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Abstract

This dissertation studies the socially responsible operations in agricultural and

health care industries. In the first essay, we examine whether the government or

non-governmental organizations (NGOs) can improve farmers’ welfare by offering

agricultural advice and market information. Towards this end, we consider a sit-

uation where farmers decide whether to use market information to improve their

production plans or adopt agricultural advice to improve their operations when

they engage in Cournot competition under both uncertain market demand and un-

certain process yield. We show that both farmers will use the market information to

improve their profits in equilibrium. Hence, relative to the base case in which mar-

ket information is not available, the provision of market information can improve

the farmers’ total welfare (i.e., total profit for both farmers). Moreover, when the

underlying process yield is highly uncertain or when the products are highly het-

erogeneous, the provision of market information is welfare-maximizing in the sense

that the maximum total welfare of farmers is attained when both farmers utilize

market information in equilibrium. Furthermore, in equilibrium, whether a farmer

adopts the agricultural advice depends on the size of the requisite upfront invest-

ment. More importantly, we show that agricultural advice is not always welfare

improving unless the upfront investment is sufficiently low. This result implies that

to improve farmers’ welfare, governments should consider offering farmer subsidies.
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In the second essay, we study the performance measurements of health care sys-

tems. Many governments use waiting time per admission (i.e., the waiting time that

a patient spends per admission) as a measurement to evaluate the congestion level

and the performance of the health care system. Adopting this criterion may force

doctors to speed up their service and spend less time on each patient, resulting in a

decline in service quality and an increase in readmission rate. To characterize both

system congestion and service quality, we propose a new performance measurement,

total waiting time, which is the total amount of time a patient spends in the sys-

tem before being cured. We then consider the optimal design and control issues of

the health care system based on this new measurement. We model the health care

system as an M/M/1 queue with Bernoulli feedback, where the service rate is a de-

cision variable of the health care provider (HCP) and the readmission rate (i.e., the

feedback) is increasing in the service rate. We study the decision problems for the

three parties in the system: patients, the HCP and the social planner (government).

We demonstrate that a naive adoption of the waiting time reduction target could

even worsen the system performance, leading to a higher congestion level, lower

accessibility for new patients and a busier HCP. We find that the social optimality

cannot be achieved via the single pricing mechanism. Instead, the social planner

needs to adopt a regulation mechanism with multi-dimensional control variables.
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Publications arising from this thesis

• Tang, C. S., Y. Wang, M. Zhao. 2014. The implications of utilizing mar-

ket information and adopting agricultural advice for farmers in developing

economies. Forthcoming in Production and Operations Management.

• Guo, P., C. S. Tang, Y. Wang, M. Zhao. 2014. Why Minimizing Waiting Time

in a Health Care System Could be Bad? Working Paper.

The author of this thesis also conducted another project during his PhD study,

which results in a paper as follows:

• Zhao, M., Y. Wang, X. Gan. 2014. Signalling effect of daily deal promotion

for a startup service provider. Forthcoming in Journal of the Operational

Research Society.

However, because this paper is by no means related to the topic of socially

responsible operations, we do not include it in this thesis.

iv



Acknowledgements

During my Ph.D study, I was very fortunate to learn from many famous scholars in

different fields. Before the submission of the thesis, I wish to express my deepest

gratitude to them.

First of all, I wish to give my sincere thanks to my supervisors Dr. Yulan Wang,

Dr. Xianghua Gan and Prof. Houmin Yan for their professional guidance and

generous support. Dr. Xianghua Gan gave me the basic training in game theory

and modelling skills that enable me to handle many challenging problems. Dr.

Yulan Wang did not only give me the professional training in marketing operations

interface, academic writing and how to derive managerial insights, but also help me

to build up my network. I cannot image what my academic career would be without

her help.

I would also like to thank Prof. Christopher Tang for providing me a wonderful

research topic that leads to the first essay of this thesis. Prof. Tang leads me to

enter the field of socially responsible operations. The thesis would not have been

possible without his help.

Much credit also goes to Dr. Pengfei Guo, who leads me to enter the field of

health care operations and help me to finish the second essay of this thesis. Dr.

Guo instructed me in stochastic process and queueing models. He was always more

than willing to share with me his wealth of knowledge and expertise.

v



During my Ph.D study, I have learned consumer behavior from Prof. Jianmin Jia

and learned inventory models from Prof. Youhua Chen. I sincerely appreciate their

guidance that equipped me with necessary knowledge and experience to conduct

research in marketing and inventory management.

I also wish to thank Prof. Mingming Leng and Dr. Xubin Zhang for their

discussion on other two marketing projects, which enriched my knowledge on channel

marketing and consumer perception.

I owe a tremendous debt of gratitude to my parents. Without their constant

support and unconditional love, I could not have done this.

Finally, the thesis is dedicated to my girlfriend, Dr. Yunpeng Yang. Every

time when I faced difficulty in my study, she would always be there to support and

encourage me. Her love always keeps me going.

vi



Contents

Abstract ii

Acknowledgements v

1 Introduction 1

2 The Implications of Utilizing Market Information and Adopting
Agricultural Advice for Farmers in Developing Economies 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 A Unified Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Analysis of Subgames . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Meta-game Analysis . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Welfare Improvement . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 The Implications of Market Information and Agricultural Advice . . . 28

2.5.1 Utilization of Market Information . . . . . . . . . . . . . . . . 28

2.5.2 Adoption of Agricultural Advice . . . . . . . . . . . . . . . . . 33

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Why Minimizing Waiting Time in Health Care System Could
be Bad? 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Model Setup and Preliminaries . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Performance Measurements . . . . . . . . . . . . . . . . . . . 49

3.4 First-Best Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vii



3.5 Second-Best Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.1 New Patients’ Joining Decision . . . . . . . . . . . . . . . . . 59

3.5.2 The HCP’s Service Rate Decision . . . . . . . . . . . . . . . . 64

3.5.3 Price Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.4 Discussion: Two-Dimensional Control over Price and Read-
mission Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 The Analysis of the Scenario When the Potential Arrival Rate is Small 72

3.6.1 The Second-Best Solution . . . . . . . . . . . . . . . . . . . . 72

3.6.2 The Patients’ Joining Decision . . . . . . . . . . . . . . . . . . 73

3.6.3 Profit-Maximizing Price . . . . . . . . . . . . . . . . . . . . . 73

3.6.4 Welfare-Maximizing Price . . . . . . . . . . . . . . . . . . . . 74

3.6.5 Full Market Coverage . . . . . . . . . . . . . . . . . . . . . . . 75

3.6.6 Equilibrium Outcome . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Summary and Future Research 81

A Proofs of Chapter 2 83

B Proofs of Chapter 3 96

References 115

viii



Chapter 1

Introduction

Over the past few years, there has been increasing attentions on socially responsible

operations. Being socially responsible requires organizations to act for the benefit of

society instead of their own good. According to Paul Polman, CEO of Unilever,“A

company’s contribution to society is absolutely critical in today’s environment. · · ·
It is very clear that this world faces some considerable challenges: poverty, water,

global warming and climate change. Businesses like Unilever have a responsibility

here and thus a major role to play. · · · if we do the right thing and leverage this

enormous scale, we have a tremendous opportunity to make a major impact on

society and the environment.”1 Therefore, beyond profit maximization, a socially

responsible organization should incorporate social welfare, economic and environ-

mental effects into its objectives. Such objectives raise issues fundamentally different

from those examined in the existing operations management literature, especially

in agricultural and health care industries. This dissertation studies the socially re-

sponsible operations in agricultural and health care industries. More specifically,

in Chapter 2, we study whether the government or non-governmental organizations

(NGOs) can improve farmers’ welfare by offering agricultural advice and market in-

formation. In Chapter 3, we examine the performance measurements of health care

systems. Below we overview each chapter and summarize the major implications.

Chapter 2 is motivated by the recent effort to alleviate farmers’ poverty in de-

veloping economies. Agriculture is a dominant section in most of the developing

countries. For example, agriculture accounts for 70% of the employment, 33% of

the total GDP and 40% of the total export earnings in Sub-Saharan Africa (John-

1See http://www.criticaleye.net/archive.cfm?id=299
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son and Hazell 2002). One of the biggest challenge faced by most of the developing

countries is how to alleviate farmers’ poverty. For example, nearly 20% of farmers in

India live below the poverty line (Sharma 2013), and around 99 million small-scale

farmers in China have an annual income lower than the national poverty alleviation

standard of 2,300 yuan (Pierson 2013). According to the World Bank, 70% of the

world’s poor people live in rural areas of developing countries and are engaged in

agricultural activities for their livelihood.2

To alleviate poverty in developing countries, governments and NGOs dissemi-

nate two types of information: (1) agricultural advice to enable farmers to improve

their operations (cost reduction, quality improvement, and process yield increase);

and (2) market information about future price/demand to enable farmers to make

better production planning decisions. This information is usually disseminated free

of charge. While farmers can use the market information to improve their produc-

tion plans without incurring any (significant) cost, adopting agricultural advice to

improve operations requires upfront investment, for example, equipment, fertiliz-

ers, pesticides, and higher quality seeds. We examine whether farmers should use

market information to improve their production plans or adopt agricultural advice

to improve their operations when they engage in Cournot competition under both

uncertain market demand and uncertain process yield.

Our analysis indicates that both farmers will use the market information to

improve their profits in equilibrium. Hence, relative to the base case in which mar-

ket information is not available, the provision of market information can improve

the farmers’ total welfare (i.e., total profit for both farmers). Moreover, when the

underlying process yield is highly uncertain or when the products are highly het-

erogeneous, the provision of market information is welfare-maximizing in the sense

that the maximum total welfare of farmers is attained when both farmers utilize

2See http://data.worldbank.org/about/world-development-indicators-data/agriculture-and-
rural-development
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market information in equilibrium. Furthermore, in equilibrium, whether a farmer

adopts the agricultural advice depends on the size of the requisite upfront invest-

ment. More importantly, we show that agricultural advice is not always welfare

improving unless the upfront investment is sufficiently low. This result implies that

to improve farmers’ welfare, governments should consider offering farmer subsidies.

In chapter 3, we investigate how to evaluate a health care system’s performance.

Recently, due to greater data availability, many governments and organizations are

developing measurements to evaluate a health care system’s performance. Those

measurements can help people better understand where and what changes need to

be made in order to improve performance and the quality of care delivered. Therein,

as an important measurement to evaluate a health care system’s congestion levels

and performance, waiting time per admission (i.e., the waiting time that a patient

spends per admission) is widely adopted in many countries such as UK and New

Zealand. However, adopting this criterion may force doctors to speed up their service

and spend less time on each patient, resulting in a decline in service quality and an

increase in readmission rate. This motivate us to study the performance indicators

in health care industries by taking the tradeoff between service speed and service

quality in terms of readmission rate into account. To this end, we model the health

care system as an M/M/1 queue with Bernoulli feedback, where the service rate

is a decision variable of the HCP and the readmission rate (i.e., the feedback) is

increasing in the service rate. The existence of readmission risk enable us to define

three new performance measurements: (i) effective service rate, which is the mean

number of patients cured by the health care provider (HCP) per unit time; (ii)

total waiting time, which is the total amount of time a patient spends in the system

before being cured; (iii) the utilization rate for new patients, which measures how

much time the HCP spends on treating new patients.

We first conduct the sensitive analysis of those measurements with respect to

3



the service rate. Our results show that an increase in service rate may increase the

total waiting time but reduce the waiting time per admission. Therefore, reducing

waiting time per admission may incentivize the HCP to increase its service speed,

which in turn increases the readmission rate and intensifies the system congestion

in terms of the total waiting time. Furthermore, a higher total utilization rate may

lead to a smaller utilization rate for new patients. This reveals that keeping the

HCP busy may cause the HCP to spend less time on treating new patients.

Next, by examining patients’ joining decision, we find that increasing total effec-

tive arrival rate may reduce the effective arrival rate of new patients, which implies

that improving the accessibility for all the patients may reduce the accessibility for

new patients. Furthermore, increasing the arrival rate of new patients (total arrival

rate) may reduce the utilization rate for new patients (total utilization rate). This

implies that reducing HCP’s idle time may reduce the accessibility of the health care

services. Moreover, by studying the HCP’s decision of service rate, we demonstrate

that a higher price may mitigate system congestion in terms of total waiting time

but intensify system congestion in terms of waiting time per admission. Finally, we

also derive the optimal price from the perspective of the HCP and the social planner

respectively. We show that if the price is determined by the HCP, the service rate

is socially optimal, while if the price is controlled by the social planner, the service

rate is suboptimal. Therefore, price control hampers the efficiency of the HCP’s

care delivery.
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Chapter 2

The Implications of Utilizing Market

Information and Adopting Agricultural

Advice for Farmers in Developing

Economies

2.1 Introduction

Agriculture plays an important role in emerging economies. For example, the agri-

cultural sector accounts for 50% and 74% of the total workforce in India and Kenya,

respectively. However, the farmers in these regions remain poor because they lack

opportunities to improve their operations so that they can produce higher yield,

more available and better quality crops at lower cost. The lack of market infor-

mation and agricultural advice often results in market inefficiency, poor yields, and

huge crop wastage, all of which damage farmers’ earnings and livelihoods. Without

agricultural advisory information, farmers may not be able to make proper plan-

ning decisions in areas such as pest control and soil depletion, which often lead to

low and uncertain yields. Moreover, without information about future market price

trends, farmers cannot make effective production quantity decisions, which in turn

can affect their realized profit. These factors further aggravate the difficult situation

faced by those at the bottom of the pyramid, as this large population of farmers has

few income sources (Jensen 2007).

Recognizing these challenges faced by farmers, many governments have devel-

oped agricultural extension services by providing the following two types of infor-

mation: (1) agricultural advice that can help farmers to improve their operations

(i.e., how to grow? ) by reducing operating costs, improving quality, and increasing
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process yield;1 and (2) market (price/demand) forecast information that can help

farmers to make better long-term production planning decisions (i.e., how much to

grow? ).2 For example, the Indian government provides both types of information

on its website (www.india.gov.in/topics/agriculture) for free.

Due to a lack of Internet access, many governments and NGOs disseminate agri-

cultural advice and market information through different channels including radio,

television, and call centers. For example, in Kenya and Mali, an NGO launched

a weekly hour-long radio program called Mali Shambani that discusses farming

techniques and market price trends, etc. This free radio program also offers an in-

teractive call-in component for farmers to ask agricultural questions via phone or

SMS messaging. In the same vein, the India Ministry of Agriculture launched the

Kisan Call Centers in 2004 to deliver extension services to farmers over the phone.

This free service enables Indian farmers to use their phones to seek advice and to

gain access to information posted on the Internet. In another example, in India

the NGO Digital Green (digitalgreen.org) distributes farming advisory information

through online videos and DVDs delivered to farmers free of charge.

It is certainly a big step forward for more farmers to gain access to agricultural

advice and market information. However, even if the information is free of charge,

farmers need to decide whether to use such market information when making their

production plans, especially when they compete under uncertain market demand

and uncertain process yield. Moreover, because the adoption of agricultural advice

often requires upfront investment (tools, seeds, fertilizers, etc.), farmers need to

decide whether it is cost-effective to do so.

These observations motivate us to examine a situation in which two risk-neutral

1Agricultural advisory information includes: (a) tools and equipment for seedbed preparation,
sowing, planting and harvesting; (b) high quality seeds and the safe use of approved pesticides
and fertilizers; (c) pest management and locust control; and (d) soil and water conservation.

2Some governments also provide information about the current market prices in different markets
to help farmers to make better short-term selling decisions (i.e., when/where to sell?). For the
sake of tractability, we do not model this type of information in this chapter.
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farmers engage in Cournot competition under uncertain market demand and un-

certain process yield. (Note that our model can be extended to multiple farmers

by considering the “proportion” of the farmers who adopt the advice (or utilize the

market information).) We provide three justifications for selecting Cournot com-

petition as our modeling choice. First, Carter and MacLaren (1994) argue that

Cournot competition is a good approximation of the real economic decision-making

for managing perishable products, especially when the production quantity cannot

be changed quickly in advance of sales (e.g., fruits, vegetables) or for managing

products with lengthy production processes (e.g., tree crops). Second, Deodhar

and Sheldon (1996), Dong et al. (2006), and others provide empirical evidence to

support the existence of Cournot competition in various agricultural product mar-

kets, such as malting barley and banana. Third, if one interprets a “farmer” in our

model as a marketing board (or a marketing cooperative) that represents a group

of farmers in countries such as India and South Africa, then our model captures the

quantity competition between two marketing boards. In this context, each market-

ing board sets the aggregate production quantity to control the market price. To do

so, each marketing board may impose a quota on each farmer’s production quantity

(Nieuwoudt 1987).

To alleviate poverty, we consider the case in which the government offers either

agricultural advice or market information but not both.3 The analysis for the case in

which the government offers only market information is simpler because no upfront

investment is involved. However, for the case in which the government offers only

agricultural advice, we need to model the upfront investment associated with the

adoption of the agricultural advice endogenously.

Our model is intended to examine the following research questions:

1. Should all farmers use market information to plan their production in equilib-

3The analysis associated with the case in which the government offers both agricultural and
market information is intractable because it involves 16 subgames.
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rium?

2. Does market information improve farmers’ welfare?

3. Should all farmers adopt agricultural advice to improve their operations in

equilibrium when upfront investment is involved?

4. Does agricultural advice improve farmers’ welfare?

To analyze the implications of providing market information and/or agricultural

advice, we first establish a unified approach that combines market information and

agricultural advice without considering the upfront investment. This unified ap-

proach enables us to investigate the interactions among various types of operational

improvement induced by the two types of information. Specifically, we find that the

effect of yield improvement is complementary to quality improvement and market

demand forecast accuracy. In addition, when the process yield is highly uncertain,

yield improvement and cost reduction are always complementary. However, when

the uncertainty of the yield is relatively low, yield improvement and cost reduc-

tion are complementary if and only if the unit cost is large. Finally, we show that

information accuracy improvement has no effect on quality improvement and cost

reduction. By examining the equilibrium outcomes associated with the unified ap-

proach, we are able to separately investigate whether farmers should utilize market

information and whether farmers should adopt agricultural advice. Our equilibrium

analysis enables us to obtain the following results. First, we show that the provision

of market information always improves the farmers’ total welfare (i.e., the sum of

the profits of all farmers) and that farmers should use market information to im-

prove their production planning in equilibrium. However, as all farmers use market

information to plan their production, we find that market information can maximize

farmers’ welfare when the underlying process yield is highly uncertain or when the

products are highly heterogeneous. Second, in equilibrium, whether a farmer should

8



adopt the agricultural advice is dependent on the size of the requisite upfront in-

vestment. More importantly, we show that agricultural advice is not always welfare

improving, unless the upfront investment is sufficiently low. This result implies that

to improve farmers’ welfare, governments should consider offering farmer subsidies.

As such, our work makes two major contributions to the existing literature on

socially responsible operations. First, we examine the value of market information

when farmers engage in quantity competition under both uncertain market demand

and uncertain process yield. Second, by endogenizing the investment decision, we

examine the value of agricultural advice.

The rest of this chapter is organized as follows. In Section 2.2, we review the rel-

evant literature. Section 2.3 presents a unified framework that enables us to analyze

two separate settings (market information and agricultural advice) by analyzing a

single model. We also analyze the underlying subgames and the meta-game in this

section. In Section 2.4, we consider the case in which the government offers only

market information and analyze the behavior of each farmer in equilibrium. Section

2.5 deals with the case in which the government offers only agricultural advice and

each farmer needs to pay an upfront investment if he chooses to adopt the advice.

Concluding remarks are provided in Section 2.6 and all proofs are relegated to the

Appendix A.

2.2 Literature review

There is limited modeling literature on making socially responsible operations be-

cause this topic is an emerging research area in operations management. Accord-

ingly, most of the relevant articles are recent. For example, Chen et al. (2013a)

examine the ITC e-Choupal network and discuss how it substantially changes the

information and material flows. They show that the implicit agreement between the

contracted farmers and the ITC behaves like a formal contract and it is in the ITC’s
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best interest to provide all of the farmers with its services. Chen et al. (2013b)

further study the peer-to-peer information sharing in Avaaj Otalo. They articulate

why and when farmers have incentives to share demand and price information with

other competing farmers, and why those who provide answers to others may be

criticized and under-appreciated. Specifically, they show that the responses of the

knowledgeable farmers are always less informative than those of the experts. (See

Sodhi and Tang 2012 for a comprehensive survey.) Chen and Tang (2013) examine

the value of public and private information for the economic development of agricul-

tural business. They show that farmers are more responsive to the public/private

signal when the public/private signal is more accurate. Therefore, when the public

signal becomes more accurate, the effect of the private signal on the farmers’ wel-

fare decreases. Dawande et al. (2013) study the surface water allocation problem in

developing economies. An et al. (2014) show that cooperatives are beneficial to the

affiliated farmers only when the size of the cooperatives is relatively small. However,

all of the aforementioned studies assume that farmers utilize the information they

receive. In contrast, we provide the option for each farmer to decide whether to

utilize the market information. Because upfront investment is involved, we allow

each farmer to decide whether to adopt certain agricultural advice.

In addition to examining the adoption of agricultural advice, we examine the

utilization of market information under competition. Therefore, our work is also

related to the literature on information sharing in oligopolies. This line of research

mainly examines whether firms have incentives to share their private information

with competitors. The private information may concern either uncertain common

value such as demand intercepts or uncertain private value such as costs. For exam-

ple, Gal-Or (1985 and 1986) examine whether competing firms should share common

demand intercept or production cost information with each other. Her results sug-

gest that the incentive for information sharing crucially depends on the content of
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information (demand versus cost) and the nature of competition (quantity versus

price). Raith (1996) provides a comprehensive survey of this research stream. Vives

(1988) studies a large market in which firms engage in Cournot (quantity) compe-

tition and have access to private signals about the uncertain market demand. He

shows that information is aggregated inefficiently and there is welfare loss even if the

market is asymptotically competitive. The same informational setting is adopted

by Li (2002). Using a two-tier supply chain relationship, he examines whether a

downstream retailer has an incentive to share information with the upstream sup-

plier, because the supplier may pass this information to other competing retailers.

Armantier and Richard (2003) empirically show that sharing cost information in

the airline industry can benefit the airlines without hurting the consumers. Zhu

(2004) explores a B2B exchange that provides an online platform for information

transmission. He shows that whether a firm should join the B2B exchange depends

on the cost heterogeneity, product differentiation, and the degree of uncertainty.

Hueth and Marcoul (2006) consider the information sharing among agricultural in-

termediaries. They show that even if information sharing can increase the profit

of each firm, firms will conceal information in equilibrium. Jansen (2010) studies

the information sharing in R&D competition. He shows that the incentive to dis-

close information depends on whether the winner firm of an R&D race is capable

of appropriating the full revenue of its innovation. In this chapter, we explore an

entirely different context. First, we consider both the uncertain common value (e.g.,

market potential) and the uncertain private value (e.g., the process yield). Second,

although some of our results can shed light on the farmers’ incentive for information

sharing, we do not explicitly examine this issue. Instead, we consider the case in

which the government offers market information and agricultural advice to farm-

ers. More importantly, we focus on the issue of whether each farmer should utilize

market information and whether each farmer should adopt agricultural advice when
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both market demand and process yield are uncertain.

2.3 The model

Consider two farmers who produce and sell the same crop in a common market.4

Each farmer i, i = 1, 2, incurs a production cost cqi, where c is the unit production

cost and qi is the production quantity (a decision variable). In the base case, when

farmer i processes qi units, farmer i’s actual output is ziqi, where zi is the uncertain

process yield such that E(zi) = µy, µy ≤ 1, and V ar(zi) = σ2
y. We assume that z1

and z2 are independent random variables. This assumption is reasonable given that

the farming skill levels of different farmers are normally independent. For notational

convenience, we define S2 and Cy as the second moment and coefficient of variation

(CV) of zi, respectively, so that S2 = E(z2
i ) = σ2

y + µ2
y and Cy = σy/µy.

To capture the quantity competition under uncertain market demand, we assume

that the uncertain market price

P = M − (z1q1 + z2q2),

where M > 0 corresponds to the uncertain market potential.5 We also assume that

M is independent of zi, i = 1, 2, and normally distributed with a mean of µm and a

variance of σ2
m, that is, M ∼ N(µm, σ2

m). Consider the case in which neither product

is available in the market (i.e., q1 = q2 = 0) so that the market price equals M . In

this case, if we let one farmer i produce an infinitesimal amount (and the other farmer

produces nothing), then the gross margin of farmer i is E(Mzi − c) = µmµy − c.

For notational convenience, hereafter we denote g = µmµy − c, which represents

the expected gross margin when only one farmer exists in the market (i.e., without

considering quantity competition).

