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Abstract

The thesis is devoted to studying spectral properties and positive semi-definiteness

of several kinds of structured tensors. Furthermore, the SOS (sum-of-squares) tensor

decomposition of structured tensors in the literature are established. Five topics are

considered:

1. Positive definiteness and semi-definiteness of even order Cauchy tensors.

2. Generalized Cauchy tensors and Hankel tensors.

3. Some spectral properties of odd-bipartite Z-Tensors and their absolute tensors.

4. SOS tensor decomposition and applications.

5. Positive semi-definiteness and extremal H-eigenvalues of extended essentially

non-negative tensors.

For topic 1, motivated by symmetric Cauchy matrices, we define symmetric

Cauchy tensors and their generating vectors in this thesis. An even order symmetric

Cauchy tensor is positive semi-definite if and only if its generating vector is positive.

An even order symmetric Cauchy tensor is positive definite if and only if its gener-

ating vector has positive and mutually distinct entries. This extends Fiedler’s result

for symmetric Cauchy matrices to symmetric Cauchy tensors. Then, it is proven that

the positive semi-definiteness character of an even order symmetric Cauchy tensor
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can be equivalently checked by the monotone increasing property of a homogeneous

polynomial related to the Cauchy tensor. The homogeneous polynomial is strictly

monotone increasing in the non-negative orthant of the Euclidean space when the

even order symmetric Cauchy tensor is positive definite. At last, bounds of the

largest H-eigenvalue of a positive semi-definite symmetric Cauchy tensor are given

and several spectral properties on Z-eigenvalues of odd order symmetric Cauchy ten-

sors are shown. We also establish that all the H-eigenvalues of non-negative Cauchy

tensors are non-negative. Further questions on Cauchy tensors are raised.

For topic 2, we present various new results on generalized Cauchy tensors and

Hankel tensors. We first introduce the concept of generalized Cauchy tensors which

extends Cauchy tensors in the current literature, and provide several conditions

characterizing positive semi-definiteness of generalized Cauchy tensors with nonze-

ro entries. Furthermore, we prove that all even order generalized Cauchy tensors

with positive entries are completely positive tensors, which means every such that

generalized Cauchy tensor can be decomposed as the sum of non-negative rank-1

tensors. Secondly, we present new mathematical properties of Hankel tensors. We

prove that an even order Hankel tensor is Vandermonde positive semi-definite if and

only if its associated plane tensor is positive semi-definite. We also show that, if the

Vandermonde rank of a Hankel tensor A is less than the dimension of the underly-

ing space, then positive semi-definiteness of A is equivalent to the fact that A is a

complete Hankel tensor, and so, is further equivalent to the SOS tensor decomposi-

tion property of A. Thirdly, we introduce a new class of structured tensors called

Cauchy-Hankel tensors, which is a special case of Cauchy tensors and Hankel tensors

simultaneously. Sufficient and necessary conditions are established for an even order

Cauchy-Hankel tensor to be positive definite.

For topic 3, stimulated by odd-bipartite and even-bipartite hypergraphs, we de-

fine odd-bipartite (weakly odd-bipartite) and even-bipartite (weakly even-bipartite)
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tensors. It is verified that all even order odd-bipartite tensors are irreducible tensors,

while all even-bipartite tensors are reducible no matter the parity of the order. Based

on properties of odd-bipartite tensors, we study the relationship between the largest

H-eigenvalue of a symmetric Z-tensor with non-negative diagonal elements, and the

largest H-eigenvalue of absolute tensor of that Z-tensor. When the order is even and

the symmetric Z-tensor is weakly irreducible, we prove that the largest H-eigenvalue

of the Z-tensor and the largest H-eigenvalue of the absolute tensor of that Z-tensor

are equal, if and only if the Z-tensor is weakly odd-bipartite. Examples show the

authenticity of the conclusions. Then, we prove that a symmetric Z-tensor with

non-negative diagonal entries and the absolute tensor of the Z-tensor are diagonal

similar, if and only if the Z-tensor has even order and it is weakly odd-bipartite. Af-

ter that, it is proved that, when an even order symmetric Z-tensor with non-negative

diagonal entries is weakly irreducible, the equality of the spectrum of the Z-tensor

and the spectrum of absolute tensor of that Z-tensor, can be characterized by the

equality of their spectral radii.

For topic 4, we examine structured tensors which have SOS tensor decomposition,

and study the SOS-rank of SOS tensor decomposition. We first show that several

classes of even order symmetric structured tensors available in the literature have

SOS tensor decomposition. These include positive Cauchy tensors, weakly diagonally

dominated tensors, B0-tensors, double B-tensors, quasi-double B0-tensors, MB0-

tensors, H-tensors, absolute tensors of positive semi-definite Z-tensors and extended

Z-tensors. We also examine the SOS-rank of SOS tensor decomposition and the

SOS-width for SOS tensor cones. The SOS-rank provides the minimal number of

squares in the SOS tensor decomposition, and, for a given SOS tensor cone, its SOS-

width is the maximum possible SOS-rank for all the tensors in this cone. We first

deduce an upper bound for general tensors that have SOS decomposition and the

SOS-width for general SOS tensor cone using the known results in the literature of
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polynomial theory. Then, we provide an explicit sharper estimate for the SOS-rank

of SOS tensor decomposition with bounded exponent and identify the SOS-width

for the tensor cone consisting of all tensors with bounded exponent that have SOS

decompositions. Finally, as applications, we show how the SOS tensor decomposition

can be used to compute the minimum H-eigenvalue of an even order symmetric

extended Z-tensor and test the positive definiteness of an associated multivariate

form. Numerical experiments are also provided to show the efficiency of the proposed

numerical methods ranging from small size to large size numerical examples.

For topic 5, we study positive semi-definiteness and extremal H-eigenvalues of

extended essentially non-negative tensors. We first prove that checking positive semi-

definiteness of a symmetric extended essentially non-negative tensor is equivalent to

checking positive semi-definiteness of all its condensed subtensors. Then, we prove

that, for a symmetric positive semi-definite extended essentially non-negative ten-

sor, it has a sum-of-squares (SOS) tensor decomposition if each positive off-diagonal

element corresponds to an SOS term in the homogeneous polynomial of the ten-

sor. Using this result, we can compute the minimum H-eigenvalue of such kinds of

extended essentially non-negative tensors. Then, for general symmetric even order

extended essentially non-negative tensors, we show that the largest H-eigenvalue of

the tensor is equivalent to the optimal value of an SOS programming problem. As an

application, we show this approach can be used to check co-positivity of symmetric

extended Z-tensors. Numerical experiments are given to show the efficiency of the

proposed methods.
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Chapter 1

Introduction

1.1 Background

The concept of tensors was introduced by Gauss, Riemann and Christoffel, etc.,

in the 19th century in the study of differential geometry. In the very beginning

of the 20th century, Ricci, Levi-Civita, etc., further developed tensor analysis as a

mathematical discipline. It was Einstein who applied tensor analysis in his study of

general relativity in 1916. This made tensor analysis an important tool in theoretical

physics, continuum mechanics and many other areas of science and engineering [28,

41, 59, 104].

A tensor is a multidimensional array and it is a physical quantity which is in-

dependent from co-ordinate system changes. More formally, mth-order tensor is an

element of the tensor product of m vector spaces, each of which has its own coor-

dinate system. This notion of tensors is not to be confused with tensors in physics

and engineering (such as stress tensors) [69], which are generally referred to as tensor

fields in mathematics [96]. A zero order tensor is a scalar. A first order tensor is a

vector and a second-order tensor is a matrix, and tensors of order three or higher are

called higher-order tensors.

Recently, more and more researchers have paid attentions to tensor problems and

several interesting and important research directions are hot in numerical multilinear
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algebra, such as spectral theory of tensors, spectral hypergraph theory, structure

property of special tensors, tensor decomposition and so on.

Positive semi-definiteness and spectral properties of tensors are important topics

in tensor computation and multilinear algebra. Since the early work of [78] and [62],

a lot of researchers have devoted themselves to the study of spectral properties of

tensors in the past several years [4, 5, 6, 12, 11, 18, 32, 43, 47, 60, 73, 109]. Tensor

eigenvalue problems have wide applications in polynomial optimization [71], spectral

hypergraph theory [18, 109, 80], high-order Markov chains [70], signal processing

[84], and imaging science [88]. On the other hand, positive semi-definiteness is an

important structure property of tensors and it has many applications in optimal

control, magnetic resonance imaging and spectral hypergraph theory [78, 80, 88, 89].

It is known that the problem of determining whether a given general even order

symmetric tensor is positive semi-definite or not is NP-hard [35]. On the other hand,

for some special structured tensors, it has been shown that either they are positive

semi-definite or positive definite in the even order symmetric case, or there are easily

checkable conditions to identify such tensors are positive semi-definite or not.

1.2 Structured tensors

Structured tensors mean tensors with special structure. In recent years, several kinds

of structured tensors have been studied such as non-negative tensors [5, 7, 27, 38,

51, 60, 63, 70, 89, 79, 87], Hankel tensors [11, 10, 20, 81], complete positive tensors

[87], co-positive tensors [79], Hilbert tensors [100], P -tensors [99, 109], B-tensors [82],

diagonally dominant tensors, H-tensors [43, 54] and so on. Furthermore, researchers

not only established results on spectral theory and positive semi-definiteness property

of structured tensors, but also gave some important applications of structured tensors

in stochastic process and data fitting. In the thesis, we will explore more in detail
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about non-negative tensors, Hankel tensors, B-tensors and H-tensors.

1.2.1 Non-negative tensors

One of the important structured tensor classes is the class of non-negative tensors,

that is, tensors with non-negative entries. The non-negative tensors arise naturally

in spectral hypergraph theory and high-order Markov chain theory. Recently, a lot

of theoretical conclusions and efficient numerical schemes have been proposed for

non-negative tensors.

The Perron-Frobenius theorem is a fundamental result for non-negative matrices.

It has been widely used not only in mathematics but also in various fields of science

and technology, such as economics, operational research, and page rank in the inter-

net; for more information, see [62, 78, 83, 86]. Chang, Pearson, and Zhang generalized

this theorem to the class of non-negative tensors recently [5]. The Perron-Frobenius

theorem for non-negative tensors is related to measuring higher order connectivi-

ty in linked objects [61] and hypergraphs [21]. Later, Yang and Yang gave further

results for the Perron-Frobenius theorem for non-negative tensors and some other

results from non-negative matrices are generalized [110, 90]. Friedland, Gaubert and

Han [27] pointed out that the Perron-Frobenius theorem for non-negative tensors

has a very close link with the Perron-Frobenius theorem for homogeneous monotone

maps. They introduced weakly irreducible non-negative tensors and established the

Perron-Frobenius theorem for such tensors.

Based on a Perron-Frobenius type theorem for non-negative tensors [5], Ng, Qi,

and Zhou proposed an iterative method to find the largest eigenvalue of an irre-

ducible non-negative tensor [70]. The NQZ method in [70] is efficient but it is not

always convergent for irreducible non-negative tensors. Later on, Chang, Pearson

and Zhang [7] introduced primitive tensors which is a subclass of irreducible non-

negative tensors, and established the convergence of the NQZ method for primitive
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tensors. Moreover, Liu, Zhou, and Ibrahim [63] modified the NQZ method such that

the modified algorithm is always convergent for finding the largest eigenvalue of an

irreducible non-negative tensor. Recently, Zhang and Qi [113] established the linear

convergence of the NQZ method for essentially positive tensors. Zhang, Qi and Xu

[115] established the linear convergence of the LZI method for weakly positive ten-

sors. More recently, numerical method is also presented to calculate the maximum

eigenvalue for non-negative tensors without the irreducible assumption by using a

partion technique [36]. Furthermore, some variational principles for Z-eigenvalues of

non-negative tensors are presented in [8].

1.2.2 Hankel tensors

Hankel tensors were introduced by Papy, De Lathauwer and Van Huffel in [75] in

the context of the harmonic retrieval problem, which is at the heart of many signal

processing problems. In [2], Badeau and Boyer proposed fast higher-order singular

value decomposition (HOSVD) for third order Hankel tensors.

The comprehensive spectral theory and positive semi-definiteness of Hankel ten-

sors and some other applications were studied in [20, 81, 11]. Hankel tensors are

symmetric tensors. In [81], positive semi-definite Hankel tensors were studied. Each

Hankel tensor is associated with an Hankel matrix. If that Hankel matrix is positive

semi-definite, then the Hankel tensor is called a strong Hankel tensor. It was proved

that an even order strong Hankel tensor is positive semi-definite. A symmetric ten-

sor is a Hankel tensor if and only if it has a Vandermonde decomposition. If the

coefficients of that Vandermonde decomposition are non-negative, then the Hankel

tensor is called a complete Hankel tensor. It was proved that an even order complete

Hankel tensor is also positive semi-definite. An example of a positive semi-definite

Hankel tensor, which is neither strong nor complete Hankel tensor was also given in

[81].
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Recently, the SOS (sum-of-squares) tensor decomposition of even order Hankel

tensors and applications are studied in [56, 55, 10]. Tensors with SOS decomposi-

tion are positive semi-definite symmetric tensors, but not vice versa. The problem

for determining an even order symmetric tensor has SOS decomposition or not is

equivalent to solving a semi-infinite linear programming problem, which can be done

in polynomial time. On the other hand, the problem for determining an even or-

der symmetric tensor is positive semi-definite or not is NP-hard. In [56], Li et al.

studied SOS-Hankel tensors. Currently, there are two known positive semi-definite

Hankel tensor classes: even order complete Hankel tensors and even order strong

Hankel tensors. It is shown that complete Hankel tensors are strong Hankel tensors,

and even order strong Hankel tensors are SOS-Hankel tensors [56]. Moreover, sever-

al examples of positive semi-definite Hankel tensors are given, which are not strong

Hankel tensors. However, all of them are still SOS-Hankel tensors. Does there exist a

positive semi-definite non-SOS-Hankel tensor? The answer to this question remains

open. If the answer to this question is no, then the problem for determining an even

order Hankel tensor is positive semi-definite or not is solvable in polynomial-time.

1.2.3 B-tensors

B-tensors are a special class of structured tensors that are natural generalization of

B-matrices. Meaningful and interesting conclusions about symmetric B-tensors can

be found in [82, 99, 109].

In [82], Qi et al. used a new technique to prove that an even order symmetric

B-tensor is positive definite. It is shown that a symmetric B-tensor can always be

decomposed to the sum of a strictly diagonally dominated symmetric M -tensor and

several positive multiples of partially all one tensors, and a symmetric B0-tensor can

always be decomposed to the sum of a diagonally dominated symmetric M -tensor

and several positive multiples of partially all one tensors. Even order partially all
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one tensors are positive semi-definite. An even order diagonally dominated symmet-

ric tensor is positive semi-definite, and an even order strictly diagonally dominated

symmetric tensor is positive definite. Therefore, when the order is even, all sym-

metric B-tensors are positive definite, and the corresponding symmetric B0-tensors

are positive semi-definite [82]. Hence, the condition provided in [82], gives an easily

checkable sufficient condition for positive definite and semi-definite tensors.

After that, motivated by notion of B-tensors, several kinds of structured tensors

such as double B-tensors, quasi-double B-tensors and MB-tensors, are defined and

applied in the location of real eigenvalues [52, 53, 13].

1.2.4 H-tensors

H-tensors were first defined in [19], and it is proved that all H-tensors have quasi-

strictly diagonally dominant property. Then, much more properties of H-tensors

were further studied in [43, 54], where the authors in [54] referred nonsingular H-

tensors simply as H-tensors and the authors in [43] referred nonsingular H-tensors

as strong H-tensors. In [54], the authors proved that if a given tensor is an even

order symmetric strong H-tensor with positive diagonal entries, then the tensor is a

positive definite tensor. In [43], it is proved that a symmetric H-tensor with non-

negative diagonal entries is positive semi-definite, which implies that H-tensors are

useful in checking the positive semi-definiteness of homogeneous polynomials.

Very recently, Wang et al. studied the bounds for the Z-spectral radius of nonsin-

gular H-tensors [107], and numerical examples illustrate that the bounds are sharper

than known bounds.

1.3 Summary of contributions of the thesis

The original contributions of this thesis are as follows:
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• Several necessary and sufficient conditions for an even order Cauchy tensor to

be positive semi-definite are given. Some properties of positive semi-definite

Cauchy tensors are presented. Inequalities about the largest H-eigenvalue and

the smallest H-eigenvalue of Cauchy tensors are shown. Then, some spectral

properties on Z-eigenvalues of odd order Cauchy tensors are shown. Further-

more, properties of generalized Cauchy tensors and some new properties of

Hankel tensors are provided.

• Odd-bipartite and even-bipartite tensors are defined in this paper. Using this

notions, the relation between the largest H-eigenvalue of a Z-tensor with non-

negative diagonal elements, and the largest H-eigenvalue of the Z-tensor’s ab-

solute tensor are studied. Sufficient and necessary conditions for the equality of

these largest H-eigenvalues are given when the Z-tensor has even order. For the

odd order case, sufficient conditions are presented. On the other side, relation

between spectral sets of an even order symmetric Z-tensor with non-negative

diagonal entries and its absolute tensor are studied.

• The SOS tensor decomposition of various kinds of structured tensors is studied

in the even order symmetric case. These include positive Cauchy tensors, weak-

ly diagonally dominated tensors, B0-tensors, double B-tensors, quasi-double

B0-tensors, MB0-tensors, H-tensors, absolute tensors of positive semi-definite

Z-tensors and extended Z-tensors. The SOS-rank of SOS tensor decomposi-

tion and the SOS-width for SOS tensor cones are also examined. In particular,

an explicit sharp estimate is provided for SOS-rank of tensors with bounded

exponent and SOS-width for the tensor cone consisting of all such tensors with

bounded exponent that have SOS decomposition. Then, applications for the

SOS decomposition of extended Z-tensors are presented.
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• The notion of essentially non-negative tensor is generalized to a more general

form i.e. extended essentially non-negative tensor. Positive semi-definiteness

and SOS tensor decomposition of symmetric essentially nonnegative tensors are

studied. Then, by SOS optimization technique, the extremal H-eigenvalues of

a symmetric even order extended essentially non-negative tensor can be com-

puted by solving an SOS optimization problem. Numerical examples illustrate

the significance. An important application is presented that is checking the

co-positivity of symmetric tensors with even or odd orders.

1.4 Organization of the thesis

The thesis is structured as follows.

• Chap. 2 We will first recall some basic notions of tensors are given such

as H-eigenvalues, Z-eigenvalues and positive semi-definite tensors. Then, we

introduce the notion of Vandermonde positive semi-definite tensors, which is a

special class of positive semi-definite tensors. At last, some basic results about

homogeneous polynomials are presented.

• Chap. 3 Motivated by symmetric Cauchy matrices, we define symmetric

Cauchy tensors and their generating vectors in this paper. Hilbert tensors

are symmetric Cauchy tensors. An even order symmetric Cauchy tensor is

positive semi-definite if and only if its generating vector is positive. An even

order symmetric Cauchy tensor is positive definite if and only if its generat-

ing vector has positive and mutually distinct entries. This extends Fiedler’s

result for symmetric Cauchy matrices to symmetric Cauchy tensors. Then, it

is proven that the positive semi-definiteness character of an even order sym-

metric Cauchy tensor can be equivalently checked by the monotone increasing

property of a homogeneous polynomial related to the Cauchy tensor. The
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homogeneous polynomial is strictly monotone increasing in the non-negative

orthant of the Euclidean space when the even order symmetric Cauchy tensor

is positive definite. At last, bounds of the largest H-eigenvalue of a positive

semi-definite symmetric Cauchy tensor are given and several spectral proper-

ties on Z-eigenvalues of odd order symmetric Cauchy tensors are shown. We

also establish that all the H-eigenvalues of non-negative Cauchy tensors are

non-negative. Further questions on Cauchy tensors are raised.

• Chap. 4 We first introduce the concept of generalized Cauchy tensors which

extends Cauchy tensors to a more general form, and provide several conditions

characterizing positive semi-definiteness of generalized Cauchy tensors with

nonzero entries. Furthermore, we prove that all even order generalized Cauchy

tensors with positive entries are completely positive tensors, which means every

such that generalized Cauchy tensor can be decomposed as the sum of non-

negative rank-1 tensors. Secondly, we present new mathematical properties of

Hankel tensors. We prove that an even order Hankel tensor is Vandermonde

positive semi-definite if and only if its associated plane tensor is positive semi-

definite. We also show that, if the Vandermonde rank of a Hankel tensor A is

less than the dimension of the underlying space, then positive semi-definiteness

of A is equivalent to the fact that A is a complete Hankel tensor, and so, is

further equivalent to the SOS property of A. Thirdly, we introduce a new class

of structured tensors called Cauchy-Hankel tensors, which is a special case

of Cauchy tensors and Hankel tensors simultaneously. Sufficient and necessary

conditions are established for an even order Cauchy-Hankel tensor to be positive

definite.

• Chap. 5 Stimulated by odd-bipartite and even-bipartite hypergraphs, we

define odd-bipartite (weakly odd- bipartie) and even-bipartite (weakly even-
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bipartite) tensors. It is verified that all even order odd-bipartite tensors are

irreducible tensors, while all even-bipartite tensors are reducible no matter the

parity of the order. Based on properties of odd-bipartite tensors, we study the

relationship between the largest H-eigenvalue of a Z-tensor with non-negative

diagonal elements, and the largest H-eigenvalue of absolute tensor of that Z-

tensor. When the order is even and the Z-tensor is weakly irreducible, we prove

that the largest H-eigenvalue of the Z-tensor and the largest H-eigenvalue of

the absolute tensor of that Z-tensor are equal, if and only if the Z-tensor

is weakly odd-bipartite. Examples show the authenticity of the conclusions.

