26, 3], bulk power systems

[27, 61, 89], wind power integrated systems [50, 22], autonomous systems [24, 59]

and generating systems with energy storage [13].

The revised well-being framework introduced in [3] was utilized to evaluate the

optimal value of health probability based on the cost/benefit analysis. In [3], an

approach was presented which has a similar structure as conventional well-being

method, but it uses a di↵erent algorithm to determine healthy and marginal state

probabilities. In the proposed architecture, the severity associated with each contin-

gency was used to classify healthy and marginal states in identifying the degree of

system well-being and can be implemented in practical systems.

There is growing interest in combining deterministic considerations with proba-

bilistic assessment in order to evaluate the “system well-being” of a composite gen-
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eration and transmission system and to evaluate the likelihood not only of entering

a complete failure state but also the likelihood of being very close to trouble. To

classify the success operating states into healthy and marginal, an artificial neural

network based on group method data handling techniques was used in [61] to capture

the patterns of these state classes, during the beginning of the simulation process.

The idea is to provide the simulation process with an intelligent memory, based on

polynomial parameters, to speed up the evaluation of the operating states. A bulk

electric system well-being analysis using sequential Monte Carlo simulation (MCS)

was presented in [89]. The approach provides accurate frequency and duration as-

sessments and the index probability distributions associated with the mean values.

The basic N-1 security criterion was used in [89] as the requirement for incorpo-

rating a deterministic consideration in a probabilistic assessment to monitor system

well-being.

Two of the many challenges facing the electric power industry are the uncertainty

associated with the demand for electrical energy and the emergence of renewal en-

ergy sources and particularly wind power. A large number of studies incorporating

wind power or load forecast uncertainty in generating system reliability evaluation

[Hierarchical Level I (HLI)] assessment have been conducted. Relatively little work

has been done on composite generation and transmission system [Hierarchical Level

II (HLII)] reliability assessment incorporating wind power and particularly in the

well-being framework. Literature [50] was focused on examining the impacts of wind

power, load forecast uncertainty (LFU) and their interactive e↵ects on system relia-

bility in HLII well-being analysis. An approach was presented in [22] for calculating

well-being indices which gives much faster results than previously published methods.

It extended the application of probabilistic techniques in operating reserve evalua-

tion and determination. The method can be useful in the decision making process

of choosing an appropriate unit commitment risk criterion (UCRC).
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A relatively high renewable energy penetration can significantly reduce the sys-

tem fuel costs but can also have considerable impact on the system reliability. Small

isolated power systems (SIPSs) routinely plan their generating facilities using deter-

ministic adequacy techniques that cannot incorporate the highly erratic behaviour of

renewable energy sources. Deterministic and probabilistic techniques were combined

using a system well-being approach in [24] to provide useful reliability indices for

SIPS containing renewable energy, which facilitates an evaluation of the contribu-

tion from photovoltaics (PVs) and wind energy sources to SIPS reliability. In [59],

a computationally e�cient analytical method was presented for system well-being

assessment and for production costing analysis of the small autonomous power sys-

tems (SAPSs) containing distributed generation (DG), PV, and wind turbine (WT)

units. The developed method requires much less amount of meteorological data in

comparison to MCS. Suitable probability distributions were used in that literature

to model the system load and renewable resources, and the forced outages of various

generating units were also accounted for.

A simulation technique was presented in [13] which extended the conventional

well-being approach to generating systems using energy storage. This approach com-

bines probabilistic indices with commonly used deterministic criteria in generating

systems with storage facilities to assess the well-being of these systems. Multiple sys-

tem configurations with di↵erent energy compositions and battery storage capacity

levels were examined in the literature. The approach can be useful in the planning

and design of generating systems for remote locations.

1.2.4 Reliability Evaluation of Generating Systems Considering Demand-side Par-
ticipants

Traditionally electric utilities have been primarily interested in supply-side initia-

tives in their power system planning. Demand-side options such as demand-side
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management (DSM) initiatives were not extensively considered. This situation is no

longer the case as electric utilities are responding to public concern regarding the

environment and desire to conserve natural resources by placing increased attention

on the customer side of the meter. Nowadays both supply- and demand-side options

are integral elements in system planning and operation. A handful of works were

devoted to seeking resources from demand side to help improve system reliability.

Salehfar et al [79] evaluated the reliability e↵ects of direct load control. Direct load

control (DLC) is a form of load management in which portions of the system load

are under the direct operational control of the utility. Thus, the load can be mod-

ified, within limits, to match the available generating capacity thereby minimizing

events of uncontrolled load loss. Salehfar et al recognized the importance of the

temporal correlation of load and generating capacity for accurate assessment and

recommended Monte Carlo simulation as a way. The contribution from interruptible

load was considered in the well-being analysis [16]. The presence of interruptible

loads can a↵ect the generating system operating state rick (GSOSR) and the sys-

tem operating state probabilities. Load curtailment can be considered as a means

of reducing system risk when the system operates at a risk higher than is desirable

and stand-by units are unavailable [16]. The ability of a system to interrupt its load

can be considered as an ability to bring ready reserve into the system depending

on the allowable time delay of the load interruption. It is usually assumed that a

utility has prior knowledge regarding the various loads that can be interrupted with

minimum or no penalty. The magnitude of curtailable load and the corresponding

time of interruption depend on agreements between the utility and its consumers.

Billinton et al [17] conducted a reliability cost/worth analysis to quantify the

e↵ects of DSM. DSM, in general, refers to any activity adopted by a utility that ul-

timatelt changes the utilitiy’s total system load curve. The proposed models can be

used as the basic framework in the design and implementation of a utility DSM pro-
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gram. Fotuhi-Firuzabad et al [44] evaluated the economic benefits of interruptible

load involvement. A framework was developed in the literature for a comprehen-

sive evaluation of possible scenarios for the implementation of interruptible load

into demand-side management. A procedure was presented to calculate the total

societal cost which includes system operating cost and the customer interruption

cost. Customer interruption cost is the monetary losses incurred by customers due

to generating unit or transmission line outages. The study results indicate that the

load model reflecting the interruptible load initiative has the greatest cost-savings

in terms of reducing the total societal cost of electricity. It was also concluded in

the literature that having interruptible load at specific buses has more e↵ect on the

customer interruption cost than other buses. Hirst [49] identified the reliability ben-

efits of demand-side participation in di↵erent markets. Huang et al [51] applied load

shifting to seven load sectors, including agricultural, large Users, residential, gov-

ernment, industrial, commercial, and o�ce, to study the e↵ects of DSM on system

reliability. As noted in the literature, there is relatively little reliability or monetary

benefit in terms of decreased customer outage costs associated with demand response

initiatives in the agricultural, residential, government, and o�ce load sectors, in the

IEEE Reliability Test System (IEEE-RTS). Under these conditions, it is unlikely

that a large scale implementation of smart meters in the residential sector would

provide a significant benefit to assist in justifying this course of action. The results

show that the largest reliability benefits occur with the application of load shifting

in the large user sector followed by the industrial user and commercial user sectors.

1.2.5 Applications of V2G and V2H

The basic idea behind the V2G and V2H technology is that electric vehicles can

provide power to the grid when parked and plugged in [56]. Figure 1.5 shows the

basic concept of the V2G technology. As depicted, electric vehicles can be connected
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Figure 1.5: Illustrative schematics of the V2G implementation [56]

either to the house (one or more vehicles) or to the facility (fleet of vehicles) and

perform the V2G operation. Charging and discharging of the vehicle’s battery can be

performed according to the remote commands from the grid operator or independent

system operator (ISO). The ISO must continuously tune the balance between the

production and consumption of power in specific control areas since the mismatch

might cause the grid frequency to deviate from the nominal operating point of the

utility frequency. Also, by getting demands for reactive power from the ISO, vehicles

can perform the voltage regulation at certain points and even maintain the unity

power factor at the house or other facility power terminals [91].

The most significant electric service markets include base load, peak power, spin-

ning reserve and regulation. V2G appears unsuitable for the first two, since they are

accomplished by base-load power plants (nuclear and coal-fired) and peaking power

plants (gas turbines and hydroelectric plants) respectively. But in the fast response

power service markets, like spinning reserve and regulation, V2G could be a very

promising technology [91].
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Though it has been speculated that unidirectional V2G will be implemented first

[81], it has several limitations. One of which is that the regulation and reserves

capacities bid with unidirectional V2G are significantly less than those that can be

bid in bidirectional V2G [84]. Unidirectional V2G also cannot provide the system

with the energy stored in the EV batteries.

In order to function in bidirectional V2G mode, the EV has to be equipped with

a bidirectional power converter and additional battery pack. Having this, two way

energy flow is possible—when the power demand is low, EV’s batteries can be charged

and when high, batteries can be discharged and thus perform voltage and frequency

regulation by matching generation with the load demand [30]. Madawala et al [66]

presented a novel bidirectional inductive power transfer system, which is particularly

suitable for applications such as plug-in electric vehicles (PEVs) and V2G systems,

where two-way power transfer is advantageous.

for Frequency Regulation and Spinning Reserves

In recent years, extensive e↵orts have been involved in understanding as well as

implementing V2G as a source of spinning reserve and regulation service in power

systems [37, 31, 38, 82, 48]. Brooks et al [31] touched on some background require-

ments for demand dispatch and how the Internet can be used for communication and

control. They showed how loads that meet the communication and control require-

ments can be aggregated and dispatched—turned on or o↵—to help manage the grid.

Aggregated loads are able to perform many of the same ancillary services for the grid

that are provided by power plants today. In that literature a concrete example of

demand dispatch was given as it can be applied to EVs: smart charging. In [82] a

V2G algorithm was developed to optimize energy and ancillary services (load regula-

tion and spinning reserves) scheduling. The algorithm can be used by an aggregator,

which may be a utility or a third party. It maximizes profits to the aggregator while
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providing additional system flexibility and peak load shaving to the utility and low

costs of EV charging to the customer. Han et al [48] proposed an aggregator that

makes e�cient use of the distributed power of electric vehicles to produce the desired

grid-scale power. In that literature they investigated the cost arising from the bat-

tery charging and the revenue obtained by providing the regulation. The cost was

then represented mathematically.

In order to participate in energy markets, the V2G capabilities of many EVs are

combined by aggregators and then bid into the appropriate markets [47, 74, 48, 65,

45]. Economic aspects of V2G services have been analyzed in a number of studies

[57, 58, 90, 84, 6]. Most studies identified benefits for V2G vehicle owners in the

range of a few to several hundred dollars per month.

for Voltage Support and Voltage Power Compensation

Existing and forthcoming devices at the residential level have the ability to provide

reactive power support. Inverters which connect distributed generation such as solar

panels and plug-in hybrid electric vehicles (PHEVs) to the grid are an example.

Such devices are not currently utilized by the power system. Roger et al [77, 76] put

forth the vision that residential-level devices can be called upon to correct voltage

violations in their local area, using secure, authenticated messaging to coordinate

the control. In [76] they investigated the integration of these end-user reactive-

power-capable devices including PHEV to provide voltage support to the grid via

a secure communications infrastructure. They determined e↵ective locations in the

transmission system and showed how reactive power resources connected at those

buses can be controlled. Kisacikoglu et al [60] examined a PHEV charger system to

utilize it for reactive power support to the grid. The authors investigated di↵erent

scenarios to deliver the stored energy from V2G and explained the e↵ects of this

usage on the vehicle traction battery and the charger dc link capacitor.
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Other Applications

Some of the research works are devoted to EV’s application as a form of unin-

terruptible power supply (UPS). Cvetkovic et al [37] presented the structure and

capabilities of a small, grid-interactive distributed energy resource system comprised

of a PV source, PHEV, and various local loads. Implemented at the residential level,

the system, with a plug-in hybrid electrical vehicle, has the ability to isolate a house

from the utility grid (intentionally due to a fault or other abnormal grid conditions),

work in the standalone mode, synchronize and reconnect to the utility grid, without

load power interruptions.

Uncontrolled and random EV charging can cause increased power losses, overloads

and voltage fluctuations, which are all detrimental to the reliability and security of

newly developing smart grids. On the other side, expanding functionalities from

demand side enables smart grids to rapidly self-regulate and heal, improve system

reliability and security, and more e�ciently manage energy delivery and consumption

[70, 78, 68, 71, 32, 33, 43]. A real-time smart load management control strategy was

proposed in [39] and developed for the coordination of PEV charging based on real-

time (e.g., every 5 min) minimization of total cost of generating the energy plus the

associated grid energy losses. The approach reduces generation cost by incorporating

time-varying market energy prices and PEV owner preferred charging time zones

based on priority selection.

1.2.6 EV’s Inclusion for Reliability Improvement and Its Consideration

Up to now limited number of attempts have been made to discover the EV’s inclusion

in to power systems as a source of reliability improvement. Compared to other

applications such as V2G regulation, utilizing energy stored in EVs during system

outages has following advantages:
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1. Outages occur much less frequently in a typical system than it calls for ancillary

services such as frequency regulation and spinning reserves. As a result, heavy

burdens such as real time communication, monitoring, and scheduling are lifted

when EVs are used for system reliability improvement.

2. Battery wear and tear is EV users’ concern specially in the application of V2G

regulation service, since it requires battery packs being charged (in unidirec-

tional V2G) or charged and discharged (in bidirectional V2G) constantly with

wide ranges of power capacities.

3. It is every EV user’s full responsibility to rigidly follow his/her daily schedules

(driving and parking) once the EV participates in services such as frequency

regulation. In real life, however, errors in daily schedules are inevitable since a

large amount of population is involved and just a tra�c jam can simply make

the schedule go awry. In the application for reliability improvement, as will be

put forth in Chapter 3, those unavoidable uncertainties can be accounted for.

For a resource from the demand side, basic information such as its capacity

is required to be known before its participation [46]. Conventional resources, i.e.

generating units and purchased power, historically have possessed attributes which

allow the system operator to operate the electrical system in a reliable and economical

mannier. Also, these resources are supported by su�cient documentation to assist

schedulers in their planning environment. For DSM programs such as EV charging

to be considered as resources, in the conventional sense, they must meet similar

criteria to assure that the operations personnel can maintain control of the electrical

system. It should be noted that even though some of the DSM programs may not

meet the requirements to be a resource, they may have positive e↵ects on the shape

of our daily load curve, thus being considered “negative” load vs. a resource, and

may provide benefit to the corporation [46].
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To study EVs’ capability of improving the well-being of generating systems, a

method was given in [94] for evaluating capacities contributed from EVs in terms of

both interruptible EV charging and V2G capacities. It was found that the involve-

ment of EVs in the grid services not only compensates the risk increase due to EVs’

penetration but also further improves the system well-being. Wang [88] showed that

uncertainties in either the unit model or load forecast can a↵ect results of reliability

evaluation and concluded that the greater the uncertainty in the input, the weaker

the assessment results become. In addition to the availability of hardware compo-

nent, commitment of EVs in grid services depends heavily on individuals’ travel and

charging plans [94]. Human actions such as auto-driving would not go exactly the

same as planned so the accuracy of reliability evaluation may be a↵ected. A new

reliability evaluation method is therefore needed to consider the uncertainties of EV

charging.

1.2.7 Reliability Evaluation of Distribution Systems

Historically, distribution systems have received considerably less of the attention de-

voted to reliability modeling and evaluation than have generating systems. The main

reasons for this are that generating stations are individually very capital intensive

and that generation inadequacy can have widespread catastrophic consequences for

both society and its environment. Consequently great emphasis has been placed on

ensuring the adequacy and meeting the needs of this part of a power system.

A distribution system, however, is relatively cheap and outages have a very lo-

calized e↵ect. Therefore less e↵ort has been devoted to quantitative assessment of

the adequacy of various alternative designs and reinforcements. On the other hand,

analysis of the customer failure statistics of most utilities shows that the distribution

system makes the greatest individual contribution to the unavailability of supply to

a customer. The statistics reinforce the need to be concerned with the reliability
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evaluation of distribution systems, to evaluate quantitatively the merits of various

reinforcement schemes available to the planner and to ensure that the limited cap-

ital resources are used to achieve the greatest possible incremental reliability and

improvement in the system.

Several other aspects must also be considered in the need to evaluate the relia-

bility of distribution systems. Firstly, although a given reinforcement scheme may

be relatively inexpensive, large sums of money are expended collectively on such

systems. Secondly, it is necessary to ensure a reasonable balance in the reliability

of the various constituent parts of a power system, i.e. generation, transmission and

distribution. Thirdly, a number of alternatives are available to distribution engineer

in order to achieve acceptable customer reliability, including alternative reinforce-

ment schemes, allocation of spares, improvements in maintenance policy, alternative

operating policies. It is not possible to compare quantitatively the merits of such

alternatives nor to compare their e↵ect per monetary unit expended without utilizing

quantitative reliability evaluation [18].

