

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

EFFICIENT C-BASED SOC ARCHITECTURES
AND DESIGN METHODOLOGIES

YIDI LIU

M.Phil

The Hong Kong Polytechnic University

2016

The Hong Kong Polytechnic University

Department of Electronic and Information
Engineering

Efficient C-based SoC Architectures and
Design Methodologies

Yidi LIU

A thesis
submitted in partial fulfilment of the requirements

for the degree of

Master of Philosophy

August 2015

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published or

written, nor material that has been accepted for the award of any other degree

or diploma, except where due acknowledgement has been made in the text.

Yidi LIU (Name of student)

V

Abstract

ITRS [1] suggest that by 2020 a 10x productivity increase for designing
complex SoCs is needed. Two main factors are predicted to help achieving
this goal. The first is the re-use of components. ITRS estimates that around
90% of the SoCs will be composed of re-used components. Secondly, the use
of new design methodologies to raise the level of abstraction, i.e. High-Level
Synthesis (HLS).

Companies have started to rely on High-Level Synthesis (HLS) to increase their
design productivity and making use of third party behavioral IPs (3PBIPs) to
meet their tight schedules.

C-Based design has many advantages compared to traditional RTL design. The
most salient ones include, the increase in design productivity, which allows
design teams to meet the increasingly stringent time-to-market requirements,
the ability to create smaller designs compared to hand-coded RTL due to its
ability to maximize resource sharing and the possibility of generating a set of
different micro-architectures with different area vs. performance trade-offs
without having to modify the original behavioural description, also called
Design Space Exploration (DSE).

In traditional RTL design it is virtually impossible to do DSE as it would
involve having to re-write the RTL description completely in order to create
the new micro-architecture. Moreover it is common practice not to modify
any hardware (HW) block that has been fully verified, even if a more efficient
architecture could be achieved in subsequent designs, due to the cost of having
to re-verify the new implementation.

HLS is a single process synthesis method, which takes individual behavioral de-
scriptions as inputs and performs resource allocation, scheduling and binding
on each of them to obtain an RTL description, which can efficiently execute it.

vii

As mentioned previously, HLS allows designers to generate micro-architectures
with different area vs. performance trade-offs. Typically, high-performance
designs will consume more HW resources as loops are fully unrolled and
functions inlined, while low performance designs tend to be much smaller
as resources can be shared, functions do not need to be inlined and loops
executed sequentially.

This thesis investigates effective design methods to automatically generate
SoC architectures with unique area vs. performance trade-offs when these are
fully described at the behavioral level. State-of-the-art HLS tools now include
system level design capabilities which allow this. Two main cases are studied:
Static schedule and dynamic tasks schedule architectures.

Scheduling and mapping approaches can be classified as online and off-line
algorithms. Off-line algorithms have shown to be able to obtain superior
results by exploring a larger portion of the design space. These static/off-line
methods schedule multiple applications on a system and can be used in order
to reduce the complexity of the HW and hence reduce its area and power
overheads. On the other side, online methods are much more flexible. It is
therefore important to study both approaches.

viii

Publications

1. Y. Liu, B. Carrion Schafer, "Optimization of Behavioral IPs in Multi-
Processor System-on-Chips", ASP-DAC, 2016.

2. Y. Liu, B. Carrion Schafer, "Adaptive Combined Macro and Micro-Exploration
of Concurrent Applications mapped on shared Bus Reconfigurable SoC",
Electronic System Level Synthesis Conference (ESLsyn), San Francisco,
2015.

3. Y. Liu, B. Carrion Schafer, "HW Acceleration of Multiple Applications on a
Single FPGA", International Conference on Field-Programmable Technology
(FPT), pp. 284-285,2014.

ix

Acknowledgements

First of all, I would like to give my sincere appreciation and thanks to my
supervisor Dr. Benjamin Carrion Schafer for his guidance and encouragement
in my MPhil period. It is his illuminable instruction and persistent patience
that inspires me to work on my research. I benefit a lot from his fantastic and
experienced biography as well as the expert advice and intelligent thoughts. It
is my pleasure and honour to work under my supervisor and I believe this two
years research study is my invaluable experiment.

Next I want to thank my co-supervisor Prof. Francis C.M. Lau. His serious
working attitude, strict concept insistence and insightful comment have deeply
impressed me and impel me to regard research work in a serious manner. It is
interesting to talk with Prof. Lau about the life and career in Hong Kong.

Furthermore, I am grateful to the Hong Kong Polytechnic University and
the Electronic and Information Department for their generous and consistent
support during my master study. My thanks also go to the clerical staffs includ-
ing Cora, Janice, Shirley and the other members in the General Office of my
department, whose help on the administrative field are much appreciated.

I also want to thank my colleges Anushree Mahapatra, Nandeesh Veeranna,
Shuangnan Liu, Dong Liu and the others for their help in my research work.
My thanks also go to my friends Junjie Huang, Diyang Xue, Kuo Wang, Xiaojun
Huang, Xiaotong Li, Huiling Zhou, Peiya Li, Zhenhui Situ, Linchuang Xu, Qing
Liang and the others for my interesting and exciting university life in Hong
Kong.

Finally, I would like to give my special thanks to my parents and my
girlfriend for their unselfish love, concern and support during my MPhil study
period and throughput my life.

xi

Contents

1 Introduction 1
1.1 Contribution of this Thesis . 2
1.2 Thesis Structure . 2

2 Literature Review 5

3 High Level Synthesis 9
3.1 Design Flow . 9

3.1.1 Compilation/Parsing . 10
3.1.2 Allocation . 11
3.1.3 Scheduling . 12
3.1.4 Binding . 14
3.1.5 RTL Generation . 16

3.2 Commercial HLS Tools . 16
3.3 Summary . 17

4 Hardware Acceleration 19
4.1 Motivations . 19
4.2 Proposed Flow . 20
4.3 Experimental Results . 24
4.4 Summary . 25

5 Static Schedule SoC Design Space Exploration 29
5.1 Motivations . 29
5.2 Design Exploration Flow . 30

5.2.1 HW/SW Partitioning . 32
5.2.2 HLS Design Space Exploration 32
5.2.3 Bus Scheduling and System Exploration 34

5.3 Experimental Results . 37
5.4 Summary . 40

6 Dynamic Schedule SoC Design Space Exploration 41
6.1 Motivations . 41

xiii

6.2 Proposed Exploration Method 45
6.3 Hybrid Exploration Method . 53
6.4 Experimental Results . 54
6.5 Summary . 56

7 Results Discussion 59

8 Conclusions and Future Work 63
8.1 Conclusions . 63
8.2 Future Work . 64

xiv

List of Figures

3.1 High-level synthesis design flow 10

3.2 FU allocation example for FIR filter given in ANSI-C: (a) ANSI-C
codes of 9-tap FIR filter; (b) Allocation results required for NOT-
unroll "LOOP" requirement; (c) Allocation results required for
ALL-unroll "LOOP" requirement 11

3.3 Scheduling example: (a) Example codes in ANSI-C; (b) DFG of
source code given in (a) . 13

3.4 Scheduling results of Fig.3.3 example with one adder and one
multiplier constraint: (a) ASAP scheduling; (b) ALAP scheduling . 14

3.5 Binding example for Fig.3.3 example with constraint TWO adder
and TWO multiplier: (a) ASAP scheduling result; (b) Binding
result with weighted bipartite matching algorithm 15

3.6 Typical RTL architecture . 16

4.1 Proposed HW acceleration system overview 20

4.2 System speed-up vs. number of kernels mapped to HW device
with bandwidth and no bandwidth constraint 21

4.3 Flow chart overview of proposed flow 22

5.1 Complete flow overview composed of three phases: 1. automatic
HW/SW partitioning; 2. individual processes HLS DES; 3. bus
scheduling and system exploration 30

5.2 Adaptive schedule method with exploration 35

5.3 Experimental results of macro-exploration: (a) QoR of ADRS; (b)
QoR of DR . 39

6.1 MPSoC target platform . 42

6.2 MPSoC configurations example with 4 slaves over area vs. through-
put: (a) 1 Master; (b) 2 Masters; (c) 3 Masters; (d) 4 Masters . . 43

6.3 Proposed method flow diagram 46

6.4 APIs of read/write operations for master and slave 50

6.5 Bus definition: (a) AHB BUS definition file example; (b) Master
definition; (c) Slave definition . 51

xv

6.6 One BIP execution schedule example 51
6.7 Example of DSE with BIP optimization 53

xvi

List of Tables

3.1 Examples for HLS tool . 17

4.1 Complex System Benchmarks . 27
4.2 Experimental Results . 27

5.1 Complex System Benchmarks . 37
5.2 Experimental Results of macro-exploration for different CO 38

6.1 Example for all possible tasks mapping with 4 tasks 44
6.2 Complex System Benchmarks . 55
6.3 Experimental Results . 56

7.1 Comparison with Static Schedule vs. Dynamic Schedule 61

xvii

Glossary of Abbreviations

AHB Advanced High-performance Bus
ALAP As Late As Possible
ALU Arithmetic Logical Unit
AMBA Advanced Micro-controller Bus Architecture
API Application Program Interface
ASAP As Soon As Possible
ASIC Application Specific Integrated Circuit
CPU Central Processing Unit
CWB CyberWorkBench
DFG Data Flow Graph
DMA Direct Memory Access
DSE Design Space Exploration
DSP Digital Signal Processing
EDA Electronic Design Automation
ESL Electronic System Level
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
FSM Finite State Machine
FU Functional Unit
GPU Graphics Processing Unit
HW Hardware
HWAcc Hardware Accelerator
HDL Hardware Description Language
HLS High Level Synthesis
HPC High Performance Computing
IC Integrated Circuit
IP Intellectual Property
MPSoC Multiple Processor System-on-Chip
NoC Network on Chip
QoR Quality of Results
RAM Random Access Memory

xix

ROM Read-Only Memory
RTL Register Transfer Level
SoC System-on-Chip
SW Software
VHDL Very High Speed IC Hardware Description Language
VLSI Very Large Scale Integration

xx

1Introduction

C-based design is finally being deployed extensively in industry for commercial
designs. The increase in productivity combined with the improvement in the
quality of the results of commercial HLS tools has convinced many design
teams to make the transition. This transition is nevertheless gradual and
currently most of the applications being targeted are Digital Signal Processing
(DSP) related as HLS has shown in the past that it can rival hand-coded RTL
designs for these type of applications.

One advantage of HLS vs. traditional RT-level design methods is that
HLS allows the generation of different micro-architectures with unique area
vs. performance trade-offs without having to modify the original behavioral
description. This is typically done by setting different synthesis options to
e.g. synthesize arrays as memories or registers, unroll loops or not and inline
functions or not. At the same time state-of-the-art HLS tools now support
the complete generation of SoCs at the behavioral level by including bus
generator tools, interface generators, hierarchical design methods and RTL
to C conversion tools. RTL to C tools allow to convert back legacy RTL code
into behavioral code, which can in turn be integrated into the same SoC with
newly created C code.

This work makes use of these unique capabilities of C-based VLSI design
and HLS tools to generate complete SoCs in C with different area vs. perfor-
mance trade-offs. This is often called Design Space Exploration (DSE). The
aim of DSE is to find Pareto optimal configurations as fast as possible. Because
the design space is often extremely large, heuristics have been developed to
find these optimal configurations and compared to exhaustive search methods
which are able to find the optimal results. Because often exhaustive search
methods do not lead to any results at a reasonable time, the results obtained
are often referred to dominating configurations, as their optimaliity cannot be
guaranteed.

1

1.1 Contribution of this Thesis

This thesis investigates design methods for finding dominating configura-
tions for SoCs with static and dynamic schedules completely described in C.
The major contributions made by this work are as follows:

1. Develop a complete automated flow for creating complete behavioral-
level SoCs, including the HW/SW partitioning in order to achieve higher
performance and more energy efficient systems.

2. Study of the HW/SW partitioning on computationally intensive applica-
tions or tasks given in a high-level description by mapping the most com-
putationally intensive kernel onto an FPGA for PC’s with re-configurable
computing co-processor boards or onto re-configurable fabric within
SoCs.

3. Investigate efficient design space exploration methods for static sched-
uled SoCs with shared buses.

4. Develop exploration methods for finding dominating SoC configurations
for dynamic scheduled SoC architectures with shared bus using HLS
tools’ bus generators, in particular for AMBA AHB bus and optimize the
accelerators micro-architecture.

1.2 Thesis Structure

The thesis is divided into five chapters. The first chapter review previous
related work in the areas touched in this work. In particular previous work
about automatic partitioning, scheduling and system exploration. Chapter
3 introduces how HLS works and describes in detail its three main steps :
(1) allocation, (2) scheduling and (3) binding. Automatic HW acceleration
by partitioning behavioral descriptions automatically and synthesizing these
with HLS is discussed in Chapter 4, mainly for micro-processors enhanced
with FPGA-based accelerator co-processor cards. This chapter also studies the
efficiency of these accelerators when multiple tasks are mapped concurrently
onto a single FPGA. A complete system exploration flow combining micro-
exploration (HLS DSE) and macro-exploration for static scheduled, shared bus

2 Chapter 1 Introduction

systems is presented in Chapter 5. Chapter 6discusses dynamic scheduling
SoC systems explorations based on bus arbiters using AMB AHB buses and
for heterogeneous MPSoC architecture. The last two chapters, Chapter 7
and Chapter 8 discuss the results obtained by our proposed methods, draw
conclusions as well as show future work, respectively.

1.2 Thesis Structure 3

2Literature Review

This work touches multiple topics, which have been well studied in the past. In
particular, HW/SW co-design, System-Level Design Space Exploration (DSE),
High-Level Synthesis DSE and static bus scheduling. Therefore only a repre-
sentation of the most relevant previous work is given in this section.

