

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

ANSWERING WHY-NOT QUESTIONS ON

PREFERENCE QUERIES

ZHIAN HE

Ph.D

The Hong Kong Polytechnic University

2015

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

The Hong Kong Polytechnic University

Department of Computing

Answering Why-Not Questions on Preference Queries

Zhian He

A thesis submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Dec 2014

CERTIFICATE OF

ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

. .

Zhian He

Dec 2014

i

ii

Abstract

After decades of effort working on database performance, the quality and

the usability of database systems have received more attention in recent years.

Among all the studies that focus on improving databases’ usability, the feature of

explaining missing tuples in a query result, or the so-called “why-not” questions,

has recently become an active topic. When using database system, users may

sometimes feel frustrated if they find their expected tuples are not in the query

results; and intuitively, they will ask “why are my expected tuples not in the

results?” If a database system can give a good explanation for it, it would be

very useful for users to understand and refine their queries.

In this dissertation, we study the problem of answering why-not questions

on preference queries. Our motivation is that we know many users love to pose

this kinds of queries when they are making multi-criteria decisions. However,

they would also want to know why if their expected answers do not show up

in the query results. Therefore, we select three important kinds of preference

queries (namely, top-k queries, top-k SQL queries and dominating queries) and

develop algorithms to answer such “why-not” questions on each of them.

iii

iv

List of Publications

• Zhian He, Eric Lo. Answering Why-Not Questions on Top-k Queries. Pro-

ceedings of the 28nd IEEE International Conference on Data Engineering,

ICDE 2012. (Selected as Bests of ICDE 2012)

• Zhian He, Petrie Wong, Ben Kao, Eric Lo, Reynold Cheng. Fast Evalua-

tion of Iceberg Pattern-based Aggregate Queries. Proceedings of the 22nd

ACM International Conference on Information and Knowledge Manage-

ment, CIKM 2013.

• Petrie Wong, Zhian He, Eric Lo. Parallel Analytics as a Service. Proceed-

ings of the ACM SIGMOD International Conference on Management of

Data, SIGMOD 2013.

• Zhian He, Eric Lo. Answering Why-Not Questions on Top-k Queries. IEEE

Transactions on Knowledge and Data Engineering, vol. 26, no. 6, pp.

1300-1315, June 2014.

• Petrie Wong, Zhian He, Feng Ziqiang, Wenjian Xu and Eric Lo. Thrifty:

Offering Parallel Database as a Service using the Shared-Process Approach.

Proceedings of the ACM SIGMOD International Conference on Manage-

v

vi

ment of Data, SIGMOD 2015.

• Wai Kit Wong, Zhian He, Ben Kao , David W. Cheung, Rongbin Li, Siu

Ming Yiu and Eric Lo. SDB: A Secure Query Processing System with Data

Interoperability. (Submitted to VLDB 2015).

• Zhian He, Petrie Wong, Zhiqiang Feng, Ben Kao, Eric Lo, Reynold Cheng,

Tatiana Aldyn-ool. IPBA: A System for Fast Evaluation of Iceberg Pattern-

based Aggregate Queries. (Submitted to TKDE).

• Wenjian Xu, Zhian He, Eric Lo, Chi Yin Chow. Explaining Missing An-

swers to Top-k SQL Queries. (Submitted to TKDE).

Acknowledgements

It is a pleasure to thank the many people who helped me a lot during my

PhD study.

It is difficult to overstate my gratitude to my PhD supervisor, Dr. Eric Lo.

With his enthusiasm, his inspiration, his patience and his great efforts to explain

things clearly and simply, he helped to make my research work more fun to me.

His way to thinking and problem solving always inspired me. Throughout my

thesis-writing period, he provided encouragement, sound advice, good teaching,

and lots of good ideas. I would have been lost without him.

My parents have been a constant source of support − emotional and moral −

during my postgraduate years, and this thesis would certainly not have existed

without them. One of the most important persons who has been with me in

every moment of my PhD work is my wife Shelly. I would like to thank her

for the many sacrifices she has made to support me in undertaking my doctoral

studies. Especially in those days that I was in bad physical condition. Without

her careful tending and encouragement, I cannot carry through the work to the

end.

I also thank Dr. Ben Kao, Dr. Shivnath Babu, and Dr. Ken Yiu, who have

vii

viii

guided me a lot in the way of doing research.

I am indebted to my many colleagues for providing a stimulating and joyful

environment learning and growing. I am especially grateful to Ming-Hay Luk,

Duncan Yung, Jianguo Wang, Yuanyuan Wang, Zhizhao Feng, Victor Liang,

Jeppe Thomsen, Yu Li, Petrie Wong, Qiang Zhang, Ziqiang Feng, Bob Tong,

Capital Li, Wenjian Xu, Chuanfei Xu, Bai Ran. Wenjian was particular helpful

in running some parts of the experiments in this thesis.

Contents

Declaration i

Abstract iii

List of Publications v

Acknowledgements vii

Contents ix

List of Figures xiii

1 Introduction 1

1.1 Why-Not Top-K Question . 3

1.2 Why-Not Top-K SQL Question 4

1.3 Why-Not Dominating Question 5

1.4 Dissertation Outline . 6

ix

x CONTENTS

2 Literature Review 9

3 Why-Not Top-K Question 19

3.1 Preliminary . 20

3.1.1 Problem Statement . 20

3.1.2 Problem Analysis . 24

3.2 Methodology . 27

3.2.1 Basic Idea . 27

3.2.2 Where to get weighting vectors? 28

3.2.3 How large the list of weighting vectors should be? 35

3.2.4 Algorithm . 36

3.2.5 Multiple Missing Objects 44

3.3 Experiments . 46

3.3.1 Case Study . 46

3.3.2 Performance . 50

3.4 Chapter Summary . 57

4 Why-Not Top-K SQL Question 59

4.1 Why-Not Top-K SPJ Question 61

4.1.1 The Problem and The Explanation Model 62

CONTENTS xi

4.1.2 Problem Analysis . 69

4.1.3 The Solution . 69

4.2 Why-Not Top-K SPJA Question 82

4.2.1 The Problem and The Explanation Model 84

4.2.2 Problem Analysis . 85

4.2.3 The Solution . 85

4.3 Experiments . 86

4.3.1 Case Study . 87

4.3.2 Performance . 92

4.4 Chapter Summary . 99

5 Why-Not Dominating Question 101

5.1 Preliminary . 102

5.1.1 Problem Statement . 102

5.1.2 Problem Analysis . 103

5.2 Methodology . 105

5.2.1 Basic Idea . 105

5.2.2 Where to draw sample values? 106

5.2.3 How large the list of sample values should be? 109

5.2.4 Algorithm . 109

xii CONTENTS

5.2.5 Multiple Missing Objects 113

5.3 Experiments . 115

5.3.1 Case Study . 116

5.3.2 Performance . 118

5.4 Chapter Summary . 126

6 Conclusion 127

6.1 Contribution . 127

6.2 Possibilities for Future Work . 129

Bibliography 131

List of Figures

2.1 An example query to find all employees in the HR department

having salary larger than Peter. 11

2.2 Table Player adopted from [35] 13

2.3 Table Regular adopted from [35] 13

2.4 Player on Regular . 14

2.5 An example data set for why-not reverse skyline. 15

2.6 An example data set for reverse top-k. 18

3.1 A multiple-choice question for freeing users to specify λk and λw 23

3.2 A 2-D example . 23

3.3 Convex polytopes for ~m shown under the weighting space 34

3.4 Example of answer space . 39

3.5 Varying data size . 51

(a) Uniform Data . 51

xiii

xiv LIST OF FIGURES

(b) Anti-correlated Data . 51

3.6 Varying query dimension . 51

(a) Uniform Data . 51

(b) Anti-correlated Data . 51

3.7 Varying ko . 52

(a) Uniform Data . 52

(b) Anti-correlated Data . 52

3.8 Varying the ranking of the missing object 53

(a) Uniform Data . 53

(b) Anti-correlated Data . 53

3.9 Varying |M | . 54

(a) Uniform Data . 54

(b) Anti-correlated Data . 54

3.10 Varying T% . 55

(a) Uniform Data . 55

(b) Anti-correlated Data . 55

(c) Uniform Data . 55

(d) Anti-correlated Data . 55

3.11 Varying Pr . 56

LIST OF FIGURES xv

(a) Uniform Data . 56

(b) Anti-correlated Data . 56

(c) Uniform Data . 56

(d) Anti-correlated Data . 56

3.12 Pruning Effectiveness . 57

(a) Uniform Data . 57

(b) Anti-correlated Data . 57

4.1 Motivation Example . 60

4.2 Running example: data set D . 64

4.3 T1 on T2 ranked under ~wo = |0.5 0.5| 65

4.4 A multiple-choice question for freeing users to specify λspj , λk

and λw . 68

4.5 Example of answer space under selection condition sel1 76

4.6 Schema of the NBA data set . 87

4.7 Effectiveness of optimization techniques 95

4.8 Varying parameters . 95

4.9 Varying parameters . 96

4.10 Varying parameters . 97

4.11 Varying T% or Pr . 98

xvi LIST OF FIGURES

(a) Running Time . 98

(b) Penalty . 98

(c) Running Time . 98

(d) Penalty . 98

5.1 An example data space with grids 104

5.2 Restricted sample space Rs . 107

5.3 Example of answer space . 111

5.4 Varying data size vs. Time . 119

(a) Uniform Data . 119

(b) Anti-correlated Data . 119

5.5 Varying query dimension vs. Time 120

(a) Uniform Data . 120

(b) Anti-correlated Data . 120

5.6 Varying ko vs. Time . 121

(a) Uniform Data . 121

(b) Anti-correlated Data . 121

5.7 Varying the ranking of the missing object vs. Time 121

(a) Uniform Data . 121

(b) Anti-correlated Data . 121

LIST OF FIGURES xvii

5.8 Varying |M | vs. Time . 122

(a) Uniform Data . 122

(b) Anti-correlated Data . 122

5.9 Varying T% vs. Time/Penalty 123

(a) T% vs. Time (Uniform) 123

(b) T% vs. Time (Anti-correlated) 123

(c) T% vs. Penalty (Uniform) 123

(d) T% vs. Penalty (Anti-correlated) 123

5.10 Varying Pr . 124

(a) Pr vs. Time (Uniform) 124

(b) Pr vs. Time (Anti-correlated) 124

(c) Pr vs. Penalty (Uniform) 124

(d) Pr vs. Penalty (Anti-correlated) 124

5.11 Optimization Effectiveness . 125

(a) Uniform Data . 125

(b) Anti-correlated Data . 125

xviii LIST OF FIGURES

Chapter 1

Introduction

After decades of effort working on database performance, recently the database

research community has paid more attention to the issue of database usabil-

ity [23], i.e., how to make database systems and database applications more user

friendly? For example, to help end users query the database more easily, the

features of keyword search [2, 17, 26] or form-based search [37] could be added

to a database system to assist users to find their desired results. As another

example, the features of query recommendation [3] or query autocompletion [30]

could be added to a database system in order to help users to formulate SQL

queries. Among all the studies that focus on improving database usability (e.g.,

SQL query auto-completion), the feature of explaining why some expected tu-

ples are missing in a query result, or the so-called “why-not?” feature, is gaining

momentum.

A why-not question is being posed to a database when a user wants to know

why her expected tuples do not show up in the query result. Currently, end

1

2

users cannot directly sift through the dataset to determine “why-not?” because

the query interface (e.g., web forms) restricts the types of query that they can

express. When end users query the data through a database application and ask

“why-not?” but do not find any means to get an explanation through the query

interface, that would easily cause them to throw up their hands and walk away

from the tool forever — the worst result that nobody, especially the database

application developers who have spent months to build the database applications,

want to see. Unfortunately, supporting the feature of why-not requires deep

knowledge of various database query evaluation algorithms, which is beyond the

capabilities of most database application developers. In view of this, recently,

the database community has started to research techniques to answer why-not

questions.

A few recent works have discussed techniques for answering why-not ques-

tions. So far, they have focused on SPJUA (Select+Project+Join+Union+Aggregate)

queries and they cannot be used to answer why-not questions on preference

queries. Faced with information overload, preference queries have been intro-

duced to database systems to present users with the most preferred answers,

instead of all the answers. Preference queries are useful in multi-criteria anal-

ysis and users would also ask “why-not?” in case their preferred answers are

missing in the result. Unfortunately, techniques for answering why-not questions

on SPJUA queries are insufficient for answering why-not questions on preference

queries. In a preference query, a tuple can be included in the final result only

when it can “beat” many other tuples in the database through tuple-to-tuple

comparisons. In contrast, in a SPJUA query, whether a tuple can be included in

the final result mainly depends on whether it can pass through the query predi-

CHAPTER 1. INTRODUCTION 3

cates, which is independent of most other tuples. The difference between the two

answer spaces voids the use of existing techniques to answer why-not questions

on preference queries — that signifies that there is a technology gap between

why-not preference query processing and why-not SPJUA query processing.

In this dissertation, we want to remove the above technology gap by propos-

ing techniques to answer why-not questions on preference queries. Specifically, we

have selected the three most representative kinds of preference queries, namely,

top-k queries, top-k SQL queries and dominating queries to be included in our

study. There are three main challenges when explaining why-not questions on

preference queries. The first challenge is “what should the answer of a why-not

question on preference query (i.e., the explanation) look like?” One possible ex-

planation type is “explain-by-query-refinement” — teaching the end user how to

refine her query such that the missing tuple can go back to the result. The sec-

ond challenge is: “what is a good explanation and how to obtain that efficiently

(i.e., short running time)?” We address this by first understanding the problem

complexity and then devising the corresponding algorithms. The third challenge

is: “how to evaluate our proposed solutions for this new kind of problem?” We

address this challenge by devising an evaluation metric and implementing our

proposed solutions as a prototype, and using that for evaluation.

1.1 Why-Not Top-K Question

The first part of the dissertation is devoted to answering why-not questions

on top-k queries. In a top-k query [20], a user needs to specify the k value and

also a set of weightings ~w on the scoring attributes, such that only the top-k

4 1.2. WHY-NOT TOP-K SQL QUESTION

objects are returned based on their ranking scores. A “why-not” question on a

top-k query is asking why a specific object is not in the top-k result. In fact,

answering why-not questions on top-k queries is very useful because while users

love to use top-k queries when making multi-criteria decisions, they often feel

frustrated when they are forced to quantify their preferences as a set of numeric

weightings. Moreover, they would feel even more frustrated when their expected

answers are missing in the query result.

For instance, a customer Mary is going to Paris for a holiday, and this is her

first time to be there, so she needs to choose a hotel carefully from a list of hotels

in Paris. Yet, the list is so long to read, therefore, Mary decides to look at the top-

3 hotels based on a set of weightings she sets on the attributes “Price”, “Distance-

to-Downtown”, and “Rating-by-other-customers”. To her surprise, hotel Hilton,

which is very famous around the world, and Mary’s favourite, is not in the

result. Now, Mary may feel frustrated: “Why is my favourite hotel not in the

top-3 result? Is that because there is no Hilton Hotel in Paris? Should I revise

my weightings? Or my Hilton Hotel can be back to result if I simply revise my

query to look for top-5 hotels instead of top-3 hotels?” Chapter 3 is dedicated to

answering why-not questions on this kind of queries.

1.2 Why-Not Top-K SQL Question

The second part of the dissertation is devoted to answering why-not top-k

questions in the context of SQL. Specifically, a top-k query in SQL [21, 22, 25]

appears as:

SELECT A1, . . ., Am, agg(·)

CHAPTER 1. INTRODUCTION 5

FROM T1, . . . Tk,

WHERE P1 AND . . . AND Pn

GROUP BY A1, . . ., Am,

ORDER BY f(~w)

LIMIT k

where each Pi is either a selection predicate “Ai op v” or a join predicate

“Aj op Ak”, where Ai is an attribute, v is a constant, and op is a compari-

son operator. Besides, agg(·) is an aggregation function and f(~w) is a ranking

function with weighting vector ~w. The weighting vector represents the user pref-

erence when making multi-criteria decisions.

There could be many reasons that the expected tuple is not in the top-k

SQL result. It may be the k value is too small, or the weighting ~w favours other

tuples rather than the expected one, or the selection condition is too restricted

such that the expected tuple is filtered.

Compared with answering why-not top-k questions, answering why-not ques-

tions on top-k SQL queries is more challenging, since the additional SQL con-

structs such as selection, projection, join and aggregation could complicate the

solution space. We solve this problem in Chapter 4.

1.3 Why-Not Dominating Question

The last part of the dissertation is to answer the same questions on the top-k

dominating queries. Top-k dominating queries [38], or simply dominating queries,

is a variant of top-k query that users may pose why-not questions on. While a

6 1.4. DISSERTATION OUTLINE

dominating query frees users from specifying the set of weightings by ranking the

objects based on the number of (other) objects that they could dominate (e.g.,

if object x dominates1 nine objects while object y dominates four objects, then

x ranks higher than y), users may still want to know why their expected answers

not in the query result. For example, the manager of a car brand may pose a

top-3 dominating query about the best car models in the market. When there is

no car of his brand in the result, she may want to know the reason.

The easiest way to make the missing object appear in the result is to increase

the k value. This, however, is not enough to provide a good explanation. For

example, in the above query, we may need to significantly increase the k value

from 3 to 10000 to make the missing car model back to the result. On the

contrary, the missing car model may be easily back to the top-3 result if we just

slightly modify the values of it, e.g., decreasing its price a little bit. This kind of

explanation is more useful for the manager to develop her marketing strategy.

In Chapter 5, we propose a hybrid explanation model (combining query-

refinement and data-refinement) that modifies both the k value and the values

of the missing objects to answer the why-not question on dominating queries.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 presents the

literature review. Chapter 3, Chapter 4 and Chapter 5 respectively present (i)

the problem formulation, (ii) the problem analysis, (iii) the algorithms of an-

1The notion of dominance follows the tradition [7] in which an object a dominates b if all
attribute values of a are no worse than all attributes of b and at least one attribute of a is better
than b.

CHAPTER 1. INTRODUCTION 7

swering why-not questions and (iv) cases studies and the experimental results on

answering why-not questions on top-k queries, top-k SQL queries and dominating

queries. Chapter 6 concludes the dissertation.

8 1.4. DISSERTATION OUTLINE

Chapter 2

Literature Review

Early works [28, 29] discussed mechanisms for explaining an empty answer

for a database query. It points out that most database research mainly focuses on

the performance issues, while the user experience of interaction between human

and DBMS has not received enough attention. Especially, they all lack the ability

to provide explanations to the user when her query returns an empty answer.

Experience shows that empty answers are quite often interpreted by users as

indication of mistakes. This happens when the user believes that the query should

have matched some data, and therefore concludes that something goes wrong. If

that is the case, she may react to check if there are any misspelled names in her

query, or operations used incorrectly. She may also just conclude that she has

insufficient understanding of the database. No matter in which case, the user

interprets such empty answer as “mistake messages”. Consequently, the user

may end up trying different versions of this query in an attempt to understand

the reason for its failure. This kind of frustrated experience is not uncommon

9

10

for many database users. Therefore, providing an explanation to empty answer

is able to improve the user experience a lot. To handled that, [28, 29] propose

to give an explanation by providing a set of more generalized queries than the

original one to the user. For example, if the query: (Q1) select * from employee

where gender=female and salary > 30000 returns an empty answer, DBMS may

explain it by providing a more generalized query: (Q2) select * from employee

where salary > 30000. The principle behind is that the original query formulated

by the user is meaningful and expresses her intention. For example, she may

believe that there are female employees who earn more than 30000 (otherwise

why bother asked). Therefore, it is reasonable to assume that this user is even

more confident that some employee (either males or females) indeed earn more

than 30000. In other words, while the first query conveys the conceptions of the

user about the database with some uncertainty, its more general queries convey

user conceptions with a greater degree of confidence. As the first few attempts

to explain empty answers to the user, the work in [28,29] is simple but useful.

Name Department Age Salary

Henry IT 25 20000

Tom Financial 34 34000

Peter HR 27 10000

Mary HR 27 30000

Sam HR 20 9000

Ken Sales 34 40000

Table 2.1. An example table: Employee

The concept of why-not was first formally discussed in [9]. Different from [28,

29] that focus on empty answers, a why-not question is more general. Specifically,

the user may ask why a specific tuple is not in the query result even if the result

is nonempty. As the first work, it proposes the operator-identifying approach to

CHAPTER 2. LITERATURE REVIEW 11

Name=”Peter” Department=”HR”

Employee a Employee b

a.Salary<b.Salary

Name

Figure 2.1. An example query to find all employees in the HR department having
salary larger than Peter.

answer a user’s why-not question on Select-Project-Join (SPJ) queries by telling

her which query operator(s) eliminate her desired tuples. It is useful for the

user to better understand the data behind and also further debug her query if

necessary. Techniques in this work are designed for relational/workflow queries,

and they draw heavily upon the formalisms and concepts of lineage set out

by [1,13,14]. Table 2.1 shows an example employee table. It is used to illustrate

the main idea in [9]. Assume a user issues the query (represented by a logical

tree) in Figure 2.1, which aims to find all employees in the HR department having

salary larger than Peter. The query result is {Mary}. The user wonders why

Sam is not in the result. In this case, the method in [9] identifies that actually

the Join operator eliminates her expected tuple, which implies that Sam does

not have salary larger than Peter. If another user asks why Henry is not in

the result, the explanation will return the selection operator on the right hand

side. The user can interpret that there is no person named Henry in the “HR”

department.

12

UID1 UID2

U1 U2

U2 U3

Table 2.2. Table Friend adopted from [18]

UID Email Name

U1 john@univ.edu John

U2 jane@busy.com Jane

U3 peter@home.de Peter

Table 2.3. Table User adopted from [18]

After [9], this line of work has gradually expanded. In [19] and [18], the

missing answers of SPJ [19] and SPJUA (SPJ + Union + Aggregation) queries

[18] are explained by a data-refinement approach, i.e., tells the user how the data

should be modified (e.g., adding a tuple) if she wants the missing answer back to

the result. Consider two example tables Friend and User shown in Tables 2.2

and 2.3 adopted from [18]. A user may wonder why Peter is not a friend of John.

A possible explanation is to add a new tuple (U1, U3) in the Friend table. In

fact, there could be many other ways to create new tuples to answer the why-not

question. [19] and [18] propose to find the explanation with the minimal changes

of the database. For example, in [18], the method proposed first computes some

possible ways of tuple insertions such that the missing answer(s) appear in the

result when issuing the original query on the modified database. Then, it tries

its best to prune redundant solutions such that the number of inserted tuples are

as less as possible.

Following the above works, [35] proposes a new query-refinement approach

to answer why-not question on SPJA queries. This approach explains the why-

not question by telling the user how to revise her original SPJA queries so that

CHAPTER 2. LITERATURE REVIEW 13

the missing answers can appear in the result. They define that a good refined

query should be (a) similar — have few “edits” comparing with the original

query (e.g., modifying the constant value in a selection predicate is a type of

edit; adding/removing a join predicate is another type of edit) and (b) precise

— have few extra tuples in the result, except the original result plus the missing

tuples. To illustrate their idea, an example is given as below.

pID name

P1 “A”

P2 “B”

P3 “C”

P4 “D”

P5 “E”

Figure 2.2. Table Player adopted from [35]

pID team year points block steal rebound

P1 GSW 1993 2000 30 150 40

P2 SWA 1994 1600 35 200 281

P2 SEA 1995 1500 40 240 339

P3 CHI 1996 2500 45 250 361

P4 LAL 1997 1700 30 190 359

Figure 2.3. Table Regular adopted from [35]

Figure 2.2 and Figure 2.3 show a basketball data set. Assume a user want to

find players who have “block” statistics no greater than 30 and “steal” statistics

no greater than 150:

SELECT name

FROM Player P, Regular R

WHERE P.pID = R.pID and block ≤ 30 and steal ≤ 150

Referring to the join result of tables Player and Regular in Figure 2.4 , the

output includes only one player “A”. The user may wonder why player “B” is

14

pID name team year points block steal rebound

P1 “A” GSW 1993 2000 30 150 40

P2 “B” SWA 1994 1600 35 200 281

P2 “B” SEA 1995 1500 40 240 339

P3 “C” CHI 1996 2500 45 250 361

P4 “D” LAL 1997 1700 30 190 359

Figure 2.4. Player on Regular

not in the result. The following are two candidate refined queries that [35] will

return to the user:

Q1:

SELECT name

FROM Player P, Regular R

WHERE P.pID = R.pID and block ≤ 35 and steal ≤ 200

Q2:

SELECT name

FROM Player P, Regular R

WHERE P.pID = R.pID and block ≤ 35 and steal ≤ 200 and year ≤ 1994

The results of Q1 and Q2 are {A,B,D} and {A,B} respectively. Both of these

refined queries are considered to be good, because Q1 does the minimal and

essential refinement to include “B” that only changes two constants. Compared

with Q1, although Q2 adds one more predicate, its result contains no extra

tuples.