These problems have been fully recognized and utilities throughout the world

are routinely using quantitative reliability techniques. The techniques required to

analyze a distribution system depend on the type of system being considered and

the depth of analysis needed. In this work, radial systems, the most common type

of distribution systems, are considered.

Basic Techniques

A radial distribution system consists of a set of series components, including lines,

cables, disconnects (or isolators), busbars, etc. A customer connected to any load

point of such a system requires all components between himself and the supply point

to be operating. Consequently the principle of series systems can be applied directly

to these systems. The three basic reliability parameters of average failure rate, �s,
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average outage time, rs, and average annual outage time, Us, are given by
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These three indices in many literatures are generally referred to as failure rate,

outage duration and annual outage time. It should be noted that they are not deter-

ministic values but are the expected or average values of an underlying probability

distribution and hence only represent the long-run average values. Although the

three primary indices are fundamentally important, they do not always give a com-

plete representation of the system behavior and response. In those cases, additional

indices are required, which are summarized in Appendix B.

1.2.8 Reliability Evaluation of Distribution Systems Considering Emerging Energy
Sources

Techniques for reliability assessment have evolved over the last decade as the distri-

bution system embraces various newcomers. Among them, DG, especially fueled by

renewable energy, has been considered extensively, from diverse perspectives. Solar

and wind DG were included in the adequacy assessment of distribution systems [8, 9].

In [8], the adequacy of a radial distribution system including di↵erent types of DG

units was assessed during di↵erent modes of operation. It was found that integrating

DG units with the system has a notable impact on the improvement of the system

adequacy, and allowing islanding mode of operation adds more improvement to this

adequacy. A technique for modeling solar irradiance chronologically using MCS was

later proposed in [9]. The connection matrix was proposed in [11, 12] to neatly rep-

resent system configuration and restoration order. The traditional reliability indices
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cover only sustained interruptions. The time necessary to start-up the DG should be

taken into account for the reliability evaluation of the distribution system including

DG. If this time is su�ciently short, the customers su↵er a momentary interrup-

tion, while, if not, they su↵er a sustained interruption. Various resources recovering

loads have an influence on the reliability indices, such as duration and frequency

of sustained or momentary interruption, depending on the operation mode of DG.

In [11], an analytical technique was developed which involves the system versatility

with time-varying parameters, and its accuracy was verified as almost comparable to

that of MCS. For the customers contracted with microgrid, a recursive algorithm to

compose a connection matrix of DG in microgrid was proposed in [12] using a matrix

which represents the connection between sections. The work also added PV systems

and the fuse devices to the analytical technique for the generalized application.

Customer interruption can be reduced by optimizing the positions of DG and

protection devices in distribution systems [72]. If islanded operation of these DG

sources is allowed on a feeder subjected to a disturbance, DG may reduce the num-

ber of interruptions and/or durations for customers residing within their protection

zones, thus increasing the reliability of service. A procedure for finding optimal po-

sitions for DG and protection devices was presented in [72] for a feeder equipped

with capacity-constrained distributed generators, using a custom-tailored genetic al-

gorithm, and the improvement in reliability was demonstrated on a test feeder.

Energy storage and its intelligent operation strategy were made use of to im-

prove system reliability and economy [96, 95]. In [96], the reliability and economy

of a radial distribution system integrated with electric energy storage and renew-

able energy resources were evaluated. Proposed reliability and economy assessment

framework was applied to evaluate the impact on reliability and economy brought

by proposed operation strategies, and electric energy storage and renewable energy

resources integration. Later, the same authors [95] presented the communication
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and control structure for implementing the operation strategy for energy storage to

better manage its energy procurement and distributed renewable energy generation.

The communication network also allowed the energy storage coordination during loss

of load event in the bulk power system.

Telecontrolled switches and microgrids were being taken into consideration in

[36]. Conti et al [36] presented a systematic and analytical method to investigate the

influence of switches’ telecontrol/automation and microgrids’ islanding on systems

reliability, accounting for their combined e↵ect as well. Not fully reliable switches

were also considered.

A two-hierarchy procedure for minimal path search and state evaluation was

proposed in [14]. A major contribution is that the concept of the virtual power plant

(VPP) was introduced to model microgrids connected with intermittent sources. The

VPP o↵ers a simplified equivalent model to be used at distribution grid level. It can

be easily combined with the multi-state reliability model obtained by the generalized

capacity outage tables.

Recently, a risk analysis was conducted in [62] for distribution systems under

severe weather conditions. The authors found that: 1) wind storms have significant

e↵ects on distribution system reliability and it is indispensable to involve extreme

weather in the reliability evaluation; and 2) reliability evaluation considering wind

storm classifications provides the change trend of the reliability indices and reveals

some severe but rare events.

A distribution system with DG units can be operated in two modes: islanding

mode and grid connected mode. During islanding mode of operation, the system fails

when there is a deficit in power generation of DG [8]. By making use of smart sen-

sors, advanced switches and andppropriate control methods [55], excess load can be

curtailed or interrupted to maintain partial load during islanding. Use of V2H, which

means EVs function as energy sources to supply household demand, is envisioned
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in [63]. The feasibility to control each household appliance through home computer

networks is shown in [67]. Unlike conventional energy sources, EVs are primarily

used in the transportation sector. As a result, the amount of energy available from

EVs depends on their travel patterns, charging requirements, and time and duration

of outages. In an attempt to assess EVs’ contribution to the generating system re-

liability, a method has been proposed to evaluate the capacities available from EVs

in terms of interruptible charging and V2G [94].

1.3 Primary Contributions

1.3.1 Reliability Evaluation of Generating Systems Incorporating EV Charging

The first intention of this thesis is to extend the well-being analysis of generating

systems by incorporating EV charging in the assessment. To assess individual EVs’

contribution and incorporate them into the system, methods for evaluating the aggre-

gate capacity are proposed, so that with data input from the demand side, capacity

contribution from EVs can be easily obtained while the daily travel and charging

requirements of EVs are not comprised. Two scenarios are considered—the inter-

ruptible EV charging scenario and V2G enabled scenario. In the former scenario,

charging load of an EV is considered interruptible as long as charging requirements

can be fulfilled afterwards. In the V2G enabled scenario, in addition to the inter-

ruptible capacity, energy stored in EVs is allowed to feed back to the grid. With the

capacity evaluated, the aggregated population of V2G enabled EVs can be regarded

as a rapid start unit adding to the system. Besides, since usage of EVs is strongly

dependent on time of the day [92] and most of the short-term generation schedule

is based on the calendar day, the study of this thesis is conducted on a daily basis,

in order to get the whole picture. To facilitate the capacity evaluation and make

it fit with daily generating schedules, the idea of equivalent EV charging period is

proposed. Also, indices used in conventional well-being analysis, where only one sin-
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gle load level and emergency capacity are considered, are no longer su�cient. Thus,

indices such as the daily risk reduction are provided to have the insights. The ef-

fects on the system health of EV charging are analyzed using the Roy Billinton Test

System (RBTS) [28]. It is found from the results that with the interruptible and

V2G service enabled, EV charging is able to not only compensate for any lowering

of reliability due to its penetration but can also improve the system well-being.

1.3.2 Uncertainties of EV Charging and Its Impact on Reliability Evaluation of
Generating Systems

Secondly, uncertainties of EV charging are identified, such as punctuality, rounding

of time, forecast error of daily energy consumption and charging failure. Any of

these elements can cause errors in evaluation of EVs’ capacity contribution, which

may lead to unreliable results of the well-being assessment. For instance, punctuality

and rounding of time describe people’s inclination toward being early or late [41],

causing the actual charging arrangement di↵er from the scheduled one. People have

tendencies in estimating their daily mileages [83] and this can a↵ect the charging

plan as well if the energy consumption is changed.

How the EV charging and its grid services are organized and realized is also impor-

tant. There is a consensus that aggregators are required to enable EVs’ participation

into load management programs [93, 47]. An aggregator serves as a representative

of a group of EVs because the limited capacity of an individual EV is not negotiable

and the sheer number of EVs introduces scalability problem. However, a side e↵ect

is that grid services from EVs will cease with the failure of aggregator. Besides, the

number of aggregators deployed in a system is indeterminate. This thesis takes into

account the failure of aggregator with two potential grid realizations: the one with

a single aggregator and multiple aggregators. Fig. 1.6 shows the framework of well-

being analysis of generating systems considering EV charging and its uncertainties.
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Since system load as well as capacity contribution of EVs varies during the day, the

operating well-being of generating systems for each load level of the day is examined.

1.3.3 Reliability Evaluation of Distribution Systems Including V2G and V2H

As the third contribution, this thesis incorporates EVs as active components into

the classical distribution system reliability evaluation [29]. During outages, EVs can

reduce the load interruption through V2H and V2G. To illustrate, a fault is assumed

in the first section of the main feeder (2 miles) in a typical distribution system

(Fig. 1.7). In such an instance, load points A, B and C would not be recovered until

repaired. With EVs serving as energy sources at each load point, however, load can

be backed up in islanding mode of operation. Moreover, if excess power is available,

load points B and C can exchange power to further reduce the loss caused by the

fault by sectionalizing the fault component and maintaining the connection between

B and C.

Two topologies for EV charging are considered at each load point: centralized and

Uncertainties of EV charging:
• Punctuality / time rounding;
• Energy consumption;
• Charging failure;
• Aggregator failure;
• Grid realization.

Information from demand side:
• Scheduled times;
• Daily mileage;
• EV type;
• Charging rate;
• EV population.

Parameter evaluation:
• Capacity evaluation for each load level during the day;
• Evaluation of other parameters.

Well-being analysis:
• Well-being analyses for each load level during the day;
• Sensitivity study.

Figure 1.6: Well-being analysis considering EV charging and its uncertainties

27



B

A C

Feeder
Breaker 1 mile2 miles                            3 miles

2 miles

1 mile3 miles
Figure 1.7: A typical configuration of distribution systems [29]

dispersed EV charging (Fig. 1.8). In the context of distribution system, the network

topology, which has a direct impact on EVs’ capacity contribution in both islanding

and grid connected mode of operation, has to be scrutinized. Since the topology

on the system level of a specific distribution circuit is given, much emphasis should

be put on the local charging network. The topology of centralized EV charging is

favored in densely populated areas with existing parking lots, whereas dispersed EV

charging is more practical in suburban or rural areas.

Therefore ensuing from diversities of di↵erent modes of operation and topologies

of local charging networks are five possible scenarios: a). “local V2G” and b). “in-

terregional V2G” for the topology of centralized EV charging; and c). “V2H”, d).

“V2H + local V2G” and e). “interregional V2G” for the topology of dispersed EV

charging (Table 1.1).

Table 1.1: Scenarios considered

Charging topology
Centralized Despersed

Mode of
operation

Islanding a. Local V2G
c. V2H
d. V2H + local V2G

Grid
connected b. Interregional V2G e. Interregional V2G

In this thesis, the term “V2H” is used to indicate EVs directly backing up their
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households, which can happen only in the topology of dispersed EV charging. Two

types of V2G—local V2G and interregional V2G—are introduced. The former is

confined to each load point, while the latter entails energy exchanges within working

sections of the main feeder. As for the latter, calculation of power flow is required

since power loss along distribution lines has to be considered. Note that for dispersed

EV charging, each house can choose to either isolate itself from the local circuit (i.e.

V2H) or remain connected to take part in local V2G or interregional V2G.

1.4 Organization of the Thesis

Chapter 2 provides models to analyze EVs to improve reliability of the generating

system as interruptible load and additional generating units. Chapter 3 studies the

uncertainties of aggregated EVs and their e↵ects on well-being of generating systems.

Chapter 4 presents models to adopt both V2G and V2H into the reliability evaluation

of distribution systems. Chapter 5 concludes the thesis.

(a)  Local  network  topology  of  centralized  EV  charging

To lateral

To lateral

(b)  Local  network  topology  of  dispersed  EV  charging
Figure 1.8: Di↵erent topologies for local networks
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2

Well-Being Analysis of Generating Systems
Considering EV Charging

This chapter is organized as follows. The analytical method for well-being evaluation

is briefly reviewed in Section 2.1. Section 2.2 illustrates the methodologies for ex-

amining the interruptible capacity and the V2G capacity that EVs could contribute

to the system. The analysis procedure is also provided in Section 2.2. Numerical

results are analyzed in Section 2.3. Finally, sensitivity analyses are presented in Sec-

tion 2.4 to reveal the impact of parameters of concern such as energy capacity and

charging/discharging limits of EV, penetration of EVs and lead time of EV charging.

2.1 Well-Being of Generating Systems

The relationship between the probabilities of the system being in healthy, marginal

or at risk state is given by (2.1):

PH ` PM ` PR “ 1 (2.1)

where the three probabilities can be determined by looking up the capacity outage

probability table (COPT). A detailed algorithm for developing a COPT is presented

31



in [18]. It should be noted that in well-being analysis, the COPT is created using

ORR instead of FOR. The ORR represents the probability that a unit fails and is

not replaced during the lead time. UCR from a COPT has a discrete nature due to

the individual unit capacities [23]. For calculation of ORR, the reader is referred to

[23].

Dr

a b c

T1 T2 T3
t

f (R)

0
Area risk curve without interruptible load and rapid start units
Area risk curve with interruptible load and rapid start units

Interruptibe load 
becomes available

Rapid start units 
become available

Additional generation 
becomes available

Figure 2.1: Area risk curves with and without interruptible load and rapid start
units

The upper and lower curves in Figure 2.1 are typical area risk curves (or risk

functions fpRq [18]) without and with the inclusion of interruptible load and rapid

start units, respectively. T1, T2 and T3 are lead times associated with interruptible

load, rapid start units and conventional thermal units, respectively. The total risk

decreases by Dr as shown by the shaded area. Calculation of the equivalent UCR

(i.e. the area under the lower curve of Figure 2.1) and equivalent probabilities of the
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normal and marginal states are summarized as follows:

PER “ Ra ` Rb ` Rc (2.2)

PEH “ PH ¨ p1 ` Drq ` PR ¨ Dr (2.3)

PEM “ PM ¨ p1 ` Drq (2.4)

where Ra, Rb and Rc are partial risks represented by corresponding areas under the

lower area risk curves in Figure 2.1 and Dr is given by (2.5):

Dr “ PR ´ PER (2.5)

Given the tiny capacity a single EV has, normally EVs need to be aggregated

before they can interact directly with the grid [31]. In this thesis, we assume charg-

ing/discharging capacities of EVs are aggregated. So available capacities can be

called on in the same lead time.

If we substitute (2.5) into (2.3) and (2.4) and add , and together, (2.6) can be

obtained and the relationships among the three state probabilities remain the same

as (2.1):

PEH ` PEM ` PER “ 1 (2.6)

For details of calculation of the equivalent risk with interruptible load consider-

ation and rapid start units, the reader is referred to [16] and [18], respectively.

2.2 Methodologies

2.2.1 Information Required

Daily activities of EVs should not be a↵ected by the interruption of EV charging

so daily charging requirements of daily charging should be obtained before the in-

terruptible capacity can be evaluated. Travel times of EV driving and SOC of EVs

are the two basic requirements of EV charging. Every EV should have su�cient
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SOC to cover its daily mileage the next day. This thesis assumes EV charging takes

place only at home, where the daily travel starts and ends. The time period between

arrival of an EV at home and its departure is thus the available charging period,

during which temporary interruption of EV charging is acceptable. Once data from

demand side, such as home arrival time (tiHA), home departure time (tiHD) and en-

ergy depleted during daily driving (Ei

D) of every EV are obtained, the evaluation

procedure can begin.

2.2.2 Interruptible Capacity Evaluation

Normally the period of a conventional daily generation schedule is one calendar day,

which starts and ends at midnight. It can be expected, however, that an available

charging period (i.e. the parking period) of an EV is usually across two days. This

causes inconvenience as a complete EV charging period is split by the study period

of one calendar day. For instance, given the time of departure and arrival of an EV is

7:00 and 16:00, respectively, the study period of one calendar day, which is from 0:00

to 23:59, essentially includes two separate available charging periods: on one hand the

period from 0:00 to 6:59 is from the available charging period of the day before and

on the other hand, the period from 16:00 to 23:59 is a part of the available charging

period which is supposed to last until 7:00 of the next day. To avoid separate periods

available for charging while retaining the conventional study period for generation

schedule, we first expand the study period to 48 hours (two calendar days) to have a

complete charging period available for each EV; the period between and would not

exceed 48 hours. Figure 2.2 illustrates the idea of the extended study period, where

only the complete period available for charging (from 16:00 to 31:00) is preserved.

The period of interruption in Figure 2.2 is the period of interest, during which the

system well-being is to be examined. As long as fixed daily charging requirements

are assumed, results from the extended study period are equal to the ones from
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Figure 2.2: Illustration of the extended study period

the conventional study period. By splitting back into two single calendar days and

superimposing them, the results can be simply converted back to the daily basis.

