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Abstract

The problems of self-checking circuits under different fault models such as muitiple
fault, open and bridging fault models were thoroughly examined and addressed.
Various test generation and design-for-testability methods were investigated in order
to find efficient solutions to tackle the problems. In particular, the following were
achieved:

e The multiple stuck-at fault coverage problem was addressed. Off-line multiple
stuck-at fault detection method was studied. In this study, a multiple stuck-at fault
detection algorithm was developed for two-rail and parity checkers. The algorithm
has been proved to achieve 100% multiple stuck-at fault coverage and requires less
test vectors comparing to previously proposed method.

e The open and bridging fault coverage problems in CMOS circuits were studied,
with particular emphasis on the bridging fault detection problem. Stuck-at fault
model is insufficient and inadequate to model bridging faults in CMOS circuits.
The detection of bridging faults by voltage testing is a very complicated task. We
integrated the Iddq testing technigue in the self-checking system and applied the
test generation ﬁlethod to the two-rail checkers for bridging fault detection. By
combining the multiple stuck-at fault detection and Iddq testing, the test quality
can be greatly increased.

¢ The structures of domino-CMOS logic circuits are more testable than their static
family for transistor stuck-open and stuck-on fauits. However, the dynamic nature
of the domino circuit structure prevents effective application of Iddg testing.

Modification of domino-CMOS logic circuits was proposed to enhance the overall



testability of both voltage and Iddq testing. Furthermore, the extra cost of hardware
is also very low.

Another serious problem of the self-checking circuits is the misinterpretation of
the output of the functional block due to the effect of bridging fault. In our earlier
work, we focused on the use of built-in current sensor to detect bridging faults.
However, Iddq testing is relatively slow in detection speed and suffers from low
current resolution. The detection problem is mainly due to the occurrence of
intermediate voltage at the fault site. In this respect, a sensing circuit called built-in
intermediate voltage sensor(BIVS) was proposed to detect the intermediate voltage.
Detailed analysis shows that the sensing circuit can achieve the self-checking
requirements. So that it is suitable for on-line testing applications. An integration

of BIVS and self-checking system is further proposed as an application example.
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Chapter 1

Introduction

L.1 INTRODUCTION

Digital systems have been widely adopted in the past decades and become
irreplaceable in modern society. Computing systerns, communication networks,
control systems are made possible by the advance in microelectronics technology such
that the performance of these systems is greatly increased. As our real life becomes

inseparable from them, these systems should be built with as high quality as possible.

A global concept called dependability which subsumes the usual attributes of
reliability, availability, safety, maintainability, performability and testability describes
the quality of a system [PRAD 86][JOHN 89]. High dependability is always desired.
However, physical defects, imperfection or flaws may occur in the system during
manufacturing phase, or even in operating phase. Periodic off-line testing may be used
to discover any defects before shipping the products to the customer, but it is not
effective to detect the temporary faults. Once the product is working in normal
operation, errors produced by hardware faults will remain undetected until the test
phase. Also, off-line testing is not effective against temporary faults. Those factors
will affect the quality of a system. Furthermore, design error is also the main source of

error. In order to build a highly dependable system, fault-tolerant(FT) design



techniques have been proposed. Two major goals of FT system are: 1) the system is
capable of producing correct output under the occﬁrrence of some restricted error
types, and 2) the system is capable of producing extra signal to indicate the error
under the occurrence of some restricted error types. Consequently, the availability and

reliability can be significantly increased.

Nowadays, FT systems have been widely used to provide highly reliable and
safe-critical applications. However, there are some drawback from the existing design
techniques. For example, in a triple modular redundancy(TMR) system [PRAD
86][JOHN 89], a voter performs majority vote on the outputs of thfee identical
systems. Any single system error will be masked at the output of the voter. However,
the voter is not checked. Also, large cost due to additional hardware is required.
Generally, the problem of “checking the checker” becomes the major difficulty in FT

design.

Based on this observation, the development of totally self-checking(TSC) goal
is motivated. That is, the first erroneous output of the functional block or checking
circuit(checker) must be a non-codeword. Basically, in TSC system, the functional _
block is monitored by a checker concurrently. The necessary mathematical properties
that the circuits must be verified in order to achieve the TSC goal were firstly
infroduced by [CART 68]. Later, the largest class of TSC functional circuits were
defined in [ANDE 71}SMIT 78]. More recently, the largest class of checkers

necessary to ensure the TSC goal has been defined by [NICO 88].



Synthesis of self-checking circuits 1s a major topic in FT field. The design
methods of the checkers have been intensively studied by [ADER 71][ADER
73){REDD 74)[MARO 78][HUGH 84][KHAK 84][FUJI 87][MIN 88][LO 90][PASC
90][FUII S1J[OZGU 91][TAO 92][RAO 93][BURN 94]{METR 94a]{REDD
94][DIMA 95]. Design methodologies for functional circuits can be found in [HIRA
911[BUSA 94}{SAPO 96]. In practice, the effectiveness of TSC property is dependent
on the predetermined fault model. That is, all possible faults in the predetermined
fault model must satisfy the mathematical properties of TSC goal. In most of the
studies, the fault model used is the single stuck-at fault model. Several design
methods for different checkers based on the PLA implementation have been
developed [MIN 88]fHATA 91][TAO 92]. Furthermore, it has been showed that
d).rnamic CMOS and NMOS logic circuits are more applicable to realise self-checking
circuit(SCC) designs rather than fully static CMOS family under the realistic fault
model such as open fault [JHA 84][JHA 90][CHEE 92]. Generally, there is still no

design methodology to achieve high realistic fault coverage in SCCs.

1.2 OUTLINE AND OBJECTIVES OF THE THESIS

In our stuay, two major areas have been identified which are important in SCC
designs. They are, namely, the multiple fault problem and the realistic fault coverage
problem. Firstly, multiple fault is the concurrenfly occurrence of two or more than two
faults in the circuit. In the past decades, automatic test pattern generation(ATPG)
algorithms have been developed based. These are on the single stuck-at fault model
only because the computational complexity of multiple fault is very large [FUIJI

35][ABRA 90]. Also, for on-line testing approach, single fault model is used because



it is very hard to implement a TSC system under multiple fault assumption [NANY
88][NICO 89a]. However, many physical defects may only be modelled as multiple
faults. Therefore, the ability to detect the multiple faults in early stage is highly

desired.

Secondly, in order to enhance the quality of testing scheme, realistic fault
detection must be considered. As reported in [WADS 78][GALI 80](LEVI
81IIMALA 82][SHEN 88]J[SHER 88][STOR 90][FERG 91]{STOR 9I][LIDE
92}[LEE 96a][LEE 96b][WEN 97], realistic faults such as bridging faults and open
faults are hard to be detected by logic testing approach because they include the
degradation in certain parameters such as voltage, current and timing. Furthermore,
these faults may not result in logical error at the primary output node such that they
are hard to be detected. Recently, the fault coverage problem of present SCCs have
been investigated by {JHA 84][JHA 90][MILL 91][LIDE 92][JHA 93][NICO 94].
Different techniques to handle this problem were carried out by [JTHA 84][NICO
91][CHEE 92][LO 95][METR 95][FAVA 96]. In particular, modification of the
circuit layout may be required in their methods which may not easily apply to existing
CAD tools. In our study, we have extended our study to realistic fault model and to

explore methods to tackle the problem more effectively.
The main contents of this thesis are as follows:

* To review the concept of fault, error and failure and also the principle of coding

theory are discussed. And to study the principles and concepts of self-checking

properties as background knowledge to support the work to be presented.



e To study the multiple fault testability of existing self—checkiﬁg circuits. Off-line
multiple stuck-at fault detection methods were studied. In the following study,
attention is focused on the following two important issues of existing self-checking
circuits: 1) present TSC circuits are designed to achieve concurrent error detection
of single fault only, but not multiple fault and 2} although off-line testing for
multiple fault is very important, very little work has been done in this area. In this
thesis, extensive coverage on the multiple fault detection problem of two-rail and
parity checkers will be included. The fundamental benefit of multiple fault
detection allows the selection of high quality circuits during manufacturing test,

resulting in higher mean-time-to-failure.

¢ To study the realistic fault coverage problem in static CMOS self-checking circuits.
Stuck-at fault model is insufficient and inadequate to model many CMOS faults. In
this thesis, we are mainly concerned with the detection of bridging fault because
this kind of fault is hard to be detected by logic testing. We shall integrate Iddg
testing method with the logic testing approach. Based on this implementation, an

example of detecting bridging fault in two-rail checkers will be used to show the

effectiveness of our implementation.

¢ To improve the Iddqg testability in domino-CMOS logic circuits. The structures of
domino-CMOS logic circuits are more testable than their static family for transistor

stuck-open and stuck-on faults. However, the inherent dynamic structure prevents



the application of Iddq testing. Modifications of domino-CMOS logic circuits are

proposed to enhance the overall testability of both logic and Iddq testing.

e To study the bridging fault detection problem for on-line testing application. In the
previous work, we have focused on the use of built-in current sensor(BICS) to
detect bridging faults. However, Iddq testing is relatively slow in detection speed
and suffers from low current resolution. The detection problem is mainly due to the
occurrence of intermediate voltage(indeterminate logic value) at the fault site..
Problem arises especially when this effect appears at the input of the checker. The
checker may fail to detect it. Alternative method called built-in intermediate
voltage sensor(BIVS) to detect the intermediate voltage is proposed. Detailed
analysis will be carried out to show the effectiveness of BIVS. The integration of

BIVS and self-checking system is also proposed as an application example.

To summarise, the main aims of this research are: 1) in-depth study of the fault
coverage problems of SCCs under different fault models, and ii) design and
implement effective solutions in terms of different detection and design-for-testability

techniques for these problems.



Chapter 2

Background Theory

2.1 INTRODUCTION

In this chapter, we shall present the basic terminology and the definitions of several
key concepts used in the fault-tolerant field as the background knowledge for this
research work. It is imperative to state any technical terms used clearly because there
are ambiguities arising from different interpretation of the same word. For example,
[JOHN 89] has defined physical defects as faults while [PIES 95] has considered that
a failure is a physical defect. This provides the basis for a good overall understanding
of the causes of faults, the types of faults and the effects of the faults which are
essential in this study. Furthermore, the important aspect of fault-tolerant computing

field and the properties of error-detecting codes will be discussed.
2.2 FAULTS, ERRORS and FAILURES

Here we concern the definitions of faults, errors and failures in a digital system. The

terminology presented here is based on [JOHN 89] whose definitions are widely

accepted in the field.



Definition 2.1. A fault is a physical defect, imperfection, or flaw that occurs within
some hardware component in a circuit. Examples of faults include bridging between
two electrical conductors, a break or open in conductors, or physical flaws or
imperfections in semiconductor devices such that the parameters are not within the

specifications.

Faults can be classified as logical or parametric, and permanent or temporary.
A logical fault is one that causes the logic function of a circuit element to be changed
to some other logic function. The typical example of logical faults is logical stuck-at-z
fault (s-at-z). This fault model assumes that the logic value on an input or output line
of a circuit element is set to logic z permanently, independently of the input value
applied to the faulty line. On the other hand, a parametric fault may result in
degradation in circuit parameters, causing a change in magnitude of some factors such
as signal timing, current, or voltage. Examples of these faults may include bridging

faults and open faults.

Further classification of faults may include the time of duration. Permanent
faults that always present and do not disappear, or change their nature during testing.
These faults are mainly due to the imperfection in the manufacturing process.
Temporary faults, which have been predominant in modern digital system, include -
two types of faults: transient faults and intermittent faults. Transient faulis are faults
which may appear once and may never appear again. It may be caused by power
supply fluctuation, electromagnetic perturbations, temperature and humidity variation,
radiation etc. Intermittent faults may appear, disappear and then reappear repeatedly.

Hence, there are no reliable means of detecting their occurrences of temporary faults



because they may disappear when a test is applied or may appear during system
runtime. The early detection of temporary faults for the reliable operation of the
system is very important, hence it motivates the development and implementation of
fault-tolerant techniques to detect or tolerate the occurrence of temporary faults as

well as permanent faults during the system’s life cycle.

Definition 2.2. An error is the manifestation of a fault. In other words, it is the
occurrence of an incorrect state at the observation nodes caused by faults within a
circuit. For example, a fauit occurs inside a circuit and is activated by suitable inputs,
the effect may only be observed at the primary output of the circuit. If the observed

output deviates from the normal one, an error in operation of the circuit is occurred.

Definition 2.3. A failure occurs in a digital system when the systemn performs one of
its functions 1ncorrectly. It is also considered as the under specifications of same

functions in terms of quantity and quality.

It is clear that there are cause-and-effect relationship between faults, errors and
failures. Faults, when activated, may result in an error. However, error may not occur
if the fault i1s redundant or the effect of the activated fault is negligible. When a system
experiences errors, it may be lead to failures. From another point of view, errors are

the effect of faults, and finally, failures are the éffect of errors.



2.3 FAULT MODELS

Throughout our research, it is necessary to pre-determine the kinds of faults that we
are considering in the analysis. In practice, large numbers and types of probable
defects can happen, in order to make the analysis more effective and more meaningful,
only a subset of all possible faults will be considered. This is because the complexity
of analysing multiple fault coverage is too high and some faults may not occur in a

particular technology.

Fault model allows us to specifically define the types and the numbers of
faults. In our study, we consider three primary fault models: 1) logical stuck-at fault
model at gate-level , 2) stuck-open fault model, and 3) bridging fault model at the

transistor-level.

2.3.1 Logical Stuck-at Fault Model

The most common fault model is the logical stuck-at fault model or simply the stuck-
at fault model. This fault model includes two types of faults: 1) stuck-at O fault (s-at
0), and 2) stuck-at 1 fault (s-at 1). Stuck-at z fault assumes that the fauity circuit node
is set to value logic z permanently, independent to the applied value on the node. This
fault model is most popular because it is simple and easy to manipulate. Also, it can
represent a large number of possible defects in the circuit. Figure 2.1 further illustrates
the application of stuck-at fault model. For example, an input of an AND gate is
stuck-at | (e.g. line A is stuck-at 1). It is easy to verify that when the input vector AB

is 10 or 11, the fault-free gate produces correct output value 0 and 1 respectively.