4Our analysis can be extended to the case in which there are n > 2 farmers.
5For ease of exposition, we set the price elasticity to 1. However, our model can be extended to
the case of P = M − b(z1q1 + z2q2), where b > 0.
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We now model the implications of the aforementioned information that is in-

tended to help farmers make better production planning decisions and improve their

operations.

Market information. The government offers information I that would enable

farmers to improve the accuracy of their forecast of the market potential M . To

facilitate our analysis, we assume that (M, I) are bivariate normally distributed so

that

(M, I) ∼ N(µm, µI , σ
2
m, σ2

I , ρ),

where ρ is the correlation coefficient between the market potential and market in-

formation and ρ ∈ (−1, 1). We also assume that both M and I are independent of

zi, i = 1, 2.6 Each farmer can use information I to “update” her forecast on M . By

considering the conditional expectation and conditional variance, we get

E(M |I) = µm + ρ
σm

σI

(I − µI) and V ar(M |I) = σ2
m(1− ρ2).

By noting that V ar(M |I) ≤ V ar(M), we can conclude that each farmer can use

information I to obtain a more accurate forecast of the market potential.

Agricultural Advice. If a farmer adopts this agricultural advice by making an

upfront investment K, she can enjoy three benefits that are described as follows.

1. Cost reduction. Each farmer reduces her unit production cost from c to βc,

where β ≤ 1.

2. Quality improvement. Each farmer improves her product quality so that

the average market potential is increased from µm to αµm, where α ≥ 1.

Therefore, the improved market potential, denoted by αM , follows the normal

distribution with mean αµm and variance σ2
m, that is, αM ∼ N(αµm, σ2

m).

6This assumption is reasonable because market information normally will not impact the farming
skills of the farmers.
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3. Process yield improvement. The process yield of farmer i, i = 1, 2 is

increased from zi to z
′
i, where E(z

′
i) = γµy ≥ E(zi) (γ ≥ 1) and V ar(z

′
i) = σ2

y.
7

To ensure that the improved yield is bounded by 1, γµy ≤ 1 is required.

Similar to S2 and g associated with the regular yield zi as defined earlier, we

let S
′2

= σ2
y + γ2µ2

y and g
′
= αγµmµy − βc.8

Table 2.1: List of Notations

Notation Definition
M market potential (a random variable)
(µm, σ2

m) mean and variance of market potential
I market information (a random variable)

(µI , σ
2
I) mean and variance of market information

ρ = Corr(M, I) correlation coefficient between market information
and market potential

c regular unit production cost
K upfront investment cost for adopting agricultural advice
α quality improvement parameter, α ≥ 1
β cost reduction parameter, 0 < β ≤ 1
γ yield level improvement parameter, γ ≥ 1

qi production quantity of farmer i , i = 1, 2 (a decision variable)
zi regular process yield of farmer i, i = 1, 2 (a random variable)
(µy, σ2

y, S2, Cy) mean, variance, second moment and coefficient of variation (CV)
of regular process yield zi, i = 1, 2, where S2 = σ2

y + µ2
y, Cy = σy/µy

z
′
i improved process yield of farmer i, i = 1, 2

S
′2

= σ2
y + γ2µ2

y second moment of z
′
i, i = 1, 2

g = µmµy − c gross margin “before” adopting agricultural advice
(without considering quantity competition)

g
′
= αγµmµy − βc gross margin “after” adopting agricultural advice

(without considering quantity competition)

Table 3.1 summarizes the notations used in this chapter. According to our

model description, market information and agricultural advice affect farmers in two

different ways. First, when utilizing market information I, each farmer i can use the

updated market uncertainty (M |I) to determine her production quantity qi. Second,

when adopting agricultural advice, each farmer incurs an upfront investment K.

However, when deciding on her production quantity qi, farmer i enjoys three benefits

7For ease of exposition, we assume that the quality and yield improvements affect only the mean
value of zi but not the variance. However, the structure of the results remains the same when
we relax this assumption. Furthermore, this setting also enables us to examine the impact of
yield improvement on the uncertainty of process yield in terms of coefficient of variation.

8Because α ≥ 1, γ ≥ 1 and β ≤ 1, we have S
′ ≥ S and g

′ ≥ g. Also, to ensure that both E(M |I)
and the equilibrium production quantity in our analysis are non-negative, we assume that after
adopting the advice, the “improved” gross margin g

′
is large enough so that g

′
+2ρσm

σI
(I−µI) > 0.
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associated with quality improvement via α, cost reduction via β, and process yield

improvement via γ. Although market information and agricultural advice affect

farmers in different ways, we now present a unified approach so that we can use one

generic model to analyze their implications. Specifically, we introduce our unified

approach and analyze the equilibrium outcomes of our generic model in the next

section. We then use the equilibrium outcomes of our generic model to separately

examine the implications of the provision of market information and agricultural

advice in the subsequent sections.

2.4 A Unified Approach

In this section, we introduce a unified approach that combines market information

and agricultural advice. Recall that the adoption of agricultural advice involves the

upfront investment cost K while the adoption of market information does not. If

we suppress the upfront investment K that is associated with the adoption of agri-

cultural advice, we can characterize the meta-game between the two farmers as a

two-person game in which each player has to decide whether to utilize market infor-

mation (respectively, whether to adopt agricultural advice). For tractability, we shall

assume that under our unified approach, each farmer either utilizes both market in-

formation and agricultural advice (denoted by Y ), or utilizes nothing at all (denoted

as N).9 Consequently, there are four pairs of strategies: (N,N), (Y, N), (N, Y ), and

(Y, Y ). For each of these four pairs of strategies, there is a corresponding subgame

in which both farmers engage in Cournot (quantity) competition. For each sub-

game, we need to determine the production quantity and the expected payoff of

each farmer in equilibrium. We use superscript to denote the equilibrium outcome

9If both market information and agricultural advice are available, each farmer has four options to
choose from; i.e., whether to utilize market information or not and whether to adopt agricultural
advice or not. Under this setting, these two farmers engage in 4×4 = 16 corresponding subgames.
The analysis of these 16 subgames and the comparisons among equilibrium outcomes of these
16 subgames would become very tedious.

15



of each subgame. For example, for subgame (Y, N), let qY N
i be the production

quantity and πY N
i be the expected payoff of each farmer i in equilibrium, i = 1, 2.

Our unified approach for analyzing the implications of market information and

agricultural advice can be described as follows. First, we solve all four subgames by

determining the expected payoff of each farmer assuming that both market infor-

mation and agricultural advice are available. Second, to analyze the implications

of market information, we first determine the expected payoff of each farmer for

the case in which only market information is available by setting α = β = γ = 1.

To determine whether each farmer “utilizes” market information in equilibrium, we

solve the 2x2 meta-game by using the expected payoffs determined in those four

subgames, as shown in Table 2.2.