For example, interruptible capacities evaluated for the period from 24:00 to 31:00

in the extended study period are equal to the capacities for the period from 0:00 to

7:00 in a single calendar day, as illustrated in Figure 2.2(c). With the continuous

period available for charging, evaluation of interruptible capacity as well as basic EV

charging simulations can be done in an easier and convertible way.

Basically, the interruptible capacity (pI) is dependent on the quantum of inter-

ruptible charging energy and duration of the interruption (TI), equal to the system

lead time less the lead time of EV charging:

pI “ EI

TI
(2.7)

where,

EI “ min

ˆ
mÿ

i

eIC,i

,
mÿ

i

eSC,i

˙
(2.8)

TI “ 1 ¨ tIT (2.9)
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where eIC,i

and eSC,i

can be derived from (2.10) and (2.11), respectively; tI represents

the period during which EV charging is to be interrupted. For example, if the system

lead time is 1 hour, lead time of EV charging is 10 minutes and the outage takes

place from 7:00, then tI should represent a period from 7:10 to 7:59.

The fundamental premise of the evaluation is that the requirements of EV charg-

ing should not be compromised by the interruption. The maximum allowable energy

loss (EI) is restrained by two variables: the maximum energy loss due to the inter-

ruption and maximum energy provided by supplementary charging. The maximum

energy loss due to the interruption is equal to the energy supposed to be charged

originally during the period of interruption, given by (2.10). Energy provided by

supplementary charging is defined as the amount of energy that can be delivered to

an EV, in addition to its original charging arrangement, after the interruption, as

defined by (2.11). For instance, if there is no additional time period left for charg-

ing an EV after the interruption, then the EV cannot provide any capacity during

the interruption. Similarly, no capacity can be provided if the interruption happens

when no charging is planned in the original charging arrangement. In this chapter,

it is assumed that only EVs whose charging requirements can be fulfilled by the

original charging arrangements are considered and the original charging starts right

at the home arrival time, charges EV with maximum charging level and lasts until

the required SOC is reached.

eIC “ POC ¨ tIT (2.10)

eSC “ ppOTA ´ POCq tAI
T (2.11)

where two mˆ 2n matrices POC and TA are used to represent the charging of every

EV during each time interval. For example, if the time interval is 1h, then the

corresponding matrices are m ˆ 48; if the home arrival and departure time of EV i

are assumed to be 16:00 and 7:00, respectively, then the 16th to 31st elements in the
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Figure 2.3: Illustration of the additional period of interruption for the extended
study period

ith row of TA are 1 (hour) and the other elements in the row are 0; if the required

SOC for charging is 20 kWh and maximum charging rate is 5 kW, then the 16th to

19th elements in the ith row of POC are equal to 5 kW. Similarly, if the interruption

takes place at 16:00 and the lead time of back-up units is two hours, then the 16th

and 17th columns of row matrix tI and the 18th to 48th columns of tAI are 1 with

the other elements in the matrices equal to 0. It should be noted that with the

extended study period, the charging interruption should be considered twice in the

calculation. This is because, as illustrated by Figure 2.3, in a one-calendar-day based

study period, interruption may a↵ect the separate available charging periods. It can

be seen from Figure 2.3 that an additional period of interruption is applied to achieve

equivalence.

Consequently, the above calculation ((2.7)´(2.11)) should be carried out twice

for the equivalent periods of interruption and the final solution of the interruptible

capacity for the period of interruption is the sum of the two results.
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2.2.3 Capacity of V2G

When V2G is enabled, EVs are allowed to give their stored energy back to the grid.

The basic idea of evaluating the capacity for V2G is similar to evaluating the in-

terruptible capacity of EV charging. The idea of equivalent interruptible capacity

for V2G is introduced here to implement this. With the V2G-equivalent interrupt-

ible capacity, which can be derived without changing the calculation procedure used

in the previous subsection too much, the capacity for V2G (pV2G) can be obtained

by subtracting the interruptible capacity from the V2G-equivalent. For example,

in addition to interruptible capacity of 5 kW for a given period, if an EV can pro-

vide another 5 kW back to the grid during the same period, then the equivalent

interruptible capacity for that period is 10 kW:

pV2G “ EV2G

TI
(2.12)

EV2G “ EEI ´ EI (2.13)

where TI is the same as in (2.9) and we assume EVs have the same lead time for

both being interrupted and providing V2G capacity; the calculation of EEI is similar

to EI, except for the V2G-equivalent maximum energy loss (eEIC):

EEI “ min

ˆ
mÿ

i

eEIC,i

,
mÿ

i

eSC,i

˙
(2.14)

where the V2G equivalence (eEIC,i

) is obtained by (2.15):

eEIC “ POC ¨ tIT ` eR (2.15)

where the amount of reverse energy (eR) is subject to SOC at the time when inter-

ruption takes place and the capacity limits of the reverse power:

eR “ min
´
eEV , pRTA ¨ tIT

¯
(2.16)
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where the SOC (eEV) is dependent on energy consumed for daily travel and energy

charged by the original charging arrangement:

eEV “ eF ´ eD ` POC ¨ tBI
T (2.17)

where eD derives from Ei

D and the relationships among tBI, tI and tAI are as in

(2.18):

tBI ` tI ` tAI “ 1 (2.18)

2.2.4 Analysis Procedure

The proposed well-being analysis is carried out as follows:

1. Read system information and data from demand side; calculate ORR of each

generating unit.

2. Calculate and form a COPT for the original system with ORR; obtain PH, PM

and PR with required well-being criteria.

3. Derive POC, TA and eD from tiHA, t
i

HD, and Ei

D.

4. Given time of the day and the corresponding load level, obtain tBI, tI and tAI.

5. Calculate pI following the method provided in Subsection 2.2.2; obtain a COPT

for the scenario of interruptible EV charging.

6. Calculate pV2G following the method provided in Subsection 2.2.3; obtain a

COPT for the V2G enabled scenario.

7. Calculate PEH, PEM and PER for both the above scenarios respectively.

8. Stop if all periods of interest and corresponding load levels are investigated;

Go to Step 4 otherwise.
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2.3 Numerical Study

The concepts developed in the previous sections are applied to the RBTS [28]. The

generating unit model is shown in Figure 2.4. Units are scheduled following the

�

µUp Down

Figure 2.4: Two-state model

second loading order given in [28]. The generating system and load data are included

in Appendix C.

Multiple criteria are required. In addition to an acceptable risk level of 0.001, a

healthy state probability of 0.99 is required. The load on Monday of the 11th week

is used. In addition to conventional units in the system, there are 5,000 identical

EVs in the RBTS. Together with EV charging, the aggregate load varies from 38.6%

to 66.5% of the 180 MW peak load. Energy capacity of EV is 25 kWh. and are

both 5 kW. The equivalent rapid start unit for V2G is described by the four-state

model shown in Figure 2.5. Its transition rates are given in Table 2.1. The system

lead time is assumed to be 1 hour. Lead time is unit start time plus notification

time. While the charging and discharging of EVs can be called on in a very short

time, it is a common practice in conventional interruptible service programs to notify

customers before the interruption [1]. We first assume the lead time of EV charging

is 10 minutes, i.e. EV charging can be called in for both interruption and V2G in 10

minutes.
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Figure 2.5: Four-state model for rapid start units

Table 2.1: Transition rates (f/hour) of the equivalent rapid start unit [18]

�11 “ 0 �12 “ 0.005 �13 “ 0 �14 “ 0.03
�21 “ 0.0033 �22 “ 0 �23 “ 0.0008 �24 “ 0
�31 “ 0 �32 “ 0 �33 “ 0 �34 “ 0.025
�41 “ 0.015 �42 “ 0.025 �43 “ 0 �44 “ 0

2.3.1 Daily Charging Requirements Simulation

As stated in Subsection 2.2.3, information such as EV travel and charging require-

ments should be obtained before the well-being analysis. Since no ready-made data

of a population of EVs is available with regard to daily travel and charging, in this

chapter, a simulation method is developed to generate the basic information required,

i.e. tiHA, t
i

HD and Ei

D, from which other information such as POC, TA and eD can be

derived.

Dallinger et al [38] simulated EV daily driving by using the statistical distribu-

tions of driving behaviors [15], [69] such as start and end times of daily travel and

daily mileage. Given the same distributions, available charging periods and SOC
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Figure 2.6: Sampling daily travel times and mileages of EVs

requirements can be obtained from sampling. The procedure is given in Figure 2.6.

Rather than simply sampling, which would result in infeasible combinations of sam-

ples, this procedure checks the feasibility of samples and filters out the infeasible

ones. Home arrival time should be prior to the departure time and average daily

speed should be within a practical range (Figure 2.6). The upper and lower limits

of daily average speed in this chapter are 60 miles/h and 5 miles/h, respectively.

Following the sampling procedure, the available charging period is from tiHA to tiHD

and the SOC requirement of charging is obtained by (2.19), assuming daily travel

and charging requirements remain fixed for each EV:

Ei

D “ RA ¨ M i (2.19)

where RA is assumed to be 0.23 kWh/mile in this chapter.
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2.3.2 Numerical Results

With information obtained from the above, capacities available for EV charging

interruption and V2G for the 24 load levels of the day are calculated as given in

Figure 2.7, given that outages respectively take place at the top of each hour of the

calendar day.
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Figure 2.7: Capacities available for load interruption and V2G

According to (2.8), the charging of EVs can be regarded as interruptible load only

when original charging load is nonzero (2.10) and the expected energy loss due to

the interruption can be compensated afterwards (2.11). So interruptible capacities

during the home arrival period (around 11:00 to 20:00 [38]) of the EVs are greater

than any other periods of the day.

The situation is quite di↵erent for V2G. In accordance with (2.13) to (2.17), there

are mainly four factors a↵ecting the V2G capacity is subjected: population of grid-

connected EVs, SOC available for discharging, maximum charging compensation

after outage and maximum discharging rate. For example, the V2G capacity reaches
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its minimum at 11:00. This is attributed to two factors: the population of grid-

connected EVs is small and SOC of EVs available for discharging is low at this time.

On the other hand, when most EVs are at home with enough SOC (e.g. during

1:00 to 5:00), V2G capacity reaches its maximum, which is limited mainly by the

maximum discharging rate (5kW ˆ 5,000 EVs = 25 MW). In this example, the

capacity for V2G is generally much greater than the interruptible capacity.

Table 2.2 shows the results of well-being analysis without and with interruptible

EV charging. In this case, the system well-being remains the same during the day

except for the 12th hour. For that hour, probabilities at the bottom of the cells

represent ones with consideration of the interruptible load. The risk reduction (Dr) is

0.00000191, which accounts for 67.0% decrease of the original risk level (0.00000285).

On the contrary, the probability of the system being in a healthy state at that hour

is slightly higher and the marginal state is barely improved. It can be seen from (2.3)

and (2.4) that except for the negligible second term PR ¨ Dr in (2.3), probabilities of

healthy and marginal states are improved by Dr, which is far less than 1. That means

the probabilities of healthy and marginal states after including interruptible load or

rapid start units depend mainly on their values when the system has no emergency

aid.

Since there is a big concern about the system risk level increasing in the presence

of EV penetration, the system well-being without EV penetration is given in Table 2.3

for comparison. Given the definition of penetration level of EV charging as in (2.20),

the 5,000 EVs represent a 13.9% penetration into the system:

LEV “ m ¨ pO
psyst

ˆ 100% (2.20)

It is worth noting that at the current penetration level (13.9%) the risk level during

the day increases only at the 12th hour, from 0.00000188 to 0.00000285 (51.6%

increasing). Rather than compensation, the system well-being is even improved at
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Table 2.2: Generating system well-being without and with consideration of the in-
terruptible capacity provides by EVs with multiple criteria

hr Load level
(MW)

no.of
unit˚

Interruptible
capacity (MW)

Probability of

Health˚ Margin˚ Risk˚

1 76 4 0.07 0.99842553 0.00157367 0.00000080
2 74 4 0.03 0.99842553 0.00157367 0.00000080
3 72 4 0.01 0.99842553 0.00157367 0.00000080
4 69 4 0.00 0.99842553 0.00157367 0.00000080
5 71 4 0.00 0.99842553 0.00157367 0.00000080
6 78 4 0.01 0.99842553 0.00157367 0.00000080
7 86 5 0.08 0.99828853 0.00171053 0.00000094
8 102 5 0.18 0.99774168 0.00225645 0.00000188
9 114 5 0.49 0.99774168 0.00225645 0.00000188
10 119 5 0.74 0.99774168 0.00225645 0.00000188
11 121 6 1.29 0.99717219 0.00282496 0.00000285

12 120 6 1.82
0.99717219 0.99717410 0.00282496
0.00282497 0.00000285 0.00000094

13 113 5 2.11 0.99774168 0.00225645 0.00000188
14 112 5 1.66 0.99774168 0.00225645 0.00000188
15 109 5 1.59 0.99774168 0.00225645 0.00000188
16 107 5 1.71 0.99774168 0.00225645 0.00000188
17 110 5 2.11 0.99774168 0.00225645 0.00000188
18 113 5 2.37 0.99774168 0.00225645 0.00000188
19 117 5 2.24 0.99774168 0.00225645 0.00000188
20 119 5 1.71 0.99774168 0.00225645 0.00000188
21 116 5 1.10 0.99774168 0.00225645 0.00000188
22 108 5 0.59 0.99774168 0.00225645 0.00000188
23 96 5 0.35 0.99828853 0.00171053 0.00000094
24 84 5 0.21 0.99828853 0.00171053 0.00000094
˚Same for both scenarios if only one value is provided

that hour (risk reducing to 0.00000094) when interruptible capacity is included due

to an additional unit being started.

Table 2.4 shows the system well-being when V2G is considered in addition to

interruption of EV charging. Compared to Table 2.2, it can be seen that the risk

during the day is largely reduced and the number of committed units for load levels

of the 7th, 11th, 12th, 23rd and 24th hours decreases when both interruptible load
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Table 2.3: Generating system well-being with multiple criteria without EV charging

hr Load level (MW) no.of unit
Probability of

Health Margin Risk

1 75 4 0.99842553 0.00157367 0.00000080
2 74 4 0.99842553 0.00157367 0.00000080
3 72 4 0.99842553 0.00157367 0.00000080
4 69 4 0.99842553 0.00157367 0.00000080
5 71 4 0.99842553 0.00157367 0.00000080
6 78 4 0.99842553 0.00157367 0.00000080
7 86 5 0.99828853 0.00171053 0.00000094
8 102 5 0.99774168 0.00225645 0.00000188
9 114 5 0.99774168 0.00225645 0.00000188
10 118 5 0.99774168 0.00225645 0.00000188
11 120 6 0.99717219 0.00282496 0.00000285
12 118 5 0.99774168 0.00225645 0.00000188
13 111 5 0.99774168 0.00225645 0.00000188
14 110 5 0.99774168 0.00225645 0.00000188
15 108 5 0.99774168 0.00225645 0.00000188
16 105 5 0.99774168 0.00225645 0.00000188
17 108 5 0.99774168 0.00225645 0.00000188
18 110 5 0.99774168 0.00225645 0.00000188
19 115 5 0.99774168 0.00225645 0.00000188
20 117 5 0.99774168 0.00225645 0.00000188
21 115 5 0.99774168 0.00225645 0.00000188
22 108 5 0.99774168 0.00225645 0.00000188
23 96 5 0.99828853 0.00171053 0.00000094
24 84 5 0.99828853 0.00171053 0.00000094

and V2G are considered. Similarly, probabilities of healthy and marginal state do

not improve significantly in the presence of V2G.

2.4 Sensitivity Study

Section 2.2 shows that given the same system and the same EV travel behaviors,

improvement in well-being of the generating system is dependent on the energy

capacity of EVs, charging and discharging power limits, EV population in the system

and the lead time of EV charging. This section investigates impacts of these factors.
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Table 2.4: Generating system well-being considering V2G capacities of EVs with
multiple criteria

hr Load level
(MW)

no.of
unit

V2G capacity
(MW)

Probability of

Health Margin Risk

1 76 4 24.90 0.99897295 0.00102700 0.00000005
2 74 4 24.92 0.99897295 0.00102700 0.00000005
3 72 4 24.90 0.99897295 0.00102700 0.00000005
4 69 4 24.83 0.99897295 0.00102700 0.00000005
5 71 4 24.38 0.99897295 0.00102700 0.00000005
6 78 4 22.48 0.99897295 0.00102700 0.00000005
7 86 4 18.94 0.99842597 0.00157367 0.00000035
8 102 5 16.13 0.99828927 0.00171053 0.00000020
9 114 5 14.13 0.99774242 0.00225645 0.00000113
10 119 5 12.47 0.99774242 0.00225645 0.00000113
11 121 5 12.22 0.99774242 0.00225645 0.00000113
12 120 5 12.86 0.99774242 0.00225645 0.00000113
13 113 5 13.94 0.99828853 0.00171053 0.00000094
14 112 5 14.38 0.99828853 0.00171053 0.00000094
15 109 5 14.77 0.99828927 0.00171053 0.00000020
16 107 5 15.51 0.99828927 0.00171053 0.00000020
17 110 5 16.87 0.99828927 0.00171053 0.00000020
18 113 5 19.11 0.99828927 0.00171053 0.00000020
19 117 5 21.32 0.99828927 0.00171053 0.00000020
20 119 5 22.74 0.99828927 0.00171053 0.00000020
21 116 5 23.82 0.99828927 0.00171053 0.00000020
22 108 5 24.34 0.99828927 0.00171053 0.00000020
23 96 4 24.75 0.99842597 0.00157367 0.00000035
24 84 4 24.90 0.99897295 0.00102700 0.00000005

As indicated by (2.1) and (2.6), the reduction of UCR is equal to the increase of sum

of probabilities of healthy and marginal states. The daily risk reduction is introduced

in this section to represent improvement of daily operating well-being of the system.

