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Abstract

The production and inventory control problems in manufacturing systems have

attracted a large number of researchers in the past few decades. Holding inventory,

such as raw material, tools and assemblies, not only ties up capital but also

generates an associated carrying cost and even has the potential for inventory

depreciation. Ideally, the inventory level should be kept as low as possible.

However, in reality, manufacturing companies face uncertainties from the market

demand, production processes and supply. Advanced planning of production

activities to hedge against these uncertainties is necessary and important for

manufacturing companies. What is a reasonable amount of inventory to hold and

how to manage the corresponding production planning and control have raised

challenges to decision makers. Hence the aim of production and inventory control,

in general, is to minimize the overall cost, including the inventory

holding/backlogging cost and production cost, by determining the optimal control

variables, such as production quantity, safety stock level and production speed.

Although the problem of production and inventory control has been studied

intensively, research gaps still exist and more practical factors should be taken into

consideration. For example, stationary demand is always taken as an assumption in

previous research works. However, in real cases, non-stationary demand can be

commonly observed. Corresponding optimal control policies should be investigated.

In addition, a large number of previous research studies normally assumed that the

production system is perfect and the inventory is non-perishable, and the rest either

only looked at problems with deteriorating production processes or perishable
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inventories. An integrated study considering both of the factors needs to be carried

out.

Hence this research aims to address the issues and has filled the research gaps

mentioned above in the field of production and inventory control. There are five

main deliverables provided in this research:

First of all, non-stationary demand and forecasting have first been introduced into

hedging point based production and inventory control policy. Two forecast corrected

control policies have been proposed and optimized through an integrated simulation,

design of experiment and response surface methods. Secondly, the impact of

forecasting inaccuracy on hedging point based control policies has been investigated

which can provide aid in the decision making process of choosing control policy.

Thirdly, product and process deterioration have been jointly examined in two

economic production quantity models together with backorder and rework. In

addition, both piece-wise linear increasing and stochastic production process

deterioration have been modeled. Optimality conditions for cost functions were

obtained and numerical examples were employed to illustrate the performance of

the proposed models. The optimum combination of production and backorder

quantity in each production run were determined and sensitivity analysis showed the

influence of different parameters on inventory behavior.

III



Publications

Journal Papers:

1. N. Li, Felix T.S. Chan, S.H. Chung, and Allen H. Tai, (2015). An EPQ Model

for Deteriorating Production System and Items with Rework, Mathematical

Problems in Engineering, Vol.2015. doi:10.1155/2015/957970

2. N. Li, Felix T.S. Chan, S.H. Chung, and Allen H. Tai. A Stochastic

Production-Inventory Model in a Two-State Production System with

Inventory Deterioration, Rework Process and Backordering, IEEE

Transactions on Systems, Man, and Cybernetics: Systems. (In press)

3. N. Li, Felix T.S. Chan, S.H. Chung. Development of Production-Inventory

Control Policy with Non-Stationary Demand, Machine Failures and Demand

Forecasting, European Journal of Industrial Engineering.(Under review with

major revision)

4. Felix T.S. Chan, N. Li, S.H. Chung, M. Saadat. Management of Sustainable

Manufacturing Systems-A Review on Mathematical Problems, International

Journal of Production Research. (Under review with minor revision)

Conference Papers:

5. N. Li, Felix T.S. Chan, S.H. Chung, Allen H. Tai, M. Saadat and Z.X. Wang,

(2015). A Stochastic Production-Inventory Model in a Two-state Production

IV



System with Deteriorating Product, Rework Process and Backordering, 2015

Global Engineering & Applied Science Conference, Tokyo, Japan, Dec 2-4.

6. N. Li, Felix T.S. Chan, S.H. Chung, B. Niu, (2015). The Impact of Non-

stationary Demand and Forecasting on a Failure-prone Manufacturing System,

The 2015 International Conference on Industrial Engineering and Operations

Management, Dubai, March 3-5.

7. N. Li, Felix T.S. Chan, S.H. Chung, (2014). Development of Failure-Prone

Manufacturing System Control with Inventory Inaccuracy and Stochastic

Demand, The 18th International Symposium on Inventories, Budapest,

Hungary, August 18-22.

V



Acknowledgements

First of all, I wishes to express my gratitude to my supervisor, Professor Felix T.S.

Chan, for his suggestions and guidance during the process of research, the publication

of this work and personal development. And also thanks him for his patience and

encouragement to me and when i made mistakes and when I found it difficult to

move on. I further wishes to thank Dr. S.H. Chung for his precious help and advice

provided to my research work, project and papers in the past three years. I have

learned a lot from him.

Secondly, I want to say thank you to Dr. Andrew Ip who was my confirmation

examiner and have provided me precious guidance and suggestion on the direction

of my research. I also would like to thank the support from ISE departement,

especially Prof. Yue, Ms. Cammy Chiu, Ms. Iris Ko.

Finally, I would like to thank my parents and my wife Christina who are the most

important people in my life. Taking up a 3-year PhD study is never a easy decision,

not to mention the sacrifice and compromise they made. Without their

encouragement and trust, i wouldn’t be able to achieve this far, not only as a

researcher but also as a person.

VI



Table of Contents

CERTIFICATE OF ORIGINALITY . . . . . . . . . . . . . . . . . . . . . I

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII

List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Scope and Objectives . . . . . . . . . . . . . . . . . . . . 6

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Literature Reviews . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Failure-Prone Production and Inventory Control . . . . . . . . . . . 8

2.1.1 Traditional hedging point policy . . . . . . . . . . . . . . . 8

2.1.2 Generalization of the problem . . . . . . . . . . . . . . . . 9

2.1.3 Integration with other problems . . . . . . . . . . . . . . . 12

2.2 Lot Sizing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Economic order quantity problem . . . . . . . . . . . . . . 16

2.2.2 Economic lot sizing problem . . . . . . . . . . . . . . . . . 19

2.2.3 Economic production quantity problem . . . . . . . . . . . 20

VII



2.2.4 Economic lot scheduling problem . . . . . . . . . . . . . . 25

2.3 Forecasting with Inventory Control . . . . . . . . . . . . . . . . . . 28

2.3.1 Stationary and non-stationary demand . . . . . . . . . . . . 28

2.3.2 Forecasting and non-stationary demand . . . . . . . . . . . 30

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3 Development of Forecast-corrected Two-level Hedging Point

Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Notations and Assumptions . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Inventory model . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Case 1: HPP with qualitative forecasting . . . . . . . . . . . 39

3.2.3 Case 2: HPP with quantitative forecasting . . . . . . . . . . 41

3.2.4 Proposed methodology . . . . . . . . . . . . . . . . . . . . 42

3.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Case 1: two-level control policy . . . . . . . . . . . . . . . 45

3.3.2 Case 2: forecast-corrected control policy . . . . . . . . . . . 48

3.4 Impact of Forecasting Accuracy and Proposed Policy on Production-

Inventory System . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 4 An EPQ Model For Deteriorating Production System and

Items with Rework . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Notations and Assumptions . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 70

VIII



4.3.1 Numerical examples . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 5 A Stochastic Production and Inventory Model in A Two-state

Production System with Inventory Deterioration, Rework

Process and Backordering . . . . . . . . . . . . . . . . . . . . 77

5.1 Notations and Assumptions . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Case 1: the switch occurs within T1 0≤ θ ≤ T1 . . . . . . 80

5.2.2 Case 2: the switch occurs within T1 and T2 T1 ≤ θ ≤ T1 +T2 86

5.2.3 Case 3: the switch occurs after T2, θ > T1 +T2 . . . . . . 89

5.2.4 Integrated model . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Numerical examples . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Integrated Forecasting and Hedging Point Based Control Problem . 103

6.2 EPQ Model with Deterministic and Stochastic Deteriorating

Production Process . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 109

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Appendix A: Equations and Coefficients of Cost Function in Chapter 5 . 113

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

IX



List of Figures

Figure 3.1 The flow of simulation, experimental design and response surface

methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.2 The flow chart of simulation model . . . . . . . . . . . . . . . . 44

Figure 3.3 Contour plot between Hh and RH . . . . . . . . . . . . . . . . . 48

Figure 3.4 Contour plot between Lh and RL . . . . . . . . . . . . . . . . . . 49

Figure 3.5 Demand Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.6 Demand Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.7 The relationship between forecasting methods and MAPE . . . . 52

Figure 3.8 The relationship between forecasting methods and PCR . . . . . 53

Figure 3.9 The relationship between MAPE and PCR . . . . . . . . . . . . 54

Figure 4.1 Inventory level of perfect items. . . . . . . . . . . . . . . . . . . 59

Figure 4.2 Inventory level of imperfect items . . . . . . . . . . . . . . . . . 60

Figure 4.3 The plot of total cost per unit product against M and N . . . . . . 71

Figure 4.4 Total cost per unit product against M . . . . . . . . . . . . . . . 72

Figure 4.5 Total cost per unit product against N . . . . . . . . . . . . . . . . 72

Figure 5.1 Inventory level of perfect product in Case 1. . . . . . . . . . . . 80

Figure 5.2 Inventory level of imperfect quality items in Case 1. . . . . . . . 84

Figure 5.3 Inventory level of perfect items in Case 2 . . . . . . . . . . . . . 86

Figure 5.4 Inventory level of perfect items in Case 3. . . . . . . . . . . . . . 90

Figure 5.5 The plot of expected total cost per unit product against Q and B . 95

Figure 5.6 ETC against Q . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.7 ETC against B . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

X



List of Tables

Table 3.1 The experimental range of control variable . . . . . . . . . . . . 46

Table 3.2 The value of Key parameters . . . . . . . . . . . . . . . . . . . . 46

Table 3.3 The result of ANOVA . . . . . . . . . . . . . . . . . . . . . . . 47

Table 3.4 The experimental range of control variables in the scenario with

ARIMA and demand set 1 . . . . . . . . . . . . . . . . . . . . . 51

Table 4.1 The sensitivity analysis for different key parameters . . . . . . . 73

Table 4.2 The sensitivity analysis for different unit cost . . . . . . . . . . . 74

Table 5.1 Sensitivity analysis for different parameters . . . . . . . . . . . . 100

Table 5.2 Sensitivity analysis for different cost parameters . . . . . . . . . 101

Table 5.3 Sensitivity analysis for ratio of Q and B . . . . . . . . . . . . . . 102

XI



List of Abbreviations

HPP Hedging Point Policy

EPQ Economic Production Quantity

EOQ Economic Order Quantity

ELSP Economic Lot Scheduling Problem

EMQ Economic Manufacturing Quantity

ELQ Economic Lot Quantity

SMA Simple Moving Average

SES Simple Exponential Smoothing

ARMA Autoregressive Moving Average

ARIMA Autoregressive Integarated Moving Average

FMS Flexible Manufacturing Systems

PHP Prioritized Hedging Point

MPC Model Predictive Control

IMC Internal Model Control

HWS Holt-Winter Seasonal

MAE Mean Absolute Error

XII



MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

WIP Work In Progress

FCFS First Come First Served

CCD Central Composite Designs

DOE Design of Experiments

GA Genetic Algorithms

JIT Just In Time

ANOVA Analysis of Variance

PCR Percentage Cost Reduction

XIII



List of Notations

Notations in Chapter 3

i The index of batch

j The index of order

xi(t) WIP level in batch i

y(t) Inventory level

u(t) Production rate

umax Maximum production rate

S(t) Status of machine at time t

Li Lot size of ith batch

γαβ Transition time from α to β

γβα Transition time from β to α

T B(t) Total batch number up to time t

d j The demand size of jth order

λ (t) Arrival rate of customer orders at time t

d j The demand size of jth order

XIV



Chapter 1 Introduction

First of all, Chapter 1.1 describes the relevant background information for this

research. Then the problems identified from the literatures are presented in Chapter

1.2. Chapter 1.3 presents the research scope and objectives and the contribution of

this research is showed in Chapter 1.4. Lastly the structure of this thesis is

elaborated in Chapter 1.5.

1.1 Research Background

As a part in the whole supply chain, the production and inventory control has

fundamental and crucial impact on the performance of the whole supply chain.

Inventory, which could be as small as a bolt and as large as a mechanical excavator,

help manufacturers hedge against the potential risks from production capacity, price

and demand. Having an extremely low inventory level puts the company at the risk

of losing incoming orders and customers (Waters, 2003) . However, it doesn’t mean

that holding as much inventory as possible is a wise choice for manufacturers, as too

much inventory causes high inventory cost and holds excessive capital which

reduces their flexibility. Finding a balance between production/inventory and

demand is always a challenge for industries (Goldsby and Martichenko, 2005)

In addition, in recent decades, increasing market competitiveness, quick market

changes and high requirements on the customization of products have raised new

challenges to manufacturing companies. How to control the relevant cost generated
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from production, inventory management, as well as satisfy customers demand has

become more and more important in a fast changing market environment

(Fredendall and Hill, 2000). More and more uncertainties, such as inventory

inaccuracy, stochastic demand, production quality and the failure of machines,

appear and further challenge the management capability in terms of scheduling and

planning. (Boyer and Verma, 2009)

As a result, the production and inventory control problems in manufacturing

systems have received a great deal of attention in the past 4 decades. The problem,

in general, is to minimize overall cost, including the inventory holding/backlogging

cost, production cost and transportation cost, by determining the optimal control

variables, such as reordering policy, production speed and quantity.

Both in academia and the industrial world, there is a large number of existing

systematic methodologies focusing on solving the problem and providing

managerial insights to manufacturing companies. Among all the relevant literature,

two streams of research are especially popular and have been intensively studied:

Hedging Point Policy(HPP) based production and inventory control in failure-prone

manufacturing systems and the lot sizing problems.

Hedging Point Policy (HPP)is a result of a theoretical control approach to the

production and inventory control problem. HPP was first proposed by Kimemia and

Gershwin (1981) as a optimal feedback control structure in Flexible Manufacturing

Systems (FMS). In 1986, complete proof and demonstration of the optimum

hedging point for a single machine and a single product system was provided

through the work of Akella and Kumar (1986). In their research, the problem was

formulated as a continuous-time model with jump Markov disturbances. They
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showed that a certain critical number in the inventory level forms the optimal

solution. A formula was also determined to calculate the optimal inventory level.

Hedging point policy is a specifically useful in the failure prone system.

While lot sizing problems tries to solve production problems concerned with the

suitable quantity of products to be produced in each production cycle with the

objective of minimizing the overall production and inventory cost and the

consideration of different factors such as setup cost, demand and replenishment.

They can be further categorized into four different problems: Economic Order

Quantity (EOQ) problem, Economic Production Quantity(EPQ) problem, Economic

Lot Sizing problem and Economic Lot Scheduling problem. Among the four

categories, EPQ is especially popular. Hence in this research, we mainly focus on

EPQ problems and its models.

1.2 Problem Statement

However, despite research work on the two problems mentioned above, especially in

the field of failure prone manufacturing systems, there are still several research gaps

that exist in the current literature.

For hedging point based production and inventory control problem:

• The majority of the studies assumed that the demand process is stationary. In

terms of stationary demand, there are two types of assumptions. First of all,

the demand is viewed as a constant throughout the whole period. Secondly the

demand is modeled with a stochastic process, such as the Bernoulli Process,

Poisson Process or Compound Poisson Process, in which the mean and
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variance usually are kept constant. For instance, in research on production and

inventory control problems (Hajji et al., 2009; Sethi and Zhang, 1999)

formulated models with constant demand rate only, and a stationary control

policy is generated correspondingly.

The demand process in actual industry, on the contrary, normally follows a non-

stationary process. The reasons behind this phenomenon can be summarized

as intensive market competition, high frequency of new products, short life

cycles and seasonality (Neale and Willems, 2009). All those factors have led

to the fact that a stationary demand process is not adequate in reflecting the

real situation in supply chain management.

• The impact of forecasting on HPP based control policy with non-stationary

demand has not been investigated. There are some studies discussing the

relationship between forecasting and production/inventory control. For

example, Fildes and Beard (1992) looked at the application of forecasting on

production and inventory control and how the accuracy can be improved in all

different forecasting methods. Similarly, a forecasting-production-inventory

system was analyzed by (Toktay and Wein, 2001), using the Martingale model

of forecast evolution to provide updates for the forecast of correct stock

policy. However, in their studies, only stationary demand process is

considered and a reliable manufacturing system is normally modeled in which

machine isn’t subject to failure. So integrated research considering

non-stationary demand, forecasting and hedging point based production and

inventory control is of great interest.

For EPQ problem, the main research gaps can be summarized as:
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• The majority of papers have only considered either inventory deterioration or

unreliable production systems. For instance, Pal et al. (Pal et al., 2013)

considered only production process deterioration is considered. However both

aspects are important in production and inventory control and should be taken

into consideration.

In terms of product deterioration, perishable goods such as food, fruit, drink

and other products like electronic devices and metal processing are good

examples and their quality is heavily influenced by the storage conditions and

storage time after production. If the quality does not meet the standard or

requirement anymore, either extra cost is needed to recover the quality or the

product has to be disposed of (Raafat, 1991).

The reliability of production systems, on the other hand, addresses the quality

of production processes, such as defective rate, machine breakdown and

production speed. Defects can be generated from processing mistakes, setup

mistakes, adjustment mistakes and tooling mistakes (Hinckley, 1997).

Although management techniques, such as quality control and the

improvement of manufacturing technology, have successfully reduced the

defect rate to a relatively low level, it is still a problem for companies,

especially when the complexity of production is high. The mobile phone

industry can be used as a good example of having extra cost caused by defects

(Worstall, 2013).

Similar to the defective rate, the decrease of production and machine

breakdowns are also obstacles to achieving a high productivity in a

manufacturing system (Iravani and Duenyas, 2002). Maintenance is an
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effective method that prevents the serious machine breakdown and restores

production quality. However, for deterioration within each production cycle,

maintenance cannot solve the problem.

1.3 Research Scope and Objectives

In order to solve the problems mentioned in the previous section and bridge the

existing gaps between academic and industrial world in area of production and

inventory control, this research mainly focuses on developing production and

inventory control policy in imperfect manufacturing systems together with

consideration of practical uncertainties. To be more specific, the major research

objectives can be summarized as follows:

• Investigate the modified hedging point policy and optimization methods to take

non-stationary demand and forecast into consideration.

• Investigate the practical factors in economic production quantity problem

such as imperfect production, process deterioration, product deterioration,

backorder and rework.

