
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 
 

The Hong Kong Polytechnic University 

Department of Civil and Environmental Engineering 

 
 

 

 

 

MODELLING ACTIVITY AND TRAVEL CHOICE BEHAVIOUR: 

A NETWORK EQUILIBRIUM APPROACH 

 
 

 
 
 

  

 

FU Xiao 

 
 
 
 

 

A thesis submitted in partial fulfilment of the requirements  

for the degree of Doctor of Philosophy 

 

 

November 2014 

 

 

 

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.




II 
 

CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it reproduces no material previously published or written, nor material that 

has been accepted for the award of any other degree or diploma, except where due 

acknowledgement has been made in the text. 

 

                       (Signed) 

    FU Xiao        (Name of student) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 
 

ABSTRACT 

Travel demands are derived from the desire of individuals to participate in various 

activities such as home, work, shopping, etc. Individuals’ travel choice and activity 

choice, together with the interdependence of activity and travel scheduling, should be 

comprehensively investigated by means of transport modelling. Network equilibrium 

models with taking account of congestion effects, which provide valuable insights 

into understanding individuals’ activity and travel choice behaviour, are widely used 

for long-term transport planning.  

 

In densely populated urban areas such as Hong Kong, multi-modal trips have been 

increasing in magnitude in recent years. This situation is similar in many fast- 

growing cities in Asia. Hence finding equilibrium results in congested multi-modal 

transport/transit networks is an important issue in long-term transport planning. The 

research presented in this thesis is novel in its aim to address the activity and travel 

choice behaviour simultaneously with consideration of congestion effects such as the 

crowding at activity locations and within transit vehicles in multi-modal 

transport/transit networks.  

 

In the literature, most existing network equilibrium models for travel behaviour 

analysis adopt a trip-based approach. In the trip-based approach, trips are adopted as 

the basic unit of analysis, and trip chains made by individuals are considered as 

separable and independent entities.  

 

The first contribution of this thesis is that a trip-based network equilibrium model is 
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proposed to model travel choice behaviour in congested multi-modal transport 

networks under demand uncertainty. In the proposed trip-based model, crowding 

discomfort in transit vehicles, boarding congestion effect, and congestion impact of 

road traffic are explicitly modelled. The stochastic bus frequency derived from 

unstable road travel time is particularly investigated. The impacts of demand 

uncertainty on passenger flows and travel times are effectively captured. Individuals’ 

route and mode choice behaviour under travel time uncertainty are intensively 

explored.   

 

The trip-based network equilibrium model, however, ignores the underlying 

motivation of trip making, and cannot reflect the linkages between activities and 

travels. To understand the limitation and shortcoming of the trip-based approach, the 

above trip-based proposed model is extended to an activity-based approach. The 

activity-based approach enables an integrated investigation into the activity-travel 

scheduling mechanism, i.e. what activities to be conducted, in what sequence, when 

and for how long, when each trip starts, which transport mode/route is to be used, and 

how the activities and travels interrelate in congested multi-modal transport/transit 

networks. As previous studies have shown that crowding discomfort has an important 

effect on individuals’ choice of transit service for long-term planning, the in-vehicle 

crowding discomfort is considered in the proposed activity-based model particularly 

for congested transit networks in Asia. 

 

The second contribution of this thesis is the proposal of an activity-based network 

equilibrium model to solve the daily activity-travel pattern (DATP) scheduling 

problem. The resultant DATP choice reflects individuals’ various activity choices (e.g. 
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activity sequence, start time and duration), travel choices (e.g. departure time, transfer, 

and route/mode), and the relationship between activity and travel choice behaviour in 

congested multi-modal transit networks.  

 

As a pioneering endeavour, the proposed activity-based network equilibrium model 

extends existing theories by developing an integrated framework which incorporates 

the flexible activity sequence and duration, the stochastic effects of activity utility, 

together with the route/mode choice under network congestion. A novel activity-time-

space multi-modal super-network platform is constructed to explicitly address the 

relationship between activity choices and travel choices in time and space coordinates 

in a congested multi-modal transit network. By using the proposed super-network 

platform, the time-dependent DATP scheduling problem can be converted into a static 

traffic assignment problem.  

 

A number of empirical studies have investigated the recurrent effects of adverse 

weather on individuals’ DATP choice and such effects are obviously greater in cities 

which suffer frequent rainy periods. The long-term transit planning for areas with high 

average annual rainfall should be considerably different from the planning for areas 

with less rainfall. Thus, clearly, particularly in areas such as Hong Kong, rain effects 

should be considered when modelling individuals’ activity and travel choices. An 

activity-based network equilibrium model for scheduling DATPs in multi-modal 

transit networks under adverse weather conditions (with different rainfall intensities) 

is proposed, which is the third contribution of this thesis. The interdependency of 

individuals’ activity/travel choices and weather conditions are intensively investigated 

in congested multi-modal transit networks. As vehicle capacity and frequency of 
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different transit modes are influenced by adverse weather conditions, in-vehicle 

crowding discomfort taking account of adverse weather impacts is specifically 

considered in the proposed model. The effects of adverse weather on different transit 

modes and different activities are also explicitly investigated.  

 

It should be noted in the above three network equilibrium models that the activity and 

travel choice behaviour of individual is assumed to be independent, so called one-

individual level. As travel surveys indicate, joint participation in activities and travels 

represent a substantial portion of individuals’ DATPs. Most existing studies on 

activity-based network equilibrium models, however, are confined to the one-

individual level. Less attention has been given to the interdependence between 

individuals’ joint activities and travels. Obviously, there is a need to investigate the 

effects of the joint activity-travel pattern (JATP) choice for long-term transit planning. 

 

The fourth contribution of this thesis is the development of an activity-based network 

equilibrium model which can solve two-individual JATP scheduling problem in 

congested multi-modal transit networks. The proposed JATP scheduling model 

extends existing theories by developing a unified framework to capture both 

independent and joint activity/travel choices in congested multi-modal transit 

networks. To capture the effect of activity location capacity in long-term transit 

planning, the proposed model is extended to incorporate the crowding discomfort at 

activity location. A measure of JATP utility is proposed to incorporate the joint travel 

benefit. Individuals’ preference towards joint travel is explicitly examined by the 

proposed model, and the impacts of joint travel benefit on individuals’ independent 

and joint activity/travel choices are intensively explored.  
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Network equilibrium models are capable of predicting traffic flow patterns subject to 

network congestion phenomena. In this thesis, four network equilibrium models are 

proposed to comprehensively investigate individuals’ activity and travel choice 

behaviour in congested multi-modal transport/transit networks. In the proposed 

models, different congestion effects are considered such as in-vehicle crowding 

discomfort, road traffic congestion, and crowding at activity location. The proposed 

models offer the flexibility and feasibility to comprehensively consider different 

congestion effects in multi-modal transport/transit networks for future extensions. The 

ultimate aim of the proposed network equilibrium models is to make valuable 

contributions to the new avenue of research on activity and travel choice behaviour 

for design of multi-modal transport networks and evaluation of alternative transport 

systems with consideration of their congestion effects. 
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NOTATIONS 

The following notations are used throughout the thesis unless otherwise specified. 

Abbreviations 

ATS   Activity-Time-Space 

CV         Coefficient of Variation 

DATP    Daily Activity-Travel Pattern 

FIFO   First-In-First-Out 

JATP   Joint Activity-Travel Pattern 

JATS   Joint-Activity-Time-Space 

MSA      Method of Successive Average 

M-U    Mean-Utility 

M-V   Mean-Variance 

OD         Origin-Destination 

RSUE   Reliability-based Stochastic User Equilibrium 

RUE   Reliability-based User Equilibrium 

SAM       State-Augmented Multi-modal 

SD         Standard Deviation 

UE         User Equilibrium 

 

Network Representation 

A      the set of links in SAM network, t dA A A  ;  

or the set of links in ATS-SAM network, a t dA A A A   ; 

or the set of links in JATS network, a t d w mA A A A A A      
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aA    the set of activity links in ATS-SAM or JATS network; 

a a={ }A a  

indep
aA     the set of independent activity links in JATS network 

joint
aA     the set of joint activity links in JATS network 

tA    the set of transfer links in SAM or ATS-SAM or JATS network; 

t t={ }A a  

dA     the set of direct in-vehicle links in SAM or ATS-SAM or JATS 

network 

wA       the set of waiting links in JATS network; w w={ }A a  

mA       the set of meeting links in JATS network; m m={ }A a  

B       the set of transport modes; { }B b   

G      the SAM or ATS-SAM or JATS network; ( , )G N A  

aI     the set of activity locations; a a{ }I i   

M      conventional multi-modal transport network;  ,M U V  

bM     sub-network of mode b ; ( , )b b bM U V  

N      the set of nodes in SAM or ATS-SAM or JATS network 

P      the set of DATPs or JATPs in ATS-SAM or JATS network 

odP      the set of routes between OD pair od ; { }od odP p  

ouP       the set of routes from origin node o  to node u ; { }ou ouP p  

S       the set of probable transfer states 

SE    the scan eligible set in route searching process 

U       the set of physical nodes;  U i  
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bU      the set of nodes associated with the sub-network bM ; bU U  

V       the set of physical links;  V v  

bV    the set of physical links associated with the sub-network bM ; 

bV V  

ij
sna   direct in-vehicle link from location i  to location j  with 

transfer state s  as its n th transfer in the trip in SAM network 

da       direct in-vehicle link in ATS-SAM or JATS network 

b       transport mode; b B ; 1b (subway), 2b (auto), 3b (bus) 

d     destination node 

i       physical location of node 

ind     individual(s) indicator 

k        time of day 

l       alight or aboard indicator 

n       number of prior transfers 

o    origin node 

p      a route /DATP /JATP  

s       transfer state; s S  

( )s     associated transport mode of transfer state s ; ( )s B   

( )s     the set of probable transfers from state s ; ( )s S   

       the optimal route/DATP/JATP 

 

Variables 

pc      travel time budget of route p  
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pcf     commonality factor of JATP p   

( )vDISU k   stochastic dis-utility of physical link v  at time interval k   

daDISU  stochastic dis-utility of in-vehicle link da  in ATS-SAM 

network 

( )vdisu k         mean of dis-utility of physical link v  at time interval k   

( , )vdisu k wc   the dis-utility of physical link v  at time interval k  under 

weather category wc  

dadisu    mean of in-vehicle link dis-utility in ATS-SAM network 

tadisu    dis-utility of transfer link ta  in ATS-SAM network 

wadisu     dis-utility of waiting link wa  in JATS network 

p
traveldisu    overall travel dis-utility of JATP p  

p
jointdisu    individuals’ joint travel dis-utility in JATP p  

pF       stochastic passenger flow on route p  

pf     mean of passenger flow on route p  in SAM network, or 

passenger flow on DATP/JATP p  in ATS-SAM/JATS network 

ij
snF    stochastic passenger flow on direct in-vehicle link ij

sna  in SAM 

network 

ij
snf      mean of passenger flow on in-vehicle link ij

sna  in SAM network 

taF      stochastic passenger flow on transfer link ta  

taf      mean of passenger flow on transfer link ta  

aaf     passenger flow on activity link aa   

vF      stochastic passenger flow on physical link v  
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( )vF k  stochastic passenger flow on the physical link v  at time interval 

k  

vf      mean of passenger flow on physical link v  

( )vf k      mean of passenger flow on physical link v  at time interval k  

2bvF      stochastic passenger flow of mode 2b  on road link v  

2bvf      mean passenger flow of mode 2b  on road link v  

taF      stochastic passenger volume at transfer link ta  

biF    prior passenger volume already in mode b  prior to picking up 

passengers at location i  

daF  stochastic passenger flow on in-vehicle link da  in ATS-SAM 

network 

daf  mean of passenger flow on in-vehicle link da  in ATS-SAM 

network 

1f       mean of 
t

( )a biF F  

bG      stochastic frequency of the transport mode b  

p
jointL     “length” of joint travel in JATP p   

p
totalL     overall “lengths” of individuals’ total travel in JATP p  

odQ      stochastic travel demand between OD pair od  

odq      mean of travel demand between OD pair od  

vT       stochastic travel time of physical link v  

vt       mean travel time of physical link v  

( , )vt k wc   travel time of physical link v  at time interval k  under weather 
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category wc   

ij
snT       stochastic travel time of in-vehicle link ij

sna  

ij
snt       mean of travel time on in-vehicle link ij

sna  

taT       stochastic waiting time of transfer link ta  

tat       mean waiting time of transfer link ta  

pT      stochastic travel time of route p  

pt      mean travel time of route p  

aaU    stochastic utility of activity link aa  

a ( )au k    marginal utility of performing activity link aa  at time k  

aau    utility of activity link aa  

a

ind
au     utility of individual(s) ind  performing activity link aa   

p
activityu     overall activity utility of JATP p   

pU    stochastic utility of DATP p  in ATS-SAM network 

pu    mean utility of DATP p  in ATS-SAM network 

vX      stochastic total traffic volume on road link v  

vx       mean of total traffic volume on road link v  

       random term in travel demand  

od
q      SD of travel demand between OD pair od  

( )v k    SD of dis-utility of physical link v  at time interval k   

da    SD of in-vehicle link dis-utility in ATS-SAM network 

p
f      SD of passenger flow on route p  
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ij
fsn      SD of passenger flow on in-vehicle link ij

sna  in SAM network 

ta
f      SD of passenger flow on transfer link ta  

v
f      SD of passenger flow on physical link v  

( )v
f k     SD of passenger flow on physical link at time interval k  

2bv

f      SD of passenger flow of mode 2b  on road link v  

da
f   SD of passenger flow on in-vehicle link da  in ATS-SAM 

network 

1     SD of 
t

( )a biF F  

v
t      SD of travel time of physical link v  

ij
tsn      SD of travel time on in-vehicle link ij

sna  

p
t     SD of travel time of route p  

ta
t      SD of waiting time on transfer link ta  

aa    SD of utility of activity link aa   

p    SD of utility of DATP p  in ATS-SAM network 

vx      SD of total traffic volume on road link v  

pu      mean utility of DATP p  in ATS-SAM network 

p    dis-utility of route p  in SAM network, or budget utility of 

DATP p  in ATS-SAM network, or JATP utility in JATS 

network 

 

Parameters 

aacv    model parameter relevant to the activity type of aa  
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odcv      CV of travel demand between OD pair od  

2be , 
3be    passenger car equivalents for mode 2b  (auto) and 3b  (bus) 

0e       average vehicle occupancy parameter representing the number 

of passengers per auto 

bg    frequency of the transport mode b  

( )bg wc    frequency of mode b  under weather category wc  

bh       vehicle capacity of the transport mode b   

( )bh wc    vehicle capacity of mode b  under weather category wc  

K     total number of time intervals 

' ( )wcp k   posterior probability of occurrence of wc  given the weather 

forecast for time interval k  to 1k    

bpen     mode-specified transfer penalty 

q    total population 

0s    bus fleet size 

a
( )

aus wc    scale function of activity utility under weather category wc  

( )
vt

s wc   scale function of physical link travel time under weather 

category wc  

d

0
at    travel time of in-vehicle link da   

0
vt       free flow travel time of physical link v  

a

max
au ,

aa ,
aa ,

aa  
activity-specific parameters in marginal utility function 

vot     value of time 

wc     weather category 
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indw     individual ind ’s weight parameter 

    probability of on-time arrival in SAM network, or probability 

of gaining budget utility of DATP in ATS-SAM network 

 1    inverse of standard normal cumulative distribution function at 

the probability of   

1 , 1k    parameters in the travel time functions of subway link and bus 

link 

2 , 2     parameters in the travel time function of bus link 

b , b    parameters in physical link dis-utility function in activity-based 

models 

a
' ,a

a
'a       parameters in activity utility considering crowding effect at 

activity location 

cf         commonality factor parameter 

1 , 2k     parameters in the travel time functions of road link 

 ,       parameters in the transfer waiting time function  
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1  Introduction 

1.1 Statement of the problem 

Hong Kong, with a population of 7.1 million and a land area of only 1104 square 

kilometres, is one of the most densely populated cities in the world. Over 11 million 

personal trips are made for various activities, every day and are increasing. This 

increase in travel demand has put great pressure on the existing transport networks.  

Network equilibrium models can provide a comprehensive understanding of 

individuals’ activity and travel choice behaviour and present a more accurate 

interpretation of traffic conditions in congested transportation networks. Such models 

are widely used for long-term transport planning.  

 

In most conventional transportation studies, the four-step method (i.e. trip generation, 

trip distribution, modal split, and traffic assignment) is widely adopted in travel 

behaviour modelling. In the literature, the four-step method is classified as the trip-

based approach in which the trip is the basic unit of analysis. Trip chains made by an 

individual are considered as separable and independent entities. In congested transport 

networks, travel times vary greatly from day to day due to network uncertainties such 

as random demand fluctuations. Great strides have been made in network equilibrium 

models for investigating individuals’ travel behaviour in road networks under demand 

uncertainty using the trip-based approach (Chen and Ji, 2005; Chen et al., 2011, 2012; 

Shao et al., 2006a, 2006b). In recent years, multi-modal trips in Hong Kong have 

been increasing in magnitude. However, less effort has been made in modelling travel 

choice behaviour for multi-modal transport networks under uncertainty (Szeto et al., 
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2013). In multi-modal transport networks, various transport modes differ in their 

travel time reliability. Therefore, for fast developing cities in Asia, the development of 

network equilibrium models for modelling travel choice behaviour in congested 

multi-modal transport networks under demand uncertainty is an important issue. 

 

As travel demands are derived from the desire of individuals to participate in various 

activities, individuals’ activity choice significantly influences travel demand and 

travel choice. An understanding of the interactions between individuals’ activity and 

travel choice behaviour plays an important role in long-term transport planning. The 

linkage between activities and travels, the temporal and spatial constraints, and the 

interdependence of activity and travel scheduling should be comprehensively 

investigated by network equilibrium models. Unlike the trip-based approach, the 

activity-based approach covers another class of models. This class provides a better 

understanding of the interaction between activity choice and travel choice.  Hence, 

extending the above mentioned trip-based network equilibrium model under 

uncertainty to the activity-based approach could better enable a comprehensive 

modelling of individuals’ daily activity-travel patterns (DATPs) under uncertainty.  

 

It is of note that the current development of activity-based models lacks a rigid and 

comprehensive modelling framework. Most existing activity-based network 

equilibrium models cover only a few choice dimensions. The specification of choice 

dimensions is based either on the available travel survey data or on a relatively ad hoc 

method. The research presented in this thesis appears to be the first devoted 

exclusively to the development of unified network equilibrium frameworks for 

modelling individuals’ activity and travel choice behaviour in congested multi-modal 
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transport/transit networks.  

 

In general, adverse weather has a significant influence on individuals’ activity and 

travel choice behaviour and such influence is obviously greater in those cities which 

suffer frequent rainy periods. Given the above, it would be advantages for the impacts 

of weather conditions to be taken into account in long-term transport planning. Hence 

an activity-based network equilibrium model for scheduling DATPs in multi-modal 

transit networks under adverse weather could provide solution. 

 

Many activity-based travel behaviour models are based on individual decision making 

in which individuals’ joint decisions are not explicitly considered. With the rapid 

development of information and telecommunication technology, joint activity/travel 

constitutes an ever-increasing share of an individual’s DATP (Ronald et al., 2012; 

Vovsha et al., 2003). This emphasises the importance of modelling joint activity and 

travel choices for long-term transport planning and policy analysis. This research, thus 

respond to the above implied developing travel need by proposing an activity-based 

network equilibrium model for solving joint activity-travel pattern (JATP) scheduling 

problem in multi-modal transit network. 

 

In summary, this research is devoted to developing network equilibrium models for 

the purpose of long-term strategic planning, in which individuals’ activity and travel 

choice behaviour in congested multi-modal transport/transit networks can be 

comprehensively investigated. 
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1.2 Objectives of the research 

The aim of this research is to develop network equilibrium models for modelling 

individuals’ activity and travel choice behaviour in multi-modal transport/transit 

networks. The following objectives are designed to achieve this aim. 

 

Objective 1: to develop a trip-based network equilibrium model for traffic assignment 

in multi-modal transport networks under demand uncertainty. 

 

Objective 2: to develop an activity-based network equilibrium model for solving the 

DATP scheduling problem in multi-modal transit networks under activity uncertainty.  

 

Objective 3: to develop an activity-based network equilibrium model for solving the 

DATP scheduling problem in multi-modal transit networks under adverse weather 

conditions.  

 

Objective 4: to develop an activity-based network equilibrium model for solving the 

JATP scheduling problem in multi-modal transit networks.  

 

The inter-relationships of the four research objectives are depicted in Figure 1.1. A 

trip-based network equilibrium model is developed for traffic assignment in multi-

modal transport network under demand uncertainty (Objective 1). The proposed trip-

based model (Objective 1) is extended to an activity-based model for solving DATP 

scheduling problem in multi-modal transit networks under activity uncertainty 

(Objective 2). To incorporate the effects of adverse weather, another activity-based 



1-5 
 

model is proposed to take into account adverse weather conditions (Objective 3). To 

extend the one-individual activity-travel choice problem to two-individual joint choice 

problem, an activity-based network equilibrium model is developed for JATP 

scheduling (Objective 4) on the basis of one-individual DATP scheduling models 

(Objectives 2 and 3). 

 

 

Figure 1.1 The inter-relationships of research objectives 

 

1.3 Structure of the thesis 

This thesis is composed of seven chapters. The relationships between these seven 

chapters are illustrated in Figure 1.2. A brief introduction of this research is given in 

Chapter 1. Chapter 2 reviews relevant literature on trip-based and activity-based 

network equilibrium models. The core of this research consists of four Chapters. 

Chapter 3 focuses on a trip-based network equilibrium model. Chapters 4, 5 and 6 

discuss activity-based network equilibrium models.  
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Figure 1.2 Structure of the thesis 

 

Chapter 3 presents a trip-based reliability-based user equilibrium (RUE) model for 

traffic assignment in congested multi-modal transport networks under demand 

uncertainty. The distributions of stochastic passenger flows and travel times are 

studied. The stochastic bus frequency due to the unstable road travel time is explicitly 

considered. Probable transfers and non-linear fare structures are effectively modelled 

by adapting the state-augmented multi-modal (SAM) transport network (Lo et al., 

2003). By the proposed RUE model, individuals’ route and mode choice behaviour 

are intensively explored.  

 

In Chapter 4, the trip-based RUE model for traffic assignment proposed in Chapter 3 

is extended to an activity-based RUE model for solving the DATP scheduling problem. 

Chapter 2
Literature Review

Chapter 3    a network equilibrium model for traffic assignment under demand uncertainty

Chapter 4    a network equilibrium model for 
DATP scheduling under activity uncertainty 

Trip-based approach for multi-modal transport networks

Activity-based approach for multi-modal transit networks

Chapter 5    a network equilibrium model for 
DATP scheduling under adverse weather

Chapter 6    a network equilibrium model 
for  joint activity-travel pattern scheduling

One-individual travel and activity participation

Two-individual travel and activity participation

Chapter 1
Introduction

Chapter 7
Conclusions



1-7 
 

A novel activity-time-space state-augmented multi-modal (ATS-SAM) super-network 

platform is proposed to simultaneously address the activity choices and travel choices 

in multi-modal transit networks. In order to capture the stochastic characteristics of 

different activities, activity utilities are assumed in Chapter 4 to be time-dependent 

and stochastic in relation to the activity types. Individuals’ activity and travel choices 

are simultaneously investigated by the extended RUE model with consideration of in-

vehicle crowding effect and activity uncertainty.  

 

In Chapter 5, the activity-based network equilibrium model proposed in Chapter 4 is 

extended to consider the effects of adverse weather conditions (with different rainfall 

intensities). A user equilibrium (UE) model is proposed for solving the DATP 

scheduling problem in congested multi-modal transit networks under adverse weather. 

The effects of adverse weather on different transit modes and different activities are 

explicitly modelled. The interdependence of individuals’ DATP choice and weather 

conditions are comprehensively investigated.  

 

The activity-based network equilibrium models proposed in Chapters 4 and 5 both 

address the modelling of one-individual activity and travel participation. Chapter 6 

considers two-individual’s activity and travel participation. A UE model is proposed 

for scheduling two-individual JATPs in multi-modal transit networks. By proposing a 

novel joint-activity-time-space (JATS) super-network platform, individuals’ activity 

and travel choices, including both independent ones and joint ones, can be 

comprehensively investigated.  A measure of JATP utility is proposed to incorporate 

joint travel benefit. The effects of joint travel length are modelled in joint travel 

benefit.  



1-8 
 

  

Research findings are summarized in the last Chapter of this thesis, Chapter 7, 

followed by suggestions for further study. 
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2 Literature Review 

The long-term planning of urban congested multi-modal transport/transit networks 

relies on the use of network equilibrium models for predicting the way in which 

individuals choose routes/modes and activities. Over the past decades, network 

equilibrium models have thus received much attention. This research, as was indicated 

in Chapter 1, is believed to be the first attempt to comprehensively investigate 

individuals’ activity and travel choice behaviour in congested multi-modal 

transport/transit networks using network equilibrium models.  

In the literature, few attempts have been reported regarding the development of 

network equilibrium models for comprehensively investigating individuals’ travel and 

activity choice behaviour in congested multi-modal transport/transit networks. 

However, much valuable information can be derived from previous related studies. In 

this regard, a literature review has been conducted to identify ideas relevant to the 

objectives of this research. 

This Chapter is structured as follows. Section 2.1 focuses on the trip-based travel 

analysis approach. Both the concept of travel time reliability is introduced, and 

reliability-based network equilibrium models are reviewed in Section 2.1. In Section 

2.2, the differences between trip-based and activity-based approaches are discussed. 

Section 2.3 focuses on the activity-based approach, giving a brief review of related 

activity-based studies. A summary of key points concludes the Chapter. 
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2.1 Trip-based network equilibrium models with travel 

time uncertainty 

In densely populated areas, travel times in congested transport networks generally 

vary from day to day due to network uncertainties such as random demand 

fluctuations. Many empirical studies have found that travel time uncertainty has 

significant impacts on individuals’ route and mode choice behaviour (Abdel-Aty et al., 

1995; Lam and Small, 2001; Brownstone et al., 2003; De Palma and Picard, 2005).  

 

In congested networks with travel time uncertainty, individuals consider travel time 

uncertainty as a risk for their travels. To reduce the risk of late arrival, individuals 

may prefer to secure the probability that a trip can be successfully fulfilled within a 

given travel time threshold. In the literature, such probability is referred as travel time 

reliability (Asakura and Kashiwadani, 1991). Travel time reliability provides a 

quantitative measure of stochastic travel time. In densely populated areas, for many 

reasons, travel time reliability has become a matter of increasing.  

 

It has been identified in many studies that travel time reliability is one of the key 

factors affecting individuals’ choice behaviour (Jackson and Jucker, 1982; Abdel-Aty 

et al., 1995). Jackson and Jucker (1982) proved that the variance of route travel time , 

in particular, influenced travel choices. Abdel-Aty et al. (1995) found that travel time 

reliability was the most or second most crucial factor concerning route choices made. 

Therefore, it is of advantage for travel time reliability to be explicitly considered 

when modelling individuals’ choice behaviour, particularly in multi-modal transport 

networks with uncertainty. 
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To quantitatively model travel time reliability, a widely used concept: travel time 

budget has been proposed by Lo et al. (2006). The travel time budget can be 

expressed as the summation of the mean route travel time and a safety margin of route 

travel time. The concept of travel time budget is adopted in this research (Chapter 3), 

and as such is also extended to the concept of daily activity-travel pattern (DATP) 

budget utility (Chapter 4).  