Table 2.2: Farmers’ Expected Payoffs

`````````````̀Farmer 1
Farmer 2

N (do not utilize/adopt) Y (utilize /adopt)

N (do no utilize/adopt) πNN
1 , πNN

2 πNY
1 , πNY

2

Y (utilize/adopt) πY N
1 , πY N

2 πY Y
1 , πY Y

2

Next, to analyze the implications of agricultural advice, we first determine the

expected payoff of each farmer for the case in which only agricultural advice is

available by setting ρ = 0. To determine whether each farmer “adopts” agricultural

advice in equilibrium, we solve the meta-game by using the expected payoffs by

accounting for the upfront investment K as determined in the four subgames, as

shown in Table 2.2.

2.4.1 Analysis of Subgames

Using the above mentioned unified approach, we now proceed to analyze the four

subgames that correspond to those 4 pairs of strategies: (N,N), (Y, N), (N, Y ), and

(Y, Y ). Due to symmetry, the analysis associated with subgame (Y, N) is identical
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to that of subgame (N, Y ). Therefore, it suffices to analyze subgames (N,N), (Y, Y ),

and (Y, N). After determining the equilibrium outcomes of all four subgames, we

can then solve the meta-game as depicted in Table 2.2.

Under our unified approach, subgame (Y, Y ) is the most complex because it

involves both the utilization of market information and the adoption of agricultural

advice. For any revealed market information I, the expected profit of farmer i needs

to take into account all three benefits associated with the adoption of agricultural

advice; namely, the effective market price becomes P
′

= αM − (z
′
iqi + z

′
3−iq3−i),

the effective output becomes z
′
iqi, and the effective production cost becomes βcqi.

Therefore, the expected profit of farmer i under strategy (Y, Y ) can be expressed as

πi(qi|I) = E{(αM − z
′
iqi − z

′
jqj)z

′
iqi − βcqi|I}

= g
′
qi + γρµy

σm

σI

(I − µI)qi − S
′2
q2
i − γ2µ2

yqiqj|I, for i, j = 1, 2, j 6= i. (2.1)

Because the other strategies are special cases of strategy (Y, Y ), we can use the

above expression to determine the farmer’s profit under the other strategies. Given

the expected profit as stated in (2.1), we are now ready to solve all of the subgames.

Subgame (N,N)

The case in which neither farmer utilizes market information (nor adopts agriculture

advice) under strategy (N,N) corresponds to the case that α = β = γ = 1 and ρ = 0

so that g′ = g and S
′2

= S2. By utilizing (2.1), the expected profit of farmer i can

be written as

πi(qi) = gqi − S2q2
i − µ2

yqiqj, i = 1, 2, j 6= i.
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By noting that πi(qi) is concave, we obtain farmer i’s best response function as

follows:

qi(qj) =
g − µ2

yqj

2S2
, i = 1, 2, j 6= i.

Solving the best response functions of both farmers, we obtain the following propo-

sition.

Proposition 1. The equilibrium outcomes associated with strategy (N, N) satisfy

qNN
i =

g

2S2 + µ2
y

, i = 1, 2, (2.2)

πNN
i =

S2g2

(2S2 + µ2
y)

2
, i = 1, 2, (2.3)

where g = µmµy− c and S2 = σ2
y +µ2

y. Both the expected profit πNN
i and production

quantity qNN
i are increasing in µm and decreasing in σy. Moreover, πNN

i and the

expected output µyq
NN
i are both increasing in µy.

Proposition 1 implies that without utilizing market information (or without

adopting agricultural advice), a higher market potential µm or a lower yield un-

certainty (via higher µy or lower σy) can enable both farmers to produce more and

earn more. However, the production quantity qNN
i is not necessarily increasing in

µy. On the one hand, a higher expected yield µy can certainly enable each farmer

to generate more output with the same input. On the other hand, to avoid over

supply that drives down the market price, a higher expected yield µy can also cause

each farmer to produce less in equilibrium. Although the production quantity qNN
i

is not monotone in µy for farmer i, the expected output µyq
NN
i is increasing in µy.

Therefore, a higher expected yield will always lead to a larger expected output even

when a farmer produces less.
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Subgame (Y, Y )

When both farmers utilize market information (or adopt agriculture advice) under

strategy (Y, Y ), the expected profit of each farmer for any given information I is

given in (2.1). In this case, it is easy to check that the best response function of

farmer i is

qi(qj)|I =
g
′
σI + γρµyσm(I − µI)

2σIS
′2 − γ2µ2

yqj

2S ′2 , i = 1, 2, j 6= i.

Recall that g
′
= αγµmµy−βc and S

′2
= σ2

y +γ2µ2
y. By considering the best response

functions of both farmers, we have the following result.

Lemma 1. For any given market information I, the ex post equilibrium outcomes

associated with strategy (Y, Y ) satisfy

qY Y
i |I =

g
′
σI + γρµyσm(I − µI)

σI(2S
′2 + γ2µ2

y)
, for i = 1, 2,

πY Y
i |I =

S
′2
[g
′
σI + γρµyσm(I − µI)]

2

σ2
I(2S

′2 + γ2µ2
y)

2
, for i = 1, 2.

Based on Lemma 1, we can obtain the ex ante equilibrium outcomes as follows.

Proposition 2. The ex ante equilibrium outcomes associated with strategy (Y, Y )

satisfy

qY Y
i =

g
′

2S ′2 + γ2µ2
y

, for i = 1, 2, (2.4)

πY Y
i =

S
′2
(g

′2
+ γ2ρ2µ2

yσ
2
m)

(2S ′2 + γ2µ2
y)

2
, for i = 1, 2. (2.5)

Both qY Y
i and πY Y

i are increasing in α and decreasing in β. Furthermore, πY Y
i is

19



increasing in ρ2, γ and σm.

Proposition 2 reveals that when farmers utilize market information (and adopt

agricultural advice), they can earn more when the market information becomes

more informative (i.e., as ρ2 increases) or when the agricultural advice becomes

more beneficial (i.e., as α and γ increase, or as β decreases). This result is intuitive.

Recall that E(M |I) = µm +ρσm

σI
(I−µI) and V ar(M |I) = σ2

m(1−ρ2). Then, we

can use EIE(M |I) = µm and (2.4) to show that the ex ante production quantity is

independent of market information via ρ. Next, observe that market information I

enables each farmer to reduce the variance of market potential M from V ar(M) to

V ar(M |I), where V ar(M |I) = σ2
m(1 − ρ2) = V ar(M) − ρ2σ2

m. By noting that the

term ρ2σ2
m represents the reduction of variance when a farmer utilizes market infor-

mation, it is intuitive to see that each farmer’s expected profit increases in relation

to the amount of variance reduction ρ2σ2
m. Finally, similar to Lemma 1, when the

expected yield µy increases, each farmer may reduce the production quantity qY Y
i

in equilibrium to avoid over supply that drives down market price.

Subgame (Y, N)

Under strategy (Y, N), farmer 1 is the only farmer who utilizes market information

(and adopts agricultural advice). Thus, farmer 1’s market potential becomes αM

while farmer 2’ market potential remains M . By noting that farmer 2’s process yield

is z2, we can derive the expected profit of farmer 1 by replacing z
′
2 with z2 in (2.1),

getting

π1(q1) = E{(αM − (z
′
1q1 + z2q2))z

′
1q1 − βcq1|I}

= g
′
q1 + γρµy

σm

σI

(I − µI)q1 − S
′2
q2
1 − γµ2

yq1q2|I. (2.6)
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However, although farmer 2 does not utilize market information or adopt agricultural

advice, she knows that farmer 1 observes I = µI (in expectation).10 Therefore,

farmer 2’s expected profit is

π2(q2) = E{(M − (z
′
1q1|I = µI)− z2q2)z2q2 − cq2}

= gq2 − S2q2
2 − (γµ2

yq1|I = µI)q2. (2.7)

By deriving the first order conditions of (2.6) and (2.7), we can obtain the following

best response functions:

q1(q2)|I =
g
′
σI + γρµyσm(I − µI)

2σIS
′2 − γµ2

yq2

2S ′2 . (2.8)

q2(q1) =
g − γµ2

y(q1|I = µI)

2S2
. (2.9)

Based on the above best response functions, we can derive the ex post equilibrium

outcomes whose expressions hinge upon the value of Cy, the coefficient of variation

of the process yield.

Lemma 2. For any given market information I, the ex post equilibrium outcomes

10From (2.8), we can see that EI(q1|I) = (q1|I = µI). Therefore, by assuming that farmer 2
observes the mean market information, we can also obtain the Bayesian equilibrium.
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associated with strategy (Y, N) satisfy

qY N
1 |I =





2S2g
′−γµ2

yg

4S2S
′2−γ2µ4

y

+
γρµyσm(I−µI)

2σIS
′2 , if C2

y > γg
′

2g
− γ2,

g
′
σI+γρµyσm(I−µI)

2σIS′2
, otherwise,

(2.10)

qY N
2 =





2S
′2

g−γµ2
yg
′

4S2S′2−γ2µ4
y

, if C2
y > γg

′

2g
− γ2,

0, otherwise,
(2.11)

πY N
1 |I =





S
′2

[
2S2g

′−γµ2
yg

4S2S′2−γ2µ4
y

+
γρµyσm(I−µI)

2σIS′2

]2

, if C2
y > γg

′

2g
− γ2,

[g
′
σI+γρµyσm(I−µI)]2

4σ2
IS′2

, otherwise,

(2.12)

πY N
2 =





S2(2S
′2

g−γµ2
yg
′
)2

(4S2S′2−γ2µ4
y)2

, if C2
y > γg

′

2g
− γ2,

0, otherwise.
(2.13)

When farmer 1 is the only farmer who benefits from utilizing market information

(via ρ) and from adopting agricultural advice (via α, β, and γ), Lemma 2 reveals

that farmer 1 can afford to force farmer 2 to exit the market when the process yield

uncertainty is sufficiently low; i.e., when C2
y ≤ γg

′

2g
− γ2.

By using Lemma 2, we get the following proposition.

Proposition 3. The ex ante equilibrium outcomes of farmer 1 associated with strat-

egy (Y, N) satisfy

qY N
1 =





2S2g
′−γµ2

yg

4S2S′2−γ2µ4
y

, if C2
y > γg

′

2g
− γ2,

g
′

2S′2
, otherwise,

(2.14)

πY N
1 =





S
′2

(2S2g
′−γµ2

yg)2

(4S2S′2−γ2µ4
y)2

+
γ2ρ2µ2

yσ2
m

4S′2
, if C2

y > γg
′

2g
− γ2,

g
′2

+γ2ρ2µ2
yσ2

m

4S′2
, otherwise.

(2.15)

The ex ante equilibrium outcomes of farmer 2 associated with strategy (Y, N) are
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given in Lemma 2, as stated in (2.11) and (2.13).

Proposition 3 has the same interpretation as Lemma 2: in equilibrium, farmer 1

can afford to force farmer 2 to exit the market when the process yield uncertainty

is sufficiently low.

Below we compare the equilibrium outcomes of farmer 1 (who utilizes and

adopts) and that of farmer 2 (who does not utilize or adopt).

Corollary 3. When only farmer 1 chooses to invest, then qY N
1 ≥ qY N

2 if γ = 1.

Corollary 3 reveals that farmer 1 will produce more than farmer 2 when the

adoption of agricultural advice will not increase the process yield (γ = 1). However,

it is not always true that farmer 1 will produce more. This is the case especially

when farmer 1 is concerned about over supply that will drive down the market price.

When γ > 1, farmer 1 can process less input than farmer 2 and yet generate a higher

output than farmer 2. Therefore, farmer 1 may produce less.

Finally, by symmetry, we can use Proposition 3 to obtain the equilibrium out-

comes associated with strategy (N, Y ), where qNY
1 = qY N

2 , qNY
2 = qY N

1 , πNY
1 = πY N

2 ,

and πNY
2 = πY N

1 .

In summary, we have determined each farmer’s expected profit in equilibrium

associated with each subgame. By using these expected profits, we can specify the

payoffs associated with the 2x2 meta-game depicted in Table 2.2. We now proceed

to solve this meta-game to examine the conditions under which a farmer will utilize

market information (or adopt agricultural advice).

2.4.2 Meta-game Analysis

By examining each farmer’s expected profit in equilibrium associated with subgames

(N,N), (Y, Y ), (Y, N), and (N, Y ) in Propositions 1, 2, and 3, we can establish the

following lemma via direct comparison.
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Lemma 4. The farmer’s expected profits associated with subgames (N,N), (Y, Y ),

(Y, N), and (N, Y ) possess the following properties.

1. πY N
1 (= πNY

2 ) ≥ πY Y
1 (= πY Y

2 ) ≥ πNN
1 (= πNN

2 ) ≥ πNY
1 (= πY N

2 ).

2. πY N
1 − πNN

1 (= πNY
2 − πNN

2 ) ≥ πY Y
1 − πNY

1 (= πY Y
2 − πY N

2 ).

By noting from Lemma 4 that farmer 1’s expected profit satisfies πY N
1 ≥ πNN

1

and πY Y
1 ≥ πNY

1 (and similarly for farmer 2), we can conclude that a farmer can

always increase her expected profit by utilizing market information (or adopting

agricultural advice) regardless of the strategy selected by the other farmer. Also,

by noting that πY N
1 − πNN

1 ≥ πY Y
1 − πNY

1 and πNY
2 − πNN

2 ≥ πY Y
2 − πY N

2 , we can

conclude that by utilizing market information (or adopting agricultural advice), the

increase in the expected profit of a farmer is higher when the other farmer chooses

not to utilize market information (or not to adopt agricultural advice).

Lemma 4 reveals that without considering the upfront investment K associated

with the adoption of agricultural advice, a farmer can always benefit from utilizing

market information (or adopting agricultural advice). This observation enables us to

compare the expected payoffs shown in Table 2.2 by using the inequalities established

in Lemma 4. By doing so, we can solve the meta-game as follows.

Corollary 5. Without considering the upfront investment K associated with the

adoption of agricultural advice, strategy (Y, Y ) is the unique equilibrium; i.e., both

farmers utilize market information (or adopt agricultural advice) in equilibrium.

Knowing that market information (or agricultural advice) is beneficial to each

farmer when the farmers engage in Cournot competition under both demand and

process yield uncertainty, Corollary 5 is a natural consequence, that is, both farmers

will utilize market information (or adopt agricultural advice) in equilibrium.
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2.4.3 Welfare Improvement

When both farmers utilize market information (or adopt agricultural advice) in

equilibrium, the government (or NGO) can measure the farmers’ welfare improve-

ment due to the provision of market information (or agricultural advice) against

the base case under strategy (N,N). In this case, we define the farmers’ welfare

improvement according to the term (πY Y
1 −πNN

1 )+ (πY Y
2 −πNN

2 ). Due to symmetry

(i.e., πY Y
1 = πY Y

2 and πNN
1 = πNN

2 ), it is sufficient for us to focus our analysis on

(πY Y
1 − πNN

1 ). Comparing the expressions for the farmers’ expected profits stated

in Propositions 1 and 2, we get the following corollary.

Corollary 6. Without considering the upfront investment K associated with the

adoption of agricultural advice, market information (or agricultural advice) is wel-

fare improving: (πY Y
i − πNN

i ) > 0 for i = 1, 2. Also, the welfare improvement

(πY Y
i − πNN

i ) is decreasing in β, and increasing in α, γ, and ρ2.

Corollary 6 reveals that both farmers benefit from utilizing market information

(or adopting agricultural advice) in equilibrium. Hence, market information is wel-

fare improving. Without considering the upfront investment K associated with the

adoption of agricultural advice, agricultural advice is also welfare improving. (We

shall examine the effect of the upfront investment K on the farmers’ welfare in Sec-

tion 5.) It is intuitive to see that the welfare improvement (πY Y
i − πNN

i ) increases

as the benefits associated with market information (via ρ2) and agricultural advice

(via α, γ, and β) increase.

To further investigate the interaction effects among quality improvement, cost

reduction, process yield improvement, and forecast accuracy improvement, we es-

tablish the following corollary.

Corollary 7. Without considering the upfront investment K associated with the

adoption of agricultural advice, the welfare improvement (πY Y
i − πNN

i ), i = 1, 2,

25



possesses the following properties.

1. The welfare improvement (πY Y
i −πNN

i ) is supermodular in (α, γ) , (γ, σm) and

(γ, ρ2); i.e.,

∂2(πY Y
i − πNN

i )

∂α∂γ
> 0,

∂2(πY Y
i − πNN

i )

∂γ∂σm

> 0 and
∂2(πY Y

i − πNN
i )

∂γ∂ρ2
> 0.

2. There exist threshold points C̄y and c̄ such that when Cy/γ > C̄y, the welfare

improvement (πY Y
i − πNN

i ) is always submodular in (β, γ). But when Cy/γ ≤
C̄y, the welfare improvement is submodular in (β, γ) if and only if c > c̄.

3. The welfare improvement (πY Y
i − πNN

i ) is modular in (α, ρ2) and (β, ρ2); i.e.,

∂2(πY Y
i − πNN

i )

∂α∂ρ2
= 0 and

∂2(πY Y
i − πNN

i )

∂β∂ρ2
= 0.

The first statement of Corollary 7 has the following implications. First, quality

improvement (via α) and process yield improvement (via γ) are complementary,

that is, they generate a “compounding effect” on the farmer’s welfare. In this case,

the process yield improvement results in a larger expected output, which intensifies

the market competition, while the quality improvement leads to a larger market

potential, thereby softening the market competition.

Second, process yield improvement (via γ) is more beneficial in terms of welfare

improvement when market uncertainty is higher (i.e., when σm is larger) or when the

market information is more accurate (i.e., when ρ2 is larger). By noting that the term

ρ2σ2
m represents the reduction of variance when a farmer utilizes market information,

this result implies that when the use of market information is more effective in

improving the forecast accuracy (via ρ2σ2
m), the farmers have more incentives to

improve the process yield.
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Next, we examine the second statement of Corollary 4. Note that Cy/γ ≡ σy

γµy

represents the coefficient of variation of the “improved process yield” and that the

unit cost reduces as β decreases. The second statement of Corollary 4 shows that

cost reduction (via β) and process yield improvement (via γ) are complementary

when: (1) the improved process yield is highly uncertain, or (2) the improved pro-

cess yield is relatively stable but the unit cost c is sufficiently large. These results

can be explained as follows. First, according to Proposition 2, the effect of yield

improvement (via γ) on the production quantity qY Y
i is ambiguous. Positively, the

yield improvement can enable each farmer to obtain the same output by reduc-

ing her production quantity. This indirect cost reduction causes both farmers to

produce more. Negatively, the yield improvement may also intensify the market

competition and drive down the market price, causing both farmers to produce less

in equilibrium. The cost reduction (via β) is complementary to the positive effect

but is substituted by the negative effect of yield improvement. Furthermore, from

(4), we can easily show that ∂2qY Y
i /∂γ∂c > 0, which implies that when the unit

cost is larger, qY Y
i is more likely to increase in γ. This also indicates that when the

unit cost is larger, the positive effect tends to be stronger than the negative effect.

Next, observing from the best response of both farmers under strategy (Y, Y ), if one

farmer produces one extra unit, the other’s best response is to reduce her production

quantity by γ2µ2
y/2S

′2
. This quantity change can measure the product substitution

between the two farmers. We refer to this as a substitution factor. By noting that

γ2µ2
y/2S

′2
= 1/2(C2

y/γ
2 + 1) is decreasing in Cy/γ (the coefficient of variation of

the improved process yield), we know that the more uncertain the process yield, the

less fierce the market competition. Thus, when the process yield is highly uncertain

(i.e., Cy/γ > C̄y) such that the market competition is relatively mild, the positive

effect of yield improvement always dominates its negative effect. Therefore, the cost

reduction and yield improvement are complementary. However, when the process
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yield is relatively stable, cost reduction and yield improvement are complementary

if and only if the unit cost is large enough such that the positive effect of yield

improvement can dominate its negative effect.

Finally, the third statement of Corollary 7 shows that the improvement in fore-

cast accuracy has no effect on quality improvement or cost reduction. Therefore,

the government prefers the combination of process yield improvement and demand

forecast improvement over the combination of demand forecast improvement and

cost reduction or quality improvement.

2.5 The Implications of Market Information and

Agricultural Advice

Based on the unified approach and the corresponding analysis presented in Section

4, we now examine the implications of market information and agricultural advice

separately.

2.5.1 Utilization of Market Information

In this section, we consider the case in which the government only provides market

information I that is intended to help farmers improve their production planning.

Without the benefits associated with agricultural advice, we have α = β = γ = 1.

In this case, S ′ = S, g′ = g and C2
y > 0 > γg

′

2g
− γ2. Based on Propositions 1, 2, 3,

and Lemma 2, both farmers’ expected profit under each subgame can be simplified
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as:

πNN
1 = πNN

2 =
S2g2

(2S2 + µ2
y)

2
,

πY Y
1 = πY Y

2 =
S2(g2 + ρ2µ2

yσ
2
m)

(2S2 + µ2
y)

2
,

πY N
1 = πNY

2 =
S2g2

(2S2 + µ2
y)

2
+

ρ2µ2
yσ

2
m

4S2
, (2.16)

πNY
1 = πY N

2 =
S2g2

(2S2 + µ2
y)

2
. (2.17)

By direct comparison, we establish the following result.

Corollary 8. When the government provides market information I only,

1. The farmer’s expected profits satisfy πY N
1 (= πNY

2 ) > πY Y
1 (= πY Y

2 ) > πNN
1 =

πNY
1 (= πNN

2 = πY N
2 ). Furthermore, πY N

1 −πNN
1 (= πNY

2 −πNN
2 ) > πY Y

1 −πNY
1 (=

πY Y
2 − πY N

2 ).

2. Both farmers use the market information in equilibrium to make better pro-

duction planning decisions.

Because “market information only” is a special case of the unified model, the

above corollary is a sharper statement of Lemma 4 and Corollary 5. Next, the

inequality πY N
1 (= πNY

2 ) > πY Y
1 (= πY Y

2 ) in Corollary 8 implies that the farmer with

the market information has no incentives to share the market information with

her competitors, which is consistent with the results obtained by Gal-Or (1985,

1986). As stated in Gal-Or (1985, 1986), firms gain from sharing private value (e.g.,

unit production cost) but lose from sharing common value (e.g., common demand).

However, Gal-Or (1985, 1986) addresses the above issue from the viewpoint of profit

maximization. In our context, the market potential is a common value to both
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farmers and we are interested in examining whether the government has incentives

to distribute the market information in terms of welfare maximization. That is,

is the market information welfare maximizing in the sense that the maximum total

welfare of the farmers is attained when both farmers utilize the market information in

equilibrium? Recall from Corollary 6 that market information is welfare improving:

(πY Y
i − πNN

i ) > 0 for i = 1, 2. However, Corollary 8 reveals that strategy (Y, Y )

is the equilibrium but πY N
1 > πY Y

1 and πY N
2 < πY Y

2 . Therefore, it remains unclear

whether (πY Y
1 + πY Y

2 ) dominates the farmers’ total welfare associated with all other

strategies. We now examine this question.

We first observe from Corollary 6 that (πY Y
1 + πY Y

2 ) > (πNN
1 + πNN

2 ). Due to

the symmetry between strategies (Y, N) and (N, Y ), we can conclude that market

information is welfare maximizing if (πY Y
1 +πY Y

2 ) is greater than (πY N
1 +πY N

2 ). Given

that g = µmµy − c and S2 = σ2
y + µ2

y, we can establish a simple condition under

which market information is welfare maximizing: the maximum total welfare of the

farmers is attained when both farmers use the market information in equilibrium

under strategy (Y, Y ).

Proposition 4. When the government provides market information I only, the pro-

vision of this market information is welfare maximizing if and only if the coefficient

of variation of the process yield σy

µy
≡ Cy >

√√
2−1
2

.

Proposition 4 reveals that the market information is welfare maximizing when the

regular process yield is highly uncertain. Therefore, if the uncertainty of the process

yield is relatively high, even when the farmer with the market information prefers

concealing this information, the government has incentives to distribute market

information to both farmers to maximize the farmers’ welfare. However, when the

uncertainty of the process yield is relatively low, neither the government nor the

farmer with the market information wants to reveal this information. A close look

of the best responses under the four subgames shows that when the government
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only provides market information, the substitution factor between the two farmers’

products is µ2
y/2S

2, which can be rewritten as 1/2(C2
y + 1). This implies that when

the regular process yield is highly uncertain, the quantity competition is somewhat

mild. In view of this, Proposition 4 actually reveals that the provision of market

information is welfare maximizing if and only if the market competition is relatively

mild.

Proposition 4 specifies the condition under which the government’s provision

of market information is welfare maximizing. However, one may wonder whether

this result will hold when the products are heterogeneous (measured in terms of

substitutability level). To examine this issue, we consider the following inverse

demand function to capture product heterogeneity. Specifically, the price of farmer

i’s product Pi satisfies:

Pi = M − (ziqi + tzjqj), i, j = 1, 2, i 6= j,

where t measures the level of substitutability between products. Without loss of

generality, we assume that t ∈ [0, 1] so that a low (high) value of t corresponds

to the case in which the products are less (more) substitutable. (Note that the

(homogeneous) products are perfect substitutes when t = 1.)

Corollary 9. Suppose the farmers’ products are heterogenous so that the market

price becomes Pi = M − (ziqi + tzjqj). Then:

1. The provision of market information is always welfare improving.

2. When t < 2(
√

2 − 1), the provision of market information is always welfare

maximizing.

3. When t ≥ 2(
√

2−1), the provision of market information is welfare maximizing

if and only if Cy >

√
(
√

2+1)t−2
2

.
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Analogous to Proposition 4 associated with the homogenous product case, the

first statement of Corollary 6 reveals that when products are heterogeneous, the

provision of market information is still welfare improving. In regard to welfare

maximization, the second and third statements of Corollary 6 generalize the result

stated in Proposition 4 that corresponds to the case when t = 1. When t decreases,

