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ABSTRACT 

 

Abstract of the thesis entitled:  

Development of Data Mining-Based Big Data Analysis Methodologies for 

Building Energy Management 

 

Submitted by     :      Fan Cheng 

For the degree of  :      Doctor of Philosophy 

at The Hong Kong Polytechnic University in Feb 2016 

 

Today’s buildings are becoming not only energy intensive, but also 

information intensive. Building Automation Systems (BASs) are widely installed 

in modern buildings for automatic monitoring and control of the operation of 

various building services systems. BASs collect and store a huge number of 

sensor measurements and control signals at short time intervals. The effective 

utilization of the big BAS data can help to optimize and diagnose the 

performance of buildings so as to improve their operational performance. 

However, the big BAS data are not fully utilized due to the lack of advanced data 

analysis techniques and tools. BASs can only perform simple data analysis, such 

as historical data tracking, moving averages and benchmarking. Data mining 

(DM) is a promising solution for the knowledge discovery from massive data 



! ! !V 

sets. However, it is extremely challenging for building automation professionals 

to keep up with the constantly emerging sophisticated DM techniques. 

Meanwhile, there is a knowledge gap between building professionals and 

advanced data analytics. DM itself cannot tell the value or the significance of the 

knowledge discovered, and domain knowledge in the building field is therefore 

still needed to interpret and apply the knowledge discovered. This research aims 

to develop generic DM-based methodologies for discovering knowledge in big 

BAS data and applying the knowledge to building energy management, such as 

identifying typical and atypical operation patterns, energy performance analysis, 

diagnosis and optimization.  

Based on a comprehensive exploration of the state-of-the-art DM techniques 

using case studies on the BAS data of a high-rising building in Hong Kong, the 

strengths and restrictions of a variety of advanced DM techniques taking into 

account of the characteristics of BAS data and the building operations are 

understood. This dissertation first presents a generic DM-based framework for 

knowledge discovery in massive BAS data and applications of the knowledge for 

building energy management. The framework consists of five phases, i.e., data 

pre-processing, data partitioning, knowledge discovery, post-mining and 

applications. The framework and the DM techniques involved at each phase are 

deliberately designed considering the characteristics of BAS data and the type of 

knowledge to be discovered. Based on the framework developed, the 

methodologies for discovering and applying three different types of knowledge, 
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including cross-sectional knowledge, temporal knowledge and graph-based 

knowledge, are developed, tested and evaluated using BAS data retrieved from 

real buildings. 

BAS data are usually stored in a single two-dimensional data table, where 

each column represents a variable and each row is an observation consisting of 

the values of different variables. Cross-sectional knowledge refers to the 

relationships and associations between variables (i.e., different columns) without 

taking into account the temporal dependency. A number of DM techniques, 

including clustering analysis, association rule mining and decision trees, are 

adopted to discover cross-sectional knowledge and to improve the reliability of 

the knowledge discovered. Post-mining methods, which bridge the knowledge 

discovered by DM techniques and domain expertise, are developed to enhance 

the efficiency and effectiveness in knowledge selection and application. Valuable 

knowledge has been discovered to understand building operation behaviors and 

spot energy conservation opportunities. 

Different from cross-sectional knowledge, temporal knowledge discovery 

focuses on discovering the temporal relationships between observations (i.e., 

different rows). In this case, the observations are considered as multivariate time 

series. The symbolic aggregation approximation (SAX), motif discovery and 

temporal association rule mining are applied as the main DM techniques. Two 

post-mining methods are developed to effectively utilize the knowledge 

discovered. The knowledge discovered can be used to characterize the dynamics 
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in building operations and facilitate fault diagnosis and control optimization. 

A graph-based DM technique is developed for mining BAS data with 

potentially complex structures, rather than just a single two-dimensional data 

table. It ensures the knowledge discovery efficiency when the BAS data structure 

is complex, e.g., data are stored in multi-relational databases and cannot be easily 

merged into a single data table. With the population of building information 

modelling, a huge amount of valuable information related to building design and 

operations is becoming available for analysis, such as the text data for building 

construction and maintenance, and the spatial information of system components. 

Graphs provide great flexibility in integrating and representing various types of 

information; and the knowledge discovered using graph-based DM is highly 

interpretable. The frequent subgraph mining (FSM) and graph-based anomaly 

detection (GBAD) are selected as the primary mining techniques. Two problems 

are specifically addressed, i.e., graph generation based on BAS data and 

efficiency enhancement in knowledge selection and application. The graph-based 

mining methodology has been applied to represent different types of information, 

based on which frequent and atypical building operation patterns are detected. 

BAS data retrieved from the tallest building in Hong Kong and the 

Zero-Carbon Building are used to test and evaluate the methodologies. The 

results show that the knowledge discovered is valuable to identify dynamics, 

patterns and anomalies in building operations, assess building system 

performance and spot opportunities in energy conservation. The framework and 
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the methodologies can contribute to develop more powerful and sophisticated 

BAS tools for effective utilizing the big BAS data for building energy 

management. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Motivation 

Buildings have become one of the largest energy consumers around the world. 

According to the statistics provided by the Internal Energy Agency (IEA), buildings 

account for 32% of the total final energy consumption and around 40% of the primary 

energy consumption in most IEA countries [IEA 2015]. In Hong Kong, buildings 

contribute to over 90% of the total electric energy consumption and approximately 60% 

of the greenhouse gas emission [EMSD 2014]. To achieve the goal of sustainable 

development and environmental conservation, the enhancement in building energy 

efficiency is urgently needed. 

Buildings consume energy in their whole lifecycles. The building operation 

stage is the most energy intensive one, as it typically accounts for 80-90% of the total 

energy use during building lifecycles [Ramesh 2010]. In practice, the mismatch 

between the intended performance at the design stage and the actual performance at 

the operation stage of various building services systems is a widely existing problem. 

Such mismatch may be caused by various reasons, such as unreliable control 

strategies, faults in building operations, and degradation of system components. 

Advanced technologies have been developed to achieve high building operational 
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performance. The Building Automation System (BAS) is a prominent example which 

integrates technologies from information science, computer science, control theory 

and etc. It enables buildings to be more intelligent and energy efficient by providing 

real-time monitoring and controls over the operations of various building services 

systems, e.g., the Heating, Ventilation, and Air-conditioning (HVAC) system, vertical 

transportation system, lighting system, and security system. In essence, BAS is a 

network consisting of a range of hardware devices (e.g., servers, workstations, sensors 

and digital controllers) and software (e.g., energy management programs and network 

communication protocols). A typical BAS has the ability to collect thousands of 

sensor measurements or control signals at short time intervals (e.g., from tens of 

seconds to several minutes). As a result, buildings are becoming not only energy 

intensive, but also information intensive. 

Building operational data in BAS is typical big data. For example, in the 

International Commerce Centre (ICC), the tallest building in Hong Kong, at one 

typical office floor, over 750 sensor measurements (temperature, flow rate, pressure, 

humidity, power, etc.) and control signals (pump and fan speeds, valve and damper 

positions, sequencing signals, etc.) are collected and stored at intervals of 1 minute in 

its BAS. Considering only the 90 office floors in ICC, the BAS has the ability to store 

over 1 million pieces of data in one day, over 32 million pieces of data in one month 

and nearly 400 million pieces of data in one year. The volume of the stored data keeps 

rising over time with the building operation. Except for some critical power 
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consumption data, the majority of these massive BAS data sets are just left in the 

database, along with its contained valuable information about the actual building 

operations. The effective utilization of the vast amounts of building operational data 

available in BASs can bring significant benefits in understanding the building actual 

operation behaviors, evaluating operational performance, and spot opportunities in 

energy saving. However, the current utilization of such big BAS data is rather limited. 

The reason behind is twofold. Firstly, conventional data analytics adopted in the 

building automation industry, which usually rely on domain expertise, physical 

principles and statistics, are neither efficient nor effective in handling massive 

amounts of data. Meanwhile, it is extremely challenging for building automation 

professionals to keep up with the constantly emerging sophisticated big data analysis 

techniques. The knowledge gap between building professionals and data scientists 

significantly hinders the utilization of the big BAS data. Secondly, the BAS data are 

usually complex and have poor quality. The intrinsic complexity in BAS data stems 

from the dynamic operations of various building equipment under changing 

conditions. The BAS data usually contains a substantial number of outliers and 

missing values due to the widespread errors in data sampling, transmission and 

storage processes. The knowledge discovered from low-quality data can be hardly 

transformed into meaningful and actionable measures. The building industry’s desire 

for effective and convenient big data analysis techniques for analyzing the massive 

BAS data has become stronger and stronger. 
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Today’s explosive growth of information greatly promotes the development of 

big data analysis technology in various industries. Big data analytics has been 

attracting increasing attention from both academic communities and industries. A 

typical approach to utilizing big data is to mine the data in order to discover the 

hidden knowledge, in the forms of patterns, correlations, associations, classification, 

regressions, and etc. The development of big data analytics in the building industry is 

still at its beginning stage. There are a lot of unknowns and uncertainties on the 

development and applications of advanced big data analytics for analyzing big BAS 

data. People are excited about big data and big data analytics, but few of them clearly 

know how and to what extent the industry can benefit from big data. Therefore, this 

research primarily aims to bridge the building industry and big data analytics using a 

multidisciplinary approach and bring innovative ideas and enabling technology for 

effective utilizing the massive amounts of building operational data in BAS. Based on 

comprehensive review of advanced data analytics and in-depth understanding of 

building operations, this research develops generic solutions for analyzing big BAS 

data and maximizes their practical values in building energy management for 

improving building operational performance.   

 

1.2 Aim and Objectives 

This research aims to develop a generic DM-based framework and associated 



! ! !5 

specific DM-based methodologies for knowledge discovery in the big BAS data as 

well as their applications in building energy management. The aim can be 

accomplished by addressing the following major objectives: 

1. To explore the state-of-the-art DM techniques using case studies on the 

BAS data of a high-rising building. The strengths and restrictions of a 

variety of DM techniques in analyzing big BAS data will be identified. 

Typical types of knowledge which can be discovered through mining big 

BAS data will be analyzed for applications in building energy 

management.  

2. To develop a generic framework for mining big BAS data, considering 

the unique BAS data characteristics and the actual needs of building 

professionals. 

3. To develop DM-based methodologies, based on the generic framework 

developed, for discovering cross-sectional knowledge, temporal 

knowledge and graph-based knowledge from big BAS data. 

4. To apply the DM-based methodologies to BAS data from real buildings 

and give recommendations on using the methodologies in practical 

building energy management. 
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1.3 Thesis Organization 

The whole thesis is divided into 7 chapters. The main content of each chapter is 

presented as follows. 

Chapter 1 presents the motivation of this research, the aim and objectives, and 

the organization of this thesis. 

Chapter 2 presents a literature review on the conventional methods for building 

energy management, and DM-related research and applications at three stages of the 

building lifecycle, including the building design, construction and operation stages. 

Chapter 3 introduces the generic DM-based framework developed and the 

research facilities, including the buildings and the BAS data to be mined and the 

computation tools used.  

Chapter 4 develops a methodology to discover the cross-sectional knowledge in 

BAS data. The methods for data preprocessing, knowledge discovery and post-mining 

are presented in detail. The methodology is validated using the real-world BAS data 

and the knowledge discovered is presented.  

Chapter 5 develops a methodology to discover the temporal knowledge in BAS 

data. It is specifically designed to discover the frequent sequential patterns and the 

temporal associations in BAS data. The methodology is validated using the real-world 

BAS data and the knowledge discovered is presented. 

Chapter 6 develops a methodology for the knowledge discovery in BAS data 

with potentially complex data structures. It specifically addresses the challenges of 
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knowledge discovery from BAS data stored in multi-relational data. The methodology 

is validated using the real-world data and the knowledge discovered is presented. 

Chapter 7 summarizes the work presented in this thesis, and gives some 

recommendations for future research and applications. 
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CHAPTER 2 LITERATURE REVIEW 

Building energy efficiency has become one of the top concerns in the building 

industry, especially the energy efficiency at the building operation stage, as it 

accounts for 80-90% of the total building energy consumption in building lifecycle 

[Dalene 2012]. In the past decades, both the academics and building professionals are 

seeking for the solutions to enhance the building energy efficiency throughout the 

building lifecycle. One essential approach is to perform analysis based on the 

information collected. With the advance in information technologies, a large amount 

of information is being collected throughout the building lifecycle. Conventional 

analytics, which primarily rely on building physics and domain expertise, usually lack 

of efficiency and effectiveness when handling massive datasets. By contrasts, data 

mining (DM) is a highly promising technology which can efficiently and effectively 

extract the hidden knowledge from large data. It could be a powerful tool to tackle the 

challenges brought by the big data era.  

DM techniques have been adopted in previous research to perform different tasks. 

This chapter presents a comprehensive review on the research and applications of DM 

techniques in the building industry, especially at the building operation stage. Section 

2.1 briefly introduces the conventional methods adopted at the building operation 

stage for building energy management. Section 2.2 introduces the background of DM 

technology. Section 2.3 reviews the DM research and applications for building 
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operation management. Section 2.4 presents the DM applications at the other two 

stages in building life cycle, i.e., building design and construction stages. The 

summary is given in section 2.5. 

 

2.1 Conventional Methods for Building Energy Management 

Building energy management has been a hot research topic for the last few 

decades. Conventional methods mainly adopt engineering expertise, physical 

principles and statistics to analyze the building operational data. They are mainly used 

for handling two typical tasks, i.e., fault detection and diagnosis (FDD) and control 

optimizations. The following contents serve as a brief review on these topics. A more 

detailed review can be found in [Wand and Ma 2008; Ma and Wang 2009; Xiao and 

Wang 2009; Katipamula and Brambley 2005 (a); Katipamula and Brambley 2005 

(b)].   

The FDD is typically applied at three levels, i.e., building level, system level, 

and component level. Through literature review, it is found that the FDD at the 

building level mainly targets at the building energy consumption [Wu and Sun 2011]. 

The FDD at the system level considers the interactions between subsystems and 

components [Zhao et al. 2013]. The FDD at the component level is mainly relied on 

the physical relationships among parameters [Xiao et al. 2014]. In addition, the FDD 

research on sensors [Wang and Xiao 2004; Xiao et al. 2009] is another hot topic and 
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has been closely associated with the research mentioned above. For instance, Wang et 

al. proposed a FDD methodology for the HVAC system, which integrated concepts of 

system level FDD and sensor FDD [Wang et al. 2010]. This study took into account 

the influence of sensor faults on system level FDD. Firstly, the principal component 

analysis was applied to identify the bias in sensor measurements, based on which 

regression methods were applied to detect system level faults. The methods used in 

FDD can be categorized into two types, i.e., model-based and data-driven methods. 

The target variables of FDD can be summarized into three categories, i.e., the energy 

consumption (e.g., cooling load and electricity consumption [Zhao and Magoules 

2012]), performance indices (e.g., chiller COP [Lee and Lu 2010]), and physical 

parameters (e.g., indoor temperature [Kruger and Givoni 2008]). The model-based 

methods can be further classified into quantitative and qualitative methods 

[Katipamula and Brambley 2005(a); Katipamula and Brambley 2005(b)]. Quantitative 

model-based methods mainly adopt domain expertise and physical principles to build 

physical models [Bendapudi and Braun 2002]. Qualitative methods, by contrast, are 

in the forms of expert systems [House et al. 2001]. In general, the model-based 

methods can yield fairly good performance. However, the models developed can be of 

high complexity and the actual usefulness is largely restricted by the data availability. 

The data-driven methods mainly adopt grey-box [Jia and Reddy 2003] and black-box 

models [Reddy et al. 2003] to perform FDD. Domain expertise and historical data are 

the two pillars for model development. The inputs to the model are mainly selected 
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based on domain expertise. The historical data are then applied to fit the model. 

Compared to the physical principles-based methods, the data-driven methods have 

fewer constraints in real implementations. They are less restricted by the assumptions 

of physical principles and can capture the unexplainable variations in system 

operations. 

The control optimization task is mainly focused on the building HVAC system. 

Previous research can be summarized at two levels, i.e., system and component levels. 

The control optimization at the system level aims to perform global optimization. For 

instance, [Lu et al. 2005] proposed an optimization strategy which considers the 

interactions between the water- and air-sides of the HVAC system. It firstly used 

mathematical methods to model the building cooling load and electricity consumption. 

Evolutionary algorithms were then used to optimize the controllable variables, such as 

the supplied chilled water temperature and the chilled water flowrate. The objective 

function was formulated in such a manner that both the energy consumption and the 

indoor comforts were taken into account. The control optimization at the component 

level mainly focuses the operational performance of individual components and 

therefore, can be regarded as a local optimization problem. Typical optimization 

targets include chillers (e.g., chiller sequencing control and the optimization of 

supplied chilled water temperature) [Sun et al. 2009; Wang et al. 2010], 

variable-speed pumps [Ma and Wang 2009; Wang and Ma 2010] and etc. The 

optimization methods can be classified into linear and non-linear types. We direct 
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interested readers to [Wang and Ma 2009] for a detailed summary.  

As abovementioned, the conventional approaches adopted in building 

operational performance management usually obtain knowledge as quantitative and 

qualitative models, expert rules, and statistics. Such knowledge representations are 

very similar to those obtained by DM techniques. DM technology is more flexible and 

efficient when the data is of massive volume and high complexity. It can better utilize 

the vast amounts of building data and effectively discover novel knowledge in various 

representations. This is also the main motivation of this research.  

2.2 Data Mining Technology 

2.2.1 Overview 

Nowadays, overwhelming amounts of data are being generated, collected and 

stored worldwide. According to the International Data Corporation, 2.8 trillion 

gigabytes of data were generated in 2012, and this figure is expected to reach 40 

trillion gigabytes by 2020 [Gants and Reinsel 2012]. Despite of the huge data amount, 

only a limited proportion is utilized for detailed analyses. For instance, out of the 2.8 

trillion gigabytes data produced in the year of 2012, only 0.5% of them are properly 

used for analysis [Gants and Reinsel 2012]. A common challenge faced by many 

industries is being “information rich, but knowledge poor”, and the main reason is due 

to the lack of advanced analytics for processing large data sets [Han and Kamber 

2011]. 
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Data mining (DM) arises as a solution to the big data challenge. DM, or 

knowledge discovery from databases (KDD), is defined as a nontrivial process of 

identifying valid, novel, potentially useful and ultimately understandable patterns in 

data [Fayyad et al. 1996]. Currently, DM has been successfully used in various 

industries. For instance, in the retailing industry, DM is used to mine the customer 

purchasing behavior. The extracted knowledge can be applied to benefit cross-selling 

[Olson and Delen 2008]. In the banking and financial industry, DM is used to identify 

customer values, develop revenue maximization programs, and detect credit card 

frauds [Olson and Delen 2008]. In the healthcare industry, DM helps insurers to 

detect fraud, physicians to find effective treatments, and pharmaceutist to develop 

new products [Koh and Tan 2005]. Other applications include customer relationship 

management [Ngai et al. 2008], human resource management [Strohmeier and Piazza 

2013], counterterrorism [DeRosa 2004], and epidemic detection [Ginsberg et al. 

2009].  

In general, the DM process consists of seven steps, i.e., data cleaning, data 

integration, data selection, data transformation, data mining, pattern evaluation, and 

application [Han and Kamber 2011]. The first four steps aims to prepare a suitable 

data set for mining and can be merged as the data preprocessing step. Data 

preprocessing can be very time-consuming. It is estimated that data preprocessing 

normally accounts for more than 80% of the total analysis time [Zhang et al. 2003]. 

The data mining step refers to the implementation of various analytical techniques 
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and algorithms to discover knowledge. The pattern evaluation step is about 

post-mining with the aim of evaluating the mining process, interpreting the mining 

results, selecting interesting or potentially useful knowledge. The last step is 

application, which transform the knowledge obtained into actionable measures. 

 

2.2.2 Data Mining Techniques 

DM techniques can be roughly classified into two categories, i.e., supervised and 

unsupervised methods. Supervised methods need to classify the data into inputs (i.e. 

independent variables) and outputs (i.e., dependent variables) and aim to establish the 

relationships between the inputs and the outputs by the use of knowledge discovered. 

Supervised methods can be used for either regression or classification. Popular 

methods include the Naïve Bayes [Rish 2001], adaptive Bayes network [Acar et al. 

2007], support vector machines [Cortes and Vapnik 1995], artificial neural network 

[Gershenson 2003], decision trees [Apte and Weiss 1997], random forests [Breiman 

2001], and ensemble learning [Dietterich 2001].  

By contrast, unsupervised methods focus on discovering the intrinsic data 

structure, correlations, or associations from big data. Popular techniques include the 

clustering analysis and association rule mining (ARM). Clustering analysis aims to 

partition the data into several clusters or groups based on data similarity. The 

similarity between data sets can be evaluated by either distance or density. Various 
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metrics, such as the Minkowski distance for numeric values and the Hamming 

distance for categorical values, are used for similarity evaluation. Clustering 

algorithms can be classified into hierarchical-based, partitioning-based, density-based, 

grid-based, constraint-based, and subspace methods [Grira et al. 2005]. ARM derives 

rules specifying the associations among variables. It can be further divided into 

quantitative ARM and qualitative ARM based on whether the data are numeric or 

categorical. Popular algorithms include the Apriori [Agrawal and Srikant 1994], 

FP-growth [Han et al. 1999], GAR [Meta and Alvarez 2002], QuantMiner 

[Salleb-Aouissi et al. 2013], and etc. 

 

2.2.3 Data Mining Software 

A larger number of software tools are available to perform DM. The most widely 

used DM software includes RapidMiner, R, Weka, Python, SAS, MATLAB, 

Statistica, IBM SPSS, KNIME, Orange, and etc. [KDnugget 2014].  

Potential users may select a suitable tool considering the costs, user-friendliness, 

and desired DM tasks to be performed. The costs refer to whether the software tool is 

commercial or open-source. Commercial software usually has better user support and 

the validity of the mining result is guaranteed. By contrast, open-source software is 

free, and newly developed algorithms are more likely to be implemented in 

open-source software first.  
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Software with graphical user interface (GUI) is much easier to use, especially for 

the users with little programming knowledge. However, the flexibility provided 

during the mining process is usually restricted. To use software with command line 

interface (CLI), users may need to master a new programming language and the 

learning process can be time-consuming.  

Lastly, users may choose the software considering the DM tasks to be performed. 

Some software, such as the SAS Enterprise Miner, provides an integrated package for 

nearly all kinds of DM-based analysis. Others may only focus on certain types of DM 

tasks. For instance, the CART 5.0 Decision Tree only provides decision tree-based 

solutions for predictive modeling. A more detailed review on data mining software 

can be found in [Mikut and Reischl 2011]. 

 

2.3 DM Research and Applications for Building Operation 

Management 

Building operation has drawn particular attention from both the academic and 

industrial worlds. It accounts for 80% to 90% of the total building green house gas 

emission, and is directly linked to occupant comforts and the realization of building 

functionality [Dalene 2012].  

One prominent problem throughout building lifecycle is the mismatch between 

design and actual performances. Such mismatch may due to various reasons, such as 
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all kinds of operation faults, improper control strategies, or performance degradation. 

By analyzing the building operational data, it is possible to find useful information to 

enhance the building operational performance. However, conventional analysis 

methods may not cope well with the ever-increasing amount of building operational 

data. The DM’s excellent capability in knowledge extraction makes it very promising 

in utilizing the massive building operational data. DM techniques have been applied 

to facilitate the on-going commissioning process, which typically performs tasks such 

as benchmarking, performance tracking, and fault detection and diagnosis [Choiniere 

and Corsi 2003; Djuric and Novakovic 2009; Ginestet and Marchio 2010; Ahmed, et 

al. 2013; Ginestet et al. 2013]. As shown in Figure 2.1, this section reviews the 

relevant research from three perspectives, i.e., predictive modeling, fault detection 

and diagnosis, and control optimization.  

 
Figure 2.1 DM applications at building operation stage 
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2.3.1 Predictive Modeling 

DM techniques have been used for the predictive modeling of various variables, 

including the cooling or heating load [Ben-Nakhi and Mahmoud 2004; Hou et al. 

2006; Li et al. 2009; Kusiak et al. 2010; Kwok et al. 2011], energy consumption 

[Azadeh et al. 2008; Kusiak et al. 2010; Nagi et al. 2011; Mena et al. 2014; Ahmad et 

al. 2014], indoor environment [Ruano et al. 2006; Wu and Clements-Croome 2007; 

Mustafaraj et al. 2010; Kim et al. 2013], and performance indices [Kucuksille et al. 

2009; Yu et al. 2010; Kucuksille et al. 2011; Saez et al. 2013; Chou et al. 2014].  

Researchers have been working towards a more systematic process of predictive 

modeling, especially in the areas of data preparation, input selection, and model 

development. At the early stage, main effort was put on investigating the use of 

advanced DM algorithms for model development and the technical issues in 

optimizing model parameters. Afterwards, researchers began to explore the potential 

of DM techniques in other steps, such as data preparation and input selection.  

 

Model Development 

At the early stage, DM techniques were mainly used as a substitute for 

conventional methods (e.g., linear regression). Encouraging results have been 

obtained, as DM techniques are better in capturing complex and nonlinear 

relationships. Popular tools include support vector machine (SVM) [Dong et al. 2005; 
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Zhao and Magoule 2010], artificial neural network (ANN) [Ben-Nakhi and Mahmoud 

2004; Yang et al. 2005; Karatasou et al. 2006; Kusiak et al. 2010], decision tree [Tso 

and Yau 2007; Yu et al. 2010], ensemble learning [Jetcheva et al. 2014], and time 

series analysis [Yun et al. 2012; Ogunsola et al. 2014].  

It is worth mentioning that domain knowledge still plays the dominant role in 

other steps, e.g., data preparation and input selection. For instance, Dong, Cao, and 

Lee first applied support vector machine (SVM) to predict the monthly electricity 

consumption [Dong et al. 2005]. This study investigated the use of SVM in modeling 

building energy consumption. It mainly focused on the technical issues of developing 

SVM models, such as model parameter setting and kernel selection. The prediction 

results were satisfactory and validated the use of SVM in energy prediction. In this 

study, only three input variables, i.e., monthly mean temperature, relative humidity, 

and global solar radiation, were used for prediction and they were selected based on 

domain knowledge.  

Similarly, Li et al. applied SVM to predict the hourly cooling load in commercial 

buildings [Li et al. 2009]. The results validated that SVM was effective in cooling 

load prediction. Again, domain knowledge was applied to select input variables, i.e., 

outdoor temperature, humidity and solar radiation.  

Ben-Nakhi and Mahmoud adopted general regression neural networks (GRNN) 

to predict the next-day cooling load [Ben-Nakhi and Mahmoud 2004]. A parametric 

study was carried out to determine the optimum parameters of GRNN. Based on 
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domain knowledge, the external outdoor temperature records for the last 24-hour were 

selected as inputs. The results showed that neural networks could be very powerful in 

load prediction.  

Yu et al. developed a decision tree method for classifying the building energy 

demand [Yu et al. 2010]. One particular advantage of the decision tree method is that 

a flowchart-like tree structure can be generated for better interpretation. The results 

showed the developed model could achieved accurate prediction on the building 

energy use index (EUI). In addition, the model could automatically identify and rank 

significant variables to the output. In this study, ten input variables were selected 

based on domain knowledge. 

The above-mentioned studies validated the use of advanced DM algorithms in 

model development. However, the potential of DM techniques was not fully realized. 

One particular problem is that the input variables are predefined based on domain 

knowledge. In such a case, the developed method may not obtain the optimal 

performance for different buildings, due to the variation in operation and data 

availability.  

 

Input Selection 

To tackle the above-mentioned challenge, researchers began to extend the use of 

DM techniques in input selection. Input selection helps to improve the prediction 

accuracy, reduce the computation load, and gain new insight into the underlying 
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process [Guyon and Elisseeff 2003]. Through literature review, it is found that three 

types of input selection methods are primarily used in the building field, i.e., filter, 

wrapper, and embedded methods. Filter method evaluates the importance of input 

variables based on statistical measures. Univariate techniques, such as the correlation 

coefficient, chi-squared test, and information gain, are commonly used. It can be 

regarded as a pre-processing step, and the selection is independent with the predictive 

algorithm.  

For instance, Kusiak, Li, and Zhang applied correlation method to facilitate the 

input selection process [Kusiak et al. 2010]. Combining with the boosting algorithm, 

2 out of 13 variables were selected as inputs to predict the building steam load. The 

input selection method successfully removed redundant and irrelevant variables. The 

results indicated that the prediction performance was guaranteed while the 

computational load was reduced. 

Similarly, Chou, Hsu, and Lin adopted the Pearson correlation to select inputs 

for predicting chiller COP [Chou et al. 2014]. Various predictive models, including 

the ANN, SVM, classification and regression tree (CART), chi-squared automatic 

interaction detector (CHAID), were constructed based on the selected inputs. The 

research results showed that accurate predictions could be achieved and the 

predictions could be used for fault detection. 

Mena et al. used the two filter methods for input selection [Mena et al. 2014]. 

Correlation method was used to measure the linear dependency, while mutual 
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information was applied to measure the nonlinear one. The method identified 5 out of 

20 variables as model inputs. The developed model could accurately predict the 

building electricity consumption.  

Zhao and Magoules also discussed the use of filter methods in enhancing the 

performance of building energy prediction [Zhao and Magoules 2012]. The 

effectiveness of two filter methods, i.e., correlation coefficient and regression, 

gradient-guided feature selection, were investigated. SVR models were then 

developed to predict building energy consumption. The results showed that the 

inclusion of variable selection was effective in improving the prediction accuracy 

while reducing the computational time. 

To summarize, filter methods are computational efficient and scalable to 

high-dimensional data. However, the variables selected tend to be redundant and the 

interaction with predictive algorithms is ignored. Therefore, the resulting prediction 

performance may not be optimal compared to other feature selection methods.  

The second is the wrapper method, which integrates the model selection within 

the input selection process. For each input subset, the prediction performance is 

evaluated based on a certain predictive algorithms. Popular wrapper methods include 

forward selection, backward elimination, and genetic algorithm [Saeys et al. 2007]. 

Kusiak, Tang, and Xu adopted the wrapper method to select inputs for prediction 

models in HVAC system [Kusiak et al. 2011]. Three algorithms, i.e., greedy, linear 

forward, and genetic algorithm, were used to search the optimal input subset. The 
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performance of each input subset was evaluated considering four predictive 

algorithms, i.e., linear regression, pace regression, SVM, and multi-layer perceptron 

(MLP). The method was reported to be effective in selecting compact input subset.  

Kolter and Ferreira presented a data-driven approach to model the building 

energy consumption in residential and commercial buildings [Kolter and Ferreira 

2011]. One wrapper method, i.e., greedy forward selection, was used to for input 

selection. It was recommended to integrate the input selection process for the sake of 

model interpretability and computational load reduction.   

The main advantage of the wrapper method is that it considers the dependency 

between input variables and the interaction between input variables and predictive 

algorithms. However, it may suffer from the risk of overfitting and can be very 

computationally expensive [Saeys et al. 2007].  

The third method, i.e., embedded method, performs the variable selection during 

the process of model training and is specific to a given predictive algorithm. Popular 

methods include weighted naïve Bayes and the variable selection using the weight 

vector of SVM. Similar to the wrapper method, it considers the dependency between 

inputs and the interaction with predictive algorithms. One particular advantage is that 

embedded method is far less computationally expensive [Saeys et al. 2007]. Fan, Xiao, 

and Wang applied the embedded method to better predict the next-day building 

electricity consumption and peak power demand [Fan et al. 2014]. The recursive 

feature elimination (RFE) algorithm was used to select the optimal inputs considering 
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different predictive algorithms, e.g., ANN, SVR, and random forests. The research 

results showed that RFE could improve the prediction accuracy while reducing the 

computational load.  