 

Individuals’ route and mode choice behaviour can be investigated by the analysis and 

further investigations of network equilibriums. A classification of network equilibrium 

models is given in Table 2.1. In conventional network equilibrium models for 

deterministic transport networks, the expected travel time is the only criterion 

influencing individuals’ route choice decisions (Wardrop, 1952; De Cea and 

Fernandez, 1993; Aashtiani, 1979). As indicated above, in recent years, travel time 

reliability is an increasing concern for the travelling public, in particular for travellers 

such as air passengers, for whom expectations of on-time arrival is high. Thus, several 

studies recently, have been devoted to considering travel time reliability in traffic 

assignment models. 

 

Lo et al. (2006) extended the well-known user equilibrium (UE) model (Wardrop, 

1952) to a reliability-based user equilibrium (RUE) model by using the concept of 

travel time budget. The travel time budget is defined as the summation of the mean 

route travel time and a safety margin of route travel time. The safety margin is the 

extra time added to journey time expectation by individuals aiming to ensure the 

achievement of the probability of on-time arrival. Under the RUE principle, 
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individuals choose the route with minimum travel time budget instead of expected 

travel time in the UE model. 

 

 Table 2.1 Classification of trip-based network equilibrium models 

 
Deterministic  

Stochastic 
(Considering travel time reliability) 

Road Network  
Wardrop (1952) 

… 
Shao et al. (2006a, 2006b, 2008) 

Siu and Lo (2008)  

Transit Network  
De Cea and Fernandez 

(1993) 
…  

Yang and Lam (2006) 
Zhang et al. (2010) 
Szeto et al. (2013) 

Multi-modal Transport 
Network  

Aashtiani (1979) 
…  

Sumalee et al. (2011) 
This research 

 

Following the RUE framework, much attention has been given to travel behaviour 

modelling for either road or transit networks. In road networks, Shao et al. (2006a) 

proposed a RUE model to investigate the effects of demand uncertainty. Siu and Lo 

(2008) developed a RUE model which considered both demand and supply 

uncertainties. Zhou and Chen (2008) compared three RUE models under demand 

uncertainty. Reliability-based stochastic user equilibrium (RSUE) models were further 

developed to take account of individuals’ perception errors (Shao et al., 2006b; Shao 

et al., 2008). 

 

In transit networks, Yang and Lam (2006) presented a RSUE model in congested 

transit networks with unreliable transit services. Zhang et al. (2010) developed a 

schedule-based RSUE model to investigate travel choice behaviour, in terms of 

departure time and route choices, in transit networks with demand and supply 

uncertainties. 
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In multi-modal transport networks, Sumalee et al. (2011) proposed a RSUE model in 

multi-modal transport networks with adverse weather conditions under the common-

line framework. The research presented in this thesis proposes a RUE model using 

state-augmented multi-modal transport network under uncertainty. The interactions 

between public transit networks and road networks are explicitly considered. 

Problems of unrealistic transfers and non-linear fare structures are also tackled in this 

research. 

2.2 From trip-based approach to activity-based approach 

In most of the conventional transportation studies, the trip-based approach is adopted 

with the aim of analyzing travel choice behaviour. In the trip-based approach, the 

basic unit of analysis is the trip. Trip chains made by an individual are considered as 

separate and independent entities. Latterly, however, a growing awareness of the 

limitations of the conventional trip-based approach in analyzing travel choice 

behaviour has developed largely because the underlying motivation of trip making is 

ignored. The trip-based approach does not reflect the linkages between activities and 

trips, the temporal and spatial constraints, and the interdependence of activity and 

travel scheduling. 

 

Travel demands are derived from individuals’ needs/desires to participate in economic 

and social activities such as work, eating and shopping. Compared to the trip-based 

approach, another approach the activity-based approach has surfaced in the late 1980s 

for the analysis of travel choice behaviour and predicting travel demand (Kitamura, 

1988; Jones, 1990). In this approach, the trip is no longer considered the basic unit of 

analysis. The various activities conducted by individuals assumed the position of high 
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focus (McNally, 2000). Goodwin (1983) defined the activity-based approach as “the 

consideration of revealed travel patterns in the context of the structure of activities, of 

the individual or household, with a framework emphasizing the importance of time 

and space constraints”.  

 

The activity-based approach covers another class travel choice behaviour analysis 

models. By using the activity-based approach, it was felt that temporal and spatial 

constraints, scheduling of activities, participation time and location of each activity, 

and the linkage among activities and trips can be better investigated. Therefore, there 

is an increasing awareness that the activity-based approach provides a better 

understanding of individuals’ choice behaviour than does the trip-based approach. 

Travel behaviour analysis through the activity-based approach is more complex than 

that through the trip-based approach. 

2.3 Activity-based approach  

In this section, a review of activity-based network equilibrium models is first given in 

Section 2.3.1. The activity utility concept is discussed in Section 2.3.2. Section 2.3.3 

introduces the impacts of adverse weather on activity and travel choice. Section 2.3.4 

reviews the joint activity/travel choice problem in the literature. 

2.3.1 Activity-based network equilibrium models 

Activity-based network equilibrium models comprehensively reflect travel choices, 

interdependence of different trips, and the scheduling of activities in temporal and 

spatial dimensions. A substantial body of literature has been developed on activity-

based network equilibrium models.  
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Some studies have been developed with given travel times but ignoring congestion 

effects. Recker (1995) formulated a household activity pattern model which optimized 

the activity sequence and trip sequence in the context of pre-determined activity-travel 

patterns with given and fixed travel times.  

 

Some models were proposed with the aim of considering the effect of network 

congestion on simultaneous activity and travel choices. Lam and Yin (2001) presented 

an activity-based time-dependent traffic assignment model. Lam and Huang (2003) 

and Huang and Lam (2005) extended Lam and Yin's model to dynamic stochastic user 

equilibrium models for investigating both the activity and travel choices.  

 

Some studies have been developed based on pre-determined activity sequence. For 

example, Zhang et al. (2005) studied work duration determination problem together 

with the relationship between work duration and trip departure time choices in the 

queuing network throughout the whole day. Li et al. (2010) proposed an activity-

based transit assignment model for solving the transit scheduling problems in multi-

modal transit networks. 

 

To comprehensively study individuals’ activity and travel choices, some relevant 

models have recently been developed for congested road networks. Ramadurai and 

Ukkusuri (2010) proposed a single unified dynamic framework to model jointly the 

activity location, time of participation, activity duration, and route choices. Ouyang et 

al. (2011) proposed an activity-based traffic assignment model for solving the DATP 

scheduling problem.  
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However, these models were all developed for modelling DATP scheduling problems 

in congested road networks. Little effort has been found as regards solving the DATP 

choice problem in multi-modal transit networks. In metropolitan areas such as Hong 

Kong, over 90% of daily travel is made using a variety of public transit modes. In 

view of this, the research presented in this thesis is devoted to modelling individuals’ 

activity choices and route/mode choices simultaneously in multi-modal transit 

networks with consideration of congestion effect and activity uncertainty.  

 

In most existing activity-based traffic assignment models, there is a need to enumerate 

all activity-travel patterns (Lam and Huang, 2002; Huang and Lam, 2005; Zhang et al., 

2005). Such enumeration is time consuming for complicated multi-modal transit 

networks. In this research, this difficulty is tackled by incorporating an activity-travel 

pattern searching algorithm into the proposed activity-based traffic assignment model. 

2.3.2 Activity utility 

Individuals gain utility from the activities they conduct. The concept of activity utility 

is used in the utility maximization framework (Adler and Ben Akiva, 1979; Kitamura, 

1984). The amount of utility gained is determined by the characteristics of the activity, 

the activity duration, and the degree of individual’s need.  

 

In the literature, activity utility functions associate selected activity characteristics. 

The numerical values of these activity characteristics are assumed to relate to 

particular utility levels. It is assumed in the literature that activity utility is a function 

of the activity duration and the activity characteristics. 
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It is believed that various activity participations have different preferred times. 

Activity participation usually starts with a warming up phase in which the marginal 

activity utility increases. After reaching a maximum point, the marginal utility 

decreases. In this research, the activity utility is determined by a bell-shaped marginal 

utility function proposed by Joh et al. (2002) and Ettema and Timmermans (2003): 

 
a a a

a a

a a a a

max

1( ) ,
exp[ ( )] 1 exp[ ( )]

a

a a a
a

a a a a

u
u k

k k


 

   


   
            

         (2.1) 

where k  is the time of day; 
a

max
au

 
is the maximum accumulated utility of activity aa , 

and 
aa , 

aa , 
aa  

are the activity-specific parameters to be estimated. These 

parameters can be estimated on the basis of survey data (Ettema and Timmermans, 

2003; Ashiru et al., 2004).  

 

Many related studies have adopted this type of function for modelling the marginal 

utility of activity (Ashiru et al., 2004; Zhang et al., 2005; Li et al., 2010). This 

function does not consider the needs of individuals. In further studies, need-based 

utility functions (Arentze and Timmermans, 2009) can also be incorporated in the 

models proposed in this research. 

 

Individuals also receive dis-utility from the travels between activities. Supernak (1992) 

adopted the total utility of activity-travel pattern in a typical utility maximization 

context. The total utility obtained from an activity-travel pattern is the summation of 

the utility gained from activities and the dis-utility resulting from travels. Individuals’ 

activity-travel pattern choices are decided by underlying activity utilities and travel 

dis-utilities. Individuals select the activity-travel pattern with the largest total utility. 
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Individuals’ activity-travel pattern choices are influenced by the temporal profiles of 

activity utilities.  

 

In previous related studies, the activity utility is considered as the summation of a 

systematic component which is a deterministic representative value of utility and a 

random component which represents the variation in individuals' perceptions 

(Kitamura, 1984; Lam and Yin, 2001). In other words, the uncertainty of activity 

utility in previous studies lies in individuals’ various perceptions. Broadly, the activity 

utility may consist of the following attributes: (a) the activity time window; (b) the 

degree of need for the activity; (c) the degree of satisfaction gained from the process; 

(d) the financial gain or loss. In reality, these attributes vary from day to day. Thus, 

the utility profile of each activity should not be a single curve but rather an area which 

indicates a probability distribution.  

 

In people’s daily life, various activities should be conducted to meet people’s different 

needs. Some activities conducted are compulsory, such as work, while the need for 

others is more flexible such as shopping (Kitamura, 1984). Thus, in previous studies, 

activities are classified into two categories: compulsory (or mandatory) ones such as 

work and home, and non-compulsory (or discretionary) ones such as shopping and 

eating. This research appears to be the first attempt to capture the stochastic 

characteristics of different activities in modelling individuals’ activity and travel 

choice behaviour. 

2.3.3 Impacts of adverse weather on activity and travel choice 

From Section 2.3.1, it can be seen that several network equilibrium models, providing 
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valuable insights into understanding individuals’ activity-travel scheduling behaviour, 

have been proposed for long-term transport planning. These models aim at and 

succeed in more comprehensively studying individuals’ activity and travel choices. 

 

None of the above models, however, has explicitly incorporated the weather/climate 

effects on activity-travel pattern scheduling, although a number of empirical studies 

have investigated the recurrent effects of adverse weather on individuals’ activity 

choice and travel behaviour. Some studies have reported individuals’ mode and 

departure time changes as affected by weather conditions (Khattak and De Palma, 

1997; Guo et al.,  2007), and some have indicated activity behaviour changes (Smith, 

1993; Khattak and De Palma, 1997; Cools et al., 2010). Rainfall has the most frequent 

and significant adverse weather effect on individuals’ activity and travel choices in 

tropical and subtropical areas such as Hong Kong and Singapore. Rainfall has been 

found to significantly affect individuals’ activity and travel choice behaviour such as 

activity duration and travel mode choice. Long-term transit planning for areas with 

high average annual rainfall is considerably different from that for areas with less 

rainfall. Thus, particularly in tropical and subtropical areas such as Hong Kong and 

Singapore, rain effects should be considered when modelling individuals’ activity and 

travel choices. 

 

In order to incorporate rain effects in travel behaviour modelling, Lam et al. (2008) 

proposed a network equilibrium model for road networks giving specific 

consideration to the effect of rain on road capacity and link travel time. Sumalee et al. 

(2011) extended this work to model multi-modal transport networks under adverse 

weather conditions. The above two models are both trip-based transport models, 
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hence, the specific trip making motivation, plus the interdependence of activities and 

travels are not considered. Cools et al. (2010) found that individuals’ travel behaviour 

under adverse weather conditions was highly dependent on trip purpose (i.e. activities 

to be conducted). Thus, a network equilibrium model is proposed in this research to 

comprehensively model individuals’ activity and travel choice behaviour under 

adverse weather conditions. 

2.3.4 Joint activity/travel choice problem 

Many activity-based travel behaviour models are based on individual decision making 

but joint decisions are not explicitly considered. In reality, however, individuals 

undertake both independent and joint activities/travels as essential parts of their 

DATPs. For example, household members meet at subway stations after work, then 

travel jointly such as to have dinner in a shopping mall. With the rapid development 

of information and telecommunication technology, as mentioned in the Introduction of 

this thesis, such joint activity constitutes an ever-increasing share of an individual’s 

DATP (Ronald et al., 2012). Travel surveys indicate that joint travel has now become 

a significant portion of travel within regions (Vovsha et al., 2003). This form of 

behaviour emphasises the need and importance of the explicit analysis and modelling 

joint activity-travel pattern (JATP) scheduling problem for long-term transport 

planning and policy analysis.  

 

Currently, a number of transportation studies have investigated the joint activity and 

travel choice problem with consideration of inter-personal dependencies. Table 2.2 

gives a classification of previous studies on this subject.  
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Table 2.2 Classification of joint activity-travel choice studies 

 
Joint activity-travel choices 

Simulation models  
Miller and Roorda, 2003; Arentze and 

Timmermans, 2009; Dubernet and Axhausen, 
2013. 

Econometric models  
Globe and McNally, 1997; Gliebe and 
Koppelman, 2002; Zhang et al., 2009.  

Network equilibrium models  This research. 

 

The complex nature of inter-personal dependencies results in many studies using the 

simulation technique. For example, Miller and Roorda (2003) proposed a micro-

simulation model to generate DATPs for all individuals in a household on the basis of 

a conventional trip diary survey. Arentze and Timmermans (2009) developed a need-

based model of activity generation for a multi-day planning period taking account of 

household members’ interactions. Dubernet and Axhausen (2013) included joint 

travels in a multi-agent micro-simulation.  

 

Apart from simulation models, a number of econometric models have also been 

proposed with the aim of exploring the intra-household behavioural interactions in 

relation to activity-travel choice behaviour, using structural equation modelling or the 

random utility approach. For example, the study of out-of-home activities and travel 

durations by Globe and McNally (1997), a time allocation model for two-individual 

households that accounts for joint activity participation by Gliebe and Koppelman 

(2002), and the work of Zhang et al. (2009) in which different household utility 

functions are introduced to represent household members’ joint decision making 

interactions. 
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Compared to the development of activity-based simulation models and econometric 

models, fewer studies have been devoted to developing activity-based mathematical 

analytical models such as network equilibrium models. Activity-based network 

equilibrium models can provide a comprehensive understanding of individuals’ 

activity and travel choice behaviour, and present more accurate traffic conditions in a 

transportation network. Most existing studies on activity-based network equilibrium , 

however, are on the basis of one individual level and ignore individuals’ joint activity-

travel choices (Lam and Yin, 2001; Lam and Huang, 2002, 2003; Huang and Lam, 

2005; Zhang et al., 2005; Li et al., 2010; Ramadurai and Ukkusuri, 2010, 2011; 

Ouyang et al., 2011; Fu and Lam, 2014; Fu et al., 2014b). As joint activities/travels 

represent a substantial portion of individuals’ DATPs, it is of serious interest to 

develop network equilibrium models which can comprehensively consider both 

individuals’ independent and joint activity/travel choice behaviour.  

2.4 Summary 

The long-term transport planning relies on the use of network equilibrium models for 

comprehensively predicting individuals’ activity and travel choice behaviour and 

present more accurate traffic conditions in a transportation network. As a result, great 

strides have been made in the development of these models. 

 

The trip-based approach and the activity-based approach are two main approaches to 

analyzing individuals’ activity and travel choice behaviour. In the trip-based approach, 

trip is adopted as the basic unit of travel analysis, while the activity-based approach 

focuses on activities conducted by individuals.   
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In the trip-based approach, travel time reliability induced by network uncertainty has 

been explicitly considered in transportation planning and modelling. In the review of 

reliability-based studies, it was found that most studies are developed for road 

networks. As multi-modal trips have increased in magnitude in recent years, there is a 

practical need to develop a comprehensive reliability-based traffic assignment model 

for multi-modal transport networks with uncertainty. Problems of unrealistic transfers 

and non-linear fare structures should be tackled, and individuals’ route and mode 

choices should be intensively explored.  

 

Travel demands are derived from people’s desires to participate in various activities. 

Thus, an understanding of the interactions between individuals’ activities and travel 

choice behaviour plays an important role for long-term transport planning. By 

reviewing the activity-based approach to travel analysis, it is found that little effort 

has been made to develop network equilibrium models which can comprehensively 

model individuals’ activity-travel choice behaviour in multi-modal transport networks. 

It is also demonstrated that the uncertainty of activity utility and adverse weather may 

affect individuals’ DATP choices. In addition, individuals’ joint activity/travel choice 

behaviour should be modelled in activity-travel pattern scheduling. Thus, various 

network equilibrium models for DATP/JATP scheduling are needed.  

 

Based on the previous related work, a trip-based network equilibrium model is 

proposed in Chapter 3, and an activity-based model is proposed in Chapter 4 as an 

extension of this trip-based model. On the basis of the activity-based model proposed 

in Chapter 4, another activity-based model considering effects of adverse weather is 

developed and presented in Chapter 5. Finally, a network equilibrium model for two-
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individual JATP scheduling is proposed and described in Chapter 7.  
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3 A Network Equilibrium Model for Traffic 

Assignment under Demand Uncertainty 

In densely populated and congested urban areas, travel times in congested multi-

modal transport networks are generally varied and stochastic in practice. Stochastic 

travel times are likely to be the result of day-to-day demand fluctuations and in all 

probability affect individuals’ route and mode choice behaviour based on their 

expectations of on-time arrival. Reliability-based user equilibrium (RUE) models can 

provide a comprehensive understanding of travel behaviour in multi-modal transport 

networks under uncertainty. In this Chapter, a trip-based RUE model is proposed for 

modelling individuals’ travel choice behaviour in congested multi-modal transport 

networks under demand uncertainty. 

 

The work presented in this Chapter contributes the literature in three aspects. Firstly, 

to capture the effects of demand uncertainty, passenger flows and generalized travel 

times of different transport modes are all formulated as random variables. Secondly, 

the congestion effect of road traffic and the crowding discomfort in vehicle are 

explicitly modelled. The stochastic bus frequency derived from unstable road travel 

time is considered. Thirdly, a stochastic state-augmented multi-modal (SAM) 

transportation network is adapted to model explicitly both the probable transfers and 

non-linear fare structures, particularly in Asian cities like Hong Kong. Using the 

proposed RUE model, individuals’ route and mode choice behaviour in congested 

multi-modal transport networks can be intensively explored. 
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This Chapter is structured as follows. Section 3.1 gives the background and the 

motivation of the study presented in this Chapter. The model assumptions are given in 

Section 3.2. The distributions of passenger flow and travel time are derived and 

described in Section 3.3. The RUE model formulation and solution algorithm are 

presented in Section 3.4. A numerical example illustrating the proposed model is 

provided in Section 3.5. A summary of this Chapter is given in Section 3.6.  

3.1 Background  

In metropolitan areas, travel times in multi-modal transport networks generally vary 

from day to day as a result of random demand fluctuations and supply degradations. 

Many empirical studies have found that travel time uncertainty has significant impacts 

on individuals’ route and mode choice behaviour in congested transport networks 

(Abdel-Aty et al., 1995; Lam and Small, 2001; Brownstone et al., 2003; De Palma 

and Picard, 2005). These empirical studies revealed that individuals do indeed 

consider travel time uncertainty a travel risk. To ensure the trip is timely achieved to 

enable fulfilment of the purpose of the trip, individuals may have more concerns on 

the probability that a trip can be successfully fulfilled within a given travel time, 

referred to travel time reliability in the literature. Travel time reliability should 

therefore be explicitly considered when modelling the mode and route choice 

behaviour particularly in multi-modal transport networks with uncertainty. 

 

In view of the above, Lo et al. (2006) extended the well-known user equilibrium (UE) 

model (Wardrop, 1952) to RUE model by using a concept of travel time budget. The 
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travel time budget is the summation of mean route travel time and a safety margin of 

route travel time. The latter is an extra time added by an individual to achieve his/her 

desired probability of on-time arrival. Under the RUE principle, individuals choose 

the optimal route with minimum travel time budget instead of expected travel time in 

the conventional UE model. Following the RUE framework, as elaborated in Section 

2.1 of Chapter 2, much attention has been given to travel behaviour modelling for 

either road or transit networks. However, less effort has been found in modelling 

individuals’ mode and route choice behaviour in congested multi-modal transport 

networks under uncertainty.  

 

In reality, there is a practical need for providing a reliability-based network 

equilibrium model in congested multi-modal transport networks for two reasons. 

Firstly, an interaction between public transit networks and road networks is evident 

especially during rush hours. Regular bus service frequency may be disrupted by 

traffic congestion on associated road networks. Using either transit networks or road 

networks in modelling cannot demonstrate the interactions between public transit and 

road traffic. Thus in this circumstance a multi-modal network model is practically 

required. Secondly, multi-modal trips have increased in magnitude in recent years. 

Individuals may take trips by autos, by public transit, or park-and-ride for their daily 

travels. Therefore, an exploration of individuals’ route and mode choice behaviour in 

congested multi-modal transport networks, and with the inclusion of travel time 

reliability is of value in transit-orientated cities like Hong Kong.  

 

Hence, this Chapter presents a RUE model for investigating individuals’ travel choice 
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behaviour in congested multi-modal transport networks. To capture the effects of 

demand uncertainty, passenger flows and generalized travel times of different 

transport modes are formulated as random variables. Stochastic bus frequency derived 

from the variability of road travel time is explicitly considered, and the derivations of 

mean and standard deviation (SD) of link and route travel times are provided. Note 

that unrealistic transfers are avoided and the difficulty of non-linear fare structures is 

tackled by using a state-augmented multi-modal (SAM) transport network proposed 

by Lo et al. (2003). 

3.2 Model assumptions  

To facilitate the presentation of the essential ideas without loss of generality, the 

following assumptions are made in this Chapter. 

 

A3.1: Origin-destination (OD) demands are assumed to follow independent normal 

distributions similar to those made in previous studies (Asakura and Kashiwadani, 

1991; Waller et al., 2001; Chen et al., 2003). 

A3.2: Route flows are assumed to be mutually independent and follow the same type 

of statistical distribution as OD demand distribution. The coefficient of variation (CV) 

of route flow is assumed to be equal to that of OD demand distribution as the works 

of Shao et al. (2006a, 2006b). Justification of this assumption with empirical data is 

advisable in further study. 

A3.3: The multi-modal network model investigated in this study falls within the 

category of static model for long term planning at the strategic level. Therefore, it is 

assumed that all individuals in the multi-modal transport network would have perfect 
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knowledge towards traffic condition based on past experience. 

A3.4: All individuals can get on the buses or subways, i.e. there is no vehicle capacity 

constraint. It is because all the demand will be catered by the supply for long-term 

planning purpose. 

A3.5: Link and route travel times are assumed to be mutually independent and follow 

normal distributions (Shao et al., 2006a; Shao et al., 2006b). 

 

3.3 Formulation of passenger flow and travel time 

distributions 

3.3.1 Network representation 

In this Chapter, the SAM network proposed by Lo et al. (2003) is adapted to avoid 

unrealistic transfers and to represent the non-linear fare structures involved in multi-

modal transport networks. 

 

Consider a multi-modal transport network  ,M U V , where  U i  and  V v  

are respectively the set of physical nodes and the set of physical links. The multi-

modal network M  can be divided into w  sub-networks ( , ),b b bM U V ,b B

,bU U ,bV V  where Bb  is a specified transport mode, and bU  and bV , 

respectively are the set of nodes and the set of links associated with the sub-network 

bM . In this Chapter, three transport modes: subway, auto, and bus, respectively 

denoted by 1 2 3,  ,  b b b  are considered. All sub-networks are combined and represented 
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by a strongly connected graph  ,G N A  through a state-augmentation approach 

(Bertsekas, 1995), where N  is a set of nodes and A  is a set of links. The resulting 

network G  is termed the SAM network.  

 

In the SAM network, each node is described as ( , , , )i s n l , where i  indicates the 

physical location of the node, s  is the transfer state which is used to model probable 

transfers, n  is the number of modal transfers that have been made by an individual, 

and l  is the alight or aboard indicator. n  is used as a constraint on the maximum 

number of transfers. The value of l  equals to 1 (0), indicating that an individual is at 

the beginning (end) of a direct in-vehicle link. Each transfer state Ss  is specifically, 

associated with a transport modal usage Bs )(  and a set of probable transfers 

( )s S  . If individuals are at state s , the indication is that these individuals are using 

mode )(s  and that they can only transfer to any state in ( )s .  

 

Links are divided into two categories in the SAM network, i.e. t dA A A  , where 

tA  denotes a set of transfer links between modes and dA  denotes a set of direct in-

vehicle links, and the latter is made up of consecutive physical links. Each transfer 

link t ta A  is constructed according to the probable transfer states. Each in-vehicle 

link d
ij
sna A  represents a direct in-vehicle movement from location i  to location j  

with transfer state s  as its n th transfer in the trip.  

 

In many transit-orientated cities like Hong Kong, public transit fares, such as those for 
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buses and subways are not proportional to travel distance. The route fares are non-

additive, and thus cannot be simply determined by summing the fares of relevant 

physical links along that route. In this study, direct in-vehicle links in the SAM 

networks are represented as a set of consecutive physical links; so that the fares of 

direct in-vehicle links are additive.  

 

Let nodes o  and d  be the OD nodes，and  odP p  be the set of routes linking OD 

pair od . Let p  
be the fare of route odp P . It can be expressed as the summation of 

fares of direct in-vehicle links: 

d

( , ),ij
snij

sn

ij
p sna

a A

p a  


                                            (3.1) 

where ij
sna

  denotes the fare of travelling on in-vehicle link 
ij
sna .  , ij

snp a  is the 

incidence relationship between in-vehicle link and route;  , ij
snp a  equals 1 if in-

vehicle link ij
sna  is used in route p , 0 otherwise. In this way, non-linear fare structures 

can be taken into account as the travel fares can be represented on a node to node 

basis. 

3.3.2 Passenger flow distribution 

For notation consistency, the variables with capital letters used throughout this 

Chapter represent random variables and variables with lower-case letters represent 

deterministic variables. Following the model assumption A3.1, the travel demand 

between OD pair od  (denoted as odQ ) is a random variable following a normal 

distribution, 
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,od odQ q                                                     (3.2) 

where odq  is the mean demand, od odE Q q    ;   is the random term,   0E   . Let 

od
q  be the SD of the OD demand:  

 .od od
q Var Q Var                                           (3.3) 

The CV of the travel demand between OD pair od  (denoted as odcv ) can be 

expressed as 

 
.

od
qod
od

cv
q


                                                    (3.4) 

Denote the passenger flow along a route odp P  as pF . Following the model 

assumption A3.2, the flow conservation can then be expressed by following equations: 

,
od

od
p

p P

Q F


                                                   (3.5) 

,
od

od
p

p P

q f


                                                   (3.6) 

p od
f p pVar F f cv       

,odp P                                (3.7) 

where pf  and p
f  , respectively, are the mean and the SD of passenger flow along 

route p .  