Then, we prove that a symmetric Z-tensor with non-negative diagonal entries

and the absolute tensor of the Z-tensor are diagonal similar, if and only if the

Z-tensor has even order and it is weakly odd-bipartite. After that, it is proved

that, when an even order symmetric Z-tensor with non-negative diagonal en-

tries is weakly irreducible, the equality of the spectrum of the Z-tensor and

the spectrum of absolute tensor of that Z-tensor, can be characterized by the

equality of their spectral radii.

• Chap. 6 We examine structured tensors which have sum-of-squares (SOS)

tensor decomposition, and study the SOS-rank of SOS tensor decomposition.

We first show that several classes of even order symmetric structured tensors

available in the literature have SOS tensor decomposition. These include posi-

tive Cauchy tensors, weakly diagonally dominated tensors, B0-tensors, double

B-tensors, quasi-double B0-tensors, MB0-tensors, H-tensors, absolute tensors

of positive semi-definite Z-tensors and extended Z-tensors. We also examine

the SOS-rank of SOS tensor decomposition and the SOS-width for SOS ten-

sor cones. The SOS-rank provides the minimal number of squares in the SOS

tensor decomposition, and, for a given SOS tensor cone, its SOS-width is the
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maximum possible SOS-rank for all the tensors in this cone. We first deduce

an upper bound for general tensors that have SOS decomposition and the SOS-

width for general SOS tensor cone using the known results in the literature of

polynomial theory. Then, we provide an explicit sharper estimate for the SOS-

rank of SOS tensor decomposition with bounded exponent and identify the

SOS-width for the tensor cone consisting of all tensors with bounded exponent

that have SOS decompositions. Finally, as applications, we show how the SOS

tensor decomposition can be used to compute the minimum H-eigenvalue of

an even order symmetric extended Z-tensor and test the positive definiteness

of an associated multivariate form. Numerical experiments are also provided

to show the efficiency of the proposed numerical methods ranging from small

size to large size numerical examples.

• Chap. 7 We study positive semi-definiteness and extremal H-eigenvalues of

extended essentially non-negative tensors. We first prove that checking posi-

tive semi-definiteness of a symmetric extended essentially non-negative tensor

is equivalent to checking positive semi-definiteness of all its condensed subten-

sors. Then, we prove that, for a symmetric positive semi-definite extended

essentially non-negative tensor, it has a sum-of-squares (SOS) tensor decompo-

sition if each positive off-diagonal element corresponds to an SOS term in the

homogeneous polynomial of the tensor. Using this result, we can compute the

minimum H-eigenvalue of such kinds of extended essentially non-negative ten-

sors. Then, for general symmetric even order extended essentially non-negative

tensors, we show that the largest H-eigenvalue of the tensor is equivalent to

the optimal value of an SOS programming problem. As an application, we

show this approach can be used to check co-positivity of symmetric extend-

ed Z-tensors. Numerical experiments are given to show the efficiency of the

11



proposed methods.

• Chap. 8 Some final remarks and future work are listed in this section.
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Chapter 2

Preliminaries

A real tensor with order m and dimension n is defined by A “ pai1i2¨¨¨imq, ij P rns,

j P rms. If the entries ai1i2¨¨¨im are invariant under any permutation of the subscripts,

then tensor A is called symmetric tensor. Let x “ px1, x2, ¨ ¨ ¨ , xnq
T P Rn. The two

forms below will be used in the following analysis frequently:

Axm´1
“

˜

n
ÿ

i2,i3,¨¨¨ ,im“1

aii2¨¨¨imxi2 ¨ ¨ ¨ xim

¸n

i“1

;

Axm “
n
ÿ

i1,i2,¨¨¨ ,im“1

ai1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim .

In this paper, we always consider real symmetric tensors. The identity tensor I with

order m and dimension n is given by Ii1¨¨¨im “ 1 if i1 “ ¨ ¨ ¨ “ im and Ii1¨¨¨im “ 0

otherwise.

We first fix some symbols and recall some basic facts. Let m,n P N. Consider

Sm,n :“ tA : A is an mth-order n-dimensional symmetric tensoru. Clearly, Sm,n is a

vector space under the addition and multiplication defined as below: for any t P R,

A “ pai1¨¨¨imq1ďi1,¨¨¨ ,imďn and B “ pbi1¨¨¨imq1ďi1,¨¨¨ ,imďn,

A` B “ pai1¨¨¨im ` bi1¨¨¨imq1ďi1,¨¨¨ ,imďn and tA “ ptai1¨¨¨imq1ďi1,¨¨¨ ,imďn.
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For each A,B P Sm,n, we define the inner product by

xA,By :“
n
ÿ

i1,¨¨¨ ,im“1

ai1¨¨¨imbi1¨¨¨im .

The corresponding norm is defined by }A} “ pxA,Ayq1{2 “

˜

n
ÿ

i1,¨¨¨ ,im“1

pai1¨¨¨imq
2

¸1{2

.

For a vector x P Rn, we use xi to denote its ith component. Moreover, for a vector

x P Rn, we use xm to denote the mth-order n-dimensional symmetric rank one tensor

induced by x, i.e.,

pxmqi1i2¨¨¨im “ xi1xi2 ¨ ¨ ¨ xim , @ i1, ¨ ¨ ¨ , im P t1, ¨ ¨ ¨ , nu.

Suppose x “ px1, x2, ¨ ¨ ¨ , xnq, y “ py1, y2, ¨ ¨ ¨ , ynq. Then x ě y (x ď y) means

xi ě yi (xi ď yi) for all i P rns. If both A “ pai1¨¨¨imq1ďijďn and B “ pbi1¨¨¨imq1ďijďn,

j “ 1, ¨ ¨ ¨ ,m, are tensors, then A ě B (A ď B) means ai1¨¨¨im ě bi1¨¨¨im (ai1¨¨¨im ď

bi1¨¨¨im) for all i1, ¨ ¨ ¨ , im P rns.

2.1 H-eigenvalue and Z-eigenvalue of tensors

We now recall the definitions of eigenvalues and eigenvectors for a tensor [78, 62].

Definition 2.1. Let C be the complex field. Let A “ pai1i2¨¨¨imq be an order m

dimension n tensor. A pair pλ,xq P CˆpCnzt0uq is called an eigenvalue-eigenvector

pair of tensor A, if they satisfy

Axm´1
“ λxrm´1s,

where Axm´1 and xrm´1s are all n dimensional column vectors given by

Axm´1
“

˜

n
ÿ

i2,¨¨¨ ,im“1

aii2¨¨¨imxi2 ¨ ¨ ¨ xim

¸

1ďiďn

and xrm´1s “ pxm´1
1 , . . . , xm´1

n qT P Cn.
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If the eigenvalue λ and the eigenvector x are real, then λ is called an H-eigenvalue

of A and x is its corresponding H-eigenvector.

Definition 2.2. Let A be a symmetric tensor with order m and dimension n. We

say λ P R is a Z-eigenvalue of A and x P Rnzt0u is an Z-eigenvector corresponding

to λ if px, λq satisfies
"

Axm´1 “ λx,
xTx “ 1.

The definitions of Z-eigenvalue and H-eigenvalue were introduced by Qi in [78].

Independently, Lim [62] also gave the definitions via a variational approach and

established an interesting Perron-Frobenius theorem for tensors with non-negative

entries. From [78] and [6], both Z-eigenvalues and H-eigenvalues for an even order

symmetric tensor always exist. Moreover, from the definitions, we can see that find-

ing an H-eigenvalue of a symmetric tensor is equivalent to solving a homogeneous

polynomial equation while calculating a Z-eigenvalue is equivalent to solving non-

homogeneous polynomial equations. In general, the behaviors of Z-eigenvalues and

H-eigenvalues can be quite different. For example, a diagonal symmetric tensor A

has exactly n many H-eigenvalues and may have more than n Z-eigenvalues (for

more details see [78]). Recently, a lot of researchers have devoted themselves to the

study of eigenvalue problems of symmetric tensors and have found important ap-

plications in diverse areas including spectral hypergraph theory [78, 58], dynamical

control [72], medical image science [57, 88] and signal processing [49].

The spectral radius of tensor A is denoted by

ρpAq “ maxt|λ| : λ is an eigenvalue of Au.

All eigenvalues of tensor A construct the spectrum denoted by SpecpAq.

Next, we present two fundamental results about eigenvalues of tensors (see [78]),

which will be much used in the sequel.
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Lemma 2.1. Suppose that T “ apB ` bIq, where a and b are two real numbers.

Then µ is an eigenvalue (H-eigenvalue) of tensor T if and only if µ “ apλ ` bq,

where λ is an eigenvalue (H-eigenvalue) of tensor B. In this case, they have the

same eigenvectors (H-eigenvectors).

Lemma 2.2. Let A be a symmetric tensor with order m and dimension n. Suppose

that the minimum H-eigenvalue and maximum H-eigenvalue of A are denoted by

λminpAq and λmaxpAq respectively. Then, we have

λminpAq “ min
x‰0

Axm

}x}mm
“ min
}x}m“1

Axm, λmaxpAq “ max
x‰0

Axm

}x}mm
“ max
}x}m“1

Axm,

where }x}m “ p
řn
i“1 |xi|

mq
1
m .

2.2 Positive semi-definite tensors

We first note that an m-th order n-dimensional symmetric tensor A “ pai1i2¨¨¨imq,

uniquely defines an m-th degree homogeneous polynomial fApxq on Rn: for all x “

px1, ¨ ¨ ¨ , xnq
T P Rn,

fApxq “ Axm “
ÿ

i1,i2,¨¨¨ ,imPrns

ai1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim . (2.1)

Conversely, any m-th degree homogeneous polynomial function fpxq on Rn also u-

niquely corresponds a symmetric tensor. Furthermore, an even order tensor A is

called positive semi-definite (positive definite) if fApxq ě 0 (fApxq ą 0) for all

x P Rn (x P Rnzt0u).

Denote Rn
` “ tx P Rn | x ě 0u. If Axm ě 0 for all x P Rn

`, then A is called

co-positive. Positive semi-definite tensors are co-positive tensors, but the converse

maybe not true in general. From the definition, it is easy to see that, for a positive

semi-definite tensor, its order m must be an even number. Therefore, in the following
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analysis, we always assume the order of the tensor is even when we consider a positive

semi-definite tensor. An important fact which will be used frequently later on is that

an even order symmetric tensor is positive semi-definite (definite) if and only if all

H-eigenvalues of the tensor are non-negative (positive).

We call u P Rn a Vandermonde vector if u “ p1, µ, µ2, ¨ ¨ ¨ , µn´1qT P Rn for some

µ P R. If Aum ě 0 for all Vandermonde vectors u P Rn, then we say that tensor A is

Vandermonde positive semi-definite. It’s obvious that positive semi-definite tensors

are always Vandermonde positive semi-definite, but not vice versa.

2.3 SOS tensor decomposition

Tensor decomposition is an important research area, and it has found numerous

applications in data mining [44, 46, 45], computational neuroscience [16, 25], and

statistical learning for latent variable models [1]. An important class of tensor de-

composition is sum-of-squares (SOS) tensor decomposition.

Suppose A is a symmetric tensor with order m and dimension n. Let fApxq be

the homogeneous polynomial corresponding tensor A such as in (2.1). If fApxq is a

sums-of-squares (SOS) polynomial, then we say A has an SOS tensor decomposition

(or an SOS decomposition, for simplicity). It is clear that a tensor with SOS decom-

position and an SOS polynomial must have even degree. If a given tensor has SOS

decomposition, then the tensor is positive semi-definite, but not vice versa. Next,

we recall a useful lemma which provides a test for verifying whether a homogeneous

polynomial is a sums-of-squares polynomial or not. To do this, we introduce some

basic notions.

For all x P Rn, consider a homogeneous polynomial fpxq “
ř

α fαx
α with degree

m (m is an even number), where α “ pα1, ¨ ¨ ¨ , αnq P pNYt0uqn, xα “ xα1
1 ¨ ¨ ¨ xαn

n and

|α| :“
řn
i“1 αi “ m. Let fm,i be the coefficient associated with xmi . Let ei be the ith
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unit vector and let

Ωf “ tα “ pα1, ¨ ¨ ¨ , αnq P pNY t0uqn : fα ‰ 0 and α ‰ m ei, i “ 1, ¨ ¨ ¨ , nu. (2.2)

Then, f can be decomposed as fpxq “
řn
i“1 fm,ix

m
i `

ř

αPΩf
fαx

α. Recall that 2N

denotes the set consisting of all the even numbers. Define

f̂pxq “
n
ÿ

i“1

fm,ix
m
i ´

ÿ

αP∆f

|fα|x
α,

where

∆f :“ tα “ pα1, ¨ ¨ ¨ , αnq P Ωf : fα ă 0 or α R p2NY t0uqnu. (2.3)

Lemma 2.3. [23, Corollary 2.8] Let f be a homogeneous polynomial of degree m,

where m is an even number. If f̂ is a polynomial which always takes non-negative

values, then f is a sums-of-squares polynomial.
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Chapter 3

Positive definiteness and
semi-definiteness of even order
Cauchy tensors

A Cauchy matrix (maybe not square) is an mˆn structure matrix assigned to m`n

parameters x1, x2, ¨ ¨ ¨ , xm, y1, ¨ ¨ ¨ , yn as follows: [74]

C “

„

1

xi ` yj



, i P rms, j P rns. (3.1)

The Cauchy matrix has been studied and applied in algorithm designing [26, 30, 33].

When xi “ yi in (3.1), it is a real symmetric Cauchy matrix. Stimulated by the

notion of symmetric Cauchy matrices, we give the following definition.

Definition 3.1. Let vector c “ pc1, c2, ¨ ¨ ¨ , cnq P Rn. Suppose that a real tensor

C “ pci1i2¨¨¨imq is defined by

ci1i2¨¨¨im “
1

ci1 ` ci2 ` ¨ ¨ ¨ ` cim
, j P rms, ij P rns.

Then, we say that C is an order m dimension n symmetric Cauchy tensor and the

vector c P Rn is called the generating vector of C.

We should point out that, in Definition 3.1, for any m elements ci1 , ci2 , ¨ ¨ ¨ , cim
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in generating vector c, it satisfies

ci1 ` ci2 ` ¨ ¨ ¨ ` cim ‰ 0,

which implies that ci ‰ 0, i P rns.

By Definition 3.1, a dimension nˆn real symmetric Cauchy matrix is an order 2

dimension n real symmetric Cauchy tensor. It is easy to check that every principal

subtensors of a symmetric Cauchy tensor is a symmetric Cauchy tensor with a gen-

erating vector being a subvector of the generating vector of the original symmetric

Cauchy tensor. In this chapter, we always consider mth order n dimensional real

symmetric Cauchy tensors. Hence, it can be called Cauchy tensors for simplicity.

Cauchy tensors belong to structured tensors, and they have close relationships

with Hankel tensors and Hilbert tensors. Suppose Cauchy tensor C and its generating

vector c are defined as in Definition 3.1. If

ci1 ` ci2 ` ¨ ¨ ¨ ` cim ” cj1 ` cj2 ` ¨ ¨ ¨ ` cjm

whenever

i1 ` i2 ` ¨ ¨ ¨ ` im “ j1 ` j2 ` ¨ ¨ ¨ ` jm,

then Cauchy tensor C is a Hankel tensor in the sense of [80]. In general, a symmetric

Cauchy tensor is not a Hankel tensor. If entries of c are defined such that

ci “ i´ 1`
1

m
, i P rns,

then Cauchy tensor C is a Hilbert tensor according to [100].

3.1 Positive semi-definite Cauchy tensors

In this section, we will give some sufficient and necessary conditions for even order

Cauchy tensors to be positive semi-definite or positive definite. Some conditions are

extended naturally from the Cauchy matrix case.
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Theorem 3.1. Assume a Cauchy tensor C is of even order. Let c P Rn be the

generating vector of C. Then Cauchy tensor C is positive semi-definite if and only if

c ą 0.

Proof. For necessity, suppose that an even order Cauchy tensor C is positive semi-

definite. It is easy to check that all composites of generating vector c are positive

since

Cei
m
“

1

mci
ě 0, i P rns

where ei is the ith coordinate vector of Rn. So, ci ą 0 for all i P rns, which means

c ą 0.

On the other hand, assume that c ą 0. For any x P Rn, it holds that

Cxm “
ř

i1,¨¨¨ ,imPrns
ci1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim

“
ř

i1,¨¨¨ ,imPrns

xi1xi2 ¨¨¨xim
ci1`ci2`¨¨¨`cim

“
ř

i1,¨¨¨ ,imPrns

ż 1

0

tci1`ci2`¨¨¨`cim´1xi1xi2 ¨ ¨ ¨ ximdt

“

ż 1

0

¨

˝

ÿ

iPrns

tci´
1
mxi

˛

‚

m

dt

ě 0.

Here the last inequality follows that m is even. By the arbitrariness of x, we know

that Cauchy tensor C is positive semi-definite and the desired result holds.

Corollary 3.1. Assume that even order Cauchy tensor C and its generating vector

c P Rn are defined as in Theorem 3.1. Then Cauchy tensor C is negative semi-definite

if and only if c ă 0.

Corollary 3.2. Assume that even order Cauchy tensor C and its generating vector

c P Rn are defined as in Theorem 3.1. Then Cauchy tensor C is not positive semi-

definite if and only if there exist at least one negative element in c.
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From the results about H-eigenvalues and Z-eigenvalues in [78], we have the

following result.

Corollary 3.3. Assume that even order Cauchy tensor C and its generating vector

c P Rn are defined as in Theorem 3.1. If c ą 0, then all the H-eigenvalues and

Z-eigenvalues of Cauchy tensor C are non-negative.

Theorem 3.2. Assume even order Cauchy tensor C has generating vector c “

pc1, c2, ¨ ¨ ¨ , cnq P Rn. Suppose c1, c2, ¨ ¨ ¨ , cn are positive and mutually distinct. Then

Cauchy tensor C is positive definite.

Proof. For the sake of simplicity, without loss of generality, assume that

0 ă c1 ă c2 ă ¨ ¨ ¨ ă cn.

Since c ą 0 and c1, c2, ¨ ¨ ¨ , cn are mutually distinct. From Theorem 3.1, we know

that Cauchy tensor C is positive semi-definite.

We prove by contradiction that Cauchy tensor C is positive definite when the

conditions of this theorem hold. Assume there exists a nonzero vector x P Rn such

that

Cxm “ 0.

By the proof of Theorem 3.1, one has

ż 1

0

¨

˝

ÿ

iPrns

tci´
1
mxi

˛

‚

m

dt “ 0,

which means
ÿ

iPrns

tci´
1
mxi ” 0, t P r0, 1s.

Thus

x1 ` t
c2´c1x2 ` ¨ ¨ ¨ ` t

cn´c1xn ” 0, t P p0, 1s.
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By continuity and the fact that c1, c2, ¨ ¨ ¨ , cn are mutually distinct, it holds that

x1 “ 0

and

x2 ` t
c3´c2x3 ` ¨ ¨ ¨ ` t

cn´c2xn ” 0, t P p0, 1s.

Repeat the process above. We obtain

x1 “ x2 “ ¨ ¨ ¨ “ xn “ 0,

which is a contradiction with x ‰ 0. So, for all nonzero vectors x P Rn, it holds

Cxm ą 0 and C is positive definite.

From this theorem, we easily have the following corollary, which was first proved

in [100].

Corollary 3.4. An even order Hilbert tensor is positive definite.

From Theorem A of [24], we know that a symmetric Cauchy matrix

C “

„

1

ci ` cj



is positive definite if and only if all the ci’s are positive and mutually distinct. In

fact, the theorem below shows that conditions in Theorem 3.2 is also a sufficient and

necessary condition, which is a natural extension of Theorem A of [24], by Fielder.

Theorem 3.3. Let even order Cauchy tensor C and its generating vector c be defined

as in Theorem 3.2. Then, Cauchy tensor C is positive definite if and only if the

elements of generating vector are positive and mutually distinct.

Proof. By Theorem 3.2, we only need to prove the “only if” part of this theorem.

Suppose that Cauchy tensor C is positive definite. Firstly, by Theorem 3.1, we know

that

ci ą 0, i P rns.
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We now prove by contradiction that ci’s are mutually distinct. Suppose that two

elements of c are equal. Without loss of generality, assume c1 “ c2 “ a ą 0. Let

x P Rn be a vector with elements x1 “ 1, x2 “ ´1 and xi “ 0 for the others. Then,

one has

Cxm “
ř

i1,¨¨¨ ,imPrns
ci1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim

“
ř

i1,¨¨¨ ,imPrns

xi1xi2 ¨¨¨xim
ci1`ci2`¨¨¨`cim

“ 1
ma

ř

i1,¨¨¨ ,imPr2s
xi1xi2 ¨ ¨ ¨ xim

“ 1
ma

”

p´1qm `mp´1qm´1 ` m!
2!pm´2q!

p´1qm´2 ` ¨ ¨ ¨ ` p´1qm´m
ı

“ 1
ma
r1` p´1qsm

“ 0,

where we get a contradiction with the assumption that Cauchy tensor C is positive

definite. Thus, elements of generating vector c are mutually distinct and the desired

result follows.