 

Data Preparation 

DM techniques have also been used for data preparation, particularly for data 

partitioning. Building operational data can be very complex, containing observations 

under different operation conditions. Therefore, it may not be wise to using the whole 

data to train one universal model. Data partitioning helps to group observations 

according to their similarities. Consequently, the observations in the same cluster tend 

to have similar operation conditions. Based on these clusters, individual model can 

then be developed to achieve more accurate predictions. One specific DM technique, 

i.e., clustering analysis, is well fitted to this type of tasks. Clustering analysis groups 

the data into several clusters, with the aim of maximizing the intra-cluster similarity 

while minimizing the inter-cluster similarity. It can be used to as a pre-processing step, 

with the aim of identifying typical operation patterns and detecting abnormal 

observations. Tang, Kusiak, and Wei utilized clustering analysis to facilitate the 

predictive model development [Tang et al. 2014]. The authors applied k-means 

algorithm to obtain different clusters of data, based on which individual predictive 

models were then developed. It was claimed that using clustering analysis to 

preprocess the data was able to decrease the prediction errors and the computational 
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load.   

Jota et al. develop a 4-step methodology to forecast the building electricity 

consumption [Jota et al. 2011]. Hierarchical clustering was applied to identify the 

number of typical load curves. Then, mathematical models were developed to 

represent typical load curves. The last two steps were designed to predict the 

accumulate energy consumption and the maximum daily demand, respectively. The 

research results showed that the proposed method could simply and quickly predict 

the energy consumption and maximal demand. The obtained knowledge could be 

used for energy managers to identify anomalies, manage energy costs, and automate 

demand response strategies. 

Jain and Satish proposed a novel clustering-based short-term load forecasting 

method [Jain and Satish 2009]. Prediction was made for the next 24 hours with a time 

resolution of 30 minutes. Clustering analysis was applied as a preprocessing step to 

improve the prediction performance. SVM models were developed for each day of the 

week, taking into account the results of clustering analysis. By comparison, it showed 

that significant improvement could be achieved when clustering was integrated into 

the predictive modeling process.    

 

2.3.2 Fault Detection and Diagnosis  

Fault detection and diagnosis (FDD) has been a hot topic in the building field for 
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decades. Conventional methods mainly adopt physical principles [Norford et al. 2002; 

Castro 2002] and domain expertise [House et al. 2001; Schein et al. 2006] to detect 

and diagnose faults in building operations. The rapid growth in the amount of 

building operational data has made it less efficient to detect and diagnose faults 

through conventional strategies. The availability of massive building operational data 

has provided another approach to FDD, i.e., the data-driven approach. Some research 

has been done to explore the usefulness of DM techniques in such area. Basically, the 

DM-related research can be organized according to the criteria of whether training 

data are available or not. With the presence of training data, supervised techniques 

can be used for detection and diagnosis. Otherwise, unsupervised techniques are used 

to examine the intrinsic data structure, correlations, or associations, based on which 

faults are detected or diagnosed.  

 

FDD Based on Supervised DM Techniques  

Supervised DM techniques have been widely used in predictive modeling owing 

to their excellent ability in mapping complex and nonlinear relationships. When 

training data are available, one commonly used approach for fault detection is to 

model the normal conditions first and then, detect potential faults through comparison. 

Supervised DM techniques have been widely used for the modeling purpose. Fault 

diagnosis can be performed using supervised learning methods when the training data 

contain both normal and faulty observations. In such a case, fault diagnosis is 
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transformed into a classification problem. Popular tools include the artificial neural 

networks (ANN) [Lee et al. 2004; Magoules et al. 2013], support vector machines 

(SVM) [Liang and Du 2007; Zhao et al. 2013], principal component analysis (PCA) 

[Wang and Cui 2005; Wang and Xiao 2006; Jin and Du 2006;], fisher discriminant 

analysis (FDA) [Du et al. 2007; Du and Jin 2008], and wavelet analysis [Chen et al. 

2006; Du et al. 2009].  

PCA methods are mainly used for sensor FDD. Wang and Xiao presented a 

principal component analysis (PCA)-based strategy for AHU sensor fault detection 

and diagnosis [Wang and Xiao 2004]. Sensor faults were detected using the 

Q-statistic and diagnosed using the Q-contribution plot. Several simple physical rules 

were integrated to enhance the fault isolation ability of the PCA method. The 

robustness of the proposed method was verified through simulation and site data. 

Compared to the training of neural networks or other black-box models, PCA-based 

strategy was much easier to implement. In addition, the fault isolation ability of PCA 

models could be further enhanced with physical reasoning. 

Hou et al. applied rough set and ANN to detect and diagnose sensor faults in 

building air conditioning system [Hou et al. 2006]. The proposed method was tested 

using an existing HVAC system in China. The sensor faults of supplied and returned 

chilled water temperature were successfully detected and diagnosed. It was claimed 

DM techniques could provide a good means of generating useful residuals for sensor 

fault detection and diagnosis.    
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Hu et al. presented a self-adaptive chiller sensor fault detection strategy based on 

PCA [Hu et al. 2012]. The proposed method was specifically design to enhance the 

detection efficiency at low sensor fault level. The usefulness of the proposed method 

was validated by the operational data of a screw chiller system. Compared to 

conventional PCA-based strategy, the proposed method was able to remove the error 

samples with a self-adaptive loop in the process of PCA model development and 

thereby, enhancing the fault detection efficiency. 

PCA-based methods have also been used for the FDD of system or component 

operations. Wen and Li applied the PCA and pattern matching methods for the FDD 

of air handling units [Wen and Li 2014]. For each new observation, the pattern 

matching method identified the similar operation conditions in the historical data. 

PCA model was then built on this data subset. The Q-residual was used to detect the 

fault, if any. The method was validated using the ASHRAE 1312-RP and 1020-RP 

data, indicating that the sensitivity of fault detection in AHU system could be 

enhanced significantly. 

Artificial intelligence (e.g., ANN) and machine learning methods (e.g., SVM, 

SVR) are mainly used for the FDD of system operations. Bailey and Kreider 

developed an automated chiller fault detection diagnostics tool using neural networks 

[Bailey and Kreider 2003]. The tool was able to classify the current state of chillers 

given a vector of observations. The model development required the availability of 

empirical data containing both normal and abnormal observations. The proposed 
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method was validated by extensive experiments and the performance was satisfactory. 

Similarly, Tassou and Grace utilized artificial intelligence to detect and diagnose 

faults in vapour compression refrigeration systems [Tassou and Grace 2005]. Fault 

detection was based on the comparison between predicted fault-free values and actual 

values of ten parameters. ANN models were developed for the prediction. An expert 

system was used to diagnose the faults. The method was capable of distinguish faulty 

and fault-free conditions, steady state and transient operations, refrigerant leakage and 

overcharge conditions. Capozzoli, Lauro, and Khan investigated the usefulness of 

artificial ensembling networks in automatic fault detection [Capozzoli et al. 2015]. 

The ANN ensembles were trained to capture the relationship under normal conditions. 

The model residuals were analyzed using the peak detection and the GESD methods. 

Compared to statistical methods, the proposed method could successfully identify 

outliers under boundary conditions and provide more robust results.  

Another example of using ANN can be found in [Zhou et al. 2009]. The authors 

adopted fuzzy modeling and ANN techniques for the FDD of centrifugal chillers. The 

performance indexes under normal conditions were modeled using regression analysis. 

The residuals between the model estimates and normal data were used for fault 

diagnosis. Fuzzy model was used to deduce a quantitative diagnostic classifier. ANN 

was applied for fault identification. The strategy was validated using the ASHRAE 

1043-RP data. Magoules, Zhao, and Elizondo (2013) demonstrated the use of 

recursive deterministic perceptron (RDP) neural network in detecting anomalies in 
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building electricity consumption [Magoules et al. 2013]. EnergyPlus was used to 

simulate both normal and abnormal energy consumption data for various components, 

including fans, pumps, and chillers. RDP neural networks were then developed to 

detect faulty conditions. Afterwards, a fault diagnosis scheme was designed and it 

was able to output the potential sources for a given faulty sample in a descending 

order of possibilities. The effectiveness of the method was validated through 

experiments. 

SVM or SVR methods are also popular tools. Yan et al. developed a robust FDD 

strategy for chiller FDD using time series modeling and machine learning techniques 

[Yan et al. 2014]. Time series modeling was used to preprocess the data and SVM 

was applied to detect the changes in model parameters. The proposed method was 

validated using the ASHRAE 1043-RP data. It was shown that five typical chiller 

faults could be accurately identified with low false alarm rates. Zhao, Wang, and Xiao 

devised a novel FDD method for centrifugal chillers [Zhao et al. 2013]. A new 

performance index, i.e., the heat transfer efficiency of sub-cooling section, was 

proposed. SVR models were developed to calculate the performance indexes under 

normal conditions. The exponentially-weighted moving average (EWMA) control 

charts were used for fault detection. A rule table was proposed for fault diagnosis. 

The method was validated by the experimental data from the ASHRAE 1043-RP, 

considering 6 typical chiller faults. It was shown that significant improvement in FDD 

performance could be achieved compared to conventional method.  
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Some research has been done to utilize Bayesian analysis for FDD. As an 

example, Zhao, Xiao, and Wang developed a generic intelligent FDD strategy for 

chillers using Bayesian belief network [Zhao et al. 2013]. A three-layer Diagnostic 

Bayesian Network (DBN) was developed to capture the causal relationships between 

faults and symptoms. Probability analysis and graph theory were applied to calculate 

the posterior probabilities of faults given the observed evidence. The ASHRAE 

1043-RP data were used for validation. It was claimed that the method was especially 

useful when handling incomplete and conflicting information. Similarly, the method 

was applied to the FDD of variable air volume (VAV) terminals [Xiao et al. 2014]. 

The causal relationships between faults and symptoms were mapped using the DBN. 

Two rules were used to isolate the fault. Simulation tests showed that 10 typical VAV 

terminal faults could be effectively detected and diagnosed.  

 

FDD Based on Unsupervised DM Techniques 

In practice, it is usually not possible to obtain a training data set with labeled 

observations. In such a case, unsupervised DM techniques are normally used to 

identify the faults or anomalies. Compared to the previous section, this area is less 

explored. Popular techniques include outlier detection [Seem 2007], association rule 

mining (ARM) [Yu et al. 2012; Cabrera and Zareipour 2013], and clustering analysis 

[Khan et al. 2013; Du et al. 2014; Janetzko et al. 2014; Panapakidis et al. 2014].  

Through literature review, it is found that unsupervised methods are mainly used 
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to detect faults and anomalies in energy consumption data. Cabrera and Zareipour 

used association rule mining to identify the lighting energy waste patterns in 

educational institutes [Cabrera and Zareipour 2013]. The data set contained 7 

variables, i.e., season, time, day type (i.e., weekdays or weekends), occupancy status, 

event, day of week (i.e., Monday to Sunday), and waste status. Association rules were 

derived to present the relationships between waste status and other variables. The 

knowledge discovered was used to regulate the lighting energy use. Simulation results 

showed that as high as 70% of the lighting energy could be saved.  

Miller, Nagy and Schlueter developed an automated daily pattern filter to find 

anomalies in building operational data [Miller et al. 2015]. This research focused on 

mining the temporal relationship embedded in building operational data. The 

symbolic aggregate approximation method was applied to preprocess the time series 

data. The most infrequently happened data sequences, or discords, were filtered out 

for detailed inspection. Clustering analysis was adopted to discover the most frequent 

patterns, or motifs. The method was applied to two case studies and the results 

confirmed the capability in finding discords and motifs in time series data. 

Yu et al. applied association rule mining (ARM) to discover useful knowledge 

about energy conservation [Yu et al 2012]. ARM was used to derive the associations 

and correlations between building operational data. It was recommended to use at 

least 2-year building operational data for comparison and inference. The derived rules 

were successfully used to detect equipment faults and identify energy waste 
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conditions. 

Khan et al. adopted three DM techniques, i.e., CART, k-means, and DBSCAN, 

to detect abnormal lighting energy consumption [Khan et al. 2013]. The 

hourly-recorded data were firstly classified or clustered. Then, outlier detection 

algorithms, i.e., generalized extreme studentized deviate (GESD) and boxplot 

statistical method, were applied for the discovery of abnormal observations in each 

class or cluster. The results showed that the combine use of CART and GESD could 

lead to accurate fault detection. The DBSCAN algorithm could be used alone to 

detect potential faults, as it has the ability to group all outliers in a single cluster. 

However, the detection performance may be compromised. The proposed method 

could be used for preventive maintenance. In addition, the productivity could be 

enhanced as the fault detection process was automated. 

Seem described a novel method for detecting abnormal energy consumption in 

buildings [Seem 2007]. The proposed method used the generalized extreme 

studentized deviates method to efficiently determine the abnormality degree of 

building electricity consumption. The computation was efficient and no training data 

was required. Field tests validated the usefulness of the method.  

Jakkula and Cook compared two methods for the detection of anomalies in 

building electricity consumption [Jakkula and Cook 2010]. The statistical method 

adopted the concepts of t-distribution to identify outliers. The clustering method was 

based on the k-nearest neighbor algorithm and dynamic time warping. The 
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experiments showed that the clustering-based method was more reliable than 

statistical-based method. 

 

2.3.3 Control and Optimization 

Conventional and optimization methods adopt analytics [Tashtoush et al. 2005] 

and simulation-based methods [Lu et al. 2005a; Lu et al. 2005b] to optimize building 

operation. Building systems are complex, nonlinear, and containing massive amounts 

of variables. Therefore, conventional methods may not solve the optimization 

problem efficiently. This section reviews the DM-related research on control and 

optimization. The general approach can be summarized as follows. Predictive 

modeling is firstly used to construct the relationship among parameters to be 

optimized, constraint variables, and target variables (e.g., energy consumption). 

Optimization algorithms are then used to optimize the parameters according to 

user-specified cost function. Due to the complexity in building operation, nonlinear 

local techniques (e.g., direct search, sequential quadratic programming, and conjugate 

gradient) may not be able to find the global optimum [Wang and Ma 2008]. By 

contrast, evolutionary computing techniques have shown great potential in handling 

complex optimization problems in building operation management. Popular methods 

include genetic algorithm (GA) [Chang 2005; Chang et al., 2009; Beghi et al. 2011], 

particle-swarm optimization (PSO) [Ardakani et al. 2008; Lee and Lin 2009; Beghi et 
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al. 2012], differential evolution (DE) [Lee et al. 2011; Ozcan et al. 2013], and 

neuro-evolutionary method [Chow et al. 2002; Chen et al. 2014]. These studies can be 

further classified into two categories, i.e., single-objective and multi-objective 

optimizations. 

 

Single-objective Optimization 

Single-objective optimization has been mainly applied to optimize the 

performance of individual component. One typical problem is to determine chiller 

loadings of multi-chiller systems. The general approach is to first establish the 

relationship between the part-load ratio (PLR) and chiller energy consumption. Then, 

optimization algorithm was used to minimize the total energy consumption of chillers 

while meeting the cooling demand.  

Chang, Lin, and Chuang employed GA to optimize the chiller loading problem 

[Chang et al. 2005]. The PLRs of individual chillers were encoded using binary 

strings. Compared to the Lagrangian method, the binary GA-based method was able 

to solve the convergence problem at low cooling demands. However, the optimized 

energy consumption might rise a little.  

Since the PLRs are continuous variables, it may not be optimal to encode the 

PLR using binary strings. Ardakani, Ardakani and Hosseinian used continuous 

GA-based and PSO-based methods to solve the same problem [Ardakani et al. 2008]. 

The research results showed the continuous GA-based and PSO-based method could 
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result in better performance than the binary GA-based method. More specifically, 

continuous GA-based method could find more precise solution than binary GA-based 

method. PSO-based method converged faster than both types of GA methods. Lee and 

Lin compared the optimization performance of PSO-based, Lagrangian, and 

GA-based method [Lee and Lin 2009]. Two case studies were carried out and 

validated the superiority of PSO-based method. It was shown that PSO-based method 

could overcome the convergence problems at low cooling demands with better energy 

consumption solutions. 

Other approaches, such as DE and firefly algorithm, have also been used for this 

problem. Lee, Chen, and Kao applied DE to optimize the chiller loadings. The 

proposed method was tested in two multi-chiller systems [Lee et al. 2011]. This study 

investigated the parameter setting issues of DE-based method, e.g., scaling factor and 

cross over factor. It was reported that the average performance of solutions was better 

than that of PSO-based method. Recently, some research has been conducted to study 

the usefulness of other evolutionary computing techniques. Dos Santos Ceolho and 

Mariani developed a modified firefly algorithm to minimize the energy consumption 

of multi-chiller system [Dos Santos Ceolho and Mariani 2013]. Two case studies were 

carried out. It was shown the proposed method could achieve better performance than 

other optimization methods, such as PSO and GA. 

The above-mentioned studies mainly adopted linear regression or domain 

expertise to model the relationship between PLRs and the chiller energy consumption. 
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Since the intrinsic relationship may be highly nonlinear, the modeling process may 

not be accurate. The neuro-evolutionary method emerges to overcome such limitation. 

Chen, Chan, and Chan developed a neuro-evolutionary method to optimize the chiller 

loadings [Chen et al. 2014]. Rather than relying on linear regression, artificial neural 

networks were applied to modeling the highly nonlinear relationship between PLRs 

and chiller energy consumption. Then, PSO-based method was used to optimize the 

PLR of individual chillers. Comparison was made between the proposed method and 

linear regression with equal loading distribution method. It was shown that highly 

accurate results could be achieved with a faster convergence. 

 

Multi-objective Optimization 

Multi-objective optimization has been mainly used for HVAC systems. The 

objective function is usually formulated in such a manner that the total energy 

consumption is minimized while the indoor comfort is maintained. 

Kusiak, Li, and Tang proposed a data-driven method for minimizing the energy 

consumption of a HVAC system, including chillers, pumps, fans, and reheat devices 

[Kusiak et al. 2010]. Eight DM algorithms were used to model the nonlinear 

relationship among room temperature, indoor relative humidity, CO2 concentration, 

energy consumption of HVAC components, controllable parameters, and 

uncontrollable parameters. The set points of supply air temperature and static pressure 

in AHUs were optimized through PSO. It was shown that 7% of the total energy 
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consumption could be achieved. 

Kusiak, Xu, and Tang proposed a DM-based method to optimize the HVAC 

system [Kusiak et al. 2011]. The predictive modeling was achieved by ensemble 

learning. A strength multi-objective PSO algorithm was used for optimization. Such 

algorithm is a combination of strength pareto evolutionary algorithm and 

conventional PSO algorithm. The results showed that better optimization solutions 

could be achieved than using conventional PSO method. 

He, Zhang, and Kusiak presented a system-level optimization of HVAC system, 

with the aim of minimizing the energy consumption and the room temperature ramp 

rate [He et al. 2014]. Multi-layer perceptron models were developed to predict the 

energy consumption of AHUs, chillers, pumps, and fans. Two set points, i.e., the 

discharged air temperature set point and the supply air static pressure set point, were 

optimized to reduce the total energy consumption and ensure indoor comfort. Three 

optimization methods, i.e., evolutionary algorithm, PSO, and harmonic searching, 

were applied for control optimization. The research results showed that both harmonic 

search and PSO could be used for real-time optimization, and significant energy 

saving could be achieved. 

West, Ward, and Wall adopted supervisory control and optimization techniques 

to optimize the HVAC systems of commercial buildings [West et al. 2014]. Predictive 

methods were developed to model the HVAC system power consumption, zone 

condition and thermal comfort. A weighted sum method was used to formulate the 
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multi-objective function, considering the energy consumption, greenhouse gas 

emissions, and occupant thermal comfort. Experiments showed that the significant 

energy saving and emission cuts could be achieved without sacrificing the indoor 

comfort. 

 

2.4 DM Research and Applications for Building Design and 

Construction 

2.4.1 Building Design  

Building design has always been an important and complicated task. A good 

design leads to significant savings in both costs and energy use. Building design can 

be very challenging, as the number of design parameters is usually large and the 

actual performance are usually hard to quantify in advance. Building simulation 

software has been extensively used at the building design stage to predict building 

performance. It is capable of simulating the building operational performance based 

on different parameter settings and therefore, helps to make the decisions on optimal 

parameter settings. Typical design parameters include the building location, 

orientation, building envelope, heating, ventilation, and air conditioning (HVAC) 

system, lighting system, and etc.  

There are two major challenges associated with the use of building simulation 

software. The first one is the large volume of simulation results. It is observed that 
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even a simple simulation could generate pages of data. Therefore, it can be very 

time-consuming to identify the most influential design parameters. Kim, Stumpf and 

Kim proposed a DM-based approach, which used the C4.5 decision tree algorithm, to 

identify the most significant design parameters [Kim et al. 2011]. A case study was 

carried out to investigate the design elements on four aspects, i.e., roof construction, 

wall construction, HVAC system, and the building orientation. In total, the research 

studied 127 options for roof construction, 88 for wall construction, 12 for HVAC, and 

12 for building orientations. The results showed that HVAC has the largest impact on 

energy costs while the building orientation has the least impact. The proposed 

approach also evaluated the parameter importance in each sub-category. For instance, 

the insulation depth and the air space were identified as the most significant 

parameters in roof construction. 

The second problem is about the optimization of parameter settings. Usually, 

there are a large number of building parameters and each parameter may have a 

number of possible values. Since the simulation is computationally expensive, it is 

infeasible to use building simulation software to try out every possible combination. 

To tackle this challenge, optimization techniques are normally used. Optimization 

aims to maximize or minimize the objective function by assigning values to a number 

of variables subject to predefined constraints. The use of optimization techniques 

helps to find optimal design parameters with a greatly reduced computation load. 

Through literature review, it is noted that optimization is the major technique used in 
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the building design stage. The following subsections summarize the representative 

works in the design of building envelope, building services systems and 

building-integrated renewable energy systems. More technical reviews on the 

optimization methods and algorithms can be found in [Evins 2013; Machairas et al. 

2014]. 

 

Design of Building Envelope 

The design of building envelope includes the selection of construction materials, 

the shape of the building, and the orientation and location. Leskovar and Premrov 

presented a shortcut to energy-efficient design of prefabricated timber-frame 

buildings [Leskovar and Premrov 2011]. A brute-force search was conducted based 

on the use the Passive House Planning Package (PHPP). The main aim was to 

determine the optimal proportion of glazing-to-wall ratio. Similarly, Goia, Haase, and 

Perino integrated simulation and optimization techniques to study the energy impact 

of building façade [Goia et al. 2013]. In their study, the performance of the façade 

was evaluated by the total energy consumption by heating, cooling, and lighting 

systems. One main design parameter to be optimized is the façade transparent ratio 

(i.e., window-to-wall ratio). The results showed that given state-of-the-art 

technologies, the transparent ratio has a low influence on the total primary energy 

demand. The minimum energy demand can always be achieved when the transparent 

ratio is between 35% and 45%. It is noted that since the optimization method is 
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brute-force, both the number and the resolution of the design parameters are 

restricted.  

To overcome such restriction, meta-heuristic algorithms are commonly used. 

Tuhus-Dubrow and Krarti proposed a method to optimize building shape and 

envelope in terms of the building lifecycle costs [Tuhus-Dubrow and Krarti 2010]. 

The method integrated the genetic algorithm (GA) into the building simulation 

software DOE-2. The method enabled a global optimization with interactive effects 

considered. In total, 7 building shapes (i.e., L, T, H, U, Cross, Trapezoid) and 9 

building envelope parameters (i.e., azimuth, aspect ratio, wall construction, ceiling 

insulation, thermal mass, infiltration, foundation insulation, window area, glazing 

type) were taken into account. The research results showed that across 5 different 

climates, the rectangular and trapezoidal shaped buildings consistently had the lowest 

lifecycle costs. Bichiou and Krarti integrated three optimization algorithms, i.e., 

genetic algorithm, particle swarm optimization (PSO) algorithm, and the sequential 

search algorithm, into the building simulation process to optimally select the building 

envelope features [Bichiou and Krarti 2011]. The building lifecycle cost was selected 

as the optimization target. The research results showed that GA and PSO required less 

computation time than the sequential search algorithm.  

When there is more than one objective, multi-objective optimization methods are 

normally used. In general, these methods can be divided into two groups. The first 

one adopts the weighted-sum approach to transform multiple objectives into one 
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objective. In such a case, each objective function is normalized and assigned with a 

weight. The final objective function is a summed-up version of individual objective 

[Holst 2003].  

The second type adopts the concept of Pareto optimal. A solution is Pareto 

optimal when there is no other solution available so that it will enhance one objective 

without deteriorating at least one of the others [Magnier and Haghighat 2010].  

 

Design of Building Services Systems 

Building services systems are closely linked to the indoor comforts and building 

lifecycle costs. Simulation software and optimization techniques have been widely 

used for the optimal design of the HVAC system and the lighting system. Staneuscu, 

Kajl, and Lamarche adopted a simulation-optimization method to design the HVAC 

system [Staneuscu et al. 2012]. The HVAC energy consumption was selected as the 

objective function and simulated by the software DOE-2. Evolutionary algorithm was 

then applied to optimize the design elements, i.e., grouping of the zones and the 

number of systems serving the building. The optimization results were encouraging, 

as significant energy saving could be achieved compared to the reference building and 

the existing building. Seo et al. adopted the multi-island genetic algorithm to optimize 

the HVAC system design [Seo et al. 2014]. The cooling and heating load of the 

HVAC system was first simulated by TRNSYS. Optimization algorithm was then 

applied to determine the type, number, and capacity of the HVAC equipment.  
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In terms of the lighting system, previous research mainly focused on two issues, 

i.e., daylighting system and artificial lighting system. For instance, Torres and 

Sakamoto investigated the availability of genetic algorithm for the optimization of 

daylighting systems [Torres and Sakamoto 2007]. The objective was to maximize the 

energy saving achieved by daylighting while preventing the discomfort glare. 21 

parameters were selected for optimization, such as the window dimension, overhang 

depth, internal reflectance, and external reflectance. The proposed approach was 

reported to be effective. However, the thermal constraints were not integrated in the 

objective function. As a result, the optimized values for window area tended to be too 

large.  

 

Design of Building-Integrated Renewable Energy Systems 

The use of renewable energy helps buildings to achieve the goal of zero carbon 

emission or zero energy building. Many types of renewable energy can be generated 

on site. In this subsection, representative works related to the design of 

building-integrated renewable energy systems are reviewed, focusing on the design 

optimization of solar energy and geothermal energy systems. Solar energy system can 

be broadly categorized into two parts, i.e., solar thermal system and solar power 

system. Solar thermal system uses the solar radiation to heat up water or air. Solar 

power system transforms solar energy into electricity through photovoltaic panels. 

Hang et al. proposed a method, which consists of central composite design, regression 
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analysis, and multi-objective optimization, to optimize the design of solar absorption 

cooling and heating systems [Hang et al. 2013]. The multi-objective optimization 

considered the trade-off among energy, economic, and environmental aspects. The 

design parameters to be optimized included the slope and area of the solar collector, 

the volumes of the main storage tank and the hot storage rank, and etc. The proposed 

method was reported to be effective and can be used for other renewable energy 

systems, such as the wind or solar power systems.  

Geothermal energy is another renewable energy source for buildings. The 

geothermal energy systems take advantage of the ground’s relative constant 

temperature to provide heating or cooling energy to buildings. Kumar, et al. adopted 

the genetic algorithm to optimize the design parameters of an earth-to-air heat 

exchanger system [Kumar et al. 2008]. The design parameters, such as the mass flow 

rate, thermal conductivity of pipe, pipe length, and the radius of the tunnel, were 

optimized to maximize the cooling potential of the system.  

 

2.4.2 Building Construction  

In the past decades, more and more technologies, regulations and protocols have 

been developed to facilitate the building construction process. For instance, the newly 

developed technology, i.e., building information modeling (BIM) [Cerovsek 2011; 

Volk et al. 2014], has been used to store and simulate all the relevant data at the 

building construction stage. Such data has been used to facilitate the decision-making 
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at the construction stage (e.g., scheduling of construction tasks and estimation of 

activity duration.) [Kim et al., 2013]. DM techniques have been applied to extract 

useful knowledge from the construction data. The DM-related research and 

applications at the building construction stage can be broadly categorized into two 

groups, i.e., project management and occupational safety management. Representative 

research works are reviewed in the following subsections. 

 

Project Management 

Project management mainly deals with the management of project duration and 

project cost. An accurate prediction of these two variables helps the stakeholders to 

better prepare the bidding, schedule the project, and control the overall budget. In 

practice, such predictions are not easy to make. For instance, the project duration is 

affected by a number of factors, e.g., weather condition and resource availability. In 

terms of the project cost, the prediction can be of low accuracy due to the price 

fluctuations of labor, material, and equipment. Inaccurate predictions may lead to cost 

overruns, work interruptions, or even total project failure. 

DM techniques have been applied to achieve better predictions. For instance, 

Son, Kim, and Kim proposed a hybrid method, which integrated principal component 

analysis (PCA) and support vector regression (SVR), to predict the construction cost 

[Son et al. 2012]. PCA was firstly applied to obtain a compact representation of the 

raw input data. A SVR model using radial basis function kernel was then developed to 
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predict the cost performance of commercial building projects. The model performance 

was proven to be optimal when compared with four other approaches, i.e., SVR, ANN, 

decision trees, and multiple linear regression. The prediction accuracy was reported to 

be accurate, with an MAPE of 10%.  

The data collection during the construction stage can be very challenging due to 

the nature of construction process and the involvement of multiple parties. 

Consequently, the data to be mined are always insufficient and incomplete. To tackle 

these problems, Yu and Liu developed a method to mine scarce construction 

databases [Yu and Liu 2006]. The method was a hybridization of both symbolic 

reasoning and numeric reasoning. More specifically, the case-based reasoning method 

was integrated with two numeric reasoning methods, i.e., artificial neural network and 

neuro-fuzzy system. The proposed method was applied to handle five real-world 

construction problems. The proposed method was claimed to be effective in achieving 

higher mining accuracy while overcoming the limitation of data scarcity. 

It is worth mentioning that compared to the data collected in the other stages in 

the building lifecycle, construction data are more diverse, containing both structured 

data and unstructured data. For instance, the data collected during the operation stage 

are typically stored in a structured way, using either spreadsheets or rational databases. 

By contrast, a large proportion of construction data are unstructured, such as 

document texts, project images, network-based project schedules. Knowledge 

extraction from the unstructured data is another hot topic in mining building 
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construction data. Soibelman, et al. reviewed relevant works on processing 

unstructured construction data [Soibelman et al. 2008]. A framework was proposed to 

manage and analyze text-based, web-based, image-based, and network-based 

construction databases. A preliminary study was carried out to demonstrate the 

usefulness of the framework. The framework was reported to be useful in enhancing 

the process of data management and knowledge discovery.  

 

Occupational Safety Management 

Building construction is a high-risk activity. Construction accidents typically 

lead to occupational injuries, fatalities, work interruptions, and other damages. DM 

techniques have been applied to identify the characteristic of occupational accident 

data. Based on the extracted knowledge, prevention strategies can be developed to 

reduce the chance of occupational accidents.  

Classification and association rule mining are the most commonly used DM 

techniques in this area. Cheng et al. applied data mining techniques to examine the 

factors contributing to the occupational injury in the construction industry [Cheng et 

al. 2012]. A database with 1542 accident cases was analyzed using the classification 

and regression tree (CART) method. The derived occurrence rules successfully 

identified factors leading to different kinds of accidents. The findings could be used to 

improve the safety practices and protect construction workers from occasional or 

unexpected accidents.  