It turns out that the query-refinement approach is more useful than the

operator-identifying approach. Beyond merely identifying the culprit operator,

the query-refinement approach can actually suggest one or more ways to “fix”

CHAPTER 2. LITERATURE REVIEW 15

the original query such that the missing tuple(s) become present in the result.

Besides, it is more useful than the data-refinement approach for those cases that

the database is trusted and modifying the underlying data is meaningless (e.g.,

enterprise databases). Therefore, we adopt this approach in our problem.

p1

p2

d[1]

d[2]

0

p3

q

p1

p2

d[1]

d[2]

0

p3

qp’1

(a) (b)

p*3

p*3

Figure 2.5. An example data set for why-not reverse skyline.

A recent work [27] is about answering why-not questions on reverse skyline

queries, which is a special kind of preference queries. Given a set of data points D

and a query point q, the dynamic skyline [31] of a data point p ∈ D is the skyline

of a transformed data space using p as the origin and the reverse skyline [15]

returns the objects whose dynamic skyline contains the query point q. The why-

not question to a reverse skyline query then asks about why a specific data point

p ∈ D is not in the reverse skyline of q. In [27], explanations using both data-

refinement and query-refinement are discussed. In the data-refinement approach,

the explanation is based on modifying the value of p such that p appears in

the reverse skyline of q. In the query-refinement approach, the explanation is

based on the modifying the query point q until p is in its reverse skyline. We

illustrate their idea with an example. Figure 2.5(a) shows a set of data points

16

D = {p1, p2, p3} and a query point q. The dynamic skyline of p1 are p2 and p3,

while q is not the dynamic skyline of p1 since it is dominated by p∗3 (it is the

transformed point of p3 in the transformed data space using p1 as the origin). So,

p1 is not in the reverse skyline of q. Figure 2.5(b) shows an example modification

based on data-refinement proposed in [27]. After modify p1 to p′1, q appears to

be the dynamic skyline of p′1. Among all the possible modifications, [27] proposes

to find the minimal one in terms of the value changes.

The latest work [11] is about answering why-not questions on spatial key-

word top-k queries. Given a spatial location loc and a set of keywords doc, a

top-k spatial keyword query [12], denoted by q(loc, doc, k, ~w), returns the k best

spatio-textual objects ranked according to their spatial distance to loc and tex-

tual similarity to doc, where ~w = |ws wt| is the weighting vector on the user’s

preference between spatial distance and textual similarity. Thus, the score of an

object o can be calculated by the following equation:

Score(o, ~w) = ws · (1− SpatialDist(o, loc)) + wt · TextSim(o, doc) (2.1)

, where the spatial distance SpatialDist between two objects is normalized to

the range [0,1].

The why-not question then ask why a specific object m is missing in the

result of q(loc, doc, k, ~w). To answer such a question, [11] adopts the query-

refinement approach to modify the value k and ~w at the same time, such that m

appears in the refined top-k spatial keyword query q′(loc, doc, k′, ~w′). Though it

is similar to our why-not top-k problem, however, the method proposed in [11]

only works for two dimensional weightings.

CHAPTER 2. LITERATURE REVIEW 17

Beyond database queries, the why-not semantic has been extended to social

image search [6], where images are socially tagged by their uploaders or viewers.

The input of the social image search is a query Q with a set of keywords e.g.

(“football”, “apple”). Then, a search engine is responsible to return a list of

images where the images annotated with the most relevant tags to the query are

ranked higher. The why-not question then asks why images with a specific tag

tm are too few or even missing in the result. [6] proposes to relax the query by

deleting some selective keywords in Q that are responsible for filtering majority

of the relevant images related to tm.

There are other related works about improving the usability of preference

queries in the absence of why-not context. For example, in [39], they help users

to quantify their preferences as a set of weightings. Its solution is based on

presenting users a set of objects to choose, and try to infer the users’ weightings

based on the objects that they have chosen. In the why-not paradigm, users are

quite clear with which are the missing objects and our job is to explain to them

why those objects are missing. Technically speaking, the problem of answering

why-not questions on preference queries like top-k queries has the challenges that

we have to consider the alternation of both k and/or weightings and how to make

a good balance between them using an efficient algorithm.

weighting top-3 results

~w1 = |0.3 0.7| {p1, p2, p}
~w2 = |0.5 0.5| {p1, p2, p3}
~w3 = |0.8 0.2| {p1, p3, p}

Table 2.4. An example candidate weighting set W

Another such related work is reverse top-k queries [36]. A reverse top-k

query takes as input a top-k query, an existing object p, and a set of candidate

18

p3(2,5)

p1(2,5)

p(4,4)

p2(5,2)

d[1]

p4(6,6)
d[2]

0

Figure 2.6. An example data set for reverse top-k.

weightings W . The output is a weighting ~w ∈ W that makes p in its top-k

result. Figure 2.6 shows an example data set with five data points including

the object p. Assume the user issues a top-3 query and a smaller score means

a better ranking, then among the set of candidate weightings shown in Table

2.4, the result of reverse top-3 are weightings ~w1 and ~w3. Two solutions are

given in [36]. The first one insists users to provide W as input, which slightly

limits its practicability. The second one does not require users to provide W ,

however, it only works when the top-k queries involve two attributes. Although

the problems look similar, why-not questions on preference queries indeed does

not require users to provideW . Furthermore, the problem of reverse top-k queries

considers the alternation of weightings only. Answering why-not questions on

preference queries, like top-k queries, in contrast, considers both the alternation

of k and/or weightings. More importantly, our solution can practically solve the

problem without any limitation.

Chapter 3

Why-Not Top-K Question

In this chapter, we present methods to answer why-not questions on top-k

queries. We follow the latest query-refinement [35] approach that suggests users

how to refine their top-k query in order to get their expected answers back. Note

that the result of a top-k query depends on two sets of parameters: (1) the

number of objects to be included in the result, i.e., the k value; and (2) the set of

weightings ~w specified by the user. In some cases, the missing object can easily be

back in the result if the k value is slightly increased (e.g., refining a top-3 query to

be a top-5 query). However, there can be cases where the missing object will not

be included in the result unless the k value is dramatically increased (e.g., refining

a top-3 query to be a top-10000 query), and for those cases, modifying the set

of weightings ~w instead of k may make more sense from the users perspective.

Furthermore, there could be cases in which the best option is to slightly modify

both the k value and the set of weightings ~w together, instead of significantly

modify one of them alone.

19

20 3.1. PRELIMINARY

To address this problem, we first define a penalty model to capture a user’s

tolerance to the changes of weightings ~w and k on her original query. Next,

we show that finding the refined top-k query with the least penalty is actually

computational expensive. Afterwards, we present an efficient algorithm that

uses sampling to obtain the best approximate answer in reasonable time. We

evaluate the quality and the performance of our method using real data and

synthetic data.

3.1 Preliminary

In this section, we give a formal definition to the problem of answering why-

not questions on a top-k query. Afterwards, we discuss the difficulty of solving

the problem exactly.

3.1.1 Problem Statement

Given a database of n objects, each object ~p with d attribute values can be

represented as a point ~p = |p[1] p[2] · · · p[d]| in a d-dimensional data space. For

simplicity, we assume that all attribute values are numeric and a smaller value

means a better score. A top-k query is composed of a scoring function, a result

set size k, and a weighting vector ~w = |w[1] w[2] · · · w[d]|. In this chapter, we

accept the scoring function score as a linear function, where score(~p, ~w) = ~p · ~w,

k as any positive integer, and we assume the weighting space subject to the

constraints
∑
w[i] = 1 and 0 ≤ w[i] ≤ 1. The query result would then be a set

of k objects whose scores are the smallest (in case objects with the same scores

CHAPTER 3. WHY-NOT TOP-K QUESTION 21

are tie at rank k-th, only one of them is returned).

Initially, a user specifies a top-k query Qo(ko, ~wo). After she gets the result,

she may pose a why-not question on Qo with a set of missing objects M =

{~m1, . . . , ~mj}, and hope the system to return her a refined top-k query Q′(k′, ~w′)

such that all objects in M appear in the result of Q′ under the same scoring

function. (A special case is that a missing object ~mi is indeed not in the database,

we describe more on this later.)

We use ∆k and ∆w to measure the quality of the refined query, where

∆k = max(0, k′ − ko) and ∆w = ||~w′ − ~wo||2. We define ∆k this way is to deal

with the possibilities that a refined query may obtain a k′ value smaller than

the original ko value. For instance, assume a user has issued a top-10 query and

the system returns a refined top-3 query with a different set of weightings. We

regard ∆k as 0 in this case because the user essentially does not need to change

her original k.

In order to capture a user’s tolerance to the changes of k and ~w on her

original query Qo, a basic penalty model that sets the penalties λk and λw to

∆k and ∆w, respectively, where λk + λw = 1, is as follows:

Penalty = λk∆k + λw∆w (3.1)

Note that the basic penalty model favours changing weightings more than

changing k because ∆k could be a large integer whereas ∆w is generally small.

One possible way to mitigate this discrimination is to normalize them respec-

tively. To do so, we normalize ∆k using (ro − ko), where ro is the rank of the

22 3.1. PRELIMINARY

missing object ~m under the original weighting vector ~wo. To explain this, we have

to consider the answer space of why-not queries, which consists of two dimen-

sions: ∆k and ∆w. Obviously, a refined query Q′1 is better than, or dominates [7],

another refined query Q′2, if both its refinements on k (i.e., ∆k) and ~w (i.e., ∆w)

are smaller than that of Q′2. For a refined query Q′ with ∆w = 0, its correspond-

ing ∆k must be ro − ko. Any other possible refined queries with ∆w > 0 and

∆k > (ro − ko) must be dominated by Q′ in the answer space. In other words,

a refined query with ∆w > 0 must have its ∆k values smaller than ro − ko or

else it is dominated by Q′ and could not be the best refined query. Therefore,

ro − ko is the largest possible value for ∆k and we use that value to normalize

∆k. Similarly, let the original weighting vector ~wo = |wo[1] wo[2] · · · wo[d]|, we

normalize ∆w using
√

1 +
∑
wo[i]

2, because:

Lemma 3.1 In our concerned weighting space, given ~wo and an arbitrary weight-

ing vector ~w = |w[1] w[2] · · · w[d]|, ∆w ≤
√

1 +
∑
wo[i]

2.

Proof. First, we have ∆w = ‖~w − ~wo‖2 =
√∑

(w[i]− wo[i])2. Since w[i] and

wo[i] are both nonnegative, then we can have
√∑

(w[i]− wo[i])2 ≤
√∑

(w[i]2 + wo[i]2)

=
√∑

w[i]2 +
∑
wo[i]2. It is easy to know that

∑
w[i]2 ≤ (

∑
w[i])2. As∑

w[i] = 1, we know that
∑
w[i]2 ≤ 1. Therefore, we have ∆w ≤

√∑
w[i]2 +

∑
wo[i]2 ≤√

1 +
∑
wo[i]2.

Now, we have a normalized penalty function as follows:

Penalty = λk
∆k

(ro − ko)
+ λw

∆w√
1 +

∑
wo[i]2

(3.2)

CHAPTER 3. WHY-NOT TOP-K QUESTION 23

The problem definition is as follows. Given a why-not question {M,Qo},

where M is a non-empty set of missing objects and Qo is the user’s initial query,

our goal is to find a refined top-k query Q′(k′, ~w′) that includes M in the result

and with the smallest penalty. In this chapter, we use Equation 3.2 as the penalty

function. Nevertheless, our solution indeed works for all kinds of monotonic

(with respect to both ∆k and ∆w) penalty functions. For better usability, we

do not explicitly ask users to specify the values for λk and λw. Instead, users are

prompted to answer a simple multiple-choice question1 illustrated in Figure 3.1.

XXXXXXXXXXChoice
Question

Prefer modifying k or your weightings?

Prefer modify k λk = 0.1, λw = 0.9
Prefer modify weightings λk = 0.9, λw = 0.1
Never mind (Default) λk = 0.5, λw = 0.5

Figure 3.1. A multiple-choice question for freeing users to specify λk and λw

d[2]

d[1]0

p32,5
p4 6,6

p1 2,2 p2 5,2

m4,4
ranking ID score

1 ~p1 2
2 ~p2 3.5
2 ~p3 3.5

Top-3 query Qo(ko = 3, ~wo = |0.5 0.5|)

Figure 3.2. A 2-D example

Let us give an example. Figure 3.2 shows a 2-D data set with five data

objects ~p1, ~p2, ~p3, ~p4, and ~m. Assume a user has issued a top-3 query Qo(ko =

1The number of choices and the pre-defined values for λk and λw, of course, could be adjusted.
Furthermore, one might prefer to minimize the difference between the new result set and the
original one, instead of minimizing the difference between the refined query and the original
query. In that case, we suggest the user to choose the option where λw is a big value (i.e., not
prefer modify the weightings) because [36] has pointed out that similar weightings generally
lead to similar top-k results.

24 3.1. PRELIMINARY

3, ~wo = |0.5 0.5|) and wonders why the point ~m is missing in the query result.

So, she would like to find the reason by declaring a why-not question {{~m}, Qo},

using the default penalty preference “Never mind” (λk = λw = 0.5).

In the example, ~m ranks 4-th under ~wo, so we get ro = 4, ro−ko = 4−3 = 1,

and
√

1 +
∑
wo[i]2 = 1.2. Table 3.1 lists some example refined queries that

include ~m in their results. Among those, refined query Q′1 dominates Q′2 because

both its ∆k and ∆w are smaller than that of Q′2. The best refined query in the

example is Q′3 (Penalty = 0.12). At this point, readers may notice that the best

refined query is located on the skyline of the answer space. Later, we will show

how to exploit properties like this to obtain better efficiency in our algorithm.

Table 3.1. Example of candidate refined queries
Refined Query ∆ki ∆wi Penalty

Q′1(4, |0.5 0.5|) 1 0 0.5

Q′2(5, |0.6 0.4|) 2 0.14 1.06

Q′3(3, |0.7 0.3|) 0 0.28 0.12

Q′4(3, |0.2 0.8|) 0 0.42 0.175

Q′5(3, |0.21 0.79|) 0 0.41 0.17

Q′6(3, |0.22 0.78|) 0 0.4 0.167

3.1.2 Problem Analysis

First, let us consider there is only one missing object ~m in the why-not

question. In the data space, we say an object ~a dominates object ~b, if a[i] ≤ b[i]

for i = [1, · · · , d] and there exists at least one a[i] < b[i], and we say two objects

are incomparable if no one can dominate the other. In a data set, if there are

kd objects dominating ~m and n objects incomparable with ~m, then the ranking

of ~m could be (kd + 1), · · · , (kd + n + 1). For these n + 1 possible rankings r1,

r2, · · · , rn+1 of ~m, each ranking ri has a corresponding set Wri of weighting

CHAPTER 3. WHY-NOT TOP-K QUESTION 25

vectors, where each weighting vector ~wri ∈ Wri makes ~m ranks ri-th. As such,

any refined queries Q′(ri, ~wri) are also candidate answers (because when k = ri,

the missing tuple ~m is in the result, with rank ri). Recall that our objective

is to find a combination of k and weighting ~wri that minimizes Equation 3.2.

However, the weighting vector set Wri is actually either empty or a set of convex

polytopes (Lemma 3.2). That means when Wri is not empty, then there are an

infinite number of points ~wri ∈ Wri , which also makes the number of candidate

answers infinite.

Lemma 3.2 Wri is either empty or a set of convex polytopes.

Proof. Given a data space and a missing object ~m, assume there are kd objects

dominate ~m, and the number of incomparable objects with ~m is n. To find the

set of weighting vectors Wri , where ri = kd + j and j ∈ [1, n + 1], we have to

solve a set of linear inequality systems.

We use I to stand for the set of incomparable objects with respect to ~m.

Now, we arbitrarily put j − 1 objects from I into a new set E, and put the rest

into another set F . Let any object ~e ∈ E satisfies the following inequality:

~e · ~wri < ~m · ~wri (3.3)

which means E is the set of objects that have scores better than ~m. Similarly,

any object ~f ∈ F is an object that has score not better than ~m:

~f · ~wri ≥ ~m · ~wri (3.4)

26 3.1. PRELIMINARY

Now we have a set of linear inequalities for all objects in E and F . Together

with the constraints
∑
wri [i] = 1 and wri [i] ∈ [0, 1], we can get a linear inequality

system. The solution of this inequality system is a set of weighting vectors that

make ~m rank (kd + j)-th. In fact, there are Cnj−1 such linear inequality systems

and Wri is essentially the union of the solutions of them.

The boundary theory of linear programming [32] shows that a linear in-

equality system is a polyhedron, which is the intersection of a finite set of half

spaces. A polyhedron is either empty, unbounded, or a convex polytope. In our

case, the polyhedrons are either empty or convex polytopes, because they are

additionally bounded by the constraints
∑
w[i] = 1 and w[i] ∈ [0, 1]. Therefore,

the weighting vectors Wri is the union of a set of convex polytopes or an empty

set if there are no solutions for all the inequality systems.

As Wri is a set of convex polytopes with infinite points if it is not empty, the

number of candidate answers in the answer space is also infinite. Therefore, we

conclude that searching the optimal refined query for one missing object in an

infinite answer space is unrealistic.2 Moreover, the problem would not become

easier when M has multiple missing objects.

2 One exact solution that uses a quadratic programming (QP) solver [5] is as follows: For
each ranking value ri = kd + j, j ∈ [1, n+ 1], we can compute ∆k = max(ri − ko, 0). In order
to make Equation 3.2 as small as possible under this ri, we have to find a ~wri ∈Wri such that
||~wri − ~wo||2 is minimized. Since general QP solver requires the solution space be convex, we
have to first divide Wri into Cn

j−1 convex polytopes. Each convex polytope corresponds to a
quadratic programming problem. After solving all these quadratic programming problems, the
best ~wri could then be identified. For all ranking ri to be considered, there are

∑n+1
j=1 C

n
j−1 = 2n

(n is the number of incomparable objects with ~m) quadratic programming problems at the worst
case, so this exact solution is impractical.

CHAPTER 3. WHY-NOT TOP-K QUESTION 27

3.2 Methodology

In this section, we present our method to answer why-not questions on top-

k queries. According to the problem analysis presented above, finding the best

refined query is computationally difficult. Therefore, we trade the quality of

the answer with the running time. Specifically, instead of considering the whole

infinite answer space, we propose a special sampling-based algorithm that finds

the best approximate answer.

3.2.1 Basic Idea

Let us start the discussion with an assumption that there is only one missing

object ~m. First, suppose we have a list of weighting vectors S = [~wo, ~w1, ~w2, · · · , ~ws],

where ~wo is the weighting vector in the user’s original query Qo. For each

weighting vector ~wi ∈ S, we formulate a progressive top-k query Q′i using ~wi

as the weighting. Each query Q′i is executed by a progressive top-k algorithm

(e.g., [16], [8], [24]), which progressively reports each top ranking object one-by-

one, until the missing object ~m comes forth to the result set with a ranking ri.

If ~m does not appear in the result of the first executed query, we report to the

user that ~m does not exist in the database and the process terminates. Assuming

~m exists in the database, then after s+ 1 progressive top-k executions, we have

s + 1 refined queries Q′i(ri, ~wi), where i = o, 1, 2, . . . , s, with missing object ~m

known to be rank ri-th exactly. Finally, the refined query Q′i(ri, ~wi) with the

least penalty is returned to the user as the answer.

In the following, we discuss where to get the list S of weighting vectors

28 3.2. METHODOLOGY

(Section 3.2.2). Then, we discuss how large the list S should be (Section 3.2.3).

Afterwards, we present the algorithm (Section 3.2.4). Finally, we present how to

deal with multiple missing objects (Section 3.2.5).

3.2.2 Where to get weighting vectors?

In the basic idea of the algorithm, the size of S plays a crucial role in the

algorithm efficiency and the solution quality. Having one more sample weighting

in S, on the one hand, may increase the chance of having a better quality solution;

on the other hand, that would definitely increase the number of progressive top-k

operations by one and thus increase the running time. So, one of our objectives

is to keep S as small as possible and at the same time put only high quality

weightings (e.g., only those that may yield the optimal solution) into S.

Recall that if there are kd objects dominate the missing object ~m and there

are n objects incomparable with ~m, the best and the worst ranking of ~m are

kd + 1 and n+ kd + 1, respectively. For these n+ 1 possible rankings r1, r2, · · · ,

rn+1 of ~m, each ranking ri is associated with a weighting vector set Wri such that

for each weighting vector ~wri ∈ Wri , ~m ranks ri-th in the corresponding refined

query Q′(ri, ~wri). So altogether there is a set W that contains n + 1 weighting

vector sets, W = {Wr1 , · · · ,Wri , · · · ,Wrn+1}.

In the following, we are going to show that if the refined query Q′o(ro, ~wo)

is not the optimal answer, then the optimal refined query Q′opt that minimizes

Equation 3.2 in terms of ∆k and ∆w has a weighting vector ~wopt on the bound-

aries of the weighting vector setsW (Theorem 3.1). Furthermore, refined queries

with weightings on the boundaries of the weighting vector sets W would make

CHAPTER 3. WHY-NOT TOP-K QUESTION 29

missing object ~m have a ranking no worse than other refined queries whose

weightings not on the boundaries (Lemma 3.3). Therefore, in addition to the

original weighting vector ~wo, the rest of the weighting vectors ~w1, ~w2, · · · , ~ws in

S should be sampled from the space formed by the boundaries of those n + 1

weighting vector sets in W.

Theorem 3.1 If Q′o(ro, ~wo) is not the optimal answer, then the optimal refined

query Q′opt, which minimizes Equation 3.2, has a weighting ~wopt on the boundaries

of the n+ 1 weighting vector sets in W.

Proof. According to Lemma 3.2, if a weighting vector set Wri ∈ W is not empty,

then it is the union of a set of convex polytopes CPri . So, the boundaries of Wri

are essentially the union of the boundaries of each convex polytope in CPri . Let

CP =
⋃
CPri , Theorem 3.1 can be re-stated as follow: if Q′o(ro, ~wo) is not the

optimal answer, then the optimal refined query Q′opt has a weighting ~wopt on the

boundaries of CP.

Let CP\~wo
∈ CP be the set of convex polytopes that do not contain ~wo.

Further, let CP~wo = CP − CP\~wo
be the set of convex polytopes that contain

~wo. Since all the convex polytopes are disjoint (as no weighting can satisfy two

different linear inequality systems described in Lemma 3.2 at the same time),

~wo is in only one convex polytope. As such, CP~wo essentially contains only one

convex polytope.

Now, to prove the theorem, we need to prove the optimal refined query Q′opt

has a weighting ~wopt on the boundaries of ((1)) CP\~wo
or ((2)) CP~wo .

We now start with proving ((1)). To do so, we first assume the optimal

30 3.2. METHODOLOGY

refined query Q′opt has a weighting ~wopt NOT in CP~wo or on its boundaries, and

show that:

Lemma 3.3 For all convex polytopes cp ∈ CP, any refined query Q′b(r
b, ~wrb),

whose weighting vector ~wrb on the boundaries of cp, has ~m ranks rb-th under

~wrb, which is not worse than rank r′-th (i.e., rb ≤ r′), where r′ is the ranking of

~m under another refined query Q′(r′, ~wr′), whose weighting vector ~wr′ not on the

boundaries of cp (Lemma 3.3).

Lemma 3.4 For all convex polytopes cp\~wo
∈ CP\~wo

, there exists a refined

query Q′b(r
b, ~wrb), whose weighting vector ~wrb on the boundaries of cp\~wo

, has its

∆w < ||~wr′ − ~wo||2, where ~wr′ is the weighting vector of any other refined query

Q′(r′, ~wr′), whose weighting vector ~wr′ not on the boundaries of cp\~wo
(Lemma

3.4).

If both Lemma 3.3 and Lemma 3.4 hold, then ((1)) is true.

Proof of Lemma 3.3: We prove it by induction. First, recall that kd is the

number of objects that dominate the missing object ~m. In the base case, we

want to show that, when there is only one object ~p1 incomparable with ~m in

the data space, the Lemma is true. When there is only one incomparable point

~p1, the whole weighting space is divided by the hyperplane H1:(~p1 − ~m) · ~w = 0

into two convex polytopes cp< and cp>; cp< is the convex polytope at the side

(~p1 − ~m) · ~w < 0, cp> is the convex polytope at the side (~p1 − ~m) · ~w > 0, and

hyperplane H1 is the boundary of cp< and cp>. We use CP1 to denote the whole

set of convex polytopes at this moment. Now, consider a refined query Q′(r′, ~wr′),

whose ~wr′ in cp< but not on the boundary of cp<, ~m’s ranking r′ = kd+2 because

CHAPTER 3. WHY-NOT TOP-K QUESTION 31

~m is dominated by ~p1 under ~wr′ . Consider another refined query Q′b(r
b, ~wrb),

whose ~wrb on the boundary H1, ~m’s ranking rb = kd + 1 because ~m and ~p1 have

the same score. Finally, if the refined query Q′(r′, ~wr′) has its weighting vector

~wr′ in cp> but not on the boundary of cp>, ~m dominates ~p1 under ~wr′ and thus

~m’s ranking remains as r′ = kd + 1. In the above, we can see that rb ≤ r′, thus

the base case holds.