HW/SW partitioning has been studied extensively in the past. A good
overview of HW/SW work done so far can be found at [2]. The main approach
so far has been to convert a given set of tasks into a directed acyclic graph
(DAG) and using heuristics [3] or mixed integer linear programming (MILP)
[4] methods to iteratively map different operations in the DAG to either SW or
HW. The cost function is typically the execution time of the tasks, while the
target architecture is also given. Early HW/SW partitioning was done by [5]
and [6].

Hendry et al. [7] developed a HW/SW partitioning tool for embedded
systems with multiple hardware processes called COSYN by partitioning the
design into blocks and selecting the ones with highest speedup potential itera-
tively. In [8], two heuristic methods, based on simulated annealing and tabu
search, were presented to minimize communication cost and improve overall
parallelism. In [9] a genetic algorithm approach was taken in order to make a
partitioning decision for re-configurable system. A static method [10] based
on Bayesian belief networks (BBN) handles the interactions between each
unit and makes a classification decision by propagating evidence and casual
messages along nodes. Additionally, partitioning algorithm was studied on
re-configurable designs. Noguera et al [11] presented a partitioning algorithm
for dynamically re-configurable architecture to minimizing reconfiguration
latency. In [12] a complete synthesis and partitioning method for adaptive
re-configurable computing system (SPARCS) was presented targeting multiple-
FPGA systems and performing HLS on their tasks graphs. Closely integrating
of partitioning and synthesis was used to predict each partitioning size and
performance.

There are also some companies dedicated to HW acceleration using FPGAs.
In particular, HW/SW partitioning are used in financial application acceler-

5

ation1 because banks can afford the expensive equipment and it is easy to
quantify the cost savings of having a faster system (e.g. customized low latency
trading HW system or Value at Risk computation). These companies manually
analyze the algorithms to be accelerated and then manually create a suitable
architecture for this particular application. In some cases they have developed
semi-automatic flows to speed the development of the system up [13].

A very important aspect of any HW/SW partitioning method is the simu-
lation of these systems. The authors in [14] and [15] introduced some first
approaches to be able to simulate complete systems composed of processors
and HWAccs.

Scheduling is another important process affecting the performance of
HW/SW co-design. It has been shown to be an NP-complete problem [16],
thus many heuristics have been proposed in the past. Usually it can be classified
into static and dynamic scheduling. A comparison of different heuristics can
be found at [17], where static scheduling has shown to create superior systems
compared to dynamic scheduling systems.

Static scheduling is easily implemented with fixed or pre-decided priorities
providing a relatively simple complexity. It usually relies on the compiler to
make decision on optimization or improvements and built in device as a
priority logic. E.A. Lee and D.G. Messerschmitt [18] used static scheduling
in synchronous data flow (SDF) to reduce or eliminate runtime overhead.
Integer linear programming (ILP) formulation [4] and ant colony optimization
[19] were applied to solve scheduling problems based on DAG, considering
heterogeneous architectures.

With regards to dynamical scheduling, the task schedule is decided at
runtime according to practical situation such as dependence, performance
and deadline constraint. Earliest Time First (ETF) algorithm [20] and the
Dynamic Level Scheduling (DLS) algorithm [21] are two common used dy-
namic algorithms. Bauer et al. [22] considered two metrics to decide tasks’
priorities based on performance in local scheduling and dependencies in global
scheduling.

Static scheduling has the advantage over dynamic scheduling that it is eas-
ier to guarantee a reproducible result with a simpler architecture. In contrast

1Celoxica, www.celoxica.com and Maxeler, www.maxeler.com

6 Chapter 2 Literature Review

dynamic scheduling systems are more flexible as they can handle different
types of systems [23]. Furthermore, a very interesting scheduling technique
based on quasi-static techniques was developed to combine advantages of both
static and dynamic scheduling in [24].

With regards to system level design space exploration (DSE), the main
purpose is to generate different configurations focusing on specific targeted
objective(s) to be optimized. The authors in [25] presented a DSE methodology
for on-chip communication architecture optimization. Givargis et al. [26]
presented a technique to explore the design space of a parametrized SoC
architecture on power/performance trade-off by performing aggressive pruning
using the different parameter dependencies. In [27], six ESL exploration
approaches were described to make decision in behavior, architecture, structure
or performance.

Regrading MPSoC DSE, meta-heuristics [28] or pruning techniques [26]
have been mostly used. They are also based on the type of simulation ab-
straction used to model the MPSoC ranging from sequential simulators (e.g.
QEMU [29]) and SimpleScalar [30]), transaction level models (TLM) (e.g.
OVP [31] to cycle-accurate modelling (e.g. HORNET [32]). However, most of
them perform the exploration at higher abstraction levels in order to speed
the process up, with its consequent estimation errors. In [33], HLS is used for
the accelerators in MPSoCs so that a HLS DSE method is developed to obtain
best-performance MPSoCs, but this work uses analytic models to estimate the
performance of each newly generated system and hence cannot consider the
effect of e.g. bus congestion and but arbiter policy into account.

In [34] it has been shown that workloads might change in modern MPSoC
and hence need to be taken into account when performing MPSoCs DSE. Quan
et al. [35] extended this work by introducing a hybrid task mapping method
that combined static mapping exploration and a dynamic mapping optimizer.

In summary, this work touches areas of HW/SW partitioning, system-level
design space exploration, dynamic and static tasks scheduling and system-level
accurate simulations. Although these topics have been studied in the past,
the novelty of our work is in the complete description of the complex SoC
at the behavioral level and the creation of an exploration system on top of
commercial HLS tools which allows our work to obtain realistic and accurate
results.

7

The following chapters introduce how HLS is applied in HW/SW design
on heterogeneous system.

8 Chapter 2 Literature Review

3High Level Synthesis

High-Level Synthesis (HLS) is a process that transforms un-timed behavioral
descriptions into RT-level descriptions which can efficiently execute these. In
contrast to traditional RT-level design process, which makes use of low level
Hardware Descriptions Languages (HDLs), HLS typically accepts as inputs
high-level programming languages e.g. ANSI-C or C++, allowing designers
to focus on the functional behavior and not on the implementation details,
which are time consuming and error prone. This leads to an increase in design
productivity allowing design teams to meet their tight schedules.

Another advantage of raising the level of abstraction is that less number
of lines of code are required compared to RTL descriptions. It has been shown
that HLS can reduce the number of lines of code by an average of 10 times
[36], which not only leads to short design cycle, but also less bugs and makes
it easier to verify and maintain the source code.

3.1 Design Flow

Fig.3.1 [37] shows an overview of the typical complete HLS process. HLS
takes as inputs the behavioral description to be synthesized, a set of design
constraints and technology libraries of the target ASIC or FPGA. The first
step involves parsing the description and creating a formal model. Allocation,
scheduling and binding are the main three steps of behind HLS and all of them
work interdependently.

Allocation defines the type and the number of HW resources given in the
technology library required by the input descriptions. Scheduling times the
behavioral description in time step following the operations’ dependencies
without violated any area and/or latency constraints. Finally binding maps
the scheduled operations to individual HW resources. The last step involves
writing out the synthesizable RTL code, which can in turn be passed to the
logic synthesizer. Thus the final RTL architecture depends on input specifica-
tion, the HW resource library and the synthesis constraints (e.g. target clock
frequency).

9

Fig. 3.1: High-level synthesis design flow

3.1.1 Compilation/Parsing

One of the advantages of HLS is that like with any high-level SW pro-
gramming language, the input description can be compiled, simulated and
debugged using standard SW environments (e.g. gcc or g++, gdb and gprof).
These characteristics allow designers to test and debug the applications much
easier and faster compared to HDLs and provide useful feedback to the designer
earlier on so that changes can be easier performed than at the RT-level.

However, not all SW constructs are supported in HLS. Non-synthesizable
constructs e.g. dynamic memory allocation and recursion need to be con-
sidered when using HLS. Some HLS tools ignore some of these constructs
automatically, while others create an error, asking the designers to correct
them.

10 Chapter 3 High Level Synthesis

3.1.2 Allocation

The very first step once the behavioral description has been parsed is the
allocation of HW components, mainly Functional Units (FUs). The behavioral
description is parsed and a FU constraint file (FCNT) is generated. This file
contains the number and type of FUs required. By default the HLS tool will try
to maximize the parallelism as much as possible a hence allocate as many FUs
as possible. The user can at any time overwrite this constraint file manually,
setting the maximum number of FUs that the synthesizer can instantiate.

(a)

Adder 1

Multiplier 1

Comparator 1

Accumulator 1

(b)

Adder 9

Multiplier 9

(c)

// FIR filter

1. int data[9]; // Input

2. int result; // Output

3. int coeff[9]; // Global Coefficient

4. main() { // Process starts

5. int i, sum;

6. sum = 0;

7. LOOP : for (i=0; i<9; i++)

8. sum += data[i] * coeff[i];

9. result = sum;

10. }

Fig. 3.2: FU allocation example for FIR filter given in ANSI-C: (a) ANSI-C codes
of 9-tap FIR filter; (b) Allocation results required for NOT-unroll "LOOP"
requirement; (c) Allocation results required for ALL-unroll "LOOP" require-
ment

Fig.3.2(a) shows a simple example of a 9-tap FIR filter, which basically
computes the sum-of-products (SOP) for the data and coefficients. Line 1 and
line 2 declare the inputs and output of the filter, respectively, while lines 7-8
compute the SOPs. As mentioned previously one of the advantages of HLS
is that different micro-architectures with unique area vs. performance can

3.1 Design Flow 11

be obtained without having to modify the behavioral descriptions, and only
some synthesis options. In this case, the SOP loop could be fully unrolled or
not unrolled. If the loop is not unrolled, the process only requires 1 32-bit
singed adder, 1 32-bit signed multiplier, 1 comparator and 1 accumulator as
Fig.3.2(b) shows, while if the loop is fully unrolled, 9 adders and 9 multipliers
are needed as as Fig.3.2(c) shows. Loop unrolling clearly leads to circuits of
larger area, as more FUs are required, but also brings the benefit of increasing
the performance. In this case reducing the latency from 9 clock cycles to
1 clock cycle, assuming clock period is long enough. Theoretically, in this
case, unrolling leads to an approximate 9× larger in resources and 9× faster
in performance design. It should be noted that unrolling does not always
guarantee a better performance design due to constraints such as clock period
and due to the costs of the multiplexers required to share the FUs, especially
for FPGAs.

3.1.3 Scheduling

The next step after resource allocation is the scheduling. Scheduling
determines in which clock step each operation should be executed at, so that
no precedence constraint and data dependence is violated. Scheduling process
basically follows the DFG restricted by resource and timing constraint. In
order to make full use of the resources and reduce the latency, independent
operations can be scheduled at the same clock step and executed in parallel.
Operation chaining is available by directly connecting operations’ outputs
to inputs of the next operations in the DFG, while additional registers are
needed if the connection crosses multiple clocks. Also multi-cycle operation
are typically allowed if the clock period is too small and/or the FU delay is too
large.

Many scheduling algorithms have been proposed in HLS [38]–[40]. The
two most basic scheduling algorithms, As soon as possible (ASAP) and As
late as possible (ALAP), are presented to demonstrate how HLS scheduling
works here. ASAP maps operations to their earliest possible start time while
ALAP maps operations to the latest possible start time, without any precedence
violation. Fig.3.3(a) shows a behavioral description to be scheduled and
Fig.3.3(b) its DFG with 6 additions (subtraction can be considered as special
addition) and 4 multiplications. Assuming as many FUs as possible, but that
the clock period only allows one addition/multiplication in each control step,

12 Chapter 3 High Level Synthesis

(a)

(b)

(c)

1. int in[11]; // Input

2. int out[3]; // Output

3. main() { // Process starts

4. int a, b, c;

4. a = in[0] + in[1];

6. b = in[6] * in[7];

7. c = b +in[8] + in[9];

8. out[0] = (a-in[2]) * 3;

9. out[1] = in[3] + in[4] + in[5];

10. out[2] = in[10] * 5 * c;

11. }

Fig. 3.3: Scheduling example: (a) Example codes in ANSI-C; (b) DFG of source code
given in (a)

then the fastest circuit would have a latency of 3 clock cycles and would
require 3 adders and 2 multipliers.

When a constraint of one adder and one multiplier is given, only one
adder and one multiplier can be executed in each clock step. In this case,
two different scheduling results are obtained based on if the scheduler uses
an ASAP or ALAP algorithm as shown in Fig.3.4(a) and (b), respectively. It
can be seen that the results are different: ASAP returns a 7-clock cycles result
while ALAP returns a 6-clock which is also the minimum clock required in this
case. However, both algorithms cannot guarantee an optimal solution. The
scheduling algorithm as seen has a great impact on the synthesis result.

3.1 Design Flow 13

(a)

(b)

 Fig. 3.4: Scheduling results of Fig.3.3 example with one adder and one multiplier
constraint: (a) ASAP scheduling; (b) ALAP scheduling

3.1.4 Binding

The last step in HLS is the binding stage. Binding maps each operation to
a FU and each variable to a register. Every operation is assigned to a specific
FU given in the FCNT file which can execute that operation. Since it is possible
that one FU is shared by more than one operation at different clock step,
which is also called resource sharing, multiplexers are needed to assign the
correct data to the input at the right time and deliver the output to the correct
register. A Finite State Machine (FSM) is typically also generated to generate
the control signal for these multiplexers. The binding can affect the routability

14 Chapter 3 High Level Synthesis

(a)

(b)

Fig. 3.5: Binding example for Fig.3.3 example with constraint TWO adder and TWO
multiplier: (a) ASAP scheduling result; (b) Binding result with weighted
bipartite matching algorithm

of the final circuit and hence its wire-length and critical path. It is therefore a
very important stage.