 

Denote the passenger flow on direct in-vehicle link ij
sna  as ij

snF . It can be expressed by 

the summation of passenger flows on all routes using this in-vehicle link: 

( , )
od

ij ij
sn sn p

p P

F p a F


    d ,ij
sna A                                  (3.8) 



3-9 
 
 

 

( , )
od

ij ij
sn sn p

p P

f p a f


    d ,ij
sna A                                  (3.9) 

[ ] [ ] ( , )
od

ij ij ij
fsn sn p sn

p P

Var F Var F p a 


     d ,ij
sna A                  (3.10) 

where ij
snf  and ij

fsn , respectively, are the mean and the SD of passenger flow on link 

ij
sna ; ( , )ij

snp a  is the incidence relationship between in-vehicle link and route; 

( , )ij
snp a  equals 1 if in-vehicle link ij

sna  is on route p , 0 otherwise. 

 

The passenger flow on each transfer link t ta A  is denoted as 
taF . It can be 

calculated by summing the passenger flows of all routes using this transfer link as 

t t( , )
od

a p
p P

F p a F


    t t ,a A                                   (3.11) 

t t( , )
od

a p
p P

f p a f


    t t ,a A                                   (3.12) 

t

t t[ ] [ ] ( , )
od

a
f a p

p P

Var F Var F p a 


     t t ,a A                    (3.13) 

where 
taf  

and ta
f

 
are the mean and the SD of passenger flow on link ta , respectively; 

t( , )p a  is the incidence relationship between transfer link and route; t( , )p a  equals 

1 if transfer link ta  is on route p , 0 otherwise. 

 

Let vF  be the passenger flow of mode b  on physical link bv V . It can be expressed 

as the summation of passenger flows on all direct in-vehicle links consisting of this 

physical link: 

d d

( , ) ( , ) ( , )
sn sn

ij ij od
sn sn

ij ij ij ij
v sn sn p

a A a A p P

F a v F a v p a F  
  

      , ( ) ,bv V s b     (3.14)        
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d d

( , ) ( , ) ( , )
sn sn

ij ij od
sn sn

ij ij ij ij
v sn sn p

a A a A p P

f a v f a v p a f  
  

      , ( ) ,bv V s b     (3.15)         

d d

[ ] [ ] ( , ) ( , ) ( , ) [ ]
sn

ij ij od
sn sn

v ij ij ij ij
f v sn sn sn p

a A a A p P

Var F Var F a v a v pa Var F   
  

     , ( ) ,bv V s b   (3.16) 

where vf  and v
f  are the mean and the SD of passenger flow on link v , respectively; 

( , )ij
sna v  is the incidence relationship between in-vehicle link and physical link; 

( , )ij
sna v  equals 1 if physical link v  is in the in-vehicle link ij

sna , 0 otherwise. 

 

According to the model assumptions A3.1 and A3.2, passenger flows of links and 

routes all follow normal distributions: 

ij
snF ~   2

,ij ij
sn fsnN f     d ,ij

sna A                                (3.17)
                                    

 

taF ~   t

t

2
, a

a fN f    t t ,a A                                  (3.18) 

vF ~   2
, v

v fN f     ,v V                                   (3.19) 

pF ~   2
, p

p fN f     .odp P                                  (3.20) 

3.3.3 Link travel time distribution 

In this section, travel time distributions for physical links, in-vehicle links and transfer 

links are derived. 

3.3.3.1 Physical links 

The concept of generalized travel time is adopted in this Chapter, to model crowding 

discomfort in vehicles and congestion in road traffic. The generalized travel time of 
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the physical link v  is assumed to be increasing with respect to link flow vF : 

    ,v v vT t F                                                  (3.21) 

     
  ( ) ( )v v v vt E T t x x dx




      ,v V                            (3.22) 

 2
2 2( ) ( ( )) ( ) ( ) ( )v

t v v v vt x x dx t x x dx  
 

 
      ,v V             (3.23) 

where vT  is the generalized physical link travel time; (.)vt  is the physical link travel 

time function; (.)v  is the probability density function of link flow; vt  and v
t , 

respectively, are the mean and the SD of travel time on physical link v . 

 

Subway (mode 1b ) 

The generalized travel time vT  considering in-vehicle crowding discomfort (Spiess, 

1983; Nielsen, 2000) on physical link v  for mode 1b  can be expressed as 

 
1

1 1

1 1

0 0
1, , , 1

k

v
v v v v b b v

b b

F
T T t F h g t

h g


  
         

  
1
,bv V                (3.24) 

where 
1bh  is the subway vehicle capacity (passengers per vehicle), and 

1bg  is the 

subway deterministic frequency (vehicles per hour); 0
vt  is the free flow travel time of 

link v ; 1  and 1k  are model parameters. This equation is similar to the BPR formula 

adopted for road traffic. It is used to quantify the increasing discomfort when the 

number of passengers increases. Parameter 1   is the weighting factor of the in-

vehicle crowding dis-comfort. With a high value of 1k  in Equation (3.24), the 

crowding effect increases considerably (Spiess, 1983).  Normally,  1 0   and 1 1k  . 
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As link flows follow normal distributions, the probability density function of link 

flow distributions can be expressed as 

 
 

2

2

1
( ) exp

2 2

v
v v v

f f

x f
x

 

   
 
 

  
.v V                         (3.25) 

 

Substituting Equations (3.24) and (3.25) into Equations (3.22) and (3.23), the mean 

and the SD of physical link travel time in mode 1b  can be re-written as 

      
 

     
1

1

1

1 1

10 0 1

0,

1 !!
k

i k iv
v v v f vk

i i even
b b

k
t t t f i

ih g

  

 

 
   

 
   

1
,bv V          (3.26) 

     

 

     

     

1
1

1
1

1
1 1

2
21

2

0,
0 1

2

1

0,

2
1 !!

1 !!

k
i k iv

f v
i i even

v
t v k k

i k ivb b
f v

i i even

k
f i

i
t

kh g
f i

i








 



 

  
                       




  

1
.bv V 
(3.27)

             

The detailed derivations of Equations (3.26) and (3.27) can be found in Shao et al. 

(2006b). 

 

Auto (mode 2b ) 

The link travel time considering congestion in road traffic (mode 2b ) can be modelled 

by the most widely used Bureau of Public Roads (BPR) function (Sheffi, 1985) as  

   

 
2

0 0
1, , 1

k

v
v v v v v v

v

X
T T t X t 



  
        

  
2
,bv V                     (3.28) 

where vX  is the total traffic volume on road link v ; v  is the capacity of the road link, 
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and 1  and 2k  are model parameters. It should be noted that vX  consists of two 

components, that is, traffic volume of mode 2b  (auto) and traffic volume of mode 3b  

(bus), because they both belong to road traffic. Therefore, 

  
2

2 3 3

0

bv

v b b b

F
X e G e

e
    

1
\ ,bv V V 

                                (3.29)
 

where 
3bG  is the bus frequency; 

2bvF  is the passenger flow of mode 2b  on road link v ; 

2be  and 
3be  are passenger car equivalents for mode 2b  and 3b ; 0e  is the average 

vehicle occupancy parameter representing the number of passengers per auto. The 

first term in Equation (3.29) represents the traffic volume of auto, and the second term 

represents the traffic volume of bus. 

 

In the congested multi-modal transport network, the bus frequency may not be fixed 

because of the variability of road travel time. Therefore, in this Chapter bus frequency 

is considered to be a random variable for modelling the interactions between bus 

usage and auto usage. For simplicity, the bus fleet size 0s  is assumed to be fixed, and 

3bG  is determined by 0s  and the cycle time of bus route. It is also assumed that cycle 

time can be represented by 2 pT , where pT  is the one-way travel time of the bus route 

that contains the physical link v , and   2
~ , p

p p tT N t  . Thus, the stochastic bus 

frequency 
3bG  can be calculated as  

3

0 .
2b

p

s
G

T
   

        
                                               (3.30) 

The mean and the variance of the second term in Equation (3.29) can be obtained 
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according to Li et al. (2009): 

 
3 3

3 3

2

0 0

2
1 ,

2 2

p
tb b

b b
p p p

s e s e
E G e E

T t t

                
                         (3.31) 

 
33

3 3

22 2
00

4
.

2 4

p
b tb

b b
p p

s es e
Var G e Var

T t

 
        

                         (3.32) 

As mentioned above,  2

2 2

2

~ , b

b b

v

v v fF N f   
 

 where 
2bvf  is the mean passenger flow of 

mode 2b  on road link v  and 2bv

f  is the SD of passenger flow of mode 2b  on road link 

v . Assuming that the traffic volume of bus and auto on the road are mutually 

independent, the mean and the SD of vX  (denoted as vx  and 
vx , respectively) can 

be expressed as follows: 

 
32

2

2

0

2
0

1
2b

p
tbb

v v
p p

s ee
x f

e t t

 
   
 
 

   
1

\ ,bv V V                      (3.33) 

   
32 2

22 22
2 0

2 4
0 4

b

v

p
b tvb

x f
p

s ee

e t


      

1
\ .bv V V                     (3.34) 

 

The mean and the SD of physical link travel time in mode 2b  can then, be expressed 

as follows: 

 
     

2
2

2

20 0 1

0,

1 !!
v

k i k i

v v v x vk
i i evenv

k
t t t x i

i

 




 

 
   

 
    

2
,bv V 
        (3.35)
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2
22

2
0,

0 1
2

2
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2
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v

v

k i k i

x v
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v
t v k k i k iv

x v
i i even

k
x i

i
t

k
x i

i









 



 

  
      

                  




  

2
.bv V 
  (3.36)

 

 

Bus (mode 3b ) 

The generalized travel time on physical link v  for mode 3b  can be expressed as 

 
1 2

3 3

3 3

0 0
2 2, , , , , 1

k k

v v
v v v v b b v v v

b b v

F X
T T t F h G X t

h G
  



                
  

3
,bv V   (3.37)

 

where 
3bh  denotes the bus capacity; 

3bG  is the stochastic bus frequency (referring to 

Equation (3.30)), and 2  and 2  are model parameters;. The last two terms in 

Equation (3.37) represent the crowding discomfort in vehicle and the congestion in 

road traffic. 

 

The mean and the SD of physical link travel time in mode 3b  are as follows: 

   
   

 
 

1 1 1

1 1

1 1

3

2

2

32

0
1 10 2

0, 0,
0

0
22

0,

2
( 1)!! ( 1)!!

( 1)!!       ,
v

k k k
i jk i k jv pv

v v f v t pk k
i i even j j even

b

k i k iv
x v bk

i i evenv

k kt
t t f i t j

i jh s

kt
x i v V

i

  

 


 

   



 

                  
 

    
 

 


  (3.38) 
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                 
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 
 
 
  

             
      



 

                                                

3
.bv V                                                              (3.39)

 

The detailed manipulations on deducing Equations (3.38) and (3.39) are given in 

Appendix A. 

 3.3.3.2 In-vehicle links 

The travel time of direct in-vehicle link (denoted as ij
snT ) can be expressed as the 

summation of relevant physical link travel times (denoted as vT ): 

 ,
b

ij ij
sn v sn

v V

T T a v


    d,  ( ) .ij
sna A s b                              (3.40) 

As the mean and the standard deviation (SD) of travel time for each physical link 

bv V  (denoted as vt  and v
t  respectively) are given in this Chapter, following the 

model assumption A3.5, the mean and the SD of in-vehicle link travel time (denoted 

as ij
snt  and ij

tsn  respectively) then, can be expressed as 

 ,
b

ij ij
sn v sn

v V

t t a v


    d,  ( ) ,ij
sna A s b                              (3.41) 

   2
,

b

ij v ij
tsn t sn

v V

a v  


    d,  ( ) ,ij
sna A s b                         (3.42) 

where  vt  and v
t  respectively denotes the mean and the SD of travel time for each 
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physical link bv V . ( , )ij
sna v  is the incidence relationship between in-vehicle link 

and physical link; ( , )ij
sna v  equals 1 if physical link v  is in the in-vehicle link ij

sna  , 0 

otherwise. 

3.3.3.3 Transfer links 

There is no transfer waiting time if individuals transfer to mode 2b  (auto). When 

individuals transfer to 1b  (subway) or 3b  (bus), the waiting time for transfer link ta  

(denoted as 
taT ) can be expressed as the work by Lo et al. (2003): 

t

t

1 a bi
a

b b b b

F F
T

G G G h


  

    
   

 t t 1 3, , ,a A b b b                      (3.43)                       

where
taF  is the passenger volumn on this transfer link; biF  is the prior passenger 

volume already in mode b  prior to picking up passengers at location i ; bG  and bh , 

respectively, are the frequency and vehicle capacity of the boarding transport mode b ; 

  and   are model parameters. The first term in Equation (3.43) expresses the 

waiting time for the next arriving vehicle, and the second term is related to the 

boarding congestion effect. 

 

Specifically, the prior passenger volume can be obtained by summing the passenger 

flows on relevant direct in-vehicle links which do not start from location i  (Lo et al., 

2003): 

       
d d

, 1 , 1

, , ( ) , , ( )

, , , ,
yz yz od
sn sn

yz yz i i yz i i yz
bi sn sn p sn sn

a A y i s b a A y i s b p P

F F a v F a v p a
 

   

        

    (3.44)                       

where , 1i iv   is the physical link from i  to its next station 1i   in mode 1b  or 3b ; yz
snF  
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is the passenger flow on in-vehicle link yz
sna  from y  to z  that does not start from i . 

For simplicity, 
taF  and biF  are assumed to be independent from each other, then the 

mean and the SD of 
ta biF F  (denoted as 1f  and 1 ) can be expressed as follows:  

   
d

, 1
1 t

, , ( )

( , ) , , ,
od yz od

sn

yz i i yz
p p sn sn

p P a A y i s b p P

f f p a f a v p a


  

     

            (3.45) 

       
d

2 2 , 1
1 t

, , ( )

( , ) , , .
od yz od

sn

p p yz i i yz
f f sn sn

p P a A y j s b p P

p a a v p a


     

     

      (3.46) 

It is assumed that 
ta biF F  follows a normal distribution:   

ta biF F ~ 2
1 1( , ).N f                                           

 

As indicated earlier, the subway frequency 
1b bG g
 
is a constant. Thus, the mean and 

the SD of waiting time for each transfer link to 1b  (subway) can be expressed as 

   
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t t ,a A        (3.47)                             
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

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  
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


t t .a A  (3.48)  

                                                           

However, when individuals transfer to 3b  (bus), bG  (i.e.
3bG ) is stochastic as 

formulated in Section 3.3.3.1.  Thus the mean and the SD of waiting time for each 

transfer link to 3b  (bus) can be expressed as 

   
t

3

1 1
1

1 11
0, 0,0 0

2 12
( 1)!! ( 1)!!,

jip i p j
a t p

i i even j j evenb
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t f i t j

i js s h
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 

  
 

 
  


   

     
              

 
 (3.49)
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   (3.50)
 

The detailed manipulations used in deducing Equations (3.49) and (3.50) can be found 

in Appendix B. 

3.3.4 Route travel time distribution 

The route travel time (denoted as pT ) can be obtained by summing the travel times on 

direct in-vehicle links and waiting times on transfer links: 

   
t

t td

t, ,
ij

sn

ij ij
p sn sn a

a Aa A

T T p a T p a 


  
  

.odp P                (3.51) 

Following the model assumption A3.5, the mean and the SD of route travel time 

(denoted as pt  and p
t respectively) can be expressed as  

t

t td

t( , ) ( , )
ij
sn

ij ij
p sn sn a

a Aa A

t t p a t p a 


      ,odp P                  (3.52) 

       t

t td

22

t, ,
ij
sn

ap ij ij
t tsn sn t

a Aa A

p a p a    


     ,odp P          (3.53) 

and the route travel time follows a normal distribution: ~pT   2
, p

p tN t  .  
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3.4 Model formulation and solution algorithm 

3.4.1 Model formulation 

In network with travel time uncertainty, individuals tend to assign extra time to their 

prospective journey, so as to ensure a high probability of on-time arrival. The concept 

of travel time budget proposed by Lo et al. (2006) is adopted in this study. The travel 

time budget in this study is defined as the summation of the mean route travel time 

and a safety margin of route travel time. 

 

Let   be the probability of arriving at a destination within the travel time budget, and 

pc  be the travel time budget for a given reliability threshold  . The value of   

expresses individuals’ attitude regarding on-time arrival. A larger   indicates a higher 

expectation on on-time arrival. This value of   can be pre-determined according to 

individuals’ socio-economic characteristics and trip purpose (Chen et al., 2011). 

 

Following the model assumption A3.5, route travel time follows a normal distribution: 

  2
~ , p

p p tT N t  . The travel time budget then, can be expressed as  

  1 p
p p tc t      ,odp P                                (3.54)                                      

where  1   is the inverse of standard normal cumulative distribution function at 

the probability of  . If 0.5  ,  1 0   and the safety margin is equal to zero. It 

implies that individuals do not take travel time uncertainty into account and are only 

concerned about the expected travel time. The RUE results should be close to that of 
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the UE model when 0.5  . However, it should be noted that in the RUE model 

when 0.5  , the mean travel times are still related to the SD of traffic flow. As such, 

the RUE model is not exactly equivalent to the conventional UE model when 0.5  . 

 

In multi-modal transport networks, route fare is also an important individuals’ route 

choice criterion. Hence, in this study, route fare is incorporated into route dis-utility 

by converting route fare into a time unit using a value of time (HK$ per minute, 

denoted as vot). The route dis-utility function can then be represented as  

 
1 vot

p
p pc


 

 
   

    
,odp P                                     (3.55) 

where 1  is a model parameter. 

 

Because this study falls in the category of static model for long-term planning at the 

strategic level, it is postulated that all individuals in multi-modal transport networks 

would have a RUE route choice pattern: for each OD pair, the dis-utilities of all used 

routes are smallest and equal, and all unused routes have larger dis-utilities. Denote 

odP   as the most reliable route which has the smallest route dis-utility. The RUE 

condition can be formally expressed as 

  0p pf   
  

,odp P 
                                

  (3.56)                  

0p     .odp P                                        (3.57) 

The aforementioned RUE problem can be further expressed as the following gap 

function formulation: 

min  ,
od

p p
p P

GAP f  


 
                                

 (3.58)                    
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0,p                                                  (3.59) 

0.pf                                                     (3.60) 

The gap function can be referred to as the overall gap capturing the complementary 

slackness conditions of the RUE model. According to Facchinei and Pang (2003), it 

can be proved that at least one solution of the RUE problem exists. In general, the 

uniqueness of the solution cannot be guaranteed due to the complex form of the route 

dis-utility function. However, in a special case, when the OD demand is deterministic, 

the RUE model becomes a UE model. In this case, the RUE model solution is unique 

(Sheffi, 1985; Shao et al., 2006). 

3.4.2 Solution algorithm 

Most traditional solution algorithms cannot be used to solve the proposed RUE model, 

because it is difficult to determine the descent direction for solving the problem 

concerned. The widely used method of successive average (MSA) is a heuristic 

method with a forced convergence property. Therefore, proposed in this Chapter, is a 

solution algorithm based on MSA solving the aforementioned RUE problem. The 

detailed steps for the solution algorithm are presented as follows. 

 

Step 0: Transform the traditional multi-modal transport network to a SAM network.  

List all the feasible routes in the SAM network according to the pre-defined 

probable transfer states. 

Step 1: Calculate free-flow route travel times  pt . Set  { } 0p
t  .Then get free-flow 

route dis-utilities { }p  on the basis of  pt , { }p
t  and fares. Perform all-or-
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nothing assignment on the basis of { }p  to obtain route flows and link flows 

1 { , }vf v V  f . Set n=1. 

Step 2: Get the SDs of link flow { }v
f

 
and the SDs of route travel time { }p

t . Use nf , 

{ }v
f ,  pt , { }p

t  to update link travel times. Then get new  pt  and { }p
t . 

After that, get new route dis-utilities { }p .  

Step 3: Perform all-or-nothing assignment on the basis of route dis-utilities { }p , 

yielding auxiliary link flows nf . 

Step 4: Calculate new link flows with an MSA scheme 
nn+1 n n(1/ n)( )  f f f f .  

Step 5: For an acceptable convergence level  , if n+1 nmax
v

 f f , stop; otherwise, 

set n=n+1, go back to Step 2. 

 

Theorem 3.1. When the algorithm terminates, the RUE solution can be obtained. 

Proof 

In this algorithm aimed at solving the user equilibrium problem, the convergence test 

is based on the maximum change in link flow between successive iterations (Sheffi, 

1985). Other criteria can also be used. According to Step 5, when the solution 

algorithm terminates, the maximum change in link flow is sufficiently small, so that 

the RUE condition is achieved approximately, i.e. ( ) 0p pf    . Summing up the 

RUE condition for all paths yields that GAP ≈ 0. As GAP ≥ 0, the minimum value of 

the objective function is approximately obtained at the termination.  
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3.5 Numerical example 

To demonstrate the aforementioned RUE formulation, adopted in this Chapter is the 

network presented by Lo et al. (2003). As shown in Figure 3.1, the network consists 

of 9 nodes and 16 physical links. There were three transport modes (auto, subway, bus) 

in this example and only one OD pair was considered. The origin was set as Node 1, 

and the destination was set as Node 9. Modal transfers follow the probable transfer 

states defined in Lo et al. (2003). The resulting feasible routes are listed in Table 3.1. 

 

In this numerical example, the model parameters were set as follows: =0.3odcv ,  

1 0.01,   1 2,k   1 0.3,   2 2,k   0 1.2,e 
 2

1,be 
 3

3,be 
 2 0.007,   2 0.01,   

0.5,   2, 
 1 0.123,   2  , and vot=1.37 HK$/min . The link capacity of 

each road link was 800 vehicles per hour. Free-flow travel time of each road link was 

set as 20 minutes and travel time of each subway link was set as 19 minutes. The fare 

of travelling by auto was nine units per link (fuel cost), whereas the non-linear fares 

of subway and bus are shown in Tables 3.2 and Table 3.3 respectively. The capacity of 

subway was 3200 passengers per vehicle, and the frequency was 8 vehicles per hour. 

The capacity of bus was 180 passengers per vehicle, and the fleet size was 20 vehicles. 
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Figure 3.1 The multi-modal transport network 
 
 
 

Table 3.1 Feasible routes according to probable transfer states 

Route number Modal usage (1-subway; 2-auto; 3-bus) Transfer segment (node to node) 

1 1 1→ 9 
2 3 1→ 9 
3 2 1→ 9 
4 3-1 1→ 6→ 9 
5 2-1 1→ 6→ 9 
6 1-3 1→ 6→ 9 
7 2-1 1→ 5→ 9 
8 2-3 1→ 6→ 9 
9 2-3 1→ 3→ 9 

10 2-3 1→ 2→ 9 
11 2-1 1→ 4→ 9 
12 2-3-1 1→ 3→ 6→ 9 
13 2-1-3 1→ 5→ 6→ 9 
14 2-3-1 1→ 2→ 6→ 9 
15 2-1-3 1→ 4→ 6→ 9 

 
 
 

Table 3.2 Non-linear fares of the subway 
From node To node    

4 5 6 9 
1 10 25 40 40 
4  10 25 40 
5   10 25 
6    10 
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Table 3.3 Non-linear fares of the bus 
From node To node    

2 3 6 9 
1 8 8 8 8 
2  8 8 8 
3   4 4 
6    4 

 
 

The convergence characteristics of the proposed RUE solution algorithm are 

illustrated in Figure 3.2. It can be seen that the RUE condition at the relative gap of 

10-4 has been achieved after 9864 iterations (when 3000odq  , 0.1  ). This result 

indicates that the proposed MSA solution algorithm can solve the RUE problem for 

this example network with an acceptable accuracy level. 

 

 

*Relative Gap= /
od

p p
p P

GAP f 

  

Figure 3.2 Convergence characteristics of the solution algorithm 
 

Individuals’ travel behaviour in congested multi-modal transport networks, in terms of 

mode and route choices, were investigated under different levels of OD demand and 

on-time arrival probability. Figure 3.3 shows the variation of modal split when the 

mean of the OD demand ( odq ) increases from 3000 passengers per hour to 30000 
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passengers per hour under different probabilities of on-time arrival ( ). Figure 3.3(a)-

(c), respectively, depicts the percentages of individuals using different transport 

modes (subway, bus and auto).  

 

 
(a)                                                                                          (b) 

 
(c) 

Figure 3.3 Modal splits under different levels of OD demand and on-time arrival 
probabilities: (a) subway, (b) bus, and (c) auto 

 

It can be seen from Figure 3.3 that as the mean of the OD demand increases from 

3000 to 30000, the percentage of modal share on subway increases dramatically. For 

example, with a 90% probability of on-time arrival ( =0.9), the percentage of 

subway users increases from 36.74% to 84.51%. In contrast, the percentages of modal 

share on bus and auto both decrease (from 39.67% to 6.52% and from 23.59% to 

8.97%, respectively). This may be due to that large OD demand results in severe 

traffic congestion on the road. In view of this, individuals tend to choose the more 
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reliable subway mode that has fixed frequency and no congestion interactions with 

bus and auto.  

 

From the above possibilities posed, it was found that OD demand level influences 

individuals’ route and mode choice behaviour. In addition, the on-time arrival 

probability also has a significant effect on individuals’ route and mode choice 

behaviour.  

 

For a certain level of OD demand, with the increase of  , the number of people 

travelling by subway rises, whereas the numbers of people travelling by auto and bus 

decrease. For example, when 3000odq  , with  =50%, 25.65% of individuals use 

the subway, and this percentage increases to 36.74% when   reaches 0.9. For bus and 

auto usage, however, the percentages decrease from 46.45% to 39.67% and from 

27.90% to 23.59%, respectively. This may be due to that under demand variation, the 

generalized subway travel time has a smaller variation than that of road traffic.  

 

However, when odq  becomes larger, this phenomenon is less prominent. For instance, 

when 30000odq  , with the increase of  , variations of modal split are all within 1% 

(84.37% to 84.51% for subway, 6.81% to 6.52% for bus, and 8.82% to 8.97% for 

auto). For auto, there is even a slight increase (8.82% to 8.97%) as compared with the 

downtrend in a smaller demand. This shows that when the OD demand is very large, 

most individuals will not change their mode choices to improve the probability of on-

time arrival. This may be due to the fact that the large OD demand considerably 
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increases subway crowding discomfort. In this situation, none of the available 

transport modes are reliable; and therefore, some people prefer to use autos to avoid 

the discomfort of transit vehicle travels. Thus, in the congested road-based transport 

networks in metropolitan areas, the subway is normally more reliable than other 

transport modes if an individual has a higher expectation of on-time arrival, but when 

the network becomes extremely overcrowded, subways will no longer be attractive as 

a result of the considerable crowding discomfort on trains. 

 

Additionally, individuals’ attitudes toward modal transfers under different 

probabilities of on-time arrival have been examined. The results are illustrated in 

Figure 3.4. As discussed in the modal formulation, each modal transfer has a transfer 

waiting time and thus brings a penalty into the route utility. Transfer waiting times are 

generally varied and stochastic because of the demand uncertainty, thus modal 

transfers may bring a degree of uncertainty to individuals’ on-time arrivals. As   

increases, individuals tend to choose the routes without any modal transfer. For 

example, when   increases from 0.5 to 0.9 ( =3000odq ), the number of individuals 

using single transport mode increases from 2494 to 2596, whereas the number of 

individuals who use modal transfers decreases from 506 to 404. 
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Figure 3.4 Individuals’ attitudes toward modal transfer under different on-time arrival 
probabilities 

 

3.6 Summary 

This Chapter proposes a trip-based network equilibrium model in congested multi-

modal transport networks (including auto, bus and subway modes) with demand 

variations. In the proposed trip-based model, crowding discomfort in transit vehicles, 

boarding congestion effect, and congestion impact of road traffic are explicitly 

modelled. To capture the effects of demand uncertainty, passenger flows and 

generalized travel times of different transport modes are formulated as random 

variables. In this Chapter, the stochastic bus frequency derived from unstable travel 

time of bus route is explicitly considered. This differs from the conventional approach 

in which bus frequency is independent of road travel time. Thus, the proposed 

network equilibrium model is more realistic for congested urban areas such as that in 

Hong Kong. In addition, the probable transfers and non-linear fare structures, 

involved in the multi-modal transport networks, are explicitly modelled in this 
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Chapter by using the SAM network. 