Assume Lemma 3.3 is still true when there are i objects incomparable with

~m in the data space and we use CP i to denote the set of convex polytopes

constructed by the corresponding i hyperplanes. Now, we want to show that the

lemma is true when there are i+ 1 incomparable objects in the data space.

When the (i+ 1)-th incomparable object ~pi+1 is added, CP i is divided into

three sets of convex polytopes: CP<, CP>, and CP G. CP< consists of any

convex polytope cp< that is completely at the side of (~pi+1 − ~m) · ~w < 0; CP>

consists of any convex polytope cp> that is completely at the side of (~pi+1 −

~m) · ~w > 0; and CP G consists of any convex polytope cpG that intersects the

hyperplane Hi+1: (~pi+1 − ~m) · ~w = 0. We want to show that the lemma is true

for all the three sets of convex polytopes above.

For any cp< ∈ CP<, the refined query Q′(r′, ~wr′), whose ~wr′ in cp< but not

on the boundary of cp<, the addition of ~pi+1 makes ~m’s ranking r′ increments by

one, i.e., r′ ← r′+ 1, because ~pi+1 has a better score when the weighting vectors

are at the side of (~pi+1 − ~m) · ~w < 0. For the refined query Q′b(r
b, ~wrb), whose

weighting vector ~wrb on the boundaries of cp<, the addition of ~pi+1 makes ~m’s

ranking rb increments by one, i.e., rb ← rb + 1. In this case, rb ≤ r′, the lemma

still holds after ~pi+1 is added.

32 3.2. METHODOLOGY

For any cp> ∈ CP>, the refined query Q′(r′, ~wr′), whose ~wr′ in cp> but not

on the boundary of cp>, the addition of ~pi+1 does not change ~m’s ranking r′,

because ~pi+1 has score worse than ~m when the weighting vectors at the side of

(~pi+1− ~m) · ~w > 0. For the refined query Q′b(r
b, ~wrb), whose weighting vector ~wrb

on the boundaries of cp>, the addition of ~pi+1 also does not change ~m’s ranking

rb. So, in this case, rb ≤ r′, the lemma still holds after the pi+1 is added.

For any cpG ∈ CP G, since it intersects hyperplane Hi+1, cpG is divided into

two new convex polytopes cp
G
< and cp

G
>, with Hi+1 as their boundaries.

The proof for the case of cp
G
< is similar to the case of any cp< ∈ CP<, with

both rb and r′ get increased by one, so rb ≤ r′ is still true. For the case of cp
G
>,

we also have rb ≤ r′ like the case of any cp> ∈ CP>. For the refined query

Q′b(r
b, ~wrb), whose weighting vector ~wrb on the hyperplane Hi+1, as the added

object ~pi+1 has the same score as ~m at this moment, ~m’s ranking remains the

same. And for those Q′(r′, ~wr′), whose wr′ not on Hi+1, may either keep ~m’s

ranking or increase its ranking by one just like the discussion above. Therefore,

we can assert that rb ≤ r′, is true in all cases.

Proof of Lemma 3.4: Let ~wr∗ be the weighting vector that is closest to ~wo

(i.e., the one with the optimal ∆w), we prove the lemma by showing that, among

all the weighting vectors in cp\~wo
, ~wr∗ must be on the boundaries of cp\~wo

.

Assume ~wr∗ is in cp\~wo
but not on its boundaries. So, ~wr∗ is an interior

point of cp\~wo
and there exists an open ball B ⊂ cp\~wo

centered at ~wr∗ [5]. Since

B is convex, we can find two points ~wa, ~wb in B such that ~wr∗ = ~wa+~wb
2 . As

~wr∗ is closest to ~wo, we know that (~wa − ~wr∗) · (~wo − ~wr∗) ≤ 0 (see Lemma 3.5).

Because ~wa = 2~wr∗ − ~wb, we can substitute ~wa into the inequality above and get

CHAPTER 3. WHY-NOT TOP-K QUESTION 33

(~wr∗ − ~wb) · (~wo − ~wr∗) ≤ 0. Now we have (~wb − ~wr∗) · (~wo − ~wr∗) ≥ 0, which

contradicts Lemma 3.5 (below). Therefore, ~wr∗ must be on the boundaries of

cp\~wo
.

Lemma 3.5 Let C ⊂ Rn be a non-empty closed convex set. Then, for every

point ~x 6∈ C, ~z∗ ∈ C is a closest point to ~x iif (~z − ~z∗) · (~x − ~z∗) ≤ 0 for all

~z ∈ C. [5]

Now, let us prove ((2)), i.e., the optimal refined query Q′opt has a weighting

~wopt on the boundaries of CP~wo . To do so, we assume the optimal refined query

Q′opt has a weighting ~wopt NOT in CP\~wo
or its boundaries. We first show that,

for any refined query Q′(r′, ~wr′), whose weighting vector ~wr′ in CP~wo but not on

its boundaries, is dominated by Q′o(ro, ~wo).

Given that ~wr′ is in CP~wo but not on its boundaries, and also given that ~wo

is in CP~wo we consider two cases, in which ~wo is (i) not on and (ii) on CP~wo ’s

boundaries, respectively. In case (i), since both ~wr′ and ~wo are in CP~wo but

not on its boundaries, they satisfy the same inequality system and thus we have

r′ = ro. In case (ii), in which ~wo is on CP~wo ’s boundaries, we can apply Lemma

3.3 and thus we have ro ≤ r′. Combining two cases together we have ro ≤ r′

always holds. Note that when ~wr′ 6= ~wo, ∆w′r > ∆wo. Hence, among all refined

queries Q′(r′, ~wr′), whose ~wr′ in CP~wo , only those with ~wr′ on the boundaries of

CP~wo have chances not to be dominated by Q′o(ro, ~wo).

Finally, as Q′o(ro, ~wo) is not the optimal answer (the given condition in The-

orem 3.1), so we know that if the optimal weighting ~wopt is not on the boundaries

of CP\~wo
(from ((1))), then it is on the boundaries of CP~wo (from ((2))). Thus

34 3.2. METHODOLOGY

Theorem 3.1 is proven.

w[2]

w[1]

1

10

=|2/3 1/3|

cp1

H1

H2

cp3

cp2

w1=|1/3 2/3|

wo
w2

r=3

r=4

r=3

Figure 3.3. Convex polytopes for ~m shown under the weighting space

Here is the high level explanation of Lemma 3.4 and Lemma 3.5. According

to the analysis in Section 3.1.2, the weighting space is divided into a set of

polytopes Wri by a set of inequality systems, where ~m ranks ri if we draw a

weighting in Wri . Since all ~w ∈ Wri provide us the same ranking (i.e., same

∆k), we only need to consider those with smaller ∆w. Based on the maximum

principle in convex optimization [5], those ~w with smaller ∆w must be on the

boundaries of these Wri .

Consider the dataset in Figure 3.2 as an example. Point ~m, who is missing

in the top-3 results of the original query Qo, has two incomparable points ~p2 and

~p3. To find out the set of weighting vectors Wri that makes ~m ranks third, i.e.,

ri = 3, we can solve the following inequality systems separately:

~p2 · ~wri < ~m · ~wri

~p3 · ~wri ≥ ~m · ~wri
(3.5)

CHAPTER 3. WHY-NOT TOP-K QUESTION 35

~p2 · ~wri ≥ ~m · ~wri

~p3 · ~wri < ~m · ~wri
(3.6)

The union of the results above is Wri=3. In the systems above, we have

two hyperplanes H1: (~p3 − ~m) · ~wri = 0 and H2: (~p2 − ~m) · ~wri = 0 that divide

the weighting space like Figure 3.3. The two hyperplanes intersect the weighting

constraint planes
∑
wri [i] = 1 and wri [i] ∈ [0, 1] and results in three convex

polytopes cp1, cp2, and cp3 (in 2-d case the polytopes are line segments). The

union of cp1 and cp3 is the corresponding weighting vector set Wri=3; and cp2

is the weighting vector set Wri=4. In this 2-D example, the intersections ~w1 =

|1/3 2/3| and ~w2 = |2/3 1/3| between the two hyperplanes and the weighting

constraint planes are the boundaries of the polytopes. Note that by some back-

of-envelop calculation, we can derive that ~m ranks third under weightings ~w1

and ~w2. This aligns with Lemma 3.3, which states that the ranking of ~m on

the boundaries (rank third) is not worse than its ranking not on the boundaries

(rank fourth in cp2 and third in cp1 and cp3).

3.2.3 How large the list of weighting vectors should be?

Having known that the list of weighting vectors S should be obtained from

the boundaries of the weighting sets in W, the next question is, given that

there are still an infinite number of points (weightings) on the boundaries of the

weighting sets inW, how many sample weightings from the boundaries should we

put into S in order to obtain a good approximation answer?

Recall that more sample weightings in S will increase the number of progres-

36 3.2. METHODOLOGY

sive top-k executions and thus the running time. Therefore, we hope S to be as

small as possible while maintaining good approximation. We say a refined query

is the best-T% refined query if its penalty is smaller than (1−T)% refined queries

in the whole (infinite) answer space, and we hope the probability of getting at

least one such refined query is larger than a certain threshold Pr:

1− (1− T%)s ≥ Pr

=> (1− T%)s ≤ 1− Pr

=> log(1−T%)(1− T%)s ≥ log(1−T%)(1− Pr)

=> s ≥ log(1−T%)(1− Pr) (3.7)

Equation 3.7 is general. In our algorithm, we use it based on a smaller sample

space that contains high quality weightings. The sample size s is independent

of the data size but controlled by two parameters: T% and Pr. Following our

usual practice of not improving usability (i.e., why not queries) by increasing

users’ burden (e.g., specifying parameter values for λk, T%, and Pr), we make

T%, and Pr as system parameters 3 and let users to override their values only

when necessary.

3.2.4 Algorithm

To begin, let us first outline the three core phases of the algorithm, which

is slightly different from the basic idea mentioned in Section 3.2.1 for better ef-

3The default values are picked through a set of experiments, which guarantee that we can
obtain good answers in reasonable time.

CHAPTER 3. WHY-NOT TOP-K QUESTION 37

ficiency:

[PHASE-1] It first samples s weightings ~w1, ~w2, · · · , ~ws from the boundaries of

the weighting vector sets W and add them into S, which initially contains ~wo.

[PHASE-2] Next, for some weighting vectors ~wi ∈ S, it executes a progressive

top-k query using ~wi as the weighting until a stopping condition is met. Let us

denote that operation as ri = topk(~wi, stopping-condition). In the basic idea

mentioned in Section 3.2.1, we have to execute s+1 progressive top-k queries for

all s+ 1 weightings in S. In this section, we present a technique to skip many of

those progressive top-k operations so as to improve the efficiency (Section 3.2.4-

Technique (ii)). In addition, the stopping condition in the basic idea is to proceed

until the missing object ~m comes forth to the result. However, if ~m ranks very

poorly under some weighting ~wi, the corresponding progressive top-k operation

may be quite slow because it has to access many tuples in the database. In

this section, we present a much more aggressive and effective stopping condition

that makes most of those operations stop early even before ~m is seen (Section

3.2.4-Technique (i)). These two techniques together can significantly reduce the

overall running time of the algorithm.

[PHASE-3] Using ri as the refined k′, ~wi as the refined weighting ~w′, the (k′, ~w′)

combination with the least penalty is formulated as a refined query Q′(k′, ~w′)

and returned to the user as the why-not answer.

We first provide the details of PHASE-1. First, ~wo, the weighting vector in

38 3.2. METHODOLOGY

the user’s original query Qo, is added to S. Next, we use the method in [33] to

locate the set I of objects incomparable with ~m. After that, we randomly pick

a point ~pi from I and use Gaussian-Jordan method [10] to efficiently find the

intersection between the hyperplane (~pi − ~m) · ~w = 0 and the constraint plane∑
w[i] = 1. Then, we randomly pick a point (weighting) from the intersection.

If all components of this weighting are non-negative (w[i] ≥ 0), we add it to S.

The process repeats until s weightings have been collected. As we show in the

experiments, this phase can be done very efficiently because finding I for one (or

a few) missing object(s) and solving plane intersections using Gaussian-Jordon

method incur almost negligible costs.

Technique (i) — Stopping a progressive top-k operation earlier

In PHASE-2 of our algorithm, the basic idea is to execute the progressive

top-k query until ~m appears in the result, with rank ri. Denoting that operation

as r1 = topk(~w1,until-see-~m). In the following, we show that it is actually

possible for a progressive top-k execution to stop early even before ~m shows up

in the result.

Consider an example that a user specifies a top-2 query Qo(ko = 2, ~wo)

and a why-not question about missing object ~m is posed. Assume that the list of

weightings S is [~wo, ~w1, ~w2, ~w3]. Furthermore, assume that topk(~wo,until-see-~m)

is firstly executed and ~m’s actual ranking under ~wo is 6. Now, we have our first

candidate refined query Q′o(ro = 6, ~wo), with ∆ko = 6−2 = 4 and ∆wo = 0. The

corresponding penalty, denoted as, PenQ′o , could be calculated using Equation

3.2. Remember that we want to find the refined query with the least penalty

CHAPTER 3. WHY-NOT TOP-K QUESTION 39

Penmin. So, at this moment, we set a penalty variable Penmin = PenQ′o .

According to our basic idea, we should execute another progressive top-k

using weighting vector, say, ~w1, until ~m shows up in the result set with a ranking

r1. However, we notice that the skyline property in the answer space can help

to stop that operation earlier, even before ~m is seen. Given the first candidate

refined query Q′o(ro = 6, ~wo) with ∆wo = 0 and ∆ko = 4, any other candidate

refined queries Q′i with ∆ki > 4 must be dominated by Q′o. In our example, since

the first executed progressive top-k execution, all the subsequent progressive top-

k executions can stop once ~m does not show up in the top-6 tuples.

Δw1 Δw2 Δw3

Q’o

Q’1

Q’2

Δw

Δk

4

3

ΔkT=2

ΔkL=1
Q’’2

PenQ’oPenQ’’2

Δk > 4

Q’3

Δwf0

Figure 3.4. Example of answer space

Figure 3.4 illustrates the answer space of the example. The idea above

essentially means that all other progressive top-k executions with ~m does not

show up in top-6, i.e., ∆ki > 4 (see the dotted region), e.g., Q′1, can stop early

at top-6, because after that, they have no chance to dominate Q′o any more.

While useful, we can actually be even more aggressive in many cases. Con-

sider another candidate refined query, say, Q′2, in Figure 3.4. Assume that

40 3.2. METHODOLOGY

r2 = topk(~w2,until-see-~m) = 5 (i.e., ∆k2 = 5 − 2 = 3), which is not cov-

ered by the above technique (since ∆k2 6< 4). However, Q′2 can also stop early,

as follows. In Figure 3.4, we show the normalized penalty Equation 3.2 as a

slope Penmin = PenQ′o that passes through the best refined query so far (cur-

rently Q′o). All refined queries lie on the slope have the same penalty value as

Penmin. In addition, all refined queries that lie above the slope actually have

penalty larger than Penmin, and thus dominated by Q′o in this case. Therefore,

similar to the skyline discussion above, we can determine an even tighter thresh-

old ranking rT , for stopping the subsequent progressive top-k operations even

earlier:

rT = ∆kT + ko, where

∆kT = b(Penmin − λw
∆w√

1 +
∑
wo[i]2

)
ro − ko
λk

c
(3.8)

Equation 3.8 is a rearrangement of Equation 3.2 (with Penalty = Penmin)

and with the original top-k value ko added.

Back to our example in Figure 3.4, given that the weighting of candidate

refined query Q′2 is ~w2, we can first compute its ∆w2 value. Then, we can

project ∆w2 onto the slope Penmin (currently Penmin = PenQ′o) to obtain the

corresponding ∆kT value, which is 2 in Figure 3.4. That means, if we carry out

a progressive top-k operation using ~w2 as the weighting, and if ~m still does not

appear in result after the top-4 tuples (rT = ∆kT + ko = 2 + 2 = 4) are seen,

then we can stop it early because the penalty of Q′2 is worse than the penalty

Penmin of the best refined query (Q′o) seen so far.

CHAPTER 3. WHY-NOT TOP-K QUESTION 41

Following the discussion above, we now have two early stopping conditions

for the progressive top-k algorithms: until-see-~m and until-rank-rT . Except

the first progressive top-k operation in which topk(~wo,until-see-~m) must be

used, the subsequent progressive top-k operations can use “until-see-~m or

until-rank-rT ” as the stopping condition. We remark that the conditions

until-rank-rT and until-see-~m are both useful. For example, assume that

the actual ranking of ~m under ~w2 is 3, which gives it a ∆k2 = 1 (see Q′′2 in

Figure 3.4). Recall that by projecting ∆w2 on to the slope of Penmin, we can

stop the progressive top-k operation after rT = 2 + 2 = 4 tuples have been seen.

However, using the condition until-see-~m, we can stop the progressive top-k

operation when ~m shows up at rank three. This drives us to use “until-see-~m

or until-rank-rT ” as the stopping condition.

Finally, we remark that the pruning power of this technique increases when

the algorithm proceeds. For example, after Q′′2 has been executed, the best re-

fined query seen so far should be updated as Q′′2 (because its penalty is better

than Q′o). Therefore, Penmin now is updated as PenQ′′2 and the slope Penmin

should be updated to pass through Q′′2 now (the dotted slope in Figure 3.4). Be-

cause Penmin is continuously decreasing, ∆kT and thus the threshold ranking rT

would get smaller and smaller and the subsequent progressive top-k operations

can terminate even earlier and earlier when the algorithm proceeds. With the

same token, we also envision that the pruning power of this technique is stronger

when we have a large λw (or small λk) because they make ∆kT decreases at a

faster rate (see Equation 3.8).

Technique (ii). Skipping progressive top-k operations

42 3.2. METHODOLOGY

In PHASE-2 our algorithm, the basic idea is to execute progressive top-k

queries for all weightings in S. We now illustrate how some of those executions

could be entirely skipped, so that the overall running time can be further reduced.

The first part of the technique is based on the observation that similar

weighting vectors may lead to similar top-k results [36]. Therefore, if a weighting

~wj is similar to a weighting ~wi and if operation topk(~wi, stopping-condition)

for ~wi has already been executed, then the query resultRi of topk(~wi, stopping-condition)

could be exploited to deduce the highest ranking of the missing object ~m under

~wj . If the deduced highest ranking of ~m is worse than the threshold ranking rT ,

then we can skip the entire topk(~wj , stopping-condition) operation.

We illustrate the above by reusing our running example. Assume that we

have cached the result sets of executed progressive top-k queries. Let Ro be

the result set of the first executed query topk(~wo,until-see-~m) and Ro =

[~p1, ~p2, ~p3, ~p4, ~p5, ~m]. Then, when we are considering the next weighting vector,

say, ~w1, in S, we first follow Technique (i) to calculate the threshold ranking rT .

In Figure 3.4, projecting ~w1 onto slope PenQ′o we get rT = 3 + 2 = 5. Next we

calculate the scores of all objects in Ro using ~w1 as the weighting. Assume that

the scores of ~p1, ~p2, ~p3, ~p4, and ~p5 are also smaller (better) than ~m under ~w1, in

this case, we know the rankings of ~p1, ~p2, ~p3, ~p4, and ~p5 are all smaller (better)

than the ranking of ~m, i.e., the ranking of ~m is at least 5 + 1 = 6, which is

worse than rT = 5. So, we can skip the entire topk(~w1, stopping-condition)

operation even without starting it.

The above caching technique is shown to be the most effective between

similar weighting vectors [36]. Therefore, we design the algorithm in a way that

CHAPTER 3. WHY-NOT TOP-K QUESTION 43

the list of weightings S is sorted according to their corresponding ∆wi values (of

course, ~wo is the in the head of the list since ∆wo = 0).

The second part of the technique is to exploit the best possible ranking of ~m

(under all possible weightings) to set up an early termination condition for the

whole algorithm, so that after a certain number of progressive top-k operations

have been executed, the algorithm can terminate early without executing the

subsequent progressive top-k operations.

Recall that the best possible ranking of ~m is kd + 1, where kd is the number

of objects that dominate ~m. Therefore, the lower bound of ∆k, denoted as

∆kL, equals to max(kd + 1 − ko, 0) (By definition in Section 3.1, ∆k ≥ 0).

So, this time, we project ∆kL onto slope Penmin in order to determine the

corresponding maximum feasible ∆w value. Naming that value as ∆wf . For any

∆w > ∆wf , it means “~m has ∆k < ∆kL”, which is impossible. As our algorithm

is designed to examine the weightings in their increasing order of ∆w values, when

a weighting ~wi ∈ S has ||~wi− ~wo||2 > ∆wf , topk(~wi, stopping-condition) and

all subsequent progressive top-k operations topk(~wi+1, stopping-condition),

. . . , topk(~ws, stopping-condition) could be skipped.

Reusing Figure 3.4 as an example and assume that the number of objects

that dominated ~m is 2. By projecting ∆kL = max(kd + 1 − ko, 0) = 1 onto

the slope PenQ′o , we could determine the corresponding ∆wf value. So, when

the algorithm finishes executing progressive top-k operation for weighting ~w2,

PHASE-2 of the algorithm can terminate at that point because all the subsequent

∆wi are larger than ∆wf .

As a final remark, we would like to point out that the pruning power of this

44 3.2. METHODOLOGY

technique also increases when the algorithm proceeds. For instance, in Figure

3.4, if Q′′2 has been executed, slope Penmin is changed from slope PenQ′o to slope

PenQ′′2 . Projecting ∆kL onto the new Penmin slope would result in a smaller

∆wf , which in turns increases the chance of terminating PHASE-2 earlier.

The pseudo-code of the complete idea is presented in Algorithm 3.1. It is

self-explanatory and mainly summarizes what we have discussed above, so we do

not give it a walkthrough here.

3.2.5 Multiple Missing Objects

To deal with multiple missing objects in a why-not question, we have to

modify our algorithm a little bit. First, we do a simple filtering on the set of

missing objects M . Specifically, among all the missing objects in M , if there is

a missing object ~mi dominates another one ~mj in the data space, then we can

remove the dominating object ~mi from M for the reason that every time ~mj

appears into the top-k result, ~mi is certainly in the result as well. So, we only

need to consider ~mj .

Let M ′ be the set of missing objects after the filtering step. The next

modification to the algorithm is related to PHASE-1 — finding good weightings

and put them into S. First, the set I should now consist of incomparable points

of all objects in M ′. Second, we should randomly select a hyperplane (~pi −

~mi) · ~w = 0, where ~pi is a point in I. After that, as usual, we sample a point

on the intersection of the hyperplanes plus the constraint plane
∑
w[i] = 1

(0 ≤ w[i] ≤ 1). That way, the whole method still obeys Theorem 3.1.

The modification related to Technique (i) is as follows. For the condition

CHAPTER 3. WHY-NOT TOP-K QUESTION 45

Algorithm 3.1 Answering Why-not Question on a Top-K Query
Input:
1: The dataset D; original top-k query Qo(ko, ~wo); missing object ~m; penalty settings
λk, λw; T% and Pr

Output:
2: A refined query Q′(k′, ~w′)
3:

4: Set list of weighting S = [~wo];
5: Result of a top-k query Ro;
6: Rank of missing object ro;
7: (Ro, ro)← topk(~wo,until-see-~m)
8: if ro = ∅ then
9: return “~m is not in the D”

10: end if
Phase 1 :

11: Use [33] to determine the number of points kd that dominate ~m and the set of points
I incomparable with ~m;

12: ∆kL = max(kd + 1− ko, 0);
13: Determine s from T% and Pr using Equation 3.7;
14: Sample s weightings from the hyperplanes boundaries constructed by I and ~m and

add them to S;
15: Sort S according to their ∆wi values;

Phase 2 :
16: R← (Ro, ~wo); //Cache the results

17: Penmin ← Penalty(ro, ~wo);
18: ∆kL ← max(kd + 1− ko, 0); //Calculate the lower bound ranking of m

19: ∆wf = (Penmin−λk ∆kL
ro−ko)

√
1+

∑
wo[i]2

λw
; //Project ∆kL to determine early termination

point ∆wf

20: for all ~wi ∈ S do
21: if ∆wi > ∆wf then
22: break; //Technique (ii) — early algorithm termination

23: end if
24: ∆kT ← b(Penmin − λw ∆wi√

1+
∑
wo[i]2

) ro−koλk
c;

25: rT ← kT + ko;
26: if there exist rT objects in some Ri ∈ R having scores better ~m under ~wi then
27: continue; //Technique (ii) — use cached result to skip a progressive top-k

28: end if
29: (Ri, ri) ← topk(~wi,until-see-~m or until-rank-rT); //Technique (i) — stop-

ping a progressive top-k early

30: Peni ← Penalty(ri, ~wi);
31: R← R ∪ (Ri, ~wi);
32: if Peni < Penmin then
33: Penmin ← Peni;

34: ∆wf = (Penmin − λk ∆kL
ro−ko)

√
1+

∑
wo[i]2

λw
;

35: end if
36: end for

Phase 3:
37: return the best refined query Q′(k′, ~w′) whose penalty=Penmin;

46 3.3. EXPERIMENTS

until-see-~m, it should now be until-see-all-objects-in-M ′. For example, ro

in Algorithm 3.1 Line 7 should now refer to the ranking of the missing object with

the highest score. The threshold ranking rT for the condition until-rank-rT

should also be computed based on the above ro instead.