Many different binding algorithm have been developed in the past. The
main goal is to optimize some objectives, e.g. area, power, wire-length and/or
routability. The authors in [41] presented a weighted bipartite matching
binding to balance the utilization of each FU. A simple demonstration of
binding is given in Fig.3.5 with the weighted bipartite matching binding
algorithm. The example code used is the same as that in Fig.3.3(a) with a
constraint of two adders, yellow and red, and two multipliers, green and
blue, using the scheduling result of an ASAP algorithm shown in Fig.3.5(a)
requiring totally 4 clocks cycles. Fig.3.5(b) shows the binding result when
every operation is bound to specific operators and each operator appears once

3.1 Design Flow 15

at each clock step. In this case, every adder performs 3 additions and every
multipliers performs 2 multiplications. The FU resources are shared using
multiplexers at the FUs inputs and outputs.

3.1.5 RTL Generation

HLS synthesizes high-level behavioral descriptions into RTL codes fol-
lowing the three steps described in the previous subsections. The last step
of HLS is the RTL generation based on the results obtained from these steps.
Fig.3.6 displays the typical RTL architecture generated by HLS, containing a
controller (e.g. FSM) and a data path (e.g. dataflow engine). The controller
generates the control signals for the datapath, in order to guarantee the correct
execution of the complete circuit. It manages the inputs passing them into
the corresponding FUs at the correct state and generates the control signals
for the multiplexers. It also stores the data to specific storage elements, e.g.
registers or RAM. Once the RTL architecture is generated and described in any
HDL (e.g. Verilog or VHDL), the next step would involve passing it to a logic
synthesizer.

Fig. 3.6: Typical RTL architecture

3.2 Commercial HLS Tools

The need to raise the level of abstraction to become more productive
has also been reflective in the number of commercial HLS tools available.
Table 3.1 highlights the main vendors, their tool name and the input language

16 Chapter 3 High Level Synthesis

supported. It can be seen that SystemC is the common language supported by
all of the HLS tools. Although not a language by itself, it is a C++ class for
HW modelling, it has been widely adopted because it has been standardized
by the IEEE and allows the modelling of HW related constructs and allows
natively the modelling of concurrency.

Table 3.1: Examples for HLS tool

Vendor Tool Name Supported Languages
Cadence (Forte) Cynthesizer SystemC
Cadence C-to-Silicon C, C++, SystemC
Calypto CatapultC C++, SystemC
NEC CyberWorkBench C, SystemC
Xilinx Vivado HLS C, C++, SystemC

3.3 Summary

In summary, HLS synthesizes behavioral descriptions to HDL descriptions
by performing allocation, scheduling and binding. The main advantage of HLS
is that by taking behavioral descriptions as input it dramatically reduces the
gap between SW and HW design and increases the design productivity. Also,
HLS DSE allows designers to explore the micro-architectures. There are plenty
of HLS tools available in the market as well as open source or open binary
ones. In this thesis, CyberWorkBench will be used.

3.3 Summary 17

4Hardware Acceleration

With the introduction of larger FPGA, it is possible to map and concurrently
execute multiple applications onto a single FPGA. This allows building hetero-
geneous accelerator systems with multiple applications running concurrently
by mapping the computationally intensive kernels onto the FPGA and the
controlling portion to the CPU(s), interfacing both parts via traditional buses
e.g. PCIe and USB.

This chapter explores the acceleration of multiple computationally in-
tensive applications given in ANSI-C using HLS mapped onto a single FPGA
given the area and communication bandwidth constraint. Coarse-grained
partitioning is used as commercial HLS tool is used and the optimal mapping
decision can be found by dynamic programming.

4.1 Motivations

Much research has been done in the acceleration of computational inten-
sive applications using FPGAs. Most of them nevertheless are focused on the
acceleration of the most computationally intensive kernel [7], [8], [12], [13],
which is often the inner-most loop. In all cases they only accelerate a single
kernel mapped onto the re-configurable fabric or map a larger application onto
multiple FPGA, and hence only deal with a single application to be accelerated
at a time. However, it is possible to accelerate multiple application concurrently
on the same FPGA as the size and complexity of FPGAs increases.

Fig.4.1 shows a block diagram of the proposed system. It includes multiple
applications running on either multiple processors, multiple processor cores or
multi-threaded single core system being executed concurrently and a single
FPGA is used to accelerate to most computationally intensive kernels of the
entire system. This could mean that a single application, the one which benefits
most from HW acceleration is fully mapped onto the FPGA or in case that all
of the applications benefit from HW acceleration that some parts of all of the
applications are mapped onto the FPGA. The main constraints are the size

19

Fig. 4.1: Proposed HW acceleration system overview

of the FPGA and the bandwidth between the host processor and the FPGA
board.

Mapping multiple kernels onto the same FPGA poses unique challenges
that need to be addressed. Fig.4.2 shows system speed-up with the increase of
kernels mapped onto the FPGA. Two cases are represented. The first one does
not include bandwidth constraints. It can be seen that the speed-up grows
with the number of kernels mapped onto the FPGA. The second one shows the
speed-up when a maximum communication bandwidth between the FPGA and
the microprocessor is set as a constraint. In this case the speed-up that can be
achieved is obviously smaller than that in the un-restricted case. It also grows
until a maximum speed-up point and then decreases. This inflection point
appears when the bandwidth saturates. Mapping more kernels on the FPGA
degrades the speed-up from this point on and at one point, the performance
starts getting even worse than running all the applications purely on SW.

Knowing these speed-up limitations it is important to develop a method
that takes the communication bandwidth and area overhead of mapping a
kernel onto the FPGA into consideration in order to only map those kernels
that will maximum the acceleration of the entire system.

4.2 Proposed Flow

Fig.4.3 shows an overview of our proposed flow. The input to our method
is a set of computationally intensive applications (APi) which want to be
accelerated given in ANSI-C. Our method then automatically partitions these
applications into different kernels (Ki) and continues by mapping only those

20 Chapter 4 Hardware Acceleration

Fig. 4.2: System speed-up vs. number of kernels mapped to HW device with band-
width and no bandwidth constraint

kernels which maximize the total system acceleration (SAcc) onto the FPGA
under a given area (MA) and bandwidth (BW) constraint.

In the first step, our method partitions original SW program into separate
kernels. The granularity of each kernel is a function,thus decided by the
programming style in each application (also called coarse-grained partitioning).
Other approaches [28] use task graphs as inputs and can thus create more
optimal (finer) partitions (also called fine-grained partitioning). Because a
commercial HLS tool is used to synthesize each partitioning kernel, such fine-
grained partitioning cannot be done and the internal controllability is lacked.
These are the drawbacks caused by endorsing HLS tool in partitioning stage.

4.2 Proposed Flow 21

Fig. 4.3: Flow chart overview of proposed flow

However, HLS allows proposed method to get more accurate area and timing
results comparing to normal estimation.

The proposed method then continues by performing HLS on each of
these kernels and by extracting their design parameters, in particular area
(A) the performance measured as latency (L). Based on these parameters
bandwidth required (B) is computed for each kernel, which allows method to
fully characterize each kernel of each application. Once the partitioning and
synthesis stage have been completed, the method continues by allocating the
individual kernels of the different application onto the FPGA and figures out
the optimal mapping decision with best performance.

22 Chapter 4 Hardware Acceleration

The optimal kernel mapping problem concerns how to optimally map
computationally intensive kernels Klist = {K1, ..., KN} merged from each ap-
plication APPi onto the FPGA with given area MA and a maximum bandwidth
BW between the microprocessor and the FPGA so that the acceleration SAcc

of the entire system is maximized. This optimization problem is normally
decomposed in two main steps[42]: (1) Partitioning of the applications into
N disjoint sets of kernels Kn. (2) For all the kernels Kn devise an optimal
mapping so that the cost function is maximized (in this case acceleration)
under a set of given constraints (here are FPGA area MA and communication
bandwidth BW). This problem can be reduced to a 0-1 knapsack problem
which can be efficiently solved using dynamic programming [43] shown in
Algorithm 1.

Step 1: Reduce Invalid Partition: As the kernels are function-based,
each function has different properties, e.g. some have larger number of
arguments requiring a large bus bandwidth, while some are too simple to be
accelerated and others do not meet the constraints. Thus before making any
mapping decision, such kernel are removed from the candidate list in order to
reduce the complexity system.

Step 2: Dynamic Programming: This is the main step of the proposed
method which is displayed in Algorithm 1. It takes as inputs N valid kernels
Klist which can be accelerated on the FPGA, the total area constraint MA and
the bandwidth constraint BW of the system.

New systems can be created by adding kernels one by one recursively. The
system performance can be calculated by

SP (n, A) = max(SP (n− 1, A), SP (n− 1, A− An) + Pn) (4.1)

where SP (n, A) is the system performance contain 1 to n kernels with area
limit of A and, An and Pn are the individual area and performance of nth

kernel. Each time a new kernel is considered, the resultant system is checked
through area limit range from 0 to (MA−kArea) and candidate list is updated
if result is better. Because area is not the only considered constraint resultant
system is remained if If it is dominated result. In order to avoid the repetition
of the area and performance estimation each time a new system is generated,
this data is stored in a memory partitionmem for fast retrieval, which is shown
from line 9 to 14 in Algorithm 1.

4.2 Proposed Flow 23

Step 3: Report Solution: Once systems considering all kernels have been
generated, the optimal (i.e. highest acceleration) solution is selected from the
partitionlist and reported.

4.3 Experimental Results

The experiment are run on an Intel dual 2.40GHz Xeon processor with
16 GBytes of RAM running Linux Fedora release 19. The HLS tool used is
CyberWorkBench (CWB) of NEC with version of 5.6 and application designs
are taken from the open source Synthesizable SystemC Benchmark suite
(S2CBench) [44], re-written in ANSI-C codes. Table 4.1 describes the system
benchmarks consisting of application benchmarks used in experiment targeting
to architecture with FPGA of Xilinx’s Virtex 4 XC4V35SX-10 and PCIe 3.0 of
bandwidth 8GT/s.

Table 4.1 lists the system benchmarks to be used in later experiment.
The first column is the short name of task benchmarks: Snow3G is a stream
cipher producing a key stream; Kasumi is a block cipher used in mobile com-
munication systems; AES is advanced encryption standard cipher encryption
algorithm; IDCT is an inverse discrete cosine transform application; Disp is a
estimator of disparity; and the last 3, Syn1, Syn2 and Syn3, are synthetic bench-
marks composing of Adpcm (Adaptive differential pulse-code modulation),
FIR (9-tap FIR filter), Sobel (edge-detection algorithm) and an application for
average of 8 values. The second and third columns represent the number of
synthesized look-up table and the size of IO ports needed for the top mod-
ule, respectively. Columns S1-S8 indicate the number of task instantiations
involved in system benchmark. The last row displays the total number tasks
involved in system.

The constraints used in this experiment are that MA = 15000(LUT) and
BW = 8GT/s with FPGA operation frequency of f = 100MHz. Table 4.2
shows the found solution by brute-force (exhausted) method and dynamic
programming method, where Funcs is the number of valid partition, LUTs is
the logic resources of final solution, B is the bus utilization percentage and
Run is the execution time in seconds. BF indicates brute-force method and
DP indicates dynamic programming method. It is easily found that dynamic
programming can find out the optimal solution as brute-force does additionally
it is much efficient in execution time.

24 Chapter 4 Hardware Acceleration

4.4 Summary

This chapter presents a method for mapping kernels from different ap-
plications onto a single FPGA to maximize overall system acceleration. It
starts by automatically partitioning behavioral descriptions using a SW profiler
continuing by synthesizing each partitioning using a commercial HLS tool to
extract the area and performance of each new kernel. Here is where HLS also
plays an important role, as this information is important because it allows to
estimate the speed-up of the entire system composed of these HW accelerated
kernels. A dynamic programming is finally presented which can efficiently find
the best system under given area and bandwidth constraints.

4.4 Summary 25

Algorithm 1: Dynamic Programming For HW Acceleration Partition
Input: Klist = {K1, ..., Kn, ..., KN}, N , MA, BW

Klist: Kernels list
N : Size of Klist

MA: Maximum allowed area
BW : Bandwidth of bus interface

Output: MDopt = {MKlist, Accmax}
MDopt: The optimal mapping decision
MKopt: The mapped kernels list
Accmax: Acceleration of decided mapping system

1 V Klist ← delete_invalid_kernel(Klist);
2 partitionlist ← None

3 for (K ∈ V Klist) do
4 kArea← get_kernel_area(K);
5 partitionmem ← None;
6 for (area ∈ [0, MA− kArea]) do
7 for (partition ∈ partitionlist[area]) do
8 partition← partition + K;
9 if (partition ∈ partitionmem) then

10 (sArea, sBW, sAcc)← partitionmem[partition];
11 else
12 (sArea, sBW, sAcc)← systemest(partition);
13 partitionmem ← partition;
14 end
15 if (isV alid_partition(sArea, sBW, sAcc) then
16 partitionlist[sArea]← partition;
17 delete_nonDominate_partition(partitionlist[sArea])
18 end
19 end
20 end
21 end

22 MDopt ← partitionlist[MA];
23 return MDopt;

26 Chapter 4 Hardware Acceleration

Table 4.1: Complex System Benchmarks

Bench LUT IO S1 S2 S4 S5 S3 S6 S7 S8
Snow3G 1979 608 1 1 1 1 1 1
Kasumi 890 66 1 1 1 1 1
AES 2905 258 1 1 1 1 1 1
IDCT 7155 514 1 1 1 1 1 1
Disp 5036 442 1 1 1 1 1
Syn1 3649 218 1 1 1 1 1
Syn2 6456 282 1 1 1 1
Syn3 13704 333 1 1 1
Tasks 3 4 4 4 5 6 6 8

Table 4.2: Experimental Results

BF DP
Bench Funcs LUTS B[%] Sp-Up Run[s] Run[s]
S1 4 13081 81.1 7.74 <1 <1
S2 11 8831 60.8 22.32 <1 <1
S3 23 13569 93.5 43.61 39 <1
S4 26 14498 95.1 37.94 363 <1
S5 18 10810 70.9 38.01 1 <1
S6 31 14748 97.1 42.50 13448 <1
S7 33 13744 99.8 30.22 60132 <1
S8 37 13593 97.1 23.27 NA <1

4.4 Summary 27

5Static Schedule SoC Design Space
Exploration

As the demand for more computing power increases, heterogeneous systems
are being proposed as new computing paradigm. These systems comprise
a processors, on where the SW is executed, and HW accelerators (HWAccs)
as well as memory. All these components are connected through a bus, bus
hierarchy or even NoC. Bused with arbiters provide these systems with more
flexibility, while also causing larger area and performance overheads compared
to fixed schedule systems. Also, since HLS is single process method, it is hard
to explore the design space of an entire integrated system.