 

Individuals’ route and mode choice behaviour under stochastic multi-modal networks 

are also incorporated in the proposed network equilibrium model. To capture 

individuals’ route and mode choice behaviour, the travel time budget, defined as the 

summation of the mean and the safety margin of generalized route travel time, is 

adopted in this new model. On the basis of this travel choice criterion, a RUE 

condition is then proposed. The RUE problem is solved by a solution algorithm using 

the MSA. The proposed network equilibrium model and the solution algorithm are 

tested using a hypothetical network. The results of the numerical example indicate 

that with a high expectation of on-time arrival, individuals tend to use the subway 

mode and prefer not to change mode during their travel. 

 

In this Chapter, most random quantities are assumed to be normally distributed to 

better facilitate the presentation of those ideas which are essential. However, further 

study of the non-linear relationship among these quantities is advisable. Other types 

of probability distribution can also be adopted in further studies such as Lognormal 

distribution (Zhao and Kockelman, 2002), Poisson distribution (Clark and Watling, 

2005), and truncated normal distribution. If different distributions are adopted, further 

investigations on the properties of these distributions should be carried out and 

various analyses may be needed. Statistical simulation can also be used to estimate the 

random flow distributions in the network.  

 

As travel demands are derived from the desire of individuals to participate in various 



3-32 
 
 

 

activities, an understanding of the interaction between individuals’ activity and travel 

choice behaviour plays an important role in long-term transport planning. Therefore, 

the trip-based model in this Chapter is extended to an activity-based network 

equilibrium model in Chapter 4 to model the activity-travel pattern scheduling 

problem in multi-modal transit networks with uncertainty in different types of activity. 
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4 A Network Equilibrium Model for DATP 

Scheduling under Activity Uncertainty  

Travel demands are derived from the desire of people to participate in various 

economic and social activities such as those associated with work, eating and 

shopping. Thus, an understanding of the interaction between individuals’ activities 

and travel choice behaviour plays an important role for long-term transportation 

planning. A growing awareness in transportation research is that the activity-based 

approach can provide a better understanding of individuals’ choice behaviour than 

that resulting from the trip-based approach. The activity-based network equilibrium 

models offer a comprehensive way to reflect travel choices, interdependency of trips, 

and scheduling of activities in temporal and spatial dimensions. In this Chapter, the 

trip-based network equilibrium model proposed in Chapter 3 is extended to an 

activity-based reliability-based user equilibrium (RUE) model for solving the daily 

activity-travel pattern (DATP) scheduling problems in congested multi-modal transit 

networks under activity uncertainty. Previous studies have indicated that crowding 

discomfort has a significant impact on individuals’ choice of transit service for long-

term planning. Thus, the in-vehicle crowding discomfort is explicitly considered in 

the proposed activity-based model particularly for congested transit networks in Asia. 

 

In the proposed RUE model, the activity-travel choice problem is converted into a 

static traffic assignment problem by constructing a new super-network platform. With 

the use of the new super-network platform, individuals’ activity and travel choices, 

such as time and space coordination, activity sequence and duration, and route/mode 
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choices, can be simultaneously investigated. In this Chapter, in order to capture the 

stochastic characteristics of different activities, the activity utilities are assumed to be 

time-dependent and stochastic in relation to activity types (compulsory or non-

compulsory in nature). To take account of the uncertainty of activity utility for 

modelling the DATP scheduling problem in congested multi-modal transit network, a 

concept of DATP budget utility is proposed in this Chapter. 

 

This Chapter is structured as follows. Section 4.1 gives the background and the 

motivation of the study presented in this Chapter. A new super-network platform is 

introduced and model assumptions are given in Section 4.2. The problem statement 

and model formulation are presented in Section 4.3 for modelling the DATP 

scheduling problem in congested multi-modal transit network with activity 

uncertainty. The solution algorithm for solving the proposed RUE model is given in 

Section 4.4. A numerical example is provided in Section 4.5 for illustration of the 

proposed RUE model and solution algorithm. The key findings of this Chapter are 

summarized in Section 4.6. 

4.1 Background 

In past decades, increasing attention has been given to an activity-based approach in 

studying travel choice behaviour (Hirsh et al., 1986; Recker, 1995; Yamamoto and 

Kitamura, 1999; Yamamoto et al., 2000; Pendyala et al., 2002; Ruiz and Roorda, 

2011; Chow and Recker, 2012; Zhang and Timmermans, 2012; Hannes et al., 2012).  

 

The super-network representation has been adapted to model the activity-travel 

scheduling problem. For congested road networks, Ramadurai and Ukkusuri (2010) 
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proposed a unified dynamic framework referred as activity-travel networks to model 

activity location, activity starting time, activity duration, and route choice 

simultaneously. Ouyang et al. (2011) studied the DATP scheduling problem in 

congested road network by constructing an expanded time-space network. For multi-

modal transport networks, Liao (2011) proposed a multi-state super-network and 

made all link costs time-dependent when modelling the activity-travel scheduling 

problem. His proposed multi-state super-network, however, has conceivable difficulty 

in eliminating some unrealistic transfers and also cannot tackle the non-linear fare 

structures of public transit systems such as that in Hong Kong. Activity sequence and 

activity duration need to be pre-determined in his model. 

 

In view of the above, proposed in this Chapter is a new super-network platform which 

integrates both the activity-time-space (ATS) network (Ouyang et al., 2011) and the 

state-augmented multimodal (SAM) network (Lo et al., 2003) to explicitly model 

multi-modal trips and individuals’ activity choices. With this new super-network 

platform, the transfers and non-linear fare structures in multi-modal transit networks 

can be explicitly modelled and simultaneously address the relationship between 

activity choices and travel choices. Each route from origin to destination in the new 

super-network platform represents a specific DATP. 

 

Individuals’ equilibrium choices can be obtained by applying traffic assignment 

algorithms to the new super-network. As reviewed in Chapter 2, most studies were 

developed for modelling DATP scheduling problems in congested road networks. 

Little effort to solve the comprehensive DATP choice problem in congested multi-

modal transit networks has been observed. In metropolitan areas such as Hong Kong, 



4-4 
 

over 90% of daily travel appears to be made using various public transit modes. 

Hence a need is likely to exist for a simultaneous modelling of individuals’ activity 

choices and route/mode choices in multi-modal transit networks. 

 

The concept of activity utility is widely used in the activity-based approach (Adler 

and Ben-Akiva, 1979; Kitamura, 1984). In the previous related studies, the perceived 

activity utility is considered as the summation of a systematic component which is a 

deterministic representative value of utility and a random component which represents 

the variation in individuals’ perceptions (Kitamura, 1984; Lam and Yin, 2001). That is, 

the uncertainty of activity utility, mentioned in previous studies, lies in variation of 

individuals’ perception. 

 

Activity utility may broadly, consist of the following attributes: (a) activity time 

window; (b) degree of need for the activity; (c) degree of satisfaction from the process; 

(d) money gain or loss. In reality, these attributes vary from day to day. For example, 

the utility of working from 8:00 to 10:00 a.m. on Monday may be much higher than 

working at that time on Tuesday, if such as an important meeting took place on 

Monday. Thus, on this basis, the systematic component in activity utility should be 

stochastic, and the activity utility has a day-to-day variation. The utility profile of an 

activity should not be a single curve but rather an area which indicates a probability 

distribution. However, little information regarding modelling the day-to-day variation 

of activity utility is evident, despite the need to take into account the uncertainty of 

activity utility as suggested above. This uncertainty may, in practice, have a 

significant influence on individuals’ DATP choices. 
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Described in this Chapter is a pioneering endeavour devoted to capturing the 

stochastic characteristics of different activities. Activity utility is assumed to be time-

dependent and stochastic in relation to different activity types (compulsory and non-

compulsory in nature), and the travel dis-utility is also stochastic. A concept of DATP 

budget utility is proposed in the modelling of the uncertainties in activity utility and 

travel dis-utility.  

 

In light of the above, the trip-based RUE model proposed in Chapter 3 for traffic 

assignment is extended to an activity-based model for scheduling DATPs in congested 

multi-modal transit networks under uncertainty and is described in this Chapter. The 

time and space coordination, activity location, activity sequence and duration, and the 

relationship between activity and route/mode choices, can be simultaneously 

investigated by solving the RUE problem on the new super-network platform. Hence 

existing theories are extended by the development of a comprehensive framework 

which incorporates the flexible activity sequence and duration, the stochastic effects 

of activity utility, route and mode choices, together with in-vehicle crowding effects. 

4.2 Network representation and model assumptions 

In this section, a new super-network platform is introduced in Section 4.2.1. Model 

assumptions are given in Section 4.2.2. In Section 4.2.3, the utilities/dis-utilities of 

different links on the new super-network platform are discussed. 

4.2.1 A new super-network platform 

A super-network platform named the ATS-SAM super-network is constructed and 

described in this section. The ATS-SAM super-network is an integration and 
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expansion of the ATS network and the SAM transport network. The ATS network is 

an expanded network in which activity links are introduced into the conventional 

time-space network. As a result, both individuals’ activity and travel choices can be 

captured in this super-network. The SAM network can be used to eliminate the 

unrealistic transfers and to model the non-linear fare structures in multi-modal 

transport networks. By constructing the ATS-SAM super-network, the merits of these 

two networks are achieved simultaneously as a consequence. 

 

The SAM network introduced in Chapter 3 is augmented to ATS-SAM super-network 

by incorporating time-space coordinates and activity links. The study horizon is 

divided into K  equally spaced time intervals (Lam and Yin, 2001; Lam and Huang, 

2002; Huang and Lam, 2005; Zhang et al., 2005; Li et al., 2010). Let 

1,2,..., , 1k K K   be the start time of a node or link. The framework of ATS-SAM 

super-network is given as below (refer to Figure 4.1 as an example of the ATS-SAM 

super-network consisting of three transport modes, i.e. subway, bus, and auto). 

 

Nodes: Each node in the SAM network is augmented into 1K   nodes in ATS-SAM 

super-network. Each node is described as (( , , , ), )i s n l k , where i  is the physical 

location of the node for a particular activity, and s  is the transfer state used to model 

probable transfers. n  is the number of transfers that has been made by an individual, 

and l  is the alight or aboard indicator. k  is the start time of the node. The value of l  

is equal to 1 (0) indicating that the individual is at the beginning (end) of an in-vehicle 

link. Specifically, each transfer state Ss  associates with the use of a particular 

transport mode Bs )(  and a set of probable transfers ( )s S  . If individuals are at 

state s , the indication is that these individuals are using mode )(s  and can only 
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transfer to any state in ( )s . Modal transfers in this Chapter follow the probable 

transfer states defined by Lo et al. (2003). 
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Figure 4.1 An illustrative example of ATS-SAM super-network 
 

Links: Links in the ATS-SAM super-network are classified into three categories, i.e.
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t d aA A A A   , where tA  is the set of transfer links between modes, and dA  is the 

set of direct in-vehicle links made up of physical links. aA  is the set of activity links. 

Each transfer link t ta A  is constructed according to the probable transfer states 

defined by Lo et al. (2003). The duration of a transfer link is assumed to be zero in 

this Chapter but transfer dis-utility is considered. Each in-vehicle link d da A  

represents a direct in-vehicle movement. It should be noted that a direct in-vehicle 

link may consist of more than one consecutive physical link. In this way, non-linear 

fares can be directly represented on a node to node basis. aA  is constructed between 

the augmented nodes at the same location to indicate that a particular activity is 

conducted. Each a aa A  is characterized by the activity location, the activity type, 

activity start time, and activity duration. The activity time window is not required as 

the activity utility by time of day is adopted in this Chapter (Lam and Yin, 2001). The 

process of route searching in the ATS-SAM super-network can lead to realistic and 

more generalized results regarding the times to perform activities during the study 

period.  

 

A rule-based algorithm is proposed to generate the ATS-SAM super-network. With 

this rule-based algorithm, the conventional multi-modal transit network can easily be 

automatically transformed into the ATS-SAM super-network. In the novel super-

network, each route from origin to destination represents a feasible DATP. The 

detailed steps of the proposed ATS-SAM super-network expansion algorithm are 

presented below.  

 

Input: a multi-modal transit network M , activity locations ( a ai I ), transfer states 
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s S , probable transfers ( )s S   for each s S , maximum number of transfers  , 

and number of time intervals K . 

Output: the ATS-SAM super-network. 

Step 1. Node augmentation. 

For each node i U , expand the node into into ATS-SAM node: 

 ( ,0,0, ),i l k , 0,1,l   1, 2,..., , 1k K K  ; and  ( , , , ), ,i s n l k 1,2,3,4,5,s   

1, 2,..., ,n    0,1,l   1, 2,..., , 1k K K  . Denote the ATS-SAM node set as N . 

Step 2. Construction of ATS-SAM activity links. 

Scan all nodes in set N . Construct activity links a aa A  between  a( , , ,0),s ni k  and 

 a( , , , 0), 1i s n k  .  

Step 3. Construction of ATS-SAM transfer links. 

Scan all nodes in set N . Construct transfer links t ta A  between  ( , , , 0),i s n k  and 

 ( , ( ), 1,1),i s n k  . 

Step 4. Construction of ATS-SAM direct in-vehicle links. 

Find all in-vehicle links in network M on the basis of physical travel links. Obtain in-

vehicle link travel times 
dat . 

For each i U , find all 'i U  which are connected to i  by in-vehicle links. Record 

the mode b  and the travel time 
d

0
at  

of each in-vehicle link.  

For each 'i , construct ATS-SAM in-vehicle links between  ( , , ,1),i s n k  and  

 
d

0( ', , , 0), ai s n k t , ( )s b  . 

Step 5. Simplification of the super-network. 

Delete the augmented nodes which are not two-way connected except for the origin 

node and the destination node. Delete the redundant links. 
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4.2.2 Model assumptions 

In order to facilitate the essential ideas without loss of generality, the following 

assumptions are made in this Chapter. 

 

A4.1: The DATP is considered in a fixed study horizon, divided into K  equally 

spaced time intervals (Lam and Yin, 2001; Huang and Lam, 2005; Zhang et al., 2005; 

Ouyang et al., 2011).  

A4.2: The proposed model falls within the static model category for long-term 

planning at the strategic level. Therefore, it is assumed that individuals have perfect 

knowledge of traffic conditions throughout the whole network (Ouyang et al., 2011).  

A4.3: The utility maximization approach is employed to formulate the individuals’ 

DATP choices (Lam and Huang, 2002; Zhang et al., 2005; Li et al., 2010). Activity 

utility only depends on the start time of the activity and its duration. The activity 

utility is determined by a bell-shaped marginal utility function proposed by Joh et al. 

(2002) and Ettema and Timmermans (2003). Many related studies have adopted this 

type of function for modelling the marginal utility of activity (Ashiru et al., 2004; 

Zhang et al., 2005; Li et al., 2010). This function does not consider the needs of 

individuals. In further studies, the need-based utility functions (Arentze and 

Timmermans, 2009) can also be incorporated in the model proposed in this Chapter. 

A4.4: Transit vehicles are assumed to fully follow a run schedule which is given and 

fixed (Tong and Wong, 1998; Tong et al., 2001; Li et al., 2010). Link travel times are 

deterministic. No vehicle capacity constraint exists. In-vehicle crowding discomfort is 

modelled (Spiess, 1983; Nielsen, 2000; Lo et al., 2003; Sumalee et al., 2011). 
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A4.5: In this Chapter, only one behaviourally homogeneous group is considered for 

facilitation of the presentation of the essential ideas (Lam and Yin, 2001; Huang and 

Lam, 2005; Ouyang et al., 2011). Multiple groups can be considered as an extension 

of the model proposed in this Chapter (Chen et al., 2011). Activity interdependency of 

household members is also not considered in this Chapter but is investigated in 

Chapter 6 of this thesis. 

A4.6: Link utilities/dis-utilities and the DATP utility are assumed to follow normal 

distributions.   

 

The time period of the proposed model is from 06:00 to 24:00 and is divided into 108 

intervals each with ten minutes. Four types of activities are investigated in this 

Chapter; namely, home, work, dinner, and shopping activities. The activity sequence 

and duration are not fixed (Ouyang et al., 2011). Home and work are considered as 

compulsory activities, while dinner and shopping are non-compulsory activities. 

4.2.3 Link utility/dis-utility in ATS-SAM super-network 

Following the model assumption A4.6, the utility of activity link aa  (denoted as 
aaU ) 

is stochastic and assumed to follow the normal distribution. The mean utility of 

performing activity link aa  from start time k  for one time interval is expressed as:  

aa

1
( ) ,

k

aa k
u u d 


                                             (4.1) 

where a ( )au k  denotes the marginal utility of performing activity link aa  at time k . 

The standard deviation (SD) of activity utility is expressed as a function of the 
aau  in 

this Chapter: 

a a a
,a a acv u                                                    (4.2) 
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where 
aacv  is a model parameter relevant to the activity type (compulsory or non-

compulsory) of aa .  

 

The dis-utility of physical link v  with start time interval k  (denoted as ( )vDISU k ) is 

modelled to represent in-vehicle crowding discomfort (Spiess 1983; Nielsen 2000; Lo 

et al. 2003): 

0 ( )
( ) vot 1 ,

b

v
v v b

b b

F k
DISU k t

h g




  
         

   bv V                         (4.3) 

where 0
vt  is the travel time of physical link v ; bh  is the vehicle capacity of mode b ; 

bg  denotes the frequency of mode b ;  vot  is the value of time; b  and b  are model 

parameters relevant to mode b . ( )vF k  is the stochastic passenger flow on the 

physical link v  at time interval k .  

 

Travel demands are derived from the need of individuals to participate in various 

activities, thus in view of the uncertainty of activity utility, the demands for different 

activities are stochastic. Under demand uncertainty, the passenger flows are also 

stochastic. In this Chapter, 
daF  is assumed to follow normal distribution. Denote the 

mean and the SD of 
daF  as 

daf  and da
f , respectively. It is assumed in this Chapter 

that the coefficient of variation (CV) of link flow is equal to the CV of the activity 

(which can be conducted at the end of the in-vehicle link in the ATS-SAM super-

network) utility, so the SD of 
daF  can be expressed as 

d

a d
,a

f a acv f                                                    (4.4) 

where 
daf  denotes the mean of 

daF . aa  is the activity which is at the end of the in-
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vehicle link da  in the ATS-SAM super-network. If no activity can be conducted at the 

end of the in-vehicle link, da
f  is assumed to be zero. The mean of 

daF  (denoted as 

daf ) is expressed as 

d d( , ),a p
p P

f f p a


                                                   (4.5) 

where  d,p a  is equal to 1 if in-vehicle link da  is used in DATP p ; 0 otherwise.  

 
The mean of ( )vF k  can be expressed as 

 
d

d d

d( ) ( ) , ,v a
a A

f k f k a v


                                           (4.6) 

where  d ,a v  is equal to 1 if physical link v  is in direct in-vehicle link da ; 0 

otherwise. The SD of ( )vF k  can be expressed as  

 d

d d

2
d( ) .( ) ,v

f
a
f

a A

ak v  


                                          (4.7) 

 

By assuming that ( )vF k  follows normal distribution, the mean and the SD of 

( )vDISU k  (denoted as ( )vdisu k  and ( )v k , respectively) can be obtained as 

discussed in Chapter 3 (Shao et al., 2006; Fu et al., 2014a). Assuming physical link 

dis-utilities are mutually independent, the mean of in-vehicle link dis-utility 
daDISU  

can be obtained by the summation of related physical links’ mean dis-utilities and 

transit fare: 

  
 

d dd( ) , - ,
b

a v a
v V

disu disu k a v 


                                          (4.8) 

where 
da  is the transit fare with respect to the direct in-vehicle link da . In this way, 

non-linear fares can be directly represented by node-to-node basis. The SD of in-
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vehicle link dis-utility  can be expressed as 

 
d

2
d( ) ( , ).a v k a v                                               (4.9) 

 

As regards transfer links by mode, the link dis-utility can be expressed as 

t

1
vot ,

2a b
b

disu pen
g

     
   

     t ta A                                      (4.10) 

where bg  is the frequency of the transit line to which individuals transfer on the 

transfer link concerned, and bpen  is the mode-specified transfer penalty.  

 

Let P  be the route set in the ATS-SAM super-network (i.e. DATP set). The daily 

utility gain, i.e. the utility of DATP p P  (denoted as pU ), can be obtained by 

summing the dis-utilities of in-vehicle links, dis-utilities of transfer links, and utilities 

of activity links: 

d t a

d d t t a a

d t a( , ) ( , ) ( , ),p a a a
a A a A a A

U DISU p a disu p a U p a  
  

                 (4.11) 

where ( , )p a  is the incidence relationship between DATP and link; ( , )p a  equals 1 

indicates that this link is used in the DATP, 0 otherwise.  

 

Link utilities/dis-utilities are assumed to be mutually independent and follow normal 

distributions in this Chapter. Therefore, the mean and the SD of the DATP utility can 

be respectively expressed as  

d t a

d d t t a a

d t a( , ) ( , ) ( , ),p a a a
a A a A a A

u disu p a disu p a u p a  
  

                   (4.12) 

   
d a

d d a a

2 2
d a( , ) ( , ).p a a

a A a A

p a p a    
 

                              (4.13) 

Following model assumption A4.6, the DATP utility follows a normal distribution: 
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2( , )p p pU N u  . 

4.3 Definitions and problem statement 

In this section, a definition of DATP budget utility is first discussed in Section 4.3.1. 

Using this definition, the model formulation is proposed in Section 4.3.2. 

4.3.1 Definition of DATP budget utility 

Individuals conduct activities to meet a variety of needs in their daily life. Activity 

participation returns utility as a reward for a meeting of needs. Individuals also 

receive dis-utility from the travel between activities. Supernak (1992) adopted the 

total utility of activity-travel pattern in a typical utility maximization context. The 

total utility obtained from an activity-travel pattern is the summation of the utility 

gained from activities and the dis-utility resulting from travels. Individuals’ activity-

travel pattern choices are decided by the underlying activity utilities and travel dis-

utilities. Individuals select the activity-travel pattern with the maximum total utility.  

 

As a pioneering endeavour, this Chapter is devoted to capturing the stochastic 

characteristics of different activities. Activity utility is assumed in this Chapter to be 

time-dependent and stochastic in relation to different activity types. The primary 

activities in people’s daily life can be divided into two major groups based on activity 

types, i.e. compulsory activities such as work and home, and non-compulsory 

activities such as eating at restaurants, and shopping in malls. In general, the utility of 

non-compulsory activity has a much larger day-to-day variation than does the utility 

of compulsory activity. The first reason is the fact that the time window for non-

compulsory activity apparently has greater variation than that for compulsory activity. 



4-16 
 

The second reason is that the need and the satisfaction of performing non-compulsory 

activity are not as stable as the compulsory one. For example, people need to go back 

home every day, but they may not go for shopping so frequently. The third reason is 

that people may obtain or lose reward in utility or money in a more constant or 

consistent manner from compulsory activities than from non-compulsory activities. 

For example, people’s reward in terms of salary for work activity is often the same for 

every day, but how much they spend on shopping each day is much more 

discretionary. Therefore, modelling the uncertainty of activity utility and investigating 

how it would affect individuals’ DATP choices are significant in multi-modal transit 

networks with uncertainty.   

 

Under the uncertainty of activity utility, individuals tend to assign an extra dis-utility 

as a safety margin to ensure a higher probability of gaining a certain level of DATP 

utility. In view of this, a concept of DATP budget utility is proposed in this Chapter.  

 

In this Chapter, the DATP budget utility is defined as 

        [DATP Budget Utility] = [Expected DATP Utility] + [DATP Utility Margin]. 

Mathematically, the DATP budget utility associated with DATP p , p , can be 

expressed as 

' ,p p pu                                                      (4.14) 

where '  is a negative parameter. It is related to the requirement on ensuring a certain 

utility gain. For individuals who want to ensure a higher probability of utility gain, 

they regard the DATPs as having a relatively small p , or equivalently, a small value 

of ' . Formally, '  can be related mathematically to the probability that the 

individuals can gain the DATP budget utility, written as 
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 ' ,p p p pP U u                                            (4.15) 

where   is the probability of gaining DATP budget utility. Re-arranging terms in 

Equation (4.15), we obtain  

' .p p

p

U u
P  


    
  

                                          (4.16) 

The following equation can then, be obtained. 

' 1 .p p

p

U u
P  


     
  

                                      (4.17) 

Let ( )   be the standard normal cumulative distribution function. Equation (4.17) can 

be re-written as  

( ') 1 .                                                   (4.18) 

As 1 ( ') ( '),      Equation (4.18) can be transformed as 

( ') .                                                    (4.19) 

Take the inverse of Equation (4.19), we obtain 1' ( ).    

 

Therefore, the DATP budget utility, defined as the summation of the expected DATP 

utility and a negative safety margin of DATP utility, can be expressed as 

1( ) .p p pu                                              (4.20) 

The value of   represents individuals’ risk attitude toward utility gain. A larger   

indicates a higher expectation of daily utility gain (i.e. a higher probability of gaining 

DATP budget utility), and results in a larger negative safety margin and a smaller p . 

The negative safety margin represents a risk in utility gain. This margin is assigned by 

individuals as an extra dis-utility to ensure the expected probability of gaining the 

budget utility.  
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In this Chapter, it is assumed that the SD of activity utility 
aa  is linear correlated 

with the mean of activity utility 
aau  (as shown in Equation (4.2)). For compulsory 

activities, the 
aacv  is smaller than that of non-compulsory activities. When 

aau  of two 

activities are equal, individuals choose the activity with a smaller 
aacv , since a 

smaller 
aacv  leads to a smaller 

aa  and a larger budget utility. 

 

Figure 4.2 gives a simple example to illustrate the budget utility concept proposed in 

this Chapter. Two types of activities (work and shopping) are depicted in Figure 4.2. 

For the time period 17:00-17:01, when 50%  , the 
a

1( ) a    of these two 

activities are zero and the budget utilities of these two activities are equal ( 6  ). 

However, when 90%  , the 
a

1( ) a    of shopping activity is larger than that of 

work activity. As work activity is a compulsory activity and shopping activity is a 

non-compulsory activity, work should be more reliable than shopping in utility gain. 

Comparing the budget utility of these two activities ( 4.5   for work and 3.5   for 

shopping), people tend to choose work rather than shopping. It is shown in this 

illustration that the uncertainty of activity utility affects people’s activity choices.  
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Figure 4.2 An illustration of budget utility variation for different types of activities  

 

4.3.2 Model formulation 

With the use of the proposed ATS-SAM super-network, individuals’ activity choices 

(i.e. activity locations, sequence and durations) and travel choices (i.e. route and mode 

choices, transfers) are explicitly represented by different links in the proposed super-

network platform. Activities with different durations or different start times are 

constructed as different activity links. In this way, the time-dependent activity utility, 

in this Chapter, can be modelled in terms of static values. The relationships between 

activity and travel choices are reflected by the ATS-SAM super-network topology. 

Each route from origin to destination in the ATS-SAM super-network represents a 

feasible DATP. Therefore, by using the ATS-SAM super-network, the proposed time-

dependent traffic assignment model is equivalent to a static reliability-based user 

equilibrium (RUE) model. 

 

The proposed RUE model falls into the category of static model in nature for long-

term planning at the strategic level, thus it is postulated that all individuals would 

have a RUE activity-travel choice pattern: for each day, the budget utilities of all used 
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DATPs are largest and equal, and all unused DATPs have smaller budget utilities. 

Denote   as the reliable optimal route (i.e. the reliable optimal DATP) with the 

largest budget utility in the ATS-SAM super-network. The RUE condition can be 

formally expressed as 

( ) 0,p pf                                                  (4.21) 

,p
p P

q f


                                                   (4.22) 

0,p                                                     (4.23) 

0,pf                                                       (4.24) 

where pf  denotes the passenger flow on DATP p , and q  denotes the total population 

in the study network.  

