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Abstract 
 

In this thesis, the problem of speech enhancement is investigated. In consistent with the 

traditional frequency domain speech enhancement algorithms, we investigated the estimation 

methods of some important parameters in speech enhancement, such as the speech 

periodogram, a-priori Signal-to-Noise Ratio (SNR) and Speech Presence Probability (SPP). 

In this study, we emphasize on making use of the sparse representation of speech signals to 

improve the estimation. To achieve this, the wavelet denoising technique, the cepstral 

analysis using expectation-maximization (EM) framework as well as the dictionary learning 

method based on sparse reconstruction on log-spectra have been adopted and achieved 

satisfactory results. 

The first part of this study is related to the estimation of SPP. It is known that a reliable 

SPP estimator is important to many frequency domain speech enhancement algorithms. A 

good estimate of SPP can be obtained by having a smooth a-posteriori SNR function, which 

can be achieved by reducing the noise variance when estimating the speech power spectrum. 

Recently, the wavelet denoising with multitaper spectrum (MTS) estimation technique was 

suggested for such purpose. However, traditional approaches directly make use of the wavelet 

shrinkage denoiser which has not been fully optimized for denoising the MTS of noisy 

speech signals. In this study, we propose a two-stage wavelet denoising algorithm for 

estimating the speech power spectrum. First, we apply the wavelet transform to the 

periodogram of a noisy speech signal. Using the resulting wavelet coefficients, an oracle is 

developed to indicate the approximate locations of the noise floor in the periodogram. Second, 

we make use of the oracle developed in stage 1 to selectively remove the wavelet coefficients 

of the noise floor in the log MTS of the noisy speech. The remaining wavelet coefficients are 

then used to reconstruct a denoised MTS and in turn generate a smooth a-posteriori SNR 
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function. To adapt to the enhanced a-posteriori SNR function, we further propose a new 

method to estimate the generalized likelihood ratio (GLR), which is an essential parameter 

for SPP estimation. Simulation results show that the new SPP estimator outperforms the 

traditional approaches and enables an improvement in both the quality and intelligibility of 

the enhanced speeches. 

While the wavelet transform can sparsely describe the sudden changes in a speech 

power spectrum, it misses the periodic nature of speech signals which is an important feature 

in speech enhancement. For the second part of this study, a new speech enhancement method 

based on the sparsity of speeches in the cepstral domain is investigated. It is known that 

voiced speeches have a quasi-periodic nature that allows them to be compactly represented in 

the cepstral domain. It is a distinctive feature compared with noises. Recently, the temporal 

cepstrum smoothing (TCS) algorithm was proposed and was shown to be effective for speech 

enhancement in non-stationary noise environments. However, the missing of an automatic 

parameter updating mechanism limits its adaptability to noisy speeches with abrupt changes 

in SNR across time frames or frequency components. In this part, an improved speech 

enhancement algorithm based on a novel EM framework is proposed. The new algorithm 

starts with the traditional TCS method which gives the initial guess of the periodogram of the 

clean speech. It is then applied to an L1 norm regularizer in the M-step of the EM framework 

to estimate the true power spectrum of the original speech. It in turn enables the estimation of 

the a-priori SNR and is used in the E-step, which is indeed an MMSE-LSA gain function, to 

refine the estimation of the clean speech periodogram. The M-step and E-step iterate 

alternately until converged. A notable improvement of the proposed algorithm over the 

traditional TCS method is its adaptability to the changes (even abrupt changes) in SNR of the 

noisy speech. Performance of the proposed algorithm is evaluated using standard measures 

based on a large set of speech and noise signals. Evaluation results show that a significant 
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improvement is achieved compared to conventional approaches.  

The above shows that obtaining the sparse representation of speeches is one of the keys 

for designing an efficient speech enhancement algorithm. One obvious question then arises if 

the ceptrum is the best representation of speeches as far as the sparsity is concerned. To 

answer this question, we further investigate a new sparse representation based speech 

enhancement algorithm with the transform kernel trained based on the dictionary learning 

method. It is known that the dictionary learning method allows the design of a transform 

kernel with the emphasis of sparsity in the transform domain. When applying to speech 

enhancement, it allows a speech to be represented by very few significant transform 

coefficients. In practice, the overcomplete dictionary of the clean speech signal is trained by 

an extended K-SVD algorithm in the log power spectra domain. The batch LARS with 

Coherence Criterion (LARC) method is used to reconstruct the log power spectra of the clean 

speech. And a new stopping criterion is proposed for the iterative speech enhancement 

process in order to adapt to various background noise environment. In addition, a modified 

two-step noise reduction with MMSE-LSA filtering is applied which solves the bias problem 

of the estimated a priori SNR. A notable improvement of the proposed algorithm over the 

traditional speech enhancement method is its adaptability to the changes in SNR of the noisy 

speech. Performance of the proposed algorithm is evaluated using standard measures based 

on a large set of speech and noise signals. Evaluation results show that a significant 

improvement is achieved compared to the traditional approaches especially when the noises 

are not totally random but have certain structure in the frequency domain. 
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Chapter 1 Introduction 

 

Speech enhancement is a challenging problem due to the diversity of noise sources and 

their effects in different applications [1]. Over the last three decades a substantial increase is 

noted in the use of speech-processing devices in cellular phones, digital hearing aids, and 

various human-to-machine speech-processing applications. Originally most of these 

applications assumed the acquired speech signals were noise-free. It was soon proven to be 

not the case. There is thus a great demand to make these applications to work robustly under 

noisy conditions as well. It becomes an extremely challenging task for the speech-processing 

devices, particularly when considering the large variety of noisy environments. Consequently, 

speech enhancement methods were developed to improve the robustness of these 

speech-processing devices. The term speech enhancement in fact refers to a large group of 

methods for improving the quality of speech signals. Some examples of speech enhancement 

methods include noise reduction, bandwidth extension, acoustic echo control 

(dereverberation), packet loss concealment, etc. In this study, we focus on the speech 

enhancement methods for noise reduction. 

Speech is a highly non-stationary signal with specific properties [1][2][3]. However, over 

a sufficiently short period of time (10 - 32 ms), its spectral characteristics are fairly stationary. 

This allows speech processing algorithms to operate on a frame-by-frame basis with duration 

of each frame ranging from 10 to 32ms. Speech bandwidth varies approximately from 50Hz 

to 8kHz. Speeches can be classified into two categories, i.e. voiced speeches and unvoiced 

speeches. In many practical working environments, the background noise can be considered 

as additive and statistically independent with the speech signal. For other noises such as the 

convolutional noise, multiplicative noise or signal-dependant quantization noise in pulse-code 
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modulation (PCM), they can also be modeled as an additive process after some 

conversion [4].  

Speech enhancement algorithms could be classified as single-microphone or 

multi-microphone based. Single-microphone speech enhancement algorithms estimate the 

clean speech signal using a realization of the noisy speech that is obtained using one 

microphone only. Multi-microphone speech enhancement algorithms, on the other hand, use 

more than one microphone and can as such also exploit spatial properties, and as a result, 

their performance is in general better than single-microphone speech enhancement algorithms. 

However, multi-microphone techniques often require higher cost and impose more 

constraints on the system (e.g. distance between the microphones). In this thesis, we focus on 

single-microphone speech enhancement algorithms. This is the most difficult situation, 

because the speech and noise are in the same channel. In addition, single-microphone 

methods can be extended and used in a multi-microphone system or combined with 

multi-microphone algorithms as a post-processor to get a better noise reduction performance.       

 Fig. 1.1 illustrates a typical single-microphone speech enhancement process. The clean 

speech signal is denoted as x while the additive noise is denoted as n. The speech 

enhancement algorithm attempts to suppress noise without distorting speech and produces the 

enhanced speech signal x̂ . Speech enhancement algorithms try to reduce the impact of 

background noise on the speech signal. They improve the quality of the speech to be used in 

recording systems, telephone systems, hearing aids devices and the communications between 

human beings. Besides they can improve the accuracy of the machine automatic speaker 

verification or speech recognition processes. 
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         x 

                                                        Human Listener 

                 y = x + n                        x̂  

        n 

 (engine, fan, street, factory, wind, cocktail party, etc.)                Machine (speech/speaker recognizer) 

Fig. 1.1 – Typical single-microphone speech enhancement process 

Single-microphone speech enhancement algorithms can be generally classified as 

parametric and nonparametric. Parametric techniques model the speech signal as a stochastic 

autoregressive (AR) process embedded in Gaussian noises. The speech enhancement 

algorithm then consists of estimating the speech AR parameters and applying a filter (e.g. 

Wiener or Kalman filter) to the noisy signal, where the optimal filters are designed based on 

the estimated AR parameters [5][6]. Non-parametric techniques do not estimate the speech 

parameters and require a noise fingerprint in the transform domain. It will be used during 

speech-and–noise periods to obtain an estimate of the clean speech signal. Well-known 

non-parametric methods include the signal subspace decomposition methods and methods 

based on processing in the Discrete Fourier Transform (DFT) domain (frequency domain). In 

this study, we focus mainly on the non-parametric speech enhancement methods. 

The subspace algorithms are designed based on the principle that clean speech signals 

are often confined to a subspace of the noisy Enclidean space. As a result, given a method of 

decomposing the vector space of a noisy signal into a subspace that is occupied mainly by the 

clean signal and a subspace occupied mainly by the noise signal, the clean signal simply 

could be estimated by nulling the component of the noisy vector residing in the “noise 

subspace”. Dendrinos et al. [5] initially proposed the use of the singular value decomposition 

(SVD) on a data matrix containing time-domain amplitude values. And then, Ephraim and 

Speech Enhancement 
Algorithm 
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Van Trees [8] proposed using the eigenvalue decomposition method on the signal covariance 

matrix. Extensions of the subspace based enhancement methods have been proposed to work 

for colored noise [9] and take perceptual aspects into account [10].  

Frequency domain techniques require the application of the DFT to the noisy speech 

before filtering, followed by the inverse discrete Fourier transform (IDFT). By transforming 

the noisy speech to the frequency domain, noises can be better distinguished from speeches 

and removed. For example, the energy of voiced speech is concentrated at certain frequencies, 

but the energy of white noise is uniformly spread throughout the entire frequency spectrum. 

The famous spectral subtraction algorithm in [10] was extended to the Fourier domain by 

Boll [12] and became a very popular method. The major advantage of the spectral subtraction 

algorithms is their simplicity. They are based on the principle that, as the noise contamination 

process is additive, the noise spectrum can be estimated/updated when speech is not present 

and subtracted from the noisy speech. Although the spectral subtraction methods are 

popularly used, it is well known that they can generate musical noise which can be rather 

annoying to human listeners. Another important class of Fourier domain speech enhancement 

algorithms was initiated by MacAulay and Malpass [13]. They proposed a 

maximum-likelihood (ML) approach for estimating the Fourier transform coefficients 

(spectrum) of the clean speech. Their works were followed by Ephraim and Malah [14] who 

proposed a Minimum Mean Square Error (MMSE) estimator of the magnitude spectrum. 

These estimators are a function of the distributional parameters of the variance of the noise 

and speech DFT coefficients [14]-[17]. While the MMSE estimator was proposed 30 years 

ago, it still attracts much attention in the field recently [18] since it does not only reduce the 

noise power but also reduce the level of musical noise as compared to the spectral subtraction 

methods. Other works that adopt different statistical filters such as the Wiener filters can also 

be found in [4], [5] and [19]. Also some variants have been proposed which take human 
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perception into account [20]-[21].  

Recently, signal denoising approaches are often equipped with an assumption of 

sparsity [22], which refers to the fact that many natural signals can be described by very few 

non-zero coefficients in some transform domains. This also applies to speech signals. Sparse 

signal representations have been successfully applied to signal denoising and blind source 

separation [22]-[24]. For a noisy speech, the speech component can be represented by very 

few transform coefficients but with large magnitude. It is not the case for the noise 

component which has its coefficients spread over the transform domain. Hence the speech 

coefficients can be identified from the noise coeffcients. By removing the noise coefficients, 

the unwanted noise signal can be suppressed. In this thesis, our speech enhancement 

approach first transforms the noisy speech signal into the frequency domain, and then the 

sparse coding technique is applied using the signal models of speech (called dictionary). 

Sparse coding is able to separate a noisy speech into its structured components and to 

suppress any unstructured components (i.e. noise) that are incoherent to its dictionary. Finally, 

an enhanced speech is obtained by performing the IDFT back to the time domain. For the rest 

of this chapter, we state the research objective and summarize the layout of the thesis.   
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1.1 Present Works  

In this thesis, we mainly focus on applying the sparse representation techniques to the 

class of frequency domain single-channel speech enhancement algorithms. Although a lot of 

research has been done in the field of speech enhancement, the field of single-channel speech 

enhancement is still very challenging and many problems remain to be solved. There are 

many scenarios, e.g. under low signal-to-noise ratio (SNR) or under non-stationary noise 

conditions where existing systems fail to give a satisfactory result. In recent years, there has 

been substantial development in the field of sparse representation. It has been used 

successfully in applications such as signal denoising, restoration, and reconstruction, etc. By 

representing speeches in a sparse manner, speech energy can be concentrated into a few 

transform coefficients, which will be highly distinctive from that of noise. Besides, many 

advanced regularization methods were developed in recent years that emphasize on 

promoting the sparsity of the signal. Some of them can also be applied to improve the 

existing speech enhancement methods. The major objective of this study is to investigate 

clean speech estimators based on the sparse representation techniques in the frequency 

domain. In particular, we find that the wavelet transform, cepstral transform and dictionary 

learing methods are useful to obtain the sparse representation of speeches and hence facilitate 

the design of speech enhancement algorithms. More specifically, the present work can be 

divided into the following three different parts. 

1.1.1 Wavelet Based Speech Presence Probability Estimator 
 

As mentioned above, a reliable SPP estimator can significantly improve their 

performance to many frequency domain speech enhancement algorithms. It is known that a 

good estimate of SPP can be obtained by having a smooth a-posteriori SNR function [49], 
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which can be achieved by reducing the noise variance when estimating the speech power 

spectrum. Recently, the wavelet denoising with multitaper spectrum (MTS) estimation 

technique was suggested for such purpose. However, traditional approaches directly make use 

of the wavelet shrinkage denoiser which has not been fully optimized for denoising the MTS 

of noisy speech signals. In this part of study, we firstly propose a two-stage wavelet denoising 

algorithm for estimating the speech power spectrum. In the first stage, we apply the wavelet 

transform to the periodogram of a noisy speech signal. Using the resulting wavelet 

coefficients, an oracle is developed to indicate the approximate locations of the noise floor in 

the periodogram. In the second stage, we make use of the oracle developed in stage 1 to 

selectively remove the wavelet coefficients of the noise floor in the log MTS of the noisy 

speech. The wavelet coefficients that remained are then used to reconstruct a denoised MTS 

and in turn generate a smooth a-posteriori SNR function. To adapt to the enhanced 

a-posteriori SNR function, we further propose a new method to estimate the generalized 

likelihood ratio (GLR), which is an essential parameter for SPP estimation. Simulation results 

show that the new SPP estimator outperforms the traditional approaches and enables an 

improvement in both the quality and intelligibility of the enhanced speeches. 

1.1.2 Expectation-Maximization Framework with Cepstral Representation  
 

As mentioned above, many approaches were suggested to reduce the musical noise. 

However, their performance can get worse significantly when the SNR is low or when the 

noise is non-stationary. Speech enhancement method based on the sparsity of speeches in the 

cepstral domain is investigated to overcome this problem. It is known that voiced speeches 

have a quasi-periodic nature that allows them to be compactly represented in the cepstral 

domain. It is a distinctive feature compared with noises. Recently, the temporal cepstrum 

smoothing (TCS) algorithm was proposed and was shown to be effective for speech 
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enhancement in non-stationary noise environments. However, the missing of an automatic 

parameter updating mechanism limits its adaptability to noisy speeches with abrupt changes 

in SNR across time frames or frequency components. In this part, an improved speech 

enhancement algorithm based on a novel expectation-maximization (EM) framework is 

proposed. The new algorithm starts with the traditional TCS method which gives the initial 

guess of the periodogram of the clean speech. It is then applied to an L1 norm regularizer in 

the M-step of the EM framework to estimate the true power spectrum of the original speech. 

It in turn enables the estimation of the a-priori SNR and is used in the E-step, which is indeed 

an MMSE-LSA gain function, to refine the estimation of the clean speech periodogram. The 

M-step and E-step iterate alternately until converged. A notable improvement of the proposed 

algorithm over the traditional TCS method is its adaptability to the changes (even abrupt 

changes) in SNR of the noisy speech. Performance of the proposed algorithm is evaluated 

using standard measures based on a large set of speech and noise signals. Evaluation results 

show that a significant improvement is achieved compared to conventional approaches, 

particularly when the noise is non-stationary. 

1.1.3 Sparse Reconstruction of the Log-Spectra by the Dictionary 
Learning Method 

 

The above shows that obtaining the sparse representation of speeches is one of the keys 

for designing an efficient speech enhancement algorithm. One obvious question then arises if 

the ceptrum is the best representation of speeches as far as the sparsity is concerned. To 

answer this question, we further investigate a new sparse representation based speech 

enhancement algorithm with the transform kernel trained based on the dictionary learning 

method. It is known that the dictionary learning method allows the design of a transform 

kernel with the emphasis of sparsity in the transform domain. When applying to speech 

enhancement, it allows a speech to be represented by very few significant transform 
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coefficients. In practice, the overcomplete dictionary of the clean speech signal is trained by 

an extended K-SVD algorithm in the log power spectra domain. The batch LARS with 

Coherence Criterion (LARC) method is used to reconstruct the log power spectra of the clean 

speech. And a new stopping criterion is proposed for the iterative speech enhancement 

process in order to adapt to various background noise environment. In addition, a modified 

two-step noise reduction with MMSE-LSA filtering is applied which solves the bias problem 

of the estimated a priori SNR. A notable improvement of the proposed algorithm over the 

traditional speech enhancement method is its adaptability to the changes in SNR of the noisy 

speech. Performance of the proposed algorithm is evaluated using standard measures based 

on a large set of speech and noise signals. Evaluation results show that a significant 

improvement is achieved compared to the traditional approaches especially when the noises 

are not totally random but contain certain structure in the frequency domain. 
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1.2 Organization of the Thesis 

This thesis is organized as follows. In Chapter 2, we give an overview of speech 

enhancement methods based on sparse representation. In Chapter 3, the wavelet denoising 

technique for smoothing a periodogram is investigated. A new two-stage wavelet denoising 

algorithm for estimating the speech power spectrum is proposed. In Chapter 4, speech 

enhancement method based on the sparsity of speeches in the cepstral domain is introduced. 

An improved speech enhancement algorithm based on a novel expectation-maximization 

(EM) framework is proposed. In Chapter 5, the overcomplete dictionary learning method is 

described. The design of a new speech enhancement method using sparse reconstruction of 

the log-spectra is explained. Finally, the conclusion of the whole study is drawn in Chapter 6 

where possible future works are also discussed. 
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Chapter 2 Overview of Speech Enhancement Methods Based on 

Sparse Representation 

 

In this thesis, we are concerned with the speech enhancement problem using 

single-microphone. In particular, we investigate transforming speech signals into their sparse 

representations, because they allow the most important information within a speech signal to 

be conveyed with only a few elementary components. In fact, the concept of sparse 

representation is not new to the problem of speech enhancement. Arguably all frequency 

domain speech enhancement algorithms can be considered to have adopted such concept. It is 

because by transforming a speech signal into the frequency domain, the energy of the speech 

will be concentrated at the low frequency part of the spectrum. The concept of sparse 

representation is re-vitalized actually due to the recent results on dictionary learning methods 

and the iterative regularization techniques that give a much better understanding of the ways 

to generate a sparse transform kernel and to process the signal if it is sparse in the transform 

domain. In this chapter, we review some of the commonly used single-channel speech 

enhancement algorithms in the frequency domain. Besides, some methods that make use of 

the sparse representations of speeches in enhancement applications are reviewed. And the 

dictionary learning method is also introduced. Finally, we provide an overview of the 

evaluation methods.       
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2.1 Speech Enhancement in the DFT Domain  

Most of the known works on speech enhancement use the additive noise model to 

describe background noise, which is justified by the principle of superposition. In the additive 

noise model, the noisy speech y is assumed to be the sum of the clean speech x and the 

additive noise n as defined in the following equation: 

y(t) = x(t) + n(t) (2.1) 

The DFT converts the time domain information of a signal into its frequency domain 

information. The forward transform is defined as  

∑
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=
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The inverse transform is given by 
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The transform coefficients are complex and can be separated into the magnitude and phase 

components. The DFT of a real sequence shows conjugate symmetry about N/2 which means 

only half the data require to be processed.  

The short-time Fourier transform (STFT) has been popularly adopted in the 

development of speech enhancement algorithms. By means of the STFT, the additive 

relationship of noise and speech in a noisy speech signal can be expressed with a 

time-frequency setting as follows: 

Y(k,i) = X(k,i) + N(k,i) (2.5) 

where i is the frame index, ( , )Y k i , ( , )X k i and ( , )N k i represent the k-th spectral component 
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from the Fourier transforms of y, x, and n over the time frame i, respectively. For improved 

readability, the frame index i is dropped wherever possible. In many speech enhancement 

algorithms, the knowledge of the power spectrum of speech and noise is essential to their 

performance. Here we denote )(kS y , )(kS x  and )(kSn  as the power spectrum of noisy 

speech, clean speech and input additive noise, respectively. 

A speech enhancement algorithm estimates the clean short-term spectral amplitude 

(STSA) by removing the additive noise part. The overall structure of a typical frequency 

domain speech enhancement algorithm is shown in Fig. 2.1. As shown in the figure, a 

digitized speech (usually sampled at a rate of 8kHz or 16kHz) is windowed into overlapping 

frames (typically with the duration of 10-32ms, 50% or 75% overlap) in order to ensure that 

the speech signal satisfies the assumptions of wide sense stationary. The Hanning or 

Hamming window is often used. The windowed speech frame passes though the DFT stage 

and is then separated into the magnitude and phase components. The noisy speech magnitude 

is filtered while the phase is left untouched since the phase information is less importance in 

speech enhancement [25][26]. After filtering, the magnitude component is recombined with 

the original phase, and the IDFT is carried out. Finally, the overlap and add technique [27] is 

applied to reconstruct the enhanced speech signal.      
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Fig. 2.1 – Block diagram of frequency domain speech enhancement algorithm 
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2.3 Speech Enhancement Algorithm 

2.3.1 Spectral Subtraction 

Magnitude spectral subtraction is one of the simplest noise reduction techniques which 

operate in the frequency domain [12]. Let the magnitude of the filtered speech be |X(k)|. The 

relationship is given as follows: 

|X(k)| = max(|Y(k)| - E(|N(k)|),0) (2.6) 

E(|N(k)|) is the average noise magnitude of coefficient k. A half wave rectification process is 

fulfilled by the max( ) function to simply set the negative components to zero in order to 

avoid possible negative magnitudes by error in the subtraction.   

The main problems with the magnitude spectral subtraction are that it does not attenuate 

noise sufficiently during the silence period and the residual noise has musical tone as shown 

in Fig. 2.2. The musical residual noise is very annoying to human listeners. Much effort has 

been devoted to solve this problem with some degree of success. One simple way is to set up 

a spectral noise floor [28] in order to mask the tonal nature of the residual noise. 
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Fig. 2.2– The signal and spectrogram of denoised speech with spectral subtraction. 

The isolated peaks indicated in the figure will result in musical noise. 

To reduce the musical noise problem, the modified spectral power subtraction algorithm 

was proposed by Scalart [29] using the spectral power subtraction technique together with the 

a-priori signal to noise ratio, ξ, estimated by the decision-directed approach [14]. In that 

method, ξ is updated using information from the estimate in previous frame. More 

specifically, the estimated speech magnitude )(ˆ kX  is related to the noisy speech magnitude 

)(kY  by, 
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is the estimate of ξ. And 

{ }2)()(ˆ kXEkSx ≅  (2.9) 

{ }2)()(ˆ kNEkSn ≅
 

(2.10) 

are the estimate of the true power spectrum of the speech and noise, respectively. Both )(ˆ kSn  

and )(ˆ kSx  have to be known when using the above formula. Methods for estimating )(ˆ kSn  

are covered in some details in [12] and [13] and also in Section 0. )(ˆ kSx  can be evaluated 

by the following equation: 

{ }0),,(ˆ),(max)1()1,(ˆ),(ˆ 2 ikSikYikSikS nxx −−+−= αα  (2.11)

where max{ } is the maximum function in order to ensure that a non-negative value is 

achieved in the evaluation. )1,(ˆ −ikSx  is the estimate of )(kS x  in the previous frame, 

while α is a constant which controls the trade-off between the amount of noise reduction as 

well as the distortion of speech transients in a speech enhancement framework. It is popular 

to set the value of α to 0.98. When α is set to 1, severe distortion in the speech signal can be 

resulted. However, smaller values of α (e.g. 0.8) can lead to high level of musical residual 

noise. The effect of varying α is investigated in detail in [30], which states that the value of α 

ought to be greater than 0.9 in order to overcome the musical noise effect and 0.98 is thought 

about a practical value for α. Although the modified spectral power subtraction filter can 

result in fewer musical tones, the level of residual noise is still high. 
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2.3.2 Wiener Filter      

Besides (2.7), many other gain functions have been adopted by different research groups. 