Here we define the daily risk reduction as the sum of the magnitudes by which the

probabilities of risk states corresponding to the 24 load levels of the day are reduced

(i.e. sum of the 24 values of Dr, according to (2.5)) by interruptible EV charging

and V2G capacities.
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2.4.1 E↵ects of Energy Capacity of EV and Power Limits

Increasing energy capacity from 20 kWh to 50 kWh and the charging/discharging

limits (assuming pO equals pR) from 1.4 kW (110 V / 12 A) to 10 kW (240 V / 40

A), the e↵ects of the variance of energy capacity and charging/discharging limits on

daily risk reduction of the system are shown in Figure 2.8.
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Figure 2.8: E↵ects of EV energy capacity and charging/discharging limits on total
risk reduction

For the V2G enabled scenario, generally, daily risk reduction continues to increase

with increase in maximum charging/discharging limits. However, the magnitude of

reduction decreases with the increase. The reason is that by the nature of COPT,

the possibility of at risk state can never equal zero as long as generating units with

non-zero ORR are involved. So the decrease of the UCR becomes harder when it

is getting closer to zero. On the other hand, the increase of energy capacity hardly
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improves the system well-being.

It is noted that the trend of daily risk reduction is not absolutely monotonic. For

example, when the energy capacity of EV is set to 20 kWh, the daily risk reduction

decreases at 9 kW charging rate before it increases again at 10 kW. The reason can be

found by investigating the detailed results. The numbers of units committed during

the day in the V2G enabled scenario are given in Table 2.5 with energy capacity of

EV set to 20 kWh. It can be seen from the table that with charging/discharging

limits raised from 8 kW to 9 kW the numbers of units at the 6th, 16th to 20th and

24th hours are reduced. This heightens the risk at those hours, which cancels the

additional well-being improvement resulting from the rise of charging/discharging

limits. When the limits are raised from 9 kW to 10 kW, the unit commitment is

only changed at the 4th hour. The consequent risk increase is still outpaced by the

risk reduction. Thus a further well-being improvement can be spotted at 10 kW.

Table 2.5: Number of units with energy capacity of EV set to 20 kWh

Hour 1 2 3 4 5 6 7 8 9 10

Charging/discharging
limits (kW)

8 3 3 3 3 3 4 4 4 5 5
9 3 3 3 3 3 3 4 4 5 5
10 3 3 3 2 3 3 4 4 5 5

11 12 13 14 15 16 17 18 19 20 21 22 23 24

5 5 5 5 5 5 5 5 5 5 4 4 4 4

5 5 5 5 5 4 4 4 4 4 4 4 4 3

5 5 5 5 5 4 4 4 4 4 4 4 4 3

In the scenario where only interruptible EV charging is involved, given the accept-

able risk and probability of healthy state, neither the maximum charging/discharging

limits nor energy capacity can a↵ect the UCR much. This is because interrupt-

ible capacity is dependent on the daily charging requirement, which is determined

by driving behaviors of EVs. As the driving behaviors remain unchanged, system
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well-being improved by interruptible EV charging stays small compared to the V2G

enabled scenario.

2.4.2 E↵ects of EV Penetration Level

With the maximum charging rate limited to 5 kW, the daily risk reduction achievable

by varying the EV population from 1,000 to 10,000, that is, by increasing penetration

from 2.8% to 28.8%, is given in Figure 2.9.
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Figure 2.9: E↵ects of EV penetration on total risk reduction

Daily risk reduction is generally increased with increasing EV population in both

scenarios. In V2G enabled scenario, the system well-being improves with increase of

the penetration by a continuously reducing magnitude until some penetration level is

reached, which is 25% in this case. When only interruptible EV charging is included,

the risk reduction is not as sensitive to changes in EV penetration as in a V2G

enabled scenario. This is because, as found in Section 2.3, inclusion of interruptible

EV charging has a limited impact on system well-being since the unit commitment

is changed only for limited hours during the day. In comparison, a more consistently
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increasing trend can be spotted in a V2G enabled scenario since the inclusion of

V2G capacity triggers more unit commitment schedules being changed during the

day. It is also noted that in some instances daily risk reduction declines with the

increased penetration level, especially in the scenario of interruptible EV charging.

The reason is that, as mentioned in Subsection 2.3.1, information from demand side

is stochastically generated. With EV population size changed, travel and charging

requirements for the population have to be updated as well. Consequently, according

to the evaluation methods provided in Section 2.2, increases in interruptible and V2G

capacities along with EV population for each hour during the day cannot be always

expected.

To investigate the increase of system risk level caused by EV charging, the total

risk increase during the day is plotted against EV penetration level, as shown in

Figure 2.10. Without the help from EVs, the daily risk is dependent only on the

system load and the unit commitment during the day. The system load gradually

builds up with the increase of EV penetration. However, the unit commitment is not

changed as long as the reliability criteria are guaranteed. By the discrete nature of

UCR from a COPT, the resultant risk index is not changed when the load is within

a certain range, for the same COPT. This is why the risk increases in a step-like

manner.

No doubt the system health will deteriorate with the rise of EV population.

However, compared to Figure 2.9, it can be seen that from the perspective of system

reliability, activating EVs’ responsiveness can achieve not only migration of the harm

EV charging does to the system but also a further improvement of the system well-

being, especially when V2G is considered.

51



D
ai

ly
 ri

sk
 in

cr
ea

se
 ( 
×1

0-6
 )

0

1

2

3

EV penetration (%)
0 5 10 15 20 25 30

Figure 2.10: Daily risk increases under various EV penetration levels

2.4.3 E↵ects of EV Charging Lead Time

Apart from the above factors, in the presence of given interruptible capacities and

V2G capacities, the system well-being is a function not only of the system lead time,

but also of the lead time of EV charging itself. The lead time includes a notification

time and a time delay that EV charging facility requires to respond to the notification.

As EV batteries can respond very quickly and there may be agreements between EV

users and the grid on duration of the notification time, the lead time could vary

over a wide range. Figure 2.11 shows the results in terms of daily risk reduction

with various EV charging lead times, from 30s to 15 minutes, while the remaining

parameters of the system are the same.

It can be seen that for both interruptible EV charging and V2G enabled scenarios

the shorter the EV charging lead time is the more the system well-being can be

improved.
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Figure 2.11: E↵ects of EV charging lead time

2.5 Summary

One of the major achievements of this chapter is the methodology to incorporate

EVs’ contribution into the generating system operating health analysis. Variables

used are given in the form of matrices. By doing this, the calculation for a large

population of EVs is clearly facilitated. Besides, matrix handling is more e�cient for

numerical analysis softwares such as Matlab than simple loop control statements.

One of the significant insights that can be drew from the numerical study provided

is that EVs’ providing interruptible charging and V2G capacities not only migrate

the potential health deterioration of the generating system due to EVs’ penetration

but could also further improve the system reliability.
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3

Uncertainties of EV Charging and E↵ects on
Well-Being Analysis of Generating Systems

The chapter is organized as follows. The well-being analysis of generating systems

and EVs’ inclusion are reviewed in Section 3.1, where the motivation and the need for

this study are also given. The basic methodologies for assessing capacity contribution

of EVs and other basics are briefly reviewed in Section 3.2. Uncertainties of EV

charging are identified and formulated in Section 3.3. In Section 3.4 methods are

proposed to incorporate the uncertainties in well-being assessment. Numerical results

are given in Section 3.5, followed by the sensitivity study in Section 3.6. In Section 3.7

the load forecast uncertainty is considered.

3.1 Well-Being Analysis of Generating Systems Incorporating EV
Charging

3.1.1 Reduction of Unit Commitment Risk

To allow the inclusion of rapid start and hot reserve units, interruptible load and

postponable outages in the assessment of unit commitment risk [7], a modified PJM

approach was proposed by Billinton et al. [18], [16]. When additional generation such
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as rapid start units and/or demand response programs such as interruptible load are

included, it is important to take into consideration the type of the additional units

and/or demand response programs since they have di↵erent delay time associated

with their load carrying capability [21]. The e↵ect on the reliability of generating

systems, i.e. the reduction of the unit commitment risk, can be illustrated by area

risk curve concept [18, 21]. The probability of finding an operating unit on outage

at time t is

P pdownq “ �

� ` µ
´ �

� ` µ
e´p�`µq¨t (3.1)

Usually no repairs can be accomplished during the short period t, i.e. µ “ 0, then

(3.1) becomes

P pdownq “ 1 ´ e´�t (3.2)

The risk (or density) function fpRq is

fpRq “ dP pdownq
dt

“ �e´�t (3.3)

and probability of the unit failing during the time period between 0 to T is given by

P p0, T q “
ª

T

0

fpRq dt “
ª

T

0

�e´�t dt (3.4)

Consider a hypothetical system where a certain amount of interruptible load can

be called on in T1 and some rapid start units can be placed in service after a T2 delay,

while the lead time of conventional generation is T3. If a decision is made at t “ 0

to call on interruptible load and start rapid start units, the risk function fpR1q will

decrease to a new value (fpR2q) after the lead time of interruptible load (T1) and

become fpR3q after the lead time of T2 when rapid start unit is available, as pictorially

illustrated by Fig. 3.1. The risk level for the entire lead time T3 without and with
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interruptible load and rapid start units are given by (3.5) and (3.6), respectively.

P p0, T3q “
ª

T3

0

fpR1q dt (3.5)

P 1p0, T3q “
ª

T1

0

fpR1q dt `
ª

T2

T1

fpR2q dt `
ª

T3

T2

fpR3q dt
(3.6)

Then it is clear that the reduction of risk level achieved by demand response and

additional generation is the di↵erence between the two, i.e. the shaded area in

Fig. 3.1.

The computation of the risk level contribution is detailed in [21] and [18].

Risk reduction

T1 T2 T3
t

f (R)

0

f (R1)

f (R2)

f (R3)

Figure 3.1: Concept of area risk curve

3.1.2 Incorporating EV Charging Into Well-Being Analysis

To address the di�culty of interpreting the numerical risk index and inadequacy of

information provided by a single index, Billinton et al. [19] developed the well-being

analysis framework, where a system is identified as being healthy, marginal or at
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risk. A system is regarded as being healthy if the generation is adequate to supply

the existing total load demand. A system is in a marginal state if it does not have

enough operating reserve to satisfy the deterministic criterion. In the state of risk,

the system load is equal to or greater than the operating capacity. The method

for well-being analysis of generating systems considering standby units, interruptible

load and postponable outages was provided in [16]. It should be noted that the risk

level, i.e. the probability of being in state of risk, and its reduction serve as the base

for calculating the other well-being indices considering additional resources [16].

It can be seen from Fig. 3.1 that the reduction of the total risk depends upon how

much di↵erence fpR2q and fpR3q can make, compared to fpR1q. The values of new

risk functions are heavily dependent upon the capacities of the additional generation

and load interruption. For conventional generation, demand response programs and

unconventional resources such as wind turbine generators and solar panels, it is not

a problem to obtain the capacities since rated output values or capacities available

for spinning reserve are known. It is, however, not the case for EVs’ grid service

provision. Firstly, given the distributed nature, each EV has di↵erent “parameters”

such as energy capacity and charging requirements. Secondly, as a result of the daily

travel, the capacity EVs could provide, either as interruptible load or additional

generation, varies during the day. Keeping this in mind, a quantitative framework for

analyzing the system well-being with the involvement of EVs charging was proposed

in [94], where a method for evaluating EVs’ capacity contributions as interruptible

load and V2G was provided.

Nevertheless, the risk reduction is not just solely determined by the “rated” ca-

pacities of additional generation. Suitable models are required for the standby units

(or other resources) that realistically account for the fact that they may or may not

come into service successfully after their respective lead times [18]. When additional

resources are considered into reliability study, their probabilistic nature has to be
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considered and relevant models typifying their distinctive operating characteristics

are required. The primary energy fluctuations as well as the failure and repair char-

acteristics associated with unconventional energy sources such as solar power plants

and wind turbine generators were included in reliability assessment of generating

systems [80]. Di↵erent wind speed models were presented and their e↵ects on gen-

erating capacity adequacy were compared [20]. The e↵ects of distributed generation

(DG) were examined in [9] and [4], where di↵erent models for wind/solar DG were

used. To make the evaluation process more accurate, the correlation between mul-

tiple wind speeds from di↵erent sites was modeled into generating system reliability

evaluation in [73].

Table 3.1: Consideration of uncertainties for modeling generating units and demand
response programs

Conventional Unconventional

G
en
er
at
in
g

u
n
it
s

– Hardware failure
/ malfunction

e.g. Thermal / hydro [18]

– Hardware concerns
– Intermittent and/or
distributed nature

– Forecast error

e.g. Solar / wind [80, 20, 9, 4, 73]

D
em

an
d
-s
id
e

p
ro
gr
am

s

– 100% available

e.g. Interruptible load [16]

– Hardware concerns
– Distributed nature
– Forecast error
– Human behaviors
– Grid realization

e.g. EV charging

Table 3.1 summarizes the typical uncertainties considered for modeling units and

services from generating and demand sides of power systems. Di↵erent from other

unconventional energy resources, little is known about the probabilistic nature asso-

ciated with EVs’ grid services provision given multiple aspects involved (i.e. the entry

of “unconventional, demand-side programs” in Table 3.1). Traditionally, programs

such as interruptible load are treated as 100% available after the lead time. Thus the
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new risk level can be calculated without updating the capacity outage probability

table [16]. That is not the case for EVs’ provision of interruptible load. As stated

above, the evaluation of EVs’ capacity contribution is based on not only the types of

vehicle but also their daily travel and charging schedules, which can be easily a↵ected

by human activities as well as hardware failures. Besides, model used to represent

these uncertainties is not expected to be exactly the same for di↵erent points of time

in the day. To make the assessment process more accurate, uncertainties of EVs’

grid contribution and their causes have to be investigated, as depicted by the upper

right block in Fig. 1.6.

3.2 Capacity Evaluation

The interruptible capacity is the aggregate capacity contributed from EVs that can be

interrupted during the outage, while the V2G capacity is the capacity to be injected

back to the system if V2G is allowed. The basic premise for their evaluation is that

daily travel and charging requirements of each EV ought not to be compromised,

that is, the capacity, either to be interrupted or fed back, can be fully compensated

after system lead time and before EV’s departure [94]. For the ease of illustration

the methods for evaluating the interruptible and V2G capacities are reviewed here.

3.2.1 Interruptible Capacity

The interruptible capacity (pI) is determined by the amount of charging energy that

can be interrupted (EI) and duration of interruption (TI):

PI “ EI

TI
(3.7)

where EI is subject to two variables: the maximum energy loss due to the interruption

and maximum energy provided by supplementary charging, as given by (3.8); TI is
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given by (3.9):

EI “ min

ˆ
mÿ

i

eIC,i

,
mÿ

i

eSC,i

˙
(3.8)

TI “ 1 ¨ tIT (3.9)

where eIC,i

is equal to the energy supposed to be charged originally during the period

of interruption, as given by (3.10); eSC,i

is defined as the amount of energy that can

be delivered to an EV, in addition to its original charging arrangement, after the

interruption, as defined by (3.11); tI represents the period during which EV charging

is to be interrupted.

eIC “ POC ¨ tIT (3.10)

eSC “ ppOTA ´ POCq tAI
T (3.11)

where two mˆ 2n matrices POC and TA are used to represent the charging of every

EV during each time interval. The reason for 2n is that typically a period of daily

charging is cut by two calendar days (e.g. home parking period) and in order to

facilitating the evaluation and fitting it into daily generating schedules—which are

usually based on calendar days—the idea of extended study period [94] is applied.

Details of the matrix manipulation are given in Subsection 2.2.2 and 2.2.3.