• Research into the optimization methodologies for the both the hedging point

policy problem and economic production quantity problem.

1.4 Structure of the Thesis

The rest of the thesis is arranged as follows:
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Chapter 2 presents a thorough review on the literature related to the production and

inventory control problem. The research on hedging point based control problem and

EPQ problem are introduced and discussed. The development of these two problems

is outlined and, in the end, the research gaps are summarized to help readers better

understand the problem itself and the work done in this research.

Chapter 3 describes the modified hedging point policies and corresponding

methodologies for production and inventory control problems with consideration of

forecasting and non-stationary demand. Numerical experiments have been

conducted to validate the performance of the proposed model and methodologies.

Chapter 4 first shows the modified model for the EPQ problem with both inventory

and piece-wise linear production process deterioration. Then, an analytical approach

was used to solve the problem. Lastly numerical experiments and sensitivity analysis

are illustrated to show the performance of the model.

Similar to Chapter 4, Chapter 5 starts the chapter with an introduction of the

mathematical formulation of the proposed modified model. While in the model,

stochastic production process deterioration is considered instead of a piece-wise

linear one.

Chapter 6 summarizes all the models and methodologies proposed in this research.

Discussion of the results and their applications are also presented.

Chapter 7 lists the conclusions made based on the results generated from Chapters

3 to 5. The existing limitations of the current research and highlights the potential

research directions to be considered in the future are points out in the end.
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Chapter 2 Literature Reviews

2.1 Failure-Prone Production and Inventory

Control

This chapter presents a thorough review of the existing literature in the field of

production and inventory control. The review is further divided into four parts.

Firstly, the relevant works on failure-prone production and inventory control are

discussed. Then the economical lot sizing problem is looked into. Lastly, the

existing research on studying the relationship among forecasting, stochastic,

non-stationary demand and production and inventory control is examined. The

research gaps are identified and elaborated at the end.

2.1.1 Traditional hedging point policy

The optimality of the Hedging Point Policy in a failure-prone manufacturing system

has been proven by Akella and Kumar (1986) with discounted cost, as mentioned

earlier. They showed that under the assumption of constant demand, and for a single

machine single product manufacturing system, there is a key parameter, the so-called

hedging point H, that exists in the optimal policy. u(t) and x(t) are the production

rate and inventory level at time t, respectively. d represents the demand rate and umax

is the maximum production rate available. The traditional optimal control policy is
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generalized as shown in Equation 1:

I1(t1) =


0 i f x(t)> H

d i f x(t) = H

umax i f x(t)< H

(2.1)

This control policy shows that the production rate adjusts its value according to the

inventory level. For example, when the inventory level x(t) is lower than H, the

maximum production rate will be adopted. In their work, the failure of the machine is

modeled by a two-state Markov chain. Similarly, Bielecki and Kumar(1988) obtained

the long term minimum cost for the single-product, single-machine control problem

with an unreliable machine, linear holding cost and backlog cost. Using the result

of hedging point policy, they also proved that zero-inventory policy is possible, even

with the existence of uncertainties in the systems, under certain conditions.

2.1.2 Generalization of the problem

Later, studies focusing on the more general problem were carried out. Boukas and

Haurie (1990) firstly studied the case with age dependent machine failure rate, while

Hu et al (1994) looked at the hedging point policy with consideration of

production-rate-dependent failure rate. The results indicated that a linear failure rate

function is the necessary and sufficient condition to get an optimal hedging point

policy. Sharifnia (1988) generalized the work of Bielecki and Kumar (1988) and

assumed a system with multiple states. A similar approach can also be found in the

study done by Liberopoulos and Hu (1995).
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The extended work for a multi-product, single machine hedging point policy was

carried out by Sethi and Zhang (1999) in which the hedging points for different

products were determined separately. Sethi’s research showed that the structure of

the original hedging point policy was also valid for multi-product problems.

Meanwhile, a modified policy called prioritized hedging point(PHP) policy was

proposed by Perkins and Srikant (2001) to deal with multi-product systems.

Differing from the traditional approach, in PHP policy, weights are given to various

part types. If the inventory levels of all part types are below their respective hedging

points, the one with the highest priority or weight is produced at the maximum

production speed, while the others are kept around their hedging points. A sequence

of two part-type problems was used to replace the multi-part-type problem, and

explicit expressions of the buffer level probability density function and the

corresponding optimal hedging point were obtained. In 2001, Shu and

Perkins(2001) further extended the PHP policy by taking quadratic buffer costs into

account, and the optimal priority sequence was also determined in their work.

Wang and Yu (2012) investigated the effect of inaccurate inventory observation in a

single machine, single product production control policy scenario. A modified

control policy with consideration of the observation error in the hedging point was

adopted. The research showed that the modified policy provides better robustness

than the traditional hedging point policy. However, when the ratio between the

failure time and functional time is large enough, the traditional hedging point policy

performs better. Production quality decision making is also introduced into the

study of production control policy, and one with multiple part-types, multi-machine

was obtained by the same group of researchers (Chan and Wang, 2014). Another

work from Hajji et al (2012) assumed that manufacturing systems produce both
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non-confirming and confirming product, subject to probability. The engineering

specification requirement was used as a control variable which significantly

influenced the rate of conforming of the products. Differing with another paper done

by Hajji et al. (2012), this work adopted the traditional structure of hedging point

policy directly, without any numerical approximation.

The integration with manufacturing network has been studied by two separate

research groups. Chan et al. (2008) proposed a two level hedging point control

policy for networked manufacturing systems in which extra production resources

can be used with extra cost. Multiple-product type manufacturing systems were

modeled and for each product there were both a higher and lower hedging point,

which is the major difference between their research and the previous work on the

same problem. Meanwhile, Sajadi et al. (2011) also modelled the production

control problem in a manufacturing network. In this model, the production process

consisted of several steps and each machine created only one step in the whole

production process, and the production speed of different machines was influenced

by the machine in the previous step. An approximated control policy was utilized

and the corresponding hedging point for each machine was generated through a

combined method of simulation and statistical analysis.

Chen (2004) provided the characteristics of HPP and the corresponding switching

curves for both reliable and unreliable systems with random demands. Chen also

proved that whether there was a finite or infinite planning horizon, the proposed

hedging point policy is optimal.
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2.1.3 Integration with other problems

The 21st century has witnessed a trend of combining production and inventory

control with more uncertainties and other problems, for instance, maintenance,

replenishment and transportation.

Gharbi and Kenne (2000) integrated maintenance activities into the problem of

production and inventory control. An age-dependent hedging point policy was

proposed and optimal hedging point, machine switching age and maintenance age

parameter were determined when the minimum inventory cost was achieved.

Rivera-Gomez et al. (2013) also considered maintenance activities in a deteriorating

manufacturing system. The study aimed at minimizing the total cost by obtaining

the production planning and overhaul schedule while inventory holding, shortage,

overhaul cost were taken into consideration. As a result, a machine

deterioration-dependent hedging point policy was structured. Berthaut et al. (2011)

looked into the integration of block replacement and HPP problem in failure-prone

manufacturing cells. A modified block replacement/hedging point policy was

adopted and proved to be better than the traditional HPP or block replacement

policy.

Joint replenishment and production control were considered in the work of Hajji et

al. (2009). A two-stage supply chain was modelled in which both the suppliers and

manufacturers were unreliable. The optimum production control policy and supply

policy were approximated simultaneously using numerical resolution methods.

Bouslah et al. (2012) studied the production and inventory control problem in an

unreliable batch production system with constant demand. Lot size was considered
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together with the hedging point. By using the numerical resolution approach, their

research first approximated the structure of the control policy on a small scale. The

results showed that the new control policy still followed the pattern of the traditional

control policy as in equation 1. Then simulation, experimental design and response

surface method were combined again to determine the optimal combination of

hedging point and batch size with higher accuracy than numerical resolution

approach. Other similar research work also include the integration with setup(Assid

et al., 2015b), lockout/tagout (Charlot et al., 2007), transportation delay (Mourani

et al., 2008), subcontracting planning (Assid et al., 2015a) and adjustable

capacity(Gharbi et al., 2011).

From all the research work mentioned above, a conclusion can be made that the

complexity of the production and inventory control problem is always increasing

dramatically with more and more practical factors considered. In addition, the

integration among different problems also makes the model complicated; for

instance, the integration between hedging point based control and forecasting

required forecast corrected hedging point policy which make the mathematical

analysis hard to conduct.

In the tradition production/inventory control problem, analytical analysis methods,

as shown, need lengthy proof and demonstration to solve. For integrated problems,

pure analytical analysis is not capable of solving the problem in a reasonable time

anymore (Sajadi et al., 2011). Hence, methods such as numerical approximation,

simulation and some statistical techniques are then introduced. In a model that

considered both production and preventive maintenance rates control (Gharbi and

Kenne, 2000), simulation, experimental design and response surface methodology
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are applied. This method was also utilized in most of the studies mentioned earlier

in this section.

Some researchers have employed other methods such as principles and theories

from the field of control engineeringto tackle this problem. Perea et al. (2000)

proposed dynamic modelling of the system using a fluid analogy. Model Predictive

Control (MPC) was used to produce control policies. Similar study was carried out

earlier by Schwartz and Rivera (2010) who also made use of classic control theory

in production and inventory control problems. As an extension of the previous work,

both Internal Model Control (IMC) method and MPC were applied and it enhanced

the performance of the proposed method.

2.2 Lot Sizing Problems

The lot sizing problem is a critical element in production planning processes. It

raises the question about how many products need to be ordered or produced in one

production cycle in order to minimize the inventory, production, setup cost and

satisfy the demand at the same time. To be more specific, large lot sizes lead to

extremely high inventory cost. However, small lot sizes produce excessive setup

cost, and when uncertainties are taken into consideration, how to determine the right

lot size becomes more and more complex. It is especially applicable to industries

with a single production process and in the metal processing industries. (Karimi

et al., 2003)

The general lot sizing problem can be further described by four different models:

Economic Order Quantity (EOQ), Economic Production Quantity(EPQ), Economic

Lot Sizing Problem and Economic Lot Scheduling Problem. EOQ and EPQ are the
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fundamental problems in lot sizing. The only difference between EOQ and EPQ is

that in EPQ, companies manufacture the product by themselves and the inventory is

continuously and gradually built up along with the production process for one order.

While in the EOQ model,orders are received only after the whole lot is completed.

A sudden increase in the inventory level can be observed. It is common in the

situation in which the production is outsourced to other companies. We believe

that’s the reason why Rogers (1958) used Economic Lot Quantity (ELQ) to describe

the general problem of EPQ and EOQ.

If more than one product needs to be produced consecutively on a single

manufacturing facility, EOQ and EPQ models are no longer applicable to this

specific situation. The Economic Lot Scheduling Problem was developed and

extended from ELQ, as a result, to handle the economic quantity problem together

with production scheduling. (Eilon, 1957; Rogers, 1958)

While the Economic Lot Sizing problem refers to the case in which demand varies in

different periods, Wagner and Whitin (1958) first proposed a dynamic lot-size model

to solve the problem. In their model, the demand over a certain period was assumed

to be known and the number of planning periods was finite. Dynamic programming

was used to formulate the problem and an algorithm was developed to obtain the

optimal solutions. However, due to its assumption on unlimited capacity and its

high analysis complexity, researchers have proposed other methods to find the near

optimal solution. Brahimi et al. (2006) provided a comprehensive review of the

literature addressing lot sizing problems. In their survey, the lot sizing problem is

categorized into incapacitated and capacitated cases.
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2.2.1 Economic order quantity problem

Harris (1990) pioneered research on EOQ problems and a EOQ formula was

proposed. In general, the EOQ model aims to find a trade off between inventory

holding cost and ordering cost (Zipkin, 2000). Later on, in order to make the model

more practical, factors such as payment delay, freight discount costs, nonlinear

holding costs and deteriorating inventory were considered and integrated with

traditional EOQ approach.

Goyal (1985) stated that in the traditional EOQ model, it was assumed that payment

for an order must be made at the moment the order is received. However it’s not true

in industries where a fixed period of time is allowed for payment delay and no

interest is charged if payment is settled on time. Hence the author modified the EOQ

model to tackle this specific problem. Chung (1998) studied the same problem as

Goyal but provided an alternative way to obtain the optimal solution. Both Shah

(1993) and Aggarwal and Jaggi (1995) extended Goyal’s work by taking

deteriorating/decaying inventory into account. By proving the convexness of the

cost function, Chu et al(1998) improved the derivation process used in Aggarwal

and Jaggi’s model to find the optimal solution. Weibull distributed inventory

deterioration was studied by Covert and Philip(1973), and a model with

time-dependent deteriorating rate was developed by Manna and Chaudhuri (2006)

as an extension of previous work. In their research, not only the deteriorating rate

was time-dependent but also the production rate was proportional to demand rate.

Imperfect production processes were also examined in Cheng’s work(1991). Instead

of using constant unit production cost, a demand-dependent unit production cost was
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assumed. A geometric program method was used to formulate the problem and a

closed-form solution was determined. For more literature on the EOQ model with an

imperfect product, please refer to the review paper of Khan et al. (2011).

Jamal(1997) further looked at a model with allowable shortage. Various facets of

payment delay were discussed. Similarly, Eroglu and Ozdemir (2007) combined the

EOQ model with backorder, but the production process was assumed to be

imperfect and a portion of the products were defective. The good-quality products

and defective products were sold at different prices. Both linear and fixed backlog

costs were considered by Sphicas (2006) and Cardenas-Barron (2011). Sphicas

employed an analyzed process without calculus, while Cardenas-Barron proposed a

simple solution method based on analytic geometry and algebra, and the

effectiveness was proven. Pentico and Drake (2009) studied the case with partial

backordering as a supplement of the basic model, and one with full-backordering.

The fuzzy version of the EOQ problem was taken into consideration by Kazemi et

al. (2010) and all the parameters and decision variables were fuzzified and

represented with two types of fuzzy numbers.

Schrady (1967) pioneered research on the Economic Order Quantity (EOQ)

problem with repairable items. A deterministic inventory model was developed with

the assumption of constant demand and repair rate. And the optimum order quantity

was determined when the setup cost and inventory holding cost were minimized.

A large number of studies have been carried out using Schradys model. Richter

(1994) extended the original EOQ repair model in waste disposal, which was

represented as a product disposal rate. In this model, the formula for optimal lot size

and cost function were first derived as a function of disposal rate. Then the optimal
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disposal rate was determined when the cost was minimized. The study also showed

that the disposal price had a significant impact on the optimal disposal rate. For

instance, the optimal disposal rate was a convex function of small disposal price.

Richter further proposed two models considering variable setup numbers and

variable collection time intervals (Richter, 1996a,b). The results indicated that the

behavior of collection intervals, setup numbers and cost varied with different values

of the disposal rate. Konstantaras and Skouri (2010) relaxed the assumption that no

backlog was allowed in the previous research, following the study of Richter, but

extending the model to the case allowing inventory backlog.

The disposal rate was also utilized by Teunter (2001) for a similar EOQ model with

a recoverable item. Various holding costs were applied for both manufactured and

recovered products and a more generalized EOQ formula was obtained. However in

the studies above, infinite production rates were mostly assumed to determine the lot

size formulae. Teunter (2004) looked at cases with finite and infinite production rates,

and provided a more gereral lot sizing formula for the two cases. Widyadana and Wee

(2010) revisited the model proposed by Teunter (2004) and introduced an alternative

method using algebraic approaches to solve the problem. Feng and Viswanathan

(2011) also proposed a new heuristic for lot sizing problem with product recovery.

A more general set of (P, R) policy was utilized in which the lots for manufacturing

and remanufacturing were interleaved, while in traditional (P, R) policies, all the lots

for manufacturing are arranged together. The results showed that the new heuristics

have better performance than those used in Teunter (2004).
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2.2.2 Economic lot sizing problem

Due to the complexity of Wagner and Whitin’s method, Silver and Meal (1973)

developed a heuristic algorithm to solve the dynamic lot sizing problem. Both

studies had the same assumption that the production capacity is unlimited. The

integration with deteriorating inventory can be found in the works of Papachristos

and Skouri (2000) and Hsu (2000). Zangwill (1969) looked at the backlog allowed

economic lot sizing problem and a network approach was utilized for formulation.

Both parallel and series facilities were taken into consideration. The case with

stockout instead of backlog was studied by Sandbothe and Thomson (1990) in

which unsatisfied demands were lost directly rather than backordered.

The dynamic lot sizing in manufacturing and remanufacturing system has also been

researched. Richter and Sombrutzki (2000) modified the classical Wagner/Whitin

model with consideration of remanufacturing. They addressed lot sizing in planing

the manufacturing and remanufacturing activities, for a number of periods, with

dynamic but deterministic demand. The zero inventory property was proven in their

model. However, their model was based on the assumption of a large quantity of

low cost used products. Golany et al. (2001) tackled the same problem and provided

a more general model and solution. Teunter et al. (2006) also studied the problem

and it was first formulated in mixed integer linear programming, and then solved by

using a dynamic programming algorithm and some heuristics.

The capacitated dynamic lot sizing problem in closed-loop supply chain was studied

by Pan et al. (2009), in which the capacities for remanufacturing, manufacturing and

disposal were assumed to be limited. Similar to the work done by Teunter et al.
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(2006), a dynamic programming algorithm was developed. Capacitated lot sizing

was also researched by Li et al.(2007) and Zhang et al.(2012). The first study

adopted a heuristic GA to analyze the capacitated lot sizing. The periods that

needed setups were firstly determined by the GA stage, then a dynamic programing

approach was used to compute the optimal lot size for both types of products. Zhang

et al. (2012) introduced a lagrangian relaxation based method to tackle the same

problem and proved that the proposed method outperformed the other methods in

terms of the solution quality. Fazle et al. (2014) investigated the effect of different

demand patterns and return patterns on dynamic lot sizing with product recovery

and remanufacturing. A dynamic programming heuristic algorithm was developed

and the results showed the solution ability.

2.2.3 Economic production quantity problem

In the academic world, the EPQ problem has attracted a large number of researchers

over the past 80 years. It was first proposed by Taft (1918) to determine the quantity

of products to be manufactured each time, in order to balance the

holding/backlogging cost and fixed set-up cost. It provided a simple but useful way

to calculate the right amount of production and help with the decision making

process in the production process when a single item is considered (Dobson, 1987).