the products become less substitutable, competition becomes less fierce, and the

strategies chosen by the two farmers are less correlated. Therefore, when the level of

substitutability is sufficiently low (i.e., when t < 2(
√

2 − 1)), one farmer’s strategy

has little effect on the profit of the other farmer. Consequently, the provision of

market information can be welfare-maximizing. Nevertheless, when the product

substitutability is relatively high (i.e., t ≥ 2(
√

2 − 1)), competition becomes more

fierce, and the farmers’ strategies are more correlated. In this case, we obtain a

similar result to that stated in Proposition 4: market information can maximize the

total welfare of the farmers if and only if the process yield is highly uncertain, in

which case the market competition is relatively soft.

In summary, when the government provides market information I only, we find

that both farmers use the market information under strategy (Y, Y ) in equilibrium.

Also, we show that the market information is certainly welfare improving. However,

the market information is welfare maximizing in the sense that the maximum total

welfare of farmers is attained under strategy (Y, Y ) if and only if the process yield

is highly uncertain. In addition, we generalize our model by considering product

heterogeneity. We show that if the level of product substitutability is low, the pro-

vision of market information is always welfare maximizing. However, when the level

of product substitutability is high, the provision of market information is welfare

maximizing if and only if the process yield is highly uncertain.
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2.5.2 Adoption of Agricultural Advice

In this section, we examine the case in which the government only offers agricultural

advice that is intended to help farmers to improve quality, reduce cost, and improve

process yield. Without the benefits associated with market information I, we have

ρ = 0. Without considering the upfront investment K associated with the adoption

of agricultural advice, we can use Propositions 1, 2, 3, and Lemma 2 to show that

both farmers’ expected profit under each strategy can be simplified as:

πNN
1 = πNN

2 =
S2g2

(2S2 + µ2
y)

2
,

πY Y
1 = πY Y

2 =
S
′2
g
′2

(2S ′2 + γ2µ2
y)

2
,

πY N
1 = πNY

2 =





S
′2

(2S2g
′−γµ2

yg)2

(4S2S′2−γ2µ4
y)2

, if C2
y > γg

′

2g
− γ2,

g
′2

4S′2
, otherwise.

πNY
1 = πY N

2 =





S2(2S
′2

g−γµ2
yg
′
)2

(4S2S′2−γ2µ4
y)2

, if C2
y > γg

′

2g
− γ2,

0, otherwise.

By direct comparison and applying Lemma 4, we obtain the following proposition.

Proposition 5. When the government offers agricultural advice only,

1. Without considering the upfront investment K, the farmers’ expected profits

satisfy πY N
1 (= πNY

2 ) > πY Y
1 (= πY Y

2 ) > πNN
1 (= πNN

2 ) > πNY
1 (= πY N

2 ). Fur-

thermore, πY N
1 − πNN

1 (= πNY
2 − πNN

2 ) > πY Y
1 − πNY

1 (= πY Y
2 − πY N

2 ).

2. By incorporating the upfront investment K, the equilibrium strategy of the
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meta-game as depicted in Table 2.2 can be characterized as follows.11

Equilibrium =





(Y, Y ), if K < πY Y
1 − πNY

1 ,

(Y, N) and (N, Y ), if πY Y
1 − πNY

1 ≤ K ≤ πY N
1 − πNN

1 ,

(N,N), if K > πY N
1 − πNN

1 .

Proposition 5 shows that the upfront investment K has a direct effect on whether

a farmer adopts agricultural advice in equilibrium. Specifically, both farmers adopt

agricultural advice when the upfront investment K is low (i.e., when K < πY Y
1 −

πNY
1 ), and no farmer adopts agricultural advice when the upfront investment K is

high (i.e., when K > πY N
1 − πNN

1 ). When K is in a moderate range (i.e., when

πY Y
1 − πNY

1 ≤ K ≤ πY N
1 − πNN

1 ), one farmer’s best response is Y (N) if the other

one’s strategy is N (Y ). Therefore, the equilibrium outcome is asymmetric and only

one farmer will adopt agricultural advice by making the upfront investment K.12

Without considering the upfront investment cost K, Corollaries 6 and 7 reveal

that agricultural advice is welfare improving when both farmers adopt agricultural

advice in equilibrium under strategy (Y, Y ). However, when incorporating the up-

front investment K, Proposition 5 reveals that the equilibrium strategy hinges upon

K. To examine whether agricultural advice is welfare improving when accounting

for the upfront investment K, we consider the following scenarios.

First, consider the case in which K is high (i.e., when K > πY N
1 − πNN

1 ), agri-

cultural advice does not improve the farmers’ welfare because no farmer will adopt

the advice.

Second, when K is moderate (i.e., when πY Y
1 −πNY

1 < K < πY N
1 −πNN

1 ), we have

two pure equilibria (Y, N) and (N, Y ). Due to symmetry, it suffices to examine

11Due to symmetry, it suffices to state only the conditions that are based on the expected profits
of farmer 1.

12Here, the game becomes a coordination game and has two pure Nash equilibria and one mixed
Nash equilibrium (Fudenberg and Tirole 1991). In the mixed Nash equilibrium, farmer i, i = 1, 2,
chooses to invest with probability πY N

1 −πNN
1 −K

πNY
1 −πY Y

1 +πY N
1 −πNN

1
.
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whether agricultural advice is welfare improving when only farmer 1 adopts the

advice in equilibrium under strategy (Y, N). In other words, will (πY N
1 −K)+πY N

2 >

πNN
1 +πNN

2 when K satisfies πY Y
1 −πNY

1 < K < πY N
1 −πNN

1 ? Note that πY N
2 = πNY

1

and πNN
2 = πNN

1 . The condition (πY N
1 −K)+πY N

2 > πNN
1 +πNN

2 can be simplified as

πY N
1 + πNY

1 − 2πNN
1 > K. Combining this simplified condition and the range within

which K lies (i.e., πY Y
1 − πNY

1 < K < πY N
1 − πNN

1 ) along with πNN
1 > πNY

1 (= πY N
2 )

(see the first statement of Proposition 5), we can conclude that agricultural advice is

welfare improving under strategy (Y, N) if and only if the value of K falls within the

range πY Y
1 −πNY

1 < K < πY N
1 +πY N

2 −2πNN
1 . Note that this range exists only when

πY Y
1 −πNY

1 < πY N
1 +πY N

2 −2πNN
1 , which may not hold in general.13 Consequently, we

can conclude that agricultural advice may not be welfare improving under strategy

(Y, N) (and strategy (N, Y )).

Third, consider the case in which K is low (i.e., when K < πY Y
1 − πNY

1 ). In

this case, Proposition 5 reveals that both farmers adopt agricultural advice under

strategy (Y, Y ). Hence, agricultural advice is welfare improving if and only if (πNN
1 +

πNN
2 ) < (πY Y

1 − K) + (πY Y
2 − K). By symmetry, this condition can be simplified

as K < πY Y
1 − πNN

1 . Also, observe from the first statement of Proposition 5 that

πY Y
1 −πNN

1 < πY Y
1 −πNY

1 . Combining the simplified condition with this observation,

we can conclude that agricultural advice is welfare improving if and only if the

upfront investment is sufficiently low (i.e., when K < πY Y
1 − πNN

1 ).

Based on the implications of the aforementioned three scenarios, we establish

the following statement.

Corollary 10. Depending on the upfront investment K, agricultural advice is not

13To elaborate, given that πNY
1 = πY N

2 , the condition πY Y
1 − πNY

1 < πY N
1 + πY N

2 − 2πNN
1 can be

simplified as 2(πNN
1 − πNY

1 ) < πY N
1 − πY Y

1 , where the right hand side represents the net gain of
farmer 1 by being the only one adopting the agricultural advice instead of both farmers utilizing
the agricultural advice, and the left hand side represents the net gain of the farmers when they
choose not to adopt the agricultural advice. Therefore, when the benefits associated with the
agricultural advice are small (via small γ, α , ρ2, or large β), this condition may not hold. For
example, it can be checked that πY N

1 − πY Y
1 − 2(πNN

1 − πNY
1 ) is negative when µm = 20, c = 3,

α = 1.3, β = 0.7, ρ = 0.4, σy = 0.7, σm = 0.2, µy = 0.7, and γ < 1.05.
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necessarily welfare improving. However, to ensure that adopting agricultural advice

(Y, Y ) improves farmers’ total welfare, the government should consider offering sub-

sidies so that the “effective” upfront investment to be borne by each farmer is below

the threshold (πY Y
1 − πNN

1 ).

Corollary 10 reveals that offering agricultural advice alone is not sufficient to

ensure that the total welfare of farmers will be improved unless either the upfront

investment K is sufficiently low (i.e., K < πY Y
1 − πNN

1 ) or the government offers

subsidies so that the “effective” upfront investment to be borne by each farmer is

below the threshold πY Y
1 − πNN

1 . This result may help justify the farmer subsidies

offered in developing countries.14

2.6 Conclusion

In this chapter, we presented a unified framework for analyzing the implications

when the government offers market information that can help farmers to make bet-

ter (long-term) production planning decisions (or agricultural advice that can help

farmers to improve product quality, reduce production cost, and enhance process

yield). By considering the case in which farmers engage in Cournot competition

under both demand and process yield uncertainty, we showed that without con-

sidering the upfront investment, both farmers would utilize market information (or

adopt agricultural advice) in equilibrium. We also showed the complementary ef-

fects associated with different benefits (quality improvement, cost reduction, and

process yield increase).

We then used the results of our general model to analyze the case in which the

14For example, to encourage farmers to purchase various types of agricultural equipment to help
reduce their production costs, the Department of Agriculture and Cooperation of India offers sub-
sidies in the form of 50% of the equipment cost. See farmech.gov.in/FarmerGuide/BI/11.htm for
details. In another example, to improve quality and process yield, small Kenyan farmers can pur-
chase fertilizers from the government owned National Cereals and Produce Board at subsidized
prices (i.e., 32% below market price). See http://partnews.brownbag.me/2013/04/15/kenyan-
subsidized-fertilizer-explained/ for details.
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government only offers market information. We found that both farmers would

utilize the market information in equilibrium and that the market information is

welfare improving. Moreover, the market information is welfare maximizing when

the process yield is highly uncertain.

For the case in which the government only offers agricultural advice, we showed

that each farmer will adopt agricultural advice in equilibrium only when the upfront

investment is below a certain threshold. We also found that agricultural advice is

not necessarily welfare improving. To ensure that agricultural advice can improve

the total welfare of farmers, we showed that farmer subsidies are essential especially

when upfront investment is high.

Our work is an initial attempt to examine the implications of market information

on agricultural advice. However, our model can be extended to the case in which

the government offers both market information and agricultural advice, although

the analysis becomes intractable because it involves the comparison of 16 different

expected profits. Nevertheless, our approach can enable us to analyze this case

numerically. Furthermore, our results can shed some light on the interdependen-

cies between market information and agricultural advice. For example, Corollary

7 states that more accurate market information can enhance the effect of yield

improvement but has no influence on the effects of quality improvement and cost

reduction. Therefore, the government prefers to subsidize the farmers to improve

their process yield rather than improve quality and reduce cost when the market

information is accurate.

Besides providing market information about future market prices that can help

farmers to make long term production planning decisions, various governments are

now offering current market price information that can help farmers to make short-

term selling decisions (when and where to sell). It is of interest to analytically

examine the implications of utilizing the current market price information for farmers
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in emerging markets especially because the relevant empirical findings have been

mixed. For example, Mittal et al. (2010) find that by utilizing current market price

information, farmers enjoy higher incomes. However, Fafchamps and Minten (2011)

find no evidence supporting this claim under a different experimental setting.

In this study, we focus on the case in which each farmer either adopts all of

the agricultural advice by making a full investment or adopts none of the advice.

However, different types of advice may require different amounts of investment.

Therefore, in the event that each farmer can choose to adopt a particular subset

of advice by making the requisite investment, the analysis quickly becomes tedious

because the number of subsets of advice grows exponentially. For this reason, we

defer this issue as a topic of future research.

In this study, we examined the benefits of farm subsidies in the context of devel-

oping countries, where farmers tend to be poor and have little access to financial ser-

vices and formal training. This context is drastically different from that of developed

countries where farmers are relatively wealthy, powerful, and well-trained (Smith

2012). In this case, the farmers can obtain financial support through different financ-

ing channels (see http://smallfarm.about.com/od/otherresources/a/farmgrants.htm),

and have some control over the market price. For example, in 2013, farmers in Aus-

tralia strategically held back on wheat sales to maintain a high market price (Thukral

and Packham 2014). Currently, there is an on-going debate over whether the gov-

ernment should offer subsidies to farmers in developed countries (Edwards 2009).15

Because the contexts are very different, there is a need to develop a different model

to investigate the value of farm subsidies in developed economies, and we leave this

question for future research.

15In the United States, the government offers millions of dollars in subsidies to domestic farmers
and agribusinesses to supplement their income and help them manage their production and
maintenance costs.
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Chapter 3

Why Minimizing Waiting Time in Health

Care System Could be Bad?

3.1 Introduction

One of the most significant problems faced by the health care systems is the long

waiting time. For example, patients in Canada often wait for 18.2 weeks on average

to receive medical treatment (Humphreys 2013). In Sweden, the average waiting

time for prostate cancer is almost eight months (Bylund 2014). In 2013, more than

21,000 patients in Hong Kong had waited three years before receiving specialist

treatment (Tsang 2014). Undoubtedly, excessive waiting time for health care can

cause adverse health effects such as low health care access and patient dissatisfac-

tion, which may generate disutility among the patients and hurt the welfare of the

society. For instance, due to the long waiting time, nearly 5 million Canadians do

not have access to primary health care services.1 In China, the long waiting time

makes doctors have no enough time to properly examine the patients.2 And it is fre-

quently reported that patients in Sweden with stroke, heart failure and other serious

medical conditions are denied or unable to receive proper treatment (Bylund 2014).

Furthermore, according to Sanmartin et al. (2010), long waiting times increase pa-

tients’ stress, anxiety and pain, which in turn strains patient-doctor relationships

and damages public perceptions of the health care system.

Given these negative consequences, the health care waiting time has gained popu-

1See “Canada ranked last among OECD countries in health care wait times”, reported by
CTVNews, http://www.ctvnews.ca/health/canada-ranked-last-among-oecd-countries-in-health-
care-wait-times-1.1647061#ixzz3EawhlNRm

2See http://www.chinaeconomicreview.com/node/27471.

39



larity as a measurement of a health care system’s congestion level and performance.

For instance, New Zealand’s government uses the Emergency Department (ED)

waiting time as a measure to evaluate hospital performance (Jones et al. 2012).

Waiting time for the elective surgery is a key performance indicator for hospitals in

the United Kingdom (Dimakou 2013). For those countries, reducing waiting times

and improving the accessibility of health care services are the long-term goals being

pursued. In fact, several policies have been developed to force health care providers

(HCPs) to reduce patients’ waiting times below a specific target. For example, since

2009, New Zealand’s government has required hospitals to reduce their ED waiting

times below 6 hours (Jones et al. 2012). In another instance, the British government

has set up an 18-week waiting time target, and hospitals that do not start treatment

within 18 weeks will be penalized (Winnett 2011).

Does a waiting-time reduction target really solve congestion problem and improve

the accessibility of health care services? Critics believe that such targets merely shift

the systemic problems instead of solving them. HCPs may find themselves drawing

resources and attention away from other aspects of performance measurements, such

as health care quality, to just meet waiting time targets. Thus, improvement in the

congestion level and the accessibility of health care services may jeopardize other

system performances. Specifically, without capacity expansion, the only way for a

HCP to reduce patients’ waiting time is to spend less time on each patient. Given

that a short length of stay (each visit) normally leads to a high rate of readmission

(Kociol et al. 2012), this can intensify the congestion in the health care system

in the long run. For instance, Winnett (2011) notes that the waiting time target

adopted in the UK actually pressured HCPs into discharging patients early, which

led to a rise of 31% in the readmission rate from 2006 to 2011. According to Purdy

et al. (2012), 35% of hospital admissions in England were readmissions, at a cost of

$11 billion in 2011.
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Such empirical evidences cast doubt on the conventional wisdom that reducing

waiting time can mitigate health care system congestion, questioning that waiting

time may not be a proper performance measurement. This motivates us to investi-

gate the following research question: How should we evaluate the performance of a

health care system if we take the tradeoff between service speed and service quality

(measured by the readmission rate) into consideration. Without differentiating be-

tween the new and readmitted patients, one may be misled by the “beautiful” data

on a health care system: reduced waiting time per admission, higher accessibility

for patients and a higher utilization rate of the HCP. We shall be cautious on those

system performance measurements due to the following issues. First, when the wait-

ing time per admission is reduced, is it associated with a higher readmission rate

(of old patients)? Second, when the service accessibility is improved, is it associated

with a smaller fraction of new patients being treated by the HCP? Third, when the

HCP’s utilization rate increases, does the HCP spend the time mainly on treating

new patients or on treating readmitted patients? To scrutinize these questions, we

model a health care system as an M/M/1 queue with Bernoulli feedback, where the

feedback represents the readmission rate. The tradeoff between service speed and

service quality is captured by assuming that the readmission rate is a decreasing

function of service time; that is, if the HCP spends more time on a patient, the

probability of relapse and readmission for that patient shall be lower. Compared

with the classic queueing models without feedback (e.g., Hassin and Haviv 2003,

Anand et al. 2011), this model exhibits the following unique feature: customers in

the classic queueing models only request service once while customers in our setting

may demand multiple rounds of service.

We then investigate the performance measures that can capture both system

congestion and service quality. One natural candidate for the service quality perhaps

is the effective service rate, which is the mean number of patients cured by the HCP
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in a unit of time. A two dimensional measurement vector, (waiting time, effective

service rate), can then provide the comprehensive information on the system: the

former one measures the congestion level and the latter one the service quality.

However, they are somehow cumbersome. We find that both the congestion level

and service quality can actually be well captured by a single measurement, that

is, the total waiting time, which is defined as the total amount of time a patient

spends in the system before being cured. The social planner only needs to trace

this performance measure in regulating the health care system. To avoid confusion,

we refer the waiting time that a patient spends per admission as the waiting time

per admission. We also introduce the following measurement, utilization rate for

new patients to measures how much time the HCP spends on treating new patients.

By examining the relationship between these new performance measures with those

ordinary ones, we show that some of our conventional understandings on the health

care system shall be carefully examined.

1. Misunderstanding one: setting a waiting time reduction target mitigates sys-

tem congestion. We show that reducing waiting time per admission may incen-

tivize the HCP to increase their service speed that leads to a higher readmission

rate and a longer total waiting time.

2. Misunderstanding two: keeping doctors busier can serve more patients and

hence increase the service accessibility. We show that a reduction in the HCP’s

idle time may be mainly attributed to the increase in the number of readmitted

patients. Therefore, reducing the HCP’s idle time may reduce the accessibility

of the health care services and cause the HCP to spend less time on treating

new patients.

The above misunderstandings justify the need of adopting the total waiting time

as a new measurement. We then investigate the health care system’s optimal design
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and control issues based on this new measure. We consider the following three types

of systems, according to the roles of different parties in making queueing, service

rate and price decisions.

• Benchmark system: the social planner takes a direct control over the effective

arrival rate and the service rate. This model generates a first-best result for

the service rate decision and serves as a benchmark case.

• Decentralized system: the HCP makes decisions over both the price and the

service rate; patients observe such decisions and make their own queueing

decision, i.e., to join or to balk. In short, both the price and service rate are

set to maximize the profit of the HCP. We call the resulting price decision as

a profit-maximizing price.

• Regulated system: the social planner determines the price; the HCP must

follow such price and then makes its service rate decision; patients observe the

price and service rate and then make their queueing decision. In this case, the

health care system is subject to a price regulation. We call the resulting price

decision a welfare-maximizing price.

We first consider the benchmark case and obtain the first-best solution that can

serve as a benchmark to evaluate the performance of the health care system. To

obtain the equilibrium outcomes associated with the decentralized and regulated

cases, we first study the patients’ queueing decision and the HCP’s service rate

decision for a fixed price. Then we derive the optimal price from the perspectives

of the HCP and the social planner, respectively. Our equilibrium analysis enables

us to obtain the following interesting results.

1. The first-best service rate coincides with the one maximizing the effective

service rate and the one minimizing the total waiting time. Therefore, the
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total waiting time indeed serves as a good performance measure for the service

quality.

2. A higher price always reduces the total waiting time but it does not hold for

the waiting time per admission. Interestingly, a lower price can sometimes

reduce the waiting time per admission. This conclusion is insightful for a

policy maker: if the congestion is mistakenly measured by the waiting time per

admission, one might be misled to lower down the price instead of increasing

it, which can make the system more congested and harm the social welfare.

3. By comparing the decisions under the decentralized and regulated cases, we

find that under no price regulation, the HCP will choose a first-best service

rate (socially optimal); under the price regulation, the HCP will serve with

a service rate higher than the socially optimal one. Consequently, the single

pricing control fails to achieve the first-best outcome.

4. Finally we show that price regulation plus a penalty mechanism based on the

readmission rate is sufficient for the policy maker to regulate the system to

achieve the first-best outcome.

The remainder of this chapter is organized as follows. Section 3.2 reviews the

relevant literature. Section 3.3 introduces the model setup and three new system

performance measurements: the effective service rate, the total waiting time and

the utilization rate for new patients. We then solve the first-best solution in Section

3.4. In Section 3.5, we derive the equilibrium arrival rate of new patients, the HCP’s

optimal decision of service rate and the optimal pricing decision. In Section 3.6, we

consider the scenario of small market potential arrival rate. Concluding remarks are

provided in Section 3.7 and all proofs are relegated to the Appendix B.