 

The previously mentioned RUE problem can be further expressed as the following 

gap function formulation: 

min ( ).
od

p p
p P

GAP f  


 
                       

            (4.25) 

The gap function refers to the overall gap capturing the complementary slackness 

conditions of the proposed RUE model. 

 

The above RUE condition can also be formulated as a variational inequality (VI) 

problem: 

Find *
pf   such that 

* *( ) 0,
od

p p p
p P

f f


      pf                                     (4.26) 

where   denotes the set of feasible route flows, and *
pf  is the equilibrium route flow. 



4-21 
 

According to Facchinei and Pang (2003), it can be proved that at least one solution of 

the VI problem exists. In general, the uniqueness of the solution cannot be guaranteed 

in the RUE model, because the monotone property of VI problem cannot be 

guaranteed due to the complex form of DATP budget utility. However, in a special 

case, when the link utility/dis-utility is deterministic, the RUE model becomes a UE 

model. In this case, the solution of the RUE model is unique if the route set is given 

and fixed (Sheffi, 1985; Shao et al., 2006). 

4.4 Solution algorithm 

First, an effective route searching algorithm is developed in Section 4.4.1. The 

algorithm is capable of finding the optimal DATP (i.e. the optimal route in ATS-SAM 

super-network) with largest budget utility. The proposed route searching algorithm is 

then, further incorporated into a network equilibrium solution algorithm in Section 

4.4.2 to search for a reliable optimal DATP at each iteration. Such network 

equilibrium algorithm can solve the RUE problem without the requirement of route 

enumeration as the route choice set is not pre-determined.  

4.4.1 Solution algorithm for searching the reliable optimal DATP 

Individuals schedule their activities and trips to maximize their DATP budget utility. 

This is equivalent to finding the route with maximum budget utility from origin to 

destination in the ATS-SAM super-network. Therefore, the DATP searching problem 

can be converted into a reliable shortest route problem by using the ATS-SAM super-

network. The reliable optimal DATP searching problem can be formulated as a bi-

criterion problem with respect to two independent decision variables, i.e. the mean of 

DATP’s utility and the variance of DATP’s utility. It is unlikely to find a single 
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optimal pattern for each day because of the conflicting criteria in the bi-criterion 

shortest route problem, but a set of non-dominated routes can be obtained in the ATS-

SAM super-network. The definition of non-dominated routes is that, it is not possible 

to find another route with a better value in one criterion without worsening the other 

criterion. The mean-variance (M-V) dominant condition can be defined as follows: 

 

Definition 4.1 (M-V dominant condition) Given two routes i jp p P  , ip  M-V 

dominates jp , if ip  and jp  satisfy either  

(i) 
i jp pu u  and ,

i jp p   or 

(ii) 
i jp pu u  and .

i jp p   

 

As the number of non-dominated routes grows exponentially with the network size, it 

is computationally intractable to identify all non-dominated routes under the M-V 

dominant condition. Thus, in this Chapter, a stronger mean-budget (M-B) dominant 

condition is adopted to reduce the number of non-dominated routes by using the 

DATP mean utility and the DATP budget utility as two criteria.  

 

Definition 4.2 (M-B dominant condition) Given a confidence level   and two routes 

i jp p P  , ip  M-B dominates jp , if ip  and jp  satisfy 
i jp pu u  and 

i jp p  . 

 

In this Chapter, a label-selection label-correcting method (Guerriero and Musmanno, 

2001; Chen et al., 2011) is adopted in the development of an efficient solution 

algorithm for reliable optimal DATP generation in multi-modal transit networks with 

uncertainty in activity utility of different activity types. 
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Let ouP  be a set of non-dominated routes maintained at each node u from origin o ,  

and non-dominated routes from origin to all nodes are maintained in a scan eligible 

set, denoted as SE . For each iteration, one non-dominated route ou
ip  is selected from 

SE  in first-in-first-out (FIFO) order for route extension. A temporary route is 

constructed by extending the selected route ou
ip  to its successor link, denoted as ov

ip . 

The dominant relationship between the newly generated route ov
ip  and the set of non-

dominated routes ovP  at node v  is determined, based on the M-B dominant condition 

(Definition 4.2). If ov
ip  is a non-dominated route at node v , it is then inserted into ovP  

and SE . As the newly generated route ov
ip  may also dominate some routes in ovP , 

these dominated routes should be eliminated from ovP  and SE . The proposed 

algorithm continues the route searching process until SE  becomes empty. At the last 

step of this algorithm, the reliable optimal DATP can be determined by choosing the 

route with the maximum budget utility. 

 

The detailed steps of the proposed DATP searching algorithm are listed as follows. 

Inputs: an origin node o , a maximum number of allowable transfers  , a probability 

of gaining DATP budget utility  . 

Returns: the reliable optimal DATP in the ATS-SAM super-network. 

Step 1. Initialization: 

Create a route 
oo
ip  from o  to itself, and set  2

0, 0, 0oo oo ooi i i
u t   . Add 

oo
ip  

into label-vector ooP  and the list of candidate labels SE . 

Step 2. Label selection: 
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Take label 
ou ou
ip P  at node u  from SE  in FIFO order. If SE  , then go to 

Step 4; otherwise go to Step 3. 

Step 3. Route extension: 

For every outgoing link a  of chosen node u  ( v  denotes a successor node of 

node u ). Generate a new label 
ov ov
ip P . Set : ,ov ou

i i
ap p

u u u 
 

     
2 2 2

: ,ov ou
i i

ap p
   

 
 1:ov ov ov

i i ip p p
u    . If 

ov
ip  is a non-dominated 

route under M-B dominant condition, insert 
ov
ip  into ovP  and SE , and remove 

all routes M-B dominated by 
ov
ip  from ovP  and SE .  

Go back to Step 2. 

Step 4. Determine the reliable optimal DATP. Stop. 

4.4.2 Solution algorithm for solving the RUE problem 

Most conventional solution algorithms cannot be used to solve the proposed RUE 

model, as it is difficult to determine the descent direction for solving the DATP 

scheduling problem in multi-modal transit networks. The widely used method of 

successive average (MSA) is a heuristic method with a forced convergence property. 

Thus, a solution algorithm based on MSA is proposed for solving the RUE problem 

(Fu et al., 2014a). The DATP searching algorithm proposed in Section 4.4.1 is 

incorporated in this solution algorithm to search, at each iteration, for a reliable 

optimal DATP. The solution algorithm for solving the proposed RUE model is 

outlined as follows. 

 

Step 0. Transform the traditional multi-modal transit network to the ATS-SAM super-

network.  
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Step 1. Initialization. Let 0n  . Call the DATP searching algorithm proposed in 

Section 4.4.1 to find the reliable optimal route in the ATS-SAM super-network (i.e. 

DATP) with the largest budget utility. Perform an all-or-nothing assignment.   

Step 2. Update link dis-utilities.  

Step 3. Call the DATP searching algorithm proposed in Section 4.4.1 to find the 

optimal route with the largest budget utility. Perform an all-or-nothing assignment and 

yield auxiliary link flows in the ATS-SAM super-network. 

Step 4. Update the link flows using an MSA process. 

Step 5. If the stopping criterion is satisfied, then stop. Otherwise let 1n n   and go 

back to Step 2. 

4.5 Numerical example  

The purposes of the numerical example are to illustrate: (a) the application of the 

proposed model and solution algorithm; (b) how the uncertainty of activity utility 

affects individuals’ DATP choices; (c) the effects of traffic congestion on individuals’ 

activity choices; (d) individuals’ mode choice behaviour under different population 

levels. 

 

It is believed that various activity participations have different preferred times. 

Activity participation usually starts with a warming up phase in which the marginal 

activity utility increases. After reaching a maximum point, the marginal utility 

decreases. In this Chapter, the following marginal utility function proposed by Ettema 

and Timmermans (2003) is adopted. 

 
a a a

a a

a a a a

max

1( ) ,
exp[ ( )] 1 exp[ ( )]

a

a a a
a

a a a a

u
u k

k k


 

   


   
            

         (4.27) 
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where k  is the time of day; 
a

max
au

 
is the maximum accumulated utility of activity aa , 

and 
aa , 

aa , 
aa  

are the activity-specific parameters to be estimated. These 

parameters can be estimated on the basis of survey data (Ettema and Timmermans, 

2003; Ashiru et al., 2004). Table 4.1 shows the given parameters in the marginal 

utility function for the numerical example in this Chapter. 

  

Table 4.1 Given parameters in the marginal utility function 
 Work in the 

morning 
Work in the 
afternoon 

Home Shopping Eating  (dinner) 

a

max
au (HK$) 720 600 1440 1080 600 

aa  600 900 680 1180 1080 

aa  0.021 0.021 0.0048 0.018 0.05 

aa  0.8 1.2 1.8 1 1 

 

The total study period was from 06:00 to 24:00 (18 hours per day) and was equally 

divided into 108 intervals (i.e. 10 minutes per interval). Figure 4.3 depicts a simple 

multi-modal transit network. One subway line and two bus lines served in the network. 

There are four nodes and seven physical links. The four nodes represent four study 

zones: home area (H), restaurant area (R), shop area (S), and work place (W). Four 

activities (i.e. home, dinner, shopping and work) can be conducted at the four nodes 

respectively.  

 

 
 

Shopping 

Work  

Dinner  

Home  

2

1 

3 

4H 

R

W

S 

subway 

bus line 1 

bus line 2 

Figure 4.3 The multi-modal transit network 
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The value of time was HK$ 60.00/hour. The travel time of each bus link was 30 

minutes and the travel time of each subway link was 20 minutes. The non-linear 

subway fare was set as: using one physical subway link costing HK$ 8.00, using two 

links costing HK$ 15.00, and three links costing HK$ 20.00. The bus fare for each bus 

line was HK$ 5.00 per physical link. Note that US$ 1.00 is approximately equal to 

HK$ 7.80. The 
aacv  for compulsory activity was 0.1, and for non-compulsory activity 

was 0.9.  

 

Figure 4.4 shows reliable optimal DATPs generated by the proposed DATP searching 

algorithm under different expectations of daily utility gain (i.e. different probabilities 

of gaining DATP budget utility). The activity sequence of the DATPs in Figure 4.4 is 

home-work-dinner-shopping-home. Activity start/end time, activity duration, activity 

location can be traced. The travel time of each trip, route choices and mode choices 

can also be found. Figure 4.4(a) illustrates the reliable optimal DATP under 50%   

and Figure 4.4(b) depicts the reliable optimal DATP when 95%  . A comparison of 

these two results indicates that when individuals improve their expectations of daily 

utility gain (from 50%   to 95%  ), the DATP budget utility decreases (from 

HK$ 1437.11 to HK$ 1011.67). This is due to the budget utility being the summation 

of mean utility and a negative safety margin (as Equation (4.20) shows). A larger   

results in a larger negative safety margin, so the DATP budget utility decreases with 

increase of  .  

 

To ensure a high probability of gaining DATP budget utility, people tend to conduct 

compulsory activities. It can be seen in Figure 4.4 that when   increases from 50% to 

95%, people extend the work activity duration for another half hour (from 9.5 hours to 



4-28 
 

10 hours). They also return home earlier (changing from 21:00 to 20:30). In contrast, 

shopping time is reduced by 50 minutes (when 50%  , from 19:00 to 20:30; when 

95%  , from 19:20 to 20:00). For individuals’ mode choice, it is noted from Figure 

4.4 that individuals tend to use subways as   increases. For example, when 

individuals depart from home to work in the morning, they choose bus line 2 when 

50%  , but when   increases to 95% they choose the subway, because the subway 

is more reliable and has a smaller variation in dis-utility gain than that of the bus. If 

individuals have a high expectation of daily utility gain (i.e. a high probability of 

gaining DATP budget utility), they tend to use the subway rather than the bus in the 

multi-modal transit networks.  

 

 
                                           (a)                                                              (b) 

Figure 4.4 Results of reliable optimal daily activity-travel patterns under different 
expectations of daily utility gain 

 

To explore how traffic congestion affects individuals’ activity choice behaviour, 
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another example was explored with the use of the proposed DATP searching 

algorithm. Table 4.2 shows the example of reliable optimal DATPs under three 

scenarios with different link travel times when 95%  . When link travel times for 

all links by mode in the network are halved, it was found that individuals leave home 

quite late (7:30) in the morning. They work for a long period (10 hours) to gain more 

utility, and perform non-compulsory activities after work (1.33 hours for dinner and 1 

hour for shopping). However, if traffic congestions occur in the network and all link 

travel times are doubled, individuals have to leave home quite early (6:10) in the 

morning. To ensure that they can arrive home as early as possible, they do not perform 

non-compulsory activities (0 hour for dinner and shopping).  

 

Table 4.2 Activity duration for scenarios with different link travel times  
   activity duration 

 
link travel time 

 
Departure time 

from home 

 
Work 

duration 

 
Dinner 

duration 

 
Shopping 
duration 

 
Arrival time 

at home 
link travel time*0.5 7:30 10h 1.33h 1h 20:30 

link travel time*1 7:00 10h 0.5h 0.67h 20:30 

link travel time*2 6:10 9.5h 0h 0h 19:40 

 

Individuals’ mode choice behaviour can be investigated by the proposed RUE model. 

Figure 4.5 depicts the modal split for scenarios with different population levels in the 

study network. It can be seen in Figure 4.5 that with population increases, individuals 

tend to use the subway rather than bus. When the population is only 500, less 

congestion occurs on the network. The result is that the percentages of people 

choosing subway, bus line 1, and bus line 2 are almost equal. However, when the 

congestion increases (e.g. when population reaches 4000), the percentage of those 

travelling by subway (53.20%) is much higher than that of those travelling by bus line 

1 (22.71%) and bus line 2 (24.09%). This is due to the fact that, in the study network, 
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the subway has a larger capacity than the bus. People choose the subway for their 

travel to avoid bus travel in-vehicle crowding. In addition, as shown in Figure 4.4, the 

subway is more reliable and has a smaller variation in dis-utility gain than that of the 

bus. If individuals have a high expectation of daily utility gain, subways rather than 

buses are used in multi-modal transit networks. 
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23.81% 22.71%
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Figure 4.5 Modal split for scenarios with different population levels in the study network 
 

 

It can be seen from Figure 4.5 that a significant difference between two bus lines 

exists when the population equals 2500, whereas there is no great difference when the 

population equals 500 or 4000. This is because in the study network, individuals’ 

travel choices are influenced by travel dis-utilities of different transit lines. When the 

network is not congested (i.e. population equals 500), the dis-utilities of different 

transit lines are all quite small. Thus, the percentages of people choosing different 

lines are almost equal. As the population increases, the dis-utilities of the two bus 

lines start to diverge. Thus, in Figure 4.5, when the population equals 2500, there is a 

significant difference between two bus lines. However, when the network becomes 
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extremely congested, compared to the large difference between the bus dis-utility and 

the subway dis-utility, there is no significant difference in choice preference between 

the two bus lines. Thus, it appears that individuals’ preference regarding the two bus 

lines is small when population equals 4000. 

 

Individuals’ activity choice behaviour can also be investigated under different 

expectations of daily utility gain by the use of the proposed RUE model. Figure 4.6 

shows the variation of average duration of compulsory and non-compulsory activities 

when the probability of gaining DATP budget utility ( ) increases from 50% to 90% 

under different CV values. It is observed from Figure 4.6 that the average duration of 

compulsory activities increases with  , while the duration of non-compulsory 

activities decreases. For example, when the CV of compulsory activity utility equals 

0.1 and the CV of non-compulsory equals 0.9, the duration of compulsory activities 

increases from 13.39 hour/individual to 13.68 hour/individual as   increase from 

50% to 90%. The duration of non-compulsory activities, however, decreases from 

2.12 hour/individual to 1.81 hour/individual, because non-compulsory activities bring 

larger variation in utility gain. In view of this, people tend to perform non-compulsory 

activities for a shorter period. 
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 Figure 4.6 Average durations of compulsory and non-compulsory activities under different 
expectations of daily utility gain and different CV values 

 

The difference between the CV of compulsory activity utility and the CV of non-

compulsory activity utility also affects the durations of these two types of activities. 

When CVs of compulsory and non-compulsory activity utilities are the same (both 

equal to 0.5), it can be seen in Figure 4.6 that the activity duration variations are small 

(from 13.19 hour/individual to 13.24 hour/individual for compulsory activities as   

increases). However, when the CV of compulsory activity utility is much smaller than 

the CV of non-compulsory activity utility, the activity durations change more 

significantly as   increases. A larger CV indicates a larger variation of activity utility. 

Facing the uncertainty of activity utility, people tend to conduct compulsory activities 

which have smaller utility variation to ensure a higher probability of gaining DATP 

budget utility. 
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4.6 Summary 

This Chapter presents an activity-based network equilibrium model for scheduling 

DATPs in congested multi-modal transit networks under uncertainty. A new super-

network platform (i.e. the ATS-SAM super-network) is proposed to explicitly model 

the transfers and non-linear fare structures in multi-modal transit networks, and also 

address the activity choices and travel choices simultaneously.  It is shown that the 

DATP scheduling problem can be converted into a static traffic assignment problem 

on the proposed ATS-SAM super-network. 

In this Chapter, the crowding discomfort in transit vehicles is modelled for long-term 

strategic planning. The uncertainty of activity utility and the resultant uncertainty of 

travel dis-utility are explicitly considered. A concept of DATP budget utility is used to 

model the uncertainties of activity utility and travel dis-utility. The effects of these 

uncertainties on passengers’ DATPs can be assessed with the use of the proposed RUE 

model. An efficient solution algorithm without prior enumeration of DATPs is 

developed for solving the DATP scheduling problem. The numerical results show that 

the proposed RUE model can be used to investigate the passengers’ DATPs in 

congested multi-modal transit networks. People’s attitudes towards compulsory and 

non-compulsory activities vary and would affect their DATP choices under different 

expectations on daily utility gain. The results indicate that with a high expectation on 

daily utility gain, individuals tend to use subway and tend to conduct compulsory 

activities for a longer period. 

This Chapter extends existing theories by developing a comprehensive super-network 

framework which incorporates the congestion effect in transit vehicles, stochastic 
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effects of activity utility, flexible activity sequence and duration, and the route and 

mode choices. Further study is required for model calibration and validation with 

empirical data in a case study with realistic size of network in practice. 

An extension of this activity-based model is proposed and described in next Chapter 

to consider adverse weather conditions. A network equilibrium model for DATP 

scheduling under adverse weather is presented in Chapter 5. 
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5 A Network Equilibrium Model for DATP 

Scheduling under Adverse Weather 

In general, adverse weather has significant influence on individuals’ activity/travel 

choice behaviour and such influence is obviously greater in cities which suffer 

frequent rainy periods. Thus, the impacts of weather conditions should be taken into 

account in long-term transit service planning. In this Chapter, an activity-based 

network equilibrium model is developed for scheduling daily activity-travel patterns 

(DATPs) under adverse weather conditions (with different rainfall intensities). The 

interdependency of individuals’ activity/travel choices and weather conditions are 

comprehensively investigated in congested multi-modal transit networks.  

 

In the proposed activity-based network equilibrium model, the DATP choice problem 

under adverse weather conditions is converted into an equivalent static transit 

assignment problem by using the ATS-SAM super-network presented in Chapter 4. As 

vehicle capacity and frequency of different transit modes are influenced by adverse 

weather conditions, in-vehicle crowding discomfort taking account of adverse weather 

impacts is specifically considered in the proposed model. The effects of adverse 

weather on different transit modes and different activities are also explicitly modelled.  

 

The outline of this Chapter is as follows. Assumptions and notations are firstly given 

in Section 5.1. The problem statement is elaborated in Section 5.2. In Section 5.3, a 

DATP choice network equilibrium model is formulated as a variational inequality (VI) 

over the super-network platform, and an efficient solution algorithm is also given. 
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Section 5.4 gives numerical examples illustrating the proposed model and algorithm. 

Finally, a summary of this Chapter is outlined in Section 5.5. 

5.1 Background  

As discussed in Chapter 4, several network equilibrium models, which provide 

valuable insights into understanding individuals’ activity-travel scheduling behaviour, 

have been proposed for long-term transport planning over the past decades (Lam and 

Yin, 2001; Lam and Huang, 2002, 2003; Huang and Lam, 2005; Zhang et al., 2005; 

Li et al., 2010; Ramadurai and Ukkusuri, 2010; Ouyang et al., 2011). None of these 

models, however, has incorporated the weather/climate effects on activity-travel 

pattern scheduling explicitly.  

 

A number of empirical studies have investigated the recurrent effects of adverse 

weather on individuals’ activity choice and travel behaviour. Some studies have 

reported travellers’ mode and departure time changes as affected by weather 

conditions (Khattak and De Palma, 1997; Guo et al., 2007), and some have indicated 

activity behaviour changes (Smith, 1993; Khattak and De Palma, 1997; Cools et al., 

2010). Rainfalls have the most frequent and significant adverse weather effects on 

individuals’ activity and travel choices in tropical and subtropical areas such as Hong 

Kong and Singapore. Based on data from the World Weather Information Services 

(http://www.worldweather.org/), Hong Kong has the highest average annual rainfall 

(2383 mm) of all the major Pacific Rim Cities, with Singapore achieving the second 

highest (2150 mm). The average annual number of rainy days in Hong Kong is as 

high as 104. Rainfall significantly affects individuals’ activity and travel choices such 

as activity duration and travel mode choice. The long-term transit planning for areas 
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with high average annual rainfall is considerably different from the planning for areas 

with less rainfall. Thus, clearly, particularly in areas such as Hong Kong and 

Singapore, rain effects should be considered when modelling individuals’ activity and 

travel choices.   

 

In order to incorporate rain effects in travel behaviour modelling, Lam et al. (2008) 

proposed a network equilibrium model for road networks with specific consideration 

of rain effects on road capacity and link travel time, and Sumalee et al. (2011) 

extended this work to model multi-modal transport networks under adverse weather 

conditions. The above two models are both trip-based transport models, so the trip 

making motivation, and the interdependency of activities and trips are not considered. 

Cools et al. (2010) found that individuals’ travel choice behaviour under adverse 

weather conditions is highly dependent on trip purpose (i.e. activities). It is, thus, of 

serious interest to comprehensively model and investigate individuals’ activity and 

travel choice behaviour under adverse weather conditions. 

 

In many Asian cities such as Hong Kong and Singapore, most daily travel is made 

using various public transit modes (over 90% and over 55%, respectively). Hence, as 

a pioneering endeavour, a network equilibrium model for scheduling DATPs under 

adverse weather conditions (with different rainfall intensities) in congested multi-

modal transit networks is proposed and described in this Chapter. By using the ATS-

SAM super-network presented in Chapter 4, the DATP choice problem is converted 

into an equivalent static transit assignment problem. The time and space coordination, 

activity location, activity sequence and duration, and the relationship between activity 

and route/mode choices, can be simultaneously investigated by solving the user 
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equilibrium (UE) problem on the super-network platform. The study presented in this 

Chapter extends existing theories by developing a comprehensive framework which 

incorporates flexible activity sequence and duration, route and mode choices, together 

with effects of adverse weather conditions.  

5.2  Problem statement 

5.2.1 Model assumptions and network representation 

In order to facilitate the essential ideas without loss of generality, besides adopting the 

assumptions A4.1 - 4.5 made in Chapter 4, the following assumptions are made in this 

Chapter. 

 

A5.1: Individuals can acquire weather forecast information for each time interval over 

the whole day (Lam et al., 2008; Sumalee et al., 2011).  

A5.2: The subway is weather-proof. Bus frequency and capacity are assumed to vary 

with weather condition (Sumalee et al., 2011).  

A5.3: The weather conditions for all zones in the study area are identical (Lam et al., 

2008; Sumalee et al., 2011). 

A5.4: The in-vehicle travel time for the bus mode is given exogenously by a scaled 

function dependent on rainfall intensity. The in-vehicle travel times by modes in the 

road network under different rainfall intensities, however, can be modelled explicitly 

by the activity-based traffic assignment model proposed by Ouyang et al. (2011). 

A5.5:  In reality, weather conditions dynamically change. Individual’s activity and 

travel choices are likewise dynamic. In this Chapter, it is assumed that the dynamic 

situations are not considered in the proposed static model. Individuals are assumed 
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not to be re-optimizing their activities and travels during the study time period (Lam 

et al., 2008). This assumption is made because the proposed model falls within the 

static model category for long-term planning at the strategic level. Individuals have 

perfect knowledge of traffic and weather conditions throughout the whole network 

and the whole time period concerned. 

 

In accordance with the model presented in Chapter 4, four types of activities are 

investigated in this Chapter; namely, home, work, dinner, and shopping activities. The 

time period of the proposed model is from 06:00 to 24:00 and is divided into 108 

intervals each with ten minutes. The activity sequence and durations are not fixed 

(Ouyang et al., 2011; Fu and Lam, 2014). Home and work are considered as 

compulsory activities, while dinner and shopping are non-compulsory activities (Fu 

and Lam, 2014). 

 

The super-network platform proposed in Chapter 4, i.e. the ATS-SAM super-network, 

is adopted in this Chapter to simultaneously consider time and space coordination, 

activity sequence and duration, and the relationship between activity and route/mode 

choices. With this rule-based algorithm proposed in Chapter 4, conventional multi-

modal transit networks can easily be automatically transformed into ATS-SAM super-

networks. It should be noted that, in this Chapter, in-vehicle links are constructed 

based on the weather conditions during each time interval, because different weather 

conditions result in different in-vehicle travel times. Figure 5.1 is an example of the 

ATS-SAM super-network considering weather conditions consisting of two transit 

modes, i.e. subway, bus. Three activities (i.e. home, work, and dinner) are considered 

in this example. In this small example, the study time horizon is divided into three 
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equally spaced time intervals. Two weather categories (i.e. rain and no-rain) are 

considered. Travel time for each link under no-rain conditions is one interval. Travel 

time for bus link under rain condition is two intervals. Weather forecast indicates the 

rain starts from the second time interval. The probable transfer states in Figure 5.1 

follow that used by Lo et al. (2003). It can be seen from Figure 5.1 that different links 

are constructed according to the forecast of weather conditions by time of day. 

Individuals’ activity and travel choices under different weather conditions can be 

explicitly depicted by the ATS-SAM super-network. 

 
Figure 5.1 An example of the ATS-SAM super-network considering weather conditions 
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5.2.2 Effects of weather forecast information 

Five weather categories (denoted as wc ) with different average rainfall intensity 

levels for each time period (denoted as wc ) are adopted (Lam et al., 2008). With a 

10-min interval in the study period, 1wc  indicates no rain or light rain with average 

rainfall intensity 1 5 /wc mm h  0.3 / ;mm interval  2wc  indicates normal rain with 

2 20 /wc mm h  3.3 / ;mm interval  3wc  indicates amber rainstorm with 

3 30 /wc mm h  5 / ;mm interval  4wc  indicates red rainstorm with 4 50 /wc mm h 

8.3 / ;mm interval  5wc  indicates black rainstorm with 5 70 /wc mm h 

11.7 / .mm interval  It is assumed that weather forecast provides the chance of each 

weather category for each time interval in the study period. Each possible weather 

category is forecast with the probability of its occurrence ( )wcp k


. ( )wcp k


 is the prior 

probability of the weather category wc  for time k  to time 1k  . For example, with a 

10-min interval in the study period, 
4
(9 : 00) 40%wcp   means that, on the basis of 

weather forecast, there is a 40% chance of a red rainstorm in the period 9:00-9:10.   

 

However, the weather forecast may not be accurate. Thus, based on past experiences, 

individuals may perceive a posterior probability for each weather category. To ensure 

a more precise investigation of weather effects, the approach proposed by Lam et al. 