However, a number of assumptions make the model unrealistic. For instance,

perfect production process, product quality and constant demand are the common

assumptions made in traditional EPQ models. To make the EPQ model more

practical, some researchers have combined the EPQ with various uncertainties:

Researchers have pointed out that in real industry production processes quality is

affected by many factors, such as production speed, setup cost and production
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quantity. Hence, the assumption that the production is perfect in the classical EPQ

model is no longer valid. Rosenblatt and Lee (1986) first studied the Economic

Production Quantity model with imperfect production processes. In their model, a

production process shifts from a good condition to a bad condition in a random

time. The results showed that the production run time was shorter than the one in

the classical model. They also extended the model by taking the setup up cost

dependent deterioration rate into consideration.

Khouja and Mehrez (1994) proposed a modified EPQ model where the production

rate was taken as a control variable and the deterioration rate was dependent on the

production rate. Hayek and Salameh (2001) further considered the rework of

defective products on the same machine, which was not included in previous papers.

In the model, the rework starts right after normal production and backordering is

also allowed. Similarly, the work done by Salameh and Jaber (2000) showed that the

value of EPQ increases along with the rise of the imperfect quality rate. Chiu (2003)

extended the work done in (2001) and included an integrated random defective rate

into the problem. Also, in Chiu’s model, the repair process was assumed to be

imperfect and any scrapped products are disposed of. A fuzzified EPQ model was

also proposed by Shekarian et al. (2014a) in which the defective rate and demand

rate were represented by fuzzy numbers and later extended with consideration of

backorders and rework(Shekarian et al., 2014b). Taleizadeh et al. (2013)

investigated the impact of repair failure on EPQ. In their model, a percentage of

defective products were turned into scrapped products after repair and a disposal

cost for the scrap product was taken into consideration in the overall cost. Recently

another similar model was also proposed in (Cárdenas-Barrón, 2009; Jamal et al.,

1997).
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The effect of machine breakdown in EPQ has also been examined. Groenvelt et

al. (1992) developed two control policies to deal with machine breakdown together

with corrective maintenance, while Chiu and Chang (2014) studied the EPQ problem

together with stochastic breakdowns and an imperfect rework process. Taleizadeh

et al. (2014) examined a multi-product and single machine EPQ model in which

process interruption was allowed.

Lin and Kroll (2006) stated that the majority of previous studies either considered

only machine breakdowns or process deterioration. So in their model, both linear

and exponential production process deterioration were examined together with

machine breakdowns. However, backordering was not allowed in their model.

Preventive maintenance and repair warranties were taken into consideration in the

work done by Pal et al. (2013). Similar to the work of Rosenblatt and Lee (1986),

the production process switches from an in-control and an out-of-control state after

a random point in their model. Wee et al. (2014) looked at a case where screening

and production were not synchronized and a feasible optima policy was developed

for different scenarios. Other research studies with an imperfect production system

were given in (Sarkar et al., 2014).

For product deterioration, Goyal and Giri (2001) have summarized the causes for

deterioration, such as damage, dryness, vaporization etc. The earliest study on

deteriorating products can be traced back to the 1960s, where Hadley and Whitin

(1963) first developed an inventory model with the product having an obsolescence

date. Later on, several production lot sizing inventory models considering

deteriorating products were proposed. Mak (1982) looked at an exponentially

decaying case and backlog was also allowed. Partial backlog was introduced into
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the model with product deterioration by Wee (1993). Pricing policy was also

combined with the traditional EPQ model by several groups of researchers. Among

them, the work done by Goyal and Gunasekaran (1995) and Wee and Law (1999)

are representative of this type of model. Teunter and Flapper (2003) integrated both

rework and product deterioration, and examined a single-stage single product

production system. In their model, the time and cost for rework had a linear

relationship with time and the switch between production and rework needed a fixed

time and cost. They aimed to maximize the expected profit per time by determining

the optimal production quantity. Inderfurth et al. (2005) generalized the model

proposed in the previous paper and reduced the restriction in the production and

rework capacity. Hence all the demand can be satisfied and backlog was not allowed

in their model. Compared with the other models mentioned above, it is assumed that

there is a constant defective rate rather than a stochastic one.

Golhar and Sarker (1992) examined the EPQ model in a Just-In-Time (JIT) delivery

system. Under the principle of JIT, the delivery system requires small shipment

sizes which helps reduce the inventory cost and set-up cost. Their research proved

that the total cost had a negative linear relationship with shipment size. Later,

Banerjee and Kim(1995) also studied EPQ in a JIT environment, compared with the

work of Golhar and Sarker (1992), they introduced the multiple delivery lot into the

problem.In 1993, Wee (1993) first proposed an EPQ model with partial backlog and

product deterioration, and later Wee and Law (1999) integrated the problem with the

consideration of pricing policy, in a finite planning horizon. Goyal and Gunasekaran

(1995) also combined the pricing problem with the EPQ problem on a deteriorating

product. In addition, advertisement frequency was also considered in their model.
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Backlog was also discussed in the following research work, such as

(Cárdenas-Barrón, 2009; Cárdenas-Barrón and Cardenas-Barron, 2001; Chiu, 2003;

Eroglu and Ozdemir, 2007; Pentico and Drake, 2009) which examined the EPQ

problem with full/planned/partial backlog. Other similar works include Abad (1996)

and Sarkar (2014).

All the previous mentioned research studies assumed a continuous issuing policy to

meet the demand of customers. Disontinuous issuing or delivery policy was taken

into consideration by Chiu et al (2011). Discontinuous issuing policy, as stated in

their work, is more practical and common in industry. In their paper, the delivery of

products was divided into n installments with a fixed time interval and quantity.

Numerical methods were utilized to obtain the optimal solution. Later,they further

looked at the discontinuous issuing EPQ problem with partial rework (Chiu et al.,

2012). However in these two papers, the number of shipments was assumed to be

known. Cardenas-Barron et al (2013) jointly considered the multi delivery EPQ

problem with both lot size and number of delivery to minimize the inventory cost.

The learning effect was integrated into the EPQ model by Jaber et al. (2008). In

their study, a fixed percentage of products manufactured was assumed to be defects.

Due to the learning effect, the percentage of defective products decreases along with

the increase of total production cycles. The learning curve was generated and

validated by industrial data. Konstantaras et al. (2010) took the quality of

remanufactured product into consideration in the EPQ problem. They studied the

situation where a certain percentage of remanufactured products were sold as

refurbished items at reduced prices due to the secondary quality. Inspection and

sorting were introduced and the corresponding setup time and cost were considered
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in the inventory model.For review papers specifically on EPQ, the following works

by Sarmah et.al (2006) and Yano and Lee (1995) are relevant.

2.2.4 Economic lot scheduling problem

As mentioned above, the EPQ model is specific for the manufacturing model with a

single item. It is also called a single product lot scheduling method. However, if there

are more than one type of product in a manufacturing system, the EPQ model cannot

sort out a cyclical scheduling and production quantities for all the product types at the

same time (Glock, 2012; Zhang et al., 2013). The Economic Lot Scheduling Problem

(ELSP), however, can successfully lead to a solution.

Jack Rogers (1958) was the first researcher to propose a computational approach to

combine the Economic Manufacturing Quantity (EPQ) with production scheduling,

aimed at minimizing the sum of the setup cost and inventory cost. Bomberger’s

(1966) work established the traditional ELSP approach with known setup cost, setup

time, holding cost, production and constant demand rate. It was assumed that one

production facility could only proceed with one product at a time. Hsu (1983) later

proved that the ELSP problem is NP-hard after testing the feasibility of different

production schedules. Other research works also point out the infeasibility of using

the analytical approach to solve the ELSP (Gallego and Shaw, 1997; Yao, 2001).

In general, there are three policies commonly used in ELSP: the basic period

approach, the time varying approach and the common cycle approach. The

traditional ELSP model in Bambergers work (1966) first adopted the basic period

approach in which cycle times vary with different products. In addition, the cycle

time for a certain product must be multiple times of the basic period. Moon et al.
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(2002) also employed the basic period policy together with imperfect production

processes and consideration of the set-up times. In the common cycle approach, the

cycle time for each every product is defined with same value. It enables the use of

analytical approaches to solve the ELSP (Torabi et al., 2005). However, a

performance of this approach was not as good as the other two due to its strict

requirement on cycle time. Lastly, a time varying lot size allows for flexible lot sizes

or cycle times for all the products. The cycle time is decided by parameters such as

inventory level or demand.

A dynamic version was proposed by Dobson (1987) and an optimum solution was

generated. Because of the complexity, heuristic and meta-heuristic methods such as

Genetic Algorithms (GA) (Jenabi et al., 2007) were used to find the near-optimal

solutions. Other researchers have also developed heuristic algorithms to solve the

time-varying problem. Please refer to (Leachman and Gascon, 1988; Raza and

Akgunduz, 2008; Zipkin, 1991).

Recently more and more researchers shifted their focus to stochastic economic lot

scheduling problem. The introduction of uncertainties in demand, setup time and

production rate makes the problem more complex and realistic compared with the

deterministic ELSP problem. Winands et al. (2011) summarized the main

differences between the two problems, in a review paper. First of all, a flexible

production scheduling plan is preferred than to a rigid one. Secondly, inventory

control plays a more important role in the problem. Especially in the case with

uncertain demand or random machine failures, inventory should hedge against the

potential changes.
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Similar to the deterministic ELSP problem, there are three types of production

policies related to the sequence of production and the cycle time. Dynamic

production sequence (Karmarkar and Yoo, 1994; Sox and Muckstadt, 1997), fixed

production sequence/dynamic cycle length (Bourland and Yano, 1994; Bradley and

Conway, 2003) and fixed production sequence/fixed cycle length (Bruin, 2007).

With respect to the lot sizing policy, two types of lot sizing policy, global and local

lot sizing policy, were defined in this problem. In local lot sizing policy, the decision

about lot sizing is made independently according to a given inventory control policy,

such as (s,S), and the sequence of production is dependent on priority rules. The two

decision processes are separated and conducted individually (Fransoo et al., 1995;

Grasman et al., 2008). On the other hand, global lot sizing policy takes the state of

machine and inventory level of all the products into consideration (Jin and Loulou,

1995).

The ELSR problem with an imperfect production system addresses a realistic

problem in actual manufacturing systems where the production quality is not

perfect. Hence, the rework of imperfect or defective products should also be taken

into consideration. Roy et al. (2009) used fuzzy numbers instead of crisp values to

represent the defective rate. A genetic algorithm (GA) was used to obtain the

optimal value of the total number of cycles, production time and, lastly, the total

profit. Taleizadeh et al. (2013) in addition, considered factors such as service level

and budget limit in ELSR with an imperfect production process. Pasandideh et al.

(2013) employed two separate meta-heuristic algorithms to solve the problem. Both

the inventory cost and also the warehouse space utilization were minimized.
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Tang and Teunter (2006) were the first group of researchers that examined ELSP

with remanufacturing. In their case, both the production quantity and the sequence

of different products must be determined at the same time with consideration of

remanufacturing in a single production line. A common cycle time policy was

adopted and mixed integer linear programming was used to formulate the solution.

It was also assumed that each manufacturing lot was followed by a remanufacturing

lot. An exact solution was obtained as a result. Further, the work considering

product substitution together with remanufacturing and lot sizing was conducted by

Pineyro and Viera (2010) and Ahiska and Kurtul (2014) respectively.

2.3 Forecasting with Inventory Control

2.3.1 Stationary and non-stationary demand

The past 20 years have witnessed revolutionary changes in different perspectives

such as customers’ purchasing behaviour, manufacturing technology, global markets

and supply chain management (Autry et al., 2012). Especially, the fast evolving

technology and the ever competitive market significantly reduce the life cycle of a

product. All of these facts make companies begin to face non-stationary demand

processes. According to Neale et al. (2009), the frequent introduction of new

products shortens the life cycle of a product. The stages of launch, stabilization and

drop in the product life cycle make the demand change with time. An example from

Hewlett Packard also supports the idea that demand cannot be stationary in the

current market. Ozkaya (2008) also mentions that non-stationary demand is

suitable, specifically for a high-tech industry, in which short life cycles are often

observed.
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Study on non-stationary demand models is getting more important. However,

compared with the stationary demand model, works with non-stationary demand

models are relatively fewer. This phenomenon can be attributed to the complexity in

applying non-stationary approaches in both academic and practical situations. A

similar idea was stated by Silver (2008) that in inventory management

non-stationary demand is not easy for routine use. As stated in the introduction

chapter, the majority of the works done in the area of failure-prone production and

inventory control assume a stationary demand process.

Nonetheless, there are some works that have already studied the impacts of

non-stationary demand and the corresponding control policy in areas such as

inventory control and production control. Tunc et al. (2011) studied the cost of

using stationary inventory policies on the condition of non-stationary demand

processes, and implied that stationary policies are preferred due to their simplicity

in real cases. This research raises an important question as to what is the general

cost of adopting a stationary policy under the condition of non-stationary demand.

The results show that using a stationary inventory policy under a non-stationary

demand process is expensive, especially when the demand variation is high.

However, in Tuncs work (2011), the non-stationary demand was assumed to be

known for each single period. However in reality, demand information is forecasted

based on historical data and inaccuracy exists. The impact of inaccuracy or forecast

errors on the non-stationary demand is unknown. So, a further study simultaneously

considering advanced demand information and non-stationary control is necessary.
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2.3.2 Forecasting and non-stationary demand

In order to gain information on non-stationary demand, forecasting is usually

utilized in supply chain management. Based on existing information, such as

historical data and market trends, forecasting provides an estimation of the product

quantity that will be consumed in a certain period of time (Chase, 2013). Generally

speaking, forecasting can be divided into two categories: Qualitative and

Quantiative forecasting.

Qualitative forecasting, for instance, the Delphi method and market research, are

usually used for medium to long term forecasting. The results are mainly based on

the judgment and experience of decision makers (Witt and Witt, 1992). Compared

with quantitative methods, qualitative forecasting can take more non-numerical

factors into consideration (Makridakis et al., 2008). Time series methods are

commonly used for both stationary and non-stationary demand forecasting. They

are mainly based on the available historical data. Among the time series forecasting

methods, Simple Moving average (SMA), Single Exponential Smoothing (SES),

Holt-Winter Seasonal (HWS) method and Autoregressive Integrated Moving

Average (ARIMA) are popular in both practical applications and academic research

(Bermúdez, 2013; Box et al., 2013). It is suggested in the research of Acar and

Gardner (2012) that the choice of forecasting methods significantly affects supply

chain performance. The improvement of forecasting accuracy can generate more

benefits than the appropriate inventory control policy. SMA, Holts additive trend

and damped additive trend methods are compared with respect to the total supply

chain cost.
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Strijbosch and Moors (2005) compared the performances of Single Exponential

Smoothing, Simple Moving Average and ARIMA against a (R,S) inventory policy.

Fill rate was selected instead of inventory cost to evaluate the performance in the

case of non-stationary demand. These three methods were also adopted in the

research of Warren and Chang (2010). Similar to the work by Strijbosch and Moors

(2005), the impact of the forecast on inventory policy performance was examined

and compared. However, the previous work focused more on finding the optimal

forecasting parameters while the later optimized the inventory policy. Please refer to

the following paper for more examples and details about the application of

forecasting methods (Syntetos et al., 2009).

However forecasting cannot produce 100% accurate results. Even for a given

demand, different forecasting methods will produce various accuracies. This issue

was not considered in the work of Tunc et al.(2011) on which the demand was

assumed to be known to the system. The cost related to inaccuracy was neglected.

The accuracy of forecasting can be measured by parameters such as the Mean

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Mean

Squared Error (MSE) (Hosoda and Disney, 2006; Robert Fildes, 1992)

In our research, specifically WMA, ES, HWS and ARIMA are chosen to forecast

the demand. The optimal parameters for each method are firstly determined, which

minimizes the prediction errors based on a given demand set. The forecast errors

are calculated based on the value of MAPE in order to evaluate the accuracy of the

forecasting methods.

The relationship between forecasting accuracy and inventory control has been

carried out on the condition of non-stationary demand by a number of researchers.
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A paper from Strijbosch et al. (2011) looked at the interaction between forecasting

and stock control in a periodic order-up-to level inventory system. Non-stationary

demand was used and the fill rate of a manufacturing system under different

forecasting methods was evaluated as a performance indicator. Ali et al. (2012)

discussed the impact of forecasting errors on inventory parameters. Similarly, Babai

et al. (2013) proposed to investigate the relationship between forecasting accuracy

and inventory performance, in terms of inventory holding and cost. In addition, an

order-up-to-level policy and information sharing mechanism were applied in their

supply chain model which extended the research of Ali et al. (2012). In their

models, inventory policies such as (s, S) and (R, S) were examined against

non-stationary demand. Other similar research can also be found in (Syntetos et al.,

2010; Warren Liao and Chang, 2010). Our work, on the other hand, looks at the

impact of non-stationary demand on the production and inventory control problem.

2.4 Discussion

The literature reviewed above revealed the following existing research gaps:

1. According to literature review, although the hedging point based control

problem has been heavily studied, such as in the work of Gharbi and Kenne

(2000) the integration between lot sizing and hedging point policy was

researched. A similar model was proposed by Bouslah et.al (2012) where

stationary demand was assumed. The impracticality of the stationary demand

process have been discussed previously, the models with stationary demand

cannot be applied to industry directly. Hence in this thesis, to fill in the gaps

between academic and industries, non-stationary demand is introduced and
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considered into the traditional hedging point policy. And In order to tackle the

non-stationary demand, forecasting methods were used.

2. The impact of forecasting methods and its respective accuracies have been

investigated by many researchers. However in the problem of hedging point

based control, this issue hasn’t been investigated.

3. The extant literature shows that the majority of papers have only considered

either rework and an imperfect system or product deterioration. A few

integrated studies can be found. In the first paper by Teunter and Flapper

(2003), rework and production was assumed to use the same machine and the

defective rate followed a given probability distribution. The production

quantity needed to be determined to maximize the profit obtained. In another

paper by Inderfurth et al. (Inderfurth et al., 2005), the problem is generalized

by assuming the demand for good items was limited and the demand would be

entirely satisfied. A closed form results were obtained by utilizing a constant

and deterministic defective and deteriorating rate. Tai (2013) added inspection

errors into the model with deteriorating items and imperfect production. In

addition, Tai also investigated the effect of selling imperfect products to

customers. However, in all of the three studies mentioned above, the defective

rate was regarded as stationary and would not change with time. In addition,

backlog was not considered in the first two models.