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3.2 Literature Review

Our study is related to the queueing literature with an endogenous service rate.

Hopp et al. (2007) consider operations systems with discretionary task completion

times in which the customer value is linked to the service rate. They find that

capacity expansion may actually intensify congestion, whereas task variability can

improve system performance. Debo et al. (2008) examine the incentives of an expert

to induce service; that is, to provide unnecessary service to customers. They show

that while service inducement reduces the total welfare, it also enables the expert to

obtain a large share of the total welfare. Whether service inducement is profitable

depends on which effect dominates. Anand et al. (2011) investigate the equilibrium

joining and pricing strategies in the customer-intensive services in which customers’

value is decreasing in the service rate. Kostami and Rajagopalan (2014) analyze the

quality-speed tradeoff in a dynamic setting. Tong and Rajagopalan (2014) compare

the fixed fee and time-based fee schemes in discretionary service. They explore the

conditions under which the two pricing schemes outperform each other. Chan et al.

(2014) develop a fluid model to examine the effect of speedup on system performance

by considering customer return. The queueing model with endogenous service time

is also applied in other domains, such as diagnostic services (Paç and Veeraraghavan

2010, Wang et al. 2010, Alizamir et al. 2013), service quality variability (Xu et al.

2012), call center (de Vericourt and Zhou 2005, Hasija et al. 2009) and health care

staffing (Yom-Tov and Mandelbaum 2014). Among those papers, only those of de

Vericourt and Zhou (2005), Chan et al. (2014) and Yom-Tov and Mandelbaum

(2014) consider returning customers. However, even in those studies, the return

probability is independent of the service rate, while in our model, the readmission

rate is a function of the service rate.

In recent years, many researchers apply operations research tools to study health

care problems. Many of such work focus on scheduling issues, e.g., Hassin and
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Mendel (2008), Liu et al. (2010), Luo et al. (2012), Mills et al. (2013), Liu

and Ziya (2014), Feldman et al. (2014). In addition, there is a growing body of

literature on health care system performance. For example, So and Tang (2000)

examine the effects of a reimbursement policy for drug prescriptions and derive

the optimal prescription policy. Fuloria and Zenios (2001) show that the delivery

of medical services is most efficient when the provider’s reimbursement is adjusted

based on observed patient outcomes. Lee and Zenios (2012) design an evidence-based

payment system with risk adjustment for renal dialysis services. Jiang et al. (2012)

study the performance-based contract, by which the HCP is penalized if the patients’

waiting time is larger than a target for outpatient services. Guo et al. (2013)

investigate the efficiency of the conditional and unconditional subsidy schemes in

health care systems. However, these works do not consider the readmission rate in

their models.

Our work is also related to the literature that study the readmission rate in

health care industry. Most of the works in this stream of literature are empirical

such as Friedman and Basu (2004), Chollet et al. (2011), Chan et al. (2012), KC

and Terwiesch (2012) and Kim et al. (2013). To our best knowledge, no previous

works theoretically investigate the tradeoff between service speed and readmission

rate.

3.3 Model Setup and Preliminaries

We list the notations used in the chapter in Table 3.1.

We model the health care system as an M/M/1 queue with Bernoulli feedback.

Patients arrive at the HCP according to a Poisson process with a rate of Λ. We

assume that patients in our model are homogeneous and incur a waiting cost of θ

per unit of time spent in the system. This assumption is reasonable given that in

many countries such as France, Germany and the US, patients are classified into
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Table 3.1: Summary of Notations

Notation Definition
R reward received by the cured patient
θ waiting cost per unit time
p price per admission
β penalty cost incurred from each balking patient
Λ potential arrival rate
λ effective arrival rate of new patients
λb the socially optimal effective arrival rate of new patients
λT = λ

1−δ(µ) total effective arrival rate (including new and readmitted patients)
µ service rate
µ∗ the socially optimal service rate
δ(µ) readmission rate
o(µ) = µ(1− δ(µ)) effective service rate
n(µ) = 1

1−δ(µ) the average number of HCP visits per patient

W (λ, µ) = 1−δ(µ)
o(µ)−λ waiting time per admission, including waiting time and service time

TW (λ, µ) = 1
o(µ)−λ the expected total waiting time

ρN (λ, µ) = λ
µ utilization rate for new patients

ρT (λ, µ) = λ
o(µ) total utilization rate

µW and µTW the service rates that minimize W (λ, µ) and TW (λ, µ) respectively (for a fixed λ)
µan, µat, µun, µut the service rates that maximize λ(µ, p), λT (µ, p), ρN (λ(µ, p), µ) and ρT (λ(µ, p), µ)

respectively (for a fixed p)

different diagnosis-related groups according to their respective symptoms, and the

patients in the same group demand similar resources and services (e.g., Street et al.

2011). The HCP serves the patients on a first-come-first-serve (FCFS) basis and

each treatment takes an exponentially distributed time with a rate of µ. Note that

both the Poisson arrival process and exponential service time have been well-tested

in the health care literature. For instance, Kim et al. (1999) empirically verify that

the arrival process to a hospital intensive care unit is a Poisson process, and the

service time follows an exponential distribution.

After a patient is discharged from the HCP, he/she is either cured and leaves

the system for good or he/she is readmitted to the system in the near future.3 For

tractability, we make the following assumptions about the readmission process:

3In practice, a readmission is defined by an event when a patient is readmitted to the HCP that
occurs within a defined time window (e.g., 28 days in the UK and 30 days in the US) after
discharge.
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Assumption 1: The relapse period (i.e., the time between discharge and readmis-

sion) follows an exponential distribution and the tail probability of

the relapse period being longer than the defined time window (e.g.,

28 days in the UK and 30 days in the US) is negligible.

Assumption 2: The readmission rate δ(µ) is increasing in the service rate µ, where

δ(µ) ∈ [0, 1].

Assumption 3: The cure rate (1 − δ(µ)) is logconcave in µ; i.e., log(1 − δ(µ)) is

concave so that g(µ) = δ
′
(µ)/(1− δ(µ)) is increasing in µ.

Assumption 1 is reasonable given that Sibbritt (1995) empirically shows that

the number of relapsed patients declines exponentially and tail-off to a background

level of noisy after almost 28 days. Similar empirical results have been found by

Heggestad and Lilleeng (2003) and Glynn et al. (2011). Assumption 2 captures an

empirical fact that the readmission rate is increasing in the service rate µ (Kociol

et al. 2012). By noting that the elasticity of the cure probability (1− δ(µ)) equals

µg(µ), assumption 3 guarantees that the readmission rate is more sensitive to the

change in service rate when the service rate is larger.4 Observe that the logistic

function δ(µ) = 1/(1 + e−aµ+b) with parameters a and b satisfy assumptions 2 and

3, where the logistic function is a standard approach to measure the relationship

between the readmission rate and other variables in the healthcare management

literature (e.g., Fethke et al. 1986, Morrow-Howell and Proctor 1993). Based on

above assumptions, we can model the health care system as a simple Jackson queue-

ing network (Figure 3.1).

4The logconcave function is fairly general as it can be used to capture the shape of many probabil-
ity distributions including Uniform, Normal, Exponential and Weibull (Bagnoli and Bergstrom
2005).
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Figure 3.1: A Schematic of The Model

3.3.1 Performance Measurements

The readmission rate enables us to evaluate the service delivery, the congestion

levels, the accessibility and the utilization rate of the health care system in two

different ways. On one hand, we can measure them for all the patients, as the

classic queueing models such as Hassin and Haviv (2003) do. On the other hand, we

can also measure them only for the new patients, generating three new performance

measurements: the effective service rate, the total waiting time and the utilization

rate for new patients.

Service Rate vs. Effective Service Rate

Unlike the queueing system without feedback, due to the readmission risk, the pa-

tients that have being treated may not eventually leave the system. Therefore, in

a time unit, the number of treated patients is larger than the number of cured pa-

tients. In view of this, we define the effective service rate as the mean number of

patients cured by the HCP in a unit of time. By noting that the probability that a

patient is cured equals 1− δ(µ) and µ is the average number of patients treated by

the HCP per unit time, the corresponding effective service rate can be denoted as

o(µ) = µ(1− δ(µ)). (3.1)
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We have the following result regarding o(µ).

Lemma 11. o(µ) is quasi-concave in µ and the optimum µ∗ that maximizes o(µ)

uniquely solves

µ∗g(µ∗) = 1. (3.2)

Furthermore, o(µ) is concave in µ for µ ≤ µ∗.

Lemma 1 shows that the effective service rate is unimodal in the service rate and

the corresponding mode µ∗ is the point such that the elasticity of cure probability

1− δ(µ) equals to one. This is because an increase in service rate (speed of service)

by the HCP has two opposite impacts on the effective service rate. One the one

hand, a higher service rate leads to more treated patients per unit of time, but on

the other hand, it deteriorates the service quality delivered by the HCP by reducing

the likelihood that patient being cured per admission. When the cure probability

1 − δ(µ) is inelastic in the service rate such that µg(µ) < 1, the service quality is

less sensitive to the change of service rate. Therefore, the first effect dominates the

second effect and an increase in service rate leads to a higher effective service rate.

On the contrary, when µg(µ) > 1, the cure probability is elastic in the service rate,

which implies the service quality is very sensitive to the change in service rate. In

this case, the second effect dominates the first effect and therefore a higher service

rate results in a smaller effective service rate.

Waiting Time vs. Total Waiting Time

Due to the existing risk of relapse, a patient’s waiting time per admission is smaller

than the total amount of time he/she spends in the system. In view of this, we

define the total waiting time as the total amount of time a patient spends in the

system before being cured. A patient’s total waiting time is determined by (1) the

waiting time that a patient spends per admission and (2) the total number of HCP
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visits that a patient goes through to get cured. To avoid confusion, we call the

waiting time that a patient spends per admission as the waiting time per admission.

As the number of HCP visits follows a binomial distribution, the probability that

a patient visits the HCP exactly i times for him/her to be cured is

P (i) = δi−1(µ)(1− δ(µ)).

Then the average number of HCP visits per patient can be derived as

n(µ) =
∞∑
i=1

iP (i) =
1

1− δ(µ)
, (3.3)

which is increasing in the readmission rate δ(µ) and thus increasing in service rate

µ.

Let λ and λT denote the effective arrival rate of new patients and the system’s

total effective arrival rate (i.e., the new patients plus the readmitted patients), re-

spectively. For now, we assume that the potential arrival rate Λ is large enough such

that some patients will leave without being treated; that is λ < Λ. This assump-

tion is realistic as in practice, most of the health care systems are very congested.

Nevertheless, we also discuss the scenario of a small potential arrival rate in section

3.6.

By using the PASTA property of a Jackson network (Jackson 1957), we know

that the departure rate of the system equals the total effective arrival rate λT . Also,

the total effective arrival rate equals to the sum of the arrival rate of new patients λ

and the arrival rate associated with the readmissions (which is equal to δ(µ) · λT ).

Therefore,

λT = λ + δ(µ)λT ⇒ λT =
λ

1− δ(µ)
= n(µ)λ, (3.4)

which implies that the total effective arrival rate for the system equals the effective
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arrival rate of new patients times the average number of HCP visits a patient goes

through to be cured. Then the expected waiting time per admission can be derived

as

W (λ, µ) =
1

µ− λT

=
1− δ(µ)

o(µ)− λ
. (3.5)

Utilizing (3.3) and (3.5), we can derive the expected total waiting time of each

patient as follows:

TW (λ, µ) = n(µ)W (λ, µ) =
1

o(µ)− λ
. (3.6)

Notice that (3.6) is equal to the waiting time of the classic M/M/1 queue with an

arrival rate of λ and a service rate of o(µ). Therefore, the effective service rate o(µ)

in our model plays a similar role as the service rate in the classic M/M/1 queue.

Actually, by combining (3.1) and (3.3), we can know that 1/o(µ) = n(µ)/µ, which

represents the total amount of time the HCP spends on treating a patient until

he/she is cured. Therefore, 1/o(µ) is the total service time.

Given λ, we denote µW and µT W as the service rates that minimize W (λ, µ) and

TW (λ, µ) respectively. Then we can show the following proposition.

Proposition 6. Given λ, the following properties hold.

1. Both W (λ, µ) and TW (λ, µ) are quasi-convex in µ.

2. The service rate µT W that minimizes TW (λ, µ) equals µ∗; the service rate µW

that minimizes W (λ, µ) uniquely solves

µWg(µW)ρT (λ, µW) = 1. (3.7)

Furthermore, µW > µT W = µ∗.

The quasi-convexity of the waiting time per admission and the total waiting
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time is driven by the tradeoff between service quality and service speed. On one

hand, a higher service rate enables the HCP to treat more patients per unit of time,

thereby mitigating system congestion. On the other hand, it leads to a poor care

quality and a high readmission rate, resulting in a negative (congestion) externality

on each admitted patient. Recall that service quality is more sensitive to the service

rate when service rate is higher. The first (second) effect dominates the second

(first) effect when the service rate is relatively low (high). Therefore, both the

waiting time per admission and the total waiting time are first decreasing and then

increasing in the service rate. However, because the total waiting time equals the

waiting time per admission times the average number of hospital visits, the negative

externality has a stronger impact on the total waiting time than that on the waiting

time per admission. Therefore, the total waiting time achieves its minimum at a

smaller service rate, compared to that for the waiting time per admission. Hence,

as depicted in Figure 3.2, when the service rate is very small (i.e., µ < µ∗), a

higher service rate leads to both a shorter waiting time per admission and a shorter

total waiting time. Conversely, when the service rate is very large (i.e., µ > µW),

a higher service rate results in both a longer waiting time per admission and a

longer total waiting time. In contrast to the existing queueing literature (see, e.g.,

Hassin and Haviv 2003, Anand et al. 2011), here an increase in service speed

actually intensifies the system congestion. Interestingly, when the service rate is

in a moderate range (i.e., µ∗ ≤ µ ≤ µW), increasing service rate imposes opposite

effects on waiting time per admission and total waiting time: it decreases the waiting

time per admission but increases the total waiting time. This reveals that reducing

the waiting time per admission may incentivize the HCP to increase their service

speed, which, however, may increase the risk of readmission and thus increase the

total waiting time. Therefore, an improvement in waiting time per admission may

be at the cost of service quality and total waiting time.
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Figure 3.2: Waiting time

Moreover, from (3.6), given λ, the total waiting time is decreasing in the effective

service rate o(µ). According to Lemma 11, it is natural that TW (λ, µ) achieves its

minimum at µ∗ which maximizes the effective service rate and makes the sensitivity

of the cure probability equal one. It is worth noting that the left hand side of (3.7)

is equal to the sensitivity of the cure probability times the probability that the HCP

is busy. Because the service rate impacts service quality only when the HCP is busy,

the left hand side of (3.7) represents the actual sensitivity of the cure probability. In

other words, the waiting time per admission is minimized when the actual sensitivity

of the cure probability equals to one.

Total Utilization Rate vs. Utilization Rate for New Patients

The relapse risk also enables us to evaluate the utilization rate of the HCP in two

different ways: the utilization rate for new patients and the utilization rate for

all the patients, which is referred as the total utilization rate. From (3.4), the

total utilization rate ρT (λ, µ) and the utilization rate for new patients ρN(λ, µ) are

respectively

ρT (λ, µ) =
λT

µ
=

λ

o(µ)
and ρN(λ, µ) =

λ

µ
. (3.8)
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Figure 3.3: Utilization rate

According to (3.8), the total utilization rate in our model is equal to the utilization

rate of the classic M/M/1 queue with an arrival rate of λ and a service rate of o(µ).

To ensure the stability of the queue, we need the total utilization rate is smaller

than 1; that is, λ < o(µ).

Proposition 7. Given λ, the total utilization rate ρT (λ, µ) is quasi-convex in µ and

achieves its minimum at µ∗, while the utilization rate for new patients ρN(λ, µ) is

always decreasing in µ.

By noting that the total utilization rate is decreasing in the effective service rate

and utilizing Lemma 11, it is easy to see that the total utilization rate is quasi-convex

in µ and achieves its minimum at µ∗. Combining the above facts with Proposition 6,

we can conclude that both the patients and the HCP are happy with the service rate

µ∗, as both the total waiting time and the total utilization rate are minimized. It is

widely believed that reducing systems’ congestion levels shall increase the HCP’s idle

time. Therefore, to improve the performance of the health care system, some balance

between patients’ waiting time and the HCP’s idle time must be achieved (Fetter

and Thompson 1996). However, our result shows that this argument is true only

when the system congestion is measured in terms of the waiting time per admission.

While in terms of the total waiting time, minimizing the system’s congestion level
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and maximizing the HCP’s idle time actually coincide. This cautions the social

planner that a reduction in the idle time of the HCP may intensify the system

congestion and lead to the inefficiency of the health care delivery. Furthermore, as

depicted in Figure 3.3, Proposition 7 also tells us that when µ ≥ µ∗, a larger service

rate leads to a larger total utilization rate but a smaller utilization rate for new

patients. Therefore, a reduction in the HCP’s idle time may be mainly attributed

to the increase in the number of readmitted patients and instead reduce the amount

of time that the HCP spends on treating new patients.

So far, we have established three new performance measurements which are ab-

sent in the classic queueing theory. Based on these measurements, we next consider

the benchmark case where the social planner can control both the patients and the

HCP such that the first-best outcome is achievable.

3.4 First-Best Solution

In order to obtain the first-best outcome, we consider the centralized health care

system where the social planner can control both the arrival rate of new patients

and the service rate to maximize the social welfare. In the existing queueing litera-

ture with identical customers, the social welfare is equal to the profit of the service

provider which does not incorporate the loss of balked customers (see, e.g., Naor

1969, Hassin and Haviv 2003). However, in the health care industry, the number

of patients who leave without being seen is an important indicator of patient satis-

faction (Polevoi et al. 2005). According to Hsia et al. (2011), “Patients who leave

without being seen represent the failure of an emergency care delivery system to

meet its goals of providing care to those most in need.” If a patient leaves without

being treated, he/she may get worse in future such that the HCP may need to spend

more resources on treating him/her. Therefore, it is necessary to incorporate the

social loss of balked patients into the objectives of the social planner. For ease of
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exposition, we assume that each balked patient induces a β, β > 0, penalty cost to

the health care system. And the social planner determines the effective arrival rate

of new patients and service rate to maximize the following social welfare SW :

max
λ, µ

SW (λ, µ) = λ[R− θTW (λ, µ)]︸ ︷︷ ︸
(1)

− β(Λ− λ)︸ ︷︷ ︸
(2)

. (3.9)

where the first term represents the total utilities obtained by the admitted cured

patients and the second term represents the total social cost from balked patients.

Because the HCP’s profit is the internal transfer between the social planner and the

HCP, it is canceled out in SW . It is worth noting that similar to Anand et al. (2011),

here µ stands for the service speed instead of capacity (i.e., number of doctors),

therefore there is no direct cost associated with the change of µ. Furthermore,

in reality, people normally use waiting time per admission to measure the system

congestion and calculate patients’ utilities. If so, from (3.4) and 3.6, the patients’

utilities are λT [R − θW (λ, µ)] = λ[Rn(µ) − θTW (λ, µ)]. Compared with the first

term in (3.9), it calculates the reward R multiple times. This cautions the social

planner that based on the waiting time per admission, one may exaggerate the

patients’ utilities and incorrectly estimate the social welfare.

Let µb and λb denote the socially desired service rate and the effective arrival

rate of new patients under the benchmark (centralized) scenario, respectively.

Proposition 8. The objective function in (3.9) has the following properties.

1. Given λ, SW (λ, µ) is unimodal in µ and the corresponding mode is equal to

µ∗, which is independent of λ. Therefore, µb = µ∗.

2. Given µ, SW (λ, µ) is concave in λ. Furthermore, the socially optimal effective

arrival rate of new patients is λb = o(µ∗)−
√

θo(µ∗)/(R + β).

Observing from the objective function (3.9), given λ, maximizing social welfare

is equivalent to minimize the total waiting time. Then according to Proposition 6,
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the service rate µ∗ can simultaneously maximize social welfare and minimize total

waiting time. Therefore, to evaluate the efficiency of service delivery of the HCP,

the social planner just needs to monitor the total waiting time. Insightfully, by

noting from Proposition 7 that the total utilization rate is also minimized at µ∗,

we can conclude that given λ, the health care system is socially optimal when the

HCP’s idle time is maximized. In other words, reducing the HCP’s idle time actually

hurts the social welfare. In addition, recall from Proposition 6 that the performance

of the health care system differs in terms of total waiting time and in terms of

waiting time per admission. Now we can conclude that from the perspective of social

welfare maximization, the total waiting time is a better performance measurement,

as reducing waiting time per admission may increase the total waiting time and

harm the social welfare.

3.5 Second-Best Solution

In this section, we study the decision problems for the three parties in the system:

the patients, the HCP and the social planner. In reality, government in countries

such as UK, Canada and Australia decides the price charged to the patient per

admission (e.g., Reinhardt 2006, Klein 2012). We also note that in countries such

as the United States and Netherland, the price is either unilaterally set by the

government agencies (i.e., the CMS in the U.S. and list A service in Netherland)

or negotiated between the HCP and the insurer (Reinhardt 2006, Oostenbrink and

Rutten 2006). Naturally, when the bargaining power of the HCP is large enough,

the negotiated charging price is similar to the one that the HCP can charge by itself.

For example, in 1993, after the merge of two eminent Harvard-affiliated hospitals,

the new hospital overwhelms the insurers and could “deny access to the beneficiaries

of any insurer who dared not accept whatever they wanted to charge” (Roy 2011).

Therefore, depending on the price is determined by the HCP or by the social
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planner, we shall analyze two scenarios: the profit-maximizing price and the welfare-

maximizing price. Under the profit-maximizing price, the HCP first decides both

the price and the service rate. Then patients arrive at the HCP and the new patients

decide to join or to balk. Under the welfare-maximizing price, the social planner

decides the price first and then the HCP determines its service rate. Finally, the

new patients make their joining decision. For the readmitted patients, we assume

that they will join certainly.5 To facilitate our analysis, we first investigate the new

patients’ joining decision and the HCP’s service rate decision by assuming that the