(2008) is adopted in this Chapter. Bayes’ Theorem is used to combine prior weather 

forecast accuracy beliefs and the current weather forecast information. Let /wc pp 
  be 

the conditional probability of ( )p k


 (a vector of ( )wcp k


) given weather category wc  

occurs. The posterior probability of occurrence of wc  given the weather forecast 

( )p k


 for time k  to 1k   (denoted as ' ( )wcp k ) can then, be obtained on the basis of 
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Bayes’ Theorem (refer to Equation (32) in Lam et al., 2008).  

5.2.3 Link utility/dis-utility in ATS-SAM super-network under 

adverse weather conditions 

Many empirical studies reveal that adverse weather conditions have significant 

impacts on individuals’ travel and activity decisions (Khattak and De Palma, 1997; 

Cools et al., 2010). Under adverse weather conditions, individuals have less desire to 

take part in out-door activities or non-compulsory activities such as eating at 

restaurants and shopping in malls (Cools et al., 2010). Activity utility may broadly 

consist of the following attributes: (a) an activity time window; (b) a degree of need 

for the activity; (c) a degree of satisfaction from the process; and (d) money gain or 

loss. Thus, it can be said that the utilities of some activities are in fact influenced by 

weather conditions due to the variation of need and satisfaction. The higher the rain 

fall intensity the lower the activity utility.  

 

The previously proposed activity utility functions were mainly concerned with 

activity participation time and activity type. These functions may not be applicable 

directly in the case of adverse weather with various rainfall intensities. To capture the 

rain effects on individuals’ activity choices, a modified activity utility function is 

proposed. The utility of performing activity link aa  from start time k  for one interval 

under weather category wc  is expressed by  

a aa

1
( ) ( ) ( ) ,

a

k

a u ak
u wc s wc u d 


                                  (5.1) 

where 
a
( )au k  denotes the marginal utility of performing activity link aa ; k  is the start 

time of activity link aa ; 
a
( )

aus wc  is the scale function of activity utility under weather 
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category wc . 
a
( ) 1

aus wc   is a decreasing function with respect to wc , implying that 

activity utility decreases with the rainfall intensity. In this Chapter, two activity types 

(i.e. compulsory/obligatory and non-compulsory/discretionary in nature) are 

considered. For compulsory activities such as home and work, 
a
( )

aus wc  equals 1 for 

all wc , and for non-compulsory activities, 
a
( )

aus wc  is less than 1. It can be seen that 

the higher the rainfall intensity the lower the utility of non-compulsory activity, and 

that the utility of compulsory activity is not influenced by weather conditions. Thus, 

under adverse weather conditions individuals may reduce or cancel their non-

compulsory activities. This property is in accordance with the contentions expressed 

in the empirical study by Cools et al. (2010).  

 

The resultant activity utility for time k  to 1k   from different possible weather 

categories (denoted as 
aau ) can be expressed as 

5

a a

1

' ( ) ( ),
wc

a wc a
wc

u p k u wc                                        (5.2) 

where ' ( )wcp k  denotes the posterior probability of weather category wc  from time k  

to 1k  . 
aau  is the mixture activity utility considering all weather categories.  

 

In this Chapter, the activity marginal utility function used in Chapter 4 is adopted. 

Activity utility in this Chapter is a function of activity time and activity duration 

regardless of the passenger flow at activity location. In the next Chapter, the crowding 

effects at activity locations will be considered by incorporating passenger flow into 

the activity utility function. 
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To capture the rain effects, the physical link travel time at time interval k  under 

weather category wc  (denoted as ( , )vt k wc ) can be expressed as 

  0( , ) ( ),
v

v v t
t k wc t s wc                                            (5.3) 

where 0
vt  is the travel time of physical link v  under no-rain weather condition, and 

( ) 1
vt

s wc   is the scale function of physical link travel time under weather category 

wc (Lam et al., 2008). ( )
vt

s wc  represents the effects of adverse weather conditions on 

physical link travel times. For the subway mode, ( )
vt

s wc  equals 1. 

 

The physical link dis-utility is modelled with consideration of rainfall intensity. For 

congested physical links, the dis-utility of physical link v  for mode b  at time interval 

k  under weather category wc (denoted as ( , )vdisu k wc ) is expressed to represent in-

vehicle crowding discomfort (Sumalee et al., 2011): 

( )
( , ) vot ( , ) 1 ,

( ) ( )

b

v
v v b

b b

f k
disu k wc t k wc

h wc g wc




  
          

               (5.4) 

where ( )bh wc  is the vehicle capacity of mode b  under weather category wc . As 

regards the bus mode, ( )bh wc  decreases with wc  because umbrellas occupy a degree 

of space. ( )bg wc  denotes the frequency of mode b  under weather category wc . As 

regards the bus mode, ( )bg wc  decreases with wc  due to the increased road travel 

time (Sumalee et al., 2011). ( )vf k
 
denotes the passenger flow on the physical link at 

time interval k ; vot  is the value of time; b  and b  are model parameters relevant to 

mode b ; wc  is the weather category at time interval k .  

 

The resultant dis-utility of physical link v  at time interval k  from different possible 
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weather categories (denoted as ( )vdisu k ) can be expressed as 

 
5

1

( ) ' ( ) ( , ).
wc

v wc v
wc

disu k p k disu k wc                                    (5.5) 

The dis-utility of in-vehicle link da  can be obtained by the summation of related 

physical link dis-utilities and transit fare: 

  
 

d dd( ) , - ,
b

a v a
v V

disu disu k a v 


                                    (5.6)     

where  
da  is the transit fare with respect to the direct in-vehicle link da .  

 

As regards transfer links by mode, the transfer link dis-utility under weather category 

wc  can be expressed as 

t

1
( ) vot ,

2 ( )a b
b

disu wc pen
g wc

     
   

                            (5.7) 

where ( )bg wc  is the frequency of the mode to which individuals transfer on the 

transfer link concerned under weather category wc , and bpen  is the mode-specified 

transfer penalty. The resultant dis-utility of transfer link at time interval k  from 

different possible weather categories (denoted as 
tadisu ) can be expressed as 

5

t t

1

' ( ) ( ).
wc

a wc a
wc

disu p k disu wc                                        (5.8) 

 

Let P  be the set of routes in the ATS-SAM super-network (i.e. DATP set). The daily 

utility gain, i.e. the utility of DATP p P  (denoted as pu ), can be obtained by 

summing dis-utilities of in-vehicle links, dis-utilities of transfer links, and utilities of 

activity links: 

d t a

d d t t a a

d t a( , ) ( , ) ( , ),p a a a
a A a A a A

u disu p a disu p a u p a  
  

                   (5.9) 
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where ( , )p a  is the incidence relationship between DATP and link; ( , )p a  equals 1 

indicating that this link is used in the DATP, 0 otherwise.  

5.3 Model formulation and solution algorithm 

With the use of the proposed ATS-SAM super-network, individuals’ activity choices 

(i.e. activity locations, sequence and durations) and travel choices (i.e. route, mode, 

transfers, and departure time) under different weather conditions are explicitly 

represented by different links in the proposed super-network platform. Activities with 

different start times are constructed as different activity links. The time-dependent 

relationships between activity and travel choices can be modelled by the ATS-SAM 

super-network topology. Each route from origin to destination in the ATS-SAM super-

network represents a feasible DATP. Therefore, the proposed time-dependent DATP 

scheduling problem is equivalent to a static multi-modal transit assignment model on 

the ATS-SAM super-network. 

 

The proposed model falls into the category of static UE model in nature for long-term 

transit planning at the strategic level. As we postulate, individuals would select 

DATPs to maximize the daily utility and settle into a long-term equilibrium. Thus, 

although the activity utility may be specific to each individual in reality, it is 

postulated in this Chapter that all individuals would have a UE activity-travel choice 

pattern: for each day, the utilities of all used DATPs are the largest and equal, and all 

unused DATPs have smaller utilities. Denote   as the optimal route (i.e. the optimal 

DATP) with the largest utility in the ATS-SAM super-network. u  denotes the utility 

of route  . The UE condition can be formally expressed as 

( ) 0,p pf u u                                                  (5.10) 



5-13 
 

,p
p P

q f


                                                      (5.11) 

0,pu u                                                      (5.12) 

0,pf                                                        (5.13) 

where pf  denotes the passenger flow on DATP p  and q  denotes the total population 

in the study network.  

 

The above UE condition can be formulated as a VI: Find *
pf   such that 

* *( ) 0,p p p
p P

u f f


      pf                                       (5.14) 

where   denotes the set of feasible DATP flow solutions; *
pf  and *

pu  denote the 

equilibrium DATP flow and equilibrium DATP utility, respectively. In this Chapter, 

the DATP utility is continuous and strictly monotone with respect to the DATP flow, 

and the feasible set   is compact and convex. Facchinei and Pang (2003) indicate 

that it can be proved that the solution of this VI problem exists and the uniqueness of 

the solution can be guaranteed. In this Chapter, the VI problem is solved by the widely 

used method of successive average (MSA).  

 

The solution algorithm for solving the DATP scheduling problem is outlined as 

follows. 

Step 0. Calculate in-vehicle link travel time on the basis of the weather condition for 

each time interval. Transform the traditional multi-modal transit network to the ATS-

SAM super-network by using the rule-based super-network expansion algorithm. 

Step 1. Initialization. Let 0n  . Call the shortest path faster algorithm (SPFA) (Duan, 

1994) to find the optimal route in the ATS-SAM super-network (i.e. DATP) with the 
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largest utility. Perform an all-or-nothing assignment. Obtain the route and link flows 

nf  in the ATS-SAM super-network. 

Step 2. Update in-vehicle link dis-utilities. 

Step 3. Call the SPFA algorithm to find the optimal route with the largest utility. 

Perform an all-or-nothing assignment and yield auxiliary link flows in the ATS-SAM 

super-network. 

Step 4. Obtain updated link flows 1nf  using an MSA process. 

Step 5. For an acceptable convergence level  , if 1max n n
a   f f , then stop. 

Otherwise let 1n n   and go back to Step 2. 

5.4 Numerical example  

The purposes of the numerical example are to illustrate: (a) application of the 

proposed model and solution algorithm; (b) how the adverse weather affects 

individuals’ activity choices; (c) individuals’ mode choice behaviour under various 

weather conditions; (d) the effects of adverse weather on individuals’ departure time 

choices; (e) the impacts of adverse weather on the overall performance of the multi-

modal transit networks such as the daily average travel time per individual. 

 

In this numerical example, the total study period was from 06:00 to 24:00 (18 h per 

day) and was equally divided into 108 intervals (i.e. 10 min per interval). The weather 

forecast information for each time interval in the study period was given.  

 

Figure 5.2 depicts a multi-modal transit network based on a study area in Singapore 

with various bus and subway lines. Two subway (i.e. MRT in Singapore) lines and 

three bus lines serve this study network. Four activities (i.e. home, work, shopping 
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and dinner) are considered. The three circles shown in Figure 5.2 represent three study 

zones located in Singapore: (1) home area (H), (2) work area (W), and (3) 

shopping/dinner area (S&D). The home area, Clementi, is a major residential area. 

The work area, Tanjong Pagar, is one zone of the Central Business District. The 

shopping/dinner area, Harbour Front, is a recreational area with a large shopping mall. 

In this example, after deleting the nodes which are not two-way connected (except for 

origin and destination), the numbers of nodes and links in the super-network are 9811 

and 25,441 respectively. 

 

 
Figure 5.2 The multi-modal transit network in study area 

 

The data relating to transit lines were obtained from the website of the Land Transport 

Authority of Singapore. Table 5.1 shows the given parameters in the marginal utility 

function for the numerical examples. The scale function for the utility of non-

compulsory activities is set as 
a
( ) exp( 0.6 )

au wcs wc    . The scale function for bus 

travel time is set as ( ) exp(0.12 )
v

wct
s wc    (Lam et al., 2008; Sumalee et al., 2011). 

The vot  is S$ 60.00/h. Note that US$ 1.00 is approximately equal to S$1.30. 
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0.1b  ,  2b  , 0.5bpen  , 0.1  . 

 

Table 5.1 Given parameters in the marginal utility function  
 Work 

(6:00-12:00) 
Work  

(12:00-24:00) 
Home  

(6:00-12:00) 
Home  

(12:00-24:00) 
Shopping Dinner 

a

max
au (S$) 1440 1440 1000 1000 1080 1440 

aa  600 900 360 1440 1180 1080 

aa  0.021 0.021 0.0048 0.0048 0.018 0.05 

aa  0.8 0.8 1.8 1.8 1 1 

 

The traffic assignment model proposed in this Chapter falls within the category of 

static UE model for strategic policy planning. Several weather forecast scenarios are 

obtained based on samples of multiple days’ weather forecasts. The proposed model 

will be solved for each scenario to determine average effects of weather on the study 

area for long-term planning purpose. The five weather category scenarios used by 

Sumalee et al. (2011), shown in Figure 5.3, were adopted in this Chapter. According 

to this figure, it is found that from scenario S1 to S5, the weather conditions become 

increasingly adverse. This being the case, S1 represents good weather, and S5 

represents severe weather in the following discussion. Note that in the numerical 

example, the five scenarios are applied at the morning peak (assumed 7 a.m. to 9 a.m.) 

and evening peak (assumed 5 p.m. to 8 p.m.) periods in the travel and activity choice 

investigation, as the weather conditions during the other time periods (i.e. work and 

home time) have little impact on individuals’ travel and activity choices. For the other 

time periods, a good weather (i.e. S1) is applied. Under scenario S1, bus frequency 

and capacity are 9 veh/h and 110 passenger/veh. Under scenarios S2-S5, bus 

frequency and capacity are assumed to reduce to 6 veh/h and 100 passenger/veh, 

respectively (Sumalee et al., 2011). Subway frequency and capacity for all scenarios 

are 12 veh/h and 400 passenger/veh. 
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Figure 5.3 Scenarios for different weather forecast information 

 

Figure 5.4 shows two optimal DATPs under two weather scenarios (applying S1 and 

S5 in peak periods). The two DATPs are route searching results under free-flow 

condition. It can be seen that using the proposed super-network, activity choice, 

activity start/end time, activity duration, and activity location can be traced. Travel 

time of each trip, route choice and mode choice can also be found. Figure 5.4(a) 

illustrates the DATP under scenario S1 (i.e. good weather) and Figure 5.4(b) depicts 

the DATP under scenario S5 (i.e. severe weather). A comparison of these two DATPs 

indicates that under adverse weather conditions, individuals tend to carry out their 

compulsory activities and use the subway. It can be seen from Figure 5.4 that as the 

rainfall intensity increases, the duration of compulsory activities (i.e. home and work) 

is extended by about 3 h (from 14.5 to 17.3). In contrast, non-compulsory activities 

(i.e. shopping and dinner) are cancelled. Individuals leave work later (changing from 

18:00 to 18:40), and return home earlier (changing from 21:10 to 19:00) under severe 

weather conditions so as to obtain maximum daily utility. 
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                               (a)                                                                               (b) 
Figure 5.4 Results of daily activity-travel patterns under different weather scenarios 

 

Individuals’ overall activity choice behaviour can be effectively investigated under 

scenarios for different weather conditions by using the proposed model. Table 5.2 

shows average duration variation of different activities under different weather 

scenarios (applying S1-S5 in peak periods). It is clear from Table 5.2 that the average 

duration of compulsory activities (i.e. home and work) increases with rainfall intensity, 

while the duration of non-compulsory activities (i.e. dinner and shopping) decreases. 

As the rainfall intensity increases, the average home activity and work activity 

durations show respective increases from 4.82 h/individual to 6.20 h/individual and 

from 10.03 h/individual to 10.65 h/individual. In contrast, the dinner duration and 

shopping duration, show respective decreases from 0.95 h/individual to 0.10 

h/individual and from 1.23 h/individual to 0.24 h/individual. It is due to that adverse 

weather significantly affects the utility of non-compulsory activities, while 

compulsory-activities have to be performed regardless of weather condition. It can 
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also be seen from the study network that as most people tend to cancel non-

compulsory activities under severe weather conditions, the daily average travel time 

decreases from 0.97 h/individual under S1 to 0.81 h/individual under S5. 

 

Table 5.2 Average durations of activities and travel under different weather scenarios 
   Scenario   

S1 
(good 

weather) 

S2 S3 S4 S5 
(severe 

weather) 
 
 
 
 
 

Activity 

Home 
 
 

Work 
 
 

Dinner 
 
 

Shopping 
 

4.82 h 
(26.8%) 

 
10.03 h 
(55.7%) 

 
0.95 h 
(5.3%) 

 
1.23 h 
(6.8%) 

 

5.54 h 
(30.8%) 

 
10.54 h 
(58.5%) 

 
0.40 h 
(2.2%) 

 
0.64 h 
(3.6%) 

 

5.93 h 
(32.9%) 

 
10.65 h 
(59.2%) 

 
0.19 h 
(1.1%) 

 
0.40 h 
(2.2%) 

 

6.09 h 
(33.8%) 

 
10.65 h 
(59.2%) 

 
0.12 h 
(0.7%) 

 
0.32 h 
(1.8%) 

 

6.20 h 
(34.4%) 

 
10.65 h 
(59.2%) 

 
0.10 h 
(0.6%) 

 
0.24 h 
(1.3%) 

 
Travel 0.97 h 

(5.4%) 
0.88 h 
(4.9%) 

0.83 h 
(4.6%) 

0.82 h 
(4.5%) 

0.81 h 
(4.5%) 

Total time 18 h 
(100%) 

18 h 
(100%) 

18 h 
(100%) 

18 h 
(100%) 

18 h 
(100%) 

 
 

Under adverse weather conditions, individuals who choose the bus mode for travel 

may change their departure time in the morning to accommodate the increased road 

travel time. Table 5.3 shows the average departure time and average travel time per 

trip for bus riders. It is seen that under severe weather conditions, earlier morning 

departure times are chosen by bus riders, and the average bus trip travel time increases. 

For instance, under scenario S1 (i.e. good weather), bus riders depart to work at 8:37 

a.m., and the average per-trip travel time over the whole day is 26.3 min. However, 

under scenario S5 (i.e. severe weather), they should depart quite early, i.e. 6:30 a.m. in 

the morning, and that the average per-trip travel time increases to 33.0 min. This is 

due to the influence of adverse weather conditions on bus frequency, bus capacity, and 

road travel time. 
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Table 5.3 Average departure time and travel time per trip for bus riders 
Scenario Average departure time in 

the morning 
Average travel time per trip 

(minutes) 

S1 
S2 
S3 
S4 
S5 

8:37 a.m. 
7:18 a.m. 
6:43 a.m. 
6:30 a.m. 
6:30 a.m. 

26.3 
26.8 
29.8 
32.2 
33.0 

 

Individuals’ travel mode choice behaviour can also be examined by the proposed 

model. Figure 5.5 depicts the variation of modal split with different population levels 

under different weather scenarios (applying S1-S5 in peak periods). The test fully 

considers the increased road travel time, reduced bus frequency and capacity under 

severe weather. It can be found from Figure 5.5 that a drastic demand shift from bus 

to subway exists under severe weather conditions. For instance, with a population of 

5000, the modal share for subways is 18% under weather scenario S1 (i.e. good 

weather). However, under S5 (i.e. severe weather), the modal share for subways 

increases to 42% as the subway mode is weather-proof. From Figure 5.5, population 

level effects on individuals’ mode choice can also be found. It is seen that, with a 

large population, individuals tend to use subways rather than buses under any weather 

scenario. For example, under scenario S1, most individuals choose buses for their 

travel (i.e. 82%) when the population is only 5000. However, when the population is 

50,000, the bus modal share decreases to 50%. In the study network, this figure can be 

explained by the fact that, the subway has a larger capacity than that of bus. When the 

population is large, individuals tend to choose the subway to avoid bus in-vehicle 

crowding.  
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Figure 5.5 Modal shares under different weather scenarios and different population levels 

 

5.5 Summary 

This Chapter presents an activity-based network equilibrium model for scheduling 

DATPs in multi-modal transit networks under adverse weather conditions with 

different rainfall intensities. The proposed model is designed for long-term planning 

of congested multi-modal transit network in cities with frequent rainy periods (e.g. 

Singapore and Hong Kong). In the proposed model, weather forecast information was 

incorporated for solving the individuals’ DATP scheduling problem. In-vehicle 

crowding discomfort taking account of adverse weather impacts is specifically 

considered. This model explicitly considers the effects of adverse weather on the 

performances of different transit modes, and the effects on the utilities of the various 

activities (i.e. compulsory or non-compulsory). The proposed model extends existing 

studies by developing a comprehensive framework which incorporates flexible 
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activity sequences and durations, route and mode choices, and also adverse weather 

effects. 

 

The ATS-SAM super-network introduced in Chapter 4 is adopted. Not only can this 

network explicitly model the transfers and non-linear fare structures in multi-modal 

transit networks but also simultaneously addresses the activity choices and travel 

choices in time-space coordinates under conditions of different rainfall intensities. The 

ATS-SAM super-network is constructed based on link travel times for different times 

of day according to the provided weather forecast information. Individuals schedule 

their DATPs based on the trade-off between the utility gained from activity 

participation and the dis-utility of the travel required.  

 

An efficient solution algorithm without prior DATP enumeration is developed for 

solving the equivalent static transit assignment problem on the ATS-SAM super-

network. The proposed model and solution algorithm are tested with a real multi-

modal transit network in Singapore. The numerical results show that the proposed 

model can be used to investigate individuals’ DATPs and overall average effects on 

multi-modal transit networks under adverse weather conditions. The numerical results 

highlight the key role of weather-proof systems (i.e. subways) as the main transit 

mode under severe weather condition. In addition, individuals’ attitudes towards 

compulsory and non-compulsory activities vary and their DATP choices change 

according to weather conditions. It is shown that the carrying out of compulsory 

activities and the use of subways will be underestimated if weather effects are not 

explicitly considered for long-term transit planning. On the basis of the proposed 

model, further work is required for model calibration and validation with empirical 
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data. Rainfall intensity data, mobile phone data and activity-travel diaries data will be 

collected. 

 

In Chapters 4 and 5, network equilibrium models are proposed focusing on one-

individual independent travel and activity participation. In the next Chapter 6, the 

proposed network equilibrium model is extended to consider two-individual joint 

travel and activity participation. 
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6 A Network Equilibrium Model for Joint 

Activity-Travel Pattern Scheduling 

Over the past decades, many activity-based travel behaviour models have been 

proposed based on individuals’ independent decision making. Individuals’ joint 

decisions, however, are not explicitly considered. In reality, both independent and 

joint activities/travels form individual’s normal daily activity-travel patterns (DATPs). 

Travel surveys have indicated that joint travel/activity constitutes an important part in 

individuals’ DATPs. On this basis, explicit modelling of joint activity and travel 

choices is a natural and necessary component in long-term transport planning and 

policy analysis.  

 

To ensure relevance and accuracy in this respect, a comprehensive dual investigation 

of individuals’ independent and joint activity choices (e.g. activity start time and 

duration, activity sequence) and travel choices (e.g. departure time, route and mode) is 

necessary. In this Chapter, an activity-based network equilibrium model is proposed 

for scheduling two-individual joint activity-travel patterns (JATPs) in congested 

multi-modal transit networks. The interdependency of individuals’ independent and 

joint activity/travel choices is comprehensively investigated in the proposed model.  

 

In this proposed network equilibrium model for JATP scheduling, a measure of JATP 

utility is proposed to model the joint travel benefit. By constructing a joint-activity-

time-space (JATS) multi-modal super-network platform, the time-dependent JATP 

scheduling problem is converted into an equivalent static user equilibrium (UE) 
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model. Flexible activity start time and duration are incorporated in the proposed 

model. Both in vehicle and at activity location crowding discomforts are considered. 

An efficient solution algorithm without prior JATP enumeration is proposed to solve 

the JATP scheduling problem on the JATS super-network.  

 

The outline of this Chapter is as follows. Essential background knowledge is 

presented in Section 6.1. A novel JATS super-network platform and problem 

statement are amplified in Section 6.2. A network equilibrium model for JATP 

scheduling is formulated as a variational inequality (VI) over the JATS super-network 

platform and given in Section 6.3. The solution algorithm is given in Section 6.4. 

Section 6.5 gives numerical examples to illustrate the proposed model, and finally, a 

summary of key points of the Chapter is presented in Section 6.6.  

6.1 Background  

As is shown in Chapters 4 and 5, travel demands are derived from the desire of people 

to participate in various financially and socially stimulated activities such as work, 

eating and shopping. Over the past decades, to perceive the underlying motivation of 

trip making, increased attention has been given to the activity-based approach in 

travel behaviour modelling (Kitamura, 1988; Axhausen and Gärling, 1992; Recker, 

1995; Yamamoto et al., 2000; Chow and Recker, 2012; Zhang and Timmermans, 

2012). It is widely recognized that the activity-based approach can reflect temporal 

and spatial constraints, household influence, interdependencies of trips, scheduling of 

activities, and also the linkage between activities and trips.  

 

Many activity-based travel behaviour models are based on individual decision making 
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but joint decisions are not explicitly considered. In reality, however, both independent 

and joint activities/travels form essential parts of individuals’ JATPs. For example, 

household members meet at subway stations after work, then travel jointly to have 

dinner in a shopping mall. With the rapid development of information and 

telecommunication technology, such joint activity constitutes an ever-increasing share 

of an individual’s daily activity-travel pattern (Ronald et al., 2012). Travel surveys 

indicate that joint travel has now become a significant portion of travel within regions 

(Vovsha et al., 2003). From such findings, the importance of explicit analysis and 

modelling of joint activity-travel choices for long-term transport planning and policy 

analysis is clear.  

 

Currently, a number of activity-based simulation models and econometric models 

have investigated the joint activity and travel choice problem with consideration of 

inter-personal dependencies (Globe and McNally, 1997; Gliebe and Koppelman, 2002; 

Miller and Roorda, 2003; Arentze and Timmermans, 2009; Zhang et al., 2009; 

Dubernet and Axhausen, 2013). Fewer studies have been devoted to developing 

activity-based mathematical analytical models such as network equilibrium models. 

Activity-based network equilibrium models can provide a comprehensive 

understanding of individuals’ activity and travel choice behaviour, and present more 

accurate traffic conditions in a congested transportation network. Most existing 

studies on activity-based network equilibrium, however, are on the basis of one 

individual level and also ignorance of individuals’ joint activity-travel choices (Lam 

and Yin, 2001; Lam and Huang, 2002, 2003; Huang and Lam, 2005; Zhang et al., 

2005; Li et al., 2010; Ramadurai and Ukkusuri, 2010, 2011; Ouyang et al., 2011; Fu 

and Lam, 2014). As joint participation in activities and travels represent a substantial 
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portion of individuals’ DATPs, it is of important interest to develop network 

equilibrium models which can comprehensively consider individuals’ independent 

and joint activity/travel choices in congested multi-modal transit networks.  

 

In many Asian cities such as Hong Kong, most daily travel is conducted using various 

public transit modes (over 90% in Hong Kong) rather than privately owned cars. Joint 

travels using public transit may benefit individuals by satisfying a need for communal 

activity or by offering pleasurable travel experience. The consideration of joint 

activity-travel choices in long-term transport planning is an important research area, 

as yet largely unexplored. Hence, a network equilibrium model for scheduling joint 

activity-travel patterns (JATPs) in multi-modal transit networks is proposed in this 

Chapter. Individuals’ preference for joint travel and various activity/travel choices 

made by individuals are explicitly explored by means of the proposed model. 

 

The problem of coupling constraints, which is a major challenge in JATP modelling, 

is solved in this Chapter by extending the activity-time-space super-network proposed 

in Chapter 4 to a novel joint-activity-time-space (JATS) multi-modal super-network. 

Using the JATS super-network platform, both the independent activity/travel choice 

and joint choice can be modelled simultaneously. The relationship between activity 

choices and travel choices can be effectively captured by solving the user equilibrium 

(UE) problem on the JATS super-network platform. Existing theories are extended in 

this Chapter by developing a comprehensive framework to capture independent and 

joint activity/travel choices in multi-modal transit networks. A network equilibrium 

model with consideration of joint travel benefit is explicitly proposed. The ultimate 

aim of the proposed model is to assess the effects of alternative transport policies and 
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to be used for future long-term strategic planning. 