! ! !49 

Liao and Perng adopted association rule mining to explore the occupational 

accident reports [Liao and Perng 2008]. The associations between occupational 

injuries and fourteen contributing factors were discovered. The contributing factors 

included the individual factors, task factors, environmental factors, and management 

factors. It was reported that the proposed method could successfully identify the 

patterns of occupational injuries. The findings could be useful to establish effective 

inspection or prevention strategies. The authors also commented on the limitations of 

the method. As a large proportion of the obtained rules were useless, the post-mining 

of these rules was very time-consuming. It was recommended to develop a more 

advanced method to improve the efficiency in post-mining. 

Cheng, Lin, and Leu used association rule mining to identify the cause-effect 

relationships in occupational accident data [Cheng et al. 2010]. Apriori algorithm was 

selected as the mining algorithm. A number of useful rules were successfully derived. 

It was found out that management and individual factors were the most significant 

ones contributing to the occupational accidents. The authors claimed that most 

accidents were preventable, as they were due the negligence of workers or 

management.  

 

2.5 Summary 

This chapter provides a comprehensive review on the DM-related research and 
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applications in building life cycle, with special emphasis on the building operation 

stage. Data mining (DM) has been successfully applied to a diversity of industries, 

including the retails, telecommunication, financial services, and even counterterrorism. 

DM techniques have found their strengths in three areas at the building operation 

stage, i.e., predictive modeling, fault detection and diagnosis, and control and 

optimization. Even though some encouraging results have been obtained, the potential 

of DM in the knowledge discovery in massive BAS data has not been fully exploited. 

Previous research relied heavily on domain knowledge across the whole mining 

process and mainly adopted supervised learning techniques. Consequently, the 

problem to be solved or the type of knowledge to be mined is usually predefined and 

only a small subset of BAS data was utilized. For instance, in the development of the 

prediction model for the chiller power consumption [Chang 2007], inputs to the 

model, e.g., the supply and return temperature of chilled water and condenser water 

were selected in advance, since domain expertise tells us that these variables are the 

most influential variables to chiller power consumption. The model developed may 

gave higher accuracy owing to the use of domain expertise and advanced supervised 

learning algorithms, the knowledge being discovered is usually limited.  

In addition, the potential of unsupervised learning methods has not been fully 

discovered. Currently, only limited studies explored the usefulness of unsupervised 

learning methods in building operation, e.g., clustering [Khan et al 2013; Du et al. 

2014] and association rule mining [Yu et al. 2012; Cabrera and Zareipour 2013]. The 
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main goal of DM is to discover potentially useful and previous unknown knowledge 

from massive data. Unsupervised learning methods are able to meet such goal by 

capturing the intrinsic structure, correlations, and associations from massive data, 

without explicitly defining the mining targets. Therefore, more effort should be made 

to investigate the usefulness of unsupervised learning methods. For instance, many 

studies of FDD are relied on the availability of training data. A training data 

consisting of both normal and faulty data is used to develop models for detection and 

diagnosis. However, such training data are very unlikely to be available in real 

practice. In view of this, unsupervised DM techniques may be more useful when 

tackling real-world problems. 

Although DM technology brings valuable opportunity to effectively utilize 

massive building operational data, its applications in the building field still faces great 

challenges. DM itself cannot tell the value or the significance of the knowledge 

discovered. The knowledge discovered by DM is usually enormous and may be in 

various forms, such as predictive models, clusters, association rules, statistics. 

Meanwhile, advanced DM techniques are constantly emerging. It is not easy for 

building professionals to catch up the progress of DM technology. How to select the 

most suitable DM techniques and practically valuable knowledge are two big 

challenges. Based on the literature review, two general research directions are 

identified. The first is to keep exploring the vast amount of advanced DM analytics 

and identify their applications in building energy management. More specifically, 
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more research efforts should be paid on investigating unsupervised DM methods, as 

they are more flexible and capable of discovering potentially interesting and 

previously unknown knowledge. The other one is to develop generic DM-based 

frameworks for mining building operational data, including designing an overall 

workflow, developing detailed data preparation methods for a diversity of BAS 

variables, and devising post-mining methods for different types of knowledge 

representations (e.g., models, clusters and association rules).  
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CHAPTER 3 DEVELOPMENT OF DM-BASED 

ANALYTIC FRAMEWORK AND RESEARCH 

FACILITIES 

    

This chapter introduces the DM-based analytic framework developed for the 

efficient and effective utilization of BAS data and the research facilities. Section 3.1 

introduces the framework, which is deliberately designed by considering the unique 

characteristics of building data while ensuring the efficiency in the knowledge 

discovery process. Section 3.2 introduces the research facilities, which include the 

description of the real-world BAS data used for validation and the computation tools. 

A summary is provided in Section 3.3. 

 

3.1 DM-based Analytic Framework 

DM technologies are constantly evolving and the number of algorithms that are 

available to use is increasing rapidly. Meanwhile, it is realized that the system 

operations and the data collected from different buildings do share some similarities, 

such as the problem of poor data quality. Therefore, it is not wise to develop highly 

specific solution and investigate the usefulness of different approaches for each 

individual building. The establishment of a generic DM-based analytic framework 
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helps to standardize the knowledge discovery from building operational data and 

enhance the working efficiency of building professionals.  

A typical knowledge discovery process usually includes five steps, i.e., data 

selection, preprocessing, transformation, data mining, and interpretation and 

evaluation [Han and Kamber 2011]. Based on the in-depth analysis of building data 

characteristics as well as considerations for practical applications, we develop a 

generic DM-based analytic framework for mining massive building operation data 

with five phases, i.e., data exploration, data partitioning, knowledge discovery, 

post-mining, and applications. The framework outline is shown in Figure 3.1 and the 

details of each phase are described in the following subsections.  

 

3.1.1 Data Exploration 

BAS data vary from building to building and the data quality can be poor due to 

the sensor errors and transmission malfunctions. Therefore, the first phase is data 

exploration, which aims to provide a general impression on the data behaviors and 

enhance the data quality. It is one of the most essential steps in a knowledge 

discovery process and it may take 80% of the total DM efforts [Zhang et al. 2003]. It 

consists of two tasks, i.e., data visualization and data preprocessing. Data 

visualization helps the users to visually gain preliminary understanding about the data. 

Visualization methods vary in their functionalities. For instance, box plots and 
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histograms are efficient to display the data distribution. Scatter plots provide a way to 

show correlations among variables. Run charts are useful to present time series data. 

Principle component analysis-based methods are useful for the visualization of 

high-dimensional data.  
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Figure 3.1 The DM-based analytic framework 

The other key element in data exploration is data preprocessing. It typically 

involves three tasks, i.e., data cleaning, data transformation and data reduction. Data 
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cleaning aims to enhance the data quality by filling missing values, removing outliers 

and solve inconsistency in data. Missing values and outliers are two frequently 

encountered problems in BAS data, due to the sensor malfunctions or signal 

transmission errors. Moving average, imputation, and inference-based methods are 

frequently used in filling up the missing values. Outliers are those records that deviate 

from their true values. They can be solved using statistical methods, as well as 

unsupervised and supervised methods. Data inconsistency refers to the differences in 

the data scales or units, and unmatched records in different data sources. A popular 

solution to this problem is the data fusion schemes or physical redundancy [Huang et 

al. 2009].  

Data transformation mainly consists of data scaling and data type transformation. 

Data scaling aims to normalize the data variables so that they appear equally 

important in data analysis as far as quantity concerned. Commonly used approaches 

include the max-min normalization, Z-score normalization, and decimal point 

normalization [Hastie et al. 2009]. Data type transformation is often needed when the 

data type is not compatible with the DM algorithms. For example, conventional 

association rule mining algorithms, such as the Apriori and frequent-pattern growth 

algorithms, can only deal with categorical data (e.g., High, Medium and Low), while 

the majority of the BAS data are numeric. Hence, it is necessary to transform numeric 

data into categorical data prior to the use of the conventional association rule mining 

algorithms. Popular methods for data type transformation include the equal-frequency 
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binning, equal-interval binning and entropy-based discretization [Hastie et al. 2009].  

Data reduction aims to reduce the computation efficiency while maintaining the 

reliability and the generality of the knowledge discovered. BAS is usually stored in 

such a format that each row represents an observation sampled at a specific time 

instant and each column represents the values of a variable in all observations. 

Sampling techniques, such as random sampling and stratified sampling, are 

commonly used for the reduction of row number. The reduction of column number, or 

the selection of variables of interests and significance, can be done in three ways. The 

first one is to select the variables of interests based on domain knowledge. The second 

is to adopt data reconstruction methods, such as the principal component analysis in 

which the new low-dimensional variables are the linear combinations of the original 

high-dimensional data. The third is to use the heuristic methods, such as the step-wise 

forward selection and backward elimination methods, to select the most relevant to 

the problem concerned.  

 

3.1.2 Data Partitioning 

Data partitioning is necessary considering that most building services systems 

are highly dynamic and inter-correlated. The values of the variables and the 

relationships between variables may vary dramatically under different operation 

conditions. As a result, mining the entire BAS data simultaneously may result in 
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significant knowledge loss. Partitioning the BAS data into several subsets of unique 

patterns according to their intrinsic characteristics and then mining the individual 

subsets helps to efficiently discover more meaningful knowledge. Since the distance 

of the data in a subset is remarkably reduced, or the similarity of the data is greatly 

improved, the knowledge being discovered is more reliable. However, this kind of 

data partitioning should mainly rely on the data intrinsic characteristics and involves 

less domain knowledge to take the advantage of DM in discovering underlying 

knowledge. How to capture the data intrinsic characteristics is a critical issue and 

many methods can be adopted. In this research, three methods are explored to perform 

the data partitioning, i.e., significance testing, clustering analysis and decision tree 

methods. The details are shown in the later chapters.  

 

3.1.3 Knowledge Discovery 

While the previous two phases prepare the data for mining, the knowledge 

discovery phase covers the actual mining process. A large number of DM techniques 

are available and new DM techniques are constantly emerging. The selection of DM 

techniques depends on the problems under consideration, the knowledge type to be 

discovered, data availability and the level of domain expertise. The knowledge 

discovered may be in the forms of statistics, clusters, decision trees, association rules, 

and etc. For example, the association rules and decision trees can be used for 
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diagnostics. If the new observations violate the association rules, there is a high 

possibility that something abnormal occurred. Then, the decision trees can be used to 

find the source of the abnormality by deducing the variables which contribute the 

most to this kind of violation. Since building services systems are well understood 

nowadays, the domain knowledge about them is rich. Therefore, supervised DM 

techniques may not make significant contribution to the knowledge discovery. By 

contrast, unsupervised techniques are more capable of discovering unknown 

knowledge from the massive BAS data. Therefore, this research mainly explores the 

potential of unsupervised DM techniques in analyzing BAS data. 

More specifically, three methodologies are developed based on the generic 

DM-based analytic framework with the intention of discovering knowledge from 

cross-sectional data, temporal data and multi-relational data. The cross-sectional 

knowledge can be discovered by treating each observation in the BAS data as an 

independent event. Building operations are highly dynamic and intercorrelated. 

Therefore, a methodology for temporal knowledge discovery is proposed to discover 

the sequential patterns and temporal associations in BAS data. Currently, BAS data 

are usually recorded in a two-dimensional data table. It can be foreseen that BAS data 

structure will become more complex as more types of information are to be collected 

for the use of building management. In order to perform knowledge discovery from 

BAS data with potentially complex data structures (e.g., multi-relational data), a 

graph-based DM methodology is proposed. The details of these three methodologies 
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are described in the following chapters. 

 

3.1.4 Post-mining 

The post-mining phase aims to build a bridge between knowledge discovered in 

Phase 3 and practical applications, such as building performance assessment, fault 

diagnosis and optimization. The process can be very time-consuming, due to the large 

amount of knowledge discovered and the diversity of knowledge representations (e.g., 

rules, clusters, decision trees). Therefore, this research develops several methods to 

enhance the efficiency and effectiveness at the post-mining phase. The post-mining 

methods are specifically designed to couple with the DM algorithms used in the 

knowledge discovery phase. The methods are designed to perform three tasks, i.e., 

knowledge selection, knowledge transformation and knowledge interpretation. 

Knowledge selection is to select potentially useful knowledge from the massive 

amount of knowledge discovered. Knowledge transformation aims to transform the 

knowledge into suitable formats for the ease of applications. Knowledge 

interpretation involves domain expertise to explain the knowledge discovered and 

thereby, converting the knowledge discovered into actionable measures for building 

operation management.  
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3.2 Research Facilities 

3.2.1 Buildings and BAS Data  

The BAS data retrieved from two buildings in Hong Kong are used to validate 

the performance of the DM-based analytic framework. The buildings and the BAS 

data are introduced in the following sections. 

 

3.2.1.1 International Commerce Center (ICC) 

ICC Building Description 

Figure 3.2 presents the profile of the International Commerce Center (ICC). ICC 

is the highest building in Hong Kong. It stands 490m high with a total floor area of 

321,000m2. The building includes a 4-floor basement, a 6-floor block and a 112-floor 

tower. The basement has an area of 24,000m2 and is mainly used as a parking area. 

The block building serves as a commercial center and the gross area is about 

67,000m2. Considering the tower building, the mechanical floors are located at the 6th, 

7th, 42nd, 78th and 99th floors, which are used to accommodate the chillers, cooling 

towers, water pumps, heat exchangers, PAU and AHU fans. The 8th, 41st and 77th 

floors are used as refugee floors. The rest of the 9th to 98th floors are used as 

commercial offices, each with a length of 66m and a width of 65m. The 100th to 118th 

floors are used as a 6-star hotel.  
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Figure 3.2 The profile of International Commerce Center 

!
BAS Data in ICC 

The size of annual BAS data in ICC is around 30 gigabytes. The BAS data in 

ICC comes from two sources. The first mainly provides records of the sensor 

measurements and control signals of the central chilling system. The central chilling 

system consists of six identical high-voltage (10,000V) centrifugal chillers with a 

cooling capacity of 7,230 kW each. Each chiller is associated with a constant-speed 

primary chilled water pump and a constant-speed condenser water pump. The 

primary-secondary chilled water loop is used to transfer the cooling energy to the 

demand side. The heat dissipated from the chiller condensers is rejected by 11 

evaporative cooling towers with a total design capacity of 51,709 kW. The data are 

collected at an interval of 1-min. In total, over 500 variables are recorded, such as the 

power consumption of chillers, pumps and cooling towers, and the temperatures, flow 
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rates of chilled and condenser water at different positions of the HVAC system water 

loop. 

The second data source in ICC records the power consumption of a diversity of 

building components and services systems. Approximately 950 variables are collected 

at an interval of 15-minute. These variables can be aggregated to represent the power 

consumption of 5 main building services systems, i.e., the heating, ventilation, and 

air-conditioning (HVAC) system, normal power and lighting (NLTG), essential 

power and lighting (ELTG), vertical transportation system (VTS), and plumbing and 

drainage system (PD). The HVAC system in ICC consists of six subsystems, i.e., 

chillers, cooling towers, water pumps, primary air-handling units (PAU), air-handling 

units (AHU), and mechanical ventilation (MV). The vertical transportation system 

consist of the fireman’s lifts, car parking lifts, escalators, office shuttle lifts and office 

services lifts. The NLTG includes the power consumption used for plug-ins and 

lighting. The power consumptions of the ELTG and PD systems are relatively small 

and constant during the building operation.   

 

3.2.1.2 Zero Carbon Building (ZCB) 

ZCB Building Description 

Figure 3.3 presents an overview of the Zero Carbon Building (ZCB) in Hong 

Kong. ZCB has a total site area of 14,700m2. The majority of the site is a landscaped 

area for public use. An eco-café and a small shop are located in the landscaped area. 
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The main component in the site is a 3-storey building with a footprint of 1,400m2. It 

consists of an exhibition area, an eco-home, an eco-office, and a multi-purpose hall. 

Several passive design features have been integrated for energy saving, such as 

cross-ventilated layout, high performance glazing, light pipes and earth cooling tube. 

The active systems integrated include high-volume-low-speed fans, high temperature 

cooling system, intelligent lighting management, and absorption chiller, photovoltaic 

(PV) panels, and bio-diesel tri-generation systems. The estimated energy use of ZCB 

and the landscape area is around 116MWh and 15 MWh per year respectively. The 

major energy generation components are the biodiesel tri-generator and PV panels 

and their estimated energy outputs are 143 MWh and 87MWh per year respectively. 

More detailed information can be found in [CIC 2002].  

 
Figure 3.3 The profile of Zero Carbon Building 
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BAS Data in ZCB 

An intelligent BAS has been installed to monitor and control the building 

operational performance over various subsystems. Both the power consumption data 

of different building components and services systems, and the physical parameters of 

HVAC system are recorded with a collection interval of 1-hour. The power 

consumption data include 3 water-cooled chillers (WCC), 4 chilled water pumps 

(CHWP), 3 condenser water pumps (CDWP), 3 cooling towers (CT), 5 air-handling 

units (AHU) and 1 primary air-handling unit (PAU); the power consumption of 

outdoor landscape lighting (LandLight), the normal power and lighting consumption 

of the eco-office, basement area (Base), G/F common area (GF), multi-purpose room 

(MPR), mezzanine area (Mezz); the power generation the biodiesel tri-generator 

(BDG) and solar panels (SP) etc. The physical parameters of the HVAC system are 

also collected, including the temperatures and flow rates of chilled and condenser 

water at different positions of the HVAC water loops. 

 

3.2.2 Computation Tools 

A workstation has been equipped to perform the computing tasks involved in this 

research. The computer uses the Intel i7-3930K processor (12M Cache and 3.2GHz) 

and has a memory size of 16G.  

The open-source computing software R is the primary mining tool for this 

research. Two R packages, i.e., “HighDimOut” and “TSMining”, have been 



! ! !67 

developed to facilitate the mining tasks and their codes are presented in Appendix. 

Besides, the computing software QuantMiner [Salleb-Aouissi et al. 2007], SPMF 

[Fournier-Viger et al. 2014] and ParSeMiS [Worlein et al. 2011] are used to facilitate 

the tasks of temporal data mining and graph mining. The visualization tool Gephi and 

Tableau are used for data visualization. 

 

3.3 Summary 

This chapter introduces the DM-based analytic framework and research facilities. 

The framework serves as the generic solution for the knowledge discovery from BAS 

data. Three methodologies will be developed based on this framework to analyze 

different types of BAS data.  
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CHAPTER 4 DEVELOPMENT OF METHODOLOGY 

FOR CROSS-SECTIONAL KNOWLEDGE MINING AND 

ITS APPLICATIONS  

 

The basic approach to the knowledge discovery from BAS data is to treat the data as 

cross-sectional data, in which each observation is treated as an independent event and 

the temporal dependency among observations is neglected. This chapter presents the 

methodology developed for mining cross-sectional knowledge in BAS data. Section 

4.1 introduces the research methodology. The association rule mining is selected as 

the main knowledge discovery tool. Section 4.2 reports the typical operation patterns 

identified through data partitioning. Two possible approaches are developed based on 

the use of association rule mining methods. Sections 4.3 and 4.4 evaluated the 

usefulness of these two approaches using real-world BAS data. The last section 4.5 

summarizes this chapter. 

 

4.1 Research Methodology 

The methodology is developed based on the generic DM-based analytic 

framework, as introduced in Chapter 3. It contains four main phases, i.e., data 

exploration, data partitioning, knowledge discovery and post-mining. The outline of 
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the research methodology is depicted in Figure 4.1. The details of the methods 

adopted at each phase are introduced as follows. 

 
Figure 4.1 Research outline for cross-sectional knowledge discovery in BAS data 

 

4.1.1 Data Exploration 

Data Cleaning 

The two main tasks involved in this methodology is data cleaning and data 

transformation. The data cleaning step handles the missing values and the outliers. 

The moving average method is one of the most widely adopted methods in filling up 
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missing values. It is easy to implement and have a fairly good performance when the 

duration of missing values is not long. It should be mentioned that if the missing 

values’ duration is long, moving average methods cannot adequately simulate the 

dynamics in building operation. In such a case, it is recommended to either simply 

discard the data or use imputation-based methods to fill up the missing values. 

Outliers are observations that are highly unlikely to occur based on the variation 

seen in the rest of the data. They can be classified into two types, i.e., points as 

outliers and subsequence as outliers [Gupta et al. 2014]. It is recommended that the 

data exploration phase only handles the first type of outliers in BAS data, as the 

identification of the second type of outliers may overlap with mining discords (i.e., 

infrequent sequential patterns) in the later process. The outlier detection methods can 

be grouped into three categories, i.e., prediction-based, profile-based, and 

deviant-based methods [Gupta et al. 2014]. The prediction-based methods detect 

outliers by comparing the actual measurements with their expected or predicted 

values from statistical analysis or machine learning algorithms. The profile-based 

methods use historical data to construct a normal profile, which is usually presented 

in the form of expected means and confidence intervals at different time. Each 

observation is compared with the normal profile to decide whether it is an outlier or 

not. The deviant-based methods identify outliers from a perspective of information 

theory. An observation is an outlier if removing it from the time series leads to a 

much more succinct representation of the original time series [Gupta et al. 2014].  
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In this methodology, the moving average method is used to impute the missing 

values with a short duration, i.e., less than 2-hour. Any missing values with a longer 

time duration are excluded from analysis. The Hampel filter is adopted to identify the 

first type of outliers, i.e., points as outliers. It is a nonlinear filter which shows high 

effectiveness in processing time series data [Pearson 2002]. For each observation, the 

Hampel filter calculates the median and the median absolute deviation (MAD) 

considering a moving window size of 2k+1. k is the number of observations before 

and after the observation concerned. A parameter!!, which usually ranges from 0 to 5, 

is predefined to generate thresholds for outlierness evaluation, i.e., !"#$%& ±

!×!"#. Any observation falls beyond the range of the thresholds is identified as an 

outlier and is replaced by the median. The smaller the parameter, the more aggressive 

the detection algorithm is and more observations will be identified as outliers. This 

study sets ! as 3, which is in accordance with the Ron Pearson’s 3-sigma rule. 

 

Data Transformation 

Data transformation is carried out to cope with the use of conventional 

association rule mining algorithm at the phase of knowledge discovery. More 

specifically, numeric values in the BAS data are transformed into categorical. A 

number of methods are available. The equal-width method and equal-frequency 

method have been widely used due to their simplicity and reliability. The equal-width 

binning method divides the data into m intervals of equal size, while the 
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equal-frequency method divides the data into m groups which contains approximately 

same number of observations. Transformation results can greatly affect the mining 

performance. For instance, if the observation number in one category is too small, this 

category will be regarded as infrequent event. As a result, it may be very difficult to 

discover rules related to this category under a high support setting. There is no 

universally applicable guideline on how to select the optimal transformation method 

for a specific problem. It is recommended to examine the distribution of the numeric 

data first, and then integrate domain knowledge to select a suitable method for data 

transformation. For instance, the power consumptions of a two-speed fan can be 

easily categorized into three categories: Low (corresponding to zero power 

consumption when the fan stops), Medium (low speed) and High (high speed). 

Generally speaking, the more categories are used, the smaller the relative frequency 

of each category will be. Consequently, the support threshold should be set lower to 

cater for less frequent relationships when performing association rule mining. 

In this research, the power consumption data and weather data are all numeric 

and they should be transformed into categorical data before mining association rules. 

Considering the climate conditions in Hong Kong, the outdoor air temperature is 

categorized into 6 levels with the interval of 5oC from below 10oC to above 30oC, and 

the outdoor air relative humidity is categorized into 6 levels with the interval of 5% 

from below 70% to above 90%. The equal-frequency binning method, which results 

in an equal size of each category, is used to categorize all the power consumption data, 
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except for the power consumption data of PCHWP and CDWP. PCHWP and CDWP 

are constant speed pumps and their power consumptions will keep constant when the 

pumps run. Therefore, the power consumption data of PCHWP and CDWP are 

categorized according to the running pump number, for example, “2nd” means 2 

pumps are running. The rest power consumption data are categorized into 3 categories 

using the equal-frequency binning methods, as they generally have a continuous 

distribution across their ranges. The three categories can be defined as Low, Medium 

and High. 

 

4.1.2. Data Partitioning 

Clustering analysis partitions the data into a number of clusters with the aim of 

maximizing the similarities of the observations in the same cluster while minimizing 

those between clusters. It is a natural fit for the task of data partitioning. The 

similarity can be measured by various methods, such as the Euclidean distance and 

the Manhattan distance. One potential obstacle in using clustering analysis for the task 

of data partitioning is that the results are not easily interpretable. It cannot directly 

output rules to gain insights into the data partitions obtained. Based on domain 

knowledge, it is realized that the building operations are closely linked to the time 

variables, e.g., Year, Month, Day and Hour. Therefore, a two-step approach is 

proposed to perform the data partitioning. Firstly, ANOVA is applied to analyze the 
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significance of time variables (i.e., month, date, hour, minute, day) to the target 

variables (e.g., aggregated power consumption). Then, clustering analysis is applied 

to find the optimal number of clusters which the original data can be partitioned into 

according to the significant variables, as well as to determine the cluster membership 

of each observation.  

The clustering results can be evaluated by either the internal validation methods 

(e.g., Davies–Bouldin index, Silhouette index, and Dunn index) or the external 

validation methods (e.g., purity, F-measure, and normalized mutual information) [Tan 

et al. 2005]. In this study, the performance of five popular clustering analysis methods, 

i.e., k-means, partitioning around medoids (PAM), hierarchical clustering, entropy 

weighting k-means (EWKM) [Jing et al. 2007], and fuzzy c-means clustering, are 

compared. The parameters of these algorithms are fine-tuned using the Dunn index, 

which integrates the inter-cluster dissimilarity and cluster diameters to evaluate the 

clustering results. A larger Dunn index indicates a better clustering result. 

 

4.1.3 Cross-sectional Knowledge Discovery 

 While the previous two phases prepare the data for mining, the knowledge 

discovery phase covers the actual mining process. A large number of DM techniques 

are available and new DM techniques are constantly emerging. The selection of DM 

techniques depends on the problems under consideration, data availability and the 
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level of domain expertise. The knowledge discovered may be in the forms of clusters, 

decision trees, association rules, and etc., which are suitable for developing predictive 

models, detecting and diagnosing abnormalities and developing optimization 

strategies. For example, the association rules and decision trees can be used for 

diagnostics. If the new observations violate the association rules, there is a high 

possibility that something abnormal occurred. Then, the decision trees can be used to 

find the source of the abnormality by deducing the variables which contribute the 

most to this kind of violation. Since building services systems are well understood 

nowadays, the domain knowledge about them is rich. Therefore, supervised DM 

techniques may not make significant contribution to the knowledge discovery. By 

contrast, unsupervised techniques are more capable of discovering unknown 

knowledge from the massive BAS data.  

Association rule mining (ARM) is a popular unsupervised DM technique and it 

has been adopted in retail, marketing, and health care [Salleb-Aouissi et al. 2007]. 

Compared with other forms of knowledge discovered by DM, interpretation of the 

association rules using domain knowledge is more convenient and utilization of the 

rules is more straightforward. Some efforts have been made on the application of 

ARM in the building field. Yu et al. [Yu et al. 2012] adopted the frequent-pattern 

growth algorithm to derive rules from the operational data of an air-conditioning 

system. The rules discovered were used to detect energy waste and component faults. 

Cabrera and Zareipour [Cabrera and Zareipour 2013] presented the application of 



! ! !76 

ARM in detecting lighting energy waste. The simulation results showed that up to 70% 

of energy use could be saved using the energy saving measures derived from the rules. 

There are two possible approaches to mining cross-sectional associations in BAS data. 

The first is to use the conventional ARM algorithms, such as the Apriori and 

FP-growth algorithms [Tan et al. 2005]. Such methods can only handle categorical 

data, such as “High”, “Medium” and “Low”. However, almost all BAS data, such as 

power, temperature, humidity, flow rate and pressure, are numeric. In practice, it is 

very difficult to determine the intervals for the categories of “High”, “Medium” and 

“Low”, since BAS variables generally present large varieties. The second is to adopt 

advanced association rule mining methods, i.e., the quantitative association rule 

mining (QARM), which are able to discover association rules in quantitative formats.  

The usefulness of both approaches is evaluated and reported in the following 

sections. The background of these two types of association rule mining methods are 

given as below. 

 

Conventional association rule mining 

Association rule mining (ARM) is also an unsupervised learning process. It was 

firstly applied to perform the “market basket analysis”, which aims to identify 

customer purchase behaviors. Later, ARM has been widely used to analyze large 

datasets in various fields, such as retail, bioinformatics and sociology [18]. The data 

to be mined by conventional association rule mining methods are usually required to 
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be categorical. 

Let I be a non-empty item set, an association rule is a statement of the form 

A!B, where A, B⊂ I, and A∩B=ø. The set A is called the antecedent of the rule while 

the set B is called the consequent of the rule. Association rules are derived from a 

large number of observation sets (T), which is known as transaction sets in the DM 

field. Each variable or item in T belongs to I. Let P(A) denote the probability that set 

A appears in the data set T and P(A and B) denote the probability that the sets A and B 

coincide in the data set T, the support, confidence and lift of an association rule are 

defined as Equations 4.1 to 4.3 respectively. 

!"##$%& ! → ! = ! !!!"#!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(4.1) 

!"#$%&'#(' ! → ! = ! ! ! = !(!!!"#!!)
!(!) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!(4.2) 

!"#$ ! → ! = !(!!!"#!!)
! ! !(!) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(4.3) 

ARM aims to find out all rules satisfying the user-specified minimum support or 

minimum confidence. Support of a rule is the joint probability of the antecedent and 

the consequent. Confidence is the conditional probability of the consequent, given the 

antecedent. Support and confidence are normally used to determine whether the rule 

is statistically significant or not. The support threshold can be defined with great 

flexibility. A higher support threshold tends to find rules that happen more frequently, 

and vice versa. A low support threshold will lead to a dramatic increase in the number 

of association rules obtained, and consequently the post-mining will be 

time-consuming. The confidence threshold should be maintained at a high level, e.g., 
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above 85%, to ensure the association strength of the discovered rules.  

Lift is a measure of the dependence and correlation between the antecedent and 

the consequent. It is usually used to evaluate the “interestingness” of an association 

rule. If the lift equals 1, it indicates that antecedent and the consequent are 

independent of each other, and hence, the discovered knowledge has little value. Lift 

larger than 1 indicates positive correlation, which means that the probability of the 

consequent is positively affected by the occurrence of the antecedent. In contrast, lift 

smaller than 1 indicates negative correlation. Generally speaking, the larger the lift 

value deviates from 1, the more interesting the rule is. 

Quantitative association rule mining (QARM) 

The rule format for quantitative association rules is as follows:! ! ∈ !!,!! →

{! ∈ !!, !! }, where A and B are numeric variables, and a1, a2, b1, b2 specify the 

intervals for each numeric variable. {! → !} is called the rule pattern. Similarly to 

conventional association rule mining methods, quantitative association rules are 

derived by defining two parameters, i.e., the minimum thresholds of support and 

confidence. Only those rules meet the thresholds are derived and considered to be 

meaningful.  

The QARM algorithm adopted in this research is called the QuantMiner 

[Salleb-Aouissi et al. 2007; Salleb-Aouissi et al. 2013]. The intervals (a1, a2) and (b1, 

b2) are determined by compromising the gain of an association rule and the length of 

the intervals. The gain of an association rule is defined by Equation (4.4), where 
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MinConf is the predefined minimum confidence threshold. The fitness function, 

which takes into account both the gain of the association rule and the length of the 

intervals, is defined by Equation (4.5). Genetic algorithm is used to maximize the 

fitness function. Rules with large gains and small intervals are preferred 

[Salleb-Aouissi et al. 2007; Salleb-Aouissi et al. 2013]. 