In this chapter, a fixed schedule SoC architecture is considered as un-
derlying architecture and methods to reduced bus conflict, reduce area and
performance overheads are developed. A combined macro-(system) and micro-
exploration (HLS DES) for these architectures is presented. The result of the
system exploration is a trade-off curve of unique configurations of different
area vs. throughput.

5.1 Motivations

Many data-intensive applications manifest predictive and repetitive data
patterns. This is mainly because data-intensive applications usually have no
or less control structures, while the control-intensive section which mainly
depends on runtime situation is mapped onto the processor(s). Hence, the
performance of these system can be statically estimated at design time and
off-line algorithm for scheduling and mapping used as it has been shown that
these off-line methods can lead to superior solutions by exploring a larger
design space [19].

29

5.2 Design Exploration Flow

Fig.5.1 shows an overview of our proposed flow. Our method can be
decomposed into three phases. The first two are pre-characterization phases,
which identify the most computationally intensive kernels from each of the
applications and perform a HLS DSE on each of the kernels to be mapped
onto the re-configurable fabric. The first phase performs automatic HW/SW
partitioning and passes each of the kernels to the HLS explorer in order to get
the smallest designs for each latency within a given latency range (explained
in detail in the next section). Lastly, the third phase performs the scheduling
and exploration of the different area vs. performance system configurations.
We define the following terms:

Fig. 5.1: Complete flow overview composed of three phases: 1. automatic HW/SW
partitioning; 2. individual processes HLS DES; 3. bus scheduling and system
exploration

Definition:System S is comprised of a set of concurrent and independent
tasks T , which have to be mapped onto the heterogeneous system. Thus
S = {T1, T2, ..., TN}

Task T is an application given as a behavioral descriptions, which is
partitioned into a HW and SW part in the partitioning stage. The HW partition
is further explored with the HLS design space explorer, hence

Ti = SW ∪HW

HW = {D1 = {A1, Lli}, ..., DN = {AN , Lri}}

where D is a design on the trade-off curve with area A and unique latency
L. The objective is to find valid schedules leading to the Pareto-optimal

30 Chapter 5 Static Schedule SoC Design Space Exploration

configurations of the system when area vs. throughput are used as exploration
criteria, where the System Throughput ST of a system of N tasks is computed
as:

ST =
N∑

i=1

IOi

Li

fs (5.1)

where IOi and Li are the bitwidth and latency of task Ti, receptively, and fs

is the overall system frequency. Here, it is assumed all tasks are in the same
operation frequency as a static scheduling method is used.

The input to our method is a set of independent computationally intensive
applications, given in ANSI-C, which will be executed concurrently on the
heterogeneous system. Our method profiles these applications and identifies
the most computationally intensive kernels. The granularity of each kernel is a
function and hence is decided by the programming style in each application
(also called coarse-grained partitioning), which has been described in Chapter
4.

Once the HW/SW partition is done and the bus interfaces inserted, our
method continues by performing a HLS DSE for each of the HW kernels.
Starting the VLSI design process from behavioral descriptions has the addi-
tional benefit of allowing the generation of different micro-architectures with
unique area vs. performance trade-offs, by setting different synthesis directives.
Details are given in the next subsection.

The result of a traditional DSE is a trade-off curve containing only domi-
nating designs. These designs are also called Pareto-optimal, but because the
design space is too large, Pareto-optimality cannot be guaranteed and hence,
these designs are referred to as dominating designs. The obtained trade-off
curve is a typically strictly decreasing monotonous trade-off curve (if area vs.
latency is considered as exploration target). In this work, not only the dominat-
ing designs are recorded, but also the smallest designs for each latency from
the fastest to the slowest design. The fastest design Dfastest = {Amax, Lmin}
corresponds to the design with the smallest latency (Lmin), but largest area
(Amax) , while the smallest design Dsmallest = {Amin, Lmax}, corresponds to the
smallest area (Amin), but largest latency (Lmax) one. The trade-off curves in
Fig.5.1 (phase 2: High-Level Synthesis Design Space Exploration) shows the
result of the exploration. This is very important in our method as invalid bus
schedules might result in an increase in the latency for some of the kernels and

5.2 Design Exploration Flow 31

hence an increase or decrease in area, because a design with larger latency
can now be used.

Once the trade-off curve for each application is created, our method con-
tinues by scheduling all the designs found during the DSE of all the different
applications mapped onto the system. The number of combinations is there-
fore extremely large and our efficient scheduling method is able to find valid
schedules quickly. Finally the trade-off curve with all dominating valid sched-
ules is created and reported. In this case throughput is used as a performance
metric as each design mapped onto the system will have different latencies.
The resultant trade-off curve is therefore strictly increasing monotonous (see
Fig.5.1 phase 3). The next subsections explain in detail each of the main steps
of our proposed method.

5.2.1 HW/SW Partitioning

The pre-characterization stage takes all the applications that need to be
considered for acceleration in ANSI-C as inputs. It then continues by profiling
each of the application using a standard SW profiler (i.e. gprof). The profiler
outputs the number of times each function (kernel) was called and the total
execution time spent on each of the functions. This information is used to
determine which kernel to map onto the HW accelerator in the mapping stage.
Our method then continuous by partitioning each application into disjoint
parts. For each partition a new synthesizable ANSI-C description containing
only the kernel is generated and modified to make it synthesizable for the
commercial HLS tool used in this work. This involves specifying the inputs and
outputs of this process as required by the ANSI-C subset of the HLS vendor
used in this work [45]. Once the partitions have been done, our method
proceeds by performing a HLS DSE on each of the extracted kernels.

5.2.2 HLS Design Space Exploration

One of the advantages of C-based VLSI design over traditional RT-level
is that it allows the generation of micro-architectures with different area vs.
performance trade-offs without the need of modifying the original behavioral
description. This is typically done by setting different global synthesis options
which apply to the entire behavioral description, limiting the number of

32 Chapter 5 Static Schedule SoC Design Space Exploration

functional units (FUs) to control the amount of resource sharing and/or
by specifying synthesis directives in the form of pragmas at the behavioral
description. This allows to e.g. control if an array should be synthesized as
RAM, registers or expanded or if a loop should be unrolled, not unrolled or
pipelined.

The explorer developed in this work targets only synthesis directives as
this is the most important exploration knob as it fixes the underlying micro-
architecture. The explorer performs two passes. In the first pass, different
micro-architectures are generated by setting unique combinations of pragmas,
while the second pass generates designs for those latencies for which the
previous pass could not find any designs. In detail:

Step 1: Pragma Explorer The explorable synthesis directives SD are the
genes to compose of a chromosome CR used in algorithm. Usually, array (or
memory) type, loop synthesis and function operation performs most impacts
on design micro-architecture and performance. Then,

OP = {array, loop, func}

where, for example, array = {register, expand, logic, ram, rom}, loop = {unroll =
{no, partial, all}, fold} and func = {goto, fu, inline}.

An initial population of N random chromosomes is generated at the
beginning of exploration. The main steps to produce new generation are listed
as following:

1. Coupling: To product next generation, each member in the population
randomly couples with another member and produce offspring with a
coupling possibility pc.

2. Crossover: Once two members are coupled, a crossover operation is
done on these two chromosome by randomly selecting a cut-point and
combining cut chromosome with another and two chromosomes of off-
spring are generated.

3. Mutation: At a mutation possibility pm, new produced chromosomes
suffer mutation by randomly changing a random selected gene value.

5.2 Design Exploration Flow 33

4. Evolution: After coupling, crossover and mutation, new chromosomes
of offspring are generated and they are synthesized by calling HLS to
produce new generation of offspring with properties (i.g. area and
latency here). The newly produced offspring replace their parents in
population once either condition is met: (i) parent is dominated by
the offspring (i.e. all objectives are better than parent’s); (ii) offspring
improve on one or one more best-so-far objective than parents; (iii)
offspring makes up a candidate within latency range.

Once new generation is produced, processing will continues by producing
next generation, or stops once (i) algorithm has iterates through a certain
number of generation G; (ii) the population is converges to a certain status.
Additionally, a chromosome library stores all "dead" and "alive" chromosome in
order to avoid repetitive production and improve exploration efficiency. This
exploration record not only the dominating designs but also the smallest one
found for each unique latency.

Step 2: Latency Explorer The explored result from last step Pragma
Explorer determines the latency range as LR = [Lmin, Lmax], where, Lmin is
the dominating design found with smallest latency and Lmax is the design
with largest one. As design for each unique latency could not be guarantee,
thus new design with larger latency and area penalty by inserting additional
register for output results to wait for one more clocks. For dominating design
Dn = {An, Ln}, the penalty design is Dn+1 = {An + ∆reg, Ln + 1}, where ∆reg

is proportional to the size of task output.

Go through whole latency range and keep the smallest design at each
unique latency either explored one or penalty one. The final exploration result
does not guarantee all designs are dominating ones but the smallest and the
curve may look like that of phase 2 in Fig.5.1.

5.2.3 Bus Scheduling and System Exploration

Once partition has been established and each HW partitioned task is
characterized with the HLS explorer, a system with tasks configuration is
scheduled on the shared bus to estimate system performance. The Patero-
optimal solutions could be found with an exhaustive search by scheduling
tasks for all possible system configurations. However, the problem grows

34 Chapter 5 Static Schedule SoC Design Space Exploration

exponentially with the number of tasks and number of designs obtained by the
explorer. It is therefore impractical for larger systems to search exhaustively.
One fast and efficient way for exploration is based on dynamic programming
laid out as a tree structure with pruning. The scheduling structure is shown
in Fig.5.2. At each level one task is added in scheduling tree and the design
candidates are grown at each node of last level. Thus, each leaf of scheduling
tree (or each node in level N) is one scheduling decision with selected design
candidates of all tasks. There are four main steps needed to perform system
exploration.

Fig. 5.2: Adaptive schedule method with exploration

Step 1: Task Sorting: The first step is to sort the tasks by the number of
designs found during the HLS design space exploration in descending order
(from tasks with less designs to the most). S = {T1 < T2 < . . . < TN}. This
reduces the number of combinations required to schedule as the subsequent
pruning stages remove larger number of combinations.

Step 2: Design Scheduling: This step is the main step in the scheduling
phase. Fig.5.2 shows the structure used to accelerated the process. The
sorted tasks are laid out spatially in a tree structure where each node is
a design from each task’s trade-off curve. Fig.5.2 shows an overview of
this step, where each node at the same level corresponds to a design of
the same Task and each edge connects to other designs forming a unique
configuration. E.g. Level 1 in Fig. 5.2 corresponds to the designs found
during the HLS DSE of T1. It can be observed that the explorer returned 3
designs, T1 = {D1 = (Amax, Lmin), D2 = (An, Lmin+1), D3 = (Amin, Lmax)}. All
the designs have consecutive latencies ranging in this case from Lmin until
Lmax. This guarantees that the search space is fully explored. All the designs

5.2 Design Exploration Flow 35

of the next task T2 are scheduled for each of the design of T1 and a trade-off
curve of area vs. throughput is obtained for all the feasible schedules.

The scheduling step proceeds accepting only valid configuration for the
scheduled solutions which are feasible and those either on the trade-off curve
or within a given Control Offset CO. This control offset can be specified
manually as an input to our method. This parameter is extremely important
because it controls the amount of pruning in our method. CO=0 leads to a
very aggressive pruning technique as only those schedules which are on the
trade-off curve in each step are carried forward, while a very lager CO =∞,
converts our method into a pure exhaustive search method. This is one of the
key contributions of our method. A single parameter can control the quality of
results (QoR) vs. the running time of the method.

One key issue when scheduling multiple tasks with different latencies
and bandwidth requirements is to quickly detect unfeasible schedules. The
HLS explorer returns a list of designs with consecutive latencies. Therefore
schedules which require designs to wait in order to avoid bus contingency
problems are marked as un-schedulable as another configuration with larger
latency will capture a valid schedule. In order to schedule a task, the actual
time to transfer data during an access is calculated. E.g. if the bus is 16 bits
and the task needs to send 32 bits and the transfer time requires 4 cycles, the
total number of communication cycles required are 32/16x 4=8 cycles. This
communication is performed as a DMA allowing the communication to overlap
with the computation. In order to fully observe if the system S composed of
N tasks S = {T1, T2, . . . , TN} is schedulable, our method starts by adjusting
the latencies of all the designs T1 = {Di = (L, A)}, making them of equal
length. This is done by computing the least common multiplicand (lcm) of the
latencies of each designs being scheduled and duplicating each design latency
in order to make all designs of the same latency. The lcm will dictate the
number of times that each design needs to be duplicated (dup) in each task so
that the latency of all the processes are identical dup = lcm/latency. This forces
each process to effectively have the same length and hence when scheduling,
the effect can be fully observed (required because this work assumes that the
tasks are periodically repeating themselves). The scheduler then verifies if the
system can have a valid schedule.

Based on these conditions. Out method first verifies if the given system is
schedulable or not. If it is not, it discards this system and continues with the

36 Chapter 5 Static Schedule SoC Design Space Exploration

next configuration, speeding therefore the execution of this step considerably
up. If the system can be scheduled, the proposed method tries to find a
feasible schedule by trying all possible scheduling combinations using an
exhaustive search method until a valid scheduled is found, which usually
executes quickly.