6.2 Problem statement and network representation  

6.2.1 Joint activity-travel pattern (JATP) 

In this Chapter, a JATP concept is proposed to model the activity and travel choices 

of a two-individual household within the study time period. Figure 6.1 shows an 

example of a two-individual (i.e. individual A and individual B) JATP from 6:00 to 

24:00. The two individuals’ all independent and joint activity/travel choices (e.g. time 

and space coordination, activity sequence and location, activity start time and duration, 

route and mode choices) throughout the whole time period are depicted as a JATP. It 

can be seen that the activity sequence of this JATP is home-work-shopping-home. 

The activity start/end time, activity duration, activity location can be traced. Several 

trips are conducted between different activities. The travel time of each trip, route 

choice and mode choice can also be found. Note that both independent and joint 

activities/travels are included in the JATP. In example Figure 6.1, the two individuals 

shop together after independent work activities, then jointly travel home. The activity-

travel choice problem of a two-individual household is termed the JATP scheduling 

problem. This problem is solved in this Chapter.  
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Figure 6.1 An illustration of a two-individual JATP 

 

6.2.2 Model assumptions 

In order to facilitate the essential ideas without loss of generality, besides adopting the 

assumptions A4.1 - 4.4 in Chapter 4, the following assumptions are made in this 

Chapter. 

 

A6.1: A commonality factor is proposed to capture the impact of joint travel length on 

individuals’ JATP utility. This is inspired by the commonality factor used in the C-

logit model (Cascetta et al., 1996; Zhou et al., 2010).  

A6.2: In urban areas such as those in Hong Kong, most individuals remain in the 

work place during the noon period. In this Chapter, the JATP scheduling problem is 

divided into two time periods (i.e. morning period before 12:00 noon and afternoon 

period after 12:00 noon). Individuals are assumed to start the morning period with 
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joint home activity and end that period with independent work activities. In the 

afternoon period, individuals are assumed to start with independent work activities 

and end that afternoon period with joint home activity.  

A6.3: It is assumed that the total population in the study network consists of multiple 

two-individual households. The two individuals in a household jointly make activity-

travel decisions, and the joint decision-making process seeks to maximize the utility 

of the entire household (Zhang et al., 2005). 

 

Three types of activities are investigated and described in this Chapter: work, 

shopping, and home activities. Work is considered as an independent activity, while 

shopping and home activities can be conducted independently or jointly. In 

accordance with that described in Chapters 4 and 5, home and work are considered as 

compulsory activities, while shopping is a non-compulsory activity (Fu and Lam, 

2014). The activity choices, including activity sequence, activity location, activity 

start time and duration are not fixed.  

6.2.3 A joint-activity-time-space (JATS) super-network platform 

The synchronization problem (i.e. the temporal and spatial co-ordination among 

individuals) poses a challenge in joint activity-travel modelling. To produce consistent 

activity/travel choices, some studies concerned with synchronization of joint 

activity/travel participation (Dubernet and Axhausen, 2013; Fang et al., 2011; Liao et 

al., 2013). Liao et al. (2013) developed joint multi-state super-networks to address the 

independent and joint mode/route choices of two interacting household members. The 

above study is the first attempt to extend individual multi-state super-networks to joint 

multi-state super-networks. The synchronization of mode/route choice, where and 
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when to meet or depart can be represented by the proposed super-network of Liao et 

al. (2013). Liao et al.’s multi-state super-network, however, has difficulty in tackling 

the non-linear fare structures of public transit systems, such as the system in Hong 

Kong. In Liao et al.’s model, activity duration has to be pre-determined, and link cost 

is independent of the influence of crowding effect. Furthermore, the joint travel 

benefit has not been considered in their model. Therefore, as presented in this Chapter, 

a novel super-network platform is proposed to incorporate independent and joint 

activity/travel choices, non-linear fare structures, flexible activity start time and 

duration, and the crowding effects in the multi-modal transit network.  

 

The joint-activity-time-space (JATS) super-network expansion approach proposed in 

this Chapter is based on the ATS-SAM super-network presented in Chapter 4. The 

objective is to represent individuals’ independent and joint activity choices and travel 

choices over a multi-modal transit network. In this approach, the ATS-SAM super-

network delivered in Chapter 4 is further developed by incorporating joint activity and 

travel links. The framework of the JATS super-network is given below. 

 

Nodes: Each node in the JATS super-network is described as JATS node ( , ( , ), )ind i l k , 

where ind  is the individual(s) indicator. The value of ind  is equal to 1 (2) indicating 

individual A (B) is at the node, and the value of  ind  is equal to 12 indicating both A 

and B are at the node. The JATS nodes with 12ind   are called joint nodes, while the 

ones with 1ind   or 2 are independent nodes. The definitions of ,  ,i l  and k  are in 

accordance with those in Chapter 4. 

 

Links: Links in the JATS super-network are classified into five categories, i.e. 
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a t d w m.A A A A A A      

 aA  is the set of activity links as seen in Chapter 4. aA  is constructed between 

the augmented nodes with the same individual(s) and at the same location to 

indicate that a particular activity is conducted for one interval. Each a aa A  

is characterised by individual(s), activity location, activity type, and activity 

start time. indep joint
a a aA A A  , where indep

aA denotes the set of independent 

activity links and joint
aA  denotes the set of joint activity links.  

 tA  is the set of transfer links as seen in Chapter 4.  

 dA  is the set of direct in-vehicle links in accordance with that in Chapter 4. 

 wA  is the set of waiting links. Each w wa A  is constructed between the 

independent nodes at the same location to indicate an individual waiting for 

the other individual for one time interval. 

 mA  is the set of meeting links. Each m ma A  is constructed between an 

independent node and a joint node at the same location to represent 

individuals meeting each other at the node. The duration of a meeting link is 

assumed to be zero (Liao et al. 2013). 

 

Figure 6.2 shows an example of the JATS super-network consisting of two transit 

modes (i.e. subway and bus) and two activities (i.e. work and shopping). The two 

individuals (A and B) work at different places and shop together after work. The study 

horizon is divided into four equally spaced time intervals. The travel time of each 

physical link is one interval.  

6.2.4 JATS super-network expansion algorithm 
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A rule-based algorithm is proposed to generate the JATS super-network for two-

individual household JATP scheduling. With this rule-based algorithm, the 

conventional multi-modal transit network can be automatically transformed into the 

JATS super-network.  

 

Figure 6.2 is an example of the network expansion result for a time period after work. 

Each joint route from the two origins (i.e. one origin for one individual) to the 

destination (i.e. the same destination for the two individuals) in the JATS super-

network represents a feasible JATP in the afternoon period. The JATS super-network 

expansion algorithm is extended from the network expansion algorithm proposed in 

Chapter 4 and is presented as follows: 

 

Input: a multi-modal transit network M , two origin locations for individual A and B 

( Ai  and Bi ), one destination location ( ABi ), activity locations ( a ai I ), and number of 

time intervals K . 

Output: the JATS super-network. 

Step 1. Node augmentation. 

For each node i U , expand the node into JATS node  , ( , ), ,ind i l k  1, 2,12,ind     

0,1,l   1,2,..., , 1k K K  . Denote the JATS node set as N . 

Step 2. Construction of JATS activity links. 

Scan all nodes in set N . Construct JATS activity links a aa A  between 

 a , ,, ( 0)ind i k  and  a, ( ,0), 1ind i k  .  

Step 3. Construction of JATS transfer links. 

Scan all nodes in set N . Construct JATS transfer links t ta A  between 
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 
a

),, ( 0,aind i k  and  
a

),, ( 1,aind i k . 

Step 4. Construction of JATS direct in-vehicle links. 

Find all in-vehicle links in network M  on the basis of physical travel links.  

For each i U , find all 'i U  which are connected to i  by in-vehicle links. Record 

the mode b  and the travel time 
d

0
at  

of each in-vehicle link.  

For each 'i , construct JATS direct in-vehicle links between  , ( 1),,ind i k  and  

 
d

00),, ( ', akn i ti d  . 

Step 5. Construction of JATS waiting links. 

Scan all nodes in set N . Construct JATS waiting links w wa A  between 

 , ( 0),,ind i k  and  , ( ,0), 1ind i k  . 

Step 6. Construction of JATS meeting links. 

Scan all nodes in set N . Construct JATS meeting links m ma A  between  1,( ,0),i k  

and  12, ( ,0),i k , and between  2,( ,0),i k  and  12, ( ,0),i k . 

Step 7. Simplification of the super-network. 

Delete the augmented nodes which are not two-way connected except for the origin 

nodes (i.e.  1, ( ,0),1Ai  and  2, ( ,0),1Bi ) and the destination node (i.e. 

 12, ( ,0), 1ABi k  ). Delete the redundant links. 

  

Following the model assumption A6.2, in the JATS super-network for the morning 

period, each joint route from the origin (at home) to two destinations (at work places) 

represents a feasible JATP. The network expansion steps are similar and not listed 

here. With the use of the JATS super-network, individuals’ activity choices (i.e. 

activity locations, sequence and durations) and travel choices (i.e. route and mode 
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choices, transfers), including both independent ones and joint ones, are explicitly 

represented by different links in the proposed super-network platform. The 

relationships between activity and travel choices are reflected by the JATS super-

network topology. The non-linear fare structures in multi-modal transit networks can 

be explicitly modelled. Flexible activity start time and duration are incorporated. Each 

joint route in the JATS super-network platform represents a feasible JATP.  

 

 
Figure 6.2 An illustration of the JATS super-network 

 

6.2.5 Link utility/dis-utility in JATS super-network 

In this Chapter, marginal activity utility is specified for different individuals, and the 

crowding discomfort at activity location is considered. The utility of individual ind  
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performing independent activity link aa  is expressed by  

a

a

a a a

a

'
1

1 ' ( ) ,
a

kaind ind
a a ak

a

f
u u d



  



  
        

        indep
a a ,  1, 2a A ind       (6.1) 

where k  is the time interval of activity link aa ; 
a

( )ind
au k  denotes the marginal activity 

utility of individual ind ; 
aaf  

is the passenger flow on the activity link at time interval 

k  ; 
aa  is the capacity of the activity location; 

a
'a

 
and 

a
'a

 
are model parameters 

relevant to activity type. 
a

'a  is equal to 0 for compulsory activities (e.g. home and 

work), as the utility of compulsory activities is not affected by the crowding at the 

activity locations. 

 

As regards joint activity utility, a group utility function proposed by Zhang et al. 

(2002) is adopted to represent the preference for performing joint activities with 

consideration of intra-household interactions. The utility of joint activity link aa  is 

expressed by  

a a a a a

12 1 2 1 2
1 2 ,a a a a a

u w u w u u u            joint
a aa A               (6.2) 

The joint activity utility is the summation of weighted individuals’ utility and a 

weighted interaction effect. 
a

1

a
u  and 

a

2

a
u  are independent utilities of two individuals 

which can be obtained from Equation (6.1). indw  is individual ind ’s weight parameter.

1 0,w   2 0,w   and 1 2 1w w  . indw  ( 1,2ind  ) can be interpreted as a measure of 

the individual ind ’s power in household’s decision making. The parameter   

moderates the effect of joint activity benefit and reflects household members’ concern 

for joint activity. A detailed interpretation of this function and other types of 

household utility function can be found in Zhang et al. (2002, 2009). 
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The dis-utility of physical link v  with start time interval k  (denoted as ( )vdisu k ) is 

expressed to represent in-vehicle crowding discomfort (Spiess 1983; Nielsen 2000; Lo 

et al. 2003): 

0 ( )
( ) vot 1 ,

b

v
v v b

b b

f k
disu k t

h g




  
         

   bv V                                (6.3) 

where 
0
vt  is the free-flow travel time of physical link v ; bh  is the vehicle capacity of 

mode b ; bg  denotes the frequency of mode b ;  vot  is the value of time; b  and b  

are model parameters relevant to mode b . ( )vf k  is the passenger flow on the 

physical link v  at time interval k , which can be expressed as the summation of 

passenger flows on all in-vehicle links consisting of this physical link: 

 
d

d d

d( ) , ,v a
a A

f k f a v


                                                (6.4) 

where  d ,a v  is equal to 1 if physical link v  is in direct in-vehicle link da ; 0 

otherwise.  

 

The in-vehicle link dis-utility can be obtained by the summation of related physical 

link dis-utilities and transit fare: 

 
d dd , - ,a v a

v V

disu disu a v 


                                              (6.5) 

where 
da  is the transit fare with respect to the direct in-vehicle link da . In this way, 

non-linear fares can be directly represented by node-to-node basis. 

 

As regards transfer links by mode, the link dis-utility is in accordance with that in 

Chapters 4 and 5. In the JATS super-network, each waiting link indicates waiting for 
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one time interval, thus, the dis-utility of waiting link (denoted as 
wadisu ) can be 

expressed as 
w

votadisu   . The dis-utility of meeting link m ma A  is assumed to be 

zero (Liao et al., 2013).  

6.3 The JATP scheduling model 

6.3.1 Impact of joint travel length 

Individuals are known to gain benefits from joint travel and joint activity. To 

comprehensively model individuals’ independent and joint activity/travel choice 

behaviour, individuals’ preference for joint activity/travel should be investigated. 

However, the investigation of joint travel preference is still largely unexplored in the 

literature.  

 

Activity-travel surveys indicate individuals are willing to travel further and pursue 

activities for longer durations when the activity-travel is being pursued jointly with 

family or friends. According to the findings of Srinivasan and Bhat (2008), joint 

episodes are often of long durations. In this Chapter, the benefits gained from joint 

activity is modelled by incorporating interaction parameter in joint activity utility 

function (refer to Equation (6.2)). The benefits from joint travel is modelled by 

considering the joint travel length. In general, individuals make JATP choices based 

on the consideration of different joint travel lengths (refer to Figure 6.3). For example, 

individuals can meet at the nearest subway station, and jointly take a lengthy journey 

to the shopping mall (as is shown in Figure 6.3(a)). They can also meet at a subway 

station near the shopping mall, and take a short joint journey (as Figure 6.3(b) shows).  
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Although a short joint bus/train journey to the shopping mall (i.e. Figure 6.3(b)) is a 

possibility, in reality, it is not likely. Individuals are likely to conduct such travel 

independently. Faced with waiting either at the subway station or a shopping mall, 

prior to meeting, a traveller is more likely to avoid the joint train journey preferring to 

meet at the shopping mall destination. Thus, the length of joint travel should be 

explicitly considered in modelling individuals’ JATP choice behaviour.  

 

 

        (a) Long joint travel                                                     (b) Short joint travel 

Figure 6.3 Comparison of two JATPs with different joint travel lengths 
 

A JATP scheduling model with explicit consideration of joint travel benefit is 

described in this Chapter. A measure of JATP utility is proposed. The impact of joint 

travel length is modelled in the JATP utility by using a commonality factor (Cascetta 

et al., 1996; Zhou et al., 2010).  

 

The commonality factor was first proposed by Cascetta et al. (1996) in the C-logit 

model. In the C-logit model, the commonality factor is added into the route utility 

function to account for the similarities between overlapping routes. Utilities of 

overlapping routes are modified by incorporating this factor in the C-logit model. As 
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joint travel brings individuals benefit and increases individuals’ utility, in this Chapter, 

the concept of commonality factor is adopted to enable the consideration the 

similarity of individuals’ routes (i.e. the proportion of joint travel in total travel). A 

measure of JATP utility with commonality factor is proposed in this Chapter.  

 

The JATP scheduling model can be interpreted as an implicit JATP availability choice 

model, where the JATP utility with commonality factor can be considered as a 

normalised measure of the availability of a JATP as an alternative for a generic 

traveller. The commonality factor is calculated based on the joint travel proportion in 

total travel. The JATP utility increases with the proportion of joint travel.  

 

Let  P p  be the joint route set in the JATS super-network (i.e. JATP set). The 

proposed network equilibrium model for JATP scheduling keeps the mathematical 

structure of conventional UE model, but with a modified route utility. In this Chapter, 

a measure of JATP utility is proposed to represent the household utility gain from all 

independent and joint choices. The JATP utility (denoted as p ), is defined as the sum 

of the overall activity utility of JATP p  (denoted as p
activityu ) and overall travel dis-

utility of JATP p  (denoted as p
traveldisu ) times a commonality factor (denoted as pcf ): 

.p p
activitp y travel pu disu cf                                             (6.6) 

 

By considering the act of waiting for another individual as an activity, the overall 

activity utility of the JATP p  (i.e. p
activityu ) can be expressed by summing the weighted 

utilities of activity links and dis-utilities of waiting links: 
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a w

a a w w

a w( , ) ( , ).ind
ind a ind a

a A a

p
activit

A
y w u p a w disu p au  

 

                   (6.7) 

The overall travel dis-utility of the JATP p  (i.e. p
traveldisu ) can be obtained by 

summing the weighted dis-utilities of in-vehicle links and transfer links: 

d t

d d t t

d t( , ) ( , ).ind a
p

trave ind a
a A

l
a A

w disu p adisu w disu p a 
 

                  (6.8) 

where ( , )p a  is the incidence relationship between JATP and link; ( , )p a  is equal 

to 1 indicates that this link is used in the JATP, 0 otherwise. indw  is the individual 

weight parameter concerning the link is conducted by which individual(s). 

 

The commonality factor pcf  of JATP p  is directly proportional to the joint travel 

degree of the individuals’ overall travel. The role played by pcf  is as follows: a JATP 

with a large proportion of joint travel has a smaller pcf , thus a larger JATP utility with 

respect to a JATP with a small proportion of joint travel. 

 

The commonality factor can be specified in different functional forms, resulting in 

different JATP utility. One possible way to specify the commonality factor is: 

1 / ,

p
joint

cf p
total

L

L
pcf e

 

   p P                                          (6.9) 

where p
jointL  is the “length” of joint travel; p

totalL  gives the overall “lengths” of 

individuals’ total travel in JATP p ; 
p
joint

p
total

L

L
 indicates the proportion of joint travel in 

total travel.  

 

cf  is the commonality factor parameter. It is greater than or equal to 0. If cf  is 
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equal to 0, the commonality factor is equal to 1. This indicates that the joint travel 

benefit is not considered and the proposed JATP scheduling model collapses to 

become the conventional activity-travel pattern scheduling model. 

 

It can be shown that the above specification of the commonality factor pcf  has the 

following properties: 

i) If JATP p  does not include any joint travel (i.e. all travels in the JATP are 

independent), p
jointL  is equal to 0 and pcf  is equal to 1. Thus, the JATP 

utility is equal to the simple summation of activity utility and travel dis-

utility. The indication is that there is no benefit from joint travel. 

ii) If individuals take only joint travel in the JATP (i.e. no independent travel), 

p p
joint totalL L  and pcf  is equal to 1/ cfe

. As 0cf  , 0 1/ 1cfe  , the 

JATP utility is increased, which means individuals obtain benefit from 

joint travel. 

iii) It is not difficult to see that p p
total jointL L , thus, 0 1

p
joint

p
total

L

L
   and 

1/ 1cf

pe cf   . 

 

The effect of the commonality factor in the JATP utility is exemplified in a simple 

JATP shown by Figure 6.4(a). Assuming cf  is equal to 1 and the total travel dis-

utility ( p
traveldisu ) is equal to HK$ -10, it can be found from Figure 6.4(b) that, p  is 

equal to HK$ -10 regardless of joint travel length if the commonality factor is not 

incorporated. However, if joint travel benefit is considered by using the proposed 

commonality factor pcf , p  will increase with the proportion of joint travel in total 
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travel. For example, p  increases to HK$ -6.07 if the proportion of joint travel (i.e.  

p
joint

p
total

L

L
 ) is equal to 0.5. It can be seen from Figure 6.4 that when 

p
joint

p
total

L

L
 increases from 

0 to 1, the JATP utility varies from HK$ -10 to HK$ -3.7. 

 

 

               (a) a small JATP                                                               (b) JATP utility  

Figure 6.4 Effect of commonality factor on JATP utility 
 

In Equation (6.9), the “length” can either be a flow-independent attribute (e.g. free-

flow travel time) or flow-dependent attribute (e.g. travel dis-utility). The former case 

is clearly a special case of the latter when the congestion effect is negligible. The 

selection of appropriate attributes in the commonality factor depends on the specifics 

of the intended scenarios. For example, for individuals who have better knowledge of 

the network conditions such as commuters equipped with traveller information, it 

would be more appropriate to choose a flow-dependent commonality factor. On the 

other hand, a flow-independent commonality factor would be more suitable for 

modelling route choice behaviour of individuals who have little information about the 

network conditions. As regards the flow-independent case, the JATP utility can be 

expressed as  

/ ,

p
joint

cf p
travel

t

tp p
p activity travelu disu e






                                      (6.10) 
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where p
jointt  denotes the individuals’ joint travel time (including joint in-vehicle travel 

time and joint transfer time) during the whole JATP, while p
travelt  denotes the 

individuals’ total travel time (including joint in-vehicle travel time and transfer time, 

and independent weighted in-vehicle travel time and transfer time) during the whole 

JATP. As regards the flow-dependent case, the JATP utility can be expressed as  

/ ,

p
joint

cf p
travel

disu

disup p
p activity travelu disu e






                                      (6.11) 

where p
jointdisu  denotes the individuals’ joint travel dis-utility. In this Chapter, the 

proposed model, in nature, falls into the category of a static UE model for long-term 

transit planning at the strategic level, and individuals are assumed to have perfect 

knowledge of traffic conditions throughout the whole network. Thus, the flow-

dependent case as Equation (6.11) is adopted in this Chapter. 

6.3.2 Model formulation 

With the use of the proposed JATS super-network, both individuals’ independent and 

joint activity/travel choices are explicitly represented by different links in the 

proposed JATS super-network platform. The time-dependent relationships between 

activity and travel choices can be modelled by the JATS super-network topology. 

Each joint route from origin to destination in the JATS super-network represents a 

feasible JATP. Therefore, the proposed time-dependent JATP scheduling problem is 

equivalent to a static multi-modal transport assignment model on the JATS super-

network. 

 

The proposed model falls into the category of static transport network equilibrium 

model in nature for long-term planning at the strategic level. It is thus postulated that 
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all households would have a UE activity-travel choice pattern: for each day, the 

utilities of all used joint JATPs are the largest and equal, and all unused JATPs have 

smaller utilities. Denote   as the optimal route (i.e. the optimal JATP) with the largest 

utility in the JATS super-network. The UE condition can be formally expressed as 

( ) 0,p pf                                                        (6.12) 

,p
p P

q f


                                                         (6.13) 

0,p                                                          (6.14) 

0,pf                                                             (6.15) 

where pf  denotes the household flow on JATP p , and q  denotes the total household 

number in the study network.  

 

The previously mentioned UE problem can be further expressed as the following gap 

function formulation: 

min ( ).p p
p P

P fGA  


                                            (6.16) 

The gap function refers to the overall gap capturing the complementary slackness 

conditions of the proposed UE model. The gap function is non-negative, 0GAP  . 

 

The above UE condition can also be formulated as a variational inequality (VI):  

Find *
pf   such that 

* *( ) 0,
od

p p p
p P

f f


      pf                                         (6.17) 

where   is the feasible set of JATP flows defined by (6.13) and (6.15).  

 



6-23 
 

Theorem 6.1. The solution of the VI problem (6.17) is equivalent to the UE condition 

(6.12) - (6.15). 

Proof  

For the proof, readers are referred to Smith (1979) on the route VI formulation for the 

static traffic assignment problem. 

 

Theorem 6.2. At least one solution of the VI problem (6.17) exists. 

Proof  

According to Facchinei and Pang (2003), the proof can be completed by the following 

two properties: (a) The JATP utility is continuous; (b) the feasible set   is compact 

and convex.  

 

In general, the uniqueness of the solution depends on the monotone property of VI 

formulation. According to the definition of the JATP utility and commonality factor, 

the uniqueness of the solution cannot be guaranteed due to the non-additive form of 

JATP utility and the non-separable flow-dependent commonality factor. 

6.4 Solution algorithm 

In this section, a route searching algorithm to determine the optimal JATP is first 

presented in Section 6.4.1. Based on this algorithm, a solution algorithm for solving 

the UE model is proposed and given in Section 6.4.2. 

6.4.1 Solution algorithm for searching the optimal JATP 

Household members schedule their independent and joint activities and trips to 

maximize their JATP utility. Such actions are the equivalent of finding the route with 
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maximum JATP utility from origin to destination in the JATS super-network. 

Therefore, the JATP searching problem can be converted into a shortest route problem 

by using the JATS super-network. It can be seen from Equation (6.11) that the JATP 

utility cannot be calculated by simple summation of the link (dis-)utilities. This non-

additive property indicates that a sub-route between any pair of nodes on the shortest 

route may not be the shortest route itself. Therefore, conventional single-criterion 

shortest route algorithms such as the Dijkstra’s algorithm and the Bellman-Ford 

algorithm cannot be adapted for finding the optimal JATP. The JATP searching 

problem can be formulated as a multi-criterion problem with respect to three decision 

variables, i.e. total activity utility in JATP p  (i.e. p
activityu ), total travel dis-utility (i.e. 

p
traveldisu ), and joint travel dis-utility (i.e. p

jointdisu ). It is unlikely that a single optimal 

pattern can be found because of the conflicting criteria in the multi-criterion shortest 

route problem, but a set of non-dominated routes can be obtained in the JATS super-

network. The definition of non-dominated routes is that, it is not possible to find 

another route with a better value in one criterion without worsening another criterion. 

The JATP dominant condition can be defined as follows: 

 

Definition 6.1 (JATP dominant condition). Given two JATPs i jp p P  , ip  

dominates jp , if ip  and jp  satisfy  

(i) ji
pp

activity activityu u  and ji
pp

travel traveldisu disu  and ji
pp

joint jointdisu disu , or  

(ii) ji
pp

activity activityu u  and ji
pp

travel traveldisu disu  and ji
pp

joint jointdisu disu , or 

(iii) ji
pp

activity activityu u  and ji
pp

travel traveldisu disu  and ji
pp

joint jointdisu disu . 
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A label-selection label-correcting method (Guerriero and Musmanno, 2001; Chen et 

al., 2011) is adopted in the development of an efficient solution algorithm for finding 

the optimal JATP in multi-modal transit networks. The solution algorithm is an 

extension of the DATP searching algorithm proposed in Chapter 4. Following the 

model assumption A6.2, in this Chapter, the JATP scheduling problem is divided into 

two time periods (i.e. morning period before 12:00 noon and afternoon period after 

12:00 noon). In the morning period, two individuals start journeys from the same 

node in the JATS super-network, and end at different destinations. The morning JATP 

search is from the origin to the two destinations. Regarding the afternoon period, the 

destination of the two individuals in the JATS super-network is arrival at the same 

node, thus the proposed afternoon JATP searching algorithm looks for the optimal 

JATP backwards, that is from the destination point to the origin points (i.e. consider 

the JATP destination node d  as the route searching origin, and the two JATP origin 

nodes Ay  and By  as the route search destinations). The JATP searching algorithm for 

the afternoon period is as below. The algorithm for the morning period is similar and 

not shown here. 

 

Let A Bdy yP  be a set of non-dominated routes maintained at nodes Ay  and By , and the 

non-dominated routes from destination d  to all node pairs are maintained in a scan 

eligible set, denoted as SE . At each iteration, one non-dominated route A Bdy y
ip  is 

selected from SE  in a first-in-first-out (FIFO) order for route extension. A temporary 

route is constructed by extending the selected route A Bdy y
ip  to its successor link whose 

end node is Ay  or By  ( Ay  for example here, and the temporary route is denoted as 

'A Bdy y
jp ). The dominant relationship between the newly generated route 'A Bdy y

jp  and the 
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set of non-dominated routes 'A Bdy yP  at nodes 'Ay  and By  is determined based on JATP 

dominant condition (Definition 1). If 'A Bdy y
jp  is a non-dominated route at nodes 'Ay  

and By , it is then inserted into 'A Bdy yP  and SE . As the newly generated route 'A Bdy y
jp  

may also dominate some routes in 'A Bdy yP , these dominated routes should be 

eliminated from 'A Bdy yP  and SE . The proposed algorithm continues the route 

searching process until SE  becomes empty. At the last step of this algorithm, the 

optimal JATP can be determined by choosing the route with the largest JATP utility. 