We denote the homogeneous polynomial Cxm as

fpxq “ Cxm “
ÿ

i1,¨¨¨ ,imPrns

ci1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim .

For all x,y P X Ď Rn, if fpxq ě fpyq when x ě y(x ď y), we say that fpxq is

monotone increasing (monotone decreasing respectively) in X. If fpxq ą fpyq when

x ě y, x ‰ y(x ď y, x ‰ y), we say that fpxq is strictly monotone increasing (strict

monotone decreasing respectively) in X.

The following conclusion means that the positive semi-definite property of a

Cauchy tensor is equivalent to the monotonicity of a homogeneous polynomial re-

spected to the Cauchy tensor in Rn
`.

Theorem 3.4. Let C be an even order Cauchy tensor with generating vector c. Then,

C is positive semi-definite if and only if fpxq is monotone increasing in Rn
`.
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Proof. For sufficiency, let x “ ei,y “ 0 and x ě y. Then we have

1

mci
“ Cxm “ fpxq ě fpyq “ Cym “ 0,

which implies that ci ą 0 for i P rns. By Theorem 3.1, it holds that Cauchy tensor

C is positive semi-definite.

For necessary conditions, suppose x,y P Rn
` and x ě y. Then, we know that

fpxq ´ fpyq “ Cxm ´ Cym
“

ř

i1,¨¨¨ ,imPrns
ci1i2¨¨¨impxi1xi2 ¨ ¨ ¨ xim ´ yi1yi2 ¨ ¨ ¨ yimq

“
ř

i1,¨¨¨ ,imPrns

xi1xi2 ¨¨¨xim´yi1yi2 ¨¨¨yim
ci1`ci2`¨¨¨`cim

ě 0.

Here, the last inequality follows that x ě y and the fact that ci ą 0, for i P rns, which

means that fpxq is monotone increasing in Rn
` and the desired result holds.

Lemma 3.1. Let C be an even order Cauchy tensor with generating vector c. Suppose

C is positive definite. Then the homogeneous polynomial fpxq is strictly monotone

increasing in Rn
`.

Proof. From the condition that C is positive definite, by Theorem 3.3, we have

ci ą 0, i P rns,

where scalars ci, i P rns are entries of generating vector c. For any x,y P Rn
`

satisfying that x ě y and x ‰ y, there exists index i P rns such that

xi ą yi ě 0.

Then, it holds that

fpxq ´ fpyq “ Cxm ´ Cym
“

ř

i1,¨¨¨ ,imPrns,pi1,i2,¨¨¨ ,imq‰pi,i,¨¨¨ ,iq
ci1i2¨¨¨impxi1xi2 ¨ ¨ ¨ xim ´ yi1yi2 ¨ ¨ ¨ yimq

`cii¨¨¨ipx
m
i ´ y

m
i q

“
ř

i1,¨¨¨ ,imPrns,pi1,i2,¨¨¨ ,imq‰pi,i,¨¨¨ ,iq

xi1xi2 ¨¨¨xim´yi1yi2 ¨¨¨yim
ci1`ci2`¨¨¨`cim

` 1
mci
pxmi ´ y

m
i q

ą 0,
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which implies that the homogeneous polynomial fpxq is strictly monotone increasing

in Rn
`.

Now, we give an example to show that the strictly monotone increasing property

for the polynomial fpxq is only a necessary condition for the positive definiteness

property of Cauchy tensor C but not a sufficient condition.

Example 3.1. Let C “ pci1i2i3i4q be a Cauchy tensor with order 4 dimension 3, and

with generating vector c “ p1, 1, 1q. Then,

ci1i2i3i4 “
1

4
, i1, i2, i3, i4 P r3s

and the homogeneous polynomial

fpxq “ Cx4
“

1

4

ÿ

i1,i2,i3,i4Pr3s

xi1xi2xi3xi4 .

By direct computation, we know that fpxq is strictly monotone increasing in R3
`.

From Theorem 3.3, Cauchy tensor C is not positive definite.

Let ri denote the sum of the ith row elements of Cauchy tensor C, which can be

written such that

ri “
ÿ

i2,¨¨¨ ,imPrns

1

ci ` ci2 ` ¨ ¨ ¨ ` cim
, i P rns,

where c “ pc1, ¨ ¨ ¨ , cnq is the generating vector of Cauchy tensor C. Suppose

R “ max
1ďiďn

ri, r “ min
1ďiďn

ri.

If Cauchy tensor C is positive semi-definite, by Theorem 3.1, it is easy to check that

R “
ÿ

i2,¨¨¨ ,imPrns

1

a` ci2 ` ¨ ¨ ¨ ` cim
, r “

ÿ

i2,¨¨¨ ,imPrns

1

ā` ci2 ` ¨ ¨ ¨ ` cim
,
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where a “ min1ďiďn ci, ā “ max1ďiďn ci.

Now, before giving the next conclusion, we give the definition of irreducible ten-

sors, which will be used in the sequel. The following definition is consistent with [5]

and [80] respectively.

Definition 3.2. For a tensor T with order m and dimension n. We say that T is

reducible if there is a nonempty proper index subset I Ă rns such that

ti1i2¨¨¨im “ 0, @ i1 P I, @ i2, i3, ¨ ¨ ¨ , im R I.

Otherwise we say that T is irreducible.

Theorem 3.5. Let C be a positive semi-definite even order tensor with generating

vector c P Rn. Suppose x P Rn is the eigenvector of C corresponding to ρpCq. Assume

xī “ max
1ďiďn

xi, xi “ min
1ďiďn

xi. (3.2)

Then, R “ rī, r “ ri.

Proof. Since Cauchy tensor C is positive semi-definite, from Theorem 3.1, all elements

of C and c are positive. By Definition 3.2, we know that C is irreducible. Thus x ą 0

from Theorem 1.4 of [5]. Without loss of generality, suppose

R “ rl, r “ rs.

By the analysis before this theorem, it holds that

ā “ max
1ďiďn

ci “ cs, a “ min
1ďiďn

ci “ cl.

On the other side, by Definition 2.1, we have

ρpCqxm´1
ī

“ pCxm´1qī
“

ř

i2,¨¨¨ ,imPrns
cīi2i3¨¨¨imxi2 ¨ ¨ ¨ xim

“
ř

i2,¨¨¨ ,imPrns

xi2 ¨¨¨xim
cī`ci2`¨¨¨`cim

ď
ř

i2,¨¨¨ ,imPrns

xi2 ¨¨¨xim
a`ci2`¨¨¨`cim

“ pCxm´1ql

“ ρpCqxm´1
l ,
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which implies that

xī “ xl

So we can take ī “ l and R “ rī holds. Similarly, by Definition 2.1 and (3.2), one

has

ρpCqxm´1
i “ pCxm´1qi

“
ř

i2,¨¨¨ ,imPrns
cii2i3¨¨¨imxi2 ¨ ¨ ¨ xim

“
ř

i2,¨¨¨ ,imPrns

xi2 ¨¨¨xim
ci`ci2`¨¨¨`cim

ě
ř

i2,¨¨¨ ,imPrns

xi2 ¨¨¨xim
ā`ci2`¨¨¨`cim

“ pCxm´1qs

“ ρpCqxm´1
s ,

which means that xi “ xs and we can take i “ s. Thus r “ ri and the desired results

follows.

Theorem 3.6. Suppose an even order Cauchy tensor C has positive generating vector

c P Rn. Then C is positive definite if and only if r1, r2, ¨ ¨ ¨ , rn are mutually distinct.

Proof. By conditions, all elements of c are positive, so it is obvious that r1, r2, ¨ ¨ ¨ , rn

are mutually distinct if and only if c1, c2, ¨ ¨ ¨ , cn are mutually distinct. By Theorem

3.3, the desired conclusion follows.

3.2 Inequalities for Cauchy tensors

In this section, we give several inequalities about the largest and the smallest H-

eigenvalues of Cauchy tensors. The bounds for the largest H-eigenvalues are given

for positive semi-definite Cauchy tensors. Moreover, properties of Z-eigenvalues and

Z-eigenvectors of odd order Cauchy tensors are also shown.

It should be noted that a real symmetric tensor always has Z-eigenvalues and

an even order real symmetric tensor always has H-eigenvalues [78]. We denote the

largest and smallest H-eigenvalues of Cauchy tensor C by λmax and λmin respectively.

When C is a positive semi-definite Cauchy tensor, then by the Perron-Frobenius
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theory of non-negative tensors [5], we have

λmax “ ρpCq.

Lemma 3.2. Assume C is a Cauchy tensor with generating vector c. If the entries

of c “ pc1, c2, ¨ ¨ ¨ , cnq have different signs, then,

λmin ď
1

mmaxtci| ci ă 0, i P rnsu
ă 0 ă

1

mmintci| ci ą 0, i P rnsu
ď λmax.

Proof. From Theorem 5 of [78], we have

λmax “ max

$

&

%

Cxm|
ÿ

iPrns

xmi “ 1, x P Rn

,

.

-

and

λmin “ min

$

&

%

Cxm|
ÿ

iPrns

xmi “ 1, x P Rn

,

.

-

.

Combining this with the fact that

Cei
m
“

1

mci
, i P rns,

we have the conclusion of the lemma.

Let r, R, ā and a be defined as in Section 3.1. We have the following result.

Theorem 3.7. Assume even order Cauchy tensor C has generating vector c “

pc1, c2, ¨ ¨ ¨ , cnq. Suppose c ą 0 and at least two elements of c are different. Then

r `
1

mā

˜

c

R

r
´ 1

¸

ă λmax ă R ´
1

mā

ˆ

1´

c

r

R

˙

.
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Proof. Suppose x P Rn is the eigenvector of C corresponding to λmax. By conditions,

Cauchy tensor C is an irreducible non-negative tensor and it follows x ą 0 from

Theorem 1.4 of [5]. Without loss of generality, let x “ px1, x2, ¨ ¨ ¨ , xnq and suppose

0 ă xi ď 1, i P rns such that

xs “ min
iPrns

xi ą 0, xl “ max
jPrns

xj “ 1. (3.3)

By Theorem 3.5, we have

R “ rl, r “ rs

and R ą r since at least two entries of c are not equal.

On the other side, by the definition of eigenvalues, from (3.3), one has

λmaxx
m´1
s “ pCxm´1qs

“
ř

i2,¨¨¨ ,imPrns
csi2¨¨¨imxi2xi3 ¨ ¨ ¨ xm

ď
ř

i2,¨¨¨ ,imPrns
csi2¨¨¨im

“ r,

(3.4)

and

λmax “ λmaxx
m´1
l

“ pCxm´1ql

“
ř

i2,¨¨¨ ,imPrns
cli2¨¨¨imxi2xi3 ¨ ¨ ¨ xm

ě xm´1
s

ř

i2,¨¨¨ ,imPrns
cli2¨¨¨im

“ Rxm´1
s .

(3.5)

Thus, by (3.4) and (3.5), we have

0 ă xm´1
s ď

λmax
R

ď
r

xm´1
s R

,

which can be written as

0 ă xm´1
s ď

c

r

R
.
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Combining this with (3.3), we obtain

λmax “ λmaxx
m´1
l

“ pCxm´1ql

“
ř

i2,¨¨¨ ,imPrns,pl,i2,¨¨¨ ,imq‰pl,s,¨¨¨ ,sq
cli2¨¨¨imxi2xi3 ¨ ¨ ¨ xm ` cls¨¨¨sx

m´1
s

ă
ř

i2,¨¨¨ ,imPrns
cli2¨¨¨im ´ cls¨¨¨s ` cls¨¨¨s

a

r
R

ă R ´ 1
mā
p1´

a

r
R
q,

and

λmax “
1

xm´1
s

ř

i2,¨¨¨ ,imPrns
csi2¨¨¨imxi2xi3 ¨ ¨ ¨ xm

“
csl¨¨¨lx

m´1
l

xm´1
s

` 1
xm´1
s

ř

i2,¨¨¨ ,imPrns,pi2i3¨¨¨imq‰pll¨¨¨lq
csi2¨¨¨imxi2xi3 ¨ ¨ ¨ xm

“
csl¨¨¨l
xm´1
s

` 1
xm´1
s

ř

i2,¨¨¨ ,imPrns,pi2i3¨¨¨imq‰pll¨¨¨lq
csi2¨¨¨imxi2xi3 ¨ ¨ ¨ xm

ą

b

R
r
csll¨¨¨l ` r ´ csll¨¨¨l

ą r ` 1
mā
p

b

R
r
´ 1q,

from which we get the desired inequalities.

Next, we will give several spectral properties for odd order Cauchy tensors.

Theorem 3.8. Suppose an order m dimension n Cauchy tensor C has generating

vector c. Let m be odd and c ą 0. Assume λ P R is a Z-eigenvalue of C with

Z-eigenvector x “ px1, x2, ¨ ¨ ¨ , xnq P Rn. If Z-eigenvalue λ ą 0, then x ě 0; if

Z-eigenvalue λ ă 0, then x ď 0.

Proof. By the condition c ą 0, we know that all entries of Cauchy tensor C are

positive. By definitions of Z-eigenvalue and Z-eigenvector, for any i P rns, we have

that

λxi “ pCxm´1qi

“
ř

i2,i3,¨¨¨ ,imPrns
cii2¨¨¨imxi2xi3 ¨ ¨ ¨ xm

“
ř

i2,i3,¨¨¨ ,imPrns

xi2xi3 ¨¨¨xm
ci`ci2`¨¨¨`cim

“
ř

i2,i3,¨¨¨ ,imPrns

ż 1

0

tci`ci2`¨¨¨`cim´1xi2xi3 ¨ ¨ ¨ xmdt

“

ż 1

0

tci´
1
m p

ÿ

jPrns

tcj´
1
mxjq

m´1dt.

(3.6)
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Since m is odd, by (3.6), one has

λxi ě 0, for i P rns,

which implies that x ě 0 when λ ą 0 and x ď 0 when λ ă 0.

Theorem 3.9. Suppose a Cauchy tensor C and its generating vector c are defined

as in Theorem 3.8. If all entries of c are mutually distinct, then C has no zero

Z-eigenvalue.

Proof. By conditions, since entries of generating vector c are mutually distinct, with-

out loss of generality, suppose

0 ă c1 ă c2 ă ¨ ¨ ¨ ă cn.

We prove the result by contradiction. Suppose C has Z-eigenvalue λ “ 0 with Z-

eigenvector x P Rn. Then, by (3.6), for any i P rns, we have

ż 1

0

tci´
1
m

¨

˝

ÿ

jPrns

tcj´
1
mxj

˛

‚

m´1

dt ” 0.

From properties of integration, one has

tci´
1
m

¨

˝

ÿ

jPrns

tcj´
1
mxj

˛

‚

m´1

” 0, t P r0, 1s,

i.e.,

tci´
1
m

´

tc1´
1
mx1 ` t

c2´
1
mx2 ` ¨ ¨ ¨ ` t

cn´
1
mxn

¯

” 0, t P r0, 1s. (3.7)

By (3.7), we obtain

tc1´
1
mx1 ` t

c2´
1
mx2 ` ¨ ¨ ¨ ` t

cn´
1
mxn ” 0, t P p0, 1s,
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which implies that

x1 ` t
c2´c1x2 ` ¨ ¨ ¨ ` t

cn´c1xn ” 0, t P p0, 1s. (3.8)

Since c1, c2, ¨ ¨ ¨ , cm are mutually distinct, by the continuity property of operators

and (3.8), it follows that

x1 “ 0.

Thus, the equation (3.8) can be written as

tc2´c1x2 ` ¨ ¨ ¨ ` t
cn´c1xn ” 0, t P p0, 1s,

which is equivalent to

x2 ` t
c3´c2x3 ` ¨ ¨ ¨ ` t

cn´c2xn ” 0, t P p0, 1s.

By the continuity property, we have x2 “ 0. Repeating the process above, we get

x1 “ x2 “ ¨ ¨ ¨ “ xn “ 0,

which is contradicting with the fact that x is a Z-eigenvector corresponding to λ “ 0.

The desired conclusion follows.

Next, we have the following theorem on H-eigenvalues of non-negative Cauchy

tensors. By [110], we know that each non-negative symmetric tensor has at least one

H-eigenvalue, which is the largest modulus of its eigenvalues. Here, for non-negative

Cauchy tensors, all the H-eigenvalues must be non-negative.

Theorem 3.10. Let C be a non-negative Cauchy tensor with order m dimension n.

Let c “ pc1, c2, ¨ ¨ ¨ , cnq
T be the generating vector of tensor C. Then all H-eigenvalues

of Cauchy tensor C are non-negative.

Proof. In the case where m is even, since C is non-negative and by the definition of

a Cauchy tensor, we have ci ą 0, i “ 1, ¨ ¨ ¨ , n. By Theorem 3.1, we know that C is
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positive semi-definite. Then, Theorem 5 of [78] gives us that all H-eigenvalues of C

are non-negative.

We now consider the case where m is odd. Let λ be an arbitrary H-eigenvalue of

C with an H-eigenvector x ‰ 0. By the definition of H-eigenvalue, it holds that

λxm´1
i “pCxm´1

qi

“

n
ÿ

i2,¨¨¨ ,im“1

xi2xi3 ¨ ¨ ¨ xim
ci ` ci2 ` ¨ ¨ ¨ ` cim

“

n
ÿ

i2,¨¨¨ ,im“1

ˆ
ż 1

0

tci`ci2`¨¨¨`cim´1xi2xi3 ¨ ¨ ¨ ximdt

˙

“

ż 1

0

˜

n
ÿ

i2,¨¨¨ ,im“1

tci`ci2`¨¨¨`cim´1xi2xi3 ¨ ¨ ¨ xim

¸

dt

“

ż 1

0

˜

n
ÿ

j“1

tcj`
ci´1

m´1xj

¸m´1

dt.

This implies that λ ě 0 since m is odd. Thus, the desired result holds.

Now, we give an example to verify the result of Theorem 3.10. Here, we only show

the non-negativity of H-eigenvalues for an odd order non-negative Cauchy tensor

since all even order non-negative Cauchy tensors are always positive semi-definite

[78].

Example 3.2. Let C “ pci1i2i3q be a non-negative Cauchy tensor with generating

vector c “ p1, 1, 2q. Then, it has entries such that

c111 “ c222 “
1

3
, c333 “

1

6
, c112 “ c121 “ c211 “

1

3
, c113 “ c131 “ c311 “

1

4
,

c122 “ c221 “ c212 “
1

3
, c133 “ c331 “ c313 “

1

5
, c223 “ c232 “ c322 “

1

4
,

c233 “ c332 “ c323 “
1

5
, c123 “ c132 “ c312 “ c321 “ c231 “ c213 “

1

4
.
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By Definition 2.1, to get all H-eigenvalues of C is equivalent to solving the following

system:

$

&

%

1
3
x2

1 `
2
3
x1x2 `

1
2
x1x3 `

1
3
x2

2 `
1
5
x2

3 `
1
2
x2x3 “ λx2

1
1
3
x2

2 `
2
3
x1x2 `

1
2
x2x3 `

1
3
x2

1 `
1
5
x2

3 `
1
2
x1x3 “ λx2

2
1
6
x2

3 `
2
5
x1x3 `

2
5
x2x3 `

1
4
x2

2 `
1
4
x2

1 `
1
2
x1x2 “ λx2

3

(3.9)

Since Cauchy tensor C is non-negative, it always has H-eigenvalue i.e. the above

system at least has a solution λ P R. Next, we will prove that λ may not be negative.

Without loss of generality, choose one equation from (3.9) such that

1

3
x2

1 `
2

3
x1x2 `

1

2
x1x3 `

1

3
x2

2 `
1

5
x2

3 `
1

2
x2x3 “ λx2

1. (3.10)

It is east to see that the left of the equality in (3.10) is quadratic form and the

corresponded symmetric matrix is

¨

˝

1
3

1
3

1
4

1
3

1
3

1
4

1
4

1
4

1
5

˛

‚.

By direct computation, we obtain that the matrix is positive semi-definite, which

implies that

1

3
x2

1 `
2

3
x1x2 `

1

2
x1x3 `

1

3
x2

2 `
1

5
x2

3 `
1

2
x2x3 ě 0, @ x P R3.

Thus, all H-eigenvalues of Cauchy tensor C are non-negative.

3.3 Final remarks

In this chapter, we give several necessary and sufficient conditions for an even or-

der Cauchy tensor to be positive semi-definite. Some properties of positive semi-

definite Cauchy tensors are presented. Furthermore, inequalities about the largest

H-eigenvalue and the smallest H-eigenvalue of Cauchy tensors are shown. At last,
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some spectral properties on Z-eigenvalues and H-eigenvlaues of odd order Cauchy

tensors are shown.

However, there are still some questions that we are not sure now. The Cauchy

matrix can be combined with many other structured matrices to form new structured

matrices such as Cauchy-Toeplitz matrix and Cauchy-Hankel matrix [97, 105, 106].

Can we get the type of Cauchy-Toeplitz tensors and Cauchy-Hankel tensors? If so,

how about their spectral properties? What are the necessary and sufficient conditions

for their positive semi-definiteness?
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Chapter 4

Generalized Cauchy tensors and

Hankel tensors

Among the various structured tensors we mentioned in the previous chapters, in this

chapter, we mainly study Cauchy tensors and Hankel tensors, where further results

about these two classes of tensors are given. The symmetric Cauchy tensors were

defined and analyzed in chapter 3. In the following discussion, we simply refer it as

Cauchy tensors instead of symmetric Cauchy tensors. One of the nice properties of a

Cauchy tensor is that its positive semi-definiteness (or positive definiteness) can be

easily verified by the sign of the associated generating vectors. In fact, it was proved

in Theorem 3.1 and Theorem 3.2, that an even order Cauchy tensor is positive semi-

definite if and only if each of entries of its generating vector is positive, and an even

order Cauchy tensor is positive definite if and only if each entries of its generating

vector is positive and mutually distinct.