3.2.2 Capacity for V2G

The basic idea of evaluating the V2G capacity is similar to evaluating the inter-

ruptible capacity. The idea of equivalent interruptible capacity for V2G is used

to implement the calculation. V2G capacity (pV2G) is obtained by subtracting the

actual interruptible capacity from the V2G-equivalent interruptible capacity:

pV2G “ EV2G

TI
(3.12)

EV2G “ EEI ´ EI (3.13)
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where TI is the same as in (3.9); the calculation of EEI is similar to EI, except for

the V2G-equivalent maximum energy loss (eEIC):

EEI “ min

ˆ
mÿ

i

eEIC,i

,
mÿ

i

eSC,i

˙
(3.14)

where the V2G equivalence (eEIC,i

) is obtained by (3.15):

eEIC “ POC ¨ tIT ` eR (3.15)

where the amount of reverse energy (eR) is subject to SOC at the time when inter-

ruption takes place and the capacity limits of the reverse power:

eR “ min
´
eEV , pRTA ¨ tIT

¯
(3.16)

where the SOC (eEV) is dependent on energy consumed for daily travel and energy

charged by the original charging arrangement:

eEV “ eF ´ eD ` POC ¨ tBI
T (3.17)

where eD derives from Ei

D and the relationships among tBI, tI and tAI are as in

(3.18):

tBI ` tI ` tAI “ 1 (3.18)

For details of capacity evaluation and the extended study period, the reader is

referred to Subsection 2.2.2 and 2.2.3.

3.3 Uncertainties of EV Charging

To enable EVs’ grid services, the grid operator needs first to be informed of the

estimated capacity contribution from the aggregators, i.e. interruptible and V2G

capacities (pI and pV2G) of each aggregated EV population. As potential failures of
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conventional generating units derate their actual capacities for the nominal or sched-

uled ones, and as the consideration of primary energy fluctuations is indispensable

to unconventional units such as solar panels and wind turbine generators, the proba-

bilistic nature of EV charging ought to be considered along with the “rated” capacity

contribution. As an emerging grid resource, EVs’ commitment to power systems is

subject to not only hardware failures and repairs but also multiple other elements.

It can be found from the above section that for a given interruption period tI

and charging/discharging limits pO and pR, the original charging plans POC and

available periods for EV charging TA serve as fundamental variables for capacity

evaluation. The two variables are determined by EVs’ travel schedules and charging

requirements. As a result, this information needs to be collected beforehand. Unlike

other resources or services in power systems, EVs are “operated” by populations

of human beings and it is only fair to expect that this information can be a↵ected

by forecast uncertainties as well as human errors. In this chapter, elements could

compromise EVs’ grid commitment are collected. At the individual level, there are

five elements make the capacity contribution uncertain: punctuality, rounding of

time, forecast error of daily energy consumption, charging component failure and

EV absence, as depicted in Fig. 3.2. Among these, punctuality and rounding of

time are alternative and charging component failure and EV absence have the same

impact—charging failure—no capacity is available from the EVs involved. At the

aggregated level, the failure of an aggregator implies it will have no contribution to

the grid.

3.3.1 Punctuality

If errors exist in travel schedule, i.e. time of arrival and departure, (POC) and (TA)

would vary. For vehicle arrival and departure, general relationships between actual

and expected time are given in (3.19) and (3.20), assuming the charging begins right
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Figure 3.2: Fault tree of EV charging at the individual level

after the daily travel:

tiATA “ tiETA ` tiErr,A (3.19)

tiATD “ tiETD ` tiErr,D (3.20)

where negative values of errors tiErr,A and tiErr,D indicate earliness while positive de-

notes lateness.

One of the causes of the errors is punctuality. Companies and factories normally

have regulated working hours. If EV charging takes place during working hours,

the expected time of arrival and departure is used directly to evaluate the capacity

contribution. However, it is common people being late or early for appointments.

A typical distribution describing the e↵ect of punctuality is given in Fig. 3.3.

Punctuality varies with personalities, genders and types of appointments, etc. [10],

[54], [42]. Historically, punctuality was first described by “J-curve” and “double

J-curve” in [5]. After examining the J-curve hypothesis, Dudycha [41] drew the

conclusion that punctuality distributions may best be described by normal curves.

3.3.2 Rounding of Time

If the expected time of arrival and departure is scheduled and reported by individual

EV users, e.g. when EV charging takes place while parked at home, then the rounding
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Figure 3.3: A typical distribution of punctuality [41]

of time is the reason for uncertainty. People tend to have tentative schedule with

approximate time [75]. It is found that most travel surveys have reported times in

multiples of 5 minutes [75], [34], [83]. For example 82.87% of the reported times

of daily departure in National Household Travel Survey (NHTS [86]) are given as

multiples of 5 minutes. Rietveld et al. [75] demonstrated that for both scheduled

and unscheduled activities the variance of rounded travel times is much larger than

that of unrounded ones. In this chapter, the reported time in travel schedules is

considered to be accurate if it is not multiples of 5 minutes:

tiATA “ tiETA if tiETA mod 5 ‰ 0 (3.21)

tiATD “ tiETD if tiETD mod 5 ‰ 0 (3.22)

while (3.19) and (3.20) are applied to the other occasions. A typical distribution of

time rounding is given as in Fig. 3.4.

Punctuality and rounding of time are two alternatives that explain the error of

expected time of arrival and departure. In case of regulated time, punctuality should

be applied. For self-scheduled driving plans, the rounding e↵ect is to be considered.
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Figure 3.4: A typical distribution of variance of rounded travel time [75]

3.3.3 Forecast Error of Energy Consumption

The charging arrangement can also be a↵ected by errors in the forecast of energy

consumption. In the future, there could be two ways to predict the daily energy

consumption of EV. One is that individual EV users plan and report their daily

mileages in advance. Then daily energy consumption can be predicted with an

estimated consumption rate. But if smart meters are fully integrated in the future

grids, historical data of daily consumption can be fetched easily, based on which

the prediction can be made. In this chapter, given the availability of existing study

and data, the former way is assumed. The forecast uncertainty comprises two parts:

misreporting of daily travel distances and error of the estimated consumption rate.

Forecast and actual values of the daily consumption are given by (3.23) and (3.24),

respectively:

Ei

FD “ M i

S ¨ RFA (3.23)

Ei

AD “ pM i

S ` M i

Errq ¨ Ri

AA (3.24)

where in (3.23) consumption rate RFA is a fixed value while in (3.24) either Ri

AA

or M i

Err follows a certain distribution. Walsh et al. [87] examined the electricity
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consumption of typical EVs and found it is a↵ected by driver type, driving style, route

and battery type, etc. Based on their observations, we use a Gaussian distribution

to represent the possible variance of the actual value of average consumption rate

(Fig. 3.5).
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Figure 3.5: Distribution of average energy consumption rate during EV driving

Stopher et al. [83] assessed the accuracy of reported daily travel distance, which

was found to be consistently overestimated on average, as shown in Fig. 3.6.
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Figure 3.6: A typical distribution of misreporting of trip distance [83]
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3.3.4 Charging Component Failure and EV Absence

Unlike punctuality and rounding of time, which shift or/and alter the charging sched-

ule, charging component failure and EV absence nullify scheduled contribution of EV

for a certain period of time. The charging component failure depicts the failure of

charging facilities, e.g. inverters, rectifiers and switches, etc. EV absence denotes the

uncertainties from EV itself. For instance, an EV may fail to get home on schedule

due to some internal failure. Obviously, human activities contribute to the absence

as well. An EV could depart without prior notice due to some emergency, or the EV

is o↵ duty as a result of a tra�c collision. At this point, it is di�cult to distinguish

the cause of each instance of those “o↵-grid” EVs, i.e. whether it is hardware failure

or human activity. A two-state model is used to generally represent the probability

of EV being absent for scheduled grid services (Fig. 3.7).

�

µUp Down

Figure 3.7: Two state model charging component and aggregator

3.3.5 Aggregator Failure And Grid Realization

The aggregator could be either existing utilities that will o↵er new financial contracts

specifically for the charging load, or new for-profit entities that will participate in

the wholesale market [93]. One single aggregator can be su�cient for handling the

charging and grid services of EVs, if the system is small and the penetration level

of EVs is not significant. At the instance when the EV penetration is high in the

system or it covers a large geographical area, multiple aggregators coexisting in the

system are likely to be the case. Especially, multiple aggregators are more expected
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in a deregulated market. The possible grid realization for EV charging and EVs’ grid

services are given in Fig. 3.8.

…
…

…

… … 

EV
Aggregator

(a) (b)
Figure 3.8: Grid realizations: (a) Single aggregator; (b) Multiple aggregators

The aggregator can be modeled by the two-state representation shown in Fig. 3.7.

It is aggregators’ responsibility to both handle the charging and gather available

capacities from EVs for any grid services. When an aggregator fails, neither the

interruptible EV charging nor the V2G can be contributed from EVs under that

aggregator.

3.4 Well-Being Assessment Considering Uncertainties of EV Charg-
ing

When capacity contribution of EV charging and its uncertainties are involved, it

is essential to examine the operating well-being at di↵erent times of the day. It is

because the usage of EVs strongly depends on the time of the day and so does their

capacity contribution. Generating capacity and system load vary during the day as

well. In this chapter, the generating system well-being is studied on an hourly basis.

It is assumed that V2G is enabled so both interruptible and V2G capacities (i.e. pI

and pV2G) can be called on in case of outages.
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Generally, with necessary information provided and their uncertainties considered

(the top two blocks in Fig. 1.6), two consecutive procedures remain to fully assess

the system well-being (the following two blocks in Fig. 1.6): parameter evaluation

(Steps 1 to 7) and well-being analysis (Steps 8 and 9). In parameter evaluation, a

Monte Carlo simulation is required to take account of all the uncertainties. Then

the availability of statistics of the capacities, based on which a multi-state model

is derived for each aggregator at each hour, can be obtained. Multiple criteria are

required for the unit commitment. For construction of the COPT and computation

of reliability indices from the multi-state model, the reader may refer to [18]. The

basic calculation of well-being indices associated with interruptible load and stand

by units is also illustrated in [18] and [16].

1. Read system information including travel schedules and charging requirements

of EVs; obtain scheduled and forecast data such as tiETA, t
i

ETD and Ei

FD.

2. Set the next hour and obtain tBI, tI and tAI.

3. Apply uncertainties of EV charging on the individual level. According to Sec-

tion 3.3.1 to 3.3.4, sample tiErr,A, t
i

Err,D and Ri

AA; calculate t
i

ATA, t
i

ATD and Ei

AD;

determine POC, TA and eD.

4. Calculate pI and pV2G for EVs under each aggregator following the methods

provided in Section 3.2; accumulate the corresponding frequencies.

5. Repeat Steps 3 and 4 until acceptable availability of statistics of pI and pV2G

or the stopping rule is reached.

6. Obtain models to represent those capacities; proceed if all hours are investi-

gated. Go to Step 2 otherwise.
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7. Reset the hour count and proceed if all grid realizations (Section 3.3.5) are

considered. Change the grid realization and go to Step 2 otherwise.

8. Perform unit commitment at each lead time with multiple criteria, form COPTs

and calculate well-being indices for all hours.

9. Stop if all realizations are considered. Change the grid realization and go to

Step 8 otherwise.

3.5 Numerical Study

In this chapter the study case in [94] is used, where 5,000 EVs are included in

the generating system of RBTS [28]. The load on Monday of the 11th week is used.

Multiple criteria are required. The acceptable risk level and healthy state probability

are 0.001 and 0.99, respectively. Energy capacity of each EV is 25 kWh. The lead

time for both charging interruption and V2G is 10 minutes. For ease of illustration

it is assumed that system lead time is 1 hour. The charging load of EV constitutes

13.9% penetration. The information from demand side in our previous study such

as time of arrival and departure and daily energy consumption is used here as the

scheduled values (tiETA, t
i

ETD, and Ei

FD). The expected time of arrival and departure

is regarded as self-scheduled. So the rounding e↵ect (Fig. 3.4) applies. Actual rate

of energy consumption (Ri

AA) follows the distribution given in Fig. 3.5, while the

forecast one (Ri

FA) is the mean value, i.e. 0.23 kWh/mile. Misreported distance

(M i

Err) is sampled following the distribution in Fig. 3.6. The transition rates � and

µ for EV absence are 5 ˆ 10-4 and 1 ˆ 10-2 /hour, respectively. Each aggregator

has a failure rate of 1 /year and a repair rate of 99 /year. For the multi-aggregator

realization, two aggregators are first assumed with 2,500 EVs each.
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3.5.1 Single-aggregator Realization

Results of the Monte Carlo simulation for the single-aggregator realization are plotted

in Fig. 3.9. Box-and-whisker representation is used to show the distribution for each

hour (not including occasions of 0 MW capacity), where the whiskers are from the

minimum to the maximum. Evaluated capacities without taking into account the

uncertainties are also provided in the figure for comparison.
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Figure 3.9: Interruptible and V2G capacities with and without the consideration
of EV charging uncertainties

With consideration of uncertainties of EV charging, both interruptible and V2G

capacities become uncertain during the day. Compared to the results without con-
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sidering uncertainties, the expected values of interruptible capacities for some hours

of the day increase, e.g. the 1st, 2nd, 8th and 24th hour, because of shifting of time

of arrival and departure. As can be seen from Section 3.3.1 and 3.3.2 and Section 3.2,

errors of arrival and departure time lead to changes in the charging plans (POC) as

well as periods available for charging (TA). Charging processes of some EVs may

start earlier while some may start later. This moves some of the capacities from one

hour to another. This e↵ect is quite unique to EV charging as a grid resource. For

almost all the other conventional and unconventional units in power systems, the

uncertainties bring down nominal or scheduled capacities. In contrast, the e↵ect of

punctuality and time rounding could rather increase the “rated” value of capacity

contribution. For most of the day, however, the capacities decrease. It is because er-

rors other than earliness and lateness generally make the capacity contribution less,

for example, overestimation of daily mileage (Fig. 3.6) and charging failure. This

is more evident when it comes to V2G (Fig. 3.9). From the results of our previous

study, the V2G capacity is sensitive to EV population (i.e. EV penetration). With

the charging failure introduced (Section 3.3.4), V2G capacity decreases with the drop

of the EV population available for grid services.

Without considering the aggregator failure, which results in 0 MW capacity for

both charging interruption and V2G, the possible values of the total capacity for

each hour generally vary within a 1 MW range (Fig. 3.9). A two-state model can be

obtained for each hour, as given in Table 3.2. Each state consists of one interruptible

capacity and one V2G capacity. If the aggregator fails, then no capacities can be

delivered (State 2), otherwise the mean values in Fig. 3.9 are used in the model

(State 1).

Well-being indices can be calculated with the model. Since the sum of the three

well-being indices is fixed [19], the decrease of risk level equals the total increase

in probabilities of healthy and marginal state. Table 3.3 shows the risk levels with
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Table 3.2: Two-state representations for capacity contribution of EVs with single-
aggregator realization

hr
State 1 State 2

Capacity˚ (MW) Probability Capacity˚ (MW) Probability

1 0.11 / 24.02 0.98872796

0 / 0

0.01127204
2 0.04 / 24.02 0.98765330 0.01234670
3 0.02 / 24.01 0.99042423 0.00957577
4 0.01 / 23.92 0.99006761 0.00993239
5 0.00 / 23.45 0.98973639 0.01026361
6 0.01 / 21.72 0.99036113 0.00963887
7 0.07 / 18.44 0.99074071 0.00925929
8 0.20 / 15.48 0.99054715 0.00945285
9 0.34 / 13.37 0.99161877 0.00838123
10 0.67 / 11.80 0.98912146 0.01087854
11 1.15 / 11.67 0.98985399 0.01014601
12 1.68 / 12.23 0.99029920 0.00970080
13 2.01 / 13.27 0.98886578 0.01113422
14 1.72 / 13.64 0.98843819 0.01156181
15 1.59 / 14.12 0.98955355 0.01044645
16 1.70 / 14.96 0.98888677 0.01111323
17 1.91 / 16.25 0.99316424 0.00683576
18 2.28 / 18.43 0.99139953 0.00860047
19 2.14 / 20.61 0.98928309 0.01071691
20 1.56 / 22.02 0.98966274 0.01033726
21 1.06 / 22.97 0.99191925 0.00808075
22 0.58 / 23.44 0.99169255 0.00830745
23 0.35 / 23.77 0.99246578 0.00753422
24 0.24 / 23.98 0.99295541 0.00704459
˚Interruptible capacity / V2G capacity

and without the consideration of aggregator failure. Corresponding probabilities of

healthy and marginal state are provided in Table 3.4. System risks without any help

from the EVs are also given in Table III for comparison.