10



However, when the stuck-at fault is activated, it produces incorrect output. Table 2.1
summaries the operation of a fault-free and faulty AND gate to demonstrate the stuck-
at fault model. In this example, we also demonstrated how a fault 1s activated. A fault

is considered as important when it can result in an error.

Physically
connect to ogic {
or logic |

A
F
B

Figure 2.1 Illustration of the

application of the logical stuck-at

fault model.

Table 2.1 Qutputs of a fault-frec and a stuck-at 1 AND gate.

Input test vector AB | fault-free output faulty output

00 0 0
01 0 1
10 0 0

Il | 1

Usually, in most test generation algorithms, testability analysis and fault-
tolerant system designs, single s-at fauit model is assumed. For a circuit with n nodes,
it will have at most 2n number of s-at faults. However, there will be 3"-1 possible
multiple s-at faults. The computational complexity of multiple stuck-at fault grows

exponentially as the circuit size increases. On the other hand, it has been shown in

11



{ABRA 90] that test set for single s-at fault coverage aiso provides a very high fault
coverage of multiple s-at fault as well. In general, it is restricted to single fault
because it is very hard to design a fault-tolerant system that is capable of handling

multiple faults [NICO 89].

As CMOS technology becomes the most popular VLSI design technology, it is
necessary to verify the effectiveness of the s-at fault model versus the actual CMOS
VLSI circuit faults. Stuck-at fault model is found to be insufficient and inadequate to
model CMOS VLSI circuits faults [GALI 80][MALA 82][WADS 78]. Bridging and
open faults are the most representative CMOS VLSI circuit faults, however, these two
faults cannot be represented by stuck-at faults precisely. In order to model these faults
accurately, it is necessary to extend our fault model to transistor-level as opposed to
gate-level. Transistor-level fault model is sometimes known as switch-level fault

model because a transistor is essentially performing a switching function.

2.3.2 Stuck-Open Fault Model

It might be thought that all the silicon chips that are processed using a set of correctly
designed photomasks would work at the first time. Practically, this is not the case.
Defects may occur at manufacturing stage or during the chip’s life cycle. Stuck-open
fault is a fault in which tﬁere is a break at the conductor. It might result in
misalignment of different masks during VLSI manufacturing process, over-removal of
polysilicon and metal during etching, failure in cutting oxide windows, etc. Examples
of electromigration and corrosion of metal due to trapped moisture can result in stuck-

open fault during the chip life-cycle. In general, stuck-open fault will result in high

12



impedance at the fault site. It may turn the combinational circuit into a sequential one.
An example of CMOS two-input NAND gate as shown in Figure ﬁ.2 illustrates the
behaviour of stuck-open fault. Assume that a break occurs between line A and gate
node of transistor N2. This fault prevents the conducting of transistor N2 while input
AB is set to 1. That is, output F is at high impedance state. As a result, the value of F
is depending on the previous state. Table 2.2 shows the truth table for the two-input
CMOS NAND gate for both the fault-free and faulty conditions. Based on this
observation, two-pattern tests is required to detect stuck-open fault [GALI 80][MALA
82][WADS 78]. Based on this technique, firstly a suitable input pattern initialises the
output of a gate to a known state. Then, another input pattern, which normally
produces a complement output to the previous one, is applied. If the output of the gate

does not toggle, stuck-open fault is detected.

oD

— I:Pl —d[ »

O F

Figure 2.2 CMOS two-input NAND gate.

13



Table 2.2 Truth table for CMOS NAND gate.

Input pattern AE Fault-free output Fault)'/ output
00 I 1
01 ] 1
10 1 1
11 0 Previous state

2.3.3 Bridging Fault Model

Bridging fault is caused by an excess connection between two nodes. This fault is
activated when the bridged two nodes are set at different logic values. The effects of
bridging faults are dependent on the process technology used. For some technologies
such as TTL and ECL, wired-AND or wired-OR mode! is valid since they are either
logic high dominate or logic lbw dominate. However, it has been shown that these two

models are inadequate for CMOS technology [GALI 80][LEVI 81][MALA 82][SHEN

88].

For CMOS logic gate, a logic high at the output of a gate means that there is
at least one serial connection of PMOS transistor(s) connecting to the Vpp node. On
the other hand, a logic low at the output of another gate means that there is at least one
serial connection of NMOS transistor(s) connecting to the ground node. If the two
output lines are bridged, the output voltages of the two gates will depend on the
resistance of the pull-up transistor(s), the resistance of the pull-down transistor(s) and

the bridging resistance [LEE 96a]{LEE 96b]{STOR 90][TANG 95]. For example, let



A and B be the two bridged lines. Let the correct value of A be logic 0 and of B be
logic 1 and let I be the indeterminate voltage. When the resisfance of the bridging is
increased, the current across the bridging branch will be decreased. Thus, the voltage
at A will move from I to 0 and the voltage at B will move from I to |. Hence, when
the short resistance is increased, this effect is amplified. Based on the above
observation, it can be seen that the resultant value of the two bridged lines can be any
value between Vpp and ground providing that voltage at line B is always larger than
voltage at line A. Bridging faults can occur between any (wo electrical nodes in the
circuit. In practice, the occurrence of bridging faults is dependent on the physical
layout of the circuit. In most cases, intratransistor bridging faults and gate-level

bridging faults are the most popular and are considered in detailed in our study.

v

) ‘
5V — line A
§ bridging
Voo l
0V — line B

Figure 2.3 Bridging fault between two

outputs of inverters.
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For most practical purposes, most faults resulting from physical defects can be
modelled by stuck-at, stuck—opeﬁ or bridging faults. However, not all faults can be
modelled by these fault models, for example, such as crosspoint faults in PLA, delay
faults etc. In this thesis, we shall consider stuck-at , stuck-open and bridging faults

only.
2.4 BASIC PROPERTIES OF ERROR-DETECTING CODE

On-line testing schemes are usually based on redundancy techniques: hardware
redundancy and information redundancy. Information redundancy is the addition of
extra information by means of encoding of data with an error-detecting code(EDC) or
an error-correcting code(ECC). Popular coding schemes such as parity, two-rail code,
Berger code, Hamming code are used in information redundancy. Hardware
redundancy is the addition of extra hardware for the purpose of either fault detection
or fault tolerance. For self-checking designs, both redundancy techniques are
implemented. Self-checking circuits(SCCs) are designed based on hardware encoding
techniques such that the output is a kind of EDCs. Extra hardware is always required
in order to achieve the totally self-checking(TSC) goal tBUSA 94]{LALA 85]. In this
section, we briefly introduce the basic properties of error-detecting code used in

digital systems [PIES 95][PRAD 86].

For a combinational circuit of n input lines and m output lines, there will be 2"
number of input data and 2™ number of output data. In order to distinguish the status
of the circuit easily, SCCs are implemented such that a subset of all possible output

space C, called codewords, will be produced and will be considered as correct outputs
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during on-line normal operation. And non-codewords are considered as errors. Then,
the status of the circuit can be identified. In general, the output of the SCCs is encoded
to a kind of EDCs such as parity code, residue code, Berger code, m-out-of-n code,

etc. We explain the properties of EDC as follow:

Definition 2.4. For any two codewords(say C; and C3) in code space C, if the number
of different bits between C; and C;(Hamming distance) is equal to or larger than 2, C
is capable of detecting any single bit error. For example, given two odd parity
codewords 0111 and 0010, differ in two positions. Therefore, the Hamming distance
is 2. And clearly, if codeword 0111 is contaminated by a single bit error, it will be

changed to an even parity word and error is detected.

Definition 2.5. Given two codewords C; and C; in code space C. We say that C;
covers C; if and only if C; has 1s everywhere C; has Is. If neither C; covers C, nor C;
covers C;, Cis called an unordered code. For unordered code, the minimum Hamming
distance of the code is always Iarger than or equal to 2. That is, it can detect any single
or unidirectional error. Therefore, Berger code is more effective in error detection than

parity code.

Definition 2.6. A code is called systematic if the information bits and the check bits
are separable. For example, Berger code is a kind of systematic code, while m-out-of-

n is non-systematic code.

The selection of a EDC in a particular application may be dependent on the following

factors:
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1. In many applications, more than one output line can be affected by a fault inside
the circuit. The circuit is modified such that any fault will produce single or
unidirectional errors. So, unordered code may be suitable for this kind of
applications.

2. Systematic code is convenient to use because the information is separable. The
self-checking circuit is also easier to modify or design. For non-systematic code,
extra decoding hardware is always necessary to produce the required outputs and
the decoding hardware is not “protected” by any coding technique. On the other
hand, many circuits such as PLA-based design circuits have shown the use of non-
systematic code efficiently.

3. Since self-checking design always introduces extra hardware (for both the
modification of the functional circuit and the checker), the circuit complexity and

the speed degradation become important considerations.

The effectiveness of encoding the output of a digital circuit in a suitable EDC
is highly dependent on the effect of the faults inside the circuit. As demonstrated in
previous paragraphs, existing EDCs for digital systems are capable of detecting single
or unidirecticnal bit errors, but not multiple random bit errors. That is, it is necessary
to verify that all possible faults inside the circuit will only result in single and
unidirectional bit errors. Otherwise, these faults may not be detected by the
monitoring circuitry.r Hence, a class of circuits called self-checking circuits are defined

to achieve this requirement. Details of which will be introduced in the next chapter.
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2.5 SUMMARY

In this section, we introduced several terminology in the fault-tolerant computing
field. Relationships between faults, errors and failures were clearly defined. In
practice, we shall consider the fault models and error models only. Usually, stuck-at
fault model is adopted. However, stuck-at fault model is inadequate and insufficient to
represent stuck-open and bridging faults in CMOS VLSI circuit. We have extended
our consideration to include the more realistic faults. Finally, we have explained in
detail the properties of error-detecting code. EDC plays an important role in fault-
tolerant field. Equipped with this knowledge, we can define the error model more
accurately and we can implement the fault-tolerant computing system more

effectively.



Chapter 3

Self-Checking Circuits

3.1 INTRODUCTION

The use of self-checking system was motivated by the low reliability of the
components in the past. As the design and manufacturing technology advances,
component reliability has been significantly improved. On the other hand, the
complexity of VLSI circuits grows quickly with the decreasing size of internal
devices. However, as the complexity of circuit and system increases, the cost of
testing such complicated system grows rapidly. Also, the systems are more and more
prone to temporary faults [MASA 88]. These intermittent and transient faults are hard
to detect by the traditional off-line testing approach. To meet the challenge, concurrent
error detection(CED) by the self-checking design technique providing efficient on-line
testing capability is required. The implementation of self-checking technique requires
extra overhead. However, the gain in system ;]uality and reliability outweighs the cost

of additional circuitry.

The objective of designing self-checking circuits is to achieve the totally self-
checking(TSC) goal, that is, the first erroneous output of the functional circuit must
not belong to the output code. The necessary mathematical properties that the circuits

must have in order to achieve the TSC goal was firstly introduced by [CART 68].
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Later, the largest class of TSC functional circuits were defined in [ANDE 71][SMIT
78]. More recently, the largest class of checkers necessary to ensure the TSC goal was
defined by [NICO 88]. Self-checking circuits now become an important topic in fault-

tolerant field [ABRA 90][FUJI 85][JOHN 89][LALA 85].

In general, the basic structure of these circuits (as shown in Figure. 3.1)
consists of two main blocks: a functional circuit and a checker. The output of the
functional circuit, in fault-free operation belonging to a suitable error-detecting code,
feeds the checker. The checker should be capable of detecting not only the presence of
a non-code word at its inputs, but also faults in itself. In this chapter, the properties of

self-checking systems will be introduced.

n-bit inpm m-bit encoded eutput
Fuectional
Block l

Error
Indicatar

i o } Checker )

Figure 3.1 Block diagram of a seif-checking system.

3.2 SELF-CHECKING CIRCUITS

In this section, we introduce the necessary properties to implement the functional
block such that the overall system can achieve the TSC goal. During normal

operation, the output of the functional block belongs to a suitable EDC. A non-
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codeword at the output of the functional block indicates the presence of a fault.
However, a fault may also result in incorrect codeword at the output. So, we need the
following definitions to describe the manner in which self-checking circuits deal with

faults.

Definition 3.1. A circuit is fault secure(FS)[ADER 71]{ADER 73] with respect to a
given fault set F if it never produces incorrect codeword output for any input for every

faultf in F.

A FS circuit will never produce incorrect codeword output when a fault
occurs. However, it cannot guarantee that the fault can be indicated by means of non-

codeword output. Additional property is required.

Definition 3.2. A circuit is self-testing(ST)[CART 68] with respect to a given fault set

F if it produces non-codeword output for at least one input for every fault f in F.

Definition 3.3. A circuit is totally self-checking(TSC)[ADER 71][ADER 73] if it is

both self-testing and fault-secure for every fault f in F.

Existing self-checking circuit designs are based on the following fundamental

assumption:

Assumption 3.1. At any time, only one fault can occur and the time interval between

the occurrence of two faults is sufficient long such that all the required test vectors can
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be applied to the circuit. In other words, TSC circuits are defined respect to single

fault assumption.

Apparently, a TSC functional circuit for a given fault set guarantees its correct
operatién in the presence of faults. Once the fault is activated and the effect is
propagated to the output, it must be a non-codeword output. Designing of a circuit
with TSC property is always desirable because every fault inside the circuit can be
detected by codewords. However, it is hard to achieve TSC respect to some realistic
fault models [JHA 84][JHA 90J[JHA 93]. So, a more general definition was

introduced.

Definition 3.4. A circuit is strongly fault secure(SFS)[SMIT 78] for a fault set F if

and only if, for every fault f in F, either

1) the circuit is TSC when f occurs, or,

2) the circuit is still FS but not ST, and the resultant circuit is still SFS for the
remaining fault in the fault set.

In other words, undetectable faults are allowed in a SFS circuit. However those faults

will not result in incorrect codeword output.