Step 3: Trade-off curve extraction: Once all the valid schedules for all
the tasks within the given tree level are computed, our method continues
by deleting all non-optimal configurations and keeping only the dominating
ones or the ones within the CO. In this case, throughput is used to measure
the performance of the entire system and not latency as in the individual
task design space exploration, because each task has a different latency. Our
method continues until the very last task is added to the system and returns
the final trade-off curve.

5.3 Experimental Results

The experiment are run on an Intel dual 2.40GHz Xeon processor with
16 GBytes of RAM running Linux Fedora release 19. The HLS tool tool used is
CyberWorkBench (CWB) of NEC with version of 5.6 and application designs
are taken from the open source Synthesizable SystemC Benchmark suite
(S2CBench) [44], re-written in ANSI-C codes. Table 5.1 describes the system
benchmarks consisting of application benchmarks used in experiment.

Table 5.1: Complex System Benchmarks

Bench DSE TC S1 S2 S3 S4 S5 S6 S7 S8
Snow3G 20 8 1 1
MD5C 77 2 1 1 1 1 1 1 1 1
Adpcm 35 1 1 1 1 1 1 1 1
Gfilter 21 4 1 1 1

FIR 25 3 1 1 1 1 1 1
Decim 24 1 1 1 1 1 1
Interp 27 2 1 1 1 1 1 1
IDCT 93 2 1 1 1 1 1 1 1 1
Sobel 20 1 1 1 1
Disp 548 4 1 1 1 1 1 1 1 1
Tasks 4 5 6 7 8 8 9 10

The first column (Bench) shows the names of tasks: Snow3G is a stream
cipher producing a key stream; MD5C is a message digest algorithm; Adpcm

5.3 Experimental Results 37

is an adaptive differential pulse-code modulation; Gfilter is a graphical filter;
FIR is a 9-tap FIR filter; Decim is a 5-stage decimation filter; Interp is 4-stage
interpolation filter; IDCT is an inverse discrete cosine transform application;
Sobel is a edge-detection algorithm and Disp is a estimator of disparity. The
second one of DSE shows the total number of micro-explored designs of each
task and the third of TC shows the required data transfer clocks of DMA
communication. The value of date transfer clock TC is calculated as:

TC = d IO

BW
e (5.2)

where IO is the port bit of a task required and BW is the bit width of bus. Col-
umn S1-S8 indicate the number of task instantiations within system. The last
row reports the total number of tasks involved in each system benchmark.

The main problem when comparing different multi-objective function
optimization methods is how to measure the quality of the results. There are
many unary quality measures for comparing the quality of the multi-objective
function optimization methods. ADRS (Average Distance from Reference Set)
and dominance (D) are used here as they are the most widely used one [46].
ADRS indicates how close a Pareto-front is to the reference front. The lower
the value (ADRS) is, the more similar two Pareto sets are. Dominance is
equal to the ratio between the total numbers of points in the Pareto set being
evaluated, also present in the reference Pareto set. The higher the value, the
better the Pareto set is.

Table 5.2: Experimental Results of macro-exploration for different CO

dev ∞ 10% 20% 30%
Bench Task Run ADRS DR Run ADRS DR Run ADRS DR Run

S1 4 12 14.2 1.9 <1 5.1 49.1 <1 1.5 81.1 <1
S2 5 198 4.8 40.5 15 0.9 85.7 27 0.2 95.2 60
S3 6 672 1.3 63.6 47 0.2 93.2 119 0 100 271
S4 7 1601 1.5 69.6 121 0 100 331 0 100 914
S5 8 1378 1.6 65.4 7 0.6 80.8 295 0 100 1080
S6 8 97 0.7 83.3 5 0 100 43 0 100 54
S7 9 1439 1.9 38.1 8 0 100 810 0 100 1210
S8 10 28 0 100 28 0 100 28 0 100 28

Avg. 678 3.2 57.8 29 0.9 88.6 201 0.2 97 453

Table 5.2 shows the experimental results with 4 set of CO values in
percentage of the generalized distance of reference set at each iteration. As
mentioned in Chapter 5.2.3, CO value of infinity∞ also means the exhausted
research so that it provides the optimal solution set as reference set. The other
three values are of 10%, 20% and 30%. All the values of ADRS and DR in Table

38 Chapter 5 Static Schedule SoC Design Space Exploration

5.2 are measured in percentage and the running time value of label Run is
measured in minutes. Thus, for the reference set (dev = ∞), the value of
ADRS and DR should be always 0% and 100%, respectively, and of course, it
should be the most time-consuming.

(a) QoR of ADRS

(b) QoR of DR

Fig. 5.3: Experimental results of macro-exploration: (a) QoR of ADRS; (b) QoR of
DR

In particular, Fig.5.3 shows the results of Table 5.2in graph of (a) QoR
of ADRS and (b) QoR of DR. It is visually found that with the value of CO

increasing, QoR is getting better at the price of running time. Among three
experiments, dev = 10% performs worst with maximum ADRS of value 14%
and almost no domination solutions found DR at worst case, while dev = 10%
provides a very good performance which could be accepted as optimal solution
set but the running time is still significant. dev = 20% provides a good balance
solution with QoR metrics of less than 1% to ADRS and almost 90% to DR in
average and around 10× speed-up.

5.3 Experimental Results 39

One interesting issue revealed from the experimental results is that the
running time does not always increase all the time as the system is getting more
complex with more tasks involved. Look at the results of system benchmark of
S8 with 10 tasks, it finishes very soon comparing to other benchmarks. One
reason for it is that the proposed method and experiment are based on one
shared bus with static scheduling, therefore once more tasks are involved,
more data is required to transfer leading to heavy bus congestion and even
bus saturation. Once bus is saturated, proposed scheduling fails marked as
infeasible scheduling. Under this situation, proposed macro-exploration with
static scheduling could find out an acceptable results effectively and the control
offset CO adaptively control the QoR of exploration and running time.

5.4 Summary

This chapter proposes a complete adaptive exploration flow contain-
ing HW/SW partitioning, static scheduling and mapping targeting on re-
configurable SoC architectures. It takes a set of independent tasks as input
given in behavioral description and maps them onto a heterogeneous archi-
tecture with multi-core processor(s) coupling re-configurable HW accelerator
connected through a shared bus. A control parameter called CO allows to
flexibly generate solution with different QoR vs. running time.

40 Chapter 5 Static Schedule SoC Design Space Exploration

6Dynamic Schedule SoC Design
Space Exploration

This chapter introduces a SoC design space exploration method for dynamic
scheduled SoCs. Comparing to static schedule system in last chapter, system
with standard bus architecture is explored with cycle-accurate model by op-
timizing timing diagram. Most commercial SoCs are build by stitching a set
of IPs together through a bus or bus hierarchies. These allows companies to
meet their tight schedules while focusing on the valued added parts of the SoC
which differentiates their solution from others.

One of the most widely used on-chip bus is ARM’s AMBA AHB/AXI buses.
This bus has a typical master-slave architecture and makes use of an arbiter to
determine which master can gain control over the bus and when each slave
can return the data to the master. It is therefore important to analyze these
dynamically scheduled systems and compare them with static scheduled ones,
shown in the previous chapter.

One other aspect that this chapter will investigate is the optimization of
BIPs mapped as slaves on these systems. When mapping a behavioral IP onto
an MPSoC architecture, the problem for the designer is now to decide which
micro-architecture for each behavioral IP is the best for a particular MPSoC
configuration. It is therefore important to investigate methods to find smallest
design which meets the performance constraints of a given MPSoC.

6.1 Motivations

Fig.6.1 shows the target MPSoC platform used throughout this chapter.
Our MPSoC generator takes as inputs N BIPs in synthesizable ANSI-C or
SystemC code for HLS and generates automatically different MPSoC config-
urations with M number of masters ranging from M=[1,N] and N slaves
interconnected through an AMBA AHB bus. The BIPs are synthesized as slaves
in the system, while the masters emulate processors executing different tasks.

41

1 Intuitively having a system with a single master (M=1), is equivalent to a
single processor which generates the data for all the slaves in the system. This
configuration should lead to the slowest, but smallest system, while having a
system with M=N , mapping each task onto individual masters, should lead to
the fastest but largest system.

One of the uniqueness of this work is that it generates complete synthesiz-
able C-based MPSoCs, by using a bus generator provided by the commercial
HLS tool used in this work [45]. This allows our method to quickly generate
new MPSoC configurations and simulate these to evaluate their performance
using a cycle-accurate model generator included in the HLS tool as well.

Master1

Task1

Task2

Master2

Task3

MasterM

Taskn

TaskM

…..

…..

AMBA AHB

Master IF Master IF Master IF

Task1

Slave IF

Task2

Slave IF

TaskN

Slave IF

Fig. 6.1: MPSoC target platform

Fig.6.2 shows an example of multiple MPSoC configurations for 4 BIPs
implemented as slaves on the MPSoC architecture described previously with
one, two, three and four masters, M1/S4, M2/S4,M3/S4 and M4/S4 and
Fig.6.2 (a), (b), (c) and (d) respectively. The area here only indicates the
area of the slaves (excluding the masters’ area). Each point on the diagram
represents a unique task mapping within the specified number of masters.

The right side of Fig.6.2 also shows trade-off curves obtained for each BIP.
Before our method is executed, a Design Space Exploration (DSE) for each
BIP is performed as a pre-characterization step. The result of the DSE is a

1In this work the term master and processor will be used interchangeably to denote a system
component which originates the data for the slaves and initiates the communication
sequence. This work also makes use of the term slaves, BIP, HW kernel or HW accelerator
interchangeably

42 Chapter 6 Dynamic Schedule SoC Design Space Exploration

trade-off curve with Pareto-optimal (dominating) designs with unique area
vs. latency trade-offs for each BIP. One of the big advantages of BIPs over
traditional RT-level IPs is that HLS allows the generation of micro-architectures
with different area vs. performance trade-offs by only modifying the synthesis
options. Thus, when choosing one design for each BIP from the trade-off curve,
different mappings onto a system with the same number of masters will lead
to systems with different performances, but same area. This is clearly shown in
Fig.6.2(b) and (c), by a row of points with same area, but different throughput.
Two special cases are the fastest designs of each of the BIPs, highlighted in their
trade-off curves as a triangle and also the smallest (DMi(small)), highlighted
as gray squares.

In all four cases, these designs lead to systems with highest throughput,
but largest area (Amax) and systems of smallest area (Amin) but lowest through-
put for a particular configuration. These designs corresponds to DM1(init),
DM2(init), DM3(init) and DP 4(init), for the single, dual, triple and quadruple
master MPSoC configuration and DP 1(small), DP 2(small) and DP 3(small), for
the smallest configurations. The rest of the designs (black circles) represent
other systems built from other designs taken from each of the BIPs’ trade-off
curves.

A
re

a
[µ

m
2]

Throughput

M=1/S=4 M=2/S=4 M=3/S=4 M=4/S=4

Amax

Amin

A
re

a

Latency

S1

A
re

a

Latency

S2

A
re

a

Latency

S3

A
re

a

Latency

S4 (a) (b) (c) (d)

DM1(init)

D
M1

(fit)

D
M1

(small)

DM2(init)

DM2(fit)

DM2(small)

D
M3

(init) DM4(init)

D
M3

(small)

DM3(fit)

D
M4

(fit)

D
M4

(small)

Fig. 6.2: MPSoC configurations example with 4 slaves over area vs. throughput: (a)
1 Master; (b) 2 Masters; (c) 3 Masters; (d) 4 Masters

Several observation can be made from these results:

6.1 Motivations 43

Observation 1: Different task mappings for the same BIPs’ implementa-
tions lead to different system performances, while consume the same area.
Hence, there is a task mapping which dominates the others. This fact is mainly
due to the fact that the master’s cannot feed the slaves continuously with data
due to bus congestion problems. The bus arbitration policy also affects this. In
this work the bus arbiter is set in all cases to round robin arbitration.

Observation 2: Based on observation 1 it can be further observed that for
each BIP, there are smaller designs, which can lead to the same performance
of the entire system, while consuming less area than an equivalent system
composed only by BIPs of highest performance and largest area. It is therefore
not needed to fully parallelize the BIPs to achieve their highest performance.
Hence a slower, but smallest version of these BIPs can be used in each of the
MPSoC configurations. Designs DM1(fit), DM2(fit),DM3(fit) and DM4(fit)
in Fig.6.2 show the smallest designs obtained after analyzing the amount of
idle time of each slave. The smallest design for each BIP depends on the
number of masters of the MPSoC and on the mapping of tasks on each master.
It is therefore desirable to have an automated method which can generate
automatically multiple MPSoC configurations and for each of them report the
smallest design which will maximize performance.

Observation 3: The number of mappings follows the Stirling numbers of
the second kind sequence. In this work we do not consider the task execution
order once the tasks are mapped onto the same master. For the first case only a
single task mapping is possible, because there is only a single master available.
Similarly, only one task assignment is possible in the case that 4 masters are
available as each tasks is mapped onto its own master. For the other two cases,
there are 7 and 6 possible tasks mappings. The details of those mapping are
displayed in Table 6.1 This will be explained in more detail in the next sections
as this impacts the running time of our technique.

Table 6.1: Example for all possible tasks mapping with 4 tasks

PN 1 2 3 4
{(1), (2, 3, 4)} {(1, 2), (3), (4)}
{(2), (1, 3, 4)} {(1, 3), (2), (4)}

{(1, 2,
3, 4)}

{(3), (1, 2, 4)} {(1, 4), (2), (3)} {(1), (2),
(3), (4)}Combinations {(4), (1, 2, 3)} {(1), (2, 3), (4)}

{(1, 2), (3, 4)} {(1), (2, 4), (3)}
{(1, 3), (2, 4)} {(1), (2), (3, 4)}
{(1, 4), (2, 3)}

44 Chapter 6 Dynamic Schedule SoC Design Space Exploration

Observation 4: From Fig.6.2 it can also be observed that the area savings
are more pronounced for systems with less masters, as each accelerator (slave)
has now to wait longer to receive and send data from and to the master.