price is fixed. Then we study the pricing decisions under the two scenarios.

3.5.1 New Patients’ Joining Decision

Classic literature assumes that customers can take waiting time and price into con-

sideration. Here we assume that patients are more strategic than that such that

they also know the readmission rate.6 Therefore, they can calculate their expected

utilities by taking the waiting time per admission, readmission rate and the price

into account.7 Then based on (3.3) and (3.5), given µ and p, the expected utility of

an admitted cured patient can be written as

U = R− [n(µ)p + θTW (λ, µ)] = R− p

1− δ(µ)
− θ

o(µ)− λ
, (3.10)

5Insurers normally do not allow the affiliated patients to admit to the hospital which is outside the
network of the insurer’s health care plan. And in the United States, the insurer intends to main-
tain a tighter and narrower network. (see http://www.nytimes.com/2013/09/23/health/lower-
health-insurance-premiums-to-come-at-cost-of-fewer-choices.html?pagewanted=all& r=0) Fur-
thermore, admitting to a new hospital within the insurer’s network may still cause some incon-
venience to the readmitted patients, as they should reestablish a relationship with the doctors
in the new hospital.

6In many countries such as the United States and Germany, patients can easily obtain those
information on the website such as http://www.bkk-klinikfinder.de/.

7Stavrunova and Yerokhin (2011) show that health care demand is negatively affected by the wait-
ing time per admission. And Varkevisser et al. (2012) show that a 1% reduction in readmission
rate is associated with a 12% increase in hospital demand.

59



which is the difference between the service reward and the total cost (waiting

cost+service fee paid) that the patient incurs. Compared with the customers’ util-

ities under the queueing model without feedback, (3.10) has two differences. First,

the waiting time is replaced by the total waiting time. Second, the price is replaced

by the total expected payment p/(1− δ(µ)). These differences reflect the patients’

perceptions on the service quality. (3.10) also shows that when the service reward or

the maximum effective service rate is so small such that R < θ/o(µ∗), the expected

utility U is always negative. Then all the patients will leave without being treated.

To avoid such uninteresting case, we only consider the scenario that R ≥ θ/o(µ∗)

hereafter.

From (3.10), it is easy to see that the expected utility U is decreasing in λ,

which implies that a patient has less incentive to join, as more patients choose to

join. Therefore, the patients’ best response is to avoid the crowd and there exists

only one effective arrival rate of new patients. In equilibrium, the new patients are

indifferent between joining and balking. Letting U = 0, we can derive the effective

arrival rate of new patients as follows:

λ(µ, p) = o(µ)− θ(1− δ(µ))

R(1− δ(µ))− p
. (3.11)

From (3.11) we can easily see that given the service rate µ, λ(µ, p) is decreasing in

price p; that is, the higher the payment charge, the less patients join the HCP. Using

(3.4), (3.8) and (3.11), the total effective arrival rate, the total utilization rate and
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the utilization rate for new patients are respectively

λT (µ, p) = µ− θ

R(1− δ(µ))− p
, (3.12)

ρT (λ(µ, p), µ) = 1− θ

Ro(µ)− pµ
, (3.13)

ρN(λ(µ, p), µ) = 1− δ(µ)− θ(1− δ(µ))

Ro(µ)− pµ
. (3.14)

In the following, we proceed to investigate the impact of the service rate on λ(µ, p),

λT (µ, p), ρT (λ(µ, p), µ) and ρN(λ(µ, p), µ). To this end, for a fixed p, we define

µan(p), µat(p), µut(p) and µun(p) as the service rates that maximize λ(µ, p), λT (µ, p),

ρT (λ(µ, p), µ) and ρN(λ(µ, p), µ), respectively. It is worth noting that differing from

Proposition 6 and 7, here the effective arrival rate of new patients are endogenous.

Proposition 9. Given the price p, the following results hold.

1. the effective arrival rate of new patients λ(µ, p) is unimodal in µ.

2. the total effective arrival rate λT (µ, p) is concave in µ. Furthermore, µat(p) is

the unique solution of

θRδ
′
(µat(p))

[R(1− δ(µat(p)))− p]2
= 1. (3.15)

3. both the total utilization rate ρT (λ(µ, p), µ) and the utilization rate for new

patients ρN(λ(µ, p), µ) are unimodal in µ.

4. the service rates that maximize arrival rate and utilization rate satisfy: µun(p) <

µut(p) < µan(p) < min{µ∗, µat(p)}.

Proposition 9 shows that the relationship between the effective arrival rate of

new patients and the HCP’s service rate follows an inverted-U-shape curve. To see
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the underlying reason, let us examine the impact of the increase in service rate on

the waiting cost and the total service fee paid by a patient (i.e., n(µ)p). First, as the

service rate increases, the number of HCP visits per patient increases such that the

total service fee paid by a patient also increases. This reduces the joining incentives

of new patients. Besides, recall from Proposition (6) that the total waiting time first

decreases and then increases in the service rate. When the service rate is relatively

low, the reduction in waiting cost overwhelms the increases in the total service fee

such that more new patients choose to join. When the service rate is relatively

high, the reverse is true and less new patients shall join. Obviously, the effective

arrival rate of new patients achieves its maximum earlier than the total waiting time

achieves its minimum; that is, µan(p) < µ∗.

Recall that the total effective arrival rate is equal to the effective arrival rate of

new patients plus the arrival rate of the readmitted patients. Because the number

of readmitted patients increases in the service rate, the total effective arrival rate is

also unimodal in the service rate and achieves its maximum at a larger service rate

than the effective arrival rate of new patients; that is, µan(p) < µat(p). Interestingly,

as shown in Figure 3.4(a), when µ ∈ [µan(p), µat(p)], increasing the total number of

patients by increasing service speed may actually cause less new patients to receive

treatment. This indicates that although a faster service speed services more patients,

those patients are mainly readmitted ones due to the deterioration of service quality.

Therefore, improving the accessibility for all the patients may reduce the accessibility

for new patients.

Moreover, the utilization rate for new patients is also unimodal in µ. This can be

explained as follows. When the service rate is low, most of the patients waiting in

the system are new patients as the readmission rate is low. In this case, an increase

in service rate enables more new patients to receive treatment. However, when the

service rate is high, many patients in the queue are those readmitted patients as the
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Figure 3.4: Arrival rate and Utilization rate
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readmission rate is high. Hence, further increasing service rate reduces the joining

incentives of new arrival patients, resulting in a smaller utilization rate for new

patients. By noting that the readmission rate increases in the service rate, the total

utilization rate is also unimodal in µ and achieves its maximum at a larger service

rate compared with the utilization rate for new patients; that is, µun(p) < µut(p).

Therefore, as shown in Figure 3.4(b), when µ ∈ [µun(p), µut(p)], a higher service rate

leads to a larger total utilization rate but a smaller utilization rate for new patients.

Again, this result shows that reducing the HCP’s idle time may reduce the amount

of time the HCP spends on treating new patients.

Finally, as shown in Figure 3.4(c) (Figure 3.4(d)), because µun(p) < µut(p) <

µan(p) < µat(p), we can know that when µ ∈ [µun(p), µan(p)] (µ ∈ [µut(p), µat(p)]),

increasing the arrival rate of new patients (total arrival rate) actually reduces the

utilization rate for new patients (total utilization rate). In contrast to the conven-

tional wisdom, this conclusion implies that reducing the HCP’s idle time may also

reduce the accessibility of the health care services.

3.5.2 The HCP’s Service Rate Decision

In this section, we are going to examine the HCP’s best response by assuming that

the price is fixed. The HCP makes the service rate decision µ to maximize its profit

Π, which equals the total number of admissions (i.e., the total effective arrival rate

λT (µ, p)) times the payment per admission:

max
µ

Π(µ) = λT (µ, p)p. (3.16)

Observing from (3.16), because the price is fixed, the HCP’s objective is actually

to maximize the total effective arrival rate. Then according to Proposition 9, we

can easily obtain the following result.

Proposition 10. The HCP’s profit Π(µ) is concave in the service rate µ. The
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corresponding optimal service rate µH(p) is equal to µat(p) that maximizes the total

effective arrival rate.

Next, we conduct the sensitivity analyses of the system performance with respect

to the price p, which are summarized in following corollary.

Corollary 12. The sensitivity analysis with respect to the price reveals:

1. the optimal service rate µH(p) is decreasing in p. µH(p) = µ∗ if and only if

(iff) p = p̄, where

p̄ = R(1− δ(µ∗))−
√

Rθo(µ∗)
µ∗

.

Correspondingly, λ(µ∗, p̄) = o(µ∗)−
√

θo(µ∗)/R.

2. the total effective arrive rate λT (µH(p), p), the readmission rate δ(µH(p)) and

the total waiting time TW (λ(µH(p), p), µH(p)) are decreasing in p.

3. the effective arrival rate of new patients λ(µH(p), p) is decreasing in p when

p ≥ p̄.

The first statement of Corollary 12 shows that when the service price increases

such that the revenue generated from each patient is higher, the HCP will spend

more time on treating each patient. Therefore, to improve health care quality in

terms of readmission rate, the social planner just needs to increase the price.

Besides, the second statement of Corollary 12 implies that an increase in service

charge p leads to a reduction in the total effective arrival rate, the readmission rate

and the expected total waiting time. This is because as the price increases, the HCP

has less incentives to increase its service rate, leading to a reduction in the number

of readmitted patients. However, although a higher price can mitigate the system

congestion in terms of the total waiting time, it may not hold in terms of the waiting

time per admission. See the illustration of Figure 3.5(a) for an example, where both
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Figure 3.5: The impact of price on waiting time and utilization rate

the waiting time per admission and the effective arrival rate of new patients are

concave in the service charge p. Interestingly, they both increase in p when p is not

too high. This implies that when price is relatively low, an increase in price actually

causes patients to wait longer to see a doctor and lead more new patients to join the

queue, which are in contrast to the result obtained under the traditional queueing

setting (i.e., Hassin and Haviv 2003). Our results can shed important light on the

performance measurement of the health care system. It is widely recognized that a

higher price can erode the joining incentives of customers and mitigate the system

congestion. However, our results show that this is true only when the performance

of the health care system is measured by the total arrival rate and the total waiting

time. Regarding the waiting time per admission and the arrival rate of new patients,

the reverse is actually true when the price is relatively low. Additionally, Figure

3.5(b) shows that a higher price may also have opposite impacts on the utilization

rate for new patients and the total utilization rate.

On a separate note, in some circumstances the price of the health care service is

determined through the negotiation between the HCP and the insurer. Intuitively, a

powerful insurer can negotiate a lower service charge. Corollary 12 then implies that

paying low service charge by joining a powerful insurance company may actually hurt
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the well-being of patients, as the low price incentivizes the HCP to undertreat the

patients, resulting in a high readmission rate and poor care quality. For example,

in 1998, as a result of Aetna’s acquisition of Prudential’s health insurance assets,

Aetna was believed to become a monopoly insurance company in Dallas and Houston

and unduly negotiated down doctors’ bill payment. Complaints were received that

physicians spent less time with each Aetna patient, resulting in a reduction in care

quality (Schwartz 1999). In 1999, the US Justice Department forced the company

to sell assets in both cities (Wilke 2004).

3.5.3 Price Decision

Based on the best response function of the HCP established in §3.5.2, we now derive

the profit-maximizing price and the welfare-maximizing price, respectively.

Profit-Maximizing Price

If the price is determined by the HCP, it will choose the price to maximize its

expected profit Π(µH(p)). According to Corollary 12, we can obtain the following

result.

Proposition 11. Both the effective service rate o(µH(p)) and the HCP’s profit

Π(µH(p)) are quasi-concave in p and achieve the maximum at p = p̄. There-

fore, if the price is determined by the HCP, it will choose p̄ and µ∗. Furthermore,

λ(µ∗, p̄) < λb.

Proposition 11 shows that if the price is determined by the HCP, it shall serve

in the socially desirable way but less patients can receive treatment compared with

the social optimality (the first-best outcome). Recall that λ(µ, p) is decreasing in

p, we can conclude that the inefficiency of the health care system under the profit-

maximizing price originates from the high price charged by the HCP instead of the

suboptimal service rate.
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Proposition 11 also sheds light on the effect of merge among HCPs on the health

care system performance. According to Creswell and Abelson (2013), for the sake

of increasing collective bargaining power, HCPs are merging faster and in greater

numbers than they had before. The number of merge transactions between HCPs

jumped from 50 in 2009 to 105 in 2012. Concerns about the monopoly issue have

been raised over the consolidation among HCPs, which were accused of driving

up price and reducing service quality (e.g., Roy 2011). However, Proposition 11

reveals that when the HCP has the pricing power, the performance of the health

care system in terms of effective service rate and total waiting time are actually

improved. Therefore, as the health care market continues to concentrate, patients

may suffer from the price increase but benefit from a more efficient treatment (i.e.,

a higher effective service rate and a smaller total waiting time).

Welfare-Maximizing Price

We now consider the scenario where the price is determined by the social planner.

The social planner shall choose a price to maximize the social welfare. Note that

patients in equilibrium are indifferent between joining and balking. Their expected

utilities are zero. The corresponding social welfare SW then equals the profit of

the HCP minus the penalty cost from the balked patients. Given the HCP’s best

response µH(p), the social planner’s optimization problem is

max
p

SW (p) = Π(µH(p))− β (Λ− λ(µH(p), p)) .

We denote pS as the optimal solution of the above optimization problem and let

µS = µH(pS).

Unfortunately, SW (p) is normally not unimodal in p, thus the optimal price is

not unique. Nevertheless, by investigating the first order condition of SW (p), we

can derive the following result.
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Proposition 12. In equilibrium, pS < p̄ and µS > µ∗. Furthermore, λ(µ∗, p̄) <

λ(µS , pS) < λb.

Proposition 12 shows that the regulation via pricing cannot make the health

care system achieve the social optimality. Actually, if the price is determined by

the social planner, both the service rate and the accessibility for new patients are

suboptimal. In particular, the HCP will spend less time on each patient compared

with that under the socially optimal service rate. Interestingly, although the service

speed increases, less new patients can receive treatment as the readmission rate

is too high. Furthermore, recall that the service rate is socially optimal under

the profit-maximizing price. We can conclude that the welfare-maximizing price

reduces the efficiency of the HCP’s care delivery. Finally, compared to the scenario

of profit-maximizing price, here the welfare-maximizing price is smaller while the

effective arrival rate of new patients is larger. In classic queueing models with

identical customers such as Hassin and Haviv (2003), a customer does not consider

the resulting negative externality on other customers when deciding whether to

join. Therefore, in equilibrium, the service provider can extract all of the consumer

surplus. In consequence, the profit-maximizing price and the welfare-maximizing

price coincide. However, in the health care industry, the social planner also takes the

social cost from the balked patients into account. Consequently, the social planner

charges a lower price, leading to a larger service speed and a larger accessibility of

the health care services.

So far, we have shown that the one-dimensional control over price cannot induce

the health care system to be socially optimal. Another question of interest is that

whether the multi-dimensional control can solve this puzzle. We discuss it in the

next section.

69



3.5.4 Discussion: Two-Dimensional Control over Price and

Readmission Rate

In reality, the social planner may simultaneously control price and readmission rate.

For example, the Centers for Medicare and Medicaid Services (CMS), a federal

agency within the U.S. Department of Health and Human Services, launched a

Hospital Readmission Reduction Program in October 2012. Under this program,

a HCP will be penalized a certain percentage of its annual reimbursements if its

readmission rate exceeds a pre-determined threshold level. The penalty rate was set

to be around 1% in 2013 and will grow to 3% in 2015 (Rau 2012). Consequently,

after the implementation of this readmission rate based payment scheme (RBP)

by the CMS, in 2013, 2,225 hospitals, among which two-thirds are the national

hospitals, are found to be eligible for penalization, leading to a total of $227 million

in penalty (Rau 2013).

We next examine whether the two-dimensional control over price and readmission

rate can make the health care system to be socially optimal. Let δ̂ represent the

threshold readmission rate. If its readmission rate is larger than δ̂, the HCP gets

penalized a α (0 ≤ α ≤ 1) portion of its total profit. As the readmission rate δ(µ)

is strictly increasing in service rate µ, the threshold readmission rate δ̂ corresponds

to a threshold service rate µ̂, which is the unique root of δ(µ) = δ̂. Then, δ(µ) > δ̂

iff µ > µ̂. Let

1µ>µ̂ =

{
1, if µ > µ̂,

0, if µ ≤ µ̂.

Here, the social planner needs to decide (1) the price p, (2) the penalty rate

α, 0 ≤ α ≤ 1, and (3) the threshold readmission rate δ̂ (equivalent to a threshold

service rate µ̂). And the HCP decides a service rate to maximize its expected profit:

max
µ

ΠR(µ) = (1− α1µ>µ̂)λT (µ, p)p.
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Then, given the HCP’s best response µR(p, α, µ̂), the social planner maximizes the

social welfare SW as follows:

max
p, α, µ̂

SW = λ(µR(p, α, µ̂), p) [R− θTW (λ(µR(p, α, µ̂), p), µR(p, α, µ̂))]

−β(Λ− λ(µR(p, α, µ̂), p)).

Recall from (3.11) that given µ, λ(µ, p) is decreasing in p. Therefore, letting the

service rate µ = µb = µ∗ (the benchmark socially desired service rate), correspond-

ingly, there exists a unique p∗ solving λ(µ∗, p) = λb (the benchmark socially desired

effective arrival rate of new patients), which can be explicitly expressed as

p∗ = R(1− δ(µ∗))−
√

θo(µ∗)(R + β)

µ∗
. (3.17)

According to Proposition 8, p∗ is the price that leads to the socially desired outcome,

namely, the socially optimal price.

Let

λ̄T = n(µH(p∗))λ(µH(p∗), p∗)

be the total effective arrival rate when the socially optimal price p∗ is charged. Then

we have the following proposition.

Proposition 13. Under the two-dimensional control over price and readmission

rate, in equilibrium, the social planner chooses the socially optimal price p∗, the

penalty percentage α > 1− λT (µ∗, p∗)/λ̄T , and a threshold readmission rate µ̂ = µ∗,

and the HCP chooses the socially optimal service rate µ∗. Therefore, the health care

system is socially optimal.

Proposition 13 shows that the two dimensional control over price and readmission

rate can force the health care system to achieve social optimality. This result is

intuitive as the social planner here can use two means, the threshold admission
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rate/sevice rate and the penalty charge to align the incentives of the HCP with that

of the social welfare.

3.6 The Analysis of the Scenario When the Po-

tential Arrival Rate is Small

In this section, we study the scenario under which the potential patient size is

relatively small such that it is possible that no patients will leave without being

treated. We first derive the first best outcomes.

Proposition 14. When the potential market size is relatively small such that it is

possible that no patients will leave without being treated, then µb = µ∗ and λb =

min{o(µ∗)−
√

θo(µ∗)/(R + β), Λ}.

According to Proposition 8, the service rate that maximizes SW (λ, µ) is inde-

pendent of the arrival rate of new patients. Therefore, it is natural that the socially

optimal service rate remains the same. However, differing from the scenario un-

der which the potential arrival rate is large, here, when the health care system is

less congested (i.e., Λ ≤ o(µ∗) −
√

θo(µ∗)/(R + β)), all the patients can receive

treatment; otherwise, only a proportion of patients are treated while the remaining

patients balk the system.

3.6.1 The Second-Best Solution

We now study the decision problems for the patients, the HCP and the social plan-

ner, respectively. As before, depending on whether the price is determined by the

HCP or by the social planner, we shall analyze two scenarios: the profit-maximizing

price and the welfare-maximizing price.
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3.6.2 The Patients’ Joining Decision

We begin with the patients’ joining decision. To avoid confusion, we use λL to

represent the effective arrival rate of new patients hereafter. Furthermore, we name

the scenario where all patients join the queue; that is λL = Λ, the full market

coverage scenario, and the scenario where some patients will balk; that is λL < Λ,

the partial market coverage scenario. Note that the partial market coverage scenario

has been analyzed in section 3.5. To be consistent, we still use λ to represent the

effective arrival rate of new patients under the partial market coverage scenario.

According to (3.4) and (3.10), we have

λL(µ, p) = min{Λ, λ(µ, p)} and λT (µ, p) = n(µ) min{Λ, λ(µ, p)}, (3.18)

where λ(µ, p) represents the effective arrival rate of new patients under the partial

market coverage scenario and is given by (3.11).

3.6.3 Profit-Maximizing Price

Under the profit-maximizing price, the HCP decides both the service rate and price

to

max
µ, p

Π(µ, p) = λT (µ, p)p = n(µ) min{λ(µ, p), Λ}p.

We use the subscript P to represent the equilibrium outcome associated with the

scenario of profit-maximizing price.

Proposition 15. Under the profit-maximizing price, the following results hold.

1. When Λ > λ(µ∗, p̄), µP = µ∗, pP = p̄ and λ(µP , pP) < λb.

2. When Λ ≤ λ(µ∗, p̄), µP = µ∗, pP = R(1 − δ(µ∗)) − θ(1 − δ(µ∗))/(o(µ∗) − Λ)

and λ(µP , pP) = Λ.
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3. The health care system can achieve the benchmark social optimality iff Λ ≤
λ(µ∗, p̄).

Proposition 15 shows that when the size of the potential patients is relatively

small (i.e., Λ ≤ λ(µ∗, p̄)), the full market coverage scenario arises and the health

care system can achieve socially optimality; otherwise, the partial market coverage

scenario is preferred by the HCP and the health care system is suboptimal. Fur-

thermore, the HCP under the scenario of the profit-maximizing price shall always

choose the socially optimal service rate.

3.6.4 Welfare-Maximizing Price

Under the welfare-maximizing price, the social planner first decides the price and

then the HCP decides the service rate. With the constraint of the potential arrival

rate Λ, the HCP’s optimization problem is

max
µ

Π(µ) = λT (µ, p)p = n(µ) min{λ(µ, p), Λ}p.

Given the HCP’s best response µ(p), the social planner makes the service pricing

decision p to maximize the social welfare SW :

max
p

SW (p) = λ(µ(p), p) [R− θTW (λ(µ(p), p), µ(p))]− β (Λ− λ(µ(p), p)) .

We will solve the above game sequence by backward induction. To do so, we first

derive the optimal pricing and service rate decisions under both the partial market

coverage scenario and the full market coverage scenario. We then derive the equi-

librium outcome by comparing the system performance under the two scenarios.

Note that we have solved the game under the partial market coverage scenario in

section 3.5. In the following, we just need to consider the scenario of the full market

coverage. To be consistent, we still use µH(p) and pS to represent the HCP’s best

response service rate and the social planner’s optimal price under the partial market
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coverage scenario. And we use µF(p) and pSF to represent the HCP’s best response

service rate and the social planner’s optimal price under the full market coverage

scenario.

3.6.5 Full Market Coverage

Now we consider the scenario under which the potential patient size is relatively

small such that the results under the partial market coverage scenario are infeasible;

that is, λ(µH(p), p) ≥ Λ. In this case, in equilibrium, all patients can receive treat-

ment and the full market coverage scenario arises. Thus, the HCP’s optimization

