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Abstract 

A network consists of a set of objects and their connections and a complex network is 

a network that has a non-trivial topology. A computational technique that can discover 

interesting patterns in complex networks can have many applications in a variety of 

research areas. For example, it can be used to discover protein complexes in protein-

protein interaction networks, or to identify online user communities in social networks. 

Networks can be represented as graphs with vertices representing objects and edges 

representing connections between objects. Hence, to discover patterns in networks, 

graph mining techniques have therefore been used. For many of them to work 

effectively, patterns are required to have specific topological properties in terms of 

density, maximal k-cliques, or betweenness centrality. But the attributes associated 

with the objects in a complex network are usually ignored, or treated separately, during 

the graph mining process. According to empirical studies on complex networks, 

associations are believed to be existed between the attributes of objects and the links 

between objects and thus they may provide valuable information for discovering of 

interesting graph patterns. In this regard, we propose in this thesis a technique that can 

discover associative patterns from complex networks by taking into consideration the 

associations between attribute and topology information during the pattern discovery 

process. This technique works with what are called attributed graphs (AGs). 

Associated with each vertex in such a graph is an attribute set where each of attribute 

can take more than one value. 

Obviously, to discover associative patterns is to discover regularities between attribute 

and topology information of AGs. A simple but feasible way to represent them is to 

make use of pairwise attribute values that are significantly observed in connecting 

vertices in the AG given. That is to say, if the frequency of co-occurrence of the 

respective attribute values in two connecting vertices is significantly higher, the co-

occurrence of the two attribute values is the associative pattern of interest. Hence, for 

two attribute values, to determine if the frequency of their co-occurrences is 

significantly higher, we make use of statistical analysis to determine if the conditional 

probability of one attribute value given the other is significantly higher from the a 



II 

 

priori probability of the attribute value occurring irrespective of other attribute values. 

If the difference is verified to be statistically significant, then the frequency of co-

occurrences of the two attribute values can be considered as significantly higher. In 

this case, the co-occurrence of these two values constitutes an associative pattern. 

Once such an associative pattern is identified, we further make use of an information 

theoretic measure to indicate how significant this pattern is.  Hence, for two inter-

connected objects that are represented as two vertices connected by a link in an AG, 

the association between them can be determined by the number and the amount of 

significances of association patterns found in between them. The proposed technique 

can hence discover associative patterns in AGs based on both topological and attribute 

information. Then a Degree of Association (DOA) measure is introduced to compute 

the association between vertices based on the amount and the significances of 

associative patterns found in their attributes. The introduction of associative patterns 

allows us to fully utilize the potential knowledge in AGs in an efficient way and we 

can use them to tackle problems in a diversity of graph mining problems. For 

performance evaluation, we have used it to solve problems in link analysis and graph 

clustering.  

For link analysis, associative patterns have been used to predict Protein-Protein 

Interactions (PPIs) in PPINs based on the protein sequences as attributes for the 

proteins in the network. An algorithm, VLASPD, has been developed based on the 

proposed technique to consider variable-length segments of each pair of interacting 

protein sequences to determine the association relationship that exist between these 

proteins. Unlike other sequence-based approach, VLASPD is able to discover patterns 

in interacting proteins by considering association between variable-length segments.  

As a result, it is able to make use of such patterns to more accurately predict if two 

proteins may interact with each other. We have tested VLASPD with different real 

data sets and the experimental results show that VLASPD can predict PPIs accurately 

and can be a promising approach for PPI prediction. 

For AG clustering, we first propose a fuzzy-based clustering approach, namely FC-

AG, by combining the topology and attribute information of AGs with the DOA 
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measure. The adoption of fuzzy clustering allows FC-AG to identify clusters in a 

natural manner. However, since there are also applications whose number of clusters 

is unknown, we further develop an unsupervised clustering algorithm, namely MCL-

AG, to identify clusters through a markov clustering process. Integrated with the DOA 

measure, MCL-AG is able to discover dense graph clusters consisting of vertices 

whose attribute values may have significantly closer association with each other. 

However, based on the experimental results of MCL-AG, we note that vertices in the 

same cluster have not to be similar over all attributes. Therefore, if we have a way to 

perform the unsupervised clustering by resting on attributes that are more similar while 

ignoring those with less similarity, clusters can be identified more accurately and 

efficiently. To do so, we propose an algorithm, namely CAP-AG, so that the attribute 

preferences can be considered during clustering. To evaluate the performance of FC-

AG, MCL-AG and CAP-AG, we have applied them to several practical problems, 

including document classification, social community identification and the prediction 

of protein complexes. The experimental results show the promising performances of 

these three approaches. 
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Chapter 1 Introduction 

Networks are composed of interconnected objects and they are reckoned as an 

advanced model to describe the topological structure constructed from the connections 

of objects. When put in the context of graph, objects in a network are referred to as 

vertices while the connections among them are referred to as links, or edges. Recently, 

as both sources and techniques of retrieving information have been undergoing rapid 

development, the complexity of network data obtained is more complicated than ever 

in terms of the amount of information carried.  

 

Among a variety of complex networks, attributed graphs (AGs) are of substantial 

interest because of its ability of allowing attributes to be associated with vertices. Such 

ability can enrich the content information we can find in networks, thus providing an 

alternative way for us to analyze network data. A considerable number of examples of 

AGs can be identified in the real world. For example, Protein-Protein Interaction 

Networks (PPINs) can be represented as attributed graphs if protein knowledge is 

provided for proteins as well. As another example, social networks are able to be 

modeled as attributes graphs if personal profiles are available. 

 

Hence, for AGs, there are two kinds of information involved, one is the topological 

information of graph and the other is the attribute information of vertices in the graph. 

Both of these two kinds of information are believed to be significant for us to 

understand and analyze AGs and only considering either of them could probably lead 

to unsatisfactory performances for specific applications related to AGs, such as link 

analysis and graph clustering. However, regardless of the purposes of different 

applications, most of existing approaches proposed for these applications only make 

use of topological information to perform their tasks while failing to consider the 

attribute information. A major reason for the missing attribute information in these 

approaches is ascribed to the lack of AGs when they were under development. Hence, 
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the non-trivial attribute information of AGs raises new challenges, as we have to 

consider the attribute information in addition to the topological information when 

addressing applications where AGs are involved. 

 

In this thesis, we will concentrate on tackle such challenge so that both topological 

and attribute information can be appropriately utilized for AG applications. Regarding 

the process of these two kinds of information in AGs, although some attempts [19], 

[84], [95], [97], [98], [103], [104] have been made, we note that they normally process 

these two kinds of information separately and then integrate them in a unified 

clustering framework. Specifically speaking, for the application of graph clustering, 

distance-based approaches [19], [103], [104] design different distance measures to 

compute the similarity of attribute information and that of topology information 

respectively while model-based approaches [84], [95], [97], [98] adopt different 

probabilistic models to estimate the likelihood of being associated with a certain 

attribute value and that of being connected by a certain vertex. In this regard, existing 

approaches proposed for AG applications cannot disclose the association between 

attribute and topology information, which has been verified by the empirical studies 

of social networks with attribute information [2], [86]. Therefore, it is intuitive to 

believe that both attribute and topology information can be utilized more efficiently if 

there is a way to discover the association behind them. 

 

To disclose the association between attribute and topology information, we consider 

this problem from an alternative view. In particular, we intend to discover associative 

patterns composed of pairwise attribute values that are frequently observed in the 

adjacent vertices of AG with statistical significance, as these associative patterns are 

the regularities observed in AG by taking both attribute and topology information into 

consideration and we believe they are eligible to represent the association between 

these two kinds of information. Therefore, in this thesis, we propose an algorithm of 

discovering associative patterns in AG with some statistical knowledge. In addition to 

the discovery of associative patterns, the proposed algorithm can also measure the 

strengths of associative patterns from the perspective of information theory.  
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To demonstrate the advantage of associative patterns in AG, we apply them to the AG 

applications of link analysis and graph clustering. In particular, for link analysis, we 

have studied the problem of predicting links and then developed an approach, namely 

VLSPAD, to perform the prediction task by making use of associative patterns. To 

evaluate the efficiency of VLSPAD, we apply it to the application of predicting 

Protein-Protein Interactions (PPIs) from PPINs and the experimental results show the 

promising performance of VLSPAD.  

 

Regarding graph clustering, we have been engaging in identifying clusters from AG 

by utilizing both of attribute and topology information simultaneously and the 

discovery of associative patterns provides us a solid theoretical basis to do so. First of 

all, a Degree of Association (DOA) measure is introduced so that the association 

between pairwise vertices can be quantified based on the amount and the significance 

of associative patterns found in their attributes. With this DOA measure, three 

different approaches, i.e., FC-AG, MCL-AG and CAP-AG, have been proposed to 

tackle the problem of AG clustering. In particular, FC-AG is a fuzzy-based clustering 

approach that utilizes both of the topology and attribute information to estimate the 

fuzziness of memberships for each of vertices. Unlike FC-AG that requires to 

determine the number of clusters in advance because of the adoption of fuzzy 

clustering, MCL-AG makes use of markov clustering to partition an AG into several 

dense subgraphs by considering the results of DOA measure and then identify clusters 

from these subgraphs. From the experiment results of MCL-AG, we note that it is not 

necessary for vertices in the same cluster to be similar in all attributes. Motivated by 

this observation, we also propose a clustering approach using attribute preferences, 

namely CAP-AG. To evaluate the performances of these three approaches, we have 

conducted extensive experiments with the comparison to the state-of-the-art clustering 

approaches and the experiment results show that the proposed approaches have a 

promising performance when identifying clusters from AGs. 

 

The rest of this chapter is organized as follows. Section 1.1 introduces the motivations 

behind the introduction of associative patterns as well as the approaches proposed to 
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solve the applications of link analysis and clustering based on associative patterns. In 

Section 1.2, a brief description about the applications of link analysis and graph 

clustering for AGs is given. The contributions made by the works in this thesis are 

presented in Section 1.3. The last section of this chapter, i.e., Section 1.4, describe the 

organization of thesis so as to give an overall view of this thesis. 

1.1 Motivations 

The motivations of the works made in this thesis are mainly from two aspects: 1) 

Theoretical Motivation for pattern discovery in AG, and 2) Approach Innovations for 

the applications of link analysis and clustering. Hence, the rest of this section will be 

unfolded from these two aspects.  

1.1.1 Theoretical Motivation 

Regarding the pattern discovery in network, early works [44], [47], [96] normally 

preform this task on graphs by identifying frequent patterns from them. Later some 

efforts have been made to adopt certain topological properties for pattern discovery 

[27], [31], [60]. Although these techniques are also applicable to AGs, patterns 

discovered by them are possibly not appropriate as the attribute information in AGs is 

not considered during the discovery process.  

 

To tackle this problem, certain efforts [19], [95], [103], [104] have been made recently 

so that patterns can be discovered from AGs in a more appropriate manner. However, 

the approaches proposed for AGs process the topology information and the attribute 

information separately while ignoring the association between them. For example, 

BAGC [95], proposed for the problem of AG clustering, adopts different probabilistic 

models to quantitatively describe the topology information and the attribute 

information respectively, and then formulates an optimization problem by involving 

these models in a unified clustering framework. Therefore, these approaches intend to 

achieve a balance between the information of topology and that of attribute through 
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an optimization procedure. However, few of them consider the association between 

the information of graph topology and that of vertex attributes, which is is yet to be 

explored. 

 

To better illustrate the significance of considering the association between the 

information of graph topology and vertex attributes, let us see an example. Assuming 

that there are two books on the shelf for sale and the keywords related to the content 

of these two books are also available, there is nothing worth noting except the 

similarity between these two books in terms of their keywords; but if these two books 

are co-purchased by the same reader, an intuitive idea coming to mind is to wonder 

whether these two books are associated or at least some of their keywords are 

associated. From this example, we believe that it is the existence of edges between 

vertices that facilitate the understanding of vertex attributes and vice versa.  

 

Therefore, motivated by this intuitive idea, we propose an innovative algorithm to 

discover association patterns from AGs by disclosing the association between graph 

topology and vertex attributes. To unify these two kinds of information, association 

patterns are defined as pairs of attribute values that frequently co-occur in an AG.  To 

demonstrate the ability of such kind of patterns, we apply the association patterns to 

some of applications of AGs and the experimental results show the promising 

performance of these patterns. 

1.1.2 Approach Innovations 

With association patterns discovered from AGs, we are interested in developing 

specific approaches to solve existing problems whose data can be modeled as AGs. In 

this thesis, the problems of link prediction and graph clustering have been studied and 

innovative approaches are then proposed to solve them.  
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1.1.2.1 Link Analysis 

The problem of link analysis we are interested in is to predict links between two 

vertices through a supervised learning process. In this thesis, we narrow down the 

scope of AGs by concentrating on PPINs that are more popular in the field of 

bioinformatics. In this regard, the problem of link analysis we intend to solve for 

PPINs is to predict PPIs given a confirmed PPIN. To construct the AG from a PPIN, 

the protein sequence information is used to be the attribute of proteins in the AG. 

 

Previous sequence-based approaches [8], [9], [57], [69], [79] for predicting PPIs are 

concerned with the sequence segments with the same length and compare the 

similarity to the distribution of such kind of segments for the task of prediction. 

However, this consideration cannot thoroughly explore the sequence information as it 

ignores the association between segments with variable length. Besides, we also take 

into consideration both the presence and absence of segments to compose the patterns 

of interest. Therefore, we develop an innovative approach, namely VLSPAD, to 

address this concern. VLSPAD firstly employs an Apriori-like procedure to identify 

sequence segments that frequently occur in the protein sequences. Then these 

sequence segments are assigned to proteins as their attribute values so that an AG can 

be constructed from the given PPIN. The proposed algorithm of pattern discovery is 

then applied by VLSPAD so that the associations between segments can be discovered. 

With these associations, VLSPAD then performs the prediction task for query proteins. 

The experimental results show that by considering the patterns composed of segments 

with variable length VLSPAD outperforms some popular sequence-based approaches 

in terms of accuracy. 

1.1.2.2 Graph Clustering 

Graph clustering is to identify clusters by grouping related vertices from a graph [77]. 

The clustering process is much simpler for graphs where no attributes are considered 

and hence a number of clustering approaches have been developed to identify clusters 
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by following certain topological properties including but not limited to density [27], 

[30], connectivity [34], [60] and k-clique [12], [82]. Concerning the problem of AG 

clustering, the foundation of our works is based on the associative patterns identified 

from AGs. For pairwise vertices, based on the amount and the significance of 

associative patterns that are found in their attributes, the DOA measure can quantify 

the degree of association between them, which indicates to what extent these two 

vertices are likely to be grouped. 

 

Given an AG and the DOA measure, we propose a fuzzy-based clustering approach, 

namely FC-AG, by combining the topology and attribute information of AGs. First of 

all, FC-AG preprocesses the attribute information with the use of DOA measure. After 

that, in order to identify clusters composed of vertices that are densely connected and 

that are highly associated, FC-AG formulates an optimization problem for the original 

clustering problem. For each of vertices, the fuzziness of its memberships can be 

estimated by this optimization problem by considering the topology and attribute 

information simultaneously. FC-AG then solves the optimization problem in an 

iterative manner. 

 

However, since FC-AG adopts the fuzzy clustering, the number of clusters has to be 

determined in advance. Recognizing that there are also many applications where the 

number of clusters is unknown, we then develop two unsupervised clustering 

approaches utilizing both the topology and attribute information and they are MCL-

AG and CAP-AG. For MCL-AG, the clustering task is performed in several steps: 1) 

it makes use of DOA measure to weight each of edges in the AG and creates a 

weighted AG (wAG), 2) based on wAG, it discovers all dense subgraphs in it using 

markov clustering process, and 3) a partitioning process is applied to each subgraph 

so that clusters can be identified as partitions consisting of vertices whose attribute 

values are more closely associated with each other.  

 

In contrast to MCL-AG, CAP-AG solves the problem of AG clustering from an 

alternative view. As existing works on AG clustering normally concentrate on 
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grouping vertices that are similar in both topological structures and vertex attributes, 

such consideration ignores the individual impacts of attributes on the formation of 

clusters. Hence, we propose a clustering approach using attribute preferences, namely 

CAP-AG, to identify clusters that are composed of vertices that are similar in a subset 

of attributes instead of the entire set of attributes and that are densely connected. To 

do so, CAP-AG employs a likelihood matrix to represent to what extent pairwise 

vertices are likely to be grouped in the same cluster. For each vertex, CAP-AG also 

introduces a corresponding preference vector to quantitatively indicate the 

contribution of each attribute when determining the clustering of this vertex. Then the 

problem of AG clustering is formulated into an optimization problem. To address it, 

CAP-AG adopts the strategy of alternatively optimizing the likelihood matrix and 

preference vectors through an iterative procedure. 

1.2 Contributions 

The contributions made by this thesis can be presented from four aspects on solving 

the problem of pattern discovery from AGs, the problem of link analysis and the 

problem of AG clustering. The highlights are summarized as below. 

 

 Instead of considering the information of topology and vertex attributes 

independently, we consider them together by discovering associative patterns 

composed of pairwise attribute values that are frequently observed in adjacent 

vertices. To do so, we propose an algorithm and then develop several 

approaches for specific problems based on the associative patterns. The 

promising performances of the proposed approaches show that associative 

patterns are of great significance to understand and analyze AGs. 

 

 For the problem of link analysis, one of its specific applications, i.e., the 

prediction of PPIs, has been studied in the thesis. To solve it, we propose 

VLSPAD by taking the sequence segments with variable length into 
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consideration. The experimental results show that VLSPAD outperforms 

popular sequence-based prediction approaches in terms of accuracy. Therefore, 

a conclusion can be made that the variable-length segments can improve the 

accuracy when predicting PPIs. 

 

 Regarding the problem of AG clustering, a fuzzy-based approach FC-AG is 

proposed. For each of vertices, the fuzziness of memberships is estimated by 

combining associative patterns and dense link structures. Furthermore, 

benefited from the adoption of fuzziness in the memberships of clusters for 

vertices, FC-AG is also capable of discovering overlapping clusters. 

 

 In addition to FC-AG, two unsupervised clustering approaches MCL-AG and 

CAP-AG have been developed to solve the problem of AG clustering with 

unknown number of clusters. Both of MCL-AG and CAP-AG simultaneously 

consider the topology information and the attribute information with the use of 

associative patterns. The experiment results show the efficiency of MCL-AG 

and CAP-AG. 

1.3 Thesis Organization 

The remaining content of this thesis is organized as follows. 

 

 In Chapter 2, the details of discovering associative patterns from AGs are 

introduced and this chapter also covers the mathematical preliminaries for the 

following chapters. 

 

 In Chapter 3, we elaborately introduce of procedure of how VLSPAD predicts 

PPIs from PPINs with variable-length sequence segments. To evaluate the 

performance of VLSPAD, we apply it to the PPINs extracted from different 
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species and compare it with two popular sequence-based approaches. The 

experimental results and analysis are also given. 

 

 In Chapter 4, we introduce a fuzzy-based clustering approach FC-AG. In the 

experiments, we first use synthetic datasets to demonstrate the advantage of 

FC-AG in terms of efficiency; then we apply FC-AG to the applications of 

document classification and social community detection and present an in-

depth analysis to the results. 

 

 In Chapter 5, the two unsupervised clustering approaches MCL-AG and CAP-

AG are introduced. To evaluate their performances, we apply these two 

clustering approaches to identify protein complexes from PPINs with protein 

attributes. In addition, we also select some protein complexes identified by 

these two approaches to demonstrate the respective advantages of MCL-AG 

and CAP-AG. 

  

 In Chapter 6, a conclusion about the works in this thesis is presented. 

Furthermore, we discuss several aspects of how to extend our research works 

as well as improving the research outcomes as future works.  
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Chapter 2 Association Pattern Discovery 

in AGs 

2.1 Overview 

Existing approaches proposed to solve the problems of AG process the topology 

information and the attribute information separately and hence ignore the associations 

we are interested in. Taking distance-based approaches for the problem of AG 

clustering as an example, the use of distance measures is to quantitatively assess to 

what extent the two adjacent vertices are similar in terms of their attributes and hence 

the topological information of AG is not considered by distance measures. Since it is 

important to take the relationship between the topological information and the attribute 

information into consideration when solving the problems of AGs, few approaches 

can do so.  

  

Recall that the existence of edges between vertices facilitates to understand vertex 

attributes and vice versa, we have reason to believe that associations are possibly 

existed between the information of graph topology and that of vertex attributes. The 

difficulty lying here is how to identify patterns representing such kind of associations 

by considering both the information of graph topology and vertex attributes. To solve 

it, we consider this problem from an alternative view as described below.  

 

Assuming that there are two attribute values regardless of whether they are from the 

same attribute, the co-occurrence of them means that they are found in the 

corresponding attributes of adjacent vertices respectively. It is intuitive for us to 

consider that these two values, to some extent, represent a certain association between 

graph topology and vertex attributes if they are observed to frequently co-occur in 

adjacent vertices. In this regard, the co-occurrence of the two attribute values we 
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concern is eligible to compose the pattern of association. Regarding the use of the 

topological information and the attribute information, the attribute values in the 

association pattern involve the attribute information while the co-occurrences of these 

two attribute values are counted through edges. 

 

Therefore, if we have such a way that all pairwise attribute values that frequently co-

occur in the AG can be discovered as the patterns of this AG, the problems related to 

AG can be addressed in a more natural and appropriate manner. Therefore, motivated 

by this idea, an innovative algorithm is introduced in this thesis to discover patterns 

composed of pairwise attribute values frequently co-occurred.  

 

The rest of Chapter 2 is organized as follows.  The related works of pattern discovery 

in network data are presented in Section 2.2. Section 2.3 introduces the mathematical 

preliminaries with respect to the model of AG. A complete procedure of pattern 

discovery is presented in Section 2.4. A conclusion is given in Section 2.5. 

2.2 Related Works 

2.2.1 Frequent Pattern Discovery 

The algorithms developed for the discovery of frequent substructures are normally 

applied to labeled graphs. Though labeled graphs are also a kind of AG, we still prefer 

to use labeled graphs when introducing related works in order to avoid any ambiguity. 