Hankel tensors arise from signal processing and data fitting [2, 20, 75]. As far as

we know, the definition of Hankel tensor was first introduced in [75]. Recently, some

easily verifiable structured tensors related to Hankel tensors were also introduced in

[81]. These structured tensors include strong Hankel tensors, complete Hankel tensors

and the associated plane tensors that correspond to underlying Hankel tensors. It

was proved that if a Hankel tensor is co-positive or an even order Hankel tensor
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is positive semi-definite, then the associated plane tensor is co-positive or positive

semi-definite respectively [81]. Furthermore, results on positive semi-definiteness of

even order strong and complete Hankel tensors were given. However, the relationship

between strong Hankel tensors and complete Hankel tensors was not provided in [81].

Later, in [56], it was shown that complete Hankel tensors are strong Hankel tensors;

while the converse is, in general, not true.

4.1 Generalized Cauchy tensors

Now, given two vectors c “ pc1, c2, ¨ ¨ ¨ , cnq
T , d “ pd1, d2, ¨ ¨ ¨ , dnq

T P Rn. Consider

the generalized Cauchy tensor C “ pci1i2¨¨¨imq with order m dimension n, where

ci1i2¨¨¨im “
di1di2 ¨ ¨ ¨ dim

ci1 ` ci2 ` ¨ ¨ ¨ ` cim
, ij P rns, j P rms.

For the sake of simplicity, we call vectors c, d the generating vectors of the general-

ized Cauchy tensor C. In the special case when di “ 1, i P rns, a generalized Cauchy

tensor reduces to a Cauchy tensor defined in Definition 3.1. In the case when m “ 2,

a generalized Cauchy tensor collapses to a symmetric generalized Cauchy matrix [74].

We also note that every rank-one tensor with the form um for some u P Rn is, in

particular, a generalized Cauchy tensor.

Define Cauchy tensor C “ pci1,i2,¨¨¨imq where

ci1,i2,¨¨¨im “
1

ci1 ` ci2 ` ¨ ¨ ¨ ` cim
, ij “ 1, ¨ ¨ ¨ , n, j “ 1, ¨ ¨ ¨ ,m.

It is easy to see for any x P Rn, we have

Cxm ” Cym,

where y P Rn with yi “ dixi for i “ 1, ¨ ¨ ¨ , n. By Theorems 3.1 and Theorem 3.2 in

chapter 3, one may easily conclude that the generalized Cauchy tensor C is positive
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semi-definite if and only if di “ 0, ci ‰ 0 or di ‰ 0, ci ą 0, i P rns and C is positive

definite if and only if c1, c2, ¨ ¨ ¨ , cn are positive real numbers and mutually distinct,

and di ‰ 0, i “ 1, ¨ ¨ ¨ , n.

In this section, we mainly characterize SOS tensor decomposition and completely

positiveness of even order generalized Cauchy tensors with nonzero entries. Before

giving the main results, we briefly recall the definitions of SOS tensor decomposition

and completely positive tensors.

SOS tensor decomposition is first introduced in [37]. The definition of SOS de-

composition relies on the celebrated concept of SOS polynomials, which is a funda-

mental concept in polynomial optimization theory [38, 37, 48, 50, 95]. Assume A is

a symmetric tensor with order m and dimension n. Let m “ 2k be an even number.

If

fpxq “ Axm, x P Rn

can be decomposed to the sum of squares of polynomials of degree k, then f is called

a sum-of-squares (SOS) polynomial, and we say the corresponding symmetric

tensor A has an SOS tensor decomposition [37]. From the definition, any tensor

with SOS decomposition is positive semi-definite. On the other hand, the converse

is not true, in general [37, 38]. The importance of studying SOS decomposition is

that the problem for determining an even order symmetric tensor is an SOS tensor or

not is equivalent to solving a semi-infinite linear programming problem, which can

be done in polynomial time; while determining the positive semi-definiteness of a

symmetric tensor is, in general, NP-hard. Interestingly, it was recently shown in [37]

that for a so-called Z-tensor A where the off-diagonal elements are all non-positive,

A is positive semi-definite if and only if it has SOS decomposition.

Tensor A is called a completely decomposable tensor if there are vectors

xj P Rn, j P rrs such that A can be written as sums of rank-one tensors generated
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by the vector xj, that is,

A “
ÿ

jPrrs

xj
m.

If xj P Rn
` for all j P rrs, then A is called a completely positive tensor [87]. It

was shown that a strongly symmetric, hierarchically dominated non-negative tensor

is a completely positive tensor [87]. It can be directly verified that all even order

completely positive tensors have SOS decomposition, and so, are also positive semi-

definite tensors. We note that verifying a tensor A is a completely decomposable or

not, and finding its explicit rank one decomposition are highly nontrivial. This topic

has attracted a lot of researchers and many important work has been established

along this direction. For detailed discussions, see [17, 45, 87] and the reference

therein.

We now characterize the SOS decomposition and complete decomposability for

even order generalized Cauchy tensors with nonzero entries.

Theorem 4.1. Let C be a generalized Cauchy tensor with even order m and dimen-

sion n. Let c “ pc1, ¨ ¨ ¨ , cnq
T P Rn and d “ pd1, ¨ ¨ ¨ , dnq

T P Rn be the generating

vectors of C. Assume di ‰ 0, i P rns. Then, the following statements are equivalent:

(i) the generalized Cauchy tensor C is a completely decomposable tensor;

(ii) the generalized Cauchy tensor C has SOS decomposition;

(iii) the generalized Cauchy tensor C is positive semi-definite;

(iv) ci ą 0, i P rns.

Proof. Since m is even, by the definitions of completely decomposable tensor, SOS

tensor and positive semi-definite tensor, we can easily obtain piq ñ piiq and piiq ñ

piiiq.
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rpiiiq ñ pivqs Let C be an even order generalized Cauchy tensor which is positive

semi-definite. Then

Cei
m
“

dmi
mci

ě 0.

So ci ą 0 for all i P rns.

rpivq ñ piqs Suppose that ci ą 0, i P rns. Then, for any x P Rn,

fpxq “ Cxm “
n
ÿ

i1,i2,¨¨¨ ,im“1

di1di2 ¨ ¨ ¨ dim
ci1 ` ci2 ` ¨ ¨ ¨ ` cim

xi1xi2 ¨ ¨ ¨ xim

“

n
ÿ

i1,i2,¨¨¨ ,im“1

ˆ
ż 1

0

tci1`ci2`¨¨¨`cim´1di1di2 ¨ ¨ ¨ dimxi1xi2 ¨ ¨ ¨ ximdt

˙

“

ż 1

0

˜

n
ÿ

i1,i2,¨¨¨ ,im“1

tci1`ci2`¨¨¨`cim´1di1di2 ¨ ¨ ¨ dimxi1xi2 ¨ ¨ ¨ xim

¸

dt

“

ż 1

0

˜

n
ÿ

i“1

tci´
1
mdixi

¸m

dt.

(4.1)

By the definition of Riemann integral, we have

Cxm “ lim
kÑ8

k
ÿ

j“1

´

řn
i“1p

j
k
qci´

1
mdixi

¯m

k
.

Let Ck be the symmetric tensor such that

Ckxm “
k
ÿ

j“1

´

řn
i“1p

j
k
qci´

1
mdixi

¯m

k

“

k
ÿ

j“1

˜

n
ÿ

i“1

p
j
k
qci´

1
mdi

k
1
m

xi

¸m

“

k
ÿ

j“1

`

xuj,xy
˘m

,

(4.2)
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where

uj
“

˜

p
j
k
qc1´

1
md1

k
1
m

, ¨ ¨ ¨ ,
p
j
k
qcn´

1
mdn

k
1
m

¸

P Rn, j “ 1, ¨ ¨ ¨ , k. (4.3)

Let CDm,n denote the set consisting of all completely decomposable tensor with order

m and dimension n. From [56, Theorem 1], CDm,n is a closed convex cone when m

is even. It then follows that C “ limkÑ8 Ck is also a completely decomposable

tensor.

Next, we provide a sufficient and necessary condition for the complete positivity of

a generalized Cauchy tensor with nonzero entries, in terms of its generating vectors.

Theorem 4.2. Let C be a generalized Cauchy tensor defined as in Theorem 4.1 with

generating vectors c “ pc1, ¨ ¨ ¨ , cnq
T P Rn and d “ pd1, ¨ ¨ ¨ , dnq

T P Rn. Assume

di ‰ 0, i P rns. Then C is a completely positive tensor if and only if ci ą 0 and

di ą 0, i P rns.

Proof. For necessary condition, suppose that C is a completely positive tensor. Then,

for any vector x P Rn
`, we must have Cxm ě 0. So, Cei

m “
dmi
mci

ě 0. This implies

that ci ą 0, i P rns. To finish the proof, we only need to show di ą 0, i P rns. To see

this, we proceed by the method of contradiction and suppose that

I´ :“ ti P t1, ¨ ¨ ¨ , nu : di ă 0u ‰ H.

Denote r to be the cardinality of I´. Without loss of generality, we assume that

I´ “ t1, ¨ ¨ ¨ , ru. Then, d1 ă 0 and dr`1 ą 0, and hence, the pr ` 1, 1, ¨ ¨ ¨ , 1qth entry

of C satisfies

Cr`1 1 ¨¨¨ 1 “
dr`1d

m´1
1

cr`1 ` pm´ 1qc1

ă 0.

Note that each entry of a completely positive tensor must be a non-negative number.

This makes contradiction, and hence, the necessary condition follows.
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To prove the sufficient condition, from (4.1)-(4.2), we know that

Cxm “ lim
kÑ8

k
ÿ

j“1

`

xuj,xy
˘m

.

As ci ą 0 and di ą 0, i P rns, (4.3) implies that uj P Rn
`, j P rks. So each Ck is

a completely positive tensor. Let CPm,n denote the set consisting of all completely

positive tensors with order m and dimension n. From [87], CPm,n is a closed convex

cone for any m,n P N. It then follows that C “ limkÑ8 Ck is also a completely

positive tensor.

LetA “ pai1¨¨¨imq and B “ pbi1¨¨¨imq be two real tensors with orderm and dimension

n. Then their Hadamard product is a real order m dimension n tensor

A ˝ B “ pai1¨¨¨imbi1¨¨¨imq.

From Proposition 1 of [87], we know that the Hadamard product of two complete-

ly positive tensors is also a completely positive tensor. So, we have the following

conclusion.

Corollary 4.1. Let C1 and C2 be two positive semi-definite Cauchy tensors. Then

the Hadamard product C1 ˝ C2 is also positive semi-definite.

4.2 Further properties on Hankel tensors

Hankel tensors arise from signal processing and some other applications [2, 20, 75, 81].

Recall that an order m dimension n tensor A “ pai1i2¨¨¨imq is called a Hankel tensor

if there is a vector v “ pv0, v1, ¨ ¨ ¨ , vpn´1qmq
T such that

ai1i2¨¨¨im “ vi1`i2`¨¨¨`im´m, @ i1, i2, ¨ ¨ ¨ , im P rns. (4.4)

Such a vector v is called the generating vector of Hankel tensor A.
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For any k P N, let spk,m, nq be the number of distinct sets of indices pi1, i2, ¨ ¨ ¨ , imq,

ij P rns, j P rms such that i1 ` i2 ` ¨ ¨ ¨ ` im ´ m “ k. For example, sp0,m, nq “

1, sp1,m, nq “ m, sp2,m, nq “ mpm`1q
2

. Suppose P “ ppi1i2¨¨¨ipn´1qm
q is an order

pn´ 1qm dimension 2 tensor defined by

pi1i2¨¨¨ipn´1qm
“
spk,m, nqvk
`

pn´1qm
k

˘ ,

where k “ i1` i2` ¨ ¨ ¨` ipn´1qm´pn´ 1qm. Then tensor P is called the associated

plane tensor of Hankel tensor A. When n “ 2, it is obvious that P “ A.

In [81], it was proved that, if a Hankel tensor is co-positive, then its associated

plane tensor P is co-positive and the associated plane tensor is positive semi-definite

if the Hankel tensor is positive semi-definite. Since the associated plane tensor P has

dimension 2, we can use the Z-eigenvalue method in [85] to check its positive semi-

definiteness (alternatively, noting that any 2-dimensional symmetric tensor is positive

semi-definite if and only if it has SOS tensor decomposition, we can also verify the

positive semi-definiteness of the associated plane tensor by solving a semi-definite

programming problem). Thus, the positive semi-definiteness of the associated plane

tensor is a checkable necessary condition for the positive semi-definiteness of even

order Hankel tensors (see more discussion in [81]). This naturally raises the following

questions: can these necessary conditions be also sufficient? If not, are there any

concrete counter-examples?

We first present a result stating that the positive semi-definiteness of the associ-

ated plane tensor is equivalent to the Vandermonde positive semi-definiteness of the

original Hankel tensor.

Theorem 4.3. Let A be a Hankel tensor defined as in (4.4) with an even order

m. Then, the associated plane tensor P is positive semi-definite if and only if A is

Vandermonde positive semi-definite.
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Proof. For necessary condition, let u “ p1, µ, µ2, ¨ ¨ ¨ , µn´1qT P Rn be an arbitrary

Vandermonde vector. If µ “ 0, then we have

Aum “
ÿ

i1,i2,¨¨¨ ,imPrns

ai1i2¨¨¨imui1ui2 ¨ ¨ ¨uim “ v0. (4.5)

By our assumption, for y “ p1, 0qT P R2, it follows that

Pypn´1qm
“

ÿ

i1,i2,¨¨¨ ,ipn´1qmPr2s

pi1i2¨¨¨ipn´1qm
yi1yi2 ¨ ¨ ¨ yipn´1qm

“ v0 ě 0.

Combining this with (4.5), we obtain

Aum ě 0. (4.6)

If µ ‰ 0, there exist y1, y2 P Rzt0u such that µ “ y2

y1
. Let y “ py1, y2q

T P R2. Then,

we have

Pypn´1qm
“

ÿ

i1,i2,¨¨¨ ,ipn´1qmPr2s

pi1i2¨¨¨ipn´1qm
yi1yi2 ¨ ¨ ¨ yipn´1qm

“y
pn´1qm
1

pn´1qm
ÿ

k“0

ˆ

pn´ 1qm

k

˙

spk,m, nqvk
`

pn´1qm
k

˘ µk

“y
pn´1qm
1 Aum

ě0.

By (4.6) and the fact that m is even, for all Vandermonde vectors u P Rn, it follows

that

Aum ě 0,

which implies Hankel tensor A is Vandermonde positive semi-definite.

For sufficiency, let y “ py1, y2q
T P R2. We now verify that Pypn´1qm ě 0. To see

this, we first consider the case where y1 ‰ 0. In this case, let u “ p1, µ, µ2, ¨ ¨ ¨ , µn´1qT P

Rn, where µ “ y2

y1
. From the analysis above, we have

Pypn´1qm
“ y

pn´1qm
1 Aum ě 0 (4.7)
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since m is even and A is Vandermonde positive semi-definite.

On the other hand, if y “ py1, y2q
T P R2 with y1 “ 0, then we let yε “ pε, y2q

T P R2

and u “ p1, µ, µ2, ¨ ¨ ¨ , µn´1qT P Rn, where µ “ y2

ε
, ε ą 0. By (4.7), we have

Pyε
pn´1qm

“ εpn´1qmAum ě 0.

Combining this with the fact that ε ÞÑ Pyε
pn´1qm is a continuous mapping, it follows

that

Pypn´1qm
“ lim

εÑ0
Pyε

pn´1qm
ě 0.

This then implies that plane tensor P is positive semi-definite and the desired result

holds.

Below, we provide an example illustrating that a Hankel tensor which is Van-

dermonde positive semi-definite need not to be positive semi-definite. This example

together with Theorem 4.3, also implies that the positive semi-definiteness of the

associate plane tensor is not sufficient for positive semi-definiteness of the Hankel

tensor.

Example 4.1. Let A be a Hankel tensor with order m “ 4 and dimension n “ 3.

Let the generating vector of A be v0 “ 1, v1 “ ´1, v2 “ 1 and v3 “ v4 “ ¨ ¨ ¨ “ v8 “ 0.

So, for any u “ p1, µ, µ2qT P R3,

Au4
“

ÿ

i1,i2,i3,i4Pr3s

ai1i2i3i4ui1ui2ui3ui4

“

k“8
ÿ

k“0

spk, 4, 3qvkµ
k

“v0 ` 4v1µ` 10v2µ
2

“1´ 4µ` 10µ2
ě 0
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for all µ P R. By Theorem 4.3, we know that the associated plane tensor P is positive

semi-definite. We now verify that A is not positive semi-definite. To see this, let

x “ p1, 1,´1qT , then,

Ax4
“

ÿ

i1,i2,i3,i4Pr3s

vi1`i2`i3`i4´4xi1xi2xi3xi4

“v0x
4
1 ` 4v1x

3
1x2 ` v2p6x

2
2x

2
1 ` 4x3

1x3q

“x4
1 ´ 4x3

1x2 ` p6x
2
2x

2
1 ` 4x3

1x3q

“1´ 4` 6´ 4 “ ´1 ă 0,

which implies that Hankel tensor A is not positive semi-definite.

The following example shows that the the co-positivity of the associated plane

tensor is also not sufficient for the co-positivity of the Hankel tensor, in general.

Example 4.2. Let A be a Hankel tensor with order m “ 4 and dimension n “ 3.

Let the generating vector of A be v0 “ 1, v1 “ ´1, v2 “
1
2
, v3 “ v4 “ ¨ ¨ ¨ “ v8 “ 0.

Let x “ p1, 1
2
, 0qT . Then, we have

Ax4
“ ´

1

4
ă 0,

which implies that Hankel tensor A is not co-positive. On the other hand, it holds

that

Au4
“ 1´ 4µ` 5µ2

ě 0

for any Vandermonde vector u “ p1, µ, µ2qT P R3. By Theorem 4.3, the associated

plane tensor P is positive semi-definite. Thus, P is co-positive.

A special class of Hankel tensor is the complete Hankel tensors. To recall the

definition of a complete Hankel tensor, we note that, for a Hankel tensor A with

order m dimension n, if

A “
r
ÿ

k“1

αkpukq
m, (4.8)
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where αk P R, αk ‰ 0, uk “ p1, µk, µ
2
k, ¨ ¨ ¨ , µ

n´1
k qT P Rn, k “ 1, 2, ¨ ¨ ¨ , r, for some

µi ‰ µj for i ‰ j, then, we say A has a Vandermonde decomposition. The

corresponding vector uk, k “ 1, ¨ ¨ ¨ , r are called Vandermonde vectors and the

minimum value of r is called Vandermonde rank of A [81]. From Theorem 3

of [81], we know that A is a Hankel tensor if and only if it has a Vandermonde

decomposition (4.8). If αk ą 0 for k P rrs in (4.8), then A is called a complete

Hankel tensor.

In [81], it is proved that an even order complete Hankel tensor is positive semi-

definite. Moreover, examples were also presented to show that the converse is, in

general, not true. Here, in the following theorem, we show that if the Vandermonde

rank of a Hankel tensor A is less than the dimension of the underlying space, then

positive semi-definiteness of A is equivalent to the fact that A is a complete Hankel

tensor, and so, is further equivalent to the SOS decomposition property of A.

Theorem 4.4. Let A be a Hankel tensor with an even order m. Assume that the

Hankel tensor A has Vandermonde decomposition (4.8) with the Vandermonde rank

r satisfies r ď n. Then, the following statements are equivalent:

(i) A is a positive semi-definite tensor;

(ii) A is a complete Hankel tensor.

(iii) A has SOS tensor decomposition;

Proof. We first note that the implications rpiiqs ñ rpiiiqs and rpiiiqs ñ rpiqs are direct

consequences from the definitions. Thus, to see the conclusion, we only need to prove

rpiqs ñ rpiiqs. To do this, we proceed by the method of contradiction and assume

that there exists at least one coefficient αi in (4.8) which is negative. Without loss

of generality, we assume that α1 ă 0. For any x “ px1, x2, ¨ ¨ ¨ , xnq
T P Rn, then we
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have

Axm “
r
ÿ

k“1

αkpuk
Txqm

“α1pu1
Txqm ` α2pu2

Txqm ` ¨ ¨ ¨ ` αrpur
Txqm.

(4.9)

Consider the following two homogeneous linear equation systems

Ax “ 0, Bx “ 0,

where

A “

¨

˚

˚

˚

˝

1 µ1 µ2
1 ¨ ¨ ¨ µn´1

1

1 µ2 µ2
2 ¨ ¨ ¨ µn´1

2
...

...
...

...
...

1 µr µ2
r ¨ ¨ ¨ µn´1

r

˛

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˝

1 µ2 µ2
2 ¨ ¨ ¨ µn´1

2

1 µ3 µ2
3 ¨ ¨ ¨ µn´1

3
...

...
...

...
...

1 µr µ2
r ¨ ¨ ¨ µn´1

r

˛

‹

‹

‹

‚

.

By conditions r ď n, it is easy to get

RankpAq “ r ď n, RankpBq “ r ´ 1 ă n,

which imply that there is vector x0 P Rn, x0 ‰ 0 such that

Ax0 ‰ 0, Bx0 “ 0.