The most common one is the Wiener filter, which has a structure similar to (2.7) as follows: 

ˆ( )ˆ ( ) ( ) ( ) ( )ˆ( ) 1Wiener
kX k G k Y k Y k

k
ξ

ξ
= =

+
(2.12) 

where ξ̂  is the estimated a-priori SNR defined as in the previous section. Amongst the 

simple filters mentioned in this chapter, the Wiener filter produces the highest noise 

attenuation, but also introduces significant distortion to the enhancement speeches. 

2.3.3 Minimum Mean Square Error (MMSE) Estimator 

The Minimum Mean Square Error (MMSE) estimator was proposed by Ephraim and 

Malah [14]. The estimator is achieved by minimizing the mean square error between the 

filtered coefficients and the original coefficients in the Fourier transform domain. It is defined 

as follows: 
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M( ; ; ) in (2.13) is the confluent hypergeometric function defined in [31] and it can be 

computed efficiently by the series summation as follow.   
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ξ and γ are the a-priori and a-posteriori signal to noise ratios respectively. The a-priori SNR, 
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ξ, can also be estimated by the decision-directed approach as follows:  
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Following Ephraim and Malah’s work, several improvements were made to the 

decision-directed approach. [30] suggested limiting the smallest allowable value for ξ 

in (2.17). This can be easily done by the following equation: 
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where ξmin is the minimum value allowed for ξ. The flooring of ξ to a small value is important 

for reducing low-level musical noise [30]. Other developments to the decision-directed 

method focus on reducing the bias and advancing the speed of adaptation [32]-[37], which is 

introduced by the smoothing constant in (2.17). The main advantage of this filter is that the 

residual noise is white and avoids the commonly encountered musical tones. Nevertheless, 

the residual noise can have large magnitude that affects the quality of the enhanced speeches.   

2.3.4 MMSE-LSA Estimator 

Ephraim [15] also proposed minimizing the log of the error instead of the error itself as 

it will correspond better to the human hearing mechanism. The resulting estimator is dubbed 

as the minimum mean square error log-spectral amplitude estimator (MMSE-LSA) estimator 

which performs better than the MMSE counterpart. The MMSE-LSA estimator is given by 

the following equation: 
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where v  and ξ are defined in (2.14) and Sec. 2.3.3 respectively. The enhanced speech can be 

obtained by applying the gain function to the magnitude spectrum of the noisy speech as 

follows: 
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ˆ ( ) ( ) ( )LSAX k G k Y k= . (2.20)

The MMSE-LSA estimator trims down the residual noise without affecting the speech signal 

itself, that is, without introducing a large amount speech distortion.  

The MMSE-LSA estimators can be extended to apply to the magnitude-squared 

spectrum [38] or more generally the β-order spectral magnitude spectrum [39]. It is shown 

in [39] that the β-order MMSE estimator provides higher attenuation for values of β>1, and 

less attenuation for values of β <1. When β is extremely small (i.e., β ≈0.001), the resulting 

gain curve matches closely the gain function of the MMSE-LSA estimator. Since the order β 

influences the amount of attenuation, it is reasonable to adjust β adaptively depending on the 

speech segment, rather than using a fixed value for β.  

For the aforementioned MMSE algorithms, a key assumption made is that the real and 

imaginary parts of the clean speech spectrum can be modeled by a Gaussian distribution.  

Observing that the real and imaginary parts of the clean speech STFT are successfully 

modeled by super-Gaussian densities, the use of non-Gaussian distributions for modeling the 

real and imaginary parts of the speech spectrum have been further studied [40]-[44]. However, 

the improvement in performance of the MMSE estimators based on non-Gaussian 

distribution assumption is not significant [1].      

2.3.5 Probability of Speech Presence 

For the above speech enhancement method, the clean speech estimator is derived under 

the assumption that speech is always present. It is indeed not true in speech pauses or 

between spectral bins of the harmonics of a voiced speech. There are two forms of speech 

absence. The first form of speech absence is due to the speaker pausing in his speech resulting 

in significant portions of silence. The second form of speech absence is that although the 

speaker is talking, the speech energy is not present in all frequency components. For some 
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frequency components with insignificant energy, speech can be considered to be absent in 

those components. Such knowledge of speech absence can be useful to improve a speech 

enhancement filter. The first attempt in utilizing the uncertainty of speech absence was 

explored by McAulay and Malpass [13]. In their approach, they derived a filter based on a 

fixed probability of speech absence of 0.5. The Ephraim and Malah noise removal filter [14] 

adopted a more flexible approach in which different spectral frequency components can be 

assigned a different probability of speech absence which ranges from zero to one. The 

probability of speech absence is expected to be a function of time and frequency. More 

specifically, the kth spectral output, )(ˆ kX , of the Ephraim and Malah noise suppression 

filter, taking into account the uncertainty of signal presence, is given by the following 

equation: 

[ ]1 0
ˆ ( ) ( ) ( ) (1 ( )) ( ) ( ) ( )H h MMSE SPPX k p k G k p k G k Y k G Y k+= + − =  (2.21) 

where )(kp  is the speech presence probability (SPP) defined as follows: 
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where q(k) is the probability of speech absence. The a-priori SNR, ξ, can best be estimated 

by the decision-directed approach [14] as (2.17). For speech absence, the clean speech 

estimator is zero [13][45], and the gain function SPPMMSEG +  is given by 

)()( 1 kGkpG HSPPMMSE =+  (2.24) 

However, their work does not touch on how the probability of speech absence can be 

estimated, and for performance evaluation, the probability of speech absence was set to 0.2 

experimentally.  
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As mentioned above, the MMSE-LSA estimator [15] is especially popular because of its 

robustness against estimation errors which results in less musical noise [46]. By incorporating 

the speech presence uncertainty into the MMSE-LSA filter as in Cohen’s algorithm given 

in [46]-[47], the gain function applied to the observed noisy speech spectrum is given as 

follows: 

)(1
min

)( )}({)}({)( kpkp
LSASPPLSA kGkGkG −

+ ⋅=  (2.25)

where p(k) is the SPP as mentioned above; Gmin is chosen to be a small constant less than 1. 

For a particular frequency bin k, it can be seen in (2.25) that the overall gain will approach 

Gmin if p(k) tends to zero. It means that the original clean speech estimator will not be used if 

the probability of speech presence in that frequency bin is low. Several approaches have been 

suggested for estimating and updating p(k) [45][47]-[48]. These methods substantially reduce 

the residual noise when combining with the statistical estimators. However, the SPP estimator 

is not always accurate. Recently, in order to avoid wrongly suppressing speech components 

and leading to a large distortion in the enhanced speech, Gerkmann [49] proposed an 

improved SPP estimator pfp(k) which achieves by smoothing the a-posteriori SNR function, 

both temporally and spectrally, before applying to the estimation of the generalized likelihood 

ratio (GLR). Temporal smoothing is achieved by using a time averaging method performed 

across speech frames, and spectral smoothing is achieved by using a pair of local and global 

filters applied to the noisy a-posteriori SNR function in each frame. Some improvement is 

noted as compared to the traditional SPP based MMSE-LSA algorithms. 
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2.4 Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) [70][71] is a popular transform which has 

found applications in many image processing problems. Its basis functions are localized, and 

well-suited to the analysis of natural signals (e.g. images, audio, biomedical signal, etc...). 

They often yield a sparse representation of the signal after transformation. The structure of 

the DWT is similar to the subband filtering. The input signal is concurrently filtered by a high 

pass and low pass decomposition filter to produce two signals, detail and approximation, 

respectively. The approximation signal is the low-frequency component of the signal, while 

the detail signal is the high-frequency component. Both signals are then downsampled by 2. 

This composes one level of decomposition and the process can be applied again on the 

approximation signal to form another level of decomposition. The block diagram for wavelet 

decomposition is shown in Fig. 2.3. 

The DWT has the advantage of using a variable length window for different frequency 

components. This allows the use of shorter intervals for high-frequency information as well 

as long-time intervals to obtain more precise low-frequency information. Thus, the 

characteristics of nonstationary speech signals can be more closely examined. The wavelet 

basis functions are well localized in time and scale domains, since the support of the wavelet 

basis functions can be fexibily adjusted (or selected) to achieve the locality required. This 

behavior of wavelet decomposition is appropriate for processing of speech signals which 

need high temporal resolution to analyze high-frequency components (mostly unvoiced 

sounds), as well as high-frequency resolution to analyze low-frequency compoments (voiced 

sounds, formant frequencies).   

The filters can be in different orders and forms (Daubechies, Symlets, Biorthogonal, 

etc) [72], and the number of decompositions can also be adjusted according to the needs of 

the application. The main advantage of DWT is its fast implementation as its computational 
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complexity is in the order N, where N is the data size (in contrast to Nlog2N for fast Fourier 

transform (FFT)). Also, the number of taps of the digital filters used in the transform is 

normally small.   
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Fig. 2.3 – Block diagram of DWT 

2.4.1 Noise reduction with wavelets 
 

Signal denoising is one of the major applications of the wavelet transform. It can be 

achieved by identifying the singularities in the signal, which can be characterized based on 

the modulus maxima of the signal’s wavelet coefficients [73]. Based on spatial correlation 

between the wavelet coefficients over adjacent scales, the singularities due to noise can be 

detected and remove [76]. Another class of popular wavelet denoising methods is based on 

thresholding the signal’s wavelet coefficients [74]. Due to the vanishing moments of the 

wavelet functions, the wavelet transform of most natural signals will result in only small 

amount of significant wavelet coefficients (i.e. sparsity). It however is not the case for noises, 

which have their wavelet coefficients spread over the transform domain but with small 

magnitude. Hence by thresholding the wavelet coefficients, a large amount of noise energy 
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will be reduced while the energy for the signal is kept. More specifically, the wavelet 

thresholding algorithm can be summarized in three steps: 

1. DWT of the noisy signal,  

2. Thresholding the resulting wavelet coefficients, then 

3. Inverse DWT (IDWT) to obtain the denoised signal. 

The following soft thresholding function defined in [68] and [77] has been popularly used:  
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(2.26)

where w(k) represents the wavelet coefficients and thr is the threshold. The universal threshold 

defined in [68] is popularly used. It is given as follows: 

)log(2 Mthr nσ=
 

(2.27)

where σn is the noise variance. In practice, the noise variance may not be known. It can be 

estimated based on the robust statistics as σn = MAD/0.6745, where M is the number of 

samples; MAD is the median of the absolute value of the noisy wavelet’s coefficients. A level 

dependent threshold can also be defined as follows [78]:  

)log(2 j
j

nj Mthr σ=
 

(2.28)

with σn = MADj/0.6745 and MADj is the median of the absolute value of the coefficients, 

estimated with level j wavelet coefficients. The discriminatory threshold can also be 

determined by using other criterion such as the Stein’s unbiased risk estimate 

(SURE) [79][80].  

2.4.2 Application of DWT to speech enhancement  
 

The standard wavelet thresholding has not been successfully applied to speech 

enhancement directly because the simple threshold cannot discriminate efficiently the speech 
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components from those of the noise. The wavelet transforms, however, are successfully 

combined with other denoising methods and can improve the performance of speech 

enhancement algorithms. They include using the wavelet filter bank for spectral 

subtraction [81], the Wiener filtering in the wavelet domain [82], or the coherence 

function [83][84]. Furthermore, an adaptive threshold scheme was developed in [85] on a 

modified hard thresholding function. A voice activity detector (VAD) was proposed to 

estimate noise level in colored and non-stationary noise contaminations. Besides, the bionic 

wavelet transform with the wavelet denoising technique was used to construct a new adaptive 

thresholding method for speech enhancement in [86]. However, these wavelet based methods 

usually need an estimation of the noise. In order to enhance the noisy speech without the 

requirement of an accurate estimation of the noise level, a time and scale dependent wavelet 

thresholding scheme for speech enhancement was proposed in [87], where the time 

dependency was introduced by approximating the Teager energy of the wavelet coefficients, 

and the scale dependency was introduced by using a level-dependent thresholding scheme 

based on the wavelet packet structure. Since it is known that the noise in the multi-taper 

spectrum is approximately white and additive, the wavelet thresholding scheme is directly 

applied to help in estimating the a-priori SNR and in turn enhancing the noisy speech [88]. 

However, the enhanced speech still suffers from annoying musical residual noise in the case 

that the noise is colored. The musical residual noise is caused by randomly spaced spectral 

peaks that come and go over successive frames, and occur at random frequencies [88]. To 

deal with this problem, a wavelet-domain optimal linear estimator which incorporates the 

masking properties of the human auditory system was proposed to make the residual noise 

inaudible [89]. In [90], a gain factor which is adapted by both the intra-frame masking 

properties and the inter-frame SNR variation was further proposed to enhance a noisy speech 

signal corrupted by non-stationary noise. 
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2.5 Cepstral Representation  

While the Fourier transform is the core operation of a frequency domain speech 

enhancement algorithm, an important concept that flows directly from the Fourier transform 

is the cepstrum of speech. The cepstrum of a speech signal is the inverse Fourier transform of 

the logarithm of its magnitude spectrum [91]. The processing related to the computation of 

the ceptrum is a special case of the more general concept of homomorphic processing [92]. 

Cepstral representation is also useful in the context of stochastic signals, especially when the 

power spectrum of these signals is from an autoregressive model. It has been used in speech 

recognition for the computation of spectral features [93][94], and in speech coding for the 

quantization of the spectral envelop [95]. A more detailed discussion of the uses of the 

cepstrum in speech processing can be found in [96][97]. 

The cepstrum of a stationary signal x with power spectral density Sx(k) is obtained from 

the inverse DFT of the logarithm of Sx(k), i.e., 

{ }))(log()( kSIDFTqC xx =
 

(2.29)

where q is the cepstral index, also known as the quefrency index [91]; the natural logarithm is 

assumed throughout this thesis. Cepstral representation of a signal with an unknown power 

spectral density is achieved from the inverse DFT of the logarithm of an estimate )(ˆ kSx  of 

Sx(k) as follows: 

{ }))(ˆlog()(ˆ kSIDFTqC xx =
 

(2.30)

Hence )(ˆ qCx  may be considered as the estimates of the “true” cepstrum Cx(q). Different 

power spectral density estimates generate different cepstral representation results. Parametric 

and nonparametric power spectral density estimates have been used in the cepstral 

representation of speech signals [98][94]. The autoregressive modeling of the signal is the 

most commonly used method to obtain the parametric power spectral density estimates. The 
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nonparametric power spectral density estimates for cepstral representation of speech signals 

consist of the periodogram [99], the smoothed periodogram obtained from the “window 

method” [99], as well as the closely related mel-spectrum [93][94]. Besides, improved 

cepstrum estimation via optimal risk smoothing for the periodogram was proposed in [100]. 

2.5.1 Spectral Estimation via Cepstrum Thresholding  
 

Although periodogram is one of the most popularly used non-parametric estimates of 

power spectrum used in ceptrum estimation, the high variance of the periodogram, which 

approaches to the square of the true spectrum as data size increases, can introduce great error 

to the cepstrum generated. The cepstral thresholding as an approach for variance reduction in 

spectral estimation of a stationary signal was proposed in [101] and [102]. For many practical 

situations, it has been observed that a lot of these cepstral coefficients are either zeros or 

extremely small in magnitude [101]. In fact, many thresholding based cepstrum estimation 

methods were motivated by this observation. The cepstrum thresholding has been shown to 

be an effective and automatic way for obtaining a smoothed nonparametric estimate of the 

spectrum of a stationary signal.  

The relationship between the true cepstrum and the cepstrum estimated from the signal’s 

periodogram can be mathematically defined. Given that the true cepstrum is defined as,  
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where M is the total number of qurefrency. Denote the periodogram of the original signal x as 

ˆ ( )xS k  such that 2ˆ ( ) ( )xS k X k= . Let ˆ
xC be the cepstral coefficients computed from the 

signal’s periodogram vas follows: 
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Let us further define,   
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where γ = 0.577216 is the Euler’s constant. It is shown in [101] and [105] that under some 

regularity conditions and for large sample size (M >> 1) real-valued data, the estimated 

cepstral coefficients ˆ ( )x qC  are even symmetric and independent random variables having 

normal distributions with means ( )x qC  and variances 2( )x qσ  as follows: 

 ( )2ˆ ( ) ~ ( ), ( )x x xq N q qσC C  ;    q=0,…,M/2 (2.34)
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The above result has been used in the derivation of a number of thresholding based 

nonparametric spectrum estimation algorithm. The thresholding method can be the simple 

thresholding (SThresh) [101][102][106] or the empirical Bayes thresholding 

(EbayesThresh) [107][108]. Further extension for complex signals was proposed in [109]. 

 

2.5.2 Speech enhancement in the Cepstral Domain  
 

As mentioned above, spectral outliers in the adaptation of filter gains may emerge that 

lead to the annoying musical noise. Musical noise is particularly difficult to avoid under 

non-stationary noise conditions. Different methods have been used to deal with 

that [45][110] [111]. Many of them are based on reducing the variance using different 

smoothing approaches in the frequency domain [112][113][114]. A disadvantage of 

smoothing in the frequency domain is that the frequency and temporal resolutions are 

decreased. It is not desirable as the temporal smoothing spreads speech onsets and the 

frequency smoothing reduces the resolution of speech harmonics. Recently, it was 
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demonstrated that smoothing in the cepstral domain is better than the smoothing in the 

spectral domain [115][116]. In the cepstral domain, speeches mainly consist of the 

coefficients in the lower cepstrum which represent the spectral envelope as well as a peak in 

the upper cepstrum which represents the fundamental frequency and the harmonics [117]. 

Hence the speech can also be considered to have a sparse representation in the cepstrum 

domain. As a result, smoothing in the cepstrum domain can reduce the variance without 

distorting the speech signal. Generally, a cepstral variance reduction can be realized by either 

setting those cepstral coefficients to zero that are below a certain threshold [101][102], or by 

selectively smoothing the cepstral coefficients over time [115][116]. A modified cepstrum 

thresholding was proposed to reduce the non-stationary noise components [118]. In addition, 

a cepstrum based spectral estimation algorithm was proposed in [119][120]. It makes use of 

the knowledge about the speech spectral structure so that a better estimate of the noise power 

spectral density can be obtained.       

 



31 

2.6 Dictionary learning   

When analyzing a signal, it is not uncommon to express the signal with an overcomplete 

representation since the redundancy in the representation often can provide extra information 

to better the analysis. Different criterion can be adopted when designing an overcomplete 

transform kernel. Recently, the sparsity of the transform coefficients is of particular interest in 

many signal processing applications, including signal denoising, restoration and 

reconstruction, etc. More specifically, if y is a signal and x is its transform coefficients, the 

overcomplete transform kernel D (or the so-called “dictionary”) is designed based on the 

sparsity criterion as follows: 

݃ݎܽ min
௫

ԡܠԡ .ݏ .ݐ ܡ ൌ (2.36) ܠܦ

where ԡ. ԡ is the sparsity measure that counts the number of nonzero coefficients. The 

above equation shows that the signal y can be expressed as the linear combination of only a 

few column vectors in D (which are also called “atoms”). Two main methods have appeared 

to determine a dictionary within a sparse decomposition: dictionary selection and dictionary 

learning. Dictionary selection entails choosing a pre-existing dictionary, such as the Fourier 

and related bases, wavelet basis, or constructing an overcomplete dictionary by forming a 

union of bases so that particular properties of the signal can be represented [69]. Besides, 

dictionary learning aims at deducing the dictionary from the training data, so the coefficients 

directly capture the specific features of the signal [22]. Dictionary learning methods are 

commonly based on an alternating optimization strategy, in which the signal representation is 

fixed, and the dictionary elements are learned; then the sparse signal representation is found, 

while the dictionary is fixed. Early dictionary learning methods were based on a probabilistic 

model of the observed data [121][122]. Lewicki and Sejnowski [122] clarified the relation 

between the independent component analysis (ICA) and the sparse coding methods, while the 

connection between dictionary learning in sparse coding as well as the vector quantization 
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problem was presented in [123]. The dictionary based on sparse representation which using 

variants of the focal underdetermined system solver (FOCUSS) was proposed in [124].  

The Method of Optimal Directions (MOD) is one of the first methods to implement the 

sparsification process [125][126]. Given a set of examples X = [x1 x2 … xn], the goal of the 

MOD is to find a dictionary D and a sparse matrix C which minimize the representation error,  

ε≤∀−
0

2
, ,minarg iiFCD ctosubjectDCX  (2.37)

where ic  represent the columns of C; and ε is a very small real number. The resulting 

optimization problem is combinatorial and highly non-convex, and thus we can only expect 

for a local minimum at best. The MOD alternates sparse-coding and dictionary update steps 

similar to other training methods. The MOD is a very effective method as it requires only a 

few iterations to converge, but the drawback of this method is the relatively high complexity 

of the matrix inversion. 

Aharon et al. [127] proposed the K-singular value decomposition (K-SVD) learning 

algorithm over redundant dictionaries, which involves a sparse coding stage based on a 

pursuit method and is followed by a dictionary matrix update step which updates the matrix 

one column at a time. The K-SVD algorithm defines an initial overcomplete dictionary 

matrix D א   Թே௫ , a set of examples arranged as the columns of the matrix ܺ א

Թே௫ோ, and a number of iterations n . The algorithm intends to iteratively improve the 

dictionary by approximating the solution defined as follows:  

1,
,

min
2
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, =∀

≤∀
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ii
FCD d

Kc
tosubjectDCX  (2.38)

The vectors dj denote the rows of D. The normalization constraint on the rows of D is 

introduced to avoid degeneracy, but it does not have any practical significance to the result.  

The K-SVD iteration involves two basic steps: (1) sparse-coding the signals in X given 

the current dictionary estimate, producing the sparse representations matrix C, and (2) 
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updating the dictionary atoms given the sparse representations. The sparse-coding step can be 

implemented using any sparse–approximation method. The dictionary update process of the 

K-SVD algorithm is performed in a simple atom-by-atom process, rather than performing 

matrix inversion. The approximation error could be reduced with increasing target sparsity K, 

but it also increases the computational time. 

The atom update is achieved while preserving the sparsity constraints in (2.38). To 

perform this, the update step applies only those signals in X whose sparse representations use 

the current atom. Denoting I as the indices of the signals in X which make use of the j-th atom, 

the update of the atom is achieved by optimizing the following target function, 

2

FII DCX −  (2.39)

for both the atom and its associated coefficient row in CI. And then, the resulting problem is a 

simple rank-1 approximation task given by,    

{ } 1min:,
2

2

, =−= dtosubjectdgEArggd
F

T
gd  (2.40)

where ∑
≠

−=
ji

IiiI CdXE , is the error matrix without the j-th atom, d is the updated atom, and 

gT is the new coefficients row in CI. In general, the Singular-Value-Decomposition (SVD) 

method or further efficiently using some numerical power method can be used to solve the 

problem directly.  

In practice, the process for obtaining the exact result of (2.40) can be rather 

computationally demanding, because the number of training signals is proportional to the size 

of E. However, the whole K-SVD algorithm does not target at converging to the global 

minimum, but a local minimum (hence relies on a good initial guess). Hence an exact solver 

is often not required. As a simple alternative, an approximate solution is proposed in [128] to 

reduce the complexity. It is carried out by limiting the iteration to be only one as follows:  

2
/: EgEgd =  (2.41)
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dEg T=:  

The above process is recognized to finally converge to the optimum, and when truncated, will 

result in an approximation which still condenses the penalty term [128]. Also this process 

disposes the need to clearly compute the matrix E, as only its products with vectors are 

required. 

In addition, the latest contributions to the field employ parametric models in the training 

process, which produce structured dictionaries [129][130]. Recently, a different improvement 

was achieved in online dictionary learning [131] which allows dictionary training to be 

carried out from very large set of data. It is found to accelerate convergence and improve the 

training result. 

2.6.1 Speech enhancement based on sparse coding  
 

The framework of sparse representation and dictionary learning provides new solutions 

for speech enhancement. Since expressing a signal by its sparse representation is similar to 

the traditional coding methods, the operation is also dubbed as the sparse coding. The sparse 

coding captures the salient features of a signal. While emphasizing the significant coefficients, 

it is likely that the additive noise which is often represented by the non-significant 

coefficients will be suppressed. This is the foundation behind the basis pursuit de-noising 

algorithm [132] and the later denoising algorithms specifically tailored to speech and audio 

signals [65][133][134][134]. For instance, a greedy adaptive dictionary learning algorithm 

(GAD) was proposed in [65] for sparsely approximating and denoising speech signals. In 

order to promote sparsity in the dictionary and in the approximation coefficients, atoms are 

selected iteratively from the sparsest speech frames. Besides, a non-stationary noise reduction 

algorithm based on the non-negative latent variable decomposition model of the speech and 

the noise was proposed in [134]. Then, a combined dictionary of speech and noise using the 

non-negative matrix factorization (NMF) method was developed to represent noisy speech 
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signals [135]. A similar method which recovers the clean speech using a composite dictionary 

consisting of the dictionary for speeches and noises was introduced in [136]. This method 

implements the composite dictionary learning using the K-SVD algorithm and extends the 

least angle regression (LARS) algorithm to include a residual coherence stopping criterion 

and optimized it to solve a large number of simultaneous coding problems efficiently. Finally, 

a speech enhancement method based on sparse coding the power spectral density (PSD) was 

presented in [137]. The PSD dictionary of the clean speech signal is trained by the 

approximate K-SVD algorithm with nonnegative constraint. By combining the estimated 

PSD with the signal subspace approach based on the short-time spectral amplitude 

(SSB-STSA), the enhanced speech signal is obtained.  