!"#$ ! → ! = !"##$%& ! ∩ ! −!"#$%#&×!"##$%&(!)!!!!!!!!!!(4.4) 

!"#$%&& ! → ! = !"#$(! → !)× 1− !"#$ !!!!"#$ !!

!

!!∈!!"#
!!!!!!!!!!!!(4.5) 

Where Anum refers to the number of numeric variables presented in the rule 

pattern{! → !}; !!!is the interval of Ai; size(Ai) is the range of Ai; !"#$ !!!  is the 

length of the identified interval.  

4.1.4 Post-Mining 

The post-mining method described in this section is used for mining quantitative 

association rules. It handles two specific challenges, i.e., rule selection and rule 

utilization. The details are shown as below. 

 

Rule selection 

As mentioned above, the support and confidence are used to evaluate rules, and 

only those rules with the support and confidence meeting the predefined thresholds 

are considered. However, hundreds of rules may still be obtained, although the 

thresholds of the support and confidence are conservatively set. Selecting potentially 
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useful rules by individual inspection is extremely time-consuming. It is noticed that 

the lift is helpful in selecting potentially useful rules. The larger the lift value deviates 

from 1, the more interesting the rule is. A novel rule selection approached based on 

the lift is proposed for fast selection of potentially useful rules.  

The massive BAS data are divided into several subsets according to data intrinsic 

characteristics in the 2nd phase and each subset will be mined separately in the 3rd 

phase. Similar rules with the same rule pattern may be obtained from mining different 

subsets. Such rules specify the associations between the same variables, but the 

intervals of the antecedents and consequents are different. These similar rules are of 

particular interest. If the lifts of these rules are more or less the same, the dependence 

strength between the antecedent and the consequent is consistent and stable under all 

operation conditions represented by corresponding subsets. If the lifts of these rules 

have large variations, the dependence strength of the association is influenced by the 

operation conditions, which is worthy of further investigation. The possible reasons 

for the large variations include the change of operation strategy and abnormalities 

occurred. In view of this, a rule selection approach is proposed for fast selection of 

potentially useful rules. The standard deviation of the lifts (SD-Lift) of the similar 

rules obtained from mining different subsets is calculated. Those rules, which result in 

a high SD-Lift, are then inspected individually to find the actual reasons causing the 

large lift variations.  
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Rule utilization 

The knowledge discovered by DM can be used for various purposes, including 

prediction, diagnosis, and optimization. A method for utilizing the association rules 

for diagnosing abnormality in operation is proposed. All the rules obtained from 

mining one subset are utilized to build the knowledge base for the corresponding 

operation condition. Each new observation is examined against the rules in the 

corresponding knowledge base. A rule is violated if the observation meets the 

antecedent but fails to meet the consequent. Since the lift value indicates the 

dependence strength between the antecedent and the consequent, the rules with larger 

lift values are more significant than those with smaller lift values. As a result, if an 

observation violates a rule with larger lift, the violation is more serious. Accordingly, 

an abnormality degree (AD) of an observation is proposed as shown in Equation (4.6), 

which measures the seriousness of the violation against all rules in the corresponding 

knowledge base. In Equation (4.6), 1 is subtracted from the lift values, as a lift value 

of 1 indicates independence between the antecedent and the consequent. A lift value 

smaller than 1 means the probability of occurrence of the consequent is low when the 

probability of occurrence of the antecedent is large. Therefore, if a new observation 

violates a rule with a lift value smaller than 1, it is actually normal, rather than 

abnormal, and the AD should be decreased. 

!" = (!"#$! − 1)
!

!!!
!!!!!!!!!!!!!!(4.6) 

Where n is the number of rules being violated, and lifti is the lift value of the ith 
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rule being violated. 

 

4.2 Identification of Typical Building Operation Patterns 

Phase 2 performs the data partitioning with the aim of identifying typical 

building operation patterns. Building operation is mainly influenced by climate 

conditions and occupancy level. Moreover, people are very much concerned about 

building energy efficiency and indoor environment quality (IEQ). Identification of 

building operation patterns related to energy consumption and IEQ can help to 

explore means to enhance them. IEQ can be assessed by monitoring the 

concentrations of the indoor CO2 and other typical pollutants, indoor illuminance and 

noise levels, and etc. However, such measurements are usually not available in 

today’s BASs, including the BAS of ICC. The power consumptions of various 

components are well recorded in ICC. Therefore, this research focuses on typical 

power consumption patterns.  

As described in Section 4.1.2, the identification process is undertaken in two 

steps. Firstly, ANOVA is applied to analyze the significance of time variables (i.e., 

month, date, hour, minute, day) to the aggregated power consumption. Then, 

clustering analysis is used to find the optimal number of clusters which the original 

data can be partitioned into according to the significant variables, as well as to 

determine the cluster membership of each observation.  
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The level of Type I error, !, is defined as 1% to make the results more stringent. 

The ANOVA results were shown in Table 4.1. It indicates that only three time 

variables, i.e., month, day, and hour, result in a probability smaller than the specified 

Type I error. Therefore, these three variables have significant effects on the 

aggregated building power consumption. Five clustering analysis methods (i.e., 

k-means, hierarchical clustering, PAM, fuzzy c-means, and EWKM) are adopted to 

partition the large BAS data. The clustering analysis is performed in the sequence of 

“month”, “day”, and “hour” to avoid the conflict of cluster memberships. To 

determine the cluster membership in terms of the variable “month”, all the power 

consumptions of the 12 sub-systems are scaled using max-min normalization. Then, 

the mean and standard deviations of the power consumption of each sub-system are 

calculated for each month, resulting in a feature data set with 24 variables. Clustering 

analysis is performed based on the feature data set. When determining the cluster 

membership in terms of the variable “day”, the original observations in the months 

which are grouped in the same cluster are analyzed together. Features are then 

calculated for each day (i.e. Monday to Sunday) and clustering analysis is applied to 

find the cluster membership. Similar approach is adopted in determining the cluster 

membership in terms of “hour”.  

 

Table 4.1 ANOVA testing results 

Variable DOF Sum of squares Mean sum of squares F-test statistics Probability 
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Month 11 34,233,661 3,112,151 759.46 < 1% 

Date 30 1,361,300 453,800 0.37 78% 

Hour 23 220,948,230 9,606,445 2,344.25 < 1% 

Minute 3 2,401 800 0.20 90% 

Day 6 89,532,444 14,922,074 3,641.42 < 1% 

 

Figures 4.2 and 4.3 illustrate the clustering results in terms of “hour”. Figure 4.2 

presents the Dunn indices of different clustering algorithms and cluster numbers. The 

maximum Dunn index can be obtained when EWKM is used and the cluster number 

is 2. Therefore, such combination is selected to perform the clustering analysis. Two 

parameters of EWKM, i.e., the weight distribution parameter (!) and the convergence 

threshold (!), are determined using the Dunn index and they are 0.15 and 0.0001, 

respectively. Figure 4.3 illustrates the cluster membership in terms of the time 

variable “hour”. It can be found that the majority of observations collected during 

8:00 to 20:00 are grouped in the 1st cluster and the rest observations are grouped in the 

2nd cluster. In Hong Kong, 8:00 to 20:00 are normally the office hours and the other 

hours are non-office hours. The power consumptions during office hours and 

non-office hours are very different due to the different operation conditions, 

particularly occupancy levels. Therefore, the clustering result is consistent with the 

domain knowledge. 
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Figure 4.2 Comparison of clustering algorithms for clustering in terms of "hour" 

 

 
Figure 4.3 Cluster membership in terms of “hour” 
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Table 4.2 summarizes the overall clustering results. The optimal cluster number 

is 2 for all cases. EWKM is chosen as the clustering algorithm in terms of “month” 

and “hour”, while the hierarchical method is chosen for “day”. When the data is 

grouped in terms of “month”, data collected from June to October are grouped in one 

cluster, and the data from the other months are grouped in the second cluster. June to 

October are normally the hot season in Hong Kong with the higher outdoor 

temperature and relative humidity. Cooling demand in hot season is very large. By 

contrast, the other months are cool season and cooling demand is relatively low. The 

two clusters in terms of “day” are corresponding to weekdays (i.e. Monday to Friday) 

and weekends (i.e. Saturday and Sunday), respectively. As a result, the original large 

BAS data are partitioned into eight clusters or subsets, and each cluster is defined by a 

combination of the three time variables as shown in Table 4.3. The clustering results 

are reasonable, since each cluster has its unique power consumption pattern 

considering the climate conditions and occupancy levels. 

 

Table 4.2 Summary of the clustering results 
Clustering 
Variables 

Clustering 
Algorithms 

Optimal Cluster 
Number 

Cluster Membership 

Month EWKM 2 {6-10 }; {1-5 & 11-12} 

Day  Hierarchical 2 {Monday to Friday}; {Saturday and Sunday}  

Hour EWKM 2 {8:00-20:00}; {0:00-8:00 & 20:00-0:00} 

 

Table 4.3 Summary of the eight clusters 

Cluster Month type Day type Hour type 

1 Hot season Weekdays Office hours 
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2 Hot season Weekdays Non-office hours 

3 Hot season Weekends Office hours 

4 Hot season Weekends Non-office hours 

5 Cool season Weekdays Office hours 

6 Cool season Weekdays Non-office hours 

7 Cool season Weekends Office hours 

8 Cool season Weekends Non-office hours 

 

4.3 Discovery and Applications of Qualitative Associations 

As described above, eight typical building operation patterns were identified. 

The transformed data sets, i.e. with numeric values transformed into categorical 

values, were divided and mined accordingly. The Apriori algorithm was selected to 

discover associations in BAS data. 

Two key parameters, i.e., minimum support and confidence, should be 

determined to carry out the ARM. In this study, the minimum support is set relatively 

low, i.e., 0.1, to capture associations between infrequent events. By contrast, the 

minimum confidence threshold is set to be relatively high, i.e., 0.85, to ensure the 

reliability of obtained rules. Considering that the interpretability of discovered rules 

decreases with the increase in item number, the minimum and maximum item number 

(i.e. the total number of antecedents and consequents) in a rule was set to be 2 and 5, 

respectively. Redundant rules were removed by comparing their lift values. For 

instance, assuming that Rule A and Rule B have the same consequent, and Rule A’s 
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antecedent is a superset of Rule B’s. If Rule A has the same or a lower lift value, Rule 

A is redundant and removed.  

In total, 457 assocaition rules were derived. Most of rules can be easily obtained 

from domain knowledge and hence be ignored in this study. For example, Rule 1 in 

Table 4.4 describes that, if the outdoor temperature on Saturday is between 15 oC and 

20 oC, the chiller power consumption is “Low”. This can be easily understood, as a 

low outdoor temperature and a low occupancy level on Sunday always lead to a small 

cooling load and hence a low chiller power consumption. Rule 2 states that, if the 

power consumption of the primary air handling units is “High”, the power 

consumption of lifts is “High”. This rule can also be easily interpreted, as both the 

power consumption of the primary air handling units and lifts are closely related to 

occupancy level. A higher power consumption of the primary air handling units 

normally indicates a higher occupancy level and hence, more people need to use the 

lifts for vertical transportation. Four representative rules, which are either against  

common experience or of particular value, are analyzed in detail.   

 

Table 4.4 Examples of association rules discovered 
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4.3.1 Detection of Deficit Flow  

Rules 3 and 4 are interesting because they disobey one simple design principle. 

In the design, each chiller is associated with one constant-speed primary chilled water 

pumps (PCHWP) and one constant-speed condenser water pumps (CDWP). The 

running numbers of the PCHWP and the CDWP should be the same as the number of 

the chillers in operation, so called one-to-one operation strategy. Rule 3 indicates that 

in Cluster 1 (i.e., Hot Seasons, Weekdays, Office hours), if the PCHWP power 

consumption is at the 4th level (i.e., 4 PCHWP are running), the CDWP power 

consumption is at the 3rd level (i.e., 3 CDWPs are running). Rule 4 states a similar 

phenomena in Cluster 3 (i.e., Hot Seasons, Weekends, Office hours). If the PCHWP 

power consumption is at the 3rd level, the CDWP power consumption is at the 2nd 

level. There is always one more PCHWP in operation, which may cause significant 

energy waste. Therefore, the operational strategy of PCHWPs should be investigated. 

Figure 4.4 shows the relative frequency when the same number of PCHWPs and 

No. Antecedent Consequent Supp. Conf. Lift Cluster 

1 Out.T=(15,20) Pwr.Chiller=Low 0.25 0.88 2.10 1 

2 Pwr.PAU=High Pwr.Lift=High 0.35 0.86 1.76 1 

3 Pwr.PCHWP=4th Pwr.CDWP=3rd 0.27 0.99 2.73 1 

4 Pwr.PCHWP=3rd Pwr.CDWP=2nd 0.32 0.88 1.78 3 

5 Pwr.PCHWP=4th Pwr.SCHWP=High 0.24 0.89 2.83 1 
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CDWPs are in operation in each month. The relative frequency is the number of 

events concerned divided by the total number of observations. It can be found that 

from May, the numbers of PCHWPs and CDWPs in operation are different for more 

than 90% of the time. After checking with the operation staff, the reason was found. 

To prevent deficit flow, one extra PCHWP was started to compensate the flow rate in 

the primary loop. This deficit flow prevention strategy was implemented occasionally 

before May; however, it has been consistently used starting from May.  

 
Figure 4.4 Relative frequency of one-to-one operation conditions 

 

Deficit flow is a commonly encountered problem in the primary-secondary 

chilled water systems with decoupled bypass line. It normally takes place when the 

required flow rate of the secondary loop exceeds that provide by the primary loop. 
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It is obvious that the current operation strategy is not energy-efficient due to the 

operation of one extra PCHWP. However, it seems necessary to operate one more 

PCHWP to prevent deficit flow. The question is whether the operation strategy can 

effectively prevent deficit flow, or the cost of energy is worthwhile or not. To answer 

this question, recursive partitioning was applied to evaluate the effectiveness of such a 

strategy. All the observation sets under the condition that the number of running 

PCHWPs equals the number of running CDWPs plus 1 were extracted for further 

analysis. 13004 observation sets in total were obtained. The flow rate in the bypass 

line was selected as the indicator of deficit flow. If it is negative, deficit flow occurs, 

and vice versa. A tree model was built using recursive partitioning. The model output 

is either “Deficit Flow” or “Normal Condition”. The confidence level was set to be 95% 

in determining the splitting variable. To optimize the configuration of tree model, two 

parameters, i.e., the minimum number of observations in a node to perform splitting 

and the minimum number of observation in a terminal node, were specified. These 

two parameters were determined by cross-validation using the classification purity as 

evaluation criteria. As a result, these two parameters were set as 3000 and 1000 

respectively.  

The developed conditional inference tree is shown in Figure 4.5. Each terminal 

node shows the proportion of the classified items, “D” for deficit flow and “N” for 

normal condition. The rated power of each PCHWP and CDWP are 126kW and 

202kW, respectively. The first two terminal nodes, Node 3 and 4, indicate that deficit 
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flow still occur frequently when the number of running PCHWP is 2. More 

specifically, if the outdoor temperature is relatively high, i.e., higher than 22.95oC, 

deficit flow always occur. By contrast, if the outdoor temperature is relatively low, 

i.e., lower than 22.95oC, the chance of deficit flow decreases. Therefore, when only 1 

chiller is in operation, deficit flow cannot be prevented effectively by running one 

extra PCHWP. In addition, Node 10 also indicates that the operation strategy cannot 

effectively prevent deficit flow in the corresponding situation. It shows that when the 

number of running PCHWP is 3 and the chiller power consumption is larger than 

1861.7kW, which is between the capacities of one and two chillers, deficit flow 

occurred in 60% of the operation time.  

The other three terminal nodes, Node 8, 9 and 11, indicate a good performance 

as deficit flow can be prevented effectively. It is noticed that variable “Month” is 

selected as the splitting variable for Node 7. It is observed that before May, when the 

running number of chiller is 2 and the running number of PCHWPs is 3, no deficit 

flow occurs. By contrast, starting from May, under the same condition, deficit flow 

may occur with around 15% probability. The potential affecting factors can be climate, 

system set points, and etc. Node 11 shows that when the running number of PCHWPs 

is larger than 4, no deficit flow occurs. It can be concluded that the current operation 

strategy is effective to prevent deficit flow when 3 or more chillers are in operation. 

To sum up, the recursive partitioning model reveals that the current operation 

strategy for preventing deficit flow is not effective, particularly when only one chiller 
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is in operation, or low cooling load condition. It is recommended to develop different 

control strategies for low cooling load condition to effectively overcome the problem 

of deficit flow and save energy. 

 
Figure 4.5 Developed conditional inference tree 

 

4.3.2 Detection of Abnormal Operations  

Rule 5 in Table 4.4 is derived from Cluster 1 (i.e., Hot seasons, Weekdays, 

Office hours). It says that if the PCHWP power consumption is at the 4th level, the 

secondary chilled water pump (SCHWP) power consumption is “High”. Rule 5 shows 

a reasonable relationship between the energy consumption of primary pumps and 

secondary pumps. As the cooling load increases, the required secondary chilled water 

flow rate increases and the power consumption of SCHWPs increase, too. When the 

cooling load increases significantly, one more chillers and hence one more PCHWP 
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are started. Therefore, more PCHWP in operation means a greater cooling load and 

hence more power consumption of SCHWPs. Although this rule can be easily 

understood with domain knowledge, the quantitative description of the rule is not that 

straightforward. ARM provides an applicable rule for detecting abnormal operation of 

the primary and secondary pumps.   

Using this rule to examine the raw data, it was found that the weekday’s data sets 

have 438 abnormal observations. It was also found that the majority of these 

abnormal observations are sparsely distributed on different days, resulting less than 5 

(i.e., 75 minutes) continuous abnormal observations for one specific day. Since 

HVAC system may experience transient situations during the On-Off control of the 

major components like chillers and pumps, these sparse abnormal observations can be 

ignored. However, if a large number of abnormal observations occur continuously as 

described in the example below, it is reasonable to believe that the operation presents 

some problems.  
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Figure 4.6 Abnormal operation condition 

 
Figure 4.7 Normal operation condition 

  

Figure 4.6 shows the abnormal primary-secondary pump operation in one 

weekday founded in the raw data sets. Starting from 11:00, the SCHWP power 

consumption undergoes a rapid increase and its running condition is changed from 

“Medium” to “High”. At the same time, the PCHWP power consumption rises to 

around 500 kW, which corresponds to the power consumption of 4 PCHWPs (i.e. 

4×126kW=504kW). The CDWP power consumption also rises to around 600kW, 

which corresponds to the operation of 3 CDWPs (i.e., 3×202kW=606kW). Three 

hours later, i.e., at 14:00, the SCHWP power consumption drops back to the “Medium” 

level and never reaches the “High” level again during the rest of the day. Nevertheless, 

no action was taken for PCHWPs and CDWPs, as they keep on running with high 

intensity until 20:00. The operation from 14:00 to 20:00 does not satisfy Rule 5 and 

can be diagnosed as abnormal operation. In this case, it wastes energy in the 6 hours. 
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The extra energy cost is around 2,000 kWh (i.e., (126+202)×6=1,968kWh) on that 

day. 

By contrast, Figure 4.7 shows the normal operation. The SCHWP power 

consumption reaches the “High” level at 08:00 and it drops back to the “Medium” 

level around 2 hours later. Corresponding to these changes, it is observed that one 

more PCHWP and CDWP are switched on at around 08:00 and switched off at 10:00. 

 

4.4 Discovery and Applications of Quantitative Associations 

 QuantMiner is selected to mine the eight data subsets separately. The minimum 

thresholds of the support and confidence are also set as 0.1 and 0.85. Although 

QuantMiner is capable of mining association rules with multiple variables in both 

antecedents and consequents, this research only focuses on the association rules with 

only one variable in the antecedent and consequent respectively for easy 

interpretation. 

Each of the eight subsets generates 534 rules and 4,272 rules are obtained in total. 

The post-mining method described in section 4.1.4 is adopted for rule selection, 

interpretation, and utilization. The SD-Lifts of similar rule patterns obtained from 

mining different subsets are calculated. It is found that the majority of the rules with 

the same rule patterns have a SD-Lift smaller than 0.2. The rule patterns having a 

large SD-Lift have been selected for further analysis. An example is presented in the 
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following section. 

 

4.4.1 Identification of Change in Building Operation 

Strategies 

One rule pattern {!"" → !"#} draws special attention as it has a large SD-Lift 

of 0.3. {!"" → !"# } describe the associations between the chiller power 

consumption (WCC) and the PAU fan power consumption (PAU). The details of the 

rules with this rule pattern are shown in Table 4.5. The clusters are numbered in 

accordance to Table 4.4. The rules obtained from mining Cluster 1 and 8 are 

interpreted with domain knowledge here. Cluster 1 is corresponding to “Hot season”, 

“Weekdays” and “Office hours”, which means hot climate and high occupancy level. 

Cluster 8 is corresponding to “Cool season”, “Weekends” and “Non-office hours”, 

which means cool climate and low occupancy level. According to domain knowledge, 

the demand for cooling is higher under hot climate, and the demand for outdoor air 

ventilation is higher for high occupancy level. Therefore, both WCC and PAU of 

Cluster 1 should be higher than those in Cluster 8, which can be seen from the 

intervals of WCC and PAU of Cluster 1 and Cluster 8 in Table 4.5. Meanwhile, if the 

“day type” and “hour type” are the same which means the occupancy level are similar, 

the WCC intervals in “Hot season” should be higher than those of “Cool season”. 

Rules obtained from Cluster 1 and Cluster 5 also support this argument. However, it 
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is observed that when the “day type” and “hour type” are the same, the upper limits of 

the PAU fan power consumption in the hot season are much lower than those in the 

cool season, even though the lower limits are similar. Taking the rules obtained from 

Cluster 1 and Cluster 5 as example, the lower limits of PAU are 330.4 kW and 328.7 

kW, which are quite close. However, the upper limits, 416.2 kW and 462.8 kW, are 

quite different. Similar phenomenon can be observed for Cluster 2 and 6, Cluster 3 

and 7, as well as Cluster 4 and 8. This phenomenon disobeys the domain knowledge 

which tells that the PAU fan power consumption should be similar for the same “day 

type” and “hour type”. Further investigation is carried out to exploit the root cause. 

 

Table 4.5 Summary of the rule pattern {WCC!→ PAU} 

Cluster WCC PAU Supp. Conf. Lift 

1 [2602.3, 3133.7] [330.4, 416.2] 0.35 0.95 1.19 

2 [884.3, 963.0] [101.9, 210.3] 0.27 0.98 1.29 

3 [740.3, 1603.7] [98.5, 221.1] 0.36 0.97 1.31 

4 [763.3, 906.4] [94.3, 173.3] 0.37 0.97 1.07 

5 [1797.7, 2444.1] [328.7, 462.8] 0.27 0.99 1.74 

6 [718.3, 811.7] [94.7, 270.7] 0.26 0.96 1.64 

7 [932.5, 1115.6] [94.0, 324.7] 0.28 0.99 1.92 

8 [679.0, 791.4] [92.9, 218.2] 0.35 0.98 1.65 

 

A decision tree is developed to explore the underlying relationship among time 

variables and the PAU fan power consumption. The PAU fan power consumption is 

the output, while the “month”, “day” and “hour” are selected as inputs. For easy 
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interpretation, the tree depth is limited to 2, which means the remotest terminal node 

can be reached from the root node through 2 splits. As shown in Figure 4.8, four 

terminal nodes (i.e., Node 3, 4, 6, and 7) are derived to represent the four levels of 

PAU power consumption. The associated boxplots show the distribution of the PAU 

power consumption at each terminal node. The algorithm selects the “hour” as the 

splitting variables at the root node (i.e., Node 1). It automatically divides the “hour” 

into two groups, i.e., non-office hours {0, 1, 2, 3, 4, 5, 6, 7, 21, 22, 23} and office 

hours {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, which is in accordance with the 

cluster membership discovered by clustering analysis. Similarly, Node 5 selects the 

“day” for splitting and the results are the same as that obtained from the clustering 

analysis. Node 2 uses the “month” for splitting; however, the grouping of months 

(June to December in one group, and January to May in the other group) is different 

from the clustering results (June to October in one cluster, and the other months in the 

other cluster).  

The right side of the tree states that when the observations are measured during 

the office hours, the PAU power consumption is closely related to the “day type”. It is 

observed that the PAU power consumption in weekdays is significantly higher than 

that in weekends. This is reasonable because people normally don’t work in weekends 

which results a large drop in the occupancy level. The left side of the tree states that 

when the observations are recorded during the non-office hours, the PAU power 

consumption is closely related to the “month”. It is noted that the PAU power 
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consumption during the first five months (i.e., Jan to May) is higher than that during 

June to December, which cannot be explained by domain knowledge.  

 
Figure 4.8 Decision tree for PAU power consumption 

 

After consulting the operation staff, it is found out that the PAU operation 

strategy did change in June 2013. Before the change, the PAU fan speed was 

controlled at three levels, i.e., 0 L/s, 960 L/s, and 1200 L/s. If the CO2 concentration is 

below 800 ppm, 960 L/s is used; otherwise, 1200 L/s is used. Starting from June 2013, 

the demand-controlled ventilation (DCV) strategy is implemented. Under this strategy, 

the fresh air flow rate is continuously controlled between 850 L/s and 1200 L/s to 

maintain indoor CO2 concentration at its set-point. That’s why the tree model adopts 

the “month” as the splitting variable at Node 2, which also indicates that the DCV 

strategy results in more energy saving during non-office hours. This is reasonable 

because that the occupancy level during non-office hours is quite low and the demand 
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for outdoor air ventilation is also low. The energy saving during the office hours is 

not that obvious because the occupancy level is quite stable throughout the year.  

 

4.4.2 Identification of Atypical Building Operations  

A number of continuous observations in Cluster 5 (i.e., Cool season, Weekdays, 

Office hour) are found to have high abnormality degrees (ADs). The examples of the 

rules being violated are summarized in Table 4.6. “Temp_rtn_ch” and “Temp_sup_ch” 

refer to the return and the supply chilled water temperature respectively. The first two 

rules state that the NLTG power consumption has associations with the WCC power 

consumption and the return chilled water temperature. The lower limits of NLTG are 

approximately 500 kW. However, the actual NLTG measurements of the observations 

with high ADs are around 430 kW. The 3rd and the 4th rules describe the relationship 

among PAU fan power consumption, the supply chilled water temperature, and WCC. 

The lower limits of PAU are around 300 kW, while the PAU fan power consumptions 

in the observations with high ADs are around 250 kW. The last two rules describe the 

associations among VTS, SCHWP, and WCC. The VTS in the observations with high 

ADs are smaller than the lower limits specified in each rule.  

Further investigation shows that all these observations with high ADs are from 

Wednesday May 1, 2013, which is a public holiday in Hong Kong. The profiles of the 

NLTG, PAU and VTS power consumption on May 1, 2013 are shown in Figure 4.9. 
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The corresponding average power consumptions in Cluster 5 are also plotted for 

comparison. It is obvious that the measurements on May 1, 2013 are much lower than 

the corresponding average values. This case shows that the abnormality degree is 

effective in diagnosing non-typical and abnormal building operations. 

 
Figure 4.9 NLTG, PAU and VTS measurements on May 1, 2013 against the averages 

 

Table 4.6 Summary of rules being violated 

No. Antecedent Consequent Supp. Conf. Lift 

1 WCC in [1576.8, 2438.2] NLTG in [510.3, 688.7] 0.30 0.96 1.66 

2 Temp_rtn_ch in [9.8, 10.6] NLTG in [506.1, 659.6] 0.33 0.97 1.47 

3 Temp_sup_ch in [6.4, 6.9] PAU in [303.5, 477.8] 0.27 0.97 1.61 

4 WCC in [1797.7, 2444.1] PAU in [318.7, 422.8] 0.17 0.99 1.64 

5 SCHWP in [73.1, 109.4] VTS in [401.3, 1461.1] 0.30 0.95 1.34 

6 WCC in [1147.4, 1669.8] VTS in [418.8, 1580.5] 0.28 0.97 1.38 

 

Furthermore, it is found that large ADs take place during the similar periods 

every day. Figure 4.10 shows the profiles of the means of ADs on Friday, Saturday, 

and Sunday. The profiles on weekdays are very similar, so only the profile on Friday 

is shown here as an example. There are two obvious spikes on Friday and other 
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weekdays as well, which take place during 6:00 to 9:00, and 19:00 to 21:00 Three 

main spikes are observed on Saturdays, and they are recorded during 7:00 to 9:00, 

14:00 to 16:00, and 19:00 to 21:00. The profile on Sundays is relatively flat, and only 

one small spike is observed between 7:00 and 9:00. The results are in accordance with 

the domain expertise. The office hours for typical office buildings in Hong Kong are 

from 8:00 to 20:00 in weekdays, and 8:00 to 14:00 on Saturdays. The building system 

performs either a stage-up or a stage-down process during these periods. The transient 

changes normally result in very different operation behaviors. For instance, during the 

stage-up process, chilled water pumps usually consume much more power due to the 

motor starting characteristics. Figure 4.10 shows that a typical stage-up or stage-down 

process normally last for around 2 hours. 

 
Figure 4.10 AD means on Fridays, Saturdays, and Sundays 
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4.4.3 Sensor Fault Diagnosis 

It was found that the rules related to the VTS are frequently violated during the 

period between Mar 17, 2013 and Apr 22, 2013. Table 4.7 presents three examples of 

the rules being violated, which describe the associations between VTS and three main 

HVAC subsystems, i.e. WCC, PAU and SCHWP.  

 

Table 4.7 Examples of the rules being violated related to VTS 

No. Antecedent (kW) Consequent (kW) Supp. Conf. Lift 

1 WCC in [817.0, 1403.2] VTS in [490.3, 1442.4] 0.29 0.96 1.48 

2 PAU in [371.5, 406.9] VTS in [565.5, 1614.5] 0.37 0.97 1.37 

3 SCHWP in [60.4, 83.1] VTS in [537.5, 1556.5] 0.31 0.96 1.36 

!
The VTS power consumptions in the observations violating the rules are smaller 

than the lower limits of VTS in the rules. Figure 4.11 shows the VTS power 

consumption of the abnormal observations against those of the normal observations. It 

is shown the VTS power consumptions of abnormal observations are much lower. 

The power consumption of VTS in ICC consists of five parts, i.e., lifts in the car 

parking area, office shuttle lifts, office service lifts, fireman lifts, and escalators. 

Further investigation shows that during the above-mentioned period, the power meter 

for the office service lifts broke down and no value was recorded. Therefore, the 

aggregated power consumption for the VTS was smaller.  
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Figure 4.11 VTS power consumptions of normal and abnormal observations 

4.5 Summary 

This chapter described a methodology for mining cross-sectional knowledge in 

BAS data. The methodology is developed based on the generic DM-based framework 

proposed in Chapter 3. Considering the rich domain knowledge in the building field, 

unsupervised DM techniques are recommended as the primary means of discovering 

underlying data structures and relationships in BAS data. The methodology provides a 

reference for developing DM-based tools for cross-sectional knowledge discovery in 

massive BAS data and applications in building energy management. 

The methodology has been implemented in analyzing the BAS data of 

International Commerce Centre, the tallest commercial building in Hong Kong. Both 

the association rule mining (ARM) and the quantitative association rule mining 

(QARM) are adopted to discover the cross-sectional associations in BAS data. BAS 

data are mainly numeric data. The implementation of ARM requires the data to be 

categorical, and therefore, a data discretization step becomes necessary. The 

discretization is typically performed based on domain knowledge. The results 
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obtained are usually more interpretable as the interval used for discretization is 

user-defined. However, improper data discretization can greatly degrade the quality 

and reliability of the knowledge discovered. The ARM-based methodology is 

validated using the ICC data. The knowledge discovered can be used to find abnormal 

behaviros in building operations and thereby, enhancing the building operational 

performance. 