4. Stochastic deterioration has not been considered in the integration problem of

imperfect systems or the product deterioration.Rosenblatt and Lee (1986)

proposed a similar model in which the machine changed from an in-control
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condition to an out-of-control condition, after a stochastic period of time.

However their model only considered a deteriorating production process.

In order to fill the research gaps, three different models were formulated and

experiments were conducted in my project. Model 1 was designed to solve the first

two research gaps while models 2 and 3 were employed to handle the third and

fourth research gaps respectively.

The research objectives can then be summarized as follows:

• To develop a two-level control policy for the production inventory control

problem with a Markov modulated Poisson demand process using integrated

simulation and experimental design method

• To develop a forecast-corrected control policy for the production inventory

control problem using the time series forecasting method and the integrated

simulation and experimental design method.

• To develop an EPQ model with inventory a deterioration and deterministic

deteriorating production process in which the defective rate increases after

each certain period of time.

• To develop an EPQ model when the production process is subjected to random

deterioration along with the increase of defective rate.

Detailed methodologies used for each model and problem are introduced in the

following chapters.
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Chapter 3 Development of Forecast
Corrected Two-level Hedging Point
Policies

3.1 Notations and Assumptions

This section lists all the notations and assumptions used throughout this research.

Notations

i The index of batch

j The index of order

xi(t) WIP level in batch i

y(t) Inventory level

u(t) Production rate

umax Maximum production rate

S(t) Status of machine at time t

Li Lot size of ith batch

γαβ Transition time from α to β

γβα Transition time from β to α

T B(t) Total batch number up to time t

d j The demand size of jth order

λ (t) Arrival rate of customer orders at time t

d j The demand size of jth order
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d f (t) Forecast demand at time t

µ Mean of demand size

σ Standard deviation of demand size

N(t) The number of arrived orders up to t

D(t) Cumulative demand from time 0 to t

θi Finishing time of i(th) batch

ζi Starting time of i(th) batch

H Hedging point

Ch Holding cost ($/unit/time)

Cb Backlogging cost ($/unit/time)

Cs Fixed setup cost ($/cycle)

ACc Average cost from corrected policy

ACo Average cost from original policy

PCR Percentage cost reduction

α Status that machine in good condition

β Status that machine is in failure

θ Time interval of in-control state

δ Deteriorating rate of product

µ Demand rate (unit/time)

p Mean time for high demand

q Mean time for low demand

λl Order arrival rate of low demand period

λh Order arrival rate of high demand period

Hl Low hedging point

Hh High hedging point

Ll Low batch size
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Lh High batch size

Lm Medium batch size

Assumptions

1. During the production of one batch, the lot level is simply the integral of the

production rate with respect to time. The status of the machine is modeled by

a two-state Markov Process. The average transition time from the functional

state to failure state α and the average transition time from failure to the

functional state γ are described by two individual Poisson processes, with

different mean values.

2. Unmet demand will be backlogged and the backlog will be satisfied first.

3. The production speed within one batch is assumed to be constant.

4. The replenishment of raw material is assumed to be instantaneous and infinite.

The production speed in one batch is viewed as constant.

3.2 Problem Formulation

In this section, the inventory model is first introduced with respect to the

mathematical formulation. Then second part presents the two modified hedging

point policies and the mechanism of the control policies is elaborated in detail.

Lastly, the proposed simulation, design of experiments and response surface method

are explained.
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3.2.1 Inventory model

A single machine, single product, failure-prone manufacturing system subject to

non-stationary demand is modeled in this chapter. In batch i, products are

manufactured from time ζi with the production rate u(t) through which the

Work-In-Process (WIP) batch level y(t) increases accordingly. WIP products are

stored beside the machine until the number of products for one batch is satisfied.

The WIP inventory behavior is described in Equ.(3.1). At time θi, the finished batch

is sent to the inventory warehouse. It results in a sudden increase in inventory level

x(t) by the specific batch size Li which is shown in Equ.(3.2). Customers Orders

arrive at the manufacturing system and are served based the principle of

First-Come-First-Served (FCFS). Corresponding numbers of products are delivered

to the customers immediately when the order arrives. In Equ.(3.3), the behavior of

the inventory level between two batches is illustrated, where d j represents the

demand of order j and the total amount of demand aggregated from the batch

starting time ζi to time t equals to ∑
N(t−ζi)
1 d j.

y(t) =
∫ t

0
u(τ)dτ t ∈ (ζi,θi) where y(0) = 0 and u(τ) ∈ (0,umax) (3.1)

x(ζi+1) = x(θi)+Li where x(0) = x0 (3.2)

x(t) = x(ζi)−
N(t−ζi)

∑
1

d j t ∈ (ζi,θi) (3.3)

Inventory surplus or backlog in each period generates inventory holding cost and

backlog cost at the rate of Ch and Cb. For each batch produced, a fixed setup cost

Cs is taken into consideration. The aggregated setup cost is represented as Cs ∗T B(t)

where T B(t) is the number of batches produced up to time t. Following the method
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used in Sethi and Zhangs work (1999), the corresponding dynamic programming cost

function of the model is defined:

J(x,u,α) = lim
T→∞

1
T

E
∫ T

0

(
Ch ∗ x+(t)+Cb ∗ x−(t)+Cs ∗T B(t)

)
dt (3.4)

where x+(t) = max(0,x(t)) and x−(t) = max(0,−x(t)).

The overall objective of this model is to minimize the expected long run average

cost J(x,u,α) by finding the optimal control policy. However solving the cost

function is complex analytically, even for a simple model with constant demand, not

to mention the batch production (Bouslah et al., 2012; Sajadi et al., 2011). In this

model, batch production and non-stationary demand are considered which

significantly increases the complexity of the analytical method. Hence, we do not

adopt the analytical approach, but instead, a modified Hedging point policy is

adopted. The structure of the hedging point policy proven by (Akella and Kumar,

1986; Gharbi and Kenne, 2000) is used. This practice is also utilized in (Sajadi

et al., 2011). Under the condition of non-stationary demand and batch production in

this chapter, it can provide an approximation of the optimal solution when the

analytical analysis is hard to be implemented.

3.2.2 Case 1: HPP with qualitative forecasting

In order to model the non-stationary demand, we firstly use a compound Poisson

process demand to model the intermittent arrival of orders which is the result of

expert judgment. The size of demand di follows a normal distribution and the arrival

rate is represented as λ (t). Then, a two-state Markov chain is combined with the

compound Poisson process to model the mean time in the high demand period and
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low demand periods with their respective values of p and q. The stochastic demand

is formulated as a compound Poisson demand in which the arrivals of orders follow

a Poisson distribution and the demand size in each order follows a normal

distribution. To be specific, the cumulated demand D(t) can be expressed as:

D(t) =
N(t)

∑
1

d j (3.5)

N(t) is the number of order arrived up to time t and follows a Poisson process with an

arrival rate of λ . At the same time d j follows a normal distribution with mean µ and

standard deviation σ . This modelling method has been widely used in the academic

literature because of its simplicity and practicality (Shang, 2012). According to the

theory of the compound Poisson process, the expected value for D(t) is calculated as

follows:

E[D(t)] = E[N(t)]E[d] = tλ (t)E[d j] = tµλ (t) (3.6)

To cope with the proposed non-stationary demand, a modified HPP is developed

accordingly. In terms of production speed, as we can see, when the inventory level

x(t) is larger than hedging point H, the production rate will be reduced to zero. When

x(t) is smaller than H but larger than the difference between H and Li, the production

rate will be set to the value of the forecast demand d f (t+1) in the next period, which

equals λ tµ . Lastly, if the inventory level is smaller than H−Li, then the maximum

production rate will be applied to the production system. For hedging point H and lot

size Li, when λ (t) = λl , the set of (Hl,Lh) is applied where relatively larger hedging

point and smaller lot size is implemented. A combination of (Hh,Ll) is used instead

on the condition of low demand. It is inspired by the theory of Rossi and Lodding

(2012) in which they state that a small lot size helps minimize the amplification of

the demand fluctuation. As explained above, the following equation illustrates the
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control policy developed.

P(t) =



u(t) =


0 when x(t)≥ H

d f (t +1) when H−Li ≤ x(t)≤ H

umax when x(t)< H−Li

(H,Li) =

 (Hl,Lh) i f λ (t) = λl

(Hh,Ll) i f λ (t) = λh

(3.7)

3.2.3 Case 2: HPP with quantitative forecasting

In this case, the time series forecasting method is used to forecast the non-stationary

demand. In order to take the forecast demand into consideration, a

forecast-corrected hedging policy is proposed. Similar to the previous control

policy, the forecast-corrected control policy also consists of three parts, but the

demand forecast is added into the control policy. The hedging point is corrected

according to the amount of demand in the next time period t +1.

This work classifies the demand data into three levels: high, medium and low. The

classification is decided according to the historical data. It means that if one specific

forecast demand is higher than one third of the recorded demand data in the past,

then this demand data is viewed as high demand and a small lot size Ls is used for

production. Similarly, a forecast demand that is lower than one third but higher than

two thirds of the historical data is classified as medium demand. Correspondingly,

a medium lot size Lm will be applied. In the chapter, all the optimal values of the

hedging point and high/medium/low lot sizes are determined simultaneously. The

forecast-corrected control policy can be constructed as shown below.
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u(t)=


0 when x(t)≥ H + d f (t +1)

d when H + d f (t +1) − Li ≤ x(t)< H + d f (t +1)

umax when x(t)≤ H + d f (t +1) −Li

(3.8)

3.2.4 Proposed methodology

The whole process mainly consists of 4 stages: initialization stage, design of

experiment, the simulation and response surface methodology stage, as shown in

Figure 1. In initialization stage, the proposed hedging point policy and forecasted

demand are generated. Especially, in Case 2, they are firstly forecasted using the

proposed time series methods. The data are then stored separately and later are

employed as the input to the simulation process. For instance, for 3-period WME

and SES, the following equations are applied to generate the forecast:

n(t +1) = αmt +βm(t−1)+ γm(t−2) (3.9)

n(t +1) = αmt +(1−α)nt (3.10)

Where nt is the forecast for period t and mt is the actual demand for period t, the

optimal values of α ,β and γ are decided by minimizing the MAPE for the whole

forecasting period and α +β +γ = 1. In terms of ARIMA and HWS, the forecasting

is implemented by using statistical software R. The design of experiments stage

provides a formal planned experimentation design to change the value of different

parameters in simulation model. To be more specific, in this research, the Box-
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Figure 3.1: The flow of simulation, experimental design and response surface
methodology
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Figure 3.2: The flow chart of simulation model

Wilson Central Composite Designs (CCD) method is employed which is commonly

used in DOE (Myers et al., 2009). The simulation model is based on the proposed

manufacturing system. The discrete event simulation software ARENA is used to

execute the simulation process.

In the simulation stage, first of all, demand for the next period is forecast based on

the information of the historical demand. Orders are received and the inventory is

reduced accordingly, to satisfy the demand. Control policy is adjusted based on the

information of demand forecasting and current inventory level. Then, the

manufacturing system produces products according to the defined control policy. At

the end of the simulation, the value of the average inventory cost in the whole

simulation time is calculated and recorded. The simulation process is illustrated in

Figure 3.2. Lastly, response surface methodology helps determine the relationship

between control factors and response. After finishing all the simulation experiments,
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the values of the simulated average inventory cost under different control policies

are recorded. Response surface methodology uses the values of the inventory cost as

the response and the optimal control policy can be obtained as a result. In this

research, a second-degree regression model is used to find the relationship between

the cost and the control variables, as shown in Equ.(3.11). xi represents the control

variable, while βi is the coefficient to be estimated from simulation results. n is the

number of control variables in the design and in this paper it equals to 4 in both

cases.

C = β0 +
n

∑
i=1

βixi +∑∑βi jxix j +
n

∑
i=1

βiix2
i + ε (3.11)

3.3 Numerical Experiments

This section mainly looks at the numerical study process. First of all, Case 1 is

examined using the Markov modulated compound Poisson process. Then, the

second case with historical demand data and forecast-correct hedging point policy is

investigated. The impact of the forecasting methods and accuracy is also provided.

3.3.1 Case 1: two-level control policy

In this scenario, the modified two-level hedging point policy is adopted to control

the production-inventory system. There are 4 control variables in total which are

Hl,Hh,Ll,Lh. But in order to avoid the situation that Hh and Lh are smaller than Hl

and Ll , two extra variables RH and RL are introduced and defined as follows:

 Hl = Hh ∗RH

Ll = Lh ∗RL

where 0≤ RH ,RL ≤ 1 (3.12)
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Table 3.1. The experimental range of control variable

Levels/Factors Hh RH Lh RL

2 4000 0.98 3500 0.98

1 3000 0.74 2750 0.74

0 2000 0.5 2000 0.5

-1 1000 0.26 1250 0.26

-2 0 0.02 50 0.02

Table 3.2. The value of Key parameters

Ch 0.1 $ /unit/period r(αβ ) 10 periods λh 5

Ch 2 $ /unit/period r(βα) 0.8 period λh 2

Ch 200 $ /batch p 50 periods µ 50 units

u(max) 300 unit/period q 30 periods σ 5 units

Each variable is divided into 5 levels. According to the theory of CCD, 31

experiments are generated as a result and the value of α is set as 2. Each experiment

is replicated for 4 times. So in total, 124 experiments are implemented in this case.

The range of each control variables is presented in Table 3.1. For the purpose of our

investigation, the key parameters in the simulation stage are defined in Table 3.2:

After the simulation, ANOVA is carried out to find the statistical significance of

each individual factor and their interactions. As illustrated in Table 3.3, the

correlated coefficient is obtained as 95.70% and the adjusted correlated coefficient is

around 95% which represents the percent of variance. After taking out the

non-significant factors, the corresponding regression function can then be obtained

and is provided in Equ.3.13.
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Table 3.3. The result of ANOVA

Source DF Adj SS Adj Ms F-Value P-Value
Hh 1 32908940 32908940 724.35 0.000
RH 1 4083193 4083193 89.87 0.000
Lh 1 24964497 24964497 549.48 0.000
RL 1 39866942 39866942 864.29 0.000

Hh ∗Hh 1 5008950 5008950 110.25 0.000
RH ∗RH 1 186280 186280 4.1 0.045
Lh ∗Lh 1 939179 939179 20.67 0.000
RL ∗RL 1 6201947 6201947 136.51 0.000
Hh ∗RH 1 506757 506757 11.15 0.001
Hh ∗Lh 1 5639017 5639017 124.07 0.000
Hh ∗RL 1 6581056 6581056 144.85 0.000
Lh ∗RH 1 20027 20027 0.44 0.508
RH ∗RL 1 32030 32030 1.37 0.245
Lh ∗RL 1 11272399 11272399 248.11 0.000
Error 15 6133409 81779 * *
Total 29 142649653 * * *

Summary
R-Sq R-Sq(adj) R-sq(pred)

95.70% 95.25% 94.52%

Cost = 1436+−.317∗Hh−798∗RH−0.141∗Lh−4375∗RL +0.000196∗H2
h

+5447∗R2
H−0.000154∗Hh ∗Lh−1.434∗Hh ∗RL

+0.502∗Lh ∗RL +854∗R2
H +0.000051∗L2

h
(3.13)

The optimal combination of the four control variables can be determined as:

(Hh,RH ,Lh,RL)
∗ = (1818,0.464,1259,0.583)

Hence the values of Hl and Ll can also be obtained as 844 and 734 respectively. The

minimum average inventory cost is 174.94. The contour plots between H, RH and

Lh, RL are provided separately in Figures 3.3 and 3.4.
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Figure 3.3: Contour plot between Hh and RH

3.3.2 Case 2: forecast-corrected control policy

Tunc (2011) utilized four categories of demand that can be summarized as stationary,

erratic, sinusoidal and life-cycle demand. However, in order to simulate the demand

situation and test the corresponding performance of the system, we select two non-

stationary demand data sets which represent two types of demand pattern that can

often be observed in real cases. The two demand sets are illustrated in Figure 3.5 and

Figure 3.6. As can be seen, both demands show non-stationarity, but demand set 2

also has seasonality. So in terms of choosing forecasting methods, apart from Simple

Moving Average (SMA), Single Exponential Smoothing (SES) and Autoregressive

Integrated Moving Average (ARIMA), the Holt-Winters Seasonal (HWS) method is

also chosen for forecasting demand set 2.
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Figure 3.4: Contour plot between Lh and RL

As mentioned in the previous section, there are also four control variables H,Lh,Lm

and Ll which is hedging point, and three lot size values for different demand rates.

The integrated simulation, design of experiments and response surface method is

again employed to obtain the optimal control policy in both demand sets. The whole

numerical experiments consist of 9 different scenarios. For demand set 1, there are

four scenarios in total, which consist of scenarios with ARIMA, WMA, SES and one

with stationary control policy.While for demand set 2, an extra scenario with HWS

is added. The repeated procedure is not shown in detail.

The experimental design and the results of demand set 1 with ARIMA method is

presented as an example. Similarly, in order to avoid the situation that Lh < Lm and

Lm < Ll , R1 and R2 are employed as the ratio of
Lm

Lh
and

Ll

Lm
. The optimal control

policy is obtained as (372,234,0.496,095) under the given set of parameters, while

the optimal inventory cost is determined as 272.2. It means that the optimal hedging
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Figure 3.5: Demand Set 1

point is 372 while the optimal lot size for high demand, medium demand and low

demand should be set to 234,117 and 111 respectively. The results of other scenarios

are also obtained with the same methodology and are used in the following section

to analyze the impact of forecasting accuracy on production-inventory system.

Figure 3.6: Demand Set 2
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Table 3.4. The experimental range of control variables in the scenario with ARIMA
and demand set 1

Levels/Factors H Lh R1 R2

2 800 300 0.98 0.98

1 600 250 0.74 0.74

0 400 200 0.5 0.5

-1 200 150 0.26 0.26

-2 0 100 0.02 0.02

3.4 Impact of Forecasting Accuracy and Proposed

Policy on Production-Inventory System

In this section, the impact of using forecasting and forecast-corrected hedging

policy control policy is examined first. The relationship between the forecasting

errors and cost reduction is then investigated by analyzing the results from all the

scenarios in Case 2. A parameter called Percentage Cost Reduction (PCR) is used to

measure the cost differences between different scenarios. ACc and ACo represent the

Average Cost (AC) for forecast-corrected control policy and the original control

policy respectively. This parameter helps compare the simulation results generated

from forecast-corrected scenarios against the results from the scenarios with original

control policy in Equ.(2.1).

