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Abstract

In this thesis, the problem of speech enhancement is investigated. In consistent with the
traditional frequency domain speech enhancement algorithms, we investigated the estimation
methods of some important parameters in speech enhancement, such as the speech
periodogram, a-priori Signal-to-Noise Ratio (SNR) and Speech Presence Probability (SPP).
In this study, we emphasize on making use of the sparse representation of speech signals to
improve the estimation. To achieve this, the wavelet denoising technique, the cepstral
analysis using expectation-maximization (EM) framework as well as the dictionary learning
method based on sparse reconstruction on log-spectra have been adopted and achieved
satisfactory results.

The first part of this study is related to the estimation of SPP. It is known that a reliable
SPP estimator is important to many frequency domain speech enhancement algorithms. A
good estimate of SPP can be obtained by having a smooth a-posteriori SNR function, which
can be achieved by reducing the noise variance when estimating the speech power spectrum.
Recently, the wavelet denoising with multitaper spectrum (MTS) estimation technique was
suggested for such purpose. However, traditional approaches directly make use of the wavelet
shrinkage denoiser which has not been fully optimized for denoising the MTS of noisy
speech signals. In this study, we propose a two-stage wavelet denoising algorithm for
estimating the speech power spectrum. First, we apply the wavelet transform to the
periodogram of a noisy speech signal. Using the resulting wavelet coefficients, an oracle is
developed to indicate the approximate locations of the noise floor in the periodogram. Second,
we make use of the oracle developed in stage 1 to selectively remove the wavelet coefficients
of the noise floor in the log MTS of the noisy speech. The remaining wavelet coefficients are

then used to reconstruct a denoised MTS and in turn generate a smooth a-posteriori SNR



function. To adapt to the enhanced a-posteriori SNR function, we further propose a new
method to estimate the generalized likelihood ratio (GLR), which is an essential parameter
for SPP estimation. Simulation results show that the new SPP estimator outperforms the
traditional approaches and enables an improvement in both the quality and intelligibility of
the enhanced speeches.

While the wavelet transform can sparsely describe the sudden changes in a speech
power spectrum, it misses the periodic nature of speech signals which is an important feature
in speech enhancement. For the second part of this study, a new speech enhancement method
based on the sparsity of speeches in the cepstral domain is investigated. It is known that
voiced speeches have a quasi-periodic nature that allows them to be compactly represented in
the cepstral domain. It is a distinctive feature compared with noises. Recently, the temporal
cepstrum smoothing (TCS) algorithm was proposed and was shown to be effective for speech
enhancement in non-stationary noise environments. However, the missing of an automatic
parameter updating mechanism limits its adaptability to noisy speeches with abrupt changes
in SNR across time frames or frequency components. In this part, an improved speech
enhancement algorithm based on a novel EM framework is proposed. The new algorithm
starts with the traditional TCS method which gives the initial guess of the periodogram of the
clean speech. It is then applied to an L; norm regularizer in the M-step of the EM framework
to estimate the true power spectrum of the original speech. It in turn enables the estimation of
the a-priori SNR and is used in the E-step, which is indeed an MMSE-LSA gain function, to
refine the estimation of the clean speech periodogram. The M-step and E-step iterate
alternately until converged. A notable improvement of the proposed algorithm over the
traditional TCS method is its adaptability to the changes (even abrupt changes) in SNR of the
noisy speech. Performance of the proposed algorithm is evaluated using standard measures

based on a large set of speech and noise signals. Evaluation results show that a significant
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improvement is achieved compared to conventional approaches.

The above shows that obtaining the sparse representation of speeches is one of the keys
for designing an efficient speech enhancement algorithm. One obvious question then arises if
the ceptrum is the best representation of speeches as far as the sparsity is concerned. To
answer this question, we further investigate a new sparse representation based speech
enhancement algorithm with the transform kernel trained based on the dictionary learning
method. It is known that the dictionary learning method allows the design of a transform
kernel with the emphasis of sparsity in the transform domain. When applying to speech
enhancement, it allows a speech to be represented by very few significant transform
coefficients. In practice, the overcomplete dictionary of the clean speech signal is trained by
an extended K-SVD algorithm in the log power spectra domain. The batch LARS with
Coherence Criterion (LARC) method is used to reconstruct the log power spectra of the clean
speech. And a new stopping criterion is proposed for the iterative speech enhancement
process in order to adapt to various background noise environment. In addition, a modified
two-step noise reduction with MMSE-LSA filtering is applied which solves the bias problem
of the estimated a priori SNR. A notable improvement of the proposed algorithm over the
traditional speech enhancement method is its adaptability to the changes in SNR of the noisy
speech. Performance of the proposed algorithm is evaluated using standard measures based
on a large set of speech and noise signals. Evaluation results show that a significant
improvement is achieved compared to the traditional approaches especially when the noises

are not totally random but have certain structure in the frequency domain.
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Chapter 1 Introduction

Speech enhancement is a challenging problem due to the diversity of noise sources and
their effects in different applications [1]. Over the last three decades a substantial increase is
noted in the use of speech-processing devices in cellular phones, digital hearing aids, and
various human-to-machine speech-processing applications. Originally most of these
applications assumed the acquired speech signals were noise-free. It was soon proven to be
not the case. There is thus a great demand to make these applications to work robustly under
noisy conditions as well. It becomes an extremely challenging task for the speech-processing
devices, particularly when considering the large variety of noisy environments. Consequently,
speech enhancement methods were developed to improve the robustness of these
speech-processing devices. The term speech enhancement in fact refers to a large group of
methods for improving the quality of speech signals. Some examples of speech enhancement
methods include noise reduction, bandwidth extension, acoustic echo control
(dereverberation), packet loss concealment, etc. In this study, we focus on the speech
enhancement methods for noise reduction.

Speech is a highly non-stationary signal with specific properties [1][2][3]. However, over
a sufficiently short period of time (10 - 32 ms), its spectral characteristics are fairly stationary.
This allows speech processing algorithms to operate on a frame-by-frame basis with duration
of each frame ranging from 10 to 32ms. Speech bandwidth varies approximately from 50Hz
to 8kHz. Speeches can be classified into two categories, i.e. voiced speeches and unvoiced
speeches. In many practical working environments, the background noise can be considered
as additive and statistically independent with the speech signal. For other noises such as the

convolutional noise, multiplicative noise or signal-dependant quantization noise in pulse-code



modulation (PCM), they can also be modeled as an additive process after some
conversion [4].

Speech enhancement algorithms could be classified as single-microphone or
multi-microphone based. Single-microphone speech enhancement algorithms estimate the
clean speech signal using a realization of the noisy speech that is obtained using one
microphone only. Multi-microphone speech enhancement algorithms, on the other hand, use
more than one microphone and can as such also exploit spatial properties, and as a result,
their performance is in general better than single-microphone speech enhancement algorithms.
However, multi-microphone techniques often require higher cost and impose more
constraints on the system (e.g. distance between the microphones). In this thesis, we focus on
single-microphone speech enhancement algorithms. This is the most difficult situation,
because the speech and noise are in the same channel. In addition, single-microphone
methods can be extended and used in a multi-microphone system or combined with
multi-microphone algorithms as a post-processor to get a better noise reduction performance.

Fig. 1.1 illustrates a typical single-microphone speech enhancement process. The clean
speech signal is denoted as x while the additive noise is denoted as n. The speech
enhancement algorithm attempts to suppress noise without distorting speech and produces the
enhanced speech signal X. Speech enhancement algorithms try to reduce the impact of
background noise on the speech signal. They improve the quality of the speech to be used in
recording systems, telephone systems, hearing aids devices and the communications between
human beings. Besides they can improve the accuracy of the machine automatic speaker

verification or speech recognition processes.
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Fig. 1.1 — Typical single-microphone speech enhancement process

Single-microphone speech enhancement algorithms can be generally classified as
parametric and nonparametric. Parametric techniques model the speech signal as a stochastic
autoregressive (AR) process embedded in Gaussian noises. The speech enhancement
algorithm then consists of estimating the speech AR parameters and applying a filter (e.g.
Wiener or Kalman filter) to the noisy signal, where the optimal filters are designed based on
the estimated AR parameters [5][6]. Non-parametric techniques do not estimate the speech
parameters and require a noise fingerprint in the transform domain. It will be used during
speech-and—noise periods to obtain an estimate of the clean speech signal. Well-known
non-parametric methods include the signal subspace decomposition methods and methods
based on processing in the Discrete Fourier Transform (DFT) domain (frequency domain). In
this study, we focus mainly on the non-parametric speech enhancement methods.

The subspace algorithms are designed based on the principle that clean speech signals
are often confined to a subspace of the noisy Enclidean space. As a result, given a method of
decomposing the vector space of a noisy signal into a subspace that is occupied mainly by the
clean signal and a subspace occupied mainly by the noise signal, the clean signal simply
could be estimated by nulling the component of the noisy vector residing in the “noise
subspace”. Dendrinos et al. [5] initially proposed the use of the singular value decomposition

(SVD) on a data matrix containing time-domain amplitude values. And then, Ephraim and



Van Trees [8] proposed using the eigenvalue decomposition method on the signal covariance
matrix. Extensions of the subspace based enhancement methods have been proposed to work
for colored noise [9] and take perceptual aspects into account [10].

Frequency domain techniques require the application of the DFT to the noisy speech
before filtering, followed by the inverse discrete Fourier transform (IDFT). By transforming
the noisy speech to the frequency domain, noises can be better distinguished from speeches
and removed. For example, the energy of voiced speech is concentrated at certain frequencies,
but the energy of white noise is uniformly spread throughout the entire frequency spectrum.
The famous spectral subtraction algorithm in [10] was extended to the Fourier domain by
Boll [12] and became a very popular method. The major advantage of the spectral subtraction
algorithms is their simplicity. They are based on the principle that, as the noise contamination
process is additive, the noise spectrum can be estimated/updated when speech is not present
and subtracted from the noisy speech. Although the spectral subtraction methods are
popularly used, it is well known that they can generate musical noise which can be rather
annoying to human listeners. Another important class of Fourier domain speech enhancement
algorithms was initiated by MacAulay and Malpass [13]. They proposed a
maximume-likelihood (ML) approach for estimating the Fourier transform coefficients
(spectrum) of the clean speech. Their works were followed by Ephraim and Malah [14] who
proposed a Minimum Mean Square Error (MMSE) estimator of the magnitude spectrum.
These estimators are a function of the distributional parameters of the variance of the noise
and speech DFT coefficients [14]-[17]. While the MMSE estimator was proposed 30 years
ago, it still attracts much attention in the field recently [18] since it does not only reduce the
noise power but also reduce the level of musical noise as compared to the spectral subtraction
methods. Other works that adopt different statistical filters such as the Wiener filters can also

be found in [4], [5] and [19]. Also some variants have been proposed which take human



perception into account [20]-[21].

Recently, signal denoising approaches are often equipped with an assumption of
sparsity [22], which refers to the fact that many natural signals can be described by very few
non-zero coefficients in some transform domains. This also applies to speech signals. Sparse
signal representations have been successfully applied to signal denoising and blind source
separation [22]-[24]. For a noisy speech, the speech component can be represented by very
few transform coefficients but with large magnitude. It is not the case for the noise
component which has its coefficients spread over the transform domain. Hence the speech
coefficients can be identified from the noise coeffcients. By removing the noise coefficients,
the unwanted noise signal can be suppressed. In this thesis, our speech enhancement
approach first transforms the noisy speech signal into the frequency domain, and then the
sparse coding technique is applied using the signal models of speech (called dictionary).
Sparse coding is able to separate a noisy speech into its structured components and to
suppress any unstructured components (i.e. noise) that are incoherent to its dictionary. Finally,
an enhanced speech is obtained by performing the IDFT back to the time domain. For the rest

of this chapter, we state the research objective and summarize the layout of the thesis.



1.1 Present Works

In this thesis, we mainly focus on applying the sparse representation techniques to the
class of frequency domain single-channel speech enhancement algorithms. Although a lot of
research has been done in the field of speech enhancement, the field of single-channel speech
enhancement is still very challenging and many problems remain to be solved. There are
many scenarios, e.g. under low signal-to-noise ratio (SNR) or under non-stationary noise
conditions where existing systems fail to give a satisfactory result. In recent years, there has
been substantial development in the field of sparse representation. It has been used
successfully in applications such as signal denoising, restoration, and reconstruction, etc. By
representing speeches in a sparse manner, speech energy can be concentrated into a few
transform coefficients, which will be highly distinctive from that of noise. Besides, many
advanced regularization methods were developed in recent years that emphasize on
promoting the sparsity of the signal. Some of them can also be applied to improve the
existing speech enhancement methods. The major objective of this study is to investigate
clean speech estimators based on the sparse representation techniques in the frequency
domain. In particular, we find that the wavelet transform, cepstral transform and dictionary
learing methods are useful to obtain the sparse representation of speeches and hence facilitate
the design of speech enhancement algorithms. More specifically, the present work can be

divided into the following three different parts.

1.1.1 Wavelet Based Speech Presence Probability Estimator

As mentioned above, a reliable SPP estimator can significantly improve their
performance to many frequency domain speech enhancement algorithms. It is known that a

good estimate of SPP can be obtained by having a smooth a-posteriori SNR function [49],



which can be achieved by reducing the noise variance when estimating the speech power
spectrum. Recently, the wavelet denoising with multitaper spectrum (MTS) estimation
technique was suggested for such purpose. However, traditional approaches directly make use
of the wavelet shrinkage denoiser which has not been fully optimized for denoising the MTS
of noisy speech signals. In this part of study, we firstly propose a two-stage wavelet denoising
algorithm for estimating the speech power spectrum. In the first stage, we apply the wavelet
transform to the periodogram of a noisy speech signal. Using the resulting wavelet
coefficients, an oracle is developed to indicate the approximate locations of the noise floor in
the periodogram. In the second stage, we make use of the oracle developed in stage 1 to
selectively remove the wavelet coefficients of the noise floor in the log MTS of the noisy
speech. The wavelet coefficients that remained are then used to reconstruct a denoised MTS
and in turn generate a smooth a-posteriori SNR function. To adapt to the enhanced
a-posteriori SNR function, we further propose a new method to estimate the generalized
likelihood ratio (GLR), which is an essential parameter for SPP estimation. Simulation results
show that the new SPP estimator outperforms the traditional approaches and enables an

improvement in both the quality and intelligibility of the enhanced speeches.

1.1.2 Expectation-Maximization Framework with Cepstral Representation

As mentioned above, many approaches were suggested to reduce the musical noise.
However, their performance can get worse significantly when the SNR is low or when the
noise is non-stationary. Speech enhancement method based on the sparsity of speeches in the
cepstral domain is investigated to overcome this problem. It is known that voiced speeches
have a quasi-periodic nature that allows them to be compactly represented in the cepstral
domain. It is a distinctive feature compared with noises. Recently, the temporal cepstrum

smoothing (TCS) algorithm was proposed and was shown to be effective for speech



enhancement in non-stationary noise environments. However, the missing of an automatic
parameter updating mechanism limits its adaptability to noisy speeches with abrupt changes
in SNR across time frames or frequency components. In this part, an improved speech
enhancement algorithm based on a novel expectation-maximization (EM) framework is
proposed. The new algorithm starts with the traditional TCS method which gives the initial
guess of the periodogram of the clean speech. It is then applied to an L; norm regularizer in
the M-step of the EM framework to estimate the true power spectrum of the original speech.
It in turn enables the estimation of the a-priori SNR and is used in the E-step, which is indeed
an MMSE-LSA gain function, to refine the estimation of the clean speech periodogram. The
M-step and E-step iterate alternately until converged. A notable improvement of the proposed
algorithm over the traditional TCS method is its adaptability to the changes (even abrupt
changes) in SNR of the noisy speech. Performance of the proposed algorithm is evaluated
using standard measures based on a large set of speech and noise signals. Evaluation results
show that a significant improvement is achieved compared to conventional approaches,
particularly when the noise is non-stationary.

1.1.3 Sparse Reconstruction of the Log-Spectra by the Dictionary
Learning Method

The above shows that obtaining the sparse representation of speeches is one of the keys
for designing an efficient speech enhancement algorithm. One obvious question then arises if
the ceptrum is the best representation of speeches as far as the sparsity is concerned. To
answer this question, we further investigate a new sparse representation based speech
enhancement algorithm with the transform kernel trained based on the dictionary learning
method. It is known that the dictionary learning method allows the design of a transform
kernel with the emphasis of sparsity in the transform domain. When applying to speech

enhancement, it allows a speech to be represented by very few significant transform
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coefficients. In practice, the overcomplete dictionary of the clean speech signal is trained by
an extended K-SVD algorithm in the log power spectra domain. The batch LARS with
Coherence Criterion (LARC) method is used to reconstruct the log power spectra of the clean
speech. And a new stopping criterion is proposed for the iterative speech enhancement
process in order to adapt to various background noise environment. In addition, a modified
two-step noise reduction with MMSE-LSA filtering is applied which solves the bias problem
of the estimated a priori SNR. A notable improvement of the proposed algorithm over the
traditional speech enhancement method is its adaptability to the changes in SNR of the noisy
speech. Performance of the proposed algorithm is evaluated using standard measures based
on a large set of speech and noise signals. Evaluation results show that a significant
improvement is achieved compared to the traditional approaches especially when the noises

are not totally random but contain certain structure in the frequency domain.



1.2 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we give an overview of speech
enhancement methods based on sparse representation. In Chapter 3, the wavelet denoising
technique for smoothing a periodogram is investigated. A new two-stage wavelet denoising
algorithm for estimating the speech power spectrum is proposed. In Chapter 4, speech
enhancement method based on the sparsity of speeches in the cepstral domain is introduced.
An improved speech enhancement algorithm based on a novel expectation-maximization
(EM) framework is proposed. In Chapter 5, the overcomplete dictionary learning method is
described. The design of a new speech enhancement method using sparse reconstruction of
the log-spectra is explained. Finally, the conclusion of the whole study is drawn in Chapter 6

where possible future works are also discussed.
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Chapter 2 Overview of Speech Enhancement Methods Based on

Sparse Representation

In this thesis, we are concerned with the speech enhancement problem using
single-microphone. In particular, we investigate transforming speech signals into their sparse
representations, because they allow the most important information within a speech signal to
be conveyed with only a few elementary components. In fact, the concept of sparse
representation is not new to the problem of speech enhancement. Arguably all frequency
domain speech enhancement algorithms can be considered to have adopted such concept. It is
because by transforming a speech signal into the frequency domain, the energy of the speech
will be concentrated at the low frequency part of the spectrum. The concept of sparse
representation is re-vitalized actually due to the recent results on dictionary learning methods
and the iterative regularization techniques that give a much better understanding of the ways
to generate a sparse transform kernel and to process the signal if it is sparse in the transform
domain. In this chapter, we review some of the commonly used single-channel speech
enhancement algorithms in the frequency domain. Besides, some methods that make use of
the sparse representations of speeches in enhancement applications are reviewed. And the
dictionary learning method is also introduced. Finally, we provide an overview of the

evaluation methods.
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2.1 Speech Enhancement in the DFT Domain

Most of the known works on speech enhancement use the additive noise model to
describe background noise, which is justified by the principle of superposition. In the additive
noise model, the noisy speech y is assumed to be the sum of the clean speech x and the
additive noise n as defined in the following equation:

yt) =x(1) + n() 2.1

The DFT converts the time domain information of a signal into its frequency domain

information. The forward transform is defined as

N-1
v(k):Zu(n)W,f,‘" k=0 1 N-I (2.2)
g , 1, ..,
where
_ —j2r
w, —exp{ N } 2.3)

The inverse transform is given by

N-1

_ 1 —kn
u()=2 2 VW g N 2.4)

=0
The transform coefficients are complex and can be separated into the magnitude and phase
components. The DFT of a real sequence shows conjugate symmetry about N/2 which means
only half the data require to be processed.

The short-time Fourier transform (STFT) has been popularly adopted in the
development of speech enhancement algorithms. By means of the STFT, the additive
relationship of noise and speech in a noisy speech signal can be expressed with a
time-frequency setting as follows:

Y(k,i) = X(k,i) + N(k,i) (2.5)

where i is the frame index, Y(k,i), X(k,i)and N(k,i) represent the k-th spectral component

12



from the Fourier transforms of y, x, and n over the time frame i, respectively. For improved
readability, the frame index 7 is dropped wherever possible. In many speech enhancement

algorithms, the knowledge of the power spectrum of speech and noise is essential to their

performance. Here we denote S (k), S, (k) and S, (k) as the power spectrum of noisy

speech, clean speech and input additive noise, respectively.

A speech enhancement algorithm estimates the clean short-term spectral amplitude
(STSA) by removing the additive noise part. The overall structure of a typical frequency
domain speech enhancement algorithm is shown in Fig. 2.1. As shown in the figure, a
digitized speech (usually sampled at a rate of 8kHz or 16kHz) is windowed into overlapping
frames (typically with the duration of 10-32ms, 50% or 75% overlap) in order to ensure that
the speech signal satisfies the assumptions of wide sense stationary. The Hanning or
Hamming window is often used. The windowed speech frame passes though the DFT stage
and is then separated into the magnitude and phase components. The noisy speech magnitude
is filtered while the phase is left untouched since the phase information is less importance in
speech enhancement [25][26]. After filtering, the magnitude component is recombined with
the original phase, and the IDFT is carried out. Finally, the overlap and add technique [27] is

applied to reconstruct the enhanced speech signal.
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Fig. 2.1 — Block diagram of frequency domain speech enhancement algorithm
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2.3 Speech Enhancement Algorithm

2.3.1 Spectral Subtraction

Magnitude spectral subtraction is one of the simplest noise reduction techniques which
operate in the frequency domain [12]. Let the magnitude of the filtered speech be |X(k)|. The
relationship is given as follows:

\X(k)| = max(1Y(k)| - E(IN(K)|).0) (2.6)
E(IN(k)|) is the average noise magnitude of coefficient k. A half wave rectification process is
fulfilled by the max( ) function to simply set the negative components to zero in order to
avoid possible negative magnitudes by error in the subtraction.

The main problems with the magnitude spectral subtraction are that it does not attenuate
noise sufficiently during the silence period and the residual noise has musical tone as shown
in Fig. 2.2. The musical residual noise is very annoying to human listeners. Much effort has
been devoted to solve this problem with some degree of success. One simple way is to set up

a spectral noise floor [28] in order to mask the tonal nature of the residual noise.
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Fig. 2.2— The signal and spectrogram of denoised speech with spectral subtraction.

The isolated peaks indicated in the figure will result in musical noise.

To reduce the musical noise problem, the modified spectral power subtraction algorithm
was proposed by Scalart [29] using the spectral power subtraction technique together with the
a-priori signal to noise ratio, &, estimated by the decision-directed approach [14]. In that

method, & is updated using information from the estimate in previous frame. More

specifically, the estimated speech magnitude ‘)2' (k)‘ is related to the noisy speech magnitude

Y(k) by,

; E(k)

X)) = |—= Yk }

& (k) 21 ) 2.7)
where
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£y - i Eg 2.8)
is the estimate of & And

$.(0 = El|x (0| 2.9)

S (k)= E{|N(k)|2 } (2.10)

are the estimate of the true power spectrum of the speech and noise, respectively. Both S’n (k)
and S’x (k) have to be known when using the above formula. Methods for estimating S’n (k)

are covered in some details in [12] and [13] and also in Section O. SX (k) can be evaluated
by the following equation:

$.(k,1) =8, (ki —1) + (1 ey max{|¥ (k. " = §, (k,0),0 @.11)

where max{ } is the maximum function in order to ensure that a non-negative value is
achieved in the evaluation. S_(k,i—1) is the estimate of S (k) in the previous frame,

while a is a constant which controls the trade-off between the amount of noise reduction as
well as the distortion of speech transients in a speech enhancement framework. It is popular
to set the value of a to 0.98. When a is set to 1, severe distortion in the speech signal can be
resulted. However, smaller values of a (e.g. 0.8) can lead to high level of musical residual
noise. The effect of varying a is investigated in detail in [30], which states that the value of a
ought to be greater than 0.9 in order to overcome the musical noise effect and 0.98 is thought
about a practical value for a. Although the modified spectral power subtraction filter can

result in fewer musical tones, the level of residual noise is still high.
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2.3.2 Wiener Filter

Besides (2.7), many other gain functions have been adopted by different research groups.

The most common one is the Wiener filter, which has a structure similar to (2.7) as follows:

f(k)

X ()| = G RONY ()| = 2o ) 2.12)

A

where & is the estimated a-priori SNR defined as in the previous section. Amongst the

simple filters mentioned in this chapter, the Wiener filter produces the highest noise

attenuation, but also introduces significant distortion to the enhancement speeches.