 

  



36 

2.7 Background Noise Power Estimation 

Besides signal power estimation, the estimation of the background noise power spectrum 

is also an important task in a typical speech enhancement process. Noise, in contrast to 

speech, can generate from any kind of source and have any spectral and temporal 

characteristics. In general, there are some assumptions made about the noise when 

approaching the speech enhancement problem: (1) noise and speech are statistically 

independent; (2) noise has a longer period of stationary than speech; and (3) noise is always 

present in a noisy speech, although its magnitude and frequency response can be varying. 

When estimating the noise power, most of the proposals in the literature are based on either 

the bias compensated tracking of spectral minima technique (“minimum statistics”) [50], 

voice activity detection (VAD), recursive averaging [13][17], soft-decision methods [45][51], 

or a combination of all above [52]-[53].  

In practice, the noise power can be estimated adaptively from the silence or speech 

pause period. A simple method to estimate the noise spectrum is to use a VAD to classify 

when the speech is absent and then average the signal power spectrum during these intervals. 

Generally, the averaging time-constant is selected based on the assumed stationarity of the 

noise. The following VAD decision rule was used in this thesis: 
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where ξ and γ are the a-priori and a-posterior SNRs, respectively, as mentioned above; and ξ 

is computed using the decision-directed approach with α = 0.98. N is the size of DFT, H1 
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denotes the hypothesis of speech presence, H0 denoted the hypothesis of speech absence, and 

δ is a fixed threshold, which was set to δ = 0.15 in [1]. If speech absence is detected, the noise 

power spectrum is updated according to the following formulation: 

( ) ( )1,ˆ),()1(,ˆ 2 −+−= ikSikYikS nn ββ (2.44) 

where β = 0.98, ( )ikSn ,ˆ  is the estimated noise power spectrum of frame i (at frequency bin 

k). Such noise power estimator can give good performance for stationary noise. However, 

large estimation error will result when the noise is non-stationary, particularly for those 

noises that have their frequency spectrum changes drastically within a short period of time.   
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2.8 Evaluation of speech enhancement system 

Controlled experiments are often conducted when evaluating the performance of a 

speech enhancement system. In such experiments, standard clean speech segments are added 

with different kinds of noise retrieved from a standard database. The noises are amplified to 

different levels so as to test the enhancement performance of the algorithm at different SNR. 

For instance in our experiments, noises are retrieved from the NOISEX-92 database [193] 

and are added to clean speech segments extracted from the TIMIT database [192] at different 

SNR. NOISEX-92 is a noise database which provides various noise signals recorded in real 

environments. In order to evaluate the performance of speech enhancement systems in real 

life applications, different noises from the NOISEX-92 database (e.g. the destroyer engine 

room noise, F16 cockpit noise, buccaneer noise, leopard (Military vehicle) noise, M109 

(Tank) and babble noise which is recorded in a canteen with 100 people speaking.) have been 

used in the experiments. 

Speech quality is a measure on how comfortable human listerers perceive a speech 

signal. Various defects in a speech can affect its quality, such as the final distortion of the 

speech and the level of the residual noise. The methods used to evaluate speech quality can be 

divided into the subjective and objective ones. Subjective methods require the participation of 

human listeners, and can use the preference scoring if a comparison is made between two or 

more speech signals, or the absolute scoring if a single stimulus is evaluated at each time. 

One of the most widely used absolute scoring quality measures is the Mean Opinion Score 

(MOS) [54]. The MOS value is calculated as the average score provided by a number of 

trained listeners who rate the quality of the speech using a five-point numerical scale, with 

one indicating “unsatisfactory” or “bad” quality and five indicating “excellent” quality.  

Although subjective methods are the only way to obtain true measurements of speech 

quality, these are expensive in both resourses and time. And the result can be biased 
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according to the interest of the listeners. Objective methods, in contrast, do not require any 

evaluation by external personnel and estimate the quality using some analysis of the speech 

signal, providing an efficient approach for evaluation. Objective measures are popular for 

evaluating the performance of speech enhancement techniques [55]. In this thesis, we focus 

on the objective measures by intrusive methods which also require the original clean speech 

signal to evaluate speech quality. The simplest and most common objective quality measure 

is the segmental signal-to-noise ratio (segSNR) [56]. The segSNR is calculated by splitting 

the signals into frames and averaging the calculated SNR in all the frames that contain speech. 

Several other objective measures were proposed derived from the dissimilarity between 

all-pole models of the clean as well as enhanced speech signals [57]. Two of the most 

well-known all-pole based measures used to evaluate speed-enhancement algorithms are the 

Itakura-Saito (IS) and log-likelihood ratio (LLR) measures. Cepstral distance (CD) measures 

obtained from the linear predictive coding (LPC) coefficients were also used. 

In recent years, perceptually motivated measures have also been popularly used in 

measuring the speech quality. The Perceptual Evaluation of Speech Quality (PESQ) is 

defined and becomes an ITU standard, ITU-T P862 [58]. PESQ includes a complex sequence 

of processing steps to produce a set of distortion scores as a function of time and frequency. 

The PESQ algorithm provides a quality score on a scale from 0.5 to 4.5 which has been 

shown to match well with subjective listening tests over a range of telephony channels [59]. 

The performance of PESQ on processed speech using noise-reduction algorithms was 

evaluated in [60], where high correlations between 0.83 and 0.96 were achieved across 

different processing algorithms and noise types. 

On the other hand, composite methods have also been used to obtain a higher correlation 

to subjective measures. A composite objective measure is introduced in [61] for the objective 

quality rating of speech enhancement methods. It is compared with P.835 subjective 
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measures [62] for various SNR, noise types and enhancement algorithms [63]. It is shown 

that composite objective measures can give the best predictor for different subjective 

measures.  



41 

Chapter 3 Wavelet Based Speech Presence Probability Estimator 

for Speech Enhancement 

 

3.1 Introduction 
 

Speech enhancement is a challenging problem due to the diversity of noise sources and 

their effects in different applications [1]. As it has widespread applications in speech 

communications and recognition, continuous effort is being exerted to its 

investigation [14],[15],[35],[46]-[49],[88],[139]-[145] although an optimal solution is yet to 

be found. Many speech enhancement methods work in the frequency domain. In these 

approaches, a noisy speech signal is divided into overlapped frames and the short-time 

Fourier transform (STFT) is applied to each frame to obtain its frequency spectrum [1]. A 

gain function is then applied to suppress the selected frequency components in order to 

reduce the effect of noise to the speech [14],[15]. For these speech enhancement algorithms, a 

reliable estimator for speech presence probability (SPP) can significantly improve their 

performance. It is because clean speech estimators used in these approaches are often derived 

under the assumption that speech is always present. It is indeed not true in speech pauses or 

between spectral bins of the harmonics of a voiced speech. Consequently, SPP estimator is 

used [46],[47],[49],[140] to help in detecting the non-speech frequency components and 

further suppress them. For instance, in Cohen’s algorithm given in [46],[47], the popular 

MMSE-LSA gain function [15] is modified such that if a frequency component is expected to 

have insignificant speech energy, the gain function will approach to a small constant rather 

than the original MMSE-LSA one. However, the SPP estimator in [46],[47] is not always 

accurate. Speech components can be wrongly suppressed and leads to a large distortion in the 

enhanced speech. In [49], it was suggested that a good SPP estimator can be achieved by 
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smoothing the a-posteriori SNR function, both temporally and spectrally, before applying to 

the estimation of the generalized likelihood ratio (GLR) (an important parameter for 

estimating SPP). Temporal smoothing is achieved by using a time averaging method 

performed across speech frames. Spectral smoothing is achieved by using a pair of local and 

global filters applied to the noisy a-posteriori SNR function in each frame. The resulting SPP 

estimator achieves probabilities close to zero for speech absence and probabilities close to 

one for speech presence. Although such feature is extremely useful for suppressing frequency 

components of noise, it has the side effect that any error in the estimation of speech absence 

can lead to a sudden jump in the SPP function and give rise to the musical noise [1] in the 

enhanced speech. To solve the problem, another approach using temporal cepstrum 

smoothing was proposed to improve the smoothing of the a-posteriori SNR [140]. Although 

estimation errors are noticeably reduced, the approach requires many empirically set 

parameters that make the generalization of the approach difficult.   

As shown in [49], the performance of the smoothing process is crucial to the accuracy of 

SPP estimation and in turn the quality of the enhanced speech. In fact, the local and global 

filters used in [49] resemble a multiresolution filter bank which has been studied extensively 

in the wavelet community. In particular, Moulin suggested applying the wavelet denoising 

technique for smoothing the power spectrum of signals [146]. It was then shown in [147] that 

the wavelet denoising technique is particularly effective when applying to the multitaper 

spectrum (MTS) [149] of a signal. The MTS estimation technique was suggested to reduce 

the error variance when estimating the power spectrum of a signal using the STFT. It is 

obtained by averaging the periodograms of a signal generated using a number of orthonormal 

tapers. The error variance can be reduced by a factor of L where L is the number of tapers. 

Besides, if we let η be the error between the log MTS and the log power spectrum of the 

signal, it was shown that η is Gaussian distributed if the number of tapers is 5 or more. Hence, 
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different wavelet denoising techniques, such as the wavelet shrinkage [68][79], were directly 

applied [147] in order to further enhance the estimation. Such technique was first applied to 

speech signals in [88] with some success reported. When implementing the wavelet shrinkage 

algorithm, the universal threshold was commonly used in the traditional 

approaches [88] [146]-[147] (although a SUREshrink approach was also suggested in [88] at 

the same time). It is known that in order to have the universal threshold effectively performed, 

the input noise process should be white Gaussian. However, it can be easily shown that even 

if the input additive noise process is white Gaussian, its log MTS can hardly be considered as 

white. Correlation exists among neighbored spectral components, and will increase when 

more tapers are used. Hence, the universal threshold is often far from optimal when using in 

the denoising of the log MTS of noisy speeches. In fact, the dynamic range of a speech power 

spectrum is highly compressed when transforming to the log domain. The spectral peaks of 

the speech are thus smoothened such that their wavelet coefficients in the log domain can 

have a magnitude similar to those of noise. It is particularly the case for some weak speech 

frames with low SNR. A slight error in threshold estimation can either remove a lot of speech 

wavelet coefficients or leave behind many wavelet coefficients of noise. The former will 

degrade the speech intelligibility while the later will lead to the annoying “musical” noise, 

which are both undesirable as far as the overall performance is concerned. As an example, we 

show in Fig. 3.1a and Fig. 3.1b the first level wavelet coefficients (absolute value and 4-tap 

symlets (sym4) wavelets) of the log MTS and periodogram, respectively, of a typical speech 

frame with white noise. We also show in Fig. 3.1c the periodogram of the original clean 

speech frame. 5 tapers are used for the generation of the MTS. From Fig. 3.1c, we know that 

the wavelet coefficients at both ends of Fig. 3.1a and Fig. 3.1b should correspond to the 

speech. It can be seen in Fig. 3.1b that the speech wavelet coefficients of the noisy 

periodogram are relatively easier to be identified from those of the noise floor. It is not the 
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case for log MTS. As can be seen in Fig. 3.1a, the wavelet coefficients of speech and the 

noise floor in the log MTS can have similar magnitude as mentioned above. A simple 

thresholding scheme will have much difficulty to separate them.  
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Fig. 3.1 – Level 1 wavelet coefficients (absolute value) of (a) the log MTS of a typical speech frame 
with white noise; (b) the periodogram of the same noisy frame; and (c) the periodogram of the same 
speech frame without noise. 
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In this chapter, we propose a new algorithm for the estimation of the SPP. Rather than 

using the local and global filters as in [49], we obtain a smooth a-posteriori SNR function by 

denoising the speech power spectrum using the a new wavelet based MTS estimator. The use 

of the wavelet transform allows a speech power spectrum to be analyzed with filters of 

arbitrary number of resolutions, rather than two (local and global) as in [49]. Besides, we 

shall benefit from the studies in the wavelet community in determining the various thresholds 

for denoising a speech power spectrum. The proposed estimation algorithm can be divided 

into two stages. First, we apply the wavelet transform to the observed noisy speech 

periodogram. The wavelet coefficients that are likely incurred by the spectral peaks are 

detected. It forms an oracle that indicates the approximate spectral locations where the 

wavelet coefficients of the spectral peaks can likely be found. Second, we apply another 

wavelet transform to the log MTS of the noisy speech. Based on the locality property of the 

wavelet transform, it is safe to assume that the oracle obtained in stage 1 can also indicate the 

wavelet coefficients of the spectral peaks in the log MTS domain. Hence, these wavelet 

coefficients should be kept. Besides, we also keep those wavelet coefficients which are 

greater than a threshold derived based on the Stein’s unbiased risk estimator (SURE) and are 

in the vicinity of those indicated in the oracle. These coefficients are also likely to be the 

coefficients of spectral peaks. For the rest, they are considered as the coefficients of the noise 

floor and are removed. A smooth speech power spectrum can thus be reconstructed from the 

remaining wavelet coefficients and is then used to compute the a-posteriori SNR of the noisy 

speech signal. Due to the change in the smoothing procedure, we also propose a new 

estimation method of the generalized likelihood ratio (GLR), which is an important parameter 

for SPP estimation. The new SPP estimator can then be adopted in different speech 

enhancement algorithms, such as the popular MMSE-LSA [15]. When comparing with the 

traditional SPP estimators, better performance was achieved in most cases when using the 
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proposed SPP estimator evaluated using different standard measures as mentioned in [1].  

This chapter is organized as follows. In Section 3.2, the background of the traditional 

SPP estimation method for speech enhancement, and the use of MTS and wavelet denoising 

for smoothing the power spectrum of a noisy speech signal are presented. The proposed 

2-step wavelet denoising algorithm for smoothing the noisy speech power spectrum is 

described in Section 3.4. The new estimation method for the GLR is shown in Section 3.5. 

Simulation results are shown in Section 3.6, and we summarize the results in Section 3.7. 

The results in the chapter have also been reported in [160] and [180]. 

3.2 SPP Estimation, MTS and Wavelet Denoising 
 

As mention in Chatper 2, many approaches have been suggested for estimating the SPP 

p(k). Recently, Gerkmann et al. proposed an improved SPP estimator pfp(k) [49] which adopts 

a fixed a-priori SNR and a fixed prior probability of speech presence. More importantly, they 

suggested that a good SPP estimator can be obtained by smoothing the a-posteriori SNR 

function, both temporally and spectrally, before applying to the estimation of the generalized 

likelihood ratio (GLR) given as follows: 

)|(
)|(

)1( 0

1

Hp
Hp

q
q

γ
γ

−
=Λ , (3.1)

where Λ is the GLR and q is the a-priori speech presence probability. )|( 1Hp γ  is the 

probability density function (PDF) of γ under the hypothesis H1, i.e. speech is present. 

Similarly, )|( 0Hp γ  is the PDF of γ under the hypothesis H0, i.e. speech is absent. The 

SPP can be computed based on the GLR as follows: 

Λ+
Λ

==
1

)|( 1 γHPspp . (3.2)

In [49], the temporal smoothing is achieved by using a time averaging method performed 

across speech frames. Spectral smoothing is achieved by using a pair of local and global 
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filters applied to the noisy a-posteriori SNR function in each frame. The smoothing of the 

a-posteriori SNR function needs to be carefully designed to minimize the error in the 

estimation of speech absence. On the other hand, we also need to make sure the a-posteriori 

SNR function is not over-smoothed such that all spectral peaks are kept during the smoothing 

process. They are important to the intelligibility of the enhanced speech.  

One of the approaches to smooth the a-posteriori SNR function is by denoising the 

observed noisy speech power spectrum yŜ . To facilitate the design of the required denoising 

algorithm, we need to have a better understanding of the noise that appeared in yŜ . 

Traditionally, yŜ  is computed using the short-time periodogram defined as follows: 
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where i is the frame index. Although y is the result of x with noise added, it is well 

understood that the noise found in yŜ  does not really follow an additive model. It is actually 

the result of the stochastic noise inherent in the estimation when computing the short-time 

periodogram. For the rest of this chapter, we dub such noise as the “structural noise” since its 

behavior is determined by the structure of the power spectrum estimator rather than the input 

signal. It should be differentiated from the “input additive noise” that is often found during 

speech acquisition. The variance of the structural noise however is proportional to the sum of 

the true power spectrum of the speech and the additive input noise process. It means that for 

spectral peaks in the power spectrum, the variance of the structural noise can be extremely 

high. For spectral valleys, the variance of the structural noise can be much lower. Hence, we 

cannot just use a single measure for smoothing yŜ . Rather, a smoothing scheme that can be 

adaptive to the noise variance is needed. 

The MTS approach was adopted in [88] for reducing the variance of the structural noise 
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of speech power spectrums. The MTS reduce this variance by computing a small number (L) 

of direct spectrum estimators each with a different tapter (window), and then average the L 

spectral estimates. The MTS of frame i, where Ζ∈i , of a noisy speech y, is defined as: 
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l
y enynakiS π   and   k = 0,1, …, M-1. 

Each noisy speech frame has N samples. If N < M, each speech frame will be padded with 

zeros to ensure the sequence length is M. The tapers al, for l = 1 ... L, are designed to be 

orthonormal. One of the popular choices is the sine tapers, 
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The sine tapers were shown to make less significant local bias with roughly the same spectral 

concentration [88]. When the tapers are orthonormal, the average of the output of all tapers 

will reduce the variance of the structural noise by a factor of L, where L is the number of 

tapers used. To further reduce the variance, the wavelet denoising techniques were suggested 

to apply to MTS. It was shown that [88][147] for nearly all k (except near k = 0 and M/2) the 

difference between the log MTS and the true log power spectrum is found to be Gaussian 

distributed if L = 5 or more. Besides, the variance of the structural noise in the log MTS 

domain will become constant, irrespective to its variance in the original MTS domain [105]. 

Consequently, the wavelet denoising techniques, such as the wavelet shrinkage [68][79], can 

be applied to the log MTS [88][147] to further reduce the noise variance.  

When implementing the wavelet shrinkage, the threshold thr is perhaps the most 

important parameter that determines the denoising performance. Many important findings on 

its selection have been reported in recent years. Donoho first proposed the "universal 
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threshold" in [68]: )log(2 Mthr nσ= , where σn
2 denotes the noise variance, and M is the 

number of samples. For colored noises, the SURE (based on the principle of Stein’s unbiased 

risk estimation [150]) approach was proposed in [79] since the threshold thus derived can be 

level dependent. Other choices of threshold can be found in [151]-[153].  

 

3.3 Analysis of Multitaper Spectrum of Noise 
 

In this section, we analyze the characteristic of the structural noise in MTS to illustrate 

how the traditional approach can be improved. Note that in [147], the universal threshold is 

used to denoise the log MTS of noisy speeches. It is also used in [88] although a SUREshrink 

approach is suggested at the same time. In order to have the universal threshold effectively 

performed, the noise process should be additive and white Gaussian such that the noise 

variance at all levels of the wavelet transform is the same. However, as it is shown below, the 

noise process can hardly be considered as white particularly when many tapers are used.  

In [148], it is shown that, for zero-mean white Gaussian input with variance 2σ , the 

covariance of the periodogram at frequencies 1ω  and 2ω  is given by: 
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where πω 2/11 Nk =  and πω 2/22 Nk =  for integer k1 and k2. Since both terms in (3.2) are 

equal to zero if 21 kk ≠ , a conclusion is then drawn in [148] that the periodogram is also 

white since the covariance between adjacent frequency components is zero. However in 

actual implementation, the frame size N is often different from the FFT length M as indicated 

in (3.4). A speech frame is zero-padded to form a longer sequence for computing its 

periodogram [1]. In this case, (3.6) should be rewritten as follows: 
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where πω 2/11 Mk =  and πω 2/22 Mk =  for integer k1 and k2 and M > N. It can be seen that 

both terms in (3.7) are not necessarily equal to zero if 21 kk ≠ . It depends on the shape of the 

taper, in this case the sinc function since the rectangular taper is assumed. In general, it can 

be easily shown that for any taper al for Ζ∈l , the covariance of the periodogram at 

frequencies 1ω  and 2ω  is given by: 
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(3.8) shows that the covariance of the periodogram at frequencies 1ω  and 2ω  depends on 

the power spectrum of the taper applied. The second term of (3.8) is particularly important. It 

indicates that there will be covariance between adjacent frequencies 1ω  and 2ω , 21 ωω ≠ , 

if Al is not an impulse. For most commonly used tapers such as Hanning or Hamming 

window, their energy is highly concentrated at DC but not an impulse. Hence the covariance 

between adjacent frequency components of a periodogram is not exactly zero, although the 

value will die away quickly as 1ω  and 2ω  become farther apart.     

Let us further consider the case when the MTS of a white Gaussian input additive noise 

is computed. Since the tapers used for computing the MTS are chosen to be orthonormal, the 

cross covariance between the periodograms generated by different tapers should be zero. 

Hence it can be shown that: 
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where Cl is defined as in (3.9). (3.10) shows that the covariance of the MTS at frequencies 

1ω  and 2ω  is the sum of the covariance of the periodogram at frequencies 1ω  and 2ω  

generated by all tapers. Similarly, the second term in the bracket of (3.10) indicates that there 

will be covariance between adjacent frequencies 1ω  and 2ω , 21 ωω ≠ , if Al is not an 

impulse for all l. Fig. 3.2 shows the power spectrum of the sine tapers generated by 

using (3.5), where L = 5. It can be seen that except the first taper, all other tapers do not have 

energy centered at dc. Hence when summing up their power spectrum, there will be a wide 

spread of energy around dc that the resulting power spectrum is certainly far from an impulse.  

 

 
Fig. 3.2 – The power spectrum of the tapers generated by (3.5), where L = 5, taper size N = 

480 computed using FFT with size M = 960 

 

Eqn. (3.10) shows that the covariance between adjacent frequency components of MTS 

can hardly be considered as zero. The covariance will further increase when more tapers are 

used in the MTS evaluation. It will be the same after taking log of the MTS since the 

logarithm operator will not change the covariance between MTS frequency components. This 

local covariance of the log MTS introduces much difficulty when denoising it using wavelet 

shrinkage and universal threshold. It is because in this case the noise variance at each level of 

the wavelet transform will be different. Using the same universal threshold for all levels will 

introduce great error to the denoising process. To illustrate this, an experiment was conducted 

to apply the wavelet transform to the log MTS of non-speech frames with only white noise. 
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In the experiment, the discrete wavelet transform (DWT) with sym4 wavelet was applied to 

the log MTS (L = 5) of a number of non-speech frames (i.e. these frames contain only the 

additive white noise). The variance of the resulting wavelet coefficients at each level is 

recorded as follows: level 1 – 0.016; level 2 – 0.112; level 3 – 0.474; level 4 – 1.078. Since 

DWT is linear and orthogonal, the variance of the wavelet coefficients at all levels should be 

similar if the structural noise is white. The above result however shows that it is not the case. 

 

3.4 Proposed 2-stage wavelet denoising algorithm 
 

In this section, the proposed algorithm for smoothing the noisy speech power spectrum 

is described. Similar to the traditional approaches [88][147], the new algorithm works in the 

log MTS domain and uses the wavelet denoising method for reducing the variance of the 

structural noise. Denoising in the log MTS domain rather than the MTS domain is preferred 

because it is generally believed that the enhancement process can follow better the perceptual 

characteristics of the human auditory system when it is carried out in the log domain [15]. 

Besides, denoising in the log MTS domain avoids the ambiguity arisen from the negative 

valued power spectral coefficients generated due to the non-linear wavelet denoising process. 

The proposed algorithm can be divided into two stages as described below.  

A. First Stage 

For a noisy speech power spectrum, we can often find spectral peaks contributed by the 

speech and/or the input additive noise (for certain kinds of colored noise). On the other hand, 

we can also find regions where no spectral peaks can be found. Let us call these regions as 

the noise floor. It is important to have a smooth noise floor since any large variance structural 

noise that exists on the noise floor will likely contribute to the annoying musical noise in the 

enhanced speech. Although the noise floor contains no spectral peak, we have shown in Fig. 

3.1a that its log MTS can have large wavelet coefficients with magnitude similar to those of 
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speech. It means that directly thresholding the wavelet coefficients in the log MTS domain 

cannot smooth the noise floor. To solve the problem, it is desirable if we have an oracle that 

indicates the locations of the wavelet coefficients of the noise floor in the log MTS. Such 

oracle indeed can be obtained from the periodogram of the noisy speech. Let la
yŜ  be the 

periodogram of a noisy speech frame y generated using a taper al and  

{ }la
y

j
y SWw ˆ=  (3.11)

be its level j wavelet coefficients, where W{.} is the wavelet transform. While la
yŜ  behaves 

also like a noisy signal, it is obvious that j
yw  will be spread out for all j with magnitude 

depending on the local variance of la
yŜ . That is, if la

yŜ  has a large variance for some 

frequencies k, the corresponding j
yw  for all j will also have large magnitude due to the 

locality property of the wavelet transform. Let us denote ( )2j
nfloorσ  to be the variance of the 

wavelet coefficients of the noise floor at level j. Then if la
yŜ  contains a spectral peak at 

frequency bin k, the magnitude of the respective wavelet coefficients )( j
j
y kw

 
are likely to be 

much bigger than j
nfloorσ : 

jkw j
nfloorj

j
y        )( ∀>>σ

 . (3.12)

This allows us to use a simple thresholding scheme to identify the wavelet coefficients of the 

noise floor. Firstly we need to have a good estimation of j
nfloorσ . An intuitive approach is to 

use a Voice Activity Detector (VAD) (such as [155]-[156]) to find out the noise frames 

(frames that contain only noise) and then estimate the standard deviation of the noise wavelet 

coefficients by averaging across these frames. However, due to the frequency response of 

different colored noise (such as pink noise, high frequency noise, etc.), the noise power 

spectrum can contain a limited number of spectral peaks and induce coefficients with large 
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magnitude in the wavelet domain. Directly evaluating the standard deviation by averaging the 

noise frames will have significant error. To solve the problem, robust statistics [157] is 

adopted to avoid the estimation from being affected by the outliers. Among various robust 

estimators, the median absolute deviation (MAD) is a robust measure of the variability of a 

univariate sample of quantitative data. For a univariate data set X1, X2, ..., Xn, the MAD is 

defined as the median of the absolute deviations from the data's median: 

( )( )i i j jMAD median X median X= −  . (3.13)

In order to use the MAD as a consistent estimator of the standard deviation σ of the data set, 

one takes 

ˆ *K MADσ =  . 
(3.14)

where K is a constant scale factor, which depends on the distribution. For Gaussian 

distributed data, K is taken to be 11/ (3 / 4) 1.4826 1/ 0.6745−Φ ≈ = , where Φ−1 is the inverse of 

the cumulative distribution function for the standard normal distribution, i.e., the quantile 

function. Let us further define )( j
j
yn kw

 
be the wavelet coefficients of the noise frames. 