The SFS circuits are the largest class of functional circuits that can achieve the
TSC goal. A SES circuit caﬁ be transformed to a TSC circuit if all the redundancy
faults are removed. However, application of SFS property is quite complicated. It is
necessary to verify that under the occurrence of all combinations of all possible
undetectable faults, the circuit is SFS. [WANG 94] stated that it is difficult to achieve

TSC goal without significant overhead in terms of hardware cost and extra delay.
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3.3 SELE-TESTING CHECKERS

The function of the checker is to determine whether the output of the function block is
a codeword or not. Generally, if the output is a codeword, 01 or 10 is generated by the
checker output. For non-codewords, the checker will indicate 00 or 11 as error signal.
Obviously, the checker generates two outputs that can overwhelm the problem of
output line stuck-at fault. Also, two-rail encoded outputs can detect the wired-AND or
wired-OR bridging between output lines that otherwise cannot be detected by identical

outputs. So, for a checker, we have the following definitions.

Definition 3.5. A circuit i1s code-disjoint(CD){ ADER 71]{ADER 73] if it always maps
input code space to. output code space and input non-code space to output non-code

space under normal condition.

Definition 3.6. A self-testing checker[ADER 71]{ADER 73] is both code-disjoint and

self-testing.

In fault tolerant field, “checking the checker” is a universal problem. An ST
checker can detect any error at its input, but must also be capable of detecting faults in
itself. A TSC functional block monitored by an ST checker can achieve the TSC goal.

Let us use the following two examples to demonstrate this point.

Example 3.1. If a fault occurs inside the TSC functional block, it will produce a non-

codeword for at least one input vector. The checker detects the non-codeword and

produces an error signal.
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Example 3.2. If a fault occurs inside the ST checker, it will be detected by the

codeword which is fed by the functional block.

Practically, it is hard to achieve that all faults inside the checker must be
detectable. Also, it was thought that under the occurrence of some faults, the checker
can still maintain CD property, but not ST. The desired function of a -checker is not

affected. So a more general property of a checker is defined as follow:

Definition 3.7. A checker is strongly code-disjoint(SCD)[NICO 88] for a fault set F

if and only if, for every fault f in F, either

1) the circuit is ST and CD when f occurs, or

2) the circuit is stil CD but not ST, and the resultant circuit is still SCD for the
remaining fault in the fault set.

In other words, undetectable faults are allowed in an SCD checker. However, the

checker is still capable of mapping non-codeword input to non-codeword output.

In both cases, FS property is not necessary for an ST or SCD checker. The ST
property ensures that all internal faults will-result in non-codeword output and the CD
property ensures that all non-codewords at the input will be mapped to non-codewords
at the output. {JHA 90] proposed that the output code space may be reduced to. either
codeword 01 or codeword 10 under the occurrence of the undetectable fault
sequences. In a complex self-checking system, a final two-rail checker(TRC) is used
to multiplex output signals of the checkers. Based on the observation, the final TRC

may not receive sufficient codeword to fully exercise itself. It means that some faults
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may not be activated due to insufficient codewords. Therefor, FS property may be
useful to the checker. However, [NICO 94] showed that the above observation will
not happen for realistic fault models. The reduction in code space is not likely to
occur. So, the final TRC can still be fully exercised. On the other hand, in such a
complex system, it is necessary to verify that each subsystem can receive all required

input tests [BOUD 91}.
3.4 SUMMARY

In this section, we defined the necessary conditions to achieve the totally self-
checking goﬁl. Fault-secure and self-testing are the basic requirements that a TSC
functional circuit has to meet. Furthermore, the functional circuit must be monitored
by self-testing checker to achieve both self-testing and code-disjoint properties. This
system is called totally self-checking system. In practice, under some realistic fault
models, the circuit may not achieve totally self-checking property. Strongly fault-
secure and strongly code-disjoint properties are defined such that redundancy faults
are allowable. An SFS functional block monitored by an SCD checker can achieve the

TSC goal.
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Chapter 4
Analysis of Multiple Stuck-at Fault

Coverage in SCCs

4.1 INTRODUCTION

In this chapter, we study the multiple stuck-at(s-at) fault coverage in self-checking
circuits(SCCs) in general and the self-testing checkers(STCs) in particular. For many
years, SCCs are designed based on the single fault assumption as stated in Chapter 3.
It is assurmed that fault occurs once at a time and before the occurrence of next fault,
enough codewords are presented at the input of the SCCs(both the functional block
and the checker). From another point of view, SCCs are highly testable circuits
because there are no redundancy faults. Self-testing(ST) property ensures that all

faults will result in non-codeword for at least one input. Therefore, all single faults in

the predefined fault set must be testable.

As the complexity of VLSI circuits increases rapidly, the cost of testing such
complicated circuits increases. However, testing must be carried out before shipping
the products to customers. Since a large number of physical defects can happen on the
VLSI chips, these fabrication defects may be modelled as multiple faults. In the past

few decades, test pattern generation algorithms are mostly focused on single s-at fault
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model [ABRA 90][FUJI 85][JOHN B89][LLALA 85] because the computational
complexity of multiple fault detection issue is very high. For a circuit with n lines, it
will have at most 2n number of single s-at faults. However, there will be up to 3"
number of possible multiple s-at faults. Fault driven based test generation method is
therefore not possible. On the other hand, random test generation cannot guarantee a

high fault coverage and also is computationally costly.

[JACO 92} proposed an algorithm to modify an irredundant two-level multi-
output PLA such that a test set for all single s-at faults is capable of detecting any

multiple s-at faults. However, his work is limited to PLA applications.

{COX 88] proposed a fault diagnosis algorithm which was based on the A-16
alphabet to keep track of the set of unique line values possible in the presence of any
single or multiple faults. However, the work was based on pseudo-random test
generation. They do not have a solution to generate a test for multiple fault coverage.
On the other hand, the algorithm may be used to show the effectiveness of a test

generation method.
Similar work was carried out [KARK 94]. Fault dropping technique was used
for fault analysis. Also, the work was based on pseudo-random test generation which

have no guarantee that high fault coverage can be obtained.

[MACI 95][TAKA 91] proposed test generation algorithm for multiple fault

coverage. However, simulation results showed that there were large variation of fault
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coverage between different benchmark circuits. It is believed that there is no single

solution that can solve all problems.

[JONE 94][SETH 77] focused on multiple fault coverage problems in parity
tree networks. Test generation aigorithms were proposed to detect all single and

multiple s-at faults.

[NANY 88] studied the multiple s-at fault testability of self-testing checkers.
The simulation results showed that the fault coverage decreased as number of multiple
faults increased for codeword testing in STCs. The use of non-codewords in off-line
production testing to detect multiple s-at faults in the checkers was then proposed.
However, in many systems, the checkers are not directly accessible from the primary
inputs. Also, the functional blocks are not capable of generating non-codewords
during normal operation. It means that additional hardware is required to provide the

non-codewords to the checker.

More recently, [REDD 94] proposed a test generation algorithm for two-rail
and parity checkers which is based on the output sequence analysis. Comparing this
work with [JONE 94][SETH 77], there are many redundancies in the resultant test set.

Therefore, the test set is not minimised.

Recall that SCCs are used in highly reliable and safe-critical applications. The
TSC, SFS and SCD properties are defined based on single fault assumption. Under the
occurrence of multiple faults, these properties would be invalidated. To discover the

multiple faults in production stage becomes essential. Therefore, the idea of merging
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off-line testing approach for multiple faults with on-line testing capability becomes
very attractive. The fundamental benefit of implementing a multiple fault detection
algorithm 1s that it can provide good quality of the system during production test,
resulting in higher mean-time-to-failure(MTTEF). The effectiveness of on-line testing

then becomes higher.

4.2 TEST GENERATION IN TWO-RAIL CHECKERS

As discussed in previous section, multiple s-at fault detection algorithm is hard to
develop. It is believed that there is no general solution to solve the multiple fault
coverage problem. However, some circuit structures are highly testable for multiple
faults such as two-level circuits, tree structured circuits, etc. In this research, we have
studied the multiple fault detection algorithm of two-rail and parity checkers. Two-rail
checkers(TRCs) are the most commonly used STCs. It is commonly used, for
example, to multiplex outputs from different checkers to form a final checker.
Furthermore, a pair of identical functional blocks and a two-rail checker(TRC) as a
comparator can form the most simplest self-checking system. And parity checkers are

usually used in bus-based system and mermory modules.

A TRC compares two words that should normally be bit-by-bit
complementary. If the two words are complementary, the checker will indicate a fault-
free signal(01 or 10) at the two outputs, Zy and Z,. And if the checker itself is faulty or
the two words are not complementary, it will produce an error signal(00 or 11) at the

two outputs, Zy and Z,. Figure 4.1 shows three possible designs of a 2-pair TRC
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where (Xi, Y;) is an input pair. The circuits implement the following Boolean

function:

Zo=Xo* Y+ Yge X

Z1 ZXOOX]'FYQ'Y]

In general, an n-pair TRC can be implemented by cascading 2-pair TRCs as
basic building blocks. Figure 4.2 shows two examples of TRC with a simplified TRC
block diagram as basic building block. Each block is a 2-pair TRC which can be
implemented by any one of the designs as shown in Figure 4.1. Each arrow-line

represents a pair of input lines.

- (@)
) L
Y, }_Ii}_ '
X, }1 Z
Y, D)f} '
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(c)
Figure 4.1 Three types of 2-pair TRC, (a) AND-
OR, (b) NAND, and (c) NOR gates

implementation.
4.2.1 Test Generation Algorithm

In our multiple s-at fault analysis, the circuit configuration is based on the circuit
diagram as shown in Figure 4..1(a). Fault is detected based on an output sequence
analysis approach which is similar to the one proposed in [REDD 94]. If the output
sequence is not the same as the fault-free one, faults are detected. To simplify the
analysis, we require that the output will toggle between two consecutive input vectors.

So, if one of the following conditions are fulfilled, faults will be detected.

1) The output is a non-codeword,

2) The output is not toggled between two consecutive test vectors.
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Figure 4.2 Construction of TRCs using the 2-pair TRC as basic
building blocks, (a) complete tree structured 8-pair TRC, and (b)

incomplete tree structured 6-pair TRC.



A. Fault Model

In self-testing checker, it has been found that all single s-at faults can be detected only
by codeword inputs in [ADER 73][SMIT 78][NICO 88]. It is shown in [NANY 88]
that a minimum 4-codeword test set is enough to detect all single s-at faults in a 2-pair
TRC. But the fault coverage will be reduced as multiple faults occur. In this

subsection, we shall define the fault model that our analysis is based on.

Consider the 2-pair TRC as shown in Figure 4.1(a). After fault collapsing, 12
untque faults are obtained in a 2-pair TRC. Lines 1 to 8 are modelled as s-at 1 faults
and lines 9 to 12 as s-at O faults. Now, we can formally define our multiple fault
model. Let Fs denote the set of s-at faults so that each block in the TRC will have a
set Fs consisting of these 12 faults. The collection of Fs of all blocks in the checker
constitutes a complete fault set F. The multiple faults we shall consider are the

combination of all faults of all multiplicity in F.

B. Test Generation Procedure

Now we present the test generatidn method and show the validity of the method. In
this method, the test generation procedure works backward from primary output to
primary input, on a block-by-block basis. The test vectors for a bldck are derived
based on the analysis of the output sequence of the block. We introduce our method

by the following example.
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Refer to Figure 4.2(a). If the outputs (Zy, Z;) of block-1 are ({0101}, {1010}),

the inputs of block-1 (X, Yn, X Ya) derived are ({0011}, {1100}, {0110},

{1001}). Note that {} denotes a sequence of bits. It can easily be seen that all

codewords are presented at the inputs of block-1. Based on this observation, a set of

rules is derived for the test generation procedure:

1)

2)

3)

Only one input pair is allowed to change between two consecutive test vectors.
Although any odd number of input pair change will toggle the output, we change

only one pair to simplify the test generation.

All possible codewords must be presented at the inputs of each block. Based on
the example above( Figure 4.2(a)), block-2 will not have enough codewords at the
inputs. Additional data outputs are therefore required. This is achieved by
duplicating the original outputs sequences ({0101}, {1010}) to ({0101 0101},
{1010 1010}). The inputs of block-1 then become ({0011 0011}, {1100 1100},
{0110 0110}, {1001 1001}) as shown in Figure 4.2(a). It is easy to show that the
inputs of block-2 are ({0001 1110}, {1110 0001}, {0111 1000}, {1000 O111}).

All codewords are presented at the inputs of block-2. Similar procedures can be

performed for other blocks.

The test geheration procedure described in Rule 2) is applied iteratively level-by-

level until the primary inputs are reached.

Based on the proposed test generation procedure, a complete test set for the X-

terminal inputs{denoted from left-to-right) of the 8-pair TRC of Figure 4.2(a) is shown
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in Table 4.1. Note that only the test vectors of the X-terminal inputs are shown. The
Y-terminal inputs are only the complements of the corresponding X-terminal inputs.
With the test generation procedure demonstrated above, the importance of “ease of

use” cannot be over-emphasised.

Table 4.1 Test vectors determined for Figure 4.2(a).

X-Inputs bit sequence

X7 blll F111 1000 0000
X6 00000111 F111 1000
Xs 0001 {111 1110 0000
X4 0006 0001 11t1 1110
X3 0011 1111 1100 0000
X 00000011 1111 1100
X 0000 1111 1111 0000
Xo 00000000 1111 1111

C. Test Length Comparison

The number of test vectors required by our method is determined by the number of
input pairs, K, and the number of levels, d. For a tree structured network with highest
level d, if there are no primary inputs attached to blocks with more than 1 level

difference, we have

d =|—10g2k—|
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For a single level tree network, the number of input vectors required is 4. With
each additional level of blocks, one duplication of output sequence is required. So the

test length, L, generated by our method 1s,

L= 2d+|

Figure 4.3 shows the test length comparison between our method to the one

given by [REDD 94].
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Figure 4.3 Test length comparison in terms of input pairs.

4.2.2 Fault Simulation

Fault simulation was done by C programming. A 16-pair TRC, which contains totally
180 number of unique faults after fault collapsing, was used to verify the test
generation method. We determined the multiple fault coverage by exhaustively

injecting all combination of the unique faults up to 4 multiplicity and randomly
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generating | million multiple faults all any multiplicity in the circuit. Then, the
determined test set is applied to the circuit for fault coverage evaluation. Results
showed that our test set is sufficient to detect the injected multiple faults and all

determined test vectors are necessary in the fault detection process.
4.2.3 Validity of the Test Generation Method

Our test generation method is based on the assumption that the output function of
TRC will not complement for multiple faults. We prove this by considering the fault

effect on each block in a tree structured checker such as the one shown in Figure

4.2(a).