PCR =
ACo−ACc

ACc
(3.14)

First of all, we start investigation with the accuracy of each forecasting methods. As

illustrated in Figure 3.7, the value of MAPE varies and describes the accuracy for

each forecasting method. In addition, different demand sets produce various MAPE
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Figure 3.7: The relationship between forecasting methods and MAPE

values when the same forecasting method is applied. For instance, ARIMA yields a

value of MAPE around 4 in Demand set 1 and a value about 2 in Demand set 2. A

similar situation also occurs in the scenarios with ES and WMA, and shows that the

pattern of the demand sets has a significant impact on the forecasting performance.

In terms of a specific demand set, demand set 2 for example, ARIMA can produce

the most accurate prediction of the future demand compared with the other two

methods. Especially the MAPE value of WMA and Holt-Winter are two times more

than the value in ARIMA. In demand set 1, ARIMA is also the best method

followed by WMA. Figure 3.8 presents the overall performance of the production

and inventory control system which is measured with the average inventory cost.

The vertical axis represents the percentage cost reduction when compared with the

cost in the stationary scenario. A positive value means the average inventory cost is

lower than the value in the stationary scenario. A negative value, on the other hand,
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Figure 3.8: The relationship between forecasting methods and PCR

implies that the average inventory cost in this specific scenario is higher than that in

the stationary scenario.

The results show that cost has been reduced by using the proposed control policy and

forecasting techniques in Demand sets 1 and 2. Take Demand set 2 as an example;

ARIMA and SES can help reduce the average inventory cost by around 17 and 16

percent respectively. For WMA and HWS, despite their relatively high forecasting

errors, still can reduce the average inventory cost by around 4 percent.

In order to further explain the differences between the demand sets, the relationship

between percentage cost reduction and forecasting errors is examined in Figure 3.9.

Regardless of the forecasting technique, the relationship between the percentage cost

reduction and MAPE is negative. To be more specific, the higher the MAPE is, the

lower the percentage cost reduction will be. So if forecasting errors exceeds a certain
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Figure 3.9: The relationship between MAPE and PCR

value, a non-stationary control policy cannot provide better performance compared

with original control policy.

3.5 Summary

The traditional hedging-point-based production and inventory control problem

normally assumes a stationary demand process. However, stationary demand is not

realistic in the real world. Questions such as what is the influence of using

stationary control policy when the demand is non-stationary in production and

inventory control problem need to be answered. Little work has been reported in the

literature in terms of the integration of forecasting and production-inventory control

considering a failure-prone manufacturing system and non-stationary demand

process and lot sizing.
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In our study, we modelled both the quantitative and qualitative forecasting process

of non-stationary demand. The Markov-modulated compound Poisson process is

utilized first and a corresponding two-level control policy is proposed. Two sets of

demand data are employed, together with time series forecasting, to simulate

quantitative forecasting process. The forecast-corrected hedging point policy used is

modified from the traditional hedging point policy. A large number of simulations

and experiments have been conducted, and they prove that the proposed

forecast-corrected method can result in a better performance than the traditional

stationary control policy under the condition of non-stationary demand.
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Chapter 4 An EPQ Model For
Deteriorating Production System and
Items with Rework

4.1 Notations and Assumptions

In this research, a production system with single-machine and single-product is

modelled. In the system, the machine can conduct both production and rework

processes. The product is subject to quality deterioration and the machine is

assumed to be imperfect and deteriorating in terms of an increasing defective rate.

The detailed assumptions made and the notations used in this paper are shown in the

following sub-sections:

4.1.1 Notations

Decision Variables

B Backlog quantity (unit)

Q Economic production quantity (unit)

Parameters

αi The defective rate of time period i*θ

θ Constant length between each change of defective rate (hour)

δ Deteriorating ratio
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µ Demand rate (unit/time)

p Production rate (unit/time)

pr Rework rate (unit/time)

M Total number of invertal θ in normal production period

N Total number of invertal θ in backlog period

Chp Holding cost of perfect products ($/unit/time)

Chi Holding cost of imperfect products ($/unit/time)

Cdc Deteriorating cost ($/unit)

Cp Production cost ($/unit)

Cpr Rework cost ($/unit)

Cb Penalty cost for backlog ($/unit/time)

Cs Fixed setup cost ($/cycle)

B Backlog quantity (unit)

Q Economic production quantity (unit)

Is The inventory level at the end of normal production period (unit)

Im The inventory level at the end of rework process (unit)

Iim The inventory level of imperfect product (unit)

4.1.2 Assumptions

1. Unsatisfied order will be backlogged and the backlog will be fulfilled at the

beginning of the cycle.

2. During the production period, the defective items are produced at a constant

rate αi in the time interval [(i−1)θ , iθ), i ∈ N. We assume that the production

system is deteriorating in the sense that the defective rate increases at time i×
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θ , i ∈ N. Hence we have α1 < α2 < α3 < · · · .Through this paper, we consider

a linear relation αi = i× γ , where γ is a constant.

3. To reduce the complexity of the cost function, the normal production run time

T1 and the length of backlog period T2 are assumed to be the integer multiple

of θ since the value of θ is small.

4. Maintenance is carried out after the whole production period, so at the

beginning of each cycle, the defective rate is minimized.

5. The imperfect products are reworked after the normal production process with

an extra rework cost and the rework is assumed to be perfect.

6. The deterioration only occurs to perfect products with a constant rate δ .

7. The deteriorated products are disposed with cost.

8. Demand rate µ is known and constant.

4.2 Mathematical Modelling

According to the assumptions and description of the production system, a

mathematical model for the system has been formulated. The behaviour of the

inventory level in one production cycle is shown in Figure 4.1 and Figure 4.2 for

perfect and imperfect products respectively.As illustrated in Figure 4.1, the

inventory level starts from backlog B and the backlogged orders are satisfied first.

During the first time interval θ , the defective rate is maintained as α1. At the end of

the time interval, the defective rate increases to α2.

After the backlog is made up, the production will be continued until the desired

economical production quantity is achieved.All the imperfect products are reworked

in T3 and the whole production process is completed. In T4 and T5, the stocks are
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Figure 4.1: Inventory level of perfect items.

consumed by demand and backlog generated during T5. Similarly in Figure 4.2, the

total amount of imperfect products piles up in periods T1 and T2 due to the defects

produced. The gradient increases along with the rise of the defective rate. So in

general, the inventory level can be represented with the following equations. For

backlog period 0≤ t1 ≤ T1:

I′1(t1) = (1−αi)p−µ, (i−1)θ ≤ t1 ≤ iθ (4.1)

For i=1,

I1(t1) =
(
(1−α1)p−µ

)
t1−B, 0≤ t1 ≤ θ , (4.2)

Assume λi = (1−αi)p−µ for simplification and will be used throughout the paper,

I1(θ) = λ1θ −B, (4.3)
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Figure 4.2: Inventory level of imperfect items

For i = 2, I2(0) = I1(θ) = λ1θ −B,

I1(t1) = λ2t1 +λ1θ −B, θ ≤ t1 ≤ 2θ , (4.4)

Similarly, the general inventory function in the backlog period can be calculated as

follows

I1(t1) =



λ1t1−B 0≤ t1 ≤ θ

λ2(t1−θ)+λ1θ −B θ ≤ t1 ≤ 2θ

...

λN(t1− (N−1)θ)+∑
N−1
i=1 λiθ −B (N−1)θ ≤ t1 ≤ T1

(4.5)

For surplus stage, For the first period θ , the inventory function is

I′2(t2) = λN−δ I2(t2), 0≤ t2 ≤ θ , (4.6)

I2(t2) =
λN

δ
(1− exp(−δ t2)) 0≤ t2 ≤ θ , (4.7)
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So for general surplus inventory function can be obtained,

I2(t2)=



λN

δ
(1− exp(−δ t2)) 0≤ t2 ≤ θ

λN−λN+1

δ
exp(−δ t2)−

λN

δ
exp(−δ t2)+

λN +1
δ

θ ≤ t2 ≤ 2θ

...

∑
M−N
j=1

λN+ j−1−λN+ j

δ
exp(−δ ((i− j)θ)+ t2)

−λN

δ
exp(−δ ((M−N−1)θ + t2))+

λM

δ
(M−1)θ ≤ t2 ≤ T2

(4.8)

The total production quantity can be calculated as:

pMθ = Q, (4.9)

Hence the inventory level at the end of normal production Is = I2(T2) is equal to

Is = ∑
M−N
j=1

λN+ j−1−λN+ j

δ
exp(−δ ((M−N− j+1)θ))

−λN

δ
exp(−δ ((M−N)θ))+

λM

δ

(4.10)

After the normal production process,the slope of the inventory level can be

represented by:

I′3(t3) = (pr−µ)−δ I3(t3), 0≤ t3 ≤ T3, (4.11)

I′4(t4) =−µ−δ I4(t4), 0≤ t4 ≤ T4. (4.12)

I′5(t5) =−µ, 0≤ t5 ≤ T5. (4.13)
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According to the boundary conditions I5(T5) = −B, I2(T2) = I3(0) = Is, I3(T3) =

I4(0) = Im, I4(T4) = I5(0) = 0,the inventory level can be obtained.

I3(t3) =
(

Is−
pr−µ

δ

)
exp(−δ t3)+

pr−µ

δ
, 0≤ t3 ≤ T3, (4.14)

I4(t4) =
(

Im +
µ

δ

)
exp(−δ t4)−

µ

δ
, 0≤ t4 ≤ T4, (4.15)

I5(t5) =−µt5, 0≤ t5 ≤ T5. (4.16)

The maximum inventory level Im is equal to

Im =
(

Is−
pr−µ

δ

)
exp(−δT3)+

pr−µ

δ
, (4.17)

and from Eqn.(4.12) and I4(T4) = 0

Im =
µ

δ

(
exp(δT4)−1

)
. (4.18)

We can also find
N

∑
i=1

λiθ = dT5 = B (4.19)

For an imperfect product, the inventory function in normal production time is

Iim(tim) =
i−1

∑
1

αiθ +αit, (i−1)θ ≤ tim ≤ iθ . (4.20)

Iim(tim) =



α1tim 0≤ tim ≤ θ

α1θ +αtim θ ≤ tim ≤ 2θ

...

∑
M−1
i=1 αiθ +αMtim (M−1)θ ≤ tim ≤ T2 +T1

(4.21)
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The maximum number of imperfect products is

Id =
M

∑
i=1

αi pθ = prT3 (4.22)

With respect to the total cost per unit product, it consist of 6 parts: holding cost for

both perfect and imperfect product,backlog cost, deterioration cost, cost of

production and rework and lastly the fixed setup cost for each cycle run. The aim is

to minimize the value of the total cost per unit product.

TC = (PHC+ IHC+BC+DC+PRC+Cs)/Q (4.23)

Whereas the holding cost of a perfect product is

PHC = Chp

[∫ T2

0
I2(t2)d t2 +

∫ T3

0
I3(t3)d t3 +

∫ T4

0
I4(t4)d t4

]
(4.24)

The holding cost of imperfect products is:

IHC = Chi

[∫ T1+T2

0
Iim(tim)d t +

∫ T3

0
I3(t3)d t3

]
(4.25)

The backlog cost is:

BC = −Cbc

[∫ T1

0
I1(t1)d t1 +

∫ T5

0
I5(t5)d t5

]
(4.26)
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The deteriorating cost is:

DC = Cdc

[1
2

λNθ +∑
M−1
i=N+1 λiθ +

1
2

λMθ − Is

]
+Cdc

[
(pr−µ)T3− (Im− Is)

]
+Cdc

[
Im−dT4

]
(4.27)

The production and rework cost are:

PRC = CpQ+Cr prT3 (4.28)

By substituting all the inventory functions into the cost equation, the perfect product

inventory holding cost PHC is

PHC = Chp ∑
M−N
i=1

∫
θ

0

[
∑

i
j=1

λN+ j−1−λN+ j

δ
exp(−δ ((i− j)θ)+ t2)

−λN

δ
exp(−δ ((i−1)θ + t2))+

λN+i

δ

]
dt

+Chp

[
(Is−

pr−µ

δ
)(

1− exp(−δT3)

δ
)+

(pr−µ)T3

δ

]
+Chp

[
(Im−

µ

δ
)(

1− exp(−δT4)

δ
)− µT4

δ

]
(4.29)

The holding cost for imperfect product:

IHC = Chi

[
∑

M
i=1(∑

i
j=1 α jθ

2 +
1
2

αiθ
2)+

1
2

prT 2
3

]
(4.30)
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The backlog cost is:

BC = −Cbc

[∫
θ

0 (λ1t−B)dt
]
−Cbc ∑

N
i=1

[∫
θ

0

(
(∑i−1

j=1 λiθ −B)θ +λit
)

dt
]

−Cbc

[
− 1

2
µT 2

5

]
(4.31)

The deteriorating cost

DC = Cdc

[
(∑M

i=N+1 λiθ)− Is +(pr−µ)T3− (Im− Is)+ Im−dT4

]
(4.32)

In order to minimize the total cost per product, the optimal combination of M and

N are to be determined. So the relationships among M, N and other variables such

as time Ti and backlog B are essential for the solution. First of all, according to the

assumption, T1 and T2 can be represented by

T1 = θN (4.33)

T2 = θ(M−N) (4.34)

Also since the defective rate is linearly increasing at a constant rate γ , we have

αi = γ ∗ i f or i ∈ [0,M] (4.35)

Hence

λi = p−µ− γ pi (4.36)

and

λi−λi+1 = γ p (4.37)
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According to Eq.(4.22) and Eq.(4.35), we have

T3 =
γ pθ(M+1)2

2pr
(4.38)

Substitute Eq.(4.35) into the Eq. (4.10), we could obtain the following equation:

Is =
γ p
δ

∑
M−N
j=1 exp(−δ (M−N− j+1)θ)+

1
2

θ

−(1− γN)p−µ

δ
exp(−δ (M−N)θ)+

(1− γM)p−µ

δ

(4.39)

The above expression can be simplified by using the Taylor series approximation

under the assumptions that δ (M−N), δT3 and δT4 are small.This approach can also

be found in other research works on deteriorating products such as (Tai, 2013) and

(Wee, 1993). So,

exp(−δ (M−N− j+1)θ)≈ 1−δ (M−N− j+1)θ +
1
2
(δ (M−N− j+1)θ)2

(4.40)

exp(−δT3)≈ 1−δT3 +
1
2
(δT3)

2 (4.41)

exp(−δT4)≈ 1−δT4 +
1
2
(δT4)

2 (4.42)

We simplify the equation of Is and Im based on Eq.(4.39) and Eq.(4.17) as

Is = θ(M−N)(p−µ− γ p
2
(M+N +1)) (4.43)

Im = θ(M−N)(p−µ− γ p
2
(M+N +1))(1− δγ pθM2

2pr
)+(pr−µ)

γ pθM2

2pr

(4.44)
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Since Im can also be represented with Eq.(4.18), T4 can be determined as together

with Eq.(4.42)

T4 =
1
µ

[
θ(M−N)(p−µ− γ p

2
(M+N +1))(1− δγ pθM2

2pr
)+(pr−µ)

γ pθM2

2pr

]
(4.45)

According to Eq.(4.19), B an be expressed as

B = (p−d− 1
2

γ pN)θN (4.46)

and

T5 =
(p−d− 1

2γ pN)θN
µ

(4.47)

Deteriorating cost is reduced to

DC = Cdc

[
(p−µ)(M−N)θ − γ pθ

(M−N)(M−N−1)
2 + prT3−dT4

]
(4.48)

Backlog Cost is

BC = −Cb

[
1
2(p−µ)N2θ 2− 1

12γ pθ 2(N−1)(2N +5)N−BθN− 1
2dT 52

]
(4.49)

Holding cost for perfect products is

PHC = Chp

[
1
2(p−µ− γ pN)θ 2((M−N)(M−N +1)−1)

− 1
12γ pθ 2(2M−2N +1)(M−N)(M−N +1)

+Is(T3− 1
2δT 2

3 )+
1
2(pr−µ)T 2

3 + 1
2dT 2

4

]
(4.50)
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IHC = Chi

[
1

12γ pθ 2M(M+1)(2M+3)+ 1
2γ pθM2T3− 1

2 pT 2
3

]
(4.51)

Lastly by substituting T1,T2,T3,T4,T5,B and Q with M and N,the cost function can

be further reduced. The overall total cost per unit product is obtained. To be notice,

the items with second or higher order δ and γ have been removed in order to simplify

the equation.

TC = A1 +
A2
M +A3M+A4M2 +A5M3 +A6

N3

M +A7N2 +A8
N2

M +A9N2M

+A10N +A11
N
M +A12NM+A13NM2

(4.52)

where

A1 =Cp +
Chpθ

2
(θ − µ

p
− γ

6
)+

Chiγθ

4

A2 =
Cs

pθ
−

Chpθ

2
(1− µ

p
)

A3 =
Crγ

2
+

5Chiγθ

12
+

Chpθ

2
(
γ

2
− pγ

µ
− 1

2
+

p
2µ

)

A4 =
Chiγθ

6
−

Chpγθ

6
−Cdcµγδθ

2pr
(µ− p)

A5 =
Chpγδθ 2

pr
(p− µ

2
− p2

2µ
)

A6 =
γθ

2
(
1
3
− p

µ
)(Cb +Chp)

A7 =
Chp pγθ

2µ

A8 =Cdcγ +
Cbθ

2
(
γ

2
−1+

p
µ
)+

Chpθ

2
(

p
µ
+

3γ

2
− pγ

µ
−1)
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A9 =
Chpγδθ 2

pr
(p− µ

2
− p2

µ
)

A10 =Cdcγ +Chpθ(
p
µ
−1)(γ−1)

A11 =
Chpθ

2
(

µ

p
+

7γ

6
−1)− 5Cbγθ

12

A12 =
Cdcγδθ

2pr
(µ− p)

A13 =
Chpγδθ 2

pr
(µ− p+

p2

µ
)

For optimum values of TC(N,M), we make ∂TC(N,M)
∂N = 0 and ∂TC(N,M)

∂M = 0 which

is equivalent to

3A6
N2

M +2A7N +2A8
N
M +2A9NM+A10 +A11

1
M +A12M+A13M2 = 0 (4.53)

A3− A2
M2 +2A4M+3A5M2 +2A12N +A11

N
M2 +2A13MN +A9N2−A∗ N2

M2 −A6
N3

M2 = 0

(4.54)

The corresponding Hessian Matrix is shown below.