Follow the same argument as in [154], it is reasonable to regard ( )j
yn jw k  as approximately 

Gaussian distributed since ( )j
yn jw k  are just linear combinations of la

yŜ , which are 

independent random variables. Hence we can apply the MAD for estimating j
nfloorσ . 

Knowing that { } { }median  ( ) mean  ( ) 0j j
yn j yn jw k w k= = , we have 

{ }* median  ( )  / 0.6745      j j
nfloor yn jK MAD w k jσ = = ∀  . (3.15)

Based on j
nfloorσ , we can develop a threshold jthr  such that if )( j

j
y kw < jthr , we consider 

)( j
j
y kw  belongs to the noise floor. Since )( j

j
y kw  is approximately Gaussian distributed, we 

propose to use the following level dependent universal threshold to carry out the above 
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classification: 

)log(2 j
j

nfloorj Mthr σ= , (3.16)

where Mj is the number of wavelet coefficients at level j. The universal threshold is chosen 

because, as shown by Picklands [158] that for a stationary ( ) (0,1)iε Ν�  with 

( )lim ( ) ( ) 0k E i k iε ε→∞ + = ,  { }max ( ) / 2log 1i Mε →
 
almost surely as n→∞ . It means that 

given a set of Gaussian random variables, the universal threshold is their maximum limit 

asymptotically [68]. Note that the threshold jthr  is level dependent since la
yŜ is in general 

not white. In practice, there can be wavelet coefficients of the noise floor having magnitude 

greater than the threshold. These outliers, although in a small amount, can still introduce 

large errors in the estimated SPP and become the source of musical noise. To take care of 

these outliers, we propose to combine the results of using two orthonormal tapers. It is 

because the outliers found in the periodogram generated by one taper may not exist in the 

periodogram generated by the other. To be specific, if a wavelet coefficient is smaller than 

the threshold in any of the two periodograms, it will be classified as the wavelet coefficient of 

the noise floor. j
nfloorσ  needs to be updated from time-to-time using the noise frames 

detected by a VAD. By using jthr , an oracle of the spectral locations of the noise floor in the 

wavelet domain is obtained and will be used in the second stage of the algorithm. As an 

example, we show in Fig. 3.3 the classification result using the proposed approach. In Fig. 

3.3a, the level 2 wavelet coefficients (absolute value) of the periodogram of a typical speech 

frame with pink noise are shown. The classification result is shown in Fig. 3.3b: a ‘0’ 

represents the corresponding wavelet coefficient classified as belonging to the noise floor; a 

‘1’ represents the corresponding wavelet coefficient classified as belonging to a spectral peak. 

It can be seen that the proposed approach accurately classifies the wavelet coefficients of the 

spectral peaks. 
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To summarize, the procedure of the first stage of the proposed algorithm is as follows: 

1. Evaluate two periodograms 1ˆa
yS  and 2ˆ a

yS  of the observed noisy speech frame y using 

two orthonormal sine tapers a1 and a2, respectively.  

2. Generate 4 levels of wavelet coefficients of the two periodograms, i.e. { }1ˆa
y

j,1
y SWw =  

and { }2ˆa
y

j,2
y SWw = ,  where {}⋅W  is the wavelet transform and  j = 1,2,…,4. 

3. From the noise frames, compute j
nfloorσ  for all j. 

4. Generate an oracle Vj for classifying the speech and noise wavelet coefficients as 

follows: 
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where jthr  is defined in (3.15).  

(3.17)
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(b)  

    2k  
 
Fig. 3.3 – (a) Level 2 wavelet coefficients (absolute value) of the periodogram of a speech frame with 

pink noise. (b) The classification result  (see (3.17)). 

 

  

)( 22 kV

(a) Level 2 wavelet coefficients )( 2
2 kwy (see (3.11)) of a periodogram (noisy speech) 
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2k  
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B. Second Stage 

Note that the actual denoising operation is performed in the log MTS domain. With the 

locality property of the wavelet transform, the oracle obtained in stage 1 can also be used for 

the classification of the wavelet coefficients in the log MTS domain. Let  

( ){ }mt
yj

j,mt
y SWkw ˆlog)( =      for all j. (3.18)

A hard thresholding procedure is applied to )( j
j,mt
y kw  based on the oracle Vj as follows: 
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In general if the oracle Vj(kj) = 1, it indicates that the wavelet coefficient )( j
j,mt
y kw  at kj 

likely belongs to a true spectral peak. Hence, it should be kept. Besides, the wavelet 

coefficients )( ε±j
j,mt
y kw  in the vicinity of kj also has a good chance to belong to a true 

spectral peak, particularly if it has a large magnitude. For the proposed hard thresholding 

procedure as shown in (3.19), )( j
j,mt
y kw  is kept if the oracle Vj(kj) equals to 1. Besides, if 

)( j
j,mt
y kw  has a large magnitude that is greater than a threshold thr2j, it should also be kept if 

in the vicinity of kj, i.e. kj±ε, Vj(kj±ε) equals to 1. The threshold thr2j is obtained using the 

standard SUREshrink approach [79] due to the fact that the log MTS of a speech signal in 

general is not white. The SUREshrink approach usually can give a more accurate threshold 

than the universal threshold particularly for colored noises. The limit of ε is selected to be  

⎣ ⎦2/wl≤ε
 

(3.20)

where lw is length of the wavelet filter and ⎣ ⎦x  stands for the nearest integer smaller than x. 

ε is selected as in (3.20) because, it can be shown that, if there is a signal change in 1ˆa
yS  and 

( )mt
yŜlog  at frequency index k that will lead to a strong wavelet coefficient )( a

j
y kw

 
and 
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)( b
j,mt
y kw , respectively, at level j, then ba kk −  is bounded approximately to ⎣ ⎦2/wl . The 

term 1/2 comes from the decimation operator of the wavelet transform. Consequently, the 

proposed algorithm in the second stage can be summarized as follows: 

1. Evaluate the log MTS, i.e. ( )mt
yŜlog , of the observed noisy speech frame y using two 

orthonormal sine tapers.  

2. Generate 4 levels of wavelet coefficients of the log MTS, i.e. ( ){ }mt
yj

j,mt
y SWkw ˆlog)( = ,  

where {}⋅W  is the wavelet transform and  j = 1,2,…,4. 

3. Compute thr2j using the standard SUREshrink approach. 

4. Remove the wavelet coefficients of the noise floor based on (3.18). 

5. Inverse transform the denoised wavelet coefficients to obtain a smoothed yŜ . 

When generating the MTS, we observe in the experiment that using a large number of tapers 

often over-smoothes the estimated speech power spectrum and leads to low intelligibility for 

the resulting enhanced speeches. Hence, in step 1, we suggest using only 2 sine tapers and it 

usually gives better performance than using more tapers. 

Based on the proposed two-stage wavelet denoising algorithm, the smoothed yŜ  is 

used for the evaluation of the a-posteriori SNR function as follows:  

)(ˆ
)(ˆ

)(ˆ
kS

kS
k

n

y=γ . (3.21)

Following the same approach as in [49], )(ˆ kγ  is further smoothed temporally by averaging 

)(ˆ kγ  with those obtained in the last 4 frames. Fig. 3.4 shows a comparison of the 

a-posteriori SNR function generated from a typical noisy speech frame (pink noise, 0dB 

segSNR) using the proposed two-stage wavelet denoising algorithm, the local and global 

filtering approach used in [49], and the wavelet based MTS denoising method with universal 
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thresholding [147]. It can be seen that the proposed algorithm can better preserve the spectral 

peaks of the speech while reducing the noise variance of the noise floor. As shown in the 

results of using universal thresholding and [49], the spectral peaks are obviously 

over-smoothed. Besides, a large variance noise floor is noticed in the result of using [49]. 
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Fig. 3.4 – Performance of a-posteriori SNR estimation using different approaches: (a) the proposed 
2-stage wavelet denoising algorithm; (b) the local and global filtering method in [49]; and (c) the 
wavelet based MTS denoising method with universal thresholding [147]. 
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3.5 New approach for estimating GLR 
 

The smoothed a-posteriori SNR is then used for the estimation of the SPP. Recall that 

the SPP can be estimated based on the GLR, which is a weighted ratio between )|( 1Hp γ  – 

the PDF of γ under the hypothesis H1, i.e. speech is present; and )|( 0Hp γ  – the PDF of γ

under the hypothesis H0, i.e. speech is absent, as given in (3.1). In [49], )|( 0Hp γ  is 

approximated to be chi-squared distributed with the degree of freedom depending on the 

order of the temporal and spectral smoothing operators. With the introduction of the proposed 

wavelet based smoothing operator, γ̂  will have a value close to 1 if the current frame is 

known to be a noise frame. And although the PDF of γ̂  can still be approximated as 

chi-squared distributed as in [49], the degree of freedom will be very difficult to estimate due 

to the non-linear thresholding operation in the wavelet domain. Here we propose to generate 

)|ˆ( 0Hp γ  by directly computing the histogram of γ̂  in noise frames. To be specific, we 

first make use of a VAD given by [154] to identify the noise frames. For each noise frame, 

we compute γ̂  by using (3.21) and bin the resulting γ̂  at different frequencies into 200 

equally spaced containers with centres ranged from 0.2 to 40. The number of data in each 

container is recorded and finally the histogram of γ̂  is obtained. It is then normalized with 

the total number of data and the bin size, i.e. 0.2, to serve as an approximation of the 

PDF. Fig. 3.5 shows a typical )|ˆ( 0Hp γ  under pink noise contamination. It can be seen that 

it is seldom to have large γ̂  with value greater than 5 since the proposed two-stage wavelet 

denoising algorithm has effectively removed the outliers.  
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Fig. 3.5 – A typical  after using the proposed 2-stage wavelet denoising algorithm. 

 
It is known that when the observation y(n) is stationary with a relatively small span of 

correlation and the frame size is large, the real and imaginary part of a DFT coefficient Y(k) 

can be considered to be independent and can be modeled as zero mean Gaussian random 

variables. Consequently, the PDF of 2( )Y k , which is the sum of the square of the real and 

imaginary parts of Y(k) can be described by a gamma distribution as follows: 

)2,1(~ˆ)( 22
yySkY σΓ=  (3.22)

As to the estimation of )|ˆ( 1Hp γ , it should be noted that the proposed two-stage wavelet 

denoising algorithm mainly smoothens the noise floor using a hard thresholding approach. It 

basically does not make any modification to the wavelet coefficients which do not belong to 

the noise floor. Thus, the spectral peaks in the resulting power spectrum (after antilog) are 

just the original MTS, which is an average of two periodograms generated using two 

orthonormal tapers. Hence 

),2(~2/)ˆˆ(ˆ 2
y

b
y

a
y

mt
y SSS σΓ+= , (3.23)

And then since the proposed approach adopts the averaging scheme as in [49], ˆ mt
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averaged with that of the previous 5 frames. That is, 

( )( )dofydof
n

mt
y

amt
y cciSiS *5/,*5*2~)(ˆ

5
1)(ˆ 2

0

4
σΓ= ∑

−=

 (3.24)

for i > 4. The term cdof is an adjustment factor since correlation exists between adjacent 

frames. It is mainly due to the overlapping of speech samples when windowing the speech. In 

our simulation, an overlapping factor of 0.75 is adopted. Hence we choose cdof to be 0.25. 

Consequently, 
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where r  = 2*2*5*cdof, and ξ  is the a-priori SNR. Hence 
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Similar to [49], ξ  is selected to be a fixed constant 8dB. Consequently, the GLR can be 

estimated as follows: 
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=Λ , (3.27)

where q is set as 0.5 as in [49] in our experiments. And the SPP can be obtained based on the 

estimated GLR Λ~ as follows: 

Λ+
Λ

= ~1

~
spp . (3.28)

The resulting SPP is then applied to (2.25) to obtain a new gain function for enhancing the 

noisy speeches. As an illustration, Fig. 3.6a, Fig. 3.6b and Fig. 3.6c show the SPP estimated 

using the proposed 2-stage wavelet denoising algorithm, the local and global filtering method 

in [49], and the wavelet based MTS denoising method with universal thresholding [147], 

respectively, for a typical noisy speech frame. Note that the GLR used for these approaches is 
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different. For the proposed approach, the GLR as given in (3.27) is used. For the local and 

global filtering method, the GLR suggested in [49] is used. As to the one using the universal 

thresholding, essentially the same GLR as the proposed algorithm is used. However, the 

parameter r  for computing )|ˆ( 1Hp γ  is increased to 2*5*5*cdof since 5 tapers are used 

in [147] for generating the MTS. Besides, cdof needs to be empirically adjusted due to the 

shrinkage operation applied to the wavelet coefficients. As can be seen in Fig. 3.6b, the SPP 

given by [49] can contain large spurious impulses (such as that near π/2). They often 

contribute to the musical noise in the final enhanced speech. On the other hand, the SPP 

estimator using the universal thresholding method, as shown in Fig. 3.6c, can merge all 

spectral peaks of the speech. It will certainly affect the final speech quality. Since the 

proposed approach can accurately estimate the spectral locations of the noise floor, the 

resulting SPP can largely preserve the spectral peaks while achieving a good control of 

spurious impulses on the noise floor.  



67 

(a) SPP generated using the proposed smoothing algorithm 
 

Normalized Frequency (rad) 

(b) SPP generated using the smoothing algorithm [49]  
 

Normalized Frequency (rad) 

(c) SPP generated using wavelet based MTS smoothing approach using universal thresholding [147] 
 

Normalized Frequency (rad) 
 

Fig. 3.6 – SPP estimated using: (a) the proposed 2-stage wavelet denoising algorithm; (b) the local and global 
filtering method in [49]; and (c) the wavelet based MTS denoising method with universal thresholding [147].  
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3.6 Simulations and results 
 

The best approach for evaluating the performance of the new SPP estimator is by directly 

assessing the quality of the resulting speeches when it is applied to some traditional speech 

enhancement algorithms, such as the MMSE-LSA. In this study, a series of simulations have 

been performed for comparing the performance between different SPP estimators. Table 3.1 

gives a summary of the algorithms that have been compared. They are different only in the 

way the SPP is estimated. For instance, LSA+SPP uses the traditional SPP estimator given by 

Cohen [47]. LSA+FPSPP uses the SPP estimator given in [49]. The LSA+2sSPP use the 

proposed 2-stage wavelet denoising algorithm. Other simulation details are listed as follows:  

• Speech sampling rate: 16 kHz 

• Frame size: 480 samples (~30ms) 

• FFT size: 960 samples (zeros padded each frame with 480 samples) 

• Window shift step size: 120 samples (75% overlap rate) 

• Wavelet function used in the computation of the wavelet transform: “sym4” – order-4 

least asymmetric orthogonal wavelet [159]. 

For all algorithms, the noise power spectrum is estimated following the same approach 

described in [1]. The noise power spectrum is estimated by first using the initial frames that 

are assumed to have no speech energy. It is then updated whenever a frame is detected to 

have no speech energy by using a VAD, such as [155]-[156]. Note that the accuracy of the 

VAD can affect the performance of the enhanced speech signals. However, it will barely 

affect the comparison results since the same VAD is used in all compared algorithms. 
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Table 3.1 - Summary of the algorithms compared in the simulations. 

Methods Description 
LSA+SPP MMSE-LSA [15] with Cohen’s SPP [47]
LSA+FPSPP MMSE-LSA [15] with SPP estimated using the local and global 

filtering method for smoothing the a-posteriori SNR [49] 
LSA+2sSPP MMSE-LSA [15] with SPP estimated using the proposed 2-stage 

wavelet denoising algorithm for smoothing the a-posteriori SNR  
 

In the simulation, we arbitrarily selected 40 male and 40 female test speeches from the 

TIMIT database [192]. White noise and colored (pink) noises adopted from the NOISEX-92 

database [193] were added to the speeches at different input segSNR. We use the three 

composite objective measures [1] as shown in Table 3.2 as the performance/design criteria in 

the simulation. The three composite objective measures are used traditionally to predict the 

quality of noisy speech enhanced by noise suppression algorithms. They are obtained by 

linearly combining existing objective measures as follows: (a) Csig for measuring signal 

distortion (SIG) – it is formed by linearly combining the log-likelihood ratio (LLR), PESQ, 

and weighted-slope spectral distance (WSS) measures; (b) Cbak for measuring noise distortion 

(BAK) – it is formed by linearly combining the segSNR, PESQ, and WSS measures; and (c) 

Covl for measuring overall quality (OVL) – it is formed by linearly combining the PESQ, 

LLR, and WSS measures. The definition of all these measures can be found in [1]. Table 3.2 

shows that the proposed LSA+2sSPP often outperforms the other two algorithms particularly 

when the noise level is high. Specifically, while LSA+FPSPP gives an average increase of 

0.58, 0.61 and 0.57 in Csig, Cbak, and Covl respectively compared with the noisy signal (pink 

noise at different input SNRs), the proposed LSA+2sSPP gives an average increase of 0.67, 

0.66 and 0.64, which account to 15.5%, 8.2% and 12.2% improvement respectively over the 

LSA+FPSPP algorithm. 

To verify the improvement of the 2-step wavelet denoising method over the traditional 

universal thresholding method, we applied both approaches to the proposed SPP estimation 

procedure. We compared the PESQ scores (the Perceptual Evaluation of Speech Quality) of 
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the enhanced speeches generated by both methods. PESQ is an ITU standard for evaluating 

speech quality [58]. The same set of speeches from the TIMIT database as mentioned above 

were used in the simulation. As shown in the comparison result in Fig. 3.7, the enhanced 

speech using the proposed SPP estimator with the 2-step wavelet denoising method has a 

much higher PESQ score. While both approaches are able to suppress musical and other 

residue noises, the SPP generated by using the universal thresholding method is 

over-smoothed that cannot resolve the spectral harmonics and leads to degraded speeches. 

The result in Fig. 3.7 has verified this observation. 

Table 3.2 - Composite measurement comparison of LSA+SPP, LSA+FPSPP and the proposed 
LSA+2sSPP. 

 Noise Method Input SNR 
-5 -4 -3 -2 -1 0 1 2 3 4 5 

Csig 

White 

Noisy 1.089 1.114 1.154 1.206 1.265 1.34 1.432 1.537 1.654 1.782 1.917 
LSA+SPP [47] 1.412 1.547 1.687 1.841 1.995 2.153 2.303 2.449 2.587 2.721 2.849 
LSA+FPSPP [49] 1.565 1.703 1.847 1.999 2.145 2.280 2.409 2.535 2.651 2.766 2.868 
Proposed LSA+2sSPP 1.636 1.777 1.919 2.065 2.203 2.337 2.468 2.593 2.710 2.823 2.923 

Pink 

Noisy 1.322 1.396 1.481 1.578 1.688 1.809 1.935 2.063 2.193 2.323 2.454 
LSA+SPP [47] 1.811 1.946 2.080 2.221 2.357 2.489 2.622 2.746 2.869 2.988 3.097 
LSA+FPSPP [49] 1.843 1.962 2.088 2.212 2.332 2.443 2.556 2.658 2.751 2.844 2.928 
Proposed LSA+2sSPP 1.955 2.072 2.190 2.306 2.420 2.531 2.639 2.739 2.831 2.919 2.996 

Cbak 

White 

Noisy 1.332 1.401 1.474 1.552 1.633 1.716 1.802 1.890 1.980 2.072 2.165 
LSA+SPP [47] 1.978 2.064 2.148 2.236 2.321 2.407 2.493 2.578 2.663 2.746 2.825 
LSA+FPSPP [49] 2.045 2.124 2.205 2.288 2.371 2.451 2.531 2.611 2.688 2.766 2.838 
Proposed LSA+2sSPP 2.089 2.172 2.253 2.336 2.417 2.498 2.578 2.659 2.737 2.815 2.887 

Pink 

Noisy 1.283 1.332 1.389 1.453 1.528 1.609 1.696 1.788 1.882 1.978 2.075 
LSA+SPP [47] 1.844 1.919 1.995 2.077 2.160 2.244 2.332 2.419 2.507 2.597 2.683 
LSA+FPSPP [49] 1.859 1.927 2.005 2.083 2.163 2.242 2.326 2.408 2.489 2.572 2.655 
Proposed LSA+2sSPP 1.894 1.967 2.045 2.125 2.208 2.290 2.376 2.458 2.539 2.623 2.703 

Covl 

White 

Noisy 1.079 1.109 1.151 1.206 1.271 1.345 1.432 1.535 1.642 1.754 1.866 
LSA+SPP [47] 1.423 1.552 1.683 1.816 1.943 2.071 2.195 2.316 2.432 2.544 2.651 
LSA+FPSPP [49] 1.559 1.682 1.805 1.931 2.051 2.164 2.272 2.378 2.476 2.573 2.658 
Proposed LSA+2sSPP 1.616 1.742 1.864 1.986 2.101 2.214 2.323 2.430 2.529 2.626 2.712 

Pink 

Noisy 1.171 1.226 1.289 1.367 1.458 1.558 1.665 1.775 1.886 1.997 2.108 
LSA+SPP [47] 1.627 1.740 1.851 1.969 2.085 2.197 2.312 2.421 2.530 2.637 2.737 
LSA+FPSPP [49] 1.649 1.751 1.860 1.967 2.072 2.171 2.273 2.368 2.457 2.545 2.626 
Proposed LSA+2sSPP 1.737 1.837 1.941 2.044 2.147 2.248 2.349 2.442 2.529 2.615 2.692 
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Fig. 3.7 – Comparison of using the 2-step wavelet denoising (LSA+2sSPP) and universal thresholding 
(LSA+uthSPP) in terms of PESQ improvement for the cases of (a) pink and (b) white noise contamination. 
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As in [49], the missed-hit rate and false-alarm rate of SPP could be evaluated by the 

Speech Distortion (SD) and Noise Leakage (NL) measurement, respectively. In Table 3.3, the 

SD and NL are measured to indicate the percentage of the speech energy that the 

corresponding SPP estimator neglects as well as how much energy from the noise-only bins is 

not attenuated.It can be clearly seen that the SD for the proposed LSA+2sSPP method reduce 

the speech distortion as compared to LSA+FPSPP. Moreover, both the proposed LSA+2sSPP 

and LSA+FPSPP methods can provide low noise leakage, but the proposed method yields a 

better tradeoff than LSA+FPSPP. 

        

Table 3.3 - Speech Distortion (SD) and Noise Leakage (NL) measurement comparison of LSA+FPSPP 
and the proposed LSA+2sSPP for the cases of white noise contamination. 

 
Method 

Input SNR (dB) 
-10 -5 0 5 10 

SD (%) 
LSA+FPSPP [49] 29.6 13.8 5.6 2.1 0.7 

Proposed LSA+2sSPP 22.2 10.1 4.4 1.8 0.7 

NL (%) 
LSA+FPSPP [49] 1.2 1.4 2.0 3.0 5.1 

Proposed LSA+2sSPP 1.3 1.5 1.8 2.6 4.2 
 

 

Fig. 3.8 shows a comparison of the spectrogram of the enhanced speeches generated 

using different algorithms. The speech is added with color (pink) noise at input segSNR 0dB. 

It can be seen that the proposed algorithm in general preserves much better the speech 

contents while effectively removing the background noise. We particularly circle the parts in 

the spectrograms where improvement can easily be seen. For LSA+SPP, it can be seen in 

region A to C that the speech spectrum is over-smoothed such that many of the speech 

contents are removed. Particularly, the distortion in region B has introduced some difficulty 

in understanding the enhanced speech since the spectrum in region B refers to a word in the 

sentence. For LSA+FPSPP, musical noises are noticed in region D mainly due to the errors in 

the SPP estimation. Besides, at low frequencies where SNR is low (pink noise has higher 
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noise level at low frequencies), speech distortion is also noticed (such as in region C). 