Risk levels are reduced remarkably during the day when charging interruption

and V2G are included. The amount of reduction depends on the load level (the

second column in Table 3.3) and capacities provided by EVs (Fig. 3.9). From the

comparison between the third and fourth columns in Table 3.3, the possible failure
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Table 3.3: Probability of risk during the day with a single aggregator

hr
Load
level
(MW)

Probability of risk (ˆ10-6)

With
aggregator
failure

Without
aggregator
failure

Without
V2G and
charging
interrup-

tion

1 76 0.009177 0.000194 0.797189
2 74 0.010034 0.000194 0.797189
3 72 0.007826 0.000194 0.797189
4 69 0.008110 0.000194 0.797189
5 71 0.008374 0.000194 0.797189
6 78 0.007876 0.000194 0.797189
7 86 0.241311 0.234799 0.938069
8 102 0.018651 0.000935 1.875047
9 114 0.946181 0.938330 1.875047
10 119 0.948520 0.938330 1.875047
11 121 0.957734 0.938330 2.850841
12 120 0.947420 0.938330 2.850841
13 113 0.948760 0.938330 1.875047
14 112 0.948903 0.938069 1.875047
15 109 0.020513 0.000935 1.875047
16 107 0.021763 0.000935 1.875047
17 110 0.013746 0.000935 1.875047
18 113 0.017053 0.000935 1.875047
19 117 0.021020 0.000935 1.875047
20 119 0.020308 0.000935 1.875047
21 116 0.016079 0.000935 1.875047
22 108 0.016504 0.000935 1.875047
23 96 0.240098 0.234799 0.938069
24 84 0.006956 0.000350 0.938069

of the aggregator does introduce additional risks. But the amounts increased are

limited. Given the availability of the aggregator (µ{p� ` µq “ 0.99), the contribution

these EVs make during the day is far from being overshadowed by aggregator failure.

3.5.2 Two-aggregator Realization

Similar two-state models can be obtained for EVs under each of the two aggregators.

A four-state model is then created from the two models to represent the entire EV
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Table 3.4: Probability of health and margin with a single aggregator

hr
With aggregator failure Without aggregator failure

Probability of Probability of
Health Margin Health Margin

1 0.99896683 0.00103317 0.99897300 0.00102700
2 0.99896624 0.00103375 0.99897300 0.00102700
3 0.99896775 0.00103224 0.99897300 0.00102700
4 0.99896756 0.00103243 0.99897300 0.00102700
5 0.99896738 0.00103261 0.99897300 0.00102700
6 0.99896772 0.00103227 0.99897300 0.00102700
7 0.99842482 0.00157494 0.99842609 0.00157367
8 0.99828429 0.00171569 0.99828947 0.00171053
9 0.99774260 0.00225645 0.99774261 0.00225645
10 0.99774260 0.00225645 0.99774261 0.00225645
11 0.99773682 0.00226222 0.99774261 0.00225645
12 0.99773709 0.00226197 0.99774261 0.00225645
13 0.99774260 0.00225645 0.99774261 0.00225645
14 0.99828221 0.00171684 0.99828853 0.00171053
15 0.99828375 0.00171623 0.99828947 0.00171053
16 0.99828338 0.00171660 0.99828947 0.00171053
17 0.99828573 0.00171426 0.99828947 0.00171053
18 0.99828476 0.00171522 0.99828947 0.00171053
19 0.99828360 0.00171638 0.99828947 0.00171053
20 0.99828381 0.00171617 0.99828947 0.00171053
21 0.99828504 0.00171494 0.99828947 0.00171053
22 0.99828492 0.00171506 0.99828947 0.00171053
23 0.99842506 0.00157470 0.99842609 0.00157367
24 0.99842535 0.00157464 0.99842633 0.00157367

population. The model for a typical hour is given in Table 3.5.

It can be seen from Tables 3.2 and 3.5 that with two aggregators, two “derated”

states (State 2 and 3) are added to the model, leaving the decreased probabilities

of “all-in” state (State 1) and “all-out” state (State 4). The unit commitment risk

during the day is provided in Table 3.6.

The daily risk reduction can be used to represent the improvement of daily oper-

ating well-being of the system and is defined as the sum of risk reduction of all hours
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Table 3.5: A typical four-state representations for capacity contribution of EVs with
two-aggregator realization

hr
State 1 State 2

Capacity˚ (MW) Probability Capacity˚ (MW) Probability

14 1.72 / 13.64 0.98157305 0.86 / 6.82 0.00894292

State 3 State 4

Capacity˚ (MW) Probability Capacity˚ (MW) Probability

0.86 / 6.82 0.00939841 0 / 0 0.00008563
˚ Interruptible capacity / V2G capacity.

(the fifth column minus the third column in Table 3.3). From Table 3.6, the daily

risk reduction for the two-aggregator realization is 3.127674ˆ10-5, increased slightly

from the single aggregator (3.127172 ˆ 10-5). This can be ascribed to the dissipated

state probabilities. With two aggregators, the chance of total failure (i.e. State 2 in

Table 3.2 and State 4 in Table 3.5) is lower. The healthy and marginal states are

barely changed, given their much higher probabilities.

3.6 Sensitivity Study

The aggregator is regarded as essential to EVs’ grid service participation. To find the

e↵ect of the number of aggregators on the operating well-being, the number of ag-

gregators is varied from 1 to 5. EV population is divided equally among aggregators.

The consequent daily risk reduction is plotted in Fig. 3.10.

It can be found in the figure that increasing the number of aggregators does not

necessarily further improve the system well-being. On the contrary, in this case the

daily well-being improvement shrinks when more than two aggregators coexist in the

system. The reason is that with more aggregators, probabilities of the multi-state

model are dissipated dramatically with more “derated” states, e.g. the model for

three aggregators has 8 states and 16 for four aggregators.
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Table 3.6: Results of well-being analysis with two aggregators

hr
Probability of

Health Margin Risk
(ˆ10-6)

1 0.99896413 0.00103587 0.004035
2 0.99896220 0.00103779 0.004878
3 0.99896297 0.00103703 0.004542
4 0.99897295 0.00102704 0.004256
5 0.99897293 0.00102707 0.005352
6 0.99896211 0.00103789 0.004920
7 0.99842607 0.00157369 0.246247
8 0.99828941 0.00171058 0.018282
9 0.99774259 0.00225645 0.957891
10 0.99774259 0.00225645 0.957323
11 0.99774255 0.00225650 0.955734
12 0.99774253 0.00225652 0.958300
13 0.99774261 0.00225645 0.938426
14 0.99827847 0.00172059 0.938154
15 0.99827868 0.00172130 0.019527
16 0.99827907 0.00172091 0.018852
17 0.99827860 0.00172138 0.019658
18 0.99827999 0.00171999 0.017255
19 0.99827769 0.00172229 0.021244
20 0.99827865 0.00172133 0.019572
21 0.99828018 0.00171981 0.016934
22 0.99828939 0.00171059 0.021040
23 0.99842376 0.00157601 0.230874
24 0.99842630 0.00157368 0.014595

Given the importance of the aggregator in realizing EVs’ grid services. Increas-

ing its availability from 0.97 to 0.997, the daily risk reduction for the system with

two aggregators is plotted in Fig. 3.11. The almost linear relationship shows that

increased availability of aggregators has a positive influence on the daily operating

well-being.

At this stage the transition rates associated with charging component failure and

EV absence are unknown. The resultant unavailability a↵ects both the interruptible

and V2G capacities, hence the well-being indices. Well-being analysis is performed
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Figure 3.11: The e↵ect of availability of aggregators

with a wide range of variation of the availability associated with charging failure

(Fig. 3.12).

Though the increase in the availability does a↵ect the system well-being positively,

the e↵ects are not uniform. With a low value of the availability, e.g. 0.6—0.8, the

final improvement of system well-being is sensitive to the absence of EVs. From

Fig. 3.12, upon the availability being raised to 0.85 and above, further enhancement

of daily risk reduction dwindles. Except for the result of the random sampling of the
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Figure 3.12: The e↵ect of charging component failure and EV absence

information from the demand side, the major reason is that by the nature of COPT,

the decrease of the risk level becomes harder when it is getting closer to zero since

the possibility of at risk state can never equal zero.

3.7 Consideration of Load Forecast Uncertainty

In real world, uncertainty of forecast load other than EV charging is also common. It

is necessary to consider load forecast uncertainty in the well-being analysis. A classic

seven-step approximation model with a standard deviation of 2% [18] is included in

the evaluation. Table 3.7 gives the system well-being indices with two aggregators

considering the load forecast uncertainty.

The deterioration of the system well-being due to the load forecast uncertainty

is unveiled by comparing the results from Tables 3.6 and 3.7. As expected, for most

of the hours during the day the probabilities of healthy and marginal states are

decreased while the risk levels are increased. On a daily basis, the average risk level

is raised from 0.266578 ˆ 10-6 up to 0.282759 ˆ 10-6. The daily risk reduction is

decreased to 3.104031 ˆ 10-5 accordingly, from 3.127674 ˆ 10-5 when load forecast
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Table 3.7: Results of well-being analysis with two aggregators considering load fore-
cast uncertainty

hr
Probability of

Health Margin Risk
(ˆ10-6)

1 0.99896418 0.00103581 0.004035
2 0.99896292 0.00103707 0.004878
3 0.99896605 0.00103394 0.004541
4 0.99897233 0.00102767 0.004248
5 0.99896928 0.00103072 0.005353
6 0.99895889 0.00104110 0.004989
7 0.99842588 0.00157387 0.245168
8 0.99828935 0.00171063 0.018277
9 0.99790776 0.00209128 0.951800
10 0.99774250 0.00225654 0.962861
11 0.99774180 0.00225718 1.016153
12 0.99774247 0.00225657 0.963835
13 0.99790789 0.00209118 0.938667
14 0.99811301 0.00188611 0.877754
15 0.99824326 0.00175644 0.303514
16 0.99828226 0.00171772 0.024366
17 0.99827867 0.00172125 0.081198
18 0.99827740 0.00172258 0.022879
19 0.99824189 0.00175809 0.028116
20 0.99824277 0.00175720 0.026366
21 0.99827701 0.00172297 0.017036
22 0.99825681 0.00174315 0.036151
23 0.99842377 0.00157600 0.231202
24 0.99859221 0.00140778 0.012838

uncertainty is not considered.

Varying the population to see how much the increased risk level can be compen-

sated by e↵orts of EV charging, Fig. 3.13 shows the average risk levels of the day

with and without the consideration of load forecast uncertainty.

As can be seen from the figure, in this case the increased amount of the risk level

can be eliminated by even the slightest penetration, say, 500 EVs. The risk level

continues to shrink with increased EV population. From Table 3.8, it can be found
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Figure 3.13: Average risk level without and with the consideration of load forecast
uncertainty two aggregators

that for each scenario with di↵erent number of aggregators, 500 EVs (i.e. 1.4%

penetration level [94]) are enough to absorb the risk rise caused by load forecast

uncertainty.

Table 3.8: Average risk level without and with the consideration of load forecast
uncertainty with di↵erent numbers of aggregators

Aggregators
without with load forecast uncertainty

0 EVs 0 EVs 500 EVs 1000 EVs

1 1.529130 1.560159 1.491172 1.330259
2 1.529130 1.560159 1.491321 1.331263
3 1.529130 1.560159 1.491715 1.333000
4 1.529130 1.560159 1.491875 1.332937
5 1.529130 15.60159 1.492030 1.333651

3.8 Summary

Based on the work in Chapter 2, this chapter achieves to provide a complete frame-

work for the well-being analysis including EV charging by taking the consideration

of the probabilistic nature of EV charging.
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The distinction of EVs providing services in the power grid is rooted in the

multi-purposefulness of EVs. The simple fact is that customers buy automobiles for

driving, and it only makes sense when errors from individual human beings, as EV

drivers, are expected. This chapter systematically integrates sources of EV charging

uncertainties. At the individual level, punctuality, rounding of time, forecast error

of energy consumption, charging component failure and EV absence can make the

schedules of EV charging uncertain. At the upper level, the failure of the aggregator

can nullify the contribution from EVs under its control.
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4

Reliability Evaluation of Distribution Systems
Including V2G and V2H

Methods given in Section 4.1 and 4.2 are for evaluating EVs’ capacity contribution

in islanding mode of operation with topologies of centralized and dispersed charging,

respectively. Section 4.3 focuses on the grid connected mode of operation, i.e. the

scenarios of interregional V2G. A procedure for reliability evaluation including EVs’

contribution is proposed in Section 4.4. In Section 4.5, an example from textbook

[29] is used for illustration and comparison.

4.1 Local V2G for Centralized Charging

4.1.1 Information Required and Other Basics

The fundamental premise is that daily activities of EVs ought not to be a↵ected by

potential V2H and/or V2G during the period of interruption. Basic requirements

for EVs’ daily charging comprising of daily travel time and state-of-charge (SOC)

should be met before drawing energy from them. This thesis assumes EV charging

takes place at home or local parking lots. The time period between arrival of an EV

and its departure is thus the available charging period, during which replenishing
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SOC of EVs is required.

Given multiple numbers of EVs and time slots are involved during the day, vari-

ables are represented in the form of matrices to e↵ectively gather information and

facilitate the evaluation. Intuitively, each row is assigned to each EV while columns

represent time slots. With data required from demand side, such as home arrival and

departure time and energy depleted during daily driving of every EV, basic variables

for the evaluation such as TA, tI, POC, and eD can be obtained.

4.1.2 Evaluation Methodology

Fig. 4.1 shows a local circuit is disconnected from the lateral. When centralized EV

charging is applied at a load point, the only way for EVs to supply power to local

households is through the local grid.

s

Figure 4.1: Local V2G for topology of centralized EV charging

The amount of local demand that can be backed up during the period of inter-

ruption is given as (4.1), assuming numbers of EVs and households are identical and

each household owns one EV:

EB “ min

ˆ
⌘

mÿ

i

eR,i

,
mÿ

i

elim,i

˙
(4.1)

where reversible energy eR,i

is determined by (4.2) and capacity limit elim,i

is given as

(4.6). Given the centralized EV charging, a summation of eR,i

over all EVs is used,

with which battery e�ciency ⌘ is also considered.
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Apparently the reversible energy (eR) is from battery packs of EVs and thus

subject to their SOC when an interruption happens (eEV), i.e. the first term in (4.2),

which is given by (4.3). Since V2G should not compromise charging requirements

of EVs, supply is not allowed if the same quantity cannot be replenished by the

supplementary charging (eSC), i.e. the second term in (4.2), as defined by (4.4).

Lastly the power reversed should not exceed its capacity limit (pR) and is only

possible when the EV is connected at home or parking lots (TA), i.e. the last term

in (4.2):

eR “ min
´
eEV , eSC ,

pR
⌘
TA ¨ tIT

¯
(4.2)

The SOC (eEV) is determined by energy capacities of EVs, the amount of energy

depleted during daily travel and energy charged by the original charging arrangement

prior to the interruption:

eEV “ eF ´ eD ` POC ¨ tBI
T (4.3)

Energy provided by the supplementary charging (eSC) is defined as the amount

of energy that can be delivered to EVs, in addition to their original charging ar-

rangement, after the interruption, as given by (4.4):

eSC “ ppOTA ´ POCq ¨ tAI
T (4.4)

The relationship among tBI, tI and tAI is as in (4.5):

tBI ` tI ` tAI “ 1 (4.5)

On the other side of the local network, energy supplied by EVs should be no more

than the demand of households. The upper limits elim here are defined as the total

consumption of each household during the interruption tI:

elim “ PH1 ¨ tIT (4.6)
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where, instead of using consumption levels of household PH directly, a modified

matrix PH1 is applied. As multiple supply (i.e. EVs) and demand (i.e. households)

are involved in each islanded section, PH1 ensures power balance (4.7) is maintained

at each time j:

mÿ

i

PH1
,ij

§ pR

mÿ

i

TA,ij

(4.7)

The ceiling of the total power consumption recovered by EVs at each time is the

maximum reverse power possible, which takes into consideration both capacity pR

and availability TA. For example, during an outage no power can be consumed when

all EVs are on the roads. Consumption levels beyond the ceiling, therefore, have to

be trimmed. It does not matter from which household i the power consumption is

trimmed, since it is the summation of all EVs being considered in the evaluation,

(4.1).

In the process of calculating the matrices such as eSC, eEV and elim, inconve-

niences are that an EV’s home-charging period often starts near the end of the day

and is separated by two calendar days; available periods and arrangements for EV

charging also vary. The idea of an extended charging period and equivalent periods

of charging interruption is adopted to guarantee a single and continuous charging

period for each EV, by which the calculation of these variables is facilitated. For

details of the matrix representation and the equivalence of calculation, the reader is

referred to [94].

4.2 V2H and Local V2G for Dispersed EV Charging

4.2.1 V2H Only

Fig. 4.2 shows a local grid with dispersed EV charging where only V2H is deployed,

following a supply failure.