2.3.3 Minimum Mean Square Error (MMSE) Estimator

The Minimum Mean Square Error (MMSE) estimator was proposed by Ephraim and
Malah [14]. The estimator is achieved by minimizing the mean square error between the

filtered coefticients and the original coefficients in the Fourier transform domain. It is defined

as follows:
20| = G (0 () = > 1’2 E,(:;))W [y (o) (2.13)
where
v(k) = % (2.14)
(k) = [ra)® (2.15)

S(k)
M( ; ;) in (2.13) is the confluent hypergeometric function defined in [31] and it can be

computed efficiently by the series summation as follow.

a(a +1)c? N a(a+1))a+2)c’

M(-0.51;-v(k)) =1+
bl! b(b+1)2  b(b+1)b+2)3!

(2.16)

¢ and y are the a-priori and a-posteriori signal to noise ratios respectively. The a-priori SNR,
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¢, can also be estimated by the decision-directed approach as follows:

S(kl—)

N

E(k) = + (1 - ) max{y(k,i) — 1,0} (2.17)

Following Ephraim and Malah’s work, several improvements were made to the
decision-directed approach. [30] suggested limiting the smallest allowable value for ¢

in (2.17). This can be easily done by the following equation:

S(kz )

L1

)y =a="—L 4+ (1-a)max{y(k,i)-1&, . } (2.18)

where &, 1s the minimum value allowed for £. The flooring of ¢ to a small value is important
for reducing low-level musical noise [30]. Other developments to the decision-directed
method focus on reducing the bias and advancing the speed of adaptation [32]-[37], which is
introduced by the smoothing constant in (2.17). The main advantage of this filter is that the
residual noise is white and avoids the commonly encountered musical tones. Nevertheless,

the residual noise can have large magnitude that affects the quality of the enhanced speeches.

2.3.4 MMSE-LSA Estimator

Ephraim [15] also proposed minimizing the log of the error instead of the error itself as
it will correspond better to the human hearing mechanism. The resulting estimator is dubbed
as the minimum mean square error log-spectral amplitude estimator (MMSE-LSA) estimator
which performs better than the MMSE counterpart. The MMSE-LSA estimator is given by

the following equation:

_ S (1e”
Gusslh) =20 eXp[sz t dtJ (2.19)

where v and ¢ are defined in (2.14) and Sec. 2.3.3 respectively. The enhanced speech can be

obtained by applying the gain function to the magnitude spectrum of the noisy speech as

follows:
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X ()| = Gy ()| Y (). (2.20)

The MMSE-LSA estimator trims down the residual noise without affecting the speech signal
itself, that is, without introducing a large amount speech distortion.

The MMSE-LSA estimators can be extended to apply to the magnitude-squared
spectrum [38] or more generally the B-order spectral magnitude spectrum [39]. It is shown
in [39] that the B-order MMSE estimator provides higher attenuation for values of f>1, and
less attenuation for values of f <1. When B is extremely small (i.e., f =0.001), the resulting
gain curve matches closely the gain function of the MMSE-LSA estimator. Since the order 3
influences the amount of attenuation, it is reasonable to adjust  adaptively depending on the
speech segment, rather than using a fixed value for .

For the aforementioned MMSE algorithms, a key assumption made is that the real and
imaginary parts of the clean speech spectrum can be modeled by a Gaussian distribution.
Observing that the real and imaginary parts of the clean speech STFT are successfully
modeled by super-Gaussian densities, the use of non-Gaussian distributions for modeling the
real and imaginary parts of the speech spectrum have been further studied [40]-[44]. However,
the improvement in performance of the MMSE estimators based on non-Gaussian

distribution assumption is not significant [1].

2.3.5 Probability of Speech Presence

For the above speech enhancement method, the clean speech estimator is derived under
the assumption that speech is always present. It is indeed not true in speech pauses or
between spectral bins of the harmonics of a voiced speech. There are two forms of speech
absence. The first form of speech absence is due to the speaker pausing in his speech resulting
in significant portions of silence. The second form of speech absence is that although the

speaker is talking, the speech energy is not present in all frequency components. For some
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frequency components with insignificant energy, speech can be considered to be absent in
those components. Such knowledge of speech absence can be useful to improve a speech
enhancement filter. The first attempt in utilizing the uncertainty of speech absence was
explored by McAulay and Malpass [13]. In their approach, they derived a filter based on a
fixed probability of speech absence of 0.5. The Ephraim and Malah noise removal filter [14]
adopted a more flexible approach in which different spectral frequency components can be
assigned a different probability of speech absence which ranges from zero to one. The

probability of speech absence is expected to be a function of time and frequency. More
specifically, the kth spectral output, X (k), of the Ephraim and Malah noise suppression

filter, taking into account the uncertainty of signal presence, is given by the following

equation:
X ()| = [P()G (k) + (1= p(NGy (][ ()| = Gy s [V ()] (2.21)
where p(k) is the speech presence probability (SPP) defined as follows:

1—q(k)
I=q(k)+ q(k)(1+ (k) exp(-u, )

plk) = (2.22)

where u(k) = =45 (2.23)
q(k)
where q(k) is the probability of speech absence. The a-priori SNR, &, can best be estimated

by the decision-directed approach [14] as (2.17). For speech absence, the clean speech
estimator is zero [13][45], and the gain function G, ;4. cpp 1S glven by
Gsserser = P(K)G (k) (2.24)

However, their work does not touch on how the probability of speech absence can be
estimated, and for performance evaluation, the probability of speech absence was set to 0.2

experimentally.
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As mentioned above, the MMSE-LSA estimator [15] is especially popular because of its
robustness against estimation errors which results in less musical noise [46]. By incorporating
the speech presence uncertainty into the MMSE-LSA filter as in Cohen’s algorithm given
in [46]-[47], the gain function applied to the observed noisy speech spectrum is given as

follows:

G5 (k) = {G 5, ()} G, (R)} (2.25)

where p(k) is the SPP as mentioned above; G,,;, is chosen to be a small constant less than 1.
For a particular frequency bin £, it can be seen in (2.25) that the overall gain will approach
Guin 1f p(k) tends to zero. It means that the original clean speech estimator will not be used if
the probability of speech presence in that frequency bin is low. Several approaches have been
suggested for estimating and updating p(k) [45][47]-[48]. These methods substantially reduce
the residual noise when combining with the statistical estimators. However, the SPP estimator
is not always accurate. Recently, in order to avoid wrongly suppressing speech components
and leading to a large distortion in the enhanced speech, Gerkmann [49] proposed an
improved SPP estimator pj,(k) which achieves by smoothing the a-posteriori SNR function,
both temporally and spectrally, before applying to the estimation of the generalized likelihood
ratio (GLR). Temporal smoothing is achieved by using a time averaging method performed
across speech frames, and spectral smoothing is achieved by using a pair of local and global
filters applied to the noisy a-posteriori SNR function in each frame. Some improvement is

noted as compared to the traditional SPP based MMSE-LSA algorithms.
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2.4 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) [70][71] is a popular transform which has
found applications in many image processing problems. Its basis functions are localized, and
well-suited to the analysis of natural signals (e.g. images, audio, biomedical signal, etc...).
They often yield a sparse representation of the signal after transformation. The structure of
the DWT is similar to the subband filtering. The input signal is concurrently filtered by a high
pass and low pass decomposition filter to produce two signals, detail and approximation,
respectively. The approximation signal is the low-frequency component of the signal, while
the detail signal is the high-frequency component. Both signals are then downsampled by 2.
This composes one level of decomposition and the process can be applied again on the
approximation signal to form another level of decomposition. The block diagram for wavelet
decomposition is shown in Fig. 2.3.

The DWT has the advantage of using a variable length window for different frequency
components. This allows the use of shorter intervals for high-frequency information as well
as long-time intervals to obtain more precise low-frequency information. Thus, the
characteristics of nonstationary speech signals can be more closely examined. The wavelet
basis functions are well localized in time and scale domains, since the support of the wavelet
basis functions can be fexibily adjusted (or selected) to achieve the locality required. This
behavior of wavelet decomposition is appropriate for processing of speech signals which
need high temporal resolution to analyze high-frequency components (mostly unvoiced
sounds), as well as high-frequency resolution to analyze low-frequency compoments (voiced
sounds, formant frequencies).

The filters can be in different orders and forms (Daubechies, Symlets, Biorthogonal,
etc) [72], and the number of decompositions can also be adjusted according to the needs of

the application. The main advantage of DWT is its fast implementation as its computational
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complexity is in the order N, where N is the data size (in contrast to Nog,N for fast Fourier
transform (FFT)). Also, the number of taps of the digital filters used in the transform is

normally small.
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Fig. 2.3 — Block diagram of DWT

2.4.1 Noise reduction with wavelets

Signal denoising is one of the major applications of the wavelet transform. It can be
achieved by identifying the singularities in the signal, which can be characterized based on
the modulus maxima of the signal’s wavelet coefficients [73]. Based on spatial correlation
between the wavelet coefficients over adjacent scales, the singularities due to noise can be
detected and remove [76]. Another class of popular wavelet denoising methods is based on
thresholding the signal’s wavelet coefficients [74]. Due to the vanishing moments of the
wavelet functions, the wavelet transform of most natural signals will result in only small
amount of significant wavelet coefficients (i.e. sparsity). It however is not the case for noises,
which have their wavelet coefficients spread over the transform domain but with small
magnitude. Hence by thresholding the wavelet coefficients, a large amount of noise energy
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will be reduced while the energy for the signal is kept. More specifically, the wavelet
thresholding algorithm can be summarized in three steps:

1. DWT of the noisy signal,

2. Thresholding the resulting wavelet coefficients, then

3. Inverse DWT (IDWT) to obtain the denoised signal.

The following soft thresholding function defined in [68] and [77] has been popularly used:

) = {sgn(w(k))(|w(k)| —thr)  |w(k)|> thr (226)

0 w(k) < thr

where w(k) represents the wavelet coefficients and thr is the threshold. The universal threshold

defined in [68] is popularly used. It is given as follows:

thr=0,+/2logM) (2.27)
where ¢, is the noise variance. In practice, the noise variance may not be known. It can be
estimated based on the robust statistics as ¢, = MAD/0.6745, where M is the number of

samples; MAD is the median of the absolute value of the noisy wavelet’s coefficients. A level

dependent threshold can also be defined as follows [78]:

thr, = o) \[2logM ) (2.28)
with ¢, = MAD;/0.6745 and MAD; is the median of the absolute value of the coefficients,

estimated with level j wavelet coefficients. The discriminatory threshold can also be
determined by wusing other criterion such as the Stein’s unbiased risk estimate

(SURE) [79][80].

2.4.2 Application of DWT to speech enhancement

The standard wavelet thresholding has not been successfully applied to speech

enhancement directly because the simple threshold cannot discriminate efficiently the speech
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components from those of the noise. The wavelet transforms, however, are successfully
combined with other denoising methods and can improve the performance of speech
enhancement algorithms. They include using the wavelet filter bank for spectral
subtraction [81], the Wiener filtering in the wavelet domain [82], or the coherence
function [83][84]. Furthermore, an adaptive threshold scheme was developed in [85] on a
modified hard thresholding function. A voice activity detector (VAD) was proposed to
estimate noise level in colored and non-stationary noise contaminations. Besides, the bionic
wavelet transform with the wavelet denoising technique was used to construct a new adaptive
thresholding method for speech enhancement in [86]. However, these wavelet based methods
usually need an estimation of the noise. In order to enhance the noisy speech without the
requirement of an accurate estimation of the noise level, a time and scale dependent wavelet
thresholding scheme for speech enhancement was proposed in [87], where the time
dependency was introduced by approximating the Teager energy of the wavelet coefficients,
and the scale dependency was introduced by using a level-dependent thresholding scheme
based on the wavelet packet structure. Since it is known that the noise in the multi-taper
spectrum is approximately white and additive, the wavelet thresholding scheme is directly
applied to help in estimating the a-priori SNR and in turn enhancing the noisy speech [88].
However, the enhanced speech still suffers from annoying musical residual noise in the case
that the noise is colored. The musical residual noise is caused by randomly spaced spectral
peaks that come and go over successive frames, and occur at random frequencies [88]. To
deal with this problem, a wavelet-domain optimal linear estimator which incorporates the
masking properties of the human auditory system was proposed to make the residual noise
inaudible [89]. In [90], a gain factor which is adapted by both the intra-frame masking
properties and the inter-frame SNR variation was further proposed to enhance a noisy speech

signal corrupted by non-stationary noise.
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2.5 Cepstral Representation

While the Fourier transform is the core operation of a frequency domain speech
enhancement algorithm, an important concept that flows directly from the Fourier transform
is the cepstrum of speech. The cepstrum of a speech signal is the inverse Fourier transform of
the logarithm of its magnitude spectrum [91]. The processing related to the computation of
the ceptrum is a special case of the more general concept of homomorphic processing [92].
Cepstral representation is also useful in the context of stochastic signals, especially when the
power spectrum of these signals is from an autoregressive model. It has been used in speech
recognition for the computation of spectral features [93][94], and in speech coding for the
quantization of the spectral envelop [95]. A more detailed discussion of the uses of the
cepstrum in speech processing can be found in [96][97].

The cepstrum of a stationary signal x with power spectral density Sy(k) is obtained from

the inverse DFT of the logarithm of S,(k), i.e.,
C.(9)=IDFT{log(S, (k))} (229)

where ¢ is the cepstral index, also known as the quefrency index [91]; the natural logarithm is

assumed throughout this thesis. Cepstral representation of a signal with an unknown power

spectral density is achieved from the inverse DFT of the logarithm of an estimate S‘x (k) of

S«(k) as follows:
C.(q)=IDFTllog(S, (k)] 230)

Hence éx(q) may be considered as the estimates of the “true” cepstrum C,(g). Different

power spectral density estimates generate different cepstral representation results. Parametric
and nonparametric power spectral density estimates have been used in the cepstral
representation of speech signals [98][94]. The autoregressive modeling of the signal is the
most commonly used method to obtain the parametric power spectral density estimates. The

27



nonparametric power spectral density estimates for cepstral representation of speech signals
consist of the periodogram [99], the smoothed periodogram obtained from the “window
method” [99], as well as the closely related mel-spectrum [93][94]. Besides, improved

cepstrum estimation via optimal risk smoothing for the periodogram was proposed in [100].

2.5.1 Spectral Estimation via Cepstrum Thresholding

Although periodogram is one of the most popularly used non-parametric estimates of
power spectrum used in ceptrum estimation, the high variance of the periodogram, which
approaches to the square of the true spectrum as data size increases, can introduce great error
to the cepstrum generated. The cepstral thresholding as an approach for variance reduction in
spectral estimation of a stationary signal was proposed in [101] and [102]. For many practical
situations, it has been observed that a lot of these cepstral coefficients are either zeros or
extremely small in magnitude [101]. In fact, many thresholding based cepstrum estimation
methods were motivated by this observation. The cepstrum thresholding has been shown to
be an effective and automatic way for obtaining a smoothed nonparametric estimate of the
spectrum of a stationary signal.

The relationship between the true cepstrum and the cepstrum estimated from the signal’s

periodogram can be mathematically defined. Given that the true cepstrum is defined as,

M-1

1 )
Cx(q)=HZlog(Sx(k))e’2”kq/M; q=0,...M-I 2.31)
k=0

where M is the total number of qurefrency. Denote the periodogram of the original signal x as
S”X (k) such that Sx (k)= |X (k)|2 . Let éx be the cepstral coefficients computed from the

signal’s periodogram vas follows:

A 1 M-1 n ]
Cx(q)Zleog(Sx(k))e”’-’q’M . q=0,...M-I (2.32)

k=0

Let us further define,
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C.q)+y for q=0

. ' (2.33)
C.(9) otherwise

@A®={

where y = 0.577216 is the Euler’s constant. It is shown in [101] and [105] that under some

regularity conditions and for large sample size (M >> [) real-valued data, the estimated

cepstral coefficients éx(q) are even symmetric and independent random variables having
normal distributions with means C_.(q) and variances af (g) as follows:
C)~N(C..ol(@) 5 ¢=0,...M/2 (2.34)

where

ﬂ7(3M) for q=0,M/2
ol @)=1, (2.35)
4 (6M) otherwise

The above result has been used in the derivation of a number of thresholding based
nonparametric spectrum estimation algorithm. The thresholding method can be the simple
thresholding  (SThresh) [101][102][106] or the empirical Bayes thresholding

(EbayesThresh) [107][108]. Further extension for complex signals was proposed in [109].

2.5.2 Speech enhancement in the Cepstral Domain

As mentioned above, spectral outliers in the adaptation of filter gains may emerge that
lead to the annoying musical noise. Musical noise is particularly difficult to avoid under
non-stationary noise conditions. Different methods have been used to deal with
that [45][110] [111]. Many of them are based on reducing the variance using different
smoothing approaches in the frequency domain [112][113][114]. A disadvantage of
smoothing in the frequency domain is that the frequency and temporal resolutions are
decreased. It is not desirable as the temporal smoothing spreads speech onsets and the

frequency smoothing reduces the resolution of speech harmonics. Recently, it was
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demonstrated that smoothing in the cepstral domain is better than the smoothing in the
spectral domain [115][116]. In the cepstral domain, speeches mainly consist of the
coefficients in the lower cepstrum which represent the spectral envelope as well as a peak in
the upper cepstrum which represents the fundamental frequency and the harmonics [117].
Hence the speech can also be considered to have a sparse representation in the cepstrum
domain. As a result, smoothing in the cepstrum domain can reduce the variance without
distorting the speech signal. Generally, a cepstral variance reduction can be realized by either
setting those cepstral coefficients to zero that are below a certain threshold [101][102], or by
selectively smoothing the cepstral coefficients over time [115][116]. A modified cepstrum
thresholding was proposed to reduce the non-stationary noise components [118]. In addition,
a cepstrum based spectral estimation algorithm was proposed in [119][120]. It makes use of
the knowledge about the speech spectral structure so that a better estimate of the noise power

spectral density can be obtained.
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2.6 Dictionary learning

When analyzing a signal, it is not uncommon to express the signal with an overcomplete
representation since the redundancy in the representation often can provide extra information
to better the analysis. Different criterion can be adopted when designing an overcomplete
transform kernel. Recently, the sparsity of the transform coefficients is of particular interest in
many signal processing applications, including signal denoising, restoration and
reconstruction, etc. More specifically, if y is a signal and X is its transform coefficients, the
overcomplete transform kernel D (or the so-called “dictionary”) is designed based on the
sparsity criterion as follows:

arg minl|x|lo s.t. y = Dx (2.36)
where ||. ||, is the sparsity measure that counts the number of nonzero coefficients. The
above equation shows that the signal y can be expressed as the linear combination of only a
few column vectors in D (which are also called “atoms”). Two main methods have appeared
to determine a dictionary within a sparse decomposition: dictionary selection and dictionary
learning. Dictionary selection entails choosing a pre-existing dictionary, such as the Fourier
and related bases, wavelet basis, or constructing an overcomplete dictionary by forming a
union of bases so that particular properties of the signal can be represented [69]. Besides,
dictionary learning aims at deducing the dictionary from the training data, so the coefficients
directly capture the specific features of the signal [22]. Dictionary learning methods are
commonly based on an alternating optimization strategy, in which the signal representation is
fixed, and the dictionary elements are learned; then the sparse signal representation is found,
while the dictionary is fixed. Early dictionary learning methods were based on a probabilistic
model of the observed data [121][122]. Lewicki and Sejnowski [122] clarified the relation
between the independent component analysis (ICA) and the sparse coding methods, while the

connection between dictionary learning in sparse coding as well as the vector quantization
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problem was presented in [123]. The dictionary based on sparse representation which using
variants of the focal underdetermined system solver (FOCUSS) was proposed in [124].

The Method of Optimal Directions (MOD) is one of the first methods to implement the
sparsification process [125][126]. Given a set of examples X = [x; x, ... x,,/, the goal of the

MOD is to find a dictionary D and a sparse matrix € which minimize the representation error,

arg minD’C”X—DC”; subject to V,, Ci||0 <¢ (2.37)

where c¢; represent the columns of C; and ¢ is a very small real number. The resulting

optimization problem is combinatorial and highly non-convex, and thus we can only expect
for a local minimum at best. The MOD alternates sparse-coding and dictionary update steps
similar to other training methods. The MOD is a very effective method as it requires only a
few iterations to converge, but the drawback of this method is the relatively high complexity
of the matrix inversion.

Aharon et al. [127] proposed the K-singular value decomposition (K-SVD) learning
algorithm over redundant dictionaries, which involves a sparse coding stage based on a
pursuit method and is followed by a dictionary matrix update step which updates the matrix
one column at a time. The K-SVD algorithm defines an initial overcomplete dictionary
matrix D, € RV*P | a set of examples arranged as the columns of the matrix X €
RN*R

,and a number of iterations n. The algorithm intends to iteratively improve the

dictionary by approximating the solution defined as follows:

v,
v,

cf, <K

4 =1 (2.38)

min , . ||X—DC||1 subject to

The vectors d; denote the rows of D. The normalization constraint on the rows of D is
introduced to avoid degeneracy, but it does not have any practical significance to the result.
The K-SVD iteration involves two basic steps: (1) sparse-coding the signals in X given

the current dictionary estimate, producing the sparse representations matrix C, and (2)
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updating the dictionary atoms given the sparse representations. The sparse-coding step can be
implemented using any sparse—approximation method. The dictionary update process of the
K-SVD algorithm is performed in a simple atom-by-atom process, rather than performing
matrix inversion. The approximation error could be reduced with increasing target sparsity K,
but it also increases the computational time.

The atom update is achieved while preserving the sparsity constraints in (2.38). To
perform this, the update step applies only those signals in X whose sparse representations use
the current atom. Denoting / as the indices of the signals in X which make use of the j-th atom,
the update of the atom is achieved by optimizing the following target function,

|x, -DC,|; (2.39)
for both the atom and its associated coefficient row in C;. And then, the resulting problem is a

simple rank-1 approximation task given by,

{d,g} = Argmin, , HE — dgTHi subject to ||a’||2 =1 (2.40)

where E=X, - Z d,C,, is the error matrix without the j-th atom, d is the updated atom, and

oy
g' is the new coefficients row in C;. In general, the Singular-Value-Decomposition (SVD)
method or further efficiently using some numerical power method can be used to solve the
problem directly.

In practice, the process for obtaining the exact result of (2.40) can be rather
computationally demanding, because the number of training signals is proportional to the size
of E. However, the whole K-SVD algorithm does not target at converging to the global
minimum, but a local minimum (hence relies on a good initial guess). Hence an exact solver
is often not required. As a simple alternative, an approximate solution is proposed in [128] to

reduce the complexity. It is carried out by limiting the iteration to be only one as follows:

d=Eg/|Eg|, (2.41)
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g=E"d
The above process is recognized to finally converge to the optimum, and when truncated, will
result in an approximation which still condenses the penalty term [128]. Also this process
disposes the need to clearly compute the matrix E, as only its products with vectors are
required.

In addition, the latest contributions to the field employ parametric models in the training
process, which produce structured dictionaries [129][130]. Recently, a different improvement
was achieved in online dictionary learning [131] which allows dictionary training to be
carried out from very large set of data. It is found to accelerate convergence and improve the

training result.

2.6.1 Speech enhancement based on sparse coding

The framework of sparse representation and dictionary learning provides new solutions
for speech enhancement. Since expressing a signal by its sparse representation is similar to
the traditional coding methods, the operation is also dubbed as the sparse coding. The sparse
coding captures the salient features of a signal. While emphasizing the significant coefficients,
it is likely that the additive noise which is often represented by the non-significant
coefficients will be suppressed. This is the foundation behind the basis pursuit de-noising
algorithm [132] and the later denoising algorithms specifically tailored to speech and audio
signals [65][133][134][134]. For instance, a greedy adaptive dictionary learning algorithm
(GAD) was proposed in [65] for sparsely approximating and denoising speech signals. In
order to promote sparsity in the dictionary and in the approximation coefficients, atoms are
selected iteratively from the sparsest speech frames. Besides, a non-stationary noise reduction
algorithm based on the non-negative latent variable decomposition model of the speech and
the noise was proposed in [134]. Then, a combined dictionary of speech and noise using the

non-negative matrix factorization (NMF) method was developed to represent noisy speech

34



signals [135]. A similar method which recovers the clean speech using a composite dictionary
consisting of the dictionary for speeches and noises was introduced in [136]. This method
implements the composite dictionary learning using the K-SVD algorithm and extends the
least angle regression (LARS) algorithm to include a residual coherence stopping criterion
and optimized it to solve a large number of simultaneous coding problems efficiently. Finally,
a speech enhancement method based on sparse coding the power spectral density (PSD) was
presented in [137]. The PSD dictionary of the clean speech signal is trained by the
approximate K-SVD algorithm with nonnegative constraint. By combining the estimated
PSD with the signal subspace approach based on the short-time spectral amplitude

(SSB-STSA), the enhanced speech signal is obtained.
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2.7 Background Noise Power Estimation

Besides signal power estimation, the estimation of the background noise power spectrum
is also an important task in a typical speech enhancement process. Noise, in contrast to
speech, can generate from any kind of source and have any spectral and temporal
characteristics. In general, there are some assumptions made about the noise when
approaching the speech enhancement problem: (1) noise and speech are statistically
independent; (2) noise has a longer period of stationary than speech; and (3) noise is always
present in a noisy speech, although its magnitude and frequency response can be varying.
When estimating the noise power, most of the proposals in the literature are based on either
the bias compensated tracking of spectral minima technique (“minimum statistics”) [50],
voice activity detection (VAD), recursive averaging [13][17], soft-decision methods [45][51],
or a combination of all above [52]-[53].