Lemma: There are no multiple fauits such that the output responses are the same as

fault-free ones or their complements in our test.

Proof: To detect multiple faults in a 2-pair TRC, four codewords are enough. We
conduct the proof procedure in two steps. In step 1, a detailed multiple fault analysis
of the 2-pair TRC is carried out based on the fault diagnosis scheme described in
[COX 88] and [KARK 94]. The results of this analysis demonstrate the validity of the
four codeword test in the presence of any maltiple faults of all multiplicity. In step 2,

we extend the multiple fault analysis to the k-pair TRC.

Table 4.2 summarises the results after step 1, where a set of input codewords
(Ty=0101,T,=1001, T = 1010, T4 = 0110) is applied pair-wise consecutively to the

2-pair TRC as shown in Figure 4.1(a). Each row shows all the possible logic values of
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a particular Iine in the presence of any number of s-at faults in the checker. Any line

values that invalidate the expected output line values are marked by a cross-over bar.

In this case, the expected output line values are the same as fault-free ones, which are

Zy= {0101} and Z, = {1010}.

Table 4.2 Multiple fault diagnosis of a 2-pair TRC.

Line Test Pair { Ty, Tz } | Test Pair { Ty, T3 } | Test Pair { T3, T4 }
label

1 {017+ } {11/11} {10/11}

2 {1711} { 10/ H} {00/}

3 {10/11} {00/H} {01/H)

4 {00/ H} {01711} {11711}

5 {00/} {o1/11} {11/11}

6 {o1/11} {t1/11} {10/4+}

7 {1711} {10711} {00/4++)

8 {10/} {00/ H} {01/11}

9 {01/60,H )} {10/60, H } {00746, 00, H }
10 {00/40,00,H) [{00/64,00,44} |{O1/60,H}

11 { 00/864, 00, 1} -{01/99,-14} { 10/00, 41}

12 {10/60,H )} {00/40,00,H} | {00/064, 00, H )
Zy {01/40,60, 1} | {10/64,00, H} {01/49,99,-14}
Z {10/6+,60, 4} | (01/40,00,H} | (10/64,600,4)

* Line labels are referred to Figure 4.1(a)

» Line values are denoted as { fault-free values / all possible faulty values }
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From the results obtained, it can be seen that no multiple faults can cause the

two outputs of a 2-pair TRC to have the fault-free values.

Table 4.3 Diagnosis of two-rail checker having the outputs responses equal to

the complement of fault-free ones.

Line Test Pair { T, T, } | Test Pair { Ty, T3 } | Test Pair { Ta, Ty }
label

1 {01711} {11/11} {10711}

2 (11711} {10/11) [80/11}

3 {10/44} {e6/11 ) {01711}

4 {6e/11) {01/} {11711}

5 {ee/11} {or/11} {11711}

6 {01/} {11711} {10/11}

7 {11/11} {1074 {e0/11}

8 {10/} [68/11) {01711}

9 {6+/00, H} {46/00, 1} {66/10,606, 4 }
10 {606/10,00,H ) |{66/01,00,4} |{06+/00,H}

11 {00/01,80,4+} |{64+/ 00,1} {46/00, H }

12 {10/ 00, H } {66/10,00,H+} |{60/01,060,4+}
Zy {6+/10,00,H4} |[(46/01,00, 1} |{6+/10,00,4}
Z, {40/01,60, 4} {{64+/10,00, 1} |{48/01,00,H}

¢ Line labels are referred to Figure 4.1(a)

¢ Line values are denoted as { fault-free values / all possible faulty values }
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Next, we consider the multiple fault detection problem in a k-pair tree-
structured TRC. Refer to Table 4.3. There is only one input pair that can be changed
between two consecutive input test patterns. Consider the high-lighted path from
primary inputs to primary outputs in Figure 4.2(a). Suppose that block 2°-1 is the first
faulty block along the path. After applying a two-pattern test, there are three possible
fault effects occurring at the output of this faulty block: 1) one output line carries
unidirectional transition(i.e. either {01} or {10}) while the other output line remains
unchanged or both Alines carry unidirectional transition, 2) both output lines stay
unchanged(i.e. {00} or {11}), 3) the outputs are complement to the fault-free ones.
For a fault going undetected, there must be other faulty block(s) along the path(e.g.
blocks 3 and 1) such that these faulty outputs will be converted to fault-free ones. In
the following, we shall prove that for all of the above three fault effects, our test

method is capable of detecting the existence of multiple faults.

1} One output line carries unidirectional transition while the other output line remains
unchanged or both lines carry unidirectional transition. It can be shown that there
are no faults such that a faulty 2-pair TRC can produce fault-free outputs. The
reason for this is that a 2-pair TRC is an unate function which is not capable to
generate any EXOR operation when it is faulty. Similarly, no fault-free outputs can

occur when both lines carry unidirectional transition.

2) Both output lines stay unchanged. The outputs of the faulty 2-pair TRC under
multiple faults may appear as codewords. However, the output would not be
toggled in the two-pattern test. This fault effect will propagate to the primary

outputs and be eventually detected.
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3) The outputs are complement to the fault-free ones. In Table 4.2, it has already been
proved that no multiple faults can result in fault-free outputs. Therefore here we
only need to show that no multiple faults can occur such that the outputs are the
complements of the fault-free ones. We show this by referring to Table 4.3, which
is generated based on the assumption that the outputs are complement of the fault-
free onés. Consider as an example test (T, T2). In order to produce ({10}, {01}) at
the outputs, line 9 must be {00} which is not generated by the AND gate. So line 9
can be assumed to be s-at 0. But in test (T3, Ty), line 9 must carry values {10} such
that outputs can be complement to the fault-free ones. So there is a contradiction
between tests (T, Ty) and (T3, Tq). Therefore, it is impossible for a faulty TRC
block to generate any faulty outputs which are complemented to the fault-free ones

for our test.

Through such detailed analysis, it can be proved that there are no faults such
that the outputs are equal to the fault-free ones, or their complements. On the other
hand, the erroneous outputs(under the occurrence of either fault effect I or fault effect

2) generated by a faulty block along the path can propagate to the primary output

lines. All multiple faults can thus be detected by our test.

4.2.4 Implementation of the Test Generation Method

In order to make use of the test generation method more effectively, a two-step
method to implement the test generation algorithm was proposed In the first step,

every pair of input lines of a TRC is labelled by an unique number according.to a
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input pair number assignment method. So that, the corresponding bit sequence of
every line through the test can be easily determined. If the line is primary input, test
set is derived. In the second step, a novel analytic scheme is used to analyse the test

set, to enable the user to simplify the implementation of the test generation procedure.

A. Input Pair Number Assignment Method

For the purpose of identification, each input pair of a block is labelled with a number
known as input pair number. The metho.d of assignment input pair numbers is worked
level-by-level. The level of a block is defined as the distance of the block from the
output block. For example the block nearest to the primary outputs is known as level-
1 block. Referring to Figure 4.2(a), block-1 is known as level-1 block, and blocks 4 to
7 are known as level-3 blocks. For level-1 inputs(block-1 inputs), the assignment of
the input pair numbers is arbitrary. For other upper level inputs, we apply the

following rules to determine the input pair numbers:

1) The number of one input pair of a block is assigned the same number as the output

pair of the same block.

2) The number of the other input pair is determined by the formula N(i)+2™ ', where
N(@) is the number of the first input pair of block-i that has already been defined in

Rule 1), and m is the level of block-i.

Figure 4.4 further illustrates the input number assignment method of a 8-pair TRC. A

set of notations are defined as follows:
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» The input sequence of input pair n of a block at level-m is denoted as (X, Yin)-

¢ The output sequence of block-1 is (Z0;, Z1;).

x3.0 XJ.J X].! X]G Xll x}.i x}..‘ x3.7
Y3,0 Y14 Y.!.! Yl.ﬁ Yll Y].S Y3,3 YB.?
OJ’ 14 zl l 6 | ln 31 l?
Block 7 Block 6 Block § Block 4
0 y 1 j
X?u Xz,z XTI xZ.J
Y Y, Y Y
| Block 3 21 b Block 2 2
0 l
§I.0 Xi.l
Y
10 Block I Il
Z0,Z1,

Figure 4.4 An example of 6-pair TRC.

After introducing the input pair number assignment method, we now formulate
our method in a formal way. Firstly, we need to assign each input pair of each block at
each level with an unique number as shown in Figure 4.4. Again, we only show the
test sequence generation for the X-terminal inputs because the Y-terminal inputs are

only complements of the corresponding X-terminal inputs.

Let Sy, be the basic input sequence of level-m block and Sy be the primary
output sequence. Based on the assumption of fault-free output, Sy will be an
alternating sequence of the form {01010101010101...... }. Here we introduce a 2-step

process using the following two equations to determine the required inputs of each

block:
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Su@ = Soir2"h ()
In the first step, Equation (1) is used to determine the bit pattern of the basic

input sequence at level-m, where j represents the position of individual bits. Here the

bits are numbered 0,1,2,3,... from left to right in a sequence.

Xnn(j) = Sm(+n) (2)

In the second step, Equation (2) is used to determine the exact bit sequence of

input pair n at level-m.

As an example, consider the test vector at the input terminal X5, of an 8-bit

TRC. First, the basic input sequence of level-3 blocks is determined:
S3(j) = Solj/8.)
S; = {0000000011111111.......0000000011111111........ }

By substituting input pair number 4 and level-3 into equation (2)
X3.4() = S3(j+4)

X34 = (00001 1111111000000001111...0000000011111111....}
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This example demonstrates that the proposed method is very simple and straight

forward to implement,
B. Implementation Using CSR

In a complex digital system, it is always hard to access individual blocks from primary
inputs. Cyclic shift register(CSR) based on built-in self-testing(BIST) approach
[ABRA 90]{FUIJI 85] was proposed to generate the required test vectors directly at the
input of the circuit-under-test. We now show that out test can be easily implemented
by CSR. By-rearranging the test vectors developed for the TRC as shown in Figure

4.2(a), Table 4.1 becomes:

Table 4.4 Re-arrangement of Table 4.1.

X-Input | bit sequence

X317 0111 1111 1000 0000

X6 0011 1111 1100 0000

X5 0001 1111 1110 0000

X34 0000 1111 1111 0000

X33 00000111 1111 1000

X3 00000011 1111 1100

Xi 00600001 11111110

X130 00000000 1111 1111
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It is clear that these sequences (as denoted in Table 4.4) can be generated by a
simple CSR as shown in Figure 4.5(a). The 8-pair TRC checker requires only 8 shift

register cells to generate the required set.

CLX + . * + .
| I | | | | [ ]
= 1)) D D D D D ] D
FF FF FF FF FF FF FF FF
Hlﬂl HJ 11 HJ HJ 1 |
S S XY Sy A S X S
xv\ 1 Xv‘ h }Z}.j i\ 4 X"l 3 X‘:IZ x+.1.l X:v.".ll
(a)
CLK
—
RESET
—H QQt ¢, Q.* Ql Qf Qg Qs‘ Q; Qd* Q, Qs‘= Qs Q«* Qa QJ* Q?

TR TR

(b)

Figure 4.5 CSRs for (a) Figure 4.2(a), and (b) Figure 4.2(b).

Note that although the example given in Figure 4.5(a) is for a complete tree

structured TRC, the same approach can be applied to any incomplete ones. Figure

4.5(b) shows how easy it is to medify the structure in Figure 4.5(a) in order to
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generate test vectors required for an incomplete tree such as the one shown in Figure

4.2(b). Detailed labelling can be referred to Figure 4.4.

4.2.5 Application of Test Generation in Parity Checkers

In previous section, a simple test generation method for two-rail checker is presented.
Here we show how the test developed in Section 4.2.1 is applicable to the parity
checker. A parity checker consists of two parity trees T; and T.. Design methods for
self-testing embedded parity checkers based on XOR gates have been reported in
[KAHA 84]. Because the two parity trees are totally separable from each other, we

will explain our test generation method based on single tree only.

A. Fault Model of Parity Tree

Consider the different parity tree configurations shown in Figure 4.6, the two parity
trees requires same number of gates but Figure 4.6(a) gives a less gate delay. In this
paper, our simulation is based on parity tree with configuration such as the one shown

in Figure 4.6(a). Indeed, our method can be applied to Figure 4.6(b) confi guration too.

The fault model considered is all combination of stuck-at faults in the parity tree.
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% é )
(a) (b)

Figure 4.6 Examples of two different parity tree

configurations.

B. Test Generation Procedure

In this section, the test generation method developed in Section 4.3.1 will be applied
to the parity checker. Also the effectiveness of this method in XOR parity tree will be
shown. Following the procedures in Section 4.3.1, the output is set to alternating 0 and
1 as shown in Figure 4.7. After applying rules 1, 2 and 3, similar results with those

shown in Figure 4.7 are obtained.

‘/’—\
0111 1000 OHOOHOK\
0001 1110 0101 0101
"""""" 0011 0011

Figure 4.7 Example of test generation of parity tree.
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C. Validity of the Test Generation Method for Parity Checker

The validity of the test in TRC is provided in Section 4.2.3. Since the same procedure
developed for TRC is applied to the parity tree, we only need to prove the validity of
the procedure in parity checker. To prove the validity of the method, we have the

follow lemma;

Lemma 2: There are no multiple faults in the XOR-type parity checker such that the

output response is same as or complement of the fault-free one.