Total demand that can be met in this case is calculated by the summation of all
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dd

Figure 4.2: V2H for topology of dispersed EV charging

EVs:

EB “ EV2H
B “

mÿ

i

eV2H,i

(4.8)

where eV2H,i

is from (4.9). The V2H capacity of each EV is determined by its

reversible energy and capped by the limit of each household:

eV2H “ minp⌘eR , elimq (4.9)

where eR is the same as given in (4.2) and elim is given as (4.10). Di↵erent from (4.1),

reversible energy from an EV is subject to the upper limit of its own household before

the summation in (4.8) since every household is an isolated point of consumption.

The upper limits elim in this case is derived from either the consumption level

PH or EV’s ability to supply power (pRTA) during the period of interruption:

elim “ minpPH , pRTAq ¨ tIT (4.10)

4.2.2 V2H + Local V2G

More demand can be served if local V2G is allowed, in addition to V2H. The

schematic is given in Fig. 4.3.

The demand backed up comprises of two portions:

EB “ EV2H
B ` ELV2G

B (4.11)
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2

Figure 4.3: V2H + local V2G for topology of dispersed EV charging

where EV2H
B is given in (4.8) and the local V2G portion ELV2G

B is determined by

(4.12):

ELV2G
B “ min

ˆ
mÿ

i

p⌘eR,i

´ eV2H,i

q ,
mÿ

i

elim,i

˙
(4.12)

The basic concept of the calculation is similar to the previous ones—the reversible

amount capped by its upper limit. However, both terms need to be revised in the

instance of V2H + local V2G. The local V2G is possible only if the reversible energy

of an EV is greater than the V2H amount, i.e. the first term in (4.12), where eR,i

and

eV2H,i

are from (4.9). Judging by (4.9), it can be found that for each i, p⌘eR,i

´eV2H,i

q
is nonnegative. The upper limit elim,i

here is redefined correspondingly:

elim “ PH1 ¨ tIT ´ eV2H (4.13)

the calculation of which is similar to (4.6) except that the V2H portion should be

taken out.

4.3 Interregional V2G

4.3.1 Energy and Power Available for Interregional V2G

Fig. 4.4 shows the interregional V2G applied in a local grid with both charging

topologies. Note that local V2G (Fig. 4.1) and V2H + local V2G (Fig. 4.3) are the

foundation of interregional V2G.
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(a)  Centralized  EV  charging

To lateral

To lateral

(b)  Dispersed  EV  charging
Figure 4.4: Interregional V2G for topologies of centralized and dispersed EV charg-
ing

Interregional V2G can be deployed on the condition that (a) local circuits remain

connected to laterals after the outage, as shown in Fig. 4.4; (b) extra energy can

be spared at some load points in addition to local V2G; and (c) energy is further

required at some load points in spite of inclusion of local V2G. Thus for a node x we

have:

Ex

ex “ ⌘
mÿ

i

eR,i

´ EB (4.14)

ˇ̌
sxex

,j

ˇ̌
“ max

ˆ
pR

mÿ

i

TA,ij

´
mÿ

i

PH,ij

, 0

˙
(4.15)

Ex

im “
mÿ

i

`
PH ¨ tIT

˘
´ EB (4.16)

where, for each network topology EB used in (4.14) and (4.16) should refer to the

corresponding calculation, that is, (4.1) or (4.11). In order to export and import

89



energy, the requirements are Ex

ex • 0, sxex
,j

• 0, and Ex

im • 0. The power capacity

sxex
,j

in (4.15) denotes apparent power.

4.3.2 Problem Formulation

Typically, there could be multiple nodes involved in interregional V2G and power

loss along the line should not be neglected. Thus, the problem becomes an optimiza-

tion problem where the objective is to minimize the residual amount of energy not

supplied at all nodes:

Maximize:
kÿ

x

`
Ex

im ´ Ex

im

˘
(4.17)

where Ex

im is fixed for each node x and a given interruption period tI, (4.16). (4.17)

is equivalent to:

Maximize:
kÿ

x

Ex

im “
kÿ

x

nÿ

j

ˇ̌
sxim,j

ˇ̌
(4.18)

That is, to maximize the total energy imported during the period of outage through-

out all nodes. This thesis assumes the power electronics are able to provide any

desired angle. In accordance with (4.14)—(4.16), energy and power imported to /

exported from each node should be within the given limits, (4.19)—(4.21):

s.t.:
nÿ

j

ˇ̌
sxim,j

ˇ̌
§ Ex

im (4.19)

nÿ

j

ˇ̌
sxex,j

ˇ̌
§ Ex

ex (4.20)

ˇ̌
sxex,j

ˇ̌
§

ˇ̌
sxex

,j

ˇ̌
(4.21)

where,

ˇ̌
sxim,j

ˇ̌
“

b
ppxim,j

q2 ` pqxim,j

q2 (4.22)
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ˇ̌
sxex,j

ˇ̌
“

b
ppxex,jq2 ` pqxex,jq2 (4.23)

Meanwhile, other constraints such as power balance and limits during each time and

voltage boundaries should be satisfied at each node x as well ((4.24))—(4.28)):

kÿ

x

`
pxim,j

´ pxex,j
˘

“ 0 (4.24)

kÿ

x

`
qxim,j

´ qxex,j
˘

“ 0 (4.25)

px † pxim,j

´ pxex,j † px (4.26)

qx † qxim,j

´ qxex,j † qx (4.27)

✓x † ✓x † ✓x (4.28)

vx † vx † vx (4.29)

4.3.3 Solution

While maximizing the total imports over the whole period, the power flow for each

time slot j “ 1, 2, ¨ ¨ ¨ , n should be within constraints (4.19)—(4.28). This nonlinear

optimization problem is similar to the one in [35], where the goal is to minimize

power losses over the network during the period of EV charging. In that study,

the quadratic programming technique serves as an e�cient solution while the it-

erative backward-forward sweep method is used to calculate the power flow. The

quadratic optimization and power flow computation are carried out alternately until

convergence. Bearing the same notion, the interior-point method is employed in this

chapter to optimize the objective while in each attempt optimal power flow (OPF)

is conducted to maximize the power import at each time [40].
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4.4 Assessment Procedures

From the above sections, for a given system and a population of EVs the household

demand covered by EVs depends on EV charging schedules, household consumption

levels and the time and duration of an event of outage, which vary with the time

of day and the season. A Monte Carlo method is used for reliability evaluation.

This thesis assumes the daily travel and charging requirements of EVs remain fixed

during the year. A random sampling process is carried out prior to the assessment

to generate the travel information and charging requirements of a population of EVs

[94]. The travel patterns used can be found in [38]. The optimization is based on

MATLAB.

1. Read system information, lengths and outage rates of mains and laterals, travel

information and charging requirements of EVs;

2. Form matrices TA, eF, eD and POC;

3. Adopt the charging topology, i.e. centralized or dispersed, to each load point;

4. Adopt scenarios for each load point: local V2G or interregional V2G for cen-

tralized EV charging; and V2H, local V2G or interregional V2G for dispersed

EV charging;

5. Sample the events of main and lateral failures; note the time and duration of

each event and energy not supplied triggered by it;

6. Obtain tBI, tI and tAI in accordance with the outage; calculate using (4.2)—(4.5).

7. Calculate elim and then EB using methods provided in the above sections

depending on the scenario applied; calculate constraints (4.14)—(4.16) and

solve problems (4.18)—(4.28) if interregional V2G is applied;
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8. Note the residual energy not supplied; calculate expected energy not supplied

(EENS) with and without EV charging;

9. Repeat Steps 5—8 until acceptable values of EENS or the stopping rule are

reached;

10. Repeat Steps 4—9 until all scenarios for the charging topology are evaluated;

11. Stop if both charging topologies are considered; go to Step 3 otherwise.

4.5 Numerical Study

A textbook example [29] is used for illustration and validation. The results with

and without EV charging are compared. The network is shown in Fig. 1.7, where

2500, 1000 and 500 households are assumed at load points A, B and C, respectively.

Each household owns an EV. Load data are from [53] (included in Appendix C). The

annual peak consumption of a household is assumed between 10 to 15 kW, following

a uniform distribution. Energy capacity of each EV is 25 kWh. pO and pR are both

10 kW. The basic information of EV daily travel and charging requirements are from

Section 2.3. The impedance is 0.1+j0.5 p.u. per mile and the system bases are 10

MVA and 10kV. Acceptable voltages are from 0.9 to 1.1 of the base value.

4.5.1 Local V2G

As stated in Section 4.1 and 4.2, load demand recovered (EB) depends on variables

such as TA, tI and PH which vary with time of the day. Given a typical failure of

a primary main feeder (3 hour repair time [29]) taking place at a given hour of a

typical day, the value of EB varies as the hour varies. Fig. 4.5 shows the results of

load point B (1,000 EVs) in the scenario of local V2G with centralized EV charging.
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Figure 4.5: Demand recovered at region B by local V2G with centralized EV
charging

It can be seen from Fig. 4.5 that energy reversible for local V2G varies widely

during the day. It reaches its maximum when the outage starts at 24:00 and 1:00

since most of the automobiles remain connected and have enough SOC to spare

(eEV) and enough time to refill the EVs (eSC), whereas the minimum occurs at 9:00

as the majority of EVs are on the road (4.2). On the other hand, the load demand

that eventually gets recovered is restrained by its upper limits, i.e. the second term

in (4.1), which is the total of household consumption and EV availability, (4.6) and

(4.7). This suggests that in this case, there are additional amounts of energy available

if outages take place during the period between 6:00 and 18:00.

Table 4.1 gives the results of reliability evaluation for the scenario. The first row

shows values of EENS when EVs are not included. For the topology of centralized

charging, EENS at load point A, B and C are reduced by 22.53, 11.04 and 5.26 MWh

per year by local V2G, i.e. 75.6%, 69.8% and 67.1% of each region, respectively. The

reduction is generally proportional to the number of EVs in each region.
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Table 4.1: Results of reliability evaluation for local V2G (in four cases)

EENS
(MWh/year)

Region
Total

A B C

Without EVs 29.80 15.81 7.84 53.45

Base case 7.27 4.77 2.58 14.62

Increasing power
limits

3.69 3.65 2.17 9.51

Increasing energy
capacity 6.03 3.54 1.86 11.43

Increasing both
above

1.08 1.01 0.61 2.69

In recent years, more EVs with higher energy storage capacities and power ca-

pabilities have appeared as the development of the EV industry has quickened its

pace. For example, the dual charger [2] is able to o↵er twice the normal charging

power. It is necessary to study the e↵ects of energy capacities (eF) and charging

and discharging limits (pO and pR). In addition to the base case, three cases are

considered in Table 4.1: (a) increasing the charging / discharging power limits from

10 kW to 20 kW; (b) increasing the energy storage capacity of each EV from 25 kWh

to 50 kWh; and (c) increasing both the power limits and energy storage capacity.

As can be seen from Table 4.1, while the reliability improves with either the

upgraded charging specs or energy capacity, the residual EENS descends to 3.6%,

6.4% and 7.8% of original value for load points A, B and C, respectively, and 5.0%

(2.69 MWh) for the whole system when both charging specs and energy capacity are

lifted.

4.5.2 V2H and V2H + local V2G

Substituting dispersed EV charging for the local network topology, portions of energy

recovered by V2H and local V2G are given in Fig. 4.6. In the scenario of V2H, energy
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Figure 4.6: Demand recovered at region B by V2H and local V2G with dispersed
EV charging

not supplied of each household is independently picked up by its own EV. This leaves

further backups to be desired when local V2G is enabled, as can be seen in Fig. 4.6.

Taking the average of the 24 instances, the local V2G can pick up an additional 1.82

MWh household demand on daily basis. That is 15.04% of the capability provided

by V2H (12.10 MWh on average).

Table 4.2 lists the average capacity for local V2G in each case. From (4.10) and

(4.13), the levels of household consumption (PH and PH1) is critical for determining

capacities for V2H and local V2G. In Table 4.2, an additional case where the peak

load of each household increases to 15˜20 kW is considered (the last row in the table).

As can be seen from the table, the higher the household consumption is, the less

di↵erence the local V2G would make. This is because power supply from each EV

is primarily consumed by the household it is directly connected to. On the other

hand, with increased charging / discharging limits or energy capacities of EVs the

extra ability for local exchange would also be enhanced. The additional capability
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Table 4.2: Sensitivity studies of power limits, energy capacity and load levels for
local V2G at region B with dispersed EV charging

Local V2G
(MWh)

V2H
(MWh)

% of V2H
(%)

Base case 1.82 12.10 15.04

Increasing power
limits

2.17 12.43 17.43

Increasing energy
capacity 2.97 12.16 24.42

Increasing both
above

4.51 12.48 36.13

Increasing load
levels

0.50 15.19 3.27

Table 4.3: Results of reliability evaluation for V2H and V2H + local V2G

EENS
(MWh/year)

V2H
Total

V2H + local V2G
Total

A B C A B C

Base case 9.02 5.45 2.88 17.35 7.23 4.80 2.59 14.62

Increasing power
limits

8.41 5.11 2.71 16.22 3.67 3.61 2.15 9.43

Increasing energy
capacity 8.36 4.76 2.49 15.61 6.09 3.57 1.87 11.52

Increasing both
above

7.60 4.27 2.23 14.10 1.08 1.02 0.62 2.72

provided by local V2G surges when both the energy and power limits are raised (the

penultimate row in Table 4.2). This suggests that the capacity of local V2G can also

benefit from the upgraded battery and charging / discharging specs of EVs.

Table 4.3 shows the results of evaluation of V2H and V2H + local V2G. When only

V2H is applied in the topology of dispersed EV charging, the reliability improvement

is relatively hampered, compared to V2H + local V2G. Increasing the energy capacity

and charging / discharging limits, the reliability improvement becomes more obvious

for V2H + local V2G than for V2H. With each household served by its own EV only,

the reduction in energy not supplied is capped by the consumption of each household.
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Table 4.4: Results of reliability evaluation for interregional V2G

EENS
(MWh/year)

Centralized charging Dispersed charging

Total Reduction Total Reduction

Base case 14.30 0.32 14.29 0.33

Increasing power
limits

9.11 0.40 9.06 0.36

Increasing energy
capacity 11.08 0.36 11.81 0.35

Increasing both
above

2.15 0.54 2.16 0.55

Compared to Table 4.1, the reliability improvement for V2H + local V2G is at the

same level as local V2G with centralized EV charging.

4.5.3 Interregional V2G

Table 4.4 shows EENS of the whole system and its further improvement when in-

terregional V2G is applied. For both charging topologies the inclusion of energy

exchange among regions achieves enhancement of the system reliability. From the

perspective of the whole system, the evaluation results show little di↵erence between

the two topologies. It can be explained by the fact that, viewing from the grid side,

the topology applied locally matters little as long as there are extra capacities and

the power constraint (4.7) is fulfilled. The EENS reduction increases when either

power limits or energy capacities of EVs are increased. A limited amount of EENS

remains when both are increased.

Fig. 4.7 compares the system reliability under all possible scenarios for each charg-

ing topology. The most prominent reliability enhancement is achieved by the scenario

of local V2G for centralized EV charging and by V2H for dispersed EV charging.

The V2H + local V2G goes on reducing the EENS by a perceptible amount specially

in the case of both increased energy capacity and charging / discharging limits. The
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Figure 4.7: Comparison of di↵erent scenarios for centralized and dispersed EV
charging topologies

further improvement made by interregional V2G is relatively limited in each case.

There are three major reasons: (a) For the typical radial system, events of failure

take place more frequently at lateral sections, which merely isolates a single region.

For example, in this given case [29], the failures of laterals account for 71.4% of the

total number of failures; (b) Further requirements (4.14)—(4.16) and (4.19)—(4.21)

are imposed on the imports and exports of energy among regions. Interregional V2G
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only works when simultaneously there is extra supply at one node and demand at

another. Besides, the network introduces additional loss for power exchange other

than the e�ciency loss during charging and discharging (⌘); (c) The scenario of local

V2G for centralized EV charging and scenarios of V2H and V2H + local V2G for

dispersed EV charging are more basic and eliminate large portions of energy not

supplied.

Tables 4.1, 4.3 and 4.4 and Fig. 4.7 show that increasing the charging / discharg-

ing limits unilaterally favors the whole system reliability more than alternatively

increasing the energy capacity of EV instead. An exception is in the scenario of

V2H for dispersed EV charging. As can be seen from Fig. 4.7 (b) not much dif-

ference is made even when both energy capacity and charging / discharging limits

are increased, since the contribution of each EV is capped by the demand of each

household during the outage period, (4.9) and (4.10).

4.6 Summary

It is the distribution system in the power grid that EVs are directly connected to.

Two charging topologies—centralized and dispersed charging and two modes of oper-

ation following an incident—islanding and grid-connected modes—are considered in

this chapter. Thus multiple scenarios need to be considered such as local V2G, V2H,

V2H + local V2G and interregional V2G. Case study shows that charging topologies

and operating modes impose additional ceilings for EVs’ providing household backup

energy. Among those scenarios, interregional V2G is favored as it minimize energy

not supplied with wider connection in a given system.
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5

Conclusion and Discussion

5.1 Conclusion

In Chapter 2, this thesis extends the generating system operating health analysis

by taking EV charging into consideration. To the best of the authors knowledge,

this thesis is the first work that proposes the idea of EV charging being treated

as interruptible load and serving as emergency units to improve system well-being.