According to the nature of input graphs, we can classify the related algorithms into 

two groups, one requires the input as a single large graph and the other is to accept a 

set of small graphs as input. The popular algorithms respectively from these two 

groups are introduced in the following part. 

 

Ketkar et al. [44] describe the SUBDUE system to discover frequent substructures 

from the input graph based on the minimum description length (MDL) principle. The 
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frequency concept used in SUBDUE is not strictly in accordance with the traditional 

concept that counts on the appearances. Instead SUBDUE intends to discover 

substructures that better serve for compressing the input graph. To achieve the target, 

SUBDUE measures the compression ability of substructures with the use of MDL. 

Regarding the process, SUBDUE begins with substructures matching unique labels in 

the graph. An iteration process is applied. At each iteration SUBDUE selects the 

substructures with the best MDL scores and expand them by adding one edge at all 

possible ways for the next iteration. The result list of SUBDUE reserves the best 

substructures discovered during each iteration. Regarding the performance of 

SUBDUE, there are two factors affecting the compression ability of substructures as 

one is the number of appearances and the other is the size. Therefore, some 

substructures in the final result set may not appear frequently in the original graph but 

have a larger size. This could negatively affect the quality of discovered substructures 

in terms of frequency. 

 

FSG [47] is proposed to extract frequent substructures from a set of small graphs by 

following level-by-level expansion adopted by Apriori. As graphs are more 

sophisticated than transaction records, FSG devotes much effort on the problem of 

how to generate (k+1)-candidates from the frequent set of k-subgraphs. To address 

this problem, FSG makes use of subgraph isomorphism to examine whether a pair of 

frequent k-subgraphs shares the same (k-1)-core structure. If they are, FSG then 

performs the join operation to generate a set of (k+1)-candidates from them through 

edge expansion. After obtaining all (k+1)-candidates by scanning the frequent k-

subgraphs, FSG makes use of the downward closure property of Apriori to remove 

unqualified (k+1)-candidates, thus retaining the remaining ones as the frequent set of 

(k+1)-subgraphs. FSG is completed when there is no qualified candidate left. Because 

of the isomorphism in graph topology, a lot of effort is made to generate candidates 

with the use of canonical labeling and therefore the efficiency is also affected. 

 

To overcome the inefficiency of FSG, Yan et al. [96] develop gSpan to discover 

frequent subgraphs from the graph dataset without generating candidates. gSpan 
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adopts the depth-first search (DFS) strategy to discover frequent subgraphs. To 

accelerate the search speed, gSpan introduces a new canonical labeling method for 

graphs. For each of input graph dataset, gSpan constructs all DFS trees of it, then 

encodes these trees with DFS code scheming, and takes the minimum DFS code as the 

canonical label of this graph. After obtaining all canonical labels for the input graph 

datasets, gSpan starts to build DFS code tree. First of all, gSpan picks all frequent 1-

edge graphs out of the graph dataset, and sorts these graphs in DFS lexicographic order. 

Then, gSpan iteratively searches all descendants of each 1-edge graph in this sorted 

graph list and retains the frequent ones to extend the DFS code tree. At the end of each 

iteration, gSpan shrinks graphs in the graph dataset by removing the edge selected as 

the root of this iteration and as result, the removed edge will not appear in the 

following search. When all 1-edge graphs are searched, a complete DFS code tree has 

been constructed and frequent subgraphs can be extracted from this tree. 

2.2.2 Topological Pattern Discovery 

Unlike frequent pattern discovery techniques, topology pattern discovery techniques 

perform their tasks by following certain topological properties, such as density, 

betweenness centrality and minimum cut tree. 

 

Markov cluster algorithm (MCL) [27], [90] is proposed to detect dense regions in 

sparse graphs and the idea behind MCL is that random walks with a specific length 

have a higher probability for paths of which the beginning and the ending are in the 

same dense region than for other paths. To implement the idea, MCL first maps a 

graph onto a Markov matrix. Then two operators, i.e., expansion and inflation, are 

introduced to simulate the random walks originated from the initial Markov matrix. In 

particular, the expansion operator allows nodes to meet new neighbors while inflation 

is to boost the promotion of favored neighbors as well as the demotion of less favored 

neighbors. By iteratively applying expansion and inflation, this stochastic process 

conducted by MCL is soon converged to a stable status, and the connected components 

after convergence are considered as clusters discovered. However, if the value of 
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inflation parameter is selected improperly, the performance of MCL may appear to 

generate many small clusters with two or three vertices because of over-boosting. 

 

Newman et al. [60] provide another possible insight of discovering dense regions in 

the given graph by following a divisive manner. The purpose of betweenness is to 

measure edges so that edges lying between communities are favored and those insider 

communities are disfavored. After obtaining betweenness scores for all edges, the edge 

with the highest score is then removed from the network and then recalculates the 

betweenness scores for the remaining edges. By iteratively repeating these two steps, 

the whole process is completed when there is no edge to be removed. Based on the 

removal order of edges, a hierarchical dendrogram is readily available for finding a 

proper division of the given graph. Regarding the goodness of a specific division, 

Newman et al. also introduce the modularity measure to seek for the best division. 

 

Flake et al. [31] explore the feasibility of performing graph clustering based on the 

minimum cuts with the given graph. However, since simple minimum cuts cannot 

guarantee the quality of clustering, an artificial node is introduced to control the 

quality by providing a lower bound on the expansion of the produced clusters and an 

upper bound on the edge weights between each cluster and the rest of the graph. After 

the introduction of an artificial vertex, each vertex in the original graph is connected 

to this artificial vertex with edge of a constant weight, and thus an expanded graph is 

obtained. Then the minimum-cut tree is constructed for the expanded graph. Finally 

by removing the artificial vertex from the minimum-cut tree, all connected 

components are reckoned as the clusters of the input graph. A problem with respect to 

the introduction of an artificial root vertex is that since the expanded graph is not the 

same as the original one in terms of the topology, the generated clusters may not 

exactly reveal the inherent structure of the original graph 
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2.3 Mathematical Preliminaries 

Since an AG is composed of vertices, edges and vertex attributes, we represent the AG 

as a 3-element tuple } E,V, {AG  , where )i}(1{V Vnvi   is a set of Vn  

vertices, }{E ije  denotes all the En  edges that represent the information of graph 

topology, and } { m  (  nm1 ) is a set of n  attributes that are available to be 

associated with each of vertices in V. Two vertices iv  and jv  are adjacent vertices in 

the AG if Eije  and they are incident to ije . Two edges are adjacent if they share a 

common vertex. Note that since the case of self-loop is not considered for each of 

vertices, we have ji   for each Eije . 

 

Concerning an attribute )(1  nmm , we define the domain )( mdom   as a 

set of possible values that can be taken by m  and the total number of values in 

)( mdom   is 
m

n


. Given iv , the attribute m  of iv  is denoted as i

m . For the number 

of values that are taken by i

m , unlike previous works normally assuming that each 

attribute can only take a single value, we allow i

m  to take a set of values denoted as

)}( | {Val  

m

i

mp

i

mp

i

m domvalval   and use i

m

 Val  to represent the number of attribute 

values associated with i

m .  If i

m  has no values, we simply set i

m

 Val . For any 

two attributes of the same vertex, say i

m  and 
i

n  )( nm  , it is possible that 

i

n

i

m

  ValVal  . For the same attribute of different vertices, say 
i
m  and 

j

m )( ji  , 

it is also possible that j

m

i

m

  ValVal  . 

 

To better illustrate the mathematical notations introduced above, we give an example 

of AG with these notations in Figure 1. Regarding the AG in Figure 1, there are five 

vertices and eight edges. For each vertex in this AG, total n  attributes are associated 
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with it. More specifically, taking an arbitrary attribute m  of 3v , i.e., 3

m , as an 

example, a value set denoted as 3Val m  is to indicate the attribute values assigned to 

3

m   and all values in 3Val m  belong to )( mdom  . Regarding the co-occurrence of two 

attribute values, if we have )( mmp domval   and )( nnq domval  , mpval  and nqval  

co-occur through 
24e  if 

2Val mmpval   and 
4Val nnqval  , or 

4Val mmpval   and 

2Val nnqval  . 

2.4 Methodology 

2.4.1 Discovering Associative Patterns 

As mentioned in 1.1.1, the associative pattern is represented by pairwise attribute 

values that frequently co-occur in adjacent vertices. That is to say, for two attribute 

Figure 1. An example of mathematical notations used in an AG. In this graph, each of 

vertices is associated with several attributes and for each attribute vertices can take 

more than one values. 
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values )( mmp domval   and )( nnq domval  , if the exact number of co-occurrences 

of mpval  and nqval  is significantly larger than the expected one, we reckon that mpval  

and nqval  co-occur frequently enough. Hence, mpval  and nqval  are associated and the 

co-occurrence of mpval  and nqval  is defined as the pattern of association. 

 

Let us first consider a simple problem that is to assess the co-occurrences of mpval  and 

nqval  given an AG. Assuming that 
nq

val
mp

valo ,  is the number of pairs of adjacent 

vertices that have mpval  and nqval  respectively, 
mp

valo  is the number of pairs of 

adjacent vertices either of which has mpval  and 
nq

valo  is the number of pairs of 

adjacent vertices either of which has nqval , we can perform this verification according 

the inequation below,  

 0)()(),(),(  nqmpnqmpnqmp valpvalpvalvalpvalvaldiff  (1) 

where  

 E,),( novalvalp
nq

val
mp

valnqmp  ,  (2) 

 E)( novalp
mp

valmp  , (3) 

 E)( novalp
nq

valnq  . (4) 

From (2)–(4), ),( nqmp valvalp  is the joint probability of mpval  and nqval , )( mpvalp  is 

the priori probability of mpval , and )( nqvalp  is the priori probability of nqval . 

 

In (1), the product of )( mpvalp  and )( mpvalp  denotes the expected probability of the 

co-occurrence of mpval  and nqval  in the AG under null hypothesis. Obviously, if 

0),( nqmp valvaldiff , it can be inferred that 
nq

val
mp

valo ,  is larger than its expected 

value. However, the result of ),( nqmp valvaldiff  is subject to the magnitudes of 

nq
val

mp
valo , , 

mp
valo  and 

nq
valo  according to (1). Therefore, to avoid the bias resulted 
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from the difference in magnitude, we rewrite the definition of ),( nqmp valvaldiff  as 

below, 

 

))(1))((1(
)()(

)()(),(
),(

E

nqmp

nqmp

nqmpnqmp

nqmp

valpvalp
n

valpvalp

valpvalpvalvalp
valvaldiff




 . (5) 

It has been pointed out by [15], [37] that ),( nqmp valvaldiff  defined by (5) follows a 

normal distribution and hence the result from (5) is more reliable than that from (1). 

Hence, to avoid ambiguity, the definition of (5) is adopted to compute 

),( nqmp valvaldiff  afterwards. 

 

However, with (5), we can only reach the conclusion that the co-occurrences of  

and  are more than expected. To further investigate whether  is large 

enough to be considered as frequent, we make the decision based on Theorem 1 as 

below. 

 

Theorem 1:  is frequent at a 95% confidence interval if 

96.1),( nqmp valvaldiff . If  is frequent,  and  are associated and 

their co-occurrences compose an association pattern representing the association 

relationship between them. 

2.4.2 Weighting Associative Patterns 

Though whether there is a pattern existed between  and  can be determined 

by Theorem 1, the weight of such pattern should not be considered as the same for all 

patterns discovered. If a pattern is verified, its weight is to indicate the strength of the 

association between the attribute values involved. It is for this reason that we make 

use of the weight of evidence [91] to assess the weight of pattern from the viewpoint 

of decrease in uncertainty. 

 

mpval

nqval
nq

val
mp

valo ,

nq
val

mp
valo ,

nq
val

mp
valo , mpval nqval

mpval nqval
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Firstly, the amount of evidence provided by the presence of  for  can be 

estimated by mutual information as below, 

 















)(

)|(
log):(

nq

mpnq

mpnq
valp

valvalp
valvalI  (6) 

where )(),()|( mpnqmpmpnq valpvalvalpvalvalp   is the conditional probability of 

 found in a vertex given that  is found in its adjacent vertex. From (6), we 

find that the value of ):( mpnq valvalI  is only positive when )()|( nqmpnq valpvalvalp  . 

In other words, the mutual information defined by (6) shows the decrease in 

uncertainty about the presence of  in a vertex when  is found in its adjacent 

vertex. 

 

Given the presence of , the difference in mutual information when  is found 

and when  is not found is an estimation of to what extent  is likely to co-

occur with  in adjacent vertices respectively. Assuming that nqval  denotes the 

situation that  is not found, such difference, denoted by )|( mpnq valvalWOE , is to 

measure the evidence provided by the observation of  in a vertex in favor of its 

adjacent vertex taking on the value , and its formula is 

 ):():()|( mpnqmpnqmpnq valvalIvalvalIvalvalWOE   (7) 

Substituting (6) for both ):( mpnq valvalI  and ):( mpnq valvalI  in (7), we obtain (8) after 

some algebra operations. 
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However, since )|( mpnq valvalWOE  and )|( nqmp valvalWOE  are different according to 

(8), we take the average value of them as the strength of the relationship between  

and  and the definition is given in (9). 
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If  and  are not associated as indicated by a value of ),( nqmp valvaldiff  

smaller than 1.96, we simply assign 0 to ),( nqmp valvalweight . Therefore, a full 

description about ),( nqmp valvalweight  is presented with (10). 
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Hence, for two vertices, a Degree of Association (DOA) measure is introduced with 

(11) so that the association between them can be quantified based on the amount and 

the significance of associative patterns found in their attributes.  
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2.5 Conclusion 

In this chapter, we have introduced the algorithm of discovering patterns from an AG 

given. Generally speaking, patterns of interest in this thesis are composed of pairwise 

attribute values that co-occur frequently. In this regard, both the information of graph 

topology and vertex attributes are involved to indicate these patterns. To discover such 

kind of patterns, the proposed algorithm adopts some concepts in probability theory 
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that can be used to determine whether the difference between the exact number of co-

occurrences and the expected one is significant enough. Furthermore, the proposed 

algorithm also weights the patterns discovered based on information theory. Based on 

associative patterns, we also introduce the DOA measure to weight the degree of 

association between vertices. 

 

To evaluate the reasonability behind associative patterns as well as the DOA measure, 

we apply these patterns to solve specific problems of AGs. Regarding the role of this 

chapter, this chapter has to be considered as the fundamental basis of Chapters 3-5, as 

all the approaches proposed in these chapters make use of these patterns to solve the 

specific problems related to AGs.  
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Chapter 3 Link Analysis for Predicting 

PPIs from PPINs 

3.1 Introduction 

When performing their functions, proteins seldom do so individually. Instead, they 

perform their functions by interacting with each other as a whole [65]. Hence, if the 

interactions among proteins can be predicted more accurately, we may be able to better 

discover unknown functions of a protein based on the known functions of those 

proteins that it interacts with.  In addition, we may also be able to better understand 

the molecular mechanisms of many biological processes such as DNA regulation, cell 

signaling, assembly of protein complexes, etc. Given all such possible applications, 

various attempts have been made to develop techniques to effectively predict protein-

protein interactions (PPIs). 

 

For example, different high-throughput techniques, such as the two-hybrid systems 

[22], [41], mass spectrometry [39], [89], and microarray analysis [85], have been 

developed for systematic and large-scale identification of PPIs. Though more efficient 

than the low throughput techniques, these high throughput techniques may only 

predict PPIs with relatively high false-positive rates [74]. Their coverage of PPIs are 

also usually rather incomplete [64]. 

 

For even more effective and efficient PPI prediction, there have recently been some 

attempts to make use of computational techniques. Depending on the information that 

they have to rely on to perform their tasks, these techniques can be divided into three 

types. The first type consists of techniques that make use of genomic information when 

performing their tasks and they are therefore considered as adopting a genomic 

approach for PPI prediction. Techniques based on the genomic approach looks for 
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relevant biological evidence. Examples of such techniques include those that are based 

on gene fusion [29], the conversion of gene-order [22], and the calculation of prior 

probabilities of genomic features between interacting proteins [42]. 

 

As it is believed that proteins that co-evolve are more likely to interact with each other, 

the second type of computational techniques developed for PPI prediction performs 

the task by relying on known evolutionary information observed between interacting 

proteins. Techniques that adopt such an approach compare, between proteins, various 

evolutionary descriptors such as phylogenetic profiles [67], domain knowledge of 

proteins [18], [43] and topological properties of proteins in PPI networks [99], in terms 

of homolog so that the extent the proteins of interest co-evolve with each other can be 

quantitatively evaluated for PPI prediction. 

 

The last type of computational techniques for PPI prediction makes use of the 

information embedded in protein sequences to determine if proteins interact with each 

other. It is for this reason that they are considered as taking a sequence-based approach 

to PPI prediction. Such a sequence-based approach is becoming more and more 

popular as information relating to protein sequences is more readily available 

nowadays. In deciding if two proteins interact, it should be noted that, other than 

protein sequence information, many sequence-based techniques [9], [57] also require 

that additional information about the proteins, such as residue properties and gene 

ontology, etc., has to be known. More recent techniques, however, tend to focus only 

on sequence information. One such example is provided by [8] where a pairwise kernel 

function is introduced to measure the similarity between pairs of proteins based on the 

similarities of the sequences alone. Another example can be found in [79] where 

properties related to the symmetry of sequences are used with an s-kernel function 

when predicting PPIs. Pitre et al. [69] develop the PIPE algorithm by following the 

idea that PPIs can be predicted by measuring how frequently some protein sequence 

segments occur together. More recently, there has also been some attempt [101] to use 

position-specific statistics from protein sequences to predict PPIs. 
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In general, the prediction algorithms that adopt a sequence-based approach attempt to 

discover patterns in protein sequences that can be used to determine how likely two 

proteins may interact with each other. The patterns that they look for are known as k-

mers, which are typically composed of amino acid sequence segments that are of 

length k. An example of how these sequence segments can be used to predict PPIs can 

be found from Ben-Hur and Noble [8] where all combinations of 3-mers are used to 

construct a feature vector for a given protein sequence so that a support vector machine 

(SVM) can be trained to distinguish between interacting and non-interacting proteins. 

 

Though promising, the k-mer patterns that these sequence-based algorithms look for 

are of fixed-length, i.e., k. For example, 3-mers are considered by SVM-based methods 

[8], [79] and therefore all patterns to compose the feature vectors of proteins are of 

fixed-length (i.e., 3). For the case of the PIPE algorithm, 20-mers are considered and 

the patterns are all of length 20. For PPIevo, only single amino acids in protein 

sequences are considered and hence, the patterns are all 1-mer! 

 

Therefore, when predicting PPIs, the performances of existing sequence-based 

computational algorithms are constrained by the fixed-length-only patterns that they 

consider. We believe that, if an algorithm can be developed to take into consideration 

sequence segments of different length at the same time, the accuracy for PPI prediction 

can be further improved. With this objective in mind, we have developed a variable-

length associative sequential pattern discovery (VLASPD) algorithm. The VLASPD 

algorithm is able to discover variable-length patterns for PPI prediction. 

 

Given a database of protein sequences consisting of pairs of proteins that are known 

to interact and those that are known not to interact with each other, VLASPD is able 

to discover sequence segments of different length that may provide evidence to 

support or refute the existence of an interaction relationship between two proteins. For 

example, let us consider the two protein sequences in Figure 2. In the two sequences, 

the segments highlighted in gray are not of the same length. If they are found to appear 

significantly more frequently than expected among interacting proteins, we can argue 
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that their existence provide evidence supporting that the proteins P08700 and P67868 

interact with each other. 

 

Other than its ability to take into consideration the presence of frequently occurring 

variable-length sequence segments, VLASPD also takes into consideration how the 

absence of sequence segments may be used to decide if a protein pair may interact 

with each other. For instance, for the case of the protein sequences shown in Figure 2, 

the fact that a 3-mer segment, such as RHT, being absent in a protein when another 

segment, such as WFCGLRGN, being present in the other protein may provide 

evidence to support the existence of interaction relationship between the two proteins, 

P08700 and P67868! 

 

To do so, VLASPD first searches the given database to identify variable-length 

sequence segments that occur frequently. These sequence segments are referred to as 

frequent sequence segments (FSSs). The different combinations of the presence and 

absence of these FSSs form different associative sequential patterns (ASPs). The 

ASPs that occur significantly differently from what are expected among proteins in 

the database are then identified and they are referred to as significant associative 

sequential patterns (SASPs). These SASPs are considered as providing evidence to 

support or refute the existence or non-existence of interaction relationship between 

Figure 2. The sequence information of two interacting proteins P08700 and P67868. 

The two segments highlighted with gray color compose the pattern of interest. 
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two proteins. Using an information-theoretic measure, the amount of such evidence is 

then computed for all SASPs, making them as weighted SASPs (wSASPs). How likely 

two proteins may interact with each other are then decided by the number and 

significance of the wSASPs found in them. 

 

In remaining part of this section, we first introduce the background of predicting PPIs 

in Section 3.1. After that, the related works are given in Section 3.2. Then the details 

of VLASPD are presented in Section 3.3.  For performance, we tested our approach 

with several other related sequence-based prediction methods and the results are 

described in Section 3.4. Finally, in Section 3.5, we give a summarization of our work. 

3.2 Related Works 

In this section, we present a detailed survey on the related work of PPI prediction. For 

a clear demonstration, the computational approaches proposed for predicting PPIs are 

classified into three categories based on the sources of biological information they 

make use of for the task, and they are genomic approaches, evolutionary approaches 

and sequence-based approaches. Therefore, the following content in this section will 

be unfolded from these three categories. 

3.2.1 Genomic Approaches 

Due to the availability of whole genomic sequencing, it has been pointed out that genes 

located in genome sequences can hint at the interaction between proteins at a 

comprehensive level.  

 

Dandekar et al. [22] find that proteins encoded by conversed gene pairs are more likely 

to interact with each other and such conserved gene pairs are within a low level 

conservation of gene-order. Therefore, with this observation, the conservation of gene-

order can be exploited to help predict PPIs. Though proved to be promising [70], this 

approach fails to predict PPIs for proteins where the conservation of gene-order is not 
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found, such as proteins encoded by distantly located genes. Furthermore, this approach 

may not be applicable to species where gene co-regulation is not imposed at the level 

of genome structure [55]. 