By contrast, the QARM method provides a more flexible way to discover 

associations from BAS data as it can directly work with numeric data. Nevertheless, 

the interval identified in the association rules are automatically generated and may not 

specifically meets the needs of building operation staff. Therefore, it may bring some 

difficulties in knowledge interpretation. Two indices of high practical values are 

defined to facilitate the post-mining of QARM, i.e. the standard deviation of lift 

(SD-Lift) of rules with similar rule pattern and the abnormality degree (AD). SD-Lift 

can help to fast select useful rules from a large number of rules obtained in ARM, 

which is a major obstacle to the application of ARM. AD provides a generic method 

of using the association rules for detecting abnormalities. These two indices are 

proven to be valuable for applying the knowledge discovered by DM (i.e. association 

rules in this case) to building diagnostics. The change of operation strategy, 

non-typical and abnormal operations and sensor fault occurring during operation in 

ICC are successfully detected and diagnosed. In practice, the selection between these 

two methods depends on the actual needs and the knowledge level of building 
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operation staff.  
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CHAPTER 5 DEVELOPMENT OF METHODOLOGY 

FOR TEMPORAL KNOWLEDGE MINING AND ITS 

APPLICATIONS 

 

Considering that BAS data are in essence multivariate time series data, the 

cross-sectional knowledge discovered may not be able to fully capture the 

relationships over time. Building operations are typically dynamic due to the changes 

in indoor and outdoor operation conditions, such as the outdoor climate conditions, 

indoor occupant number and utilization of indoor electric appliances. Meanwhile, the 

changes hardly occur simultaneously which results that the dynamics in building 

operations are very complicated. For instance, the indoor temperature is influenced by 

the outdoor air temperature. However, when the infiltration is not significant, these 

two temperatures rarely change simultaneously due to building thermal mass. Time 

lags between them often bring challenges to the sequence control of chiller plants. 

The dynamics are usually complicated and have great influences on control 

performance, interactions among building components and integrations between 

buildings and communities (e.g., electricity power grid) [Xue et al. 2014]. In practice, 

it is desired to discover such temporal knowledge hidden in BAS data. Advanced 

tools and methods for temporal knowledge discovery should be developed for this 

purpose. 
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Conventional time series analytics, such as the autoregressive moving average 

models (ARMA), are mainly used for solving predictive tasks in the field of building 

management, including the prediction of building electricity consumption [Azadeh et 

al. 2008; Fernandez et al. 2011], building thermal load [Yao et al. 2004] and indoor 

environment [Yiu and Wang 2007; Zamora-Martinez et al. 2013]. In recent years, 

various approaches have been developed to mine temporal knowledge in different 

formats, such as events, clusters, motifs and temporal association rules [Madsen 2007; 

Fu 2011]. However, only limited studies have been performed to explore their 

potential in analyzing BAS data. Patnaik et al. adopted the motif discovery technique 

to mine chiller operation data in data centers [Patnaik et al. 2011]. Motifs (i.e., 

frequent sequential patterns) were successfully discovered to identify energy-efficient 

operation patterns. Miller, Nagy and Schlueter used a similar method to analyze 

building energy consumption data [Miller et al. 2015]. Energy consumption motifs 

were extracted for building performance characterization. Discords, or infrequent 

sequential patterns, were identified and used for fault detection. Their work 

demonstrated the encouraging potentials of time series data mining in the knowledge 

discovery of BAS data for managing building operations. Currently, the potential and 

applicability of various time series data mining techniques in mining big BAS data are 

still uncertain considering unique characteristics of BAS data, such as low quality, 

nonlinearity, multiple scales or units, and multicollinearity. A generic and systematic 

methodology for discovering temporal knowledge in big BAS data is needed for 
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developing applicable tools in BAS.  

This chapter proposes a methodology for mining temporal knowledge hidden in 

big BAS data and demonstrates its applications in real cases. Section 5.1 presents the 

methodology developed for temporal knowledge discovery in BAS data. Section 5.2 

describes the implementation of the methodology using a real-world BAS data. 

Section 5.3 illustrates the applications of the knowledge discovered in building energy 

management. The last section 5.4 summarizes this chapter. 

 

5.1 Research Methodology 

As proposed in Chapter 3, the DM-based analytic framework consists of four 

major phases, i.e., data preprocessing, data partitioning, knowledge discovery and 

post-mining. Each phase was specifically designed considering the BAS data quality 

and structure, data format requirement of DM techniques, interpretation and selection 

of knowledge discovered, and application of the knowledge to building performance 

assessment, diagnosis and optimization. The methodology presented in this chapter is 

developed within this framework, as shown in Figure 5.1. Three tasks are performed 

at the first phase, including data cleaning, period estimation and data transformation. 

Phase 2 adopts the evidence accumulation clustering to partition the SAX 

subsequences. Phase 3 adopts two techniques, i.e., motif discovery and temporal 

association rule mining, to discover two different types of knowledge. Two 
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post-mining methods are developed in Phase 4 to improve the efficiency and 

effectiveness of handling the large amount of knowledge discovered in Phase 3. The 

details of each phase are introduced in the following subsections. 

 
Figure 5.1 Research outline for temporal knowledge discovery in BAS data 

 

5.1.1 Data Exploration 

Data exploration fulfills three tasks, i.e., data cleaning, period estimation, and 

data transformation, with the aims to enhance the data quality, explore the intrinsic 

characteristics in BAS time series data, and prepare the raw data with suitable format 

Raw BAS data

Applications

Phase 1: Data Exploration

(1) Data cleaning methods:
a. Moving average method for missing values
b. Hampel filter for outlier detection
(2) Period estimation method: 
Non-parametric spectral density estimation
(3) Data transformation method: 
Symbolic Aggregate approXimation (SAX)

Phase 2: Data Partitioning

Input: Subsequences in SAX representations
Method: Evidence accumulation clustering (EAC)
Output: Cluster memberships for subsequences

Phase 3: Knowledge Discovery

Technique 1: Motif discovery
Input: Subsequences in SAX representations
Method:
a. Random projection-based method for univariate motifs
b. Graph clustering-based method for multivariate motifs
Output: Univariate and multivariate motifs

Technique 2: Temporal association rule mining
Input: Subsequences in discretized representations
Method: TRuleGrowth algorithm
Output: Temporal association rules under different 
settings of maximal time spans

Phase 4: Post-mining

(1) Identifying associations between univariate motifs
Input: Univariate motifs discovered by Technique 1
Method: Co-occurrence matrix and the Apriori algorithm
Output: Associations among univariate motifs

(2) Identifying time lags in temporal association rules 
Input: Temporal association rules discovered by Technique 2
Method: Iterative filtering
Output: Exact time lags for temporal association rules
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for data mining. 

 

5.1.1.1 Data Cleaning 

Data cleaning aims to improve BAS data quality by filling missing values and 

detecting outliers in raw BAS time series data. Outliers in a time series are 

observations that are highly unlikely to occur based on the variation seen in the rest of 

the time series. They can be classified into two types, i.e., points as outliers and 

subsequence as outliers [Gupta et al. 2014]. This phase only handles the first type of 

outliers in the raw time series data, as the identification of the second type of outliers 

may overlap with mining discords (i.e., infrequent sequential patterns) in the later 

process. Similar to the methodology proposed in Chapter 4, the Hample filter is 

applied for outlier detection. The moving window-based method is used to impute the 

missing values with a short duration, i.e., less than 2-hour. Any missing values with a 

longer time duration are excluded from analysis.  

 

5.1.1.2 Period Estimation 

This step is specifically developed for time series data, considering that long 

time series data usually exhibit periodicity, and consequently motifs and association 

rules periodically repeat. Finding the period in the time series data and then segment 

those data into short subsequences can considerably reduce the mining load. It is a 
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common practice in time series data mining, particularly in handling very long time 

series data like BAS data. The repeating daily working schedule of building users (e.g. 

office hours and non-office hours) results that the operation schedules of major 

systems and equipment (such as air conditioning, lighting and lift systems) usually 

repeat daily. Obviously, the BAS data exhibit daily periodicity. In view of this, Miller, 

et al. segmented the time series of building energy consumption data into daily 

sequences in their study [Miller et al. 2015]. This research attempts to adopt a 

data-driven approach to estimating the intrinsic periods embedded in BAS data. There 

are two purposes for doing this: firstly to minimize the dependence on domain 

knowledge in the knowledge discovery process; secondly to maximize the possibility 

of discovering new knowledge, or new periods in BAS data in our case. Periods in 

time series data can be detected using the spectral density estimation methods, which 

can be either parametric or non-parametric. The parametric methods first model the 

time series using time series modeling techniques, such as autoregressive and moving 

average (ARMA). The spectral density is then estimated based on the model 

parameters. By contrast, the non-parametric methods estimate the spectral density by 

taking the Fourier transformation of the autocorrelation function. Considering that the 

building data usually present diurnal, weekly and annual seasonality, the resulting 

parametric models can be very complex. Therefore, this study applies the 

non-parametric method to period estimation. 
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5.1.1.3 Data Transformation 

Data transformation prepares the time series data with suitable formats to meet 

the following two needs. Firstly, different mining techniques require different data 

formats (e.g., numerical or categorical) and BAS data exhibit diversity in units, scales, 

and data types. Secondly, the computation load is a big concern due to the huge 

volume of big data, which can be alleviated by effectively reducing the volume of the 

data without losing valuable information embedded in the data. In this study, the 

symbolic approximation aggregate (SAX) method is proposed to transform the 

original time series BAS data into meaningful symbols [Lin et al. 2007; Miller et al. 

2015]. The SAX method transforms a numeric time series into a symbol stream and 

the length of the symbol stream is much shorter than the original time series. It can 

therefore reduce the data size. 

To perform SAX, a univariate time series of length n is firstly standardized to 

have a zero mean and a standard deviation of 1 and then segmented into m 

subsequences with a window size of q. One of the typical methods to segment the 

time series is based on the period detected in the previous step. For example, if the 

period estimated is 24 hours, one day BAS data will form one subsequence. Two 

parameters need to be defined to perform SAX, i.e., the word size W and the alphabet 

size A. A set of breakpoints (e.g., !!,!!,… ,!!!!) are determined in such a manner 

that the area under the N(0,1) Gaussian curve from !! to !!!! is !!. Each interval 

will be assigned with an alphabet (e.g., a, b, and c) and the number of alphabets used 
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is the alphabet size, A. Given the word size (W), each subsequence in the window size 

of q can be divided into W equal sections, and the means of each sections are 

calculated. According to which interval (i.e., !! to !!!!) the mean lies within, the 

corresponding alphabet is assigned to the section. In this way, each subsequence can 

be represented by a SAX word which consists of W alphabets. For example, abca, 

aabc, bcca are SAX words given W=4 and A=3. In these SAX words, the alphabet 

size (A) is 3, so three alphabets (i.e., a, b and c) are used; the word size (W) is 4, so 

each SAX word consists of four alphabets. The original time series is transformed 

into a string of alphabets. The larger the alphabet size (A) and the word size (W), the 

more detailed information retained in the symbolic stream. However, the reduction of 

computation load becomes less. Therefore, there is a trade-off, which will be 

discussed in the later case studies. 

The distance between two SAX representations are calculated as !
!×

!"#$(!! ,!!)!!
!!! , where S and B are two SAX representations, and dist() is the 

distance function for SAX symbols. Table 5.1 presents an example of distance matrix 

between symbols considering an alphabet size of 4. The value in cell(x,y) is calculated 

using Equation 5.1. A dissimilarity matrix considering different SAX representations 

can be computed accordingly. More details can be found in [Lin et al. 2007]. 

Besides SAX, difference-based and dictionary-based methods are also capable of 

transforming time series into symbols [Daw et al. 2003; Kwac et al. 2014; Gulbinas et 

al. 2015]. The difference-based method transformed the raw time series into symbols 
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based on their first- or higher-order differences. It can be used when the changes 

between successive time steps are more important than the absolute values [Daw 

2003]. The dictionary-based methods transform the time series into symbols by 

matching the raw data with predefined patterns in a dictionary. For instance, in the 

studies performed by Kwac et al. [Kwac et al. 2014] and Gulbinas et al. [Gulbinas et 

al. 2015], clustering analysis was applied to generate the representative patterns of 

daily power consumption, based on which a dictionary was built for symbolization. 

SAX is selected in this study considering the following two aspects. Firstly, SAX is 

straightforward to use, as it requires little domain expertise and preprocessing. 

Secondly, SAX contains an intrinsic distance measure, which provides extra value in 

the subsequent knowledge discovery [Lin et al. 2007], as shown in the later part. 

 

!"## !,! = 0!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"! ! − ! ≤ 1
!!"# !,! !! − !!"# !,! !!!!!!!!!!!!!!"ℎ!"#$%! !!!!!!!!!!!!!!!!!! 5.1  

 

Table 5.1 An example distance matrix for SAX symbols 

Distance a b c d 

a 0 0 0.67 1.34 

b 0 0 0 0.67 

c 0.67 0 0 0 

d 1.34 0.67 0 0 

!

5.1.2 Data Partitioning 

Due to the changing operation conditions and complicated system dynamics and 
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interactions, the big BAS data usually scatter in a high-dimensional space. To 

enhance the reliability and sensitivity of the mining results, data partitioning is carried 

out to divide the data into several groups or clusters, with the aim of maximizing the 

intra-group similarities while minimizing the inter-group similarities. Knowledge 

discovery are then performed on each group separately. Clustering analysis is a 

suitable DM technique to perform this task. Despite of the large number of clustering 

algorithms being available, no single algorithm is able to identify all kinds of cluster 

shapes and data structures in practice [Fred and Jain, 2005]. It is usually very difficult 

to find out the optimal clustering algorithm and the settings of its parameters. Some 

methods have been developed to facilitate the decision-makings, based on either 

internal (e.g., Dunn index and Davies-Bouldin index) or external validation indices 

(e.g., purity and mutual information). However, no validation method can impartially 

evaluate the results of any clustering algorithm [Vega-Pons and Ruiz-Schulcoper 

2011]. A common practice is to try out a large number of algorithms with different 

parameters in order to obtain desired the clustering results. The process can be 

computationally expensive and time-consuming.  

Ensemble learning is capable of enhancing the clustering performance by 

combining a number of base learners, whose individual performance may be poor 

[Fred and Jain, 2005; Vega-Pons and Ruiz-Schulcoper 2011]. The evidence 

accumulation clustering (EAC) is a method designed to apply ensemble learning on 

clustering analysis [Gupta et al. 2014]. One advantage of the EAC over other 
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conventional clustering methods is that it has the ability to discover clusters with 

various sizes and shapes. In addition, the method can automatically determine the 

optimal cluster number, which provides great flexibility in analyzing data with 

unknown characteristics. The partition around medoids (PAM) is selected as the base 

algorithm for EAC. PAM shares a similar partitioning mechanism as the popular 

k-means algorithm. Compared to the k-means, PAM is more robust to outliers and 

noises and can take a dissimilarity matrix as inputs. Therefore, PAM is more 

compatible with time series data in SAX representations.  

Three parameters needs to be defined to perform EAC, i.e., the total iteration 

number E, the lower and upper limits of the cluster number Klower and Kupper. E sets of 

clustering results are generated by PAM with different cluster numbers (i.e., randomly 

sampled from Klower to Kupper in each iteration) and the dimension of input data. These 

E sets of clustering results are then transformed into a co-occurrence matrix. 

Assuming that the data contains n observations, the co-occurrence matrix C has a 

dimension of !×!. The value of Ci,j is the number of times when observations i and j 

are grouped in the same cluster divided by the total iteration number E. The final 

clustering result is obtained by using hierarchical agglomerative method to cluster the 

co-occurrence matrix.  
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5.1.3 Temporal Knowledge Discovery 

After the data are preprocessed and partitioned, appropriate DM techniques will 

be applied for knowledge discovery. The typical descriptive knowledge types in time 

series data include motifs, discords and temporal association rules [Fu 2011]. 

 

Motif Discovery 

Motif, or frequent sequential pattern, is a typical knowledge type which can be 

discovered in time series data. Motifs are valuable to temporal association rule mining, 

discord (i.e. infrequent sequential pattern) detection, and time series classification 

[Chiu et al. 2003]. 

Motif discovery has been mainly applied to analyze univariate time series in 

previous studies. Conventional motif discovery methods are based on exhaustive 

search, which results that the computational costs increase dramatically for long time 

series and is therefore not applicable to big data. In view of this, a more efficient 

algorithm, which is based on random projection and compatible with SAX 

representations [Chiu et al. 2003], is selected to discover univariate motifs. Assuming 

that the time series has a length of n and the sliding window size is q, a matrix 

containing all the subsequences (denoted as M1) can be constructed and has a 

dimension of (! − ! + 1)×! . Each subsequence is transformed into a SAX 

representation. Assuming the word size is W, the new matrix containing the SAX 
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representations (denoted as M2) has a dimension of (! − ! + 1)×! . Random 

projection is performed by randomly picking s columns from M2, where s ranges from 

1 to W-1. A collision matrix, which has a dimension of (! − ! + 1)×(! − ! + 1), is 

constructed to record the times of being identical for two subsequences after a number 

of random projections. A tentative univariate motif is identified if the two 

subsequences result in a high value in the collision matrix. Potential members of this 

tentative univariate motif can then be identified by calculating the Euclidean distance 

in the original numeric representations. 

Several methods have been developed to identify motifs in multivariate time 

series data, such as PCA-based and density estimation-based methods [Tanaka et al. 

2005; Minnen et al. 2007]. Those methods can successfully identify synchronous 

multivariate motifs. However, their practical value in analyzing real-world data is 

limited, as the motifs in multivariate time series data do not necessarily start at the 

same time and their duration may vary as well. We can see a lot of such examples in 

building operations. For example, when the air conditioner or chiller is turned on, the 

indoor temperature will not change immediately due to the thermal mass. The sudden 

increase of the lift power consumption in the morning peak hour does not correspond 

to a large increase in the chiller power consumption due to the pre-cooling strategy. In 

this research, multivariate motif discovery algorithm proposed in [Vahdatpour et al. 

2009] is adopted. The main advantage is that, firstly, both synchronous and 

non-synchronous multivariate motifs can be discovered, and secondly, the 
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multivariate motifs identified may consist of all univariate motifs or any subset of the 

univariate motifs. The method first performs univariate motif discovery on the time 

series of each variable. A graph clustering approach is then applied to identify 

multivariate motifs. A directed coincidence graph G is constructed. Each motif ri is 

represented by a node vi. ei,j represents the edge connecting the node vi and vj. The 

weight of ei,j is denoted as wi,j and calculated as coincident(ri, rj)/sizei, where 

coincident(ri, rj) is the total number of times that a temporal overlap is found between 

ri and rj and the sizei is the number of occurrence of ri. A parameter, !, ranging from 

0 to 1, is user-specified as the minimum correlation between univariate motifs based 

on which a multivariate motif could be constructed.  

Temporal Association Rule Mining 

The difference between association rule mining (ARM) and temporal association 

rule mining (TARM) lies in whether the temporal information is contained in the rule 

or not. ARM was mainly used to discover cross-sectional associations, where the 

temporal information is neglected. The typical format of ARM is ! → !, where 

! ∩ ! = ∅. It states that if A happens, B will also happen. An association rule is 

derived if both the rule support and confidence exceed the user-defined thresholds. 

The support of a rule is the fraction between the number of times when both the 

antecedent and consequent take place and the total number of records. The confidence 

of a rule is the conditional probability of the consequent given the antecedent. The 

interestingness of the association rules can be evaluated using the lift, which is the 



! ! !122 

ratio between the rule confidence and the support of consequent. It measures the 

dependency and correlation between the antecedent and the consequent of a rule. 

Potentially useful rules usually have a lift larger than 1, indicating that the occurrence 

of the antecedent positively influences the occurrence of consequent.  

Temporal association rule mining (TARM) is of particular interest in mining 

BAS data because of the complicated dynamics in building operations. TARM, or 

sequential rule mining, discovers associations among variables while providing an 

insight into the temporal dependency. The general format of temporal association 

rules is also ! → ! , where ! ∩ ! = ∅ . However, the temporal dependency is 

contained, indicating that B will take place after A. Various algorithms have been 

developed for deriving temporal association rules, such as the SPADE and CMRules 

[Zaki 2001; Fournier-Viger et al. 2012]. In engineering practice, temporal rules that 

are valid within a limited time span are of special interest. The format of such 

temporal rules is ! ! !, which means that B will occur within t time units after the 

occurrence of A. Therefore, the TRuleGrowth algorithm, which can derive temporal 

association rules under the constraint of maximum time span [Fournier-Viger et al. 

2012], is selected in this study. To perform this algorithm, three parameters need to be 

defined, i.e., the minimum support, minimum confidence, and the maximum time 

span. The other advantage of the TRuleGrowth algorithm is that it can greatly reduce 

the number of rules generated by controlling the maximum time span. Consequently, 

the post-mining phase consumes much less time.  
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5.1.4 Post-mining 

The post-mining phase aims to build a bridge between knowledge discovered at 

Phase 3 and practical applications, such as building performance assessment, fault 

diagnosis and optimization. It usually needs domain expertise to select, interpret and 

apply the knowledge discovered. The process can be very time-consuming, due to the 

large amount of knowledge discovered and the diversity of knowledge representations 

(e.g., rules, clusters, decision trees). Application of the motifs and temporal 

association rules is straightforward. They can be used as the references for normal 

operations and anomalies can be detected if building operation patterns are different 

from those frequent patterns or violate the association rules. In this study, two 

methods are specifically developed to enhance the efficiency in post-mining and 

maximize the practical values of temporal knowledge discovered. 

 

Identify Associations between Univariate Motifs 

Building operations involves multiple separate and interactive subsystems, such 

as air conditioning, mechanical ventilation, lift, lighting and security systems. 

Univariate motifs usually represent the frequent sequential operation patterns of each 

system. It is reasonable to link the associations among univariate motifs with the 

interactions among subsystems. Multivariate motifs can provide general information 
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on which univariate motifs frequently occur together. However, they hardly quantify 

the relationships among univariate motifs and this limits their practical value. For 

example, a multivariate motif cannot answer, if one univariate motif occur, whether 

the other univariate motifs in it will occur or not with certain probability. In this study, 

a post-mining method is designed to explore the associations among univariate motifs 

which can directly answer this question. This method is an extension of association 

rule mining. Given a multivariate time series data, the univariate motif discovery 

algorithm is applied to each univariate time series separately to find univariate motifs. 

These univariate motifs are then labeled as m1, m2, …, mL, where L is the total number 

of univariate motifs discovered. Afterward, a co-occurrence matrix is constructed. 

The matrix has L columns. The values of each row are either 1 or 0, indicating 

whether an occurrence of a univariate motif is observed or not. Once the matrix is 

constructed, the Apriori algorithm is used to discover associations between univariate 

motifs. Two parameters, i.e., the minimum thresholds for support and confidence, are 

defined for rule induction. Three statistics, including the support, confidence and lift, 

can be generated with each association rule to facilitate decision making. 

An example for construction of a co-occurrence matrix is given here. Figure 5.2 

illustrates five univariate motifs (i.e., m1 to m5) in the sequences of three variables, A, 

B and C. The motifs in A and B, m1 to m4, have a time duration of 10 while m5 in C 

has a time duration of 8. The co-occurrence matrix is constructed as shown in Table 

5.2. The numbers (0 or 1) in each row show the occurrence of the corresponding 
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motifs. For example, the second row shows that only motif 5 occurs during the time 

period between 18 to 25; the first and third rows show that motifs 1 and 3 occur 

together twice; the fifth row shows that motifs 2, 4, 5 occur together for once; the 

sixth row shows that motifs 2, 3 and 5 occur together for once. It should be noted that, 

although the occurrence of the motifs are related to certain time period, the exact time 

is not considered in constructing the matrix. The frequency of the co-occurrence of 

multiple univariate motifs is of interest.   

The construction of the co-occurrence matrix can be conveniently implemented 

by programming with the information of starting and ending time instants of all 

univariate motifs. Once the co-occurrence matrix is ready, the Apriori algorithm is 

adopted to mine the associations. Setting the minimum thresholds of support and 

confidence as 0.3 and 0.8 respectively, two rules are derived, i.e., !! → !! and 

!! → !!. Both rules have a support of 0.4 and a confidence of 1. It means that when 

motif 1 occurs, the probability of the occurrence of motif 3 is very high. 
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Figure 5.2 An example of univariate motifs discovered in three dimensions 

 

Table 5.2 An example of co-occurrence matrix for mining association rules between 
univariate motifs 

m1 m2 m3 m4 m5 

1 0 1 0 0 

0 0 0 0 1 

1 0 1 0 0 

0 1 0 1 1 

0 1 1 0 1 

!
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The TRuleGrowth algorithm is adopted to discover the temporal association 

rules under the constraint of a maximum time span. One limitation is that no 
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the antecedent and the consequent. This type of information is valuable for 

establishing reliable control and performance optimization in building operations. An 

iterative filtering method is developed to identify the time lag. The method iteratively 

runs the TRuleGrowth algorithm by changing the maximum time span from 1 to T 

and the temporal association rules generated at each iteration and the corresponding 

time lag are stored in the rule sets. The time lag in a temporal association rule can be 

discovered by matching the rule with the rule sets. 

 

5.2 Mining Real BAS Data 

5.2.1 Identification of Daily Power Consumption Patterns in 

Building Operations 

The methodology is applied to the BAS data retrieved from ICC. The intrinsic 

periods in the time series of building total power consumption are estimated using the 

non-parametric spectral density estimation method. The top three dominant 

frequencies are 0.0103, 0.0417 and 0.1121, which correspond to periods of 97 (i.e., 

1/0.0103), 24 (i.e., 1/0.0417) and 9 (i.e., 1/0.1121) respectively. Since the BAS data 

are collected at an interval of 15-minute, these three periods are approximately 1-day, 

6-hour and 2-hour respectively.  

The dominant period in the sequence of building total power consumption is 

1-day. Therefore, the whole BAS data are segmented into daily subsequences and 
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then transformed into SAX representations. Increasing the word size W and alphabet 

size A will lead to a better SAX representation of the original time series. However, 

the reduction in computation load is less. Miller et al. recommended W and A as 4 and 

3 respectively to identify typical patterns in building power consumption data [Miller 

et al. 2015]. Actually, the selection of W and A is influenced by the scale of the 

building, installation capacities (e.g., cooling, heating, total electricity power) and 

operation strategies. A large building with high installation capacities tends to require 

large W and A to adequately describe the variation in the original time series data. In 

this study, W is chosen as 12, considering that 2-hour was identified as one of the 

dominant periods. Considering that the chiller plant usually accounts for a large 

proportion of the total power consumption and the maximum running chiller number 

is 5 in the BAS data to be analyzed, A is chosen as 5 to reflect there are five major 

levels of power consumption due to the on-off control of chillers. It should be noted 

that the standardization is only applied to the total building power consumption time 

series, but not the daily subsequences. The consideration here is to identify typical 

daily patterns considering both the shape and magnitude.  

The SAX representations of daily subsequences are then partitioned into 

different groups using the EAC method. Klower and Kupper are selected as 2 and 20 

respectively. The iteration number E is set as 200. As a result, 8 clusters are identified. 

Clusters 5, 6, 7 and 8 only consists of 6 daily subsequences out 365 subsequences. 

Those subsequences are actually subsequence-wise outliers, as their shape and 
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magnitude are dramatically different from the others. They are excluded from further 

analysis. Figure 5.3 presents the profiles of daily subsequences in Clusters 1 to 4. 

Further examination of each cluster shows that Clusters 1 to 4 can be best interpreted 

using the climate and day type. Cluster 1 includes weekends in cold season and 

Cluster 4 contains weekdays in hot season. Cluster 2 and Cluster 3 mainly include 

weekdays in cold season and weekends in hot season respectively. The clustering 

results are coincident with the results obtained in Chapter 4 and domain knowledge. It 

indicates that the SAX transformation can very well preserve the important 

information in original time series data.  

 
Figure 5.3 Four typical prototypes of daily building power consumption 
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5.2.2 Identify Frequent Operation Patterns of Subsystems 

Univariate and multivariate motif discovery are applied to the 4 clusters 

separately to identify the frequent operation patterns. Considering that the daily 

operation conditions (including outdoor weather conditions and indoor occupancy and 

equipment utilization conditions) varies largely, it is more meaningful to discover 

motifs in building operations with smaller lengths, compared with the above 

identification of power consumption pattern. In this study, the length of the univariate 

motifs to be discovered is set as 6-hour, as it is identified as the second dominant 

period in the building power consumption data. More specifically, subsequences are 

segmented using a 6-hour sliding window, which means the subsequences created are 

overlapping. Standardization is performed for each subsequence in each cluster. SAX 

representations are created using the setting of W=6 and A=5. In such a case, each 

SAX symbol represents the hourly mean and has five possible levels. The iteration 

number for random projection is 100. During each iteration, 4 out of 6 SAX symbols 

are randomly selected for comparison, which means that subsequences belonging to 

the same motif can be different at one position at most [Chiu et al. 2003]. 

Table 5.3 summarizes the number of univariate motifs discovered for each 

subsystem in Cluster 4 (i.e., weekdays in hot season). Figure 5.4 presents 4 motifs 

discovered in the time series of the aggregated chiller power consumption in Cluster 4. 

Each curve represents an occurrence of the corresponding motif. It is apparent that the 

time series subsequences belonging to the same motif are very similar in their shapes 
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and magnitudes. An uptrend in chiller power consumption is observed in Figure 5.4a. 

It is shown that two chillers are sequentially switched on at the beginning of working 

hours (i.e., 6:00 to 9:00) to cope with the upcoming morning peak of occupancy and 

equipment utilization. The chiller switch-off process shares a similar pattern and two 

chillers are sequentially switched off (Figure 5.4b). The other two motifs, as shown in 

Figures 5.4d and 5.4c, present relatively steady operation conditions. The chiller 

operation between 0:00 and 6:00 is steadily maintained at a low level due to the 

absence of occupancy. By contrast, the chiller power consumption is maintained at a 

much higher level between 9:00 to 15:00. A slight decrease can be observed from 

13:00 to 14:00, which is in accordance with the lunch time for most companies in 

ICC. 

Typical operation behaviors can be obtained by analyzing the univariate motifs 

identified. For instance, Figure 5.5 presents 2 frequent patterns for the AHU operation 

between 21:00 and 3:00 in Cluster 4. The main difference is that a sudden drop in 

AHU power consumption is observed at 12:00 in Figure 5.5a, while the AHU power 

consumption gradually decreases in Figure 5.5b. After carefully examined the original 

data, it is found that the AHU power consumption measured at three mechanical 

floors (i.e., 6/F, 42/F and 78/F) simultaneously drop at 12:00 in pattern 1. By contrast, 

the drops are observed at 22:00, 1:00 and 2:00 for the AHUs at 42/F, 78/F and 6/F 

slightly and gradually in pattern 2. 

 
Table 5.3 A summary of univariate motifs discovered in Cluster 4 
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(a) Uptrend in chiller operation           (b) Downtrend in chiller operation 

 

(c) Horizontal trend at low level           (d) Horizontal trend at high level 

Figure 5.4 Examples of univariate motifs in chiller operation in Cluster 4 
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(a) Pattern 1                        (b) Pattern 2 

Figure 5.5 Typical AHU operation between 21:00 and 3:00 in Cluster 4 
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and NLTG power consumptions can be observed in Figures 5.6e and 5.6f to cope with 

the increase in occupancy. These motifs show that the HVAC system in ICC is under 

reliable control and operations well meet the expectations. ICC was awarded as an 

Intelligent Building of 2011 by the Asian Institute of Intelligent Buildings, partly 

owing to the advanced BAS installed in ICC.   