Proof: Based on Figure 4.7, after completing the test generation, there is no bit
Sequences in any input of a gate which is equal to or complement of the fault-free
output sequences. When one of the input of an XOR gate is stuck-at 0 or 1, the output
bit stream of the gate will be same as or complement of the input respectively. The
fault-free signal of any outpur of XOR gate can be only generated by the particular
input signal. So the only way to generate the alternating 0 and 1 at the output of the

tree is when it is fault-free.
D. Implementation of Test Generation Method

In Section 4.2.4, a simple CSR is provided to implement the test generation method.
Based on the test generation on an 8-input parity tree, same set of test vectors are
obtained as shown in Section 4.2.4. Without any major modification, same CSR in
Figure 4.5(a) can be used with Q terminal outputs or using the complement of Q

terminal outputs. Without proof, anyone of the two sets of outputs of CSR (Q or Q*)
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can be used to generate the required test vectors to achieve the multiple faults
cbverage. This observation gives us an advantage of using same CSR for both parity
checker and TRC in the same circuit such that overall additional hardware is reduced.
In general, this application is not limited for complete binary tree but can also be

applied to incomplete one.
4.3 SUMMARY

In this section, we have introduced a test generation method which requires
codewords only to detect all multiple stuck-at faults in two-rail and parity checkers.
The main objective of developing the test generation method for multiple fault
coverage is to provide a high quality test in the production testing phase, such that the
system can be shown to be of higher quality, resulting in longer mean-time-to-failure.
Then, the implementation of self-checking technique is more effective. However,
there are limitations in test set development. The first one is that the checker is not
directly accessible. The second one is that without extra hardware only codewords are
presented at the input of the checker during normal operation. We have overcome
these two problems by using codewords testing with a simple output sequence
analysis. Furthermore, our method is very suitable ‘for implementation using BIST
approach. In summary, we think that currently there is no one test generation
algorithm to detect all multiple faults in an efficient manner. For some circuit types,
there is no guarantee that muitiple fault is detectable. The test generation algorithm
becomes application oriented. However, it is found that tree structured networks are

highly testable for multiple faults.
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Chapter 5
Testability Analysis and Detection
of Transistor Faults in CMOS VLSI

Circuits

5.1 INTRODUCTION

In this chapter, we consider the testability of static and domino-CMOS logic circuits
under open and bridging faults. For many years, classical stuck-at fault model has
been widely adopted because it is very easy to use and it covers large number of
physical defects. As the CMOS process becomes the dominant technology in VLSI
design, the effectiveness of stuck-at fault in CMOS VLSI circuit should be reviewed.
Open and bridging faults are two main fault types in VLSI circuit. However, the

possible number of these two types of faults are very large. In this chapter, we restrict

the fault model to single fault only.

As shown in [GALI 80J[LEVI 81][MALA 82][MILL 91][SHEN 88], the
requirement of detecting those faults are more complicated than logical fault, most ST
checkers are based on the logical fault model at the gate-level [BUSA 94][JOHN

891[KHAK 84][LALA 85]. Unfortunately, logical fault model such as stuck-at fault is
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insufficient and inadequate to represent some physical defects in CMOS VLSI
circuits. Large number of faults cannot be explained by a logical fault model. [MILL
911 has reviewed the behaviours of self-testing(ST) CMOS checkers under transistor-
level faults such as bridging, transition and stuck-open faults. [NICO 91] has studied
extensively the effect of bridging faults in several ST checkers based on different

implementation technologies.

5.2 TESTABILITY ANALYSIS OF STATIC CMOS LOGIC CIRCUITS

In this section, the testability of static CMOS logic circuits under the occurrence of

bridging faults and stuck-open faults will be discussed.
5.2.1 Stuck-open Fault

Open fault is a fault caused by a break at a conductor. In the following discussion, an
open fault may be considered as a break at the gate node of a transistor which is
named as transistor stuck-open fault. As discussed in Chapter 2, detection of stuck-
open fault always requires two-pattern test. The first test vector initialises the output
of a gate to a known state. Then, another test vector, which normally should result in
complement output of the previous test vector, will be applied. If the conducting path
contains a stuck-open fault, then the output of the gate will enter high impedance state
and will be same as the previous one. So, the fault is detected. Therefore, a
combinational circuit can behave as a sequential one. However, as studied by [MILL
91], an output hazard can invalidate the test. If inputs of a gate do not change

simultaneously, the output may be charged(discharged) during transition. As a resuit,
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the circuit behaves correctly for the two-pattern test. The fanlt will be masked.
However, if the transition is limited, the output hazard can be eliminated. On the other
hand, some gates such as XOR gates requires complementary input signals, hazard
may always exist in these gates. So, the use of this type of gates should be kept to the

minimum so that the probability of an output hazard occurring can be reduced.

Stuck-open fault can result in sequential behaviour, but still produce logical
error. Specific sequence of test vectors is required to detect this fault. Despite of the
output hazard during transition by limiting the transition between test vectors, {MILL
91] showed the probability of detecting stuck-open faults with randomly generated
test vectors for two-rail and parity checkers for a probabilistic analysis of stuck-open
fault detection. Given the confidence level Cy, which is the probability that the fault
will be detected by L random test vectors, if L is comparable to the number of
possible input codewords, then the checker will remain ST for the stuck-open fault.

The confidence level and test length L is related by Equation 5.1.
L L—m
CL=Z(-1)"”‘( ]d'“ 5.1)
m=] m
where d is the probability of randomly applying two vectors to detect the fault.
Therefore, the values d for the checkers can be obtained. However, when d is

small, the probability of detecting the corresponding fault is low, it requires to verify

the CD property of the checker under the occurrence of the fault.
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5.2.2 Bridging Fault

Fault which two lines are connected together is known as bridging fault. The effect of
the bridging faults is dependent on the conductance of pull-up network, bridging
resistance and the conductance of pull-down network. To model the bridging fault is
ineffective because the resistance of the bridging can be any values and the occurrence
of bridging faults is- geometry dependence. Consider that if only intratransistor
Bridging faults shall occur, the total number of bridging faults will be 4 times of the
number of transistors. Large number of possible fault can occur such that it is hard to
handle each fault individually. On the other hand, the bridging resistance can be any
values between perfectly short to open circuit. The effect of the fault decreases
gradually as the resistance increases. However, logic testing is not effective to detect

the bridging faults. Let us consider the following example:

Example 5.1. Consider that a bridging between the two outputs of the inverters as

shown in Figure 5.1,

ov Vi
N1
bridging, RB
Voo
P2
5V V2
N2

Figure 5.1 Bridging between two outputs of inverters.
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The wransfer characteristic of a NMOS transistor can be categorised into three regions:
cut-off, linear and saturation regions [WEST 93]. The three regions can be described

by the following equations.

Region 1. Iy =0, when V;, < V, cut-off region
. Vs . .
Region 2. I, = B((V,,-V)) 'T)Vds , when 0 < Vg < Vi, -V, linear region

(V,,-V)?

Region 3. [, = >

where = £ (E)

tox{ L

» when O < V-V, <V saturation region

and  V,is threshold voltage of the MOS device
1t is mobility of the majority carrier
£ 1s permittivity of the gate insulator
W is channel width of the device

L is channel length of the device.

Assume that the leakage currents of transistor N1 and P2 are negligible, so that
they can be ignored in the analysis. Generally, the operation of transistors P1 and N2
can be categorised into three conditions as denoted in Table 5.1, The first two
conditions indicate the bridging fault results. The faulty outputs are logical and they
can be detected easily by logic testing. However, in the third condition, non-logical
error will be produced at the faulty output lines since both transistors are in linear

region. So, we will have the following three equations:
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V1-V2
ls = 25 (D

2

V2
. =B,((Vop -V, V2-—) @

(V1-V,,)’

Ids = "ﬁp((-VDD-‘th)(vl-vDD)- )

) 3)

Table 5.1 The operation conditions of transistors P1 and N2

under bridging fault condition.

Condition Pl N2
1 Linear Saturation
2 Saturation Linear
3 Linear Linear

[LEE 96a]lLLEE 96b] solved these equations by iteration with common
transistor gain factors and threshold voltages. Figure 5.2 shows the plotting of voltage
outputs versus different bridging resistance RB. It can be noticed that the output can
fall in any value between Vpp and Vss. Because a CMOS logic gate is a high gain
amplifier, the degradation in input voltage may not affect the output .voltagc, but the
timing may be affected. Hence, bridging fault is hard to be detected by logic testing.
However, if we monitor the Ids of the circuit, we find that this current will be much
larger than the normal value as illustrated in Figure 5.3. Based on this observation,
various supply current testing techniques(or called Iddq testing) and test pattern
generation methods for Iddq testing were developed [FERG 91][LEVI 81]]MALA

82]MALY 92][MIUR 92J[RAJS 95][STOR 91][TANG 95][WEN 97].

57



0.5 A 1 1
0 05 1 15 2
RB(OHM) 10"

Figure 5.2 Plotting of output voltages of two inverters with

different bridging resistance.

14

Figure 5.3 Plotting of Ids versus different bridging

resistance,

Iddq(supply current quiescent) testing bases on the fact that when a static

CMOS logic gate is not switching, it draws no supply current except a very small
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leakage current. When a bridging fault occurs, a conducting path between Vpp to
ground‘node will be created to carry a large current as denoted in Figure 5.3. A
sensing device is commonly used to monitor the supply current. When a fault is
activated at the faulty site, it will be detected and indicated by the sensing device. The
main advantage of Iddq testing technique is that the faulty output value does not need
to propagate to the primary output. The test generation will become easier. However,
Iddq testing is relative low in detection speed comparing to the logic testing. To speed
up the testing process, a current monitoring device. called built-in current
sensor(BICS) is required to monitor the supply current [RAJS 93). For high quality
testing, the current resolution of BICS must be high. Furthermore, the device is
inserted in the supply or ground line permanently, the normal operation speed of
circuit under test(CUT) will be reduced. In summary, for a high quality system, Iddq
testing technique should be implemented to provide a high quality test. On the other
hand, trade-off between the quality of test and the speed of test must be considered. In
the next section, we shall demonstrate the effectiveness of implementing Iddq testing
into totally self-checking(TSC) system such that a high quality system can be

achieved.

5.2.3 Integration of Iddq testing with TSC system

In this section, we propose a method to integrate a TSC system with Iddq testing
approach. Later, we shall use an example of Iddq testing in a two-rail checker to

demonstrate the effectiveness of the implementation and the use of test generation

method proposed in Chapter 4 in Iddq testing.
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A. Iddq Testing Circuit

Many kinds of built-in current sensor(BICS) were designed and implemented in the
past [MIUR 92][MOZU 96]. In this study, we have designed a simple current sensor
circuit that can be inserted in power line or ground line of the CUT as shown in Figure
5.4 to measure the supply current in the simulation. In [MOZU 96], a comparison of
Idd and Iss BICS was studied. It is shown that the Iss BICS is faster and requires

smaller area than Idd BICS. An Iss BICS also results in less degradation of

performance in the CUT.

! [ Verr Lot
=L

%GND

Figure 5.4 Built-in current sensor.
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Figure 5.5 Application of BICS.

As shown in Figure 5.5, a BICS is inserted between the ground node of the
CUT and GND. Quiescent current will flow from Vpp through the BICS to GND
when suitable test vectors are applied to activate the bridging faults. Two extra
transistors are added for self-testing and test enable of the BICS. Transistor ST allows
high current flowing into the BICS so that the testing of the function of the BICS can
be carried out independent of the CUT. Transistor TM is designed to have higher
conductance than the input resistance of the BICS in order to bypass the current

flowing into the BICS during normal operation mode.

The operation of the BICS as shown in Figure 5.4 is quite simple. Current I,
is mirrored from Ies through the PMOS current mirror. The quiescent current [in from
the CUT is mirrored to Ij;. Since, an inverter is a high gain amplifier, small variation
in input voltage will result in very large output changing. If I, is larger than Ly;, Iy will
be iarge enough to charge up the input of the inverter. The error flag will indicate

fault-free logic O at the output. If Iy, is larger than Ly, the output of inverter will
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change to logic 1, indicating an error. In the study, we assume that sufficient attention
1s given to controlling the background leakage current. For the testing approach to
remain effective, we must ensure that the magnitude of the fault-free quiescent current
has to be estimated carefully. Furthermore, reference current I has to be selected
properly to distinguish the faulty quiescent current state from the fault-free one. Figure

5.6 shows the operation of the BICS corresponding to a faulty circuit.
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Figure 5.6 Output of the BICS corresponding to a faulty circuit.

A TSC system by definition produces a two-bit output to indicate the error. A
simple interface circuit is used to integrate the BICS output into the overall TSC fault
indication circuit. It consists of a 2-input NOR gate and a 2-pair two-rail checker. The
overall circuitry is shown in Figure 5.7. The NOR gate is used to translate the BICS
output error signal E, into 2-output Cy and C,. An additional test contro! pin Test* is

provided to mask or unmask the output of the BICS. Table 5.2 summaries the

operation of the Iddq testing circuit.
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Figure 5.7 Additional testing circuitry for Iddq testing in TSC circuit.

Table 5.2 Summary of the operation for Iddq testing circuit.

E Test* | Cy C, operation mode

0 0 1 0 fault-free

0 1 0 | fault detection is disabled
1 0 0 0 fault is detected

1 1 0 | fault detection is disabled
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B. Fault Analysis of the lddq Testing Circuit

The circuit structure of a CMOS NOR gate is shown in Figure 5.8(b). The NOR gate
is an n-dominant CMOS network. As shown in Table 5.3, under the occurrence of a
single transistor stuck-on fault, the CMOS network will become a potential divider
and an indeterminate logic value will be produced. The value of the output voltage
depends on the resistance of the transistors, which is equal to ( Rn/ ( Rn + Rpx2))x
Vdd. Based on the design rules. proposed in [MILL 91], by increasing the resistance of
the PMOS transistor, while keeping the NMOS unchanged, the indeterminate output
voltage will fall into a determinate logic value. The indeterminate logic value X
denoted in Table 5.3 can now be treated as logic 0. For the 2-input NOR used in the
interface circuitry, the occurrence of transistor stuck-on fault at N1 or N2 is the same
as output stuck-at O, which can be detected by means of non-code word output at (C,
C;). Transistor stuck-on fault at P1 and P2 will not affect the operation of the current
testing circuit. Therefore, from the logical point of view, a two-rail checker
implemented with NOR gates can be regarded as strongly code-disjoint with respect to

transistor stuck-on fault.

Table 5.3 Output of transistor stuck-on

fault in CMOS NOR gate(of Figure 5.8(b)).