In practice, the noise power can be estimated adaptively from the silence or speech
pause period. A simple method to estimate the noise spectrum is to use a VAD to classify
when the speech is absent and then average the signal power spectrum during these intervals.
Generally, the averaging time-constant is selected based on the assumed stationarity of the
noise. The following VAD decision rule was used in this thesis:

Hl
VAD = %Zlog Ak~ 8 (2.42)

<
H

—_

where

V(k)f(k)} (2.43)

A(k) = ex
O ew p{ T+ &)
where ¢ and y are the a-priori and a-posterior SNRs, respectively, as mentioned above; and ¢

is computed using the decision-directed approach with a = 0.98. N is the size of DFT, H;
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denotes the hypothesis of speech presence, Hy denoted the hypothesis of speech absence, and
d is a fixed threshold, which was set to & = 0.15 in [1]. If speech absence is detected, the noise

power spectrum is updated according to the following formulation:

S, (k,i)= =Y k,i)|” + S, (k,i~1) (2.44)

where = 0.98, S'H (k,i) is the estimated noise power spectrum of frame i (at frequency bin

k). Such noise power estimator can give good performance for stationary noise. However,
large estimation error will result when the noise is non-stationary, particularly for those

noises that have their frequency spectrum changes drastically within a short period of time.
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2.8 Evaluation of speech enhancement system

Controlled experiments are often conducted when evaluating the performance of a
speech enhancement system. In such experiments, standard clean speech segments are added
with different kinds of noise retrieved from a standard database. The noises are amplified to
different levels so as to test the enhancement performance of the algorithm at different SNR.
For instance in our experiments, noises are retrieved from the NOISEX-92 database [193]
and are added to clean speech segments extracted from the TIMIT database [192] at different
SNR. NOISEX-92 is a noise database which provides various noise signals recorded in real
environments. In order to evaluate the performance of speech enhancement systems in real
life applications, different noises from the NOISEX-92 database (e.g. the destroyer engine
room noise, F16 cockpit noise, buccaneer noise, leopard (Military vehicle) noise, M109
(Tank) and babble noise which is recorded in a canteen with 100 people speaking.) have been
used in the experiments.

Speech quality is a measure on how comfortable human listerers perceive a speech
signal. Various defects in a speech can affect its quality, such as the final distortion of the
speech and the level of the residual noise. The methods used to evaluate speech quality can be
divided into the subjective and objective ones. Subjective methods require the participation of
human listeners, and can use the preference scoring if a comparison is made between two or
more speech signals, or the absolute scoring if a single stimulus is evaluated at each time.
One of the most widely used absolute scoring quality measures is the Mean Opinion Score
(MOS) [54]. The MOS value is calculated as the average score provided by a number of
trained listeners who rate the quality of the speech using a five-point numerical scale, with
one indicating “unsatisfactory” or “bad” quality and five indicating “excellent” quality.

Although subjective methods are the only way to obtain true measurements of speech

quality, these are expensive in both resourses and time. And the result can be biased
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according to the interest of the listeners. Objective methods, in contrast, do not require any
evaluation by external personnel and estimate the quality using some analysis of the speech
signal, providing an efficient approach for evaluation. Objective measures are popular for
evaluating the performance of speech enhancement techniques [55]. In this thesis, we focus
on the objective measures by intrusive methods which also require the original clean speech
signal to evaluate speech quality. The simplest and most common objective quality measure
is the segmental signal-to-noise ratio (segSNR) [56]. The segSNR is calculated by splitting
the signals into frames and averaging the calculated SNR in all the frames that contain speech.
Several other objective measures were proposed derived from the dissimilarity between
all-pole models of the clean as well as enhanced speech signals [57]. Two of the most
well-known all-pole based measures used to evaluate speed-enhancement algorithms are the
Itakura-Saito (IS) and log-likelihood ratio (LLR) measures. Cepstral distance (CD) measures
obtained from the linear predictive coding (LPC) coefficients were also used.

In recent years, perceptually motivated measures have also been popularly used in
measuring the speech quality. The Perceptual Evaluation of Speech Quality (PESQ) is
defined and becomes an ITU standard, ITU-T P862 [58]. PESQ includes a complex sequence
of processing steps to produce a set of distortion scores as a function of time and frequency.
The PESQ algorithm provides a quality score on a scale from 0.5 to 4.5 which has been
shown to match well with subjective listening tests over a range of telephony channels [59].
The performance of PESQ on processed speech using noise-reduction algorithms was
evaluated in [60], where high correlations between 0.83 and 0.96 were achieved across
different processing algorithms and noise types.

On the other hand, composite methods have also been used to obtain a higher correlation
to subjective measures. A composite objective measure is introduced in [61] for the objective

quality rating of speech enhancement methods. It is compared with P.835 subjective
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measures [62] for various SNR, noise types and enhancement algorithms [63]. It is shown
that composite objective measures can give the best predictor for different subjective

measurcs.
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Chapter 3 Wavelet Based Speech Presence Probability Estimator

for Speech Enhancement

3.1 Introduction

Speech enhancement is a challenging problem due to the diversity of noise sources and
their effects in different applications [1]. As it has widespread applications in speech
communications and recognition, continuous effort is being exerted to its
investigation [14],[15],[35],[46]-[49],[88],[139]-[145] although an optimal solution is yet to
be found. Many speech enhancement methods work in the frequency domain. In these
approaches, a noisy speech signal is divided into overlapped frames and the short-time
Fourier transform (STFT) is applied to each frame to obtain its frequency spectrum [1]. A
gain function is then applied to suppress the selected frequency components in order to
reduce the effect of noise to the speech [14],[15]. For these speech enhancement algorithms, a
reliable estimator for speech presence probability (SPP) can significantly improve their
performance. It is because clean speech estimators used in these approaches are often derived
under the assumption that speech is always present. It is indeed not true in speech pauses or
between spectral bins of the harmonics of a voiced speech. Consequently, SPP estimator is
used [46],[47],[49],[140] to help in detecting the non-speech frequency components and
further suppress them. For instance, in Cohen’s algorithm given in [46],[47], the popular
MMSE-LSA gain function [15] is modified such that if a frequency component is expected to
have insignificant speech energy, the gain function will approach to a small constant rather
than the original MMSE-LSA one. However, the SPP estimator in [46],[47] is not always
accurate. Speech components can be wrongly suppressed and leads to a large distortion in the

enhanced speech. In [49], it was suggested that a good SPP estimator can be achieved by
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smoothing the a-posteriori SNR function, both temporally and spectrally, before applying to
the estimation of the generalized likelihood ratio (GLR) (an important parameter for
estimating SPP). Temporal smoothing is achieved by using a time averaging method
performed across speech frames. Spectral smoothing is achieved by using a pair of local and
global filters applied to the noisy a-posteriori SNR function in each frame. The resulting SPP
estimator achieves probabilities close to zero for speech absence and probabilities close to
one for speech presence. Although such feature is extremely useful for suppressing frequency
components of noise, it has the side effect that any error in the estimation of speech absence
can lead to a sudden jump in the SPP function and give rise to the musical noise [1] in the
enhanced speech. To solve the problem, another approach using temporal cepstrum
smoothing was proposed to improve the smoothing of the a-posteriori SNR [140]. Although
estimation errors are noticeably reduced, the approach requires many empirically set
parameters that make the generalization of the approach difficult.

As shown in [49], the performance of the smoothing process is crucial to the accuracy of
SPP estimation and in turn the quality of the enhanced speech. In fact, the local and global
filters used in [49] resemble a multiresolution filter bank which has been studied extensively
in the wavelet community. In particular, Moulin suggested applying the wavelet denoising
technique for smoothing the power spectrum of signals [146]. It was then shown in [147] that
the wavelet denoising technique is particularly effective when applying to the multitaper
spectrum (MTS) [149] of a signal. The MTS estimation technique was suggested to reduce
the error variance when estimating the power spectrum of a signal using the STFT. It is
obtained by averaging the periodograms of a signal generated using a number of orthonormal
tapers. The error variance can be reduced by a factor of L where L is the number of tapers.

Besides, if we let 77 be the error between the log MTS and the log power spectrum of the

signal, it was shown that 7 is Gaussian distributed if the number of tapers is 5 or more. Hence,
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different wavelet denoising techniques, such as the wavelet shrinkage [68][79], were directly
applied [147] in order to further enhance the estimation. Such technique was first applied to
speech signals in [88] with some success reported. When implementing the wavelet shrinkage
algorithm, the universal threshold was commonly used in the traditional
approaches [88] [146]-[147] (although a SUREshrink approach was also suggested in [88] at
the same time). It is known that in order to have the universal threshold effectively performed,
the input noise process should be white Gaussian. However, it can be easily shown that even
if the input additive noise process is white Gaussian, its log MTS can hardly be considered as
white. Correlation exists among neighbored spectral components, and will increase when
more tapers are used. Hence, the universal threshold is often far from optimal when using in
the denoising of the log MTS of noisy speeches. In fact, the dynamic range of a speech power
spectrum is highly compressed when transforming to the log domain. The spectral peaks of
the speech are thus smoothened such that their wavelet coefficients in the log domain can
have a magnitude similar to those of noise. It is particularly the case for some weak speech
frames with low SNR. A slight error in threshold estimation can either remove a lot of speech
wavelet coefficients or leave behind many wavelet coefficients of noise. The former will
degrade the speech intelligibility while the later will lead to the annoying “musical” noise,
which are both undesirable as far as the overall performance is concerned. As an example, we
show in Fig. 3.1a and Fig. 3.1b the first level wavelet coefficients (absolute value and 4-tap
symlets (sym4) wavelets) of the log MTS and periodogram, respectively, of a typical speech
frame with white noise. We also show in Fig. 3.1c the periodogram of the original clean
speech frame. 5 tapers are used for the generation of the MTS. From Fig. 3.1c, we know that
the wavelet coefficients at both ends of Fig. 3.1a and Fig. 3.1b should correspond to the
speech. It can be seen in Fig. 3.1b that the speech wavelet coefficients of the noisy

periodogram are relatively easier to be identified from those of the noise floor. It is not the
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case for log MTS. As can be seen in Fig. 3.1a, the wavelet coefficients of speech and the
noise floor in the log MTS can have similar magnitude as mentioned above. A simple

thresholding scheme will have much difficulty to separate them.
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(a) Level 1 wavelet coefficients |wl””’(k1)| (see (3.18)) of a log MTS (noisy speech)
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(b) Level 1 wavelet coefficients ‘Wj, (klx (see (3.11)) of a periodogram (noisy speech)
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(c) Level 1 wavelet cofficients ‘W)lc (klx (see (3.11)) of a periodogram (clean speech)
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Fig. 3.1 — Level 1 wavelet coefficients (absolute value) of (a) the log MTS of a typical speech frame
with white noise; (b) the periodogram of the same noisy frame; and (c) the periodogram of the same

speech frame without noise.
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In this chapter, we propose a new algorithm for the estimation of the SPP. Rather than
using the local and global filters as in [49], we obtain a smooth a-posteriori SNR function by
denoising the speech power spectrum using the a new wavelet based MTS estimator. The use
of the wavelet transform allows a speech power spectrum to be analyzed with filters of
arbitrary number of resolutions, rather than two (local and global) as in [49]. Besides, we
shall benefit from the studies in the wavelet community in determining the various thresholds
for denoising a speech power spectrum. The proposed estimation algorithm can be divided
into two stages. First, we apply the wavelet transform to the observed noisy speech
periodogram. The wavelet coefficients that are likely incurred by the spectral peaks are
detected. It forms an oracle that indicates the approximate spectral locations where the
wavelet coefficients of the spectral peaks can likely be found. Second, we apply another
wavelet transform to the log MTS of the noisy speech. Based on the locality property of the
wavelet transform, it is safe to assume that the oracle obtained in stage 1 can also indicate the
wavelet coefficients of the spectral peaks in the log MTS domain. Hence, these wavelet
coefficients should be kept. Besides, we also keep those wavelet coefficients which are
greater than a threshold derived based on the Stein’s unbiased risk estimator (SURE) and are
in the vicinity of those indicated in the oracle. These coefficients are also likely to be the
coefficients of spectral peaks. For the rest, they are considered as the coefficients of the noise
floor and are removed. A smooth speech power spectrum can thus be reconstructed from the
remaining wavelet coefficients and is then used to compute the a-posteriori SNR of the noisy
speech signal. Due to the change in the smoothing procedure, we also propose a new
estimation method of the generalized likelihood ratio (GLR), which is an important parameter
for SPP estimation. The new SPP estimator can then be adopted in different speech
enhancement algorithms, such as the popular MMSE-LSA [15]. When comparing with the

traditional SPP estimators, better performance was achieved in most cases when using the
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proposed SPP estimator evaluated using different standard measures as mentioned in [1].

This chapter is organized as follows. In Section 3.2, the background of the traditional
SPP estimation method for speech enhancement, and the use of MTS and wavelet denoising
for smoothing the power spectrum of a noisy speech signal are presented. The proposed
2-step wavelet denoising algorithm for smoothing the noisy speech power spectrum is
described in Section 3.4. The new estimation method for the GLR is shown in Section 3.5.
Simulation results are shown in Section 3.6, and we summarize the results in Section 3.7.

The results in the chapter have also been reported in [160] and [180].

3.2 SPP Estimation, MTS and Wavelet Denoising

As mention in Chatper 2, many approaches have been suggested for estimating the SPP
p(k). Recently, Gerkmann et al. proposed an improved SPP estimator py,(k) [49] which adopts
a fixed a-priori SNR and a fixed prior probability of speech presence. More importantly, they
suggested that a good SPP estimator can be obtained by smoothing the a-posteriori SNR
function, both temporally and spectrally, before applying to the estimation of the generalized

likelihood ratio (GLR) given as follows:

_q py|H)
(-q) p(r | Hy) 3D

where A is the GLR and ¢ is the a-priori speech presence probability. p(y|H,) is the
probability density function (PDF) of y under the hypothesis H;, i.e. speech is present.
Similarly, p(y|H,) is the PDF of y under the hypothesis Hj, i.e. speech is absent. The

SPP can be computed based on the GLR as follows:

A
SPP:P(H1|7):H- (3.2)

In [49], the temporal smoothing is achieved by using a time averaging method performed
across speech frames. Spectral smoothing is achieved by using a pair of local and global
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filters applied to the noisy a-posteriori SNR function in each frame. The smoothing of the
a-posteriori SNR function needs to be carefully designed to minimize the error in the
estimation of speech absence. On the other hand, we also need to make sure the a-posteriori
SNR function is not over-smoothed such that all spectral peaks are kept during the smoothing
process. They are important to the intelligibility of the enhanced speech.

One of the approaches to smooth the a-posteriori SNR function is by denoising the

observed noisy speech power spectrum S , - To facilitate the design of the required denoising

A

algorithm, we need to have a better understanding of the noise that appeared in S, .

Traditionally, S

, 18 computed using the short-time periodogram defined as follows:

2

N-1 )
D y(me ™

n=0

. 1
S, ho)=— : (3.3)

where i is the frame index. Although y is the result of x with noise added, it is well
understood that the noise found in S , does not really follow an additive model. It is actually

the result of the stochastic noise inherent in the estimation when computing the short-time
periodogram. For the rest of this chapter, we dub such noise as the “structural noise” since its
behavior is determined by the structure of the power spectrum estimator rather than the input
signal. It should be differentiated from the “input additive noise” that is often found during
speech acquisition. The variance of the structural noise however is proportional to the sum of
the true power spectrum of the speech and the additive input noise process. It means that for
spectral peaks in the power spectrum, the variance of the structural noise can be extremely

high. For spectral valleys, the variance of the structural noise can be much lower. Hence, we

A

cannot just use a single measure for smoothing S

, - Rather, a smoothing scheme that can be

adaptive to the noise variance is needed.

The MTS approach was adopted in [88] for reducing the variance of the structural noise
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of speech power spectrums. The MTS reduce this variance by computing a small number (L)
of direct spectrum estimators each with a different tapter (window), and then average the L

spectral estimates. The MTS of frame i, wherei € Z, of a noisy speech y, is defined as:

ZZ (3.4)

Smt

h|~

2
where  S!(i, Zal(n)yl(n)e s\ and  k=0,1, ..., M-1.
Each noisy speech frame has N samples. If N < M, each speech frame will be padded with
zeros to ensure the sequence length is M. The tapers a;, for [ = 1 ... L, are designed to be

orthonormal. One of the popular choices is the sine tapers,

a,(n) = ,/ (’d](v’“:ll)j. (3.5)

The sine tapers were shown to make less significant local bias with roughly the same spectral

concentration [88]. When the tapers are orthonormal, the average of the output of all tapers
will reduce the variance of the structural noise by a factor of L, where L is the number of
tapers used. To further reduce the variance, the wavelet denoising techniques were suggested
to apply to MTS. It was shown that [88][147] for nearly all k£ (except near £ = 0 and M/2) the
difference between the log MTS and the true log power spectrum is found to be Gaussian
distributed if L = 5 or more. Besides, the variance of the structural noise in the log MTS
domain will become constant, irrespective to its variance in the original MTS domain [105].
Consequently, the wavelet denoising techniques, such as the wavelet shrinkage [68][79], can
be applied to the log MTS [88][147] to further reduce the noise variance.

When implementing the wavelet shrinkage, the threshold #ir is perhaps the most
important parameter that determines the denoising performance. Many important findings on

its selection have been reported in recent years. Donoho first proposed the "universal
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threshold" in [68]: thr=0,+/210g(), where o, denotes the noise variance, and M is the

number of samples. For colored noises, the SURE (based on the principle of Stein’s unbiased
risk estimation [150]) approach was proposed in [79] since the threshold thus derived can be

level dependent. Other choices of threshold can be found in [151]-[153].

3.3 Analysis of Multitaper Spectrum of Noise

In this section, we analyze the characteristic of the structural noise in MTS to illustrate
how the traditional approach can be improved. Note that in [147], the universal threshold is
used to denoise the log MTS of noisy speeches. It is also used in [88] although a SUREshrink
approach is suggested at the same time. In order to have the universal threshold effectively
performed, the noise process should be additive and white Gaussian such that the noise
variance at all levels of the wavelet transform is the same. However, as it is shown below, the
noise process can hardly be considered as white particularly when many tapers are used.

In [148], it is shown that, for zero-mean white Gaussian input with variance &*, the

covariance of the periodogram at frequencies ®, and ®, is given by:

ol 50 o { sinfr(k, + )] J[ sin[ﬁ(kl—kz)]N]T} 6

Nsin[z(k, +k,)/ N] Nsin[z(k, —k,)/

where k, =Nw, /27 and k, = Nw,/2rn for integer k; and k. Since both terms in (3.2) are
equal to zero if k, #k,, a conclusion is then drawn in [148] that the periodogram is also
white since the covariance between adjacent frequency components is zero. However in
actual implementation, the frame size N is often different from the FFT length M as indicated
in (3.4). A speech frame is zero-padded to form a longer sequence for computing its

periodogram [1]. In this case, (3.6) should be rewritten as follows:
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corls(e )50k 1= 04{[ sinfr(k, + &, )N/M]Jz +[sin[;z(k1 K, )N/M]Jz} .

Nsin[z(k, +k, )/ M] Nsin[z(k, —k, )/ M]

where kK, =M, /27 and k,=Mw,/27 for integer k; and k, and M > N. It can be seen that
both terms in (3.7) are not necessarily equal to zero if k, # k, . It depends on the shape of the
taper, in this case the sinc function since the rectangular taper is assumed. In general, it can
be easily shown that for any taper al for /eZ, the covariance of the periodogram at
frequencies @, and ®, is given by:

4

covlS (08 (@)= =t (@ + 0. f + 40 -0 | (3.8)
!
where
N-1 ) 1 N-1
A (@)= a,(n)’e’™™ and C ZNZa,(n)z. (3.9)
n=0 n=0

(3.8) shows that the covariance of the periodogram at frequencies @, and ®, depends on
the power spectrum of the taper applied. The second term of (3.8) is particularly important. It
indicates that there will be covariance between adjacent frequencies @, and @,, o, # ®,,
if 4; is not an impulse. For most commonly used tapers such as Hanning or Hamming
window, their energy is highly concentrated at DC but not an impulse. Hence the covariance
between adjacent frequency components of a periodogram is not exactly zero, although the
value will die away quickly as @, and @, become farther apart.

Let us further consider the case when the MTS of a white Gaussian input additive noise
is computed. Since the tapers used for computing the MTS are chosen to be orthonormal, the
cross covariance between the periodograms generated by different tapers should be zero.

Hence it can be shown that:

cov{A "(@,)8™ (e, )}z iG—L {A, (0, +@,) + 4(0, -, } (3.10)
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where C; is defined as in (3.9). (3.10) shows that the covariance of the MTS at frequencies
®, and o, is the sum of the covariance of the periodogram at frequencies @, and o,
generated by all tapers. Similarly, the second term in the bracket of (3.10) indicates that there
will be covariance between adjacent frequencies @, and ®,, o, # ®,, if A; is not an
impulse for all 1. Fig. 3.2 shows the power spectrum of the sine tapers generated by
using (3.5), where L = 5. It can be seen that except the first taper, all other tapers do not have
energy centered at dc. Hence when summing up their power spectrum, there will be a wide

spread of energy around dc that the resulting power spectrum is certainly far from an impulse.

Power spectrum of sine tapers (L= 5)

Taper 1

- Taper 2
—w==a=Taperd
———Taper4
—=—Taper 5

T oy ; 'y y ' b et ; A
-0.02pi -0.01pi 0 0.01pi 0.02pi
Frequency (Radian)

Fig. 3.2 — The power spectrum of the tapers generated by (3.5), where L = 5, taper size N =

480 computed using FFT with size M = 960

Eqn. (3.10) shows that the covariance between adjacent frequency components of MTS
can hardly be considered as zero. The covariance will further increase when more tapers are
used in the MTS evaluation. It will be the same after taking log of the MTS since the
logarithm operator will not change the covariance between MTS frequency components. This
local covariance of the log MTS introduces much difficulty when denoising it using wavelet
shrinkage and universal threshold. It is because in this case the noise variance at each level of
the wavelet transform will be different. Using the same universal threshold for all levels will
introduce great error to the denoising process. To illustrate this, an experiment was conducted

to apply the wavelet transform to the log MTS of non-speech frames with only white noise.
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In the experiment, the discrete wavelet transform (DWT) with sym4 wavelet was applied to
the log MTS (L = 5) of a number of non-speech frames (i.e. these frames contain only the
additive white noise). The variance of the resulting wavelet coefficients at each level is
recorded as follows: level 1 — 0.016; level 2 — 0.112; level 3 — 0.474; level 4 — 1.078. Since
DWT is linear and orthogonal, the variance of the wavelet coefficients at all levels should be

similar if the structural noise is white. The above result however shows that it is not the case.

3.4 Proposed 2-stage wavelet denoising algorithm

In this section, the proposed algorithm for smoothing the noisy speech power spectrum
is described. Similar to the traditional approaches [88][147], the new algorithm works in the
log MTS domain and uses the wavelet denoising method for reducing the variance of the
structural noise. Denoising in the log MTS domain rather than the MTS domain is preferred
because it is generally believed that the enhancement process can follow better the perceptual
characteristics of the human auditory system when it is carried out in the log domain [15].
Besides, denoising in the log MTS domain avoids the ambiguity arisen from the negative
valued power spectral coefficients generated due to the non-linear wavelet denoising process.
The proposed algorithm can be divided into two stages as described below.