Comparing with the other two algorithms, the proposed LSA-2sSPP removes musical noise 

without sacrificing speech quality. The enhanced spectrogram has much improvement over 

those generated by the other algorithms as can be seen in region A to D. The result in Fig. 3.8 

conforms to the objective comparison results as shown in Table 3.2.  
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(a)           (b) 

                                                

    
                    (c)           (d) 
                                                 

 
                       (e)                                                         
Fig. 3.8 – Spectrogram of (a) a speech selected from TIMIT database; (b) speech contaminated by color (pink) 
noise at input segSNR 0dB; and enhanced speech using (c) LSA+SPP, (d) LSA+FPSPP, and (e) the proposed 
LSA+2sSPP algorithm. 
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3.7 Chapter Summary 
 

In this chapter, we proposed a new algorithm for the estimation of the speech presence 

probability (SPP) of a noisy speech signal. Although it is known that a good estimator of SPP 

can be obtained by smoothing the observed noisy speech power spectrum before using it in 

the estimation process, care must be taken to ensure the smoothing operation will not wash 

away the spectral peaks which are important to the intelligibility of the enhanced speech. The 

major contribution of this work is two-folded. First, we successfully developed a two-stage 

wavelet denoising algorithm that effectively removes the noise while preserving the spectral 

peaks in a noisy speech power spectrum. It outperforms the traditional approaches by 

combining the information of noise and spectral peaks in both the periodogram and the log 

MTS of a noisy speech. The denoised speech power spectrum in turn lets us generate a 

smooth a-posteriori SNR function. Second, we proposed a new method for estimating the 

generalized likelihood ratio (GLR). It is by directly estimating the PDF of the a-posteriori 

SNR under the hypothesis H0, i.e. speech is absent, using the data in different noise frames. It 

simplifies the estimation process and avoids the use of many empirically selected parameters 

in the traditional approaches. The new SPP estimator was then applied to the MMSE-LSA 

speech enhancement algorithm. Compared with the traditional SPP estimators, up to 15% 

improvement was noted for different noises at different noise levels when measuring using 

the standard composite objective measures. When inspecting the spectrogram of the enhanced 

speeches using different approaches, the proposed algorithm in general preserves much better 

the speech contents while effectively removing the background noise.  

The proposed algorithm enhances a noisy speech by making use of the discrete wavelet 

transform to successfully detect the speech’s spectral peaks. However, problems may arise for 

certain kinds of noise which also have spectral peaks similar to those of speeches. This can 

make the SPP thus estimated erroneous. More effort is needed to differentiate speeches from 
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noises perhaps in a different domain. 
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Chapter 4 A Novel Expectation-Maximization Framework for 
Speech Enhancement in Non-stationary Noise Environments 

 

4.1 Introduction 
 

In Chapter 3, we have discussed a new method for estimating the SPP and its application 

to speech enhancement. We have shown that by using the wavelet techniques (which is a kind 

of sparse representation techniques), we can improve the estimation of the SPP so that it can 

be applied to assist the speech enhancement gain function, such as the MMSE-LSA or the 

Wiener filter, etc., to improve the suppression of the spectral components with no speech 

information. While the SPP is an important parameter in speech enhancement, the importance 

of the a-priori SNR is by no means inferior since it is the major parameter of almost all gain 

functions. The accuracy of its estimation can significantly affect the performance of a speech 

enhancement algorithm. The a-priori SNR is defined as the ratio between the true power 

spectra of speech and noise. While the estimation of the true speech power spectrum is 

known to be difficult, the estimation of the true noise power spectrum is not easy either. This 

is particularly the case when the contaminating noise signal is non-stationary. It ends up with 

the musical noises [1] introduced to the resulting enhanced speech, which is extremely 

annoying to human listeners.   

To improve the estimation of the a-priori SNR, the temporal cepstrum smoothing (TCS) 

technique was recently proposed [115][116]. Since voiced speeches are quasi-periodic in 

nature, their magnitude spectrum exhibits peaks and valleys separated by harmonics of the 

fundamental frequency which can be compactly represented in the cepstral domain. As most 

noises do not have such harmonic structure, it allows us to selectively reduce the variance of 

the cepstral coefficients which are likely contributed by noise. In general, the TCS method 
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can improve the accuracy in estimating the a-priori SNR of a noisy speech comparing with 

the traditional spectral subtraction methods. It was also reported that the method works well 

in some non-stationary noise environments [116]. Nevertheless, the TCS method requires a 

set of empirically selected parameters to control the cepstrum smoothing process. As there is 

not a mechanism to automatically adjust the parameters, the TCS method cannot adapt itself 

to the changes in SNR of the noisy speech signal across time frames or frequency 

components. The problem is particularly obvious if there are some parts of a noisy speech 

spectrum having significantly low SNR (e.g. the noise is composed by a few strong tones of 

varying frequencies). The TCS method cannot fully remove the related cepstral coefficients 

with the speech content intact. To deal with the problem, it was suggested to further apply a 

SPP estimator with the TCS technique to remove the outliers in the enhanced speech [140]. 

The result however is still not very satisfactory since the accuracy of the SPP estimators will 

also deteriorate when the SNR is low or when the noise is non-stationary as mentioned above.   

In this chapter, we present an improved speech enhancement algorithm based on a novel 

expectation-maximization (EM) framework working in the cepstral domain. The EM 

algorithm was discovered and employed independently by several different researchers until 

Dempster [161] brought their ideas together and coined the term EM algorithm. It is 

particularly suitable to the parameter estimation problems in which the data for evaluating the 

parameters are missing or incomplete. It is known to produce the maximum-likelihood (ML) 

parameter estimates when there is a many-to-one mapping from an underlying distribution to 

the distribution governing the observation. The algorithm contains two main steps. The 

E-step (expectation) gives an expectation of the unknown underlying distribution based on 

the observed data and the M-step (maximization) estimates the parameters by maximizing the 

expectation. The E-step and M-step then iterate alternately until converged. The EM 

algorithm has widespread applications in digital image and speech processing [162]-[171]. 



79 

One of the widely cited applications of the EM algorithm is the estimation of the hidden 

Markov models (HMMs), which is particularly relevant to speech processing [166]-[169]. 

In [168], a HMM-based gain modeling algorithm was proposed for the enhancement of 

speech in noise. It applies the EM algorithm for offline training and the recursive EM 

algorithm for online estimation of the HMM parameters. The EM algorithm is also used in an 

approximate Bayesian based speech enhancement algorithm [169] for learning the speech and 

noise spectra under the Gaussian approximation. Similar to the conventional model based 

speech enhancement methods, these approaches require prior knowledge about the noise 

model, or it has to be detected online. Degraded performance will be resulted if there is error 

in detection or the detected noise model is not in the training database. Besides HMM models 

estimation, the EM algorithm is also used in the estimation of autoregressive (AR) model for 

speech enhancement [170], where the E-step is in fact the Kalman filter and the M-step is 

similar to the standard Yule-Walker solution for estimating the coefficients of AR processes. 

It is noted that the performance of the method is rather unstable (particularly at input SNR 

from 4dB to 10dB). Effort was made [171] to improve the problem by using the 

Rao-Blackwellized particle filter in the E-step to replace the Kalman filter. However, the 

overall performance, particularly at low SNR, still has much room to improve. In general, the 

performance of model based speech enhancement methods depends heavily on the accuracy 

in model estimation, which is often a challenge when they are working in open environments. 

There are many other applications of the EM algorithm. More details can be found 

in [172][173].    

Similar to the abovementioned approaches, the proposed algorithm makes use of the EM 

algorithm to define a theoretical framework for the design of an iterative speech enhancement 

process. However, it is non-parametric, hence it does not require specific prior knowledge 

about the speech or noise model. In the proposed algorithm, the parameters to be estimated 
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are the cepstral coefficients of the true speech power spectrum, of which their accurate 

estimation is important in speech enhancement. It enables the computation of the a-priori 

SNR of the noisy speech, which is one of the most essential parameters required in different 

speech enhancement gain functions as mentioned above. The proposed algorithm first makes 

use of the TCS technique to generate an initial guess of the clean speech periodogram, which 

is the complete data set of our problem. It is applied to an L1 norm regularizer [175] in the 

M-step of our EM framework to give the first estimate of the required cepstral coefficients of 

the true speech power spectrum. They are then used to compute the a-priori SNR that is 

needed for the MMSE-LSA gain function to refine the estimation of the clean speech 

periodogram, which is the E-step of our EM framework. Subsequently, the estimate is fed 

back to the M-step to refine the estimation of the cepstral coefficients of the true speech 

power spectrum. The E-step and M-step iterate alternately until convergence is reached. The 

operation is illustrated in Fig. 4.1. A notable improvement of the proposed algorithm over the 

traditional non-parametric speech enhancement methods is that, due to the iterative process, 

the proposed algorithm can adapt to the changes (even abrupt changes) in SNR of the noisy 

speech. In addition, the proposed algorithm fully utilizes the sparsity of speeches in the 

cepstral domain by adopting an L1 norm regularizer in the M-step. It enables the 

regularization process to be carried out on coefficients with improved SNR hence reduces the 

effect due to the error in estimating the non-stationary noise statistical characteristics. As a 

result, the proposed algorithm has outstanding performance when working in non-stationary 

noise environments. Extensive performance evaluations have been conducted using the 

speech samples from the TIMIT database [192] contaminated by many different noise signals. 

Significant improvement is noted in almost all cases over the competing speech enhancement 

methods measured using standard performance metrics. 

This chapter is organized as follows. In Section 4.2, a brief review of the traditional 
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temporal cepstrum smoothing algorithm is given. It is followed by a brief introduction of the 

EM algorithm in Section 4.3. The new EM framework for speech enhancement in 

non-stationary environments is described in Section 4.4. The simulation results are shown in 

Section 4.5, and conclusions are drawn in Section 4.6. 

The results in the chapter have also been reported in [181] and [182]. 
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Fig. 4.1 – The operation of the proposed speech enhancement algorithm based on the new 

EM framework  
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4.2 Spectral Subtraction and Cepstrum Smoothing 
 

Let us begin with a brief introduction of the traditional cepstrum smoothing method that 

is applied to the spectral subtraction speech enhancement algorithms. In fact, we have 

introduced the essence of the spectral subtraction techniques in Chapter 2. The spectral 

subtraction methods are still popularly used in speech enhancement due to their simplicity 

and efficiency. For the spectral subtraction methods, a spectral gain function ( , )G k i  is 

applied to each noisy short-time frame ( , )Y k i  to enhance the speech signal. Two most 

popular gain functions are the Wiener filter and the MMSE-LSA gain functions as 

follows [1]: 

( ) ( )
( ) 1wiener

kG k
k
ξ

ξ
=

+
 (4.1)

log
( ) 1( ) exp

( ) 1 2
k

t

mmse
v

k eG k dt
k t
ξ
ξ

∞ −⎧ ⎫⎪ ⎪= ⎨ ⎬+ ⎪ ⎪⎩ ⎭
∫   where 

1)(
)()()(

+
=

k
kkkv

ξ
γξ

 (4.2)

It is seen in (4.1) and (4.2) that the determination of both gain functions requires the 

evaluation of two parameters: (i) a-posteriori SNR ( )kγ  which is defined as 
2( )

( )
( )n

Y k
k

S k
γ = , 

where 2( )Y k is also referred as the periodogram of y; (ii) a-priori SNR ( )kξ  which is 

defined as ( )( )
( )

x

n

S kk
S k

ξ = . In practice, the power spectrum of noise ( )2( ) ( )nS k E N k=  is 

estimated by averaging the periodograms of all the noise frames detected using a voice 

activity detector (VAD) [53]. We denote the estimation of nS  as nŜ . Obviously, the 

estimation error can be high if n is not stationary. 

The estimation of ( )2( ) ( )xS k E X k=  is even more difficult since x is not known. 

Hence ( )kξ  cannot be exactly evaluated. Different approaches were suggested to estimate
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( )kξ . The maximum likelihood (ML) estimate of the a-priori SNR ˆ ( )ML kξ  can be obtained 

as follows [1]:  

 
ˆ ˆ( ) ( ) 1ML k kξ γ= − , where 

2( )
ˆ( ) ˆ ( )n

Y k
k

S k
γ =  (4.3)

The variance of ˆ ( )ML kξ  however is often too large for using in the traditional gain functions. 

The inaccuracy of ˆ ( )ML kξ  is further amplified due to the estimation error of nŜ . To reduce 

the variance in estimation, the decision-direct approach is often used in practice where the 

a-priori SNR is estimated based on a previous clean-speech estimate as follows [14]:  

{ }min

ˆ ( , 1)ˆ ˆ( , ) (1 )max ( , ) 1,ˆ ( , )
DD x

n

S k ik i k i
S k i

ξ α α γ ξ
−

= + − −  (4.4)

where the parameters α and minξ  control the trade-off between the amount of noise reduction 

and the distortion of speech transients in a speech enhancement framework. Although much 

effort has been devoted to resolve the difficulties, in general the performance of current 

spectral subtraction algorithms will still degrade significantly when the SNR is low or if the 

noise is non-stationary. 

It is shown in [116] that TCS method can give a good estimation of the a-priori SNR for 

some non-stationary noise environments. The algorithm can be implemented by first 

computing the ML estimation of the a-priori clean speech power spectrum as follows: 

 { }min
ˆ ˆ ˆ ˆ( , ) ( , )max ( ),ML ML ML

x nS k i S k i kξ ξ=  (4.5)

where min
ˆMLξ  is the minimum value allowed for MLξ̂ and MLξ̂  is the maximum-likelihood 

estimate of the a-priori SNR given by (4.3). Next, the cepstral representation of ˆ ( , ) ML
xS k i  is 

computed as, 

ሻݍ௫ሺܥ ൌ ൫݃൛݈ܶܨܦܫ መܵ௫
ெሺ݇ሻ൯ൟ (4.6)

where q is the cepstral index, also known as the quefrency index. Next, the selected cepstral 
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coefficients are recursively smoothed over time with a quefrency dependent parameter α(q) 

as follows: 

ˆ( , ) ( ) ( , 1) (1 ( )) ( , )TCS TCS
x TCS x TCS xC q i q C q i q C q iα α= − + −% %  (4.7)

The parameter α(q) is also smoothed recursively using: 

( ) 
( , )

( , 1) (1 )
pitch pitch

TCS const
TCS q

if q C i
q i

q i otherwise
α

α
βα β α
⎧ ∈⎪= ⎨ − + −⎪⎩

 (4.8)

where Cpitch refers to the set of cepstral bin indices associated with the fundamental frequency. 

All parameters including pitchα , β  and const
qα  for different q need to be determined 

empirically. It is believed that these parameters should be adaptively adjusted in order to 

achieve optimal performance for noisy speeches of different SNR values. It is however 

difficult to derive an efficient algorithm for such purpose due to the empirical nature of these 

parameters. 

4.3 The Expectation Maximization Algorithm 
 

In this section, the basic idea behind the EM algorithm is described. Assume that θ is the 

parameter set we would like to estimate and the probability density function (PDF) ( )f x θ  

of some data set x given θ is known, where x is referred as the complete data set in the 

context of the EM algorithm. Let us also assume the PDF f is a continuous and appropriately 

differentiable function of θ.  If x is known, θ  can be readily evaluated by maximizing 

( )f x θ : 

( )( )arg max log f x
θ

θ θ= .  (4.9)

Unfortunately in many practical applications, some or all elements of x cannot be obtained 

directly from the experiments but only by means of another observed data set y. Besides, 

there can be a many-to-one mapping between x and y. So for the E-step of the EM algorithm, 
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we first compute the expectation of ( )log f x θ  given the data set y and our current estimate 

of θ. That is,  

( ) ( )( )log ,t tQ E f x yθ θ θ θ=   (4.10)

where tθ  is the t-th estimation of θ and t is the iteration index. Then for the M-step of the 

EM algorithm, we find the value of θ which maximizes ( )tQ θ θ  as: 

( )1 argmaxt tQ
θ

θ θ θ+ =   (4.11)

where θ t+1 is our refined estimation of θ. The E-step and M-step then iterate alternately and 

will converge to give the ML estimation of θ as proven in [161]. 

4.4 The New EM Framework for Speech Enhancement in Non-stationary 
Noise Environments 

 

When applying the EM algorithm to speech enhancement, we consider the cepstral 

coefficients of the true clean speech power spectrum ( )xS k  to be the parameters for 

estimation. It is defined as,  

( )
1

2 /

0

1( ) log ( )
M

j kq M
x x

k

C q S k e
M

π
−

=

= ∑  ; q=0,…M-1 (4.12)

where M is the total number of frequency components and the frame index i is dropped for 

notation simplicity. As it is explained in Section 4.2, the a-priori SNR of the noisy speech is 

one of the most important parameters to be estimated in speech enhancement applications. 

The objective of the proposed algorithm is to obtain a good estimation of xC so as to 

compute ( )xS k  based on (4.12). Then the a-priori SNR of the noisy speech can be obtained 

and used in the traditional speech enhancement gain functions such as (4.1) or (4.2) for the 

estimation of the unknown clean speech periodogram.  

We propose to use the EM algorithm to help in the estimation of xC . To do so, let us 
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first select the cepstral coefficients of the original clean speech periodogram, denoted as ˆ
xC , 

to be the complete data set in our EM framework. ˆ
xC can be computed from the periodogram 

of the original speech x, i.e. ˆ ( )xS k  where 2ˆ ( ) ( )xS k X k= , as follows: 

( )
1

2 /

0

1ˆ ˆ( ) log ( )
M

j kq M
x x q

k

C q S k e
M

π γδ
−

=

= +∑  ;   q=0,…,M-1 (4.13)

where  

1 0
0q

for q
otherwise

δ
=⎧

= ⎨
⎩

  (4.14)

and γ ≈ 0.577216 is the Euler’s constant. It is shown in [174][101] that under some regularity 

conditions and for large sample size (M >> 1) real-valued data, the estimated cepstral 

coefficients ˆ ( )xC q  are even symmetric and independent random variables having normal 

distributions with means ( )xC q  and variances 2 ( )e qσ  as follows: 

 ( )2ˆ ( ) ~ ( ), ( )x x eC q N C q qσ  ;    q=0,…,M/2 (4.15)

where 

2

2
2

0, / 2(3 )
( )

(6 )
e

for q MM
q

otherwiseM

π
σ

π

⎧ =
⎪= ⎨
⎪
⎩

 . (4.16)

In the remaining of this section we shall drop the index q, where appropriate, for simplifying 

the equations. The dependency of q on the relevant quantities should be apparent.  

It can be seen in (4.15) that the required parameter xC in fact is the mean of the 

complete data set ˆ
xC , which has a normal distribution. However, ˆ

xC is unknown since we 

do not have the original speech data. Hence we cannot directly compute xC  from ˆ
xC . We 

have to rely on the observed noisy speech periodogram 2ˆ
yS Y=  to help us in estimating xC . 

The expectation of ( )ˆlog x xf C C  given the data set ˆ
yS  and the current estimate of xC  can 
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be expressed as follows: 

( ) ( )( )ˆ ˆlog ,t t
x x x x y xQ C C E f C C S C= .  (4.17)

From (4.15) and (4.16), we know that, 

( ) ( )2

2

ˆ1ˆ exp
22
x x

x x
ee

C C
f C C

σσ π

⎛ ⎞− −⎜ ⎟=
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 , (4.18)

hence 
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1log
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x xt t
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ee
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ee
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Q C C E S C

E C C S C

σσ π

σσ π
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⎛ ⎞− −⎜ ⎟⎛ ⎞ ⎝ ⎠= +⎜ ⎟

⎝ ⎠

  (4.19)

We shall apply ( )t
x xQ C C  to the M-step of the proposed algorithm. The purpose of the 

M-step is to optimize t
xC  in order to maximize ( )t

x xQ C C . From the recent research in 

iterative regularization [175], it is known that if the signal is sparse or if the signal can be 

transformed into a domain where its coefficients are sparse, the inclusion of a penalty term 

made up by the L1 norm of the signal or its coefficients can significantly improve the chance 

for the iterative process to reach its global optimum point. Such idea has been popularly 

adopted in some image restoration and image reconstruction applications [176][177]. For the 

proposed method, the EM algorithm is operating in the cepstral domain. Since the 

coefficients of speech in the cepstral domain are sparse and are very much different from 

noise, we include a penalty term made up by the L1 norm of the desired cepstral coefficients 

in the optimization process. More specifically, the M-step of the proposed algorithm is given 

as follows: 



89 
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where ( )t
xpen C  is the penalty term, which is selected as follows:  

1
( ) ( ) ( )t t t

x x x
q

pen C AC A q C qτ τ= = ∑ .  (4.21)

In (4.21), τ is a free parameter that adjusts the amount of regularization applied to the 

maximization process. Its selection method will be discussed at the end of this section. A is 

dependent on q and it is defined as a weakly differentiable binary function such that,  

0   C
( )         

1
l pitchq q and q

A q
otherwise

≤ ∈⎧
= ⎨
⎩

 . (4.22)

The introduction of the penalty term imposes a constraint to the optimization process such 

that the energy of the estimated cepstral coefficients will concentrate at very low quefrencies 

as well as the quefrencies associated with the fundamental frequency. They are exactly the 

features of voiced speeches in the cepstral domain. By doing so, the optimization process can 

be carried out on coefficients with improved SNR and hence reduces the effect due to the 

estimation error of the non-stationary noise characteristics. It turns out to be the major factor 

that leads to the good performance of the proposed algorithm in non-stationary noise 

environments. The use of the L1 norm in the penalty term in (4.21) is based on the assumption 

that xC has a Laplacian prior. From (4.20), 1t
xC +  can be obtained by taking the derivative of 

the right hand side of (4.20) and setting the result to 0.That is, let 

( )( )2 2ˆ ˆ , 2 ( )t t t
x x y x e xE C C S C pen Cσ⎛ ⎞Θ = − +⎜ ⎟

⎝ ⎠
  (4.23)

Then 



90 

( )
( ) ( )

2

2

( ) ( )
ˆ ˆ2 , 2 2

( )
ˆ ˆ2 , 2 2 . .sign

t
x

qt t
x y x x et t

x x

t t t
x y x x e x

A q C q
E C S C C

C C q

E C S C C A C

σ τ

σ τ

∂
∂Θ

= − + +
∂ ∂

= − + +

∑
  (4.24)

where sign(x) returns {1, 0, -1} if x is positive, 0 or negative, respectively. Hence the optimal 

t
xC  is the one such that 0t

xC
∂Θ

=
∂

. It is then used as the new estimate of t
xC . That is, 
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where ( )ˆ ˆ ,t t
x x y xC E C S C=%  and 2

eT Aσ τ= . (4.25) is indeed the well-known soft thresholding 

non-linearity [77][175] with an additional constraint A.  

To implement (4.25) , we need to have a good estimate of t
xC% . For the proposed 

algorithm, we estimate t
xC%  by the following, 

1. For initial guess: TCS
xx CC ~~0 =  

2. For subsequent iterations: 

( )
⎭
⎬
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⎨
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t
x SGIDFTC ξ   

 (4.26) 

where ( )( )
n

t
xt

S
CDFT

ˆ
expˆ =ξ . In both cases, bias is removed using the approach in [101] 

whenever transforming data between the cepstral domain and the spectral domain. As shown 

in  (4.26), we adopt the TCS method [116] to obtain the initial guess of t
xC%  at t=0. 

Afterwards, we update t
xC% by using an MMSE-LSA gain function [15] in which the a-priori 

SNR is computed based on the current estimate t
xC . The MMSE-LSA gain function 
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theoretically gives the minimum mean square error estimation of the log-magnitude spectra. 

From [15], we know that, 
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It can be seen in (4.28) that the MMSE-LSA gain function can give a good estimation of t
xC% . 

However, we do not use it for the initial guess since without a good a-priori SNR estimator, 

the MMSE-LSA gain function can accidentally remove speech spectral components of low 

SNR. This is particularly the case if the noise is non-stationary. The TCS method gives a 

reasonably good estimation of t
xC% without the need of a very good a-priori SNR estimator. It 

also works reasonably well for non-stationary noises. It is thus used as the initial guess of t
xC%

and is afterwards refined by the MMSE-LSA gain function using the a-priori SNR estimate 

obtained by the M-step of the proposed algorithm.  

To summarize, the proposed speech enhancement algorithm based on the new EM 

framework can be described as follows: 

A. Initial guess: 

Compute the initial guess of t
xC% using the TCS method, i.e. 0 TCS

x xC C=% % (see  (4.26)). 

B. M-step: 

Estimate the parameter t
xC using the constrained soft thresholding method 

(see (4.25)). 

C. E-step: 
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Refine the estimation of t
xC% using the MMSE-LSA gain function with the estimated 

t
xC obtained from the M-step (see  (4.26)). 

D. Iterate the M-step and E-step alternately until convergence is reached. The enhanced 

speech X% can thus be obtained by  

( )
( )

log
ˆ .

exp

converge
mmseX G Y

X X j Y

ξ=

= ∠

%

% %
  (4.29)

where ∠Y is the phase angle of Y. The operation of the algorithm is also described in 

Fig. 4.1.  

Besides those required in the original TCS method [116], the proposed algorithm has 

very few free parameters. Once these parameters are set, they can be used for speeches of 

different genders and at different noise levels, as it is the case in our simulations. More 

specifically, the setting of the free parameters in the TCS method can be found in [116]. The 

parameters for determining the soft threshold T in (4.25) can be obtained as follows: (i) the 

value of 2
eσ  can be found in (4.16); (ii) the setting of parameter A requires the parameter ql 

in (4.22), which is set as 0.025M in our simulations. Cpitch in (4.22) can be obtained from the 

TCS method given by [116] when generating the initial guess. Finally, the parameter τ is set 

as 

2
 

τ
σ

=  (4.30)

where 2σ  is the variance of Cx and is approximated by,  

2 2ˆ[ ]x eVar Cσ σ= − .  (4.31)

We show in the Appendix A that by setting τ as in (4.30), the soft thresholding operation 

in (4.25) indeed achieves a good approximation of the maximum a-posterior (MAP) 

estimation of Cx. Moreover, as shown in Appendix B, a bias compensation method is applied 

in log-spectral domain to improve the spectral estimator. We would like to emphasize that 
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due to the initial guess and the additional constraints applied to the algorithm, the proposed 

algorithm need not be iterated many times to achieve satisfactory performance. In our 

experiments, iterating 3 times already gives very good results. Iterating further in most cases 

will only increase the computation time but not further improve the performance. Hence it is 

not recommended.  