problem becomes

max
µ

Π(µ) = n(µ)Λp =
Λp

1− δ(µ)
,

s.t. λ(µ, p) ≥ Λ. (3.19)

Since the objective function Π(µ) in (3.19) is increasing in µ as δ(µ) increases in µ,

the HCP under the full market coverage scenario shall set a largest service rate that

satisfies the constraint. Because λ(µ, p) is quasi-concave in µ (see Lemma 9), for a

given price p, there exist at most two points, denoted by µ1 and µ2, such that the

constraint is binding (i.e., λ(µ, p) = Λ). And λ(µ, p) ≥ Λ iff µ is located between

them. Therefore, the optimal service rate under the full market coverage scenario is

the larger root of λ(µ, p) = Λ. In other words, the HCP chooses the largest service

rate that satisfies the full coverage requirement. We summarize it in the following

proposition.

Proposition 16. Under the full market coverage scenario, the HCP’s optimal ser-

vice rate µF(p) is the larger root of λ(µ, p) = Λ.

Next, we conduct the sensitivity analyses of the system performance with respect

to the price p, which are summarized in the following corollary.
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Corollary 13. Under the full market coverage scenario,

1. both the optimal service rate µF(p) and the corresponding total effective arrival

rate λT (µF(p), p) are decreasing in p.

2. both the waiting time per admission W (Λ, µF(p)) and the total waiting time

TW (Λ, µF(p)) are quasi-convex in p. Let pW and pT W be the prices that min-

imize W (Λ, µF(p)) and TW (Λ, µF(p)), respectively. Then pT W > pW . More-

over,

• when p ≤ pW , both W (Λ, µF(p)) and TW (Λ, µF(p)) are decreasing in p;

• when pW < p < pT W , W (Λ, µF(p)) is increasing in p while TW (Λ, µF(p))

is decreasing in p;

• when p ≥ pT W , both W (Λ, µF(p)) and TW (Λ, µF(p)) are increasing in p.

Similar to the partial market coverage scenario, the first statement of Corollary

13 shows that under the full market coverage scenario a higher service charge p

leads to a lower service rate and a smaller total effective arrival rate. The reason

is that when the market is fully covered, the only way for the HCP to increase

profit is to speed up the treatment of patients so as to generate more readmitted

patients. And as the price increases, the HCP has stronger incentives to increase

service speed. By noting that µF(p) is decreasing in p, the quasi-convexity of waiting

time per admission and total waiting time with respect to the price p is a natural

consequence of Proposition 6. Moreover, the second statement of Corollary 13 also

implies that when p is relatively small, increasing price can mitigate the system

congestion in terms of both the waiting time per admission and the total waiting

time. However, when p is in a moderate range, a higher price leads to a longer

waiting time per admission but a shorter total waiting time. Interestingly, when the

price is relatively high, a higher price leads to both a longer total waiting time and
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a longer waiting time per admission. In contrast to the result under the traditional

queueing setting, here, increasing price will intensify the system congestion.

Next, we proceed to derive the social planner’s pricing decision under the full

market coverage scenario. Recall that the full market coverage scenario will arise

only when the results under the partial market coverage are infeasible; that is, p ∈ Θ,

where Θ = {p|λ(µH(p), p) ≥ Λ}. Then, given the HCP’s best response µF(p), the

social planner makes its pricing decision p to

max
p∈Θ

SW (p) = Λ [R− θTW (Λ, µF(p))] = Λ

[
R− θ

o(µF(p))− Λ

]
. (3.20)

Since the social welfare SW as stated in (3.20) is increasing in the effective

service rate (which achieves the maximum at the service rate µ = µ∗), the social

planner shall choose a price that leads to the HCP’s best response service rate as

close to µ∗ as possible. For notational convenience, we let µSF = µF(pSF).

The following proposition summarizes the equilibrium outcome under the full

market coverage scenario.

Proposition 17. Under the full market coverage scenario, the following results hold.

1. When Λ ≤ λ(µ∗, p̄), pSF = R(1 − δ(µ∗)) − θ(1 − δ(µ∗))/(o(µ∗) − Λ) ≥ p̄ and

µSF = µ∗.

2. When Λ > λ(µ∗, p̄), pSF = max{p|λ(µF(p), p) ≥ Λ} < p̄ and µSF > µ∗.

Proposition 17 shows that if the market is fully covered, that is, all patients are

admitted into the health care system, the HCP actually serves in the socially desired

way when the potential patient size is relatively small. However, when the size of

the potential patients is large, the HCP under the full market coverage scenario will

set a service rate larger than the socially desirable one.
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3.6.6 Equilibrium Outcome

So far we have derived the optimal equilibrium outcomes associated with the partial

market coverage scenario and the full market coverage scenario, respectively. Below

we further investigate under which conditions which scenario appears as the equi-

librium outcome. Then we can evaluate the performance of the health care system

by comparing with the social optimality.

By noting that the equilibrium outcome under the partial market coverage sce-

nario is not unique in general, we denote

λm = min{λ(µS , pS)}

as the smallest equilibrium effective arrival rate of new patients under the partial

market coverage scenario. Then, according to Proposition 12, λm > λ(µ∗, p̄).

Proposition 18. The equilibrium outcome is the full market coverage scenario if

Λ ≤ λm and is the partial market coverage scenario if Λ > λm.

Proposition 18 specifies the condition under which the partial/full market cover-

age scenario will occur. Now we are ready to examine the performance of the health

care system.

Proposition 19. When Λ ≤ λ(µ∗, p̄), the health care system achieves the social

optimality and in this case, the health care system ends up with the full market

coverage. Otherwise, the equilibrium service rate is larger than the socially optimal

one.

Proposition 19 shows that if the potential patient size is very small (Λ ≤ λ(µ∗, p̄)),

it is both in the HCP’s best interest and in the social planner’s objective to serve all

patients, and the health care system can reach social optimality. However, if the po-

tential patient size is relatively large, there exists a conflict between admitting more
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new patients and reducing the readmitted patients. Therefore, the performance of

the health care system can never achieve the social optimality.

3.7 Conclusion

In this chapter, we adopt a queueing model to investigate how to evaluate a health

care system’s performance. By considering the tradeoff between service speed and

service quality in terms of readmission rate, we first define three new system mea-

surements. The first one is the effective service rate, which measures the efficiency

of the HCP’s service delivery. The second one is the total waiting time, which mea-

sures the congestion level of the system. The last one is the utilization rate for new

patients, which measures how much time the HCP spends on treating new patients.

Those measurements enable us to obtain different results from those of classic

queueing models without feedback. Firstly, by studying the joining decision of the

patients, we have the following four important findings. First, increasing service rate

may decrease the waiting time per admission but increase the total waiting time.

Therefore, a reduction in waiting time per admission may be at the expense of service

quality and total waiting time. Second, increasing total utilization rate may actually

reduce the utilization rate for new patients. This implies that reducing the HCP’s

idle time may cause the HCP to spend less time on treating new patients. Third, a

larger total arrival rate may lead to a smaller arrival rate of new patients. Therefore,

improving the accessibility for all the patients may reduce the accessibility for new

patients. Fourth, increasing the arrival rate of new patients (total arrival rate) may

reduce the utilization rate for new patients (total utilization rate). This implies that

reducing HCP’s idle time may reduce the accessibility of the health care services.

Furthermore, by examining the HCP’s service rate decision, we show that in-

creasing price may mitigate the system congestion in terms of total waiting time

but intensify system congestion in terms of waiting time per admission. Based on
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the HCP’s best response, we derive the optimal price from the perspectives of the

HCP and the social planner, respectively. We show that under the profit-maximizing

price, the service rate is socially optimal, while under the welfare-maximizing price,

the service rate is larger than the socially optimal one. Therefore, regulation via

pricing reduces the efficiency of the HCP’s care delivery, and the one-dimensional

control over price fails to induce the health care system to achieve the social opti-

mality. Finally, we show that a two-dimensional control over price and readmission

rate can make the health care system socially optimal.

Our analysis is an initial attempt to examine the efficiency of the health care

system by taking into account the relationship between service quality in terms of

readmission rate and service speed. Moving forward, there are several directions for

future research. One important area is to consider the competition among different

HCPs. It is of interest to investigate the impact of competition on the HCPs’ choices

of service rate. However, this issue involves the patient transfer policy among differ-

ent HCPs, whose analysis may be significantly different from ours. Another possible

extension is to add the mortality rate into our analysis. An implicit assumption in

our model is that the patients can definitely be cured in long run. This assumption

is realistic for the non-fatal illness such as hip and knee arthrosis. However, for the

fatal illness such as diabetes mellitus, the increase in mortality rate is an inevitable

consequence of low quality. Nevertheless, as long as the tradeoff between service

speed and readmission rate exists, our main results can still hold.
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Chapter 4

Summary and Future Research

In this dissertation, we studied several issues related to social responsible opera-

tions in agricultural and health care industries. For the first essay, we examined

whether farmers should utilize market information to make better production plan-

ning decisions and whether farmers should adopt agricultural advice to improve

their operations when both market demand and process yield are uncertain. We

show that the provision of market information always improves the farmers’ total

welfare and that farmers should use market information to improve their production

planning. However, whether a farmer should adopt the agricultural advice is depen-

dent on the size of the requisite upfront investment. More importantly, agricultural

advice is welfare improving if and only if the upfront investment is sufficiently low.

There are several possible extensions for this topic. First, for simplicity, we have

assumed that farmers are risk neutral. However, in practice, the small farmers may

be risk averse. Therefore, it is of interest to further examine how farmers’ risk atti-

tude leads to different results. Seconde, we also assumed that both farmers produce

the same product. One may consider a situation where both farmers have options

to decide which crop to produce. Such a setting enables us to investigate whether

the provision of market information and agricultural advice can coordinate farmers’

crop selections.

For the second topic, we focused on the performance indicators in health care in-

dustry. By distinguishing between the new patients and the readmitted patients, we

introduce three new performance measurements: the effective service rate, the total

waiting time and the utilization rate for new patients. We show that contingent on

different performance measurements, one may draw opposite conclusions about a
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health care system’s performance. To our best knowledge, our work is the first one

that study the performance measurements in health care industry by considering

the tradeoff between service speed and service quality in terms of readmission rate.

Moving forward, there are a lot of directions for future research. For example, in

practice, the HCP’s payment is sometimes dependent on how much time it spends

on treating the patients. For instance, in Japan, the payment for health-care ser-

vice is made on a per-day basis (Ikegami and Anderson 2012). In Maryland, the

inpatient care is determined by unit of time such as per-minute rate for operating

room (Conis 2009). It is of interest to investigate which performance measurement

is better to evaluate a health care system’s performance under the time-based pay-

ment scheme. Another possible direction is to consider multi-step treatments and

incorporate overtreatment into our analysis. In this thesis, we only analyzed the

situation in which patients receive one-step treatment. However, in practice, the

treatment for the diseases such as heart disease normally includes multiple steps. It

is widely believed that the HCP has incentives to overtreat the patients that need

multi-step treatments by providing unnecessary medical services such as needless

tests or scans, resulting in huge waste (Berwick and Hackbarth 2012). To prevent

overtreatment, it is important to figure out how to measure a health care system’s

performance when patients need multi-step treatments.
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Appendix A

Proofs of Chapter 2

Proof of Proposition 1. As the best response functions of both farmers have the

same structure, the equilibrium is symmetric, that is, qNN
1 = qNN

2 . Therefore,

qNN
i =

g − µ2
yq

NN
i

2S2
,

which yields

qNN
i =

g

2S2 + µ2
y

.

Consequently,

πNN
i = qNN

i

[
g − (S2 + µ2

y)q
NN
i

]
=

S2g2

(2S2 + µ2
y)

2
.

Recall that S2 = σ2
y + µ2

y and g = µmµy − c, it is easy to see that πNN
i and qNN

i are

increasing in µm and decreasing in σy. Because dS2

dµy
= 2µy and dg

dµy
= µm, we have

dπNN
i

dµy

=
(dS2

dµy
g2 + S2 dg2

dµy
)(2S2 + µ2

y)− 2S2g2(2dS2

dµy
+ 2µy)

(2S2 + µ2
y)

3

=
2σ2

yg(µmσ2
y + µyc) + 2S2gµmσ2

y + 4S2gµyc + 2µyS
2gc

(2S2 + µ2
y)

3

> 0.
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d(µyq
NN
i )

dµy

= qNN
i + µy

dqNN
i

dµy

=
g

2S2 + µ2
y

+
µy

(
dg
dµy

(2S2 + µ2
y)− g(dS2

dµy
+ 2µy)

)

(2S2 + µ2
y)

2

=
g

2S2 + µ2
y

+
µy(µm(2S2 + µ2

y)− 4gµy)

(2S2 + µ2
y)

2

=
g(2S2 + µ2

y) + µyµm(2S2 + µ2
y)− 4gµ2

y

(2S2 + µ2
y)

2

=
2gσ2

y + 2µyµmS2 + µmµ3
y − gµ2

y

(2S2 + µ2
y)

2

=
2gσ2

y + 2µyµmS2 + cµ2
y

(2S2 + µ2
y)

2
> 0.

Proof of Lemma 1. Observing the best response functions qi(qj), we know that

in equilibrium qY Y
1 |I = qY Y

2 |I. Therefore,

qY Y
i |I =

g
′
σI + γρµyσm(I − µI)

2σIS
′2 − γ2µ2

yq
Y Y
i |I

2S ′2 ,

which yields

qY Y
i |I =

g
′
σI + γρµyσm(I − µI)

2σIS
′2 + σIγ2µ2

y

.
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Substituting the above equation into πi(q)|I, we obtain

πY Y
i |I = (qY Y

i |I)

[
g
′
+ γρµy

σm

σI

(I − µI)− (S
′2

+ γ2µ2
y)(q

Y Y
i |I)

]

=
g
′
σI + γρµyσm(I − µI)

2σIS
′2 + σIγ2µ2

y

[
g
′
+ γρµy

σm

σI

(I − µI)−
(S

′2
+ γ2µ2

y)(g
′
σI + γρµyσm(I − µI))

2σIS
′2 + σIγ2µ2

y

]

=
S
′2
[g
′
σI + γρµyσm(I − µI)]

2

σ2
I(2S

′2 + γ2µ2
y)

2
.

Proof of Proposition 2. From Lemma 1, it is easy to obtain the ex ante equilibria

(2.4) and (2.5). Note that only g
′
is dependent of α and β, and g

′
is increasing in α

and decreasing in β. Therefore, both qY Y
i and πY Y

i are increasing in α and decreasing

in β. Recall that S
′2

= σ2
y + (γµy)

2 and g
′
= αγµmµy − βc. Thus, dS

′2

dγ
= 2γµ2

y and

dg
′

dγ
= αµmµy. Therefore,

dπY Y
i

dγ
=

[dS
′2

dγ
(g

′2
+ γ2µ2

yρ
2σ2

m) + 2S
′2
(αµmµyg

′
+ γρ2µ2

yσ
2
m)](2S

′2
+ γ2µ2

y)

(2S ′2 + γ2µ2
m)3

−
−4S

′2
(g

′2
+ γ2µ2

yρ
2σ2

m)(dS
′2

dγ
+ γµ2

y)

(2S ′2 + γ2µ2
m)3

=
(2γ2µ2

yσ
2
y + 4σ4

y)γρ2µ2
yσ

2
m + 2g

′
(αγ2µmµ3

yσ
2
y + 2αµmµyσ

4
y + 3γµ2

yβcS
′2

+ γµ2
yσ

2
yβc)

(2S ′2 + γ2µ2
y)

3
(A.1)

> 0.

Finally, it is easy to verify that πY Y
i is increasing in ρ2 and σm.

Proof of Lemma 2. From (2.8), given q2,

(q1|I = µI) =
g
′

2S ′2 −
γµ2

yq2

2S ′2 .
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Substituting it into (2.9),

q2 =
g

2S2
− γµ2

y(g
′ − γµ2

yq2)

4S2S ′2 .

As the production quantity must be nonnegative, solving the above equation we

obtain

qY N
2 =





2S
′2

g−γµ2
yg
′

4S2S
′2−γ2µ4

y

, if 2S
′2
g − γµ2

yg
′
> 0,

0, otherwise.

Because 2S
′2
g − γµ2

yg
′
= µ2

y[2(γ2 + C2
y )g − γg

′
], 2S

′2
g − γµ2

yg
′
> 0 is equivalent to

C2
y > γg

′

2g
− γ2. Plugging qY N

2 into (2.8), we obtain (2.10). Then

(qY N
1 |I = µI) =





2S2g
′−γµ2

yg

4S2S
′2−γ2µ4

y

, if C2
y > γg

′

2g
− γ2,

g
′

2S′2
, otherwise.
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When C2
y > γg

′

2g
− γ2, from (2.6) and (2.7), we can get

πY N
2 = qY N

2

[
g − (S2qY N

2 + γµ2
y(q

Y N
1 |I = µI))

]

=
2S

′2
g − γµ2

yg
′

4S2S ′2 − γ2µ4
y

[
g − 2S2S

′2
g − γµ2

yS
2g

′

4S2S ′2 − γ2µ4
y

− 2γµ2
yS

2g
′ − γ2µ4

yg

4S2S ′2 − γ2µ4
y

]

=
S2(2S

′2
g − γµ2

yg
′
)2

(4S2S ′2 − γ2µ4
y)

2
.

πY N
1 |I = (qY N

1 |I)[g
′
+ γρµy

σm

σI

(I − µI)− ((qY N
1 |I)S

′2
+ γµ2

yq
Y N
2 )]

=

[
2S2g

′ − γµ2
yg

4S2S ′2 − γ2µ4
y

+
γρµyσm(I − µI)

2σIS
′2

][
g
′
+ γρµy

σm

σI

(I − µI)−
(

2S2S
′2
g
′ − γµ2

yS
′2
g

4S2S ′2 − γ2µ4
y

+
γρµyσm(I − µI)

2σI

+
2S

′2
γµ2

yg − γ2µ4
yg

′

4S2S ′2 − γ2µ4
y

)]

= S
′2

[
2S2g

′ − γµ2
yg

4S2S ′2 − γ2µ4
y

+
γρµyσm(I − µI)

2σIS
′2

]2

.

When C2
y ≤ γg

′

2g
− γ2, it can be easily shown that πY N

2 = 0 and

πY N
1 |I = (qY N

1 |I)

[
g
′
+ γρµy

σm

σI

(I − µI)− (qY N
1 |I)S

′2
]

=
[g
′
σI + γρµyσm(I − µI)]

2

4σ2
IS

′2 .

Proof of Corollary 3. Suppose γ = 1. Then, S2 = S
′2
. When C2

y > γg
′

2g
− γ2,

according to Lemma 2 and Proposition 3,

qY N
1 − qY N

2 =
2S2g

′ − γµ2
yg − 2S

′2
g + γµ2

yg
′

4S2S ′2 − γ2µ4
y

=
(2S2 + γµ2

y)(g
′ − g)

4S2S ′2 − γ2µ4
y

≥ 0.

When C2
y ≤ γg

′

2g
− γ2, qY N

2 = 0. Thus, when γ = 1, qY N
1 ≥ qY N

2 .
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Proof of Lemma 4. We first consider the scenario C2
y > γg

′

2g
− γ2. Let

L1 =
S
′
g
′

(2S ′2 + γ2µ2
y)

, and L2 =
S
′
(2S2g

′ − γµ2
yg)

(4S2S ′2 − γ2µ4
y)

.

Then, from (2.5) and (2.15), we have

πY Y
1 = L2

1 +
S
′2
γ2ρ2µ2

yσ
2
m

(2S ′2 + γ2µ2
y)

2
, (A.2)

πY N
1 = L2

2 +
γ2ρ2µ2

yσ
2
m

4S ′2 . (A.3)

Note that πNY
1 = πY N

2 . From (2.13), we have

√
πNN

1 −
√

πNY
1 =

Sg

(2S2 + µ2
y)
− S(2S

′2
g − γµ2

yg
′
)

(4S2S ′2 − γ2µ4
y)

=
[2µ2

y(S
2γg

′ − S
′2
g) + γµ4

y(g
′ − γg)]S

(2S2 + µ2
y)(4S

2S ′2 − γ2µ4
y)

, (A.4)

L2 − L1 =
S
′
(2S2g

′ − γµ2
yg)

(4S2S ′2 − γ2µ4
y)

− S
′
g
′

(2S ′2 + γ2µ2
y)

=
[2γµ2

y(S
2γg

′ − S
′2
g) + γ2µ4

y(g
′ − γg)]S

′

(4S2S ′2 − γ2µ4
y)(2S

′2 + γ2µ2
y)

, (A.5)

As α ≥ 1, β ≤ 1, and γ ≥ 1,

g
′ − γg = γµmµy(α− 1)− (β − γ)c ≥ 0,

S2γg
′ − S

′2
g = γ(σ2

y + µ2
y)(αγµmµy − βc)− (σ2

y + γ2µ2
y)(µmµy − c)

= σ2
y[γ(αγµmµy − βc)− (µmµy − c)] + (α− 1)γ2µmµ3

y + (γ − β)γµ2
yc

≥ 0.
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Thus, πNN
1 ≥ πNY

1 and L2 ≥ L1. Because

γ2ρ2µ2
yσ

2
m

4S ′2 − S
′2
γ2ρ2µ2

yσ
2
m

(2S ′2 + γ2µ2
y)

2
= S

′2
γ2ρ2µ2

yσ
2
m

(
1

2S ′2 −
1

2S ′2 + γ2µ2
y

)(
1

2S ′2 +
1

2S ′2 + γ2µ2
y

)
≥ 0,

from (A.2) and (A.3), we have πY N
1 − πY Y

1 ≥ L2
2−L2

1 ≥ 0. Note that when α = γ =

β = 1 and ρ = 0, πY Y
i = πNN

i . Then, based on Proposition 2, we can derive that

πY N
1 ≥ πY Y

1 ≥ πNN
1 ≥ πNY

1 . Naturally, due to symmetry, πNY
2 ≥ πY Y

2 ≥ πNN
2 ≥

πY N
2 .

Below, we prove that πY N
1 − πNN

1 ≥ πY Y
1 − πNY

1 . From (A.4) and (A.5), we get

πY N
1 − πY Y

1

πNN
1 − πNY

1

≥ L2
2 − L2

1

πNN
1 − πNY

1

=
L2 − L1√

πNN
1 −

√
πNY

1

L2 + L1√
πNN

1 +
√

πNY
1

=
γS

′
(2S2 + µ2

y)

S(2S ′2 + γ2µ2
y)

L2 + L1√
πNN

1 +
√

πNY
1

.

We can show that

√
πNN

1 +
√

πNY
1 =

Sg

(2S2 + µ2
y)

+
S(2S

′2
g − γµ2

yg
′
)

(4S2S ′2 − γ2µ4
y)

=
[8S2S

′2
g − 2µ2

y(S
2γg

′ − S
′2
g)− γµ4

y(g
′
+ γg)]S

(2S2 + µ2
y)(4S

2S ′2 − γ2µ4
y)

L2 + L1 =
S
′
(2S2g

′
+ γµ2

yg)

(4S2S ′2 − γ2µ4
y)

+
S
′
g
′

(2S ′2 + γ2µ2
y)

=
[8S2S

′2
g
′
+ 2γµ2

y(S
2γg

′ − S
′2
g)− γ2µ4

y(g
′
+ γg)]S

′

(4S2S ′2 − γ2µ4
y)(2S

′2 + γ2µ2
y)

.
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Because g
′ ≥ gγ and S2γg

′ − S
′2
g ≥ 0,

8S2S
′2
g
′

γ
+2µ2

y(S
2γg

′−S
′2
g)−γµ4

y(g
′
+γg) ≥ 8S2S

′2
g−2µ2

y(S
2γg

′−S
′2
g)−γµ4

y(g
′
+γg),

which yields

L2 + L1√
πNN

1 +
√

πNY
1

≥ γS
′
(2S2 + µ2

y)

S(2S ′2 + γ2µ2
y)

.

Moreover, because

γ2S
′2
(2S2 + µ2

y)
2 − S2(2S

′2
+ γ2µ2

y)
2 = (4S2S

′2 − γ2µ4
y)(γ

2S2 − S
′2
)

= (4σ4
y + 4γ2µ2

yσ
2
y + 4µ2

yσ
2
y + 3γ2µ4

y)(γ
2 − 1)σ2

y

> 0,

γ2S
′2

(2S2+µ2
y)2

S2(2S′2+γ2µ2
y)2

≥ 1. Thus, πY N
1 − πY Y

1 ≥ πNN
1 − πNY

1 . Equivalently, πY N
1 − πNN

1 ≥

πY Y
1 − πNY

1 . Again, by symmetry, πNY
2 − πNN

2 ≥ πY Y
2 − πY N

2 .

Now we consider the scenario C2
y ≤ γg

′

2g
− γ2. As C2

y ≥ 0, g
′ ≥ 2γg. Thus,

πY N
1 − πY Y

1 =
g
′2

+ γ2ρ2µ2
yσ

2
m

4S ′2 − S
′2
(g

′2
+ γ2ρ2µ2

yσ
2
m)

(2S ′2 + γ2µ2
y)

2

=
(g

′2
+ γ2ρ2µ2

yσ
2
m)γ2µ2

y(4S
′2

+ γ2µ2
y)

4S ′2(2S ′2 + γ2µ2
y)

2
> 0.

When C2
y ≤ γg

′

2g
− γ2, πNY

1 = πY N
2 = 0. Therefore, πY N

1 ≥ πY Y
1 ≥ πNN

1 ≥ πNY
1 . By
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symmetry, πNY
2 ≥ πY Y

2 ≥ πNN
2 ≥ πY N

2 . Next, we can show that

πY N
1 − πY Y

1 − (πNN
1 − πNY

1 ) = πY N
1 − πY Y

1 − πNN
1

≥ g
′2
γ2µ2

y(4S
′2

+ γ2µ2
y)

4S ′2(2S ′2 + γ2µ2
y)

2
− S2g2

(2S2 + µ2
y)

2

=
g
′2
γ2µ2

y(4S
′2

+ γ2µ2
y)(2S

2 + µ2
y)

2 − 4S
′2
S2g2(2S

′2
+ γ2µ2

y)
2

4S ′2(2S ′2 + γ2µ2
y)

2(2S2 + µ2
y)

2
.

Recall that C2
y ≤ γg

′

2g
− γ2 is equivalent to 2S

′2
g − γµ2

yg
′ ≤ 0, thus,

πY N
1 − πY Y

1 − (πNN
1 − πNY

1 ) ≥ 2S
′2
gg

′
γ(4S

′2
+ γ2µ2

y)(2S
2 + µ2

y)
2 − 4S

′2
S2g2(2S

′2
+ γ2µ2

y)
2

4S ′2(2S ′2 + γ2µ2
y)

2(2S2 + µ2
y)

2

=
2S

′2
g[g

′
γ(4S

′2
+ γ2µ2

y)(2S
2 + µ2

y)
2 − 2S2g(2S

′2
+ γ2µ2

y)
2]

4S ′2(2S ′2 + γ2µ2
y)

2(2S2 + µ2
y)

2
.

Note that

g
′
γ(4S

′2
+ γ2µ2

y)(2S
2 + µ2

y)
2 ≥ 16g

′
γS

′2
(S2)2 + 4γ3g

′
µ2

y(S
2)2 + 4γ3µ4

yS
2g

′
,

2S2g(2S
′2

+ γ2µ2
y)

2 = 8(S
′2
)2S2g + 8S

′2
S2gγ2µ2

y + 2γ4µ4
yS

2g.

Because S2γg
′ − S

′2
g ≥ 0, 2S

′2
g − γµ2

yg
′ ≤ 0 and g

′ ≥ 2γg,

g
′
γ(4S

′2
+ γ2µ2

y)(2S
2 + µ2

y)
2 − 2S2g(2S

′2
+ γ2µ2

y)
2 ≥ 8S

′2
S2(2g

′
γS2 − S

′2
g) + 4γ2µ2

yS
2(γµ2

yg
′

−2S
′2
g) + 2γ3µ2

yS
2(2g

′
S2 − γµ2

yg)

≥ 0.

Therefore, πY N
1 −πY Y

1 ≥ πNN
1 −πNY

1 , which is equivalent to πY N
1 −πNN

1 ≥ πY Y
1 −πNY

1 .

By symmetry, πNY
2 − πNN

2 ≥ πY Y
2 − πY N

2 .

Proof of Corollary 6. By noting that ρ 6= 0 and πNN
i is independent of α, β, γ,
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and ρ, Corollary 6 can be easily derived from Proposition 2 and Lemma 4.

Proof of Corollary 7. Note that πNN
1 is independent of those parameters. We

only need to focus on πY Y
1 . From (2.5) and (A.1), we have

∂2πY Y
1

∂γ∂ρ2
=

γµ2
yσ

2
m(2γ2σ2

yµ
2
y + 4σ4

y)

(2S ′2 + γ2µ2
y)

3
> 0,

∂2πY Y
1

∂γ∂σm

=
2γσmρ2µ2

y(2γ
2σ2

yµ
2
y + 4σ4

y)

(2S ′2 + γ2µ2
y)

3
> 0,

∂2πY Y
1

∂γ∂α
=

2g
′
(γ2µmµ3

yσ
2
y + 2µmµyσ

4
y) + 2µmµyγ(αγ2µmµ3

yσ
2
y + 2αµmµyσ

4
y + 3γµ2

yβcS
′2

+ γµ2
yσ

2
yβc)

(2S ′2 + γ2µ2
y)

3

> 0.

∂2πY Y
1

∂α∂ρ2
=

∂2πY Y
1

∂β∂ρ2
= 0.

Moreover,

∂2πY Y
1

∂β∂γ
=

−2c(αγ2µmµ3
yσ

2
y + 2αµmµyσ

4
y + 3γµ2

yβcS
′2

+ γµ2
yσ

2
yβc) + 6g

′
γµ2

ycS
′2

+ 2g
′
γµ2

yσ
2
yc

(2S ′2 + γ2µ2
y)

3

=
−2cαγ2µmµ3

yσ
2
y − 4cαµmµyσ

4
y + 2c(g

′ − βc)(3γµ2
yS

′2
+ γµ2

yσ
2
y)

(2S ′2 + γ2µ2
y)

3

=
2c[−αγ2µmµ3

yσ
2
y − 2αµmµyσ

4
y + (αγµmµy − 2βc)(3γµ2

yS
′2

+ γµ2
yσ

2
y)]

(2S ′2 + γ2µ2
y)

3

=
2c[−2αµmµyσ

4
y + 3αγ2µmµ3

yS
′2 − 2βc(3γµ2

yS
′2

+ γµ2
yσ

2
y)]

(2S ′2 + γ2µ2
y)

3

=
2c[αµmµy(3γ

2µ2
yS

′2 − 2σ4
y)− 2βc(3γµ2

yS
′2

+ γµ2
yσ

2
y)]

(2S ′2 + γ2µ2
y)

3

=
2c[αµmµ5

y(3γ
4 + 3γ2C2

y − 2C4
y )− 2βc(3γµ2

yS
′2

+ γµ2
yσ

2
y)]

(2S ′2 + γ2µ2
y)

3

=
2c[−2αµmµ5

yγ
4(

C2
y

γ2 +
√

33−3
4

)(
C2

y

γ2 −
√

33+3
4

)− 2βc(3γµ2
yS

′2
+ γµ2

yσ
2
y)]

(2S ′2 + γ2µ2
y)

3
.
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Let C̄y = (
√√

33 + 3)/2. Obviously, when Cy/r > C̄y, the above equation is

definitely negative. Otherwise, because the term inside the bracket in the numerator

is decreasing in c, there exists a c̄ such that
∂2πY Y

1

∂β∂γ
< 0 if and only if c > c̄.

Proof of Corollary 8. Because α = β = γ = 1, g = g
′
, S2 = S

′2
, and γg

′−2γ2g ≤
0. Based on (2.13), we then have

πNY
1 =

S2(2S
′2
g − γµ2

yg
′
)2

(4S2S ′2 − γ2µ4
y)

2
=

S2g2

(2S2 + µ2
y)

2
= πNN

1 .

By symmetry, we can obtain that πNN
2 = πY N

2 . Furthermore, because ρ 6= 0, it

follows easily from Lemma 4 that πY Y
i > πNN

i , πY N
1 − πNN

1 > πY Y
1 − πNY

1 , and

πNY
2 − πNN

2 > πY Y
2 − πY N

2 . Finally, due to πY Y
1 > πNY

1 and πY N
1 > πNN

1 , the best

response of farmer 1 is to invest. By symmetry, farmer 2’s best response is the same

as farmer 1. Thus, (Y, Y ) is the unique equilibrium.

Proof of Proposition 4. From (2.16) and (2.17), we have

πY N
1 =

S2g2

(2S2 + µ2
y)

2
+

ρ2µ2
yσ

2
m

4S2
, and πY N

2 =
S2g2

(2S2 + µ2
y)

2
.

Thus,

πY Y
1 + πY Y

2 − (πY N
1 + πY N

2 ) =
2S2(g2 + ρ2µ2

yσ
2
m)

(2S2 + µ2
y)

2
− 2S2g2

(2S2 + µ2
y)

2
− ρ2µ2

yσ
2
m

4S2

=
ρ2µ2

yσ
2
m(2

√
2S2 − 2S2 − µ2

y)(2
√

2S2 + 2S2 + µ2
y)

4S2(2S2 + µ2
y)

2

=
ρ2σ2

mµ4
y[2(

√
2− 1)C2

y + 2
√

2− 3](2
√

2S2 + 2S2 + µ2
y)

4S2(2S2 + µ2
y)

2
.

Therefore, πY Y
1 + πY Y

2 > πY N
1 + πY N

2 if and only if Cy >
√√

2−1
2

.
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Proof of Corollary 9. By noting that α = β = γ = 1 and Pi = M − (ziqi +

tzjqj), i, j = 1, 2, i 6= j, we can obtain the farmers’ expected profits associated with

the four subgames, which are summarized in following table.