A. First Stage

For a noisy speech power spectrum, we can often find spectral peaks contributed by the
speech and/or the input additive noise (for certain kinds of colored noise). On the other hand,
we can also find regions where no spectral peaks can be found. Let us call these regions as
the noise floor. It is important to have a smooth noise floor since any large variance structural
noise that exists on the noise floor will likely contribute to the annoying musical noise in the
enhanced speech. Although the noise floor contains no spectral peak, we have shown in Fig.
3.1a that its log MTS can have large wavelet coefficients with magnitude similar to those of
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speech. It means that directly thresholding the wavelet coefficients in the log MTS domain
cannot smooth the noise floor. To solve the problem, it is desirable if we have an oracle that

indicates the locations of the wavelet coefficients of the noise floor in the log MTS. Such
oracle indeed can be obtained from the periodogram of the noisy speech. Let Sj’ be the

periodogram of a noisy speech frame y generated using a taper a; and
%=W{Sf’} (3.11)
be its level j wavelet coefficients, where W{.} is the wavelet transform. While S;’ behaves

also like a noisy signal, it is obvious that W; will be spread out for all j with magnitude

depending on the local variance of S’;” That is, if S';” has a large variance for some

frequencies k, the corresponding W)', for all j will also have large magnitude due to the

locality property of the wavelet transform. Let us denote (o" )Z to be the variance of the

nfloor

wavelet coefficients of the noise floor at level j. Then if 3';1’ contains a spectral peak at
frequency bin £, the magnitude of the respective wavelet coefficients W;(k j) are likely to be

much bigger than Gj},ao,,:

‘M/B];(k])‘ >> ar]l‘ﬂoor V] . (312)

This allows us to use a simple thresholding scheme to identify the wavelet coefficients of the
noise floor. Firstly we need to have a good estimation of O',{ wor- AN Intuitive approach is to

use a Voice Activity Detector (VAD) (such as [155]-[156]) to find out the noise frames
(frames that contain only noise) and then estimate the standard deviation of the noise wavelet
coefficients by averaging across these frames. However, due to the frequency response of
different colored noise (such as pink noise, high frequency noise, etc.), the noise power

spectrum can contain a limited number of spectral peaks and induce coefficients with large
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magnitude in the wavelet domain. Directly evaluating the standard deviation by averaging the
noise frames will have significant error. To solve the problem, robust statistics [157] is
adopted to avoid the estimation from being affected by the outliers. Among various robust
estimators, the median absolute deviation (MAD) is a robust measure of the variability of a
univariate sample of quantitative data. For a univariate data set Xi, Xa, ..., X,,, the MAD is

defined as the median of the absolute deviations from the data's median:

MADzmediani(‘Xi —medianj (XJ)D . (3.13)
In order to use the MAD as a consistent estimator of the standard deviation ¢ of the data set,

one takes

o=K*MAD .
(3.14)

where K is a constant scale factor, which depends on the distribution. For Gaussian
distributed data, K is taken to be 1/®"'(3/4)~1.4826=1/0.6745, where @ ' is the inverse of

the cumulative distribution function for the standard normal distribution, i.e., the quantile
function. Let us further define W;n(kj) be the wavelet coefficients of the noise frames.

Follow the same argument as in [154], it is reasonable to regard w/, (k;) as approximately
Gaussian distributed since w/,(k;) are just linear combinations of 3’;1’ , which are
independent random variables. Hence we can apply the MAD for estimating O‘,{

oor *

Knowing that median{ w (k; )} = mean{ W, (kj)} =0, we have

O = K * MAD = median{ |w!, (k,)|} /0.6745 ¥ | (3.15)
Based on G,J;,qoor, we can develop a threshold thr; such that if ‘w;(kj)‘thj, we consider

w,(k;) belongs to the noise floor. Since W, (k;) is approximately Gaussian distributed, we

propose to use the following level dependent universal threshold to carry out the above
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classification:

thr, =7, 1[210g(M ) (3.16)

2

where M; is the number of wavelet coefficients at level j. The universal threshold is chosen

because, as shown by Picklands [158] that for a stationary &(i)[J N(0,1) with
lim,_, E(e(i+k)e(i))=0, max{e(i)}//2logM —1 almost surely as n—oo. It means that

given a set of Gaussian random variables, the universal threshold is their maximum limit

asymptotically [68]. Note that the threshold #r;, is level dependent since 5;" is in general

not white. In practice, there can be wavelet coefficients of the noise floor having magnitude
greater than the threshold. These outliers, although in a small amount, can still introduce
large errors in the estimated SPP and become the source of musical noise. To take care of
these outliers, we propose to combine the results of using two orthonormal tapers. It is
because the outliers found in the periodogram generated by one taper may not exist in the
periodogram generated by the other. To be specific, if a wavelet coefficient is smaller than

the threshold in any of the two periodograms, it will be classified as the wavelet coefficient of

the noise floor. o’

oo NE€ds to be updated from time-to-time using the noise frames

detected by a VAD. By using thr;, an oracle of the spectral locations of the noise floor in the

wavelet domain is obtained and will be used in the second stage of the algorithm. As an
example, we show in Fig. 3.3 the classification result using the proposed approach. In Fig.
3.3a, the level 2 wavelet coefficients (absolute value) of the periodogram of a typical speech
frame with pink noise are shown. The classification result is shown in Fig. 3.3b: a ‘0’
represents the corresponding wavelet coefficient classified as belonging to the noise floor; a
‘1’ represents the corresponding wavelet coefficient classified as belonging to a spectral peak.
It can be seen that the proposed approach accurately classifies the wavelet coefficients of the

spectral peaks.
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To summarize, the procedure of the first stage of the proposed algorithm is as follows:
1. Evaluate two periodograms S' and S* of the observed noisy speech frame y using
two orthonormal sine tapers a; and a, respectively.

2. Generate 4 levels of wavelet coefficients of the two periodograms, i.e. W;"[ = W{S ;‘ }
and w;’Z = W{S;Z }, where W {} is the wavelet transform and j=1,2,...,4.

3. From the noise frames, compute O

nfloor

for all ;.

4. Generate an oracle V; for classifying the speech and noise wavelet coefficients as

follows:

1w/ (k)| > thr, and |w]> (k)| > thr,

V.k)=
j( j) {0 otherwise

(3.17)
where thr; is defined in (3.15).
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2
(a) Level 2 wavelet coefficients |Wy (kz )| (see (3.11)) of a periodogram (noisy speech)
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Fig. 3.3 — (a) Level 2 wavelet coefficients (absolute value) of the periodogram of a speech frame with
pink noise. (b) The classification result V,(k,) (see (3.17)).
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B. Second Stage
Note that the actual denoising operation is performed in the log MTS domain. With the

locality property of the wavelet transform, the oracle obtained in stage 1 can also be used for

the classification of the wavelet coefficients in the log MTS domain. Let

w(k )= logdS™ )} forall), (3.18)
A hard thresholding procedure is applied to W™ (k;) based on the oracle ; as follows:

wi (k) iV, (k) =1
Wi (k)= wim (k) if wi (k) > thr2, and V,(k, £&) =1 for all j (3.19)

0 otherwise

In general if the oracle Vj(k) = 1, it indicates that the wavelet coefficient w."'(k,) at k
likely belongs to a true spectral peak. Hence, it should be kept. Besides, the wavelet
coefficients W;'m(k] *¢&) in the vicinity of &; also has a good chance to belong to a true
spectral peak, particularly if it has a large magnitude. For the proposed hard thresholding

procedure as shown in (3.19), W;’mt(kj) is kept if the oracle Vj(k) equals to 1. Besides, if

Wj’ml(k ) has a large magnitude that is greater than a threshold 72, it should also be kept if

in the vicinity of kj, 1.e. kite, Vj(kite) equals to 1. The threshold thr2; is obtained using the
standard SUREshrink approach [79] due to the fact that the log MTS of a speech signal in
general is not white. The SUREshrink approach usually can give a more accurate threshold
than the universal threshold particularly for colored noises. The limit of ¢ is selected to be
e<li,/2] (3.20)

where /,, is length of the wavelet filter and |x | stands for the nearest integer smaller than x.

¢ is selected as in (3.20) because, it can be shown that, if there is a signal change in S';“ and

log(S’;”’) at frequency index k that will lead to a strong wavelet coefficient W;(ka) and
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W;"mt(kb), respectively, at level j, then |k, —k,| is bounded approximately to |/, /2. The

term 1/2 comes from the decimation operator of the wavelet transform. Consequently, the

proposed algorithm in the second stage can be summarized as follows:
1. Evaluate the log MTS, i.e. log(ﬁ;"’), of the observed noisy speech frame y using two
orthonormal sine tapers.
2. Generate 4 levels of wavelet coefficients of the log MTS, i.e. wj’mt(k )= W{log(ﬁ;" ’)},

where w{} isthe wavelet transformand j=1,2,....4.

3. Compute thr2; using the standard SUREshrink approach.

4. Remove the wavelet coefficients of the noise floor based on (3.18).
5. Inverse transform the denoised wavelet coefficients to obtain a smoothed 5' )

When generating the MTS, we observe in the experiment that using a large number of tapers
often over-smoothes the estimated speech power spectrum and leads to low intelligibility for
the resulting enhanced speeches. Hence, in step 1, we suggest using only 2 sine tapers and it

usually gives better performance than using more tapers.

A

Based on the proposed two-stage wavelet denoising algorithm, the smoothed S, is

used for the evaluation of the a-posteriori SNR function as follows:

y(k) = 5}_ ) : (3.21)
S (k)

n

Following the same approach as in [49], 7(k) is further smoothed temporally by averaging

7(k) with those obtained in the last 4 frames. Fig. 3.4 shows a comparison of the

a-posteriori SNR function generated from a typical noisy speech frame (pink noise, 0dB
segSNR) using the proposed two-stage wavelet denoising algorithm, the local and global

filtering approach used in [49], and the wavelet based MTS denoising method with universal
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thresholding [147]. It can be seen that the proposed algorithm can better preserve the spectral
peaks of the speech while reducing the noise variance of the noise floor. As shown in the
results of using universal thresholding and [49], the spectral peaks are obviously

over-smoothed. Besides, a large variance noise floor is noticed in the result of using [49].
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(a) A-posteriori SNR y  generated by the proposed approach
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(b) A-posteriori SNR y  generated using the smoothing approach in [49]
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(¢) A-posteriori SNR y  generated using the universal thresholding approach [147]
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Fig. 3.4 — Performance of a-posteriori SNR estimation using different approaches: (a) the proposed

2-stage wavelet denoising algorithm; (b) the local and global filtering method in [49]; and (c) the
wavelet based MTS denoising method with universal thresholding [147].
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3.5 New approach for estimating GLR

The smoothed a-posteriori SNR 1is then used for the estimation of the SPP. Recall that

the SPP can be estimated based on the GLR, which is a weighted ratio between p(y|H,) —
the PDF of y under the hypothesis H, i.e. speech is present; and p(y | H,) —the PDF of

under the hypothesis Hj, i.e. speech is absent, as given in (3.1). In [49], p(y|H,) is

approximated to be chi-squared distributed with the degree of freedom depending on the

order of the temporal and spectral smoothing operators. With the introduction of the proposed

A

wavelet based smoothing operator, y will have a value close to 1 if the current frame is
known to be a noise frame. And although the PDF of y can still be approximated as

chi-squared distributed as in [49], the degree of freedom will be very difficult to estimate due

to the non-linear thresholding operation in the wavelet domain. Here we propose to generate
p(7|H,) by directly computing the histogram of 7 in noise frames. To be specific, we
first make use of a VAD given by [154] to identify the noise frames. For each noise frame,
we compute y by using (3.21) and bin the resulting y at different frequencies into 200

equally spaced containers with centres ranged from 0.2 to 40. The number of data in each

container is recorded and finally the histogram of y is obtained. It is then normalized with
the total number of data and the bin size, i.e. 0.2, to serve as an approximation of the
PDF. Fig. 3.5 shows a typical p(7|H,) under pink noise contamination. It can be seen that
it is seldom to have large 7 with value greater than 5 since the proposed two-stage wavelet

denoising algorithm has effectively removed the outliers.
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A typical p(}7 | HO) after applying the proposed smoothing algorithm
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Fig. 3.5 - Atypical p(7|H,) after using the proposed 2-stage wavelet denoising algorithm.

It is known that when the observation y(n) is stationary with a relatively small span of
correlation and the frame size is large, the real and imaginary part of a DFT coefficient ¥(k)

can be considered to be independent and can be modeled as zero mean Gaussian random

variables. Consequently, the PDF of |Y (k)[*, which is the sum of the square of the real and

imaginary parts of ¥(k) can be described by a gamma distribution as follows:
Y(k)[ =8, ~T(1,25?) (3.22)
As to the estimation of p(7 |H,), it should be noted that the proposed two-stage wavelet

denoising algorithm mainly smoothens the noise floor using a hard thresholding approach. It
basically does not make any modification to the wavelet coefficients which do not belong to
the noise floor. Thus, the spectral peaks in the resulting power spectrum (after antilog) are
just the original MTS, which is an average of two periodograms generated using two

orthonormal tapers. Hence
S =(Sy +8))/2~T(2,0,), (3.23)
And then since the proposed approach adopts the averaging scheme as in [49], S " is further
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averaged with that of the previous 5 frames. That is,

A 0. .
Sy () = % D ST ~ F(Z *5%Chys 0, /(5 *Cay )) (3.24)

n=-4
for i > 4. The term cyor i1s an adjustment factor since correlation exists between adjacent
frames. It is mainly due to the overlapping of speech samples when windowing the speech. In

our simulation, an overlapping factor of 0.75 is adopted. Hence we choose cq to be 0.25.

Consequently,
. Svamt }7 40_2 F 4 _
g2 L 2% oL 214 2) (3.25)
o) 2 7o, 2r

where 7 =2%*2*5%c,,, and & s the a-priori SNR. Hence

A7110)-( 555

57 712
F(Fj exp(_ 21+¢& )J ’ (3.26)

2

[ SR

Similar to [49], & is selected to be a fixed constant 8dB. Consequently, the GLR can be
estimated as follows:

X4 p7IH)
(1-q) p(71H,)’

(3.27)

where ¢ is set as 0.5 as in [49] in our experiments. And the SPP can be obtained based on the
estimated GLR A as follows:

oy
1+1N\'

(3.28)

The resulting SPP is then applied to (2.25) to obtain a new gain function for enhancing the
noisy speeches. As an illustration, Fig. 3.6a, Fig. 3.6b and Fig. 3.6¢c show the SPP estimated
using the proposed 2-stage wavelet denoising algorithm, the local and global filtering method
in [49], and the wavelet based MTS denoising method with universal thresholding [147],

respectively, for a typical noisy speech frame. Note that the GLR used for these approaches is
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different. For the proposed approach, the GLR as given in (3.27) is used. For the local and
global filtering method, the GLR suggested in [49] is used. As to the one using the universal
thresholding, essentially the same GLR as the proposed algorithm is used. However, the
parameter 7 for computing p(y|H,) is increased to 2*5%*5%*c,, since 5 tapers are used
in [147] for generating the MTS. Besides, c4or needs to be empirically adjusted due to the
shrinkage operation applied to the wavelet coefficients. As can be seen in Fig. 3.6b, the SPP
given by [49] can contain large spurious impulses (such as that near m/2). They often
contribute to the musical noise in the final enhanced speech. On the other hand, the SPP
estimator using the universal thresholding method, as shown in Fig. 3.6c, can merge all
spectral peaks of the speech. It will certainly affect the final speech quality. Since the
proposed approach can accurately estimate the spectral locations of the noise floor, the
resulting SPP can largely preserve the spectral peaks while achieving a good control of

spurious impulses on the noise floor.
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(a) SPP generated using the proposed smoothing algorithm
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(c) SPP generated using wavelet based MTS smoothing approach using universal thresholding [147]
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Fig. 3.6 — SPP estimated using: (a) the proposed 2-stage wavelet denoising algorithm; (b) the local and global
filtering method in [49]; and (c) the wavelet based MTS denoising method with universal thresholding [147].
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3.6 Simulations and results

The best approach for evaluating the performance of the new SPP estimator is by directly
assessing the quality of the resulting speeches when it is applied to some traditional speech
enhancement algorithms, such as the MMSE-LSA. In this study, a series of simulations have
been performed for comparing the performance between different SPP estimators. Table 3.1
gives a summary of the algorithms that have been compared. They are different only in the
way the SPP is estimated. For instance, LSA+SPP uses the traditional SPP estimator given by
Cohen [47]. LSA+FPSPP uses the SPP estimator given in [49]. The LSA+2sSPP use the
proposed 2-stage wavelet denoising algorithm. Other simulation details are listed as follows:

e Speech sampling rate: 16 kHz

e Frame size: 480 samples (~30ms)

e FFT size: 960 samples (zeros padded each frame with 480 samples)

e Window shift step size: 120 samples (75% overlap rate)

e Wavelet function used in the computation of the wavelet transform: “sym4” — order-4

least asymmetric orthogonal wavelet [159].

For all algorithms, the noise power spectrum is estimated following the same approach
described in [1]. The noise power spectrum is estimated by first using the initial frames that
are assumed to have no speech energy. It is then updated whenever a frame is detected to
have no speech energy by using a VAD, such as [155]-[156]. Note that the accuracy of the
VAD can affect the performance of the enhanced speech signals. However, it will barely

affect the comparison results since the same VAD is used in all compared algorithms.
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Table 3.1 - Summary of the algorithms compared in the simulations.

Methods Description

LSA+SPP MMSE-LSA [15] with Cohen’s SPP [47]

LSA+FPSPP MMSE-LSA [15] with SPP estimated using the local and global
filtering method for smoothing the a-posteriori SNR [49]

LSA+2sSPP MMSE-LSA [15] with SPP estimated using the proposed 2-stage

wavelet denoising algorithm for smoothing the a-posteriori SNR

In the simulation, we arbitrarily selected 40 male and 40 female test speeches from the
TIMIT database [192]. White noise and colored (pink) noises adopted from the NOISEX-92
database [193] were added to the speeches at different input segSNR. We use the three
composite objective measures [1] as shown in Table 3.2 as the performance/design criteria in
the simulation. The three composite objective measures are used traditionally to predict the
quality of noisy speech enhanced by noise suppression algorithms. They are obtained by
linearly combining existing objective measures as follows: (a) Cs, for measuring signal
distortion (SIG) — it is formed by linearly combining the log-likelihood ratio (LLR), PESQ,
and weighted-slope spectral distance (WSS) measures; (b) Cpax for measuring noise distortion
(BAK) — it is formed by linearly combining the segSNR, PESQ, and WSS measures; and (c)
Cou for measuring overall quality (OVL) — it is formed by linearly combining the PESQ,
LLR, and WSS measures. The definition of all these measures can be found in [1]. Table 3.2
shows that the proposed LSA+2sSPP often outperforms the other two algorithms particularly
when the noise level is high. Specifically, while LSA+FPSPP gives an average increase of
0.58, 0.61 and 0.57 in Cgjg, Cpax, and C,y respectively compared with the noisy signal (pink
noise at different input SNRs), the proposed LSA+2sSPP gives an average increase of 0.67,
0.66 and 0.64, which account to 15.5%, 8.2% and 12.2% improvement respectively over the
LSA+FPSPP algorithm.

To verify the improvement of the 2-step wavelet denoising method over the traditional
universal thresholding method, we applied both approaches to the proposed SPP estimation

procedure. We compared the PESQ scores (the Perceptual Evaluation of Speech Quality) of
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the enhanced speeches generated by both methods. PESQ is an ITU standard for evaluating

speech quality [58]. The same set of speeches from the TIMIT database as mentioned above

were used in the simulation. As shown in the comparison result in Fig. 3.7, the enhanced

speech using the proposed SPP estimator with the 2-step wavelet denoising method has a

much higher PESQ score. While both approaches are able to suppress musical and other

residue noises, the SPP generated by using the universal thresholding method is

over-smoothed that cannot resolve the spectral harmonics and leads to degraded speeches.

The result in Fig. 3.7 has verified this observation.

Table 3.2 - Composite measurement comparison of LSA+SPP, LSA+FPSPP and the proposed

LSA+2sSPP.
. Input SNR

Noise | Method % ) 3 ) 1 0 I 5 3 7 5
Noisy 1.089 1.114 | 1.154 1.206 1.265 1.34 1.432 1.537 1.654 1.782 1.917
White LSA+SPP [47] 1.412 1.547 | 1.687 1.841 1.995 2.153 2.303 | 2449 | 2.587 | 2.721 2.849
LSA+FPSPP [49] 1.565 1.703 | 1.847 1.999 | 2.145 2280 | 2.409 | 2.535 | 2.651 2.766 | 2.868
Csig Prqposed LSA+2sSPP | 1.636 | 1.777 | 1.919 2065 | 2203 | 2.337 | 2468 | 2593 | 2.710 | 2.823 | 2.923
Noisy 1.322 1.396 | 1.481 1.578 1.688 1.809 1.935 2.063 2.193 2.323 | 2.454
Pink LSA+SPP [47] 1.811 1.946 | 2.080 2.221 2.357 | 2489 | 2.622 | 2,746 | 2.869 | 2.988 | 3.097
LSA+FPSPP [49] 1.843 1.962 | 2.088 2212 | 2.332 | 2.443 2.556 | 2.658 | 2.751 2.844 | 2.928
Proposed LSA+2sSPP | 1.955 | 2.072 | 2.190 2306 | 2420 | 2531 | 2639 | 2.739 | 2.831 2.919 | 2.996
Noisy 1.332 1401 | 1.474 1.552 1.633 1.716 1.802 1.890 1.980 | 2.072 | 2.165
White LSA+SPP [47] 1.978 | 2.064 | 2.148 2.236 | 2.321 2407 | 2493 | 2.578 | 2.663 2.746 | 2.825
LSA+FPSPP [49] 2.045 2.124 | 2.205 2.288 | 2.371 2451 2.531 2.611 2.688 | 2.766 | 2.838
Cbak Prqposed LSA+2sSPP | 2.089 | 2.172 | 2.253 2336 | 2417 | 2498 | 2578 | 2.659 | 2.737 | 2.815 | 2.887
Noisy 1.283 1.332 | 1.389 1.453 1.528 1.609 1.696 1.788 1.882 1.978 | 2.075
Pink LSA+SPP [47] 1.844 1.919 | 1.995 2.077 | 2.160 | 2.244 | 2.332 | 2.419 | 2.507 | 2.597 | 2.683
LSA+FPSPP [49] 1.859 1.927 | 2.005 2.083 | 2.163 2.242 | 2326 | 2.408 | 2489 | 2.572 | 2.655
Proposed LSA+2sSPP | 1.894 | 1.967 | 2.045 2125 | 2208 | 2290 | 2.376 | 2.458 | 2539 | 2.623 | 2.703
Noisy 1.079 1.109 | 1.151 1.206 1.271 1.345 1.432 1.535 1.642 1.754 1.866
White LSA+SPP [47] 1.423 1.552 | 1.683 1.816 1.943 2.071 2.195 | 2316 | 2.432 | 2.544 | 2.651
LSA+FPSPP [49] 1.559 1.682 | 1.805 1.931 2.051 2.164 | 2.272 | 2.378 | 2.476 | 2.573 2.658
Covl Prqposed LSA+2sSPP | 1.616 | 1.742 | 1.864 1986 | 2.101 | 2.214 | 2323 | 2430 | 2529 | 2.626 | 2.712
Noisy 1.171 1.226 | 1.289 1.367 1.458 1.558 1.665 1.775 1.886 1.997 | 2.108
Pink LSA+SPP [47] 1.627 1.740 | 1.851 1.969 | 2.085 2.197 | 2312 | 2.421 2530 | 2.637 | 2.737
LSA+FPSPP [49] 1.649 1.751 | 1.860 1.967 | 2.072 | 2.171 2.273 | 2.368 | 2.457 | 2.545 | 2.626
Proposed LSA+2sSPP | 1.737 | 1.837 | 1.941 2044 | 2147 | 2.248 | 2349 | 2442 | 2.529 | 2.615 | 2.692
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Fig. 3.7 — Comparison of using the 2-step wavelet denoising (LSA+2sSPP) and universal thresholding
(LSA+uthSPP) in terms of PESQ improvement for the cases of (a) pink and (b) white noise contamination.
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As in [49], the missed-hit rate and false-alarm rate of SPP could be evaluated by the
Speech Distortion (SD) and Noise Leakage (NL) measurement, respectively. In Table 3.3, the
SD and NL are measured to indicate the percentage of the speech energy that the
corresponding SPP estimator neglects as well as how much energy from the noise-only bins is
not attenuated.It can be clearly seen that the SD for the proposed LSA+2sSPP method reduce
the speech distortion as compared to LSA+FPSPP. Moreover, both the proposed LSA+2sSPP
and LSA+FPSPP methods can provide low noise leakage, but the proposed method yields a

better tradeoff than LSA+FPSPP.