 

The detailed steps of the proposed algorithm for finding the optimal joint route in 

JATS super-network are listed as follows. 

Inputs: destination node d  

Returns: the optimal joint route in the JATS super-network (i.e. the optimal JATP) 

Step 1. Initialization: 

Create a route 
ddd
ip  from node d  to itself, and set 0, 0, 0

ddd ddd ddd
i i i

activity travel joint
p p pu disu disu  . 

Add 
ddd
ip  into label-vector dddP  and the list of candidate labels SE . 

Step 2. Label selection: 

Take label A B A Bdy y dy y
ip P  from SE  in FIFO order. If SE  , then go to Step 4; 

otherwise go to Step 3. 

Step 3. Route extension: 

If A By y (denoted as y  for uniformity), go to Step 3.1.; otherwise go to Step 3.2. 

Step 3.1. For every link a   (with start node x  ) whose end node is y : If link a  

is a meeting link, go to Step 3.1.1; If link a  is an activity/waiting link, go to Step 

3.1.2; If link a  is an in-vehicle/transfer link, go to Step 3.1.3. 
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Step 3.1.1. Find the corresponding meeting link 'a   (with start node 'x  ) of 

the other individual. Generate a new label 
' 'dxx dxx

jp P . Set 
'dxx dyy

j i
activity activity

p pu u , 

'dxx dyy
j i

travel travel

p pdisu disu  , and 
'dxx dyy

j i
joint jo

p
int

pdisu disu .  

Step 3.1.2. Generate a new label 
dxx dxx
jp P . Set 

dxx dyy
j i

activity a

p p
ctivity au u u  , 

dxx dyy
j i

travel travel

p pdisu disu  , and 
dxx dyy
j i

joint o

p p
j intdisu disu . 

Step 3.1.3. Generate a new label 
dxx dxx
jp P . Set 

dxx dyy
j i

activity activity

p pu u , 

dxx dyy
j i

travel travel a

p pdisu disu u   , and 
dxx dyy
j i

joint joint a

p pdisu disu u  . 

Step 3.2. For every link a  (with start node x  ) the end node of which is Ay  or 

By  (denoted as y  for uniformity), if link a  is an activity/waiting link, go to Step 

3.2.1; If link a  is an in-vehicle/transfer link, go to Step 3.2.2. 

Step 3.2.1. Generate a new label 
dxy dxy
jp P . Set 

dxy dyy
j i

activity a

p p
ctivity au u u  , 

dxy dyy
j i

travel travel

p pdisu disu  , and 
dxy dyy
j i

joint o

p p
j intdisu disu .  

Step 3.2.2. Generate a new label 
dxy dxy
jp P . Set 

dxy dyy
j i

activity activity

p pu u , 

dxy dyy
j i

travel travel a

p pdisu disu u   , and 
dxy dyy
j i

joint o

p p
j intdisu disu .  

If the new label 'dxx
jp  (or 

dxx
jp or 

dxy
jp ) is a non-dominated route under the JATP 

dominant condition, then insert the new label into 'dxxP  (or dxxP or dxyP ) and SE , 

and remove all routes dominated by the new label from 'dxxP  (or dxxP or dxyP ) and 

SE .  

Go back to Step 2. 

Step 4. Determine the optimal JATP with the largest JATP utility. Stop. 
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6.4.2 Solution algorithm for solving the UE problem 

In this section, a path-based solution algorithm is proposed for solving the UE 

problem by using the JATP searching algorithm proposed in Section 6.4.1. The path 

set (i.e. JATP set) is generated by the column generation technique using the JATP 

searching algorithm on a need basis. This avoids the burden of enumerating a pre-

defined set of JATPs. Most conventional solution algorithms cannot be used to solve 

the proposed UE model as it is difficult to determine the descent direction for solving 

the JATP scheduling problem in multi-modal transit network. The widely used method 

of successive average (MSA) is a heuristic method with a forced convergence 

property. Thus, a solution algorithm based on MSA is proposed for solving the JATP 

scheduling problem (Fu et al., 2014a).  

 

The UE solution accuracy level is measured by the relative gap RGAP  as 

/ .
p P

p pfRGAP GAP 


                                              (6.18) 

The GAP  in Equation (6.18) refers to Equation (6.16). The smaller RGAP  value 

indicates better approximation of the UE solution.  

 

The solution algorithm for solving the JATP scheduling problem is outlined as follows. 

Step 1. Transform the traditional multi-modal transit network into the JATS super 

network by using the JATS super-network expansion algorithm. 

Step 2. Initialization. Let 0n  . Call the JATP searching algorithm proposed in 

Section 6.4.1 to find the optimal path P   in the JATS super-network (i.e. 

JATP) with the largest JATP utility. Assign all individuals on  . Update link 

flows and link (dis-)utilities. 
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Step 3. Column generation. Call the JATP searching algorithm proposed in Section 

6.4.1 to find the optimal JATP P  . If   is larger than any p  in P , add   

into P . 

Step 4. Flow update. Perform an all-or-nothing assignment based on JATP utilities, 

and yield auxiliary JATP flows. Obtain updated JATP flows using an MSA 

process. Update link flows and link (dis-)utilities. 

Step 5. Convergence test. For an acceptable convergence level  , if RGAP  , stop. 

Otherwise let 1n n   and go back to Step 3.  

6.5 Numerical examples 

The point of the numerical examples is to illustrate: (a) application of the proposed 

model and solution algorithm; (b) the effects of joint travel benefit on individuals’ 

activity and travel choices. 

 

In this Chapter, the activity marginal utility function used in Chapters 4 and 5 is 

adopted. Table 6.1 shows the given parameters in the marginal utility function for the 

numerical examples in this Chapter. The value of time was HK$ 60.00/hour. Other 

parameters were set as 1 0.5,w    2 0.5,w  0.01  ,
a

' 0.001a  , 
a

' 2a  , 0.1b  , 

2b  .  

 

Table 6.1 Given parameters in the marginal utility function 

 
Work (A) 
(morning) 

Work (B) 
(morning) 

Work (A) 
(afternoon) 

Work (B) 
(morning) 

Home 
(morning) 

Home 
(afternoon) 

Shopping 

a

max
au

(HK$) 
1800 1700 1800 1700 1000 2500 800 

aa  600 600 900 900 360 1320 1140 

aa  0.021 0.021 0.021 0.021 0.0048 0.0048 0.018 
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aa  0.8 0.8 0.8 0.8 1.8 1.8 1 

 
 

6.5.1 A small network 

The study time period for the small example was from 5:00 p.m. to 7:00 p.m. and was 

equally divided into 12 intervals (i.e. 10 minutes per interval). Figure 6.5 depicts a 

simple multi-modal transit network. One subway line and two bus lines served in the 

network. Included are three nodes and three physical links. The three nodes represent 

three study zones: work place of individual A, work place of individual B, shop area. 

Three activities (i.e. work (A), work (B), shopping) can be performed at the respective 

three nodes. Link L2 is an overlapping link on which individuals can conduct joint 

travel. 

 
Figure 6.5 A small multi-modal transit network 

 

The travel time of bus link L1 was 20 minutes, and the travel time of bus link L2 was 

40 min. The travel time of using subway from node 1 to node 3 was the same as the 

time using bus. The bus fare was HK$ 2.00 per physical link. The subway fare was 

HK$ 12.00. The total household number in this small network was 2000.  

 

Figure 6.6 illustrates the representative JATP which most households choose under the 

UE condition. It is seen that using the proposed novel super-network, individuals’ 

independent and joint activity choices can be traced. Such choices include activity 

1 2 3
L1 (bus) L2 (bus)

L3 (subway)

work place of A work place of B shopping mall
overlapping link
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start/end time, independent and joint activity duration. Individuals’ independent and 

joint travel choices can also be found, such as departure time, route/mode choice, and 

meeting time/location. Figure 6.6(a) depicts the resultant JATP without considering 

joint travel benefit (i.e. 0cf  ) and Figure 6.6(b) illustrates the resultant JATP with 

consideration of joint travel benefit (i.e. 1cf  ). A comparison of these two JATPs 

indicates that without considering joint travel benefit explicitly, individuals tend to 

depart earlier after work (i.e. 17:00), and meet at shopping location after independent 

travels. It can be seen from Figure 6.6(b) that if joint travel benefit is considered, 

individual B’s work time is extended by about 20 min (i.e. the departure time changes 

from 17:00 to 17:20). Individual B waits individual A at the work place, and then they 

travel jointly to shop, hence obtaining maximum JATP utility. Figure 6.6 illustrates 

that individuals’ preference towards joint travel can be effectively captured by the 

proposed JATP scheduling model. Individuals’ travel and activity choices, including 

departure time, route choice, activity start time, and activity duration, are affected by 

JATP utility.  

 

            (a) conventional models                                         (b) proposed JATP scheduling model 
  (without considering joint travel benefit)                            (considering joint travel benefit) 

 
Figure 6.6 Comparison of JATP choice with and without considering joint travel benefit 

 

17:20
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1

Shop
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Shopping
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of B
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3

18:00

Work (B)

1

Shop

Shopping
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2

17:00

Work place 
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Work place 
of B

3

17:40
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Wait at
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The effects of in-vehicle travel time on travel choice are investigated by the proposed 

model as shown in Figure 6.7. In the small network, two individuals can conduct joint 

travel at overlapping link L2. The model results are compared by changing the travel 

time of the overlapping link. It can be seen from the figure that with the JATP 

scheduling model, the increase of link travel time has resulted in an increase in the 

number of people choosing joint travel. For example, if L2 link travel time is 20 min, 

about 52.17% people choose joint travel. If the travel time is 70 min, the percentage 

of joint travel increases to 63.70%. This is due to people can obtain much benefit from 

joint travel if the travel time is long.  

 

 

Figure 6.7 Effects of in-vehicle travel time on travel choice behaviour 

 
 

Table 6.2 shows the proportion of people choosing joint travel and average joint travel 

time and equilibrium JATP utility from tests with different commonality factor 

parameters ( cf ).  From the table, the higher the commonality factor parameter, the 
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larger the joint travel proportion and thus larger average joint travel time per person.  

0cf   indicates that joint travel benefit is not considered explicitly. With the 

increase of cf , the joint travel proportion increases from 2.27% to 99.00%, and the 

average joint travel time per person is from 0.9 min to 39.9 min. The equilibrium 

JATP utility is as large as HK$ 229.33 under 3cf 
 
compared to HK$168.46 under 

0cf  . This illustrates the benefits gained from joint travel decisions.  

 
Table 6.2 Joint travel choices under different commonality factors   

 Proportion of joint 
travel 

Average joint travel 
time per person 

Equilibrium JATP 
utility 

0cf   2.27% 0.9 min HK$ 168.46  

1cf   59.09% 23.6 min HK$ 194.05 

2cf   83.33% 33.3 min HK$ 214.18 

3cf   99.00% 39.9 min HK$ 229.33 

 
 

6.5.2 The Sioux-Falls network 

The proposed model and algorithm was also tested using the Sioux-Falls network, 

shown in Figure 6.8. The study period was from 6:00 a.m. to 9:00 p.m. Two 

assignments were conducted, one for the morning period and the other for the 

afternoon period. To reduce the size of super-network, in this example, it was 

assumed that individuals stayed at the work places from 10:00 a.m. until 5:00 p.m. 

The time interval was 10 min. Transit lines in the network were created based on 

some transit lines in Szeto and Jiang (2014).  Bus line number 10 in Szeto and Jiang 

(2014) was considered as a subway line in this Chapter. The headway of each transit 

line was two time intervals. The in-vehicle travel time of each physical link in the 

network was one time interval. The non-linear fares were set as: using less than or 
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equal to 4 physical links costs HK$ 5.00; using more than 4 physical links costs 

HK$ 8.00. The total household number in the network was 8000.  

 

 

Figure 6.8 Sioux-Falls network 
 

The convergence characteristics of the proposed UE solution algorithm are illustrated 

in Figure 6.9. It can be seen that the UE condition at the relative gap (as shown in 

Equation (6.18)) of 0.01 has been achieved within 100 iterations. This result indicates 

that the proposed MSA solution algorithm can solve the UE problem for this typical 

network with an acceptable accuracy level. 
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Figure 6.9 Convergence result for the Sioux-Falls network 
 

 

Figure 6.10 presents the temporal population distribution for different activities (home, 

work, and shopping) and travels (independent travel and joint travel) under four 

scenarios with different link travel times. Scenarios 1 and 3 are model results without 

considering joint travel benefit explicitly ( 0cf  ). Scenarios 2 and 4 are results with 

joint travel benefit ( 1cf  ). By comparing the four scenarios, it was found that under 

Scenario 2 and 4 (i.e. considering joint travel benefit), individuals tend to conduct 

joint travels (JT) to work in the morning and after work in the afternoon. The average 

daily joint travel time is 67.9 min per person under Scenario 1, compared to 122.2 min 

per person in Scenario 2.  

 

Comparing Scenario 2 to Scenario 1, more individuals conduct the shopping activity 

(S) jointly after work. However, it is noted that if traffic congestion on the network 

reaches the point of doubling all link travel times (Scenarios 3 and 4), individuals will 

leave home earlier in the morning, and in addition not conduct non-compulsory 

shopping to ensure they can return home as early as possible. Thus, previous activity-

travel scheduling models which do not explicitly consider joint travel benefit, may 
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underestimate individuals’ joint travel choices. Individuals’ departure times, activity 

start times and durations may also be biased. 

 

 

               Scenario 1:  Link travel time*1                                  Scenario 2:  Link travel time*1   
                  without joint travel benefit                 with joint travel benefit 
 

 

              Scenario 3:  Link travel time*2                                   Scenario 4:  Link travel time*2   
                  without joint travel benefit                 with joint travel benefit 
 

 W (work)      S (shopping)       H (home)      JT (joint travel)      IT (independent travel)        

 
Figure 6.10 Temporal population distributions under different link travel times with and 

without joint travel benefit 
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6.6 Summary 

The network equilibrium models proposed in Chapters 3, 4 and 5 are based on 

individual decision making without considering individuals’ joint decisions. This 

Chapter presents an activity-based network equilibrium model for scheduling two-

individual JATPs in congested multi-modal transit networks. The novel super-network 

platform introduced in Chapter 4 is extended to a JATS super-network for 

simultaneously addressing individuals’ independent and joint activities/travels. It is 

shown that the JATP scheduling problem can be converted into a static traffic 

assignment problem on the proposed JATS super-network. A solution algorithm 

without prior enumeration of JATPs is proposed for solving the JATP scheduling 

problem on the JATS super-network. Numerical results show that both individuals’ 

independent and joint activity/travel choices can be simultaneously investigated by 

the proposed model. Included are such as activity start time, activity duration, 

departure time of each person, independent and joint travel routes/modes.  

 

The benefit from joint travel is explicitly modelled in this Chapter by incorporating a 

commonality factor in JATP utility. It was found that the joint travel benefit 

significantly influences individuals’ activity/travel choices. If joint travel benefit is not 

considered, the investigation of individuals’ activity and travel choices (e.g. departure 

time, activity duration, joint/independent travel duration) would be biased. It is also 

found that the in-vehicle travel time also affects individuals’ JATP choice. People 

tend to conduct joint travel when the in-vehicle travel time is long. Further study is 

required for calibration of utility functions and the commonality factor with empirical 

data. 
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7 Conclusions 

In this Chapter, the key findings obtained from this research are summarized in 

Section 7.1.  Section 7.2 gives detailed research findings together with conclusions 

drawn. Recommendations for further study are given in Section 7.3. 

7.1 Summary of research findings 

In long-term strategic transport planning, network equilibrium models provide a 

promising avenue for a comprehensive understanding of individuals’ activity choices 

(e.g. activity sequence, activity start time, activity duration) and travel choices (e.g. 

departure time, route, mode) in congested multi-modal transport/transit networks. As 

a pioneering endeavour, this research has aimed to develop network equilibrium 

models to investigate simultaneously individuals’ activity and travel choice behaviour 

for long-term transport planning. In the proposed network equilibrium models, 

network congestion effects are explicitly considered such as crowding discomfort in 

vehicle, congestion effect of road traffic, and crowding at activity location.  

 

The research presented in this thesis contributes to current literature related to the 

topic concerned, in that a more comprehensive understanding of individuals’ activity 

and travel choice behaviour in congested multi-modal transport/transit networks is 

given. This research has generated several key findings and in particular, the work 

makes contributions to the advancement of knowledge in network equilibrium models 

for integrated modelling of the activity and travel choice behaviour in a consistent 

manner. The four research objectives outlined in Section 1.2 of Chapter 1 have been 
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addressed and achieved in this thesis. 

 

The first contribution of this research relates to Objective 1. A trip-based network 

equilibrium model is proposed to assess individuals’ travel choice behaviour in 

congested multi-modal transport networks under demand uncertainty (Chapter 3). It 

has been found that individuals’ route/mode choice and transfer behaviour are 

significantly affected by travel time uncertainty. Based on the knowledge that 

individuals’ activities form the underlying reasons for trip making, a second finding 

relates to Objective 2. It has been found that individuals’ activity and travel choice 

behaviour can be investigated simultaneously by extending the trip-based network 

equilibrium to the activity-based approach (Chapter 4). The proposed activity-based 

model for daily activity-travel pattern (DATP) scheduling problem can capture the 

interaction between activity and travel choices with taking account of crowding 

discomfort in transit vehicles for long-term transport planning.  

 

A third contribution relates to the Objective 3 that, adverse weather conditions can be 

successfully considered in the activity-based network equilibrium model proposed in 

Chapter 5. Impacts of adverse weather on the performance of different transit modes 

and the effects on the utility of various activities can be explicitly modelled. It is 

shown that individuals’ activity and travel choices might be biased without taking into 

account adverse weather conditions. The above one-individual network equilibrium is 

extended to a two-individual case for the achievement of Objective 4, which becomes 

the fourth contribution of this research. A network equilibrium model is proposed in 

Chapter 6 to solve the joint activity-travel pattern (JATP) scheduling problem. By the 

JATP scheduling model, individuals’ independent and joint activity/travel choices can 
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be simultaneously studied. The crowding effect at activity location is explicitly 

modelled. It is demonstrated that the estimation of individuals’ activity and travel 

choice behaviour is biased if the joint travel benefit is not taken into account.  

7.2 Detailed research findings 

In Chapter 3 of this thesis, individuals’ travel choice behaviour in multi-modal 

transport networks under demand uncertainty is investigated by a trip-based network 

equilibrium model. To capture travel choice behaviour under travel time uncertainty, a 

travel time budget is adapted and a reliability-based user equilibrium model is 

proposed. Passenger flows and generalized travel times of different transport modes 

are formulated as random variables to capture the impacts of demand uncertainty. The 

resultant network equilibrium model can take into account the congestion effect of 

each mode together with their inter-modal interactions. The probable transfers and the 

non-linear fare structures, involved in the multi-modal transport networks, are also 

explicitly modelled.  

 

A finding revealed by a numerical example indicates that expectation of on-time 

arrival is high, individuals tend to use the subway (e.g. the Mass Transit Railway in 

Hong Kong) and prefer not to change mode during their journey. It is also 

demonstrated that individuals’ travel choice behaviour is significantly affected by 

network congestion. Under severe traffic congestion, individuals tend to choose the 

more reliable subway mode which has an exclusive right-of-way without congestion 

interactions with other modes. 

 

To understand the motivation of trip making and the subsequent linkage between 
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activity and travel, the trip-based network equilibrium model proposed in Chapter 3 is 

extended in Chapter 4, to an activity-based model for solving the DATP scheduling 

problem in congested multi-modal transit networks. The stochastic effects of activity 

utility and travel dis-utility can be captured by proposing a concept of DATP budget 

utility. It is shown that the DATP scheduling problem can be converted into a static 

traffic assignment problem by proposing an activity-time-space super-network 

platform. The novel super-network platform contributes new knowledge on 

simultaneous investigation of individuals’ various activity and travel choices, such as 

time and space coordination, activity sequence, activity start time, activity duration, 

and route/mode choice.  

 

The contribution of the activity-based model proposed in Chapter 4 is revealed by 

numerical examples. It is demonstrated that the proposed activity-based model is able 

to investigate individuals’ DATP choice in multi-modal transit networks with taking 

account of in-vehicle crowding effect. One major finding is that, the uncertainty of 

activity utility has a significant influence on individuals’ activity and travel choices. 

Individuals’ attitudes toward compulsory and non-compulsory activities vary with 

their expectations of daily utility gain. Individuals would tend to use the subway mode 

when the in-vehicle crowding discomfort on the bus mode is increasing due to larger 

population in the study area with higher travel demand. This finding is consistent with 

the modal split result in Chapter 3. With a high expectation of daily utility gain, 

individuals conduct compulsory activities for a longer period (more than 13 hours) 

within a day rather than non-compulsory activities. If severe traffic congestion occurs 

in the network, individuals leave home early (i.e. 6:10 a.m.) in the morning and may 

not perform non-compulsory activities after work.  
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Based on the activity-based network equilibrium model in Chapter 4, a further 

extension for assessing the weather effects is presented in Chapter 5. An activity-

based model is proposed for scheduling DATPs under adverse weather conditions 

with different rainfall intensities. It is found that weather forecast information can be 

incorporated for solving the DATP scheduling problem. The proposed model 

contributes to long-term planning of multi-modal transit networks in cities with 

frequent rainy periods over the year. The impacts of adverse weather on the 

performance of different transit modes and the effects on the utility of various 

activities can be explicitly considered.  

 

A major finding revealed by numerical examples is that the model proposed in 

Chapter 5 can be used to investigate individuals’ DATPs and the weather effects on 

multi-modal transit networks. The numerical results highlight the key role of weather-

proof systems (i.e. subways) as the main transit mode under severe weather condition. 

The modal share for subways is as high as 42% under adverse weather condition 

compared to 18% under good weather environment. In addition, individuals’ attitudes 

towards compulsory and non-compulsory activities are varied and their DATP choices 

change according to the weather conditions. It is shown in the numerical example that 

both the carrying out of compulsory activities and the travel by subways may be 

underestimated if weather effects are not explicitly considered for long-term transit 

planning. From a good weather scenario to a severe weather scenario, the average 

duration of compulsory activities increases by about 2 hours and most individuals 

would cancel their non-compulsory activities. 
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The network equilibrium models proposed in Chapters 3, 4 and 5 are based on 

individual decision making. Note that individuals’ joint decisions are not explicitly 

considered. In Chapter 6, the above activity-based models for one-individual level are 

extended to consider the crowding at activity location for incorporating the impacts of 

activity location capacity for long-term strategic planning. The final contribution of 

this research is to propose another activity-based network equilibrium model for 

scheduling two-individual JATPs in multi-modal transit networks. It is demonstrated 

that the interdependence of individuals’ independent and joint activity/travel choices 

can be comprehensively investigated. In the proposed model for the JATP scheduling, 

the joint travel benefit is successfully modelled by incorporating a commonality factor 

in the JATP utility. By extending the activity-time-space super-network proposed in 

Chapter 4 to a joint-activity-time-space super-network platform, the time-dependent 

JATP choice problem can be converted into an equivalent static network equilibrium 

problem.  

 

Numerical examples are used to show the practicability and performance of the 

proposed model for JATP scheduling. The results illustrate that the individuals’ 

independent and joint activity/travel choices can be simultaneously investigated by 

the proposed model. It is shown that if the joint travel benefit is not considered, 

individuals’ daily joint travel time and joint shopping duration would be 

underestimated. The departure time of each trip and the start time of each activity are 

also likely to be biased. Another finding is the revelation of the role of in-vehicle 

travel time as a significant affecting factor in individuals’ joint travel choice. Long in-

vehicle travel time leads to a large percentage of individuals choosing joint travel.  
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7.3 Recommendations for further study 

This research covers a wide horizon in the area of modelling activity and travel choice 

behaviour using a network equilibrium approach, however, several related important 

issues and interesting questions merit further study. Some directions for further study 

are outlined below. 

 

 The proposed network equilibrium models (Chapters 3, 4, 5, and 6) in this 

research would benefit from the following important extension. Model 

calibration and validation with empirical data should be conducted. The 

activity-based network equilibrium models given in Chapters 4, 5, and 6, 

would especially benefit from the attempt to empirically measure the utility 

functions of different activities. 

 

  As the model assumptions adopted in this research may cause some potential 

biases, some of them merit being relaxed in further study. For example, in 

order to facilitate the presentation of the essential ideas, vehicle capacity 

constraints are not considered in this research. In some Asian cities, not all 

individuals are able to get on the first arrival transit vehicle during peak 

periods. Capacity constraints do exist and may result in crowding effects on 

transit systems. Thus, the incorporation of capacity constraints is an important 

issue for further research. 

 

 By using the proposed novel super-network platforms in Chapters 4, 5, and 6, 

activities in different time periods, route and mode choice can be 
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automatically captured. However, the construction of the novel complicated 

super-network platforms presents difficulties in using this approach. When 

constructing the novel super-network platforms, activity links for each time 

period should be included, with travel links built with different start times for 

each mode, and all probable transfers defined. The super-network construction 

results in a huge complicated network to represent a multi-modal transport 

network which, initially, was one of a relatively small size. Thus, the reduction 

of the size of the super-network and the development of efficient solution 

algorithms are worthy of further study. Activity time windows can be pre-

determined and fixed, and uneven time periods can be specified for different 

activities so as to reduce the network size. Efficient solution algorithms should 

also be examined for solving the network equilibrium models in real-size 

transport networks. 

 
 The proposed activity-based models for multi-modal transit networks in 

Chapters 4, 5, and 6 should be extended to multi-modal transport networks 

with inclusion of road networks. In order to investigate the effects of road 

congestion of the DATP/JATP scheduling problem, further work is required 

for consideration of road congestion and travel time variation in advanced 

activity-based network equilibrium models. 

 

 This thesis contributes to the literature on the simultaneous modelling of 

individuals’ activity and travel choice behaviour. The new approach can be 

used to assess the impacts of land use and network changes not just on travel 

choices only, but also on activity choices in which activity sequence and 

duration can be changed. The proposed models could be extended to enable 
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evaluation and assessment of various transport planning policies and 

infrastructure projects on activity choice behaviour. Based on the research 

presented in this thesis, it can be acknowledged that activity-based bi-level 

programming models could be developed for government’s policy 

optimization. Various optimization models such as sustainable land use and 

transport optimization problems could be considered as the upper level. The 

network equilibrium models presented in this thesis could be adapted as the 

lower level to model individuals’ activity and travel choice behaviour when 

the land use and transport plan is given. 
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APPENDIX A 

The detailed manipulations on deducing Equations (3.38) and (3.39) are given in this 

appendix. 

 

Substituting Equation (3.30) in Equation (3.37) gives the following equation. 
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vv xN x  . Then, following equations can be obtained. 
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Particularly, the manipulations of  2E A  and 2[ ]Var A  are similar to the detailed 

manipulations of  2E I  and 2[ ]Var I  in Appendix B. 
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For simplicity, it is assumed that 2A  and 3A  are mutually independent. Then, 

Equations (3.38) and (3.39) can be obtained as follows.  
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APPENDIX B 

The detailed manipulations on deducing Equations (3.49) and (3.50) are given as 

follows. 

 

Substituting Equation (3.30) in Equation (3.43) gives the following equation. 
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According to the MathWorld website (Weisstein, 2005), it follows that 
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Therefore, Equations (3.47) and (3.48) can be obtained by the following equations. 
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