Here, RankpAq denotes the rank of matrix A. So, it holds that

u1
Tx0 ‰ 0, ui

Tx0 “ 0, i P t2, 3, ¨ ¨ ¨ , ru.

Combining this with (4.9), we have

Ax0
m
“ α1pu1

Tx0q
m
ă 0

since m is even. However, this contradicts to the fact that A is positive semi-definite.

Thus, all coefficients in (4.8) are positive and A is a complete Hankel tensor.
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An interesting consequence of Theorem 4.4 is as follows: a necessary condition

for a PNS (positive semi-definite but not with SOS tensor decomposition) Hankel

tensor A is that the Vandermonde rank r of the Hankel tensor A is strictly larger

than the dimension n of the underlying space. We note that searching for a PNS

Hankel tensor is a non-trivial task and is related to Hilbert’s 17th question. Recently,

some extensive study for PNS Hankel tensor has been initialed in [55].

Next, we provide some necessary conditions for the positive semi-definiteness of a

Hankel tensor A in terms of the sign properties of the coefficients of its Vandermonde

decomposition.

Proposition 4.1. Let A be a Hankel tensor with the Vandermonde decomposition

(4.8). Suppose that A is positive semi-definite. Then,

(i) the coefficients of the Vandermonde decomposition satisfy

α1 ` α2 ` ¨ ¨ ¨ ` αr ě 0;

(ii) if r ą n, then the total number of positive coefficients of the Vandermonde

decomposition is greater than or equal to n;

(iii) if r ď n, then all coefficients of the Vandermonde decomposition are positive.

Proof. (i) Since A is positive semi-definite, so we have

Ae1
m
“

r
ÿ

i“1

αipu
T
i e1q

m
“ α1 ` α2 ` ¨ ¨ ¨ ` αr ě 0.

(ii) Denote the total number of positive coefficients in (4.8) by t. Without loss of

generality, let

αi ą 0, i P rts; αj ă 0, j P tt` 1, t` 2, ¨ ¨ ¨ , ru.

We proceed by the method of contradiction and suppose that t ă n. If t “ 0, we can

easily get a contradiction because A is positive semi-definite. If 0 ă t ă n, consider
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the following two linear equation systems

Ax “ 0 (4.10)

and

Bx “ 0, (4.11)

where

A “

¨

˚

˚

˚

˝

1 µ1 µ2
1 ¨ ¨ ¨ µn´1

1

1 µ2 µ2
2 ¨ ¨ ¨ µn´1

2
...

...
...

...
...

1 µt µ2
t ¨ ¨ ¨ µn´1

t

˛

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˝

1 µ1 µ2
1 ¨ ¨ ¨ µn´1

1

1 µ2 µ2
2 ¨ ¨ ¨ µn´1

2
...

...
...

...
...

1 µr µ2
r ¨ ¨ ¨ µn´1

r

˛

‹

‹

‹

‚

.

Noting that RankpAq “ t ă n and RankpBq “ n, basic linear algebra theory implies

that the system (4.10) has nonzero solutions and system (4.11) has only zero solution.

Thus, there exists x̄ P Rn, x̄ ‰ 0 such that

uT
i x̄ “ 0, i P rts and puT

t`1x̄, ¨ ¨ ¨ ,u
T
r x̄qT ‰ 0.

Note that the order m is an even number (as A is positive semi-definite). This

implies that

Ax̄m “
r
ÿ

j“t`1

αjpu
T
j x̄qm ă 0.

This contradicts with the fact that A is positive semi-definite. Then we get t ě n.

(iii) If r ď n, then the conclusion is a direct result of Theorem 4.4.

The following example shows that r ď n in Theorem 4.4 is necessary and the

results (i), (ii) of Proposition 4.1 are not sufficient.

Example 4.3. Let A be 4th order 2 dimension Hankel tensor with Vandermonde

decomposition such that

A “ pai1i2i3i4q “ x4
` y4

´ z4, (4.12)
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where x “ p1, 0q,y “ p1, 1q, z “ p1,´1q are Vandermonde vectors in R2. We first

prove that the Vandermonde rank of A is r “ 3.

(I) Suppose A “ αu4, α P R, α ‰ 0,u “ p1, µq P R2. Then, by (4.12), we obtain

a1111 “ α “ 1, a1112 “ αµ “ 2, a1122 “ αµ2
“ 0,

which are contradictive equations. So, the Vandermonde rank of A satisfies r ě 2.

(II) Suppose A “ α1u1
4 ` α2u2

4, where u1 “ p1, µ1q,u2 “ p1, µ2q P R2, µ1 ‰ µ2,

and α1, α2 are nonzero real numbers. Then, by (4.12), we have the following system

$

’

’

’

’

&

’

’

’

’

%

α1 ` α2 “ 1, p1q
α1µ1 ` α2µ2 “ 2, p2q
α1µ

2
1 ` α2µ

2
2 “ 0, p3q

α1µ
3
1 ` α2µ

3
2 “ 2, p4q

α1µ
4
1 ` α2µ

4
2 “ 0. p5q

We first prove that µ1 ‰ 1, µ2 ‰ 1. By contradiction, if µ1 “ 1, then by (2) (4),

we have

α2µ2pµ
2
2 ´ 1q “ 0,

which implies that µ2 “ 0 or µ2 “ ´1 (µ2 can not be 1 since µ1 ‰ µ2). If µ1 “

1, µ2 “ 0, we get a contradiction from (2) and (3); if µ1 “ 1, µ2 “ ´1, we get another

contradiction from (1) and (3). Thus, µ1 ‰ 1. Similarly, we can prove that µ2 ‰ 1.

On the other hand, by (2),(3),(4),(5), it holds that

α1µ1pµ
2
1 ´ 1q “ α2µ2p1´ µ

2
2q (4.13)

and

α1µ
2
1pµ

2
1 ´ 1q “ α2µ

2
2p1´ µ

2
2q. (4.14)

By (4.13), (4.14), it follows that µ1 “ µ2, which is a contradiction. Thus, the

Vanderonde rank of the Hankel tensor A is r “ 3.
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For this Hankel tensor A, it is easy to check that conditions (i), (ii) in Proposition

4.1 hold. But A is not positive semi-definite since that

Ax0
4
“ ´15 ă 0, x0 “ p1,´1q P R2.

4.3 Properties of Cauchy-Hankel tensors

In the literature, there is an important class of structured matrices called Cauchy-

Hankel matrices which is closely related with Cauchy matrices and Hankel matrices

simultaneously [29, 98, 97]. A matrix A is called a Cauchy-Hankel matrices if it can

be formulated as

A “

ˆ

1

g ` hpi` jq

˙n

i,j“1

,

where g and h are real constants such that h ‰ 0 and g
h

is not an integer [3].

As a natural extension of Cauchy-Hankel matrix, a tensor A “ pai1i2¨¨¨imq with

order m and dimension n is called a Cauchy-Hankel tensor if

ai1i2¨¨¨im “
1

g ` hpi1 ` i2 ` ¨ ¨ ¨ ` imq
, ij P rns, j P rms, (4.15)

where g, h ‰ 0 P R and g
h

is not an integer.

It is obvious that a Cauchy-Hankel tensor is a symmetric tensor. From Definition

3.1, we know that a Cauchy-Hankel tensor defined by (4.15) is a Cauchy tensor with

generating vector

c “ p
g

m
` h,

g

m
` 2h, ¨ ¨ ¨ ,

g

m
` nhqT P Rn,

and it is a Hankel tensor [75, 81] at the same time with

vk “
1

g ` hpk `mq
, k P t0, 1, 2, ¨ ¨ ¨ , pn´ 1qmu.

53



Theorem 4.5. Let A be a Cauchy-Hankel tensor defined as in (4.15) with even order

m. Then, A is positive definite if and only if

g `mh ą 0, g ` nmh ą 0.

Proof. For necessary condition, since A is positive definite, so we have

Ae1
m
“

1

g `mh
ą 0, Aen

m
“

1

g `mnh
ą 0,

and the desired results hold.

For sufficiency, since

g `mh ą 0, g ` nmh ą 0,

it follows that

g ` smh ą 0, @ s P t1, 2, ¨ ¨ ¨ , nu.

Combining Theorem 3.3 and the fact that

g ` imh ‰ g ` jmh, @ i, j P rns, i ‰ j,

we know that A is positive definite and the desired result follows.

Next, we define the homogeneous polynomial fpxq as below

fpxq “ Axm “
ÿ

i1,i2,¨¨¨ ,imPrns

ai1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim ,

for x “ px1, x2, ¨ ¨ ¨ , xnq
T P Rn. Let x,y P X Ď Rn. If fpxq ě fpyq for any

x ě ypx ď y respectively), then we say fpxq is monotonically increasing (monotoni-

cally decreasing respectively) inX. If fpxq ą fpyq for any x ě y,x ‰ ypx ď y,x ‰ y

respectively), then we say fpxq is strict monotonically increasing (strict monotoni-

cally decreasing respectively) in X.
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When A is a Cauchy tensor with even order, it has been proved that fpxq is strict

monotonically increasing in Rn
` if the Cauchy tensor A is positive definite; while the

converse need not to be true (see chapter 3). For even order Cauchy-Hankel tensors,

we have the following conclusion, which is stronger than the corresponded conclusion

listed in chapter 3.

Theorem 4.6. Let A be a Cauchy-Hankel tensor defined as in (4.5) with an even or-

der m. Then, A is positive definite if and only if fpxq “ Axm is strict monotonically

increasing in Rn
`.

Proof. For the only if part, suppose x,y P Rn
`, x ě y and x ‰ y, which means that

there exists at least one subscript i satisfying xi ą yi. Then, we have

fpxq ´ fpyq “Axm ´Aym

“
ÿ

i1,i2,¨¨¨ ,imPrns

xi1xi2 ¨ ¨ ¨ xim ´ yi1yi2 ¨ ¨ ¨ yim
g ` hpi1 ` i2 ` ¨ ¨ ¨ ` imq

“
xmi ´ y

m
i

g ` imh
`

ÿ

i1i2¨¨¨im‰ii¨¨¨i

xi1xi2 ¨ ¨ ¨ xim ´ yi1yi2 ¨ ¨ ¨ yim
g ` hpi1 ` i2 ` ¨ ¨ ¨ ` imq

.

Since A is positive definite, by Theorem 4.5, we obtain

g ` kmh ą 0, @ k P rns.

So, we obtain

xmi ´ y
m
i

g ` imh
ą 0

and
ÿ

i1i2¨¨¨im‰ii¨¨¨i

xi1xi2 ¨ ¨ ¨ xim ´ yi1yi2 ¨ ¨ ¨ yim
g ` hpi1 ` i2 ` ¨ ¨ ¨ ` imq

ě 0.

Thus, we have

fpxq ´ fpyq ą 0,
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which implies that fpxq is strict monotonically increasing in Rn
`.

For the if part, note that ei P Rn
` and ei ě 0, ei ‰ 0, i “ 1, n. It then follows

that

fpe1q ´ fp0q “ Ae1
m
“

1

g `mh
ą 0

and

fpenq ´ fp0q “ Aen
m
“

1

g ` nmh
ą 0.

By Theorem 4.5, we know that Cauchy-Hankel tensor A is positive definite and the

desired results hold.

Theorem 4.5 and Theorem 4.6 provide a convenient checkable condition to verify

the positive definiteness of the Cauchy-Hankel tensor, and the strict monotonicity of

the multivariate polynomial corresponding to the tensor. Here, we present several

examples to show the efficiency of the theory conclusions.

Example 4.4. Suppose A “ pai1i2i3i4q is a Cauchy-Hankel tensor such that

ai1i2i3i4 “
1

9´ 2pi1 ` i2 ` i3 ` i4q
, ij P r3s, j P r4s.

Here, it takes g “ 9, h “ ´2 and m “ 4, n “ 3. Since g `mh ą 0, g `mnh ă 0,

tensor A is not positive definite and strict monotonically increasing in Rn
`. In fact,

it holds that

Ae2
4
“ ´

1

7
, Ae2

4
ă A04.

Example 4.5. Let A “ pai1i2i3i4i5i6q be a tensor such that

ai1i2i3i4 “
1

100´ 3pi1 ` i2 ` i3 ` i4 ` i5 ` i6q
, ij P r4s, j P r6s.
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By Theorem 4.5, Theorem 4.6 and the fact that

g `mh “ 100´ 6 ¨ 3 “ 72 ą 0, g `mnh “ 100´ 6 ¨ 4 ¨ 3 “ 18 ą 0,

A is positive definite and Axm is strict monotonically increasing.

4.4 Final remarks

In this chapter, we present various new results on Cauchy tensors and Hankel tensors

which complements the existing literature. Firstly, we show that generalized positive

semi-definite Cauchy tensors with nonzero entries have SOS tensor decomposition.

Furthermore, sufficient and necessary conditions are given to guarantee an even order

generalized Cauchy tensor is a completely positive tensor. The nonnegativity of H-

eigenvalues of non-negative Cauchy tensors are also established. For Hankel tensors,

we prove that it is Vandermonde positive semi-definite if and only if the associated

plane tensor is positive semi-definite. We also show that, if the Vandermonde rank of

a Hankel tensor A is less than the dimension of the underlying space, then positive

semi-definiteness ofA is equivalent to the fact thatA is a complete Hankel tensor, and

so, is further equivalent to the SOS tensor decomposition of A. Finally, properties

of Cauchy-Hankel tensors are also given.
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Chapter 5

Spectral properties of

odd-bipartite Z-tensors and their

absolute tensors

Since the pioneer work of [78] and [62], a lot of researchers have devoted themselves

to the study of spectral properties of tensors in the past several years [4, 5, 6, 12,

11, 18, 32, 43, 47, 60, 73, 109]. The main difficulty in tensor problems is that they

are generally nonlinear. Because of the difficulties in studying the properties of

a general tensor, researchers focus on some structured tensors. Z-tensors are an

important class of structured tensors and have been well studied [19, 68, 116]. They

are closely related with spectral graph theory, the stationary distribution of Markov

chains and the convergence of iterative methods for linear systems.

Recently, in [40], Hu et al. considered the largest Laplacian H-eigenvalue and the

largest signless Laplacian H-eigenvalue of a k-uniform connected hypergraph. When

the order is even and the hypergraph is odd-bipartite, they proved that the largest

Laplacian H-eigenvalue and the largest signless Laplacian H-eigenvalue are equal.

For the odd order case, it is proved that the largest Laplacian H-eigenvalue is strictly

less than the largest signless Laplacian H-eigenvalue [40]. Later, Shao et al. [94] gave

several spectral characterizations of the connected odd-bipartite hypergraphs. They
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proved that the spectrum of the Laplacian tensor and the spectrun of the signless

Laplacian tensor of an uniform hypergraph are equal if and only if the hypergraph

is an even order connected odd-bipartite hypergraph. Since the Laplacian tensor is

a special case of Z-tensors and the signless Laplacian tensor is a special case of the

absolute tensors of Z-tensors, questions comes naturally: what is the relation between

the largest H-eigenvalue of a general Z-tensor, and the largest H-eigenvalue of the

Z-tensor’s absolute tensor? What is the relation between spectrums of a general

Z-tensor and its absolute tensor? These constitute main motivations of the paper.

5.1 Odd-bipartite and even-bipartite tensors

In this section, we first define odd-bipartite tensors and even-bipartite tensors. Then,

some special characteristics of this kinds of tensors are shown.

Definition 5.1. Assume A “ pai1¨¨¨imq is an tensor with order m and dimension n.

If there is a nonempty proper index subset V Ă rns such that

ai1¨¨¨im ‰ 0, when |V X ti1, ¨ ¨ ¨ , imu| is odd

and ai1¨¨¨im “ 0 for the others, then A is called an odd-bipartite tensor corresponding

to set V or A is odd-bipartite for simple.

Here, we should note that indices of an edge ti1, ¨ ¨ ¨ , imu in hypergraph [39] are

different from each other, which is a notable distinction to general tensors. So, in

this article, we define that |V Xti1, ¨ ¨ ¨ , imu| is the number of indices V Xti1, ¨ ¨ ¨ , imu,

and duplicate indices should be calculated. For example, suppose V “ t1, 2, 3u and

A is a 4th order 6 dimensional tensor, then

|V X t1, 1, 3, 3u| “ 4, |V X t1, 2, 3, 5u| “ 3, |V X t4, 6, 4, 5u| “ 0.
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Definition 5.2. Assume A “ pai1¨¨¨imq is a tensor with order m and dimension n.

A is called weakly odd-bipartite if there is a nonempty proper index subset V Ă rns

such that

ai1¨¨¨im “ 0, when |V X ti1, ¨ ¨ ¨ , imu| is even.

From Definitions 5.1 and 5.2, even-bipartite and weakly even-bipartite tensors

can be defined similarly. Furthermore, we can easily prove that, if A is odd-bipartite

(even-bipartite, respectively), then A is weakly odd-bipartite (weakly even-bipartite

respectively), but not vice versa. For example, supposeA is a 3rd order 2 dimensional

tensor with entries such that

a222 “ 1 and ai1i2i3 “ 0

for the others. It is easy to check that A is weakly odd-bipartite corresponding to

the index set V “ t2u but not odd-bipartite corresponding to t1u or t2u.

When m is odd, for all i1, i2, ¨ ¨ ¨ , im P rns and a nonempty proper index subset

V Ă rns, it holds that |ti1, i2, ¨ ¨ ¨ , imu X V | is odd if and only if |ti1, i2, ¨ ¨ ¨ , imu X V̄ |

is even, where V̄ “ rnszV . So, by Definitions 5.1 and 5.2, we can readily obtain the

following conclusion.

Lemma 5.1. Let A be a tensor with order m and dimension n. Assume m is

odd. Then, A is odd-bipartite (or weakly odd-bipartite respectively) corresponding

to nonempty proper index subset V Ă rns if and only if A is even-bipartite (or

weakly even-bipartite respectively) corresponding to the nonempty proper index subset

V̄ “ rnszV .

Irreducible tensors are a class of important and useful tensors, which have been

repeatedly used in Perron Frobenius Theorem for non-negative tensors [5, 110, 111].

Next, we will study the relation between irreducible tensors and odd-bipartite ten-

sors. To do this, we first list the corresponding definition below, which comes from

[5].
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Definition 5.3. For a tensor T with order m and dimension n. We call T is

reducible if there is a nonempty proper index subset V Ă rns such that

ti1i2¨¨¨im “ 0, @ i1 P V, @ i2, i3, ¨ ¨ ¨ , im R V.

Otherwise we call T is irreducible.

Theorem 5.1. Let m be even. Assume tensor A “ pai1¨¨¨imq with order m and

dimension n is odd-bipartite. Then A is irreducible.

Proof. Since A is odd-bipartite, there exists a nonempty proper index subset V Ă rns

satisfying

ai1¨¨¨im ‰ 0, when the number |V X ti1, ¨ ¨ ¨ , imu| is odd. (5.1)

By contradiction, suppose A “ pai1¨¨¨imq is reducible, then there is a nonempty

proper index subset V1 Ă rns such that

ai1¨¨¨im “ 0, @ i1 P V1, @ i2, ¨ ¨ ¨ , im R V1. (5.2)

We will break the proof into four cases. (i) If V1 Ď V , let i1 P V1, i2, ¨ ¨ ¨ , im R V . Here,

several indices in i2, ¨ ¨ ¨ , im may equal to each other when the number of elements

in rnszV is strictly less than m´ 1. Then, by (5.2) we have

ai1¨¨¨im “ 0,

which contradicts (5.1) since |V X ti1, ¨ ¨ ¨ , imu| “ 1 is odd.

(ii) If V Ď V1, let i1 P V, i2, ¨ ¨ ¨ , im R V1. Then, by (5.2) one has

ai1¨¨¨im “ 0,

which is a contradiction with (5.1).
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(iii) If V X V1 ‰ H and neither V Ď V1 nor V1 Ď V , let i1 P V1zV, i2, ¨ ¨ ¨ , im P

V zV1. Then it follows that

ai1¨¨¨im “ 0,

which also contradicts (5.1), since |V X ti1, ¨ ¨ ¨ , imu| “ m´ 1 is a odd number.

(iv) If V X V1 “ H, let i1 P V1, i2, ¨ ¨ ¨ , im P V . By Definition 5.3, we have

ai1¨¨¨im “ 0.

Since |V X ti1, ¨ ¨ ¨ , imu| “ m´ 1 be odd, by (5.1), one has

ai1¨¨¨im ‰ 0,

which is a contradiction. All in all, we know that A can not be reducible and the

desired results follows.

If a tensor A is even-bipartite, no matter the order of A is odd or even, we have

the following result.

Theorem 5.2. Assume tensor A “ pai1¨¨¨imq with order m and dimension n is even-

bipartite corresponding to a nonempty proper index subset V Ď rns. Then A is

reducible corresponding to V .

Proof. By definitions of reducible tensors and even-bipartite tensors, the conclusion

obviously holds.

Suppose an even order Z-tensor and its absolute tensor are defined such that,

A “ D ´ C, |A| “ D ` C, (5.3)

where D is an non-negative diagonal tensor and C is an non-negative tensor with

zero diagonal entries. From Theorem 5.2, if C is odd-bipartite, then tensors A and

|A| are irreducible. Combining this with Theorem 3.1 of [27] we have the following

result.
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Corollary 5.1. Let m be even. Suppose tensor A “ D ´ C with order m and

dimension n is defined as in (5.3). Then, A and its absolute tensor |A| are all

weakly irreducible if non-negative tensor C is odd-bipartite.