Table 3.3 - Speech Distortion (SD) and Noise Leakage (NL) measurement comparison of LSA+FPSPP
and the proposed LSA+2sSPP for the cases of white noise contamination.

Input SNR (dB)
Method 10 | 5 | 0 5 | 10
SD (%) LSA+FPSPP [49] 29.6 | 13.8 5.6 2.1 0.7
Proposed LSA+2sSPP | 22.2 | 10.1 4.4 1.8 0.7
NL (%) LSA+FPSPP [49] 1.2 1.4 2.0 3.0 5.1
Proposed LSA+2sSPP 1.3 1.5 1.8 2.6 4.2

Fig. 3.8 shows a comparison of the spectrogram of the enhanced speeches generated
using different algorithms. The speech is added with color (pink) noise at input segSNR 0dB.
It can be seen that the proposed algorithm in general preserves much better the speech
contents while effectively removing the background noise. We particularly circle the parts in
the spectrograms where improvement can easily be seen. For LSA+SPP, it can be seen in
region A to C that the speech spectrum is over-smoothed such that many of the speech
contents are removed. Particularly, the distortion in region B has introduced some difficulty
in understanding the enhanced speech since the spectrum in region B refers to a word in the
sentence. For LSA+FPSPP, musical noises are noticed in region D mainly due to the errors in

the SPP estimation. Besides, at low frequencies where SNR is low (pink noise has higher

72



noise level at low frequencies), speech distortion is also noticed (such as in region C).
Comparing with the other two algorithms, the proposed LSA-2sSPP removes musical noise
without sacrificing speech quality. The enhanced spectrogram has much improvement over
those generated by the other algorithms as can be seen in region A to D. The result in Fig. 3.8

conforms to the objective comparison results as shown in Table 3.2.
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Fig. 3.8 — Spectrogram of (a) a speech selected from TIMIT database; (b) speech contaminated by color (pink)
noise at input segSNR 0dB; and enhanced speech using (c) LSA+SPP, (d) LSA+FPSPP, and (e) the proposed
LSA+2sSPP algorithm.
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3.7 Chapter Summary

In this chapter, we proposed a new algorithm for the estimation of the speech presence
probability (SPP) of a noisy speech signal. Although it is known that a good estimator of SPP
can be obtained by smoothing the observed noisy speech power spectrum before using it in
the estimation process, care must be taken to ensure the smoothing operation will not wash
away the spectral peaks which are important to the intelligibility of the enhanced speech. The
major contribution of this work is two-folded. First, we successfully developed a two-stage
wavelet denoising algorithm that effectively removes the noise while preserving the spectral
peaks in a noisy speech power spectrum. It outperforms the traditional approaches by
combining the information of noise and spectral peaks in both the periodogram and the log
MTS of a noisy speech. The denoised speech power spectrum in turn lets us generate a
smooth a-posteriori SNR function. Second, we proposed a new method for estimating the
generalized likelihood ratio (GLR). It is by directly estimating the PDF of the a-posteriori
SNR under the hypothesis Hy, i.e. speech is absent, using the data in different noise frames. It
simplifies the estimation process and avoids the use of many empirically selected parameters
in the traditional approaches. The new SPP estimator was then applied to the MMSE-LSA
speech enhancement algorithm. Compared with the traditional SPP estimators, up to 15%
improvement was noted for different noises at different noise levels when measuring using
the standard composite objective measures. When inspecting the spectrogram of the enhanced
speeches using different approaches, the proposed algorithm in general preserves much better
the speech contents while effectively removing the background noise.

The proposed algorithm enhances a noisy speech by making use of the discrete wavelet
transform to successfully detect the speech’s spectral peaks. However, problems may arise for
certain kinds of noise which also have spectral peaks similar to those of speeches. This can

make the SPP thus estimated erroneous. More effort is needed to differentiate speeches from
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noises perhaps in a different domain.

76



Chapter 4 A Novel Expectation-Maximization Framework for
Speech Enhancement in Non-stationary Noise Environments

4.1 Introduction

In Chapter 3, we have discussed a new method for estimating the SPP and its application
to speech enhancement. We have shown that by using the wavelet techniques (which is a kind
of sparse representation techniques), we can improve the estimation of the SPP so that it can
be applied to assist the speech enhancement gain function, such as the MMSE-LSA or the
Wiener filter, etc., to improve the suppression of the spectral components with no speech
information. While the SPP is an important parameter in speech enhancement, the importance
of the a-priori SNR is by no means inferior since it is the major parameter of almost all gain
functions. The accuracy of its estimation can significantly affect the performance of a speech
enhancement algorithm. The a-priori SNR 1is defined as the ratio between the true power
spectra of speech and noise. While the estimation of the true speech power spectrum is
known to be difficult, the estimation of the true noise power spectrum is not easy either. This
is particularly the case when the contaminating noise signal is non-stationary. It ends up with
the musical noises [1] introduced to the resulting enhanced speech, which is extremely
annoying to human listeners.

To improve the estimation of the a-priori SNR, the temporal cepstrum smoothing (TCS)
technique was recently proposed [115][116]. Since voiced speeches are quasi-periodic in
nature, their magnitude spectrum exhibits peaks and valleys separated by harmonics of the
fundamental frequency which can be compactly represented in the cepstral domain. As most
noises do not have such harmonic structure, it allows us to selectively reduce the variance of

the cepstral coefficients which are likely contributed by noise. In general, the TCS method
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can improve the accuracy in estimating the a-priori SNR of a noisy speech comparing with
the traditional spectral subtraction methods. It was also reported that the method works well
in some non-stationary noise environments [116]. Nevertheless, the TCS method requires a
set of empirically selected parameters to control the cepstrum smoothing process. As there is
not a mechanism to automatically adjust the parameters, the TCS method cannot adapt itself
to the changes in SNR of the noisy speech signal across time frames or frequency
components. The problem is particularly obvious if there are some parts of a noisy speech
spectrum having significantly low SNR (e.g. the noise is composed by a few strong tones of
varying frequencies). The TCS method cannot fully remove the related cepstral coefficients
with the speech content intact. To deal with the problem, it was suggested to further apply a
SPP estimator with the TCS technique to remove the outliers in the enhanced speech [140].
The result however is still not very satisfactory since the accuracy of the SPP estimators will
also deteriorate when the SNR is low or when the noise is non-stationary as mentioned above.

In this chapter, we present an improved speech enhancement algorithm based on a novel
expectation-maximization (EM) framework working in the cepstral domain. The EM
algorithm was discovered and employed independently by several different researchers until
Dempster [161] brought their ideas together and coined the term EM algorithm. It is
particularly suitable to the parameter estimation problems in which the data for evaluating the
parameters are missing or incomplete. It is known to produce the maximum-likelihood (ML)
parameter estimates when there is a many-to-one mapping from an underlying distribution to
the distribution governing the observation. The algorithm contains two main steps. The
E-step (expectation) gives an expectation of the unknown underlying distribution based on
the observed data and the M-step (maximization) estimates the parameters by maximizing the
expectation. The E-step and M-step then iterate alternately until converged. The EM

algorithm has widespread applications in digital image and speech processing [162]-[171].
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One of the widely cited applications of the EM algorithm is the estimation of the hidden
Markov models (HMMs), which is particularly relevant to speech processing [166]-[169].
In [168], a HMM-based gain modeling algorithm was proposed for the enhancement of
speech in noise. It applies the EM algorithm for offline training and the recursive EM
algorithm for online estimation of the HMM parameters. The EM algorithm is also used in an
approximate Bayesian based speech enhancement algorithm [169] for learning the speech and
noise spectra under the Gaussian approximation. Similar to the conventional model based
speech enhancement methods, these approaches require prior knowledge about the noise
model, or it has to be detected online. Degraded performance will be resulted if there is error
in detection or the detected noise model is not in the training database. Besides HMM models
estimation, the EM algorithm is also used in the estimation of autoregressive (AR) model for
speech enhancement [170], where the E-step is in fact the Kalman filter and the M-step is
similar to the standard Yule-Walker solution for estimating the coefficients of AR processes.
It is noted that the performance of the method is rather unstable (particularly at input SNR
from 4dB to 10dB). Effort was made [171] to improve the problem by using the
Rao-Blackwellized particle filter in the E-step to replace the Kalman filter. However, the
overall performance, particularly at low SNR, still has much room to improve. In general, the
performance of model based speech enhancement methods depends heavily on the accuracy
in model estimation, which is often a challenge when they are working in open environments.
There are many other applications of the EM algorithm. More details can be found
in [172][173].

Similar to the abovementioned approaches, the proposed algorithm makes use of the EM
algorithm to define a theoretical framework for the design of an iterative speech enhancement
process. However, it is non-parametric, hence it does not require specific prior knowledge

about the speech or noise model. In the proposed algorithm, the parameters to be estimated
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are the cepstral coefficients of the true speech power spectrum, of which their accurate
estimation is important in speech enhancement. It enables the computation of the a-priori
SNR of the noisy speech, which is one of the most essential parameters required in different
speech enhancement gain functions as mentioned above. The proposed algorithm first makes
use of the TCS technique to generate an initial guess of the clean speech periodogram, which
is the complete data set of our problem. It is applied to an L; norm regularizer [175] in the
M-step of our EM framework to give the first estimate of the required cepstral coefficients of
the true speech power spectrum. They are then used to compute the a-priori SNR that is
needed for the MMSE-LSA gain function to refine the estimation of the clean speech
periodogram, which is the E-step of our EM framework. Subsequently, the estimate is fed
back to the M-step to refine the estimation of the cepstral coefficients of the true speech
power spectrum. The E-step and M-step iterate alternately until convergence is reached. The
operation is illustrated in Fig. 4.1. A notable improvement of the proposed algorithm over the
traditional non-parametric speech enhancement methods is that, due to the iterative process,
the proposed algorithm can adapt to the changes (even abrupt changes) in SNR of the noisy
speech. In addition, the proposed algorithm fully utilizes the sparsity of speeches in the
cepstral domain by adopting an L; norm regularizer in the M-step. It enables the
regularization process to be carried out on coefficients with improved SNR hence reduces the
effect due to the error in estimating the non-stationary noise statistical characteristics. As a
result, the proposed algorithm has outstanding performance when working in non-stationary
noise environments. Extensive performance evaluations have been conducted using the
speech samples from the TIMIT database [192] contaminated by many different noise signals.
Significant improvement is noted in almost all cases over the competing speech enhancement
methods measured using standard performance metrics.

This chapter is organized as follows. In Section 4.2, a brief review of the traditional
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temporal cepstrum smoothing algorithm is given. It is followed by a brief introduction of the
EM algorithm in Section 4.3. The new EM framework for speech enhancement in
non-stationary environments is described in Section 4.4. The simulation results are shown in
Section 4.5, and conclusions are drawn in Section 4.6.

The results in the chapter have also been reported in [181] and [182].

81



Noisy speech

l

Initial guess:
Temporal Cepstrum
Smoothing

G

A 4

M-Step:
Constrained soft
thresholding

A

y

x

E-Step:
MMSE-LSA

Fig. 4.1 — The operation of the proposed speech enhancement algorithm based on the new
EM framework

82

Converged?

Enhanced
Speech




4.2 Spectral Subtraction and Cepstrum Smoothing

Let us begin with a brief introduction of the traditional cepstrum smoothing method that
is applied to the spectral subtraction speech enhancement algorithms. In fact, we have
introduced the essence of the spectral subtraction techniques in Chapter 2. The spectral
subtraction methods are still popularly used in speech enhancement due to their simplicity

and efficiency. For the spectral subtraction methods, a spectral gain function G(k,i) is
applied to each noisy short-time frame Y(k,7) to enhance the speech signal. Two most

popular gain functions are the Wiener filter and the MMSE-LSA gain functions as

follows [1]:

_ ¢
Gwiener(k) - 5(/{) 11 (4. 1)
_ek)  lltel _ sm)y (k)
Glogmmse (K) = 2011 exp{2 :[ . dt} where v(k) = 20+ 1 (4.2)

It is seen in (4.1) and (4.2) that the determination of both gain functions requires the

Y(k)|
evaluation of two parameters: (i) a-posteriori SNR y(k) which is defined as y (k)= | S((lz|) ’

where |Y (k)|2 is also referred as the periodogram of y; (i1) a-priori SNR &(k) which is

defined as §(k):%. In practice, the power spectrum of noise Sn(k)zE(|N(k)|2) is

estimated by averaging the periodograms of all the noise frames detected using a voice
activity detector (VAD) [53]. We denote the estimation of S, as S’n. Obviously, the
estimation error can be high if # is not stationary.

The estimation of S, (k):E(|X (k)|2) is even more difficult since x is not known.

Hence &(k) cannot be exactly evaluated. Different approaches were suggested to estimate
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&(k) . The maximum likelihood (ML) estimate of the a-priori SNR E"(k) can be obtained

as follows [1]:

v (k)

EM (k) =7(k)—~1, where 7(k)= o0

(4.3)

The variance of &' (k) however is often too large for using in the traditional gain functions.

The inaccuracy of £ (k) is further amplified due to the estimation error of S’n . To reduce

the variance in estimation, the decision-direct approach is often used in practice where the

a-priori SNR is estimated based on a previous clean-speech estimate as follows [14]:

P (i) = a%}j—)l)+ (-a)ymax{7(k,i)—1,&,;, | 4.4)

where the parameters o and & . control the trade-off between the amount of noise reduction
and the distortion of speech transients in a speech enhancement framework. Although much
effort has been devoted to resolve the difficulties, in general the performance of current
spectral subtraction algorithms will still degrade significantly when the SNR is low or if the
noise is non-stationary.

It is shown in [116] that TCS method can give a good estimation of the a-priori SNR for
some non-stationary noise environments. The algorithm can be implemented by first

computing the ML estimation of the a-priori clean speech power spectrum as follows:
S (i) =S, (e iymax { €Y (), £ | (4.5)
where &M is the minimum value allowed for &M and &M is the maximum-likelihood

estimate of the a-priori SNR given by (4.3). Next, the cepstral representation of Sfﬂ (k,i) 1s

computed as,

Cc(q) = IDFT{log(S¥*(k))} (4.6)

where ¢ is the cepstral index, also known as the quefrency index. Next, the selected cepstral
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coefficients are recursively smoothed over time with a quefrency dependent parameter a(q)

as follows:

CI(g,1) = a5 (@) CT (g1 = 1) + (1= e (9))C.. (g) (4.7)

The parameter a(q) is also smoothed recursively using:

. aitc l‘](‘qecitc l
aTCS(qal):{ et i h() (4.8)

Boes(q,i—1)+(1~- ﬂ)a;mm otherwise

where C,;.c; refers to the set of cepstral bin indices associated with the fundamental frequency.

All parameters including o B and o for different g need to be determined

pitch 3
empirically. It is believed that these parameters should be adaptively adjusted in order to
achieve optimal performance for noisy speeches of different SNR values. It is however
difficult to derive an efficient algorithm for such purpose due to the empirical nature of these

parameters.

4.3 The Expectation Maximization Algorithm

In this section, the basic idea behind the EM algorithm is described. Assume that @is the
parameter set we would like to estimate and the probability density function (PDF) f (x|9)
of some data set x given € is known, where x is referred as the complete data set in the

context of the EM algorithm. Let us also assume the PDF f'is a continuous and appropriately

differentiable function of 6. If x is known, € can be readily evaluated by maximizing
f(x0):
0 =arg mglx(logf(x|9)). (4.9)

Unfortunately in many practical applications, some or all elements of x cannot be obtained
directly from the experiments but only by means of another observed data set y. Besides,

there can be a many-to-one mapping between x and y. So for the E-step of the EM algorithm,
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we first compute the expectation of log f (x|0) given the data set y and our current estimate
of 6 That is,

0(0]0") = E(log f (x]0)]y.¢") (4.10)
where @' is the #-th estimation of & and ¢ is the iteration index. Then for the M-step of the

EM algorithm, we find the value of & which maximizes Q(9|9f) as:

0" =argmax0(64¢") (4.11)
where 0" is our refined estimation of 6. The E-step and M-step then iterate alternately and
will converge to give the ML estimation of #as proven in [161].

4.4 The New EM Framework for Speech Enhancement in Non-stationary
Noise Environments

When applying the EM algorithm to speech enhancement, we consider the cepstral

coefficients of the true clean speech power spectrum S (k) to be the parameters for

estimation. It is defined as,

1 M-1 )
C.(q) =MZIOg(SX (k))e”™ ™ q=0,...M-1 (4.12)
k=0

where M is the total number of frequency components and the frame index i is dropped for
notation simplicity. As it is explained in Section 4.2, the a-priori SNR of the noisy speech is
one of the most important parameters to be estimated in speech enhancement applications.

The objective of the proposed algorithm is to obtain a good estimation of C, so as to
compute S (k) based on (4.12). Then the a-priori SNR of the noisy speech can be obtained

and used in the traditional speech enhancement gain functions such as (4.1) or (4.2) for the
estimation of the unknown clean speech periodogram.

We propose to use the EM algorithm to help in the estimation of €, . To do so, let us
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first select the cepstral coefficients of the original clean speech periodogram, denoted as C. ,
to be the complete data set in our EM framework. CA'X can be computed from the periodogram

of the original speech x, i.e. SX (k) where §x (k)= |X (k) ?as follows:

M-1
Cx(q)=ﬁZlog(Sx(k))ej2”k"/M+75q L q=0,... M-I (4.13)
k=0
where
1 for g=0
0, = 4.14
1 {0 otherwise (4.14)

and y =~ 0.577216 is the Euler’s constant. It is shown in [174][101] that under some regularity

conditions and for large sample size (M >> [) real-valued data, the estimated cepstral
coefficients C (g) are even symmetric and independent random variables having normal

distributions with means C, (¢) and variances o’(q) as follows:
C.(~N(CAp.al(@) 5 q=0,...M/2 (4.15)

where

ﬂ7(3M) for q=0,M/2
o.(q)=1 ", . (4.16)
4 (6M) otherwise

In the remaining of this section we shall drop the index ¢, where appropriate, for simplifying
the equations. The dependency of ¢ on the relevant quantities should be apparent.

It can be seen in (4.15) that the required parameter C,in fact is the mean of the
complete data set C_, which has a normal distribution. However, C,is unknown since we

do not have the original speech data. Hence we cannot directly compute C, from C,. We
have to rely on the observed noisy speech periodogram S’y = |Y |2 to help us in estimating C._ .

The expectation of log f (éx |CX) given the data set 3‘}, and the current estimate of C_ can
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be expressed as follows:

o(c,

C;) :E(logf(éx

cx)Sy,c;). (4.17)

From (4.15) and (4.16), we know that,

A 2
A _Cr_Cx
f(CxCx)zo_\}%exp (“202 ) : (4.18)
hence
A 2
_CX_C)» t
o(clc)=E log[ae 127J+ (205 ) S,.C,

(4.19)

1 P
=lo +
s O'e\/27l'j 207

We shall apply Q(Cx

C;) to the M-step of the proposed algorithm. The purpose of the

M-step is to optimize C! in order to maximize Q(Cx C;) From the recent research in

iterative regularization [175], it is known that if the signal is sparse or if the signal can be
transformed into a domain where its coefficients are sparse, the inclusion of a penalty term
made up by the L; norm of the signal or its coefficients can significantly improve the chance
for the iterative process to reach its global optimum point. Such idea has been popularly
adopted in some image restoration and image reconstruction applications [176][177]. For the
proposed method, the EM algorithm is operating in the cepstral domain. Since the
coefficients of speech in the cepstral domain are sparse and are very much different from
noise, we include a penalty term made up by the L; norm of the desired cepstral coefficients
in the optimization process. More specifically, the M-step of the proposed algorithm is given

as follows:
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C"' =argmin{-Q(C,|C.) + pen(C))]
G ’
. (4.20)
=arg rrgn {E (((Cx - Cfc) ) S_V,C;j +20'32pen(C;)}
where pen(C.) is the penalty term, which is selected as follows:
pen(Cy) = THAC,i = TZ‘A(Q)Q(Q)‘ - (4.21)
q

In (4.21), 7 is a free parameter that adjusts the amount of regularization applied to the
maximization process. Its selection method will be discussed at the end of this section. A4 is
dependent on ¢ and it is defined as a weakly differentiable binary function such that,

0 g<q,and qeC

Alg)= { pich . (4.22)

1 otherwise

The introduction of the penalty term imposes a constraint to the optimization process such
that the energy of the estimated cepstral coefficients will concentrate at very low quefrencies
as well as the quefrencies associated with the fundamental frequency. They are exactly the
features of voiced speeches in the cepstral domain. By doing so, the optimization process can
be carried out on coefficients with improved SNR and hence reduces the effect due to the
estimation error of the non-stationary noise characteristics. It turns out to be the major factor
that leads to the good performance of the proposed algorithm in non-stationary noise
environments. The use of the L; norm in the penalty term in (4.21) is based on the assumption

that C_ has a Laplacian prior. From (4.20), C!"' can be obtained by taking the derivative of

the right hand side of (4.20) and setting the result to 0.That is, let

0= E(((C —C;)z)

Then

Sy,c;}rzaj pen(C") (4.23)
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0y |4(g)Ci(q)
S, ,c;) +2C 4200 —
aC'(q) (4.24)

= —2E((A?x S’y , Ci) +2C + ZGjr.A.sign(Ci)

00
oC

t
x

--2£(C,

where sign(x) returns {1, 0, -1} if x is positive, 0 or negative, respectively. Hence the optimal

. 00 . . .
C! 1s the one such that ——=0.Itis then used as the new estimate of C'. That is,

X

~2E(C[8,.C1)+2C" +207r Asign(CL) =0

M+ Gfr.A.sign(C;“) = E((:’x S}_,Cfc)

CrT O <oT (4.25)

=i 0 -T<C<T
-7 T<C

where C'=E (CA_X‘SAy,Ci) and T =o’r4. (4.25) 1s indeed the well-known soft thresholding
non-linearity [77][175] with an additional constraint 4.

To implement (4.25) , we need to have a good estimate of (Nfi For the proposed
algorithm, we estimate (Nfi by the following,

1. For initial guess: Ef =CN’XTCS

2. For subsequent iterations:

C' = IDFT{log{(Glogmmse ( 2 ) @ jz H

exp (D{«“T (c))
S

n

(4.26)

where &' = . In both cases, bias is removed using the approach in [101]

whenever transforming data between the cepstral domain and the spectral domain. As shown

in (4.26), we adopt the TCS method [116] to obtain the initial guess of C’; at =0.

Afterwards, we update C' by using an MMSE-LSA gain function [15] in which the a-priori

SNR is computed based on the current estimate C!. The MMSE-LSA gain function
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theoretically gives the minimum mean square error estimation of the log-magnitude spectra.

From [15], we know that,

£(log8.[3,.C1) = 1og(Glogmm (£)45, )2 . (4.27)
Hence,
IDFT{log{(Glogmm(”)-\/g )2}} - JDFT{E(log $.[5,.c )}
= E(IDFT(log S, ]S‘y , C;) (4.28)
_glerfs.c)=¢

It can be seen in (4.28) that the MMSE-LSA gain function can give a good estimation of (Nfi .
However, we do not use it for the initial guess since without a good a-priori SNR estimator,
the MMSE-LSA gain function can accidentally remove speech spectral components of low

SNR. This is particularly the case if the noise is non-stationary. The TCS method gives a

reasonably good estimation of CN'i without the need of a very good a-priori SNR estimator. It

also works reasonably well for non-stationary noises. It is thus used as the initial guess of (i’fc
and is afterwards refined by the MMSE-LSA gain function using the a-priori SNR estimate
obtained by the M-step of the proposed algorithm.
To summarize, the proposed speech enhancement algorithm based on the new EM
framework can be described as follows:
A. Initial guess:
Compute the initial guess of C' using the TCS method, i.e. C°=C" (see (4.26)).
B. M-step:
Estimate the parameter C! using the constrained soft thresholding method
(see (4.29)).

C. E-step:
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Refine the estimation of é; using the MMSE-LSA gain function with the estimated
C! obtained from the M-step (see (4.26)).
D. Iterate the M-step and E-step alternately until convergence is reached. The enhanced

speech Xcan thus be obtained by

A

‘ )?‘ -G ( gconverge).

— “logmmse

Y
o | (4.29)
X =|X|exp(ji2Y)

where /Y is the phase angle of Y. The operation of the algorithm is also described in
Fig. 4.1.