4.5 Simulations and Results 
 

In this section, the performance of the proposed algorithm is shown and compared with 

the state-of-the-art speech enhancement methods. To start with, we use an example to 

illustrate the deficiency of the traditional TCS method and how it is solved by the proposed 

algorithm. For the ease in presentation, let us first denote the proposed algorithm as 

Logmmse-L1-EM, which represents the two major operations (MMSE-LSA gain function 

and L1 norm regularization) used in the new EM framework. Fig. 4.2 shows a segment of a 

typical noisy speech periodogram (red line), its original clean speech periodogram (black 

line), the enhanced speech periodogram using the traditional TCS (green line) and the 

proposed Logmmse-L1-EM algorithm (yellow line). It can be seen that the noisy 

periodogram consists of a sharp noise spectral peak at frequency index about 170. The TCS 

method tries to remove the noise spectral peak by reducing the variance of the cepstral 

coefficients. It however is only partially successful and leaves behind a rather strong noise 

spectral peak. In addition, the TCS method over-smoothes the speech spectral peak at indices 

near 100 and 120. It is clear that a fixed set of smoothing parameters is difficult to handle 

noisy speech spectral components equally well if they have great difference in SNR. On the 

contrary, the proposed Logmmse-L1-EM algorithm gives extremely good performance in 

removing the noise spectral peak while keeping the speech spectral peaks. It is due to the 

iterative process through EM by which the noise spectral peak is reduced successively in each 
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iteration while the speech spectral peaks are also gradually adjusted. Fig. 4.3 illustrates how 

the proposed algorithm refines the estimation in each iteration. 

The results in Fig. 4.2 and Fig. 4.3 clearly explain why the proposed Logmmse-L1-EM 

algorithm can provide a better performance than the original TCS method and the traditional 

MMSE-LSA method. As mentioned above, the TCS method cannot take care of noisy 

components with great difference in SNR. However, it serves as a good initial guess of the 

clean speech power spectrum since it is less sensitive to the accuracy of the a-priori SNR 

estimation. The initial guess is then applied to the L1 norm regularizer in the M-step of the 

proposed EM framework, which is indeed a constraint soft thresholding process. Besides a 

good MAP estimation of the true power spectrum of the clean speech, the applied constraint 

fully utilizes the sparsity feature of speech signals in the cepstral domain. Noises, no matter 

stationary or non-stationary, will be rejected since most of them cannot fulfill this constraint. 

For every iteration the proposed algorithm performs, the same constraint is imposed to the 

observed noisy data and gradually improves the estimation, which is shown in Fig. 4.3. The 

M-step of the proposed EM algorithm enables a gradually improved a-priori SNR estimate 

for use in the E-step of the proposed algorithm, which is just the traditional MMSE-LSA 

method. With a good a-priori SNR, the MMSE-LSA method can often give a good estimate 

to the original clean speech periodogram for the M-step again.  
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Fig. 4.2 – A comparison of the traditional TCS method and the proposed Logmmse-L1-EM 

algorithm 

 
Fig. 4.3 – The result of the proposed Logmmse-L1-EM algorithm after each iteration 
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A comparison of the spectrogram of the enhanced speeches generated using different 

algorithms with different colored noises at input is shown in Fig. 4.4 to Fig. 4.5. Table 4.1 

gives a summary of the algorithms that have been compared. We start with the case that the 

speech is contaminated by pink noise, which is a relatively stationary noise. Fig. 4.4a shows 

the clean speech spectrogram of a female speech selected from the TIMIT database [192] 

saying the following sentence: “She had your dark suit in greasy wash water all year”. Fig. 

4.4b shows the result when pink noise is added to the speech with input segSNR about 

5dB. Fig. 4.4c depicts the spectrogram using the traditional TCS method. It can be seen that 

although the TCS method can recover much speech contents, its noise control is not sufficient 

and strong background residue noise remains in the enhanced speech. Fig. 4.4d shows the 

spectrogram using the MMSE-LSA method plus SPP with fixed prior [49], which is a 

relatively recent MMSE-LSA estimator enhanced by using a special speech presence 

probability function. It has better control of the background noise however it also removes 

speech content and the intelligibility of the enhanced speech is reduced. Furthermore, musical 

noise appears particularly at the beginning of the speech. Fig. 4.4e shows the spectrogram 

given by a combination of the TCS method and the MMSE-LSA plus SPP [140]. In that 

approach, the TCS is used for the estimation of the a-priori SNR and is used in the 

MMSE-LSA and the SPP estimation. It has better noise control compared with that in Fig. 

4.4c and Fig. 4.4d. However, some speech contents are removed as it is indicated in the 

circled areas. It seems that the speech contents removed by the SPP estimator cannot be 

recovered although the TCS method is used. Fig. 4.4f shows the spectrogram using the 

proposed Logmmse-L1-EM algorithm. It has very well background noise control and the 

speech content is also better preserved as indicated in the circled areas.      

Fig. 4.5 shows the case where the speech is contaminated by the buccaneer noise, which 

is a non-stationary noise such that two tones of varying frequencies together with other 
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background noises are added to the speech. The noisy speech is shown in Fig. 4.5b. When 

speeches are contaminated by non-stationary noises, traditional decision-direct approach will 

generate large error when estimating the a-priori SNR. Hence the performance of the 

traditional the MMSE-LSA approach, although using SPP, will not be good. As can be seen 

in Fig. 4.5d, the strong tones cannot be removed and will be quite annoying in human 

auditory. The TCS method improves slightly as shown in Fig. 4.5c. The combined TCS and 

MMSE-LSA approach gives better result as can be seen in Fig. 4.5e. However in both cases, 

the tones still cannot be sufficiently removed while the background noises remain. The result 

of the proposed Logmmse-L1-EM algorithm is illustrated in Fig. 4.5f. It is clear that the time 

varying tones are largely suppressed while the speech contents are well preserved comparable 

with that using the TCS method. The background noise is also significantly reduced. The 

overall performance is very promising.  

The performance of the proposed Logmmse-L1-EM algorithm is further evaluated using 

standard evaluation measures. A series of simulations have been performed for comparing the 

performance between the following approaches: MMSE-LSA [15], MMSE-Gamma [178], 

MMSE-LSA plus SPP with fixed prior [49], MMSE-LSA plus TCS method [140], and the 

proposed Logmmse-L1-EM algorithm. The speech sampling rate is 16kHz. Simulation details 

are listed as follows: frame size – 512 samples (~32ms), FFT size – 1024 samples (zeros 

padded each frame with 512 samples), window shift step size – 128 samples (75% overlap). 

For all algorithms, the noise power spectrum is estimated by first using the initial frames that 

are assumed to have no speech energy; then updated whenever a frame is detected to have no 

speech energy by using a VAD [53]. For the algorithms using the MMSE-LSA gain function, 

Gmin is set at -25dB which helps masking musical noise and limits speech distortion.  

In the simulation, 40 male and 40 female test speeches were arbitrarily selected from the 

TIMIT database [192]. The noise signals were adopted from the NOISEX-92 database [193] 
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and added to the speeches with input segmental signal-to-noise ratio (segSNR) [1] ranging 

from about -10dB to +10dB. The resulting enhanced speeches generated by all algorithms 

were evaluated using standard measures including (i) the segSNR; and (ii) the perceptual 

evaluation of speech quality (PESQ), which is an ITU standard for evaluating speech 

quality [58]. The results are shown in Fig. 4.6. It can be seen that the performance of the 

proposed algorithm is always the best in all cases. For instance, when comparing with the 

MMSE-LSA plus TCS approach [140], the proposed algorithm can always give an 

improvement in segSNR and PESQ score for all noise signals. More specifically, for the pink 

noise case, the average improvement in segSNR and PESQ is about 0.9dB and 0.1, 

respectively. For the buccaneer noise case, the average improvement in segSNR and PESQ is 

about 0.85dB and 0.12, respectively. Similar results can be found in Fig. 4.6 for other kinds 

of noise contamination. 

 

Table 4.1 - Summary of the algorithms compared in the simulations. 

 
Method Description 
MMSE-LSA Minimum mean-square error log-spectral amplitude estimator [15] 
MMSE-Gamma  Minimum mean-square error spectral amplitude estimator with 

generalized gamma speech priors [178] 
TCS Temporal cepstrum smoothing method [116] 
MMSE-LSA FP SPP  Using the MMSE-LSA gain function plus SPP estimated with 

fixed prior [49] 
MMSE-LSA TCS SPP Using the MMSE-LSA gain function plus SPP estimated using the 

TCS method [140] 
Logmmse-L1-EM The proposed algorithm based on the new EM framework 
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  (a) Original speech            (b) Noisy speech (Noise: Pink, ~5dB segSNR) 
 

 
(c) Traditional TCS method [116]       (d) MMSE-LSA plus SPP with fixed prior [49] 
 

  
(e) MMSE-LSA plus SPP and TCS [140]   (f) The proposed Logmmse-L1-EM 

 
Fig. 4.4 – Spectrogram of the original, noisy and enhanced speeches (pink noise) 
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    (a) Original speech       (b) Noisy speech (Noise: buccaneer1, ~5dB segSNR) 
 

  
 (c) Traditional TCS method           (d) MMSE-LSA plus SPP with fixed prior 
 

  
(e) MMSE-LSA plus SPP and TCS    (f) The proposed logmmse-L1-EM 

 
Fig. 4.5 – Spectrogram of the original, noisy and enhanced speeches (buccaneer noise) 
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Fig. 4.6 – (Left) Segmental SNR improvement over the noisy speech; (Right) PESQ 

improvement over the noisy speech achieved by using MMSE-LSA [15] (‘x’), 
MMSE-Gamma [178] (‘◇’), MMSE-LSA FP SPP [49] ('O') MMSE-LSA TCS SPP [140] 

(‘Δ’) and the proposed Logmmse-L1-EM (‘∇’) for the case of white noise, pink noise, 
destroyer engine noise, F16 noise, buccaneer noise and babble noise contamination. 

 

  

-10 -5 0 5 10
-2

0

2

4

6
(buccaneer noise)

Input segSNR (dB)

se
gS

N
R

 im
pr

ov
em

en
t 

(d
B

)

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

(buccaneer noise)

Input segSNR (dB)

P
E

S
Q

 im
pr

ov
em

en
t

-10 -5 0 5 10
-2

0

2

4
(babble noise)

Input segSNR (dB)

se
gS

N
R

 im
pr

ov
em

en
t 

(d
B

)

-10 -5 0 5 10
-0.1

0

0.1

0.2

0.3

(babble noise)

Input segSNR (dB)

P
E

S
Q

 im
pr

ov
em

en
t



103 

 

To predict the quality of noisy speech enhanced by noise suppression algorithms, three 

composite objective metrics [1] are often used in the literature, which include (a) Csig: Signal 

distortion (SIG) formed by linearly combining the LLR, PESQ, and WSS measures; (b) Cbak: 

Noise distortion (BAK) formed by linearly combining the segSNR, PESQ, and WSS 

measures. (c) Covl: Overall quality (OVL) formed by linearly combining the PESQ, LLR, and 

WSS measures. Table 4.2 lists the performance of 5 different algorithms for noisy speech 

signals contaminated by 6 different kinds of noise, both stationary and non-stationary, at 

input SNR ranging from 0dB to 20dB. Concurring to the results in segSNR and PESQ, the 

proposed Logmmse-L1-EM algorithm always outperforms the other 4; and in many cases, the 

improvement is significant. These results have demonstrated the robustness of the proposed 

algorithm. Its performance is consistent when enhancing speeches made by people of 

different genders and are contaminated by different kinds of noise at different noise levels. 



104 

Table 4.2 - Composite measurement comparison of different algorithms.  

Noise 
Input SNR Csig Cbak Covl 

Method  0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 

White 

Noisy 1.34 1.92 2.61 3.26 3.87 1.72 2.17 2.64 3.12 3.59 1.35 1.87 2.42 2.95 3.45
MMSE-LSA 1.84 2.54 3.16 3.67 4.05 2.18 2.59 2.97 3.28 3.51 1.80 2.37 2.86 3.26 3.55

MMSE-Gamma 2.09 2.78 3.31 3.71 3.98 2.36 2.76 3.10 3.35 3.55 2.04 2.60 3.03 3.35 3.57
MMSE-LSA FP SPP 2.30 2.99 3.52 3.93 4.29 2.47 2.88 3.25 3.62 3.99 2.19 2.75 3.19 3.56 3.88

MMSE-LSA TCS SPP 2.11 2.91 3.50 3.96 4.33 2.41 2.87 3.29 3.69 4.08 2.05 2.70 3.21 3.62 3.98
Proposed Logmmse-L1-EM 2.47 3.17 3.71 4.17 4.56 2.62 3.05 3.43 3.82 4.23 2.35 2.94 3.38 3.79 4.17

babble 

Noisy 2.52 3.09 3.63 4.10 4.50 1.68 2.15 2.64 3.13 3.61 1.96 2.47 2.95 3.39 3.78
MMSE-LSA 2.53 3.11 3.60 3.97 4.22 1.87 2.35 2.79 3.16 3.44 2.04 2.56 3.01 3.36 3.59

MMSE-Gamma 1.95 2.61 3.17 3.60 3.89 1.66 2.20 2.69 3.10 3.40 1.64 2.23 2.74 3.15 3.44
MMSE-LSA FP SPP 2.15 2.89 3.53 4.06 4.49 1.73 2.27 2.80 3.30 3.79 1.76 2.40 2.96 3.45 3.86

MMSE-LSA TCS SPP 2.21 2.94 3.56 4.07 4.49 1.86 2.39 2.90 3.39 3.85 1.84 2.47 3.03 3.50 3.91
Proposed Logmmse-L1-EM 2.41 3.09 3.69 4.19 4.59 1.95 2.47 2.96 3.46 3.92 2.00 2.59 3.12 3.59 3.99

destroyer 

engine 

Noisy 2.00 2.59 3.19 3.75 4.25 1.52 1.98 2.46 2.96 3.47 1.65 2.14 2.64 3.12 3.57
MMSE-LSA 2.45 3.02 3.51 3.89 4.15 1.96 2.39 2.79 3.14 3.41 2.04 2.53 2.95 3.29 3.55

MMSE-Gamma 2.71 3.19 3.55 3.80 3.98 2.26 2.66 3.00 3.28 3.49 2.32 2.75 3.09 3.35 3.53
MMSE-LSA FP SPP 2.58 3.03 3.48 3.94 4.39 2.18 2.56 2.97 3.39 3.83 2.21 2.62 3.04 3.44 3.85

MMSE-LSA TCS SPP 2.57 3.20 3.67 4.09 4.49 2.19 2.71 3.16 3.59 4.00 2.19 2.78 3.24 3.64 4.01
Proposed Logmmse-L1-EM 3.00 3.55 3.97 4.36 4.72 2.49 2.94 3.35 3.74 4.16 2.57 3.08 3.48 3.85 4.20

F16 

Noisy 1.95 2.58 3.20 3.77 4.28 1.57 2.05 2.54 3.05 3.55 1.63 2.17 2.70 3.20 3.66
MMSE-LSA 2.45 3.05 3.56 3.94 4.20 2.03 2.47 2.87 3.21 3.46 2.09 2.60 3.04 3.37 3.61

MMSE-Gamma 2.57 3.11 3.51 3.80 4.00 2.19 2.61 2.98 3.28 3.50 2.23 2.71 3.09 3.36 3.55
MMSE-LSA FP SPP 2.69 3.23 3.64 4.05 4.46 2.28 2.72 3.12 3.52 3.93 2.32 2.81 3.20 3.57 3.94

MMSE-LSA TCS SPP 2.56 3.18 3.67 4.07 4.48 2.21 2.72 3.18 3.61 4.04 2.21 2.79 3.26 3.65 4.03
Proposed Logmmse-L1-EM 2.89 3.45 3.88 4.30 4.68 2.43 2.89 3.32 3.74 4.16 2.50 3.01 3.43 3.82 4.19

pink 

Noisy 1.81 2.45 3.10 3.70 4.24 1.61 2.08 2.57 3.08 3.57 1.56 2.11 2.65 3.17 3.64
MMSE-LSA 2.36 3.01 3.55 3.96 4.24 2.09 2.53 2.93 3.25 3.49 2.05 2.60 3.06 3.40 3.64

MMSE-Gamma 2.50 3.12 3.57 3.88 4.07 2.25 2.68 3.04 3.33 3.54 2.23 2.75 3.15 3.43 3.60
MMSE-LSA FP SPP 2.61 3.20 3.65 4.02 4.37 2.30 2.73 3.16 3.58 3.99 2.30 2.82 3.23 3.59 3.92

MMSE-LSA TCS SPP 2.45 3.15 3.67 4.06 4.41 2.23 2.72 3.20 3.64 4.08 2.17 2.78 3.27 3.66 4.01
Proposed Logmmse-L1-EM 2.81 3.44 3.91 4.28 4.63 2.45 2.92 3.35 3.78 4.20 2.47 3.03 3.46 3.84 4.19

buccaneer 

Noisy 1.79 2.40 3.04 3.63 4.16 1.54 2.00 2.49 2.99 3.49 1.50 2.01 2.55 3.06 3.53
MMSE-LSA 2.27 2.90 3.45 3.88 4.17 1.99 2.42 2.82 3.17 3.43 1.93 2.46 2.93 3.30 3.56

MMSE-Gamma 2.25 2.88 3.37 3.72 3.95 2.04 2.48 2.88 3.21 3.45 1.97 2.52 2.95 3.27 3.49
MMSE-LSA FP SPP 2.44 3.04 3.53 3.98 4.39 2.18 2.61 3.02 3.43 3.85 2.13 2.66 3.10 3.49 3.86

MMSE-LSA TCS SPP 2.38 3.06 3.59 4.01 4.42 2.16 2.64 3.10 3.53 3.95 2.07 2.68 3.17 3.58 3.96
Proposed Logmmse-L1-EM 2.71 3.35 3.84 4.27 4.67 2.36 2.82 3.25 3.67 4.10 2.37 2.93 3.37 3.78 4.15
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4.6 Chapter Summary 
 

In this chapter, an improved speech enhancement algorithm based on a novel 

expectation-maximization framework is proposed. The new algorithm makes use of the EM 

algorithm to define a theoretical framework for the estimation of the true power spectrum of 

the original speech and its periodogram from a noisy observation. The proposed algorithm 

starts with the traditional cepstrum smoothing method which gives the initial guess of the 

periodogram of the clean speech. It is applied to an L1 norm regularizer in the M-step of the 

EM framework to estimate the cepstral coefficients of the true speech power spectrum. It 

enables the estimation of the a-priori SNR and is used in the E-step, which is indeed an 

MMSE-LSA gain function, to refine the estimate of the clean speech periodogram. The 

M-step and E-step then iterate for 2 more times, with which we have shown to be sufficient in 

most cases to achieve good result. The proposed algorithm fully utilizes the sparsity of 

speeches in the cepstral domain by adopting the L1 norm regularizer. It enables the 

optimization process to be carried out on coefficients with improved SNR and hence reduces 

the effect due to the estimation error of the non-stationary noise characteristics. As a result, 

the proposed algorithm works particularly well when the input speech is contaminated by 

non-stationary noises. Besides, due to the iterative process, the proposed algorithm has very 

good control of the residue background noises which makes it outperform the traditional 

methods. Simulation results have verified that the proposed algorithm improves over the 

competing speech enhancement methods in almost all testing conditions, such as different 

kinds of noise at different noise levels using different evaluation measures. They have clearly 

demonstrated the robustness of the proposed algorithms in general speech enhancement 

applications.  
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4.7 Appendices 

4.7.1 Appendix A – MAP Estimation of Cx 
 

Given ˆ
xC , the MAP estimator of Cx is,  

 ( )ˆarg max |
x

x x xC
C f C C=% .  (4.32)

We obtain by using the Bayes’ rule,   

ˆ( | ) ( )arg max ˆ( )x

x x x
x C

x

f C C f CC
f C

=%  . (4.33)

Since the value of Cx that maximizes the right-hand side is not influenced by the denominator, 

the MAP estimate of Cx can be rewritten as, 

ˆarg max ( | ) ( )
x

x x x xC
C f C C f C⎡ ⎤= ⎣ ⎦
%   (4.34)

The logarithm function can be applied to (4.34) because it is monotonic. Hence,  

( ) ( )ˆarg max log ( | ) log ( )
x

x x x xC
C f C C f C⎡ ⎤= +⎣ ⎦
% .  (4.35)

As ˆ
xC  is normal distributed with mean Cx [101],    

2

2

ˆ1 ( )ˆ( | ) exp
2 2
x x

x x
ee

C Cf C C
σσ π

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
.  (4.36)

By using (4.36), (4.35) becomes, 

( )
2

2

ˆ( )arg max log ( )
2x

x x
x xC

e

C CC f C
σ

⎡ ⎤− −
= +⎢ ⎥

⎢ ⎥⎣ ⎦
%   (4.37)

Let us define ( ) ( )log ( )x xg C f C= . Then we have,  

2

2

ˆ( )arg max ( )
2x

x x
x xC

e

C CC g C
σ

⎡ ⎤− −
= +⎢ ⎥

⎢ ⎥⎣ ⎦
% .  (4.38)

We can obtain the MAP estimate of Cx by taking the derivative of the terms in the square 
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bracket in (4.38) with respect to xC . Then, 

2

ˆ( - ) '( ) 0x x
x

e

C C g C
σ

+ =
%

% .  (4.39)

We now need the prior ( )xf C , i.e. the distribution of cepstral coefficients, Cx, of the clean 

speech. In Fig. 4.7, we show the PDF ( )ˆ
xf C obtained from the cepstral coefficients of 40 

male and 40 female test speeches from the TIMIT database [192], and fit it with different 

distributions. It is seen that it can be modeled by a Laplacian, or Gaussian or Generalized 

Gaussian Distribution (GGD) without large error. It is highly likely that this will also be the 

case for ( )xf C . Assume that ( )xf C  is modeled using a Laplacian PDF:  

1 2( ) exp
 2x xf C C
σσ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
  (4.40)

In this case,  

2( ) log( 2)
 x xg C Cσ
σ

= − − .  (4.41)

As a result, 

2'( ) ( )
 x xg C sign C
σ

= − .  (4.42)

Put (4.42) into (4.39), we have, 

2 2ˆ ( )
 
e

x x xC C sign Cσ
σ

= +% % .  (4.43)

Therefore, xC%  as a function of ˆ
xC  is given by 

ˆˆ ,
ˆ0,

ˆ ˆ,

xx

x x

x x

C TC T
C T C T

C T T C

⎧ < −+⎪⎪= − ≤ ≤⎨
⎪ − <⎪⎩

%  . (4.44)

This is the soft threshold nonlinearity. T in this case is given by, 



108 

σ
σ

 
22

eT =   (4.45)

which is similar to that in (4.25) except the omission of the constraint A. To summarize, the 

soft thresholding operation as defined in (4.25) is a good approximation of the MAP estimate 

of xC with the assumption that xC has a Laplacian prior.   

 

Fig. 4.7 – The PDF of cepstral coefficients of 40 male and 40 female test speeches from the 
TIMIT database [192]. The PDF approximated directly from the speeches (red dotted line). 
The PDF fit by using a Laplacian model (σ=0.02792, β=1) (blue solid line), Gaussian model 
(σ=0.02510, β=2) (green dashed line), and GGD model (σ=0.03223, β=1.2783) (black 
dash-dot line)   
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4.7.2 Appendix B – Bias compensation in log-spectral domain 
 

In general, the applied smoothing and thresholding (ST) process in the cepstral domain 

is biased, as it does not only reduce the variance of power spectrum but also affects its means. 

Since it is believed that the enhancement process can follow better the perceptual 

characteristics of human auditory system when it is carried out in log domain, the scaling 

factor αls of bias correction is proposed to minimize the sum of square in log-spectral domain.  

( ) ( )( )
21

0

)(ˆlog)(ˆlogmin∑
−

=

−
N

k

ST
xlsx kSkS

ls

α
α

 (4.46)

where 

( ) ( ))(~)(ˆlog qFFTkS STST
x xC=  (4.47)

The least square estimate of the force constant, αls is given by  

( ) ( )
( )( )∑

∑
−

=

−

== 1

0

2

1

0

)(ˆlog

)(ˆlog)(ˆlog
ˆ

N

K
x

ST
x

N

K
x

ls

kS

kSkS
α  (4.48)

Then, the proposed nonparametric spectral estimate is obtained from the )(~ qST
xC  by the 

simple scaling αls as   

( )[ ])(~ˆexp)(~ qCFFTkS ST
xlsx α=  (4.49)

The effect of bias compensation in log-spectral is shown in Fig. 4.8. It is seen that the ST 

process introduces a signal power bias, and is successfully compensated with the bias 

compensation in log-spectral. And then, a refined a-priori SNR could be generated to be used 

in the later enhancement process. 