 

Another discovery about the use of genomic information related to the formation of 

PPI is that pairs of interacting proteins are found to have homologs in another genome 

where they are fused into a single protein [56]. In this regard, several computational 

methods [29], [88] are developed to seek for such fusion events in different genomes 

so that proteins involved in a fusion event are expected to interact with each other. 

However, the disadvantage of this approach is also obvious as it cannot work with 

proteins where no fusion events are uncovered through the analysis of genomic 

sequencing. 

 

In [42], different genomic features, such as messenger RNAcoexpression, co-

essentiality and co-localization, are used to quantify the associations between them 

and PPIs. Based on these quantified associations, Bayesian networks are constructed 

to predict PPIs when the genomic features of query proteins are given. 

3.2.2 Evolutionary Approaches 

Evolutionary information discloses the procedure of how proteins evolve across 

different species. Since proteins that co-evolve are more likely to interact with each 

other, the similarity in evolutionary information is of potential relevance to the 

prediction of PPIs as it indicates to what extent the two proteins co-evolve.  

 

Among various evolutionary information, Pazos et al. [66] make use of phylogenetic 

trees of proteins to indicate PPIs. They propose a distance measure to compute the 

similarity between the phylogenetic trees of proteins, thus determining whether there 

is a possible interaction between them. Similar to phylogenetic trees, phylogenetic 

profiles are also adopted by Pellegrini et al. [67] to predict PPIs. Under the assumption 

that for two interacting proteins one cannot exist if the other one is lost during 
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evolution, this co-evolution property is characterized by [67] with the use of 

phylogenetic profiles of proteins and hence proteins with similar profiles are strongly 

expected to interact. 

 

Another source of evolutionary information that we can use for the prediction of PPIs 

is the domain knowledge of proteins. It is believed that proteins are to interact as a 

result of their interacting domains, and it is for this reason that many computations 

approaches have been proposed to solve the PPI prediction based on domain 

knowledge. In [54], domains that interact more often than expected are found to 

compose the signatures of proteins and these signatures are then used to predict PPIs. 

Rather than simply resting on frequent interacting domains, Deng et al. [24] apply a 

Maximum Likelihood Estimation method to identify interacting domains that infers 

curated PPIs and then with such inferred interacting domains the interactions between 

proteins can be predicted. Similarly, [18] makes use of random forest of decision trees 

that are trained by taking into consideration all the proteins domains, thus performing 

the prediction task. In addition, Kanaan et al. [43] employs a set cover approach to 

partition pairs of domains so that the desired partitioning can best explain the 

underlying protein interaction in terms of specificity score. Then with the partitioned 

pairs of domains, the method of Maximum Specificity Set Cover is introduced to 

predict potential PPIs.   

3.2.3 Sequence-based Approaches 

Protein sequences, composed of amino acids, are the primary structures of proteins 

and the motivation behind the use of protein sequences for predicting PPIs derives 

from the hypothesis that sequence information may contribute to mediate PPIs. 

 

In general, most of sequence-based approaches take advantage of the learning ability 

of SVM to perform the task. These SVM-based approaches are distinguished by the 

definition of feature vector extracted from protein sequence and also by the proposal 

of kernel function used by SVM.  
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As the first strike among these SVM-based approaches, Bock and Gough [9] assembly 

the feature vector for each protein sequence based on a set of residue properties, such 

as charge, hydrophobicity and surface tension. After transforming these vectors with 

variable lengths into vectors with a fixed length, Bock and Gough then train several 

SVMs with different standard kernel functions by taking these new vectors as input 

and make a prediction based on the average results from trained SVMs for query 

proteins. 

 

Similar to the approach of Bock and Gough, Martin et al. [57] also make use of 

sequence information as well as experimental data to compose the feature vector of 

protein. However, Martin et al. additionally extends the signature descriptor to 

describe interacting proteins that is much more close to the actual biology of PPI and 

combine such description in the feature vector. Regarding the kernel function of SVM, 

Martin et al. adopt the signature product to compute the similarity between pairs of 

proteins based on their feature vectors. 

 

When compared with previous SVM-based approaches, Benhur and Nobel [8] 

introduce a pairwise kernel function that measures the similarity between pairs of 

proteins based on the similarities between individual proteins. To extract the feature 

vector from sequence information, Benhur and Noble adopt the spectrum vector 

composed of k-mers where 3k .  

 

Later Shen et al. [79] also propose an S-kernel function that is specifically designed 

for PPIs by considering the symmetry property of PPI. Before assembling feature 

vectors of proteins, Shen et al. classify the amino acids into 7 classes and hence the 

number of unique elements in the protein sequence is now reduced to 7. With the new 

protein sequences, Shen et al. introduce a conjoint triad method to create feature 

vectors for proteins. When considering the difference of feature vector between [8] 

and [79], the length of the later one, i.e., 73, is much shorter than the former one, i.e., 

203. 
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In addition to SVM-based approaches, Pitre et al. [69] propose PIPE to tackle the 

problem of predicting PPIs from a different angle and the idea behind PIPE is to 

measure how often pairs of subsequences in the two query proteins co-occur in pairs 

of proteins that are known to interact. Specifically speaking, PIPE first builds a 

database composed of known interacting proteins. Then for a pair of query proteins, 

PIPE chooses any of them to as the first one to process. The selected protein sequence 

is fragmented into segments with the same length. For each segment, PIPE searches 

each sequence in the database to see whether this segment is contained in it through a 

matching measure; if a sequence is found to contain this segment, PIPE adds to a 

neighbor list associated with this segment the neighbors of this sequence. Once all the 

segments of the first query protein are associated with neighbor lists, the other query 

protein is then fragmented in the same way. Regarding the two sets of segments of 

query proteins, PIPE creates a matrix where columns are to denote the segments of the 

first query protein and rows are for the segments of the other query proteins. For each 

cell in this matrix, its value is the number of sequences in the corresponding neighbor 

list of the column segment and each of counted sequences is found to contain the row 

segment. With this matrix, PIPE scores the confidence about the hypothesis that the 

query protein are interacting. 

3.3 The Details of VLASPD 

3.3.1 Identifying FSSs 

Given a database trainT  consisting of protein pairs that are known to interact with each 

other and protein pairs that are known to be non-interactive, we define a k-mer to be a 

segment of a protein sequence of length k. For each k, VLASPD begins work by 

identifying k-mers that occur frequently. These frequent k-mers form a set of FSSs, 
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denoted as  k kSS  where   )(1   kkik SisS   is a subset of all FSSs of length 

k, and kS  is the number of such sequence segments. 

 

To efficiently obtain S  from trainT , VLASPD makes use of the well-known apriori 

algorithm [3]. The apriori algorithm is originally developed to identify frequent 

itemsets in transaction databases. The reason why the apriori, rather than an exhaustive 

search, algorithm is used is that only some combinations of k-mers are usually found 

in trainT . An exhaustive search algorithm is therefore unnecessary and may be 

intractable as the size of all possible combinations of k-mers can grow exponentially 

when the value of k increases. 

 

To use the apriori algorithm, each protein sequence in trainT  is considered a transaction 

and if we considered each amino acid as an item, then a k-mer FSS can be identified 

as a frequent k-itemset. Given a minimum support   which is a predefined value, then 

the set of FSSs of length k, i.e., kS , can be identified from the candidate k-itemsets and 

these itemsets can be composed to form candidates for (k+1)-mers for the next iteration. 

Such iterative procedure will end if no more valid FSSs can be identified from the 

candidates. Therefore, with the apriori algorithm, S  can be identified effectively. 

3.3.2 Forming ASPs 

Given two FSSs  kki Ss   and llj Ss   where kSi 1 , lSj 1 , SkS  and 

SjS , four ASPs can be formed and these four ASPs are represented as ljki ss  , , 

ljki ss  , , ljki ss  ,  and ljki ss  ,  respectively as shown in Table 1. To denote the 

presence of a particular k-mer segment, say kis , we directly use its own notation kis , 

Hence, the ASP ljki ss  ,  means that if kis  is found in one of the sequences of a protein 

pair, then ljs  is found in the other. Since the absence of a certain sequence segment is 

considered as providing useful information in deciding if two proteins interact, 
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VLASPD also attempts to determine if the ASPs formed by the absence of a particular 

k-mer segment in one or both sequences of a protein pairs may actually be significant. 

To denote the absence of a particular k-mer segment, say kis , we make use of the 

notation kis . The ASP ljki ss  , , therefore, carries the meaning that if kis  is not found 

in one of the sequences of a protein pair, then ljs  is found in the other. Similarly, 

ljki ss  ,  means that if kis  is found in one of the sequences of a protein pair, then ljs  is 

not found in the other and ljki ss  ,  means that if kis  is not found in one of the 

sequences of a protein pair, then ljs  is also not found in the other. 

Table 1. The contingency table between the four combinations of is  and js  and the 

relationships of proteins 

 intr  int
r
 

 

ljki ss  ,  
11o  12o  

ljki ss  ,  
21o  22o  

ljki ss  ,  
31o  32o  

ljki ss  ,  
41o  42o  

3.3.3 Discovering SASPs 

The four ASPs represent all possible combinations of the presence and absence of the 

two FSSs, kis  and ljs  in a protein pair. In order to find out if these ASPs may have 

anything to do with whether or not the two proteins in the pair interact with each other, 

VLASPD investigates into the statistical significance of each of the ASPs among 

protein pairs that are known to be interactive represented as intr  or those that are 

known to be non-interactive represented as 
int

r
 

. 

 

To do so, let us consider the association between 
ljki ss  ,   and intr . To confirm such 

association, we compute the result of ), ,( intljki rssdiff  with (5) and then the 
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association between 
ljki ss  ,   and intr  can be verified according to Theorem 1. 

Regarding the relevant probabilities, we have 

 oorssp intljki 21), ,( , 

 oossp ljki 2) ,( , 

 oorp int 1)( , 

where 2o  is the sum of values of cells at the second row, 1o  is the sum of values of 

cells at the first column and o  is the sum of values of all cells in Table 1. 

 

As mentioned in 2.2.1, ), ,( intljki rssdiff  is to examine whether 
ljki ss  ,   and intr  

frequently co-occur. That is to say, if ), ,( intljki rssdiff  is not less than 1.96, a 

conclusion can be made that 
ljki ss  ,  is frequently observed in the pairs of interacting 

proteins. In this regard,  
ljki ss  ,  is associated with intr  and it is a SASP. In this regard, 

as SASPs provide some evidence in deciding if proteins in a protein pair that possesses 

such pattern may interact or not interact with each other, the SASPs can help predict 

PPIs. 

3.3.4 Weighting SASPs 

To make use of the SASPs in predicting PPIs, the amount of evidence that each SASP 

provide supporting or refuting the existence or non-existence of interaction 

relationship has to be quantified. To quantify the amount of evidence, VLASPD makes 

use of the technique introduced in 2.4.2. Taking 
ljki ss  ,  as an example, the weight of 
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ljki ss  ,  is equal to ) ,|( ljkiint ssrWOE  as defined by (7). Note that 

 221) ,|( oossrp ljkiint . 

 

The value of ) ,|( ljkiint ssrWOE  is therefore an estimation of the extent two proteins 

are likely to interact with each other. When 0) ,|( ljkiint ssrWOE , it means that the 

presence of 
ljki ss  ,  in a pair of proteins provides evidence in support of the existence 

of interaction relationship between them. When 0) ,|( ljkiint ssrWOE , it means that 

the presence of 
ljki ss  ,  in a pair of proteins provides against the existence of 

interaction relationship between them.  Hence, VLASPD can weight each SASP so 

that it becomes a weighted SASP, or wSASP. In the following, we use   to denote the 

complete set of wSASPs, int  to denote the set of wSASPs whose weights are 

positive and 
int

 to denote the set of wSASPs whose weights are negative. 

3.3.5 Predicting PPIs 

Given a pair of proteins, to determine if we have sufficient evidence to support or 

refute the two proteins having an interaction relationship, VLASPD makes use of the 

set of wSASPs determined above. 

 

If a wSASP   is found in a pair of proteins, then we can say that there is some 

evidence, of amount, )(w , for or against the existence of an interaction relationship 

between the proteins in the pair. Hence, given a pair of proteins, we can match the 

protein sequences against all the wSASPs in  . The amount of evidence provided by 

each matched wSASP in the sequences can then be added up to determine a total 

weight of evidence for or against the proteins having an interaction relationship with 

each other. 
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With the total weight of evidence computed, we can determine intv  and 
int

v
 

, which 

represent, respectively, the sum of the weights of wSASPs that provide evidence for a 

pair of proteins to have interaction relationship, i.e., intr , or to be non-interacting, i.e.,  

int
r

 
, and they are defined in (12) and (13) below: 
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where  '
 is the set of wSASPs that are found matching the sequences of a given 

protein pair. 

 

According to (12) and (13), if intv  is larger than 
int

v
 

, it means that there is sufficient 

evidence to support the existence of interaction relationship for the pair of proteins. 

Otherwise, the evidence is against the two proteins having an interaction relationship. 

 

So far, we have introduced the complete procedure of how VLASPD works for the 

task of predicting PPIs. To evaluate the performance of VLASPD, we have conducted 

experiments on PPI datasets from different species and the experimental results and 

analysis are given in the next section. 

3.4 Experimental Results and Analysis 

To evaluate the performance of VLASPD, we tested it with several PPI datasets. The 

results were compared against those obtained using two different SVM-based methods, 

SVM(Pairwise Kernel) and SVM(S-Kernel), proposed by [8] and [79] respectively, 

for predicting PPIs. Both these two SVM-based methods make use of 3-mers to predict 

PPIs. SVM(Pairwise Kernel) and SVM(S-Kernel) were chosen for performance 
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evaluation as they are both sequence-based approaches and do not require prior 

knowledge about proteins when performing their tasks. Furthermore, there are 

sufficient details presented in related works for a full implementation. When 

comparing SVM(Pairwise Kernel) and SVM(S-Kernel), the major difference between 

them is the kernels they use for training a SVM classifier. In particular, SVM(Pairwise 

Kernel) uses a pairwise kernel function while SVM(S-Kernel) introduces an  s-kernel 

function. In the experiments, their SVM classifiers were trained and tested with the 

use of the libsvm package [16]. 

3.4.1 Benchmark Datasets 

To avoid any bias in the selection of the training and testing data, the two 

benchmarking datasets published by [62] were used in our experiments. The first of 

them involved a set of yeast PPI data obtained from the core set of Saccharomyces 

Cerevisiae in the database of interacting proteins (DIP) [94] and the second was a set 

of human PPI data obtained from the Human Protein Reference Database [71]. The 

two datasets made available from these databases therefore include a set of  protein 

pairs that are known to have a interaction relationship between each other and a set of 

protein pairs obtained by pairing up proteins not found in the these databases so that 

they were artificially generated as non-interacting protein pairs. In particular, for the 

yeast dataset, there were 3870 pairs of interacting proteins and 385301 pairs of non-

interacting proteins; for the human dataset, there were 17434 pairs of interacting 

proteins and 1743015 pairs of non-interacting proteins. 

 

Sequence information of human proteins was obtained from the E-utilities service 

provided by the national center for biotechnology information (NCBI) [92] while the 

sequence information of yeast proteins was obtained from the DIP database as of 

February 18, 2012 which was the latest version available for our use when we 

performed our experiments. 
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3.4.2 Performance Measure 

Regarding performance evaluation, it has been pointed out by [62], [63] that different 

ratios of negative to positive PPIs should be adopted so that the prediction performance 

can be safely unbiased. Therefore, the two SVM-based methods and VLASPD were 

tested using six different datasets obtained by combining interacting and non-

interacting proteins in different proportions in the yeast and human PPI datasets.  Of 

the six datasets, three of them, Human-ROC1, Human-ROC5, and Human-ROC10, 

were obtained by mixing interacting and non-interacting proteins in the proportion of 

1 to 1, 1 to 5 and 1 to 10 respectively. Similarly, the other three of them, Yeast-ROC1, 

Yeast-ROC5 and Yeast-ROC10, were obtained by mixing interacting and non-

interacting proteins in the proportion of 1 to 1, 1 to 5 and 1 to 10 respectively. 

 

Regarding the parameter settings in the experiments, for SVM(Pairwise Kernel), the 

parameters were set according to the values recommended by [8], i.e., the penalty 

parameter was set to be 128 and   was set to be 0.25. Regarding SVM(S-Kernel), 

there was no recommended setting for the penalty parameter used by the S-Kernel 

function. Therefore, the best setting of penalty parameter was determined 

experimentally by trial-and-error based on ROC performance for SVM(S-Kernel). 

Regarding the parameter setting of VLASPD, we set the minimum support   to be 

0.3 when performing the apriori algorithm to obtain S . 

 

For performance comparison, we made use of the ROC curve and the area under it. A 

ROC curve presents the performance as a trade-off between sensitivity and specificity. 

It is a curve of true versus false positive rate when a threshold parameter is set. The 

area under the ROC curve (i.e., AUC) is widely accepted as an index of the accuracy 

for performance comparison. AUC values are within the range from 0 to 1. The higher 

an AUC value is, the more accurate is a corresponding algorithm. 
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3.4.3 Experiment Results 

The results of the experiments performed to compare the performance of the VLASPD, 

SVM(Pairwise Kernel) and SVM(S-Kernel) are given as ROC curves in Figure 3 and 

the corresponding AUC values are given in Table 2.  From Table 2, we noted that 

VLASPD performed consistently better than the random classifier and the SVM-based 

methods. 

 

Table 2. The AUC values of VLASPD, SVM(Pairwise Kernel) and SVM(S-Kernel) 

 VLASPD 
SVM 

(Pairwise Kernel) 

SVM 

(S-Kernel) 

Yeast-ROC1 0.62(1st) 0.51(2nd) 0.46(3rd) 

Yeast-ROC5 0.61(1st) 0.54(2nd) 0.47(3rd) 

Yeast-ROC10 0.72(1st) 0.62(2nd) 0.48(3rd) 

Human-ROC1 0.68(1st) 0.63(3rd) 0.67(2nd) 

Human –ROC5 0.67(1st) 0.62(3rd) 0.64(2nd) 

Human -ROC10 0.61(2nd) 0.62(1st) 0.54(3rd) 

 

For the SVM-based methods, we noted, based on the AUC curves and AUC values, 

that their overall performance for the case of the yeast datasets was not so satisfactory 

when compared to the human datasets. In particular, for Yeast-ROC1 and Yeast-ROC5, 

the average AUC values of both SVM(Pairwise Kernel) and SVM(S-Kernel) were 

0.525 and 0.465 respectively and were both rather low. These results indicated that the 

3-mer segments considered by them were not very useful for these SVM-based 

methods to distinguish between interacting and non-interacting proteins. Unlike SVM-

based methods that can only focus on 3-mer segments, VLASPD overcomes this 

limitation by making use of patterns between sequence segments with variable lengths 

making it possible for VLASPD to have better performance. 

 

Of the two SVM based methods, we noted that SVM(S-Kernel) did not perform as 

well as SVM(Pairwise Kernel) with all the yeast datasets, as the corresponding AUC  
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Figure 3. The ROC curves of VLASPD, SVM(Pairwise Kernel) and SVM(S-Kernel) for the 

datasets of Yeast-ROC1, Yeast-ROC5, Yeast-ROC10, Human-ROC1, Human-ROC5 and 

Human-ROC10. 
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values were less than 0.5. In other words, it was better off using a random classifier! 

Though better than SVM(S-Kernel), we noted that SVM(Pairwise Kernel) was not as 

effective as VLASPD as the latter was better by 17% on average in terms of AUC 

value. In this regard, VLASPD outperformed the SVM-based methods in all three 

cases of the yeast datasets. 

 

Unlike the case with the yeast datasets, the SVM-based methods performed much 

better with the human datasets. In terms of the average AUC values, SVM(Pairwise 

Kernel) performed better by 15% when compared with its performance with the yeast 

datasets. For SVM(Pairwise Kernel), it was better by 22%. In other words, for the 

prediction of PPIs, 3-mer segments in human datasets are much more relevant than 

those in the yeast datasets. Since 3-mer segments discovered by these SVM-based 

methods were also discovered with VLASPD and since VLASPD can also use k-mer 

segments with length other than 3 for PPI prediction, VLASPD can perform better 

than these fixed-length sequence based methods with the human datasets. However, 

from Table 2, it is worth mentioning that the average AUC value of VLASPD for the 

human dataset was more or less the same as the yeast dataset.  This indicates that 

VLASPD is a rather robust algorithm. 

 

For the datasets Human-ROC1 and Human-ROC5, VLASPD performed better. It was 

the second best with Human-ROC10 but the difference between the first, i.e., 

SVM(Pairwise Kernel) and the second, i.e., VLASPD, was very small. Hence, when 

compared with SVM(Pairwise Kernel) and SVM(S-Kernel), VLASPD is less sensitive 

to the choice of segment length and is therefore more efficient and robust. 

 

For SVM-based methods, it has been pointed out by Batuwita et al. [7] that there is a 

chance that suboptimal models be constructed by an SVM classifier trained on 

imbalanced datasets and such models may be biased towards the class that is the 

majority and in such case, the SVM will perform poorly when predicting minority 

classes. For this reason, SVM-based methods are very sensitive to changes in the ratio 

between interacting and non-interacting proteins and this concern has already been 
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confirmed by the experimental study of Yu et al. [100]. Compared to SVM-based 

methods, VLASPD is better able to address the concern as it concentrates mainly on 

the discovering of associations between sequence segments using (5) and (7). Hence, 

the impact of imbalance between the proportions of interacting and non-interacting 

proteins can be reduced to an acceptable level and VLASPD’s ability of predicting 

PPIs will therefore not be biased. 

3.4.4 Statistical Significances of SASPs 

To determine the statistical significance of the SASPs discovered by VLASPD, we 

adopted a p-value test which is a popular statistical significance test commonly used 

in many applications, such as the identification of protein complexes [40] and social 

network analysis [28]. 

 

For our analysis, SASPs with p-values smaller than or equal to the significant 

thresholds of 0.1 and 0.05 in the training set are considered statistically significant. 