Numerical results show that V2G is more e↵ective for well-being improvement than

the interruptible EV charging. In the V2G enabled scenario, EVs are able to provide

more capacities to help the system.

Results of the sensitivity study show that the daily risk reduced by V2G is more

sensitive to the charging/discharging limits and the EV population than to the energy

capacity of EV. In general, the growth of EV population marginally improves the

system well-being, especially in V2G enabled scenarios, while the reduction of the

lead time has a positive influence on the generating system.

The procedure illustrated in this thesis provides a quantitative framework for

analyzing generating system well-being when EV charging is involved. The method
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for evaluating the capacity for interruptible load and V2G can be used in studies

where flexible EV charging is allowed.

In Chapter 3, this thesis first identifies the major uncertainties that can a↵ect EV

charging. They are punctuality, rounding of time, forecast error of energy consump-

tion, charging component failure and EV absence, and aggregator failure and grid

realization. Methodologies are developed to consider these elements in well-being

analysis. As expected, results show the uncertainties identified directly a↵ect EVs’

contribution to the system well-being.

Other main conclusions reached in this thesis are: i). Di↵erent from traditional

interruptible load programs, the capacity provided by EVs is not 100% interruptible,

because of EV charging uncertainties. ii). In contrast to conventional and other un-

conventional units/services of which actual capacities provided would not be greater

than rated or scheduled ones, the interruptible capacities contributed from EVs can

exceed the scheduled values at some hours during the day due to the e↵ect of the

punctuality and time rounding. iii). At the aggregated level, the realization of EVs’

grid services plays an important role. Increasing the number of aggregators does not

necessarily further improve the system well-being, though the increase of aggregator’s

reliability has a positive influence on EVs’ role in system reliability enhancement.

iv). EVs are able to eliminate the deterioration of system well-being caused by load

forecast uncertainty with a penetration level of EVs as low as 1.4% in the given

system.

In Chapter 4, this thesis examines V2H and V2G as leverage for improvement

of distribution system reliability. Methods are proposed to evaluate the capacity

contribution of EV for possible scenarios with each of the two potential charging

topologies applied on the local circuit level.

Results show that with participation of EV charging, the reliability of a distribu-

tion system improves even with basic involvement of EVs, that is, the local V2G for
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centralized EV charging and V2H for dispersed EV charging. Instead of individual

houses drawing energy only from their own EVs, sharing the energy from all local

EVs is very important for dispersed EV charging and to gain additional reliability.

The system can benefit more as EV industry evolves.

5.2 Discussion

To be part of the grid services, it is very important that basic information of new

units and services is provided beforehand and a proper model is established so that

the potential roles they play can be scheduled and their e↵ects can be evaluated

by grid operators. Nevertheless, as an energy resource that is distributed on the

demand side yet is supposed to serve with priority in the transportation sector, one

of the big questions is that how firmly individuals (EV owners in this case) can abide

by rules and standards imposed by their grid participation while not compromising

driving duties. To the best of our knowledge, this thesis is the first to answer the

questions that how reliable is the scheduled information of EVs, and how it can be

modeled. Due to the lack of data at present, some assumptions in our studies are

made and thus sensitivity studies are conducted with considering various scenarios.

These assumptions and di�culties can be obviated once actual data is available.

Besides, with more and more demand response programs emerging, it is expected

that more relevant uncertain elements would be brought to light and be considered

in future studies. On the other hand, these uncertainties need to be considered in

many of the scheduling problems (e.g. on unit commitment, power flow and reliability

assessment) as long as EVs are supposed to be lucrative in power systems.

Though as a basic computational algorithm, the sequential Monte Carlo method

adopted in this Chapter 4 proves to be a su�cient tool for the assessment providing

reliable results. To have the same accuracy as of the results in [29], the running time

for each case spans from several minutes to 10 minutes (Matlab 2011b for OS X,
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2011 iMac with 2.5GHz Intel Core i5). During the process, the calculation of TA

and the iteration are the two procedures cost most of the execution time. Though

the program runs much faster with the matrix formation, it still costs much e↵ort

due to the large sizes of the matrices. In this paper, is 1440 (i.e. 1440 minutes during

calendar day), so, for instance, is a 2500ˆ1440 matrix for region A. On the other

hand, the optimal power flow does not take much processing time since, as explained

in Section 4.5.3, the occurrence of interregional V2G is limited. The other reason

is that the network of a typical distribution system is relatively simple and fewer

nodes can be involved in interregional V2G following an outage. To further improve

the e�ciency and the speed of convergence, advanced sampling methods [52, 99]

can be used in future works. The other method to significantly reduce the running

time is making full use of the hardware such as parallel processing, since multi-core

processors dominate modern computers.
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Appendix A

Probabilistic Criteria and Indices

The following indices are frequently used in power system reliability evaluation.

1. Loss of load probability (LOLP).

2. Loss of load expectation (LOLE).

3. Loss of energy expectation (LOEE)/expected energy not supplied (EENS).

4. Frequency and duration (F&D) indices.

5. Energy index of reliability (EIR).

6. Energy index of unreliability (EIU).

A.1 Loss of Load Probability (LOLP)

LOLP is defined as the probability that the load will exceed the available generation.

As the most basic probability index in power system reliability evaluation, it defines

the likelihood of encountering trouble (loss of load) but not the severity, e.g. for

the same value of LOLP, the degree of interruption may be less than 1 MW or
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greater than 100 MW. Therefore it cannot recognize the degree of capacity or energy

shortage.

Because of the less physical significance and di�culty to interpret of LOLP, it

has been superseded by one of the following expected values in most planning appli-

cations.

A.2 Loss of Load Expectation (LOLE)

LOLE is generally defined as the average number of days (or hours) on which the

daily peak load is expected to exceed the available capacity. It therefore indicates

the expected duration for which a load loss or deficiency may occur. This concept

implies a physical significance not forthcoming from the LOLP, although the two

values are directly related.

The individual daily peak loads can be used in conjunction with the capacity

outage probability table to obtain the expected number of days in the specified

period in which the daily peak load will exceed the available capacity. The index in

this case is designated as the loss of load expectation (LOLE).

LOLE “
nÿ

i

P
i

pC
i

´ L
i

q days{period (A.1)

where C
i

“ available capacity on day i.

L
i

“ forecast peak load on day i.

P
i

pC
i

´ L
i

q “ probability of loss of load on day i. This value is obtained

directly from the capacity outage cumulative probability table.

The same LOLE index can also be obtained using the daily peak load variation

curve. Figure A.1 shows a typical system load—capacity relationship where the load

model is shown as a continuous curve for a period of 365 days, O
k

is the magnitude of

the kth outage in the system capacity outage probability table, and t
k

is the number
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Figure A.1: Relationship between load, capacity and reserve

of time units in the study interval that an outage magnitude of O
k

would result in a

loss of load.

A particular capacity outage will contribute to the system LOLE by an amount

equal to the product of the probability of existence of the particular outage and the

number of time units in the study interval that loss of load would occur if such a

capacity outage were to exist. It can be seen from the figure that any capacity in

excess of the reserve will result in varying numbers of time units during which loss of

load could occur. Expressed mathematically, the contribution to the system LOLE

made by capacity outage O
k

is p
k

t
k

time units where p
k

is the individual probability

of the capacity outage O
k

. The total LOLE for the study interval is

LOLE “
nÿ

k“1

P
k

t
k

time units (A.2)

The p
k

values are the individual probabilities associated with the capacity outage
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states. The equation can be modifies to use the cumulative sate probabilities. In

this case

LOLE “
nÿ

k“1

pt
k

´ t
k´1qP

k

(A.3)

where P
k

“ cumulative outage probability for capacity state O
k

.

If the load characteristic in Figure A.1 is the load duration curve, the value of

LOLE is in hours. If a daily peak load variation curve is used, the LOLE is in days

for the period of study.

LOLE is now the most widely used probabilistic index in deciding future gener-

ation capacity. Yet it has the same weaknesses that exist in the LOLP.

A.3 Loss of Energy Expectation (LOEE)

LOEE is defined as the expected energy not supplied (EENS) due to those occasions

when the load exceeds the available generation. It therefore reflects risk more truly

and is likely to gain popularity as power systems become more energy-limited due

to reduced prime energy and increased environmental controls. LOEE is illustrated

by (A.4).

Any outage of generating capacity exceeding the reserve will result in a curtail-

ment of system load energy. Let:

P
k

“ probability of a capacity outage equal to O
k

.

E
k

“ energy curtailed by a capacity outage equal to O
k

.

This energy curtailment is given by the shaded area in Figure A.2. The probable

energy curtailed is E
k

P
k

. The sum of these products is the total expected energy

curtailment or LOEE/EENS:

LOEE “
nÿ

k“1

E
k

P
k

(A.4)
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LOEE/EENS is presently less used than LOLE but is a more appealing index

since it encompasses severity of the deficiencies as well as their likelihood.

A.4 Frequency and Duration (F&D) Indices

The F&D criterion is an extension of LOLE and identifies expected frequencies of

encountering deficiencies and their expected durations. It contains additional physi-

cal characteristics but, although widely documented, is not used in practice. This is

due mainly to the need for additional data and greatly increased complexity of the

analysis without having any significant e↵ect on the planning decisions.

A.5 Energy Index of Reliability (EIR) and Energy Index of Unrelia-
bility (EIU)

Both EIR and EIU are directly related to LOEE which is normalized by dividing by

the total energy demanded. This basically ensures that large and small systems can

be compared on an equal basis and chronological changes in a system can be tracked.
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LOEE/EENS can be normalized by utilizing the total energy under the load

duration curve designated as E.

LOEEp.u. “
nÿ

k“1

E
k

P
k

E
(A.5)

The per unit LOEE value represents the ratio between the probable load energy

curtailed due to deficiencies in available generating capacity and the total load energy

required to serve the system demand. The energy index of reliability, EIR, is then

EIR “ 1 ´ LOEEp.u. (A.6)

and the energy index of unreliability, EIU, is

EIU “ 1 ´ EIR

“ LOEEp.u.

(A.7)
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Appendix B

Additional Indices

In order to reflect the severity or significance of a system outage, additional relia-

bility indices can be and frequently evaluated. The additional indices that are most

commonly used are defined as followings.

B.1 Customer-oriented Indices

B.1.1 System Average Interruption Frequency Index, SAIFI

SAIFI “ total number of customer interruptions

total number of customers served
“

∞
�
i

N
i∞

N
i

(B.1)

where �
i

is the failure rate and N
i

is the number of customers of load point i.

B.1.2 Customer Average Interruption Frequency Index, CAIFI

CAIFI “ total number of customer interruptions

total number of customers a↵ected
(B.2)

This index di↵ers from SAIFI only in the value of the denominator. It is particularly

useful when a given calendar year is compared with other calendar years since, in

any given calendar year, not all customers will be a↵ected and many will experi-

ence complete continuity of supply. The value of CAIFI therefore is very useful in
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recognizing chronological trends in the reliability of a particular distribution system.

In the application of this index, the customers a↵ected should be counted only

once, regardless of the number of interruptions they may have experienced in year.

B.1.3 System Average Interruption Duration Index, SAIDI

SAIDI “ sum of customer interruption durations

total number of customers
“

∞
U
i

N
i∞

N
i

(B.3)

where U
i

is the annual outage time and N
i

is the number of customers of load point

i.

B.1.4 Customer Average Interruption Duration Index, CAIDI

CAIDI “ sum of customer interruption durations

total number of customer interruptions
“

∞
U
i

N
i∞

�
i

N
i

(B.4)

where �
i

is the failure rate, U
i

is the annual outage time and N
i

is the number of

customers of load point i.

B.1.5 Average Service Availability (Unavailability) Index, ASAI (ASUI)

ASAI “ customer hours of available service

customer hours demanded

“
∞

N
i

ˆ 8760 ´ ∞
U
i

N
i∞

N
i

ˆ 8760

(B.5)

ASUI “ 1 ´ ASAI

“ customer hours of unavailable service

customer hours demanded

“
∞

U
i

N
i∞

N
i

ˆ 8760

(B.6)

where 8760 is the number of hours in a calendar year.
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B.2 Load- and Energy-oriented Indices

One of the important parameters required in the evaluation of load- and energy-

oriented indices is the average load at each load-point busbar.

The average load La is given by

La “ Lpf (B.7)

where Lp “ peak load demand

f “ load factor

La “ total energy demanded in period of interest

period of interest
“ E

d

t
(B.8)

where E
d

is the total area under the load-duration curve and t is normally one

calendar year, as shown in Figure B.1.

Ed

t

La

Lp

Figure B.1: Illustration of Lp, La, Ed and t
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B.2.1 Energy Not supplied Index, ENS

ENS “ total energy not supplied by the system “
ÿ

L
aiUi

(B.9)

where L
ai is the average load connected to load point i.

B.2.2 Average Energy Not Supplied, AENS or Average System Curtailment Index,
ASCI

AENS “ total energy not supplied

total number of customers served
“

∞
L
aiUi∞
N

i

(B.10)

B.2.3 Average Customer Curtailment Index, ACCI

ACCI “ total energy not supplied

total number of customers a↵ected
(B.11)

This index di↵ers from AENS in the same way that CAIFI di↵ers from SAIFI. It is

therefore a useful index for monitoring the changes of average energy not supplied

between one calendar year and another.
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Appendix C

RBTS Data

C.1 Generating System

The generating unit ratings and reliability data for the RBTS are shown in Table C.1

Table C.1: Generating unit reliability data

Failure Repair Scheduled
Unit No. Forced rate rate mainte-
size of outage MTTF per MTTR per nance

(MW) Type units rate (hr) year (hr) year week/year

5 hydro 2 0.010 4380 2.0 45 198.0 2
10 thermal 1 0.020 2190 4.0 45 196.0 2
20 hydro 4 0.015 3650 2.4 55 157.6 2
20 thermal 1 0.025 1752 5.0 45 195.0 2
40 hydro 1 0.020 2920 3.0 60 147.0 2
40 thermal 2 0.030 1460 6.0 45 194.0 2
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C.2 Load Model

The data on weekly peak loads in percent of the annual peak load, daily peak load

in percent of the weekly peak, and hourly peak load in percent of the daily peak

are the same as that given in the IEEE-RTS [53]. The total number of data points

required to define the daily peak load curve is 364. In the case of the hourly peak

load curve or the load duration curve, 8736 points are required.

Table C.2: Weekly peak load in percent of annual peak

Week Peak load Week Peak load Week Peak load Week Peak load

1 86.2 14 75.0 27 75.5 40 72.4

2 90.0 15 72.1 28 81.6 41 74.3

3 87.8 16 80.0 29 80.1 42 74.4

4 83.4 17 75.4 30 88.0 43 80.0

5 88.0 18 83.7 31 72.2 44 88.1

6 84.1 19 87.0 32 77.6 45 88.5

7 83.2 20 88.0 33 80.0 46 90.9

8 80.6 21 85.6 34 72.9 47 94.0

9 74.0 22 81.1 35 72.6 48 89.0

10 73.7 23 90.0 36 70.5 49 94.2

11 71.5 24 88.7 37 78.0 50 97.0

12 72.7 25 89.6 38 69.5 51 100.0

13 70.4 26 86.1 39 72.4 52 95.2
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Table C.3: Daily load in percent of weekly peak

Day Peak load

Monday 93

Tuesday 100

Wednesday 98

Thursday 96

Friday 94

Saturday 77

Sunday 75
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Table C.4: Hourly peak load in percent of daily peak

Winter weeks Summer weeks Spring/fall weeks
1–8 & 44–52 18–30 9–17 & 31–43

Hour Weekday Weekend Weekday Weekend Weekday Weekend

12-1 am 67 78 64 74 63 75

1-2 63 72 60 70 62 73

2-3 60 68 58 66 60 69

3-4 59 66 56 65 58 66

4-5 59 64 56 64 59 65

5-6 60 65 58 62 65 65

6-7 74 66 64 62 72 68

7-8 86 70 76 66 85 74

8-9 95 80 87 81 95 83

9-10 96 88 95 86 99 89

10-11 96 90 99 91 100 92

11-noon 95 91 100 93 99 94

noon-1pm 95 90 99 93 93 91

1-2 95 88 100 92 92 90

2-3 93 87 100 91 90 90

3-4 94 87 97 91 88 86

4-5 99 91 96 92 90 85

5-6 100 100 96 94 92 88

6-7 100 99 93 95 96 92

7-8 96 97 92 95 98 100

8-9 91 94 92 100 96 97

9-10 83 92 93 93 90 95

10-11 73 87 87 88 80 90

11-12 63 81 72 80 70 85
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