The modifications related to Technique (ii) is as follows. We now have to

identify the lower bound of ∆kL for a set of missing objects M ′ instead of a

single missing object. With a set of missing objects M ′ = {~m1, · · · ~mn}, we use

DOMi to represent the set of objects that dominate ~mi. So, ∆kL for M ′ is

max(|DOM1 ∪ DOM2 ∪ · · · ∪DOMn ∪ M ′| − ko, 0).

3.3 Experiments

We evaluate our proposed solution using both synthetic and real data. By

default, we set the system parameters T% and Pr as 0.2% and 0.8, respectively

(resulting in a sample size of 800 weightings). The algorithms are implemented

in C++ and the experiments are run on a Ubuntu PC with Intel 2.67GHz i5 Dual

Core processor and 4GB RAM. We adopt [24] as our progressive top-k algorithm.

3.3.1 Case Study

We use the NBA data set in the case study. The NBA data set contains

21961 game statistics of all NBA players from 1973-2009. Each record represents

the career performance of a player: player name (Player), points per game (PTS),

rebounds per game (REB), assists per game (AST), steals per game (STL), blocks

per game (BLK), field goal percentage (FG), free throw percentage (FT), and

CHAPTER 3. WHY-NOT TOP-K QUESTION 47

three-point percentage (3PT).

For comparison, we also implemented a version of our algorithm in which

weightings are randomly sampled from the whole weighting space. We refer to

that version as WWS. In the following, we present several interesting cases:

Case 1 (Finding the top-3 centers in NBA history). The first case

was to find the top-3 centers in the NBA history. Therefore, we issued a top-3

query Q1 with equal weighting (0.2) on five attributes PTS, REB, BLK, FG, and

FT. The initial result was:

Rank Player PTS REB BLK FG FT

1 W. Chamberlain 30 23 0 0.53 0.51

2 Abdul-jabbar 25 11 2 0.55 0.72

3 Shaquille O’neal 25 11 1 0.58 0.52

Because we were curious why Yao Ming was not in the result, we issued a

why-not question {{Yao Ming}, Q1} using the “Prefer modify weighting” option,

since we wanted to see Yao in top-3. In 156ms, our algorithm returned a refined

query Q′1 with k′1 = 3 and ~w′1 = |0.0243 0.0024 0.0283 0.0675 0.8775|. The

refined query essentially indicated that we should have put more weights on a

center’s free-throw (FT) ability if we wish to see Yao in the top-3 result. The

corresponding result of Q′1 was:

Rank Player PTS REB BLK FG FT

1 Abdul-jabbar 25 11 2 0.55 0.72

2 Hakeem Olajuwon 22 11 3 0.51 0.71

3 Yao Ming 19 9 2 0.52 0.83

The penalty value of Q′1 was 0.069. As a comparison, WWS returned another

refined query Q′WWS
1 , using 154ms. However, Q′WWS

1 was a top-7 query that

48 3.3. EXPERIMENTS

uses another set of weighting (Yao ranked 7-th). The penalty of Q′WWS
1 was

0.28, which was four times worse than Q′1.

Case 2 (Finding the top-3 guards in NBA history). The second case

was to find the top-3 guards in the NBA history. Therefore, we issued a top-3

query Q2 with equal weighting (1
6) on six attributes PTS, AST, STL, FG, FT,

and 3PT. The initial result was:

Rank Player PTS AST STL FG FT 3PT

1 Michael Jordan 30 5 2 0.49 0.83 0.32

2 LeBron James 28 7 2 0.47 0.73 0.32

3 Oscar Robertson 26 10 0 0.48 0.83 0

We were surprised why Kobe Bryant was not in the result. So, we posed a why-

not question {{Kobe Bryant}, Q2} using the “Prefer modify weighting” option,

since we wanted to see Kobe Bryant in top-3. In 163ms, our algorithm returned a

refined queryQ′2 with k′2 = 3 and ~w′2 = |0.0129 0.0005 0.0416 0.2316 0.3769 0.3364|.

The corresponding result of Q′2 was:

Rank Player PTS AST STL FG FT 3PT

1 Michael Jordan 30 5 2 0.49 0.83 0.32

2 Pete Maravich 24 5 1 0.44 0.82 0.66

3 Kobe Bryant 25 5 2 0.45 0.83 0.34

The penalty of Q′2 was 0.035. As a comparison, WWS returned a refined query

Q′WWS
2 , in 161ms. However, Q′WWS

2 was a top-4 query (Kobe Bryant ranked 4-

th), which conflicted with our “Prefer modify weighting” option. Thus, Q′WWS
2 ’s

penalty was 0.2, which was more than five times worse than Q′2.

Case 3 (Finding the top-3 players in NBA history). The third case

was to find the top-3 players in the NBA history. Therefore, we issued a top-3

CHAPTER 3. WHY-NOT TOP-K QUESTION 49

query Q3 with equal weighting (1
8) on all eight numeric attributes. The initial

result was:

Rank Player PTS REB AST STL BLK FG FT 3PT

1 W. Chamberlain 30 23 4 0 0 0.53 0.51 0

2 LeBron James 28 7 7 2 1 0.47 0.73 0.32

3 Elgin Baylor 27 14 4 0 0 0.43 0.77 0

Amazingly, Michael Jordan was missing in the result. To understand why, we

issued a why-not question {{Michael Jordan}, Q3}, using the “Prefer modify

k” option, because we insisted that Michael Jordan should have a top ranking

without twisting the weightings much. Using 150ms, our algorithm returned a

refined query Q′3 with k′3 = 5 and ~w′3 = ~wo, with the following result:

Rank Player PTS REB AST STL BLK FG FT 3PT

1 W. Chamberlain 30 23 4 0 0 0.53 0.51 0

2 LeBron James 28 7 7 2 1 0.47 0.73 0.32

3 Elgin Baylor 27 14 4 0 0 0.43 0.77 0

4 Bob Pettit 26 16 3 0 0 0.43 0.76 0

5 Michael Jordan 30 6 5 2 1 0.49 0.83 0.32

The refined query Q′3 essentially means that our initial weightings were reason-

able but we should have looked for the top-5 players instead. In this case, both

versions of our algorithms came up with the same refined query in 150ms.

As a follow up, we were also interested in understanding why both Michael

Jordan and Shaquille O’neal were not the top-3 players in the NBA history.

Therefore, we issued another why-not query {{Michael Jordan, Shaquille O’neal},

Q3}, using the “Never mind” option. In 166ms, our algorithm returned a refined

queryQ′′3 with k′ = 5 and ~w′3 = |0.138 0.0847 0.0639 0.1066 0.2481 0.1143 0.1231 0.1212|.

The corresponding result of Q′′3 was:

50 3.3. EXPERIMENTS

Rank Player PTS REB AST STL BLK FG FT 3PT

1 W. Chamberlain 30 23 4 0 0 0.53 0.51 0

2 Michael Jordan 30 6 5 2 1 0.49 0.83 0.32

3 LeBron James 28 7 7 2 1 0.47 0.73 0.32

4 Abdul-jabbar 25 11 4 1 2 0.55 0.72 0.05

5 Shaquille O’neal 25 11 3 1 2 0.58 0.52 0.25

The penalty of Q′′3 was 0.2. WWS returned another refined query Q′′WWS
3 , in

164ms. However, Q′′WWS
3 was a top-5 query with penalty 0.27, which was higher

than Q′′3.

3.3.2 Performance

We next turn our focus to the performance of our algorithm. We present

experimental results based on three types of synthetic data: uniform (UN), corre-

lated (CO) and anti-correlated (AC). Since, the experiment results between UN

and CO are very similar, we only present the results of UN and AC here. Table

3.2 shows the parameters we varied in the experiments. The default values are in

bold faces. The default top-k query Qo has a setting of: k = ko, ~wo = |1d · · ·
1
d |,

where d is the number of dimensions (attributes involved). By default, the why-

not question asks for a missing object that is ranked (10 ∗ ko + 1)-th under ~wo.

Table 3.2. Parameters setting
Parameter Ranges

Data size 100K, 500K, 1M, 1.5M, 2M

Dimension 2, 3, 4, 5

ko 5, 10, 50, 100

Actual ranking of ~m under Qo 11, 101, 501 ,1001

T% 0.3%, 0.25%, 0.2%, 0.15%, 0.1%

Pr 0.5, 0.6, 0.7, 0.8, 0.9

|M | 1, 2, 3, 4, 5

CHAPTER 3. WHY-NOT TOP-K QUESTION 51

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15 20

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Data size(100K)

PMW
NM

PMK

(a) Uniform Data

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 5 10 15 20

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Data size(100K)

PMW
NM

PMK

(b) Anti-correlated Data

Figure 3.5. Varying data size

Varying Data Size. Figure 3.5 shows the running time of our algorithm

under different data sizes, using different penalty options (PMK stands for “Pre-

fer modifying k”, PMW stands for “Prefer modifying weighting”, NM stands

for “Never mind”). We can see our algorithm for answering why-not questions

scales linearly with the data size. The running time scales linearly, but at a faster

rate, on AC data because of the general fact that progressive top-k operations

on anti-correlated data takes a longer time to finish [24].

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 4 5

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Dimensionality

PMW
NM

PMK

(a) Uniform Data

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

2 3 4 5

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Dimensionality

PMW
NM

PMK

(b) Anti-correlated Data

Figure 3.6. Varying query dimension

Varying Query Dimension. Figure 3.6 shows the running time of our

52 3.3. EXPERIMENTS

algorithm using top-k queries in different number of query dimensions. In general,

answering why-not questions for top-k queries in a higher query dimension needs

more time because the execution time of a progressive top-k operation increases

if a top-k query involves more attributes. From the figure, we see that our

algorithm scales well with the number of dimensions.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

10 50 100

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

ko

PMW
NM

PMK

(a) Uniform Data

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

10 50 100

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

ko

PMW
NM

PMK

(b) Anti-correlated Data

Figure 3.7. Varying ko

Varying ko. Figure 3.7 shows the running time of our algorithm using top-k

queries with different ko values. In this experiment, when a top-5 query (ko = 5)

is used, the corresponding why-not question is to ask why the object in rank 51-th

is missing. Similarly, when a top-50 query (ko = 50) is used, the corresponding

why-not question is to ask why the object in rank 501-th is missing. Naturally,

when ko increases, the time to answer a why-not question should also increase

because the execution time of a progressive top-k operation also increases with

k. Figure 3.7 shows that our algorithm scales well with ko. The running time

of our algorithm increases very little under the PMK option. Recall that in

Section 3.2.4 we mentioned that the effectiveness of our pruning techniques is

more pronounced when the PMK option is used. In this experiment, when we

CHAPTER 3. WHY-NOT TOP-K QUESTION 53

scaled up ko to a large value, the algorithm running time became higher. As such,

the stronger pruning effectiveness of the PMK option became more obvious in

the experimental result.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

101 501 1001

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Missing tuple ranks under wo

PMW
NM

PMK

(a) Uniform Data

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

101 501 1001
T

ot
al

 r
un

ni
ng

 ti
m

e
(s

ec
)

Missing tuple ranks under wo

PMW
NM

PMK

(b) Anti-correlated Data

Figure 3.8. Varying the ranking of the missing object

Varying the missing object to be inquired. We next study the per-

formance of our algorithm by posing why-not questions with missing objects

from different rankings. In this experiment, the default top-10 query is used.

We asked four individual why-not questions about why the object that ranked

11-th, 101-th, 501-th, and 1001-th, respectively, is missing in the result. Figure

3.8 shows that our algorithm scales well with the ranking of the missing object.

Of course, when the missing object ~m has a worse ranking under the original

weighting ~wo, the progressive top-k operation should take a longer time to see

it in the result and thus the overall running time must increase. Again, because

our pruning techniques are especially effective when the PMK option is used, the

running time of our algorithm increases very little under that option.

Varying the size of |M |. We also study the performance of our algorithm

by posing why-not questions with different numbers of missing objects. In this

54 3.3. EXPERIMENTS

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1 2 3 4 5

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

#M

PMW
NM

PMK

(a) Uniform Data

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1 2 3 4 5
T

ot
al

 r
un

ni
ng

 ti
m

e
(s

ec
)

#M

PMW
NM

PMK

(b) Anti-correlated Data

Figure 3.9. Varying |M |

experiment, the default top-10 query is used and five why-not questions are

asked. In the first question, one missing object that ranked 101-th under ~wo is

included in M . In the second question, two missing objects that respectively

ranked 101-th and 201-th under ~wo are included in M . The third to the fifth

questions are constructed similarly. Figure 3.9 shows that our algorithm scales

linearly with respect to different sizes of M .

Varying T%. We also like to know how the performance and solution

quality of our algorithm vary when we look for refined queries with different

quality guarantees. Figure 3.10 shows the running time of our algorithm and the

penalty of the returned refined queries when we changed from accepting refined

queries that are within the best 0.3% (|S| = 536) to accepting refined queries

that are within the best 0.1% (|S| = 1609). From Figures 3.10(a) and 3.10(b),

we can see that, with our effective pruning techniques, the running time of our

algorithm do not increase much when the guarantee is more stringent. However,

from Figures 3.10(c) and 3.10(d), we can see that the solution quality of the

algorithm does improve when T decreases, under options PMW and NM. The

CHAPTER 3. WHY-NOT TOP-K QUESTION 55

 0

 0.2

 0.4

 0.6

 0.8

 1

0.3% 0.25% 0.2% 0.15% 0.1%

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

T%

PMW
NM

PMK

(a) Uniform Data

 0

 0.5

 1

 1.5

 2

0.3% 0.25% 0.2% 0.15% 0.1%

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
)

T%

PMW
NM

PMK

(b) Anti-correlated Data

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.3% 0.25% 0.2% 0.15% 0.1%

P
en

al
ty

T%

PMW
NM

PMK

(c) Uniform Data

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.3% 0.25% 0.2% 0.15% 0.1%

P
en

al
ty

T%

PMW
NM

PMK

(d) Anti-correlated Data

Figure 3.10. Varying T%

solution quality of our algorithm under the option PMK does not change when

T increases because the refined query Q′o(ro, ~wo) has a very small ∆k under

that option. Option PMK prefers not to change the weighting. So, the query

Q′o(ro, ~wo), which has its ∆w = 0, is the best refined query over all different

values of T . This explains why the solution quality remains constant under that

option.

Varying Pr. The experimental result of varying Pr, the probability of

getting the best-T% of refined queries, is similar to the results of varying T%

56 3.3. EXPERIMENTS

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 0.6 0.7 0.8 0.9

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Pr

PMW
NM

PMK

(a) Uniform Data

 0

 0.5

 1

 1.5

 2

0.5 0.6 0.7 0.8 0.9
T

ot
al

 r
un

ni
ng

 ti
m

e
(s

)
Pr

PMW
NM

PMK

(b) Anti-correlated Data

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 0.6 0.7 0.8 0.9

P
en

al
ty

Pr

PMW
NM

PMK

(c) Uniform Data

 0

 0.2

 0.4

 0.6

 0.8

 1

0.5 0.6 0.7 0.8 0.9

P
en

al
ty

Pr

PMW
NM

PMK

(d) Anti-correlated Data

Figure 3.11. Varying Pr

above. That is because both parameters are designed for controlling the quality

of the approximate solutions. In Figure 3.11, we can see that when we vary

Pr from 0.5 (|S| = 347) to 0.9 (|S| = 1151), the running times remain roughly

constant. However, the solution quality does improve a lot, except under the

option PMK because of the same reason we described above.

Effectiveness of Pruning Techniques. Finally, we investigate the ef-

fectiveness of the two pruning techniques we used in our algorithm. Figure 3.12

shows the performance of our algorithm using only Technique (i), only Technique

CHAPTER 3. WHY-NOT TOP-K QUESTION 57

 0.1

 1

 10

 100

 1000

 10000

 100000

PMW NM PMK

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Option

Use Both
Use Technique (i) Only
Use Technique (ii) Only

Without Pruning

(a) Uniform Data

 0.1

 1

 10

 100

 1000

 10000

 100000

PMW NM PMK

T
ot

al
 R

un
ni

ng
 T

im
e

(s
ec

)

Option

Use Both
Use Technique (i) Only
Use Technique (ii) Only

Without Pruning

(b) Anti-correlated Data

Figure 3.12. Pruning Effectiveness

(ii), both, and none, under the default setting. The pruning effectiveness of both

techniques are also very promising. Without using any pruning technique, the

algorithm requires a running time of about 1000 seconds. A progressive top-k

operation is more costly in anti-correlated data than in uniform data. Therefore,

the effectiveness of Technique (ii), which prunes the entire progressive top-k op-

erations, is relatively stronger than Technique (i) in AC data than in UN data.

Using the same token, this explains why Technique (i) is relatively more effective

than Technique (ii) in the UN data.

3.4 Chapter Summary

In this chapter, we have studied the problem of answering why-not questions

on top-k queries. Our target is to give an explanation to a user who is wondering

why her expected answers are missing in the query result. By returning the

user a refined query with (approximate) minimal changes to the k value and her

weightings, the user could get not only her desired query, but also learn what

58 3.4. CHAPTER SUMMARY

was/were wrong with her initial query. Case studies and experimental results

show that our approach returns high quality explanations to users efficiently.

Chapter 4

Why-Not Top-K SQL Question

In Chapter 3, we discussed the answering of why-not questions on top-k

queries in the absence of other SQL constructs such as selection, projection,

join, and aggregation. In this chapter, we extend our algorithm to support why-

not top-k questions in the context of SQL by adopting the query-refinement

approach as our explanation model. In [35], the query-refinement approach has

been adopted on why-not SPJA questions. They define that a good refined

query should be (a) similar — have few “edits” comparing with the original

query (e.g., modifying the constant value in a selection predicate is a type of

edit; adding/removing a join predicate is another type of edit) and (b) precise

— have few extra tuples in the result, except the original result plus the missing

tuples. In this chapter, we adopt the above “similar” and “precise” metrics.

Considering additional SQL constructs on why-not top-k questions could

complicate the solution space. As an example, consider table U in Figure 4.1(a)

and the following top-3 SQL query:

59

60

ID A B

P1 240 60

P2 235 60

P3 340 70

P4 100 70

P5 140 100

P6 150 50

ID 0.5*A+0.5*B

P3 205

P1 150

P2 147.5

P5 120

P6 100

P4 85

(a) An example table U (b) Ranking under
original weightings

Figure 4.1. Motivation Example

Qo:

SELECT U.ID

FROM U

WHERE U.A ≥ 205

ORDER BY 0.5∗U.A + 0.5∗U.B

LIMIT 3

Figure 4.1(b) shows the ranking scores of all tuples in U and the top-3

results are {P3, P1, P2}. Assuming that we are interested in asking why P5 is

not in the top-3, we see that using SPJA query modification techniques in [35] to

modify only the SPJ construct (e.g., modifying WHERE clause to be U.A ≥ 140)

cannot include P5 in the top-3 result (because P5 indeed ranks 4-th under the

current weighting ~w = |0.5 0.5|). Using our preliminary top-k query modification

technique in Chapter 3 to modify only the top-k construct (e.g., modifying k

to be 4) cannot work either because P5 is filtered by the WHERE clause. This

motivates us to develop holistic solutions that consider the modification of both

SPJA constructs and top-k constructs in order to answer why-not questions on

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 61

top-k SQL queries. For the example above, the following refined query Q′ is one

good candidate answer:

Q′:

SELECT U.ID

FROM U

WHERE U.A ≥ 140

ORDER BY 0.5∗U.A + 0.5∗U.B

LIMIT 4

Q′ is precise because it includes no extra tuple and is similar to Qo because

only essential edits were carried out: (1) modifying from U.A ≥ 205 to U.A ≥

140, and (2) modifying k from 3 to 4.

In this chapter, we show that finding the best explanations (i.e. the best

refined queries) is actually computationally expensive. Afterwards, we present

efficient evaluation algorithms that can obtain the best approximate explanations

in reasonable time. We present case studies to demonstrate our solutions. We

also present experimental results to show that our solutions return high quality

solutions efficiently.

4.1 Why-Not Top-K SPJ Question

In this section, we first focus on answering why-not questions on top-k SQL

queries with SPJ clauses. We will extend the discussion to why-not top-k SQL

queries with GROUP BY and aggregation in the next section.

62 4.1. WHY-NOT TOP-K SPJ QUESTION

4.1.1 The Problem and The Explanation Model

We consider a top-k SPJ query Q with a set of Select-Project-Join clauses

SPJ, a monotonic scoring function f and a weighting vector ~w = |w[1] w[2] · · · w[d]|,

where d is the number of attributes in the scoring function. For simplicity, we

assume a larger value means a better score (and rank) and the weighting space

subject to the constraints
∑
w[i] = 1 and 0 ≤ w[i] ≤ 1. We only consider con-

junctions of predicates P1∧ . . .∧Pn, where each Pi is either a selection predicate

“Aj op v” or a join predicate “Aj op Ak”, where A is an attribute , v is a con-

stant, and op is a comparison operator. For simplicity, our discussion focuses on

≥ comparison because generalizing our discussion to other comparison operators

is straightforward. The query result would then be a set of k tuples whose scores

are the largest (in case tuples with the same scores are tie at rank k-th, only one

of them is returned).

Initially, a user issues an original top-k SPJ query Qo(SPJo, ko, ~wo) on a

dataset D. After she gets the query result, denoted as Ro, she may pose a why-

not question with a set of missing tuples Y = {y1, . . . , yl} (l ≥ 1), where yi

has the same set of projection attributes as Qo. In this chapter, we adopt the

query-refinement approach in [35] so that the system returns the user a refined

query Q′(SPJ ′, k′, ~w′), whose result R′ includes Y and Ro, i.e., {Y ∪ Ro} ∈ R′.

It is possible that there are indeed no refined queries Q′ that can include Y (e.g.,

Y includes a missing tuple whose expected attribute values indeed do not exist

in the database). For those cases, the system will report to the user about her

error.

There are possibly multiple refined queries for being the answers to a why-

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 63

not question {Y,Qo}. We thus use ∆SPJ , ∆k, and ∆w to measure the quality

of a refined query Q′, where ∆k = k′ − ko, ∆w = ||~w′ − ~wo||2, and ∆SPJ is

defined based on four different types of edit operations of SPJ clauses adopted

in [35]:

• (e1) modifying the constant value of a selection predicate in the WHERE

clause.

• (e2) adding a selection predicate in the WHERE clause.

• (e3) adding/removing a join predicate in the WHERE clause.

• (e4) adding/removing a relation in the FROM clause.

Following [35], we do not allow other edit operations such as changing the

projection attributes (because users usually have a clear intent about the pro-

jection attributes). Note that there is no explicit edit operation for removing a

selection predicate, since it is equivalent to modifying the constant value in the

predicate to cover the whole domain of the attribute. Furthermore, we also do

not consider modifying the joins to include self-join. Let ci denote the cost of

the edit operation ei, and we follow [35] to set c1 = 1, c2 = 3, c3 = 5, c4 = 7.

So, ∆SPJ =
∑

1≤i≤4(ci × ni), where ni is the number of edit operations ei used

to obtain the refined query Q′. In order to capture a user’s tolerance to the

changes of SPJ clauses, k, and ~w on her original query Qo, we first define a basic

penalty model that sets the penalties λspj , λk and λw to ∆SPJ , ∆k and ∆w,

respectively, where λspj + λk + λw = 1:

Penalty = λspj∆SPJ + λk∆k + λw∆w (4.1)

64 4.1. WHY-NOT TOP-K SPJ QUESTION

A B

P1 Alice
P2 Bob
P3 Chandler
P4 Daniel
P5 Eagle
P6 Fabio
P7 Gary
P8 Henry

A C D E

P1 90 400 80
P2 60 290 60
P3 90 200 100
P4 50 300 70
P4 80 100 210
P5 70 250 70
P6 50 280 50
P7 100 500 100

A F G H

P1 60 200 70
P2 100 250 90
P3 90 300 90
P7 80 300 100
P8 60 200 60

(a) Table T1 (b) Table T2 (c) Table T3

Figure 4.2. Running example: data set D

Note that the basic penalty model is able to capture both the similar and

precise requirements. Specifically, a refined query Q′ that minimizes Penalty

implies it is similar to the original query Qo. To make the result precise (having

fewer extra tuples), we can set a larger penalty to λk.

The basic penalty model, however, has a drawback because ∆k generally

could be a large integer (as large as |D|) whereas ∆w and ∆SPJ are generally

smaller. One possible way to mitigate this discrimination is to normalize them

respectively.