The experimental results of p-value tests are presented in Table 3. It is noted that for 

each dataset, at least half of the SASPs are significant at both 1.0p  and 05.0p . In 

particular, for Yeast-ROC10, more than three quarters of the SASPs have p-values 

larger than or equal to 0.1. Hence, for proteins with unknown interacting relationship, 

these SASPs are believed to be able to facilitate prediction. In this regard, VLASPD 

is preferred as it can identify such significant patterns in an efficient way. 

 

Table 3. The percentage of SASPs that pass the p-value test 

 p ≤ 0.1 p ≤ 0.05 

Yeast-ROC1 72% 55% 

Yeast-ROC5 50% 50% 

Yeast-ROC10 77% 62% 

Human-ROC1 59% 58% 

Human –ROC5 64% 50% 
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Human -ROC10 64% 52% 

 

 

Table 4. Top 10 predictions of PPIs identified from respective Yeast and Human 

datasets 

Yeast  Human  

PPI intv  PPI intv  

CRYGD and CALB2 0.91 TP53 and SMAD2 0.99 

CRYGA and CRYGB 0.9 CREBBP and NKX2-1 0.97 

CRYZ and CTAA1 0.9 CREBBP and TP53 0.97 

ELN and CA11 0.89 BMP4 and CREBBP 0.97 

DCN and CRYGD 0.89 CREBBP and THAP1 0.97 

DAB2 and CA11 0.87 CREBBP and SMAD2 0.96 

ADAM9 and FCGR2B 0.86 STAT2 and CREBBP 0.94 

EPHB4 and PHKA1 0.84 E2F1 and CREBBP 0.93 

CRYGB and CALB2 0.84 CSNK1A1 and TP53 0.92 

CACNA1B and CAV2 0.84 HNF4A and CREBBP 0.91 

Note: Pairs in bold are known PPIs 

 

In Table 4, we list the 10 PPI predictions with the highest vii for the yeast and human 

datasets respectively. The entries in bold contains proteins that were previously 

confirmed to interact with each other. Out of the top 10 predictions in yeast datasets, 

there were seven such protein pairs and out of the top 10 predictions in human datasets, 

there were eight such known pairs. The high matching between predicted and known 

PPIs among the top 10 predictions is an indication that SASPs can be very effective in 

distinguishing between interacting and non-interacting proteins. Therefore, for 

proteins whose interaction relationships are as yet unknown, we have reasons to 

believe that there exists interaction relationship between them but that these 

relationship might have been missed by laboratory experiments if with large values of 

intv . Taking the proteins ADAM9 and FCGR2B as an example, since the score of intv , 
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i.e., 0.86, is high, there is a high probability that they do indeed interact with each 

other. 

 

To try to confirm that this is really the case, we further looked up their gene 

information in the Gene Ontology (GO) database [14]. We and found that these two 

proteins perform similar protein binding functions and are both co-located in 

membrane cells. Hence, considering that the relatively high intv  and the fact that their 

similar GO information, there is relatively strong evidence that there exist interaction 

between ADAM9 and FCGR2B which might have been missed by previous laboratory 

experiments. 

3.5 Conclusion 

In this chapter, we present an algorithm called VLASPD for PPI prediction. Compared 

to existing sequence-based methods, VLASPD is able to perform its tasks by 

considering variable-length sequence segments. The proposal of SASPs allows 

VLASPD to identify associative sequence segments whose occurrences are believed 

to provide evidence for or against the interaction relationship of proteins. Furthermore, 

with some concepts in information theory, VLASPD can quantify the amount of such 

evidence for making accurate PPI prediction. The experimental results show that the 

use of patterns identified by VLASPD can considerably improve the accuracy of PPI 

prediction. 
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Chapter 4 Fuzzy-based AG Clustering 

4.1 Overview 

For the clustering of networks, the purpose is to group related vertices into the same 

cluster [77]. However, when applied to complex networks, such clustering procedure 

requires to consider both of the link and content information simultaneously, which is 

known to be challenging. Early clustering approaches perform their tasks by only 

taking the link information into account while failing to consider the content 

information of networks. In particular, these approaches identify clusters by specifying 

particular link structures, including, but not limited to, similarity, density, modularity 

and min-cut/max-flow. For example, Luxburg [53] discussed the details of how to 

apply spectral clustering to network data so that clusters composed of vertices with 

similar link structures can be identified; van Dongen [27] and Nepusz et al. [59] 

proposed different clustering approaches to discover dense clusters based on markov 

processes and fuzzy clustering respectively; Newman [60] and Brandes et al. [11] 

introduced various formulations of modularity to identify clusters efficiently; Flake et 

al. [31] and Gorke et al. [34] utilized minimum-cut trees to perform the clustering task 

in a hierarchical manner. Recently, Chen and Saad [17] exploited the idea of 

reordering/blocking matrices in sparse matrix techniques so as to identify dense 

clusters from sparse network datasets with the use of link information. 

 

Recognizing that only considering link information is insufficient to identify clusters 

accurately from network data where the content information is also available, many 

attempts have been made by taking both of these two kinds of information into 

consideration. Corresponding clustering approaches can be mainly classified into two 

categories, one is distanced-based and the other is model-based. In the literature of 

distance-based approaches [19] , [75], [103], [104], networks are normally augmented 

by adding new edges that represent the content information, then a variety of distance 
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measures have been designed specifically to compute the similarity between pairwise 

vertices by considering all relevant edges in the augmented networks so that clusters 

can be identified based on the similarities. Regarding model-based approaches, 

generative models (e.g., iTopicModel [84], BAGC [95] and CESNA [97]) and 

discriminative models (e.g., PCL-DC [98]) have been developed to simulate the 

generation of network data using different modeling methods and then clusters that 

maximize the likelihood of the simulation process are considered as the final result. In 

addition to these two categories, there are also other approaches that combine content 

and link information for clustering, such as DB-CSC [36] proposed to identify dense 

regions in the graph as well as in the attribute space using a novel graph transformation. 

 

Though the efficiency of these approaches have been demonstrated, few of them adopt 

the technique of fuzzy clustering to identify clusters by considering both of content 

and link information in a natural manner. The main difficulty in developing such a 

fuzzy-based clustering approach is how to estimate the fuzziness of memberships for 

each of vertices in a unified clustering framework that involves both content and link 

information. To solve this problem, we propose a fuzzy-based clustering approach, 

namely FC-AG1, based on content relevance and link structure. 

 

For the processing of the content information, as has been pointed out by [98] that the 

existence of irrelevant attributes in the content information often leads to 

unsatisfactory clustering performance, FC-AG introduces a relevance measure that 

targets to filter out irrelevant content information. Regarding the link structure, we 

intend to identify clusters with dense structures, which have been proved to be useful 

for a number of applications [12], [19], [40]. Combining content relevance and link 

structure, a satisfactory clustering result shall be composed of clusters that follow the 

intuitive properties: 

1) Vertices that belong to the same cluster are densely connected; 

                                                 
1 Fuzzy-based Clustering approach for Attributed Graphs 
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2) Vertices that belong to the same cluster shall be strongly relevant with each 

other; 

3) Adjacent vertices are more likely to be grouped in the same cluster. 

 

To do so, we formulate the clustering problem into an optimization problem with the 

purpose of maximizing the degree of consistence between the resultant clusters and 

the aforementioned intuitive properties. With the optimization problem, the fuzziness 

of memberships for each of vertices can be estimated. FC-AG then solves this 

optimization problem in an iterative manner so that the clusters identified are believed 

to be the best result that satisfies the intuitive properties. 

 

To evaluate the performance of FC-AG, we have conducted extensive experimental 

studies. In particular, we used synthetic datasets to 1) verify whether the resultant 

clusters are consistent with the intuitive properties aforementioned, 2) perform the 

sensitivity tests for parameters used in the optimization problem and analyze the 

results, and 3) assess the scalability of FC-AG on large-scale datasets. In addition to 

synthetic datasets, we also applied FC-AG to two practical applications, one was 

document classification and the other was the identification of social communities. 

The experiment results have demonstrated the efficiency and scalability of FC-AG. 

 

The rest of this section is organized as follows. In Section 4.1, an overview for the AG 

clustering is given. Then we present a details literature review in Section 4.2, 

following which we state the problem of AG clustering that is about to be tackled in 

Section 4.3. The details of FC-AG are demonstrated in Section 4.4. To analyze the 

performance of FC-AG, we conducted extensive experiments on synthetic datasets 

and the results are presented in Section 4.5. The advantage of FC-AG on practical 

applications has been demonstrated in Section 4.6. Finally, we end the paper with a 

conclusion in Section 4.8. 
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4.2 Related Works 

Existing AG clustering algorithms are mainly classified into two categories. The first 

category is composed of distance-based approaches, such as SA-Cluster [103] and its 

extended version SA-Cluster-Opt [19], and Inc-Cluster [104]; the other category is 

model-based approaches, such as iTopicModel [84], BAGC [95], CESNA [97], PCL-

DC [98] and DB-CSC [36]. The main difference between these two kinds of AG 

clustering algorithms is that distance-based algorithms rely upon specific distance 

measures so that the similarity between vertices can be computed while model-based 

algorithms utilize different probabilistic models to find the clustering with the 

maximum joint probability. 

4.2.1 Distance-based Approaches 

Regarding the clustering algorithms that are proposed for AGs where each vertex can 

be annotated with more than one attributes, the main idea is to weight the edges based 

on the similarity between two sets of attributes respectively from connecting vertices. 

In this sense, the AG clustering is converted to the clustering of weighted graphs. 

Many algorithms have been proposed to address this problem and are introduced as 

below. 

 

Zhou et al. propose the algorithm SA-Cluster that takes advantage of a unified random 

walk distance measure to combine both structure similarity and attribute similarity. To 

address this problem, when given an attributed graph, SA-Cluster initiates an 

Augmented Attributed Graph (AAG) by taking the input graph as the prototype. Then 

a set of artificial vertices corresponding to the pattern <attribute, value> is added to 

this AAG. If a vertex has an attribute with a specific value, it will be connected to the 

corresponding artificial vertex. The advantage of AAG is that it reveals both the 

structure information of the original graph and the attribute relationships from its 

topology. By defining a clustering objective function, SA-Cluster applies the k-
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medoids algorithm to group the vertices from the original graph. For each iteration, 

SA-Cluster automatically adapts the weight values assigned to attributes in order to 

achieve a convergence upon the objective function. However, there is a bottleneck 

with respect to SA-Cluster as the computation of random walk distance measure 

requires a lot time. Therefore, later Zhou et al. introduce Inc-Cluster algorithm to 

improve the efficiency. Inc-Cluster only calculates the weight changes for attribute 

edges, thus avoiding extra computation for edges from the original graph. Though the 

introduction of AAG facilitates the unified measure for both structure and attribute, 

AAG changes the topology properties of the original graph as some of vertices that 

are disconnected in the original graph can be linked if they share some attribute values. 

As a result, after the removal of artificial attribute vertices, clusters discovered may be 

composed of several separate parts, and therefore the clustering quality is also affected. 

4.2.2 Model-based Approaches 

In addition to the distance-based approaches, there are also model-based approaches 

proposed for AG clustering.  

 

Although originally proposed for document clustering, iTopicModel can also be 

considered as an approach proposed for AG clustering, as it models the documents as 

graphs where the text information are the attributes of each document in this graph. 

Following the idea that vertices in the same cluster should have similar distributions 

of both adjacent vertices and document topics, iTopicModel builds up a model with 

two layers so that vertices with similar distributions are more likely to be grouped in 

the same cluster. On the top layer, a multivariate Markov Random Field is proposed 

to simulate the distribution of topics for each document based on document neworks 

while the second layer adopts a traditional topic model to model the generation of 

topics for each document. By combining these two layers, iTopicModel provides a 

joint distribution function by considering both the topic information and the network 

information. iTopicModel introduces an optimum solution to maximize the joint 

probability so that the problem of document clustering can be solved. 
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Xu et al. consider an alternative view based on a Bayesian probabilistic model 

combining both structural and attribute information. This model defines a joint 

probability distribution about the space of all possible combinations of attributed 

graphs and vertex clustering when vertices, attributes and the number of clusters are 

given. Therefore, with this model, Xu et al. develop an algorithm BAGC to cluster a 

given attributed graph based on the computed Bayesian model. BAGC first obtains a 

posterior probability distribution for all possible clustering results of the given 

attributed graph, and then takes the clustering with the highest probability as the final 

result. However, since the generated Bayesian probability model is sensitive to 

parameters, such as the number of vertices, the set of attributes and the number of 

clusters, if any of these given parameters is changed, the entire model should be 

recomputed to fit the new input, which is not efficient for clustering. 

 

To avoid resting on a single source of information in AGs, Yang et al. propose an 

algorithm of identifying communities from edge structure and node attributes 

(CESNA), which is capable of detecting overlapping communities. To do so, CESNA 

uses a probabilistic generative model that combines community memberships, the 

network topology and vertex attributes. With such a model, CESNA estimates the 

parameters of this model from the given network and then infers the communities from 

the model. 

 

Note that many networks contain noise in the graph topology and also that such noise 

can be identified by the attribute information, Ruan et al. introduce a measure of single 

strength between two nodes in the network by fusing their link strength with content 

similarity and then propose PCL-DC to identify communities from AGs. In particular, 

link strength is estimated based on whether the link is likely to be within a community 

while the content similarity can be computed through cosine similarity or Jaccard 

efficient. Then standard community discovery algorithms, such as MCL, are adopted 

by PCL-DC to perform the clustering task.  
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To circumvent the constraint of identifying clusters with certain topological properties, 

Günnemann et al. introduce a new cluster definition that takes the attribute similarity 

in subspaces and the graph density into account. With this definition, cluster can be 

detected with arbitrary shape and size. Furthermore, such definition can also avoid 

redundancy in the result by selecting only the most interesting non-redundant clusters. 

Based on this cluster model, DB-CSC is developed to identify clusters from AGs by 

considering both of link and attribute information. DB-CSC intends to identify clusters 

corresponding to dense regions in the attribute space and also in the graph. To do so, 

the density of single vertices is based on local neighborhoods taking the attribute 

similarity in subspaces as well as the graph information into account. After merging 

all vertices that are in the same dense region, clusters can be identified by DB-CSC. 

4.3 Problem Statement 

Following the notations introduced in Section 2.3, the clustering problem of network 

data to be addressed is to partition V into k clusters, i.e., 
k

f
f

1

CV


 , appropriately. 

Since the overlapping between any two clusters is possible due to the use of fuzzy 

clustering, we have  gfkgfgf CC),,(1 ,  . 

 

For the link information of G, we use a VV nn   matrix ),1( ][
V

njid ij D  to 

represent it. The value of ijd  is given in (13). 

 


 


others

e
d

ij

ij
       ,0

E        ,1
 (14) 

In addition to D , a content relevance matrix A  is also introduced so that the content 

information can be utilized. Of A , each of cells denotes to what extent the 

corresponding pairwise vertices are relevant in terms of their attribute information. In 

particular, for two vertices iv  and jv , Aija  denotes the degree of relevance 



52 

 

between them and it quantitatively measures how iv  and jv  are likely to be grouped 

in the same cluster based on the amount and significance of associative patterns found 

in their attributes. Hence, we have ),( jiij vvDOAa  . Note that since the consideration 

of self-connections of vertices is meaningless for the clustering task, we simply set 

0iia . 

 

For the memberships of each of vertices, we define ifu  as the value of the membership 

for iv  with respect to fC . Obviously ifu  measures how likely iv  belongs to the 

cluster fC . To facilitate the presentation, the vector iu  is used to represent the 

membership distribution of iv  over all the k clusters and it is denoted as 

)  ,...,,( 21

T

ikiii uuuu  where 1
1




k

f
ifu . The membership matrix is defined as 

T

21 ),...,,(
vnuuuU  . 

 

Given these preliminaries, we will present the details of FC-AG in the next section. 

4.4 Methodology 

In this section, we first introduce the details of how to formulate a maximum 

optimization problem for the AG clustering problem by combining content association 

and link structure. After that, we present the solution to solve this optimization 

problem and propose FC-AG to implement the solution. Finally, we give an in-depth 

analysis for recommending the values of parameters involved by the optimization 

problem. 
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4.4.1 Problem Formulation 

Following the intuitive properties claimed for the clusters identified, we now 

formulate a constrained optimization problem by combining content relevance and 

link structure as: 

 

0, ..

)(
22

))  (()(max T2T





U1U1

SUUUDAUU

ts

TrTrJ
F




 (15) 

where  ,  ,   and   are within the range [0,1],  )( T2
UUU Tr

F
  is the squared 

Frobenius norm of U , 1  is a column vector with a proper size and each element of 

1  is 1, and ][ ifsS  is a kn V  matrix each cell of which is defined as: 
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So far, the problem of AG clustering is converted into an optimization problem as 

described by (15), which is composed of three components: a measure of clustering 

quality, regularizations and constraints. To clarify the eligibility of the optimization 

problem of (15) in terms of identifying satisfactory clusters, we give a detailed analysis 

of (15) so that the eligibility can be verified. 

 

Regarding the dense structure of clusters, we constraint our analysis on the part related 

to D  in the first term of (15) and rewrite it by following the trace expression: 

 
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Given the constraint that 10:,  ifufi , it is not difficult to conclude that if a 

vertex has a large membership in the cluster fC  and its adjacent vertices also have 

large memberships for fC , the value of (15) is to be maximized. Therefore, this 
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conclusion, to some extent, ensures that vertices in the same cluster are densely 

connected. Similarly, if we want to maximize (15) by only taking into consideration 

the part related to A  in the first term of (15), i.e., ) ( T
AUUTr , vertices from the 

same cluster have to be strongly relevant as indicated by large weights of A . In this 

regard, the consistence between (15) and the requirement of content relevance for 

clusters can be verified. 

 

The second term in (15), i.e., 
2

2 F
U


, is to control the smoothness of memberships for 

each vertex. The last term in (15), i.e., )(
2

T
SUTr


, indicates the penalty of the 

inconsistence of cluster labels between vertices and their adjacent vertices respectively. 

4.4.2 Solution 

To solve the maximization problem of (15) with constraints, we consider it as an 

inequality constrained problem and therefore the method of Lagrange multiplier is 

applied to eliminate the inequalities. 

 

Assuming that a column vector )1( )(
V

T nii  λ  and a  kn V  matrix ][ ifΩ  

are the langrage multipliers, we can write the Lagrangian formulation of (18) as, 

 )()()(),,(max T
ΩUU11λUΩλU TrJ  . (18) 

In (18), both the equality constraint and inequality constraint of (15) are eliminated by 

the introduction of λ  and Ω . The Karush-Kuhn-Tucker (KKT) conditions of (18) are:  

 0 U ,  (19) 

 0 λ , (20) 

 0 UΩ , (21) 
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 0Ω .  (22) 

Note that   denotes the entrywise product of two matrices. If a solution ),,( 
ΩλU  

satisfies all KKT conditions, 
U  will be considered as the optimal solution of (15). 

 

To find ),,( 
ΩλU , we first look at the partial derivative of (19) with respect to ifu . 

After some algebraic manipulations, the memberships of iv  is given by (23). 

  TT 2
1

iiiii ω1shu  
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 (23) 

where 

 

 Udah  )  (T

iii   (24) 

and is , iω , ia  and id  are the thi  row vectors of S , Ω , A  and D  respectively. To 

facilitate the use of ih , we define the matrix ),...,, (
V21 nhhhH  . The first term of (29) 

decides the membership distribution for each iv  in the context of AG and the 

remaining terms are related the regulations and constraints of (15). 

 

To obtain the value of i  in (23), combining the KTT condition (20) and (29) results 

in the formula of i  as expressed below. 
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1
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   (25) 

The last problem left is to derive the value of if . According to the KTT conditions 

related to if ,  if  is defined as, 
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Since (21) is the complementary slackness of the constraint 0ifu  and (22) is the 

corresponding sign restriction, the value of if  is only involved when computing ifu . 

When 0ifu , the improving feasible direction of ),,( ΩλU  in terms of ifu  reaches 

the boundary and in this regard the solution will not need the value of if  afterward. 

However, in order to give if  a complete description, we simply assign 1 to if  in 

case of 0ifu . 

4.4.3 FC-AG 

Since the relationships among U , λ  and Ω  for the solution of (28) are presented 

through (23) and (26), we propose FC-AG to find ),,( 
ΩλU . An iteration process 

is adopted by FC-AG to search for a local optimal solution of (25). At the  thl 1  

iteration, the previous result of U , i.e., )(l
U , will be used to reestimate )1( l

λ , )1( l
Ω  

and )1( l
U  according to (25), (26) and (23) respectively. At the end of the  thl 1  

iteration, )1( l
U  will be normalized with (27). 
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where   0: 

ifi uf . 

 

The iteration process will terminate till a convergence, which is defined as the 

maximum change between ),,( )1()1()1(  lll
ΩλU  and ),,( )()()( lll

ΩλU , or the 

maximum number of iterations maxl  is reached. The final result of U  is considered as 


U . A complete description of the proposed approach is presented in Figure 4. 

 



57 

 

4.4.4  Parameter Analysis 

As there are several parameters that need to be tuned before applying the proposed 

approach, we here focus our discussion on how to choose a proper value for   ,  ,  

  and   respectively. As these four parameters are involved in determining the 

membership distribution over k clusters, the selection of their values is of significance 

to achieve a satisfactory clustering performance in practice. 

 

Regarding   and  , as the two terms ) ( T
DUUTr  and ) ( T

AUUTr  in (15) can have 

vastly different orders of magnitude due to the size of AG, we use   and   to control 

Figure 4. The Complete Procedure of FC-AG. 
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the scaling of these two terms respectively. In particular, if Α  is larger than D  , 


U  is more likely to be controlled by content relevance between pairwise vertices; if 

Α  is smaller than D  , the iteration procedure of the proposed approach will 

proceed in favor of grouping vertices that are densely connected. Therefore, to obtain 

a balance result in the sense that both content relevance and link structure are 

considered equally when FC-AG is searching for 
U , || avga  and   avgd  should 

have the same order of magnitude given that 

 
2

Vn

a
a

i j ij

avg


 , (28) 

 
2

Vn

d
d

i j ij

avg


 . (29) 

For the proper values of   and  , since we use them to regulate the smoothness of 

memberships of vertices, they are not as important as   and  , which are more 

concerned with the clustering quality. Therefore, for simplicity, we can set the values 

of   and   equal to 0.5. 