AB | Pl | P2 | NI { N2 | fault-free
00 | 1 | X X 1
01 01 Xip0]0 0
10 X]10[0]O0 0
11 0Oj0([0]0 0
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Detection of stuck-at fault at output E of BICS(shown in Figure 5.7) is
dependent on the testable design of the B:ICS circuit. The BICS is an lanalog circuit
which has analog input and digital output. We assume that any fault in the BICS will
result in stuck-at fault at its output E. As shown in Table 5.2, line E stuck-at O cannot
be detected by means of non-code word output at (Cy, C,). However, it can be

detected by periodically exercising the BICS by applying a large test current.

Line Cy stuck-at O will mask the output E of the BICS, but it can be detected
by applying Test*=0 and disabling the operation of the current sensor at the same time
to ensure E=0. Similarly, stuck-at fault at line Test* can also be detected by disabling

the current sensor and applying test signal at line Test*.

It should be noted here that the Iddq testing circuit may lose the ability to
detect the steady current from the TSC circuit, but still produces code word 01 or 10 at
(Co, Cy). Since it is not part of the code words checking circuit (i.e. the checker), any
malfunction of the Iddq testing circuit will not affect the normal operation of the TSC

circuit.
5.2.4 Application Example

We now demonstrate the effectiveness of Iddq testing based on the proposed teét
generation method in Chapter 4. In practice, a 2-pair two-rail checker(TRC) may be
composed of three different ways: 1) AND-OR, 2) NAND and 3) NOR gates
implementations. The method developed in Chapter 4 has been proved to be valid for

AND-OR type TRC. However, it is also applicable to NAND and NOR type TRCs.
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Here, we consider the implementation of the TRC in the form of NOR gates structure

aslshown in Figure 5.8(a).

VDD
A —+dLPI
B -t P2
NI
(a) (b)

Figure 5.8 A NOR-type 2-pair two-rail checker.

In the Iddq testing circuit design, the 2-pair TRC is designed to be n-dominant.
However, we believe that this is not a good solution to solve the bridging fault
coverage problem. Because by making the circuit n-dominant or p-dominant, the
switching time will be affected. Therefore, the operation speed of the TRC will be
degraded. This leaves much to be desired. Furthermore, a large number of bridging
faults still cannot be detected purely by logic testing. Iddq testing in TRC circuit is

still required. Next, we consider the bridging fault detection at the gate-level and

transistor-level with the proposed test generation method.
A. Bridging Fault Derection at Gate-level

In theory, bridging between any two adjacent lines is possible. Practically, the
occurrence and detection of bridging faults depend on the circuit layout. In this study,

we consider two types of bridging faults at the gate-level, namely, non-feedback
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bridging faults and feedback bridging faults. We assume that the adjacency of the

interconnections is maintained at the layout level.

Non-feedback bridging fault includes bridging faults in which the bridged
lines are exclusive, for example, faults F1 to F3 in Figure 5.9 are of this type.
Whereas, bridging fault I'4 in Figure 5.9 is known as feedback bridging fault. Under
the occurrence of feedback bridging fault, the behaviour of combinational circuit will
become asynchronous sequential circuit due to the feedback loop. Apart from those
bridging faults indicated in Figure 5.9, bridging fault can occur within line 1, to 14 in

Figure 5.8(a) and also between these lines and any line of any block.

Iddq testing 1s effective only when the logic values applied on the two bridged
lines are different. Under this condition, a conducting path from Vpp to GND is

established to carry extra large power supply current. Fault is then detected by the

current sensor.

Firstly, let us consider the non-feedback bridging fault coverage problem. We

summarise the analysis as follows.

1. Bridging occurred within any input pair, say fault F1. Since the test vectors applied

on any input pair are code words (01 or 10), fault must then be detected.

2. Similarly, the bridging with line I; to 14 can also be detected since those lines can

only receive code words (i.e. 1-out-of-4 code).
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3. Detection of F2 and F3 can be done in the same way. If all lines carried different
bit sequences through the test, there must be at least one bit difference between any

two lines. Then, bridging fault can be activated and be detected.

Fd

F2

o HL

Figure 5.9 Bridging faults at gate-level.

Secondly, feedback bridging fault may introduce oscillation at the output
depending on the number of inversions on the path. If the number of inversions is odd,
the circuit will oscillate. Otherwise, it will not. Let us consider the feedback bridging
fault in a 2-pair TRC such as line xo and line Iy in Figure 5.8(a). Simulation showed
that any bridging fault in a two-rail checker will result in high power supply current

dissipation when two bridged lines have different values.

Our test set is very efficient in detecting both feedback and non-feedback
faults at gate-level in Iddq test. As shown in Figure 5.9, every line will carry different
test sequence. There is at least one bit difference between any two lines. As mentioned
previously, bridging between any two lines would result in high power supply current
dissipation in both feedback and non-feedback bridging when the two lines have

different values. So, those faults can be detected in Iddq test.
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B. Intratransistor Bridging Fault Detection

In the intratransistor bridging fault model, we consider the bridging between
drain, source, gate and bulk nodes of a transistor. Table 5.4 summarises the analysis of
this fault in a CMOS NOR gate as shown in Figure 5.8(b). It is found that three input
test vectors (00, 01, 10) are sufficient to activate any transistor bridging fault in a
CMOS NOR gate to generate abnormal Iddq and produce the non-code word (0,0) at

(Co, Cy).

Since TRCs are code checkers, only codewords are available in the normal
condition. It is necessary to make sure that enough codewords can be produced, so
that the three test vectors will appear at the input of each NOR gate in the checker.
Using the test generation method described in Chapter 4, we can see that all four code
words (0101, 0110, 1010, 1001) are presented at the input of each block of the TRC as
shown in Figure 5.8(a). These four codewords are enough to activate any
intratransistor bridging fault in the TRCs implemented by NOR gates. Abnormal Iddg
current is then detected by the BICS and results in non codeword (00) being generated

at the interface.

In summary, by implementing Iddq testing technique into CMOS static logic

circuits, the overall testability can be greatly enhanced.
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Table 5.4 Iddq in static CMOS NOR gate(of Fig. 5.8(b)) under intratransistor

bridging faults.

Pl P2

AB | sd | gs | gd | sb | gb|db|sd | gs|gd]|sb|gb]db

00| L|{HyH|L|H|L|L|H|[H|L|H]|]L

Oihf L H|H|L|H|L{H|L|H]|LI|LI|H

WwW{H,  L{H|L|L|H|L|L|L|{H|HIH

nmy{L,L|L|L|]L|L|]L{L]|]H]|L L | H

00| H{y L | H|L|[L|H|H|L|HI|L L | H

or) ) LyL|L|L|L|L|L|H|HJ|L}|H]|L

w{L|(H|H| L} H|L|L{|L}|L]|L]|LI|{L

Hl{L|H| H{L}H|{L|L|H|H|L|H]|L

( H - high current, L - same as fault-free ones)

5.3 TESTABILITY ANALYSIS OF DOMINO-CMOS LOGIC CIRCUITS

In this section, we study the testability analysis of domino-CMOS logic circuits.
CMOS logic circuits can be roughly classified as static CMOS and dynamic CMOS
logic circuits. A CMOS static gate consists of two complementary NMOS and PMOS
logic networks, connecting the output node to ground(GND) and Vpp respectively.
Dynamic gates require extra clock to first pre-charge(pre-discharge) the circuit and

then evaluate the n(p)-logic block [SHOJ 87]. Domino-CMOS gates, which have
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certain kinds of advantages than other dynamic gates, play an important role in the

design of dynamic logic.

An example of domino-CMOS logic circuit is shown in Figure 5.10. The
operation of a domino-CMOS gate consists of two phases. In pre-charge phase,
transistor PI(N2} is turn on(off) so that node Vout* is charged to logic 1. Input is then
applied and becomes stable in the evaluation phase. A feedback transistor Pf is
carefully designed to reduce the problem of charge sharing which mély result in loss of
noise margin and even create a logic error. In [JHA 84][JHA 88][JHA 90], it was
shown that transistor stuck-on and stuck-open faults in the n-logic network can be
mapped as stuck-at | and stuck-at O faults at the corresponding input node in the gate-
level circuit. Also, stuck-open fault in the transistors P1, N1, P2, N2 can be mapped as
either stuck-at O or stuck-at | at the output. Transistor stuck-on fault in these four
transistors can be detected or has no effect in logic testing if the circuit is made p-
dominant or n-dominant. The above observation is based on the assumption that the
faulty stuck-on transistor has the same conductance as a fault-free one. But this
assumption is often unrealistic [METR 95]. The stuck-on transistor may have higher
resistance value though it can still allow current flow regardless of the input data. If
the stuck-on transistor is included in the conduction path in the dynamic network, the
pre-charging/discharging process will be affected and the output of the gate will be
degraded. Similarly, stuck-on fault in the static inverter will also degrade the output

waveform and reduce the noise margin.
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Figure 5.10 A domino-CMOS logic circuit.

A bridging fault between any two internal nodes is possible. To analyse and
generate test vectors for each bridging fault is quite a complex task. Instead, in our
fauit model, we consider only the most likely occurred bridging faults. These faults
are called intratransistor bridging faults which include drain-gate, drain-source, gate-

source bridging and gate-leve! bridging faults.

5.3.1 Iddq Testability

In this section, we use Figure 5.11 as an example to study the Iddq testability. The
faults we considered in this study are intratransistor bridging faults and all the testable
bridging faults. Sometimes, transistor stuck-on fault are also known as bridging
between drain and source nodes of MOS transistor {RAJS 951 if the bridging

resistance 1s small comparing to the resistance of a turned on transistor.
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Figure 5.11 (a) Domino-CMOS logic circuit, (b) gate-level

representation, and (c¢) modified gate-level representation.
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A. Detection of Intratransistor Bridging Faults

To detect a bridging between two electrical nodes in the circuit, we have to activate it.
by setting the two nodes in opposite logic values. But it is very complicated to
examine all possible bridging between two nodes because the fault set is very large.
Instead, we can use the stuck-at fault test vectors which are developed by many
ATPGs to determine the fault coverage. Table 5.5 summarises the required test
vectors for the detection of all single stuck-at faults as shown in Figure 5.11(b). Four
test vectors are enough to detect all single stuck-at faults based on logic testing

approach.

. Table 5.5 Test vectors for circuit Figure 5.11(b)

based on logic testing.

Test vector [ abcd] | Stuck-at fault
TI[1100} las-at 0, lg s-at O
T2{0011] Is s-at 0, lg s-at O
T3[1001] Iy s-at 1,1, s-at 1, lgs-at |
T4[0110] lps-at {,l3s-at 1, lgs-at 1

In Table 5.6, we summarise the intratransistor bridging fault coverage of
Figure 5.11(a) by the stuck-at fault test vectors in Table 5.5. It is shown that most
intratransistor bridging faults except those drain-source bridging in transistor N1, N3,
N4, N5, N6 can be detected by this test set. The undetected faults are due to the fact

that P1 is off during the evaluation phase. And also, during the pre-charge phase,
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neither n-logic block nor N1 is turned on. There is no conducting path from Vpp to

GND node to carry extra large faulty current unless multiple faults occur.

Table 5.6 Test results of intratransistor bridging faults of Figure 5.11(a) based on

Iddq testing.

Test vector | Detected faults

CLK=0 Pl(gs, dg), P2(dg, ds), P3(dg, gs), N2(dg, gs)

CLK=1 Nl(gs, dg)

T1 Pl(dg, ds), P2(ds, gs), P3(ds, dg), N2(dg, ds), N3(dg, gs), N5(dg, gs)
T2 Pl(dé, ds), P2(ds, gs), P3(ds, dg), N2(dg, ds), N4(dg, gs), N6(dg, gs)
T3 No6(dg, gs)

T4 N5(dg, gs)

The drain-source bridging faults of the NMOS transistors of n-logic block
cannot be detected by current testing. Transistors P1 and N1 are turned on exclusively
during normal operation. No conducting path from Vpp to GND will be formed. Since
the bridging may not be perfectly short circuit, the resistive value might be varied
from less than 500Q to greater than 20KQ as reported in [RODR 96]. Tn order to
estimate the effect of the bridging resistance to the output waveform of the domino-
CMOS circuit, different bridging resistors are inserted in parallel with the affected
NMOS transistor(for example, transistor N5) in Figure 5.11(a). Then suitable test
vector is applied to the circuit such that no conducting path in the n-logic network will
be formed. In normal fault-free condition, the output of the gﬁte will maintain logic 0.

However, if there is a bridging between drain-source of an off transistor, a conducting
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path is formed. The circuit will discharge and the output of the circuit will toggle.
Figure 5.12 illustrates the simulation result obtained from the PSPICE electrical

circuit simulator.

Figure 5.12 Output waveforms under different drain-source bridging resistance.

For small bridging resistance value, the node f* will be discharged very
quickly and the output will switch to logic 1. This logic error will propagate to the
primary output and be detected as logical fault. On the other hand, the output will
degrade gradually as the bridging resistance increases. Based on this observation, the
drain-source bridging fault can be modelled as stuck-at 1 fault on the corresponding
input of the 2-input AND gate for a range of bridging resistance values. Thus this fault
can be detected by stuck-at fault test set. Depending on the.complexity of the circuit,

the degradation of output waveform may or may not result in logic error.
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B. Detection of Gate-level Bridging Faults

Gate-level bridging faults model is another popular method to describe the bridging
between any two logical nodes in the circuit. Unlike the intratransistor bridging fault
model which considers each transistor individually, it provides a global view of the
bridging fault in the circuit. Since the occurrence of bridging fault is layout and
implementation dependent, we have to consider thé mapping between the logic circuit
and the implementation. Again, let us consider the circuit shown in Figure 5.11(a) as
an example. It mainly consists of two parts: a dynamic functional circuit and a static
inverter. In gate-level implementation, it is represented by AND-OR logic circuit.
There are two drawbacks in this type of mapping. The OR gate virtually exists in the
transistor-level, which performs wired-OR function. Any node bridged with the input
of the OR gate can be mapped to a bridge with the output of the OR gate. Another
drawback is that the static inverter in the transistor implementation does not exist in
the gate-level representation. In order to have higher real fault coverage, we have to
modify the logical representation to another form as shown in Figure 5.11(c). The OR
gate is replaced by the NOR and inverter gates. The wired-OR function is now
represénted by the wired-NOR. Physically, we now have three types of circuit nodes
that can be bridged together. They are (a) input of AND gate, (b) input of inverter

gate, and (c) output of inverter gate.