We normalize ∆SPJ using the maximum editing cost ∆SPJmax. This cost

refers to the editing cost of obtaining a refined SPJ query QSPJmax , whose (1) SPJ

constructs most deviated from the SPJ constructs of original query Qo (based

on the four types of edit operations e1 to e4) and (2) with a query result that

includes all missing tuples Y and the original query result Ro.

Example 4.1 Figure 4.2 shows an example database D with three base tables

T1, T2, and T3. Assume a user has issued the following top-2 SQL query:

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 65

A B C D E 0.5*D+0.5*E

P7 Gary 100 500 100 300

P1 Alice 90 400 80 240

P4 Daniel 50 300 70 185

P2 Bob 60 290 60 175

P6 Fabio 50 280 50 165

P5 Eagle 70 250 70 160

P4 Daniel 80 100 210 155

P3 Chandler 90 200 100 150

Figure 4.3. T1 on T2 ranked under ~wo = |0.5 0.5|

Qo:

SELECT B

FROM T1, T2

WHERE T1.A = T2.A AND D ≥ 400

ORDER BY 0.5*D + 0.5*E

LIMIT 2

By referring to Figure 4.3, the join result of T1 on T2, the result Ro of the

top-2 query is: {Gary, Alice}. Assuming the missing tuples set Y of the why-

not question is {Chandler}. Then, the refined SPJ query whose SPJ constructs

most deviate from the original query Qo but with a query result that includes all

missing tuples Y and the original query result Ro is:

QSPJmax :

SELECT B

FROM T1, T2, T3

WHERE T1.A = T2.A AND T1.A = T3.A

AND C ≥ 50 AND D ≥ 100 AND E ≥ 50

AND F ≥ 60 AND G ≥ 200 AND H ≥ 60

66 4.1. WHY-NOT TOP-K SPJ QUESTION

According, ∆SPJmax = 1× c1 + 5× c2 + 1× c3 + 1× c4 = 1 + 5× 3 + 5 + 7

= 28.

We normalize ∆k using (ro−ko), where ro is the worst rank among all tuples

in Y ∪ Ro of a refined top-j SQL query QSPJmin , whose (1) SPJ constructs least

deviated from the original query Qo (measured by c1 to c4), (2) using the original

weighting ~wo, (3) with a query result that includes all missing tuples Y and the

original query result Ro, and (4) the modification of j is minimal.

To explain why ro is a suitable value to normalize ∆k, we first remark that

we could normalize ∆k using the cardinality of the join result of Qo because

that is the worst possible rank. But to get a more reasonable rank, we look at

Equation 4.1. First, to obtain the “worst” but reasonable value of ∆k, we can

assume that we do not modify the weighting, leading to condition (2) above.

Similarly, we do not want to modify the SPJ constructs so much but we hope the

SPJ constructs at least do not filter out the missing tuples Y and the original

query result Ro, leading to conditions (1) and (3) above. So, based on Example

4.1, QSPJmin is:

QSPJmin :

SELECT B

FROM T1, T2

WHERE T1.A = T2.A AND D ≥ 200

ORDER BY 0.5*D + 0.5*E

LIMIT 7

We note that the following is not QSPJmin although it also satisfies conditions

(1) to (3) because its modification of j is from 2 to 8, which is not minimal

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 67

(condition 4) comparing with the true QSPJmin above:

SELECT B

FROM T1, T2

WHERE T1.A = T2.A AND D ≥ 100

ORDER BY 0.5*D + 0.5*E

LIMIT 8

So, based on QSPJmin , ∆k will be normalized by (ro − ko) = (7− 2) = 5.

Let the original weighting vector ~wo = |wo[1] wo[2] · · · wo[d]|, we normalize

∆w using
√

1 +
∑
wo[i]

2, because we have proven that ∆w is always smaller

than
√

1 +
∑
wo[i]

2 by Lemma 3.1 in Chapter 3.

Summarizing the above discussion about normalizing Equation 4.1, our nor-

malized penalty function is as follows:

Penalty = λspj
∆SPJ

∆SPJmax
+ λk

∆k
(ro−ko) + λw

∆w√
1+

∑
wo[i]2

(4.2)

The problem definition is as follows. Given a why-not question {Y,Qo},

where Y is a set of missing tuples and Qo is the user’s initial query with result

Ro, our goal is to find a refined top-k SQL query Q′(SPJ ′, k′, ~w′) that includes

Y ∪Ro in the result with the smallest penalty. In this chapter, we use Equation

4.2 as the penalty function. Nevertheless, our solution works for all kinds of

monotonic (with respect to all ∆SPJ , ∆k and ∆w) penalty functions. For

better usability, we do not explicitly ask users to specify the values for λspj , λk

and λw. Instead, we follow our work in Chapter 3 so that users are prompted to

68 4.1. WHY-NOT TOP-K SPJ QUESTION

Table 4.1. Example of candidate refined queries
Refined Query ∆SPJi ∆ki ∆wi Penalty

Q′1({T1 onA T2, D ≥ 200}, 7, |0.5 0.5|) 1 5 0 0.35

Q′2({T1 onA T2, D ≥ 100}, 8, |0.5 0.5|) 1 6 0 0.41

Q′3({T1 onA T2, D ≥ 200}, 7, |0.6 0.4|) 1 5 0.14 0.38

Q′4({T1 onA T2, D ≥ 200 ∧ C ≥ 90}, 3, |0.5 0.5|) 4 1 0 0.11

Q′5{T1 onA T2, D ≥ 200}, 3, |0.2 0.8|) 1 1 0.42 0.20

answer a simple multiple-choice question as illustrated in Figure 4.4.1

XXXXXXXXXXXChoice
Question

Prefer modifying k or your weightings?

Prefer modify SPJA (PMSPJ) λspj = 0.1, λk = 0.45, λw = 0.45

Prefer modify k (PMK) λspj = 0.45, λk = 0.1, λw = 0.45

Prefer modify weightings (PMW) λspj = 0.45, λk = 0.45, λw = 0.1

Never mind (NM); Default λspj = 1/3 λk = 1/3, λw = 1/3

Figure 4.4. A multiple-choice question for freeing users to specify λspj , λk and λw

Assume the default option “Never mind” is chosen. Table 4.1 lists some

examples of refined queries that could be the answer of the why-not question to

Qo in Example 4.1. According to the above discussion, we have ∆SPJmax = 28,

ro−ko = 5 and
√

1 +
∑
wo[i]2 = 1.2 Among those refined queries, Q′1 dominates

Q′2 because its ∆k is smaller than that of Q′2 and the other dimensions are equal.

The best refined query in the example is Q′4 (Penalty=0.11). At this point,

readers may notice that the best refined query is in the skyline of the answer

space of three dimensions: (1) ∆SPJi, (2) ∆ki, (3) ∆wi. Later, we will show

how to exploit properties like this to obtain better efficiency in our algorithm.

1The number of choices and the pre-defined values for λspj , λk and λw, of course, could be
adjusted. For example, to satisfy the precise requirement stated in [35], we suggest the user to
choose the option where λk is a large value.

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 69

4.1.2 Problem Analysis

Answering a why-not question is essentially searching for the best refined

SPJ clause and weighting in (1) the space SSPJ of all possible modified SPJ

clauses and in (2) the space Sw of all possible weightings, respectively. It is

not necessary to search for k because once the best set of SPJ clauses and the

best weighting ~w are found, the value of k can be accordingly set as the rank

of the missing tuple (if there are multiple missing tuples, set as the worst rank

of all missing tuples). The search space SSPJ can be further divided into two:

(1a) the space of the query schemas SQS and (1b) the space of all the selection

conditions Ssel. A query schema QS represents the set of relations in the FROM

clause and the set of join predicates in the WHERE clause. A selection condition

sel represents the set of selection predicates in the WHERE clause.

First, the space SQS is O(2n), where n is the number of relations in the

database. Second, given a particular query schema QSi, the space SQSi

sel is

O(
∏mi
j=1(|Aj | + 1)), where mi is the number of attributes in QSi, |Aj | is the

number of distinct values in attribute Aj in QSi, and |Aj |+ 1 takes into account

an attribute Aj can optionally be or not to be added to the selection condi-

tion. Therefore, the space SSPJ is O(
∑

QSi∈SQS
(SQSi

sel)). Finally, the space Sw

is infinite. Hence, it is obvious that finding the exact best refined query from

SSPJ × Sw is impractical.

4.1.3 The Solution

According to the problem analysis presented above, finding the best refined

query is computationally difficult. Therefore, we trade the quality of the answer

70 4.1. WHY-NOT TOP-K SPJ QUESTION

with the running time.

Let us start the discussion by illustrating our basic idea under the assump-

tion that there is only one missing tuple y. First, we observe that not every

query schema can generate a query whose results contain y. For example 4.1,

if the missing tuple y is (Henry), then the query schema T1 on T2 does not in-

clude y. In this case, no matter how we exhaust the search space Ssel and Sw,

we cannot generate a valid refined query. In other words, during the search for

the good why-not answer, if we can filter out the query schema T1 on T2 first,

the subsequent search in Ssel and Sw can be eliminated. Hence, we enumerate

the space SQS first. Similarly, we should enumerate Ssel before Sw, since some

predicates in Ssel may filter out the tuples that result in y.

When enumerating SQS , there could be multiple query schemas that satisfy

the requirement of generating a query whose results contain y. Our idea here

is similar to [35], which starts from the original query schema QSo, carries out

incremental modification to QSo (using edit operations e3 and e4), and stops

once we have found a query schema QS′ for which queries based on that can

include y ∪ Ro in the result. If no such a query schema is found, we report to

the user that no refined query can answer her why-not question.

Once the target query schema QS′ is found, we next enumerate all possible

selection conditions SQS
′

sel that can be derived from QS′ with a set Sw of weighting

vectors. The set Sw includes a random sample S of vectors ~w1, ~w2, · · · , ~ws from

the weighting space Sw and the original weighting ~wo. That is, Sw = ~wo∪S. For

each selection condition seli ∈ SQS
′

sel and each weighting ~wj ∈ Sw, we formulate

a refined top-k SQL query Q′ij and execute it using a progressive top-k SQL

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 71

algorithm (e.g., [21,22,25]), which progressively reports each top rank tuple one-

by-one, until all tuples in y ∪ Ro come forth to the result set at ranking rij .

So, after |SQS
′

sel | · |Sw| progressive top-k SQL executions, we have |SQS
′

sel | · |Sw|

refined queries. Finally, using rij as the refined k′, seli and QS′ to formulate the

refined SPJ clauses SPJ ′, and ~wj as the refined weighting ~w′, the refined query

Q′(SPJ ′, k′, ~w′) with the least penalty is returned to the user as the why-not

answer.

The basic idea above incurs many progressive top-k SQL executions. In the

following, we present our algorithm in detail. The algorithm consists of three

phases and includes different optimization techniques in order to reduce the ex-

ecution time.

[PHASE-1] In this phase, we start from the original query schema QSo and do

incremental modification to QSo (using edit operations e3 and e4) and stop until

we find a query schema QS′ for which queries based on that can include y∪Ro in

the result. As all the subsequent considered refined queries will be based on QS′,

we materialize the join result J based on QS′ in order to avoid repeated compu-

tation of the same join result based on QS′ in the subsequent phase. If no such

a query schema is found, we report to the user that no refined query can answer

her why-not question. Finally, we randomly sample s weightings ~w1, ~w2, · · · , ~ws

from the weighting space and add them into Sw in addition to ~wo.

[PHASE-2] Next, for a subset SQS
′

sel ⊆ S
QS′

sel of selection conditions that can

be derived from QS′ and weighting vectors ~wj ∈ Sw, we execute a progressive

72 4.1. WHY-NOT TOP-K SPJ QUESTION

top-k SQL query on the materialized join result J using a selection condition

seli ∈ SQS
′

sel and a weighting ~wj ∈ Sw until a stopping condition is met. From

now on, we denote a progressive top-k SQL execution as:

rij = topk(seli, ~wj , stopping-condition)

where rij denotes the rank when all y∪Ro come forth to the result under selection

condition seli and weighting ~wj .

In the basic idea mentioned above, we have to execute |SQS
′

sel |·|Sw| progressive

top-k SQL executions. In Section 4.1.3.1, we will illustrate that we can just focus

on a much smaller subset SQS
′

sel ⊆ S
QS′

sel without jeopardizing the quality of the

answer. Consequently, the number of progressive top-k SQL executions could be

largely reduced to |SQS
′

sel | · |Sw|.

Furthermore, the original stopping condition in our basic idea is to proceed

the topk execution on J until all tuples in y ∪ Ro come forth to the result2.

However, if some tuples in y ∪ Ro rank very poorly under some weighting ~wj ,

the corresponding progressive top-k SQL operation may be quite slow because

it has to access many tuples in the materialized join result J . In Section 4.1.3.2,

we present a much more aggressive and effective stopping condition that makes

most of those operations stop early before y ∪Ro comes forth to the result.

Finally, we present a technique in Section 4.1.3.3 that can identify some

weightings in Sw whose generated refined queries have poorer quality, thereby

skipping the topk execution for those weightings to gain better efficiency.

2There could be multiple tuples in J that match y. In this case, we randomly choose one in
J .

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 73

[PHASE-3] Using rij as the refined k′, seli and QS′ as the refined SPJ clauses

SPJ ′, and ~wj as the refined weighting ~w′, the refined query Q′(SPJ ′, k′, ~w′) with

the least penalty is returned to the user as the why-not answer.

4.1.3.1 Excluding selection predicates that could not yield good re-

fined queries

In the basic idea, we have to enumerate all possible selection conditions

based on the query schema QS′ chosen in Phase-1. As mentioned, if there are

m attributes in QS′ and |Ai| is the number of distinct values in attribute Ai in

that query schema, there would be O(
∏m

1 (|Ai|+1)) possible selection conditions.

However, the following theorem can help us to exclude selection conditions that

could not yield good refined queries:

Theorem 4.1 If we need to modify the original selection condition by modifying

the constant value vi of its selection predicate P in the form of Ai ≥ vi (edit

operation e1), or adding a selection predicate P in the form of Ai ≥ vi (edit

operation e2) to the selection condition, we can simply consider only one possi-

bility of P , which is Ai ≥ vmini , where vmini is the minimum value of attribute

Ai among tuples in y ∪Ro, because P in any other form would not lead to better

refined top-k SQL queries whose penalties are better than P as Ai ≥ vmini .

Proof. Let sel′ = {A1 ≥ v1, · · · , Al ≥ vl} (l ≤ m) be the selection condition

after modification and particularly Ai ≥ v′i be a predicate P ′ in sel′ whose gets

74 4.1. WHY-NOT TOP-K SPJ QUESTION

modified/added from the original selection condition.

First, v′i in P ′ has to be smaller than or equal to vmini or otherwise some

tuples in y ∪Ro would get filtered away.

Second, comparing a predicate P : Ai ≥ x, with x as any value smaller than

vmini , and the predicate Pmin: Ai ≥ vmini , these two predicates incur the same

∆SPJ to the original selection condition.

Third, as the predicate P : Ai ≥ x, is less restrictive than the predicate

Pmin: Ai ≥ vmini , more tuples could pass P . So, given a weighting ~w, the worst

rank of y ∪ Ro under P cannot be better than that under Pmin. That implies

∆k under P would not be better than that under Pmin as well. Therefore, we

conclude that top-k SQL queries based on P would not lead to better refined

top-k SQL queries based on Pmin.

Consider Example 4.1 again. The query schema QS′ that can include back

the missing tuple (Chandler) would lead to a join result like Figure 4.3. Origi-

nally, we have to consider eight predicates when dealing with attribute D, which

are D ≥ 500, D ≥ 400, D ≥ 300, D ≥ 290, D ≥ 280, D ≥ 250, D ≥ 200,

and D ≥ 100. By using Theorem 4.1, we just need to consider D ≥ 200 be-

cause among y ∪ Ro = {Chandler, Gary, Alice}, their attribute values of D are

200, 400, and 500, with 200 as the minimum. Similar for attribute E, by using

Theorem 4.1, we just need to consider E ≥ 80. The above discussion can be

straightforwardly generalized to other comparisons including ≤, <,>.

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 75

4.1.3.2 Stopping a progressive top-k SQL operation earlier

In PHASE-2 of our algorithm, the basic idea is to execute the progressive

top-k SQL query until y ∪ Ro come forth to the result, with rank rij . In the

following, we show that it is actually possible for a progressive top-k SQL execu-

tion to stop early even before y ∪ Ro come forth to the result. Techniques here

are adjusted based on Technique (i) in Section 3.2.4 to support SPJ clauses.

Consider an example where a user specifies a top-k SQL queryQo(SPJo, ko =

2, ~wo) on a data set D and poses a why-not question about a missing tuple y. As-

sume that the list of weightings Sw is [~wo, ~w1, ~w2, ~w3] and topk(sel1, ~wo,until-see-{y∪

Ro}) is first executed, and y’s actual ranking under sel1 and ~wo is 7. Now, we

have our first candidate refined query Q′1o(sel1, r1o = 7, ~wo), with ∆k = 7−2 = 5

and ∆w = ||~wo − ~wo||2 = 0. The corresponding penalty, denoted as, PenQ′1o ,

could be calculated using Equation 4.2. Remember that we want to find the

refined query with the least penalty Penmin. So, at this moment, we set penalty

Penmin = PenQ′1o .

According to our basic idea outlined above, we should next execute another

progressive top-k SQL using the selection condition sel1 and another weighting

vector, say, ~w1, until y ∪ Ro come forth to the result with a rank r11. However,

we notice that the skyline property in the answer space can help to stop that

operation earlier, even before y ∪ Ro are seen. Given the first candidate refined

query Q′1o(sel1, r1o = 7, ~wo) with ∆w = 0 and ∆k = 5, any other candidate

refined queriesQ′1j with ∆k > 5 must be dominated byQ′1o. In our example, after

the first executed progressive top-k SQL execution, all the subsequent progressive

top-k SQL executions with sel1 can stop once y∪Ro do not show up in the top-7

76 4.1. WHY-NOT TOP-K SPJ QUESTION

tuples.

Δw1 Δw2 Δw3

Q’1o

Q’11

Q’12

Δw

Δk

4

ΔkT=3

6

2

ΔkL=1

Q’’12

PenPen

7

5

Δk > 5

Q’13

Δwf0

Q’’12
Q’1o

Figure 4.5. Example of answer space under selection condition sel1

Figure 4.5 illustrates the answer space of the example. The idea above

essentially means a progressive top-k SQL execution can stop if y ∪ Ro do not

show up in result after returning the top-7 tuples (i.e., ∆k > 5; see the dotted

region). For example, consider Q′11 in Figure 4.5 whose weighting is ~w1 and y∪Ro

show up in the result only when k = 9, i.e., ∆k = 9− 2 = 7. So, the progressive

top-k SQL associated with Q′11 can stop after k = 7, because after that Q′11 has

no chance to dominate Q′1o anymore. In other words, the progressive top-k SQL

associated with Q′11 do not wait to reach k = 9 where y ∪ Ro come forth to the

result but stop early when k = 7.

While useful, we can actually be even more aggressive in many cases. Con-

sider another candidate refined query, say, Q′12, in Figure 4.5. Assume that

r12 = topk(sel1, ~w2,until-see-{y ∪ Ro}) = 6 (i.e., ∆k = 6 − 2 = 4), which is

not covered by the above technique (since ∆k 6< 5). However, Q′12 can also stop

early, as follows. In Figure 4.5, we show the normalized penalty Equation 4.2

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 77

as a slope Penmin = PenQ′1o that passes through the best refined query so far

(currently Q′1o). All refined queries that lie on the slope have the same penalty

value as Penmin. In addition, all refined queries that lie above the slope actually

have a penalty larger than Penmin, and thus are dominated by Q′1o. Therefore,

similar to the skyline discussion above, we can determine an even tighter thresh-

old ranking rT for stopping the subsequent progressive top-k SQL operations

with sel1:

rT = ∆kT + ko, where

∆kT = b(Penmin − λspj
∆SPJ

∆SPJmax
− λw

∆w√
1 +

∑
wo[i]2

)
ro − ko
λk

c
(4.3)

Equation 4.3 is a rearrangement of Equation 4.2 (with Penalty = Penmin).

Back to our example in Figure 4.5, given that the weighting of candidate refined

query Q′12 is ~w2, we can first compute its ∆w2 value. Then, we can project ∆w2

onto the slope Penmin (currently Penmin = PenQ′1o) to obtain the corresponding

∆kT value, which is 3 in Figure 4.5. That means, if we carry out a progressive top-

k SQL operation using sel1 as the predicates and ~w2 as the weighting, and if y∪Ro

still do not appear in result after the top-5 tuples (rT = ∆kT + ko = 3 + 2 = 5)

are seen, then we can stop it early because the penalty of Q′12 is worse than the

penalty Penmin of the best refined query (Q′1o) seen so far.

Following the discussion above, we now have two early stopping conditions

for the progressive top-k SQL algorithm: until-see-{y∪Ro} and until-rank-rT .

Except for the first progressive top-k SQL operation which topk(sel1, ~wo,until-see-{y∪

Ro}) must be used, the subsequent progressive top-k SQL operations with sel1

78 4.1. WHY-NOT TOP-K SPJ QUESTION

can use “until-see-{y∪Ro} or until-rank-rT ” as the stopping condition. We

remark that the conditions until-rank-rT and until-see-{y ∪ Ro} are both

useful. For example, assume that the actual worst rank of y ∪Ro under sel1 and

~w2 is 4, which gives it a ∆k12 = 2 (see Q′′12 in Figure 4.5). Recall that by project-

ing ∆w2 onto the slope of Penmin = PenQ′1o , we can stop the progressive top-k

SQL operation after rT = 3 + 2 = 5 tuples have been seen. However, using the

condition until-see-{y ∪Ro}, we can stop the progressive top-k SQL operation

when all y∪Ro show up at rank four. This drives us to use “until-see-{y∪Ro}

or until-rank-rT ” as the stopping condition.

Finally, we remark that the optimization power of this technique increases

while the algorithm proceeds. For example, after Q′′12 has been executed, the

best refined query seen so far should be updated as Q′′12 (because its penalty is

better than Q′1o). Therefore, Penmin now is updated as PenQ′′12 and the slope

Penmin should be updated to pass through Q′′12 now (the dotted slope in Figure

4.5). Because Penmin is continuously decreasing, ∆kT and thus the threshold

ranking rT would get smaller and smaller and the subsequent progressive top-k

SQL operations can terminate even earlier while the algorithm proceeds.

The above early stopping technique can be applied to the subsequent selec-

tion conditions. In our example, after selection condition sel1 and turning to

consider selection condition sel2 with the set of weightings Sw, we can derive rT

based on Equation 4.3 by simply reusing the Penmin obtained from sel1.

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 79

4.1.3.3 Skipping progressive top-k SQL operations

In PHASE-2 of our algorithm, the basic idea is to execute progressive top-k

SQL queries for all selection conditions in SQS
′

sel and all weightings in Sw. After

the discussion in 4.1.3.2, we know that some progressive top-k SQL executions

can early stop. We now illustrate how some of those executions could be skipped

entirely, so that the overall running time can be reduced further. Techniques

here are adjusted based on technique (ii) in Section 3.2.4 to support SPJ clauses.

The first pruning opportunity is based on the observation from [36] that

under the same selection condition seli, similar weighting vectors (measured

using their cosine similarity) may lead to top-k SQL results with more common

tuples. Therefore, if an operation topk(seli, ~wj ,until-see-{y ∪Ro}) for ~wj has

already been executed, and if a weighting ~wl is similar to ~wj , then we can use

the query result Rij of topk(seli, ~wj ,until-see-{y∪Ro}) to deduce the smallest

k value for seli and ~wl. Let k′ be the deduced k value for seli and ~wl. If the

deduced k′ is larger than the threshold ranking rT , then we can skip the entire

topk(seli, ~wl, stopping-condition) operation.

We illustrate the above by reusing our running example. Assume that we

have cached the result sets of executed progressive top-k SQL queries. Let R1o

be the result set of the first executed query topk(sel1, ~wo,until-see-{y ∪Ro})

and Ro = {t5, t6}. Assume that R1o = [t1, t2, t3, t4, t5, t6, y]. Then, when we are

considering the next weighting vector, say, ~w1, in Sw, we first follow Equation

4.3 to calculate the threshold ranking rT . In Figure 4.5, projecting ~w1 onto slope

PenQ′1o we get rT = 4 + 2 = 6. Next we calculate the scores of all tuples in R1o

using ~w1 as the weighting. More specifically, let us denote the tuple in y ∪ Ro

80 4.1. WHY-NOT TOP-K SPJ QUESTION

under weighting vector ~w1 as tbad if it has the worst rank among y ∪Ro. In the

example, assume under ~w1, the scores of t1, t2, t3 and t4 are still better than

tbad, then k′ is at least 4 + 3 = 7. Since k′ is worse than rT = 6, we can skip the

entire topk(sel1, ~w1, stopping-condition) operation.