Table A.1: Summary of the results under heterogenous products

Expected profit
(N,N) πi(qi) = gqi − S2q2

i − tµ2
yqiqj, i, j = 1, 2, i 6= j,

(Y, Y ) πi(qi|I) = gqi + ρµy
σm

σI
(I − µI)qi − S2q2

i − tµ2
yqiqj|I

(Y, N) π1(q1) = gq1 + ρµy
σm

σI
(I − µI)q1 − S2q2

1 − tµ2
yq1q2|I

π2(q2) = gq2 − S2q2
2 − t(µ2

yq1|I = µI)q2

(N, Y ) π1(q1) = gq1 − S2q2
1 − tq1(µ

2
yq2|I = µI)

π2(q2) = gq2 + ρµy
σm

σI
(I − µI)q2 − S2q2

2 − tµ2
yq1q2|I

By considering the first order condition, we can obtain the equilibrium outcomes,

which are summarized in Table A.2.

Table A.2: Summary of the results under heterogenous products

Best response Equilibrium outcomes (ex post)

(N,N) qi(qj) =
g−tµ2

yqj

2S2 qNN
i = g

2S2+tµ2
y
, πNN

i = S2g2

(2S2+tµ2
y)2

(Y, Y ) qi(qj)|I =
gσI+ρµyσm(I−µI)

2σIS2 − tµ2
yq2

2S2 qY Y
i = g

2S2+tµ2
y
, πY Y

i =
S2(g2+ρ2µ2

yσ2
m)

(2S2+tµ2
y)2

(Y, N) q1(q2)|I =
gσI+ρµyσm(I−µI)

2σIS2 − tµ2
yq2

2S2 qY N
1 = g

2S2+tµ2
y
, πY N

1 = S2g2

(2S2+tµ2
y)2

+
ρ2µ2

yσ2
m

4S4

q2(q1) =
g−tµ2

y(q1|I=µI)

2S2 qY N
2 = g

2S2+tµ2
y
, πY N

2 = S2g2

(2S2+tµ2
y)2

(N, Y ) q1(q2) =
g−tµ2

y(q2|I=µI)

2S2 qNY
1 = g

2S2+tµ2
y
, πNY

1 = S2g2

(2S2+tµ2
y)2

q2(q1)|I =
gσI+ρµyσm(I−µI)

2σIS2 − tµ2
yq1

2S2 qNY
2 = g

2S2+tµ2
y
, πNY

2 = S2g2

(2S2+tµ2
y)2

+
ρ2µ2

yσ2
m

4S4

It is easy to see that πY Y
i > πNN

i and πY Y
1 + πY Y

2 > πNN
1 + πNN

2 . Furthermore,

due to symmetry, to check whether the provision of market information is welfare

maximizing, we only need to compare the total welfare of farmers under strategies
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(Y, Y ) and (Y, N). By direct comparison,

πY Y
1 + πY Y

2 − (πY N
1 + πY N

2 ) =
2ρ2µ2

yσ
2
m

(2S2 + tµ2
y)

2
− ρ2µ2

yσ
2
m

4S4

=
ρ2µ2

yσ
2
m[8S4 − (2S2 + tµ2

y)
2]

4S4(2S2 + tµ2
y)

2

=
ρ2µ2

yσ
2
m[2

√
2S2 − (2S2 + tµ2

y)][2
√

2S2 + (2S2 + tµ2
y)]

4S4(2S2 + tµ2
y)

2

=
ρ2µ4

yσ
2
m[2(

√
2− 1)C2

y + 2(
√

2− 1)− t][2
√

2S2 + (2S2 + tµ2
y)]

4S4(2S2 + tµ2
y)

2
.

Thus, when t < 2(
√

2 − 1), the above equation is always positive. When t ≥

2(
√

2− 1), πY Y
1 + πY Y

2 > πNY
1 + πNY

2 if and only if Cy >
√

t−2(
√

2−1)

2(
√

2−1)
, which can be

simplified as Cy >

√
(
√

2+1)t−2
2

.

Proof of Proposition 5. The first statement follows easily from the proof of Lemma

4. For the second statement, first consider the case that K ≤ πY Y
1 −πNY

1 . According

to Lemma 4, when K ≤ πY Y
1 − πNY

1 , πY Y
1 −K > πNY

1 , and πY N
1 −K > πNN

1 , which

implies that the best response of farmer 1 is to adopt and invest. By symmetry,

farmer 2’s best response is also to adopt and invest. Therefore, (Y, Y ) is the unique

equilibrium. The other two cases can be derived similarly and we omit the details

here.
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Appendix B

Proofs of Chapter 3

Proof of Lemma 11. Taking the first order condition (FOC) of o(µ) over µ yields

do(µ)

dµ
= 1− δ(µ)− µδ

′
(µ) = 0,

which can be rewritten as

(1− δ(µ))(1− µg(µ)) = 0.

As g(µ) is increasing in µ, do(µ)/dµ crosses zero only once from above. Therefore,

o(µ) is quasi-concave in µ and the optimal service rate µ∗ solves the µ∗g(µ∗) = 1.

Next, we prove that when µ ≤ µ∗, o(µ) is concave in µ. Note that as g(µ) is

increasing in µ,

dg(µ)

dµ
=

δ
′′
(µ)(1− δ(µ)) + (δ

′
(µ))2

(1− δ(µ))2
> 0, (B.1)

which yields δ
′′
(µ)(1− δ(µ)) + (δ

′
(µ))2 > 0. And we can show that

d2o(µ)

dµ2
= −2δ

′
(µ)− µδ

′′
(µ)

= −2δ
′
(µ) +

µ(δ
′
(µ))2

1− δ(µ)
− µδ

′′
(µ)(1− δ(µ)) + µ(δ

′
(µ))2

1− δ(µ)

= −δ
′
(µ)− δ

′
(µ)

1− δ(µ)

do(µ)

dµ
− µδ

′′
(µ)(1− δ(µ)) + µ(δ

′
(µ))2

1− δ(µ)
.

As o(µ) is increasing in µ when µ ≤ µ∗, the above equation is negative for all µ ≤ µ∗.

Therefore, o(µ) is concave in µ for µ ≤ µ∗.
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Proof of Proposition 6. Using the fact that (1 − δ(µ))o
′
(µ) = (1 − δ(µ))2 −

o(µ)δ
′
(µ), we have

dW (λ, µ)

dµ
= − δ

′
(µ)

o(µ)− λ
− (1− δ(µ))o

′
(µ)

(o(µ)− λ)2
=

λδ
′
(µ)− (1− δ(µ))2

(o(µ)− λ)2
,(B.2)

d2W (λ, µ)

dµ2

∣∣∣∣
dW (λ, µ)

dµ
=0

=
λδ

′′
(µ) + 2(1− δ(µ))δ

′
(µ)

(o(µ)− λ)2

=
λδ

′′
(µ)(1− δ(µ)) + λδ

′2
(µ)

(1− δ(µ))(o(µ)− λ)2
+

2(1− δ(µ))2δ
′
(µ)− λδ

′2
(µ)

(1− δ(µ))(o(µ)− λ)2

=
λδ

′′
(µ)(1− δ(µ)) + λδ

′2
(µ)

(1− δ(µ))(o(µ)− λ)2
+

(1− δ(µ))2δ
′
(µ)

(1− δ(µ))(o(µ)− λ)2
> 0.

Therefore, W (λ, µ) is quasi-convex in µ. And µW satisfies λδ
′
(µW)−(1−δ(µW))2 =

0, which can be rewritten as

(1− δ(µW))2

[
λ

o(µW)

µWδ
′
(µW)

1− δ(µW)
− 1

]
= 0.

Equivalently, µWg(µW)ρT (λ, µW) = 1.

Besides, from (B.2) we can easily show that

dW (λ, µ)

dµ

∣∣∣∣
µ=µ∗

= − δ
′
(µ∗)

o(µ∗)− λ
< 0.

Thus, the service rate that minimizes W (λ, µ) is larger than µ∗. Furthermore,

dTW (λ, µ)

dµ
= − o

′
(µ)

(o(µ)− λ)2
,
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which equals zero if µ = µ∗. And according to Lemma 11,

d2TW (λ, µ)

dµ2

∣∣∣∣
µ=µ∗

= − o
′′
(µ∗)

(o(µ∗)− λ)2
> 0.

Therefore, TW (λ, µ) is also quasi-convex in µ and attains its minimum at µ = µ∗.

Finally, according to Lemma 11, it is easy to see that the total utilization rate

ρT (λ, µ) is convex in µ and attains its minimum at µ∗.

Proof of Proposition 8. Substituting (3.6) into SW (λ, µ), we have

SW (λ, µ) = λ

[
R− θ

o(µ)− λ

]
− β(Λ− λ). (B.3)

Taking the FOC of SW (λ, µ) with respect to µ yields

dSW (λ, µ)

dµ
=

λθo
′
(µ)

[o(µ)− λ]2
= 0 ⇒ o

′
(µ) = 0.

Therefore, µb = µ∗. Furthermore, as o(µ) is concave in µ for µ ≤ µ∗,

d2SW (λ, µ)

dµ2

∣∣∣∣
µ=µb

=
λθo

′′
(µb)

[o(µb)− λ]2
− 2λθ(o

′
(µb))

2

[o(µb)− λ]3
< 0,

which guarantees that SW (λ, µ) is quasi-concave in µ and therefore, µb = µ∗ max-

imizes SW (λ, µ). Furthermore, for a fixed µ, we have

d2SW (λ, µ)

dλ2 = − 2o(µ)θ

[o(µ)− λ]3
< 0,

which shows that SW (λ, µ) is concave in λ. Substituting µb = µ∗ into SW (λ, µ)

and taking the FOC of SW (λ, µ∗) with respect to λ yield

dSW (λ, µ∗)
dλ

= R− θ

o(µ∗)− λ
− λθ

[o(µ∗)− λ]2
+ β = R− θo(µ∗)

[o(µ∗)− λ]2
+ β = 0.(B.4)
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Therefore, λb = o(µ∗)−
√

θo(µ∗)/(R + β).

Proof of Proposition 9. With a slight abuse of notion, we interchangeable use

µi(p) and µi, i ∈ {an, at, un, ut}. By noting that o
′
(µ) = 1− δ(µ)−µδ

′
(µ), we have

o(µ)− µo
′
(µ) = µ2δ

′
(µ). Hence,

∂λ(µ, p)

∂µ
= o

′
(µ)− θo

′
(µ)

Ro(µ)− µp
+

θo(µ)(Ro
′
(µ)− p)

[Ro(µ)− µp]2

= o
′
(µ)− θδ

′
(µ)p

[R(1− δ(µ))− p]2
. (B.5)

Then from Lemma 11, we can show that ∂λ(µ, p)/∂µ < 0 for µ ≥ µ∗. By noting

that µan(p) is the solution of ∂λ(µ, p)/∂µ = 0, then µan(p) < µ∗. By Lemma 11 we

know o
′′
(µan) < 0. Then,

∂2λ(µ, p)

∂µ2

∣∣∣∣
µ=µan

= o
′′
(µan)− θpδ

′′
(µan)

[R(1− δ(µan))− p]2
− 2Rθ(δ

′
(µan))2p

[R(1− δ(µan))− p]3

= o
′′
(µan) +

θp(δ
′
(µan))2

(1− δ(µan))[R(1− δ(µan))− p]2
− 2Rθ(δ

′
(µan))2p

[R(1− δ(µan))− p]3

−θp[δ
′′
(µan)(1− δ(µan)) + (δ

′
(µan))2]

(1− δ(µan))[R(1− δ(µan))− p]2

= o
′′
(µan)− θp[δ

′′
(µan)(1− δ(µan)) + (δ

′
(µan))2]

(1− δ(µan))[R(1− δ(µan))− p]2

− θp(δ
′
(µan))2(R(1− δ(µan)) + p)

(1− δ(µan))[R(1− δ(µan))− p]3

< 0.

Thus, λ(µ, p) is quasi-concave in µ. Taking derivative of λT (µ, p) with respect to µ

99



and using (B.1),

∂λT (µ, p)

∂µ
= 1− θRδ

′
(µ)

[R(1− δ(µ))− p]2
, (B.6)

∂2λT (µ, p)

∂µ2
= − θRδ

′′
(µ)

[R(1− δ(µ))− p]2
− 2θR2(δ

′
(µ))2

[R(1− δ(µ))− p]3

=
−Rθ

(1− δ(µ))

[
(δ
′
(µ))2(R(1− δ(µ)) + p)

[R(1− δ(µ))− p]3
+

δ
′′
(µ)(1− δ(µ)) + (δ

′
(µ))2

[R(1− δ(µ))− p]2

]

< 0. (B.7)

Thus λT (µ, p) is concave in µ and the corresponding optimal service rate µat(p) as

stated in (3.15) can be obtained by solving the FOC dλT (µ, p)/dµ = 0.

By noting that o
′
(µ) = 1− δ(µ)− µδ

′
(µ), (B.6) can be rewritten as

∂λT (µ, p)

∂µ
= 1− θ

µ[R(1− δ(µ))− p]
+

θ(Ro
′
(µ)− p)

µ[R(1− δ(µ))− p]2

=
λT (µ, p)

µ
+

θ(Ro
′
(µ)− p)

µ[R(1− δ(µ))− p]2
.

Obviously, the maximum total effective arrival rate should be positive; that is,

λT (µat(p), p) > 0. Because µat(p) is the solution of ∂λT (µ, p)/∂µ = 0, we have

Ro
′
(µat)− p < 0. Substituting (3.15) into (B.5), we have

∂λ(µ, p)

∂µ

∣∣∣∣
µ=µat

=
Ro

′
(µat)− p

R
< 0,

which implies that µat(p) > µan(p).

Moreover, using (3.13),

∂ρT (λ(µ, p), µ)

∂µ
=

θ(Ro
′
(µ)− p)

(Ro(µ)− pµ)2
. (B.8)
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Recall from Lemma 11 that o
′
(µ) ≤ 0 for µ ≥ µ∗. Then µut(p) < µ∗. Applying

Lemma 11 again, o
′′
(µut) < 0. Thus,

∂ρT (λ(µ, p), µ)

∂µ

∣∣∣∣
µ=µut

=
θRo

′′
(µut)

(Ro(µut)− pµut)
2

< 0,

which shows that ρT (λ(µ, p), µ) is quasi-concave in µ. Recall that Ro
′
(µat)− p < 0.

Then

∂ρT (λ(µ, p), µ)

∂µ

∣∣∣∣
µ=µat

=
θ(Ro

′
(µat)− p)

(Ro(µat)− pµat)
2

< 0.

Therefore, µut(p) < µat(p). In addition, from (B.8), we have Ro
′
(µut) − p = 0.

Substituting it into (B.5),

∂λ(µ, p)

∂µ

∣∣∣∣
µ=µut

=
p

R

(
1− θRδ

′
(µut)

[R(1− δ(µut))− p]2

)

=
p

R

∂λT (µ, p)

∂µ

∣∣∣∣
µ=µut

> 0.

The last inequality is because of µut(p) < µat(p). Finally, based on (3.14), we have

∂ρN(λ(µ, p), µ)

∂µ
= −δ

′
(µ)

(
1− θ

Ro(µ)− pµ

)
+

θ(1− δ(µ))(Ro
′
(µ)− p)

(Ro(µ)− pµ)2

=
−δ

′
(µ)ρN(λ(µ, p), µ)

1− δ(µ)
+

θ(1− δ(µ))(Ro
′
(µ)− p)

(Ro(µ)− pµ)2
.

In equilibrium, the utilization rate for new patients must be positive. By noting

that µun(p) is the solution of ∂ρN(λ(µ, p), µ)/∂µ = 0, we obtain Ro
′
(µun)− p > 0.

And because o
′
(µ) ≤ 0 for µ ≥ µ∗, we have µun < µ∗. Again from Lemma 11, we
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have o
′′
(µun) < 0. Furthermore, from ∂ρN(λ(µun, p), µun)/∂µ = 0, we have

1− θ

Ro(µun)− pµun

=
θ(1− δ(µun))(Ro

′
(µun)− p)

δ
′
(µun)(Ro(µun)− pµun)2

.

Then,

∂ρN(λ(µ, p), µ)

∂µ

∣∣∣∣
µ=µun

= −δ
′′
(µun)

(
1− θ

Ro(µun)− pµun

)
− θδ

′
(µun)(Ro

′
(µun)− p)

(Ro(µun)− pµun)2

−θδ
′
(µun)(Ro

′
(µun)− p)

(Ro(µun)− pµun)2
+

θ(1− δ(µun))Ro
′′
(µun)

(Ro(µun)− pµun)2

−2θ(1− δ(µun))(Ro
′
(µun)− p)2

(Ro(µun)− pµun)3

= − θ(Ro
′
(µun)− p)

δ
′
(µun)(Ro(µun)− pµun)2

[δ
′′
(µun)(1− δ(µun)) + δ

′2
(µun)]

−θδ
′
(µun)(Ro

′
(µun)− p)

(Ro(µun)− pµun)2
+

θ(1− δ(µun))Ro
′′
(µun)

(Ro(µun)− pµun)2

−2θ(1− δ(µun))(Ro
′
(µun)− p)2

(Ro(µun)− pµun)3
< 0.

Thus, ρN(λ(µ, p), µ) is quasi-concave in µ. From (B.8), we can know that Ro
′
(µut)−

p = 0. Then

∂ρN(λ(µ, p), µ)

∂µ

∣∣∣∣
µ=µut

=
−δ

′
(µut)ρN(λ(µut, p), µut)

1− δ(µut)
< 0.

Therefore, µun < µut.

Proof of Corollary 12. With a slight abuse of notion, we interchangeable use
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µH(p) and µH. From (3.16), we can easily know that

dΠ(µ)

dµ
= p

∂λT (µ, p)

∂µ
;

d2Π(µ)

dµ2
= p

∂2λT (µ, p)

∂µ2
.

Then, utilizing (3.15) we have

∂2Π(µ)

∂µ∂p

∣∣∣∣
µ=µH

= 1− θRδ
′
(µH)

[R(1− δ(µH))− p]2
− 2pθRδ

′
(µH)

[R(1− δ(µH))− p]3
= − 2pθRδ

′
(µH)

[R(1− δ(µH))− p]3
< 0.

Let 4 = δ
′′
(µH)(1− δ(µH)) + (δ

′
(µH))2. By adopting the implicit function theory,

utilizing (B.7) we have

dµH(p)

dp
= −

∂2Π(µ)
∂µ∂p

d2Π(µ)
dµ2

∣∣∣∣
µ=µH

=
−2δ

′
(µH)(1− δ(µH))

(δ
′
(µH))2(R(1− δ(µH)) + p) +4[R(1− δ(µH))− p]

< 0. (B.9)

Therefore, µH(p) is decreasing in p.

Next, plugging µ = µ∗ and p = p̄ = R(1− δ(µ∗))−
√

Rθo(µ∗)
µ∗ into (B.6), we have

dΠ(µ)

dµ

∣∣∣∣
µ=µ∗

= p̄− p̄θRδ
′
(µ∗)

[R(1− δ(µ∗))− p̄]2
= p̄µ∗

[
1− δ(µ∗)− δ

′
(µ∗)µ∗

o(µ∗)

]
= 0.

Therefore, µH(p̄) = µ∗. Recall that µH(p) is decreasing in p. Hence, µH(p) > µ∗

iff p < p̄. Plugging p = p̄ and µ = µ∗ into (3.11), we can easily obtain that

λ(µ∗, p̄) = o(µ∗)−
√

θo(µ∗)/R.

As δ(µ) is increasing in µ while µH(p) is decreasing in p, δ(µH(p)) is decreasing

in p. Substituting µH(p) into (3.12) and taking the derivative over p yields

dλT (µH(p), p)

dp
=

dµH(p)

dp

(
1− θRδ

′
(µH(p))

[R(1− δ(µH(p)))− p]2

)
− θ

[R(1− δ(µH(p)))− p]2

= − θ

[R(1− δ(µH(p)))− p]2
< 0.
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Also, plugging λ(µH, p) into (3.6), we get

TW (λ(µH, p), µH) =
R

θ
− p

θ(1− δ(µH))
.

Then,

dTW (λ(µH, p), µH)

dp
= − pδ

′
(µH)

θ(1− δ(µH))2

dµH(p)

dp
− 1

θ(1− δ(µH))

=
1

θ(1− δ(µH))

[
− pδ

′
(µH)

1− δ(µH)

dµH(p)

dp
− 1

]
.

Utilizing (B.9), we can show that

− pδ
′
(µH)

1− δ(µH)

dµH(p)

dp
− 1 = − ((δ

′
(µH))2 +4)(R(1− δ(µH))− p)

(δ
′
(µH))2(R(1− δ(µH)) + p) +4[R(1− δ(µH))− p]

< 0.(B.10)

Thus, TW (λ(µH, p), µH) is decreasing in p.

Substituting µH into (3.11) and utilizing (3.15), we have

dλ(µH, p)

dp
=

∂λ(µH, p)

∂µ

dµH(p)

dp
+

∂λ(µH, p)

∂p

=

[
o
′
(µH)− θpδ

′
(µH)

[R(1− δ(µH))− p]2

]
dµH(p)

dp
− θ(1− δ(µH))

[R(1− δ(µH))− p]2

=
[
o
′
(µH)− p

R

] dµH(p)

dp
− 1− δ(µH)

Rδ
′
(µH)

= o
′
(µH)

dµH(p)

dp
+

(1− δ(µH))

Rδ
′
(µH)

[
− δ

′
(µH)p

1− δ(µH)

dµH(p)

dp
− 1

]
.

Recall that µH(p) is decreasing in p and when p ≥ p̄, µH(p) ≤ µ∗. Then, Lemma 11

and (B.10) imply that dλ(µH, p)/dp < 0 for p ≥ p̄.
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Proof of Proposition 11. From (3.16) and (B.6), and utilizing (3.15), we have

do(µH(p))

dp
= o

′
(µH(p))

dµH(p)

dp
,

dΠ(µH(p))

dp
= µH −

θR(1− δ(µH))

[R(1− δ(µH))− p]2
= µH −

1− δ(µH)

δ
′
(µH)

= −o
′
(µH)

δ
′
(µH)

.

Recall that µH(p) is decreasing in p and µH(p̄) = µ∗. As o(µ) is quasi-concave in µ

and attains its maximum at µ∗ as shown in Lemma 11, o
′
(µH(p)) < 0 when p < p̄

and o
′
(µH(p)) > 0 when p > p̄. Therefore, both do(µH(p))/dp and dΠ(µH(p))/dp are

positive when p < p̄ and they are both negative when p > p̄. Therefore, o(µH(p))

and Π(µH(p)) are both quasi-concave in p and achieve their maximum at p = p̄.

According to Corollary 12, λ(µ∗, p̄) < λb.

Proof of Proposition 12. Utilizing (3.11), (3.12) and (3.16), SW (p) can be reex-

pressed as

SW (p) = [p + β(1− δ(µH(p)))]

[
µH(p)− θ

R(1− δ(µH(p)))− p

]
− βΛ.

By noting that µH(p) = µat(p), µH(pS) = µS and utilizing (3.15), the equilibrium
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outcome pS must satisfy the following FOC:

dSW (p)

dp

∣∣∣∣
p=pS

=

[
1− βδ

′
(µS)

dµH(p)

dp

∣∣∣∣
p=pS

] [
µS −

θ

R(1− δ(µS))− pS

]

−θ[pS + β(1− δ(µS))]
[R(1− δ(µS))− pS ]2

=

[
1− βδ

′
(µS)

dµH(p)

dp

∣∣∣∣
p=pS

] [
µS −

R(1− δ(µS))− pS
Rδ

′
(µS)

]

−pS + β(1− δ(µS))

Rδ
′
(µS)

= 0, (B.11)

or

µS =
R(1− δ(µS))− pS

Rδ
′
(µS)

+
pS + β(1− δ(µS))

Rδ
′
(µS)[1− βδ

′
(µS)

dµH(p)
dp

∣∣
p=pS

]
. (B.12)

Therefore,

o
′
(µS) = 1− δ(µS)− µSδ

′
(µS)

=
pS
R
− pS + β(1− δ(µS))

R[1− βδ
′
(µS)

dµH(p)
dp

∣∣
p=pS

]

=
β(1− δ(µS))(−pSδ

′
(µS)

1−δ(µS)
dµH(p)

dp

∣∣
p=pS

− 1)

R[1− βδ
′
(µS)

dµH(p)
dp

∣∣
p=pS

]
.

Because µS(p) is decreasing in p as stated in Corollary 12, the denominator of the

right-hand side of the above equation is positive. Then utilizing (B.10), we have

o
′
(µS) < 0. As o(µ) is quasi-concave and maximized at µ∗ (Lemma 11), we have

µS > µ∗. Since µH(pS) = µS , the part 1 of Corollary 12 implies that pS < p̄.
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Plugging λ(µS , pS) as stated in (3.11) into (B.4), we have

dSW (λ, µS)
dλ

∣∣∣∣
λ=λ(µS , pS)

= R− o(µS)[R(1− δ(µS))− pS ]2

θ(1− δ(µS))2
+ β.

By utilizing (3.15) and (B.12) and noting that o(µ) = µ(1−δ(µ)), the above equation

can be simplified as

dSW (λ, µS)
dλ

∣∣∣∣
λ=λ(µS , pS)

= R− Rδ
′
(µS)µS

1− δ(µS)
+ β.

=
pS

1− δ(µS)
− pS + β(1− δ(µS))

(1− δ(µS))[1− βδ
′
(µS)

dµH(p)
dp

∣∣
p=pS

]
+ β.

As dµH(p)
dp

∣∣
p=pS

< 0 (Corollary 12), 1− βδ
′
(µS)

dµH(p)
dp

∣∣
p=pS

> 1. Therefore,

dSW (λ, µS)
dλ

∣∣∣∣
λ=λ(µS , pS)

> 0.

Next, from (B.3) we can further derive

∂2SW (λ, µ)

∂λ∂µ
=

θo
′
(µ)

[o(µ)− λ]2
+

2λθo
′
(µ)

[o(µ)− λ]3
.

As o(µ) is quasi-concave in µ and achieves its maximum at µ = µ∗, ∂2SW (λ, µ)
∂λ∂µ

< 0 if

µ > µ∗. Therefore, ∂SW (λ, µ)
∂λ

is decreasing in µ when µ > µ∗. Recall that µS > µ∗.

Thus,

dSW (λ, µ∗)
dλ

∣∣∣∣
λ=λ(µS , pS)

>
dSW (λ, µS)

dλ

∣∣∣∣
λ=λ(µS , pS)

> 0.

Since SW (λ, µ∗) is concave in λ (see the proof of Proposition 8) and achieves its

optimum at λ = λb, λ(µS , pS) < λb.

Below we prove that λ(µ∗, p̄) < λ(µS , pS) by contradiction. Suppose that
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λ(µ∗, p̄) ≥ λ(µS , pS). The part 1 of Corollary 12 shows that µH(p̄) = µ∗. Thus,

λ(µH(p̄), p̄) = λ(µ∗, p̄) ≥ λ(µH(pS), pS) = λ(µS , pS).

However, Proposition 11 shows that Π(µH(pS)) < Π(µH(p̄)). Then,

SW (pS) = Π(µH(pS))− β (Λ− λ(µH(pS), pS))

< Π(µH(p̄))− β (Λ− λ(µH(p̄), p̄)) = SW (p̄),

which contradicts the definition of pS . Therefore, we must have λ(µ∗, p̄) < λ(µS , pS).

Proof of Proposition 13. For notational convenience, we use Π(µ|p) to represent

the HCP’s profit when the price p is charged. Through direct comparison, we can

know that p∗ < p̄. According to the first statement of Corollary 12, µH(p∗) > µ∗.

As Π(µ|p) is quasi-concave in µ, Π(µ|p∗) is increasing in µ for µ ≤ µ∗.

We next show that given α > 1−λT (µ∗, p∗)/λ̄T , µ̂ = µ∗ and the socially optimal

price p∗, the best response of the HCP is to choose µ∗. If µ̂ = µ∗, then 1µ>µ∗ = 0

for µ < µ∗, and 1µ>µ∗ = 1 for µ > µ∗. Thus, when µ < µ∗,

ΠR(µ|p∗) = Π(µ|p∗) < Π(µ∗|p∗) = ΠR(µ∗|p∗);

while when µ > µ∗,

ΠR(µ|p∗) = (1− α)Π(µ|p∗)
≤ (1− α)Π(µH(p∗)|p∗) = (1− α)λ̄T p∗

< λT (µ∗, p∗) p∗ = ΠR(µ∗),

where the last inequality is due to that α > 1 − λT (µ∗, p∗)/λ̄T . Therefore, when

α > 1 − λT (µ∗, p∗)/λ̄T , µ = µ∗ is the HCP’s best response service rate and the

health care system is socially optimal.

Proof of Proposition 15. According to Proposition 11, we can easily know that
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when λ(µ∗, p̄) < Λ, the partial market coverage scenario arises and the HCP chooses

µP = µ∗ and pP = p̄. And λ(µP , pP) < λb.

When λ(µ∗, p̄) ≥ Λ, the solutions under the partial market coverage are no

longer feasible. In this case, all the patients can receive treatment. Here, the HCP’s

optimization problem becomes

max
µ, p

Π(µ, p) = Λn(µ)p, s.t. λ(µ, p) ≥ Λ.

Then, the optimal solutions should satisfy λ(µ, p) = Λ. Otherwise, if λ(µ, p) > Λ,

the HCP can make more profit by slightly increasing the price without violating the

constraint. As stated in (3.11), letting λ(µ, p) = Λ, we get p = R(1− δ(µ))− θ(1−
δ(µ))/(o(µ)− Λ). Then the HCP’s optimization problem can be rewritten as

max
µ

Π(µ) = Λn(µ)

(
R(1− δ(µ))− θ(1− δ(µ))

o(µ)− Λ

)
= Λ

(
R− θ

o(µ)− Λ

)
.

Then,

dΠ(µ)

dµ
=

Λθo
′
(µ)

(o(µ)− Λ)2
= 0 ⇒ o

′
(µ) = 0.

Based on Lemma 11, we can show that µP = µ∗. Consequently, pP = R(1−δ(µ∗))−
θ(1− δ(µ∗))/(o(µ∗)− Λ). Finally, compared with the social optimality as shown in

Proposition 14, we can easily know that the health care system can achieve the

benchmark social optimality iff Λ ≤ λ(µ∗, p̄).

Proof of Corollary 13. Because λ(µ, p) is quasi-concave in µ (see Lemma 9), for

a given p, there exist at most two points, denoted by µ1 and µ2, respectively such

that λ(µ, p) = Λ. Without loss of generality, assume that µ1 < µ2. By noting

that µan(p) maximizes λ(µ, p), we have µ1 < µan(p) < µ2. Note that λ(µ2, p) = Λ.
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According to the implicit function theorem, we have

dµ2

dp
= −

∂λ(µ2, p)
∂p

∂λ(µ2, p)
∂µ

. (B.13)

Because λ(µ, p) is quasi-concave in µ and µan(p) < µ2, ∂λ(µ2, p)/∂µ < 0. Taking

the derivative of λ(µ2, p) as stated in (3.11) with respect to p, we have

∂λ(µ2, p)

∂p
= − θ(1− δ(µ2))

(R(1− δ(µ2))− p)2
< 0. (B.14)

Then (B.13) implies that dµ2/dp < 0; that is µ2 is decreasing in p. According to

Proposition 16, µF(p) is also decreasing in p.

Then from (3.12), we have

dλT (µF , p)

dp
=

Λδ
′
(µF)

(1− δ(µF))2

dµF(p)

dp
< 0.

And from (3.5) and (3.6), we have

dW (Λ, µF)

dp
=

∂W (Λ, µF)

∂µ

dµF(p)

dp
and

dTW (Λ, µF)

dp
=

∂TW (Λ, µF)

∂µ

dµF(p)

dp
.

Recall that both TW (Λ, µ) and W (Λ, µ) are quasi-convex in µ, and µT W and µW are

the ones minimizing TW (Λ, µ) and W (Λ, µ), respectively (see Proposition 6). Let

p = pj be the one satisfying µF(p) = µj, j ∈ {T W , W}. Since µF(p) is decreasing

in p, µF(p) > µj for p < pj. Therefore, when p < pT W , ∂TW (Λ, µF(p))/∂µ > 0

and thus dTW (Λ, µF(p))/dp < 0; when p > pT W , ∂TW (Λ, µF)/∂µ < 0 and thus

dTW (Λ, µF)/dp > 0. Hence, TW (Λ, µF) is quasi-convex in p and minimized at

p = pT W . Similarly, we can show that W (Λ, µF) is also quasi-convex in p and

minimized at p = pW . Last, since µT W < µW (see Proposition 6) and µF(p) is

decreasing in p, pT W > pW .
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Proof of Proposition 17. We first consider the scenario Λ ≤ λ(µ∗, p̄). Corollary

12 shows that λ(µ∗, p̄) = o(µ∗) −
√

θo(µ∗)/R. According to Proposition 14, when

Λ ≤ λ(µ∗, p̄), λb = Λ and µb = µ∗. Let

p0 = R(1− δ(µ∗))− θ(1− δ(µ∗))
o(µ∗)− Λ

.

Plugging µ∗ and p0 into (3.11) yields that λ(µ∗, p0) = Λ. Below we prove that when

Λ ≤ λ(µ∗, p̄), then p0 ∈ Θ and µF(p0) = µ∗. Therefore, by charging the price p0,

the social planner can make the health care system achieve social optimality. Then

it is natural that pSF = p0 and µSF = µF(pSF) = µ∗.

By noting that λ(µ∗, p̄) = o(µ∗)−
√

θo(µ∗)/R ≥ Λ and o(µ∗) = µ∗(1− δ(µ∗)),

p0 = R(1− δ(µ∗))− θ(1− δ(µ∗))
o(µ∗)− Λ

≥ R(1− δ(µ∗))−
√

Rθ(1− δ(µ∗))√
o(µ∗)

= p̄.(B.15)

Then based on the part 1 of Corollary 12, we have µH(p0) ≤ µH(p̄) = µ∗. Next,

according to Lemma 9 and Proposition 10, we have µH(p) = µat(p) > µan(p). Hence,

µan(p0) < µH(p0) ≤ µ∗. Recall that λ(µ, p) is quasi-concave in µ and achieves its

maximum at µan(p). Then

λ(µan(p0), p0) > λ(µH(p0), p0) ≥ λ(µ∗, p0) = Λ.

Thus, p0 ∈ Θ and µ = µ∗ is the maximum service rate that satisfies λ(µ, p0) ≥
Λ. According to Proposition 16, µF(p0) = µ∗. Therefore, pSF = p0 and µSF =

µF(pSF) = µ∗.

Now consider the case that Λ > λ(µ∗, p̄) = o(µ∗) −
√

θo(µ∗)/R. We first prove

that when Λ > λ(µ∗, p̄), µH(p) > µ∗ and p < p̄ for all p ∈ Θ. Suppose that there

exists a p
′ ∈ Θ such that p

′ ≥ p̄. Then according to part 3 of Corollary 12,

λ(µH(p
′
), p

′
) ≤ λ(µH(p̄), p̄) = λ(µ∗, p̄) < Λ,
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which implies that p
′

/∈ Θ. This leads to a contradiction of our assumption that

p
′ ∈ Θ. Therefore, p < p̄ for all p ∈ Θ. Then part 1 of Corollary 12 implies that if

p ∈ Θ, then µH(p) > µH(p̄) = µ∗.

We next show that µF(p) > µ∗ for all p ∈ Θ. According to the definition of Θ,

if p ∈ Θ, then λ(µH(p), p) ≥ Λ. Because µF(p) is the maximum service rate that

satisfies λ(µ, p) = Λ, according to Lemma 9, µF(p) ≥ µH(p) for p ∈ Θ. Recall that

µH(p) > µ∗ for all p ∈ Θ, we have µF(p) ≥ µH(p) > µ∗ for p ∈ Θ. As pSF ∈ Θ,

µSF = µF(pSF) > µ∗. Recall that under the full market coverage scenario, the social

planner shall set a price so that µF(p) is as close to µ∗ as possible. Because µF(p)

is decreasing in p and µF(p) > µ∗ for all p ∈ Θ, the social planner shall choose the

largest price in the set Θ.

Proof of Proposition 18. Because λm represents the smallest equilibrium effec-

tive arrival rate of new patients under the partial coverage scenario, when Λ < λm,

the optimal solution under the partial market coverage is no longer feasible, there-

fore, the health care system will end up covering the market fully.

When Λ > λm, let λ̂ = max
p
{λ(µH(p), p)} represent the largest effective arrival

rate of new patients under the partial market coverage scenario. If λ̂ < Λ, then

Θ is empty and the health care system ends up with the partial market coverage.

If λ̂ ≥ Λ, both the full market coverage scenario and the partial market coverage

scenario may occur. In equilibrium, the social welfare under the partial market

coverage scenario is

SW (pS) = Π(µS)− β (Λ− λ(µS , pS)) ,

and that under the full market coverage scenario is

SW (pSF) = Λ

[
R− θ

o(µSF)− Λ

]
.
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Below we are going to show that SW (pS) > SW (pSF) for all β ≥ 0.

Note that when β = 0, the social welfare under the partial market coverage

SW (p) is equal to Π(µH(p)), which indicates that the objective of the HCP is

aligned with that of the social planner. Then it is natural that the performance of

the health care system will end up being socially optimal. The second statement of

Proposition 17 shows that when Λ > λ(µ∗, p̄), µ(pSF) > µ∗. Thus, the equilibrium

outcome under the full market coverage scenario is not socially optimal. Therefore,

when β = 0, SW (pS) > SW (pSF).

When β > 0, with a slight abuse of notion, we assume that under the partial

market coverage scenario, λm = λ(µS , pS). Below we prove by contradiction that

lim
β→+∞

λ(µS , pS) = Λ. Suppose that the above is not true. Then there exists a ε > 0

such that for any β̂ > 0, there exists a β0 > β̂ such that Λ− λ(µS , pS) > ε. Then,

according to Proposition 11, at β = β0,

SW (pS) = Π(µS)− β0 (Λ− λ(µS , pS)) < Π(µH(p̄))− β̂ε.

Because λm < Λ ≤ λ̂, due to the continuity of λ(µH(p), p), there exists a p1 such

that λ(µH(p1), p1) = Λ and thus, SW (p1) = Π(µH(p1)) > 0. When β̂ is large

enough, we have

SW (pS) < Π(µH(p̄))− β̂ε < SW (p1).

Due to the continuity of SW (p) in p, we can find a p2 sufficiently close to p1 such

that λ(µH(p2), p2) < Λ and

SW (pS) < SW (p2).

This contradicts the definition of pS . Hence, lim
β→+∞

λ(µS , pS) = Λ. Thus, when β

approaches infinity, the partial market coverage scenario is reduced to the full market

coverage scenario. Therefore, lim
β→+∞

pS = pSF , lim
β→+∞

µS = µSF and lim
β→+∞

SW (pS) =
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SW (pSF).

Finally, we are going to show that SW (pS) is decreasing in β. Recall that SW (p)

is not unimodal in p. For a fixed β, let X(β) represent the set of prices that satisfy

the FOC of SW (p) and let pS(β) represent the price that maximizes SW (p). Then

pS(β) ∈ X(β). Suppose β1 < β2. Denote pS(β2) = pd(β2) ∈ X(β2). It is worth

noting that at β = β1, pd(β1) may not maximize SW (p) anymore. However, based

on the Envelop theory, we have

dSW (pd(β))

dβ
= −(Λ− λ(µH(pd(β)), pd(β))) < 0.

Thus, SW (pd(β2)) < SW (pd(β1)). By noting that pS(β) maximizes SW (p), SW (pS(β2)) =

SW (pd(β2)) < SW (pd(β1)) ≤ SW (pS(β1)). Hence, SW (p) is decreasing in β. Con-

sequently, SW (pS) > SW (pSF) for any β > 0.

Proof of Proposition 19. According to Proposition 17, when Λ < λ(µ∗, p̄), pSF =

R(1−δ(µ∗))−θ(1−δ(µ∗))/(o(µ∗)−Λ) and µSF = µ∗. Substituting them into (3.11)

yields λ(pSF , µSF) = Λ. Then Proposition 14 implies that when Λ < λ(µ∗, p̄), the

health care system under the full market coverage is already socially optimal. Fur-

thermore, according to Propositions 12 and 17, when Λ ≥ λ(µ∗, p̄), the equilibrium

service rate is larger than the socially optimal one. Therefore, the health care system

is not socially optimal.
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