Unlike other dynamic logic, domino-CMOS logic always has a static inverter
at the network output to drive other gates. To detect any bridging fault of type (a) and

type (¢), we can activate this fault by setting these two nodes in complement logic
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values. If the node of type (b) 1s bridged with the node of type (a) or (¢), we can
activate this fault by setting the dynamic node (b) to logic O and the other node to
logic 1. As a result, the dynamic node is connected to ground node and the node of
type (a) or (c) is effectively connect to Vpp. When type (b) node is bridged with
another node of logic 0, only very little discharge current will flow through the circuit.
The discharging process is dependent on the resistance of the bridging. It may or may
not provide a logical error at the output. If the discharging is fast enough compared to
the clock rate, a logical error should be detected at the output. However, this bridging
fault can be reduced by designing the layout carefully. Based on these observations,
we can examine the coverage of the gate-level bridging faults by the stuck-at fault test

set generated by ATPG.

5.3.2 Testability Improvements

As discuss in previous paragraph, some bridging faults cannot be detected by current
testing. Under certain conditions, the drain-source bridging of the transistors in the n-
logic block can be modelled as logical fault and detected by logic testing. However, it
can be shown that the bridging fault in transistor N1 cannot be detected by both logic
and current testing. And also, the existence of undetectable fault may m;ask other
faults in the circuit. The inherent structure of domino-CMOS logic circuits prevents
the effective use of Iddq testing method. Therefore, modification of the domino-
CMOS logic gate is required in order to facilitate the 1ddq testing. Two important
factors are considered: a) the design should be simple, and b) the additional circuitry
must be easily testable. Based on these criteria, we modified the domino-CMOS gate

by the following two schemes.
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A. Scheme i

The first scheme improves the testability by adding an extra transistor in each gate for
controllability. The resultant design is very simple and easily testable. As shown in
Figure 5.13, only one additional transistor is required for each gate to improve the

fault coverage. We now explain how the modified domino-logic gate works.

oD

CLKI [TPI

[/Ps

- 1/Ps

, Functional
TEST block
| TEST

@ ()

n-logic
network

CLK? ,

GND

Figure 5.13 (a) Modified domino-CMOS gate, and (b) equivalent gate-

level representation.

In normal mode, TEST is set to logic O to turn off transistor Nv. The two clock
inputs, CLK1 and CLK2, are set to the same logic value. The operation of the
modified domino-CMOS logic gate is the same as unmodified one. In test mode, the
drain-source bridging fault of transistor N1 cannot be detected in both pre-charge
phase and evaluation phase by either logic or current testing. So to detect transistor N1
drain-source bridging, P1 and Ny are turned on. For fault-free case, only leakage

current can flow in the circuit since N1 is normally turned off. The output of BICS

79



should indicate no error. If drain-source nodes of N1 is bridged, a large current will
flow from Vpp to GND, this fault is then detected by the BICS. Apart from this faul,
Pl(dg, gs}), N1(dg, ds) will result in abnormal high current flowing through the circuit
and will also be detected by the BICS. The test has to be applied in the pre-charge
phase, since this test will affect the pre-charged nodes. An additional clock for this

test 1s required.

After discussing testability improvement of the modified domino-CMOS logic
gate, we now consider the fault in{ the additional transistor Ny. Nt gate-source and
drain-gate bridging faults can be detected by setting TEST=1 during any evaluation
phase. By turning on P, at the evaluation phase, the Ny drain-source bridging can be
detected if the transistor is normally off. However, a break at Ny is undetectable by
neither Iddq testing or voltage testing. The occurrence of these faults could not affect

the normal operation of the circuit, but would contaminate the testing improvement

scheme.

B. Scheme 2

The second proposed scheme is based on the observation that the input signals of any
gate, except the primary input signal, would not change before the evaluation phase.
No conducting path will be formed to discharge the circuit. So, transistor N1 of Figure
5.11(a) is not necessary. An example is shown in Figure 5.14, the modification is
quite simple. A dynamic buffer is inserted in primary input line C and sub-circuit C2.
Transistor N2 of C2 is removed. Based on this scheme, the inputs of an n-logic block

can be either all primary input or all non-primary input. Bridging between drain and

B0



source of NI can be detected by suitably setting a test vector at the primary input

during f)re-charge phase.
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Figure 5.14 Example of domino-logic circuit, (a) original, and (b) modified one.
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Figure 5.15 Comparison of output waveforms of original domino-CMOS gate and

modified one of Figure 5.1 1(a).

We studied the effect of removing N2 in the domino circuit. Simulation result
is shown in Figure 5.15. With all parameters kept constant, the evaluation speed is in
fact faster than the original one because N1 is removed from the discharging path. The
testability of the modified gate is improved. Since the gate which is controlled by
primary inputs has transistor N1, any drain-source bridging of NI is detectable by
Iddq testing in the precharge phase because a conducting path can be created in the n-
logic block by suitable. input vectors. Despite of this advantage, this modification

scheme requires more overhead than scheme 1.
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5.4 SUMMARY

Testability analysis and a combined Iddq and logic testing approach of static and
domino-CMOS logic circuits are studied in this chapter. In fact, Iddq testing technique
1s essential in these two design methods because it has the advantage of easy test
generation and the ability of detecting many undetectable faults (mainly bridging fault
in a purely voltage testing environment). Later, we presented two testability
improvement schemes for domino-CMOS logic circuit such that Iddq testing is more
applicable to it. Though these schemes require extra overhead, the testability
improvement overweighs the cost. Comparing the static and domino-CMOS logic
circuits, domino-CMOS logic circuit has the advantage of static-CMOS, which is low
power consumption. But the testability of domino logic is much better than its static
family as discussed in previous paragraphs because many faults such as stuck-on and
stuck-open faults can be mapped to stuck-at faults. So, domino-CMOS togic design is
more applicable to self-checking design. However, domino-CMOS logic requires
more precise operation and is more easily influenced by radiation and noise

environment.
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Chapter 6

Built-in Intermediate Voltage Sensor

6.1 INTRODUCTION

In previous chapters, we have focused on the study of off-line testing technique for
multiple stuck-at faults and bridging faults. The objective of studying these testing
methods is that the design problem of totally self-checking(TSC) circuits can be
solved in the case of single logical fault {ABRA 90][ADER 73][BURN 94][BUSA
94]. However, large number of defects can occur when the CMOS VLSI chips are in
operation mode. Some of those defects can have effects similar to bridging faults in

CMOS circuits. That is, indeterminate logic level can arise at the faulty sites.

In Chapter 5, the effects of bridging faults in CMOS logic circuits are studied.
It has been shown that bridging faults can create a conducting path between Vpp and
ground node. A potential divider network is formed such that the output of the
network will fall in between Vpp and ground node. In this respect, the bridging fault
detection problem becomes more complex because of the indeterminate logic values
at the faulty sites. The detection of these faults by logic testing depends on the level of
the intermediate voltage at the output of the faulty gate with respect to the threshold
voltage of the inputs of the fan-out gates. Thus, these faults may not result in logical

error, but may significantly affect the circuit timing.
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Iddq‘ testing was reported to be very effective to detect the bﬁdging faults
[LEVI8I][MALY 92}{MIUR 92][RAHS 95][STOR 90][STOR 91]. However, supply
current monitoring is relatively slow and requires very precise current monitoring
device. Generally, a current sensor compares the measured current with the predefined
reference current. If the measured cwrent is larger than the reference current, error
will be indicated. However, the speed of current measuring is dependent on the
resolution of the current magnitude. The higher the resolution, the slower is the
detection speed. On the other hand, high speed detection may result in poor testing
quality. So far, this technique is only applied to fully static CMOS circuits.

Furthermore, it is not suitable for on-line testing approach.

Recently, [TANG 95] proposed to use intermediate voltage testing technique
to detect the bridging faults. It is based on the observation that a large number of
bridging faults can still be detected by logic testing [STOR 90]. The faults that cannot
be detected by logic testing are mainly those faults that can result in indeterminate
logic values at the fault sites. A sensing circuit called built-in intermediate voltage
sensor(BIVS) was proposed to detect these faults. Three designs of BIVS were given.
The drawback of these BIVS designs is twofold: the large power consum;ﬁtion and

lack of testability consideration. So, their designs are not suitable for TSC application.
A plain example can show that it is essential to detect the occurrence of

indeterminate logic values in the circuit. If the output of the functional block is within

the indeterminate logical region, the checker may interpret the output as a codeword,
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while other functional blocks may consider it as a non-codeword. As a consequence,

the objective of implementing a self-checking system can no longer be achieved.

Based on this observation, we propose a new and novel static CMOS BIVS
design. Detailed analysis shows that our sensing circuit is not only capable of
detecting the intermediate voltage at its input, but also can detect or tolerate the fault

in itself. So, our design is well suited to on-line testing.

6.2 DESIGN OF SENSING CIRCUIT

Firstly, let us introduce some terminology used and precisely define the logical
regions in CMOS digital circuits. Generally, in logic systems, variables and circuits
can be in one of the two states which are logic 0 and logic 1. In practise, the voltage
level can be divided into three regions which are logical O region, logical 1 region and
indeterminate logical region{denoted as logic X). The logical 0(1) input voltage range
is always wider than the logical 0(1) output voltage range. The difference is called
noise margin. It allows a certain noise voltage existing at the input of a gate which
will not affect the input values interpretation of the gate. Figure 6.1 shows the
definitions of the logical region and the noise margin. In this thesis, the indeterminate
logical region is defined as the difference between the maximum input voltage of
' logic 0 (1.5V) and the minimum input voitage of logic 1 (3.5V) of a CMOS gate
respectively. In the rest of this chapter, we denote the maximum input logic 0 voltage
a8 Vimax and minimum input logic | voltage as Vynin. And we shall refer to the

intermediate voltage as any voltage value within the indeterminate logical region.
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Figure 6.1 Definitions of input and output logical range.

In the following paragraphs, we consider a novel design of a static CMOS
built-in intermediate voltage sensor(BIVS). As discusséd in previous paragraph, the
logical region 1s divided into three level logic (0, X, 1). The proposed BIVS is used to
detect the logic X on the line. The circuit is designed by a 2um design rule. (Circuit
simulation 1s performed using PSPICE level 3 electrical circuit simulator with
Vpp=3V and Temp.=300K.) Figure 6.2 shows the proposed testing circuit. The BIVS
consists of three basic parts: 1) a level shifter, 2) a switching network and 3) a simple

current sensor. Table 6.1 denotes the sizes of the transistors.
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Figure 6.2 Built-in intermediate voltage sensor(BIVS).

Table 6.1 Summary of transistor sizes.

Transistor

Size(W/L) in um

2/16

212

2712

2/16

8/2

4/2

N2

8/2

Pas

212

Ngs

872

8/2

Nga

4/2
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A. Level Shifter

The first part of the BIVS is a level shifter which consists of two inverters (Gland G2)
of different transfer characteristics. The operation of a CMOS inverter is summarised
in Table 6.2 and Figure 6.3 illustrates its DC transfer characteristic and operating

region. The DC transfer characteristic of CMOS gate is controlled by the ratio of
pe f Wy . . :

Bnifip, where 8 = o L is the MOS transistor gain factor [WEST 93]. For a given
0x

process, the effective surface mobility of the carriers in the channel g, the permittivity
of the gate insulator £ and the thickness of the gate insulator tox are process
dependent, such that they cannot be altered easily. So, only the geometry dependent
term (W/L) is changeable. Consider Figure 6.3, where the ratio of the gain factors is
unity, so that the switching threshold is near half of the Vpp. If the ratio of Bn/fp is
decreased, the switching threshold will shift from left to right. In order to distinguish
the logic value at the input line of BIVS, the two inverters are designed such that their
corresponding transfer characteristics labelled by V1, V2 are shown in Figure 6.4.
When the input is logic O(1), the two inverters produces same logic value 1(0). When
the input falls in indeterminate logical region, the outputs of the two inverters will
split into two different logic values. Based on this observation, the type of logical

region presented at the input of the Level Shifter can be distinguished.
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Table 6.2 Summary of CMOS inverter operation.

PMOS NMOS Qutput Region
non-saturated cut-off A
non-saturated saturated B
saturated saturated C
saturated non-saturated D
cut-off non-saturated E

I
[}
1
:
i
t
1
1
]
]
Vour |
|
1
1
1
1
|
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Figure 6.3 CMOS inverter DC transfer characteristic and

operating regions.
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Figure 6.4 Output voltage of inverters Gl and G2 respect to the input

voltage.

B. Switching Network

The Switching Network is formed by a PMOS and an NMOS transistor which have
the same gain factor. As discussed in the previous paragraph, when the Level Shifter
receives logic 0(l) input, the outputs will be logic 1(0). Then either transistor P1 or
N1(but not both) will be turned on and the Idd is very small. When the input voltage
Vin falls into the indeterminate logical region, V1 will be at logic 0 and V2 will be at
logic 1. Hence both Pl and N1 will be turned on and a large current Idd will flow
through the switching network. The magnitude of the Idd current can be adjusted by

changing the conductance of transistors P1 and N1.
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C. Current Sensor

A simple current sensor, which is formed by N2 and two inverters(G3 and G4), is
designed to detect the large Idd current. Generally, the current sensor performs a
current to voltage conversion. During normal condition, the leakage current of the
Switching Network is negligible. However, when both transistors of the Switching
Network are turned on, a large voltage will be developed at the N2. Since a CMOS
inverter is a high gain amplifier, the developed voltage will be amplil;icd. A logic

signal is produced at the output of the current sensor.

ov 2.0V 4.0V 5.0V

Figure 6.5 Error output of BIVS respect to the input voltage.

Figure 6.5 shows the output of the BIVS respect to the input voltage. When the
input voltage falls in between V., and Vg, both N1 and Pl will be turned on and
a large Idd will flow through the network. The current sensor detects this large Idd
current and produces a logic ! at the output to indicate the error. In the design, we

have obtained that Vi, is 1.4V and Vi, is 3.3V.
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6.3 TESTABILITY ANALYSIS OF BIVS SYSTEM

For highly reliable system design, it is important to verify that possible faults within
the sensing circuit are detectable or that they will not affect the operation of the
circuit. This is becaﬁse these faults may mask the presence of the indeterminate
logical error. In this section, we analyse the testability of the BIVS circuit under the

presence of transistor stuck-on and stuck-open faults.