Besides those required in the original TCS method [116], the proposed algorithm has
very few free parameters. Once these parameters are set, they can be used for speeches of
different genders and at different noise levels, as it is the case in our simulations. More
specifically, the setting of the free parameters in the TCS method can be found in [116]. The
parameters for determining the soft threshold 7" in (4.25) can be obtained as follows: (i) the
value of o> can be found in (4.16); (i1) the setting of parameter 4 requires the parameter ¢;
in (4.22), which is set as 0.025M in our simulations. C; in (4.22) can be obtained from the
TCS method given by [116] when generating the initial guess. Finally, the parameter 7 is set

as
s (4.30)

where o is the variance of C, and is approximated by,

o’ =Var[C,]-0>. (4.31)
We show in the Appendix A that by setting 7 as in (4.30), the soft thresholding operation
in (4.25) indeed achieves a good approximation of the maximum a-posterior (MAP)
estimation of C,. Moreover, as shown in Appendix B, a bias compensation method is applied

in log-spectral domain to improve the spectral estimator. We would like to emphasize that
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due to the initial guess and the additional constraints applied to the algorithm, the proposed
algorithm need not be iterated many times to achieve satisfactory performance. In our
experiments, iterating 3 times already gives very good results. Iterating further in most cases
will only increase the computation time but not further improve the performance. Hence it is

not recommended.

4.5 Simulations and Results

In this section, the performance of the proposed algorithm is shown and compared with
the state-of-the-art speech enhancement methods. To start with, we use an example to
illustrate the deficiency of the traditional TCS method and how it is solved by the proposed
algorithm. For the ease in presentation, let us first denote the proposed algorithm as
Logmmse-L1-EM, which represents the two major operations (MMSE-LSA gain function
and L; norm regularization) used in the new EM framework. Fig. 4.2 shows a segment of a
typical noisy speech periodogram (red line), its original clean speech periodogram (black
line), the enhanced speech periodogram using the traditional TCS (green line) and the
proposed Logmmse-L1-EM algorithm (yellow line). It can be seen that the noisy
periodogram consists of a sharp noise spectral peak at frequency index about 170. The TCS
method tries to remove the noise spectral peak by reducing the variance of the cepstral
coefficients. It however is only partially successful and leaves behind a rather strong noise
spectral peak. In addition, the TCS method over-smoothes the speech spectral peak at indices
near 100 and 120. It is clear that a fixed set of smoothing parameters is difficult to handle
noisy speech spectral components equally well if they have great difference in SNR. On the
contrary, the proposed Logmmse-L1-EM algorithm gives extremely good performance in
removing the noise spectral peak while keeping the speech spectral peaks. It is due to the

iterative process through EM by which the noise spectral peak is reduced successively in each
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iteration while the speech spectral peaks are also gradually adjusted. Fig. 4.3 illustrates how
the proposed algorithm refines the estimation in each iteration.

The results in Fig. 4.2 and Fig. 4.3 clearly explain why the proposed Logmmse-L1-EM
algorithm can provide a better performance than the original TCS method and the traditional
MMSE-LSA method. As mentioned above, the TCS method cannot take care of noisy
components with great difference in SNR. However, it serves as a good initial guess of the
clean speech power spectrum since it is less sensitive to the accuracy of the a-priori SNR
estimation. The initial guess is then applied to the L; norm regularizer in the M-step of the
proposed EM framework, which is indeed a constraint soft thresholding process. Besides a
good MAP estimation of the true power spectrum of the clean speech, the applied constraint
fully utilizes the sparsity feature of speech signals in the cepstral domain. Noises, no matter
stationary or non-stationary, will be rejected since most of them cannot fulfill this constraint.
For every iteration the proposed algorithm performs, the same constraint is imposed to the
observed noisy data and gradually improves the estimation, which is shown in Fig. 4.3. The
M-step of the proposed EM algorithm enables a gradually improved a-priori SNR estimate
for use in the E-step of the proposed algorithm, which is just the traditional MMSE-LSA
method. With a good a-priori SNR, the MMSE-LSA method can often give a good estimate

to the original clean speech periodogram for the M-step again.
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Fig. 4.2 — A comparison of the traditional TCS method and the proposed Logmmse-L1-EM
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Fig. 4.3 — The result of the proposed Logmmse-L1-EM algorithm after each iteration
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A comparison of the spectrogram of the enhanced speeches generated using different
algorithms with different colored noises at input is shown in Fig. 4.4 to Fig. 4.5. Table 4.1
gives a summary of the algorithms that have been compared. We start with the case that the
speech is contaminated by pink noise, which is a relatively stationary noise. Fig. 4.4a shows
the clean speech spectrogram of a female speech selected from the TIMIT database [192]
saying the following sentence: “She had your dark suit in greasy wash water all year”. Fig.
4.4b shows the result when pink noise is added to the speech with input segSNR about
5dB. Fig. 4.4c¢ depicts the spectrogram using the traditional TCS method. It can be seen that
although the TCS method can recover much speech contents, its noise control is not sufficient
and strong background residue noise remains in the enhanced speech. Fig. 4.4d shows the
spectrogram using the MMSE-LSA method plus SPP with fixed prior [49], which is a
relatively recent MMSE-LSA estimator enhanced by using a special speech presence
probability function. It has better control of the background noise however it also removes
speech content and the intelligibility of the enhanced speech is reduced. Furthermore, musical
noise appears particularly at the beginning of the speech. Fig. 4.4e shows the spectrogram
given by a combination of the TCS method and the MMSE-LSA plus SPP [140]. In that
approach, the TCS is used for the estimation of the a-priori SNR and is used in the
MMSE-LSA and the SPP estimation. It has better noise control compared with that in Fig.
4.4c and Fig. 4.4d. However, some speech contents are removed as it is indicated in the
circled areas. It seems that the speech contents removed by the SPP estimator cannot be
recovered although the TCS method is used. Fig. 4.4f shows the spectrogram using the
proposed Logmmse-L1-EM algorithm. It has very well background noise control and the
speech content is also better preserved as indicated in the circled areas.

Fig. 4.5 shows the case where the speech is contaminated by the buccaneer noise, which

is a non-stationary noise such that two tones of varying frequencies together with other
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background noises are added to the speech. The noisy speech is shown in Fig. 4.5b. When
speeches are contaminated by non-stationary noises, traditional decision-direct approach will
generate large error when estimating the a-priori SNR. Hence the performance of the
traditional the MMSE-LSA approach, although using SPP, will not be good. As can be seen
in Fig. 4.5d, the strong tones cannot be removed and will be quite annoying in human
auditory. The TCS method improves slightly as shown in Fig. 4.5c. The combined TCS and
MMSE-LSA approach gives better result as can be seen in Fig. 4.5e. However in both cases,
the tones still cannot be sufficiently removed while the background noises remain. The result
of the proposed Logmmse-L1-EM algorithm is illustrated in Fig. 4.5f. It is clear that the time
varying tones are largely suppressed while the speech contents are well preserved comparable
with that using the TCS method. The background noise is also significantly reduced. The
overall performance is very promising.

The performance of the proposed Logmmse-L1-EM algorithm is further evaluated using
standard evaluation measures. A series of simulations have been performed for comparing the
performance between the following approaches: MMSE-LSA [15], MMSE-Gamma [178],
MMSE-LSA plus SPP with fixed prior [49], MMSE-LSA plus TCS method [140], and the
proposed Logmmse-L1-EM algorithm. The speech sampling rate is 16kHz. Simulation details
are listed as follows: frame size — 512 samples (~32ms), FFT size — 1024 samples (zeros
padded each frame with 512 samples), window shift step size — 128 samples (75% overlap).
For all algorithms, the noise power spectrum is estimated by first using the initial frames that
are assumed to have no speech energy; then updated whenever a frame is detected to have no
speech energy by using a VAD [53]. For the algorithms using the MMSE-LSA gain function,
Gnin 1s set at -25dB which helps masking musical noise and limits speech distortion.

In the simulation, 40 male and 40 female test speeches were arbitrarily selected from the

TIMIT database [192]. The noise signals were adopted from the NOISEX-92 database [193]

97



and added to the speeches with input segmental signal-to-noise ratio (segSNR) [1] ranging
from about -10dB to +10dB. The resulting enhanced speeches generated by all algorithms
were evaluated using standard measures including (i) the segSNR; and (ii) the perceptual
evaluation of speech quality (PESQ), which is an ITU standard for evaluating speech
quality [58]. The results are shown in Fig. 4.6. It can be seen that the performance of the
proposed algorithm is always the best in all cases. For instance, when comparing with the
MMSE-LSA plus TCS approach [140], the proposed algorithm can always give an
improvement in segSNR and PESQ score for all noise signals. More specifically, for the pink
noise case, the average improvement in segSNR and PESQ is about 0.9dB and 0.1,
respectively. For the buccaneer noise case, the average improvement in segSNR and PESQ is
about 0.85dB and 0.12, respectively. Similar results can be found in Fig. 4.6 for other kinds

of noise contamination.

Table 4.1 - Summary of the algorithms compared in the simulations.

Method Description

MMSE-LSA Minimum mean-square error log-spectral amplitude estimator [15]

MMSE-Gamma Minimum mean-square error spectral amplitude estimator with
generalized gamma speech priors [178]

TCS Temporal cepstrum smoothing method [116]

MMSE-LSA FP SPP Using the MMSE-LSA gain function plus SPP estimated with
fixed prior [49]

MMSE-LSA TCS SPP  Using the MMSE-LSA gain function plus SPP estimated using the
TCS method [140]

Logmmse-L1-EM The proposed algorithm based on the new EM framework

98



MNormalized Frequency (e radisample)

08

03

07

08

05

MNormalized Frequency {xx rad/sample)
o
o

g v . L |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Time

(a) Original speech (b) Noisy speech (Noise: Pink, ~5dB segSNR)

MNormalized Frequency fer radfsample)

09

03

07

08

o
w

MNormalized Frequency fer radfsample)
o
o

Hial i oL |

) d % 0 L 3
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Time

4y i pt

(c) Traditional TCS method [116] (d) MMSE-LSA plus SPP with fixed prior [49]

Marmalized Frequency fer radfsample)

Marmalized Frequency fer radfsample)

1000 2000
Time

(¢) MMSE-LSA plus SPP and TCS [140] (f) The proposed Logmmse-L1-EM

Fig. 4.4 — Spectrogram of the original, noisy and enhanced speeches (pink noise)

99



Mormalized Frequency (n rad/sample)

1000 2000 3000 4000 5000 6000 7000 8000 @000 10000
Time

MNormalized Frequency fa rad/sample)
f=3
o

100 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

(a) Original speech (b) Noisy speech (Noise: buccaneerl, ~5dB segSNR)

MNormalized Frequency bt radisample)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

(c) Traditional TCS method

Marmalized Frequency (e radfsample)

s z
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

(¢) MMSE-LSA plus SPP and TCS

=T =]
~

o
o

o o o
b

MNormalized Frequency bt radisample)
o
o

[=1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time

(d) MMSE-LSA plus SPP with fixed prior

(=T = B =1
-~ ©

o
o

Marmalized Frequency (e radfsample)
o o o o
=] L) I w

o

1000 2000 3000 4000 5000 6000 700O 8000 9000 10000

Time

(f) The proposed logmmse-L1-EM

Fig. 4.5 — Spectrogram of the original, noisy and enhanced speeches (buccaneer noise)

100



(white noise)

(white noise)

o
0

(gp) wsweanoidwi ynShos

Input segSNR (dB)

(dB)
)

Input segSNR

(pink noise)

(pink noise

Lo}
v

o
)

(gp) wswanoidwi yNnSboes

Input segSNR (dB)

)

Input segSNR (dB
(destroyer engine noise

)

)

(destroyer engine noise

o
A

(gp) uswanoidwi yNnSbas

Input segSNR (dB)

(dB)
)

Input segSNR

(F16 noise)

(F16 noise

Y4 NN R I Te)
1

o
A

(gp) weweanoidwi yNnSbhas

Input segSNR (dB)

)

dB

Input segSNR (

101



(buccaneer noise) (buccaneer noise)

g o |

E \g\\\ : -%J:_J‘
& 4r-——-- e e T N -
£ E— ) 7 (0]
(0] K | | >
> | | > e
O oL - [ DN NI fo%
g o E
T 0 - . N
4 | | | T}
2y | | | o
(0] 2 I I |

® 10 5 0 5 10

Input segSNR (dB) Input segSNR (dB)

(babble noise) (babble noise)

segSNR improvement (dB)

4 ——
e c
& :
7 B S G Zaes i s
o
g O01r-—------—--- RNy
] B R --- o ;
| w Op----77"- . NG
| o ! !
2 ‘ -0.1 ‘ ‘ ‘
-10 -5 0 5 10 -10 -5 0 5 10
Input segSNR (dB) Input segSNR (dB)

Fig. 4.6 — (Left) Segmental SNR improvement over the noisy speech; (Right) PESQ
improvement over the noisy speech achieved by using MMSE-LSA [15] (‘X’),
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To predict the quality of noisy speech enhanced by noise suppression algorithms, three
composite objective metrics [1] are often used in the literature, which include (a) Csig: Signal
distortion (SIG) formed by linearly combining the LLR, PESQ, and WSS measures; (b) Cpax:
Noise distortion (BAK) formed by linearly combining the segSNR, PESQ, and WSS
measures. (c) Coy: Overall quality (OVL) formed by linearly combining the PESQ, LLR, and
WSS measures. Table 4.2 lists the performance of 5 different algorithms for noisy speech
signals contaminated by 6 different kinds of noise, both stationary and non-stationary, at
input SNR ranging from 0dB to 20dB. Concurring to the results in segSNR and PESQ, the
proposed Logmmse-L1-EM algorithm always outperforms the other 4; and in many cases, the
improvement is significant. These results have demonstrated the robustness of the proposed
algorithm. Its performance is consistent when enhancing speeches made by people of

different genders and are contaminated by different kinds of noise at different noise levels.
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Table 4.2 - Composite measurement comparison of different algorithms.

Noise Input SNR Cs_ig Chak Coul
Method ol s [1wofl15]20]o]s5[1wof15]2]0] 5 ]10]15]20
Noisy 1.34]1.92]2.61]3.263.87|[1.722.17]|2.64]3.123.59( 1.35[1.87|2.42]|2.95]3.45
MMSE-LSA 1.84]2.5413.16]3.67|4.05([2.18]2.592.97|3.28 3.51/1.802.37|2.86|3.26|3.55
White MMSE-Gamma 2.09(2.78]3.31]3.71|3.98([2.36]2.763.103.35|3.55|[2.04 | 2.60 ] 3.03 [ 3.35 [ 3.57
MMSE-LSA FP SPP 2.30(2.99]3.5213.93[4.29(12.47|2.88|3.25]3.62]3.99([2.19]2.75]3.19(3.56 | 3.88
MMSE-LSA TCS SPP 2.1112.91]3.50(3.96|4.33]2.41|2.87|3.29]3.69|4.08[2.05]2.70]3.21|3.62]3.98
Proposed Logmmse-L1-EM 2.47(3.17|3.71]|4.17|4.56(/2.62|3.05|3.43|3.82|4.23(2.35(2.94(3.38|3.79|4.17
Noisy 2.52(3.09]3.63]4.10|4.50(1.68|2.15]2.64]3.13]3.61(1.962.47(2.95]|3.39]3.78
MMSE-LSA 2.53]3.11|3.60|3.97|4.22/[1.87|2.35|2.79|3.16 | 3.44|/2.04]2.56 [ 3.01|3.36] 3.59
babble MMSE-Gamma 1.95]2.61]3.17]3.603.89](1.66 [2.20]2.69]3.10|3.40( 1.64 [2.23]2.74]3.15]| 3.44
MMSE-LSA FP SPP 2.15[2.89]3.53]14.06|4.49(/1.732.27]2.80]3.30(3.79( 1.76 [ 2.40 | 2.96 | 3.45]3.86
MMSE-LSA TCS SPP 2.21(2.94]3.56|4.07|4.49(1.86(2.39]2.90]3.39]3.85(1.84|2.47(3.03[3.50]3.91
Proposed Logmmse-L1-EM 2.41)3.09|3.69|4.19]/4.59(1.95|2.47|2.963.46 (3.92/2.00]2.59(3.12|3.59 ] 3.99
Noisy 2.00[2.59]3.19]3.75|4.25(/1.52(1.98]2.46]|2.96|3.47(1.65|2.14|2.64]3.12]3.57
MMSE-LSA 2.45(3.02]3.51]3.89]4.15[1.96(2.39]2.79]3.14|3.41(2.04 [2.53[2.95]|3.29]3.55
destroyer MMSE-Gamma 2.71(3.19]3.55]3.803.98(2.26 [ 2.66 | 3.00]3.28 | 3.49(12.32|2.75[3.09]3.35]3.53
engine MMSE-LSA FP SPP 2.58(3.03]3.48)3.94]|4.39(2.182.56]2.97]3.39]3.83(12.21 [ 2.62|3.04|3.44]3.85
MMSE-LSA TCS SPP 2.57(3.20]3.67]14.09|4.49(2.19(2.71|3.16]3.59]4.00(12.19 | 2.78 | 3.24 | 3.64 | 4.01
Proposed Logmmse-L1-EM 3.00(3.55|3.97]|4.36|4.72(|2.49(2.94|3.35]|3.74 | 4.16 || 2.57 | 3.08 | 3.48 | 3.85 4.20
Noisy 1.95(2.583.20(3.77[4.28(/1.57]2.05[2.54|3.05|3.55|[1.63 | 2.17] 2.70 [ 3.20| 3.66
MMSE-LSA 2.45(3.05]3.56]3.9414.20(2.03 [2.47|2.87]3.21]3.4612.09|2.60 | 3.04[3.37]3.61
Fl6 MMSE-Gamma 2.57(3.11]3.51]3.80]4.00(2.19|2.61]2.98]3.283.50(2.23 2.71|3.09]3.36]3.55
MMSE-LSA FP SPP 2.69(3.23]3.64]4.05|4.46(2.28(2.72]3.12]3.523.93(2.322.81|3.20]3.57]3.94
MMSE-LSA TCS SPP 2.56|3.18|3.67|4.07|4.48]2.212.72|3.183.61 | 4.04[2.21[2.79]3.26 | 3.65| 4.03
Proposed Logmmse-L1-EM 2.89(3.45|3.88]4.30|4.68(/2.43(2.89|3.32|3.74|4.16(/2.50 [ 3.01 | 3.43]3.82]4.19
Noisy 1.81]2.45]3.10]3.70[4.24[1.61 [2.08]2.57]3.083.57[ 1.56 [2.11]2.65]3.17]3.64
MMSE-LSA 2.36]3.01]3.55]3.96[4.24([2.09]2.53]12.933.253.49(2.05[2.60|3.06]3.40| 3.64
pink MMSE-Gamma 2.50(3.12]3.57]3.884.07(|2.252.68|3.04]3.333.54(2.23[2.75|3.15] 3.43 ] 3.60
MMSE-LSA FP SPP 2.61[3.20]3.65[4.02(4.37(12.30]2.73|3.16|3.583.99|(2.30[2.82]3.23|3.593.92
MMSE-LSA TCS SPP 2.45(3.15]3.67|4.06|4.41(12.23]2.72|3.203.64]4.08][2.17|2.78]3.27 | 3.66 | 4.01
Proposed Logmmse-L1-EM 2.81|3.44]3.91]|4.28|4.63(/2.45(2.92|3.35]|3.78|4.20(12.47 (3.03|3.46|3.84|4.19
Noisy 1.79]12.40]3.04|3.63[4.16|[1.542.00]2.49]2.993.49( 1.50 [2.01 | 2.55]3.06]3.53
MMSE-LSA 2.27[2.90]3.45]|3.884.17(/1.99(2.42]2.82]3.17|3.43(1.93|2.46{2.93]3.30]3.56
buccancer MMSE-Gamma 2.25(2.88]3.37]3.72|3.95(2.04 [ 2.48 | 2.88|3.213.45(1.97|2.52(2.95]|3.27]3.49
MMSE-LSA FP SPP 2.44(3.04]3.53]3.98]4.39(2.182.61]3.02]3.43]3.85(2.13[2.66[3.10]3.49]3.86
MMSE-LSA TCS SPP 2.38(3.06]3.59]4.01|4.42(2.162.64]3.10]3.53]3.95(2.07|2.68|3.17]3.583.96
Proposed Logmmse-L1-EM 2.71)|3.35|3.84|4.27]|4.67|2.36 | 2.823.25|3.67|4.10(|2.37 ] 2.93|3.37[3.78 | 4.15
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4.6 Chapter Summary

In this chapter, an improved speech enhancement algorithm based on a novel
expectation-maximization framework is proposed. The new algorithm makes use of the EM
algorithm to define a theoretical framework for the estimation of the true power spectrum of
the original speech and its periodogram from a noisy observation. The proposed algorithm
starts with the traditional cepstrum smoothing method which gives the initial guess of the
periodogram of the clean speech. It is applied to an L; norm regularizer in the M-step of the
EM framework to estimate the cepstral coefficients of the true speech power spectrum. It
enables the estimation of the a-priori SNR and is used in the E-step, which is indeed an
MMSE-LSA gain function, to refine the estimate of the clean speech periodogram. The
M-step and E-step then iterate for 2 more times, with which we have shown to be sufficient in
most cases to achieve good result. The proposed algorithm fully utilizes the sparsity of
speeches in the cepstral domain by adopting the L; norm regularizer. It enables the
optimization process to be carried out on coefficients with improved SNR and hence reduces
the effect due to the estimation error of the non-stationary noise characteristics. As a result,
the proposed algorithm works particularly well when the input speech is contaminated by
non-stationary noises. Besides, due to the iterative process, the proposed algorithm has very
good control of the residue background noises which makes it outperform the traditional
methods. Simulation results have verified that the proposed algorithm improves over the
competing speech enhancement methods in almost all testing conditions, such as different
kinds of noise at different noise levels using different evaluation measures. They have clearly
demonstrated the robustness of the proposed algorithms in general speech enhancement

applications.
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4.7 Appendices
4.7.1 Appendix A — MAP Estimation of C,

Given C,,the MAP estimator of Cy is,
C, =arg mCa}Xf(Cx | Cx) : (4.32)

We obtain by using the Bayes’ rule,

- f(C.CHf(C)

C, =argmax

e f(C)

(4.33)

Since the value of C, that maximizes the right-hand side is not influenced by the denominator,

the MAP estimate of Cy can be rewritten as,
C, =argmax| /(C,|C)/(C))] (4.34)

The logarithm function can be applied to (4.34) because it is monotonic. Hence,

¢, =argmax]log(/(C, [€,)) +log(/(C.)) ] (4.35)

As éx is normal distributed with mean C, [101],

; 1 _(C,-¢)
ﬂQKU—Gﬁ;W%' > j. (4.36)

e

By using (4.36), (4.35) becomes,

e

- ~(C.-C)

C, =arg max {T + log(f(Cx))} (4.37)
Let us define g(C, ) =log(f(C,)). Then we have,

- ~(C,-C)

C, =argmax {T+ g(Cx)} : (4.38)

We can obtain the MAP estimate of C, by taking the derivative of the terms in the square
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bracket in (4.38) with respect toC.. Then,

A ~

(Cxo:zcx) +g l(éx) =0. (439)

We now need the prior f (CX) , 1.e. the distribution of cepstral coefficients, C,, of the clean
speech. In Fig. 4.7, we show the PDF f (Cx)obtained from the cepstral coefficients of 40

male and 40 female test speeches from the TIMIT database [192], and fit it with different
distributions. It is seen that it can be modeled by a Laplacian, or Gaussian or Generalized
Gaussian Distribution (GGD) without large error. It is highly likely that this will also be the

case for f(C,). Assume that f(C,) is modeled using a Laplacian PDF:

rey=— exp{—%2 c, ] (4.40)
In this case,

g(C,)=—log(c/2) —%2 c,l. (4.41)
As a result,

2= ienc,). @42)

Put (4.42) into (4.39), we have,

2
e

C.=C. + 0.2 sign(C.) . (4.43)

O

Therefore, C. as a function of C. is given by

C +T, C.<-T
C.=1 0, ~-T<C <T . (4.44)
C. -T, T<C,

This is the soft threshold nonlinearity. 7 in this case is given by,
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(4.45)

which is similar to that in (4.25) except the omission of the constraint 4. To summarize, the
soft thresholding operation as defined in (4.25) is a good approximation of the MAP estimate

of C with the assumption that C has a Laplacian prior.

Histogram of the ceptral coefficients of speech signal
0.1 T T T T T T T

0.09

Laplacian ||
Gaussian

0.08 — . —GGD

0.07 -
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0.04 -
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0.01F

L = == \
2 -0.15 -0.1 -0.05

Fig. 4.7 — The PDF of cepstral coefficients of 40 male and 40 female test speeches from the
TIMIT database [192]. The PDF approximated directly from the speeches (red dotted line).
The PDF fit by using a Laplacian model (6=0.02792, f=1) (blue solid line), Gaussian model
(0=0.02510, f=2) (green dashed line), and GGD model ( 0 =0.03223, p=1.2783) (black
dash-dot line)
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4.7.2 Appendix B —Bias compensation in log-spectral domain

In general, the applied smoothing and thresholding (ST) process in the cepstral domain
is biased, as it does not only reduce the variance of power spectrum but also affects its means.
Since it is believed that the enhancement process can follow better the perceptual
characteristics of human auditory system when it is carried out in log domain, the scaling

factor ays of bias correction is proposed to minimize the sum of square in log-spectral domain.