H =

 H1 H2

H2 H3


Where

H1 = 2A4 +
2A2

M3 +6A5M+2A13N +
2A11N

M3 +
2A8N2

M3 ++
2A6N3

M3
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H2 = A12−
A11

M2 +2A13M+2A9N− 2A8N
M2 −

3A6N2

M2

H3 = 2A7 +
2A8

M
+2A9M+

6A6N
M

According to the optimum condition that if the second order partial derivatives for M

and N are positive,then the Hessian matrix is positive definite and the minimum total

cost can be found. However, due to the complexity of the cost function, an explicit

solution cannot be obtained. Instead, we will use numerical examples to illustrate that

the cost function is convex and the optimum result are also determined accordingly.

4.3 Numerical Experiments

Numerical examples and sensitivity are described in the following section. To

be more specific, first of all, the plots generated for the cost function are used to

demonstrate that the cost function is convex. Then, sensitivity analysis indicates the

impact of different parameters on the overall inventory performance.

4.3.1 Numerical examples

In this examples, the values of the parameters are assumed as follows:

γ = 0.01,θ = 0.01,δ = 0.1,Chp = $40,Chi = $30,Cp = $100;Cr = $40,Cb =

$60,Cdc = $60,µ = 100, p = 600, pr = 300. The optimum combination of N and M

are (N∗,M∗) = (4,10).

As shown in Figure 4.3 ,the cost function shows its convexity and the optimum pair

of (N∗,M∗) is the lowest point. While in Figures 4.4 and 4.5, the convexity is more
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Figure 4.3: The plot of total cost per unit product against M and N

clear when M and N are fixed at its optimum value respectively. Hence the optimal

value of T ∗1 , T ∗2 , T ∗3 , T ∗4 , T ∗5 and T ∗ are calculated as

T ∗1 = 0.04, T ∗2 = 0.06, T ∗3 = 0.01, T ∗4 = 0.293, T ∗5 = 0.195,

The optimal production quantity and backlog quantity are determined as

Q∗ ≈ 60, B∗ ≈ 20,

The optimal total cost per unit product, the optimum production run time and the

optimal cycle time are:

TC∗ = 118.479, T ∗1 +T ∗2 = 0.1, T ∗ = 0.598
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Figure 4.4: Total cost per unit product against M

Figure 4.5: Total cost per unit product against N

4.3.2 Sensitivity analysis

Sensitivity analysis for the parameters was undertaken and the results and discussion

are listed below. As shown in Tables 4.1 and 4.2, for each parameters, four more

experiments were carried out with changes of -50%, -25%, 25 % and 50 %. The

corresponding optimal values of the total cost per unit product, M and N are presented
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Table 4.1. The sensitivity analysis for different key parameters

Parameter Optimal values Changes
-50% -25% 0% 25% 50%

θ

TC∗ 120.68 118.824 117.835 117.16 116.765
M∗ 16 12 10 8 7
N∗ 5 4 4 3 3

γ

TC∗ 116.116 116.977 117.835 118.569 119.327
M∗ 10 10 10 9 9
N∗ 4 4 4 3 3

δ

TC∗ 117.824 117.829 117.835 117.84 117.846
M∗ 10 10 10 10 10
N∗ 4 4 4 4 4

µ

TC∗ 124.166 120.033 117.835 116.399 115.43
M∗ 8 9 10 10 10
N∗ 4 3 4 4 3

p
TC∗ 119.664 118.479 117.835 117.563 117.193
M∗ 17 12 10 9 6
N∗ 4 4 4 3 2

pr

TC∗ 117.817 117.832 117.835 117.841 117.842
M∗ 10 10 10 10 10
N∗ 4 4 4 4 4

in the tables. It should be noted that, the values of M and N are interpreted as the

production run time and backlog quantity respectively in the discussion since they

have positive relationships.

For the key parameters:

i. Both the parameters θ and γ ,which are related to the imperfect production

system, have a significant impact on the total cost per unit product. An

increment of θ reduces the cost, while for γ , the lower the value, the lower the

cost. It means that slow deterioration of the production quality or a relatively
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Table 4.2. The sensitivity analysis for different unit cost

Unit cost Optimal values Changes
-50% -25% 0% 25% 50%

Chp

TC∗ 115.054 116.687 117.835 118.593 119.234
M∗ 11 10 10 9 9
N∗ 2 3 4 4 5

Chi

TC∗ 117.764 117.819 117.835 117.851 117.866
M∗ 10 10 10 10 10
N∗ 4 4 4 4 4

Cdc

TC∗ 117.07 117.421 117.835 118.035 118.42
M∗ 10 10 10 10 9
N∗ 4 4 4 3 3

Cp

TC∗ 67.803 92.8032 117.835 142.898 171.433
M∗ 10 10 10 10 10
N∗ 4 4 4 4 4

Cpr

TC∗ 116.803 117.303 117.835 118.303 118.753
M∗ 10 10 10 10 9
N∗ 4 4 4 4 4

Cb

TC∗ 116.11 117.19 117.835 118.202 118.515
M∗ 10 10 10 9 9
N∗ 7 5 4 3 2

Cs

TC∗ 111.898 114.556 117.835 119.908 121.802
M∗ 7 9 10 11 11
N∗ 3 3 4 4 4

steady defective rate helps cut down the total cost per unit product. In addition,

high γ shortens production run time which is represented by M.

ii. The product deterioration has positive relationship with the total cost per unit

product. However when compared with θ and γ , its influence on the overall

system is relatively smaller.
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iii. The total cost per unit product is especially sensitive to the changes of the

demand rate µ . With a rise of µ , the cost drops rapidly while the total

production run time Mθ increases instead. The value of M is heavily influenced

by the production rate. During increase of the production rate, M reduces from

17 to as low as 6. On the contrary, the influence brought about by the

re-manufacturing rate is not obvious.

For the cost paramters:

i. High holding cost Chp causes an increase in the backlog quantity and a decrease

of the holding quantity, meanwhile the value of the backlog quantity drops

significantly along with increase of the backlog cost Cb.

ii. The total cost per unit product is affected by the production cost to a large extent,

but it does not change the production run time and backlog quantity.

iii. Both the production run time and the backlog quantity increase with higher setup

cost Cs. The total cost per unit product is also sensitive to changes in the setup

cost.

4.4 Summary

In this chapter, a modified EPQ model, with rework and backlog, has been

proposed. Compared with the existing works, the deterioration of the product and

production process is taken into account at the same time, which is the main

contribution to this research field. To model the deterioration of the production

process, we assume that the defective rate increases at constant intervals. Defective
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products are reworked at the end of normal production process and the rework is

viewed as a perfect process. In order to minimize the total cost per unit product, the

optimal pair of the total interval number θ in normal period M and in backlog

period N are determined. Due to the high complexity of the cost function, we cannot

prove the convexity of the function in an analytical way. Instead, numerical

experiments are carried out to illustrate the convexity of the cost function and to find

the optimal solution. The impact of all different parameters on the system are

provided and summarized in the sensitivity analysis.
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Chapter 5 A Stochastic Production and
Inventory Model in A Two-state
Production System with Inventory
Deterioration, Rework Process and
Backordering

5.1 Notations and Assumptions

The detailed notation and assumptions used in this paper are shown in the following

sub-sections:

Control ariables

B Backlog quantity

Q Economic production quantity

Parameters

α The defective rate of production process in in-control state

β The defective rate of production process in out-of-control state

γ The defective rate in rework process

θ Time interval of in-control state

δ Deteriorating rate of inventory

µ Demand rate (unit/time)
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p Production rate (unit/time)

pr Rework rate (unit/time)

Chp Holding cost of perfect products ($/unit/time)

Chi Holding cost of imperfect products ($/unit/time)

Cdc Deteriorating cost ($/unit)

Cp Production cost ($/unit)

Cd p Disposal cost of scraped product($/unit)

Cpr Rework cost of imperfect product($/unit)

Cb Penalty cost for backlog ($/unit/time)

Cs Fixed setup cost ($/cycle)

Is The inventory level of perfect product at the end of normal production period

Im The inventory level of perfect product at the end of rework process

Ir The maximum inventory level of imperfect product

Assumptions

1. Backlog is allowed and at the beginning of each production run, the products

are first used to satisfy the backorder.

2. At the end of each production run, maintenance activities are conducted to

restore the machine condition. So at the beginning of each production run, the

machine is assumed to be in control, and the maintenance cost is included in

the setup cost.

3. During the production process, all the manufactured products are inspected

instantly and the inspection time is assumed to be negligible. After normal

production, imperfect products are reworked together.
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4. Only perfect products deteriorate at a constant rate δ , and deteriorated items

are screened out and disposed of at the end of a production run.

5. The demand rate µ is a known constant.

6. The process deterioration is assumed to occur in normal production process

only, but not in rework processes.

5.2 Mathematical Model

This study models a production system with a single-machine, single-product

production system, and both the production and rework processes are operated on

the same machine. The products are subject to quality deterioration and the machine

is assumed to be imperfect, and deteriorates after a stochastic period of time. The

model can be divided into 5 stages, which are represented as T1,T2,T3,T4 and T5.

During T1 and T2, normal production is carried out. In T1, product is firstly used to

satisfy the backlog. And in T2, products are aggregated and stored in warehouse to

meet future demand. Imperfect products generated from T1 and T2 are reworked

during T3. Production is stopped in T4 and demand is satisfied directly from

inventory. Finally, during T5, demand is backlogged and expected to be fulfilled in

the next production run.

In addition, according to the time the production system changes from an in-control

state to an out-of-control state, three different cases are covered . In Cases 1 and 2,

the switch of states occurs in the backordering period and the period with inventory

surplus. The defective rate increases from α to β as a result. While in Case 3, the

deterioration does not occur during the normal production time, hence, the
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deterioration does not influence the production at all. The equations for each of the

models are presented as follows.

5.2.1 Case 1: the switch occurs within T1 0≤ θ ≤ T1

Time

Is

Im

T1α = θ

T1β

−B

Inventory Level

T1 T2 T3 T4 T5

T

−µ−δ I4

(1−β )p−µ−δ I2

Figure 5.1: Inventory level of perfect product in Case 1.

Figure 5.1 shows the inventory behavior of the perfect products. In this case, T1 is

divided into two separate periods T1α and T1β . During T1α , the defective rate remains

as α , while in T1β , the defective rate changes to β . During T3, the imperfect products

are reworked together, and in T4 and T5, the normal production process stops and the

current inventory is consumed. The inventory in each time period can be described

by the differential equations below:

I′1α(t1α) = (1−α)p−µ, 0≤ t1α ≤ T1α , (5.1)
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I′1β
(t1β ) = (1−β )p−µ, 0≤ t1β ≤ T1β , (5.2)

I′2(t2) = (1−β )p−µ−δ I2(t2), 0≤ t2 ≤ T2, (5.3)

I′3(t3) = (1− γ)pr−µ−δ I3(t3), 0≤ t3 ≤ T3, (5.4)

I′4(t4) =−µ−δ I4(t4), 0≤ t4 ≤ T4, (5.5)

I′5(t5) =−µ, 0≤ t5 ≤ T5. (5.6)

The boundary conditions are I1α(0) = I5(T5) = −B, I1α(T1α) = I1β (0), I1β (T1β ) =

I2(0)= 0, I2(T2)= I3(0)= Is, I3(T3)= I4(0)= Im, I4(T4)= I5(0)= 0. So the solutions

for the above differential equations are:

I1α(t1α) =
(
(1−α)p−µ

)
t1α −B, 0≤ t1α ≤ T1α , (5.7)

I1β (t1β ) =
(
(1−β )p−µ

)
t1β +

(
(1−α)p−µ

)
T1α −B,

0≤ t1β ≤ T1β

(5.8)

I2(t2) =
((1−β )p−µ

δ

)
(1− exp(−δ t2)), 0≤ t2 ≤ T2, (5.9)

I3(t3) =
(

Is−
(1− γ)p−µ

δ

)
exp(−δ t3)+

(1− γ)pr−µ

δ
,

0≤ t3 ≤ T3

(5.10)

I4(t4) =
(

Im +
µ

δ

)
exp(−δ t4)−

µ

δ
, 0≤ t4 ≤ T4, (5.11)

I5(t5) =−µt5, 0≤ t5 ≤ T5. (5.12)

Hence, it can be deduced from Eqn (5.9) when t2 = T2

Is =
((1−β )p−µ

δ

)
(1− exp(−δT2)), (5.13)
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and from Eqn (5.9) and Eqn (5.10), the maximum inventory level for a perfect product

can be obtained as

Im =
(

Is−
(1− γ)pr−µ

δ

)
exp(−δT3)+

(1− γ)pr−µ

δ
, (5.14)

and from Eqn (5.11), Im can also be represented as

Im =
µ

δ

(
exp(δT4)−1

)
. (5.15)

From Figure 5.1, the backlog quantity B is given by

B =
(
(1−α)p−µ

)
T1α +

(
(1−β )p−µ

)
T1β (5.16)

and the total lot size Q can be obtained as

Q = p(T1α +T1β +T2). (5.17)

In terms of cost,

TC1 = PHC+ IHC+BC+DC+PRC+DPC+Cs, (5.18)

where the holding cost of perfect products is

PHC =
Chp

Q

(∫ T2

0
I2(t2)d t2 +

∫ T3

0
I3(t3)d t3

+
∫ T4

0
I4(t4)d t4

) (5.19)
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The holding cost of imperfect products is

IHC =
Chi

Q

(∫ T1α

0
(α pt1α)d t1α +

∫ T1β

0
(β pt1β

+α pT1α)d t1β +
∫ T2

0
(β pt2 +α pT1α)d t2

+
∫ T3

0
(β p(T1β +T2)+α pT1α − γ prt3)d t3

)
.

(5.20)

The backlog cost is

BC = −Cb

Q

(∫ T1α

0
I1α(t1α)d t1α +

∫ T1β

0
I1β (t1β )d t1β

+
∫ T5

0
I5(t5)d t5

)
.

(5.21)

The deteriorating cost is

DC =
Cdc

Q

(
(((1−β )p−µ)T2 +((1− γ)pr−µ)T3

−Imax)+(Imax−dT4)
)
.

(5.22)

The production and rework costs are

PRC = Cp +
Cr

Q

(
prT3

)
. (5.23)

The disposal cost is

DPC =
Cd p

Q

(
γ prT3

)
. (5.24)
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Time

Ir

Inventory Level

T1 +T2 T3

T1α

−pr

β p

α p

Figure 5.2: Inventory level of imperfect quality items in Case 1.

In order to simplify the equation, we let a1 = (1−α)p− µ , a2 = (1− β )p− µ ,

a3 = (1− γ)p−µ . Since the expected in-control time is θ ,

T1α = θ . (5.25)

According to Eqn (5.16), T1β is given by

T1β =
B−a1T1α

a2
=

B−a1θ

a2
(5.26)

Hence T2 can be calculated with Eqn (5.17)

T2 =
Q
p
−T1α −T1β =

Q
p
− B

a2
− (a2−a1)

a2
θ . (5.27)

For the imperfect items, the inventory behavior is presented in Figure 5.2, and the

maximum inventory level is given by

Ir = α pT1α +β p(T1β +T2) = prT3. (5.28)
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Hence the T3 can be represented by substituting Eqn (5.25) and Eqn (5.26)

T3 =
1
pr
((a2−a1)θ +Qβ ). (5.29)

Next, we express T4 in terms of T3 and T2. From Eqns (5.11), (5.13) and (5.14), we

have

a2(1− exp(−δT2))exp(−δT3)+a3 = µ(exp(δT4)−1). (5.30)

The above expression can be simplified by using the Taylor series approximation

under the assumption that δT2, δT3 and δT4 are small. After the simplification, as

given in Appendix A, T4 can be represented as

T4 =
a2

µ
T2−

a3

µ
(T3−

δT 2
3

2
). (5.31)

Similarly by using the exponential series approximation, the different cost functions

can be simplified as follows:

PHC =
Chp

Q
(
a2T 2

2
2

+a2T2T3 +
a3T 2

3
2

+
µT 2

4
2

)

IHC =
Chi

Q
(
α pT 2

1α

2
+

1
2

β p(
Q
p
−T1α)

2 +α pθ(
Q
p
−T1α)

+(βQ−θ(a1−a2))T3 +
γ prT 2

3
2

)

BC =
Cbc

Q
(

B2

2d
+

(B−a1θ)2

2a2
+Bθ − a1θ 2

2
)

DC =
Cdca3

Q
(2T3−

δT 2
3

2
)

PRC = Cp +
Cr

Q

(
prT3

)
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Time

Is

Im

−B

Inventory Level

θ

T1 T2 T3 T4 T5

T

T2α T2β

−µ−δ I4

a2−δ I2

a1−δ I2

Figure 5.3: Inventory level of perfect items in Case 2

DPC =
Cd p

Q
(γ prT3)

5.2.2 Case 2: the switch occurs within T1 and T2 T1 ≤

θ ≤ T1+T2

Similar to Case 1, the inventory level in T2 is represented by two separate equations

I2α and I2β , while I3, I4 and I5 are kept the same. Hence those repeated equations are

not listed in the following two cases. Figure 5.3 presents the inventory behavior in

Case 2.