Table 6.3 Behaviour of BIVS in the presence of transistor faults.

Transistor stuck-on stuck-open
Poi no effect yes
Pga yes yes*
Ps3 no effect yes
Paga yes no
Pl yes yes*
Ngi yes yes*
Ng2 no effect yes
Ngs yes no
Nga no effect yes
NI yes yes*
N2 no effect yes

e yes* - fault effect is observed at Vout

e yes - fault effect is observed at Verr
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Transistor stuck-on assumes that the faulty transistor is alv&ays at “ON” mode
regardless of the voltages applied to the transistor. Table 6.3 summaries the
detectability of these faults inside the BIVS. In Figure 6.2, inverter gates G1 to G4 are
designed with different W/L ratios. Inverter Gl and G3 are designed as n-dominant,
whereas inverter G2 and G4 are designed as p-dominant. So, if both the PMOS and
NMOS network of an n-dominant inverter are turned on, the output voltage of the
inverter will fafl in the logic O region. Figure 6.6 demonstrates that the effect of
transistor Pg is a stuck-on with respect to the input voltage Vin. On the other hand, an
NMOS transistor stuck-on in a n-dominant inverter will result in an output stuck-at 0
fault. Similar analysis can be carried out in the p-dominate gates. Any transistor stuck-
on fault in the Switching Network can be detected by normal input. It is easy to show
that any transistor stuck-on fault in the BIVS can be detected at Vout or Verr, or has

no effect on the operation of the BIVS.
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V1

Figure 6.6 Voltage V1 respect to the input voltage in under transistor Pg,

stuck-on.

Transistor stuck-open faults will prevent the conducting of a transistor such
that the inverter will behave as a sequential circuit. If these faults occur within the
Level Shifter and the Switching Network, logical error will result at the Vout node
after the output of the corresponding faulty inverter gate has been charged or
discharged. Therefore, these faults can be detected by the normal input. However, as
listed in Table 6.3, stuck-open faults at transistor Pgs and Ng; cannot be detected
during normal operation. These undetectable faults will prevent the detection of
intermediate voltage of the BIVS. However, these faults can be flushed out by

applying abnormal current input to the current sensor periodically.

Transistor N2 is designed as high resistive load device. Transistor stuck-on

fault will have no effect on the operation of the BIVS. Since the leakage current of an
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NMOS transistor is very small, the gate node of G3 will be charged up and the fault
effect will then propagate to the output Verr of the BIVS. Nevertheless, this fault will

not affect the detection of intermediate voltage presented at the input of the BIVS,
6.4 BIVS SYSTEM DESIGN AND ITS APPLICATION
6.4.1 BIVS System Design

'Ir1 a self-checking system implemented with BIVS design, more than one BIVS will
be used. An improved testable architecture of the BIVS system is built and is shown
in Figure 6.7. In the design, a BIVS is inserted in the monitored line. As illustrated in
Table 6.3, there are two undetectable transistor stuck-open faults. Although these two
faults will not affect the normal operation of the circuit under test, they will mask
other faults when multiple faults occur. However, this problem can be solved by our

proposed design.

BIVS] BIVS2

Vil —
Level Swilching

Shifter Network
._._’

— - Vaut?
Level Swilching é

Shifter Network
—

F Yerr

Self-Tew :l

v R

Current Senser

Figure 6.7 BIVS system,

96



An additional transistor(as shown-in Figure 6.7} is used to connéct each BIVS
block together serially. During the self-testing phase(Self-Test=1), a farge current is
applied to the left-most(BIVS 1) of BIVS System. The current sensor will detect the
abnormal current and produce a logic | at the output. This error signal will propagate
to the last stage of BIVS system. Any undetectable transistor stuck-open fault(as
shown in Table 6.3) will mask the error signal. And so, the transistor stuck-open faults
can be detected. In addition, transistor stuck-on and stuck-open faults in the additional
transistor can be detected during either normal operation or self-testing phase. So, the
BIVS system is strongly code-disjoint(SCD) respect to transistor stuck-on and stuck-

open faults based on the self-exercising concept [NICO 89a].

6.4.2 Integration of BIVS System with Totally Self-Checking Circuit

As discussed in Chapter 3, the effectiveness of the checker is dependent on the
predefined fault model. However, when the output of the function block falls in
indeterminate logic values, the checker may fail to detect this error. Example 6.1

further shows the effect of intermediate logic value at the output of the functional

block.

Example 6.1. Assume that a functional block produces 3-out-of-5 codeword in
normal operation. If a word 01x10 is generated at the output, the checker may
interpret it as a codeword 01110, while other functional blocks may receive a non-

codeword (01010. So, the erroncous output cannot be detected by the checker. Self-
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checking property is no longer validated. As a consequence, the normal operation of

whole system is affected.

This problem can be solved by employing a BIVS as the output level detection

element.

TSC TS§C
functional functional
block block
Self-Tesl
— BIVS
J\'J TSC
Bl § code ED
checker L
* TSC
BIVS (W | El
0-rai ’
checker
Verr
Self-Test'

Figure 6.8 Integrating of a BIVS system and a TSC circuit.

Figure 6.8 shows the integration of a BIVS system and a TSC circuit. In the
fault-free case, Verr=0 and Self-Test’=1 will be produced during normal operation
phase while Verr=1 and Self-Test’=0 will be produced during self-exercising phase.
When an indeterminate logic input is detected by the BIVS system during normal
operation phase(Self-Test’=1), a non-codeword(11) will be produced. In the self-
exercising phase, a non-codeword(00) will indicate possible faults within the BIVS
system. A 2-pair two-rail checker is used to multiplex the error signal from the code

checker and the BIVS system.
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Apart from monitoring the output of thé functional block, if necessafy, extra
BIVS can be implemented to enhance the testability of any internal node of the
system. As an example, our design can be implemented to monitor the input of each
cell in a standard-cell design. An additional output line of the cell may be used to
detect the indeterminate logic values at its input. In this way, the overall system

testability and reliability can be Significantly increased.
6.5 SUMMARY

Indeterminate logic values present inside the functional block can contaminate the
objective of implementing a self-checking system. As stated in previous sections, the
detection problem is complicated in on-line testing. We have proposed a novel circuit,
called built-in intermediate voltage sensor, based on CMOS technology to tackle the
problem. It was demonstrated that our design can efficiently detect indeterminate logic
values inside the circuit. The significant increase in testability and reliability, the
benefit outweighs the penalty of the additional cost and slight performance
degradation. Furthermore, our design is highly testable for transistor stuck-on and
stuck-open faults. This merit makes it suitable for on-line testing applications. Since
the design is based on CMOS design approach, it is suitable to be used together with
Iddq testing to achieve a high system quality. In summary, Iddq testing is recognised
as the most common method to detect bridging faults in CMOS digital circuits.
However, unless, the speed of Iddq testing technique can be improved, our design is a

good alternative solution to the problem.
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Chapter 7

Conclusions and Future Works

7.1 CONCLUSIONS OF THE PRESENT WORK

Self-checking circuit design techniques can be employed to enhance the reliability of a
system. With the totally self-checking(TSC) property achieved, the system can
produce correct output or the system can indicate the error by means of non-codeword
output under a predetermined fault model. In this chapter, a final conclusion of our

contributions to the self-checking system will be given.

In Chapter 2 and Chapter 3, we reviewed the basic principles and concepts of

self-checking circuits(SCCs) and carefully defined the terminology used.

Chapter 4 discusses the multiple stuck-at(s-at) fault coverage of existing self-
checking checkers. Nowadays, to effectively detect the multiple stuck-at fault for a
highly reliable system becomes the basic requirement. In this chapter, it was shown
that the existence of multiple s-at faults could invalidate the TSC property. In some
literature, it was suggested that the multiple s-at fault which escaped from codeword
detection could be detected by non-codeword. However, the checker is not accessible
from the primary input. Non-codeword is not available during normal operation.

Based on this observation, we developed an algorithm to detect the multiple s-at fault
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of two-rail and parity checkers which used codewords as test vectors only. Analysis
result shows that the algorithm can achieve complete detection of multiple s-at faults.
The required test length is much less than the previously proposed one. Meanwhile,
the algorithm can be implemented by cyclic shift register(CSR), which is based on the
built-in self-test(BIST) approach easily. With the application of BIST approach, the
lest vectors can be easily generated at the input of the checker despite of the
complexity of the functional block. Hence, a self-checking circuit which provides on-
line single fault detection with off-line multiple fault detection algorithm can achieve

high reliability.

In Chapter 5, we extended our study to the fault coverage problem in fully
static and domino CMOS VLSI logic circuits. Open fault and bridging fault models
were considered in the analysis because they were the most common physical defects
in the VLSI circuits. In static CMOS logic circuits, detailed analysis showed that in
the event of an open fault occurrence, a combinational circuit may behave as
sequential one. However, it still produces logical error. With suitable sequence of test
vectors, the open fault can be detected. However, bridging faults may include the
degradation of voltage, current and timing parameters which may not result in logical
‘error. Thus, it is hard to be detected by logic testing. In recent years, Iddq testing has
been proposed to detect the bridging fault. It is based on the fact that there is no
quiescent current except very little leakage current flowing during steady state. By
monitoring the abnormal large supply current(Iddq), bridging fault can be detected.
With the integration of Iddq testing and logic testing, it can achieve higher quality of
test. However, Iddq testing is a quite expensive testing technique. A high quality

current monitoring device called built-in current sensor(BICS) is required to provide
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precise measurement of the current. On the other hand, a precise measurement of
current requires a slower measuring speed (which is relatively slower than logic
monitoring). In addition, when this device is inserted in the circuit-under-test(CUT),

the performance of the CUT will be degraded.

We integrated the Iddq testing with the test generation algorithm proposed in
Chapter 4. The bridging fault mode! used consisted of the intratransistor bridging fault
and gate-level bridging fault. It has been shown -that the proposed test generation
algorithm could also effectively detect the bridging fault under the hybrid testing
scheme. Two outstanding results can be drawn. Firstly, the codeword is enough to
detect all the bridging faults in the predefined, but also representative fault model.
Secondly, hybrid testing scheme can achieve very high quality of test. In fact, if the
operating speed of application is slow or the speed of the BICS can be increased, Iddq

testing can be employed for on-line testing.

Domino-CMOS logic circuit is dynamic in nature. It has been shown that it is
more testable under realistic fault model than static CMOS logic circuit. However,
some bridging faults remain undetectable in the logic testing approach. In our
analysis, we showed that these undetectable bridging faults were also undetectable by
Iddq testing. The dynamic circuit structure inherently prohibits the application of Iddq
testing technique. Furthermore, domino logic circuit requires very precise charging
and discharging processes. Bridging fault may affect the magnitude of current to
charge or discharge the circuit. Based on this observation, modifications of the
domino-CMOS logic circuit were proposed. In the first scheme, modification was

carried out by adding extra control transistor and using two clock signals to control
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the sequence of operation phases in the circuit. The bridging fault then became
detectable. However, the control transistor itself was still undetectable. In the second
scheme, the originally undetectable faulty transistor was removed from the circuit.
Simulation showed that the output is not degraded. In fact, the operation speed is
faster than original one. Also, rules were set up to modify the circuit structure. Result
showed that this modified version was highly testable for both logic and Iddq testing
schemes. In particular, the previous undetectable bridging fault problem is solved.
Comparing these two schemes, the second scheme can achieve higher testability, but

also requires more overhead.

Chapter 6 reports- an alternative method to detect bridging fault particularly for
on-line testing application. In the previous chapter, it was shown that bridging fault
could be effectively detected by Iddq testing technique in CMOS VLSI logic circuit.
However, the low detection speed of Iddq testing makes it hard to apply for on-line
testing application. On the other hand, a major problem arises. When the output of the
functional block of a self-checking system is contaminated by the bridging fault and
results in indeterminate logic value, the checker may not be capable of detecting this
error. And the normal operation of whole system is affected. A special logic region
sensing device called built-in intermediate voltage sensor(BIVS) was developed in
recent years. However, the drawbacks are: 1) the large power consumption and 2) lack
of testability consideration. For self-checking application, it is important that the
sensor must fulfil the self-checking properties. Also, the sensing device should be
small in size, has low power consumption and minimum adverse effect on the circuit-
under-test. These factors motivate us to develop a new circuit design to detect the

indeterminate logic value at the faulty site. And so, the integration of BIVS system
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with the self-checking system was proposed. Detailed analysis showed that our design
could achieve the self-checking properties. In terms of the significant increase in

testability and reliability, the benefit outweighs the penalty.

In summary, the study of multiple fault coverage in self-checking circuit has
been extended to different fault models including multiple s-at faults, open faults and
bridging faults. In this thesis, our work has been focused on improving the
detectability and testability of the fault. Overall, our work has successfully improved

the dependability of SCCs.

7.2 FUTURE WORKS

The major problem for future research may include the design methodology for
particular technology such as CMOS, by including more realistic fault mode!. As
discussed in previous chapters, design of SCCs can be solved easily for single s-at
fault model. However, it fails to achieve the TSC property for realistic fault model and
has bridging fault coverage problem. In this thesis, this problem is tackled by Iddq
testing and BIVS approaches. In the first approach, it is shown that the Iddq testing
can effectively detect the bridging faults. However, the speed of detection is slow and
the design of the current sensing device is complicated. Obviously, to design a simply
and fast current sensing device for on-line applications is one of the main research
area for future work. In the latter approach, BIVS system and SCC are integrated to
detect the indeterminate logic at the input of the checker. However, the indeterminate
logic value can still occur inside the circuit. It was shown in the past that extra test

points can increase the testability of the circuit. Based on this observation, we believe
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that placement of BIVS can also enhance the detectability of bridging fault inside the
circuit. Placement of BIVS is another main future research problem. Also, a simple
BIVS is needed to reduce the cost of additional overhead. In summary, the study of
realistic fault coverage problems in SCCs is important. To develop cost-effective
methods to improve the fault coverage problem is the major goal in future research

direction.
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