2

miny” loglS. (0)) e, loglS" (k) (4.46)
where
log(S* (k))= FFT(CY (9)) (4.47)

The least square estimate of the force constant, oy is given by

3 logl$, (6) loglS ()
& =" - (4.48)

Then, the proposed nonparametric spectral estimate is obtained from the C 5T(q) by the
simple scaling ay as

S, (k) = expla, FFT(CY (9)) (4.49)
The effect of bias compensation in log-spectral is shown in Fig. 4.8. It is seen that the ST
process introduces a signal power bias, and is successfully compensated with the bias

compensation in log-spectral. And then, a refined a-priori SNR could be generated to be used

in the later enhancement process.

~

£ gy SB)

50 (4.50)
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Fig. 4.8 — Effect of the bias compensation in log-spectral for estimate speech. Original speech
segment energies (dotted line), the speech segment energies after the proposed ST estimation
(dashed line) and the speech segment energies after the proposed ST estimation and bias

compensation in log-spectral (solid line).
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Chapter 5 A Speech Enhancement Method Based on Sparse

Reconstruction on Log-Spectra

5.1 Introduction

In Chapter 4, we proposed a new EM framework for speech enhancement. In the core of
the framework, a new L;-norm regularization process is developed for the estimation of the
cepstral coefficients of the speech true power spectrum. The regularizer is very effective
since the cepstral coefficients are in fact a kind of sparse representation of the speech power
spectrum, as explained in Chapter 2. A natural question thus arises if the cepstral coefficients
are the best representation of the speech power spectrum as far as the sparsity is concerned. If
there is a sparser representation available, it may be possible to further improve the
estimation and hence the speech enhancement performance.

As it is introduced in Chapter 2, the techniques of sparse representation and dictionary
learning are widely investigated and have provided possible solutions for many signal
processing problems. The goal of these techniques is to look for the sparsest representation of
a signal in terms of linear combination of atoms in an overcomplete dictionary. They have
been adopted in many applications in speech processing, such as speech recognition [184],
voice activity detection (VAD) [186] and speaker identification [187], etc. They have also
been introduced to speech enhancement methods [134]-[137] as well. For instance, in [136],
the approximation of K-SVD [128] algorithm and the Least Angle Regression (LARS) with a
coherence criterion (LARC) are used to learn the composite dictionary and reconstruct the
speech spectral amplitude. The LARC method extends the LARS algorithm to include a
residual coherence stopping criterion and optimize it to solve a large number of simultaneous

coding problems efficiently. The residual coherence stopping criterion of LARC is invariant
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to changes in signal energy. In addition, the LARC method allows the code and the dictionary
entries to assume values of the entire real domain. However, the composite dictionary
depends on the noise dictionary which is difficult to train and inconvenient to use because the
background noise type is diversified and the property is not known in advance for general
applications. On the other hand, a speech enhancement method using the sparse
reconstruction of the approximated PSD through the magnitude-squared spectrum is
presented in [137]. The approximate K-SVD algorithm with nonnegative constraint is applied
to train the PSD dictionary of the clean speech signal. The enhanced speech is obtained by
combing the estimated PSD with the signal subspace approach based on the short-time
spectral amplitude (SSB-STSA). The above studies have demonstrated that the sparse coding
method can improve the quality of noisy speeches. In this work, we further extend the
abovementioned methods to apply the sparse coding techniques to the reconstruction of the
log power spectrum of speech. It is based on the well-known fact that distortion measures
based on the mean-square error of the log-spectra are more appropriate for speech
processing [15]. In addition, we propose a new adaptive residual coherence threshold as the
stopping criterion. It enables the speech dictionary to adapt to various noise environments in
order to improve the enhancement performance. Finally, a modified two-step noise reduction
(TSNR) technique with the MMSE-LSA estimator is applied to estimate the clean speech
signal. As shown in the simulation results, the proposed algorithm has outstanding
performance particularly when the contaminating noises are not totally random but contain
certain structure in the frequency domain. Better performance is obtained in all cases
evaluated by using different standard measures as compared with the state-of-the-art speech
enhancement techniques.

This chapter is organized as follows. In Section 5.2, some formulations used in the

traditional two-step noise reduction speech enhancement algorithms are shown. It is followed
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by a brief introduction of the traditional framework of sparse coding and dictionary learning
for speech enhancement in Section 5.3. The new algorithm is described in Section 5.4. The

simulation results are shown in Section 5.5, and conclusions are drawn in Section 5.6.

5.2 Two-step noise reduction

In Chapter 1, we have briefly introduced the essence of some noise reduction techniques.
Here we would also like to introduce a two-step noise reduction (TSNR) technique [37]
which is used in our proposed algorithm. In the first step of TSNR, the spectral gain Gyieper(k)
is computed as in (2.12) and is used to generate the initial guess of the enhanced speech. It is

used in the second step to estimate the a-priori SNR as follows:

2

1 |GWiener (k7 Z)Y(k’ l)

S, (k,i)

é:ATSNR (k,i)=«a

+(1-a'ymax {7 (k,i+1)—1,0} (5.1)

In order to avoid the additional processing delay due to the usage of the future frame (i+1),

the parameter o’ is set to 1. (5.1) becomes

2

A - Gy (k)Y (ki)
k,l — | erner’\ 52
Srsne (£50) S k) (5.2)
Finally, the new a-priori SNR is used in the Wiener filter gain function as shown below:
- o (K
Grove (k) = gTENR( ) (5.3)
1 + é:TSNR (k)

The TSNR improves the noise reduction performance because the gain matches to the current
frame at all SNR. Experimental result shows that it preserves speech onsets and offsets, and
successfully removes the annoying reverberation effect by the decision-directed approach. It

will be modified and applied to the proposed algorithm.
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5.3 Sparse coding techniques for speech enhancement

The basic principle of sparse coding is that natural signals can be efficiently represented
as the linear combinations of pre-specified atom signals in overcomplete dictionaries, where
the coefficients are sparse (most of them are zeros or insignificant). Formally, if y is a column
signal and D is the dictionary (whose columns are the atom signals), the sparse coding can be
explained using a cardinality constraint:

¢* = arg min.|ly — Dc||, Subject To ||c|]lo < K K P, (5.4)
or using an error constraint

¢* = arg min||c||, Subject To ||y —Dc||, < ¢ (5.5)
C
where ¢ is the error tolerance; ||+||, is the Ly pseudo-norm, which is counting the non-zero

entries of a vector; and K is the target sparsity. The matrix D € RN*P with N<P is called the
atoms, which is an overcomplete dictionary usually normalized by the L, norm. The vector ¢
€ R is the sparse coefficients of the signal y € R". Since N < P, an infinite number of
solutions are available for the problem, which is called NP-hard problem. The desired
solution can be estimated by using (i) the greedy searching methods such as the matching
pursuit (MP), orthogonal MP (OMP) and gradient pursuits (GP); (ii) the nonconvex local
optimization methods such as the focal underdetermined system solver (FOCUSS); or (iii) the
convex relaxation methods such as the least absolute shrinkage and selection operator
(LASSO), LARS and LARC, and others [128], [188]. LARS [189] is a very efficient model
selection algorithm that gives a solution closely resembling LASSO (and with a simple
modification, it can be made to exactly give the LASSO solution). As with OMP, each
iteration of LARS consists of an atom selection and a coding coefficient update step. Atom
selection is based on the maximal correlation to the current residual. For the coefficient

update step, LARS selects atoms in the equiangular direction, until a new atom has equal
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correlation with the residual as all atoms in the active set. The terminate criterion of LARS is
based on a coding cardinality or a residual norm value. Based on LARS, the coding algorithm
LARC [136] uses a residual coherence threshold as the sparsity parameter. As the LARC
method is also a greedy algorithm, the coherent components will be coded before the
incoherent components, and the maximum residual coherence will decrease in each iteration.
A residual coherence threshold t; is used as the stopping criterion, which does not depend
on the magnitude of the observation. It is not necessary to adapt the residual coherence
threshold to the data on a frame by frame basis in contrast to specifying cardinality or a
residual norm. It enables a trade-off between source distortion and source confusion by
controlling the coding sparsity.

The above methods are based on the assumption that the speech dictionary is known
already. When applying to the speech enhancement problems, a proper speech dictionary
needs to be designed. The methods of dictionary learning have been presented in [190]. The
K-SVD algorithm [127] is one of the most popular methods for dictionary learning. It has
been briefly discussed in Chapter 2. The K-SVD algorithm includes an initial overcomplete
dictionary Dy, a set of training signals arranged as the columns of a matrix Y, and the iteration
number k. It target iteratively improving the dictionary to achieve the sparse coding of the

signal in Y. It is achieved by solving the following optimization problem:

%1&1”! - DCS||12: Subject To V; ||cillo < K (5.6)

where ||-||2 denotes the Frobenius norm; ¢; is the i-th row of C;, and K is the desired sparsity.
As D and C; are unknown, the objective function (5.6) is not convex. The K-SVD algorithm
solves it by alternating between the sparse coding of the examples based on the current data
and a updating of the dictionary atoms. The sparse-coding step is commonly implemented by
employing the OMP. When updating the dictionary, one atom will be processed at a time to

optimize the target function while keeping the rest fixed. To further reduce the complexity,
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the approximate K-SVD algorithm is proposed in [128]. It limits the iteration to be only one
but with a different updating step for the dictionary. Such simplified procedure is shown to be
able to give very close results to the full computation. More details about the K-SVD
algorithm can be found in Chapter 2.

When applying the sparse coding technique to speech enhancement, it is desirable to
have the dictionary D® trained to be coherent to the speech signal and incoherent to the
background noise signal. It can be relatively easily achieved when the background noise is
white Gaussian that does not contain any structure. Such background noise is incoherent to
any fixed dictionary and in particular to the speech dictionary [67]. However, many relevant
kinds of background noise contain structure. If the background noise is partially coherent to
the speech dictionary, it will also incur strong coding coefficients which will be very difficult
to remove. To solve the problem, it is suggested to train a coherent noise dictionary D for
structured background noises. It is shown in [136] that by using a composite dictionary D =
[D¥ D], significant improved enhancement performance can be achieved comparing with

using a single speech dictionary.

5.4 The new framework of sparse coding and dictionary learning of log
power spectrum for speech enhancement

In this section, a new speech enhancement algorithm based on sparse coding is proposed.
The new algorithm extends the traditional sparse coding based speech enhancement methods
in a few aspects: (i) working on log-spectra; (ii) estimating the clean speech with a modified
two-step noise reduction (TSNR) procedure; and (iii) using a new noise adaptive stopping
criterion for atoms updating.

It is well-known that distortion measures based on the mean-square error of the

log-spectra are more appropriate for speech processing [15]. In fact, the log power spectrum
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of a signal is related to its log periodogram as in the following formulation [146]:
log(Sy (k) = log (Sx(k)) + R(k) where R(k) = e(k) —y (5.7)
where (k) are i.i.d. with zero mean and a fixed variance n%/6, and y = 0.577216 is the

Euler’s constant. We can also express the log power spectrum of the estimated speech in

vector form as follows:
S~log = DlogClog +R (5.8)
where S, =log(S;)€RY is a column vector, the matrix Djq = {dlog]- Y €

RN*P (N < P) containing P atoms is an overcomplete dictionary usually normalized by the

L; norm, the vector ¢4 € RY is the sparse coding coefficients such that

Slog = Dlogclog (5-9)

where S, = log(Sx ) Using an error constraint, the sparse coding can be described as the
following minimization process:

Clog = arg min|[éiog|, Subject To [[Siog ~ Diogliogl], < ¢ (5.10)
For solving the above minimization problem, we directly adopt the LARC algorithm which is
a greedy method consisting of an atom selection and a coding coefficient update step in each

iteration. Different from that in [136], the LARC algorithm is applied to reconstruct the log

power spectrum of the clean speech. The detailed procedure is shown in Algorithm 1.
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Algorithm 1: Batch LARC on log power spectrum

A N A A o e

—_— e
W N = O

—_—
[©) WV, I N

[S—
-

18.

19.
20.

21.
22.
23.

Input: S, €RM; Djpy € RVP; G=DJ,.Djpy ; T
Siog < 10g(S8y )

Normalize xy < {$},, — mean(S;,4)}/std(S;o4)
Initialize coefficient vector 61%2
Initialize active set A « { }; number of active set K, « 0
u® < D xy 5 p® <0

While |Al < Djpq do

e H(X) — H(Y)

« 0 and fitted vector yy©@ « 0

j* < arg max; |u].| , j EAC

A AU Ky« Kp+1
. if |uj*
. s « sign(u,)
.8« Giaps
b« (gTS)—l/Z
. W < bg

/llxy — ynll, < 7; then break

.U« Dlog(:,A)w

.d < G(:‘A)W

.+ “’]* _“'e l"’]* +l"’e
Calculate step length ¢ < mingcpc < boa. ’ brag )

Update fitted vector yy < yy + ou

Update regression coefficients 6logA « 6logA + ow
M(Y) «— M(Y) + (Pa

End while

Output coefficients: é,, € RP, K,

The above procedure shows that if we are given the periodogram of the clean speech, we

can use Algorithm 1 to obtain a good estimate of the sparse coding coefficients of its true

power

periodogram of the clean speech in the first place. To do so, we propose a modified TSNR
procedure which is similar to the EM algorithm we proposed in Chapter 4. First, we make a
rough estimation of the periodogram of the clean speech from the noisy observation using a
traditional speech enhancement algorithm. Then based on Algorithm 1, we can have the
initial estimate of the true power spectrum of the clean speech. We then use it to compute the

a-priori SNR and in turn the MMSE-LSA gain function to refine our estimation of the clean

spectrum based on the speech dictionary D. The problem is how to obtain the
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speech periodogram. Finally the enhanced speech is obtained.

More specifically, we adopt the temporal cepstrum smoothing (TCS) method to obtain
the initial estimate of the clean speech periodogram. As explained in Chapter 4, the TCS
method [116] works reasonably well for non-stationary noises and can give an acceptably

good estimation of S, from the noisy §y without the need of a very accurate a-priori SNR

estimator. Thus we adopt the TCS method to obtain the initial guess of S, for the proposed

algorithm. Then, the sparse coefficient vector (g is estimated by Algorithm 1. By
substituting {j,g into (5.9), the log true power spectrum of the clean speech is estimated as

follows:

SAlog = Dlogélog (5-11)

Since the observed log periodogram is normalized in step 3 of Algorithm 1, a
denormalization procedure should be performed to obtain the estimated log power spectrum

of the clean speech as follows:
Siog = Siog * std(S4) + mean(S;,,) (5.12)
The enhanced speech X can thus be obtained by using the modified TSNR gain function in

which the a-priori SNR is computed based on the current estimate Sjoq. The MMSE-LSA

gain function theoretically gives the minimum mean square error estimation of the
log-magnitude spectra of speeches. More specifically, we refine our estimate of the a-priori

SNR in the first step as follows:

o _[Gewrm]
- Sm

£TSL
v (

(5.13)

where Gs(k) = Giogmmse (), & (k) and &5 = “EL29 Then, the MMSE-LSA gain

n

function is computed and applied to obtain the clean speech estimate as follows:
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MW 1t e £ (k)
Gprsy (k) = ﬁexp{_ J- le}V(k) where v (k) = m

- y(k) (5.14
+ SZTSL (k Vs (k) ( )

The enhanced speech X can thus be obtained by,

|X| = Gsrrsr(k) - |Y]
(5.15)
X = |X|exp (j2Y)
where 2Y is the phase angle of Y.
As mentioned above, the dictionary D)o, needs to be obtained before the sparse

reconstruction stage. The training of the dictionary D), can be carried out by solving the

following optimization problem:

. 2 .
min ”Slog - Dlogclog” Subject To V; | Clog, ” <K (5.16)
D,C]og F 11l
where ||-||2 denotes the Frobenius norm; Clog, is the i-th row of Cp,, and K is the desired

sparsity. Sj,4 1s the log true power spectrum of the clean speeches. In practice, we
approximate them by their log periodogram. The approximate K-SVD method is directly

adopted to train the dictionary Dy,q. The complete algorithm is shown in Algorithm 2.
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Algorithm 2: Approximate K-SVD on log power spectra

1. Input: Signal set S, € RN*/rameNum,
initial dictionary Dyog =~ € RN*P
target sparsity K, and number of iterations n
Set S;pg < log(Sx ) ; Diog < Dlogo
. Normalize Xy « {S;,5 — mean(S;4)}/std(S;o4)
. Foriter =1tondo

2
3
4
5. Vi Clogi « arg minclog”XNi — DlogClog”z Subject To ||c10g||0 <K
6 For j=1to Pdo

7

8

9

Prog,j < 0
I « {indexs of the signals in S;,, whose representations use d;}
g < Clog;-l:l

10. de Xy, g— DlogclogI g

11. d < d/||dll,

12. g < Xyj d = (DiogCiog, )d

13. Dlog(:'j) «d

14. Clog]_‘l g’

15.  end for

16. end for

17. Output Dictionary D), € RM**

5.4.1 Adaptive residual coherence threshold

Recall that for the LARC algorithm as described in Algorithm 1, a residual coherence
threshold 7; is used to define the stopping criterion of the iterative sparse coding process (see
step 11 in Algorithm 1). Basically its selection is not critical if the background noise is
incoherent to the speech dictionary (such as white noise) [136]. Originally it is the case when
applying to the proposed algorithm since the true power spectrum of a speech is different
from its periodogram by an i.i.d. error function (see Eqn.(5.7)). Nevertheless, since the initial
estimate of S, actually comes from the TCS. Some of the background noise, which can be
structural, may still remain in the initial estimate of S, . Such residual background noise

components will thus be coherent with the speech dictionary. The selection of 7; becomes
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critical in this case as it can significantly affect the final speech enhancement performance.
To illustrate this, a comparison of the enhancement performances of the proposed speech
enhancement algorithm with various residual coherence thresholds z; is shown in Fig. 5.1.
More specifically, we compare the PESQ scores (the Perceptual Evaluation of Speech Quality)
of the enhanced speeches generated by the proposed method with different t;. PESQ is an
ITU standard for evaluating speech quality [58]. Our results show that when the residual
coherence thresholds 7; is too high (e.g. 7; = 0.4), poor performance is resulted for all types
of background noise as distortion occurs during reconstruction. For white noises which are
incoherent to the speech dictionary, better results are obtained with lower threshold (e.g.
7,=0.1) value. For babble noises which are highly coherent to the speech dictionary, higher
threshold (e.g. 7;=0.3) value gives better performance. For buccaneer noises which are
partially coherent to the speech dictionary, lower threshold values are more favorable when
the input SNR is low (0 and 10 dB). But when the input SNR is higher, a higher threshold
value is preferred (e.g. 7;=0.3). The above shows that the speech enhancement performance
is not only affected by the coherence between the background noise and the dictionary, but
also the input SNR.

To deal with the problem, the traditional approach uses a composite dictionary which
consists of both the speech and background noise dictionary. However, it is difficult to train
the background noise dictionary as the noise property is not known in advance for most
applications. We propose to use an adaptive residual coherence threshold such that the

threshold value can be adjusted automatically for different kinds of noise and also SNRs.
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Fig. 5.1 — Enhancement performance of the proposed speech enhancement algorithm

SRLPS-TSL with various residual coherence thresholds 7; = 0.1, 0.2, 0.3 and 0.4.

123



By closely examining Algorithm 1, we notice that the parameter K, (see step 5 of
Algorithm 1) can give a good indication about the coherence between the input signal and the
speech dictionary. So if we input the power spectrum of a noise signal to Algorithm 1, we can
use K, to indicate the coherence between the noise and the speech dictionary. To illustrate
this, an experiment was done to investigate the change in the value of K, when feeding the
power spectrum of different kinds of noise to Algorithm 1. Table 5.1 shows the average value
of K, across frames for different kinds of background noise obtained from the NOISEX-92
database [193]. For the background noises which are less coherent to the speech dictionary
(such as the white noise), the average K, is lower. For the background noises which are
highly coherent to the speech dictionary (such as the babble noise), the average K, is also
higher. Hence the parameter K, in Algorithm 1 can be used as an indicator of the coherence
between the background noise signal and the speech dictionary. In practice, we first use a
VAD [53] to detect the noise frames in a noisy speech signal. Then the power spectrum of the
noise is estimated by taking the average of the periodogram of all the detected noise frames.
Algorithm 1 is then called with the estimated noise power spectrum to obtain the parameter
K4. We shall use such parameter to evaluate an adaptive residual coherence threshold to be

used in the sparse coding process performed in the noisy speech frames.

Table 5.1 - Summary of the average number of active set K4 versus different background
noises. (t; =0.5)

Noise Average K,
White 1
Speech babble 14.05
Destroyer engine room 9.45
F16 cockpit 8.99
Pink 3.51
Buccaneer cockpit 6.03
M109 Tank 7.50

As it is mentioned above, the input SNR can also affect the selection of the residual

coherence threshold 7;. However, we notice that its effect is not linear but similar to the
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Wiener gain function, i.e. it will flat out when the noise level is sufficiently small. Since the
Wiener filter gain function Gpiener(k) in Eqn. (2.1) could be updated in every frame, we
propose to choose the mean of the Wiener filter gain function Gpiener(k) as a parameter to
compute the residual coherence threshold. More specifically, we define a parameter /; such

that for a noisy speech frame,

1N

i = ﬁ Wlenel (5 17)

Then, the residual coherence threshold for a specific noise t,, could be obtained as follows:

z, =min{max{max{(K , —b,)/b,,0}+b,h,, 7, },7,..} (5.18)

where T,,i, = 0.1 and T,,4, = 0.3; three parameters b; = 20, b, = 25 and b; = 0.5 are set
empirically. Eqn. (5.18) is formulated based on our observation (explained earlier) that the
residual coherence threshold 7,, should be proportional to the coherence between the
residual background noise and the speech dictionary (represented by the parameter K,), and
the input SNR (represented by the parameter /4;). The parameter b; is the offset, b, and b; are
the weighting factors. They are selected by fitting the PESQ results of the proposed algorithm
using Eqn. (5.18) over 80 test speeches of different genders, noise types and noise levels (in
fact, their selection is not sensitive to these factors). To reduce the fluctuation between frames,
we further smooth t,, by taking a weighted average with the estimate in the previous frame

as follows:
r,()=a,7,(-)+1-a,)z,@) (5.19)
where the smoothing factor «,is set to 0.8. 7, is thus the proposed adaptive residual

coherence threshold. To summarize, the proposed speech enhancement algorithm based on
the new framework of sparse reconstruction on log power spectra with two-step MMSE-LSA
filtering (SRLPS-TSL) can be described as follows:

1. Use Algorithm 2 to train D;,, from a set of training clean speeches.
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2. For the noisy speech input, compute the initial guess of the log periodogram of the
clean speech §log using the TCS method (Eqn. (4.26) in Chapter 4), i.e. §log =
log (5£¢5) .

3. Compute the adaptive residual coherence threshold 7, by Eqn. (5.19) and Algorithm 1.

4. Estimate the parameter Cjog using Algorithm 1 with 7, =7, .

5. Use Eqn. (5.11) and (5.12) to obtain the estimated log power spectrum S, g of the
clean speech.

6. First step of TSL - Estimate the a-priori SNR ™" (k) by Eqn. (2.19) and (5.13).

7. Second step of TSL - Obtain the enhanced speech spectrum X by Eqn. (5.14)
and (5.15).

8. Obtain the enhanced speech signal by IDFT, overlap and add.

The operation of the proposed algorithm is also described in Fig. 5.2.
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Fig. 5.2 — The operation of the proposed speech enhancement algorithm SRLPS-TSL
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5.5 Simulations and Results

In this section, the performance of the proposed algorithm is shown and compared with
those achieved by the state-of-the-art speech enhancement methods. To start with, we use an
example to illustrate the importance for the proposed algorithm to work on the log power
spectra instead of the normal power spectra. Fig. 5.3 shows a segment of a typical noisy
speech periodogram (dash-dot line), its original clean speech periodogram (dotted line), the
enhanced speech periodogram using the proposed speech enhancement algorithm on power
spectrum (PS) (dashed line) and the proposed speech enhancement algorithm on log power
spectrum (LPS) (solid line). It can be seen that both the reconstructed periodograms (PS and
LPS) can restore the spectral peak of original speech. However, the LPS method restores the
spectral valley much better than the PS method. This example demonstrates that it is more

appropriate to apply the sparse reconstruction method to log-spectra for speech enhancement.