I′1(t1) = (1−α)p−µ, 0≤ t1 ≤ T1, (5.32)

I′2α(t2α) = (1−α)p−µ, 0≤ t2α ≤ T2α , (5.33)

I′2β
(t2β ) = (1−β )p−µ, 0≤ t2β ≤ T2β , (5.34)
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The boundary conditions are I2α(T1α) = I2β (0), I2β (T2β ) = I3(0) = Is. The solutions

for the above differential equations are

I1(t1) = ((1−α)p−µ)t1−B, 0≤ t1 ≤ T1, (5.35)

I2α(t2α) =
a1

δ
(1− exp(−δ t2α)), 0≤ t2α ≤ T2α , (5.36)

since I2α(T2α) = I2β (0). We also have

I2β (t2β ) =
(a1−a2

δ
− a1

δ
exp(−δT2α)

)
exp(−δ t2β )+

a2

δ
,

0≤ t2β ≤ T2β .
(5.37)

Hence, it can be deduced from I3 that at t2 = T2

Is =
(a1−a2

δ
− a1

δ
exp(−δT2α)

)
exp(−δT2β )+

a2

δ
(5.38)

and from Eqn (5.37)

Im =
(

Is−
a3

δ

)
exp(−δT3)+

(a3

δ

)
. (5.39)

The backlog quantity B is given by

B = a1T1 = dT5. (5.40)

The total lot size Q is given by

Q = p(T1 +T2α +T2β ). (5.41)
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Since the expected in-control time is θ and θ = T1 +T2α , hence

T2α = θ −T1 = θ − B
a1

. (5.42)

Based on Eqn (5.41),

T2β =
Q
p
−θ . (5.43)

According to the imperfect product inventory equation,

α pθ +β pT2β = prT3. (5.44)

So T3 can be obtained as

T3 =
p
pr

(
αθ +βT2β

)
=

p
pr

(
αθ +β

Q
p
−θ

)
. (5.45)

From Eqns (5.38) and (5.39), we also have

(
Is−

a3

δ

)
exp(−δT3)+

a3

δ
=

µ

δ

(
exp(δT4)−1

)
,

(
(
a1−a2

δ
− a1

δ
exp(−δT2α))exp(−δT2β )+

a2

δ

−a3

δ

)
exp(−δT3)+

a3

δ
=

µ

δ
(exp(δT4)−1).

Following the same procedure to simplify the cost function in Case 1, assume 1−

exp(−δT2) ≈ δT2−
(δT2)

2

2
, and the same with T3 and T4. The equation for T4 can

be simplified as

T4 =
1
µ

(
δ (a1T2α +a2T2β +a3T3)−

δ 2(a1T2αT2β +a1T2αT3 +a2T2β T3)
)
.

(5.46)
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The cost function can also be reduced accordingly. First of all the holding cost of the

perfect product is

PHC =
Chp

Q
[
a1

δ
T2α −

a1

δ 2 (exp(−δT2α)−1)+
a2

δ
T2β

+(
a1−a2

δ 2 − a1

δ 2 exp(−δT2α))(1− exp(−δT2β ))

+((
a2−a1

δ 2 − a1

δ 2 exp(−δT2α))(exp(−δT2β ))

+
a2−a3

δ
)
1− exp(−δT3)

δ
+

a3

δ
T3 +µ exp(δT4)

−µ

δ
T4].

By using the Taylor expansion, the equation can be further simplified as

PHC =
Chp

Q

(a1

2
T 2

2α
+a1T2αT2β −

a1T 2
2β

2
+

a2

δ
T3

−a2−a3

2
T 2

3

)
.

The imperfect production holding cost is

IHC =
Chi

Q

(1
2

αβθ 2 +
1
2

β pT 2
2β

+α pθ +
1
2

γ prT 2
3

)
.

For other cost functions, they are the same as in Case 1, so they are not provided.

5.2.3 Case 3: the switch occurs after T2, θ > T1+T2

Since the switch occurs outside the normal production run time, the inventory is

represented by only one equation in each period, see Figure 5.4. Especially when
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Time

Is

Im

−B

Inventory Level

T1 T2 T3 T4 T5

T

a1−δ I2

−d−δ I4

Figure 5.4: Inventory level of perfect items in Case 3.

compared with Case 2, the equation for I2 is changed to

I2(t2) =
a1

δ

(
1− exp(−δ t2)

)
, 0≤ t2 ≤ T2, (5.47)

where the defective rate still remains as α during this period. Is changes to the

following equation according to Eqn (5.47) at t2 = T2

Is =
a1

δ
− a1

δ
exp(−δT2). (5.48)

By using the Taylor expansion, the equation of the holding cost for perfect and

imperfect products can be simplified as:

PHC =
Chp

Q

(a1

2
T 2

2α
+a1T2αT2β −

a1T 2
2β

2
+

a2

δ
T3

−a2−a3

2
T 2

3

)
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IHC =
Chi

Q

( pr(pr +α p)T 2
3

2α p

)

5.2.4 Integrated model

The integrated model takes all the three different cases into consideration. Here, we

assume that with mean 1/λ , the transition time of a machine failure θ is stochastic

and follows an exponential distribution. An exponential distribution is often used

in reliability engineering to model machine failures (Dallery, 1994). While in this

study, we assume that the range of the distribution is long enough to cover all the

three cases, so all the three cases can occur with certain probabilities.

f (θ) = λe−λθ , 0≤ θ ≤ ∞. (5.49)

For Case 1, θ needs to satisfy

−B+((1−α)p−µ)θ ≤ 0, (5.50)

so the boundary condition for θ is

θ ≤ B
a1

. (5.51)

For Case 2, the boundary condition is calculated as

B
a1
≤ θ ≤ Q

p
. (5.52)
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And lastly in Case 3, the boundary condition is

Q
p
≤ θ ≤ ∞. (5.53)

Hence the expected total cost can be expressed as

ETC = lim
y→∞

ET̃C (5.54)

where

ET̃C =
∫ B/a1

0
TC1(θ) f (θ)dθ +

∫ Q/p

B/a1

TC2(θ) f (θ)dθ

+
∫ y

Q/p
TC3(θ) f (θ)dθ .

(5.55)

The expected total cost is approximated by Eqn (5.55) with a large y. Parameter y is

defined as the upper boundary for the integration in order to reduce the integration

complexity in the equations and numerical experiments. The value of y has been set

to a large number compared with the mean value of the exponential distribution, so

it will not affect the overall result too much. This will be proved in the sensitivity

analysis on y.

By substituting all the cost functions and T1,T2,T3,T4 and T5 with B and Q, the overall

total cost per unit product is obtained. Note that the items with second or higher order

α , β , δ and γ have been removed in order to simplify the equation.

ET̃C =
1
Q
(C1 +C2e−

2λ

p Q +C3e−
2λ

a1
B
+C4Be−

2λ

a1
B
)

+Q(C5e−
λ

a1
B
+C6e−

λ

p QB)+C7e−
λ

a1
B

+BC8e−
2λ

p Q +C9B2e−
λ

a1
B

(5.56)
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where C1 to C9 are the coefficients without decision variables, and the simplified

results are listed in Appendix B. For optimum values of ETC(Q,B), we make
∂TC(Q,B)

∂B = 0 and ∂TC(Q,B)
∂B = 0 which is equivalent to

C5e−
Bλ

a1 − C1
Q2 +BC6e−

Qλ

p (1− Qλ

p )

−2(C2+C8B)λe−
2Qλ

p

p = 0

(5.57)

and

Q(C6e−
Qλ

p − C5λe
−Bλ

a1

a1
)+(C4− 2(C3+BC4)λ

a1
)e−

2Bλ

a1

+(2C9B− (C7+B2C9)λ
a1

)e−
Bλ

a1 +C8e−
2Qλ

p = 0

(5.58)

respectively. The corresponding Hessian Matrix is

H =

 H1 H2

H2 H3


where

H1 = 2C1
Q3 + 4(C2+C8B)λ 2

p2 e−
2Qλ

p + C11Bλ (Qλ−2p)
p2 e−

Qλ

p ,

H2 = (1− Qλ

p )C6e−
Qλ

p − C5λ

a1
e−

Bλ

a1 − 2C8λ

p e−
2Qλ

p ,

H3 = e
− 2Bλ

a1

a2
1

((2C18a2
1 +(C7 +B2C9 +C5Q)λ 2

−4BC9a1λ )e−
Bλ

a1 +4(C3 +BC4)λ
2−4C4a1λ ).

In this model, the production quantity Q and the backlog quantity B are the two

decision variables. If the second order Hessian Matrix of this model is positive

definite, then the total cost function is convex and the minimum expected total cost

per product can be determined. However, an explicit solution for the Hessian matrix
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cannot be obtained because of the complexity of the cost function. As an alternative

approach, numerical examples are applied to show the convexness of the cost

function.

5.3 Numerical Experiments

In this section, numerical examples are first provided to prove the convexness of

the cost function and to determine the optimal solutions for the proposed model.

Sensitivity analysis is then carried out to measure the impact of different parameters

on the system.

5.3.1 Numerical examples

In this example, the values of the parameters are taken as: p = 6000, pr = 5000,α =

0.15,β = 0.3,γ = 0.2,λ = 0.05,δ = 0.1,µ = 3000,y = 800,Chp = $4,Chi =

$3,Cp = $25;Cr = $10,Cb = $20,Cdc = $40,Cd p = $30,Cs = $4000.

According to Figure 5.5, the 3 dimensional plot of the cost function shows

convexness and the global optimum solution can be found. In addition, the graphs of

the expected total cost per product against both Q and B are shown in Figures 5.6

and 5.7. The two graphs also help prove the convexness of the proposed cost

function.

Hence the optimum combination of Q and B are determined as

(Q∗,B∗) = (4223,456), and the optimal total cost per unit product is:

ETC∗ = 29.3
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Figure 5.5: The plot of expected total cost per unit product against Q and B

5.3.2 Sensitivity analysis

The sensitivity analysis for the parameters is studied as follows, and mainly consists

of three parts. First of all, the inventory performance against system parameters is

analyzed, as shown in Table 5.1, then followed by the impact of the cost coefficients

on the system performance as in Table 5.2. Lastly, the ratios between Q and B are

calculated in each different scenario to examine the relationship between the backlog

and total production quantity, as in Table 5.3. The results and sub-conclusions are

provided below. In this sensitivity analysis, each parameter listed is varied in four

different levels: 50%, −25%, 25% and 50%.

The new optimum solutions (Q∗,B∗) and their corresponding expected total costs

per product are calculated and compared with the results from the original optimal

solution. In Tables 1 and 2, instead of showing the optimal solutions, the differences
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Figure 5.6: ETC against Q

between the original optimal solution and the new solutions are provided for better

illustration. In Table 5.3, the values of Q/B are directly provided. Note that the

experiments on 0.5× p, 0.5× pr and 1.5×µ cannot be implemented, otherwise the

production speed is lower than the demand rate which makes the model invalid.

Starting with the system parameters, the expected total cost per product is

significantly affected by the values of α , λ and µ . α and λ have a positive

relationship with the total cost per unit product. λ , as the parameter for exponential

distribution, influences the mean time of production with a low defective rate.

Hence high λ , which represents low mean time, causes the total cost to rise, but

when the mean time can be extended, the total cost can be reduced to a large extent.

A high value of α leads to an increasing number of defective products which will

result in a higher reproduction cost and backlog cost.
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Figure 5.7: ETC against B

The total production quantity is sensitive to the changes in p and µ . The value of Q

drops rapidly when the production rate changes from −50% to 50% of the original

value. On the contrary, Q rises along with the demand rate because more products

need to be produced in order to satisfy the customer demand. The impact of the

deterioration rate on system performance is limited, but the increase in the

deterioration rate makes the total production quantity smaller and the total cost per

unit product higher. In terms of cost parameters, Chp, Chi,Cb and Cdc show negative

relationships with the total production quantity, but both the production quantity and

backlog grow with the defect disposal cost and reproduction cost. The impact of the

production cost on the total production quantity and backlog can be neglected. A

high setup cost will increase both the production quantity and the backlog cost,

which can be interpreted as the need to produce more products to share the setup

cost.
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In Table 5.3, the ratio of Q to B can be interpreted as the relationship between the

backlog and inventory surplus which can provide help with the decision making

process regarding the backlogging quantity. On the one hand, a high inventory

surplus has an excessive inventory holding cost and leads to extra product

deterioration. On the other hand, a large backlog leads to a high penalty cost. How

to balance the inventory surplus and backlog in different situations is one of the key

problems in inventory management. The lower the ratio is, the more the products

are used to satisfy the backlog at the beginning of each production run.

According to the results in Table 5.3, the production rate p, Chp and Cdc can influence

the
Q
B

ratio to a large extent, especially the production rate. When the value of these

three parameters increase, the ratio drops which means that a larger portion of items

produced is sent to meet the backlogged demand. On the contrary, the ratio rises

significantly with increase of the production defective rate α and β , demand µ and

Cb. The changes brought about by the other parameters are relatively smaller. For

example, an increase of δ leads to more backlog in the total production quantity since

deterioration only occurs in the periods with inventory surplus. In the end, it can be

concluded that the value of y does not have a significant influence on the result of the

model.

5.4 Summary

On the topic of EPQ with an imperfect production system, a large amount of

research has been done. Particularly for deteriorating production systems, the extant

literature has provided comprehensive analysis. However, as discussed earlier, in

some industries the phenomenon of product deterioration cannot be neglected. What
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is the inventory behavior under the condition of both product and processes

deterioration needs to be examined and analyzed. This study has modeled such a

problem, considering rework and backordering at the same time. Both the

production and rework process are assumed to be imperfect, but only the normal

production process is subject to deterioration. At the end of each production run,

maintenance activities are applied to enable the production system to recover to a

good condition. The deterioration of production process is categorized into three

different cases depending on the occurrence of deterioration in different production

stage: Backlog stage, surplus stage and post-production stage. The optimal expected

total cost per unit product is obtained by simultaneously determining the total

production quantity and backlog quantity in one production run. Numerical

experiments are carried out and used to illustrate the performance of the proposed

model. Sensitivity analysis shows that the model is sensitive to the changes in

different parameters, and their corresponding impact on the inventory performance

are discussed and summarized.
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Table 5.1. Sensitivity analysis for different parameters

Parameters
Optimal solutions

Original
setting

Differences with original setting

0 −50% −25% 25% 50%

p
ETC∗ 29.3 NA −0.49 0.16 0.21

Q∗ 4223 NA 1503 −327 −432
B∗ 456 NA −264 193 359

pr

ETC∗ 29.3 NA −0.03 0.02 0.04
Q∗ 4223 NA 77 −41 −67
B∗ 456 NA 31 −17 −29

α

ETC∗ 29.3 −1.18 −0.59 0.6 1.19
Q∗ 4223 −35 −18 18 34
B∗ 456 87 44 −44 −89

β

ETC∗ 29.3 −0.14 −0.07 0.05 0.09
Q∗ 4223 356 151 −107 −184
B∗ 456 73 36 −36 −77

γ

ETC∗ 29.3 −0.41 −0.2 0.21 0.42
Q∗ 4223 −75 −39 42 88
B∗ 456 −19 −9 10 20

δ

ETC∗ 29.3 −0.11 −0.05 0.06 0.11
Q∗ 4223 166 58 −39 −69
B∗ 456 15 4 −2 −3

λ

ETC∗ 29.3 0.17 0.09 −0.07 −0.34
Q∗ 4223 −411 −217 241 850
B∗ 456 −74 −38 42 187

µ

ETC∗ 29.3 1.22 0.54 −0.5 NA
Q∗ 4223 −1661 −945 1535 NA
B∗ 456 277 133 −141 NA

y
ETC∗ 29.3 0 0 0 0

Q∗ 4223 0 0 0 0
B∗ 456 0 0 0 0
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Table 5.2. Sensitivity analysis for different cost parameters

Parameters
Optimal solutions

Original
setting

Differences with original setting

0 −50% −25% 25% 50%

Chp

ETC∗ 29.3 −0.3 −0.13 0.12 0.21
Q∗ 4223 827 335 −243 −429
B∗ 456 −83 −36 30 56

Chi

ETC∗ 29.3 −0.1 −0.04 0.05 0.1
Q∗ 4223 239 115 −105 −203
B∗ 456 26 13 −11 −21

Cd p

ETC∗ 29.3 −0.42 −0.21 0.22 0.43
Q∗ 4223 −53 −27 28 56
B∗ 456 −1 0 1 2

Cp

ETC∗ 29.3 −12.5 −6.25 −3.75 12.5
Q∗ 4223 0 0 0 0
B∗ 456 0 0 0 0

Cr

ETC∗ 29.3 −0.7 −0.35 0.36 0.71
Q∗ 4223 −88 −44 47 95
B∗ 456 −2 −1 2 3

Cb

ETC∗ 29.3 −0.18 −0.07 0.06 0.09
Q∗ 4223 424 159 −105 −181
B∗ 456 270 104 −70 −122

Cs

ETC∗ 29.3 −0.55 −0.25 0.23 0.43
Q∗ 4223 −1245 −571 505 963
B∗ 456 −131 −60 53 100

Cdc

ETC∗ 29.3 −0.08 −0.04 0.04 0.08
Q∗ 4223 194 93 −85 −164
B∗ 456 −10 −4 5 9
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Table 5.3. Sensitivity analysis for ratio of Q and B

Parameters Optimal value −50% −25% 0 25% 50%

p

(Q/B)∗

NA 29.82

9.26

6 4.65

pr NA 8.83 9.53 9.73

α 7.71 8.41 10.29 11.6

β 8.66 8.89 9.8 10.66

γ 9.49 9.36 9.15 9.06

δ 9.32 9.31 9.22 9.17

λ 9.98 9.59 8.97 7.89

µ 3.5 5.57 18.28 NA

y 9.26 9.26 9.26 9.26

Chp 13.54 10.85 8.19 7.41

Chi 9.26 9.25 9.25 9.24

Cd p 9.16 9.2 9.3 9.34

Cp 9.26 9.26 9.26 9.26

Cr 9.11 9.18 9.32 9.41

Cb 6.4 7.83 10.67 12.1

Cs 9.16 9.22 9.29 9.33

Cdc 9.9 9.55 8.98 8.73
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Chapter 6 Discussion

In this chapter, we discuss the proposed models and methodologies used in this

research. The results are then analyzed and interpreted in terms of their implications

and corresponding managerial insights. In the end, the limitations are highlighted

for each proposed model and methodology.

6.1 Integrated Forecasting and Hedging Point

Based Control Problem

Chapter 3 presents a study on the integrated forecasting and hedging point based

control problem. The demand forecasting process is simulated and categorized into

two different cases. First of all, a two-level control policy is proposed to solve the

problem with the Markov modulated Poisson demand process, which is often used

in qualitative forecasting. Then, the forecasting process, using time series methods,

is modeled and a forecast-corrected control policy is proposed accordingly. A

simulation-based experiment design and response surface methodology is applied to

solve the proposed problem.

In Case 1, a two-level hedging point-lot size control policy is proposed to handle the

quantitative demand forecasting. Especially when forecast demand process can be

described with two-state Markov process, the two-level hedging point-lot size

control policy is suitable to solve this type of problem. The proposed

simulation-based experiment design and response surface methodology is proven to
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be efficient and effective in the study. Compared with analytical and heuristic

methods used in previous literature, this method is more practical to solve extremely

complex problems. The question of what is the best combination of lot size and

hedging point for various levels of low demand period and high demand period can

be answered.