The above caching technique is shown to be the most effective between

similar weighting vectors [36]. Therefore, we design the algorithm in a way that

the list of weightings Sw is sorted according to their corresponding ∆wi values (of

course, ~wo is in the head of the list since ∆wo = 0). In addition, the technique is

general so that the cached result for a specific selection condition seli can also be

used to derive the smallest k′ value of y and Ro for another selection condition

selj . As long as seli and selj are similar, the chance that we can deduce k′ from

the cached result that leads to topk operation pruning is also higher. So, we

design the algorithm in a way that seli is enumerated in increasing order of ∆sel

as well.

The second pruning opportunity is to exploit the best possible ranking of

y ∪ Ro (under all possible weightings) to set up an early termination condition

for some weightings, so that after a certain number of progressive top-k SQL

operations have been executed under seli, operations associated with some other

weightings for the same seli can be skipped.

Recall that the best possible ranking of y∪Ro is ko+1, since |y∪Ro| = ko+1.

Therefore, the lower bound of ∆k, denoted as ∆kL equals 1. So, this time, we

project ∆kL onto slope Penmin in order to determine the corresponding maxi-

mum feasible ∆w value. We name that value as ∆wf . For any ∆w > ∆wf , it

means “y∪Ro has ∆k < ∆kL”, which is impossible. As our algorithm is designed

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 81

to examine weightings in their increasing order ∆w values, when a weighting ~wj ∈

Sw has ||~wj − ~wo||2 > ∆wf , topk(seli, ~wj , stopping-condition) and all sub-

sequent progressive top-k SQL operations topk(seli, ~wl, stopping-condition)

where l ≥ j + 1 could be skipped.

Reuse Figure 4.5 as an example. By projecting ∆kL = 1 onto the slope

PenQ′1o , we could determine the corresponding ∆wf value. So, when the algo-

rithm finishes executing a progressive top-k SQL operation for weighting ~w2, the

algorithm can skip all the remaining weightings and proceed to examine the next

selection condition.

As a remark, we would like to point out that the pruning power of this

technique also increases while the algorithm proceeds. For instance, in Figure

4.5, if Q′′12 has been executed, slope Penmin is changed from slope PenQ′1o to

slope PenQ′′12 . Projecting ∆kL onto the new Penmin slope would result in a

smaller ∆wf , which in turn increases the chance of eliminating more weightings.

The last pruning opportunity is to set up an early termination condition

for the whole algorithm. In fact, since we are sorting seli in their increasing

order of ∆sel, as soon as we encounter a ∆SPJ > (Penmin− λk ∆kL
ro−ko)∆SPJmax

λspj
,

we can skip all subsequent progressive top-k SQL operations and terminate the

algorithm. This equation is a rearrangement of the following equation.

Penmin < λspj
∆SPJ

∆SPJmax
+ λk

∆kL
ro − ko

(4.4)

The pseudo-code of the complete algorithm is presented in Algorithm 4.1.

It is self-explanatory and mainly summarizes what we have discussed above, so

82 4.2. WHY-NOT TOP-K SPJA QUESTION

we do not give it a full walkthrough here.

4.1.3.4 How large should be the list of weighting vectors?

Given that there are an infinite number of points (weightings) in the weight-

ing space, we adopt the same idea as in why-not top-k processing and look for

the best-T% answer if its penalty is smaller than (1− T)% answers in the whole

(infinite) answer space, and hope that the probability of getting at least one such

answer is larger than a threshold Pr. Since the logic here is exactly the same as

the logic in why-not top-k processing, we can use Equation 3.7 to determine the

sample size.

4.1.3.5 Multiple Missing Tuples

To handle multiple missing tuples Y = {y1, · · · , yl}, l > 1, we just need

little modification to the algorithm. Specifically, a refined query needs to ensure

{Y ∪ Ro} (instead of y ∪ Ro) come forth to the result. When generating the

candidate selection conditions, we need to consider the minimum attribute values

for all tuples in Y ∪ Ro. Finally, the stopping condition should be changed to

until-see-{Y ∪Ro}.

4.2 Why-Not Top-K SPJA Question

In this section, we extend the discussion to why-not top-k SQL queries with

GROUP BY and aggregation.

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 83

Algorithm 4.1 Answering a Why-not Top-K SPJ Question
Input:
1: The dataset D; original top-k SQL query Qo(SPJo, ko, ~wo); missing tuple y; penalty

settings λspj , λk, λw; T% and Pr; edit cost for SPJ clauses: c1, c2, c3 and c4
Output:
2: A refined query Q′(SPJ ′, k′, ~w′)

Phase 1 :
3: Obtain QS′ and J by doing incremental modification to the original query schema
QSo

4: if QS′ does not exist then
5: return “cannot answer the why-not question”
6: end if
7: Construct SQS

′

sel based on Section 4.1.3.1

8: Sort SQS
′

sel according to their ∆sel value
9: Determine s from T% and Pr according to Section 4.1.3.4;

10: Sample s weightings from the weighting space and add them and ~wo into Sw;
11: Sort Sw according to their ∆w values;

Phase 2 :
12: R← ∅
13: Penmin ←∞
14: ∆wf ←∞
15: for all seli ∈ SQS

′

sel do

16: if ∆SPJi > (Penmin − λk

ro−ko)∆SPJmax

λspj
then

17: break; //Section 4.1.3.3 — early algorithm termination

18: end if
19: for all ~wj ∈ Sw do
20: if ∆wj > ∆wf then
21: break; //Technique 4.1.3.3 — skipping weightings

22: end if
23: compute rT based on Equation 4.3
24: if there exist rT − |y ∪ Ro| + 1 objects in some Rij ∈ R having scores better

than the worst rank of y ∪Ro under ~wj then
25: continue; //Section 4.1.3.3 — use cached result to skip a progressive top-k SQL

26: end if
27: (Rij , rij) ← topk(seli, ~wj ,until-see-{y ∪ Ro} or until-rank-rT); //Section

4.1.3.2 — stopping a progressive top-k SQL early

28: Compute Penij based on Equation 4.2
29: R← R ∪ (Rij , seli, ~wj);
30: if Penij < Penmin then
31: Penmin ← Penij ;
32: update ∆wf according to Section 4.1.3.3
33: end if
34: end for
35: end for

Phase 3:
36: Return the best refined query Q′(SPJ ′, k′, ~w′) whose penalty=Penmin;

84 4.2. WHY-NOT TOP-K SPJA QUESTION

4.2.1 The Problem and The Explanation Model

Initially, a user issues an original top-k SPJA query Qo(SPJAo, ko, ~wo) on a

dataset D. After she gets the result Ro, she may pose a why-not question about

a set of missing groups Y = {g1, . . . , gl} (l ≥ 1), where gi has the same set of

projection attributes as Qo. Then, the system returns the user a refined query

Q′(SPJA′, k′, ~w′), whose result R′ includes Y and Ro, i.e., {Y ∪ Ro} ∈ R′. If

there are indeed no refined queries Q′ that can include Y , the system will report

to the user about her error.

For the SPJA clauses, we adopt the four edit operations in Section 4.1

whereas the penalty function is similar to Equation 4.2:

Penalty = λspja
∆SPJA

∆SPJAmax
+ λk

∆k
(ro−ko) + λw

∆w√
1+

∑
wo[i]2

(4.5)

The calculation of ∆SPJA is the same as ∆SPJ . The cost of ∆SPJAmax

refers to the editing cost of obtaining a refined SPJA query QSPJAmax , whose defi-

nition is the same as QSPJmax except that it needs to include all missing groups Y

and the original result groups Ro.

The problem definition is as follows. Given a why-not question {Y,Qo},

where Y is a set of missing groups and Qo is the user’s initial query with result

Ro, our goal is to find a refined top-k SQL query Q′(SPJA′, k′, ~w′) that includes

Y ∪ Ro in the result with the smallest penalty with respect to Equation 4.5.

Again, we do not explicitly ask users to specify the values for λspja, λk and λw,

but prompt users to answer a simple multiple-choice question listed in Figure

4.4.

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 85

4.2.2 Problem Analysis

Since we allow the same set of edit operations as top-k SPJ queries, answer-

ing why-not top-k SPJA questions is also computationally expensive.

4.2.3 The Solution

The following changes are required to extend Algorithm 4.1 to handle why-

not top-k SPJA questions.

First, when materializing the join result J of QS′ (line 2), we in addition

sort J using the group-by attributes so as to facilitate the subsequent grouping

step.

Second, we do not apply Theorem 4.1. Consider the following top-k SPJA

query based on the data set in Figure 4.2.

Qo:

SELECT B

FROM T1, T2

WHERE T1.A = T2.A AND D ≥ 400

GROUP BY B

ORDER BY AVG(0.5*D + 0.5*E)

LIMIT 2

The result Ro is : {Gary, Alice}. Let us assume the why-not question

is asking for the missing group “Daniel”. From Figure 4.3, we see that the

group “Daniel” is composed by two base tuples, with a group score average as

(185 + 155)/2 = 170, which ranks 3-rd. If we follow Theorem 4.1 (using the

86 4.3. EXPERIMENTS

minimum D’s values among Gary, Alice, and Daniel) to modify the selection

condition D ≥ 400 to D ≥ 100, the top-4 would then become:

Group By B AVG(0.5*D + 0.5*E) Rank

Gary 300 1

Alice 240 2

Bob 175 3

Daniel 170 4

If we do not follow Theorem 4.1, we can modify the selection condition, say,

D ≥ 400 to D ≥ 300, we can get a better refined query (in terms of k) because

the missing group Daniel can now rank 3-rd because the group Bob has been

filtered by the selection condition.

Lastly, when using the caching technique described in Section 4.1.3.3, we

cannot just cache the resulting group or otherwise we do not have the tuples

that contributed to that group to derive the new score using another weighting.

Therefore, for that technique, we also cache the base tuples for each resulting

group.

4.3 Experiments

We evaluate our proposed solution using both synthetic and real data. The

real data is the NBA data set whose schema is shown in Figure 4.6. It contains

statistics of all NBA players from 1973-2009 with four tables: (i) Player (4051

tuples) records players’ name and their career start year, (ii) Career (4051 tuples)

stores players’ performance in their whole career, (iii) Regular (21961 tuples) and

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 87

Player

PID

Name

CSY(Career Start Year)

Career

Regular

PID

Year

PPG(Points Per Game)

RPG(Rebounds Per Game)

APG(Assists Per Game)

SPG(Steals Per Game)

BPG(Blocks Per Game)

FG%(Field Goal Percentage)

FT%(Free Throw Percentage)

Playoffs

PID

GP(Game Played)

PPG(Points Per Game)

RPG(Rebounds Per Game)

APG(Assists Per Game)

SPG(Steals Per Game)

BPG(Blocks Per Game)

FG%(Field Goal Percentage)

FT%(Free Throw Percentage)

PID

Year

PPG(Points Per Game)

RPG(Rebounds Per Game)

APG(Assists Per Game)

SPG(Steals Per Game)

BPG(Blocks Per Game)

FG%(Field Goal Percentage)

FT%(Free Throw Percentage)

Figure 4.6. Schema of the NBA data set

(iv) Playoffs (8341 tuples) contain players’ performance year-by-year in regular

games and playoffs games, respectively.

By default, we set the system parameters T% and Pr as 0.5% and 0.7,

respectively, resulting in a sample size of 241 weighting vectors. The algorithms

are implemented in C++ and the experiments are run on a Ubuntu PC with

Intel 3.4GHz i7 processor and 16GB RAM.

4.3.1 Case Study

Case 1 (Finding the top-3 players who have played at least 1000

games in NBA history). The first case study was to find the top-3 players

with at least 1000-game experience in the NBA history. Therefore, we issued a

query Q1:

88 4.3. EXPERIMENTS

Q1:

SELECT P.Name

FROM Player P, Career C

WHERE P.PID = C.PID AND C.GP >= 1000

ORDER BY (1
7 * C.PPG + 1

7 * C.RPG + 1
7 * C.APG + 1

7 * C.SPG

+ 1
7 * C.BPG + 1

7 * C.FG% + 1
7 * C.FT%) DESC

LIMIT 3

The initial result was3:

Rank Name GP PPG RPG APG SPG BPG FG% FT%

1 Michael Jordan 1072 30.1 6.2 5.3 2.3 0.8 49.7 83.5

2 Oscar Robertson 1040 25.7 7.5 9.5 0 0 48.5 83.8

3 Kareem Abdul-jabbar 1560 24.6 11.2 3.6 0.7 2.0 55.9 72.1

We were surprised that Magic Johnson, who has won 5 NBA championships

and 3 NBA Most Valuable Player (MVP) in his career, was not in the result. So

we issued a why-not question {{Magic Johnson}, Q1}.

Using our algorithm, we got a refined query Q′1 in 10.2ms (modifications are

in bold face):

3We attach extra columns to the results for better understanding.

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 89

Q′1:

SELECT P.Name

FROM Player P, Career C

WHERE P.PID = C.PID AND C.GP >= 906

ORDER BY (1
7 * C.PPG + 1

7 * C.RPG + 1
7 * C.APG + 1

7 * C.SPG

+ 1
7 * C.BPG + 1

7 * C.FG% + 1
7 * C.FT%) DESC

LIMIT 4

Its new top-k result was:

Rank Name GP PPG RPG APG SPG BPG FG% FT%

1 Michael Jordan 1072 30.1 6.2 5.3 2.3 0.8 49.7 83.5

2 Magic Johnson 906 19.5 7.2 11.2 1.9 0.4 52.0 84.8

3 Oscar Robertson 1040 25.7 7.5 9.5 0 0 48.5 83.8

4 Kareem Abdul-jabbar 1560 24.6 11.2 3.6 0.7 2.0 55.9 72.1

The refined query essentially hinted us that our original selection predicate

C.GP >= 1000 (number of games played) eliminated Magic Johnson (who got a

brilliant records without playing a lot of games).

We can see that using our early top-k query modification technique in Chap-

ter 3 to modify only the top-k construct (be the value k or the weighting) cannot

work because Magic Johnson is filtered by the predicate ‘C.GP>=1000’. Using

the SPJA query modification techniques in [35] to modify only the SPJ construct

(e.g., modifying the selection predicate to be ‘GP>=906’) cannot include Magic

Johnson in the top-3 result either (because we at least need to modify k to 4 in

order to include Magic Johnson and the original result).

Case 2 (Finding the top-3 players who performed best in year

2004). In this case, we first look up the top-3 players in year 2004:

90 4.3. EXPERIMENTS

Q2:

SELECT P.Name

FROM Player P, Regular R, Playoffs O

WHERE P.PID = R.PID AND P.PID = O.PID

AND R.Year = 2004 AND O.Year = 2004

ORDER BY (1
7 * R.PPG + 1

7 * R.RPG +1
7 * R.APG

+ 1
7 * R.SPG + 1

7 * R.BPG + 1
7 * R.FG%

+ 1
7 * R.FT%) DESC

LIMIT 3

The initial result was: {Dirk Nowitzki, Allen Iverson, Steve Nash}. We

wondered why Kobe Bryant was missing in the answer, so we posed a why-not

question {{Kobe Bryant}, Q2}.

Our algorithm returned the following refined query in 18.1ms:

Q′2:

SELECT P.Name

FROM Player P, Regular R , Playoffs O

WHERE P.PID = R.PID AND P.PID = O.PID

AND R.Year = 2004 AND O.Year = 2004

ORDER BY (0.2125 * R.PPG + 0.0902 * R.RPG

+ 0.1955 * R.APG + 0.0844 * R.SPG

+ 0.1429 * R.BPG + 0.0732 * R.FG%

+ 0.2013 * R.FT%) DESC

LIMIT 4

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 91

The refined query essentially hinted us that Kobe Bryant did not play Play-

Offs in year 2004. We checked back the data, and we were confirmed with that

the fact Kobe Bryant’s host team, LA Lakers, failed to enter the Playoffs in that

year. The result of Q′2 was: {Allen Iverson, Dirk Nowitzki, Steve Nash, Kobe

Bryant}. As an interpretation, in addition to eliminating the PlayOff records,

the refined weighting Q′2 indicates that, in order to include Kobe Bryant in the re-

sult, we should weigh the players’ scoring/assisting/free throwing abilities higher

than the other abilities.

Case 3 (Finding the top-3 players who performed best in their

early career). Our last case is to find the top-3 players who performed best in

their first three years:

Q3:

SELECT P.Name

FROM Player P, Regular R

WHERE P.PID = R.PID AND R.Year < P.CSY + 3

GROUP BY P.Name

ORDER BY AVG(1
7 * R.PPG + 1

7 * R.RPG + 1
7 * R.APG

+ 1
7 * R.SPG + 1

7 * R.BPG + 1
7 * R.FG%

+ 1
7 * R.FT%) DESC

LIMIT 3

The initial result was: {Michael Jordan, Magic Johnson, Kareem Abdul-

jabbar}. In this case, we were interested in why Dirk Nowitzki, a player that

was internationally famous in his early career, was missing in the result. So, we

issued a why-not question {{Dirk Nowitzki}, Q3}.

92 4.3. EXPERIMENTS

Our algorithm returned the following refined query in 48.3m:

Q′3:

SELECT P.Name

FROM Player P, Regular R

WHERE P.PID = R.PID AND R.Year < P.CSY + 6

GROUP BY P.Name

ORDER BY AVG(1
7 * R.PPG + 1

7 * R.RPG + 1
7 * R.APG

+ 1
7 * R.SPG + 1

7 * R.BPG + 1
7 * R.FG%

+ 1
7 * R.FT%) DESC

LIMIT 5

The refined query essentially hinted us Dirk Nowitzki being early famous

does not imply he had excellent performance in his early career. In fact, Dirk

Nowitzki was in the top-5 if we accounted for the first six years of the players’

career. Our first wrong impression of Dirk Nowitzki (Q3) was probably due to

Dirk Nowitzki was not an America player, which made him famous in his early

career.

4.3.2 Performance

We next turn the focus to the performance of our algorithms. We used

TPC-H data in the experiment. We selected 10 TPC-H queries that can let us

extend as top-k SQL queries with minor modifications. The list of modifications

of the selected queries is shown in Table 4.2.

Table 4.3 shows the parameters we varied in the experiments. The default

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 93

Q2 SELECT s acctbal, s name, n name, p partkey, p mfgr, s address, s phone, s comment
FROM part, supplier, partsupp, nation, region
WHERE [...]
ORDER BY (0.5 * p retailprice + 0.5 * ps supplycost) DESC LIMIT 10

Q3 SELECT l orderkey, sum(0.5 * l extendedprice * (1 - l discount) + 0.5 * o totalprice)
as amount,
o orderdate, o shippriority
FROM customer, orders, lineitem
WHERE [...]
GROUP BY l orderkey, o orderdate, o shippriority
ORDER BY amount DESC LIMIT 10

Q9 SELECT nation, o year, sum(amount) as sum profit
FROM (SELECT n name as nation, extract(year from o orderdate) as o year,
0.5*l extendedprice*(1-l discount)-0.5*ps supplycost*l quantity as amount

FROM part, supplier, lineitem, partsupp, orders, nation WHERE [...]) as profit
GROUP BY nation, o year
ORDER BY sum profit DESC LIMIT 10

Q10 SELECT c custkey, c name, sum(0.5 * l extendedprice * (1 - l discount) + 0.5 * c acctbal)
as amount,
n name, c address, c phone, c comment
FROM customer, orders, lineitem, nation
WHERE [...]
GROUP BY c custkey, c name, c acctbal, c phone, n name, c address, c comment
ORDER BY amount DESC LIMIT 10

Q11 SELECT ps partkey, sum(0.5 * ps supplycost * ps availqty + 0.5 * s acctbal) as value
FROM partsupp, supplier, nation
WHERE ps suppkey=s suppkey AND s nationkey=n nationkey AND n name=‘GERMANY’
GROUP BY [...]
ORDER BY value DESC LIMIT 10

Q12 SELECT o orderkey, sum(0.5 * l extendedprice * (1 - l discount) + 0.5 * o totalprice)
as score
FROM orders, lineitem
WHERE [...]
GROUP BY o orderkey
ORDER BY score DESC LIMIT 10

Q13 SELECT c custkey, sum(0.5 * c acctbal + 0.5 * o totalprice) as score
FROM customer, orders
WHERE [...]
GROUP BY c custkey
ORDER BY score DESC LIMIT 10

Q16 SELECT p brand, p type, p size, sum(0.5 * ps supplycost + 0.5 * p retailprice) as value
FROM partsupp, part
WHERE [...]
GROUP BY p brand, p type, p size
ORDER BY value, p brand, p type, p size DESC LIMIT 10

Q18 SELECT c name, p custkey, p orderkey, o orderdate, o totalprice,
sum(0.5 * l extendedprice * (1 - l discount) + 0.5 * o totalprice) as value
FROM customer, orders, lineitem
WHERE [...]
GROUP BY c name, c custkey, o orderkey, o orderdate, o totalprice
ORDER BY value, o totalprice, o orderdate DESC 10

Q20 SELECT s name, s address, sum(0.5 * s acctbal + 0.5 * ps supplycost) as value
FROM supplier, nation
WHERE [...]
ORDER BY s name, value DESC LIMIT 10

Table 4.2. Modified TPC-H Queries (modified parts are in bold face; [...] means
that clause is exactly the same as the original TPC-H queries)

94 4.3. EXPERIMENTS

Table 4.3. Parameter Setting
Parameter Range

Data size 1G, 2G, 3G, 4G, 5G

T% 10%, 5%, 1%, 0.5%, 0.1%

Pr 0.1, 0.3, 0.5, 0.7, 0.9

Preference option PMSPJ, PMW, PMK, NM

ko 5, 10, 50, 100

ro 101, 501, 1001

|Y | 1, 2, 3, 4, 5

values are in bold faces. The default weighting is ~wo = |1d . . . 1
d |, where d is the

number of attributes in the ranking function. By default, the why-not question

asks for a missing tuple/group that is ranked (10 ∗ ko + 1)-th under ~wo.

Effectiveness of Optimization Techniques. In this experiment, we in-

vestigate the effectiveness of (i) excluding unnecessary selection condition (Sec-

tion 4.1.3.1), (ii) the early stopping (Section 4.1.3.2) and (iii) skipping (Section

4.1.3.3) used in our algorithm. Figure 4.7 shows the performance of our algo-

rithm using only (i), only (ii), only (iii), all, and none, under the default setting.

The effectiveness of the techniques is very promising when they are applicable

(in particular, Theorem 1 is not used when the queries contain GROUP-BY).

Without using any optimization techniques, the algorithm requires a running

time of roughly 1000 seconds on these TPC-H queries. However, our algorithm

runs about two to three orders faster when our optimization techniques are all

enabled.

Varying data size. Figure 4.8(a) shows the running time of our algorithm

under different data size (i.e., scale factor of TPC-H). We can see our algorithm

for answering why-not questions scales linearly with the data size for all queries.

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 95

10
0

10
1

10
2

10
3

Q2 Q3 Q9 Q10 Q11 Q12 Q13 Q16 Q18 Q20

R
u

n
n

in
g
 T

im
e

(s
)

Queries

Disable All
Exclude Unnecessary Selection Condition Only

Enable Early Stop Techniques Only

Enable Skipping Techniques Only
Enable All

Figure 4.7. Effectiveness of optimization techniques

 0

 5

 10

 15

 20

5 10 50 100

ko

Q2 Q3 Q9 Q10 Q11

 0

 5

 10

 15

 20

5 10 50 100

ko

Q12 Q13 Q16 Q18 Q20

 0

 5

 10

 15

 20

 25

 30

1G 2G 3G 4G 5G

R
u
n
n
in

g
 T

im
e

(s
)

Data Size

 0

 10

 20

 30

10 50 100

R
u

n
n

in
g

 T
im

e
(s

)

ko

(a) Varying data size (b) Varying ko

Figure 4.8. Varying parameters

Varying ko. Figure 4.8(b) shows the running time of our algorithm using

top-k SQL queries with different ko values. In this experiment, when a top-5

query (ko = 5) is used, the corresponding why-not question is to ask why the

tuple in rank 51st is missing. Similarly, when a top-50 query (ko = 50) is used, the

corresponding why-not question is to ask why the tuple in rank 501st is missing.

Naturally, when ko increases, the time to answer a why-not question should also

increase because the execution time of a progressive top-k SQL operation also

increases with ko. Figure 4.8(b) shows that our algorithm scales well with ko.