Voiced frame
20 ‘
Original

10r Noisy
0 | — —PS

Aol L]

RN ~‘ i " ““ |

200 [ {0V L]

30H |/ | w“‘ L)

401 RIS . || ‘f h
-50 :
0 2

Frequency (kHz)

Magnitude (dB)
>

Fig. 5.3 — Effect of the noise reduction with sparse reconstruction and dictionary learning on
a voiced frame (pink noise, input segSNR = -3.69dB). Reconstruction on power spectrum
(dashed line), Reconstruction on log power spectrum (solid line), noisy speech spectrum

(dash-dot line) and original speech spectrum (dotted line).

A comparison of the spectrogram of the enhanced speeches generated using different

algorithms is shown in Fig. 5.4. Table 5.2 gives a summary of the algorithms that have been
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compared. The speech sampling rate is 16kHz. Simulation details are listed as follows: frame
size — 512 samples (~32ms), FFT size — 1024 samples (zeros padded each frame with 512
samples), window shift step size — 128 samples (75% overlap). The log power spectrum
dictionary of the clean speech is trained by the approximate K-SVD MATLAB Toolbox [128].
The sparsity target K as mentioned in Eqn. (5.6) is set to 10 and the number of iterations is set
to 30. The dictionary D, is learned using 100 sentences extracted from the training portion
of the TIMIT database, which is different to the testing portion. No sentence should appear in
both the training and testing portions. The size of dictionary Dj,, 1s 513 x 1024 and is
initialized by randomly taking the training data. For all algorithms, the noise power spectrum
is estimated by first using the initial frames that are assumed to have no speech energy; then
updated whenever a frame is detected to have no speech energy by using a VAD [53]. Fig.
5.4a shows the clean speech spectrogram of a female speech selected from the TIMIT
database [192] saying the following sentence: “Cliff was soothed by the luxurious
massage”. Fig. 5.4b shows the result when the the military vehicle (Leopard) noise (from the
NOISEX-92 database [193]) is added to the speech with input segSNR about -5.79 dB. Fig.
5.4c depicts the spectrogram using the traditional MMSE-LSA method. It can be seen that
although some of the background noise is suppressed but the speech signal is distorted. Fig.
5.4d shows the spectrogram using the Harmonic Regeneration Noise Reduction Algorithm
(HRNR) [37]. Although it can recover much speech content, its noise control is not sufficient
and strong background residue noise remains in the enhanced speech. Fig. 5.4e shows the
spectrogram given by the MMSE-LSA CEM algorithm [182] that we proposed in Chapter 4.
We have seen that the MMSE-LSA CEM algorithm performs very well for buccaneer noises
in Chapter 4. However, it is not the case for the Leopard noises as shown in Fig. 5.4e. Much
residual noise remains at the low frequency part of the spectrum. It may be due to the strong

spectral coefficients of the Leopard noise at low frequencies, where strong speech spectral
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coefficients can also be found. They are then mixed up in the MMSE-LSA CEM
algorithm. Fig. 5.4f shows the spectrogram using the proposed algorithm (SRLPS-TSL). It
has very well background noise control (as indicated in the circled areas) and the speech
content is also preserved. It can be seen that many of the low frequency noise coefficients are
suppressed while those of the speech remain intact. The result demonstrates the ability of the

proposed sparse coding method in differentiating the speech and noise coefficients.

Table 5.2 - Summary of the algorithms compared in the simulations.

Method Description

MMSE-LSA Minimum mean-square error log-spectral amplitude estimator [15]
HRNR Harmonic regeneration noise reduction algorithm [37]
MMSE-LSA CEM EM based cepstrum smoothing using MMSE-LSA filter [182]
SRLPS-TSL The proposed algorithm based on the sparse reconstruction on log

power spectra with two-step MMSE-LSA filtering
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The performance of the proposed SRLPS-TSL algorithm is further evaluated using the
standard objective evaluation measures and compared with the following approaches:
MMSE-LSA [15], Two Step Noise Reduction Algorithm (TSNR) [37], HRNR [37],
MMSE-LSA plus SPP using TCS method [140], and the MMSE-LSA CEM [182] that we
proposed in Chapter 4.

In the simulation, 40 male and 40 female test speeches were arbitrarily selected from the
TIMIT database [192]. The noise signals were adopted from the NOISEX-92 database [193]
and added to the speeches with input signal-to-noise ratio ranging from about 0dB to +20dB.
To predict the quality of the enhanced speeches, three composite objective metrics [1] are
used, which include (a) Csig: Signal distortion (SIG) formed by linearly combining the LLR,
PESQ, and WSS measures; (b) Cpak: Noise distortion (BAK) formed by linearly combining
the segSNR, PESQ, and WSS measures; and (¢) Coy: Overall quality (OVL) formed by
linearly combining the PESQ, LLR, and WSS measures.

Table 5.3 lists the performance of 6 different speech enhancement algorithms in the
cases of 6 different kinds of background noise, both stationary and non-stationary. As can be
seen in the table, the proposed SRLPS-TSL algorithm always outperforms the other 5; and in
many cases, the improvement is significant. Its performance is consistent for speeches made
by people of different genders and at different noise levels. These results have demonstrated

the robustness of the proposed algorithm.
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Table 5.3 - Composite measurement comparison of different algorithms.

Noise Input SNR Ciig Chak Coul
Method 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Noisy 134 | 1.92 | 2.61 | 326 | 3.87 | 1.72 | 217 | 2.64 | 3.12 | 3.59 | 135 | 1.87 | 2.42 | 2.95 | 3.45
MMSE-LSA 1.84 | 2.54 | 3.16 | 3.67 | 405 | 2.18 | 259 | 2.97 | 3.28 | 3.51 | 1.80 | 2.37 | 2.86 | 3.26 | 3.55
TSNR 148 | 2.10 | 2.56 | 3.00 | 3.52 | 2.11 | 2.58 | 3.02 | 3.45 | 3.90 | 1.57 | 2.12 | 2.55 | 2.98 | 3.44
White HRNR 1.94 | 250 | 3.06 | 3.62 | 4.17 | 228 | 272 | 3.17 | 3.63 | 408 | 1.83 | 2.33 | 2.84 | 3.35 | 3.85
MMSE-LSATCS SPP| 2,11 | 291 | 3.50 | 3.96 | 433 | 2.41 | 2.87 | 3.29 | 3.69 | 4.08 | 2.05 | 2.70 | 3.21 | 3.62 | 3.98
MMSE-LSACEM | 247 | 3.17 | 3.71 | 417 | 456 | 2.62 | 3.05 | 3.43 | 3.82 | 423 | 235 | 2.94 | 3.38 | 3.79 | 4.17
Proposed SRLPS-TSL| 243 | 320 | 3.79 | 425 | 464 | 2.57 | 3.03 | 3.44 | 3.84 | 424 | 230 | 2.94 | 3.44 | 3.85 | 4.22
Noisy 252 | 3.09 | 3.63 | 410 | 450 | 1.68 | 2.15 | 2.64 | 3.13 | 3.61 | 1.96 | 2.47 | 2.95 | 339 | 3.78
MMSE-LSA 253 | 3.11 | 3.60 | 3.97 | 422 | 1.87 | 235 | 2.79 | 3.16 | 3.44 | 2.04 | 2.56 | 3.01 | 3.36 | 3.59
Speech TSNR 1.67 | 251 | 323 | 3.82 | 432 | 1.46 | 2.06 | 2.64 | 3.19 | 3.72 | 1.37 | 2.09 | 2.72 | 327 | 3.74
babble HRNR 1.86 | 2.73 | 346 | 4.06 | 452 | 1.46 | 2.09 | 2.70 | 326 | 3.78 | 1.48 | 2.23 | 2.88 | 3.43 | 3.88
MMSE-LSATCS SPP| 221 | 294 | 3.56 | 4.07 | 449 | 1.86 | 2.39 | 2.90 | 3.39 | 3.85 | 1.84 | 247 | 3.03 | 3.50 | 3.91
MMSE-LSACEM | 241 | 3.09 | 3.69 | 419 | 459 | 1.95 | 247 | 296 | 3.46 | 3.92 | 2.00 | 2.59 | 3.12 | 3.59 | 3.99
Proposed SRLPS-TSL| 258 | 324 | 3.81 | 429 | 467 | 211 | 2.60 | 3.07 | 354 | 3.98 | 2.15 | 2.73 | 3.23 | 3.69 | 4.06
Noisy 200 | 259 | 3.19 | 3.75 | 425 | 152 | 1.98 | 246 | 296 | 3.47 | 1.65 | 2.14 | 2.64 | 3.12 | 3.57
MMSE-LSA 245 | 3.02 | 351 | 3.89 | 415 | 196 | 239 | 279 | 3.14 | 3.41 | 2.04 | 2.53 | 2.95 | 3.29 | 3.55
Destroyer TSNR 1.89 | 248 | 3.05 | 3.64 | 419 || 2.03 | 248 | 2.89 | 3.34 | 381 | 1.75 | 2.28 | 2.76 | 3.26 | 3.74
engine HRNR 220 | 292 | 356 | 4.12 | 460 | 2.09 | 2.60 | 3.05 | 3.50 | 3.96 | 1.90 | 2.54 | 3.10 | 3.59 | 4.03

room (MMSE-LSATCS SPP| 257 | 320 | 3.67 | 4.09 | 449 | 2.19 | 271 | 3.16 | 3.59 | 4.00 | 2.19 | 2.78 | 3.24 | 3.64 | 4.01

MMSE-LSACEM | 300 | 3.55 | 3.97 | 436 | 472 | 249 | 2.94 | 335 | 3.74 | 4.16 | 2.57 | 3.08 | 3.48 | 3.85 | 4.20

Proposed SRLPS-TSL| 310 | 3.66 | 4.09 | 447 | 481 | 250 | 297 | 340 | 381 | 421 | 263 | 3.15 | 358 | 3.95 | 4.28

Noisy 195 | 258 | 320 | 3.77 | 428 | 1.57 | 2.05 | 2.54 | 3.05 | 355 | 1.63 | 2.17 | 2.70 | 3.20 | 3.66

MMSE-LSA 245 | 3.05 | 3.56 | 3.94 | 420 | 2.03 | 2.47 | 2.87 | 321 | 3.46 | 2.09 | 2.60 | 3.04 | 3.37 | 3.61

Fl6 TSNR 1.67 | 231 | 2.92 | 3.53 | 413 | 1.90 | 242 | 292 | 339 | 3.87 | 1.56 | 2.16 | 2.71 | 3.23 | 3.75
cockpit HRNR 204 | 279 | 3.48 | 410 | 459 | 2.00 | 2.54 | 3.06 | 3.54 | 3.99 | 1.75 | 2.44 | 3.07 | 3.61 | 4.05
MMSE-LSATCS SPP| 256 | 3.18 | 3.67 | 407 | 448 | 221 | 2.72 | 3.18 | 3.61 | 4.04 | 2.21 | 2.79 | 3.26 | 3.65 | 4.03
MMSE-LSACEM | 289 | 345 | 3.88 | 430 | 4.68 | 2.43 | 2.89 | 332 | 3.74 | 4.16 | 2.50 | 3.01 | 3.43 | 3.82 | 4.19

Proposed SRLPS-TSL| 299 | 356 | 4.00 | 439 | 475 | 246 | 293 | 335 | 3.77 | 418 | 257 | 3.09 | 352 | 3.90 | 4.25

Noisy 339 | 3.83 | 422 | 456 | 4.86 | 1.99 | 2.42 | 2.87 | 3.32 | 3.80 | 2.66 | 3.08 | 3.45 | 3.80 | 4.14

MMSE-LSA 341 | 3.67 | 3.88 | 403 | 413 | 2.63 | 293 | 3.18 | 3.37 | 3.52 | 2.88 | 3.16 | 3.38 | 3.55 | 3.66

Leopard TSNR 3.55 | 407 | 448 | 480 | 498 | 2.76 | 321 | 3.63 | 401 | 438 | 3.03 | 3.52 | 3.91 | 423 | 4.49
(Military HRNR 372 | 425 | 4.66 | 494 | 500 | 2.84 | 329 | 3.71 | 409 | 443 | 3.15 | 3.63 | 4.03 | 435 | 4.59

vehicle) IMMSE-LSATCS SPP| 382 | 429 | 4.66 | 492 | 499 | 2.90 | 3.33 | 3.73 | 4.08 | 442 | 3.25 | 3.70 | 4.07 | 435 | 4.56

MMSE-LSACEM | 392 | 436 | 471 | 494 | 5.00 | 2.89 | 333 | 3.73 | 4.10 | 4.46 | 3.29 | 3.73 | 4.09 | 438 | 4.60

Proposed SRLPS-TSL| 416 | 452 | 481 | 497 | 5.00 | 3.13 | 350 | 3.85 | 4.17 | 449 | 353 | 390 | 420 | 4.44 | 4.63

Noisy 266 | 324 | 378 | 426 | 468 | 1.85 | 2.31 | 2.78 | 3.26 | 3.75 | 2.23 | 2.73 | 3.20 | 3.63 | 4.03

MMSE-LSA 3.05 | 346 | 3.77 | 3.98 | 411 | 249 | 285 | 3.15 | 3.38 | 3.53 | 2.66 | 3.03 | 3.31 | 3.51 | 3.63

M109 TSNR 236 | 3.21 | 391 | 444 | 483 | 242 | 295 | 3.47 | 395 | 437 | 2.26 | 2.94 | 3.52 | 3.97 | 433
(Tank) HRNR 2.74 | 3.57 | 422 | 469 | 495 | 2.54 | 3.06 | 3.54 | 3.97 | 435 | 2.49 | 3.18 | 3.73 | 4.14 | 445

MMSE-LSATCS SPP| 313 | 3.71 | 423 | 466 | 494 | 2.62 | 3.10 | 3.57 | 4.02 | 442 | 2.77 | 330 | 3.76 | 4.15 | 4.45

MMSE-LSACEM | 337 | 393 | 441 | 480 | 498 | 2.76 | 322 | 3.67 | 410 | 449 | 295 | 3.45 | 3.89 | 4.26 | 4.54

Proposed SRLPS-TSL|| 355 | 4.08 | 453 | 487 | 499 | 2.85 | 3.30 | 3.73 | 414 | 452 | 3.09 | 357 | 3.99 | 432 | 458
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5.6 Chapter Summary

In this chapter, an improved speech enhancement algorithm based on the sparse coding
on log-spectra is proposed. The proposed algorithm starts with the traditional cepstrum
smoothing method which gives the initial guess of the log periodogram of the clean speech.
The sparse coding is carried out by using the LARC algorithm with the speech dictionary
trained using the K-SVD method. We improve the LARC algorithm by introducing a noise
adaptive residual coherence threshold so that the stopping criterion will be adaptive to the
noise type and the input SNR. The improved LARC algorithm gives a good estimate of the
sparse coding coefficients of the clean speech’s log power spectrum. Combining with the TSL
method, an enhanced speech is obtained. The proposed algorithm does not only fully exploit
the sparsity of speeches through the use of the sparse speech dictionary, but also reduces the
confusion in the sparse coding process due to the coherence between the noise and the speech.
As a result, the proposed algorithm works particularly well when the input speech is
contaminated by noises that contain structure (they include most colored noises). Besides,
due to the TSL process, the proposed algorithm has very good control of the residual
background noises. They make it outperform the traditional methods. Simulation results have
verified that the proposed algorithm improves over the traditional speech enhancement
methods in almost all testing conditions using different evaluation measures. They have
clearly shown the robustness of the proposed algorithms in general speech enhancement

applications.
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Chapter 6 Conclusions

In this thesis, we have investigated three different sparse representation methods for
speech enhancement, namely, the discrete wavelet transform, the cepstral transform and the sparse
coding based on dictionary learning. For each method, a new algorithm is proposed. In this

chapter, we draw the conclusions of these works and suggest possible future works.

6.1 General Conclusions

In Chapter 3, we proposed a new algorithm for the estimation of speech presence
probability (SPP) of a noisy speech signal based on the discrete wavelet transform. Although
it is known that a good estimator of SPP can be obtained by smoothing the observed noisy
speech power spectrum before using it in the estimation process, care must be taken to ensure
the smoothing operation will not destroy the spectral peaks which are important to the
intelligibility of the enhanced speech. The major contribution of this work is two-folded. First,
we successfully developed a two-stage wavelet denoising algorithm that effectively removes
the noise while preserving the spectral peaks in a noisy speech power spectrum. It
outperforms the traditional approaches by combining the information of noise and spectral
peaks in both the periodogram and the log MTS of a noisy speech. The denoised speech
power spectrum in turn lets us generate a smooth a-posteriori SNR function. Second, we
proposed a new method for estimating the generalized likelihood ratio (GLR). It is by directly
estimating the PDF of the a-posteriori SNR under the hypothesis Hj, i.e. speech is absent,
using the data in different noise frames. It simplifies the estimation process and avoids the
use of many empirically selected parameters in traditional approaches. The new SPP

estimator was then applied to the MMSE-LSA speech enhancement algorithm. Compared
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with the traditional SPP estimators, up to 15% improvement was noted for different noises at
different noise levels when measuring using the standard composite objective measures.
When inspecting the spectrogram of the enhanced speeches using different approaches, the
proposed algorithm in general preserves much better the speech contents while effectively
removing the background noise.

While the proposed algorithm in Chapter 3 successfully makes use of the discrete
wavelet transform to detect the spectral peaks of speeches, problem may arise for certain kinds
of noise which also have spectral peaks similar to those of speeches. Further effort is needed
to differentiate the speech from noise in a noisy speech. In Chapter 4, we presented a novel
expectation-maximization (EM) framework for speech enhancement algorithm. Based on the
sparsity of speeches in the cepstral domain, the new algorithm makes use of the EM algorithm
to define a theoretical framework for the estimation of the true power spectrum of the original
speech and its periodogram from a noisy observation. The proposed algorithm starts with the
traditional cepstrum smoothing method which gives the initial guess of the periodogram of the
clean speech. It is applied to an L; norm regularizer in the M-step of the EM framework to
estimate the cepstral coefficients of the true speech power spectrum. It enables the estimation
of the a-priori SNR and is used in the E-step, which is indeed an MMSE-LSA gain function,
to refine the estimate of the clean speech periodogram. The M-step and E-step then iterate for
2 more times, with which we have shown to be sufficient in most cases to achieve good result.
The proposed algorithm fully utilizes the sparsity of speeches in the cepstral domain by
adopting the L; norm regularizer. It enables the optimization process to be carried out on
coefficients with improved SNR and hence reduces the effect due to the estimation error of the
non-stationary noise characteristics. As a result, the proposed algorithm works particularly
well when the input speech is contaminated by non-stationary noises. Besides, due to the

iterative process, the proposed algorithm has very good control of the residue background
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noises which makes it outperform the traditional methods. Simulation results have verified
that the proposed algorithm improves over the competing speech enhancement methods in
almost all testing conditions, such as different kinds of noise at different noise levels using
different evaluation measures

It is shown in Chapter 4 that the knowledge of the sparse representation of speeches is
one of the key factors when developing a speech enhancement algorithm. A question
naturally arises if the cepstral representation that is used in Chapter 4 is the best as far as the
sparsity is concerned. In Chapter 5, we investigated using the sparse coding technique with
the dictionary learnt from a speech database. We further propose an improved speech
enhancement algorithm based on the framework of sparse reconstruction on log power
spectrum with two-step MMSE-LSA filtering (SRLPS-TSL). The new algorithm makes use
of sparse coding technique to efficiently estimate the true log power spectrum of the clean
speech from a noisy observation. Similar to that in Chapter 4, the proposed algorithm starts
with the traditional temporal cepstrum smoothing method which gives the initial guess of the
periodogram of the clean speech. The batch LARC algorithm is then used to perform the
sparse coding with the speech dictionary trained by the approximate K-SVD method. We
improve the batch LARC algorithm by introducing a noise adaptive residual coherence
threshold that allows the sparse coding process to be adaptive to the noise types and the input
SNR. Combining with the TSL method, the enhanced speech is obtained. The proposed
algorithm does not only fully exploit the sparsity of speeches on log-spectra but also reduce
the confusion in the sparse coding process due to the coherence of the residual noise and the
speech dictionary. As a result, the proposed algorithm works particularly well when the input
speech is contaminated by noises which contain structure (it is the case for most colored
noises). Besides, due to the TSL process, the proposed algorithm has very good control of the

residual background noises which makes it outperform the traditional methods. Compared
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with the traditional speech enhancement algorithms, significant improvement is noted for
different kinds of noise at different noise levels when evaluating using the three composite
objective metrics. Informal subjective listening tests also indicate that the proposed algorithm
is generally more preferred to other competing methods. They have clearly demonstrated the
robustness of the proposed algorithms in general speech enhancement applications. When
comparing with the proposed Logmmse-L1-EM method in Chapter 4, the proposed
SRLPS-TSL algorithm works particularly well when the input speech is contaminated by
noises that contain structure, although the Logmmse-L1-EM algorithm works well when the
input speech is contaminated by noise that is incoherent to the speech. We notice that the
proposed method based on the sparse coding technique can better identify speech spectral
components from those of noises, although a higher computational complexity may incur due
to the iterative sparse coding process.

In conclusion, we have demonstrated in this thesis that the acquisition of an efficient
sparse representation of speeches is one of the key factors to the success of speech
enhancement. In this work, a number of sparse representation methods have been employed
that enhance a noisy speech in different environments. We have shown that the proposed
algorithms outperform the traditional methods when evaluating by different objective
measures and informal subjective listening tests. We believe that the results obtained in this

work have contributed significantly to the field of study.

6.2 Future Works

There are several potential future works to be explored in the area of speech
enhancement. First of all, we believe that the methods for enhancing the unvoiced speech

deserve further consideration. It is known that on average over 20% of a normal speech is
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unvoiced. However, both the cepstral method and the MMSE method may not be the best
candidates for their enhancement. It is because unvoiced speeches do not have a harmonic
structure and they have a noise-like statistical property which can easily be classified as
noises by the MMSE based methods and are thus suppressed. A different algorithm is needed
to work together with the proposed algorithm in order to take care of both the voiced and
unvoiced parts of a speech in an enhancement process.

Another important direction is the development of algorithms for fast and accurate
tracking of noise power spectral density (PSD), which is another important parameter of most
speech enhancement algorithms. As mentioned in Section 1.5, the noise PSD has to be
estimated from the noisy speech because it is unknown in advance in most applications.
Traditional approaches (e.g. minimum statistics, VAD, etc.) can give a good estimate of the
noise PSD for stationary noises. However, their performance becomes unsatisfactory when
the noise source tends to change rapidly. While there were works from time-to-time claimed
to provide accurate PSD estimate for non-stationary noises (such as [194] and [195]), their
effectiveness remains to be verified. We believe a good noise PSD estimator will be another
key factor to the success of speech enhancement.

Another interesting direction for future development is the estimation of the clean
speech phase. Although it is assumed that the enhancement of the noisy spectral amplitude is
more important than the enhancement of the spectral phase [25], it was recently shown [196]
that employing the clean speech phase can further improve noise reduction algorithms with a
more redundant spectral representation in the frequency domain. From that work, it follows
that we can further improve the proposed speech enhancement algorithms if we have a good
estimate of the clean speech phase.

As to the applications of the speech enhancement algorithms, we suggest that further

investigations can be made on their applications in biomedical diagnostic systems. While
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speeches are some natural signals generated by human being, they also carry information
about the health condition of the human subject. However, due to the various constraints in
the speech acquisition process (some of them are clinical constraints), the speeches obtained
are contaminated with different kinds of noise such that a speech enhancement algorithm that
tailors for the clinical environments will greatly enhance the diagnostic results. One of the
possible applications is in the diagnosis of the obstructive sleep apnea (OSA). It is known that
sound recorded during sleep (i.e. the sound of snoring) has been used to diagnose OSA. It is
characterized by repetitive complete (apnea) or partial (htpopnea) cessation of breathing
during sleep for at least 10 seconds as a consequence of complete or partial collapse of the
upper airway, respectively. However, additive background acoustical noises received during
the acquisition process can degrade the quality of the recorded snoring sound and ends up
with inaccurate diagnostic results. In order to improve the recorded signal quality, it is shown
in [198] that the background noise embedded in the acquired signals could be effectively
removed by a translation-invariant wavelet denoising scheme. Since the snoring sound is also
a structured human generated signal similar to speeches, it is possible that the snoring sound
will also have a sparse representation when analyzing by a suitably chosen dictionary.
Therefore, a more advanced snoring activity detector can be developed based on the

enhancement methods proposed in Chapter 3 to Chapter 5.
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