By the Perron-Frobenius theorem on non-negative tensors in [5] and by Theorem

4.1 of [27], the following result follows.

Corollary 5.2. Let m be even. Assume tensor A is defined as in Corollary 5.1. If C

is odd-bipartite, the largest H-eigenvalue of |A| is ρp|A|q. Furthermore, there exists

a positive n dimensional eigenvector x P Rn such that

|A|xm´1
“ ρp|A|qxrm´1s.

5.2 Relation between the largest H-eigenvalues of

a Z-tensor and its absolute tensor

In this section, suppose an order m dimension n Z-tensor A with non-negative di-

agonal elements has format

A “ D ´ C, (5.4)

where D is an non-negative diagonal tensor and C is an non-negative tensor with

zero diagonal elements. So the absolute format of A is |A| “ D` C. In the following

analysis, entries of A, C and D are always defined as below

A “ pai1¨¨¨imq, C “ pci1¨¨¨imq, D “ pdi1¨¨¨imq, i1, i2, ¨ ¨ ¨ , im P rns.

For the sake of simple, let dii¨¨¨i “ di, i P rns.

During this part, we mainly study the relationship between the largestH-eigenvalue

of a Z-tensor A in (5.4), and the largest H-eigenvalue of the absolute tensor of A.

Sufficient and necessary conditions or sufficient conditions to guarantee the equality

of these largest H-eigenvalues are shown. It should be noted that all even order
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non-negative tensors always have H-eigenvalues [110]. To proceed, we make an as-

sumption in advance, all tensors considered in this part always have H-eigenvalues.

The largest H-eigenvalues of A and |A| are denoted by λpAq and λp|A|q respec-

tively. From Corollary 5.2, we know that λp|A|q “ ρp|A|q.

Theorem 5.3. Let m be even. Suppose A “ D ´ C is defined as (5.4). Then,

λpAq “ λp|A|q

if C is odd-bipartite.

Proof. By Lemma 13 of [80], we have

λpAq ď ρpAq ď ρp|A|q “ λp|A|q.

Thus, in order to prove the conclusion, we only need to prove

λp|A|q ď λpAq.

Since C is odd-bipartite, there exists a nonempty proper index subset V Ă rns satis-

fying

ci1¨¨¨im ‰ 0, if |V X ti1, ¨ ¨ ¨ , imu| is odd,

and ci1¨¨¨im “ 0 for the others. So, for all entries of A, it follows that

ai1¨¨¨im ‰ 0, if |V X ti1, ¨ ¨ ¨ , imu| is odd,

and ai1¨¨¨im “ 0 for the others except the diagonal entries aii¨¨¨i, i P rns. By Theorem

5.2, we know that C, A and |A| are all irreducible tensors. From Theorem 4.1 of [27]

and Definition 2.1, there is a vector x P Rn, x ą 0 satisfying

|A|xm´1
“ λp|A|qxrm´1s.

Suppose y P Rn be defined such that yi “ xi whenever i P V and yi “ ´xi for the

others. When i P V , we have
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pAym´1qi “ rpD ´ Cqym´1si
“ diy

m´1
i ´

ř

i2,¨¨¨ ,imPrns
cii2¨¨¨imyi2 ¨ ¨ ¨ yim

“ diy
m´1
i ´

ř

i2,¨¨¨ ,imPrns |V X ti, i2, ¨ ¨ ¨ , imu| is odd cii2¨¨¨imyi2 ¨ ¨ ¨ yim
“ dix

m´1
i `

ř

i2,¨¨¨ ,imPrns |V X ti, i2, ¨ ¨ ¨ , imu| is odd cii2¨¨¨imxi2 ¨ ¨ ¨ xim
“ rpD ` Cqxm´1si
“ λp|A|qxm´1

i

“ λp|A|qym´1
i .

(5.5)

Here the fourth equality follows the fact that m is even and exactly odd number

indices take negative values for each ti2, ¨ ¨ ¨ , imu Ď rns. When i R V , we have

pAym´1qi “ rpD ´ Cqym´1si
“ diy

m´1
i ´

ř

i2,¨¨¨ ,imPrns
cii2¨¨¨imyi2 ¨ ¨ ¨ yim

“ diy
m´1
i ´

ř

i2,¨¨¨ ,imPrns |V X ti, i2, ¨ ¨ ¨ , imu| is odd cii2¨¨¨imyi2 ¨ ¨ ¨ yim
“ ´dix

m´1
i ´

ř

i2,¨¨¨ ,imPrns |V X ti, i2, ¨ ¨ ¨ , imu| is odd cii2¨¨¨imxi2 ¨ ¨ ¨ xim
“ ´ rpD ` Cqxm´1si
“ ´λp|A|qxm´1

i

“ λp|A|qym´1
i .

(5.6)

Here the fourth equality follows the fact that m is even and exactly even number

indices take negative values for each ti2, ¨ ¨ ¨ , imu Ď rns. The last equality of (5.6)

follows from the definition of yi “ ´xi when i R V . Thus, by (5.5), (5.6) and

Definition 2.1, λp|A|q is a H-eigenvalue of A with H-eigenvector y. So, we have

λp|A|q ď λpAq,

and the desired result follows.

Here, in the proof of Theorem 5.3, odd-bipartite property of C guarantees that

|A| has a positive H-eigenvector. Actually, if the H-eigenvector is non-negative, one

can obtain the same result. Before proving this, we first cite an useful conclusion

from [110].

Lemma 5.2. If A is a non-negative tensor with order m and dimension n, then

ρpAq is an eigenvalue of A with a non-negative eigenvector y ‰ 0.
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Theorem 5.4. Let m be even. Suppose A is defined as in Theorem 5.3. If C is

weakly odd-bipartite, then it holds that

λpAq “ λp|A|q.

Proof. Since tensor C is weakly odd-bipartite, so there is a nonempty proper index

subset V Ď rns such that

ci1¨¨¨im “ 0, when |ti1, ¨ ¨ ¨ , imu X V | is even,

and |ti1, ¨ ¨ ¨ , imu X V | must be an odd number for nonzero entries ci1¨¨¨im ‰ 0,

i1, ¨ ¨ ¨ , im P rns.

On the other hand, by Lemma 5.2, there is a non-negative H-eigenvector x ě 0

of |A| corresponding to λp|A|q . Suppose vector y P Rn be defined such that yi “ xi

whenever i P V and yi “ ´xi for the others. Then, the remaining process is similar

with the proof of Theorem 5.3.

Now, we will give an example to show that the conditions in Theorem 5.4 is not

necessary. For example, suppose 4th order 2 dimensional tensor A with entries such

that

a1111 “ a2222 “ 1, a1122 “ ´1,

and ai1i2i3i4 “ 0 for the others. After calculating the largest H-eigenvalues of A and

|A|, we obtain

λpAq “ λp|A|q “ 1.

But, the non-negative tensor C is not weakly odd-bipartite corresponding to any

nonempty proper index subset of t1, 2u. In the following, sufficient and necessary

conditions for the equality of the two largest H-eigenvalues are presented, and it is

proved that the necessity of the Theorem 5.4 holds when the non-negative tensor C

is weakly irreducible. Before doing this, we cite a definition from [80].
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Definition 5.4. Assume that T is a tensor with order m and dimension n. Construct

a graph Ĝ “ pV̂ , Êq, where V̂ “ Ydj“1Vj and Vj are subsets of t1, 2, ¨ ¨ ¨ , nu for

j “ 1, ¨ ¨ ¨ , d. Suppose that ij P Vj, il P Vl, j ‰ l. pij, ilq P Ê if and only if ti1i2¨¨¨im ‰ 0

for some m´2 indices ti1, ¨ ¨ ¨ , imuztij, ilu. Then, tensor T is called weakly irreducible

if Ĝ is connected.

As observed in [27], an irreducible tensor must be always weakly irreducible.

Theorem 5.5. Let A be defined as in Theorem 5.4. Assume C is weakly irreducible.

Then,

λpAq “ λp|A|q,

if and only if C is weakly odd-bipartite.

Proof. The sufficient condition has been proved in Theorem 5.4, and we only need

to prove the necessary part.

Suppose x P Rn is an H-eigenvector of A corresponding to λpAq such that
řn
i“1 x

m
i “ 1. Assume y P Rn be defined by yi “ |xi|, for i P rns. Since m is

even, one has
řn
i“1 y

m
i “ 1. By Lemma 3.1 of [57], we have

λpAq “ Axm “ pD ´ Cqxm
“

řn
i“1 dix

m
i ´

ř

i1,¨¨¨ ,imPrns
ci1i2¨¨¨imxi1 ¨ ¨ ¨ xim

ď
řn
i“1 diy

m
i `

ř

i1,¨¨¨ ,imPrns
ci1i2¨¨¨imyi1 ¨ ¨ ¨ yim

“ pD ` Cqym ď λp|A|q.

(5.7)

Hence, by the fact that λpAq “ λp|A|q, all inequalities in equation (5.7) should be

equalities, which implies that y is a H-eigenvector of |A| corresponding to λp|A|q.

Since C is weakly irreducible, |A| is also weakly irreducible. According to Theorem 4.1

of [27], it holds that y ą 0 i.e., all elements in y are positive. Let V “ ti P rns| xi ą 0u

and V̄ “ ti P rns| xi ă 0u. Then V Y V̄ “ rns. By (5.7), we obtain

ÿ

i1,¨¨¨ ,imPrns

ci1i2¨¨¨imp|xi1 | ¨ ¨ ¨ |xim | ` xi1 ¨ ¨ ¨ ximq “ 0,
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which implies that

ci1i2¨¨¨imp|xi1 | ¨ ¨ ¨ |xim | ` xi1 ¨ ¨ ¨ ximq “ 0,

for all i1, i2, ¨ ¨ ¨ , im P rns since C is non-negative. When |ti1, i2, ¨ ¨ ¨ , imuXV | is even,

we have

|xi1 | ¨ ¨ ¨ |xim | ` xi1 ¨ ¨ ¨ xim ą 0,

which implies ci1i2¨¨¨im “ 0. When |ti1, i2, ¨ ¨ ¨ , imu X V | is odd, we have

|xi1 | ¨ ¨ ¨ |xim | ` xi1 ¨ ¨ ¨ xim “ 0.

In this case, the value ci1i2¨¨¨im may be zero or may not be zero . Thus, from Definition

5.2, it follows that C is weakly odd-bipartite corresponding to set V and the desired

conclusion holds.

Next, we study the relationship between a Z-tensor and its absolute tensor in the

odd order case. In [40], Hu et al. proved that the largest H-eigenvalue of an odd order

Laplacian tensor is always strictly less than the largest H-eigenvalue of an signless

Laplacian tensor corresponded to the Laplacian tensor. By definitions of Laplacian

tensor and signless Laplacian tensor in connected hypergraphs, we know that their

diagonal entries are positive, and subscripts of each nonzero element are mutually

distinct. However, general Z-tensors (5.4) may not possess those advantages. Hence,

for a general odd order Z-tensor (5.4), the largest H-eigenvalue of A may not be

strictly less than the largest H-eigenvalue of |A| when the order is odd.

The following example shows that the largest H-eigenvalues of a Z-tensor (5.4)

and its absolute tensor are equal.

Example 5.1. Let A be a 5th order 3 dimensional tensor. Its entries are given by

a11111 “ a22222 “ a33333 “ 1, a11122 “ a22233 “ ´1
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and ai1i2i3i4i5 “ 0 for the others. Then the H-eigenvalue problems for A and |A| are

$

’

&

’

%

x4
1 ´ x

2
1x

2
2 “ λx4

1,

x4
2 ´ x

2
2x

2
3 “ λx4

2,

x4
3 “ λx4

3,

and
$

’

&

’

%

x4
1 ` x

2
1x

2
2 “ λx4

1,

x4
2 ` x

2
2x

2
3 “ λx4

2,

x4
3 “ λx4

3.

After calculating these equation sets, we know that λpAq “ λp|A|q “ 1.

Theorem 5.6. Let A be defined as (5.4). Assume m is odd. Suppose C is weakly

odd-bipartite corresponding to a nonempty proper index subset V Ď rns. If for all

i P V , it satisfies

cii2i3¨¨¨im “ 0, @ i2, i3, ¨ ¨ ¨ , im P rns,

then λpAq “ λp|A|q.

Proof. By the analysis in Theorems 5.3-5.5, from Lemma 13 of [80] and Corollary

5.2, it follows that

λpAq ď ρpAq ď ρp|A|q “ λp|A|q.

Thus, we only need to prove

λp|A|q ď λpAq.

Let x P Rn be a non-negative H-eigenvector of |A| corresponding to λp|A|q. So, for

all i P rns, we have

p|A|xm´1
qi “ rpD ` Cqxm´1

si “ λp|A|qxm´1
i . (5.8)
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Suppose y P Rn be defined as yi “ ´xi, i P V and yi “ xi, i R V . By conditions, C

is weakly odd-bipartite corresponding to subset V , which means

ci1i2i3¨¨¨im “ 0, i1, i2, ¨ ¨ ¨ , im P rns

when |ti1, i2, i3, ¨ ¨ ¨ , imu X V | is even. Then, for all i P rns, one has

pAym´1qi “ rpD ´ Cqym´1si

“ diy
m´1
i ´

ř

i2,¨¨¨ ,imPrns |V X ti, i2, ¨ ¨ ¨ , imu| is odd cii2¨¨¨imyi2 ¨ ¨ ¨ yim
“ dix

m´1
i ´

ř

i2,¨¨¨ ,imPrns |V X ti, i2, ¨ ¨ ¨ , imu| is odd cii2¨¨¨imyi2 ¨ ¨ ¨ yim ,
(5.9)

where the third equality follows m ´ 1 is even and ym´1
i “ xm´1

i . When i P V , by

the fact that cii2i3¨¨¨im “ 0, i2, i3, ¨ ¨ ¨ , im P rns, and by (5.8), (5.9), we have

pAym´1qi “ rpD ´ Cqym´1si

“ diy
m´1
i ´

ř

i2,¨¨¨ ,imPrns
cii2¨¨¨imyi2 ¨ ¨ ¨ yim

“ dix
m´1
i “ λp|A|qxm´1

i

“ λp|A|qym´1
i .

(5.10)

Similarly, when i R V , it holds that

pAym´1qi “ rpD ´ Cqym´1si

“ diy
m´1
i ´

ř

i2,¨¨¨ ,imPrns |V X ti, i2, ¨ ¨ ¨ , imu| is odd cii2¨¨¨imyi2 ¨ ¨ ¨ yim
“ dix

m´1
i `

ř

i2,¨¨¨ ,imPrns |V X ti, i2, ¨ ¨ ¨ , imu| is odd cii2¨¨¨imxi2 ¨ ¨ ¨ xim
“ dix

m´1
i ` pCxm´1qi

“ rpD ` Cqxm´1si

“ p|A|xm´1qi “ λp|A|qxm´1
i

“ λp|A|qym´1
i ,

(5.11)

where the third equality follows the fact that m is odd and exactly odd indices take

negative values. By (5.10) and (5.11), we know that λp|A|q is a H-eigenvalue of A.

Hence, we have λp|A|q ď λpAq and the desired result follows.

Now, we present a example to verify the authenticity of Theorem 5.6.

Example 5.2. Set a 5th order 3 dimensional tensor A such that

a11111 “ 1, a22222 “ 1, a33333 “ 3, a11333 “ ´1, a22333 “ ´2
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and ai1i2i3i4 “ 0 for the others. Let V “ t3u. Then C is weakly odd-bipartite corre-

sponding to the set V and c3i2i3i4i5 “ 0, @ i2, i3, i4, i5 P r3s.

The H-eigenvalue problems for A and |A| are to solve

$

’

&

’

%

x4
1 ´ x1x

3
3 “ λx4

1,

x4
2 ´ 2x2x

3
3 “ λx4

2,

3x4
3 “ λx4

3,

and
$

’

&

’

%

x4
1 ` x1x

3
3 “ λx4

1,

x4
2 ` 2x2x

3
3 “ λx4

2,

3x4
3 “ λx4

3.

After calculating the largest H-eigenvalues of A and |A|, we obtain

λpAq “ λp|A|q “ 3.

The next example shows that the conditions in Theorem 5.6 are not necessary.

Example 5.3. Let A be a 5th order 3 dimensional tensor. Its entries are given by

a11111 “ 1, a22222 “ 2, a33333 “ 4, a11122 “ a11333 “ ´1, a22233 “ ´2

and ai1i2i3i4i5 “ 0 for the others. Then the H-eigenvalue problems for A and |A| are

$

’

&

’

%

x4
1 ´ x

2
1x

2
2 ´ x1x

3
3 “ λx4

1,

2x4
2 ´ 2x2

2x
2
3 “ λx4

2,

4x4
3 “ λx4

3,

and
$

’

&

’

%

x4
1 ` x

2
1x

2
2 ` x1x

3
3 “ λx4

1,

2x4
2 ` 2x2

2x
2
3 “ λx4

2,

4x4
3 “ λx4

3.
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After calculating these equation sets, we know that λpAq “ λp|A|q “ 4, but the non-

negative tensor C is not weakly odd-bipartite corresponding to any nonempty proper

index subset of t1, 2, 3u.

By Lemma 5.1 and Theorem 5.6, we have the following conclusion.

Corollary 5.3. Let A be defined as in (5.4). Assume m is odd. Suppose C is weakly

even-bipartite corresponding to a nonempty proper index subset V Ď rns. If for all

i R V , it satisfies

cii2i3¨¨¨im “ 0, @ i2, i3, ¨ ¨ ¨ , im P rns,

then λpAq “ λp|A|q.

5.3 Relation between spectrums of a symmetric

Z-tensor and its absolute tensor

In this section, we will study the relation between the spectrum of an even order

symmetric Z-tensor with non-negative diagonal entries, and the spectrum of the

absolute tensor of the Z-tensor. It is proved that, if the symmetric Z-tensor is

weakly irreducible and odd-bipartite, then the two spectral sets equal. Furthermore,

for an weakly irreducible symmetric Z-tensor with non-negative diagonal entries, we

show that the spectral sets of the Z-tensor and its absolute tensor equal if and only if

their spectral radii equal. Before proving the conclusion, we firstly cite the definition

of diagonal similar tensors [93], which is useful in the following analysis.

Definition 5.5. Let A and B be two order m ě 2 dimension n tensors. If there

exists a nonsingular diagonal matrix P of dimension n such that B “ P´pm´1qAP ,

then A and B are called diagonal similar.
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Here, tensor B “ P´pm´1qAP is defined by

bi1i2¨¨¨im “
ÿ

j1,j2,¨¨¨ ,jmPrns

aj1j2¨¨¨jmp
m´1
i1j1

pj2i2 ¨ ¨ ¨ pjmim , i1, i2, ¨ ¨ ¨ , im P rns.

Theorem 5.7. Assume order m dimension n symmetric Z-tensor A is defined as

in (5.4). Suppose C is weakly irreducible. Then, A and |A| are diagonal similar if

and only if m is even and C is weakly odd-bipartite.

Proof. For necessary, from Definition 5.5, we know that there is a nonsingular diag-

onal matrix P satisfying

A “ P´pm´1q
|A|P,

i.e.,

D ´ C “ P´pm´1q
pD ` CqP.

Since D “ P´pm´1qDP , we have

´C “ P´pm´1qCP,

which implies that

´ ci1i2¨¨¨im “ ci1i2¨¨¨imp
´pm´1q
i1i1

pi2i2 ¨ ¨ ¨ pimim . (5.12)

If p11 “ p22 “ ¨ ¨ ¨ “ pnn, by (5.12), we get C “ 0, which is a contradiction to the fact

that C is weakly irreducible. So there are at least two distinct diagonal entries in P .

When ci1i2¨¨¨im ‰ 0, by (5.12), one has

´ pmi1i1 “ pi1i1pi2i2 ¨ ¨ ¨ pimim . (5.13)

By (5.13), and by the fact that C is weakly irreducible, we obtain

pmii “ pmjj, i, j P rns,
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which implies that m is even and

V “ ti P rns | pii ă 0u ‰ H, Ṽ “ ti P rns | pii ą 0u ‰ H.

Combining this with (5.12)-(5.13), we know that

ci1i2¨¨¨im “ 0, when |ti1, i2, ¨ ¨ ¨ , imu X V | is even.

Thus, tensor C is weakly odd-bipartite corresponding to V and the only if part holds.

For the if part, without loss of generality, suppose C is weakly odd-bipartite

corresponding to Ω Ă rns. Let P be a diagonal matrix with i-th diagonal entries

being -1 when i P Ω and 1 when i R Ω. By a direct computation, one has

A “ P´pm´1q
|A|P.

Apparently, P is a nonsingular diagonal matrix. From Definition 5.5, it follows that

A and |A| are diagonal similar.

It should be noted that diagonal similar tensors have the same characteristic

polynomials, and thus they have the same spectrum (see Theorem 2.1 of [93]), which

is similar to the matrix case.

Corollary 5.4. Assume tensor A is defined as in Theorem 5.7. Let m be even.

Suppose C is odd-bipartite. Then SpecpAq “ Specp|A|q.

Now, we first introduce an useful lemma from [111].

Lemma 5.3. Let A and B be two order m dimension n tensors with |B| ď A. Then

(1) ρpBq ď ρpAq.