4.4.5 Parallelization of FC-AG 

For FC-AG, we implement it in a parallelization manner so that the speed of FC-AG 

can be boosted by a factor equal to the number of threads.  In particular, because )(l
U  

is fixed when FC-AG updates )1( l
U , updating each iu  is independent for different 

vertices. In this regard, updating U  allows for parallelization. Besides, we can also 

obtain A  in parallel for multiple pairwise attribute values. Obviously the parallelized 

FC-AG is more efficient when applied to large networks. 
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4.5 Experiments with Synthetic Data 

To evaluate the performance of FC-AG, we have performed extensive experiments 

with both synthetic and real datasets. In this section, we concentrated on analyzing the 

experimental results with synthetic datasets so as to demonstrate the advantages of 

FC-AG in terms of accuracy and scalability. 

 

In the experiments, we compared FC-AG with several state-of-the-art approaches on 

the task of network clustering, including iTopicModel [84], CESNA [97], Spectral 

Graph Clustering (SGC) [53] and Fuzzy C-Means (FCM). Briefly speaking, both 

iTopicModel and CESNA are developed for network data using both link and content 

information; SGC is one of the few approaches that can predefine the number of 

clusters for the clustering of network data based on the similarity of link information; 

FCM is used as the baseline of performance and we implemented it based on the 

similarity of content information. 

4.5.1 Evaluation Metrics 

To assess the degree of matching between the resultant clusters and ground truth, we 

adopted two evaluation metrics and they were NMI [83] and Accuracy. These two 

metrics are widely used to measure how well the clustering result matches the ground 

truth. 

 

The purpose of NMI is to information-theoretically indicate the degree of matching 

the ground truth. Assuming that )(1 }T {T kff   is the ground truth of clusters of 

vertices in V , NMI is defined as 
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where 
f

nC  is the number of vertices in fC , 
f

nT  is the number of vertices in fT , and 

2 1 
T,C ff

n  is the number of common vertices in both 
1

C f   and 
2

T f . 

 

For the measure Accuracy, the mapping function 
21

TC: ff   needs to be determined 

before we compute the value of Accuracy. To decide  , we first obtain the results of 

2 1 
T,C ff

n  for all combinations of 
1

C f  and 
2

T f  in C  and  T  respectively. For each 

iteration, starting from the largest 
2 1 

T,C ff
n , we select 

2
T f  as the corresponding cluster 

of 
1

C f  in T , then add the mapping 
21

TC ff   to  , and disregard both 
1

C f  and 
2

T f  

in the following iterations. The iteration process will end till each 
2

T f  in T  has a 

corresponding unique cluster 
1

C f  in C . After obtaining the mapping function  , the 

value of Accuracy  is given below. 

 
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f
ff

n
n
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1

)C(,C
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1
 (31) 

According to the definitions of NMI and Accuracy, the values of NMI and Accuracy 

are larger if the clustering result }C { f  is better in terms of the degree of matching 

with T . That is to say, if }C { f  completely matches T , both NMI and Accuracy will 

be 1, which is the maximum value they can take. 
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4.5.2 Experiment Setup 

There were three experiments we have setup for performance evaluation. The first 

experiment was designed to assess the ability of identifying clusters that match our 

expectations. For the second experiment, we focused on studying the respective 

influence of the four parameters. The last experiment was to estimate the scalability 

of FC-AG. Hence, synthetic networks were created with different sizes in the last 

experiment and the largest synthetic network was composed of hundreds of thousands 

of vertices and millions of edges. 

 

For each of synthetic networks used in the experiments, we created four clusters, each 

of which was composed of vertices that were densely connected and that were 

associated with similar attributes. To create such a synthetic network, the respective 

probabilities of intra-connection and inter-connection were used to achieve the 

purpose that the links among vertices in the same clusters were much more than those 

among vertices in the different clusters. For the content information, sixteen to twenty 

attributes were generated to compose   for each synthetic network. Attributes of   

were associated with vertices in the sense that vertices in the same cluster were similar 

in several attributes while vertices from different clusters shared few attributes. 

 

All approaches have run 30 trials to avoid the potential bias resulted from random 

initializations and the average results of NMI and Accuracy were used for performance 

comparison. Regarding the parameter setting for each approach, we followed the 

recommendations provided in the related papers to determine the proper values of 

parameters involved; if no recommendation was provided, the combination of values 

with the best performance was selected for comparison experiments with other 

approaches after trying different combinations of values. 

 

Regarding the implementation of the proposed approach, we implemented it with 

JAVA. For FCM, we used the APIs provided by Mahout [61] for implementation. The 
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source codes of the other approaches were shared by their authors. The experiments 

were performed on a machine with Intel Core i5-2310 processors and 8GB RAM. 

4.5.3 Experiment Results 

4.5.3.1 Assessing the resultant clusters 

To assess the ability of FC-AG in terms of identifying clusters matching our 

expectations, we created a small synthetic network that was composed of 131 vertices 

and 1782 links. The graph of this synthetic network is presented in Figure 5, where 

vertices in the same cluster are highlighted with the same color and vertices in different 

clusters are separated by dashed lines. 

 

Figure 5. The synthetic network used in the experiment of assessing the resultant 

clusters. Four clusters are generated and they are highlighted with different colors. 
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From Figure 5, we observed that most of vertices in the same cluster were densely 

connected with each other, but boundary vertices, which were located near dashed 

lines, also had comparable links with vertices from different clusters. That is to say, 

purely replying on topology information may fail to group these boundary vertices in 

the correct clusters. Hence, the additional consideration of attribute information can 

overcome this problem. 

 

The experiment results for the synthetic network in Figure 5 were given in Table 5. 

Overall, FC-AG outperformed the other approaches in terms of both NMI and 

Accuracy. Since the scores of NMI and Accuracy were almost equal to 1, the clusters 

identified by FC-AG were very close to the ground truth. When compared with the 

other approaches, FC-AG was better by 8%, 20%, 185% and 259% than SGC, CESNA, 

FCM and iTopicModel respectively in terms of NMI and was better by 19%, 41%, 

102% and 111% than SGC, CESNA, iTopicModel and FCM respectively in terms of 

Accuracy. Hence, the ability of FC-AG has been verified as the resultant clusters 

satisfy the aforementioned requirements. 

 

Table 5. The Scores of NMI and Accuracy for the synthetic network in Figure 5 

 NMI Accuracy 

FC-AG 0.97(1st) 0.99(1st) 

iTopicModel 0.27 0.49 

CESNA 0.81(3rd) 0.7(3rd) 

SGC 0.9(2nd) 0.83(2nd) 

FCM 0.34 0.47 

 

Although FC-AG, iTopicModel and CESNA are proposed to perform the clustering 

task by considering both topology and attribute information, their performances on the 

synthetic network were quite contrasting. In particular, FC-AG obtained the best 

scores of NMI and Accuracy while iTopicModel were the worst one. The main reason 

for the unsatisfactory performance of iTopicModel is due to the fact of ignoring the 

dense link structures among vertices in the same cluster, as iTopicModel only made 
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use of link information to generate the Random Markov Fields for vertices. In contrast, 

as CESNA also considered the dense link structures as the one of properties of clusters 

identified, it obtained a better performance in the synthetic network. 

 

The remaining two approaches, i.e., SGC and FCM, utilized the link information and 

the content information respectively to perform the clustering task. Based on their 

performances, we found that the link information was more useful for the clustering 

on the synthetic network. The reason why SGC performed worse than FC-AG is that 

FC-AG also considered the attribute information when identifying clusters so that the 

boundary vertices that were misclassified by SGC were correctly classified by FC-AG. 

 

In sum, the promising performance of FC-AG verified the rationality of the 

maximization optimization problem we formulate for the clustering of network data 

and also show the efficiency of FC-AG. 

4.5.3.2 Parameter Sensitivity Analysis 

As a part of the maximization optimization problem (13), the four parameters  ,  ,  

  and   are introduced to adjust the optimization process. Although we analyze the 

problem of how to choose proper values for these four parameters in 4.4.4, their 

respective influences on the performance of FC-AG are yet to be investigated. In this 

section, we will take the synthetic network in Figure 5 as an example again and analyze 

the influences of these four parameters on the performance of FC-AG. 

 

Before presenting the analysis, we first explain how we selected proper values of   , 

 ,    and   for the synthetic network in Figure 5. According to (28) and (29), we 

obtained the values of avga  and avgd  as -0.17 and 0.21 respectively. Hence, following 

the suggestion that || avga  and   avgd  should have the same order of magnitude, we 

set both the values of   and   equal to 0.5. For the values of   and  , we adopted 

the recommendation and set the values of them as 0.5 too. When evaluating their 
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respective influences on the performance of FC-AG, we adopted the strategy of 

alternatively changing the parameters. For example, if we would like to study the 

influence of  , we will try to change the value of    while fixing the values of the 

other parameters. 

 

In Figure 6, four subfigures, from top to down, respectively show the impacts of  , 

 ,    and   on the performance of FC-AG in terms of Accuracy and NMI. Regarding 

sensitivity results of  , the scores of Accuracy and NMI had a steadily increase when 

the value of   changed from 0 to 0.5. In particular, the scores of Accuracy and NMI 

raised by 65% and 33% respectively at 5.0  when compared with 0 . However, 

the upward trend ended at 5.0  and the performance of FC-AG become stable when 

5.0  as indicated by the small change in the scores of Accuracy and NMI. For the 

network in Figure 5, since the value of    indicates to what extent the content 

information has been considered by FC-AG, the increase in the amount of content 

information resulted in a considerable improvement for both Accuracy and NMI when 

5.0 . At 5.0 , the scores of Accuracy and NMI were all close to their maximum 

values and hence the performance of FC-AG could not be improved further even when 

more content information has been considered. 

 

For the parameter  , similar to the meaning of  , the value of   indicates to what 

extent the link information has been considered by FC-AG. When looking at the 

results of the sensitivity test of  , we found that the fluctuation ranges of Accuracy 

and NMI  were much smaller than those resulted from the change of   . In particular, 

the change of   within the range [0, 0.5] did not affect much on the performance of 

FC-AG, but both the curves of Accuracy and NMI dropped at different degrees when 

5.0 . After investigating the results, we noted that the peripheral vertices that also 

had many links with vertices in different clusters become more difficult to be classified 

when the amount of link information increased, thus making a negative impact to the 

performance of FC-AG. 
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Comparing the impacts of   and  , we noted that the performance of FC-AG was 

more sensible to the change of  . Hence, a conclusion could be reached that the 

Figure 6. Results of parameter sensitivity tests on the performance of FC-AG. 
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contribution made by the content information was more significant than that from the 

link information for the clustering of the network in Figure 5. 

 

For both   and  , their impacts on the performance of FC-AG were limited, as the 

scores of Accuracy and NMI did not change much when their values increased from 0 

to 1. It should be noted that   is associated with third property of resultant clusters 

according to (15) and (16). But for the network in Figure 5, only considering the first 

two properties can guarantee the promising performance of FC-AG and hence the 

impact of   was limited. 

 

 In sum, for the synthetic network in Figure 5, we found that the performance of FC-

AG was more sensitive to   when compared with the other three parameters. For the 

impact of  , since FC-AG adopts a feature selection to preprocess the content 

information so that the relevant information can be retained, the contribution made by 

the link information is not as significant as purely resting on the link information, 

especially when the content  information is highly related to the ground truth clusters 

in network data, such as the network in Figure 5. 

4.5.3.3 Scalability 

To evaluate the salability of FC-AG, we performed the experiment to measure the 

running time on synthetic networks by increasing the size in terms of the number of 

vertices. To generate these synthetic networks, we set the probabilities of intra-

connection and inter-connection as 0.1 and 0.01 respectively. For the content 

information, we adopted the same procedure as we did to create the synthetic network 

in Figure 5. The number of clusters to be identified was four for all synthetic networks. 

The size of synthetic networks varied from hundreds of vertices to hundreds of 

thousands of vertices as indicated by the x-axis in Figure 7. 

 

For each synthetic network, rather than comparing all approaches in Table 5, we run 

the top three approaches, i.e., FC-AG, SGC and CESNA, for 30 trials and used the 
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average time to draw the respective scalability curves. The experiment results of 

scalability are presented in Figure 7. It is seen that both FC-AG and CESNA had an 

almost linear runtime in the network size. In particular, FC-AG obtained a better 

performance than CESNA, as the scalability curve of FC-AG was always below the 

one of CESNA in Figure 7. In addition to the promising performance of FC-AG, we 

also show the scalability of parallelized FC-AG. Obviously the parallelization of FC-

AG considerably improved the efficiency of FC-AG. Regarding SGC, its performance 

was the best for small networks due to the fact that SGC does not consider the content 

information during clustering. We did not obtain the running time of SGC on large 

networks, as the configuration of our machine could not fulfill the computational 

capacity required by SGC for large networks. 

 

Figure 7. The experiment results of assessing scalability for FC-AG, CESNA and 

SGC. 
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Overall speaking, FC-AG has an almost linear runtime in the network size for the 

concern of scalability. Besides, FC-AG is more efficient than the state-of-the-art 

clustering approach, i.e., CESNA. 

4.6 Applications with Real Data 

In addition to the experiments on synthetic network data, we also applied FC-AG to 

two practical applications with real network data so that the advantages of FC-AG can 

also be demonstrated when used to solve practical clustering problem. The two 

applications were document classification and the identification of social communities. 

The experiment results will be given in the rest of this section. 

4.6.1 Document Classification 

4.6.1.1 Experiment setup 

To evaluate the performance of FC-AG for document classification, we conducted 

experiments with two benchmark datasets, Cora Dataset and Citeseer dataset. 

Generally speaking, the two benchmark datasets are citation networks and they are 

published by [78]. Both of these two benchmark datasets are available to download2. 

 

Cora Dataset is a network composed of 2708 scientific publications, which are 

classified into one of seven classes, including Case-based Reasoning, Genetic 

Algorithms, Neural Networks, Probabilistic Methods, Reinforcement Learning, 

Theory and Rule Learning. The Cora Dataset has 5429 links. The keywords of each 

publication are from a dictionary of 1433 unique words. Each publication is then 

described by a 0/1-valued word vector indicating the absence/presence of the 

corresponding word from the dictionary. The number of clusters is set to be k =7, 

which is equal to the number of classes in Cora Dataset. 

                                                 
2 http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html 
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Citeseer Dataset is composed of 3312 scientific publications and 4732 links among 

them. Each publication in Citeseer Dataset is classified into one of six classes, 

including Agents, Artificial Intelligence, Database, Information Retrieval, Machine 

Learning and Human-Computer Interaction. The keywords of each publication are 

from a dictionary of 3703 unique words. Each publication is then described by a 0/1-

valued word vector indicating the absence/presence of the corresponding word from 

the dictionary. The number of clusters is set to be k =6, which is equal to the number 

of classes in Citeseer dataset. 

 

For performance evaluation, in addition to the clustering approaches used in Section 

4, we also compared with several state-of-the-art approaches specifically proposed for 

document classification and they were FC-MR [58] and Spectral CoClustering (SCC) 

[25]. FC-MR is a coclustering approach that makes use of the homogeneity of the 

dependency between documents and keyword information to perform its tasks. SCC 

models the document collection as a bipartite graph between documents and words 

and then tackle the problem of document classification using bipartite graph 

partitioning. 

4.6.1.2 Experiment Results 

The experiment results of Cora and Citeseer datasets are reported in Table 6 and  

Table 7 respectively. 

 

Table 6. The Scores of NMI and Accuracy for Cora Dataset 

 NMI Accuracy 

FC-AG 0.43(2nd) 0.53(2nd) 

iTopicModel 0.18 0.37 

CESNA 0.47(1st) 0.59(1st) 

SGC 0.01 0.3 

FCM 0.07 0.26 
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FC-MR 0.19(3rd) 0.41(3rd) 

SCC 0.11 0.29 

 

Table 7. The Scores of NMI and Accuracy for Citeseer Dataset 

 NMI Accuracy 

FC-AG 0.4(1st) 0.65(1st) 

iTopicModel 0.22(3rd) 0.44(3rd) 

CESNA 0.16 0.42 

SGC 0.03 0.21 

FCM 0.13 0.33 

FC-MR 0.25(2nd) 0.51(2nd) 

SCC 0.18 0.35 

 

From Table 6 and  

Table 7, it is seen that FC-AG had a promising performance for document 

classification as it was the second approach for the Cora dataset and was the best 

approach for the Citeseer dataset in terms of NMI and Accuracy. 

 

In particular, for the Cora dataset, according to Table 6, FC-AG performed better by 

29% than the third best approach (i.e., FC-MR) in terms of Accuracy, and the 

advantage of FC-AG become larger for the Accuracy metric where FC-AG was 1.26 

times more than FC-MR. However, FC-AG did not perform better than CESNA, as it 

was worse by 9% and 11% than CESNA for NMI and Accuracy respectively. To find 

out the reason why CESNA outperformed FC-AG, we investigated the clustering 

results of CESNA and found that not all documents were classified by CESNA at each 

trial. The unclassified rate of documents was 37% on average. That is to say, the 

superior performance of CESNA for the Cora dataset was resulted from the fact that 

CESNA filtered out documents that were difficult to be classified and only performed 

clustering on documents that fulfilled the requirements of CESNA. Since FC-AG 
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performed the clustering on all documents involved in the Cora dataset, FC-AG was 

better than CESNA in this regard. 

 

When looking at the results of Citeseer dataset in Table 7, we found that FC-AG 

obtained the best performance among all approaches. In particular, for NMI, FC-AG 

was better by 60% and 82% than the second best approach, i.e., FC-MR and the third 

best approach, i.e., iTopicModel, respectively; for Accuracy, FC-AG was better by 27% 

and 48% than FC-MR and iTopicModel respectively. Regarding the performance of 

CESNA on the Citeseer dataset, it did not perform as well as it obtained for the Cora 

dataset and furthermore the unclassified rate, as high as 77%, was more than double 

that of the Cora dataset. It is for this reason that CESNA obtained an unsatisfactory 

performance for NMI. Concerning the major difference between the Cora and Citeseer 

datasets, we noted that the Citeseer dataset was much sparser than the Cora dataset. 

Hence, a conclusion could be reached that the performance of CESNA is sensitive to 

the sparsity of network data, whereas the performance of FC-AG is not affected much. 

 

Comparing with the performance of each approach in 4.5, we found that both FC-AG 

and CESNA performed steadily as they always obtained a promising performance in 

both synthetic and real network data. However, not all approaches that obtained a 

promising performance on synthetic network data could also have a good performance 

for practical applications. Taking SGC as an example, SGC was the second best 

approach for synthetic datasets but its performance dropped considerably in the 

experiment of document classification. Hence, considering the complexity of network 

data in practical applications, resting on only a single source of information is 

insufficient and risky for the task of clustering and that is also the motivation for the 

proposal of FC-AG, with which we can exploit the fully potential knowledge in AGs. 

 

Overall, we noted that across all datasets and evaluation metrics, FC-AG yielded a 

promising performance in all trials. Comparing FC-AG to approaches that also 

additionally considered the content information for clustering (i.e., iTopicModel and 

CESNA), we noticed that FC-AG achieved better performance, as it filtered out 
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irrelevant content information by introducing a content relevance measure. Similarly, 

FC-AG outperformed SGC, which only focused on the similarity of link structures. 

FC-AG also obtained a better performance than FCM, which only concentrated on the 

similarity of content information. Furthermore, FC-AG never performed worse than 

state-of-the-art approaches proposed for document clustering, i.e., FC-MR and SCC. 

Thus, if we would like to classify all documents while obtaining a satisfactory 

performance, FC-AG is preferred. 

4.6.2 Social Community Detection 

4.6.2.1 Experiment Setup 

The task of identifying social communities has been being popular recently due to the 

rapid development of social networks and it plays an important role to help researchers 

to understand and exploit these networks efficiently [33]. Hence, we applied FC-AG 

to identify communities from ego-networks extracted from Facebook and Twitter and 

then evaluated its performance by comparing with iTopicModel, CESNA, SGC and 

FCM. Both of Facebook Dataset and Twitter Dataset are available to download from 

the Stanford Large Network Dataset Collection3. 

 

Facebook Dataset is composed of 4089 vertices and 170714 edges. The ground truth 

communities are defined by social circles that are manually labeled by the owner of 

the corresponding ego-network and the number of communities, or the value of k, is 

193. For the content information, user profiles, such as gender, job titles and 

institutions, are used as the attributes of vertices. The number of attributes that a vertex 

can possess is 175. 

 

Twitter Dataset is much larger than Facebook Dataset, as there are 125120 vertices 

and 2248406 edges in Twitter Dataset. The number of ground truth communities is 

                                                 
3 http://snap.stanford.edu/data/index.html 
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3140 and the number of attributes that are available to be assigned to vertices is 33569. 

Unlike Facebook Dataset whose attributes are user profiles, the attributes used in 

Twitter Dataset are extracted from the hashtags used by users in their tweets. 

4.6.2.1 Experiment Results 

The experiment results are given in Table 8 and Table 9 for Facebook Dataset and 

Twitter Dataset respectively. 

 

Table 8. The Scores of NMI and Accuracy for Facebook Dataset 

 NMI Accuracy 

FC-AG 0.49(2nd) 0.51(1st) 

iTopicModel 0.34 0.32 

CESNA 0.58(1sd) 0.46(2nd) 

SGC 0.39(3rd) 0.39(3rd) 

FCM 0.14 0.34 

 

Table 9. The Scores of NMI and Accuracy for Twitter Dataset 

 NMI Accuracy 

FC-AG 0.38(1st) 0.68(1st) 

iTopicModel 0.24 0.53 

CESNA 0.31(3rd) 0.65(3rd) 

SGC 0.37(2nd) 0.66(2nd) 

FCM 0.22 0.58 

 

For Facebook Dataset, FC-AG was the second best approach in terms of NMI, as its 

NMI score was lower by 15.5% than that of CESNA. However, since the unclassified 

rate of CESNA in Facebook Dataset was as much as 18%, CESNA took advantage of 

the high unclassified rate to obtain a superior performance of NMI. Even though, the 

performance of CESNA in terms of Accuracy was not as well as that of FC-AG, which 

performed better by 11% than CESNA. In contrast to the performance for the 
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application of document classification, SGC was the third best approach for 

identifying social communities from Facebook dataset. 