 

 

(a) Motif in chiller power consumption    (b) Motif in SCHWP power consumption 

 

(c) Motif in PAU power consumption    (d) Motif in MV power consumption 
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(e) Motif in VTS power consumption    (f) Motif in NLTG power consumption 

Figure 5.6 An example of multivariate motif in Cluster 4 
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exact time lag in temporal association rules. 

Table 5.4 presents three example rules describing the inter-subsystem temporal 

associations in the multivariate motif shown in Figure 5.6. The first rule shows that 

when the AHU power consumption is Low and experiencing a slight increase at time 

T, the chiller power consumption will be Low and stay steady at time T+1. The 

second rule shows that given the same antecedent, a slight increase in the chiller 

power consumption will be observed at T+2. These two rules demonstrate that the 

change in AHU and chiller operation is not synchronous and the time lag is around 15 

minutes. The last example rule describes the temporal association between the NLTG 

and the PAU power consumptions. It states that when the NLTG consumption is Low 

and experiencing a significant increase at time T, a significant increase in the PAU 

power consumption will be observed at T+9. The result’s validity can be verified by 

manually inspecting Figure 5.6. For instance, the first significant increase in NLTG 

and PAU power consumptions take place at around 5:45 and 8:00 respectively and 

therefore, the time lag for the third rule should be 9 unites of time (i.e., 135 minutes). 

Table 5.4 Examples of temporal associations discovered 

Rule Antecedent Consequent Time lag (15-min) Supp. Conf. 

1 AHU=Low, 5 Chiller=Low, 4 1 1.00 1.00 

2 AHU=Low, 5 Chiller=Low, 5 2 0.89 0.89 

3 NLTG=Low, 7 PAU=Low, 7 9 0.78 0.82 
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5.3 Applications of Temporal Knowledge Discovered 

A straightforward approach to applying the temporal knowledge discovered to 

building management is to build a database of motifs and temporal association rules 

as the benchmark of building operations. Then, the real-time BAS time series data are 

compared with the benchmarked operations to identify any possible anomalies. The 

post-mining methods developed in this study provide two more approaches to such 

applications. The following parts demonstrate these applications. 

 

5.3.1 Applications of Associations between Univariate Motifs 

The post-mining method introduced in Section 5.1.4 is applied to discover 

associations between univariate motifs. To illustrate, 103 univariate motifs which are 

discovered in Cluster 4 are used for analysis. The Apriori algorithm is applied with 

the minimum support and confidence set as 0.1 and 0.8 respectively. These thresholds 

are set in such a way to ensure the discovery of strong but not necessarily frequent 

associations. 144 association rules are discovered. The association rules obtained can 

be applied to find anomalies in operation, such as less energy-efficient operations, 

faulty operations, as well as normal but rare operations. 

As shown in Figure 5.7, one rule is Cooling Load = Motif 3 → Chiller = Motif 

11. It describes the association between Motif 3 in the building cooling load and 

Motif 11 in the chiller power consumption, which both take place between 15:00 to 
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21:00. Atypical patterns are identified by finding the time series data which meet the 

antecedent but not the consequent. An example is presented in Figure 5.8. Motif 11 in 

the chiller power consumption is shown using blue boxplots and the atypical chiller 

operation is shown using the red solid line. Given the same building load demand, the 

atypical operation results in much higher chiller power consumption during the period 

from 15:00 to 19:30. The mean chiller coefficient of performance (COP) decreases 

from 5.82 to 5.12 (i.e. 12% drop in energy efficiency) when the atypical operation 

takes place. It is found out by examining original data that during chiller Motif 11, 

three chillers are running at a nearly full-load condition. By contrast, 4 chillers are 

switched-on during the atypical operation with a lower part-load ratio. In such a case, 

the identified atypical operation resulted in a less energy efficient operation.  

 

 

(a) Antecedent motif                   (b) Consequent motif 

Figure 5.7 Association between building cooling load and chiller motifs in Cluster 4 
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Figure 5.8 Comparison of chiller operations 
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difference is observed during atypical operation. Such atypical operation may be due 

to the interference of manual control. 

 

(a) Antecedent motif                   (b) Consequent motif 

Figure 5.9 Association between NLTG and MV motifs in Cluster 4 

 

 
Figure 5.10 Comparison of MV operations 
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in MV consumption at the second and the first mechanical floors respectively. By 

contrast, one significant drop in the PAU consumption is observed at around 20:00, 

which is due to the huge decrease in office occupancy. An atypical operation is 

identified and its PAU consumption is compared with the PAU Motif 14 in Figure 

5.12. Compared with PAU Motif 14, the PAU consumption in atypical operation is 

much smaller from 17:30 to 20:00. The reason behind is that the next day is a public 

holiday in Hong Kong and many offices have their employees released at around 

17:00. Consequently, a power reduction in PAU consumption is observed. In such a 

case, the atypical operation identified is a normal but rare operation. 

 

(a) Antecedent motif                   (b) Consequent motif 
Figure 5.11 Association between MV and PAU motifs in Cluster 4 
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Figure 5.12 Comparison of PAU operations 
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describe temporal associations in the chiller operation between 6:00 to 12:00: 

Chiller=High, 5 
!!!

 Chiller=High, 4 and Chiller=High, 5 
!!!

 Chiller=High, 3. 

These two rules specify that two possible operation modes are possible at time T+1 

given the chiller power consumption at time T is High and has a slightly increasing 

trend. Figure 5.13 presents the subsequences which fulfill these two rules. The chiller 

power consumption at T+1 will remain at High level, with either a steady or a slightly 

decreasing trend. Temporal anomalies can be detected by finding subsequences which 

fail to meet the rule consequent given the same antecedent. Figure 5.14 presents an 

example of such anomalies. The anomaly is shown in red solid line. It meets the rule 

antecedent at time T; however, the operation mode at time T+1 becomes Medium and 

has a significant decreasing trend. Further investigation shows that at 8:30, Chiller 4 

was switched off while two other chillers were switched on as replacement. After 

consulting with the operation staff, it is found that Chiller 4 was manually switched 

off due to its high operation current. 

 

 

(a) Chiller=High, 5 
!!!

 Chiller=High, 4   (b) Chiller=High, 5 
!!!

 Chiller=High, 3 
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Figure 5.13 Examples of temporal associations in chiller operation 

 

 
Figure 5.14 An example of temporal anomalies 
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at High level at T+10. Rule 3 shows that the time lag between two significant 

increases at Low and Medium levels is around 1 hour. The latter three rules are 

derived from the chiller Motif B, which occurs between 18:00 to 0:00. Rule 4 states 

that if the chiller consumption is High and experiencing a significant decrease at time 

T, its steady state at Medium level will be reached at T+3, i.e., 45 minutes later. 

Similarly, Rule 5 describes that the time needed for the chiller power consumption to 

reach its steady state from the Medium to Low level is also 45 minutes. The last rule 

quantifies that the time lag between the huge decrease at High and Medium levels is 

around 3 hours. The result is verified by checking Figure 5.15. The knowledge 

discovered in this subsection helps to quantify the building dynamics from two 

perspectives, i.e., the power consumption level and relative changes between 

successive time steps (i.e., trend). The temporal interactions and dynamics can be 

automatically extracted. Useful insights can be gained into how building subsystems 

react to a certain change in operation over time. The temporal associations discovered 

can be used to facilitate the optimal control and decision-makings in building 

operation, e.g., chiller sequence control and integration between individual buildings 

and large power grid systems. 

 

Table 5.5 Temporal associations in chiller operations 

Rule Motif Antecedent Consequent Time lag 

(15-minute 

per unit) 

Support Confidence 
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1 A Chiller=Low, 7 Chiller=Medium, 5 3 0.92 0.97 

2 A Chiller=Low, 7 Chiller=High, 4 10 0.81 0.92 

3 A Chiller=Low, 7 Chiller=Medium, 7 4 0.83 0.83 

4 B Chiller=High, 1 Chiller=Medium, 4 3 0.36 0.87 

5 B Chiller=Medium, 1 Chiller=Low, 4 3 0.78 0.85 

6 B Chiller=High, 1 Chiller=Medium, 1 12 0.44 0.84 

 

 

(a) Motif A: Between 6:00 to 12:00        (b) Motif B: Between 18:00 to 0:00  

Figure 5.15 Two examples of chiller operation motifs 

5.4 Summary 

BAS data are in essence multivariate time series data. Currently, few studies 

have addressed temporal knowledge discovery and applications in big BAS data. This 

Chapter proposes a generic methodology for mining temporal knowledge from 

massive BAS data. A diversity of time series data mining techniques and their 

practical potentials in analyzing big BAS data for building operations and 

performance management are explored in this Chapter. Rather than addressing 

pre-defined specific problems, the methodology developed mainly aims to discover 
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unknown temporal knowledge by adopting unsupervised DM techniques to mine the 

big BAS data. The intention is to let the data tell the story and then, using domain 

knowledge to interpret, select and apply the knowledge discovered. The methodology 

proposed serves as a prototype of big data analysis tools which can be integrated with 

modern building automation systems to realize automatic knowledge discovery and 

applications.  

This chapter specifically addresses two major challenges in mining big BAS data. 

One major challenge is the heavy computational load caused by the massive data 

amount. From a technological perspective, this challenge can be tackled by using 

high-performance computing machines or cloud-based computing. The adoption of 

suitable data transformation methods and more computationally efficient DM 

algorithms can provide an alternative solution. This chapter shows that the SAX 

method is capable of reducing the data numerocity while preserving the majority of 

the information contained in the BAS power consumption data. The univariate motif 

discovery algorithm adopted in this study is based on the concept of combinatorial 

search rather than exhaustive search and thereby the required computational costs can 

be largely reduced. Another challenge is the extraction of new features based on the 

original data for knowledge discovery, also known as feature engineering. Extraction 

of novel and unique features can greatly enhance the mining result quality. Besides 

the power consumption level, this chapter makes use of the changing trend to describe 

the mode of each subsystem at each time step. The temporal association rules 
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discovered are more meaningful and straightforward for knowledge interpretation and 

application, compared with those obtained using other features as inputs (e.g., the 

power consumption level alone).  

Time series data mining can discover large amounts of knowledge with different 

types, such as clusters, univariate and multivariate motifs, and temporal association 

rules. It is challenging and time-consuming to interpret and apply the knowledge 

discovered. This chapter develops two methods for the efficient post-processing of 

knowledge discovered. The first method uses a co-occurrence matrix to map the 

relationship between univariate motifs. Reliable associations between univariate 

motifs are derived which provides a novel and convenient approach to utilizing 

univariate motifs. The second method utilizes a filtering method to improve the 

temporal association rules mining algorithms with the accurate estimation of time 

interval between the antecedent and the consequent. The time interval or lag provides 

valuable insights into building dynamics and HVAC performance characteristics. The 

methodology has been applied to analyze the BAS data retrieved from the tallest 

building in Hong Kong. The knowledge discovered has been successfully used to 

identify anomalies in building operations and characterize the building dynamics. The 

open-source software R and SPMF were used to perform the mining.  
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CHAPTER 6 DEVELOPMENT OF METHODOLOGY 

FOR THE GRAPH-BASED KNOWLEDGE MINING AND 

ITS APPLICATIONS!

 

The methodologies proposed in the previous two chapters are designed for 

mining cross-sectional and temporal knowledge from building operational data with a 

typical data structure, which uses a single two-dimensional data table to store the data. 

Actually, the majority of DM techniques are designed to perform the mining task 

based on such data structure. Nevertheless, the advance in building technologies has 

imposed new challenges to building professionals, i.e., data are being collected 

throughout the whole building lifecycle, and are of different types (e.g., text data, 

video data and numeric data) and structures (e.g., multi-relational databases).  

A notable trend in the building field is the implementation of the Building 

Information Modeling (BIM) technology. BIM intends to provide a digital 

representation of physical and functional characteristics of a building and has huge 

potential in evaluating and improving the building lifecycle performance [Schlueter 

and Thesseling 2009]. It is designed as a structured database to contain all the 

information about a building from earliest conception to demolition. The data stored 

in BIM models vary greatly in their data types, such as the schematic drawings 

showing the spatial information and the text data describing the construction and 

maintenance projects, and the measurements or control signals of different building 
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services components in building operations.  

An ideal knowledge discovery process would be first effective integrating the 

information and then performing mining tasks from a unified perspective. Given the 

complexity in BIM data types and data structures, it is very unlikely that conventional 

data preprocessing methods (e.g., joining data tables) would fulfill the needs. The 

current lack in analytic solutions to handle such kind of building data is exactly the 

challenge that needs to be addressed in the near future. So far, little research has been 

done to investigate the usefulness of advanced DM techniques on this topic.  

This chapter develops a graph-based mining methodology to tackle this problem. 

Section 6.1 introduces the background of graph-based data mining and the techniques 

used in this chapter. Section 6.2 presents the research methodology. The methodology 

is validated through a case study using the BAS data retrieved from the Zero Carbon 

Building (ZCB) in Hong Kong and is presented in Section 6.3. Section 6.4 

summarizes this chapter.   

 

6.1 An Overview of Graph-Based Data Mining  

Graph-based DM is the most widely used techniques in analyzing data with 

complex structures [Cook and Holder 2000]. It has been successfully used to discover 

useful knowledge in bioinformatics, financial services, counter-terrorism, social 

network analysis and etc. [Washio and Motoda 2003; Cook and Holder 2006; 
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Samatova et al. 2013]. Graph is one of the most generic, natural, and interpretable 

formats for data representation. Great flexibility can be provided in the knowledge 

discovery process as users can readily manipulate the graph layout to integrate and 

represent various types of information. In addition, the knowledge discovered using 

graph-based DM is represented as graphs, which are highly interpretable. 

A graph G consists of a set of nodes (or vertices), denoted as V(G) and a set of 

links (or edges), denoted as E(G). A graph S is said to be subgraph of graph G if 

V(S)⊆V(G) and E(S)⊆E(G). A node usually represents an object or a discrete piece of 

information, while the links are used to represent the relationships between nodes. To 

illustrate, Table 6.1 presents the power consumption of a chiller and a cooling tower 

at time T1 and T2. Table 6.2 records the spatial information of these two components, 

one in basement and one on rooftop. It is hard to integrate these two pieces of 

information into a single two-dimensional data table, as there are three types of 

information, i.e., temporal, spatial, and power information. By contrast, a graph can 

be readily constructed for information representation. As shown in Figure 6.1, the 

graph has 6 nodes and 7 links and they are all labeled. The top 2 nodes are used to 

represent the temporal information and are labeled as “T1” and “T2” respectively. The 

link connecting these two nodes are labeled as “dT=1” which means that the 

difference in time step is 1. Each of the top 2 nodes is connected with two nodes 

labeled as “Chiller” and “CT”. The labels associated with each edge record the power 

consumption. The bottom two nodes store the spatial information and are connected 
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with two components accordingly.  

 

 

Table 6.1 An example data set containing the power data at two time steps 

Time/Power Chiller Cooling tower 

T1 Low Low 

T2 High High 

 

Table 6.2 An example data set containing the location of two components 

Component Location 

Chiller Basement 

Cooling tower Rooftop 

 

 
Figure 6.1 An example graph 
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6.1.1 Proximity Measures for Graphs 

Proximity measures are used to evaluate the similarity or dissimilarity of two 

observations. Many DM tasks, including clustering, classification and anomaly 

detection, are performed based on data proximity. Conventional data representations 

usually use a feature vector to describe an observation and the similarity or 

dissimilarity between two observations can be easily calculated using distance metrics, 

such as the Euclidean distance.  

Proximity measures for graph data can be generally divided into two types, 

between-graph and within-graph measures [Samatova et al. 2013]. Between-graph 

measures evaluate the similarity between a set of graphs while with-in graph 

measures evaluate the similarity between nodes in a graph. One type of 

between-graph measures transforms a graph to a numeric vector using a set of 

graph-level indices (GLIs). Conventional measures, such as the Euclidean distance 

and cosine similarity, can then be used to evaluate the proximity between two graphs. 

Some commonly used GLIs are introduced as follows. VG and EG are the total number 

of nodes and links in the graph. The degree of a node refers to the number of links 

associated with it. If the graph is directed, one may further distinguish between 

in-degree and out-degree, depending on whether the node is used as a head or a tail. 

The mean degree is the average degree considering all nodes in a graph. The graph 

density quantifies the ratio between the number of links and the number of possible 

links and is !!!
!!(!!!!)

 and !!
!!(!!!!)

 for undirected and directed graphs respectively. 
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The graph diameter is defined as the largest distance between any pair of nodes in the 

graph. The graph transitivity measures the relative frequency of triangles in the graph 

and is defined as !×!".!"!!"#$%!"#$!
!".!"!!"##$!%$&!!"#$%&!'. Such type of methods is easy to implement. 

However, the GLIs can only capture the topological information of a graph. It is 

generally not applicable to labeled graphs. 

The other type of between-graph measures is the edit distance [Cook and Holder 

2006]. The edit distance between two graphs refers to the smallest cost resulted from 

a set of edit operations to transform one graph to another. Typical edit operations 

include the insertion, deletion and substitution of nodes and links. It can be applied to 

capture the proximity between labeled graphs. The costs associated with different edit 

operations can be either user-defined or optimized through a training process [Gao et 

al. 2010].  

 

6.1.2 Frequent Subgraph Mining 

Frequent subgraph mining (FSM) is regarded as the essence of graph-based data 

mining [Jiang et al. 2004]. FSM mainly works on undirected graphs with labeled 

nodes and links. Popular applications of FSM include finding the common 

substructures of chemicals and identify the frequent patterns of terrorist attacks [Jiang 

et al. 2004; Samatova et al. 2013].  

In this section, some representative FSM algorithms which take a set of graphs 
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as input are introduced. These algorithms can be classified based on two criteria, i.e., 

whether the search is exact or inexact, and whether the search strategy is breadth-first 

or depth-first [Jiang et al. 2004]. Inexact search FSM algorithms, such as SUBDUE 

[Cook and Holder 1994] and CREW [Kuramochi and Karypis 2004], use 

approximated measures to compare two graphs. The resulting mining efficiency is 

high. However, it is not guaranteed to discover all frequent subgraphs. Exact FSM 

algorithms are more commonly used due to their ability of discovering all frequent 

subgraphs. Some adopt the breadth-first search (BFS) strategy to generate subgraph 

candidates. The basic concept is that a subgraph with a node size of (k+1) cannot be 

frequent if any of its parent subgraphs of a node size of k is not frequent. Popular 

algorithms belonging to this category include AGM [Inokuchi et al. 2000] and 

DPMine [Vanetik 2002]. The BFS strategy can greatly reduce the number of 

redundant candidates generated. However, creating candidate with a size of (k+1) 

based on frequent subgraphs with a size of k can be computationally expensive, 

especially when k is large. Therefore, the BFS strategy usually suffers from a problem 

of poor computer memory utilization [Jiang et al. 2004]. The depth-first search (DFS) 

can better utilize the computer memory when generating subgraph candidates (e.g., 

through the right-most extension [Yan and Han 2002]). In addition, some procedures 

have been developed to make it more efficient to test whether two subgraphs are 

identical or not. As a result, the DFS-based algorithms have become the main 

approach to FSM. Some representative algorithms in this category include MoFa 



! ! !156 

[Borgelt and Berthold 2002], gSpan [Yan and Han 2002], FFSM [Huan et al. 2003] 

and GASTON [Nijssen and Kok 2004]. A recent study compared the performance of 

these four exact DFS-based FSM algorithms [Worlein et al. 2005]. The gSpan 

algorithm generally has better performance considering the running time and memory 

usage.  

One essential challenge of FSM is that the number of frequent subgraphs 

discovered can be very large and the majority of them are redundant. A subgraph 

becomes redundant if there is a supergraph which has the same support count. To 

enhance the mining efficiency, Yan and Han proposed an algorithm called 

CloseGraph to mine closed frequent graphs based on their work of gSpan [Yan and 

Han 2003]. A subgraph is called closed if there exists no supergraph having the same 

support count. It was shown that CloseGraph could dramatically reduce the number of 

redundant subgraphs and therefore, enhancing mining efficiency. In this study, the 

CloseGraph is adopted to mine frequent subgraphs. The algorithm takes a set of 

graphs as input. Users need to define a minimal support threshold, which is used to 

evaluate whether a subgraph is frequent or not. 

 

6.2 Graph-based Knowledge Discovery Methodology 

This chapter develops a graph-based data mining methodology to mine BAS data 

with potentially complex structures. The methodology is developed based on the 



! ! !157 

generic framework proposed in Chapter 3. The outline is shown in Figure 6.2. At the 

data exploration phase, two types of graph generation methods, i.e., observation-based 

and variable-based methods, are proposed to transform the BAS data into graphs. The 

decision tree method is applied for data partitioning. Frequent subgraphs are 

discovered using the CloseGraph algorithm at the knowledge discovery phase. Two 

post-mining methods are proposed to enhance the efficiency and effectiveness in 

knowledge interpretation, selection and application.  

 
Figure 6.2 Research outline of graph-based data mining for BAS data 

 

Raw BAS data

Applications

Phase 1: Data Exploration

(1) Data transformation method: 
a. Generate graphs using observation-based approach
b. Generate graphs using variable-based approach

Phase 2: Data Partitioning

Input: The aggregated building energy consumeption
Method: Decision tree method
Output: Rules for data partitioning

Phase 3: Knowledge Discovery

Technique: Frequent Subgraph Mining 
Input: Graphs generated at Phase 1
Method:The CloseGraph algorithm
Output: Frequent subgraphs

Phase 4: Post-mining

(1) Pattern summarization
Input: Frequent subgraphs identified at Phase 3
Method: Graph edit distance; Evidence accumulation 
clustering
Output: Typical patterns of frequent subgraphs

(2) Anomaly detection
Input: Frequent subgraphs identified at Phase 3
Method: Comparison of graph structures and labels
Output: Anomaly scores for individual graphs
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6.2.1 Data Exploration  

Apart from the data cleaning methods introduced in previous two chapters, the 

data exploration phase of this methodology specifically addresses the graph 

generation problem, i.e., generate graphs based on BAS data. The basic format of 

BAS data is a two-dimensional data table, where each row represents an observation 

recorded at a time step and each column represents a numeric or categorical variable. 

Two approaches are developed to transform BAS data into graphs, namely the 

observation-based and variable-based approaches. Both approaches are developed 

taking into account the following key considerations, i.e., the computation efficiency 

and the compatibility with FSM algorithms. To ensure the computation efficiency, the 

graph should be created in such a manner that the number of nodes and links used to 

describe a certain amount of information is minimum. The second consideration 

requires the graph to be generated is unweighted, labeled and connected (i.e., there is 

always a path from one node to another). Discretization should be performed to 

transform numeric variables into categorical variables. The details of these two 

approaches are introduced as follows. 

 

The Observation-based Approach  

The observation-based approach provides a straightforward way to transform the 

raw BAS data into graphs. In this study, it is designed to represent three types of 
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information in the BAS data, i.e., the temporal information, the level and trend 

information. The level information refers to the value of a variable at time t (i.e., 

denoted as yt). The trend information refers to the relative change between successive 

time steps (i.e., denoted as yt-yt-1). The graph to be generated contains two parts. The 

first part includes the nodes representing the temporal information, i.e., temporal 

nodes. Links between temporal nodes are established to represent the time flow. The 

second part consists of the nodes representing the level information of different 

variables, i.e., level nodes. Links are established between temporal nodes and level 

nodes. The trend information is encoded into the graph by adding edge labels between 

temporal and level nodes. Assuming that the BAS data have N observations recorded 

in a chronological order and p variables, the first and second parts will contain N and 

M nodes respectively, where ! = !!!
!!!  and !!  is the number of possible 

values for the ith categorical variable. The graph to be generated has (N+M) nodes and 

! + 1 ×! − 1 links.  

 
Table 6.3 The temporal and level information of three variables 

Time/Level Chiller Cooling tower AHU 

T1 Low Low High 

T2 High High High 

T3 High High High 

T4 High High Low 

T5 Low Low Low 
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T6 Low Low Low 

 

As an example, Tables 6.3 and 6.4 present the power consumption level and 

trend information of three variables at 6 consecutive time steps, i.e., T1 to T6. The 

graph generated using the observation-based approach is shown in Figure 6.3. The 

temporal and level nodes are shown as grey and green circles respectively. The first 

part of the graph consists of 6 temporal nodes and links are established to represent 

the time flow. Each of the three variables contains 2 possible levels, i.e., Low and 

High. Therefore, the second part contains ! = !!!
!!! = 2+ 2+ 2 = 6  level 

nodes. The links between temporal nodes and level nodes are labeled according to the 

trend information.  

 

Table 6.4 The temporal and trend information of three variables 

Time/Trend Chiller Cooling tower AHU 

T1 Steady Steady Increase 

T2 Increase Increase Steady 

T3 Steady Steady Steady 

T4 Steady Steady Decrease 

T5 Decrease Decrease Steady 

T6 Steady Steady Steady 
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Figure 6.3 The example graph generated by the observation-based approach 

 

The Variable-based Approach  

The variable-based approach developed is inspired by the graph representation 

used in social network analysis, where each individual is represented as a node and 

their associated relationships are shown as links. The general idea is that each BAS 

variable is in analogy to an individual person and denoted as a node. The interactions 

between BAS variables during a certain time period are modeled as links. The 

observation-based approach is capable of preserving the detailed or low-level 

information in the original BAS data. By contrast, the variable-based approach 

focuses on extracting the abstract or high-level information in the original BAS data.  

The main challenge of the variable-based approach is to come up with a 

meaningful way to describe the interaction between two variables. The resulting 

graphs should be able to provide meaningful and useful insights once their frequent 

subgraphs are discovered in the later step. An intuitive type of methods to describe the 
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interaction between two variables during a certain time period is to calculate their 

correlation. This type of methods are easy to implement and can work with both 

numeric and categorical variables in the BAS data. However, the information 

conveyed in the resulting graph can be too abstract to provide any insightful 

knowledge in the later mining process. For instance, a high correlation between two 

numeric variables does not provide any indication on the actual operation conditions 

(e.g., whether the power consumption is at a low or high level), which are usually the 

main concerns in building management. 

This research proposes a novel method to create link labels to represent the 

interaction between two variables in the BAS data. The method works with 

categorical variables and therefore, discretization should be performed for numeric 

variables. Assuming that the BAS data to be transformed to a variable-based graph 

has N observations, the first step is to determine a window size (denoted as w), which 

is used to divide the BAS data into !! non-overlapping temporal segments. The 

dominant, or the most frequent interaction modes between two variables in these 

temporal segments can be discovered. The interaction mode is defined as a vector 

containing the categorical values of both variables. A notation is created based on the 

dominant interaction mode between two variables during each temporal segment. 

Table 6.5 presents an example of such notation assuming both variables have two 

levels (denoted as “Low” and “High”). It should be mentioned that there could be a 

tie in the dominant interaction mode. In such a case, a longer notation is created with 
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each ends surrounded by zeros, e.g., denoted as “0120” when {Low, Low} and {Low, 

High} are tied as the dominant interaction mode. The link label between these two 

variables can be obtained by combining the notations in different temporal segments.  

As shown in Figure 6.4, an example graph is created using the above-mentioned 

method for the data shown in Table 6.3. Considering w=2, the whole data will be 

divided into 3 segments. All three variables are categorical with 2 possible values. 

Taking the chiller and cooling tower as an example, there is a tie in the dominant 

interaction mode in the first temporal segment, i.e., {Low, Low} and {High, High}. 

Consequently, the notation for this segment is “0140”. The notations for the other two 

segments are “4” and “1” respectively. The link label between these two variables are 

“014041”.  

 

Table 6.5 Notations for different dominant interaction modes 

Variable A Variable B Interaction mode Notation 

Low Low {Low, Low} 1 

Low High {Low, High} 2 

High Low {High, Low} 3 

High High {High, High} 4 
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Figure 6.4 An example graph using the variable-based approach 

 

6.2.2 Data Partitioning 

Previous two chapters mainly adopt clustering analysis to perform the data 

partitioning task. Clustering analysis is a natural fit for data partitioning. However, the 

only output obtained from clustering analysis is the cluster membership of each 

observation. Since clustering analysis is essentially an unsupervised learning method, 

it cannot produce straightforward knowledge to guide the data partitioning process. In 

other words, it is not easy to summarize the characteristics of each cluster. In this 

chapter, the usefulness of decision tree method for data partitioning is explored. As a 

supervised learning method, the decision tree model has the ability to capture 

complex relationships between independent and dependent variables. The model is 

highly interpretable and the rules derived by the decision tree model can be used as 

guidance for data partitioning.  

More specifically, a decision model is developed to capture and visualize the 

relationship between the aggregated building power consumption and the time 
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variables (i.e., “Month”, “Day”, “Day Type”, “Hour”, “Minute”). “Day Type” here 

refers to Monday to Sunday. It is worth mentioning that the time variables are 

categorical and have different numbers of possible values (e.g., “Month” has 12 

values and “Day Type” has 7 values). It is known that conventional decision tree 

algorithms (e.g., CART) have a selection bias towards input variables with many 

possible values [Horthon et al. 2006]. To eliminate such selection bias, the 

unconditional inference tree method is adopted [Horthon et al. 2006]. The whole BAS 

data are partitioned based on the relationship discovered by the decision tree model.  

 

6.2.3 Graph-based Knowledge Discovery  

The CloseGraph algorithm is applied to discover frequent subgraphs [Yan and 

Han 2003]. It is in analogy to the discovery of frequent item sets from cross-sectional 

data. The input is the graphs generated at Phase 1. The algorithm is applied separately 

to the data partitions identified at Phase 2. The outputs of CloseGraph are the frequent 

subgraphs among the graph databases. The CloseGraph algorithm from the ParSeMis 

project is used in this research [Philippsen et al. 2008].  

 

6.2.4 Post-mining  

Even though the CloseGraph can greatly reduce the number of redundant 

subgraphs, the number of frequent subgraphs could still be too large for manual 



! ! !166 

inspection. Two post-mining methods are developed to improve the efficiency in the 

post-mining step and their details are explained as follows. 

 

Pattern Summarization 

The pattern summarization aims to derive a small set of representative patterns 

based on the potentially large number of frequent subgraphs discovered. The general 

idea is to perform clustering analysis on the frequent subgraphs discovered and then 

use the cluster centroids as the representative patterns.  

To perform the clustering analysis, a proximity measure should be adopted to 

evaluate the similarity between graphs. The graph edit distance is adopted and the 

costs associated with different edit operations (i.e., insertion, deletion and revision) 

are assumed to be equal. As a result, a distance matrix can be constructed for the 

graph data. Then, an ensemble clustering method, the evidence accumulation 

clustering (EAC), is adopted to perform the cluster analysis. EAC has the ability to 

discover clusters with various sizes and shapes. In addition, there is no need to 

explicitly define the cluster number which is usually impossible to know in prior. 

Users only need to specify the lower and upper limits of the cluster number and the 

EAC method can automatically determine the optimal cluster number. The 

partitioning around medoids (PAM) algorithm is selected as the base clustering 

algorithm. PAM shares a similar procedure with the well-known k-means algorithm, 

but is more robust to noise and outliers and more importantly, it can take distance 
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matrix as input. The EAC process is iterated with a varying cluster number, which is 

randomly selected between the lower and upper limits of the cluster number. A 

collision matrix, denoted as C, is formed to record the percentage of times that two 

observations are grouped in the same cluster. The hierarchical clustering algorithm is 

then applied to obtain the final clustering result. We direct interested readers to [42] 

for more details on EAC.  