(2) Furthermore, if A is weakly irreducible and ρpBq “ ρpAq, where λ “ ρpAqeiψ

is an eigenvalue of B with an eigenvector y, then,

(i) all the components of y are nonzero;

(ii) let U “ diagpy1{|y1|, ¨ ¨ ¨ , yn{|yn|q be a nonsingular diagonal matrix, we have

B “ eiψU´pm´1qAU .
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Theorem 5.8. Assume order m dimension n symmetric Z-tensor A is defined as

in (5.4). If C is weakly irreducible, then ρpAq “ ρp|A|q if and only if SpecpAq “

Specp|A|q.

Proof. The sufficient condition is obvious. Now, we prove the only if part. Suppose

λ “ ρp|A|qeiψ is an eigenvalue of A. Since C is weakly irreducible, from Lemma 5.3,

we know that there exists a nonsingular diagonal matrix P such that

A “ eiψP´pm´1q
|A|P, (5.14)

which means

D ´ C “ eiψP´pm´1q
pD ` CqP. (5.15)

By the fact that all diagonal elements of C equal zero, by (5.15), one has

D “ eiψP´pm´1qDP “ eiψD,

which implies eiψ “ 1. So, by Definition 5.5 and (5.14), we know that A and

|A| are diagonal similar tensors. Thus, from Theorem 2.3 of [93], it holds that

SpecpAq “ Spectp|A|q.

5.4 Final remarks

Odd-bipartite and even-bipartite tensors are defined in this chapter. Using this, we

studied the relation between the largest H-eigenvalue of a Z-tensor with non-negative

diagonal elements, and the largest H-eigenvalue of the Z-tensor’s absolute tensor.

Sufficient and necessary conditions for the equality of these largest H-eigenvalues are

given when the Z-tensor has even order. For the odd order case, sufficient conditions

are presented. Examples are given to verify the authenticity of the conclusions. On

the other side, relation between spectral sets of an even order symmetric Z-tensor

with non-negative diagonal entries and its absolute tensor are studied.
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In this paper, we only study the case of H-eigenvalues of Z-tensors. Do Z-

eigenvalues of Z-tensors also hold in such case? This may be an interesting work in

the future.
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Chapter 6

SOS tensor decomposition and

applications

Tensor decomposition is an important research area, and it has found numerous

applications in data mining [44, 46, 45], computational neuroscience [16, 25], and

statistical learning for latent variable models [1]. An important class of tensor de-

composition is sum-of-squares (SOS) tensor decomposition. It is known that to

determine a given even order symmetric tensor is positive semi-definite or not is

an NP-hard problem in general. On the other hand, an interesting feature of SOS

tensor decomposition is checking whether a given even order symmetric tensor has

SOS decomposition or not can be verified by solving a semi-definite programming

problem (see for example [37]), and hence, can be validated efficiently. SOS tensor

decomposition has a close connection with SOS polynomials, and SOS polynomials

are very important in polynomial theory [14, 15, 31, 34, 77, 92] and polynomial op-

timization [42, 48, 50, 51, 76, 95]. It is known that an even order symmetric tensor

having SOS decomposition is positive semi-definite, but the converse is not true in

general. Recently, a few classes of structured tensors such as B-tensors [82] and di-

agonally dominated tensors [78], have been shown to be positive semi-definite in the

even order symmetric case. It then raises a natural and interesting question: Will

these structured tensors admit an SOS decomposition? Providing an answer for this
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question is important because this will enrich the theory of SOS tensor decomposi-

tion, achieve a better understanding for these structured tensors, and lead to efficient

numerical methods for solving problems involving these structured tensors.

In this chapter, we will provide clear answers for the above theoretical question

and providing applications on important numerical problems involving structured

tensors.

6.1 SOS tensor cone and its dual cone

In this part, we study the cone consisting of all tensors that have SOS tensor de-

composition, and its dual cone [67]. We use SOSm,n to denote the cone consisting of

all order m and dimension n tensors, which have SOS decomposition. The following

simple lemma from [37] gives some basic properties of SOSm,n.

Lemma 6.1. (cf. [37]) Let m,n P N and m be an even number. Then, SOSm,n is a

closed convex cone with dimension at most Ipm,nq “
`

n`m´1
m

˘

.

For a closed convex cone C, we recall that the dual cone of C in Sm,n is denoted

by C‘ and defined by C‘ “ tA P Sm,n : xA, Cy ě 0 for all C P Cu. Let M “

pmi1i2¨¨¨imq P Sm,n. We also define the symmetric tensor sympMbMq P S2m,n by

sympMbMqx2m
“ pMxmq2 “

ÿ

1ďi1,¨¨¨ ,im,j1,¨¨¨ ,jmďn

mi1¨¨¨immj1¨¨¨jmxi1 ¨ ¨ ¨ ximxj1 ¨ ¨ ¨ xjm .

Moreover, in the case where the degree m “ 2, SOS2,n and its dual cone are equal,

and both reduce to the cone of positive semi-definite pnˆnq matrices. Therefore, to

avoid triviality, we consider the duality of the SOS tensor cone SOSm,n in the case

where m is an even number with m ě 4.

Proposition 6.1. (Duality between tensor cones) Let n P N and m be an even

number with m ě 4. Then, we have SOS‘m,n “ tA P Sm,n : xA, sympM bMqy ě

0, @M P Sm
2
,nu and SOSm,n Ő SOS‘m,n.
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Proof. We define SOShm,n to be the cone consisting of all mth order n dimensional

symmetric tensors such that fApxq :“ xA,xmy is a polynomial which can be writ-

ten as sums of finitely many homogeneous polynomials. We now see that indeed

SOShm,n “ SOSm,n. Clearly, SOShm,n Ď SOSm,n. To see the reverse inclusion, we let

A P SOSm,n. Then, there exists l P N and f1, ¨ ¨ ¨ , fl are real polynomials with degree

at most m
2

such that xA,xmy “
řl
i“1 fipxq

2. In particular, for all t ě 0, we have

tm xA,xmy “ xA, ptxqmy “
l
ÿ

i“1

fiptxq
2

Dividing tm on both sides and letting tÑ `8, we see that xA,xmy “
řl
i“1 fi,m2 pxq

2,

where fi,m
2

is the m
2

th-power term of fi, i “ 1, ¨ ¨ ¨ , l. This shows that A P SOShm,n.

Thus, we have SOShm,n “ SOSm,n. It then follows that

`

SOSm,n
˘‘
“
`

SOShm,n
˘‘

“ tA P Sm,n : xA, Cy ě 0 for all C P SOShm,nu

“ tA P Sm,n : xA, Cy ě 0 for all C “
l
ÿ

i“1

sympMi bMiq,

Mi P Sm
2
,n, i “ 1, ¨ ¨ ¨ , lu

“ tA P Sm,n : xA, sympMbMqy ě 0 for all M P Sm
2
,nu.

We now show that SOSm,n Ő SOS‘m,n if m ě 4. Let fpxq “ x4
1 ` x4

2 `
1
4
x4

3 `

6x2
1x

2
2 ` 6x2

1x
2
3 ` 6x2

2x
2
3 and let A P S4,3 be such that Ax4 “ fpxq. Then, A has

an SOS decomposition and A1,1,1,1 “ A2,2,2,2 “ 1, A3,3,3,3 “
1
4
, A1,1,3,3 “ A1,1,2,2 “

A2,2,3,3 “ 1. We now see that A R SOS‘m,n. To see this, we only need to find

M P S2,3 such that xA, sympM b Mqy ă 0. To see this, let M “ diagp1, 1,´4q.

Then, sympM bMqx4 “ pxTMxq2 “ px2
1 ` x2

2 ´ 4x2
3q

2. Direct verification shows

that sympM b Mqx4 “ x4
1 ` x4

2 ` 16x4
3 ` 2x2

1x
2
2 ´ 8x2

1x
2
3 ´ 8x2

2x
2
3. So, sympM b

Mq1,1,1,1 “ sympM bMq2,2,2,2 “ 1, sympM bMq3,3,3,3 “ 16, sympM bMq1,1,2,2 “
1
3
,
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sympM bMq1,1,3,3 “ sympM bMq2,2,3,3 “ ´
4
3
. Therefore,

xA, sympMbMqy “ 1`1`
1

4
¨16`6

ˆ

1 ¨
1

3

˙

`6

ˆ

1 ¨

ˆ

´
4

3

˙˙

`6

ˆ

1 ¨

ˆ

´
4

3

˙˙

“ ´8 ă 0,

and the desired results hold.

Question: It is known from polynomial optimization (see [50, Proposition 4.9]

or [48]) that the dual cone of the cone consisting of all sums-of-squares polynomials

(possibly nonhomogeneous) is the moment cone (that is, all the sequence whose

associated moment matrix is positive semi-definite). Can we link the dual cone of

SOSm,n to the moment matrix? Can the membership problem of SOS‘m,n be solvable

in polynomial time?

6.2 SOS tensor decomposition of several classes of

structured tensors

In this section, we examine the SOS tensor decomposition of several classes of sym-

metric even order structured tensors, such as weakly diagonally dominated tensors,

B0-tensors, double B-tensors, quasi-double B0-tensors, MB0-tensors, H-tensors, ab-

solute tensors of positive semi-definite Z-tensors and extended Z-tensors.

6.2.1 Even order symmetric weakly diagonally dominated
tensors have SOS decompositions

In this section, we establish that even order symmetric weakly diagonally dominated

tensors have SOS decompositions. Firstly, we give the definition of weakly diagonally

dominated tensors. To do this, we introduce an index set ∆A associated with a tensor

A. Now, let A be a tensor with order m and dimension n, and let fA be its associated

homogeneous polynomial such that fApxq “ Axm. We then define the index set ∆A

as ∆f with f “ fA, as given as in (2.3).
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Definition 6.1. We say mth order n dimensional tensor A “ pai1i2¨¨¨imq is a diag-

onally dominated tensor if, for each i “ 1, ¨ ¨ ¨ , n,

aii¨¨¨i ě
ÿ

pi2,¨¨¨ ,imq‰pi¨¨¨iq

|aii2¨¨¨im |.

We say A is a weakly diagonally dominated tensor if, for each i “ 1, ¨ ¨ ¨ , n,

aii¨¨¨i ě
ÿ

pi2¨¨¨imq‰pi¨¨¨iq,
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |.

Clearly, any diagonally dominated tensor is a weakly diagonally dominated tensor.

However, the converse is, in general, not true.

Theorem 6.1. Let A be a symmetric weakly diagonally dominated tensor with or-

der m and dimension n. Suppose that m is even. Then, A has an SOS tensor

decomposition.

Proof. Denote I “ tpi, ¨ ¨ ¨ , iq | 1 ď i ď nu. Let x P Rn. Then,

Axm “

n
ÿ

i“1

aii¨¨¨ix
m
i `

ÿ

pi1,¨¨¨ ,imqRI

ai1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim

“

n
ÿ

i“1

¨

˚

˝

aii¨¨¨i ´
ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |

˛

‹

‚

xmi `

n
ÿ

i“1

ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |x
m
i `

ÿ

pi1,¨¨¨ ,imqRI

ai1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim
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“

n
ÿ

i“1

¨

˚

˝

aii¨¨¨i ´
ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |

˛

‹

‚

xmi

`

n
ÿ

i“1

ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |x
m
i `

n
ÿ

i“1

ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

aii2¨¨¨imxixi2 ¨ ¨ ¨ xim

`

n
ÿ

i“1

ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqR∆A

aii2¨¨¨imxixi2 ¨ ¨ ¨ xim

Define

hpxq “
n
ÿ

i“1

ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |x
m
i `

n
ÿ

i“1

ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

aii2¨¨¨imxixi2 ¨ ¨ ¨ xim .

We now show that h is a sums-of-squares polynomial.

To see h is indeed sums-of-squares, from Lemma 2.3, it suffices to show that

ĥpxq :“
n
ÿ

i“1

ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |x
m
i ´

n
ÿ

i“1

ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |xixi2 ¨ ¨ ¨ xim

is a polynomial which always takes non-negative values. As ĥ is a homogeneous

polynomial with degree m on Rn, let Ĥ be a symmetric tensor with order m and

dimension n such that ĥpxq “ Ĥxm. Since A is symmetric, the nonzero entries

of Ĥ are the same as the corresponding entries of A. Now, let λ be an arbitrary

H-eigenvalue of Ĥ, from the Gershgorin Theorem for eigenvalues of tensors [78], we

have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ´
ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |.
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So, we must have λ ě 0. This shows that all H-eigenvalues of Ĥ must be non-

negative, and so, Ĥ is positive semi-definite [78]. Thus, ĥ is a polynomial which

always takes non-negative values.

Now, as A is a weakly diagonally dominated tensor and m is even,

n
ÿ

i“1

¨

˚

˝

aii¨¨¨i ´
ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqP∆A

|aii2¨¨¨im |

˛

‹

‚

xmi

is an SOS polynomial. Moreover, from the definition of ∆A, for each pi1 ¨ ¨ ¨ imq R ∆A,

ai1¨¨¨im ě 0 and xi1 ¨ ¨ ¨ xim is a squares term. Then,

n
ÿ

i“1

ÿ

pi2¨¨¨imq‰pi¨¨¨iq
pi,i2¨¨¨ ,imqR∆A

aii2¨¨¨imxixi2 ¨ ¨ ¨ xim

is also a sums-of-square polynomial. Thus, A has an SOS tensor decomposition.

As a diagonally dominated tensor is weakly diagonally dominated, the following

corollary follows immediately.

Corollary 6.1. Let A be a symmetric diagonally dominated tensor with even order

m and dimension n. Then, A has an SOS tensor decomposition.

6.2.2 The absolute tensor of an even order symmetric posi-
tive semi-definite Z-tensor has an SOS decomposition

Let A be an order m dimension n tensor. If all off-diagonal elements of A are non-

positive, then A is called a Z-tensor [116]. A Z-tensor A “ pai1,...,imq can be written

as

A “ D ´ C, (6.1)

where D is a diagonal tensor where its ith diagonal elements equals aii...i, i “ 1, . . . , n,

and C is a non-negative tensor (or a tensor with non-negative entries) such that
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diagonal entries all equal to zero. We now define the absolute tensor of A by

|A| “ |D| ` C.

Note that all even order symmetric positive semi-definite Z-tensors have SOS

decompositions [37, 38], a natural interesting question would be: do all absolute

tensors of even order symmetric positive semi-definite Z-tensors have SOS tensor

decompositions? Below, we provide an answer for this question.

Theorem 6.2. Let A be a symmetric Z-tensor with even order m and dimension

n defined as in (6.1). If A is positive semi-definite, then |A| has an SOS tensor

decomposition.

Proof. Let A “ pai1...imq be a symmetric positive semi-definite Z-tensor. From (6.1),

we have A “ D ´ C, where D is a diagonal tensor where the diagonal entries of D

is di :“ ai...i, i P rns and C “ pci1i2¨¨¨imq is a non-negative tensor with zero diagonal

entries. Define three index sets as follows:

I “tpi1, i2, ¨ ¨ ¨ , imq P rns
m
| i1 “ i2 “ ¨ ¨ ¨ “ imu;

Ω “tpi1, i2, ¨ ¨ ¨ , imq P rns
m
| ci1i2¨¨¨im ‰ 0 and pi1, i2, ¨ ¨ ¨ , imq R Iu;

∆ “tpi1, i2, ¨ ¨ ¨ , imq P Ω | ci1i2¨¨¨im ą 0 or

at least one index in pi1, i2, ¨ ¨ ¨ , imq exists odd timesu.

Let fpxq “ |A|xm and define a polynomial f̂ by

f̂pxq “
n
ÿ

i“1

dix
m
i ´

ÿ

pi1,i2,¨¨¨ ,imqP∆

|ci1i2¨¨¨im |xi1xi2 ¨ ¨ ¨ xim .

From Lemma 2.3, to see polynomial fpxq “ |A|xm is a sums-of-squares polynomial,

we only need to show that f̂ always takes non-negative value. To see this, as A is
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positive semi-definite, we have di ě 0. Since ci1i2¨¨¨im ě 0, ij P rns, j P rms, it follows

that

f̂pxq “
n
ÿ

i“1

dix
m
i ´

ÿ

pi1,i2,¨¨¨ ,imqP∆

ci1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim

“

n
ÿ

i“1

dix
m
i ´

ÿ

pi1,i2,¨¨¨ ,imqPΩ

ci1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim `
ÿ

pi1,i2,¨¨¨ ,imqPΩz∆

ci1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim

“Axm `
ÿ

pi1,i2,¨¨¨ ,imqPΩz∆

ci1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim

ě0.

Here, the last inequality follows from the fact that m is even, A is positive semi-

definite and xi1xi2 ¨ ¨ ¨ xim is a square term if pi1, i2, ¨ ¨ ¨ , imq P Ωz∆. Thus, the desired

result follows.

6.2.3 SOS tensor decomposition for even order symmetric
extended Z-tensors

In this subsection, we introduce a new class of symmetric tensor which extends

symmetric Z-tensors to the cases where the off-diagonal elements can be positive,

and examine its SOS tensor decomposition.

Let f be a polynomial on Rn with degree m. Let fm,i be the coefficient of f

associated with xmi , i P rns. We say f is an extended Z-polynomial if there exist s P N

with s ď n and index sets Γl Ď t1, ¨ ¨ ¨ , nu, l “ 1, ¨ ¨ ¨ , s with
Ťs
l“1 Γl “ t1, ¨ ¨ ¨ , nu

and Γl1 X Γl2 “ H for all l1 ‰ l2 such that

fpxq “
n
ÿ

i“1

fm,ix
m
i `

s
ÿ

l“1

ÿ

αlPΩl

fαl
xαl ,
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where

Ωl “tα P prns Y t0uq
n : |α| “ m,xα “ xi1xi2 ¨ ¨ ¨ xim , ti1, ¨ ¨ ¨ , imu Ď Γl,

and α ‰ mei, i “ 1, ¨ ¨ ¨ , nu

for each l “ 1, ¨ ¨ ¨ , s and either one of the following two conditions holds:

(1) fαl
“ 0 for all but one αl P Ωl;

(2) fαl
ď 0 for all αl P Ωl.

We now say a symmetric tensor A is an extended Z-tensor if its associated poly-

nomial fApxq “ Axm is a an extended Z-polynomial.

From the definition, it is clear that any Z-tensor is an extended Z-tensor with

s “ 1 and Γ1 “ t1, ¨ ¨ ¨ , nu. On the other hand, an extended Z-tensor allows a few

elements of the off-diagonal elements to be positive, and so, an extended Z-tensor

need not to be a Z-tensor. For example, consider a symmetric tensor A where its

associated polynomial fApxq “ Axm “ x6
1 ` x

6
2 ` x

6
3 ` x

6
4 ` 4x3

1x
3
2 ` 6x2

3x
4
4. It can be

easily see that A is an extended Z-tensor but not a Z-tensor (as there are positive

off-diagonal elements). In [66], partially Z-tensors are introduced. There is no direct

relation between these two concepts, except that both of them contain Z-tensors.

But they do have intersection which is larger than the set of all Z-tensors. Actually,

the example just discussed is not a Z-tensor, but it is an extended Z-tensor and a

partially Z-tensor as well.

We now see that any positive semi-definite extended Z-tensor has an SOS tensor

decomposition. To achieve this, we recall the following useful lemma, which provides

us a simple criterion for determining whether a homogeneous polynomial with only

one mixed term is a sum of squares polynomial or not.

Lemma 6.2. [23] Let b1, b2, ¨ ¨ ¨ , bn ě 0 and d P N. Let a1, a2, ¨ ¨ ¨ , an P N be such
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that
řn
i“1 “ 2d. Consider the homogeneous polynomial fpxq defined by

fpxq “ b1x
2d
1 ` ¨ ¨ ¨ ` bnx

2d
n ´ µx

a1
1 ¨ ¨ ¨ x

an
n .

Let µ0 “ 2d
ś

ai‰0,1ďiďnp
bi
ai
q
ai
2d . Then, the following statements are equivalent:

(i) f is a non-negative polynomial i.e. fpxq ě 0 for all x P Rn;

(ii) either |µ| ď µ0 or µ ă µ0 and all ai are even;

(iii) f is an SOS polynomial.

Theorem 6.3. Let A be an even order positive semi-definite extended Z-tensor.

Then, A has an SOS tensor decomposition.

Proof. Let fApxq “ Axm. As A is a positive semi-definite symmetric extended Z-

tensor, there exist s P N and index sets Γl Ď t1, ¨ ¨ ¨ , nu, l “ 1, ¨ ¨ ¨ , s with
Ťs
l“1 Γl “

t1, ¨ ¨ ¨ , nu and Γl1 X Γl2 “ H for all l1 ‰ l2 such that for all x P Rn

fpxq “
n
ÿ

i“1

fm,ix
m
i `

s
ÿ

l“1

ÿ

αlPΩl

fαl
xαl

such that, for each l “ 1, ¨ ¨ ¨ , s, either one of the following two condition holds:

(1) fαl
“ 0 for all but one αl P Ωl; (2) fαl

ď 0 for all αl P Ωl. Define, for each

l “ 1, ¨ ¨ ¨ , s,

hlpxq :“
ÿ

iPΓl

fm,ix
m
i `

ÿ

αlPΩl

fαl
xαl .