 

In the experiment of Twitter Dataset, FC-AG obtained the best performance in terms 

of both NMI and Accuracy. However, the advantage of FC-AG was not as significant 

as it performed on the datasets of Cora, Citeseer and Facebook, as the difference in 

both NMI and Accuracy between FC-AG and the second best approach, i.e., SGC, was 

much smaller. In this case, considering the contrasting performance of SGC in the 

applications of document classification and social community detection, we believe 

that the homogeneity in the link information was more easily to be observed in social 

communities. But for cases where we do not have prior knowledge to learn the link 

structures before clustering, FC-AG is preferred. 

 

In sum, we believe that the promising performance of FC-AG can be an indication that 

FC-AG can identify clusters more accurately by combining content relevance and link 

structure.  

4.7 Case Studies 

In this section, we present an in-depth analysis to a cluster identified by FC-AG from 

Twitter Dataset so that the benefits of FC-AG can be demonstrated. 

 

The topological structure of the selected cluster is described in Figure 8. It is observed 

that the part in the solid circle is much denser than the peripheral part of this cluster 

that is outside the circle. In particular, for vertices in the solid circle the average degree 

is 11.1, but for vertices outside the circle the average degree is only 5.4. Hence, 

considering the approaches that make use of link structures, it is difficult for them to 

identify the peripheral vertices in Figure 8 as they are not connected as dense as those 

in the circle. In this regard, there is a necessity for us to leverage the content 

information so that such kind of clusters could be identified. 
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Due to the page limit, we cannot list the attributes of all vertices in Figure 8. Thus, we 

selected two representative vertices 189875309 and 34428380 and show their 

attributes in Figure 9. From Figure 9, we noted that 189875309 and 34428380 did not 

have any attribute in common. That is to say, neither model-based approaches nor 

distance-based approaches will classify them into the same cluster because of their 

dissimilar attributes and different attribute distributions. We further noted that not only 

189875309 but also other vertices outside the circle shared few attributes with their 

adjacent vertices located inside the circle. It is for this reason that CESNA can only 

detected the part in the solid circle. 

 

FC-AG overcome this problem with the use of content relevance. To better illustrate 

it, we present the associated attribute values that were related to the discovery of this 

cluster in Table 10. There were three pairs of associated values identified by FC-AG. 

Figure 8. The topological structure of a ground truth cluster in Twitter Dataset. FC-

AG completely identified this cluster while the part inside the solid circle was the 

cluster identified by CESNA. 



77 

 

To verify whether these associated values were meaningful, we checked these 

hashtags in the Twitter website. Taking Paramorelovers and absolutepunk as an 

example, the hashtag absolutepunk was referred to an online community that mainly 

focuses on artists working in punk music, and Paramorelovers represented the fans of 

Paramore which is a punk band. In this regard, the association between absolutepunk 

and Paramorelovers can be verified and hence it is reasonable to reckon them as the 

relevant content information that is useful for the purpose of clustering. Based on a 

fuzzy-based clustering framework, FC-AG successfully identified the cluster in Figure 

8 by combing the relevant content information and the dense link structure. 

 

Table 10. Associated Attribute Values That Were Related to the Discovery of The 

Cluster in Figure 8 

Attribute Value Attribute Value Strength 

Paramorelovers absolutepunk 0.92 

mthardcore absolutepunk 0.85 

absolutepunk LGSTV 0.84 

Figure 9. The attributes of two twitter users 189875309 and 34428380 in Twitter 

Dataset. 
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4.8 Conclusion 

In this paper, we propose FC-AG to perform the clustering task for AGs by considering 

content association and link structure simultaneously. To accurately identify clusters 

from the perspective of attribute information, we make use of associative patterns to 

weight the association between pairwise vertices based on their attributes so that the 

vertices in the same cluster are expected to be highly associated. For link structure, we 

follow the intuitive property that clusters shall be composed of vertices that are densely 

connected. Then a maximization optimization problem is formulated under a fuzzy-

based clustering framework. For each of vertices, the fuzziness of memberships can 

be estimated using content association and link structure. Therefore, FC-AG can 

identify clusters that fulfill the requirements aforementioned. To evaluate the 

performance of FC-AG, we have performed extensive experiments on both synthetic 

and real networks. The experiment results show that FC-AG significantly improves 

the clustering quality over the state-of-the-art approaches in terms of accuracy and 

efficiency and hence indicate that FC-AG has a promising performance for the 

clustering of network data by considering the attribute and topology information 

simultaneously. Furthermore, FC-AG has a linear runtime when the size of network 

data increases. 
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Chapter 5 Unsupervised AG Clustering 

5.1 Overview 

In the last chapter, we have studied the problem of AG clustering by proposing FC-

AG. However, since FC-AG tackles the problem based on fuzzy clustering, the 

number of clusters has to be determined in advance. Recognizing that there are also 

many applications where the number of clusters is unknown, such as the identification 

of protein complexes from PPINs, we fell that there is a necessity for us to develop a 

clustering approach in an unsupervised manner so that predetermining the number of 

clusters can be avoided. Hence, in this chapter, we introduce two unsupervised AG 

clustering approaches MCL-AG and CAP-AG from different perspectives. In 

particular, MCL-AG performs the task through a markov clustering process based on 

associative patterns while CAP-AG identified clusters from AGs by considering the 

attribute preferences and link structure simultaneously. 

 

Given an AG, MCL-AG identifies clusters by first constructing a weighted AG (wAG) 

based on the DOA measure. Even though higher DOA values may not necessarily 

mean the significance of edges, it does mean that the vertices involved may be in the 

same cluster as their attributes are more significantly associated. Given a wAG, MCL-

AG therefore makes use of markov clustering process to find subgraphs that are 

relatively denser on one hand and contains vertices that have significant associations 

with each other on the other. Once the subgraphs are discovered, a partitioning process 

is then performed by MCL-AG for each subgraph discovered to find partitions that 

have, according to the DOA measure, closely associated vertices. These partitions 

identified correspond to the set of clusters that can be identified in an AG. 

 

In addition to MCL-AG, we also propose another unsupervised clustering approach, 

namely CAP-AG. Regarding the use of topology information, both of MCL-AG and 
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CAP-AG follow the same intuitive property that vertices in the same cluster are 

densely connected. But for the attribute information, in contrast to MCL-AG that 

considers the attribute information as a whole according to the DOA measure, CAP-

AG explores the feasibility of measuring the likelihood of pairwise vertices being 

grouped in the same cluster based on a subset of attributes instead of all attributes so 

that clusters can be identified more accurately and flexibly. To do so, CAP-AG 

employs a likelihood matrix to represent to what extent pairwise vertices are likely to 

be identified in the same cluster. If the likelihood between two vertices is relatively 

high, it means that they are more likely to be identified in the same cluster. For each 

vertex, CAP-AG also assigns a corresponding preference vector to quantitatively 

indicate the contribution of each attribute during the clustering process. Then the 

problem of identifying clusters from AGs is formulated into a maximization 

optimization problem. Since there are two variables, i.e., the likelihood matrix and the 

preference matrix, to be optimized, CAP-AG adopts the strategy of alternatively 

optimizing the likelihood matrix and the preference matrix through an iterative 

procedure to tackle the optimization problem. This procedure initially starts from a 

random guess of both the likelihood matrix and the preference matrix of all vertices 

and then iteratively improves the quality of the clustering until convergence. 

 

To demonstrate the respective advantages of MCL-AG and CAP-AG, we apply them 

to the application of identifying protein complexes from PPINs and also compare their 

performances with existing state-of-the-art approaches proposed for the identification 

of protein complexes. The experiment results show that both of these two approaches 

outperform most of state-of-the-art approaches. 

 

The rest of this paper is organized as follows. The details of MCL-AG and CAP-AG 

are presented in Section 5.2 and Section 5.3 respectively. We then apply MCL-AG 

and CAP-AG to the application of identifying protein complexes from PPINs and 

analyze the results in Section 5.4. Finally, we end the paper with a conclusion in 

Section 0. 
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5.2 MCL-AG  

Given an AG, MCL-AG performs its tasks in several steps: 

 

1) Constructing wAG. The DOA measure is computed for each edge in the AG 

and then assigned as a weight to the corresponding edge. With these weights, 

a wAG is obtained. 

 

2) Discovering Subgraphs in wAG. MCL-AG makes use of a markov clustering 

algorithm, i.e.,  MCL [27], to discover a set of dense subgraphs (i.e., S ) from 

the wAG. 

 

3) Identifying Clusters. According to how closely associated each vertex is to 

each other in a partition, subgraphs are further partitioned into clusters 

composed of closely associated vertices. 

 

These four steps are given in details in the followings. 

5.2.1 Constructing wAG 

Given two adjacent vertices iv  and jv  ( Eije ), the association between them can be 

computed by the DOA measure introduced in 2.4.2 and we take this value as the 

weight of  ije . Once we obtain the weights of all edges in AG, a wAG can be 

constructed. 

5.2.2 Discovering Subgraphs in wAG 

The purpose of this step is to discover a set of dense subgraphs, i.e., }{ isS  , from the 

wAG obtained in the last step using a markov clustering algorithm. For the current 

version of MCL-AG, the MCL is used for this purpose. The reason why we choose to 
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use MCL is that MCL has been known to perform relatively well and is very robust in 

general. Compared with the other algorithms, MCL can also be more easily modified 

to take into consideration the attribute information that we are interested in. For MCL, 

the attribute information can be integrated into the adjacency matrix of a network to 

consider so that such information can be used to control the search paths through the 

random walks. 

 

To use MCL, MCL-AG represents the input graph in a transition matrix and makes 

use of it to implement the flow paths. Such a transition matrix can not only provide 

information as to whether a vertex represented by a particular row is connected with 

another represented by a particular column, it can also reveal the probability of flow 

moving from a row vertex to a column vertex. The probability can simply be computed 

based on the degree of a vertex as shown in the transition matrix of a graph. 

 

For the case of an unweighted graph, for example, if the degree of a vertex is 2, the 

probability for each path that goes out from this vertex is 0.5. However, for a weighted 

graph such as the wAG, the probability of the direction of flow movement has to be 

determined, not just by the degree of vertex, but also by the weights of the edges 

concerned. For example, assuming that one of the edges in our last example that flows 

out from the vertex has the weight of 0.2 and the other edge has the weight of 0.3, then 

the flow probabilities should be changed, after normalization, to 0.4 (i.e., 

0.2/(0.2+0.3)=0.4) and 0.6 respectively (i.e., 0.3/(0.2+0.3)=0.6). 

 

Since the transition matrix we have already contains the weights of the edges, MCL-

AG simply performs a random walk to simulate the flow through matrix multiplication 

so that neighbors can be validated if it is possible for them to appear in the same cluster. 

After expansion as flowing from the previous matrix and through the original 

transition matrix, MCL uses the inflation operator to regulate the granularity of 

clusters to obtain the effect that flows are much easier for dense regions. By iteratively 

executing the operators of expansion and inflation of MCL, MCL-AG explicitly 

discovers a set of subgraphs, S . 
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With the flow movement considered in the construction of graph clusters, MCL-AG 

is therefore able to take into consideration both attribute value information directly 

and indirectly as such information is used to determine the weights which MCL-AG 

uses in the discovering of the set of subgraphs S . The subgraphs in S  can therefore 

be formed by achieving a balance between cluster density and attribute value 

associations. 

5.2.3  Identifying Clusters 

Each subgraph discovered in the previous step is examined in this final step to see if 

it can be partitioned according to how much the vertices in the cluster are associated 

with each other. To identify such partitions, we define a range, ], [ maxmax ww , where  

maxw  is the maximum weight of an edge in a cluster in S  and  , 10    is used to 

control how close the vertices in a cluster associate with each other. 

 

Hence, in this final step, a subgraph in S  is partitioned into smaller subgraphs, which 

MCL-AG considers as a cluster, so that each such cluster contains edges that have 

weights that are relatively close to each other. To partition a subgraph, MCL-AG 

adopts an iterative process. First, it selects the edge with the maximum weight (i.e., 

maxw ) and based on it, forms a cluster, r . A depth-first search (DFS) strategy is then 

used to find edges among the adjacent edges of this edge that have weights that are 

within the range ], [ maxmax ww . Once an edge is found, it is added to the cluster, r , 

that is being formed. Edges that are not within the pre-defined range are removed from 

the given subgraph so as to prepare for the next iteration. Hence, by looping the 

partitioning operation, we can identify a set of clusters from S . Figure 10 presents a 

detailed description of identifying clusters. 
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Figure 10. The pseudo code of identifying clusters. 
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5.3 CAP-AG 

5.3.1 Problem Statement 

According to Section 2.3, an AG is represented as a 3-element tuple } E,V, {AG  . 

For convenience, we use a VV nn   matrix ] [ ijtT  to represent the topology of AG 

and ijt  is determined according to (32). 

 


 


 otherwise        ,0

E         ,1 ij

ij

e
t  (32) 

The problem of AG clustering we are working on is to identify a set of clusters, i.e., 

C , from AG. In each cluster of C , vertices are densely connected and they are at least 

similar in some attributes. We use the likelihood matrix ),1(  ][ Vnjiwij W  to 

represent the likelihoods of being grouped in the same cluster for all pairwise vertices 

in AG. For example, ]1 ,0[ijw  denotes how likely iv  and jv  are being identified in 

the same cluster. The larger the value of ijw  is, the more likely iv  and jv  are grouped 

in the same cluster. Therefore, for ije , we can partition the AG by removing it if ijw  

is less than a predefined threshold, i.e., minw . After disregarding all this kind of edges, 

we can obtain C . 

 

Regarding the similarity of attribute information, )m(1 }{  nmAA  is a set of 

similarity matrices obtained by comparing the attributes of vertices. Specifically 

speaking, ][ m

ijm aA  is the similarity matrix based on the attribute information of m  

and 
m

ija  denotes the similarity score of iv  and jv  in terms of m . In this work, we 

define 
m

ija  as below. 
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To show the attribute preferences during clustering, we introduce a preference vector 

of attributes for each vertex in AG and denote it as )  ,...,,( 21

T


 iniii rrrr  with respect 

to iv . In ir , we have 1
1






n

m imr  where ]1 ,0[imr . The meaning of imr  is to quantify 

to what extent m  is preferred when we determine whether another vertex jv  should 

be grouped in the same cluster as iv  from the attribute perspective. In other words, 

regarding the clustering process related to iv , m  will play a more important role if 

imr  is assigned a larger value. The preference matrix R  is defined as

T

21 ),...,,(
vnrrrR  . 

 

Besides, we also have another matrix ),(1 ][
V

njidij D  that is used to represent 

the similarity between any two vertices in AG from the topological perspective of 

graph. Assuming that for iv  we have }E|{V  ikki ev  representing the set of 

neighboring vertices of iv , the definition of ijd  is given as: 

 











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 VV                      ,0

VV         ,
VV

VV

ji

ji

ji

ji

ijd








. (34) 

Obviously the more vertices iv  and jv  have in common, the larger the value of ijd  is. 

 

Given T , A  and D , we aim to find appropriate W  and R  so that the resultant 

clusters can best conform to our assumptions. To solve it, we formulate an 

optimization problem as below, 
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where  ,  ,   and   are non-negative constants, WTWT   is the entrywise 

product of T  and W , WDWD   is the entrywise product of D  and W , 

)Tr( T2
WWW 

F
 is the squared Frobenius norm of W , )Tr( T2

RRR 
F

 is the 

squared Frobenius norm of R , 1  is a column vector with a proper size and each 

element of 1  is 1, and ][ m

ijm sS  is a VV nn   matrix each cell of which is defined as:  

 im

m

ij

m

ij ras    (36) 

The optimization problem as described by (35) consists of three components: a 

measure of clustering quality, regularizations and constraints. To clarify the eligibility 

of the optimization problem of (35) in terms of satisfying our purpose, we give a 

detailed analysis of (35) so that the eligibility can be proved. 

 

To confirm the topological patterns of clusters identified, we constraint our analysis 

on the first term of (35) and rewrite it by following the trace expression as below. 

   )()(Tr 
V V V

1 1 1

T  
  



n

i

n

j

n

k

jkikjkikijij ttwwwdTDT WWW  (37) 

According to the definition of D , we know that a large value of ijd  indicates that iv  

and jv  have a large percentage of vertices in common. For a third vertex kv , jkik ww  

shows the degree of being grouped in the same cluster with both iv  and jv  while jkiktt  

ensures that kv  contributes to the value of  TDT WWW
T)(Tr  only if both ike  and jke  

are found in E . It is not difficult to conclude that if two vertices have many common 

vertices and most of these common vertices are also likely to be grouped in the same 

cluster as the two vertices we concern, the value of (37) is to be maximized. Therefore, 
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this conclusion, to some extent, assure that vertices in the same cluster are densely 

connected. 

 

For the second term in (35), we use it to manipulate the attribute information during 

clustering so that clusters can be identified based on a subset of attributes with high 

preferences. To prove it, the second terms of (35) is rewritten with trace expression as 

below. 
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In (38) and (39), )Tr( 
1

T




n

m mSW  is expressed with two forms from the 

perspectives of imr  and ijw  respectively. We will take Viv  as an example to explain 

how imr  and ijw  are supposed to be determined in order to maximize (35). In (38), 

given constraints 1
1






n

m imr  and 0imr , the preference vector of iv , i.e., ir , should 

assign more weights (i.e., imr ) to attributes where large similarity scores (i.e., 
m

ija ) 

between iv  and other vertices occur more frequently. The trace expression in (39) 

shows that ijw  ought to be with a large value if the amount of similarity scores between 

iv  and jv  (i.e., 




n

m im

m

ij ra
1

) is also large. In sum, combining the meanings of (38) and 

(39), the term )Tr( 
1

T




n

m mSW  allows us to identify clusters from a subset of 

attributes that are with high preference values. 

 

After discussing the appropriateness of the first two terms of (35) as being an eligible 

measure of clustering quality, the other two terms in (35) are related to the 

regularizations of W  and R  respectively. For W , we use 
2

2 F
W


 to raise the penalty 
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for the case that the values of all items in W  are moving toward the maximum value 

(i.e., 1). The term 
2

2 F
R


 is to regularize the smoothness of each preference vector in 

R . 

5.3.2 Details of CAP-AG 

Given an AG, we will explain how the formulated problem of AG clustering, i.e., (35), 

can be solved in this section. First of all, the details of deriving a local optimized 

solution to (35) are introduced. Then we will show the complete procedure of CAP-

AG. 

5.3.2.1 Solution 

Since the maximization problem of (35) can be considered as a quadratic optimization 

problem, we employ the primal-dual active set strategy introduced in [73] to search 

for the feasible improving directions of (35) with respect to W  and R  until 

convergence. At every iteration, CAP-AG solves a sequence of linear equality 

constrained quadratic subproblems with active constraints including all equality 

constraints and some inequality constraints that are enforced to be satisfied as 

equalities so that optimum W  and R  can be found along the boundaries of 

constraints. The advantage of adopting the active set strategy is that it can help solve 

optimization problems by only involving some subset of the variables related to active 

constraints and hence CAP-AG will be more efficient especially for large AGs. 

 

For the two variable matrices W  and R , we adopt the strategy of optimizing W  and 

R  alternatively. That is to say, at each iteration, CAP-AG first updates R  while 

keeping W  fixed and then use the latest R  to update W . Assuming that we are now 

at the thl )1(   iteration with )(l
W  and )(l

R  available for use, the details of obtaining 

)1( l
W  and )1( l

R  are presented as below. 
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A. Updating R 

To facilitate understanding, we now use )|( max WRJ  to denote that ),( RWJ  is 

about to be maximized by updating R  with a fixed W . First of all, we formulate a 

sequence of quadratic subproblems for approximating the maximization of  ),( RWJ

as: 

 
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In (40), each subproblem is to maximize ),( RWJ  in terms of ir . Therefore, the 

problem of updating R  is divided into several subproblems each of which is to update 

the corresponding ir  as a part of the solution of (40). 

 

Regarding the subproblem )|( max WRJ , we rewrite it by following the standard 

form of quadratic problem, thus obtaining 
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where 
nI  is a  nn  identify matrix, )  ,...,,( 21

T


 iniii cccc  ,  

V

1 


n

j

m

ijijim awc , 

)(Wb  is the constant term composed of W  but not involving ir  and m1  is a vector 

where the thm  element is 1 while the other elements are 0. For convenience, we use 

  and   to index   and   constraints in (41) respectively. 

 

Regarding the setting of active constraints of (41), we define )1(P l

i  as the set of indices 

of active constraints at the thl )1(   iteration, 
)1(

P

l

i
n  as the size of )1(P l

i , and )1( l

iQ  as 

the matrix where rows are the coefficient vectors of active constraints in )1(P l

i . Taking 

an arbitrary constraint 0T imr1  as an example, we add m  to )1(P l

i  if 0)(T l

imr1  and 
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accordingly T

m1  is the corresponding row of the active constraint 0T imr1  in )1( l

iQ . 

For the relationship among  ,   and )1(P l

i , we have 

  )1(P l

i . Regarding the 

set of inactive constraints, we use 
)1(

P
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The major difference between (41) and (42) is that the inequality constraints of (41) 

are now in equality-constraint formats in (42). To find such a 
)1( 


l

ir , we further 

express the objective function (42) in its second-order Taylor representation with 

which we can formulate a quadratic problem for 
)1( 


l

ir . The Taylor representation is 

given in (43). 
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Thus 
)1( 


l

ir  can be solved with the corresponding Karush–Kuhn–Tucker (KKT) 

linear conditions of (43) as described below 
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)1( l
ε  in (44) is the Lagrange multiplier vector for the KTT conditions of (43). After 

some algebraic manipulations, )1( 


l

ir  can be derived as 
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and )1( l
ε  is determined by (46).  
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. Therefore, regarding the subproblem 

(41), we can obtain 
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constraints to be violated as we only consider the active constraints of (41) in (42). To 
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where 1 accounts for the equality constraint in (41). )1( l

i , together with 
)(l

ir  and 

)1( 


l

ir , is then used to obtain 
)1( l

ir  according to (48). 
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Once we have obtained 
)1( l

ir  for each Viv , )1( l
R  can be determined. The next step 

is to get )1( l
W  given )1( l

R . 