The main tools that enable our work to identify the amount of performance
degradation allowed by each HW kernel and the ability to generate smaller
designs are: First the use of BIPs for each of the dedicated HW modules and (2)
the ability to generate cycle-accurate models for the entire MPSoC to accurately
estimate the idle time of each slave and the performance of the entire system.
Other work make use of virtual platforms which model the communication
part loosely through payloads. The problem with this approach is that the
exact idle time of each HW modules cannot be accurately measured and hence
previous work cannot exactly determine the idle time of each module. This
combines with the fact that our method takes BIPs, which can be synthesized
into different micro-architectures automatically, as inputs, and those are key
differentiating elements in this work.

6.2 Proposed Exploration Method

The main aim of the work is to find a trade-off curve of Pareto-optimal
systems with unique mappings and micro-architectures for each BIP to be
mapped as a HWAcc on the system. The proposed method takes as inputs BIPs
with design candidates pre-characterized in a HLS DSE are one of the inputs of
our proposed method. A cycle-accurate model of the entire SoC is then used
to estimate and measure the performance of the new system in order to find
the optimal systems.

A complete flow diagram of the exploration method, called Optimization
of Dynamic SoC (OPT_DSOC), is shown in Fig.6.3. BIP descriptions in
synthesizable high-level language (e.g. ANSI-C or SystemC) as well as their
corresponding testbenches are given as inputs to the flow. A system S contains
M processors and N tasks to be mapped onto these processors, partitioned
a priori into a synthesizable BIP , which is synthesized as a slave, and its
testbench TB, which is always mapped onto the processor:

S = M + N

6.2 Proposed Exploration Method 45

BIP1/TB1 , BIP2/TB2 ,…, BIPN/TBN

 Generate C-Based SoC
(Number masters, map tasks)

Slaves: S
1
, S

2
,…,S

N

Bus Type: AHB/AXI
Bus bitwidth=32bits
Arbiter: round robin
Memory map
#Masters=M
#Slaves =N

Bus definition file
Masters: M

1
, M

2
,…,M

N

 Bus Generator

Slaves IF: SIF
1
, SIF

2
,…, SIF

Z

Masters IF: MIF
1
,MIF

2
,…,MIF

N

Bus, Top

Timing report slaves

 High-Level Synhesis
Cycle-accurate SoC model

Bus Parameters:

Type: AHB/AXI

Bus bitw=32bits

Arbiter: round robin

API_burst_write(0x1000ff00, fifo, DSIZE);
API_single_write(0x1000ff00, out0);

while(1){
API_poll_req(&stat); /* get status */
if (stat.req == API_WRITE_REQ) {
 API_set_response(API_OKAY);
 array[num] = API_get_data();
 num++;}
if(num == DSIZE) break; }

A
re

a

Latency

BIP1

A
re

a

Latency

BIP
N

: :

BIP trade-off

curves

Fig. 6.3: Proposed method flow diagram

N = {BIP1, BIP2, ..., BIPN}

M = {TB1, TB2, ..., TBN}

In the system, the testbench is executed as master to produce data traffic
(workload). In order to look at the effect of varying number of processors driv-
ing the HWAcc, the proposed method explores system architecture of different
number of processors, ranging between [1, N]. OPT_DSOC is composed of 4
main steps and 1 pre-characterization. Algorithm 2 shows the a pseudo-code
of the proposed method described in detail in the next subsections.

Pre-Step: BIP Design Space Exploration

46 Chapter 6 Dynamic Schedule SoC Design Space Exploration

Algorithm 2: MPSoC DSE algorithm
Input: Tlist = {BIP1/TB1, ..., BIPN /TBN |BIPn = {D1, ..., DMn}}, M

Tlist: Tasks list with size of N
BIPn: N BIP dominating micro-architecture set with size of Mn

TBn: N BIP simulation testbench
M : The number of processors involved in system architecture

Output: CP areto: Pareto-optimal solution list

/* Step 1: architecture exploration */
1 Slist ← architecture_exploration();
2 Slist ← architecture_sorting(Slist);

3 CP areto ← Slist;
4 for (S ∈ Slist) do
5 Csys ← NULL;

/* Step 2: BIP optimization exploration */
6 while (not_smallest_system(S) do
7 if (is_BIP_optimized(S)) then
8 S ← random_BIP_degrade(S);
9 else

10 S ← BIP_optimization(S);
11 end
12 cycle_accurate_simulation(S);
13 Csys ← Csys + S;
14 end

/* Step 3: Pareto-optimal update */
15 Cold ← CP areto;
16 CP areto ← Pareto_optimal_solution(Cold + Csys);
17 if (CP areto = Cold) then
18 break;
19 end
20 end

21 return CP areto;

As a pre-characterization step, HLS DSE is performed on each individual
BIP to generate multiple micro-architectures in term of area vs. performance
(i.e. latency here). Differently from the exploration in chapter 5, here the
explorer exploits the effects on resource sharing. In resource sharing a single
FU is shared among different operations in the source code by inserted multi-
plexers at its inputs and outputs. Initially the explorer starts by parsing each
behavioral description and calling the HLS tool’s resource allocator individually.
The output of this step is a FU constraint file (FCNT) which contains the
type and number of FUs needed in order to fully parallelize the behavioral
description. The explorer continues by automatically reducing the number
of FUs in the FCNT file by a fixed rate ∆ FU. Experimentally it was found
that ∆ FU=10%FUmax provides a good balance between running time and

6.2 Proposed Exploration Method 47

exploration coverage. This method also bounds the search to O(n), instead of
having to generate all possible FU combinations. The explorer finishes when
all FUs are set to a single FU, which should lead to the very smallest design.
It is possible to use other exploration methods, which have also lead to good
results [47]–[49], but in this work the explorer is an input to our system and
is not one of the main contributions. The output of the explorer is a trade-off
curve with dominating designs which are stored in a data base.

Step 1 :System Generation

This first step determines how many masters between 1 and N , the system
should have and maps the different tasks to individual masters. Our method
generates N number of SoCs consecutively (from 1 to N) and for each new
configuration generates all possible mappings. The order in which the tasks
are executed on each master is not considered as all tasks are completely
independent from each other.

The number of mappings follow the Stirling numbers of the second kind
sequence. The Stirling numbers of the second kind S(n, k) count the ways
to divide a set of n objects into k nonempty subsets. In our case n = N ,
and k = [1, N] where N is equal to the total number of slaves (BIPs). Fig.
6.2 illustrated the effect of different tasks mappings on the area and overall
system throughput as well as on the number of combinations. When the
system only has 1 master (M = 1) only one mapping exists, which also
leads to the slowest of all system configurations because the master now
executes all the tasks. This case corresponds to S(N, 1) = 1. By increasing the
number of masters more tasks mapping combinations exists until N/2, which
has the largest number of tasks mapping combinations (S(N, N/2)). Finally
increasing the number of masters until M = N leads again to a single task
mapping as each tasks is mapped onto its own master,hence S(N, N) = 1. This
configuration also typically leads to the fastest system. It should be noted that
if the area of the masters is ignored, the total system area is virtually the same
for all systems, as each system has the same number of slaves (although the
bus complexity increases slightly with the number of masters and hence its
area). In contrast, the performance will change with different mappings. The
numbers of mappings in each case can be calculated as [50]:

S(n, k) = 1
k!

k∑
i=0

(−1)k−i

 k

i

 in (6.1)

48 Chapter 6 Dynamic Schedule SoC Design Space Exploration

where n is the number of slaves, which is always constant = N and k is the
number of masters (M)[51].

To generate valid mappings which can be simulated and synthesized, the
original behavioral descriptions have to be modified to include a bus interface.
For this purpose, commercial HLS tools provide a set of synthesizable APIs for
different standard buses, i.e. AMBA’s AHB and AXI. The tasks merged into a
same master must write to the correct memory mapped slave, by calling the
API with its assigned address, while the slaves listen until a master initiates
the communication with them.

Fig.6.4 shows a snippet of these APIs for the master and the slave. The
Masters can send data in burst mode or as individual data (when possible
burst mode is chosen in this work), while the slaves wait for the masters to
transmit the data. Normally, a complete communication iteration between the
a master and a slave contains 5 steps:

1. master requests bus access for writing to the corresponding slave;

2. master writes data to corresponding slave when arbiter grants it access
over the bus, otherwise it will wait until bus is free;

3. once slave receives data from master, it processes computation, and after
finishing computation, it waits for master reading request;

4. master requests bus access for reading from the corresponding slave with
unique address;

5. master reads data from corresponding slave if bus is idle, otherwise it
may wait until bus is free or give up reading.

Because the entire system should be synthesizable, the testbenches should
also be given in synthesizable C or SystemC code. The output is hence a list of
synthesizable behavioral descriptions for the masters MList = {M1, M2, ..., MP}
and for the slaves SList = {S1, S2, ..., SN}.

This step also generates the bus definition file, which the bus generator in
the next step takes as input in order to create a complete C-based SoC. This
bus definition file includes: (1) arbiter protocol (fixed or round robin), (2)

6.2 Proposed Exploration Method 49

 Master

CBM_burst_write(0x1000FF00,

WData,

WDSize);

**** Omitted ****\

CBM_burst_read(0x1000FF00,

 RData,

 RDSize);

**** Omitted ****\

Slave

while (1) {

CBM_poll_req(&stat); /* get status */

stat_r = stat;

if (stat_r.req == CBM_WRITE_REQ) {

 CBM_set_response(CBM_OKAY);

 WData[stat_r.addr(7..2)] = CBM_get_data();

 if ((++num) == WDSize) break;

} else if (stat_r.req == CBM_READ_REQ) {

 CBM_set_response(CBM_OKAY);

 CBM_put_data(RData[stat_r.addr(7..2)]);

}

}

******** Computation Omitted ********\

1

2

4

5

3

AHB Bus

Fig. 6.4: APIs of read/write operations for master and slave

memory map, (3) number of masters and slaves, (4) bus type (AHB or AXI)
and (5) bus bitwidth. By default the values for (1) (4) and (5) are set to round
robin, AHB and 32-bits, but can be set to any other values externally. Fig.6.5
shows an example of this bus definition file, where Fig.6.5(a) describes the
bus type, Fig.6.5(b) declares the the masters in the system and Fig.6.5(c) the
slaves and their memory maps.

Step 2: Cycle-Accurate Model Generation

Once the system has been generated, each of the behavioral descriptions
generated previously are synthesized. Because HLS is a single process synthesis
method, each of them is synthesized individually with its own set of constraints.
Once each of them are synthesized, a cycle-accurate model is generated in
SystemC for the entire system. State of the art HLS tools also typically come
with different model generators in order to verify the design at different levels
of abstractions, e.g. behavioral-level (to verify the data type conversion) and
cycle-accurate (to verify the timing). Once the system’s cycle-accurate model is
created, it is compiled using g++ and executed. All the BIPs used in this work
were slightly modified to report the total time they remained in idle mode and
the total time they were actively performing some computation. The results of

50 Chapter 6 Dynamic Schedule SoC Design Space Exploration

defbus AMBA_AHB {

width address = 32;

width data = 32;

mode arbiter_rule = RoundRobin;

module master = {Master};

module slave = {Slave};

} ahbbus;

(a)

module AMBA_AHB_MASTER {

mode burst = Enable;

mode data_transfer = Direct;

mode clock = Enable;

mode reset = Enable;

} Master;

(b)

module AMBA_AHB_SLAVE {

map address = 0x1000FF00-0x1000FFFF & 0xFFFFFF00;

mode burst = Enable;

} Slave;

(c)

 Fig. 6.5: Bus definition: (a) AHB BUS definition file example; (b) Master definition;
(c) Slave definition

the execution is a timing report indicating the idle and computational time of
each of the slaves.

Step 3: BIP Optimization

Based on the timing report obtained in the previous step, our method
assigns to each slave a new micro-architecture from the trade-off curve gen-
erated for each BIP. Fig 6.6 graphically shows the report. It can be ob-
served that at regular intervals the BIP receives the data from the master
and computes it. It takes each BIP Li cycles to finish the computation, where
Li = {Lread + Lcomp + Lwrite}, with Lread the time required to read the data
sent from the master, which is always constant once the communication has
been established, Lcomp the time taken to compute the new output and Lwrite

the time taken to write the data back to the master. The only factor which

W3 W1 L1 L2 W2 L3

Computation

Computation Computation Wait Wait Wait
Lread L

comp
 L

write

Fig. 6.6: One BIP execution schedule example

6.2 Proposed Exploration Method 51

changes between two executions of the same task is Lwrite, as the slave has
to retrieve the control over the bus, which changes between two executions.
Moreover the main difference in the execution of the task is in the waiting
time between two consecutive executions. Based on the number of other tasks
being executed, their bandwidth required to send and receive data and the
arbiter’s priority, which in the round robin case keeps changing. In this case
W3 < W1 < W2.

Our work considers these waiting cycles as positive slack, where the
smallest waiting period (i.e. W3) is the maximum slack. because the goal of our
method is to find the smallest design which can sustain the same performance.
This means that a micro-architecture with latency Lcomp_new=floor(Lcomp +
Wmin) is chosen from the pre-characterized micro-architectural exploration
trade-off curve and the BIP substituted. Because the dominating curve does not
contain designs of all latencies the closes smallest value is chosen. This analysis
is done for each of the slaves. Once all of the BIPs are substituted by their
respective smallest designs, a new system is generated, re-synthesized and
re-simulated to get accurate performance values. The same system choosing
the smallest micro-architecture for each BIP is also generated as reference for
each mapping in order to provide the user the range of systems that can be
generated. In Fig.6.2 these smallest systems correspond to the DMi(small),
while the fastest smallest designs are represented by DMi(fit).