In Case 2, a forecast-corrected hedging point control policy is proposed and the

impact of different forecasting methods on the performance of control policy is

investigated. Results show that proposed forecast-corrected control policy can

provide a better performance than the traditional policy. However when the

forecasting errors are large enough due to the pattern of demand and forecasting

methods, stationary control policy is preferred instead of non-stationary policy.

Stationary control policy can then be used to provide a good approximation to the

non-stationary control. This study helps us gain some significant insights about

which policy should be chosen when the forecasting inaccuracy is known to a

company. Managers are able to choose the right control policy and forecasting

methods based on the information from demand forecasting. With an accurate

forecasting method, non-stationary control policy is recommended to be used in

production and inventory control.

Although this study has achieved the objectives stated at the beginning of the study,

there are still some limitations and shortcomings in this study. First of all, a single

product and single machine is modeled in the system. For multi-product or multi-

machine problem, our study is not suitable for them. However the analysis process

will become extremely complicated if multi product or multi machine problem are

considered. And also a Single product, single machine model can provide a solid
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theoretical foundation for multi product multi machine one.So this study adopted

single part single machine problem as a result.

6.2 EPQ Model with Deterministic and Stochastic

Deteriorating Production Process

Chapter 4 and Chapter 5 investigated the economic production quantity model jointly

considering inventory, imperfect production process and rework. In the imperfect

production system, not only does the machine produce defective product but also the

machine subjects to deterioration. There are two main differences between the study

in Chapter 4 and 5. First of all, the production process deterioration is modeled with

a deterministic piece-wise function in Chapter 4. The defective rate of production

process increases after every certain period of time θ by the rate of γ . Hence the

longer the production time, the higher the defective rate.

The work in Chapter 5 assumes a stochastic deterioration process which is modeled

with an exponential distribution. At the beginning of each production run, the

defective rate is low but after a random period of time which follows exponential

distribution, the defective rate increases to higher value. And due to introduction of

stochastic switch time, the problem should be subdivided into three cases. Expected

total cost per product is determined by considering all the three cases at the same

time. Hence the complexity of problem in Chapter 5 is higher than that in Chapter 4.

Secondly, the rework process is viewed as imperfect in the second model. Scraped

products are disposed at the end of the production run with extra dispose cost.

However in the first model, the rework process is assumed to be perfect and all the

imperfect products are reworked together and become perfect products afterwards.
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Results show the proposed models and methodologies have satisfactory

performance. Sensitivity analysis illustrated the impact of different parameters on

the system performance especially the effect of inventory and production process

deterioration. The integration of inventory deterioration with EPQ makes the study

applicable to certain specific industries where products have a limited life-time, the

food industry, for example. In addition, sensitivity analysis can help decision

makers in terms of the right production/backlog quantity and provide insights on

how to reduce the total cost in their manufacturing systems through the control of

system parameters. Finally, although single product single machine problem are

modeled, the two studies are especially suitable for cellular manufacturing systems

in which similar products or product families are normally manufactured with fixed

or identical routes.

It should be noticed that numerical experiments are utilized in both of these two

studies to show the convexness of the two cost functions because it cannot be proved

directly through analytical approach, which normally makes use of Hessian matrix

to prove the convexness, due to the complexity of the function. Hence the exact

solutions cannot be obtained, instead the near-optimal results are determined by using

numerical experiments. This method has also been accepted and employed in other

studies especially when the problem itself is complicated.

Limitations also exist in these two studies.The deterioration of inventory was

assumed to occurs only in normal production period rather than in the rework

process. It is because of the relatively short rework time, in which the deterioration

during rework is neglected. The demand in these two models are assumed to be
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constant. The case with stochastic demand could be examined as an extension of

this study.

6.3 Future Work

As discussed earlier in the previous chapter, there are some some assumptions and

limitations made in this research.Further improvement can be implemented with the

following suggestions:

For forecast-corrected hedging point based control policy:

• A single product, single machine problem is modeled in this research. It is

especially suitable for cellular manufacturing system. However for other types

of manufacturing system such as job-shop manufacturing system, the multi-

product or multi-machine model can be a better choice. The same problem

can be extended to multi-product and multi-machine version. Lot scheduling

problem should be integrated together with forecast corrected hedging point

control policy.

• In this research, non-stationary demand and batch production are introduced

into the hedging point based control problem. It would be interesting to

investigate the impacts of other uncertainties on the system as well as

integrating other supply chain activities, such as transportation and

replenishment into the model.

For EPQ model with inventory and production process deterioration:
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• For EPQ model, we have examined two types of deterioration process for

production which are linear piece-wise and stochastic deterioration. However

there are other deterioration types that worth looking into. A more general

exploration of other types of deterioration process can be done.

• We have only considered production process deterioration in our research.

However machine breakdown is also common in reality. Machine breakdown

refers to the situation in which machines subject to failures and production

process is stopped once the machine is broken. Hence an integrated EPQ

problem considering machine breakdown and deterioration is of great

interests to be investigated.

• Similar to the hedging point based control problem, the EPQ models proposed

in this research can be extended to the case with multi-product and

multi-machine. Lot scheduling methods should also be utilized to solve the

extended model.

• In the current research, we assumed that the all the unsatisfied demand is

backlogged and at the beginning of each production run the backlogged

orders are satisfied first. Models with partial backlog or lost sales should also

be studied.

• The current models use deterministic demand and defective rate. While in

industry, random and price-dependent demand are commonly observed.

Especially for price-dependent demands, a pricing strategy can be introduced

and can be further integrated with game theory for the problem with multiple

suppliers.
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Chapter 7 Conclusions and Future Work

This chapter first reviews the background of the this research and then the findings

and contribution of our study are summarized. Lastly, the possible future work as a

result of this study is discussed.

7.1 Conclusions

Production management has always been a important research topic in both the

academic and industrial world and has been divided and extended into many

different subtopics due to the everlasting pursuit of improving the time and cost

efficiency in production, for instance, production and inventory control, capacity

planning, master production schedule, shop floor control, logistics planning and

even process design. Among the all the subtopics, production and inventory control

is the one of the most popular subtopics. Models such as EPQ, EOQ, ELSP and

hedging point based control have been intensively studied and more and more

practical factors are considered in extensions of the traditional models. However,

despite the advances in the research of production and inventory control, research

gaps still exist in the literature.

In the hedging point based control problem, a joint model considering hedging point

policy and lot sizing with non-stationary demand is missing. The solutions from

previous research are not applicable to the batch production processes. In addition,
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the impact of forecasting accuracy on hedging point based control policy has not

been examined. In most of the existing EPQ models, inventory deterioration and

production process deterioration are not considered at the same time even though

both types of deterioration are common in real life.

In order to bridge the gaps in literatures and between research and practice, this

research first modeled the forecasting-hedging-point-based control problem and

provided the mathematical formulation for this problem. An integrated simulation,

design of experiment and response surface method is employed to solve problem.

The method can provide near-optimal solutions while the problem is extremely hard

and time consuming to solve using analytical approaches. Two modified control

policies are proposed to handle the forecast demand and the influence of forecasting

methods are measured and compared with the traditional control policies.

Later, two modified EPQ models are proposed which considered both inventory and

production process deterioration. What’s more, two types of process deterioration

patterns are modeled to reflect the real machine deterioration process. Results

showed that all the three models proposed have meet the objectives of the research

mentioned and can generate satisfactory performance. The methods proposed to

solve the problems are capable to provide good solutions. This research can

contribute to both academia and industry.

The main contribution of this research can be concluded from two different

perspectives. First of all, this research fulfills research gaps in the area of

production/inventory control as indicated previously. Secondly, managerial insights

can be obtained from the research to aid decision making processes in

manufacturing companies. For a manager in a company with imperfect production
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system, factors such as safety stock level, production quantity and backorder

quantity are the most important to consider. But at the same time, managers should

pay attention to the other factors such as demand uncertainty and product

deterioration which can lead to profit losses. How should managers decide what

type of control policy to use to tackle non-stationary demand? How should

production plan be adjusted to take deteriorating product into consideration? Our

research can provide guidance for them to find their own optimal production and

inventory control plan. The overall cost in production and inventory can therefore be

reduced by using the control policies proposed.

In addition, sensitivity analysis conducted in Study 2 and 3 can provide managers

insights about the influence of each parameter on the total cost. It generates decision

support in terms of which cost contribute the most to overall cost and which cost

should be controlled in order to further improve the performance of system.The

contribution of each study can be further summarized as follows:

For hedging point based production and inventory control policy:

• A modified forecast-corrected two-level hedging point control policy is

proposed. By using the proposed methods, an optimal solution for

determining the optimum control policy under the condition of non-stationary

demand and batch production can be obtained. The impact of forecasting on

the performance of a manufacturing system subject to failure and

non-stationary demand is investigated.

• This study can help decision makers with manufacturing system management,

and provide insights on how to reduce the total cost in their systems.
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Managers in manufacturing companies are also suggested to utilize

non-stationary production-inventory control policy because it leads to a better

performance in terms of cost. However, managers should understand under

what kind of conditions they can use non-stationary control policy. The

impact of forecasting errors on the systems should be given attention by

managers. In addition, they should be cautious about the choice of forecasting

methods according to the type of demand process, since different forecasting

methods generate different accuracies.

For EPQ models:

• From an academic perspective, the study extends the previous literature by

taking two types of deterioration process into consideration. Compared with

the traditional modeling method, linear piece-wise and stochastic

deterioration are more suitable and practical to model the production system.

Despite the increasing complexity of the model itself, we have proposed an

efficient method to determine the optimal solutions for the control problem.

• From the application perspective, this study looks at the inventory

deterioration problem in production and inventory control. Hence, it makes

the study applicable to certain specific industries where products have a

limited life-time and the storage condition/time has a significant impact on the

quality, like food, electronic devices and metals industries. In addition, as a

single product problem is modeled, the model in this thesis is especially

suitable for cellular manufacturing systems in which similar products or

product families are manufactured.
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Appendix A: Equations and Coefficients of Cost Function

in Chapter 5

According to Eqns (5.14) and (5.15)

(
Is−

a3

δ

)
exp(−δT3)+(

a3

δ
) =

µ

δ

(
exp(δT4)−1

)
(A.1)

Substitute Eqn (5.13) into this equation

(
(
a2

δ
)(1− exp(−δT2))−

a3

δ

)
exp(−δT3)+

a3

δ

= (
a2

δ
)(1− exp(−δT2))exp(−δT3)−

a3

δ
(1− exp(−δT3))

=
µ

δ

(
exp(δT4)−1

)
.

(A.2)

Assume δT2 and δT3 is small, using Taylor expansion theory

exp(−δT2)≈ 1−δT2 +
(δT2)

2

2
,

exp(−δT3)≈ 1−δT3 +
(δT3)

2

2
.

Eqn (A.1) can be simplified to

(
(
a2

δ
)(1− exp(−δT2))−

a3

δ

)
exp(−δT3)+(

a3

δ
)

=
µ

δ

(
exp(δT4)−1

)
.

(A.3)
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To further reduce the complexity, 1− δT2

2
≈ 1,1− δT3

2
≈ 1,1− δT4

2
≈ 1. T4 is

simplified as

T4 =
a2

µ
T2−

a3

µ
(T3−

δT 2
3

2
). (A.4)

In what follows, the coefficients used in Eqn (5.56) are.

C1 =
1

(a2λ 3µ p3
r )

[
3a3

1a2a3Chpδ (a3 + pr)+a1a2(9a2
2a3Chpδ

(a3 + pr)− p2
r λ µ(Cbc pr +2Chp pr +(2a3Cdc +Cr pr

+Cd p prγ)λ )−2a2 prλ (Chpa2
3 +Chp pr(pr−2µ)

+(Chi pr(2+ γ)−Cdcδ )µ +a3Chp(2pr +µ)))

+a2
1(−9a2

2a3δChp(a3 + pr)+(Cbc +Chp)p3
r λ µ

+a2 prλ (a2
3Cbc +Cbc pr(pr−2µ)+(Chi pr(2+ γ)

−Cdcδ )µ +a3Chp(2pr +µ)))+a2(−3a3
2a3Chp(a3 + pr)δ

+Chi pp3
r (β −α)λ µ)+a2 p2

r λ (Chp pr +(2a3Cdc + pr(Cr

+Cd pγ))λ )µ +a2
2 prλ (a2

3Chp +Chp pr(pr−2µ)+(Chi pr

(2+ γ)−Cdcδ )µ +a3Chp(2pr +µ))
]
+(1− e−yλ )Cs

C2 =
1

(p2
r δλ 2)

[
a2

(
−Cdc p2

r δ
2
λ +Chp p(p(δ −2αδ )

−2pr(−1+α)λ )
)
−δ

(
a3 p(Chp(p−2pα)
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+Cdc pr(−1+α +δ )λ )+ pr(ppr(Cr(−1+α)−Cd pγ)λ

−a1 pr(2Chp +Cdcδλ )

+Chi(prαβ + p2(γ−2αγ)+ ppr(β +αλ )))
)]

C3 =
1

(a2λ 3µ p3
r )

[
−3a3

1a2a3Chpδ
2(a3 + pr)+a2

1(9a2
2a3Chpδ

(a3 + pr)− p3
r λ µ(Cbc +Chp)−a2 prλ (Chpa2

3 +Chp pr

(pr−2µ)+(Chi pr(2+ γ)−Cdcδ )µ +a3Chp(2pr +µ)))

+a1a2δ (−9a2
2a3Chp(a3 + pr)+(Cbc pr +(2a3Cdc

+ pr(Cr+Cd pγ−Cdcδ ))δ )p2
r λ µ +2a2 prλ (a2

3Chp

+Chp pr(pr−2µ)+(Chi pr(2+ γ)−Cdcδ )µ

+a3Chp(2pr +µ)))+a2(3a3
2a3Chp(a3 + pr)δ

2

+Chi pp3
r (β −α)λ µ)+ prδλ (a3 p(Chp(p−2pα)

+Cdc pr(−1+α +δ )+ pr(ppr(Cr(−1+α)

−Cd pγ)λ +Chi(prαβ + p2(γ−2αγ)

+ pprα(1+λ ))))µ−a2
2 prδλ (a2

3Chp +Chp pr

(pr−2µ)+(Chi pr(2+ γ)−Cdcδ )µ +a3Chp(2pr +µ)))
]

C4 =Cr +Cd pγ +
1

a1λ µ
(Chpa2

2 +a2(Chp +((1−λ )Cdc

+Cr +Cd pγ)µ + p((Cr(1−α)−Cd pγ)λ
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−Chiα(1+λ ))µ)+
1

a1 prδλ µ
(a2(Chp p(α−1)

−2a3Cdcδ )λ µ + pδ (Chi pγ +a3Cdc(−1+α +δ )λ )µ)

−
(a2
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+

1
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− 1
a1 p2
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1a3
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prλ µ
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+
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pλ µ
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1
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+
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+
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−
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+
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−
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prλ µ
+

Chp(a1−a2)a2
3β

p2
r λ µ

+
Chpa2β

prδ

C8 =Cdc(
a2

a1
−δ )

C9 =
a2−a1

a2 p2
r λ 2µ

(a1a2a3Chpδ −a2
2a3Chpδ

+a2Chp prλ (a3 + pr−µ)+(Cbc +Chp)pr2
λ µ)
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Bermúdez, J. D. (2013). Exponential smoothing with covariates applied to
electricity demand forecast. European Journal of Industrial Engineering, 7(3):333–
349.

Berthaut, F., Gharbi, A., and Dhouib, K. (2011). Joint modified block replacement
and production/inventory control policy for a failure-prone manufacturing cell.
Omega, 39(6):642–654.

Bielecki, T. and Kumar, P. R. (1988). Optimality of Zero-Inventory Policies for
Unreliable Manufacturing Systems. Operations Research, 36(4):532–541.

Bomberger, E. E. (1966). A Dynamic Programming Approach to a Lot Size
Scheduling Problem. Management Science, 12(11):778–784.

Boukas, E.-K. and Haurie, A. (1990). Manufacturing flow control and preventing
maintenance: a stochastic control approach. IEEE Transactions on Automatic

Control, 35(9):1024–1031.

Bourland, K. E. and Yano, C. A. (1994). The Strategic Use of Capacity Slack in the
Economic Lot Scheduling Problem with Random Demand. Management Science,
40(12):1690–1704.

119



Bouslah, B., Gharbi, A., Pellerin, R., and Hajji, A. (2012). Optimal
production control policy in unreliable batch processing manufacturing systems
with transportation delay. International Journal of Production Research, 51(1):264–
280.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (2013). Time Series Analysis:

Forecasting and Control. Wiley.

Boyer, K. and Verma, R. (2009). Operations and Supply Chain Management for the

21st Century. Cengage Learning.

Bradley, J. R. and Conway, R. W. (2003). MANAGING CYCLIC INVENTORIES.
Production and Operations Management, 12(4):464–479.

Brahimi, N., Dauzere-Peres, S., Najid, N. M., and Nordli, A. (2006). Single item
lot sizing problems. European Journal of Operational Research, 168(1):1–16.

Bruin, J. (2007). Cyclic multi-item production systems. In:Proceedings of Analysis

of Manufacturing systems, pages 99–104.

Cárdenas-Barrón, L. E. (2009). Economic production quantity with rework process
at a single-stage manufacturing system with planned backorders. Computers &

Industrial Engineering, 57(3):1105–1113.

Cárdenas-Barrón, L. E. (2011). The derivation of EOQ/EPQ inventory models with
two backorders costs using analytic geometry and algebra. Applied Mathematical

Modelling, 35(5):2394–2407.

Cárdenas-Barrón, L. E. and Cardenas-Barron, L. E. (2001). The economic
production quantity (EPQ) with shortage derived algebraically. International

Journal of Production Economics, 70(3):289–292.

Cárdenas-Barrón, L. E., Sarkar, B., and Treviño-Garza, G. (2013). An improved
solution to the replenishment policy for the EMQ model with rework and multiple

120



shipments. Applied Mathematical Modelling, 37(7):5549–5554.

Chan, F. T. S. and Wang, Z. (2014). Robust production control policy for a
multiple machines and multiple product-types manufacturing system with inventory
inaccuracy. International Journal of Production Research, 52(16):4803–4819.

Chan, F. T. S., Wang, Z., Zhang, J., and Wadhwa, S. (2008). Two-level hedging
point control of a manufacturing system with multiple product-types and uncertain
demands. International Journal of Production Research, 46(12):3259–3295.
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