)(ˆ
)(~

)(ˆ
kS
k

k
n

ST xS
=ξ  (4.50)
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Fig. 4.8 – Effect of the bias compensation in log-spectral for estimate speech. Original speech 

segment energies (dotted line), the speech segment energies after the proposed ST estimation 

(dashed line) and the speech segment energies after the proposed ST estimation and bias 

compensation in log-spectral (solid line).  
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Chapter 5 A Speech Enhancement Method Based on Sparse 

Reconstruction on Log-Spectra  

5.1 Introduction 
 

In Chapter 4, we proposed a new EM framework for speech enhancement. In the core of 

the framework, a new L1-norm regularization process is developed for the estimation of the 

cepstral coefficients of the speech true power spectrum. The regularizer is very effective 

since the cepstral coefficients are in fact a kind of sparse representation of the speech power 

spectrum, as explained in Chapter 2. A natural question thus arises if the cepstral coefficients 

are the best representation of the speech power spectrum as far as the sparsity is concerned. If 

there is a sparser representation available, it may be possible to further improve the 

estimation and hence the speech enhancement performance.   

As it is introduced in Chapter 2, the techniques of sparse representation and dictionary 

learning are widely investigated and have provided possible solutions for many signal 

processing problems. The goal of these techniques is to look for the sparsest representation of 

a signal in terms of linear combination of atoms in an overcomplete dictionary. They have 

been adopted in many applications in speech processing, such as speech recognition [184], 

voice activity detection (VAD) [186] and speaker identification [187], etc. They have also 

been introduced to speech enhancement methods [134]-[137] as well. For instance, in [136], 

the approximation of K-SVD [128] algorithm and the Least Angle Regression (LARS) with a 

coherence criterion (LARC) are used to learn the composite dictionary and reconstruct the 

speech spectral amplitude. The LARC method extends the LARS algorithm to include a 

residual coherence stopping criterion and optimize it to solve a large number of simultaneous 

coding problems efficiently. The residual coherence stopping criterion of LARC is invariant 
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to changes in signal energy. In addition, the LARC method allows the code and the dictionary 

entries to assume values of the entire real domain. However, the composite dictionary 

depends on the noise dictionary which is difficult to train and inconvenient to use because the 

background noise type is diversified and the property is not known in advance for general 

applications. On the other hand, a speech enhancement method using the sparse 

reconstruction of the approximated PSD through the magnitude-squared spectrum is 

presented in [137]. The approximate K-SVD algorithm with nonnegative constraint is applied 

to train the PSD dictionary of the clean speech signal. The enhanced speech is obtained by 

combing the estimated PSD with the signal subspace approach based on the short-time 

spectral amplitude (SSB-STSA). The above studies have demonstrated that the sparse coding 

method can improve the quality of noisy speeches. In this work, we further extend the 

abovementioned methods to apply the sparse coding techniques to the reconstruction of the 

log power spectrum of speech. It is based on the well-known fact that distortion measures 

based on the mean-square error of the log-spectra are more appropriate for speech 

processing [15]. In addition, we propose a new adaptive residual coherence threshold as the 

stopping criterion. It enables the speech dictionary to adapt to various noise environments in 

order to improve the enhancement performance. Finally, a modified two-step noise reduction 

(TSNR) technique with the MMSE-LSA estimator is applied to estimate the clean speech 

signal. As shown in the simulation results, the proposed algorithm has outstanding 

performance particularly when the contaminating noises are not totally random but contain 

certain structure in the frequency domain. Better performance is obtained in all cases 

evaluated by using different standard measures as compared with the state-of-the-art speech 

enhancement techniques. 

This chapter is organized as follows. In Section 5.2, some formulations used in the 

traditional two-step noise reduction speech enhancement algorithms are shown. It is followed 
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by a brief introduction of the traditional framework of sparse coding and dictionary learning 

for speech enhancement in Section 5.3. The new algorithm is described in Section 5.4. The 

simulation results are shown in Section 5.5, and conclusions are drawn in Section 5.6. 

5.2 Two-step noise reduction 
 

In Chapter 1, we have briefly introduced the essence of some noise reduction techniques. 

Here we would also like to introduce a two-step noise reduction (TSNR) technique [37] 

which is used in our proposed algorithm. In the first step of TSNR, the spectral gain GWiener(k) 

is computed as in (2.12) and is used to generate the initial guess of the enhanced speech. It is 

used in the second step to estimate the a-priori SNR as follows: 

{ }
2

TSNR
( , ) ( , )ˆ ˆ( , ) ' (1 ') max ( , 1) 1,0ˆ ( , )

Wiener

n

G k i Y k i
k i k i

S k i
ξ α α γ= + − + −  (5.1)

In order to avoid the additional processing delay due to the usage of the future frame (i+1), 

the parameter α’ is set to 1. (5.1) becomes  

 
2

TSNR
( , ) ( , )ˆ  ( , ) ˆ ( , )

Wiener

n

G k i Y k i
k i

S k i
ξ =  (5.2)

Finally, the new a-priori SNR is used in the Wiener filter gain function as shown below: 

)(ˆ1
)(ˆ

)(
TSNR

TSNR

k
k

kGTSNR ξ
ξ
+

=  (5.3)

The TSNR improves the noise reduction performance because the gain matches to the current 

frame at all SNR. Experimental result shows that it preserves speech onsets and offsets, and 

successfully removes the annoying reverberation effect by the decision-directed approach. It 

will be modified and applied to the proposed algorithm.  
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5.3 Sparse coding techniques for speech enhancement  
 

The basic principle of sparse coding is that natural signals can be efficiently represented 

as the linear combinations of pre-specified atom signals in overcomplete dictionaries, where 

the coefficients are sparse (most of them are zeros or insignificant). Formally, if y is a column 

signal and D is the dictionary (whose columns are the atom signals), the sparse coding can be 

explained using a cardinality constraint: 

כܿ ൌ arg minୡԡݕ െ Dcԡଶ Subject To ԡcԡ  ܭ ا ܲ, (5.4)

or using an error constraint 

כܿ ൌ arg min
ୡ

ԡcԡ Subject To ԡݕ െ Dcԡଶ  (5.5) ߝ

where εis the error tolerance; ԡ·ԡ is the L0 pseudo-norm, which is counting the non-zero 

entries of a vector; and K is the target sparsity. The matrix ܦ א  Թே௫ with N<P is called the 

atoms, which is an overcomplete dictionary usually normalized by the L2 norm. The vector c 

Ԗ ԹP is the sparse coefficients of the signal y Ԗ ԹN. Since N < P, an infinite number of 

solutions are available for the problem, which is called NP-hard problem. The desired 

solution can be estimated by using (i) the greedy searching methods such as the matching 

pursuit (MP), orthogonal MP (OMP) and gradient pursuits (GP); (ii) the nonconvex local 

optimization methods such as the focal underdetermined system solver (FOCUSS); or (iii) the 

convex relaxation methods such as the least absolute shrinkage and selection operator 

(LASSO), LARS and LARC, and others [128], [188]. LARS [189] is a very efficient model 

selection algorithm that gives a solution closely resembling LASSO (and with a simple 

modification, it can be made to exactly give the LASSO solution). As with OMP, each 

iteration of LARS consists of an atom selection and a coding coefficient update step. Atom 

selection is based on the maximal correlation to the current residual. For the coefficient 

update step, LARS selects atoms in the equiangular direction, until a new atom has equal 
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correlation with the residual as all atoms in the active set. The terminate criterion of LARS is 

based on a coding cardinality or a residual norm value. Based on LARS, the coding algorithm 

LARC [136] uses a residual coherence threshold as the sparsity parameter. As the LARC 

method is also a greedy algorithm, the coherent components will be coded before the 

incoherent components, and the maximum residual coherence will decrease in each iteration. 

A residual coherence threshold ߬ is used as the stopping criterion, which does not depend 

on the magnitude of the observation. It is not necessary to adapt the residual coherence 

threshold to the data on a frame by frame basis in contrast to specifying cardinality or a 

residual norm. It enables a trade-off between source distortion and source confusion by 

controlling the coding sparsity.  

The above methods are based on the assumption that the speech dictionary is known 

already. When applying to the speech enhancement problems, a proper speech dictionary 

needs to be designed. The methods of dictionary learning have been presented in [190]. The 

K-SVD algorithm [127] is one of the most popular methods for dictionary learning. It has 

been briefly discussed in Chapter 2. The K-SVD algorithm includes an initial overcomplete 

dictionary D0, a set of training signals arranged as the columns of a matrix Y, and the iteration 

number k. It target iteratively improving the dictionary to achieve the sparse coding of the 

signal in Y. It is achieved by solving the following optimization problem: 

min
D,C౩

ฮY െ DCୱฮF
ଶ Subject To ୧ ԡc୧ԡ  (5.6) ܭ

where ԡ·ԡF
ଶ denotes the Frobenius norm; ci is the i-th row of Cs, and K is the desired sparsity.  

As D and Cs are unknown, the objective function (5.6) is not convex. The K-SVD algorithm 

solves it by alternating between the sparse coding of the examples based on the current data 

and a updating of the dictionary atoms. The sparse-coding step is commonly implemented by 

employing the OMP. When updating the dictionary, one atom will be processed at a time to 

optimize the target function while keeping the rest fixed. To further reduce the complexity, 
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the approximate K-SVD algorithm is proposed in [128]. It limits the iteration to be only one 

but with a different updating step for the dictionary. Such simplified procedure is shown to be 

able to give very close results to the full computation. More details about the K-SVD 

algorithm can be found in Chapter 2.  

When applying the sparse coding technique to speech enhancement, it is desirable to 

have the dictionary D(s) trained to be coherent to the speech signal and incoherent to the 

background noise signal. It can be relatively easily achieved when the background noise is 

white Gaussian that does not contain any structure. Such background noise is incoherent to 

any fixed dictionary and in particular to the speech dictionary [67]. However, many relevant 

kinds of background noise contain structure. If the background noise is partially coherent to 

the speech dictionary, it will also incur strong coding coefficients which will be very difficult 

to remove. To solve the problem, it is suggested to train a coherent noise dictionary D(i) for 

structured background noises. It is shown in [136] that by using a composite dictionary D = 

[D(s) D(i)], significant improved enhancement performance can be achieved comparing with 

using a single speech dictionary.    

 

5.4 The new framework of sparse coding and dictionary learning of log 
power spectrum for speech enhancement 

 

In this section, a new speech enhancement algorithm based on sparse coding is proposed. 

The new algorithm extends the traditional sparse coding based speech enhancement methods 

in a few aspects: (i) working on log-spectra; (ii) estimating the clean speech with a modified 

two-step noise reduction (TSNR) procedure; and (iii) using a new noise adaptive stopping 

criterion for atoms updating. 

It is well-known that distortion measures based on the mean-square error of the 

log-spectra are more appropriate for speech processing [15]. In fact, the log power spectrum 
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of a signal is related to its log periodogram as in the following formulation [146]:  

൫݈݃ ሚܵ௫ ሺ݇ሻ൯ ൌ ሺܵ௫ሺ݇ሻሻ ݈݃  ܴሺ݇ሻ where ܴሺ݇ሻ ൌ ሺ݇ሻߝ െ (5.7)  ߛ

where ߝሺ݇ሻ are i.i.d. with zero mean and a fixed variance π2/6, and γ ≈ 0.577216 is the 

Euler’s constant. We can also express the log power spectrum of the estimated speech in 

vector form as follows: 

ሚܵ ൌ D୪୭c୪୭  ܴ (5.8)

where ሚܵ  ൌ log൫S෨௫ ൯ א Թே   is a column vector, the matrix D୪୭  ൌ  ሼd୪୭୨
 ሽ୨ୀଵ

P א

 Թே௫ ሺܰ ൏ ܲሻ containing P atoms is an overcomplete dictionary usually normalized by the 

L2 norm, the vector ܿ א  Թே is the sparse coding coefficients such that 

    S ൌ D୪୭c୪୭ (5.9)

where S  ൌ log൫ܵ௫ ൯. Using an error constraint, the sparse coding can be described as the 

following minimization process:  

ܿ̂ ൌ arg min
ୡሶ ౢౝ

ฮcሶ ୪୭ฮ


Subject To ฮ ሚܵ െ D୪୭cሶ ୪୭ฮ
ଶ

 (5.10) ߝ

For solving the above minimization problem, we directly adopt the LARC algorithm which is 

a greedy method consisting of an atom selection and a coding coefficient update step in each 

iteration. Different from that in [136], the LARC algorithm is applied to reconstruct the log 

power spectrum of the clean speech. The detailed procedure is shown in Algorithm 1.  
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Algorithm 1: Batch LARC on log power spectrum 

1. Input: ሚܵ௫ א Թே; D୪୭ א  Թே௫ ; G=D୪୭
T D୪୭ ;  ߬   

2. ሚܵ ՚ log൫ ሚܵ௫ ൯ 
3. Normalize ݔே  ՚ ሼ ሚܵ െ ݉݁ܽ݊ሺ ሚܵሻሽ/݀ݐݏሺ ሚܵሻ 
4. Initialize coefficient vector ܿ̂୪୭

ሺሻ ՚ 0 and fitted vector ݕே
ሺሻ ՚ 0 

5. Initialize active set A ՚ ሼ ሽ; number of active set ܭ ՚ 0 
6. μሺ୶ሻ ՚ D୪୭

T ே ; μሺ୷ሻݔ ՚ 0 
7. While |A| ൏ ୪୭ܦ  do 
8. μ ՚ μሺ୶ሻ െ μሺ୷ሻ 
9. jכ ՚ arg max୨ ቚμ୨ቚ , j א Aୡ 

10. A ՚ A  ሼjכሽ; ܭ ՚ ܭ  1  
11. if ቚμ୨כቚ /ԡݔே െ ேԡଶݕ ൏ ߬ then break  
12. s ՚ signሺμAሻ 
13. g ՚ GሺA,Aሻ

ିଵ s 
14. b ՚ ሺgTsሻିଵ/ଶ 
15. w ՚ bg 
16. u ՚ D୪୭ሺ:,Aሻ

w 

17. a ՚ Gሺ:,Aሻw 

18. Calculate step length φ ՚ minୣאAౙ
ା ቆ

ቚμౠכቚିμ

ୠିୟ
,

ቚμౠכቚାμ

ୠାୟ
ቇ 

19. Update fitted vector ݕே ՚ ேݕ  φݑ 
20. Update regression coefficients ܿ̂

՚ ܿ̂
 φݓ 

21. μሺ୷ሻ ՚ μሺ୷ሻ  φa 
22. End while  
23. Output coefficients: ܿ̂୪୭ א Թ, ܭ 

 

The above procedure shows that if we are given the periodogram of the clean speech, we 

can use Algorithm 1 to obtain a good estimate of the sparse coding coefficients of its true 

power spectrum based on the speech dictionary D. The problem is how to obtain the 

periodogram of the clean speech in the first place. To do so, we propose a modified TSNR 

procedure which is similar to the EM algorithm we proposed in Chapter 4. First, we make a 

rough estimation of the periodogram of the clean speech from the noisy observation using a 

traditional speech enhancement algorithm. Then based on Algorithm 1, we can have the 

initial estimate of the true power spectrum of the clean speech. We then use it to compute the 

a-priori SNR and in turn the MMSE-LSA gain function to refine our estimation of the clean 
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speech periodogram. Finally the enhanced speech is obtained.  

More specifically, we adopt the temporal cepstrum smoothing (TCS) method to obtain 

the initial estimate of the clean speech periodogram. As explained in Chapter 4, the TCS 

method [116] works reasonably well for non-stationary noises and can give an acceptably 

good estimation of S෨௫ from the noisy S෨௬ without the need of a very accurate a-priori SNR 

estimator. Thus we adopt the TCS method to obtain the initial guess of S෨௫ for the proposed 

algorithm. Then, the sparse coefficient vector ܿ̂୪୭  is estimated by Algorithm 1. By 

substituting ܿ̂୪୭ into (5.9), the log true power spectrum of the clean speech is estimated as 

follows:  

    መܵ ൌ D୪୭ܿ̂୪୭ (5.11)

Since the observed log periodogram is normalized in step 3 of Algorithm 1, a 

denormalization procedure should be performed to obtain the estimated log power spectrum 

of the clean speech as follows: 

Sത ൌ መܵ כ ሺ݀ݐݏ መܵሻ  ݉݁ܽ݊ሺ መܵሻ (5.12)

The enhanced speech ෩ܺ  can thus be obtained by using the modified TSNR gain function in 

which the a-priori SNR is computed based on the current estimate Sഥlog. The MMSE-LSA 

gain function theoretically gives the minimum mean square error estimation of the 

log-magnitude spectra of speeches. More specifically, we refine our estimate of the a-priori 

SNR in the first step as follows: 

)(ˆ
)()(

)( ˆ
2

TSL

kS

kYkG
k

n

fs
k =ξ  (5.13)

where ݏ݂ܩሺ݇ሻ ൌ ,ෝሺ݇ሻߛሺ݁ݏ݈݉݉݃ܩ ሚ௦ߦ ሺ݇ሻሻ andݏ෨݂ߦ ൌ ୣ୶୮ ሺௌҧሻ
ௌመ

. Then, the MMSE-LSA gain 

function is computed and applied to obtain the clean speech estimate as follows: 
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The enhanced speech ෨ܺ can thus be obtained by, 

ห ෨ܺห ൌ ௌோ்ௌሺ݇ሻܩ · |ܻ|

෨ܺ ൌ |ܺ|exp ሺ݆ܻסሻ 
(5.15)

where ܻס is the phase angle of Y. 

As mentioned above, the dictionary D୪୭  needs to be obtained before the sparse 

reconstruction stage. The training of the dictionary D୪୭  can be carried out by solving the 

following optimization problem: 

min
D,Cౢౝ

ฮS െ D୪୭C୪୭ฮ
F

ଶ
Subject To ୧ ቛc୪୭୧

ቛ


 (5.16) ܭ

where ԡ·ԡF
ଶ denotes the Frobenius norm; ܿ

 is the i-th row of Clog, and K is the desired 

sparsity. ܵ  is the log true power spectrum of the clean speeches. In practice, we 

approximate them by their log periodogram. The approximate K-SVD method is directly 

adopted to train the dictionary D୪୭. The complete algorithm is shown in Algorithm 2.  
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Algorithm 2: Approximate K-SVD on log power spectra 

1. Input: Signal set S௫ א  Թே௫ே௨;  
      initial dictionary D୪୭

א Թே௫ ;  
      target sparsity K, and number of iterations n   

2. Set S ՚ log൫S௫ ൯ ;  D୪୭ ՚ D୪୭
 

3. Normalize ܺே  ՚ ሼS െ ݉݁ܽ݊ሺSሻሽ/݀ݐݏሺSሻ 
4. For iter =1 to n do 
:୧    .5 C୪୭୧

՚  arg minୡౢౝฮܺே െ D୪୭C୪୭ฮ
ଶ
ଶ    Subject To  ฮc୪୭ฮ


  ܭ

6.    For j=1 to P do 
7.      D୪୭ሺ:,୨ሻ

՚ 0 

8.      I ՚ ሼindexs of the signals in S ݁ݏݑ ݏ݊݅ݐܽݐ݊݁ݏ݁ݎ݁ݎ ݁ݏ݄ݓ ݀} 
9.      g ՚ C୪୭୨,I

T   

10.      d ՚ ܺேI g െ  D୪୭C୪୭I
g 

11.      d ՚ d/ԡdԡଶ 
12.      g ՚ ܺேI

Td െ ሺD୪୭C୪୭I
ሻTd 

13.      D୪୭ሺ:,୨ሻ
՚ d 

14.      C୪୭୨,I
՚ gT 

15.    end for  
16. end for  
17. Output Dictionary D୪୭ א  Թே௫ 

 

5.4.1 Adaptive residual coherence threshold 
 

Recall that for the LARC algorithm as described in Algorithm 1, a residual coherence 

threshold ߬ is used to define the stopping criterion of the iterative sparse coding process (see 

step 11 in Algorithm 1). Basically its selection is not critical if the background noise is 

incoherent to the speech dictionary (such as white noise) [136]. Originally it is the case when 

applying to the proposed algorithm since the true power spectrum of a speech is different 

from its periodogram by an i.i.d. error function (see Eqn.(5.7)). Nevertheless, since the initial 

estimate of ሚܵ௫  actually comes from the TCS. Some of the background noise, which can be 

structural, may still remain in the initial estimate of ሚܵ௫ . Such residual background noise 

components will thus be coherent with the speech dictionary. The selection of ߬ becomes 
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critical in this case as it can significantly affect the final speech enhancement performance. 

To illustrate this, a comparison of the enhancement performances of the proposed speech 

enhancement algorithm with various residual coherence thresholds ߬ is shown in Fig. 5.1. 

More specifically, we compare the PESQ scores (the Perceptual Evaluation of Speech Quality) 

of the enhanced speeches generated by the proposed method with different ߬. PESQ is an 

ITU standard for evaluating speech quality [58]. Our results show that when the residual 

coherence thresholds ߬ is too high (e.g. ߬ ൌ 0.4ሻ, poor performance is resulted for all types 

of background noise as distortion occurs during reconstruction. For white noises which are 

incoherent to the speech dictionary, better results are obtained with lower threshold (e.g. 

߬=0.1) value. For babble noises which are highly coherent to the speech dictionary, higher 

threshold (e.g. ߬=0.3) value gives better performance. For buccaneer noises which are 

partially coherent to the speech dictionary, lower threshold values are more favorable when 

the input SNR is low (0 and 10 dB). But when the input SNR is higher, a higher threshold 

value is preferred (e.g. ߬=0.3). The above shows that the speech enhancement performance 

is not only affected by the coherence between the background noise and the dictionary, but 

also the input SNR. 

To deal with the problem, the traditional approach uses a composite dictionary which 

consists of both the speech and background noise dictionary. However, it is difficult to train 

the background noise dictionary as the noise property is not known in advance for most 

applications. We propose to use an adaptive residual coherence threshold such that the 

threshold value can be adjusted automatically for different kinds of noise and also SNRs.    

  



123 

 

 

 

 

 
Fig. 5.1 – Enhancement performance of the proposed speech enhancement algorithm 

SRLPS-TSL with various residual coherence thresholds ߬  = 0.1, 0.2, 0.3 and 0.4.   
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By closely examining Algorithm 1, we notice that the parameter ܭ (see step 5 of 

Algorithm 1) can give a good indication about the coherence between the input signal and the 

speech dictionary. So if we input the power spectrum of a noise signal to Algorithm 1, we can 

use KA to indicate the coherence between the noise and the speech dictionary. To illustrate 

this, an experiment was done to investigate the change in the value of KA when feeding the 

power spectrum of different kinds of noise to Algorithm 1. Table 5.1 shows the average value 

of ܭ across frames for different kinds of background noise obtained from the NOISEX-92 

database [193]. For the background noises which are less coherent to the speech dictionary 

(such as the white noise), the average ܭ is lower. For the background noises which are 

highly coherent to the speech dictionary (such as the babble noise), the average ܭ is also 

higher. Hence the parameter ܭ in Algorithm 1 can be used as an indicator of the coherence 

between the background noise signal and the speech dictionary. In practice, we first use a 

VAD [53] to detect the noise frames in a noisy speech signal. Then the power spectrum of the 

noise is estimated by taking the average of the periodogram of all the detected noise frames. 

Algorithm 1 is then called with the estimated noise power spectrum to obtain the parameter 

KA. We shall use such parameter to evaluate an adaptive residual coherence threshold to be 

used in the sparse coding process performed in the noisy speech frames.   

Table 5.1 - Summary of the average number of active set KA versus different background 
noises. (0.5 = ࣎)  

Noise Average ܭ 
White 1 

Speech babble 14.05 
Destroyer engine room 9.45 

F16 cockpit 8.99 
Pink 3.51 

Buccaneer cockpit 6.03 
M109 Tank 7.50 

 

As it is mentioned above, the input SNR can also affect the selection of the residual 

coherence threshold ߬. However, we notice that its effect is not linear but similar to the 
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Wiener gain function, i.e. it will flat out when the noise level is sufficiently small. Since the 

Wiener filter gain function GWiener(k) in Eqn. (2.1) could be updated in every frame, we 

propose to choose the mean of the Wiener filter gain function GWiener(k) as a parameter to 

compute the residual coherence threshold. More specifically, we define a parameter hi such 

that for a noisy speech frame,  

∑
−

=

=
1

0
)(1 N

k
Wieneri kG

N
h  (5.17)

Then, the residual coherence threshold for a specific noise ߬ could be obtained as follows: 

( ){ }{ }{ }maxmin321 ,,0,/maxmaxmin τττ iAn hbbbK +−=  (5.18)

where ߬  = 0.1 and ߬௫ = 0.3; three parameters b1 = 20, b2 = 25 and b3 = 0.5 are set 

empirically. Eqn. (5.18) is formulated based on our observation (explained earlier) that the 

residual coherence threshold ߬  should be proportional to the coherence between the 

residual background noise and the speech dictionary (represented by the parameter KA), and 

the input SNR (represented by the parameter hi). The parameter b1 is the offset, b2 and b3 are 

the weighting factors. They are selected by fitting the PESQ results of the proposed algorithm 

using Eqn. (5.18) over 80 test speeches of different genders, noise types and noise levels (in 

fact, their selection is not sensitive to these factors). To reduce the fluctuation between frames, 

we further smooth ߬ by taking a weighted average with the estimate in the previous frame 

as follows:  

)()1()1()( iii naaaa τατατ −+−=  (5.19)

where the smoothing factor aα is set to 0.8. ߬  is thus the proposed adaptive residual 

coherence threshold. To summarize, the proposed speech enhancement algorithm based on 

the new framework of sparse reconstruction on log power spectra with two-step MMSE-LSA 

filtering (SRLPS-TSL) can be described as follows: 

1. Use Algorithm 2 to train ܦ from a set of training clean speeches. 
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2. For the noisy speech input, compute the initial guess of the log periodogram of the 

clean speech S using the TCS method (Eqn. (4.26) in Chapter 4), i.e. S ൌ

log ሺS୶
TCSሻ . 