Step 4: System Exploration

Until the previous step, the proposed method could optimize a single
SoC configuration to find the smallest design for a given throughput (ini-
tially the system with maximum throughput). The method thus continues by
finding all dominating designs on the exploration trade-off curve as shown
in Fig.6.7. Once step for finding the smallest configuration (mapping and
IP micro-architecture) for the design with highest throughput, the method
continues by assigning to one of the slaves randomly a micro-architecture of
worse performance that the current one, but also of smaller area. This will
guarantee that a configuration of worse performance is now obtained, but also
a smaller one.

52 Chapter 6 Dynamic Schedule SoC Design Space Exploration

A
re

a
[µ

m
2
]

Throughput

Amax

Amin

Fig. 6.7: Example of DSE with BIP optimization

6.3 Hybrid Exploration Method

As the search space for complex SoCs with larger number of HWAcc is
so larger, apart from the proposed method,another method to avoid having
to re-synthesize and re-simulate so many configurations was developed. The
hybrid method is based on an analytical performance modelling method and
greedy search.

According to the targeted MPSoC platform shown in Fig.6.1 shows, the
tasks are executed consecutively and they are independent for each other. Also
the operation frequency is constant and the arbitration policy in all cases was
set to round-robin. Therefore a fitness function was analytically established
as:

Fitness =
N∑

n=1
wnThpn (6.2)

Thpn = IOn

Ln

(6.3)

wn = IOn∑M
m=1(xnm

∑N
i=1 ximIOi)

(6.4)

with wn the weighted throughput of each task and Thpn the total system
throughput. The throughput in Equation 6.3 is proportional to the actual
throughput because the operation frequency is constant for each task. The
weighted function is calculated from the throughput contributed by each of
the specific tasks within the corresponding processor. If one processor has

6.3 Hybrid Exploration Method 53

many tasks assigned, the relative weight becomes smaller and thus the task
performance degrades. In the other case that a processor only has a single
tasks assigned to it, then the weight is 1. In this context xnm = 1 indicates task
n is mapped onto processor m, otherwise xnm = 0. Thus,

∑M
m=1 xnm = 1 for

every n ranging between [1, N].

Using this fitness function, the area and performance of the entire de-
sign space can be estimated without having to synthesize nor simulate any-
thing. This method hence makes use of this analytical model to estimate
the performance and area of every single configuration and extracts for each
configuration (with unique number of processors) the estimated dominating
designs.

After analytical estimation, a greedy search is applied iteratively. The
estimated dominating designs are then synthesized and simulated in order
to get the actual performance values. If the resultant configurations provide
new dominated results among simulated trade-off curve, a new set of designs
leading to an estimated Pareto-optimal design are chosen; otherwise iteration
is finished and output final trade-off curve.

Although in theory an more accurate method, if fitness or cost function is
well-defined ,than the previous, simulation based method, it has also some 3
main drawbacks: (1) the targeted architecture is fixed and should follow the
one shown in Fig.6.1; (2) the tasks are considered independent for each others;
(3) the communication is assumed as AHB bus with round-robin arbitration,
while fixed arbitration systems could lead to inaccuracies as this method cannot
handle priorities.

Nevertheless, this method and an exhaustive search can be used as refer-
ence methods to be compared in terms of running time an quality of results.

6.4 Experimental Results

Different computational intensive application, amenable to HW acceler-
ation, were selected and grouped together into complex systems in order to
test our proposed method. These designs were taken from the open source
Synthesizable SystemC Benchmark suite (S2CBench) [44]. Table 6.2 shows
how these complex benchmarks were formed. The first column indicates the

54 Chapter 6 Dynamic Schedule SoC Design Space Exploration

name of benchmark, the second column indicates the total number of dominat-
ing designs reported by the DSE for each benchmark. Columns S1-S8 indicate
the number of instantiations of each test case used to build each complex
benchmark. The last two rows report the total number of applications used
in each system benchmark and total number of design candidates contained
(adding up the results of the DSE of each application). The six BIP applications
are: Kasumi of Block cipher used in mobile communication systems, MD5C of
Message digest algorithm, Adpcm of adaptive differential pulse-code modula-
tion, FIR of 9-tap FIR filter. Interp of 4-stage interpolation filter and qsort of
quick sort algorithm.

The experiments were run on an Intel dual 2.40GHz Xeon processor with
16 GBytes of RAM running Linux Fedora release 19. The HLS tool tool used
is CyberWorkBench (CWB) of NEC version of 5.6. The target architecture, as
mentioned previously, is a multi-core processor system with as many masters
as BIPs, with a 32-bit AMBA AHB bus using a round robin arbiter. The
target technology is Nangate’s 45nm Opencell technology aand the HLS target
frequency for all of the processes in the system is set to 100MHz.

Table 6.2: Complex System Benchmarks

Bench DSE S1 S2 S3 S4 S5 S6 S7 S8
Kasumi 2 1 1 1 1 1
MD5C 4 1 1 1 1 1 1
Adpcm 3 1 1 1 1 1

FIR 7 1 1 1 1 1 1
Interp 8 1 1 1 1 1 1
qsort 4 1 1 1 1 1
BIP 3 3 3 4 4 5 5 6

Designs 16 15 11 21 16 24 26 28

Table 6.3 displays the experimental results comparing 3 methods: brute-
force BF (exhausted search) method, analytic function Analytic search and
the proposed OPT_DSOC method. ADRS, average distance from reference
solution, is used to measure the quality of result (QoR) of the obtained trade-
off curve. The smaller ADRS is, the better QoR. Column 1, Bench, lists the
system benchmark from Table 6.2 and column 2, BIP , shows the number of
BIPs (tasks) involved in system. ADRS is measured in percentage and running
time Run in minutes. The last two rows indicates the average values of the
results. The first row for S1 to S5 and the last row for S1 to S8. This helps

6.4 Experimental Results 55

Table 6.3: Experimental Results

Bench BIP
BF Hybrid OPT_DSOC

Run[min] ADRS[%] Run[min] ADRS[%] Run[min]
S1 3 192 0.66 82 2.20 32
S2 3 622 0.75 149 1.61 33
S3 3 297 0.64 106 3.23 40
S4 4 10518 0.44 340 3.55 118
S5 4 3472 0.57 229 0.34 84
S6 5 - 0.64 883 3.76 302
S7 5 - 0.65 1102 2.86 368
S8 6 - 0.85 3009 3.41 897

Avg. 4.125
3020 0.61 181 2.15 61

- 0.65 738 2.62 234

comparing the average results, first isolating the case when the BF method
was able to return a result and all the other cases. As the system get larger,
S6-S7, brute-force method cannot be finished and there is no global optimal
solution. Therefore the ADRS for these system is obtained from reference
solution combining all results from different methods.

No ADRS results are shown for the BF method as it could always find
the optimal solution. Hence the ADRS is 0% for the cases which it could finish
the exploration. For S6 to S8 it could not finish as shown in the results table.
According to the results of Hybrid, is very good as it provide results with
similar quality to the BF (<1%) for S1-S5. On the other hand, our proposed
method OPT_DSOC lead to result within 4%, which worse than the of 1%
obtained from Hybrid, while the running is about 3× faster than Hybrid. As
mentioned previously, the drawback of the analytic model based on equations
6.2, 6.3, 6.4 is that a specific system architecture can only be target and hence
it is not very flexible. On the other hand OPT_DSOC is much more flexible
and can work with any system architecture, bus specification and different
clock frequencies

6.5 Summary

This chapter presents a design space exploration method with dynamic
schedule, based on maximizing the efficiency of each BIP mapped as a HWacc
on a shared bus MPSoC system. In particular, the advanced features available
in state of the art HLS tool allow the generation of complete MPSoC system in

56 Chapter 6 Dynamic Schedule SoC Design Space Exploration

C and simulation with cycle-accurate model. As BIPs often have to wait for data
to be transferred and permission to access bus, it is unnecessary to maximum
single BIP performance using more HW resources. The area can be optimized
with the help of cycle-accurate simulations. Such optimization provides a
efficient way to explore the search space. The results obtained are within
reason compared to an exhaustive search. An analytic model method was also
proposed in this chapter. It avoids having to re-synthesize and re-simulate new
systems and has been shown to be quite accurate. The drawback is that the
model only works for the master and slave system presented here, while the
simulation based method is more generic and can be used for different types
of systems (e.g. different bus structures).

6.5 Summary 57

7Results Discussion

The previous chapters presented efficient methods to explore C-based SoCs for
static and dynamic scheduled systems.

The developed methods have proven to lead to good results compared
to exhaustive search methods which lead to the optimal solution. Although
in chapter 5 and chapter 6, the HW and SW partition was given before-hand
an automatic HW/SW partitioning method was developed and presented in
chapter 4. This chapter also studied the effect of bus congestions on speed-ups.
The main emphasis overall in this thesis, was in the practicality of the proposed
methods as the optimization methods were all build on top of commercial SW
and EDA tools.

The work in chapter 4 also helped extracting the most computationally
intensive kernels of the main applications used in the following chapters. The
granularity of each kernel of the partitioning method presented in this work is
a function and hence is decided by the programming style in each application
(also called coarse-grained partitioning). Other approaches use task graphs
as inputs and can therefore create more optimal (finer) partitions (also called
fine-grained partitioning). In this work this cannot be done because we use a
commercial HLS tool during the pre-characterization stage. This allows our
method to get very accurate area and timing results, but has the drawback of
lack of internal controllability. The main results that can be extracted from
this chapters is that bus congestion is a serious problem when accelerating
computationally intensive tasks using HWAccs mapped on FPGA-based co-
processors. As Moore’s law continues, FPGAs have larger logic densities and
allow complete systems to be mapped on them with minimal off-chip resources.
This also means that multiple HWaccs can be now mapped onto the same
FPGAs to speed-up multiple applications simultaneously. The main bottleneck
as shown in this chapter is the communication overhead. It is therefore
extremely important to consider the bandwidths required by each of these
HWAccs mapped to the FPGA.

59

The next two chapters (chapter 5 and chapter 6) showed the importance
of the scheduling and task mapping on these type of systems at the chip
level.

In chapter 5 a static (off-line) task scheduling method was developed to
study the generation of SoCs with unique area and performance. Because
each HWAcc (BIP) mapped onto the system can have a variety of micro-
architectures of different area and performance, SoC composed of these BIPs
will also have different characteristics. Off-line algorithms have shown to be
able to obtain superior results. These static methods to schedule multiple
applications on a system can be used in order to reduce the complexity of
the HW and hence reduce its area and power overheads as the bus structure
is simplified (e.g. no arbiter is required). The drawback of these systems,
are the lack of flexibility. The system might be required to be completely
re-generated in case of any minor change. For dedicated HWAcc systems
with very predictable access patterns this might not be a big issue, but with
embedded systems with dynamic response behavior, these systems might not
be adequate. The exploration method presented in this work, could find the
optimal solution by using dynamic programming based on a tree structure
with dynamic pruning technique. Additionally, the running time vs. the quality
of results could be controlled be a single parameter called the Control Offset
(CO).

Chapter 6 presented the results of the SoC exploration for dynamic sched-
uled systems based on a widely used on-chip bus standard: AMB AHB. The
results showed the importance of tasks mapping and scheduling on the per-
formance of the complete system. It was also observed that because most of
the HWAcc have to wait for data to reach them and also to write data back
to the master, they can be implemented using less logic resources and hence
requiring less area and power without any performance loss.

The results obtained in this chapter were possible because of the advanced
system-level design features available on the commercial HLS tool used in this
work. In particular the bus generator which allows to create complete C-based
SoCs and the cycle-accurate model generator, which allowed the generation
of fast cycle-accurate system models. Although faster than RTL simulations,
these complete system-level simulations are computationally very intensive as
shown in Table 6.3.

60 Chapter 7 Results Discussion

Because the complex SoCs created in each of these chapters are different,
it is not easy to use the results obtained to compare them directly. Hence
Table 7.1 shows 4 different system created using 6 tasks from the S2CBench
benchmarks explored using the static and the dynamic scheduling architectures
used in the previous chapters. In both cases the number of masters is equal to
the number of tasks. By creating the exact same designs it is possible to verify
if some of the claims made by previous works regarding the benefits of each of
this architectures is true.

The Design row in the table shows that many more unique configurations
could be generated using the static scheduling architecture, showing that the
search space is larger for static systems. In terms of area the static scheduled
system is, as expected smaller, because it does not have any bus arbiter
and the connection interfaces are simpler. Finally in terms of performance
(throughput), the results are mixed. In most of cases, dynamic schedules lead
to more accurate results as cycle-accurate model is used and larger area with
arbiter and interfaces.

Table 7.1: Comparison with Static Schedule vs. Dynamic Schedule

Bench S1 S2 S3 S4
Kasumi 1 1
MD5C 1 1 1 1
Adpcm 1 1

FIR 1 1 1
Interp 1 1 1 1
qsort 1 1 1
Task 3 4 5 6

Static
Design 83 64 58 52
Area 68399 64931 86069 94028

Throughput 448.8 1943.2 1645.9 2227.1

Dynamic
Design 3.7 5.3 5.2 4.7
Area 71497 65419 90498 100433

Throughput 1246.5 1759.8 1920.5 2430.4

According to the experiments of system exploration with static and dy-
namic schedule, there exist several problem. One is the dependency issue and
the other is scaling issue. The interconnection among benchmarks is a big
issue of a system but experiments in this thesis only consider the independent
case. System scaling is one metric to measure proposed algorithm.