 

B. Updating W 

Similar to the update of R , we use )|( max WRJ  to represent the optimization 

problem of )|( max WRJ  in terms of W  by fixing R . Observing (35), we find that 

each element of W  is independent with others as there are no constraints between any 

two elements in  W . Therefore, we can approximate )|( max WRJ  as follows 

 

10  ..

)|(max)|(max)|( max
V VV V

1 11 1



 
  

ij

n

i

n

j

ij

n

i

n

j

ij

wts

wJwJJ RRRW
 (49) 

where )|( RijwJ  is given in (50). 
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Note that the coefficient jkijjkij ttwd  will become a part of the coefficient of 
2

ijw  if 

jk  ; however, since the self-connection of vertex is not considered for AG 

clustering, we have 0jjt  and accordingly 0jkijjkij ttwd  when jk  . In this regard, 

it is not necessary to consider the case of jk   separately in (50), so we still reckon 

jkijjkij ttwd  as a part of the coefficient of ijw  when jk   for simplicity. 
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From (50), the problem of )|( max WRJ  is converted into a sequence of subproblems 

in terms of ijw . In fact, the subproblem )|(max RijwJ  is essentially a maximization 

issue as indicated by (50). Because 0 
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, (50) is a concave function 
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Therefore at thl )1(   iteration, the solution to the subproblem )|(max )1()1(  ll

ijwJ R  

when considering the constraint 10 )1(  l

ijw  is given in (52). 
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So far, we have successfully derived )1( l
R  and )1( l

W  with (51) and (52) respectively 

at thl )1(   iteration. Based the relationships among )1( l
R , )1( l

W , )(l
R  and )(l

W , we 

propose CAP-AG to find the optimal solution of )|( max WRJ , thus identifying C . 

5.3.2.2 CAP-AG 

CAP-AG adopts an iteration procedure to search for a local optimal solution of 

),(max RWJ . At the thl )1(   iteration, the previous results of R  and W , i.e., )(l
R  

and )(l
W , will be used to reestimate )1( l

R  and )1( l
W  based on the formulas devised 

in the last section. The iteration procedure will be terminated if a convergence of 
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),(max RWJ  is reached or the procedure is now at the maximum number of iterations 

maxl . Regarding the convergence of ),(max RWJ , the difference between 

),( )1()1(  llJ RW  and ),( )()( llJ RW  should not be more than a predefined threshold, 

i.e.,  . 

 

 We present the complete procedure of CAP-AG in Figure 11. Lines 4-19 are to 

describe how we iteratively find the optimum R  and W  to maximize ),( RWJ . It is 

noted that we check the signs of each element in )1( l
ε  as indicated by line 8. The 

reason we perform this check is ascribed to the sign restrictions of KTT conditions we 

use to obtain  )1( 


l

ir . In particular, to satisfy the sign restrictions of (44), each Lagrange 

multiplier )1( l

m  in )1( l
ε  should meet the requirement 0)1( l

m . However, if 

0: )1()1()1(   l

m

ll

m  ε , it means that the corresponding active constraint indexed 

with m  must be allowed to become a strict inequality. Thus we remove this constraint 

from  )1(P l

i  so that the requirement of keeping active will not be applied to it and then 

repeat the update procedure of )1( l

iQ . Lines 20-24 is to prune the original AG by 

removing edges whose incident vertices are not likely to be grouped in the same cluster 

according to W . Line 25 shows the minimum size of cluster we want to obtain. In line 

26, we consider each connected part in AG after pruning as a cluster. Therefore, after 

adding all connected parts of AG to C , we finally obtain the resultant clusters 

identified by CAP-AG from the given AG. 
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Figure 11. The complete procedure of CAP-AG. 
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5.3.3 Running Example 

In the running example, we apply CAP-AG to a toy problem of AG clustering. The 

simulated graph data, as shown in Figure 12, contains 91 vertices and 753 edges. We 

artificially create four clusters )4(1 }T {T  ff  and use different colors to 

highlight them in Figure 12. Regarding graph topology, it is observed that vertices in 

the same cluster are densely connected while few vertices from different clusters are 

connected. For the attribute information of vertices, there are five attributes that can 

be associated with vertices and thus we have )51}({  mm . In this running 

example, different attributes are preferred by vertices in different clusters. To clarify 

it, we present the distributions of 1 , 2 , 3 , 4  and 5  in Figure 13(a)-(e) 

respectively. Taking the distribution of 1  in Figure 13(a) as an example, we can see 

that vertices in the cluster 1T  are much more similar in 1  as indicated by the large 

Figure 12. The AG used in the running example. Four clusters are generated and they 

are highlighted by different colors. 
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values of 
1

ija . In other words, for vertices in cluster 1T , the values of 1  are more 

frequently found than those of other attributes. In addition, to testify the robustness of 

CAP-AG, we introduce the attribute 5  whose values are randomly assigned to all 

vertices with the same probability. In Figure 13(e), there is no notable preference about 

taking values of 5  for vertices in different clusters, so we consider it as the noisy 

attribute. 

 

To measure the degree of matching between the clusters identified and the ground 

truth, the metric NMI  used in 4.5.1 is adopted. 

 

Before applying CAP-AG to the running example, we need to determine  ,  ,   and 

  in advance. After analyzing the graph data, we have 13.0avgd , 18.0avga  and 

95.2avgt . Therefore, according to the suggestions given in 5.3.2, we set both of   

and   equal to 1 so that avgavgtd   and avga   have the same magnitude. For   and  , 

we set their values to 1 as well. Regarding the values of other parameters, we set them 

as 100maxl , 1  and 5.0minw . 

 

Starting with a random initialization of W  and R , CAP-AG eventually obtains a set 

of clusters, i.e., C , as well as the optimized W  and R . To compare C  with the 

ground truth, we compute the score of NMI and find that the result of NMI is 1. That 

is to say, the clusters in C  are identical to the ground truth of clusters. Furthermore, 

we present the preference vector of each vertex in Figure 13(f) according to the 

optimum R . Note that vertices along iv -axis are highlighted with different colors that 

are consistent with the colors of clusters in Figure 12 and therefore the clusters they 

belong to can be indicated. From Figure 13(f), it is seen that the preference vectors of 

vertices clearly state the dependencies between attributes and clusters. For example, 

in Figure 13(f), blue vertices along iv -axis belong to the cluster 1T  according to Figure 

12 and all of them have the same preference vector )0 ,0 ,0 ,0 ,1( , which in return  
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discloses the strong dependency between 1T  and 1 . Therefore, we have reason to 

believe that 1  is of significance to the study of 1T . Lastly, the influence of 5  as a 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 13. (a)-(e) are the distributions of  𝑎𝑖𝑗
𝑚 for the attributes Λ1, Λ2, Λ3, Λ4 and Λ5, 

(f) is the distribution of the optimized 𝐑. 
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noisy attribute is small enough to be ignored by CAP-AG as the preference values of 

5  in all preference vectors are 0. In sum, a conclusion can be made that the clustering 

results obtained by CAP-AG are consistent with our assumptions and the ability of 

disclosing the dependencies between clusters and attributes has been confirmed. 

5.4 Application of Identifying Protein Complexes 

5.4.1 Background 

A protein complex is a biomolecule that contains a number of proteins interacting with 

each other to perform different cellular functions [80]. For example, the exosome 

complex is capable of degrading various types of RNA molecules and the nuclear pore 

complex, probably the largest complex in a cell, is responsible for the protected 

exchange of components between the nucleus and the cytoplasm as well as for 

preventing the transport of materials that are not allowed to cross the nuclear envelope. 

 

The identification of protein complexes in a PPIN can, therefore, lead to a better 

understanding of the roles of such a network in different cellular systems and it is, for 

this reason, that the protein complex identification problem has received a lot of 

attentions and a considerable number of techniques, including both laboratory based 

and computational techniques, have been proposed to address the problem. 

 

To identify protein complexes on a large scale, many laboratory experiments involving 

affinity purification followed by mass spectrometry (AP/MS) have to be carried out 

[32], [39]. For example, given a fusion gene containing a bait protein and a chemical 

tag with high affinity, AP/MS has to be used to purify all proteins and identify from 

among them those that are bound to the bait protein as these are the proteins that are 

considered as making up a protein complex. After these proteins are identified, mass 

spectrometry methods are then used again to characterize each of them. Though 

effective, AP/MS is not a very efficient approach as many experiments, using different 
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bait proteins every time, have to be carried out [23].  Also, the set of protein complexes 

that can be identified within a PPI network using such laboratory approach is usually 

incomplete, as some protein complexes may not be discoverable under certain 

experimental conditions [51]. 

 

To avoid the problems associated with laboratory identification of protein complexes, 

a number of different computational approaches have recently been proposed to 

automate the task. Such approaches may not be feasible in the past but with the advent 

of high-throughput methods, such as the yeast two-hybrid systems [41], it is now 

possible for large numbers of PPI networks to be constructed and made available for 

these computational approaches to be tested with. 

 

Even though there are quite a number of different computational approaches, they are, 

by and largely, developed based on the use of different graph clustering algorithms. 

By representing a PPI network as a graph whose vertices represent proteins and edges 

are interactions between proteins, these algorithms can discover graph clusters based 

on different topological properties, such as density, k-cores, core-attachment 

structures and peripheries. However, among these topological properties used for 

graph clustering, density is the most commonly used as there is some evidence from 

known PPI networks that proteins in a protein complex tend to interact more with each 

other in the same complex, thus forming a more densely interacting region within a 

PPI network [87]. All other topological properties used for graph clustering are 

therefore direct or indirect derivations from the density measures. Additional 

requirement on the structures of the graph clusters discovered is taken into 

consideration whenever necessary. 

 

One of the most popular graph clustering algorithms that can identify dense clusters 

effectively and that has been used quite frequently for protein complex identification 

is the MCL algorithm [27]. The MCL algorithm has been shown to be relatively 

accurate and robust [51], [13]. As mentioned in 2.2.2, MCL discovers dense clusters 

in a graph by simulating flow expansion and contraction. With MCL, a set of dense 
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clusters can then be extracted as protein complexes from the incidence matrix of a PPI 

network graph. A major weakness of MCL is that it is not capable of taking into 

consideration biological information while a graph is expanded or inflated. In other 

words, it can only consider topological information when searching for protein 

complexes in a PPI network. 

 

Apart from MCL, other graph clustering algorithms have also been used to identify 

protein complexes. In [6], for example, MCODE is used to detect densely connected 

regions in a PPI network by taking into consideration local neighborhood density using 

vertex weighting as opposed to transition matrices. As another example, RNSC [45] 

is used to identify protein complexes through graph partitioning. By defining several 

cost functions based on cluster size, cluster density and functional homogeneity, 

RNSC finds an optimal partitioning of the vertices in a PPI network graph so that each 

partition may represent a protein complex. 

 

Similar to RNSC, the approach proposed by Ding et al. [26] also attempts to partition 

a PPI network graph except that it makes use of a minimum vertex-cut to identify 

boundaries of graph clusters as protein complexes that are relatively denser than their 

nearby regions. 

 

In [4], a graph mining algorithm called DPClus is proposed to refine graph clusters 

discovered by keeping track of cluster periphery through the monitoring of cluster 

properties. The efficiency of DPClus is improved by another algorithm called IPCA 

[49]. IPCA considers a combination of vertex distance and subgraph density when 

performs graph clustering. 

 

Another algorithm for graph clustering that is based on a different idea than IPCA is 

called CFinder [1]. It is used to identify protein complexes that are characterized by 

k-clique structure in a PPI network. In [52], a graph clustering approach that makes 

use of cliques for the finding of protein complexes is also proposed. As it is believed 

that there is a relatively high false positive probability for the interactions found in PPI 
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networks through high-throughput experiments, an iterative scoring method is 

introduced in [52] to assign weights that can reflect their reliability to protein 

interactions. Based on these weights, an algorithm called CMC is used to identify 

protein complexes based on the identification of maximal cliques. 

 

In [93], another algorithm called COACH that considers a different set of topology 

properties is proposed by Wu et al. COACH takes advantage of the core-attachment 

structure of protein complexes to detect for protein complexes in a PPI network.  

 

Not many graph clustering algorithms can discover overlapping protein complexes. 

The algorithm proposed in [102] is an exception. It uses a regularized sparse 

generative network model to detect for overlapping protein complexes. Based on such 

a model, peripheral proteins that have few links with the cores of protein complexes 

are specially handled based on the use of propensities generated by exponential 

distribution.   

 

Recently, some algorithms (e.g. [48] and [50]) have been developed to identify protein 

complexes based on attribute information about proteins rather than on topological 

properties of PPI networks. This is because, other than some evidence pointing to 

protein complexes having special network topologies, there has also been some recent 

evidence that proteins within the same PPI complex may perform the same functions 

and it is probably for this reason that at least one algorithm is developed to identify 

protein complexes based on the similarity of protein functions [48]. There has also 

been some attempt to use gene expression data together with PPI networks to discover 

protein complexes [50]. 

 

To evaluate the performance of MCL-AG and CAP-AG, we apply them to identify 

protein complexes and compare with the popular approaches including PCIA, MCL, 

MCODE, RNSC, DPClus, IPCA, CFinder, CMC and COACH. The experiment results 

will be presented and analyzed in the next section. 
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5.4.2 Experimental Results and Discussions 

5.4.2.1 Data Preparation 

For the purpose of performance evaluation, MCL-AG and CAP-AG have been tested 

with three sets of real PPI network data, including Krogan 2006 [46], DIP Scere [94] 

and DIP Hsapi [94]. Krogan 2006 is related to yeast Saccharomyces Cerevisiae. It can 

be obtained from the BioGRID database [81]. In BioGRID, there are two sets of 

Krogan 2006 data. For our experiments, we used the core set of Krogan 2006 where 

the PPI data is obtained with a higher reliability than its extended data set [46]. DIP 

Scere is also collected from Saccharomyces Cerevisiae but it is much larger in size 

than that of Krogan 2006 (see Table 11). Unlike these two data sets, DIP Hsapi is 

collected from human beings. The PPI networks of DIP Scere and DIP Hsapi used for 

our experiments were obtained from the snapshot of the DIP database [94] as of 

August 18, 2012, which was the latest version that we could obtain when we worked 

on our experiments. Before we used the data sets, we removed all self-connecting and 

duplicated interactions from the data sets. After the removal of such interactions, the 

characteristics of all three PPI network data sets used in our experiments are given in 

Table 11. 

 

The Gene Ontology (GO) project [5] was utilized as the attribute information of 

proteins. According to the GO project, there are three attributes of proteins 

corresponding to the three GO categories of biological processes, molecular functions 

and cellular components and they are represented as p , f  and c  respectively. In 

particular, biological processes are concerned with certain biological objectives with 

which a protein is involved in; molecular functions refer to the biochemical activities 

that a protein performs; cellular components are concerned with the locations where a 

protein is active in the cells. For our experiments, the attributes of the proteins in the 

three data sets were obtained from the GO databases [14]. GO terms in the category 
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of cellular component that may give any hints as to what complex(es) a protein may 

belong to had been excluded from our experiments. 

 

Table 11. Statistics of PPI Networks 

PPI Network 
Number of 

Proteins 

Number of Interactions 

Before After % Difference 

Krogan 2006 2674 7079 7075 -0.06% 

DIP Scere 4584 21161 20845 -1.49% 

DIP Hsapi 2523 3369 3053 -9.38% 

 

To evaluate the performances of all algorithms, we compared the protein complexes 

they identified with the known protein complexes contained in the MIPS/CYGD [35] 

and CYC2008 [72] databases as of March 11, 2013. The complexes in MIPS/CYGD 

belong to Sacchromyces Cerevisiae and there are altogether 255 known protein 

complexes. In addition to the protein complexes in MIPS/CYGD, we also compared 

what PCIA and other algorithms discovered with the known protein complexes in 

CYC2008 for Sacchromyces Cerevisiae. There CYC2008 contains 408 such known 

complexes. By merging MIPS/CYGD and CYC2008, we obtained a total of 557 

known protein complexes for Sacchromyces Cerevisiae for comparison. 

 

For DIP Hsapi, what were identified by the proposed approaches and other algorithms 

were compared against those known complexes in the MIPS/CORUM [76] database. 

In this database, there are altogether 2835 known protein complexes. It should be noted 

that, since the databases of both PPI networks and known protein complexes are 

constantly being updated, the experiment results obtained with older or newer versions 

of the data may not be the same when the experiments described in this section are 

repeated with them. 
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5.4.2.2 Experiment Setup 

For performance evaluation, MCL-AG, CAP-AG and other algorithms including 

MCL, MCODE, RNSC, DPClus, IPCA, CFinder, CMC and COACH were used to 

identify protein complexes in the three data sets as described above. The parameter 

settings for the algorithms that we used for testing are listed in Table 12. 

 

Table 12. Parameter Settings of Algorithms used in Our Experiments 

Algorithm Parameter Setting 

MCL-AG inflation = 1.8, 8.0  

CAP-AG 5.0 , 5.0 , 1 , 1  

MCL inflation = 1.8 

MCODE 
VWP = 0.2, haircut = TRUE, max depth = 100,  

fluff = FALSE, node score cutoff = 0.2 

RNSC N/A 

DPClus 6.0ind , 5.0incp  

IPCA S = 2, P = 2, 6.0inT  

CFinder N/A 

CMC min_size = 2, overlap_thres = 0.5, merge_thres = 0.25 

COACH redundancy threshold = 0.225 

 

All these parameters were set based either on the recommendations of the respective 

authors or through a series of trials and errors we performed. For the latter, the best 

parameter settings were found by finding the parameter sets that gave the best average 

results of the evaluation measures that we used in performance analysis for all three 

PPI network data sets that we described above. 

 

Taking the algorithm IPCA as an example, to find the best setting of inT  we tried 

setting it from 0.1 to 1.0, both inclusive, increasing at the step of 0.1 each time. After 

the trials and errors, we found that when inT  was set to 0.6, IPCA performed the best 

in terms of the average performance of the two indicators, i.e., the matching rate and 
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f-measure, that we used in our experiments. We noticed that although many previous 

works suggested different best values of inT  of IPCA, such as 0.4 in [87] and 0.9 in 

[13], in our case, 6.0inT  gave us the best performance for IPCA.  In fact, when it 

was set to 0.6, IPCA performed much better than when inT  was set to 0.9 or 0.4 in our 

experiments. Hence, for our experiments inT  was set to 0.6 (Table 12). 

 

To ensure that there were no biases, we used the same inflation parameter value for 

both MCL-AG and MCL, in our experiments. Regarding CAP-AG, we chose the 

values of  ,  ,   and   among }.750 ,5.0 ,25.0{,    and }1 ,5.0{,   based on 

the trials we performed. We noted that the performance of our approach did not change 

much with the values of  ,  ,   and  . Setting 5.0 , 5.0 , 1  and 1  

gave reliable performances in most trials. 

5.4.2.3 Evaluation Metrics 

Regarding the evaluation metrics, we adopted two metrics, the matching-rate (mr) 

measure and f-measure, to perform the comparison. In particular, the mr measure is to 

compute the degrees of matches between the complexes identified by each of these 

algorithms and those that are previously known and it is defined as: 
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where 
1C f

n  is the number of proteins in CC 1f , 
2T f

n  is the number of proteins in 

TT 2 f , and 
2 1 

T,C ff
n  is the number of proteins that are found in both 

1
C f   and 

2
T f . 

This mr  measure can be considered as a measure of the maximum overlap between 

an identified complex (i.e., 
1

C f ) and a known complex that it matches with (i.e., 
2

T f ). 

Since the matching rate takes on a value within the range of 0 and 1, we can define a 

  as the threshold of a minimum-acceptable mr . For the purpose of performance 
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analysis, this minimum mr was set to 7.0 , 8.0 , 9.0  and 1  for each 

algorithm so that their performance can be more easily compared. 

 

To determine quality of the protein complexes identified, in addition to mr, we also 

used the f-measure as a measure of the overall accuracy of each algorithm. Assuming 

that an identified protein complex is matched against a known complex in the MIPS 

database and   is set as 2.0 , then the f-measure can be defined as: 

 
recallprecision

recallprecision
f




 2measure- . (54) 

In (54), C2.0 , nnprecision C   , where 2.0 , Cn  is the number of identified protein 

complexes whose matching rates are not less than 0.2, and 
T2.0 , nnrecall T   , where 

T
n  is the size of the set of known complexes and 2.0 , Tn  is the number of known 

protein complexes that are correctly identified with matching rates not less than 0.2. 

5.4.2.4 Experimental Results 

A. Overall Evaluation 

For performance comparison, the protein complexes identified by each of MCL-AG, 

CAP-AG, MCL, MCODE, RNSC, DPClus, IPCA, CFinder, CMC and COACH in the 

PPINs Krogan 2006, DIP Scere and DIP Hsapi were compared with those known 

complexes in T . The results in terms of the f-measure and the mr are presented in 

Tables 13 to 18 respectively. The symbol, #, in the Tables 16-18 denotes the total 

number of protein complexes identified. 