 

Anomaly Detection Based on Frequent Subgraphs Discovered 

A method is proposed to detect anomalies in the form of graphs. Assuming that Y 

frequent subgraphs are discovered based on X graphs, the method outputs an anomaly 

score for each of the X graphs. The general idea is that a graph is abnormal if it has no 

subgraphs that perfectly match any of the frequent subgraphs discovered. For a given 

graph Gi, the anomaly score is defined as !! = !
!

!!,!
!!,!

!
!!! , where Di,j is the minimal 

number of differences in nodes and links between any subgraphs of Gi and the jth 

frequent subgraph, Ns,j is the number of nodes and links of the jth frequent subgraph. If 

there exists a perfect match between any subgraphs of Gi and a frequent subgraph 

discovered, Ai is assigned as infinity. A larger Ai indicates that Gi is less close to any 

of the frequent subgraphs discovered. In such a case, Gi may represent some unique 

and infrequent operation conditions. By contrast, the closer the Ai approaches to zero, 

the more interesting or potentially useful the anomaly could be. In such a case, it 

indicates a well-disguised anomaly, i.e., the graphs only differ on a minor scale. 
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Therefore, it is recommended to manually inspect the graphs according to an 

increasing order of their anomaly scores. 

As an example, Figures 6.5 and 6.6 present a graph generated in the 

observation-based approach and an example frequent subgraph used for anomaly 

detection respectively. It is observed that the difference lies in the operation condition 

of cooling tower at T=2 and the number of difference D=2, i.e., changing the node 

label from “CT=Low” to “CT=High” and the link label from “Steady” to “Increase”. 

The total number of nodes and links of the frequent subgraph is 9 and therefore, the 

anomaly score is !!. 

 
Figure 6.5 An example graph considered for anomaly detection 

 

 
Figure 6.6 An example frequent subgraph discovered for anomaly detection 
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6.3 Mining Real BAS Data 

6.3.1 Data Partitioning Using The Decision Tree Method 

The method introduced in section 6.2.2 is used to discover the relationships 

between the aggregated building power consumption and the time variables, i.e., 

“Year”, “Month”, “Day”, “Hour”, “Day Type”. The decision tree developed is shown 

in Figure 6.7. Three variables, i.e., “Day Type”, “Hour” and “Month” are selected as 

the splitting variables. The root node selects the “Day Type” as the splitting variable. 

It is found out that ZCB is close on Wednesdays and Sundays. Therefore, the 

aggregated building power consumption would be lower on Wednesday and Sundays 

than that in other day types. Nodes 2 and 5 both select the “Hour” as the splitting 

variable and the splitting criteria coincide with the office hours (i.e., 9:00 to 18:00) 

and non-office hours of ZCB. Node 7 is added to further partition the building power 

consumption during the office hours on working days. It selects the “Month” as 

splitting variable and the splitting criteria matches the seasonality in Hong Kong, i.e., 

May to October as the hot season and the rest as the cold season.  

The knowledge discovered in this step can be used in two ways to guide further 

mining activities. Firstly, it can be used to partition the data to enhance the sensitivity 

and reliability of the knowledge discovered in the following steps. Secondly, it helps 

to provide guidance on mining specific type of knowledge. For instance, domain 
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knowledge tells us that the building services systems will be unsteady during the 

transitions between non-office hours and office hours. Therefore, the data recorded 

during these intervals should be utilized to derive knowledge on the dynamics and 

characteristics in system operations.  

 
Figure 6.7 The decision tree model developed for the ZCB data 

  

6.3.2 Discovering Representative Patterns in System 

Operations 

The observation-based graphs are well suited to represent the temporal, level and 

trending information of BAS data. The knowledge discovered from such type of 

graphs can be valuable for characterizing the patterns and dynamics in system 

operations. To illustrate, this section investigates the dynamics of HVAC system 

during the stage-up process. The key variables in the HVAC system, including the 

load demand, power consumptions of water-cooled chillers (WCC), cooling towers 
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(CT), air-handling units (AHU) and primary air-handling units (PAU), are 

transformed into observation-based graphs. The data recorded during 6:00 to 12:00 in 

the working days of hot seasons are used for knowledge discovery. All variables are 

discretized into three levels, i.e., “Idle”, “Low” and “High” using the k-means 

clustering. The trend data of both variables are discretized into five categories, i.e., 

“Huge Decrease”, “Slight Decrease”, “Steady”, “Slight Increase”, “Huge Increase”. 

In total, 124 graphs are generated. Each graph has 22 nodes and 41 links. The 

minimum support threshold used for frequent subgraph mining is 20%. The 

post-mining method introduced in section 6.2.4.1 is used for pattern summarization. 

To perform the EAC, the lower and upper limits of cluster number are set as 2 and 20 

respectively and the iteration number is fixed as 50. As a result, 298 frequent 

subgraphs are discovered, based on which 13 representative graphs are summarized. 

The knowledge obtained is highly interpretable. It is straightforward to understand the 

temporal dynamics and system operation characteristics.  

Two representative patterns are shown in Figures 6.8 and 6.9. In both figures, the 

PAU stays idle during the whole period and the HVAC system stays idle between 

6:00 and 7:00. As shown in Figure 6.8, the Load Demand experiences a huge increase 

and reaches its “Low” level at 8:00. To cope with this change, both WCC and AHU 

reach their “Low” levels with a slightly increasing trend. Meanwhile, the CT stays idle. 

At 9:00, the Load Demand and AHU continue to increase with a slightly increasing 

trend and reach their “High” levels. The WCC also reaches its “High” level but with a 
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huge increasing trend. The power consumption of CT reaches its “Low” level with a 

huge increase trend. At 10:00, the Load Demand, WCC and AHU stay steady. A 

slight increase trend is observed in CT as it reaches to its “High” level. All variables 

are maintained steady after 10:00. Compared to Figure 6.8, the main difference in 

Figure 6.9 is that none of these variables reach their “High” level. In addition, a slight 

decreasing trend in WCC consumption is observed at 10:00 before reaching the 

steady state. From these two figures, it can be inferred that the transient changes in the 

HVAC stage-up process typically last for 2-hour, i.e., between 8:00 and 10:00.  

 

Figure 6.8 Representative graph A 
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Figure 6.9 Representative graph B 

6.3.3 Discovering Atypical Operations  

The variable-based graphs are used as high-level abstracts of the BAS data. In 

this section, the BAS data during the office hours (i.e., 9:00 to 18:00) in the working 

days of hot seasons are transformed into variable-based graphs with structural, 

temporal and level information embedded. Each numeric variable is discretized into 3 

levels, denoted as “Idle”, “Low” and “High”. Figure 6.10 presents an example graph 

generated using the BAS data during office hours on July 4, 2013 (Thursday). The 

Load Demand is designed as the central node and connected with seven nodes 
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is recorded by establishing links between subsystems and their individual components. 

The normal power and lighting consumptions at different locations in ZCB are also 

recorded in the graph. The link labels are created to summarize the interactions 

between two variables in three temporal segments, i.e., 9:00 to 11:00, 12:00 to 15:00 

and 16:00 to 18:00. For instance, the link label between CT and CT 3 is “699”. It 

means that the dominant modes are “CT=Low, CT 3=High”, “CT=High, CT 3=High” 

and “CT=High, CT 3=High” in each temporal segment respectively.  

 
Figure 6.10 An example variable-based graph during office hours on July 4, 2013 

(Thursday) 
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which is in accordance with the common definition of anomalies [Lazarevic et al. 

2004]. In total, 1082 frequent subgraphs are discovered and used as a knowledge 

database. The post-mining method proposed in Section 6.2.4.2 are used to find 

atypical operations. As an example, a graph is identified as atypical with a score of 

0.51, indicating that on average, it is different from all the frequent subgraphs 

discovered with a mean proportion of 51%. Figure 6.11 shows the graph with 

reference to its closest frequent subgraph. It is created in such a manner that the 

matched and unmatched portions are shown in blue and pink respectively, and the rest 

is shown in grey. The frequent subgraph considered is shown in Figure 6.12. It is 

apparent that the main difference is the Load Demand in the third temporal segment 

(i.e., 16:00 to 18:00), which is “High” in the frequent subgraph and “Low” in the 

atypical operation. Further inspection reveals that the atypical graph represents the 

building operation during office hours on September 20, 2013 (Friday), which is a 

public holiday in Hong Kong. After consulting with the operation staff, it is found out 

that on normal working days, ZCB are open for indoor tours during three time slots, 

i.e., 10:00 to 11:30, 14:00 to 15:30 and 16:00 to 17:30. However, the last tour does 

not exist on Wednesdays and public holidays. The resulting load demand during that 

time period will be smaller than usual. The atypical operation identified is an 

infrequent but normal operation. 

 



! ! !176 

 
Figure 6.11 An atypical operation on September 20, 2013 (Friday) 

 

 
Figure 6.12 The frequent subgraph considered in Figure 6.11 
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Another atypical operation is identified on July 2, 2013 (Tuesday). The atypical 

graph is shown in Figure 6.13 with reference to its closest frequent subgraph (shown 

in Figure 6.14). The link label between “Load Demand” and “PAU” is “799” in the 

atypical graph, indicating that the dominant interaction modes are “Load 

Demand=High, PAU=Idle”, “Load Demand=High, PAU=High” and “Load 

Demand=High, PAU=High” during 9:00 to 11:00, 12:00 to 15:00 and 16:00 to 18:00. 

respectively. By contrast, the dominant interaction modes between these two variables 

in the frequent subgraph are all “Load Demand=High, PAU=Idle”. The PAU system 

in ZCB rarely operates, as the indoor occupant number in ZCB is usually small and 

the natural ventilation system can adequately fulfill the fresh air demand. It turns out 

that ZCB hold a special event on July 2, 2013 and received a large number of visitors. 

The PAU system was switched on to meet the unsatisfied fresh air demand.  



! ! !178 

 
Figure 6.13 An atypical operation on July 2, 2013 (Tuesday) 

 

 
Figure 6.14 The frequent subgraph considered in Figure 6.13 
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consumption of landscape lighting was “Low” and “High” at 17:00 and 18:00, while 

“Idle” in the frequent subgraph considered. Further inspection shows that the 

landscape lighting during hot seasons generally operates between 19:00 to 7:00. Such 

atypical operation can be caused by faults in manual control or poor outdoor 

visibility.  

 

 
Figure 6.15 An atypical operation on September 2, 2013 (Monday) 
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Figure 6.16 The frequent subgraph considered in Figure 6.15 

 

6.4 Summary 

With the advances in technologies, building data being collected will not only 

expand in data volumes, but also have more complex data structures and data types. 

The effective mining of building data requires a more efficient way for integrating 

and representing complex information. The majority of DM techniques require the 

data to be prepared in a rather simple data structure, i.e., a single two-dimensional 

data table. Meanwhile, typical data preprocessing tasks, such as table joining, cannot 

fully fulfill the needs of integrating data with complex structures and various types. 
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This chapter proposes a graph-based data mining methodology as a general solution 

to ensure the efficiency and effectiveness in knowledge discovery. The reasons are 

twofold. Firstly, graph provides a flexible way to represent data with potentially 

complex structures or from multiple sources, e.g., multi-relational data. It is capable 

of describing complicated relationships by establishing nodes and links, specifying 

their labels associated and etc. Users could design various graph formats to meet their 

needs, e.g., the type of knowledge to be discovered. Secondly, the knowledge 

discovered by graph-based data mining techniques is also represented as graphs. Such 

knowledge representation has high interpretability and therefore, can greatly reduce 

the difficulties in the post-mining stage.  

The graph-based mining methodology is developed with the intention to discover 

potentially useful and previous unknown knowledge. The frequent subgraph mining 

(FSM) is selected as key knowledge discovery technique. Two challenges are 

specifically addressed. The first is to develop methods to efficiently represent BAS 

data as graphs. Two graph generation methods, i.e., the observation-based and 

variable-based methods, are developed. The observation-based method focuses on 

preserving the low-level detailed information while the variable-based method aims to 

extract high-level abstracts of BAS data. The second challenge is to ensure the 

efficiency in post-mining given large amounts of knowledge discovered. Two 

post-mining methods, i.e., pattern summarization and graph-based anomaly detection, 

are developed for knowledge selection and application. The pattern summarization 
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method adopts clustering analysis and graph edit-distance to derive representative 

patterns. The number of representative patterns is much smaller than the number of 

frequent subgraphs discovered. It helps users to quickly grasp the essentials of 

knowledge discovered. The graph-based anomaly detection method uses the frequent 

subgraphs discovered as a knowledge database, based on which anomaly scores are 

computed for new observations. The methodology has been applied to mine the BAS 

data retrieved from a building in Hong Kong. Useful knowledge has been discovered 

to understand the system operation behaviors and identify atypical operations. The 

open-source software R, ParSeMis and Gephi were used to perform the mining and 

visualization tasks.  

Advanced data analytics and domain expertise are the both indispensable to 

ensure the energy efficiency in building operations. This research serves as an 

exploratory study to investigate the usefulness of graph-based data mining in the 

knowledge discovery from building data. One limitation is that as the current FSM 

techniques only work with graphs labeled with categorical values, data transformation 

is inevitable and the information loss associated is difficult to control. One solution is 

to develop advanced FSM algorithms which are compatible with numerically 

weighted graphs. The other is to develop suitable data transformation methods for 

different types of BAS variables, e.g., temperature, flow-rates and power 

consumptions for a diversity of building services components.   
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CHAPTER 7 CONCLUSIONS AND 

RECOMMENDATAIONS 

 

Building energy efficiency plays a vital role in global energy conservation and 

environmental sustainability. The development in building technologies has made 

modern buildings become not only energy intensive, but also information intensive. 

The knowledge hidden in the vast amount of building data can bring significant 

benefits in understanding the building operation behaviors, evaluating services system 

performance, detecting possible faults in operations, and spotting opportunities for 

energy conservation. Data mining-based big data analysis is a promising approach for 

knowledge discovery and has gained great success in many industries. It has the 

ability to discover previous unknown yet potentially useful insights from massive data. 

Nevertheless, the efficient and effective utilization of data mining techniques in 

analyzing building data is a non-trivial task. Currently, there is a knowledge gap 

between building professionals and advanced data mining techniques. Building 

professionals used to solve building engineering problems based on physical laws and 

domain experience. Such approach lacks effectiveness when handling massive 

amounts of data. The success implementation of advanced data mining techniques 

requires a thoroughly designed analytic process, which accounts for a diversity of 

challenges, such as the complexity and poor quality in BAS data, the selection of 
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suitable algorithms for various tasks, the challenges in post-mining massive amounts 

of knowledge discovered, and the generalization performance on different buildings. 

Currently, very few research outcomes and practical experiences are available for the 

effective use of the advanced big data analytics in building management. The research 

work presented in this thesis has addressed the need through making the following 

contributions. 

 

Conclusions on Main Contributions 

i. This research develops a generic data mining-based analytic framework for the 

knowledge discovery from the big building operational data as well as 

applications of the knowledge discovered in building energy management. The 

framework serves as a prototype of developing methodologies for discovering 

and applying various types of knowledge from the building operational data. The 

framework is deliberately designed with considerations of the essential steps in 

knowledge discovery process, the unique characteristics of building operational 

data, and the potential tasks in building energy management. 

ii. A generic methodology has been developed to discover cross-sectional 

knowledge in building operational data. Cross-sectional knowledge refers to the 

relationships and associations between variables without taking into account the 

temporal dependency. The methodology enables the discovery of previously 

unknown yet potentially useful insights from massive building operational data.   
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iii. A generic methodology has been developed to discover temporal knowledge in 

building operational data. To the best of the author’s knowledge, it is the first 

unsupervised data mining-based methodology developed for exploring temporal 

knowledge in building operations. The methodology enables the discovery of 

new types of knowledge, which is represented as sequential motifs and temporal 

associations. The knowledge discovered can better characterize the building 

system dynamics and describe the complex interactions between variables in 

building operations. 

iv. A graph-based data mining methodology is developed to tackle the new 

challenges brought by the advance in building technologies, i.e., data are being 

collected throughout the whole building lifecycle, and are of different types (e.g., 

text data, video data and numeric data) and structures (e.g., multi-relational 

databases). Conventional methodologies, which are typically designed for 

analyzing data stored in a single two-dimensional data table, are of limited use 

when building data become more complex in data types and structures. This 

study has developed general solutions for the effective transformation from 

building data into graphs, knowledge discovery based on graph data, and 

post-mining of the graph-based knowledge discovered. The usefulness of this 

methodology has been validated through case studies. 
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Summary of The Data Mining-based Analytic Framework 

Based on a comprehensive exploration of advanced data mining techniques, 

in-depth analysis of building operational data characteristics as well as considerations 

for practical applications, a generic data mining-based analytic framework is 

developed. The framework consists of 4 major phases, i.e., data exploration, data 

partitioning, knowledge discovery and post-mining.  

The data exploration contains two tasks, i.e., data visualization and data 

preprocessing. Three subtasks are included in the data preprocessing step, including 

the data cleaning, data transformation and data reduction. The data partitioning phase 

aims to discover the intrinsic characteristics in building operational data according to 

the building energy consumptions. Building operational data are usually highly 

dynamic and the values of a variable may vary greatly under different operation 

conditions. The inclusion of the data partitioning phase helps to enhance the reliability 

and quality of the knowledge discovered in the following phases. The knowledge 

discovery phase adopts a diversity of advanced data mining techniques to mine 

potentially useful knowledge. Considering that building data are typically stored in a 

single two-dimensional data table, two types of knowledge can be discovered based 

on the axis to explore, i.e., cross-sectional knowledge (e.g., associations between 
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variables at the same time step) and temporal knowledge (e.g., associations between 

variables at different time steps). This research also develops a third methodology 

considering that future building data may have complex data structures, e.g., 

multi-relational databases. Given the large amounts of knowledge discovered, the 

fourth phase, i.e., post-mining, is designed to improve the efficiency in knowledge 

selection, transformation and interpretation. 

 

Summary of The Methodology for Cross-sectional Knowledge Discovery 

A methodology for mining cross-sectional knowledge is developed based on the 

generic DM-based analytic framework. The association rule mining (ARM) and the 

quantitative association rule mining (QARM) are adopted as the main techniques used 

at the knowledge discovery phase. The methods adopted and developed at the other 

phases are deliberately designed considering the building operational data 

characteristics and the compatibility with ARM and QARM. Two indices of high 

practical values are defined to facilitate the post-mining of QARM, i.e. the standard 

deviation of lift (SD-Lift) of rules with similar rule pattern and the abnormality degree 

(AD). SD-Lift can help to fast select useful rules from a large number of rules 

obtained in QARM, which is a major obstacle to the application of QARM. AD 

provides a generic method of using the association rules for detecting abnormalities.  

The methodology has been validated through the use of real-world data retrieved 

from the International Commerce Center (ICC) in Hong Kong. The results obtained 
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are very encouraging. The change of operation strategy, non-typical and abnormal 

operations and sensor fault occurring during operation in ICC air conditioning system 

are successfully detected and diagnosed.  

 

 

Summary of The Methodology for Temporal Knowledge Discovery 

A methodology for mining temporal knowledge is developed based on the 

generic DM-based analytic framework. Motif discovery and temporal association rule 

mining (QARM) are adopted as the main techniques used for knowledge discovery. 

The methodology specifically addresses two major challenges in mining temporal 

knowledge. One is the heavy computational load caused by the massive data amount. 

Period estimation and data transformation are integrated into the data exploration 

phase to tackle this challenge. The other is the efficient utilization of knowledge 

discovered. Two methods are developed at the post-mining stage. The first uses a 

co-occurrence matrix to map the relationship between univariate motifs. Reliable 

associations between univariate motifs are derived which provides a novel and 

convenient approach to utilizing univariate motifs. The second method utilizes a 

filtering method to improve the temporal association rules mining algorithms with the 

accurate estimation of time interval between the antecedent and the consequent. The 

time interval or lag provides valuable insights into building dynamics and HVAC 

performance characteristics. The effectiveness of the methodology has been validated 
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using the data retrieved from ICC. The knowledge discovered has been successfully 

used to identify anomalies in building operations and characterize the building 

dynamics.  

 

Summary of The Methodology for Mining BAS Data with Complex Data Structures 

A graph-based data mining methodology is developed for the knowledge 

discovery from building operational data with complex data structures, e.g., 

multi-relational databases. It aims to provide a general solution to the knowledge 

discovery from future building data, which may be stored not only in a single 

two-dimensional data table, but also in other formats, e.g., building information 

models. In view of this, the graph-based data mining technology is also developed 

based on the generic framework. The frequent subgraph mining (FSM) is selected as 

the main mining technique. Two graph generation methods, i.e., the 

observation-based and variable-based methods, are developed to transform building 

data into graphs. Two post-mining methods, i.e., pattern summarization and 

graph-based anomaly detection, are developed for efficiency in the post-mining stage. 

The methodology has been applied to mine the building operational data retrieved 

from the Zero Carbon Building (ZCB) in Hong Kong. Valuable knowledge has been 

discovered to understand the system operation behaviors and identify atypical 

operations.  
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Recommendations for Future Work 

Major efforts of this thesis are made on the development of the data mining-based 

analytic framework and methodologies for the knowledge discovery from building 

operational data. It is desirable and valuable to make further efforts on the following 

three aspects related to the research presented in this thesis. 

• This research has developed a graph-based data mining methodology for mining 

building data with complex data structures. Due to the data availability, the 

methodology has been validated using a building operational data set which 

mainly consists of the measurement data. The potential applications of this 

methodology can be more thoroughly presented if it is integrated with building 

information models. Further study will be performed to investigate the 

usefulness of the methodology in analyzing the complex information stored in 

building information models.  

• The software packages for the framework proposed in this research need to be 

developed for the integration with building automation systems. The packages 

should be designed considering the convenience of building operators. It should 

provide a user-friendly interface which enables building operators to easily 

perform different types of mining tasks. In addition, it should also provide a 

development environment for building operators to conveniently write add-ons 

for possible extensions. 

• This research focuses on the knowledge discovery from structured data retrieved 
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from building operations. There is a large amount of unstructured data which can 

be obtained from daily building operations, such as video data and text data. The 

video data refer to the information collected by the closed circuit television 

(CCTV). Such data can be applied to derive various types of knowledge, 

especially on occupant behaviors and indoor environment. The text data is 

another main information source existed in building operations. Text mining 

techniques can be applied extract useful knowledge from texts. It may provide 

additional useful knowledge for building energy management. So far, the 

potential of knowledge discovery from unstructured data in building operations 

has not been explored. It can be an interesting and promising direction for future 

study. 
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APPENDIX A - HighDimOut Package 

 

The HighDimOut package is developed by Fan Cheng in R to facilitate the task 

of outlier detection in high-dimensional datasets. The package can be downloaded 

from the Comprehensive R Archive Network (CRAN)!https://cran.r-project.org. The 

technical description and examples can be found in the package manual. Three main 

algorithms are implemented, including the angle-based outlier detection (ABOD), 

subspace outlier detection (SOD), and feature-bagging outlier detection (FBOD). The 

package codes are listed below. 

 

********************************************************************* 

#' A function to calculate the shared nearest neighbors (SNN)  

#' SNN is reported to be more robust than k nearest neighbors.  

#' Firstly, the k nearest neighbor distances for each observation is calculated.  

#' Then, the shared nearest neighbor similarity is calculated based on the result of k 

nearest neighbor. 

#' Note that k.nn should be greater than k.sel. 

#' @import plyr 

#' @param data is the data frame containing the observations (should be numeric 

data). Each row represents an observation and each variable is stored in one column. 

#' @param k.nn specifies the value used for calculating the shared nearest neighbors. 

#' @param k.sel specifies the number of shared nearest neighbors 

#' @return The function returns the matrix containing the indices of top k shared 

nearest neighbors for each observation 

#' @examples 

#' Func.SNN(data=TestData[,1:2], k.nn=5, k.sel=3) 

#' @export 

Func.SNN <- function(data, k.nn, k.sel) { 
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    #Get the knn index 

    mat.ind <- FNN::get.knn(data = data, k = k.nn)$nn.index 

    #Define distance function 

    func.dist <- function(x1, x2) { 

        length(intersect(x1, x2)) 

    } 

    #Count the distance using the customized function 

    mat.count <- as.matrix(proxy::dist(x = mat.ind, method = func.dist, diag = T, 

upper = T)) 

    #Formulate the final matrix for use 

    mat.final <- plyr::aaply(.data = mat.count, .margins = 1, .fun = function(x) 

{order(x, decreasing=T)[1:k.sel]}) 

    return(mat.final) 

} 

********************************************************************* 

#' Angle-based outlier detection (ABOD) algorithm  

#' This function performs the basic and aprroximated version of angle-based outlier 

detection algorithm.  

#' The ABOD method is especially useful for high-dimensional data, as angle is a 

more robust measure than distance in high-dimensional space. 

#' The basic version calculate the angle variance based on the whole data. The results 

obtained are more reliable. However, the speed can be very slow. 

#' The approximated version calculate the angle variance based on a subset of data 

and thereby, increasing the calculation speed. 

#' This function is based on the work of Krigel, H.P., Schubert, M., Zimek, A., 

Angle-based outlier detection in high dimensional data, 2008. 

#' @import foreach 

#' @import plyr 

#' @import ggplot2 



! ! !iii 

#' @param data is the data frame containing the observations. Each row represents an 

observation and each variable is stored in one column. 

#' @param basic is a logical value, indicating whether the basic method is used. The 

speed of basic version can be very slow if the data size is large. 

#' @param perc defines the percentage of data to use when calculating the angle 

variance. It is only needed when basic=F.   

#' @return The function returns the vector containing the angle variance for each 

observation 

#' @examples 

#' library(ggplot2) 

#' res.ABOD <- Func.ABOD(data=TestData[,1:2], basic=FALSE, perc=0.2) 

#' data.temp <- TestData[,1:2] 

#' data.temp$Ind <- NA 

#' data.temp[order(res.ABOD, decreasing = FALSE)[1:10],"Ind"] <- "Outlier" 

#' data.temp[is.na(data.temp$Ind),"Ind"] <- "Inlier" 

#' data.temp$Ind <- factor(data.temp$Ind) 

#' ggplot(data = data.temp) + geom_point(aes(x = x, y = y, color=Ind, shape=Ind)) 

#' @export 

Func.ABOD <- function(data, basic=FALSE, perc) { 

    i=j=NULL 

    if(basic==T) { 

        res <- foreach::foreach(i = 1:(dim(data)[1]), .combine = c) %dopar% { 

            obs <- data[i,] 

            com <- t(combn(x = c(1:dim(data)[1])[-i], m = 2)) 

             

            cos.angles <- foreach(j = 1:(dim(com)[1]), .combine = c) %do% { 

                vec.1 <- data[com[j,1],] - obs 

                vec.2 <- data[com[j,2],] - obs     
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                round(acos(sum(vec.1 * 

vec.2)/(sqrt(sum(vec.1^2))*sqrt(sum(vec.2^2)+0.01)))/(sqrt(sum(vec.1^2))*sqrt(sum(

vec.2^2)+0.01)), digits = 2) 

            } 

            return(var(x = cos.angles)) 

        } 

        return(res)  

    } else { 

        nu <- round(dim(data)[1]*perc, digits = 0) 

        res <- foreach::foreach(i = 1:(dim(data)[1]), .combine = c) %dopar% { 

            obs <- data[i,] 

            index.used <- sample(x = c(1:dim(data)[1])[-i], size = nu, replace = F) 

            com <- t(combn(x = index.used, m = 2)) 

             

            cos.angles <- foreach(j = 1:(dim(com)[1]), .combine = c) %do% { 

                vec.1 <- data[com[j,1],] - obs 

                vec.2 <- data[com[j,2],] - obs     

                round(acos(sum(vec.1 * 

vec.2)/(sqrt(sum(vec.1^2))*sqrt(sum(vec.2^2)+0.01)))/(sqrt(sum(vec.1^2))*sqrt(sum(

vec.2^2)+0.01)), digits = 2) 

            } 

            return(var(x = cos.angles)) 

        } 

        return(res)     

    } 

} 

********************************************************************* 

#' Subspace outlier detection (SOD) algorithm  

#' This function performs suspace outlier detection algorithm  
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#' The implemented method is based on the work of Krigel, H.P., Kroger, P., Schubert, 

E., Zimek, A., Outlier detection in axis-parallel subspaces of high dimensional data, 

2009.  

#' @import foreach 

#' @import plyr 

#' @import ggplot2 

#' @param data is the data frame containing the observations. Each row represents an 

observation and each variable is stored in one column. 

#' @param k.nn specifies the value used for calculating the shared nearest neighbors. 

Note that k.nn should be greater than k.sel. 

#' @param k.sel specifies the number shared nearest neighbors. It can be interpreted 

as the number of reference set for constructing the subspace hyperplane. 

#' @param alpha specifies the lower limit for selecting subspace. 0.8 is set as default 

as suggested in the original paper. 

#' @return The function returns a vector containing the SOD outlier scores for each 

observation 

#' @examples 

#' library(ggplot2) 

#' res.SOD <- Func.SOD(data = TestData[,1:2], k.nn = 10, k.sel = 5, alpha = 0.8) 

#' data.temp <- TestData[,1:2] 

#' data.temp$Ind <- NA 

#' data.temp[order(res.SOD, decreasing = TRUE)[1:10],"Ind"] <- "Outlier" 

#' data.temp[is.na(data.temp$Ind),"Ind"] <- "Inlier" 

#' data.temp$Ind <- factor(data.temp$Ind) 

#' ggplot(data = data.temp) + geom_point(aes(x = x, y = y, color=Ind, shape=Ind)) 

#' @export 

Func.SOD <- function(data, k.nn, k.sel, alpha=0.8) { 

    i=j=NULL 

    mat.ref <- Func.SNN(data = data, k.nn = k.nn, k.sel = k.sel) 

    res <- foreach::foreach(i=1:dim(data)[1], .combine = c) %dopar% { 
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        obs <- data[i,] 

        ref <- as.matrix(data[mat.ref[i,],]) 

        means <- colMeans(ref) 

        var.total <- sum(aaply(.data = ref, .margins = 1, .fun = function(x) 

sum((x-means)^2)))/k.sel 

        var.expect <- alpha*var.total/dim(data)[2] 

        var.actual <- foreach(j = 1:dim(ref)[2], .combine = c) %dopar% { 

            var(ref[,j]) 

        } 

        var.ind <- ifelse(var.actual<var.expect, yes = 1, no = 0) 

        res.hyper <- sqrt(sum(var.ind*(obs-means)^2))/length(which(var.ind==1)) 

        return(res.hyper) 

    } 

    return(res) 

} 

********************************************************************* 

#' Feature-bagging outlier detection (FBOD) algorithm  

#' This function performs feature-bagging based outlier detection algorithm  

#' The implemented method is based on the work of "Lazarevic, A., Kumar, V., 

Feature bagging for outlier detection, 2005" 

#' This method can be regarded as an ensemble method, which based on the results of 

local outlier factor (LOF).  

#' During each iteration, a random subset of variables, whose size is randomly chosen 

between d/2 to d (where d is the dimensionality of the input data), is selected. 

#' The LOF method is applied to calculate the LOF scores based on the selected data 

subset. 

#' The final score of FBOD is the cumulative sum of each iteration. 

#' @import foreach 

#' @import plyr 

#' @import ggplot2 
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#' @param data is the data frame containing the observations. Each row represents an 

observation and each variable is stored in one column. 

#' @param iter is the iteration used. 