61

For the exploration with static schedule in Chapter 5, a self-defined model
is used. For this model, dependency issue is not considered. With the size of
system increasing, the chance of infeasible solution increase too till there is
not expected result as we consider bus saturation is infeasible. Thus in order
to consider dependency and scaling issue with static schedule a new model
should be defined. For the dynamic schedule in Chapter 6, the dependency
could be included as cycle-accurate model is used for simulation. Mapping
decision and design combination are two factors affecting scaling. In this
thesis design combination is reduced by OIP optimization. More works could
be done, such as heuristics on mapping decision and using templates replacing
the actual slaves, to overcome scaling problem.

In conclusion, method to explore C-based SoC designs were presented
in this thesis. In particular off-line an online methods. Results show that our
methods work well and lead to good results in a reasonable time.

62 Chapter 7 Results Discussion

8Conclusions and Future Work

This section concludes the work done in this thesis and addresses future work
directions.

8.1 Conclusions

This thesis focuses on the exploration and optimization of C-based SoCs
using advanced system-level design tools included in state of the art HLS tools.
The emphasis of this work is on the exploration and optimization of these
systems.

The main enabler of this work is HLS, which can be defined as the
process of converting behavioral descriptions (in this work ANSI-C) into RTL
descriptions which can effectively execute these. Chapter 3 introduced the
main steps required to synthesize behavioral descriptions into RTL.

SoCs are currently being designed in a mixture of top-down and bottom-
up approach. The first steps involve the virtual prototyping of the entire system
in order to get preliminary performance, power and area estimates. This allows
design teams to figure out the best overall architecture. The next step involves
designing each of the individual blocks separately.

These SoCs are being created from a combination of legacy Register Trans-
fer Level (RTL) blocks, Intellectual Properties (IPs), newly developed RTL and
C/SystemC descriptions synthesized using behavioral synthesis. This re-use of
existing legacy code allows design teams to focus only on the new features that
need to be implemented, thus reducing time to market considerably. Neverthe-
less, the fact that each individual process is optimized separately means that
global system-level optimization is neglected and that not the most efficient
architecture is created. In particular, it is common practice not to modify any
hardware (HW) block that has been fully verified, even if a more efficient
architecture could be achieved in subsequent designs, due to the cost of having
to re-design and especially re-verify the new implementation.

63

With the advent of new design methodologies and EDA tools, which
further raise the level of abstraction, it is now possible to develop entire
complex SoCs using only behavioral descriptions. These work makes use of
these tools and show that it is easier, faster and more convenient to design
these system a the C-level. Most of the work done in this thesis would not
have been possible at the RT-level.

Although it will still take time until the industry fully adopts C-based VLSI
design to design complete systems, the adoption has started at different levels
in almost all companies and will only further continue.

8.2 Future Work

Future work includes the exploration of systems with multiple-clock do-
mains/frequencies. Complex SoC now make aggressive use of DVFS (Dynamic
Voltage and Frequency Scaling) to reduce the power consumption. In this
work, the clock is assumed to be constant and equal for all the components in
the SoC.

Moreover, all the tasks in this work are consider independent of each.
In more complex systems, inter-dependencies between tasks should also be
considered.

Finally, the results could be evaluated on real silicon by prototyping them
on configurable SoCs, e.g. Altera’s Cyclone V SoC or Xilinx’s Zynq FPGA.
It would be interesting to compare the simulation based results with the
prototyped ones.

64 Chapter 8 Conclusions and Future Work

References

[1] I. T. R. for Semiconductors, “Www.public.itrs.net/links/2013itrs/2013chapters”,
2013.

[2] J. Teich, “Hardware/software codesign: The past, the present, and predicting
the future”, Proceedings of the IEEE, vol. 100, no. Special Centennial Issue,
pp. 1411–1430, 2012.

[3] M. López-Vallejo and J. C. López, “On the hardware-software partitioning
problem: System modeling and partitioning techniques”, ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 8, no. 3, pp. 269–297,
2003.

[4] R. Niemann and P. Marwedel, “An algorithm for hardware/software partition-
ing using mixed integer linear programming”, Design Automation for Embedded
Systems, vol. 2, no. 2, pp. 165–193, 1997.

[5] R. K. Gupta and G. De Micheli, “Hardware-software cosynthesis for digital
systems”, Design & Test of Computers, IEEE, vol. 10, no. 3, pp. 29–41, 1993.

[6] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for micro-
controllers”, Readings in hardware/software co-design, pp. 18–29, 2002.

[7] D. Hendry and D. Sananikone, “Hardware/software partitioning of embedded
systems with multiple hardware processes”, IEE Proceedings-Computers and
Digital Techniques, vol. 144, no. 5, pp. 285–294, 1997.

[8] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “Hardware/software partitioning
with iterative improvement heuristics”, in Proceedings of the 9th international
symposium on System synthesis, IEEE Computer Society, 1996, p. 71.

[9] J. Harkin, T. M. McGinnity, and L. P. Maguire, “Hardware-software parti-
tioning: A reconfigurable and evolutionary computing approach”, in Field-
Programmable Logic and Applications, Springer, 2001, pp. 595–600.

[10] J. T. Olson, J. W. Rozenblit, C. Talarico, and W. Jacak, “Hardware/software
partitioning using bayesian belief networks”, Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, vol. 37, no. 5, pp. 655–668,
2007.

65

[11] J. Noguera and R. M. Badia, “A hw/sw partitioning algorithm for dynamically
reconfigurable architectures”, in Design, Automation and Test in Europe, 2001.
Conference and Exhibition 2001. Proceedings, IEEE, 2001, pp. 729–734.

[12] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R. Vemuri, “An in-
tegrated partitioning and synthesis system for dynamically reconfigurable
multi-fpga architectures”, in Parallel and Distributed Processing, Springer, 1998,
pp. 31–36.

[13] O. Lindtjorn, R. Clapp, O. Pell, H. Fu, M. Flynn, and O. Mencer, “Beyond
traditional microprocessors for geoscience high-performance computing appli-
cations”, Ieee Micro, no. 2, pp. 41–49, 2011.

[14] C. Liem, F. Naçabal, C. Valderrama, P. Paulin, and A. Jerraya, “System-on-a-
chip cosimulation and compilation”, IEEE Design & Test of Computers, no. 2,
pp. 16–25, 1997.

[15] V. Živojnovic and H. Meyr, “Compiled hw/sw co-simulation”, in Proceedings of
the 33rd annual Design Automation Conference, ACM, 1996, pp. 690–695.

[16] D. Bernstein, M. Rodeh, and I. Gertner, “On the complexity of scheduling
problems for parallel/pipelined machines”, Computers, IEEE Transactions on,
vol. 38, no. 9, pp. 1308–1313, 1989.

[17] T. Wiangtong, P. Y. Cheung, and W. Luk, “Comparing three heuristic search
methods for functional partitioning in hardware–software codesign”, Design
Automation for Embedded Systems, vol. 6, no. 4, pp. 425–449, 2002.

[18] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow
programs for digital signal processing”, Computers, IEEE Transactions on, vol.
100, no. 1, pp. 24–35, 1987.

[19] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Ant colony heuristic
for mapping and scheduling tasks and communications on heterogeneous
embedded systems”, Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 29, no. 6, pp. 911–924, 2010.

[20] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Scheduling precedence
graphs in systems with interprocessor communication times”, SIAM Journal on
Computing, vol. 18, no. 2, pp. 244–257, 1989.

[21] G. C. Sih, E. Lee, et al., “A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures”, Parallel and Distributed
Systems, IEEE Transactions on, vol. 4, no. 2, pp. 175–187, 1993.

[22] M. Bauer, J. Bosko, and E. Rogstad, “A dynamic approach to thread scheduling
in hardware (dash)”,

[23] T. Hagras and J Janeček, “Static vs. dynamic list-scheduling performance
comparison”, Acta Polytechnica, vol. 43, no. 6, 2003.

66 References

[24] Y. Markovskiy, E. Caspi, R. Huang, J. Yeh, M. Chu, J. Wawrzynek, and A. DeHon,
“Analysis of quasi-static scheduling techniques in a virtualized reconfigurable
machine”, in Proceedings of the 2002 ACM/SIGDA tenth international symposium
on Field-programmable gate arrays, ACM, 2002, pp. 196–205.

[25] K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration for optimizing
on-chip communication architectures”, Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 23, no. 6, pp. 952–961, 2004.

[26] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration for pareto-
optimal configurations in parameterized system-on-a-chip”, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 10, no. 4, pp. 416–422,
2002.

[27] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski, and
J. Teich, “Electronic system-level synthesis methodologies”, Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 28, no. 10,
pp. 1517–1530, 2009.

[28] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, “Multiobjective optimization and
evolutionary algorithms for the application mapping problem in multiprocessor
system-on-chip design”, Evolutionary Computation, IEEE Transactions on, vol.
10, no. 3, pp. 358–374, 2006.

[29] F. Bellard, “Qemu, a fast and portable dynamic translator”, in USENIX, 2005,
pp. 41–41.

[30] T. Austin, E. Larson, and D. Ernst, “Simplescalar: an infrastructure for computer
system modeling”, Computer, vol. 35, no. 2, pp. 59–67, 2002.

[31] OVP. (2015), [Online]. Available: www.ovpworld.org.

[32] M. Lis et al., “Scalable, accurate multicore simulation in the 1000-core era”, in
ISPASS, 2011, pp. 175–185.

[33] Y. Corre, V.-T. Hoang, J.-P. Diguet, D. Heller, and L. Lagadec, “Hls-based fast
design space exploration of ad hoc hardware accelerators: a key tool for mpsoc
synthesis on fpga”, in DASIP, IEEE, 2012, pp. 1–8.

[34] S. Gheorghita et al., “System-scenario-based design of dynamic embedded
systems”, ACM Trans. Des. Autom. Electron. Syst., vol. 14, no. 1, 3:1–3:45, Jan.
2009.

[35] P. van Stralen and A. Pimentel, “Scenario-based design space exploration of
mpsocs”, in ICCD, 2010, pp. 305–312.

[36] K. Wakabayashi and B. C. Schafer, ““all-in-c” behavioral synthesis and verifica-
tion with cyberworkbench”, in High-Level Synthesis, Springer, 2008, pp. 113–
127.

References 67

www.ovpworld.org

[37] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction to
high-level synthesis”, IEEE Design & Test of Computers, no. 4, pp. 8–17, 2009.

[38] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the scheduling
problem in high level synthesis”, Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 10, no. 4, pp. 464–475, 1991.

[39] S. Govindarajan, “Scheduling algorithms for high-level synthesis”, Term paper
ECE, vol. 834, 1995.

[40] Z. Baruch, “Scheduling algorithms for high-level synthesis”, ACAM Scientific
Journal, vol. 5, no. 1-2, pp. 48–57, 1996.

[41] A. Canis, J. Choi, B. Fort, R. Lian, Q. Huang, N. Calagar, M. Gort, J. J. Qin,
M. Aldham, T. Czajkowski, et al., “From software to accelerators with legup
high-level synthesis”, in Proceedings of the 2013 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, IEEE Press, 2013,
p. 18.

[42] M. Lin and Y. Ma, “K-server optimal task scheduling problem with convex
cost function”, in Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks, 2005. WIOPT 2005. Third International Symposium on, IEEE, 2005,
pp. 345–350.

[43] S. Martello, D. Pisinger, and P. Toth, “Dynamic programming and strong
bounds for the 0-1 knapsack problem”, Management Science, vol. 45, no. 3,
pp. 414–424, 1999.

[44] B. C. Schafer and A. Mahapatra, “S2cbench: Synthesizable systemc benchmark
suite for high-level synthesis”, Embedded Systems Letters, IEEE, vol. 6, no. 3,
pp. 53–56, 2014.

[45] NEC. (2015). Cyberworkbench, [Online]. Available: www.cyberworkbench.
com.

[46] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca,
“Performance assessment of multiobjective optimizers: An analysis and review”,
Evolutionary Computation, IEEE Transactions on, vol. 7, no. 2, pp. 117–132,
2003.

[47] B. C. Schafer and K. Wakabayashi, “Divide and conquer high-level synthesis
design space exploration”, ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 17, no. 3, p. 29, 2012.

[48] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-space
exploration with high-level synthesis”, in Proceedings of the 50th Annual Design
Automation Conference, ACM, 2013, p. 50.

68 References

www.cyberworkbench.com
www.cyberworkbench.com

[49] A. Mahapatra and B. C. Schafer, “Machine-learning based simulated annealer
method for high level synthesis design space exploration”, in Electronic System
Level Synthesis Conference (ESLsyn), Proceedings of the 2014, IEEE, 2014, pp. 1–
6.

[50] H. Sharp, “Cardinality of finiate topologies”, Journal of Combinational Theory,
vol. 5, no. 1, pp. 82–86, 1968.

[51] D. E. Knuth, R. L. Graham, O. Patashnik, et al., “Concrete mathematics”, Adison
Wesley,, 1989.

References 69

	Cover
	Title Page
	Abstract
	Acknowledgement
	Publications
	Glossary of Abbreviations
	1 Introduction
	1.1 Contribution of this Thesis
	1.2 Thesis Structure

	2 Literature Review
	3 High Level Synthesis
	3.1 Design Flow
	3.1.1 Compilation/Parsing
	3.1.2 Allocation
	3.1.3 Scheduling
	3.1.4 Binding
	3.1.5 RTL Generation

	3.2 Commercial HLS Tools
	3.3 Summary

	4 Hardware Acceleration
	4.1 Motivations
	4.2 Proposed Flow
	4.3 Experimental Results
	4.4 Summary

	5 Static Schedule SoC Design Space Exploration
	5.1 Motivations
	5.2 Design Exploration Flow
	5.2.1 HW/SW Partitioning
	5.2.2 HLS Design Space Exploration
	5.2.3 Bus Scheduling and System Exploration

	5.3 Experimental Results
	5.4 Summary

	6 Dynamic Schedule SoC Design Space Exploration
	6.1 Motivations
	6.2 Proposed Exploration Method
	6.3 Hybrid Exploration Method
	6.4 Experimental Results
	6.5 Summary

	7 Results Discussion
	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