 

Table 13. The f-measure scores for Krogan 2006 

 Precision Recall f-measure 

MCL-AG 0.34 0.66(1st) 0.45(2nd) 

CAP-AG 0.57 0.44 0.5(1st) 
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MCL 0.33 0.46 0.38 

MCODE 0.7(2nd) 0.16 0.26 

RNSC 0.33 0.57(2nd) 0.42 

DPClus 0.38 0.55(3rd) 0.45(2nd) 

IPCA 0.26 0.52 0.35 

CFinder 0.73(1st) 0.31 0.44(3rd) 

CMC 0.44 0.34 0.38 

COACH 0.59(3rd) 0.33 0.42 

 

Table 14. The f-measure scores for DIP Scere 

 Precision Recall f-measure 

MCL-AG 0.26 0.72(1st) 0.38(3rd) 

CAP-AG 0.42(3rd) 0.35 0.38(3rd) 

MCL 0.44(2nd) 0.09 0.15 

MCODE 0.22 0.67(2nd) 0.33 

RNSC 0.25 0.52 0.34 

DPClus 0.19 0.65(3rd) 0.29 

IPCA 0.58(1st) 0.43 0.49(1st) 

CFinder 0.29 0.56 0.38(3rd) 

CMC 0.39 0.52 0.45(2nd) 

COACH 0.23 0.45 0.3 

 

Table 15. The f-measure scores for DIP Hsapi 

 Precision Recall f-measure 

MCL-AG 0.36 0.3(1st) 0.33(1st) 

CAP-AG 0.41 0.11 0.17 

MCL 0.3 0.2 0.24(3rd) 

MCODE 0.49 0.05 0.09 

RNSC 0.33 0.25(2nd) 0.28(2nd) 

DPClus 0.29 0.21 0.24(3rd) 



110 

 

IPCA 0.19 0.23(3rd) 0.21 

CFinder 0.64(2nd) 0.13 0.22 

CMC 0.58(3rd) 0.13 0.21 

COACH 0.67(1st) 0.14 0.23 

 

Table 16. The mr scores for Krogan 2006 

 # 7.0  8.0  9.0  1  

MCL-AG 1823 74(2nd) 59(2nd) 49(2nd) 47(2nd) 

CAP-AG 276 77(1st) 64(1st) 52(1st) 51(1st) 

MCL 545 47 37 27(3rd) 26 

MCODE 71 22 17 11 11 

RNSC 752 72 55(3rd) 45(3rd) 43(3rd) 

DPClus 599 67 54 41 40 

IPCA 1873 50 21 0 0 

CFinder 261 78(3rd) 49 23 21 

CMC 297 47 35 23 21 

COACH 347 60 38 19 17 

 

Table 17. The mr scores for DIP Scere 

 # 7.0  8.0  9.0  1  

MCL-AG 1823 74(1st) 59(1st) 49(1st) 47(1st) 

CAP-AG 347 54(2nd) 49(2nd) 46(2nd) 44(2nd) 

MCL 834 24 19 16 15 

MCODE 62 11 6 2 1 

RNSC 1392 46 35(3rd) 27(3rd) 26(3rd) 

DPClus 880 26 15 10 10 

IPCA 3682 29 13 1 0 

CFinder 427 54(2nd) 32 18 17 

CMC 1152 47(3rd) 29 23 23 

COACH 853 46 27 15 14 
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Table 18. The mr scores for DIP Hsapi 

 # 7.0  8.0  9.0  1  

MCL-AG 855 26(1st) 20(1st) 18(2nd) 18(2nd) 

CAP-AG 179 18 16(3rd) 13(3rd) 13(3rd) 

MCL 556 18 15 13(3rd) 13(3rd) 

MCODE 69 3 2 0 0 

RNSC 738 22(3rd) 20(1st) 20(1st) 20(1st) 

DPClus 565 23(2nd) 17(2nd) 13(3rd) 13(3rd) 

IPCA 1733 2 1 0 0 

CFinder 134 10 6 4 3 

CMC 136 13 7 4 4 

COACH 150 13 6 4 4 

 

In Tables 13-15, we present detailed results showing the precision, recall and the f-

measure scores calculated for all algorithms tested. Among these algorithms, both 

MCL-AG and CAP-AG have a promising performance in terms of f-measure. In 

particular, MCL-AG outperforms the other algorithms when applied to all PPINs and 

CAP-AG obtains a better performance than others when applied to the yeast PPINs, 

Krogan 2006 and DIP Scere. Hence, we believe that both MCL-AG and CAP-AG are 

more capable of identifying protein complexes. 

 

When comparing MCL-AG and CAP-AG from Tables 13-15, we find that MCL-AG 

performs better than CAP-AG in terms of recall while CAP-AG performs better than 

MCL-AG in terms of precision. This is because the total number of different proteins 

found in the manually curated protein complexes represents only a relatively small 

portion of the total number of different proteins found in the whole PPI network. For 

example, the total number of different proteins found in the protein complexes in 

MIPS/CYGD and CYC2008 represent only a small portion of the total number of 

different proteins found in the PPI networks of Krogan 2006 and DIP Scere. In fact, 

only half of the total number of different proteins in Krogan 2006 and one third of that 
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in DIP Scere are found in the known protein complexes. Hence, algorithms that detect 

less protein complexes are more likely to achieve higher scores in the measure of 

precision while the algorithms that detect more protein complexes are more likely to 

achieve higher scores in the measure of recall. 

 

When it comes to the performance of the different algorithms in terms of the matching 

rates between computationally identified complexes and those that are previously 

known, the results are shown in Tables 16-18.  

 

For all of Krogan 2006, DIP Scere, and DIP Hsapi, MCL-AG is found to have 

performed better than other algorithms. In fact, for all the different matching rates 

considered, MCL-AG can be found to be able to identify more protein complexes for 

both Krogan 2006 and DIP Scere. Hence, if we prefer to have a protein-identification 

algorithm that can identify more protein complexes for verification and validation 

while maintaining a relatively high matching rate, MCL-AG is preferred. 

 

Regarding the performance of CAP-AG in terms of mr, it is observed from Tables 16-

18 that CAP-AG has a comparable performance when compared with MCL-AG for 

yeast PPINs. In particular, for Krogan 2006, CAP-AG is the best algorithm while 

MCL-AG ranks as the second best algorithm; for DIP Scere, MCL-AG is the best 

algorithm while CAP-AG ranks as the second best algorithm. But for the human PPIN 

DIP-Hsapi, CAP-AG does not perform as well as MCL-AG. Considering the 

difference between the density of yeast PPIN and that of Human PPIN, CAP-AG may 

not obtain a satisfactory performance in a network that is much sparse. 

 

For DIP Hsapi, RNSC, however, performs better than both of MCL-AG and CAP-AG 

when  ∂ ≥ 0.9. This is because RNSC is developed to find an optimal partitioning of a 

graph and the native cost function it uses as a criterion of partitioning costs allows it 

to be able to better identify two denser regions connected by a sparse region when a 

PPI network is sparse. For MCL-AG and CAP-AG, these regions will probably be 

identified as one whole region. 
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In general, as a protein complex identification algorithm, both of MCL-AG and CAP-

AG have a promising performance. They are better than MCL or other algorithms from 

the perspectives of matching rates and f-measure. 

 

B.  Performance Analysis of MCL-AG 

1) Impact of Each Step of MCL-AG on Its Performance 

The first step of MCL-AG can be considered as the pre-processing step for MCL as 

this step has to be performed before MCL to find weights for the adjacency matrix 

needed for MCL to perform its tasks. The weights allow MCL to take into 

consideration the protein attributes or GO information.  The last step of MCL-AG has 

to be performed after MCL completes its tasks and can be considered as a post-

processing step for MCL to partition the graph clusters into protein complexes to 

ensure that the proteins have significant association relationship with each other. To 

Figure 14. The f-measure results of MCL-AG without pre- and post-processing, 

MCL-AG without post-processing and MCL-AG. 
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investigate into the impact that each of these steps of MCL-AG may have on its 

performance so that we can understand which of the steps of MCL-AG contributes the 

most significantly to its better performance, we conducted several experiments. 

 

The first test we performed was to skip the Step 1(i.e., the pre-processing steps) but, 

by skipping Step 1, it should be noted that Step 3 (i.e., the post-processing step) was 

also not applicable as there was no weighted PPIN for it to use for cluster partitioning. 

Hence, by skipping Steps 1 and 2, we are basically using MCL alone without the pre- 

and post-processing.  For the second test, we kept the pre-processing step but skipped 

Step 3. 

 

Based on the f-measure results as shown in Figure 14, we find that without either the 

pre- or post-processing steps in MCL-AG, its performance is negatively impacted as 

in either case, the GO information in the PPI network is not taken into full 

consideration. There does not seem to be too much difference in performance between 

skipping the pre-processing steps and skipping the post-processing step. 

 

2) Effect of   on Performance of MCL-AG 

The parameter   is introduced in the final step of MCL-AG so that users can decide 

how strong the proteins should associate with each other for them to form a complex. 

To find out how the setting of   may have on the performance of MCL-AG, we 

conducted sensitivity tests using all three PPI network data sets of Krogan 2006, DIP 

Scere and DIP Hsapi. 

 

In our tests, we recorded the f-measure scores as well as the average sizes of protein 

complexes detected when   is set to 0, 0.1, 0.2, …, 1.0, and the results are shown in 

Figure 16 and Figure 15 respectively. For the purpose of the sensitivity tests, the 

matching rate used to mark identified protein complexes as “matched” was set to 0.2. 
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 From Figure 16, it is noted that the f-measure curves are generally upward sloping 

along with the increase of  . In particular, the f-measure scores are insensitive to the 

Figure 16. The average sizes of protein complexes identified by MCL-AG with Different 

Values of 𝜇 in the PPI networks of Krogan 2006, DIP Hsapi and DIP Scere. 

Figure 15. The f-measure results of MCL-AG with Different Values of 𝜇 in the PPI 

networks of Krogan 2006, DIP Scere and DIP Hsapi. 
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low values of   as the changes in the values of f-measure are rather small when   

is within [0, 0.4].  A steady improvement can be observed when   is given a value 

within [0.5, 1.0]. The reason why the f-measure results seem to be rather insensitive 

to small   is due to the fact that the difference between the highest and the lowest 

weight in a subgraph found after Step 2 in MCL-AG is used as a threshold for the 

setting of   and if we adopt a   smaller than this threshold, there will not be much 

of an effect on performance. 

 

With regard to the impact of   on the average size of the protein complexes identified 

by MCL-AG, we note that all the curves of average size exhibit a downward trend (see 

Figure 15). This means that the larger the value of   is, the smaller the average size 

of identified protein complexes is. However, if the value of   is set to a large value 

of, say, 0.9 or 1.0, it is possible for a cluster discovered after Step 2 to be “over-

partitioned” and as a result, most protein complexes identified will be very small.  As 

a trade-off,   is best selected to balance between having a better f-measure 

performance and a reasonable large average size of identified protein complexes. 

Hence, we recommend that   would be set between 0.65 and 0.85. Values set within 

this range will ensure that MCL-AG performs reasonably well. In our experiments, we 

set   to be 0.8. 

 

3) Protein Complexes Identified – Biological Significance 

Other than the objective statistics in terms of the f-measure or the number of known 

protein complexes discovered, we have also looked into the details of the protein 

complexes identified by the MCL-AG to see if there is anything biologically 

significant in them that can help us better understand the protein complexes. 

 

To facilitate our investigation, we performed a functional enrichment analysis using 

the tool GO::TermFinder [10]. The GO::TermFinder is provided by SGD [20] as a 

web service and it can be used to search for significant shared GO terms in the proteins 

in a protein complex identified by MCL-AG based on p-value tests. For our analysis, 
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the GO terms with p-values smaller than or equal to some significant threshold of 0.05 

in the proteins of a protein complex are identified. The enrichment of these GO terms 

is indicative of their significance as the co-occurrences of such GO terms in protein 

complexes are not likely to occur by chance [93]. In Figure 17, we list among the 

protein complexes identified by MCL-AG in Krogan 2006 and DIP Scere some of 

those that contain at least one GO term with p-value   0.05 in each GO category. 

These protein complexes are not recorded in MIPS/CYGD or CYC2008 but as can be 

seen from the significant p-values, they are all likely candidates of real protein 

complexes because of the statistical significance indicated by the functional 

enrichment analysis. Careful analysis of all protein complexes identified by MCL-AG 

reveals that, for Krogan 2006, 770 out of the 1210 protein complexes identified, and 

for DIP Scere, 1092 out of the 1823 protein complexes identified by MCL-AG are 

considered significant with corrected p-value   0.05. As the current version of the 

GO::TermFinder only supports p-value tests for the proteins of Saccharomyces 

Cerevisiae, we only performed such analysis with Krogan 2006 and DIP Scere. 

 

In addition to the functional enrichment analysis, we also selected some typical protein 

complexes identified by MCL-AG to analyze from the aspects of both the structure 

and the GO information. 

 

One of the protein complexes identified by MCL-AG in Krogan 2006 matches with 

the Anaphasa promoting complex (APC with MIPS/CYGD ID 60).  It is an ubiquitin 

ligase that has essential functions in and outside the eukaryotic cell cycle [68] and its 

topology is presented in Figure 17. MCL-AG successfully identified 9 of the 11 

proteins that constitute the APC. From Figure 17, it should be noted that the protein 

with ID Q12157 is not connected with any other proteins in the APC complex and this 

is also the reason why MCL-AG could not identify it as a part of the APC. 

 

To understand how important the consideration of protein attributes has helped 

identify APC, we compare it with the APC identified by MCL. For MCL, the APC 

that it identified had 12 proteins altogether. Of these 12 proteins, nine of them are the 
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same as the known APC. The remaining three proteins with IDs of Q08646, P40577 

and P40008 are not part of the known APC as found in MIPS/CYGD. The use of 

protein attributes has, therefore, helped filter out these three proteins. The weights of 

the edges between them and the other nine proteins were too small to allow them to 

be included in the APC as identified by the MCL-AG. 

 

When considering the attribute, molecular functions, of the proteins, it is observed that, 

in addition to being able to identify all proteins that perform the same function of 

ubiquitin-protein ligase activity (GO:0004842), MCL-AG is also able to identify the 

protein with ID P53068 which performs a different function. In other words, if MCL-

AG only assumes function homogeneity when identifying protein complexes, it will 

miss the protein P53068 as part of APC. 

 

Figure 17. The MAPPIN graph of the Anaphase Promoting Complex (APC) where the 

part circled by dashed line is the cluster identified by MCL-AG from Krogan 2006. 
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The protein P53068 interacts with a total of six other proteins in the APC. To find out 

how the attributes of these interacting proteins may relate to each other, let us consider 

the protein with ID Q04061. In Table 19, if an attribute value of P53068 has a 

significant association relationship with an attribute value of Q04061, it is indicated 

with “Y". From these results, we notice that there exist many significant association 

relationships between the molecular functions of the two integrating proteins that are 

captured by the DOA measure. Furthermore we found that there was a high ratio of 

associating attribute values from the possible combinations of values of other 

attributes. Hence, with the consideration of other attributes, i.e., biological process 

and cellular component, as well as the correlation between attribute values, MCL-AG 

is capable of catching such exceptional proteins in terms of the function homogeneity. 

 

Table 19. The Association between Some of the Protein Attribute Values in Q04601 

and P53068 respectively in Krogan 2006 

* Y = the two corresponding attribute values have significant association,  N= they do not 

 

C. Performance Analysis of CAP-AG 

We have also looked into the details of protein complexes identified by the proposed 

approach to see whether the consideration of attribute preferences can actually 

facilitate the prediction process. 

 

 

Q04601 

p  f  
c  

GO:000704
9 

GO:003114
5 

… 
GO:000484

2 
GO:000563

4 
GO:000573

7 
… 

P53068 

p

 

GO:000704

9 
Y* Y 

 

Y N N 

 
GO:000805

4 
Y Y Y Y N 

… … 

f

 

GO:003023

4 
N* Y 

 

Y Y N 

 

GO:009030

2 
Y Y Y N N 

c  

GO:000563

4 
N Y N Y N 

GO:000573

7 
N Y Y N Y 

      
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One of the protein complexes identified by CAP-AG in Krogan 2006 is exactly 

matched with a known protein complex, i.e., Nuclear Condensin Complex (NCC), 

whose topology network is presented in Figure 18. The protein attributes of NCC are 

given in Table 5. From Figure 18, it is observed that proteins in NCC are densely 

connected and hence the optimization problem of (35) is proved to have the ability of 

retaining proteins that are densely connected to compose protein complexes. 

Regarding the protein attribute of proteins in NCC, we note that the three proteins, i.e., 

Q06156, Q06680 and P38170, are different from the other two proteins of P38989 and 

Q12267 in terms of the attribute of molecular function, as these two sets of proteins 

have no value in common. In other words, the attributes of biological process and 

cellular component are more important w.r.t. the formation of NCC. However, 

approaches that make use of similarity to process the attribute information could 

probably miss this protein complex because of the low similarity scores in protein 

attributes. With the introduction of attribute preferences, CAP-AG has overcome this 

problem. In particular, when identifying NCC, the proposed approach assigned high 

preference values to the attributes of biological process and cellular component and 

Figure 18. The network topology of Nuclear Condensin Complex identified by CAP-

AG from Krogan 2006. 
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low preference value to the attribute of molecular function when computing the 

preference vectors of proteins in NCC. Therefore, NCC has been identified by CAP-

AG. 

 

Table 20. The protein attributes of proteins in Nuclear Condensin Complex 

Protein p  f  
c  

P38989 

GO:0000070, GO:0006281, GO:0006310 

GO:0007049, GO:0007062, GO:0007067 

GO:0007076, GO:0030261, GO:0051276 

GO:0051301, GO:0070058 

GO:0000166, 

GO:0000217 

GO:0003680 

GO:0003690 

GO:0005524 

GO:0016887 

GO:0005634, GO:0005694 

GO:0005737, GO:0005739 

Q12267 

GO:0000070, GO:0006281, GO:0006310 

GO:0007049, GO:0007062, GO:0007067 

GO:0007076, GO:0030261, GO:0051276 

GO:0051301, GO:0070058 

GO:0000166 

GO:0003682 

GO:0003682 

GO:0005524 

GO:0016887 

GO:0005634, GO:0005694 

GO:0005737 

Q06156 

GO:0000070, GO:0007049, GO:0007067 

GO:0007076, GO:0010032, GO:0030261 

GO:0030466, GO:0043007, GO:0051301 

GO:0070058 

GO:0003674 
GO:0005634, GO:0005694 

GO:0005730 

Q06680 

GO:0000070, GO:0007049, GO:0007067 

GO:0007076, GO:0010032, GO:0030261 

GO:0051301, GO:0070058, GO:0070550 

GO:0003674 
GO:0005634, GO:0005694 

GO:0005737 

P38170 

GO:0000070, GO:0007049, GO:0007067 

GO:0007076,  GO:0030261, GO:0051301 

GO:0070058 

GO:0003674 
GO:0005634, GO:0005694 

GO:0005737 

 

5.5 Conclusion 

In this chapter, we have studied the problem of AG clustering without knowing the 

number of clusters and propose two approaches MCL-AG and CAP-AG to tackle this 

problem from different perspectives. In particular, MCL-AG makes use of DOA 

measure to indicate how likely two vertices are grouped in the same cluster and then 

identify the clusters through a markov clustering process; for CAP-AG, attributes are 

considered separately so as to disclose the dependency between them and the resultant 

clusters. To evaluate the performance of MCL-AG and CAP-AG, we apply them to 

the application of identifying protein complexes from PPINs. Experiment results show 

both of MCL-AG and CAP-AG are capable of identifying protein complexes 
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efficiently. Furthermore, MCL-AG and CAP-AG have a comparable performance for 

relatively dense PPINs, but for sparse PPINs, MCL-AG obtains a better performance.   
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Chapter 6 Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we have studied the problem of discovering associative patterns from 

complex networks with attribute information available. Based on these associative 

patterns, we develop several approaches to tackle some of AG applications including 

link analysis and graph clustering. Motivated by the idea that existing approaches 

proposed for AG applications normally consider the information of graph topology 

and that of vertex attributes separately, we intends to discover patterns that are able to 

discover the associations between graph topology and vertex attributes and hence the 

two kinds of information in AGs can be  jointly considered. Regarding the presence 

of these patterns in AGs, since it is intuitive to believe that pairwise attribute values 

that frequently co-occur in adjacent vertices, to some extent, represent such kind of 

patterns, we propose an innovative algorithm to statistically discover these pairwise 

attribute values and define them as the associative patterns that consider the topology 

information and the attribute information simultaneously. In addition to the discovery 

of associative patterns, we also define a DOA measure to weight the association 

between vertices according to the amount and the significances of associative patterns 

found in their attributes. 

 

To evaluate the significance of associative patterns, we apply them to some of AG 

applications and propose different approaches to solve specific problems. The 

extensive experimental results show that the consideration of these patterns can 

significantly improve the performance. 

 

For the application of link analysis, we are particularly interested in the prediction of 

PPIs from PPINs based on sequence information. To solve it, we propose an approach 

VLASPD that makes use of variable-length sequence segments to compose the 
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patterns for the prediction task. The promising performance of VLASPD shows that 

variable-length sequence segments can facilitate the prediction of PPIs as more 

information is considered when compared with the use of fixed-length sequence 

segments. 

 

When applying the associative patterns to the application of graph clustering, we 

propose FC-AG to identify clusters from AGs in a fuzzy manner. The experimental 

results of FC-AG on the problems of document classification and social community 

detection show that FC-AG outperforms the state-of-the-art approaches and also FC-

AG has a linear running time over the increase of network size. In addition to FC-AG, 

two unsupervised clustering approaches MCL-AG and CAP-AG have been developed 

for the clustering problem without knowing the number of clusters. MCL-AG 

performs the task through a markov clustering process based on associative patterns 

while CAP-AG identified clusters from AGs by considering the attribute preferences 

and link structure simultaneously. To evaluate the performances of MCL-AG and 

CAP-AG, we apply them to solve the problem of identifying protein complexes from 

PPINs. The experimental results show that 1) both of MCL-AG and CAP-AG can 

identify the protein complexes efficiently, and 2) CAP-AG is more sensible to the 

density of network while MCL-AG is more stable. 

6.2 Future Works 

The future works will be unfolded from three aspects as below. 

 

1) In the problem of PPI prediction, we compose a rule set based on the patterns 

discovered by VLASPD. However, through the experimental results, we find 

that the number of rules is relatively huge and hence we have to prune the rule 

set by only keeping those with best performance. Furthermore, it is seen that 

some templates of rules can be found if we consider wildcards and gaps to 

formulate rules. Therefore, if we have a way to consolidate rules by finding 
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out the common templates, it is possible to have a more accurate rule set for 

the prediction task. 

 

2) The concept of big data has been being a quite popular topic in last decade and 

obviously there are also large AGs that contains more than one million nodes 

for analysis. However, existing approaches proposed for the applications of 

AGs seldom consider the case of large AGs and therefore these approaches 

could become slow when applied to AGs graphs. Therefore, like what we have 

done to FC-AG, we would like to modify the other approaches proposed in this 

thesis so that they can be executed in the environment of distributed computing 

in order to solve the applications of large AGs. 

 

3) Although there are a number of applications of AGs, we have only studied two 

of them in this thesis. In future, we would like to extend our research by 

involving more applications of AGs, such as peer influence in social networks, 

the network traffic classification and the identification of essential proteins 

from PPINs. 
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