3. Compute the adaptive residual coherence threshold aτ  by Eqn. (5.19) and Algorithm 1. 

4. Estimate the parameter cො୪୭ using Algorithm 1 with al ττ = . 

5. Use Eqn. (5.11) and (5.12) to obtain the estimated log power spectrum Sത of the 

clean speech. 

6. First step of TSL - Estimate the a-priori SNR )(ˆTSL kξ  by Eqn. (2.19) and (5.13). 

7. Second step of TSL - Obtain the enhanced speech spectrum ෨ܺ by Eqn. (5.14) 

and (5.15).  

8. Obtain the enhanced speech signal by IDFT, overlap and add. 

The operation of the proposed algorithm is also described in Fig. 5.2. 
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Fig. 5.2 – The operation of the proposed speech enhancement algorithm SRLPS-TSL  
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5.5 Simulations and Results 
 

In this section, the performance of the proposed algorithm is shown and compared with 

those achieved by the state-of-the-art speech enhancement methods. To start with, we use an 

example to illustrate the importance for the proposed algorithm to work on the log power 

spectra instead of the normal power spectra. Fig. 5.3 shows a segment of a typical noisy 

speech periodogram (dash-dot line), its original clean speech periodogram (dotted line), the 

enhanced speech periodogram using the proposed speech enhancement algorithm on power 

spectrum (PS) (dashed line) and the proposed speech enhancement algorithm on log power 

spectrum (LPS) (solid line). It can be seen that both the reconstructed periodograms (PS and 

LPS) can restore the spectral peak of original speech. However, the LPS method restores the 

spectral valley much better than the PS method. This example demonstrates that it is more 

appropriate to apply the sparse reconstruction method to log-spectra for speech enhancement. 

  
Fig. 5.3 – Effect of the noise reduction with sparse reconstruction and dictionary learning on 

a voiced frame (pink noise, input segSNR = -3.69dB). Reconstruction on power spectrum 

(dashed line), Reconstruction on log power spectrum (solid line), noisy speech spectrum 

(dash-dot line) and original speech spectrum (dotted line).  

 

A comparison of the spectrogram of the enhanced speeches generated using different 
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compared. The speech sampling rate is 16kHz. Simulation details are listed as follows: frame 

size – 512 samples (~32ms), FFT size – 1024 samples (zeros padded each frame with 512 

samples), window shift step size – 128 samples (75% overlap). The log power spectrum 

dictionary of the clean speech is trained by the approximate K-SVD MATLAB Toolbox [128]. 

The sparsity target K as mentioned in Eqn. (5.6) is set to 10 and the number of iterations is set 

to 30. The dictionary Dlog is learned using 100 sentences extracted from the training portion 

of the TIMIT database, which is different to the testing portion. No sentence should appear in 

both the training and testing portions. The size of dictionary Dlog is 513 x 1024 and is 

initialized by randomly taking the training data. For all algorithms, the noise power spectrum 

is estimated by first using the initial frames that are assumed to have no speech energy; then 

updated whenever a frame is detected to have no speech energy by using a VAD [53]. Fig. 

5.4a shows the clean speech spectrogram of a female speech selected from the TIMIT 

database [192] saying the following sentence: “Cliff was soothed by the luxurious 

massage”. Fig. 5.4b shows the result when the the military vehicle (Leopard) noise (from the 

NOISEX-92 database [193]) is added to the speech with input segSNR about -5.79 dB. Fig. 

5.4c depicts the spectrogram using the traditional MMSE-LSA method. It can be seen that 

although some of the background noise is suppressed but the speech signal is distorted. Fig. 

5.4d shows the spectrogram using the Harmonic Regeneration Noise Reduction Algorithm 

(HRNR) [37]. Although it can recover much speech content, its noise control is not sufficient 

and strong background residue noise remains in the enhanced speech. Fig. 5.4e shows the 

spectrogram given by the MMSE-LSA CEM algorithm [182] that we proposed in Chapter 4. 

We have seen that the MMSE-LSA CEM algorithm performs very well for buccaneer noises 

in Chapter 4. However, it is not the case for the Leopard noises as shown in Fig. 5.4e. Much 

residual noise remains at the low frequency part of the spectrum. It may be due to the strong 

spectral coefficients of the Leopard noise at low frequencies, where strong speech spectral 
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coefficients can also be found. They are then mixed up in the MMSE-LSA CEM 

algorithm. Fig. 5.4f shows the spectrogram using the proposed algorithm (SRLPS-TSL). It 

has very well background noise control (as indicated in the circled areas) and the speech 

content is also preserved. It can be seen that many of the low frequency noise coefficients are 

suppressed while those of the speech remain intact. The result demonstrates the ability of the 

proposed sparse coding method in differentiating the speech and noise coefficients.   

Table 5.2 - Summary of the algorithms compared in the simulations. 

Method Description 
MMSE-LSA Minimum mean-square error log-spectral amplitude estimator [15] 
HRNR Harmonic regeneration noise reduction algorithm [37] 
MMSE-LSA CEM EM based cepstrum smoothing using MMSE-LSA filter [182] 
SRLPS-TSL The proposed algorithm based on the sparse reconstruction on log 

power spectra with two-step MMSE-LSA filtering 
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Fig. 5.4 – Spectrogram of the original, noisy and enhanced speeches (Leopard noise, segSNR 
= ‐5.79 dB)  
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The performance of the proposed SRLPS-TSL algorithm is further evaluated using the 

standard objective evaluation measures and compared with the following approaches: 

MMSE-LSA [15], Two Step Noise Reduction Algorithm (TSNR) [37], HRNR [37], 

MMSE-LSA plus SPP using TCS method [140], and the MMSE-LSA CEM [182] that we 

proposed in Chapter 4.  

In the simulation, 40 male and 40 female test speeches were arbitrarily selected from the 

TIMIT database [192]. The noise signals were adopted from the NOISEX-92 database [193] 

and added to the speeches with input signal-to-noise ratio ranging from about 0dB to +20dB. 

To predict the quality of the enhanced speeches, three composite objective metrics [1] are 

used, which include (a) Csig: Signal distortion (SIG) formed by linearly combining the LLR, 

PESQ, and WSS measures; (b) Cbak: Noise distortion (BAK) formed by linearly combining 

the segSNR, PESQ, and WSS measures; and (c) Covl: Overall quality (OVL) formed by 

linearly combining the PESQ, LLR, and WSS measures.  

Table 5.3 lists the performance of 6 different speech enhancement algorithms in the 

cases of 6 different kinds of background noise, both stationary and non-stationary. As can be 

seen in the table, the proposed SRLPS-TSL algorithm always outperforms the other 5; and in 

many cases, the improvement is significant. Its performance is consistent for speeches made 

by people of different genders and at different noise levels. These results have demonstrated 

the robustness of the proposed algorithm. 
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Table 5.3 - Composite measurement comparison of different algorithms.  
Noise 

Input SNR Csig Cbak Covl 
Method  0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 

White 

Noisy 1.34 1.92 2.61 3.26 3.87 1.72 2.17 2.64 3.12 3.59 1.35 1.87 2.42 2.95 3.45 
MMSE-LSA 1.84 2.54 3.16 3.67 4.05 2.18 2.59 2.97 3.28 3.51 1.80 2.37 2.86 3.26 3.55 

TSNR 1.48 2.10 2.56 3.00 3.52 2.11 2.58 3.02 3.45 3.90 1.57 2.12 2.55 2.98 3.44 
HRNR 1.94 2.50 3.06 3.62 4.17 2.28 2.72 3.17 3.63 4.08 1.83 2.33 2.84 3.35 3.85 

MMSE-LSA TCS SPP 2.11 2.91 3.50 3.96 4.33 2.41 2.87 3.29 3.69 4.08 2.05 2.70 3.21 3.62 3.98 
MMSE-LSA CEM 2.47 3.17 3.71 4.17 4.56 2.62 3.05 3.43 3.82 4.23 2.35 2.94 3.38 3.79 4.17 

Proposed SRLPS-TSL 2.43 3.20 3.79 4.25 4.64 2.57 3.03 3.44 3.84 4.24 2.30 2.94 3.44 3.85 4.22 

Speech 

babble 

Noisy 2.52 3.09 3.63 4.10 4.50 1.68 2.15 2.64 3.13 3.61 1.96 2.47 2.95 3.39 3.78 
MMSE-LSA 2.53 3.11 3.60 3.97 4.22 1.87 2.35 2.79 3.16 3.44 2.04 2.56 3.01 3.36 3.59 

TSNR 1.67 2.51 3.23 3.82 4.32 1.46 2.06 2.64 3.19 3.72 1.37 2.09 2.72 3.27 3.74 
HRNR 1.86 2.73 3.46 4.06 4.52 1.46 2.09 2.70 3.26 3.78 1.48 2.23 2.88 3.43 3.88 

MMSE-LSA TCS SPP 2.21 2.94 3.56 4.07 4.49 1.86 2.39 2.90 3.39 3.85 1.84 2.47 3.03 3.50 3.91 
MMSE-LSA CEM 2.41 3.09 3.69 4.19 4.59 1.95 2.47 2.96 3.46 3.92 2.00 2.59 3.12 3.59 3.99 

Proposed SRLPS-TSL 2.58 3.24 3.81 4.29 4.67 2.11 2.60 3.07 3.54 3.98 2.15 2.73 3.23 3.69 4.06 

Destroyer 

engine 

room 

Noisy 2.00 2.59 3.19 3.75 4.25 1.52 1.98 2.46 2.96 3.47 1.65 2.14 2.64 3.12 3.57 
MMSE-LSA 2.45 3.02 3.51 3.89 4.15 1.96 2.39 2.79 3.14 3.41 2.04 2.53 2.95 3.29 3.55 

TSNR 1.89 2.48 3.05 3.64 4.19 2.03 2.48 2.89 3.34 3.81 1.75 2.28 2.76 3.26 3.74 
HRNR 2.20 2.92 3.56 4.12 4.60 2.09 2.60 3.05 3.50 3.96 1.90 2.54 3.10 3.59 4.03 

MMSE-LSA TCS SPP 2.57 3.20 3.67 4.09 4.49 2.19 2.71 3.16 3.59 4.00 2.19 2.78 3.24 3.64 4.01 
MMSE-LSA CEM 3.00 3.55 3.97 4.36 4.72 2.49 2.94 3.35 3.74 4.16 2.57 3.08 3.48 3.85 4.20 

Proposed SRLPS-TSL 3.10 3.66 4.09 4.47 4.81 2.50 2.97 3.40 3.81 4.21 2.63 3.15 3.58 3.95 4.28 

F16 

cockpit 

Noisy 1.95 2.58 3.20 3.77 4.28 1.57 2.05 2.54 3.05 3.55 1.63 2.17 2.70 3.20 3.66 
MMSE-LSA 2.45 3.05 3.56 3.94 4.20 2.03 2.47 2.87 3.21 3.46 2.09 2.60 3.04 3.37 3.61 

TSNR 1.67 2.31 2.92 3.53 4.13 1.90 2.42 2.92 3.39 3.87 1.56 2.16 2.71 3.23 3.75 
HRNR 2.04 2.79 3.48 4.10 4.59 2.00 2.54 3.06 3.54 3.99 1.75 2.44 3.07 3.61 4.05 

MMSE-LSA TCS SPP 2.56 3.18 3.67 4.07 4.48 2.21 2.72 3.18 3.61 4.04 2.21 2.79 3.26 3.65 4.03 
MMSE-LSA CEM 2.89 3.45 3.88 4.30 4.68 2.43 2.89 3.32 3.74 4.16 2.50 3.01 3.43 3.82 4.19 

Proposed SRLPS-TSL 2.99 3.56 4.00 4.39 4.75 2.46 2.93 3.35 3.77 4.18 2.57 3.09 3.52 3.90 4.25 

Leopard 

(Military 

vehicle) 

Noisy 3.39 3.83 4.22 4.56 4.86 1.99 2.42 2.87 3.32 3.80 2.66 3.08 3.45 3.80 4.14 
MMSE-LSA 3.41 3.67 3.88 4.03 4.13 2.63 2.93 3.18 3.37 3.52 2.88 3.16 3.38 3.55 3.66 

TSNR 3.55 4.07 4.48 4.80 4.98 2.76 3.21 3.63 4.01 4.38 3.03 3.52 3.91 4.23 4.49 
HRNR 3.72 4.25 4.66 4.94 5.00 2.84 3.29 3.71 4.09 4.43 3.15 3.63 4.03 4.35 4.59 

MMSE-LSA TCS SPP 3.82 4.29 4.66 4.92 4.99 2.90 3.33 3.73 4.08 4.42 3.25 3.70 4.07 4.35 4.56 
MMSE-LSA CEM 3.92 4.36 4.71 4.94 5.00 2.89 3.33 3.73 4.10 4.46 3.29 3.73 4.09 4.38 4.60 

Proposed SRLPS-TSL 4.16 4.52 4.81 4.97 5.00 3.13 3.50 3.85 4.17 4.49 3.53 3.90 4.20 4.44 4.63 

M109 

(Tank) 

Noisy 2.66 3.24 3.78 4.26 4.68 1.85 2.31 2.78 3.26 3.75 2.23 2.73 3.20 3.63 4.03 
MMSE-LSA 3.05 3.46 3.77 3.98 4.11 2.49 2.85 3.15 3.38 3.53 2.66 3.03 3.31 3.51 3.63 

TSNR 2.36 3.21 3.91 4.44 4.83 2.42 2.95 3.47 3.95 4.37 2.26 2.94 3.52 3.97 4.33 
HRNR 2.74 3.57 4.22 4.69 4.95 2.54 3.06 3.54 3.97 4.35 2.49 3.18 3.73 4.14 4.45 

MMSE-LSA TCS SPP 3.13 3.71 4.23 4.66 4.94 2.62 3.10 3.57 4.02 4.42 2.77 3.30 3.76 4.15 4.45 
MMSE-LSA CEM 3.37 3.93 4.41 4.80 4.98 2.76 3.22 3.67 4.10 4.49 2.95 3.45 3.89 4.26 4.54 

Proposed SRLPS-TSL 3.55 4.08 4.53 4.87 4.99 2.85 3.30 3.73 4.14 4.52 3.09 3.57 3.99 4.32 4.58 
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5.6 Chapter Summary 
 

In this chapter, an improved speech enhancement algorithm based on the sparse coding 

on log-spectra is proposed. The proposed algorithm starts with the traditional cepstrum 

smoothing method which gives the initial guess of the log periodogram of the clean speech. 

The sparse coding is carried out by using the LARC algorithm with the speech dictionary 

trained using the K-SVD method. We improve the LARC algorithm by introducing a noise 

adaptive residual coherence threshold so that the stopping criterion will be adaptive to the 

noise type and the input SNR. The improved LARC algorithm gives a good estimate of the 

sparse coding coefficients of the clean speech’s log power spectrum. Combining with the TSL 

method, an enhanced speech is obtained. The proposed algorithm does not only fully exploit 

the sparsity of speeches through the use of the sparse speech dictionary, but also reduces the 

confusion in the sparse coding process due to the coherence between the noise and the speech. 

As a result, the proposed algorithm works particularly well when the input speech is 

contaminated by noises that contain structure (they include most colored noises). Besides, 

due to the TSL process, the proposed algorithm has very good control of the residual 

background noises. They make it outperform the traditional methods. Simulation results have 

verified that the proposed algorithm improves over the traditional speech enhancement 

methods in almost all testing conditions using different evaluation measures. They have 

clearly shown the robustness of the proposed algorithms in general speech enhancement 

applications.   
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Chapter 6 Conclusions  

 

In this thesis, we have investigated three different sparse representation methods for 

speech enhancement, namely, the discrete wavelet transform, the cepstral transform and the sparse 

coding based on dictionary learning. For each method, a new algorithm is proposed. In this 

chapter, we draw the conclusions of these works and suggest possible future works. 

6.1 General Conclusions 
 

In Chapter 3, we proposed a new algorithm for the estimation of speech presence 

probability (SPP) of a noisy speech signal based on the discrete wavelet transform. Although 

it is known that a good estimator of SPP can be obtained by smoothing the observed noisy 

speech power spectrum before using it in the estimation process, care must be taken to ensure 

the smoothing operation will not destroy the spectral peaks which are important to the 

intelligibility of the enhanced speech. The major contribution of this work is two-folded. First, 

we successfully developed a two-stage wavelet denoising algorithm that effectively removes 

the noise while preserving the spectral peaks in a noisy speech power spectrum. It 

outperforms the traditional approaches by combining the information of noise and spectral 

peaks in both the periodogram and the log MTS of a noisy speech. The denoised speech 

power spectrum in turn lets us generate a smooth a-posteriori SNR function. Second, we 

proposed a new method for estimating the generalized likelihood ratio (GLR). It is by directly 

estimating the PDF of the a-posteriori SNR under the hypothesis H0, i.e. speech is absent, 

using the data in different noise frames. It simplifies the estimation process and avoids the 

use of many empirically selected parameters in traditional approaches. The new SPP 

estimator was then applied to the MMSE-LSA speech enhancement algorithm. Compared 
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with the traditional SPP estimators, up to 15% improvement was noted for different noises at 

different noise levels when measuring using the standard composite objective measures. 

When inspecting the spectrogram of the enhanced speeches using different approaches, the 

proposed algorithm in general preserves much better the speech contents while effectively 

removing the background noise.  

While the proposed algorithm in Chapter 3 successfully makes use of the discrete 

wavelet transform to detect the spectral peaks of speeches, problem may arise for certain kinds 

of noise which also have spectral peaks similar to those of speeches. Further effort is needed 

to differentiate the speech from noise in a noisy speech. In Chapter 4, we presented a novel 

expectation-maximization (EM) framework for speech enhancement algorithm. Based on the 

sparsity of speeches in the cepstral domain, the new algorithm makes use of the EM algorithm 

to define a theoretical framework for the estimation of the true power spectrum of the original 

speech and its periodogram from a noisy observation. The proposed algorithm starts with the 

traditional cepstrum smoothing method which gives the initial guess of the periodogram of the 

clean speech. It is applied to an L1 norm regularizer in the M-step of the EM framework to 

estimate the cepstral coefficients of the true speech power spectrum. It enables the estimation 

of the a-priori SNR and is used in the E-step, which is indeed an MMSE-LSA gain function, 

to refine the estimate of the clean speech periodogram. The M-step and E-step then iterate for 

2 more times, with which we have shown to be sufficient in most cases to achieve good result. 

The proposed algorithm fully utilizes the sparsity of speeches in the cepstral domain by 

adopting the L1 norm regularizer. It enables the optimization process to be carried out on 

coefficients with improved SNR and hence reduces the effect due to the estimation error of the 

non-stationary noise characteristics. As a result, the proposed algorithm works particularly 

well when the input speech is contaminated by non-stationary noises. Besides, due to the 

iterative process, the proposed algorithm has very good control of the residue background 
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noises which makes it outperform the traditional methods. Simulation results have verified 

that the proposed algorithm improves over the competing speech enhancement methods in 

almost all testing conditions, such as different kinds of noise at different noise levels using 

different evaluation measures 

It is shown in Chapter 4 that the knowledge of the sparse representation of speeches is 

one of the key factors when developing a speech enhancement algorithm. A question 

naturally arises if the cepstral representation that is used in Chapter 4 is the best as far as the 

sparsity is concerned. In Chapter 5, we investigated using the sparse coding technique with 

the dictionary learnt from a speech database. We further propose an improved speech 

enhancement algorithm based on the framework of sparse reconstruction on log power 

spectrum with two-step MMSE-LSA filtering (SRLPS-TSL). The new algorithm makes use 

of sparse coding technique to efficiently estimate the true log power spectrum of the clean 

speech from a noisy observation. Similar to that in Chapter 4, the proposed algorithm starts 

with the traditional temporal cepstrum smoothing method which gives the initial guess of the 

periodogram of the clean speech. The batch LARC algorithm is then used to perform the 

sparse coding with the speech dictionary trained by the approximate K-SVD method. We 

improve the batch LARC algorithm by introducing a noise adaptive residual coherence 

threshold that allows the sparse coding process to be adaptive to the noise types and the input 

SNR. Combining with the TSL method, the enhanced speech is obtained. The proposed 

algorithm does not only fully exploit the sparsity of speeches on log-spectra but also reduce 

the confusion in the sparse coding process due to the coherence of the residual noise and the 

speech dictionary. As a result, the proposed algorithm works particularly well when the input 

speech is contaminated by noises which contain structure (it is the case for most colored 

noises). Besides, due to the TSL process, the proposed algorithm has very good control of the 

residual background noises which makes it outperform the traditional methods. Compared 
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with the traditional speech enhancement algorithms, significant improvement is noted for 

different kinds of noise at different noise levels when evaluating using the three composite 

objective metrics. Informal subjective listening tests also indicate that the proposed algorithm 

is generally more preferred to other competing methods. They have clearly demonstrated the 

robustness of the proposed algorithms in general speech enhancement applications. When 

comparing with the proposed Logmmse-L1-EM method in Chapter 4, the proposed 

SRLPS-TSL algorithm works particularly well when the input speech is contaminated by 

noises that contain structure, although the Logmmse-L1-EM algorithm works well when the 

input speech is contaminated by noise that is incoherent to the speech. We notice that the 

proposed method based on the sparse coding technique can better identify speech spectral 

components from those of noises, although a higher computational complexity may incur due 

to the iterative sparse coding process.    

In conclusion, we have demonstrated in this thesis that the acquisition of an efficient 

sparse representation of speeches is one of the key factors to the success of speech 

enhancement. In this work, a number of sparse representation methods have been employed 

that enhance a noisy speech in different environments. We have shown that the proposed 

algorithms outperform the traditional methods when evaluating by different objective 

measures and informal subjective listening tests. We believe that the results obtained in this 

work have contributed significantly to the field of study. 

 

6.2 Future Works 
 

There are several potential future works to be explored in the area of speech 

enhancement. First of all, we believe that the methods for enhancing the unvoiced speech 

deserve further consideration. It is known that on average over 20% of a normal speech is 
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unvoiced. However, both the cepstral method and the MMSE method may not be the best 

candidates for their enhancement. It is because unvoiced speeches do not have a harmonic 

structure and they have a noise-like statistical property which can easily be classified as 

noises by the MMSE based methods and are thus suppressed. A different algorithm is needed 

to work together with the proposed algorithm in order to take care of both the voiced and 

unvoiced parts of a speech in an enhancement process.   

Another important direction is the development of algorithms for fast and accurate 

tracking of noise power spectral density (PSD), which is another important parameter of most 

speech enhancement algorithms. As mentioned in Section 1.5, the noise PSD has to be 

estimated from the noisy speech because it is unknown in advance in most applications. 

Traditional approaches (e.g. minimum statistics, VAD, etc.) can give a good estimate of the 

noise PSD for stationary noises. However, their performance becomes unsatisfactory when 

the noise source tends to change rapidly. While there were works from time-to-time claimed 

to provide accurate PSD estimate for non-stationary noises (such as [194] and [195]), their 

effectiveness remains to be verified. We believe a good noise PSD estimator will be another 

key factor to the success of speech enhancement. 

Another interesting direction for future development is the estimation of the clean 

speech phase. Although it is assumed that the enhancement of the noisy spectral amplitude is 

more important than the enhancement of the spectral phase [25], it was recently shown [196] 

that employing the clean speech phase can further improve noise reduction algorithms with a 

more redundant spectral representation in the frequency domain. From that work, it follows 

that we can further improve the proposed speech enhancement algorithms if we have a good 

estimate of the clean speech phase.          

As to the applications of the speech enhancement algorithms, we suggest that further 

investigations can be made on their applications in biomedical diagnostic systems. While 
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speeches are some natural signals generated by human being, they also carry information 

about the health condition of the human subject. However, due to the various constraints in 

the speech acquisition process (some of them are clinical constraints), the speeches obtained 

are contaminated with different kinds of noise such that a speech enhancement algorithm that 

tailors for the clinical environments will greatly enhance the diagnostic results. One of the 

possible applications is in the diagnosis of the obstructive sleep apnea (OSA). It is known that 

sound recorded during sleep (i.e. the sound of snoring) has been used to diagnose OSA. It is 

characterized by repetitive complete (apnea) or partial (htpopnea) cessation of breathing 

during sleep for at least 10 seconds as a consequence of complete or partial collapse of the 

upper airway, respectively. However, additive background acoustical noises received during 

the acquisition process can degrade the quality of the recorded snoring sound and ends up 

with inaccurate diagnostic results. In order to improve the recorded signal quality, it is shown 

in [198] that the background noise embedded in the acquired signals could be effectively 

removed by a translation-invariant wavelet denoising scheme. Since the snoring sound is also 

a structured human generated signal similar to speeches, it is possible that the snoring sound 

will also have a sparse representation when analyzing by a suitably chosen dictionary. 

Therefore, a more advanced snoring activity detector can be developed based on the 

enhancement methods proposed in Chapter 3 to Chapter 5.      
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