96 4.3. EXPERIMENTS

 0

 5

 10

 15

 20

5 10 50 100

ko

Q2 Q3 Q9 Q10 Q11

 0

 5

 10

 15

 20

5 10 50 100

ko

Q12 Q13 Q16 Q18 Q20

 0

 10

 20

 30

101 501 1001

R
u

n
n

in
g

 T
im

e
 (

s)

ro

 0

 5

 10

 15

 20

PMSPJ PMW PMK NM

R
u

n
n

in
g

 T
im

e
(s

)

Modification Preference

(a) Varying ro (b) Varying preference

Figure 4.9. Varying parameters

Varying the missing tuple to be inquired. We next study the perfor-

mance of our algorithm by posing why-not questions with missing tuples from

different rankings (i.e., ro). In this experiment, we set ko = 10 and asked three

individual why-not questions about why the tuple that ranked 101st, 501st, and

1001st, respectively, is missing in the result. Figure 4.9(a) shows that our al-

gorithm scales well with the ranking of the missing tuple. Of course, when the

missing tuple has a worse ranking under the original weighting ~wo, the progres-

sive top-k SQL operation should take a longer time to discover it in the result

and thus the overall running time must increase.

Varying preference option. We next study the performance of algorithm

under different user preference on changing SPJA constructs, k and ~w. These

values can be system parameters or user specified as stated in Section 4.1.1.

In Figure 4.9(b), it is good to show that our algorithm is insensitive to various

preference options. In all cases, our algorithm can return answers very efficiently.

Varying the number of missing tuples |Y |. We also study the perfor-

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 97

 0

 5

 10

 15

 20

5 10 50 100

ko

Q2 Q3 Q9 Q10 Q11

 0

 5

 10

 15

 20

5 10 50 100

ko

Q12 Q13 Q16 Q18 Q20

 0

 10

 20

 30

1 2 3 4 5

R
u

n
n

in
g

 T
im

e
 (

s)

|Y|

Figure 4.10. Varying parameters

mance of our algorithm by posing why-not questions with different number of

missing tuples. In this experiment, a total of five why-not questions are asked for

each TPC-H query. In the first question, one missing tuple that ranked 101-th

under ~wo is included in Y . In the second question, two missing tuples that re-

spectively ranked 101-th and 201-th under ~wo are included in Y . The third to the

fifth questions are constructed similarly. Figure 4.10 shows that our algorithm

scales linearly with respect to different size of Y .

Varying T%. We would also like to know how the performance and solution

quality of our algorithm vary when we look for refined queries with different

quality guarantees. Figures 4.11(a) and 4.11(b) show the running time of our

algorithm and the penalty of the returned refined queries when we changed from

accepting refined queries that are within the best 10% (|S| = 16) to accepting

refined queries that are within the best 0.1% (|S| = 1609). From Figure 4.11(a),

we can see that the running time of our algorithm increases when the guarantee

is more stringent. However, from Figure 4.11(b), we can see that the solution

quality of the algorithm improves when T increases, until T reaches 1% where

98 4.3. EXPERIMENTS

 0

 5

 10

 15

 20

5 10 50 100

ko

Q2 Q3 Q9 Q10 Q11

 0

 5

 10

 15

 20

5 10 50 100

ko

Q12 Q13 Q16 Q18 Q20

 0

 10

 20

 30

10% 5% 1% 0.5% 0.1%

R
u

n
n

in
g

 T
im

e
 (

s)

T%

(a) Running Time

 0

 0.2

 0.4

 0.6

 0.8

 1

10% 5% 1% 0.5% 0.1%

P
en

al
ty

T%

(b) Penalty

 0

 10

 20

 30

 0.1 0.3 0.5 0.7 0.9

R
u
n

n
in

g
 T

im
e
 (

s)

Pr

(c) Running Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.3 0.5 0.7 0.9

P
en

al
ty

Pr

(d) Penalty

Figure 4.11. Varying T% or Pr

further increases the sample size cannot yield any significant improvement.

Varying Pr. The experimental result of varying Pr, the probability of

getting the best-T% of refined queries, is similar to the results of varying T%

above. That is because both parameters are designed for controlling the quality

of the approximate solutions. In Figures 4.11(c) and 4.11(d), we can see that

when we vary Pr from 0.1 (|S| = 22) to 0.9 (|S| = 460), the running times

increase mildly. However, the solution quality also increases gradually.

CHAPTER 4. WHY-NOT TOP-K SQL QUESTION 99

4.4 Chapter Summary

In this chapter, we have studied the problem of answering why-not questions

on top-k SQL queries. Our target is to give an explanation to a user who is

wondering why her expected answers are missing in the query result. We return

to the user a refined query that can include the missing expected answers back

to the result. Our case studies and experimental results show that our solutions

efficiently return very high quality solutions.

100 4.4. CHAPTER SUMMARY

Chapter 5

Why-Not Dominating

Question

Different from a top-k query, a dominating query [38] is composed of a result

set size k and a special score function, which scores an object ~p by the number

of points that it can dominate. The query result is then the top-k objects with

the highest scores (in case objects with the same scores are tie at rank k-th, only

one of them is returned).

In this chapter, we define a hybrid explanation model that combines query

refinement and data refinement to answer “why-not” dominating questions. We

show that finding the best explanation is actually computational expensive. Af-

terwards, we present efficient evaluation algorithms that can obtain the best

approximate explanation in reasonable time. We present case studies to demon-

strate our solutions. We also present experimental results to show that our

solutions return high quality solutions efficiently.

101

102 5.1. PRELIMINARY

5.1 Preliminary

5.1.1 Problem Statement

Initially, a user poses a top-k dominating query Qo(ko). After she gets the

result, she may pose a why-not question on Qo with a set of missing objects

M = {~m1, · · · , ~mj}. Different from why-not questions on top-k queries, if using

only the query-refinement approach here, we can only modify the value of k in

order to make M appear in the result. That may result in a refined query whose

k’s value is increased significantly if there are some missing objects that are

actually dominated by many points. As such, we also use the data-refinement

approach [18, 19] here. That is, we may either adjust the value of k, the values

of ~m1, · · · , ~mj , or both1.

The answer of a why-not question on a dominating query consists of a new

value k′ and a new value ~m′i for each object ~mi ∈ M . We use ∆k and ∆c to

measure the quality of the why-not answer, where ∆k = max(0, k′ − ko) and

∆c =
∑j

i=1 ‖~m′i − ~mi‖2. Again, to capture user’s tolerance on the change of

k and on the change of data values of the missing objects, the corresponding

normalized penalty function is defined as follows:

Penalty(k′,M ′) = λk
∆k

ro − ko
+ λc

∆c∑j
i=1 ‖~mi −~l‖2

(5.1)

where λk is again the penalty of modifying k and λc is the penalty of mod-

ifying the data values, λk + λc = 1. Again, ∆k and ∆c are normalized using

1Our data-refinement approach is slightly different from [19]—the latter tries to choose a
value already in the database while we may suggest a data value that may not be in the database.

CHAPTER 5. WHY-NOT DOMINATING QUESTION 103

their largest possible values, respectively. For ∆c, we can show that its largest

possible value is
∑j

i=1 ‖~mi−~l‖2, where ~l = |l[1] · · · l[d]| is the lower bound point,

whose value l[i] is the lowest value of dimension i among all the objects in the

original d-dimensional dataset. The proof is pretty simple: to make a missing

object ~mi ∈M rank better, we need to decrease some of its attribute values such

that it can dominate more points than before. Since ~l dominates all the points in

the dataset, we can surely make ~mi rank first if we modify its value to be same

as ~l. As such we arrive the normalizing factor to be
∑j

i=1 ‖~mi −~l‖2.

Now, formally, the problem is: Given a why-not question {M,Qo(ko)}, where

M is a non-empty set of missing objects, Qo(ko) is the user’s initial top-k dom-

inating query, our goal is to find a new value k′ and a value replacement M ′

for M , such that all the objects in M ′ appear in the result of refined dominat-

ing query Q′(k′) with the smallest penalty based on Equation 5.1. Similar to

why-not top-k questions, we prompt users to answer a simple multiple-choice

question like the one in Figure 3.1 to determine the values for λk and λc. The

choices are respectively (i) Prefer modify k (PMK) (λk = 0.1, λc = 0.9), (ii)

Prefer modify objects’ values (PMO) (λk = 0.9, λc = 0.1), and (iii) Never mind

(NM) (λk = 0.5, λc = 0.5; default).

5.1.2 Problem Analysis

First, consider the case where there is only one missing object ~m in the

why-not question. On the surface, it seems the solution space (and thus the

number of candidate answers) are infinite because ~m can move to anywhere in

the data space. However, we can actually have a deeper analysis by dividing the

104 5.1. PRELIMINARY

2

23

3

4

35 4

23

2

3 2

2

m⃗

p⃗3

p⃗2

p⃗1

p⃗4

p⃗5

d[2]

d[1]0

Δ c

Figure 5.1. An example data space with grids

data space Rd into a set G of grids, where points within the same grid have the

same score (i.e., they dominate the same number of (other) data points). Figure

5.1 shows an example. In the figure, there are six data points ~p1, ..., ~p5 and ~m.

Assume the original query Qo is a top-1 dominating query Qo(ko = 1) and the

why-not question asks why ~m not in the result. In Figure 5.1, the number within

a grid g ∈ G denotes the score of ~m if it is entirely in g. For example, if ~m falls

into the highlighted grid (but not on its boundaries), ~m’s score is 3 (it dominates

3 points, which are ~p2, ~p3, ~p4).2 With the grids and their scores, we do not need

to consider all possible points in the data space when computing the best value

modification and k’s value modification, but instead use the following simple

method: (1) we consider moving ~m to each grid; by doing so, the new ranking

of ~m can be computed by comparing its new score with the scores of the other

data points. As such, we can also deduce the corresponding ∆k value assuming

~m is moved to that grid (e.g., moving ~m to the highlighted grid in Figure 5.1

makes ~m rank 1-st, with the highest score 3, so ∆k = 0). (2) Since we hope to

2If ~m lies on the boundaries, its score follows the largest one.

CHAPTER 5. WHY-NOT DOMINATING QUESTION 105

minimize both ∆k and ∆c and all data points in the same grid share the same

∆k value, the corresponding ∆c of a grid is then the minimum distance between

that grid and ~m (see Figure 5.1). (3) Finally, the best answer is the corner of

the grid whose ∆k and ∆c minimize Equation 5.1.

Now, we can see that the complexity of this exact method depends on the

number of grids. Since there are Nd grids for a d-dimensional data set with N

data points, the complexity of this exact method is O(Nd) in the worst case

and the problem would not be easier if there are multiple missing tuples. This

motivates us to look for approximate solutions.

5.2 Methodology

Since finding the best refined query with minimal data modification is com-

putationally difficult, our solution here is also a sampling-based algorithm.

5.2.1 Basic Idea

The basic idea for answering why-not top-k dominating questions is similar

to the idea of answering top-k why-not questions (Section 3.2.1). Let us start

with the case where there is only one missing object ~m. First, we execute a top-

k dominating query Q′o using a progressive top-k dominating query evaluation

algorithm (e.g., [34]) and stop when ~m comes forth to the result set with a ranking

ro. If ~m does not appear in the query result, we report to the user that ~m does

not exist in the database and the process terminates.

If ~m exists in the database, we draw a list of data value samples S =

106 5.2. METHODOLOGY

[~x1, ~x2, · · · , ~xs]. For each data value sample ~xi ∈ S, we modify ~m’s values to

be ~xi and then execute a progressive top-k dominating query until ~m comes

forth to the result set with a ranking ri. So, after s + 1 progressive top-k dom-

inating executions, we have s + 1 “refined queries and modified values” pairs:

〈Q′o(ro), ~m = ~m〉, 〈Q′1(r1), ~m = ~x1〉, ... , 〈Q′s(rs), ~m = ~xs〉. Finally, the pair with

the least penalty is returned to the user as the answer. Next, we discuss where

to get the list S of sample data values.

5.2.2 Where to draw sample values?

In the following, we show that the best answer (which minimizes the penalty

function) is located within a restricted (smaller) region Rs of the data space and

thus we should draw samples from Rs instead of from the whole data space

Rd. The restricted (smaller) sample space Rs is essentially a hyper-rectangle

(bounding box) whose lower bound value of dimension i is l[i] (recall that ~l is

the lower bound point, l[i] is the value of ~l on dimension i; see Section 5.1.1) and

upper bound value of dimension i is m[i]. Figure 5.2 shows an example restricted

sample space, Rs, from a 2-d data space. Rs is the highlighted rectangle bounded

by ~l and the missing object ~m.

On the surface, drawing samples from Rs sounds obvious because setting

~m to be some values in Rs can make ~m dominates more points, rendering it

to improve its ranking. However, setting ~m to be some values outside Rs can

also improve ~m’s ranking. For example, in Figure 5.2, if we set ~m’s value to be

~x∗, ~m’s score can be increased from 1 (dominating ~p6 only) to 3 (dominating

~p2, ~p3, ~p6), too. In the following, we show that the best answer, i.e., the refined-

CHAPTER 5. WHY-NOT DOMINATING QUESTION 107

m⃗

l⃗

p⃗2

p⃗1

p⃗3

p⃗6

p⃗5

p⃗4

d[1]

d[2]

0

x⃗*

ℜS

x⃗ '
Δc*

Δc '

Figure 5.2. Restricted sample spaceRs

query-modified-value pair with least penalty, is located in Rs:

Theorem 5.1 For any sample ~x∗ 6∈ Rs, there exists at least one sample ~x′ ∈ Rs,

such that the corresponding new rankings r∗ of ~m by setting ~m = ~x∗, and the

corresponding new rankings r′ of ~m by setting ~m = ~x′, follow:

Penalty(r′, {~m = ~x′}) < Penalty(r∗, {~m = ~x∗})

Proof. Let Rs be the complement of Rs and let ~x∗ ∈ Rs. We try to find a point

~x′ ∈ Rs that satisfies the penalty inequality stated in the theorem. Such a point

~x′ can be found in Rs whose dimension i (i.e., x′[i]) has the value as follows:

x′[i] = m[i] if x∗[i] > m[i]; (5.2)

x′[i] = l[i] if x∗[i] < l[i]; (5.3)

x′[i] = x∗[i] if l[i] ≤ x∗[i] ≤ m[i]; (5.4)

108 5.2. METHODOLOGY

For example, Figure 5.2 shows a sample point ~x∗ 6∈ Rs and its corresponding

sample points ~x′ in Rs determined by the rules above. Now, it is quite easy to

see that the score of (i.e., the number of objects dominated by) ~x′ is no worse

than ~x∗ in all cases:

(1) If x′[i] ≤ x∗[i] in all dimensions, then ~x′ certainly has a score no worse

than ~x∗, since it equals or dominates ~x∗;

(2) If x′[j] ≤ x∗[j] only in some dimensions D, but x′[i] > x∗[i] in the remain-

ing dimensions D′, ~x∗ still cannot dominate more points than ~x′ because that

would imply there exists at least one object ~p in the database that is dominated

by ~x∗ but not by ~x′, resulting in the following contradiction:

∀j ∈ D, x′[j] ≤ x∗[j] ≤ p[j]

∀i ∈ D′, x∗[i] ≤ p[i] < x′[i] = l[i] (contradiction comes here because l[i] is

the lower bound and p[i] cannot < l[i]).

As such, we know the ranking r′ of ~m by setting ~m = ~x′ is no worse than

the ranking r∗ of ~m by setting ~m = ~x∗. Since ∆k is measured as the change from

the original ranking ko to the new ranking, we know sample ~x′ does not lead to

a larger ∆k than sample ~x∗.

With the example, it is easy to see that the change of data value ∆c between

~x′ and ~m is also smaller than that between ~x∗ and ~m because:

For those dimensions that x∗[i] > m[i] = x′[i], we have (x′[i] − m[i])2 <

(x∗[i]−m[i])2;

For those dimensions that x∗[i] < l[i] = x′[i], we have (x′[i] − m[i])2 <

(x∗[i]−m[i])2 as well.

CHAPTER 5. WHY-NOT DOMINATING QUESTION 109

For those dimensions that x∗[i] = x′[i], we have (x∗[i] − m[i])2 = (x′[i] −

m[i])2;

Because ~x∗ 6= ~x′, we conclude that ‖~x∗ − ~m‖2 > ‖~x′ − ~m‖2.

Since both ∆k and ∆c of sample ~x′ are no worse than that of sample ~x∗,

the theorem is proved.

5.2.3 How large the list of sample values should be?

Although we have shown that we can draw higher quality samples from a

restricted sample space, there is still an infinite number of samples in there.

Therefore, we adopt the same idea as in why-not top-k processing and look for

the best-T% answer if its penalty is smaller than (1− T)% answers in the whole

(infinite) answer space, and hope that the probability of getting at least one such

answer is larger than a threshold Pr. Since the logic here is exactly the same as

the logic in why-not top-k processing, we can use Equation 3.7 to determine the

sample size.

5.2.4 Algorithm

The algorithm is based on the basic idea mentioned in Section 5.2.1, with

optimizations added to improve the efficiency. It consists of three phases:

[PHASE-1] The algorithm first executes a progressive top-k dominating query

evaluation algorithm (e.g., [34]) to locate the list L of objects, together with their

scores, in rank 1, 2, 3, ... , until the missing object ~m shows up in the result in

110 5.2. METHODOLOGY

rank ro-th. Let us denote that operation as (L, ro) = Dominating(until-see-~m).

After that, it samples s data values ~x1, ~x2, . . . , ~xs from the restricted sample space

Rs and adds them into S.

[PHASE-2] Next, for some data value sample ~xi ∈ S, we modify ~m’s values

to be ~xi and then determine the ranking ri of ~m after the value modification.

Note that the ranking ri basically can be determined by executing a progressive

top-k dominating algorithm once again on the database (as in the basic idea).

We discuss in Technique (a) below to illustrate a much efficient way to deter-

mine the ranking ri, without actually invoking the progressive top-k dominating

algorithm. Furthermore, we discuss how techniques similar to Technique (ii) in

why-not top-k processing (Section 3.2.4) can be applied here to skip ranking cal-

culations for some data value samples.

[PHASE-3] After PHASE-2, we should have s+ 1 “refined queries and modified

values” pairs: 〈Q′o(ro), ~m = ~m〉, 〈Q′1(r1), ~m = ~x1〉, ... , 〈Q′s+1(rs+1), ~m = ~xs+1〉.

The pair with the least penalty is returned to the user as the answer.

Technique (a) — Efficient ranking computation for a sample point

Here we describe a method to efficiently compute the ranking ri of ~m if

setting ~m’s value to ~xi. First, we compute the new score of ~m (i.e., the number

of objects dominated by ~m) when its values equal to sample ~xi. This step can

be easily done by any skyline-related algorithm (e.g., [33]) or by posing a simple

range query on an R-tree [4]. Next, we update the scores of all objects in L

CHAPTER 5. WHY-NOT DOMINATING QUESTION 111

(stored in PHASE-1) as the value of ~m is changed to ~xi. Note that we do not

need to update the scores of objects not in L because they were either domi-

nated by ~m or incomparable with ~m. So, their scores would not get changed.

For the objects in L that do not dominate ~m, their scores are unchanged because

if they did not dominate ~m before, they also cannot dominate ~m now (because

~m gets a better value ~xi). Only for those objects in L that dominate ~m, we check

whether every such object dominates ~xi (which is ~m’s new value), if yes, its score

is unchanged; otherwise its score is reduced by one. With all the updated scores

in place, we can easily determine the new ranking ri of ~m. We represent this

operation as: ri = Compute-Rank(~m, ~xi).

Technique (b). Skipping Compute-Rank operations

We now discuss how to apply techniques similar to the techniques (ii) in why-

not top-k query processing (Section 3.2.4) to identify a sample ~xi that must result

in answers that are dominated by some processed samples, so that that sample

and its associated Compute-Rank(~m, ~xi) operation can be entirely skipped.

ro - ko

ΔkT

Δk

0 Δcj Δcf Δci Δc

Penmin
Figure 5.3. Example of answer space

112 5.2. METHODOLOGY

First, let the original k value be ko. In PHASE-1, we computed one candi-

date answer during the (L, ro) = Dominating(until-see-~m) operation. That

candidate answer has ∆k = ro − ko and ∆c = 0, which is the best candidate

answer with the least penalty at that point. Figure 5.3 illustrates the answer

space with that candidate answer. The penalty function that passes through

that answer is also shown in the figure. We call the ∆c-intercept ∆cf as the

maximum feasible ∆c value, meaning any sample xi whose ∆ci > ∆cf has a

penalty larger than the minimum penalty Penmin seen so far, and thus the cor-

responding Compute-Rank operation can be skipped. Once again, when a

better sample (candidate answer) is found, Penmin is updated and the penalty

function is moved towards the origin (with the same slope) and results in a

smaller ∆cf . Therefore, we can expect that its pruning power becomes stronger

and stronger during the process and especially strong when we have a large λc

or small λk (i.e., option Prefer Modify k) because ∆cf will decrease at a faster

rate (Equation 5.1).

If a sample xj ∈ S has ∆cj < ∆cf and cannot be pruned by the above,

we can try to project it to the penalty function (see Figure 5.3) and obtain a

threshold ∆kT and a threshold ranking rT :

∆kT = b(Penmin − λc
∆cj

‖~l − ~m‖2
)
ro − ko
λk

c

rT = ∆kT + ko

(5.5)

rT is the minimum ranking that ~xj should achieve; otherwise, its penalty

cannot be better than the current best answer. With rT , we try to see if any

CHAPTER 5. WHY-NOT DOMINATING QUESTION 113

processed sample ~xi dominates ~xj in the data space. If yes, it means ~xi’s score

and rank are no worse than ~xj , hence, ri ≤ rj . Thus, if ri ≥ rT , then rj ≥ rT , so,

~xj can be pruned because its penalty cannot be better than the penalty Penmin

achieved by the current best answer. The pseudocode of the algorithm is shown

in Algorithm 5.1.

5.2.5 Multiple Missing Objects

To deal with multiple missing objects M = {~m1, ..., ~mj} in a why-not ques-

tion, we can modify the algorithm as follows.

First, the initial dominating query stops only when all missing objects in

M are seen, i.e., replace line 6 in Algorithm 5.1 with the use of Dominating(

until-see-all-objects-in-M). In addition, we set ro be the rank of the object

in M with the worst ranking.

Second, during PHASE-1, we determine the corresponding restricted sample

space Ris for each missing object mi ∈ M . Then, each sample ~Xi is in the form

(~x1, ..., ~xj), where ~xi is sampled from Ris. The number of such “compound”

sample ~Xi still follows Equation 3.7.

During the Compute-Rank operation (Technique (a)), we update the scores

of all missing objects to be the sampled values in that compound sample, i.e.,

mi = ~xi,∀i = [1..j]. Then, more or less similar to the case where only one

missing object is in M , the new score of each missing object is first computed.

Afterwards, only objects in L that dominate some objects in M may need to

reduce their scores accordingly.

114 5.2. METHODOLOGY

Algorithm 5.1 Answering a Why-not Top-K Dominating Question
Input:
1: The dataset D; original top-k dominating query Qo(ko); missing object ~m; penalty

settings λk, λd; T% and Pr
Output:
2: Refined query and new ~m’s values: 〈Q′(k′), ~m = ~xbest〉
3:

4: Result list L of the first dominating query;
5: Rank ro of the missing object;

Phase 1 :
6: (L, ro)← Dominating(until-see-~m);
7: if ro = ∅ then
8: return “~m is not in D”;
9: end if

10: Determine s from T% and Pr using Equation 3.7;
11: Compute the lower bound point ~l;
12: Find the restricted sample space Rs that bounded by ~l and ~m;
13: Sample s points from Rs and add them into S;

Phase 2 :
14: Penmin ← Penalty(ro, ~m);

15: ∆cf = Penmin ∗ ‖
~l−~m‖2
λc

; //Find the ∆c-intercept

16: B ← ∅; //The buffer stores the set of samples ~b with their ranking value rb
17: for all ~xi ∈ S do
18: if ∆ci > ∆cf then
19: continue; //Technique (b) — skip Compute-Rank operation

20: end if
21: ∆kT ← b(Penmin − λc ∆ci

‖~l−~m‖2
) ro−koλk

c;
22: rT ← ∆kT + ko;
23: if there exist objects ~b ∈ B, such that ~b dominates ~xi and rb ≥ rT then
24: continue; //Technique (b) — use cached result to skip Compute-Rank operation

25: end if
26: ri ← Compute-Rank(~m, ~xi); //Technique (a)

27: B ← B ∪ (~xi, ri);
28: if Peni < Penmin then
29: Penmin ← Peni;

30: ∆cf = Penmin ∗ ‖
~l−~m‖2
λc

;
31: end if
32: end for

Phase 3:
33: Return the 〈k′ = ri, ~m = ~xi〉 pair whose penalty=Penmin;

Technique (b) is largely the same, except that ∆ci now refers to the ag-

gregated difference between the original value and the modified value of each

CHAPTER 5. WHY-NOT DOMINATING QUESTION 115

missing object. When a compound sample ~Xj cannot be pruned after comparing

its ∆ci with the maximum feasible ∆cf value, we may also try to compute its

corresponding threshold ranking rT . Then, we see if any processed sample xi

dominates any sample in ~Xj . If yes, we check if its corresponding ranking ri is

larger than rT + (j− 1). We add (j− 1) as to account for the fact that there are

j missing objects, and prune the compound sample ~Xj if so.