#' @param k.nn is the value used for calculating the LOF score 

#' @return The function returns a vector containing the FBOD outlier scores for each 

observation 

#' @examples 

#' library(ggplot2) 

#' res.FBOD <- Func.FBOD(data = TestData[,1:2], iter=10, k.nn=5) 

#' data.temp <- TestData[,1:2] 

#' data.temp$Ind <- NA 

#' data.temp[order(res.FBOD, decreasing = TRUE)[1:10],"Ind"] <- "Outlier" 

#' data.temp[is.na(data.temp$Ind),"Ind"] <- "Inlier" 

#' data.temp$Ind <- factor(data.temp$Ind) 

#' ggplot(data = data.temp) + geom_point(aes(x = x, y = y, color=Ind, shape=Ind)) 

#' @export 

Func.FBOD <- function(data, iter, k.nn) { 

    i=NULL 

    res <- foreach(i=1:iter, .combine = cbind) %dopar% { 

        d <- dim(data)[2] 

        l <- sample(x = round(d/2, digits = 0):(d-1), size = 1) 

        ind <- sample(x = 1:d, size = l, replace = F) 

        data.use <- data[,ind] 

        score <- DMwR::lofactor(data = data.use, k = k.nn) 

        return(score) 

    } 

    res[is.nan(res)] <- NA 

    res[is.infinite(res)] <- max(res[!is.infinite(res)], na.rm = T) 

    res.final <- plyr::aaply(.data = res, .margins = 1, .fun = function(x) mean(x, 

na.rm = T)) 
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    return(round(res.final, digits = 3)) 

} 

********************************************************************* 

#' Outlier score transformation 

#' This function calculate the transformed outlier scores, with the aim of unifying the 

results from different methods. 

#' The method is based on the work of Kriegel, H.P., Kroger, P., Schubert, E., Zimek, 

A., Interpreting and unifying outlier scores, 2011. 

#' It consists of two steps, regularization and normalization.  

#' For the ABOD scores, logarithmic inversion is used for regularization 

#' For the SOD scores, no action is taken to perform regularization 

#' For the FBOD method, the basic regularization, i.e., score-1, is used for 

regularization 

#' For the normalization step, the gaussian scaling method is used. 

#' The final output can be interpreted as the outlier probability, ranging from 0 to 1. 

#' @param raw.score is the scores returned by each method 

#' @param method should be a character specifying  the method used to generate the 

raw score. It has 3 possible values, "ABOD", "SOD", and "FBOD". 

#' @return The function returns the transformed outlier scores 

#' @export 

Func.trans <- function(raw.score, method) { 

    #Regularization 

    if(method=="FBOD") {score.reg <- raw.score-1} 

    if(method=="ABOD") {score.reg <- -log(x = raw.score/max(raw.score), base = 

10)} 

    if(method=="SOD") {score.reg <- raw.score} 

     

    #Normalization 

    erf <- function(x) 2*pnorm(x*sqrt(2))-1 

    if (sd(score.reg, na.rm = T)==0) {score.norm <- rep(0, length(raw.score))} else { 
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        score.norm <- erf(x=(score.reg-mean(score.reg, na.rm = 

T))/(sqrt(x=2)*sd(score.reg, na.rm = T))) 

        score.norm[which(score.norm<0)] <- 0    

    } 

    return(score.norm) 

} 

********************************************************************* 
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APPENDIX B - TSMining Package 

 

The TSMining R package is developed by Fan Cheng in R to facilitate the task of 

temporal knowledge discovery. The package can be downloaded from the 

Comprehensive R Archive Network (CRAN). It mainly implements the symbolic 

approximation aggregation (SAX), the univariate and multivariate motif discovery, 

and some ggplot2 based visualization methods. The technical description and 

examples can be found in the package manual. The package codes are listed below. 

 

********************************************************************* 
#' A function to perform symbolic approximation aggregate (SAX) for time series 
data 
#' The function create SAX symbols for a univariate time series. The details of this 
method can be referred to J. Lin, E. Keogh, L. Wei, S. Lonardi. Experiencing SAX: a 
novel symbolic representation of time series 
#' @import foreach 
#' @import plyr 
#' @param x is a numeric vector representing the univariate time series 
#' @param w is the word size and should be an integer 
#' @param a is the alphabet size and should be an integer 
#' @param eps is the minimum threshold for variance in x and should be a numeric 
value. If x has a smaller variance than eps, it will represented as a word using the 
middle alphabet. 
#' @param norm is a logical value deciding whether standardization should be applied 
to x. If True, x is standardized using mean and standard deviation 
#' @return The function returns a SAX representation of x 
#' @examples 
#' x <- runif(n = 20, min = 0, max = 20) 
#' Func.SAX(x = x, w = 5, a = 5, eps = .01, norm = TRUE) 
#' @export 
Func.SAX  <- function(x, w, a, eps, norm) {   
    i=NULL 
    if(sd(x) <= eps) {sym <- rep(letters[round((1+a)/2, digits = 0)], w)} else { 
        #Normalize the data to have 0 mean and 1 standard deviation before 
piecewise aggregation 
        if(norm==TRUE) {data.nor <- (x-mean(x))/sd(x)} else { 
            data.nor <- x 
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        }   
         
        #Perform the piecewise aggregation 
        ind <- round(seq(from = 1, to = length(data.nor), length.out = w+1), digits = 
0) 
        pieces <- foreach::foreach(i=1:(length(ind)-1), .combine = c) %do% { 
            if(i!=(length(ind)-1)) {piece <- data.nor[ind[i]:(ind[i+1]-1)]} else 
{piece <- data.nor[ind[i]:ind[i+1]]} 
            return(mean(piece, na.rm = T))    
        } 
         
        #Perform alphabet assignment 
        let <- letters[1:a] 
        #Create breaks points based on Gaussian normal distribution 
        bks <- round(qnorm(p = seq(from = 0, to = 1, length.out = a+1)), digits = 2) 
        sym <- foreach::foreach(i=1:length(pieces), .combine = c) %do% { 
            obs <- pieces[i] 
            let[max(which(bks<obs))] 
        }     
    } 
     
    return(sym) 
} 
*********************************************************************
#' A function to create the distance matrix for alphabets 
#' This function create a distance matrix for alphabets used for SAX transformation 
#' @param a is an integer specifying the alphabet size. 
#' @return The function returns a matrix showing the distance between alphabets 
#' @examples 
#' Func.matrix(a=5) 
#' @export 
Func.matrix <- function(a) { 
    i=j=NULL 
    let <- letters[1:a] 
    bks <- round(qnorm(p = seq(from = 0, to = 1, length.out = (a+1))), digits = 2) 
    bks.upd <- bks[-c(1,length(bks))] 
     
    #Create the matrix for distance calculation 
    dist.m <- matrix(data = NA, nrow = a, ncol = a, dimnames = list(let, let)) 
    for(i in 1:dim(dist.m)[1]) { 
        for(j in 1:dim(dist.m)[2]) { 
            dist.m[i,j] <- ifelse(abs(i-j)<=1, 0, 
bks.upd[max(c(i,j))-1]-bks.upd[min(c(i,j))]) 
        } 
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    } 
    return(dist.m) 
} 
********************************************************************* 
#' A function to calculate the distance between two SAX representations 
#' This function calculates the distance between two SAX representations 
#' @import foreach 
#' @import plyr 
#' @param x is a SAX representations.  
#' @param y is a SAX representations. It should have the same length as x. 
#' @param mat is the distance matrix created by \code{Func.matrix} 
#' @param n is the length of the original time series before the SAX transformation 
#' @return The function returns a numeric value, which is the distance between two 
SAX representations 
#' @examples 
#' #Assuming the original time series has a length of 20, n=20 
#' #Assuming the time series is transformed into SAX representations using w=4 and 
a=4 
#' #Assuming one is a,b,c,d and the other is d,b,c,d 
#' Func.dist(x=c("a","b","c","d"), y=c("d","b","c","d"), mat=Func.matrix(a=4), n=20)  
#' @export 
Func.dist <- function(x, y, mat, n) { 
    i=NULL 
    w <- length(x) 
    d <- foreach::foreach(i=1:length(x), .combine = c) %do% { 
        mat[which(rownames(mat)==x[i]), which(colnames(mat)==y[i])] 
    } 
    return(sqrt(sum(d^2))*sqrt(n/w)) 
} 
********************************************************************* 
#' A function implementing the univariate motif discovery algorithm using random 
projection 
#' The function implements the univariate motif discovery algorithm proposed in B. 
Chiu, E. Keogh, S. Lonardi. Probabilistic discovery of time series motifs. ACM 
SIGKDD, Washington, DC, USA, 2003, pp. 493-498. 
#' @import foreach 
#' @import plyr 
#' @param ts is a numeric vector representing the univarate time series 
#' @param global.norm is a logical value specifying whether global standardization 
should be used for the whole time series 
#' @param local.norm is a logical value specifying whether local standardization 
should be used for each subsequences 
#' @param window.size is a integer which defines the length of the sliding window 
used to create subsequences 
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#' @param overlap is a numeric value ranging from 0 to 1. It defines the percentage of 
overlapping when using sliding window to create subsquences. 0 means subsequences 
are created without overlaps. 1 means subsequences are created with the maximum 
overlap possible. 
#' @param w is an integer which defines the word size used for SAX transformation  
#' @param a is an integer which defines the alphabet size used for SAX 
transformation 
#' @param eps is the minimum threshold for variance in subsequence and should be a 
numeric value. If the subsequence considered has a smaller variance than eps, it will 
be represented as a word using the middle alphabet. The default value is 0.1 
#' @param mask.size is the mask size used for random projection. It should be an 
integer ranging from 1 to the word size w 
#' @param iter is an integer which specifies the iteration number in random projection, 
default value is 25 
#' @param max.dist.ratio is a numeric value used to add other possible members to a 
motif candidate. Default value is 1.2. Each motif candidate has two subsequences. 
The distance between these two candidates are calculated as a baseline, denoted as 
BASE. Any subsequence, whose distance to the motif candidate is smaller than 
max.dist.ratio*BASE, is considered as a member of that motif candidate.   
#' @param count.ratio.1 defines the ratio between the iteration number and the 
minimum value in the collision matrix to be considered as motif candidate. Default 
value is 1.5. For instance, if the iter is 100, any pair of subsequence, which results in a 
value larger than 67 in the collision matrix, is considered as a motif candidate. 
#' @param count.ratio.2 defines the ratio between the maximum counts in  the 
collision matrix and any other count values that will be considered as potential 
members to a motif candidate 
#' @return The function returns a list of 6 elements. The first element is Subs, which 
is a data frame containing all the subsequences in original data formatThe second 
element is Subs.SAX, which is a data frame containing all the subsequences in SAX 
representations. The third element is Motif.raw, which is a list showing the motifs 
discovered in original data format.The fourth element is Motif.SAX, which is a list 
showing the motifs discovered in SAX representations. The fifth element is 
Collision.matrix, which is matrix containing the results of random projection. The 
sixth element is Indices, which is a list showing the starting positions of subsequences 
for each motif discovered. 
#' @examples 
#' #Perform the motif discovery for the first time series in the example data 
#' data(test) 
#' res.1 <- Func.motif(ts = test$TS1, global.norm = TRUE, local.norm = FALSE,  
#' window.size = 10, overlap = 0, w = 5, a = 3, mask.size = 3, eps = .01) 
#' #Check the number of motifs discovered 
#' length(res.1$Indices) 
#' #Check the starting positions of subsequences of each motif discovered 
#' res.1$Indices 
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#' @export 
Func.motif <- function(ts, global.norm, local.norm, window.size, overlap, w, a, 
mask.size, 
                       eps=0.1, iter=25, max.dist.ratio=1.2, count.ratio.1=1.5, 
count.ratio.2=1.2) { 
    i=j=q=m=k=l=g=h=u=NULL 
    #Perform uniform normalization  
    if(global.norm==TRUE) {ts.nor <- (ts - mean(ts))/sd(ts)} else {ts.nor <- ts} 
     
    #Create the subsequence data frame 
    b <- ifelse(overlap==1, yes = 1, no = round((1-overlap)*window.size, digits = 
0)) 
    ts.subs <- foreach::foreach(i=seq(from = 1, to = length(ts), by = b), .combine = 
rbind) %do% { 
        c(i,subs.temp <- ts.nor[i:(i+window.size-1)]) 
    } 
    ts.subs <- na.omit(ts.subs) 
     
    #Local normalization if needed 
    ts.sax <- foreach::foreach(i=1:dim(ts.subs)[1], .combine = rbind) %do% { 
        if (sd(ts.subs[i,-1])<=eps) {sax.temp <- rep(letters[round(a+1/2)], times = 
w)} else { 
            sax.temp <- Func.SAX(x = ts.subs[i,-1], w = w, a = a, eps = eps, norm 
= local.norm) 
        }  
        c(ts.subs[i,1], sax.temp) 
    } 
     
    ts.sax <- as.data.frame(ts.sax, stringsAsFactors = FALSE) 
    colnames(ts.sax) <- c("StartP", 1:w) 
    ts.sax$StartP <- as.numeric(ts.sax$StartP) 
     
    #Perform the random projection 
    col.mat <- matrix(data = 0, nrow = dim(ts.sax)[1], ncol = dim(ts.sax)[1]) 
    for(i in 1:iter) { 
        col.pos <- sort(sample(x = 2:dim(ts.sax)[2], size = mask.size, replace = F), 
decreasing = F) 
        sax.mask <- ts.sax[,col.pos] 
         
        unique.lab <- unique(sax.mask) 
         
        mat <- foreach::foreach(j = 1:dim(unique.lab)[1], .combine = rbind) %do% 
{ 
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            indices <- foreach::foreach(q = 1:dim(sax.mask)[1], .combine = 
c) %do% { 
                identical(as.character(sax.mask[q,]), as.character(unique.lab[j,])) 
            } 
        } 
         
        for(m in 1:dim(mat)[1]) { 
            if(length(which(mat[m,]==TRUE))>1) { 
                com <- t(combn(x = which(mat[m,]==TRUE), m = 2)) 
                col.mat[com] <- col.mat[com] + 1     
            } 
        }    
    } 
     
    #Extact the tentative motif pair 
    counts <- sort(col.mat, decreasing=TRUE) 
    counts.sel <- counts[which(counts>=(iter/count.ratio.1))] 
     
    motif.pair <- foreach::foreach(k = 1:length(unique(counts.sel)), .combine = 
rbind) %do% { 
        arrayInd(which(col.mat==unique(counts.sel)[k]), .dim = dim(col.mat))     
    } 
     
    indices <- foreach::foreach(l = 1:dim(motif.pair)[1]) %do% { 
        pair <- c(ts.sax[motif.pair[l,1],1], ts.sax[motif.pair[l,2],1]) 
         
        cand.1 <- ts.subs[motif.pair[l,1],-1] 
        cand.2 <- ts.subs[motif.pair[l,2],-1] 
        dist.raw <- sqrt(sum((cand.1 - cand.2)^2)) 
         
        col.no <- col.mat[motif.pair[l,1],] 
        ind.cand <- which(col.no > (max(col.no)/count.ratio.2)) 
        if(length(ind.cand)>1) { 
            ind.temp <- ind.cand[-which(ind.cand == motif.pair[l,2])] 
            if(length(ind.temp)==1) { 
                df.cand.sel <- as.matrix(ts.subs[ind.temp,-1]) 
                dist.res <- plyr::aaply(.data = df.cand.sel, .margins = 2, .fun = 
function(x) sqrt(sum((cand.1-x)^2))) 
                ind.final <- 
ts.sax[ind.temp[which(dist.res<=max.dist.ratio*dist.raw)],1]    
            } else { 
                df.cand.sel <- ts.subs[ind.temp,-1] 
                dist.res <- plyr::aaply(.data = df.cand.sel, .margins = 1, .fun = 
function(x) sqrt(sum((cand.1-x)^2))) 
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                ind.final <- 
ts.sax[ind.temp[which(dist.res<=max.dist.ratio*dist.raw)],1]   
            }} else { 
                ind.final <- NULL 
            } 
         
        pair.final <- c(pair, ind.final) 
    } 
     
    #Combine the indices if there is any overlap 
    vec.subset <- rep(0, length(indices)) 
    foreach::foreach(g = 1:(length(indices)-1), .combine = rbind) %do% { 
        for (h in (g+1):length(indices)) { 
            if(length(which(indices[[g]] %in% indices[[h]]))>0) { 
                indices[[h]] <- unique(c(indices[[g]], indices[[h]])) 
                vec.subset[g] <- 1 
            } 
        } 
    } 
    indices <- indices[vec.subset==0] 
     
    motif.raw <- foreach::foreach(u = 1:length(indices)) %do% { 
        ts.subs[which(ts.subs[,1] %in% indices[[u]]),] 
    } 
     
    motif.sax <- foreach::foreach(u = 1:length(indices)) %do% { 
        ts.sax[which(ts.sax[,1] %in% indices[[u]]),] 
    } 
     
    return(list(Subs=ts.subs, Subs.SAX=ts.sax, Motif.raw=motif.raw, 
Motif.SAX=motif.sax, Collision.matrix=col.mat, Indices=indices)) 
} 
********************************************************************* 
#' A function to implement the multivariate motif discovery 
#' This function implements the multivariate motif discovery method proposed in A. 
Vahdatpour, N. Amini, M. Sarrafzadeh. Towards unsupervised activity discovery 
using multi-dimensional motif detection in time series. IJCAI 2009 21st International 
Joint Conference on Artificial Intelligence. 
#' @import foreach 
#' @import plyr 
#' @param motif.list is a list of lists, each contains the univariate motifs discovered in 
a univariate time series. The component of motif.list is the results of 
Func.motif()$Indices, which store the starting position of subsequences of each 
univariate motif  
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#' @param window.sizes is a vector containing the length of motifs in each univariate 
time series. It should have the same order as components in motif.list. 
#' @param alpha is a numeric ranging from 0 to 1. It specifies the minimum 
correlation between two univariate motifs before considered as multivariate motifs 
#' @return The function returns a list containing two elements. The first element is 
Motif, which is a list containing the univarate motif IDs for different multivariate 
motifs. e.g., if there are two univariate time series and each has 3 motifs, then 
univariate ID is from 1 to 6. The second element is Info, which is a list storing the 
information of univariate motifs for different multivariate motifs 
#' @examples 
#' data(test) 
#' #Perform univariate motif discovery for each dimension in the example data 
#' res.1 <- Func.motif(ts = test$TS1, global.norm = TRUE, local.norm = FALSE,  
#' window.size = 10, overlap = 0, w = 5, a = 3, mask.size = 3, eps = .01) 
#' res.2 <- Func.motif(ts = test$TS2, global.norm = TRUE, local.norm = FALSE,  
#' window.size = 20, overlap = 0, w = 5, a = 3, mask.size = 3, eps = .01) 
#' #Perform multivaraite motif discovery 
#' res.multi <- Func.motif.multivariate(motif.list = list(res.1$Indices, res.2$Indices),  
#' window.sizes = c(10,20), alpha = .8) 
#' @export 
********************************************************************* 
Func.motif.multivariate <- function(motif.list, window.sizes, alpha) { 
    i=j=q=p=t=o=f=x=z=NULL 
    #Get the total motif.no 
    tot.no <- sum(plyr::laply(.data = motif.list, .fun = length)) 
     
    #Create the weight matrix 
    w.mat <- matrix(data = 0, nrow = tot.no, ncol = tot.no) 
     
    #Get the characteristics of motifs 
    info <- foreach::foreach(i=1:length(motif.list), .combine = rbind) %do% { 
        info.sub <- foreach::foreach(j=1:length(motif.list[[i]]), .combine = 
rbind) %do% { 
            info.sub.sub <- 
foreach::foreach(q=1:length(motif.list[[i]][[j]]), .combine = rbind) %do% { 
                c(i,j,q, motif.list[[i]][[j]][q], 
motif.list[[i]][[j]][q]+window.sizes[i]-1)    
            } 
        } 
    } 
    rownames(info) <- 1:dim(info)[1] 
    info <- as.data.frame(info) 
    colnames(info) <- c("Variable","Motif","Member","StartP","EndP") 
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    info$Lab <- as.numeric(as.character(factor(info$Variable*100 + info$Motif, 
levels = unique(info$Variable*100 + info$Motif), labels = 
1:length(unique(info$Variable*100 + info$Motif))))) 
    info.ori <- info 
     
    #Generate the weights 
    pb <- txtProgressBar(min = 0, max = length(unique(info$Lab))) 
    temp <- foreach::foreach (i = 1:length(unique(info$Lab))) %do% { 
        setTxtProgressBar(pb = pb, value = i) 
        mot.con <- info[which(info$Lab==i),] 
        lab.con <- unique(mot.con$Lab) 
        n <- dim(mot.con)[1] 
        variable.con <- unique(mot.con$Variable) 
        mot.com.all <- info[-which(info$Variable==variable.con),] 
         
        temp.ind <- foreach::foreach (j = 
1:length(unique(mot.com.all$Lab)), .combine = rbind) %do% { 
            mot.com <- 
mot.com.all[which(mot.com.all$Lab==unique(mot.com.all$Lab)[j]),] 
            lab.com <- unique(mot.com$Lab) 
            count <- 0 
            temp.ind.ind <- foreach::foreach (p = 1:dim(mot.con)[1], .combine = 
c) %do% { 
                res.temp <- foreach::foreach (x = 1:dim(mot.com)[1], .combine = 
c) %do% { 
                    out <- ifelse(mot.con[p,"StartP"]>mot.com[x,"EndP"] | 
mot.con[p,"EndP"]<mot.com[x,"StartP"], yes = 0, no = 1) 
                    return(out) 
                } 
                if(sum(res.temp)!=0) {count <- count+1} 
                return(ifelse(sum(res.temp)!=0, yes = 1, no = 0)) 
            } 
            w.mat[lab.con ,lab.com] <- round(count/n, 2) 
            return(c(lab.con, lab.com, temp.ind.ind)) 
        }  
        return(temp.ind) 
    } 
    w.ori <- w.mat 
     
    #Perform grouping  
    #Get the occurrence of each motifs 
    occurence <- plyr::daply(.data = info, .variables = "Lab", .fun = function(x) 
dim(x)[1]) 
    ord <- order(occurence, decreasing = T) 
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    re.temp <- foreach::foreach(t = 1:length(ord)) %do% { 
        w <- w.mat[ord[t],]     
        ind.add <- which(w>alpha) 
        s <- c(ord[t], ind.add) 
         
        #Remove some of the occurences of motif j when included by motif i 
        if(length(ind.add)>0) { 
            out <- foreach::foreach(o = 1:length(ind.add), .combine = c) %do% { 
                obs.con <- info[which(info$Lab==ind.add[o]),] 
                mat <- temp[[ind.add[o]]] 
                w.mat[ind.add[o], ord[t]] <- 0 
                oo <- which(info$Lab==ind.add[o] & info$Member %in% 
c(which(mat[which(mat[,2]==ord[t]),-c(1,2)]==1))) 
                return(oo) 
            } 
            info <- info[-unique(out),] 
             
            #Update the weights associated with motif j 
            #Generate new the weights for the jth row 
            for (f in 1:length(ind.add)) { 
                if(length(which(info$Lab==ind.add[f]))!=0) { 
                    mot.con <- info[which(info$Lab==ind.add[f]),] 
                    lab.con <- unique(mot.con$Lab) 
                    n <- dim(mot.con)[1] 
                    variable.con <- unique(mot.con$Variable) 
                    mot.com.all <- info[-which(info$Variable==variable.con),] 
                     
                    for (j in 1:length(unique(mot.com.all$Lab))) { 
                        mot.com <- 
mot.com.all[which(mot.com.all$Lab==unique(mot.com.all$Lab)[j]),] 
                        lab.com <- unique(mot.com$Lab) 
                        count <- 0 
                        for (p in 1:dim(mot.con)[1]) { 
                            res.temp <- foreach::foreach (x = 
1:dim(mot.com)[1], .combine = c) %do% { 
                                out <- 
ifelse(mot.con[p,"StartP"]>mot.com[x,"EndP"] | 
mot.con[p,"EndP"]<mot.com[x,"StartP"], yes = 0, no = 1) 
                                return(out) 
                            } 
                            if(sum(res.temp)!=0) {count <- count+1} 
                        } 
                        w.mat[lab.con ,lab.com] <- round(count/n, 2) 
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                    }  
                } 
            } 
            return(sort(s, decreasing = F)) 
        }   
    } 
    ind.null <- which(plyr::laply(.data = re.temp, .fun = length)>0) 
    mot.final <- re.temp[ind.null]  
     
    indices <- foreach::foreach(z = 1:length(mot.final)) %do% { 
        info.ori[which(info.ori$Lab %in% mot.final[[z]]),] 
    } 
     
    return(list(Motif=mot.final, Info=indices)) 
} 
********************************************************************* 
#' A function to prepare the dataset for visualizing the univaraite motifs discovered 
#' This function create a data set for the use of visualizing the univariate motifs 
discovered 
#' @import foreach 
#' @import plyr 
#' @import reshape2 
#' @import ggplot2 
#' @param single.ts is a numeric vector used to represent the univariate time series 
#' @param window.size is the window size used to create subsequences. It is also the 
length of univariate motifs 
#' @param motif.indices is the results of Func.motif()$Indices, which store the 
starting position of subsequences for each univariate motifs 
#' @return The function returns a list of three elements. The first element is data.1, 
which can be used to show the whole time series with motifs identified highlighted. 
The second element is data.2, which can be used to visualize the members of each 
motif. It is a list containing data frames. Each data frame is designed to visualize the 
members in each motif. 
#' @examples 
#' data(test) 
#' #Perform univariate motif discovery for the first dimension data in the example 
data 
#' res.1 <- Func.motif(ts = test$TS1, global.norm = TRUE, local.norm = FALSE,  
#' window.size = 10, overlap = 0, w = 5, a = 3, mask.size = 3, eps = .01) 
#' data.vis <- Func.visual.SingleMotif(single.ts=test$TS1, window.size=10, 
motif.indices=res.1$Indices) 
#' #To visualize general information of motifs discovered on the whole time series 
#' library(ggplot2) 
#' ggplot(data = data.vis$data.1) +  
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#'  geom_line(aes(x = 1:dim(data.vis$data.1)[1], y = X)) +  
#'  geom_point(aes(x = 1:dim(data.vis$data.1)[1], y = X, color=Y)) 
#' #To visualize the detailed information of the 1st motif 
#' ggplot(data = data.vis$data.2[[1]]) + geom_line(aes(x = Time, y = Value, 
linetype=Instance)) 
#' @export  
Func.visual.SingleMotif <- function(single.ts, window.size, motif.indices) { 
    i=j=NULL 
    pos <- foreach::foreach(i=1:length(motif.indices)) %do% { 
        pos.ind <- foreach::foreach(j=1:length(motif.indices[[i]]), .combine = 
c) %do% { 
            motif.indices[[i]][j]:(motif.indices[[i]][j]+window.size-1) 
        } 
        return(pos.ind) 
    } 
    temp.1 <- data.frame(X=single.ts, Y="Ref", stringsAsFactors = F) 
    for(m in 1:length(pos)) { 
        temp.1[pos[[m]],"Y"] <- paste0("Motif.",m) 
    } 
    temp.1$Y <- factor(temp.1$Y) 
     
    temp.2 <- foreach::foreach(i=1:length(motif.indices)) %do% { 
        pos.ind <- foreach::foreach(j=1:length(motif.indices[[i]]), .combine = 
rbind) %do% { 
            single.ts[motif.indices[[i]][j]:(motif.indices[[i]][j]+window.size-1)] 
        } 
        pos.ind <- cbind(pos.ind, ID=1:dim(pos.ind)[1]) 
         
        pos.trans <- reshape2::melt(data = pos.ind, id.vars = "ID") 
        pos.trans <- pos.trans[-which(pos.trans$Var2=="ID"),] 
        pos.trans$Var2 <- as.numeric(rep(1:window.size, each = dim(pos.ind)[1])) 
        pos.trans$Var1 <- as.numeric(pos.trans$Var1) 
        pos.trans <- pos.trans[with(pos.trans, order(Var1, decreasing=F)),] 
        colnames(pos.trans) <- c("Instance","Time","Value") 
        pos.trans[,1] <- factor(pos.trans[,1]) 
         
        return(pos.trans) 
    } 
     
    return(list(data.1=temp.1, data.2=temp.2)) 
} 
********************************************************************* 
#' A function to prepare the data for the visualization of multivariate motifs 
discovered 



! ! !xxii 

#' This function prepares the data used for visualizing multivariate motifs.  
#' @import foreach 
#' @import plyr 
#' @import ggplot2 
#' @param data is a data frame containing the multivariate time series data. Each 
column represents a time series. 
#' @param multi.motifs is the result of Func.motif.multivariate  
#' @param index is an integer which specifies the No. of multivariate motif to be 
plotted 
#' @return The function returns a data frame for the ease of visualizing multivariate 
motif discovered  
#' @examples 
#' data(test) 
#' #Perform univariate motif discovery 
#' res.1 <- Func.motif(ts = test$TS1, global.norm = TRUE, local.norm = FALSE,  
#' window.size = 10, overlap = 0, w = 5, a = 3, mask.size = 3, eps = .01) 
#' res.2 <- Func.motif(ts = test$TS2, global.norm = TRUE, local.norm = FALSE,  
#' window.size = 20, overlap = 0, w = 5, a = 3, mask.size = 3, eps = .01) 
#' res.multi <- Func.motif.multivariate(motif.list = list(res.1$Indices, res.2$Indices),  
#' window.sizes = c(10,20), alpha = .8) 
#' #Use the function to prepare the data frame for visualizing the first multivariate 
motifs identified 
#' data.multi <- Func.visual.MultiMotif(data = test, multi.motifs = res.multi, index = 
1) 
#' #Make the plot using ggplot2 
#' library(ggplot2) 
#' ggplot(data = data.multi) +  
#'  geom_line(aes(x = T, y = X)) + 
#'  geom_point(aes(x = T, y = X, col=Lab, shape=Lab)) + facet_grid(Facet~.) 
#' @export 
Func.visual.MultiMotif <- function(data, multi.motifs, index) { 
    i=q=j=NULL 
    data.trans <- foreach::foreach(q = 1:dim(data)[2], .combine = c) %do% { 
        as.numeric(data[,q]) 
    } 
    data.trans <- cbind.data.frame(X=data.trans, T=rep(1:dim(data)[1], times = 
dim(data)[2]),  
                                   Facet=rep(1:dim(data)[2], each = 
dim(data)[1])) 
    data.trans$Facet <- factor(data.trans$Facet) 
     
    con <- multi.motifs$Info[[index]] 
    subs <- foreach::foreach(i = 1:length(unique(con$Variable)), .combine = 
rbind.data.frame) %do% { 
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        con.sub <- con[which(con$Variable==unique(con$Variable)[i]),] 
        xs <- foreach::foreach(j = 1:dim(con.sub)[1], .combine = c) %do% { 
            c(con.sub[j,"StartP"]:con.sub[j,"EndP"])    
        } 
         
        xs.upd <- data.frame(X=xs, Lab=rep(con.sub$Lab, 
each=con.sub[1,"EndP"]-con.sub[1,"StartP"]+1), Var.no=unique(con.sub$Variable)) 
        return(xs.upd) 
    } 
     
    subs$Index.adj <- (subs$Var.no-1)*dim(data)[1]+subs$X 
    data.trans$Index.adj <- 1:dim(data.trans)[1] 
     
    data.upd <- plyr::join(x = data.trans, y = subs[,-1]) 
    data.upd[is.na(data.upd$Lab),"Lab"] <- 0 
    data.upd[is.na(data.upd$Var.no),"Var.no"] <- 
as.numeric(as.character(data.upd[is.na(data.upd$Var.no),"Facet"])) 
    data.upd$Lab <- factor(data.upd$Lab) 
    data.upd$Var.no <- NULL 
     
    return(data.upd) 
} 
********************************************************************* 

 
 

 