5.3 Experiments

We evaluate our proposed solution using both synthetic and real data. The

real data is the NBA data set. The NBA data set contains 21961 game statistics

of all NBA players from 1973-2009. Each record represents the career perfor-

mance of a player: player name (Player), points per game (PTS), rebounds per

game (REB), assists per game (AST), steals per game (STL), blocks per game

(BLK), field goal percentage (FG), free throw percentage (FT), and three-point

percentage (3PT).

By default, we set the system parameters T% and Pr as 0.5% and 0.8,

respectively, resulting in a sample size of 322. The algorithms are implemented

in C++ and the experiments are run on a Ubuntu PC with Intel 2.67GHz i5

Dual Core processor and 4GB RAM.

In this section, we repeat the case study and performance study using top-k

dominating queries.

116 5.3. EXPERIMENTS

5.3.1 Case Study

Case 1 (Finding the top-3 centers in NBA history). The following

shows the result of a top-3 dominating query Q1 posed on five attributes: PTS,

REB, BLK, FG, and FT.

Rank Player PTS REB BLK FG FT

1 Yao Ming 19 9 2 0.52 0.83

2 Brook Lopez 13 8 2 0.53 0.79

3 Bob Lanier 20 10 1 0.51 0.76

We wondered why Kareem Abdul-Jabbar, the famous center in Los Angeles

Lakers, was missing in the result, and so we posed a why-not question {{Kareem

Abdul-Jabbar},Q1} using the “Prefer modify k” option because Abdul-Jabbar is

already retired and it made no sense to modify his attribute values anymore. In

30ms, we got an answer without modifying the attribute value of Abdul-Jabbar,

but the k value was suggested to increase from 3 to 5:

Rank Player PTS REB BLK FG FT

1 Yao Ming 19 9 2 0.52 0.83

2 Brook Lopez 13 8 2 0.53 0.79

3 Bob Lanier 20 10 1 0.51 0.76

4 Dan Issel 20 8 1 0.5 0.79

5 Kareem Abdul-Jabbar 25 11 2 0.55 0.72

Case 2 (Finding the top-3 guards in NBA history). Next, we posed

a top-3 dominating query Q2 on attributes PTS, AST, STL, FG, FT, and 3PT

to look for the top-3 guards in NBA history. The original result was:

CHAPTER 5. WHY-NOT DOMINATING QUESTION 117

Rank Player PTS AST STL FG FT 3PT

1 Steve Nash 14 8 1 0.48 0.9 0.43

2 Mark Price 15 7 1 0.47 0.9 0.4

3 Jeff Hornacek 15 5 1 0.49 0.87 0.4

Since Kobe Bryant was not in the result and we hoped to discover what

aspects of his game Kobe Bryant could improve in order to appear in the result,

we asked a why-not question {{Kobe Bryant}, Q2 } using the “Prefer modify

object’s value” option. In 54ms, we got the answer below, with Bryant becomes

the top-1 guard in the NBA:

Rank Player PTS AST STL FG FT 3PT

1 Kobe Bryant 28 5 2 0.47 0.87 0.43

2 Steve Nash 14 8 1 0.48 0.9 0.43

3 Mark Price 15 7 1 0.47 0.9 0.4

The original data value of Kobe Bryant is shown below:

Player PTS AST STL FG FT 3PT

Kobe Bryant 25 5 2 0.45 0.83 0.34

We can see that Kobe Bryant can perhaps improve his field goal (FG), free

throw (FT), or three-point (3PT) shooting percentages in order to be ranked as

the best guard in NBA history.

Case 3 (Finding the top-3 players in NBA history). The last case

is again to find the top-3 players in NBA history. We posed a top-3 dominating

query Q3 on all eight attributes. The initial result was:

118 5.3. EXPERIMENTS

Rank Player PTS REB AST STL BLK FG FT 3PT

1 Larry Bird 24 10 6 2 1 0.49 0.88 0.38

2 Dirk Nowitzki 23 9 3 1 1 0.47 0.87 0.37

3 Cris Mullin 18 4 3 2 1 0.5 0.86 0.38

We were curious that why LeBron James and Kobe Bryant were missing.

So, we issued a why-not question: {{LeBron James, Kobe Bryant}, Q3} using

the “Never Mind” option. Within 260ms, we got a refined top-4 query, with the

following modified statistics of LeBron James and Kobe Bryant:

Rank Player PTS REB AST STL BLK FG FT 3PT

1 Larry Bird 24 10 6 2 1 0.49 0.88 0.38

2 Dirk Nowitzki 23 9 3 1 1 0.47 0.87 0.37

3 LeBron James 29 12 9 3 1 0.5 0.77 0.34

4 Kobe Bryant 25 6 5 2 1 0.5 0.85 0.5

The following are the original statistics of Lebron James and Kobe Bryant

for readers’ reference:

Player PTS REB AST STL BLK FG FT 3PT

LeBron James 28 7 7 2 1 0.47 0.73 0.32

Kobe Bryant 25 5 5 2 1 0.45 0.83 0.34

The penalty of this answer is 0.16.

The naive sampling method return a refined answer with k′ = 7 and penalty

3 times larger than the previous method.

5.3.2 Performance

We next evaluate the performance of Algorithm 5.1. We present experi-

mental results based on three types of synthetic data: uniform (UN), correlated

CHAPTER 5. WHY-NOT DOMINATING QUESTION 119

Table 5.1. Parameter settings
Parameter Ranges

Data size 100K, 500K, 1M, 1.5M, 2M

Dimension 2, 3, 4, 5

ko 5, 10, 50, 100

Actual ranking of ~m under Qo 11, 101, 501 ,1001

T% 10%, 5%, 1%, 0.5%, 0.1%

Pr 0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8, 0.9

|M | 1, 2, 3, 4, 5

(CO) and anti-correlated (AC). Since, the experiment results between UN and

CO are very similar, we only present the results of UN and AC here. Table 5.1

shows the parameters we varied in the experiments. The default values are in

bold faces. By default, the why-not question asks for a missing object that is

ranked (10 ∗ ko + 1)-th in the original database.

 0

 10

 20

 30

 40

 50

100K 500K 1M 1.5M 2M

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Data size

PMO
NM

PMK

(a) Uniform Data

 0

 5

 10

 15

 20

100K 500K 1M 1.5M 2M

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Data size

PMO
NM

PMK

(b) Anti-correlated Data

Figure 5.4. Varying data size vs. Time

Varying Data Size. Figure 5.4 shows the running time of our algorithm

under different data sizes, using different penalty options (PMK stands for “Pre-

fer modifying k”, PMO stands for “Prefer modifying object’s values”, NM stands

for “Never mind”). We can see that our algorithm scales linearly with the data

size. Note that it is normal that the running time of algorithm on the uniform

120 5.3. EXPERIMENTS

data is higher than on anti-correlated data in answering why-not dominating

questions. In uniform data, objects with top rankings usually have large scores

(i.e., dominating many objects), so it takes a relatively longer time to find a

sample data value for ~m that makes it dominate those objects with high scores,

thereby increasing the algorithm’s running time. In contrast, objects in anti-

correlated data usually have low scores (i.e., dominating few objects). Therefore

it is relatively easy to find a sample data value for ~m that makes it dominate

those objects with low scores. Again, our optimization techniques are especially

effective when the PMK option is used, so the running time of our algorithm un-

der that option is generally faster, but the effect is less obvious in anti-correlated

data because our algorithm runs especially fast on anti-correlated data.

 0.1

 1

 10

 100

 1000

2 3 4 5

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Dimensionality

PMO
NM

PMK

(a) Uniform Data

 1

 10

 100

 1000

2 3 4 5

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Dimensionality

PMO
NM

PMK

(b) Anti-correlated Data

Figure 5.5. Varying query dimension vs. Time

Varying Query Dimension. Figure 5.5 shows the running time of our

algorithm of answering why-not questions on top-k dominating queries with dif-

ferent numbers of query dimensions. We can see that answering why-not ques-

tions for queries with more dimensions needs more time because the execution

times of the Dominating function and the Compute-Rank function increase

with the number of dimensions.

CHAPTER 5. WHY-NOT DOMINATING QUESTION 121

 0

 10

 20

 30

 40

 50

10 50 100

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

ko

PMO
NM

PMK

(a) Uniform Data

 0

 5

 10

 15

 20

10 50 100

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

ko

PMO
NM

PMK

(b) Anti-correlated Data

Figure 5.6. Varying ko vs. Time

Varying ko. Figure 5.6 shows the running time of our algorithm using top-

k queries with different ko values. Recall that when a top-5 query (ko = 5) is

used, the corresponding why-not question is to ask why the object in rank 51st is

missing. And when a top-50 query (ko = 50) is used, the corresponding why-not

question is to ask why the object in rank 501st is missing. So, naturally, when

ko increases, the time to answer a why-not question also increases because the

execution times of both Dominating and Compute-Rank functions increase

with k. Figure 5.6 shows that our algorithm scales well with ko.

 0

 20

 40

 60

 80

 100

101 501 1001

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Missing tuple ranks under wo

PMO
NM

PMK

(a) Uniform Data

 0

 5

 10

 15

 20

101 501 1001

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Missing tuple ranks under wo

PMO
NM

PMK

(b) Anti-correlated Data

Figure 5.7. Varying the ranking of the missing object vs. Time

122 5.3. EXPERIMENTS

Varying the missing object to be inquired. Figure 5.7 shows the results

when we vary the ranking of the missing object of the default top-10 query. We

can see that our algorithm scales well with the missing object’s ranking.

 0

 50

 100

 150

 200

 250

1 2 3 4 5

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

#M

PMO
NM

PMK

(a) Uniform Data

 0

 10

 20

 30

 40

 50

1 2 3 4 5

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

#M

PMO
NM

PMK

(b) Anti-correlated Data

Figure 5.8. Varying |M | vs. Time

Varying the size of |M |. Figure 5.8 shows the results when we vary the

number of missing objects in a why-not question. In the first question, one

missing object that ranked 101-th is included in M . In the second question, two

missing objects that respectively ranked 101-th and 201-th are included in M .

The third to the fifth questions are constructed similarly. We can see that our

algorithm scales well with the number of missing objects. Once again the running

times increase gradually when the PMK option is used and all three options are

all very efficient when the data is anti-correlated.

Varying T%. Figure 5.9 shows the running time of our algorithm and

the penalty of the returned refined queries when we changed from accepting

refined queries that are within the best 10% (|S| = 16) to accepting refined

queries that are within the best 0.1% (|S| = 1609). The running time of our

algorithm increases when the guarantee is more stringent, although the increase

CHAPTER 5. WHY-NOT DOMINATING QUESTION 123

 1

 10

 100

 1000

10 5 1 0.5 0.1

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

T%

PMO
NM

PMK

(a) T% vs. Time (Uniform)

 0

 5

 10

 15

 20

10 5 1 0.5 0.1

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

T%

PMO
NM

PMK

(b) T% vs. Time (Anti-
correlated)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10 5 1 0.5 0.1

P
en

al
ty

T%

PMO
NM

PMK

(c) T% vs. Penalty (Uniform)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10 5 1 0.5 0.1

P
en

al
ty

T%

PMO
NM

PMK

(d) T% vs. Penalty (Anti-
correlated)

Figure 5.9. Varying T% vs. Time/Penalty

is relatively mild for the anti-correlated dataset. The solution quality of the

algorithm improves when T increases and remains steady beyond a certain sample

size. The solution quality for the NM option increases significantly from T = 1%

to T = 0.5% on the uniform data because NM does not put any preference on

∆k and ∆c. Generally, NM is more difficult than the other two options (which

have clear preferences on either minimizing ∆k or ∆c) to find a good answer.

Therefore, it needs a larger sample size in order to reach a stable state. In this

experiment, NM reaches its stable state when T% = 0.5%.

124 5.3. EXPERIMENTS

 0

 20

 40

 60

 80

 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Pr

PMO
NM

PMK

(a) Pr vs. Time (Uniform)

 0

 5

 10

 15

 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)
Pr

PMO
NM

PMK

(b) Pr vs. Time (Anti-
correlated)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
en

al
ty

Pr

PMO
NM

PMK

(c) Pr vs. Penalty (Uniform)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
en

al
ty

Pr

PMO
NM

PMK

(d) Pr vs. Penalty (Anti-
correlated)

Figure 5.10. Varying Pr

Varying Pr. The experimental result of varying Pr, the probability of

getting the best-T% of refined queries, is similar to the results of varying T%

above. That is because both parameters are designed for controlling the quality

of the approximate solutions. In Figure 5.10, we can see that when we vary

Pr from 0.1 (|S| = 22) to 0.9 (|S| = 460), the running times increase mildly

on the uniform data and remain roughly constant on the anti-correlated data.

However, the solution quality also improves mildly, except that when the option

NM is used, the solution quality improves sharply at Pr = 0.5 (uniform data)

CHAPTER 5. WHY-NOT DOMINATING QUESTION 125

and Pr = 0.3 (anti-correlated data) because of the same reason we described

above.

 1

 10

 100

 1000

 10000

 100000

PMO NM PMK

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Option

Use Both
Use Technique (a) Only
Use Technique (b) Only

Use None

(a) Uniform Data

 1

 10

 100

 1000

 10000

 100000

PMO NM PMK

T
ot

al
 r

un
ni

ng
 ti

m
e

(s
ec

)

Option

Use Both
Use Technique (a) Only
Use Technique (b) Only

Use None

(b) Anti-correlated Data

Figure 5.11. Optimization Effectiveness

Effectiveness of Optimization Techniques. Finally, we investigate the

effectiveness of the two optimization techniques we used in our algorithm. Figure

5.11 shows the performance of our algorithm using only Technique (a), only

Technique (b), both, and none, under the default setting. The effectiveness

of both techniques are also very promising. Without using any optimization

technique, the algorithm requires about 1500 seconds and 400 seconds on uniform

dataset and anti-correlated dataset, respectively. But when our optimization

techniques are enabled, the algorithm runs about two orders of magnitude faster

— it requires only about 10 seconds and 2 seconds on uniform dataset and anti-

correlated dataset, respectively.

126 5.4. CHAPTER SUMMARY

5.4 Chapter Summary

In this chapter, we have studied the problem of answering why-not ques-

tions on the top-k dominating query where users do not need to specify the

set of weightings because the ranking function ranks an object higher if it can

dominate more objects. Our target is to give an explanation to a user who

is wondering why her expected answers are missing in the query result. Since

this problem is different from answering why-not top-k questions and why-not

top-k SQL questions, we use a different explanation model for top-k dominat-

ing queries. Specifically, we return the user a refined query with approximately

minimal changes to the k value and the missing objects’ data values. Our case

studies and experimental results show that our solutions efficiently return very

high quality solutions.

Chapter 6

Conclusion

Answering why-not questions is a very useful feature to improve the usability

of a database system. It can help users a lot to reason the query results and

debug their queries, which greatly improves the user experience when they are

interacting with the database system. As an important kind of database query,

preference queries are urgently in need of this feature as well. In this dissertation,

we have presented our explanation models and efficient algorithms for answering

why-not questions on preference queries.

6.1 Contribution

The first contribution of this dissertation is the explanation models that we

proposed for different preference queries. Identifying the best explanation model

is not easy, since an unsuitably chosen model may not provide useful information

to do reasoning at all. In answering why-not top-k question and why-not top-k

127

128 6.1. CONTRIBUTION

SQL question, the query-refinement approach we adopted captures the similar

and precise requirements of refined queries, which makes the refined queries best

match users’ original intention. For the why-not dominating question, it is not

enough to just refine the original query. Therefore, we propose a hybrid ex-

planation model that combines both data-refinement and query-refinement to

provide insightful explanations. Cases studies on real life data demonstrate the

usefulness of our explanation models.

The second contribution of this dissertation is the new evaluation metrics

that we proposed to quantify the quality of the explanations, namely, the penalty

models for different preference queries. These metrics capture user’s preferences

on the changes of different aspects of refined queries, e.g. the value k and weight-

ings at the same time. They help to formulate the complicated problems as op-

timization problems. They also guarantee that only the answer with the best

quality will be returned to users.

The final contribution of this dissertation is the efficient algorithms that

we proposed for answering why-not questions on different preference queries.

In particular, we first study the complexity of each problem. Based on these

analysis, we observe important properties from each problem, and use them

to derive several useful theorems to exclude those answers with poor quality.

Besides, we develop effective optimization techniques to significantly reduce the

algorithms’ running time. Extensive experiments on large synthetic data and

real data show that our algorithms can return high quality answers efficiently.

CHAPTER 6. CONCLUSION 129

6.2 Possibilities for Future Work

There are many interesting avenues for future work. One of the most im-

portant future work is to integrate our proposed methods into existing database

systems. How to integrate our algorithms as access methods that are recognized

by query optimizer would be an important topic.

Another important future work is to support Top-k SQL queries with more

SQL constructs, like HAVING clause. A simple idea is to add two more edit

operators to capture the modification of the HAVING clause: (e1) modifying the

constant value of a having predicate; (e2) adding/removing a having predicate.

In terms of the algorithm, we may need to adjust it a little bit. For example,

when enumerating candidate answers, the algorithm needs to consider the extra

having predicates such that it may early stop a PROGRESS operation as soon

as it finds the missing group is being filtered.

The last important future work is to support preference queries with non-

numeric attributes. In that case, user’s preferences are not specified in numeric

numbers. Instead, it is represented in more complex constraints such as “I like A

better than B”. It is an open question that what would be the best explanation

model for this kind of preference queries. It may require us to come up with a

totally new explanation model and also totally different algorithms.

130 6.2. POSSIBILITIES FOR FUTURE WORK

Bibliography

[1] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth,

Shubha U. Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A system

for data, uncertainty, and lineage. In VLDB, pages 1151–1154, 2006.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System for Keyword-

Based Search over Relational Databases. In ICDE, pages 5–16, 2002.

[3] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, D. On,

N Polyzotis, and J. S. V. Varman. SQL QueRIE Recommendations. In

PVLDB, volume 3, pages 1597–1600, 2010.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-Tree: An

Efficient and Robust Access Method for Points and Rectangles. In SIGMOD,

page 1990, 322-331.

[5] Leonard D. Berkovitz. Convexity and Optimization in Rn. A Wiley-

Interscience pubication, 2002.

[6] Sourav S Bhowmick, Aixin Sun, and Ba Quan Truong. Why not, WINE?:

Towards Answering Why-Not Questions in Social Image Search. In MM,

pages 917–926, 2013.

131

132 BIBLIOGRAPHY

[7] S. Borzsonyi, D. Kossmann, and K. Stockek. The Skyline Operator. ACM

Trans. Database System, 25(2):129–178, 2000.

[8] Y. C. Chang, L. Bergman, V. Castelli, M.L. Lo C.S. Li, and J.R. Smith. The

Onion Technique: Indexing for Linear Optimization Queries. In SIGMOD,

page 2000, 391-402.

[9] A. Chapman and H.V Jagadish. Why not? In SIGMOD, pages 523–534,

2009.

[10] Steven C. Chapra and Raymond P. Chanale. Numerical methods for Engi-

neers. McGRAW-HILL, 2010.

[11] Lei Chen, Xin Lin, Haibo Hu, Christian S. Jensen, and Jianliang Xu. An-

swering Why-not Questions on Spatial Keyword Top-k Queries? In ICDE,

2015.

[12] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient Retrieval of

the Top-k Most Relevant Spatial Web Objects. VLDB, 2(1):337–348, 2009.

[13] Yingwei Cui and Jennifer Widom. Lineage tracing for general data ware-

house transformations. VLDB J., 12(1):41–58, 2003.

[14] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage

of view data in a warehousing environment. ACM Trans. Database Syst.,

25(2):179–227, 2000.

[15] E. Dellis and B. Seeger. Efficient Computation of Reverse Skyline Queries.

In VLDB, pages 291–302, 2007.

BIBLIOGRAPHY 133

[16] R. Faginm, Amnon Lotem, and M. Naor. Optimal aggregation algorithm

for middleware. J. Comput. Syst. Sci., 64(4):614–656, 2003.

[17] Liu Fang, Yu Clement T., Meng Weiyi, and Chowdhury: Abdur. Effective

keyword search in relational databases. In SIGMOD, pages 563–574, 2006.

[18] M. Herschel and M. A. Hernández. Explaining Missing Answers to SPJUA

Queries. In PVLDB, pages 185–196, 2010.

[19] J. Huang, T. Chen, A-H. Doan, and J. F. Naughton. On the Provenance of

Non-Answers to Queries over Extracted Data. In PVLDB, pages 736–747,

2008.

[20] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k processing

techniques in relational database systems. ACM Comput. Surv., 40(4), 2008.

[21] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-k

join queries in relational databases. VLDB Journal, 13(3):207–221, 2004.

[22] Ihab F. Ilyas, Rahul Shah, G Aref, Walid, Jeffrey Scott Vitter, and

Ahmed K. Elmagarmid. Rank-aware Query Optimization. In ACM SIG-

MOD, pages 203–214, 2004.

[23] H.V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi,

and C. Yu. Making Database Systems Usable. In SIGMOD, pages 13–24,

2007.

[24] Zou L and L. Chen. Dominant Graph: An Efficient Indexing Structure to

Answer Top-K Queries. In ICDE, page 2008, 536-545.

134 BIBLIOGRAPHY

[25] Chengkai Li, Kevin Chen-Chuan Chang, and Ihab F Ilyas. Supporting ad-

hoc ranking aggregates. In ACM SIGMOD, 2006.

[26] Qin Lu, Jeffrey Xu Yu, and Chang Lijun. Keyword Search in Databases:

The Power of RDBMS. In SIGMOD, pages 681–694, 2009.

[27] Islam Md. Saiful, Zhou Rui, and Liu Chengfei. On Answering Why-not

questions in Reverse Skyline Queries. In ICDE, 2013.

[28] A. Motro. Query Generalization: A Method for Interpreting Null Answers.

In Expert Database Workshop, pages 597–616, 1984.

[29] A. Motro. SEAVE: A Mechanism for Verifying User Presuppositions in

Query Systems. ACM Trans. Inf. Syst., 4(4):312–330, 1986.

[30] M. Balazinska N. khoussainova, Y.C. Kwon and D. Suciu. Snipsuggest:

Context-Aware Autocompletion for SQL. In PVLDB, volume 4, pages 22–

33, 2010.

[31] D. Papadias, Tao Yufei, G. Fu, and B. Seeger. An Optimal and Progressive

Algorithm for Skyline Queries. In SIGMOD, pages 467–478, 2003.

[32] R. Saigal. Linear Programming: A Modern Integrated Analysis. Springer,

1995.

[33] Y. F. Tao, X. K. Xiao, and J. Pei. Efficient Skyline and Top-k Retrieval in

Subspaces. IEEE Trans. Knowl. Data Eng., 19(8):1072–1088, 2007.

[34] Eleftherios Tiakas, Apostolos N. Papadopoulos, and Yannis Manolopoulos.

Progressive processing of subspace dominating queries. VLDB J., 20(6):921–

948, 2011.

BIBLIOGRAPHY 135

[35] Q. T. Tran and Chee-Yong Chan. How to ConQueR Why-not Questions.

In SIGMOD, pages 15–26, 2010.

[36] A. Vlachou, C. Doulkeridis, Yannis Kotidis, and K. Nørv̊ag. Reverse Top-K

Queries. In ICDE, page 2010, 365-376.

[37] H. Wu, Guoliang Li, C. Li, and Lizhu Zhou. Seaform: Search-As-You-Type

in Forms. In PVLDB, volume 3, pages 1565–1568, 2010.

[38] Man Lung Yiu and Nikos Mamoulis. Efficent Processing of Top-k Dominat-

ing Queries on Multi-Dimensional Data. In VLDB, pages 541–552, 2007.

[39] F. Zhao, K-L Tan G. Das, and A. K. H. Tung. Call to Order: A Hierarchical

Browsing Approach to Eliciting Users’ Preference. In SIGMOD, page 2010,

27-38.

	Declaration
	Abstract
	List of Publications
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Why-Not Top-K Question
	Why-Not Top-K SQL Question
	Why-Not Dominating Question
	Dissertation Outline

	Literature Review
	Why-Not Top-K Question
	Preliminary
	Problem Statement
	Problem Analysis

	Methodology
	Basic Idea
	Where to get weighting vectors?
	How large the list of weighting vectors should be?
	Algorithm
	Multiple Missing Objects

	Experiments
	Case Study
	Performance

	Chapter Summary

	Why-Not Top-K SQL Question
	Why-Not Top-K SPJ Question
	The Problem and The Explanation Model
	Problem Analysis
	The Solution

	Why-Not Top-K SPJA Question
	The Problem and The Explanation Model
	Problem Analysis
	The Solution

	Experiments
	Case Study
	Performance

	Chapter Summary

	Why-Not Dominating Question
	Preliminary
	Problem Statement
	Problem Analysis

	Methodology
	Basic Idea
	Where to draw sample values?
	How large the list of sample values should be?
	Algorithm
	Multiple Missing Objects

	Experiments
	Case Study
	Performance

	Chapter Summary

	Conclusion
	Contribution
	Possibilities for Future Work

	Bibliography