It follows that each hl is an extended Z-polynomial. Moreover, from the construc-

tion,
řs
l“1 hl “ fA and so, infxPRn

řs
l“1 hlpxq “ 0. Note that each hl is also a

homogeneous polynomial, and hence infxPRn hlpxq ď 0. Noting that each hl is indeed

a polynomial on pxiqiPΓl
,
Ťs
l“1 Γl “ t1, ¨ ¨ ¨ , nu and Γl1 X Γl2 “ H for all l1 ‰ l2, we

have infxPRn

řs
l“1 hlpxq “

řs
l“1 infxPRn hlpxq. This enforces that infxPRn hlpxq “ 0.
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In particular, each hl is a polynomial which takes non-negative values. We now see

that hl, 1 ď l ď s, are SOS polynomial. Indeed, if fαl
“ 0 for all but one αl P Ωl,

then hl is a homogeneous polynomial with only a mixed term, and so, Lemma 6.2

implies that hl is a SOS polynomial. On the other hand, if fαl
ď 0 for all αl P Ωl, hl

corresponds to a Z-tensor, and so, hl is also a SOS polynomial in this case because

any positive semi-definite Z-tensor has an SOS tensor decomposition [37]. Thus,

fA “
řs
l“1 hl is also a SOS polynomial, and hence the conclusion follows.

Remark 6.1. A close inspection of the above proof indicates that we indeed shows

that the associated polynomial fApxq “ Axm satisfies fA “
řs
l“1 hl where each hl is

an SOS polynomial in pxiqiPΓl
.

6.2.4 Even order symmetric B0-tensors have SOS decompo-
sitions

In this part, we show that even order symmetric B0 tensors have SOS tensor decom-

positions. Recall that a tensor A “ pai1i2¨¨¨imq with order m and dimension n is called

a B0-tensor [82] if

n
ÿ

i2,¨¨¨ ,im“1

aii2¨¨¨im ě 0

and

1

nm´1

n
ÿ

i2,¨¨¨ ,im“1

aii2¨¨¨im ě aij2¨¨¨jm for all pj2, ¨ ¨ ¨ , jmq ‰ pi, ¨ ¨ ¨ , iq.

To establish that a B0-tensor has an SOS tensor decomposition, we first present the

SOS tensor decomposition of the all-one-tensor. We say E is an all-one-tensor if with

each of its elements of E is equal to one.

Lemma 6.3. Let E be an even order all-one-tensor. Then, E has an SOS tensor

decomposition.
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Proof. Let E “ pei1i2¨¨¨imq be an all-one-tensor with even order m and dimension n.

For all x P Rn, one has

Exm “
ÿ

i1,i2,¨¨¨ ,imPrns

ei1i2¨¨¨imxi1xi2 ¨ ¨ ¨ xim

“
ÿ

i1,i2,¨¨¨ ,imPrns

xi1xi2 ¨ ¨ ¨ xim

“px1 ` x2 ` ¨ ¨ ¨ ` xnq
m

ě0,

which implies that E has an SOS tensor decomposition.

Let J Ă rns. EJ is called a partially all-one-tensor if its elements are defined

such that ei1i2¨¨¨im “ 1, i1, i2, ¨ ¨ ¨ , im P J and ei1i2¨¨¨im “ 0 for the others. Similar to

Lemma 6.3, it is easy to check that all even order partially all-one-tensors have SOS

decompositions.

We also need the following characterization of B0-tensors established in [82].

Lemma 6.4. Suppose that A is a B0-tensor with order m and dimension n. Then

either A is a diagonally dominated symmetric M-tensor itself, or we have

A “M`

s
ÿ

k“1

hkEJk ,

where M is a diagonally dominated symmetric M-tensor, s is a positive integer,

hk ą 0 and Jk Ď t1, ¨ ¨ ¨ , nu, for k “ 1, ¨ ¨ ¨ , s, and Jk X Jl “ H, for k ‰ l.

From Theorem 6.1, Lemma 6.3 and Lemma 6.4, we have the following result.

Theorem 6.4. All even order symmetric B0-tensors have SOS tensor decomposi-

tions.
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Before we move on to the next part, we note that, stimulated by B0-tensors in

[82], symmetric double B-tensors, symmetric quasi-double B0-tensors and symmetric

MB0-tensors have been studied in [52, 53]. Below, we briefly explain that, using

a similar method of proof as above, these three classes of tensors all have SOS

decompositions. To do this, let us recall the definitions of these three classes of

tensors.

For a real symmetric tensor B “ pbi1i2¨¨¨imq with order m and dimension n, denote

βipBq “ max
j2,¨¨¨ ,jmPrns,pi,j2,¨¨¨ ,jmqRI

t0, bij2¨¨¨jmu;

∆ipBq “
ÿ

j2,¨¨¨ ,jmPrns,pi,j2,¨¨¨ ,jmqRI

pβipBq ´ bij2¨¨¨jmq;

∆i
jpBq “ ∆jpBq ´ pβjpBq ´ bjii¨¨¨iq, i ‰ j.

As defined in [52, Definition 3], B is called a double B-tensor if, bii¨¨¨i ą βipBq, for all

i P rns and for all i, j P rns, i ‰ j such that

bii¨¨¨i ´ βipBq ě ∆ipBq

and

pbii¨¨¨i ´ βipBqqpbjj¨¨¨j ´ βjpBqq ą ∆ipBq∆jpBq.

If bii¨¨¨i ą βipBq, for all i P rns and

pbii¨¨¨i ´ βipBqqpbjj¨¨¨j ´ βjpBq ´∆i
jpBqq ě pβjpBq ´ bji¨¨¨iq∆ipBq,

then tensor B is called a quasi-double B0-tensor (see Definition 2 of [53]).

Let A “ pai1i2¨¨¨imq such that

ai1i2¨¨¨im “ bi1i2¨¨¨im ´ βi1pBq, for all i1 P rns.

If A is an M -tensor, then B is called an MB0-tensor (see Definition 3 of [53]). It

was shown in [53] that all quasi-double B0-tensors are MB0-tensors.
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In [52], Li et al. proved that, for any symmetric double B-tensor B, either B is

a doubly strictly diagonally dominated (DSDD) Z-tensor, or B can be decomposed

to the sum of a DSDD Z-tensor and several positive multiples of partially all-one-

tensors (see Theorem 6 of [52]). From Theorem 4 of [52], we know that an even order

symmetric DSDD Z-tensor is positive definite. This together with the fact that any

positive semi-definite Z-tensor has an SOS tensor decomposition [37] implies that

any even order symmetric double B-tensor B has an SOS tensor decomposition.

Moreover, from Theorem 7 of [53], we know that, for any symmetric MB0-tensor,

it is either an M -tensor itself or it can be decomposed as the sum of an M -tensor

and several positive multiples of partially all-one-tensors. As even order symmetric

M -tensors are positive semi-definite Z-tensors [116] which have, in particular, SOS

decomposition, we see that any even order symmetric MB0 tensor also has an SOS

tensor decomposition. Combining these and noting that any quasi-double B0-tensor

is an MB0-tensor, we arrive at the following conclusion.

Theorem 6.5. Even order symmetric double B-tensors, even order symmetric quasi

double B0-tensors and even order symmetric MB0-tensors all have SOS tensor de-

compositions.

6.2.5 Even order symmetric H-tensors with non-negative di-
agonal elements have SOS decompositions

In this part, we show that any even order symmetric H-tensor with non-negative

diagonal elements has an SOS tensor decomposition. Recall that an mth order n

dimensional tensor A “ pai1i2¨¨¨imq, it’s comparison tensor is defined by MpAq “

pmi1i2¨¨¨imq such that

mii¨¨¨i “ |aii¨¨¨i|, and mi1i2¨¨¨im “ ´|ai1i2¨¨¨im |,
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for all i, i1, ¨ ¨ ¨ , im P rns, pi1, i2, ¨ ¨ ¨ , imq R I. Then, tensor A is called an H-tensor

[19] if there exists a tensor Z with non-negative entries such that MpAq “ sI ´ Z

and s ě ρpZq, where I is the identity tensor and ρpZq is the spectral radius of Z

defined as the maximum of modulus of all eigenvalues of Z. If s ą ρpZq, then A

is called a nonsingular H-tensor. A characterization for nonsingular H-tensors was

given in [19] which states A is a nonsingular H-tensor if and only if there exists an

enteritis positive vector y “ py1, y2, ¨ ¨ ¨ , ynq P Rn such that

|aii¨¨¨i|y
m´1
i ą

ÿ

pi,i2,¨¨¨ ,imqRI

|aii2¨¨¨im |yi2yi3 ¨ ¨ ¨ yim , @ i P rns.

We note that the above definitions were first introduced in [19]. These were further

examined in [43, 54] where the authors in [54] referred nonsingular H-tensors simply

as H-tensors and the authors in [43] referred nonsingular H-tensors as strong H-

tensors.

Theorem 6.6. Let A “ pai1i2¨¨¨imq be a symmetric H-tensor with even order m

dimension n. Suppose that all the diagonal elements of A are non-negative. Then,

A has an SOS tensor decomposition.

Proof. We first show that any nonsingular H-tensor with positive diagonal elements

has an SOS tensor decomposition. Let A “ pai1i2¨¨¨imq be a nonsingular H-tensor

with even order m dimension n such that aii¨¨¨i ą 0, i P rns. Then, there exists a

vector y “ py1, ¨ ¨ ¨ , ynq
T P Rn with yi ą 0, i “ 1, ¨ ¨ ¨ , n, such that

aii¨¨¨iy
m´1
i ą

ÿ

pi,i2,¨¨¨ ,imqRI

|aii2¨¨¨im |yi2yi3 ¨ ¨ ¨ yim , @ i P rns. (6.2)

To prove the conclusion, by Lemma 2.3, we only need to prove

f̂Apxq “
ÿ

iPrns

aii¨¨¨ix
m
i ´

ÿ

pi1,i2,¨¨¨ ,imqP∆A

|ai1i2¨¨¨im |xi1xi2 ¨ ¨ ¨ xim ě 0, @ x P Rn.
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From (6.2), we know that

f̂Apxq ě
ÿ

iPrns

¨

˝

ÿ

pi,i2,¨¨¨ ,imqRI

|aii2¨¨¨im |y
1´m
i yi2yi3 ¨ ¨ ¨ yimx

m
i

˛

‚

´
ÿ

pi1,i2,¨¨¨ ,imqP∆A

|ai1i2¨¨¨im |xi1xi2 ¨ ¨ ¨ xim .

(6.3)

Here, for any fixed tuple pi01, i
0
2, ¨ ¨ ¨ , i

0
mq P ∆A, assume pi01, i

0
2, ¨ ¨ ¨ , i

0
mq is consti-

tuted by k distinct indices j0
1 , j

0
2 , ¨ ¨ ¨ , j

0
k , k ď m, which appear s1, s2, ¨ ¨ ¨ , sk times in

pi01, i
0
2, ¨ ¨ ¨ , i

0
mq respectively, sl P rms, l P rks. Then, one has s1 ` s2 ` ¨ ¨ ¨ ` sk “ m.

Without loss of generality, we denote a “ |ai01i02¨¨¨i0m | ą 0. Let πpi01, i
0
2, ¨ ¨ ¨ , i

0
mq be

the set consisting of all permutations of pi01, i
0
2, ¨ ¨ ¨ , i

0
mq. So, on the right side of (6.3),
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there are some terms corresponding to the fixed tuple pi01, i
0
2, ¨ ¨ ¨ , i

0
mq such that

ÿ

pj01 ,i2,¨¨¨ ,imqPπpi
0
1,i

0
2,¨¨¨ ,i

0
mq

|aj01 i2¨¨¨im |y
1´m
j01

yi2yi3 ¨ ¨ ¨ yimx
m
j01

`
ÿ

pj02 ,i2,¨¨¨ ,imqPπpi
0
1,i

0
2,¨¨¨ ,i

0
mq

|aj02 i2¨¨¨im |y
1´m
j02

yi2yi3 ¨ ¨ ¨ yimx
m
j02

` ¨ ¨ ¨

`
ÿ

pj0k,i2,¨¨¨ ,imqPπpi
0
1,i

0
2,¨¨¨ ,i

0
mq

|aj0ki2¨¨¨im |y
1´m
j0k

yi2yi3 ¨ ¨ ¨ yimx
m
j0k

´
ÿ

pi1,i2,¨¨¨ ,imqPπpi01,i
0
2,¨¨¨ ,i

0
mq

|ai1i2¨¨¨im |xi1xi2 ¨ ¨ ¨ xim

“

ˆ

m´ 1

s1 ´ 1

˙ˆ

m´ s1

s2

˙

¨ ¨ ¨

ˆ

m´ s1 ´ s2 ¨ ¨ ¨ ´ sk´1

sk

˙

ays1´m
j01

ys2
j02
¨ ¨ ¨ ysk

j0k
xmj01

`

ˆ

m´ 1

s2 ´ 1

˙ˆ

m´ s2

s1

˙

¨ ¨ ¨

ˆ

m´ s1 ´ s2 ¨ ¨ ¨ ´ sk´1

sk

˙

ays2´m
j02

ys1
j01
ys3
j03
¨ ¨ ¨ ysk

j0k
xmj02

` ¨ ¨ ¨ ¨ ¨ ¨

`

ˆ

m´ 1

sk ´ 1

˙ˆ

m´ sk
s1

˙

¨ ¨ ¨

ˆ

m´ sk ´ s1 ¨ ¨ ¨ ´ sk´2

sk´1

˙

aysk´m
j0k

ys1
j01
¨ ¨ ¨ y

sk´1

j0k´1
xmj0k

´

ˆ

m

s1

˙ˆ

m´ s1

s2

˙ˆ

m´ s1 ´ s2

s3

˙

¨ ¨ ¨

ˆ

m´ s1 ´ s2 ¨ ¨ ¨ ´ sk´1

sk

˙

axs1
j01
xs2
j02
¨ ¨ ¨ xsk

j0k

“
pm´ 1q!ays1

j01
ys2
j02
¨ ¨ ¨ ysk

j0k

s1!s2! ¨ ¨ ¨ sk!

«

s1

˜

xj01
yj01

¸m

` s2

˜

xj02
yj02

¸m

` ¨ ¨ ¨ ` sk

˜

xj0k
yj0k

¸m

´m

˜

xj01
yj01

¸s1 ˜

xj02
yj02

¸s2

¨ ¨ ¨

˜

xj0k
yj0k

¸sk
ff

ě 0,

where the last inequality follows the arithmetic-geometric inequality and the fact

y ą 0. Thus, each tuple pi1, i2, ¨ ¨ ¨ , imq P ∆A corresponds to a non-negative value on

the right side of (6.3), which implies that f̂pxq ě 0 for all x P Rn. Hence, by Lemma

2.3, A has an SOS tensor decomposition.
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Now, let A be a general H-tensor with non-negative diagonal elements. Then, for

each ε ą 0, Aε :“ A` εI is a nonsingular H-tensor with positive diagonal elements.

Thus, Aε Ñ A, and for each ε ą 0, Aε has an SOS tensor decomposition. As SOSm,n

is a closed convex cone, we see that A also has an SOS tensor decomposition and

the desired results follows.

6.3 The SOS-rank of SOS tensor decomposition

In this section, we study the SOS-rank of SOS tensor decomposition. Let us formally

define the SOS-rank of SOS tensor decomposition as follows. Let A be a tensor with

even order m and dimension n. Suppose A has a SOS tensor decomposition. As

shown in Proposition 6.1, SOSm,n “ SOShm,n where SOSm,n is the SOS tensor cone

and SOShm,n is the cone consisting of all mth-order n-dimensional symmetric tensors

such that fApxq :“ xA,xmy is a polynomial which can be written as sums of finitely

many homogeneous polynomials. Thus, there exists r P N such that the homogeneous

polynomial fApxq “ Axm can be decomposed by

fApxq “ f 2
1 pxq ` f

2
2 pxq ` ¨ ¨ ¨ ` f

2
r pxq, @ x P Rn,

where fipxq, i P rrs are homogeneous polynomials with degree m
2

. The minimum

value r is called the SOS-rank of A, and is denoted by SOSrankpAq.

Let C be a convex cone in the SOS tensor cone, that is C is a convex cone such

that C Ď SOSm,n. We define the SOS-width of the convex cone C by

SOS-widthpCq “ suptSOSrankpAq : A P Cu.

Here, we do not care about the minimum of the SOS-rank of all the possible tensors

in the cone C as it will be always zero. Recall that it was shown by Choi et al. in [15,

Theorem 4.4] that, an SOS homogeneous polynomial can be decomposed as sums of
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at most Λ many squares of homogeneous polynomials where

Λ “

?
1` 8a´ 1

2
and a “

ˆ

n`m´ 1

m

˙

. (6.4)

This immediately gives us that

Proposition 6.2. Let A be a tensor with even order m and dimension n, m,n P

N. Suppose A has an SOS tensor decomposition. Then, its SOS-rank satisfies

SOSrankpAq ď Λ, where Λ is given in (6.4). In particular, SOS-widthpSOSm,nq ď Λ.

In the matrix case, that is, m “ 2, the upper bound Λ equals the dimension n

of the symmetric tensor which is tight in this case. On the other hand, in general,

the upper bound is of the order nm{2 and need not to be tight. However, for a class

of structured tensors with bounded exponent (BD-tensors) that have SOS decom-

positions, we show that their SOS-rank is less or equal to the dimension n which

is significantly smaller than the upper bound in the above proposition. Moreover,

in this case, the SOS-width of the associated BD-tensor cone can be determined

explicitly. To do this, let us recall the definition of polynomials with bounded expo-

nent and define the BD-tensors. Let e P N. Recall that f is said to be a degree m

homogeneous polynomials on Rn with bounded exponent e if

fpxq “
ÿ

α

fαx
α
“
ÿ

α

fαx
α1
1 ¨ ¨ ¨ xαn

n ,

where 0 ď αj ď e and
řn
j“1 αj “ m. We note that degree 4 homogeneous polynomials

on Rn with bounded exponent 2 is nothing but the bi-quadratic forms in dimension n.

Let us denote BDe
m,n to be the set consists of all degree m homogeneous polynomials

on Rn with bounded exponent e.

An interesting result for characterizing when a positive semi-definite (PDF) ho-

mogeneous polynomial with bounded exponent has SOS tensor decomposition was

established in [14] and can be stated as follows.
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Lemma 6.5. Let n P N with n ě 3. Suppose e,m are even numbers and m ě 4.

(1) If n ě 4, then BDe
m,n X PSDm,n Ď SOSm,n if and only if m ě en´ 2;

(2) If n “ 3, then BDe
m,n X PSDm,n Ď SOSm,n if and only if m “ 4 or m ě 3e´ 4.

Now, we say a symmetric tensor A is a BD-tensor with order m, dimension n

and exponent e if fpxq “ Axm is a degree m homogeneous polynomial on Rn with

bounded exponent e. We also define BDe
m,n to be the set consisting of all symmetric

BD-tensors with order m, dimension n and exponent e. It is clear that BDe
m,n is a

convex cone.

Theorem 6.7. Let n P N with n ě 3. Suppose e,m are even numbers and m ě 4.

Let A be a BD-tensor with order m, dimension n and exponent e. Suppose that A

has an SOS tensor decomposition. Then, we have SOSrankpAq ď n. Moreover, we

have

SOS-widthpBDe
m,n X SOSm,nq “

"

1 if m “ en
n otherwise.

Proof. As A is a BD-tensor and it has SOS decomposition, the preceding lemma

implies that either (i) n ě 4 and m ě en ´ 2 (ii) n “ 3 and m “ 4 and (iii) n “ 3

and m ě 3e´ 4. We now divide the discussion into these three cases.

Suppose that Case (i) holds, i.e., n ě 4 and m ě en´ 2. From the construction,

we have m ď en. If m “ en, then A has the form axe1 ¨ ¨ ¨ x
e
n. Here, a ě 0 because

A has SOS decomposition and e is an even number. In this case, SOSrankpAq “ 1.

Now, let m “ en´ 2. Then,

Axm “ xe1 ¨ ¨ ¨ x
e
n

¨

˝

ÿ

pi,jqPF

aijx
´1
i x´1

j

˛

‚,

for some aij P R, pi, jq P F and for some F Ď t1, ¨ ¨ ¨ , nu ˆ t1, ¨ ¨ ¨ , nu. As e is an
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even number and A has SOS decomposition, we have

ÿ

pi,jqPF

aijx
´1
i x´1

j ě 0 for all xi ‰ 0 and xj ‰ 0.

Thus, by continuity, Qpt1, ¨ ¨ ¨ , tnq “
ř

pi,jqPF aijtitj is a positive semi-definite quadrat-

ic form, and so, is at most sums of n many squares of linear functions in t1, ¨ ¨ ¨ , tn.

Let Qpt1, ¨ ¨ ¨ , tnq “
řn
k“1

“

qkpt1, ¨ ¨ ¨ , tnq
‰2

where qk are linear functions. Then,

Axm “ xe1 ¨ ¨ ¨ x
e
n

˜

n
ÿ

i“1

“

qkpx
´1
1 , ¨ ¨ ¨ , x´1

n q
‰2

¸

“

n
ÿ

i“1

´

xe1 ¨ ¨ ¨ x
e
n

“

qkpx
´1
1 , ¨ ¨ ¨ , x´1

n q
‰2
¯

,

Note that

xe1 ¨ ¨ ¨ x
e
n

“

qkpx
´1
1 , ¨ ¨ ¨ , x´1

n q
‰2
“

”

x
e
2
1 ¨ ¨ ¨ x

e
2
nqkpx

´1
1 , ¨ ¨ ¨ , x´1

n q

ı2

is a square. Thus, SOSrankpAq ď n in this case.

Suppose that Case (ii) holds, i.e., n “ 3 and m “ 4. Then by Hilbert’s theorem

[34], SOSrankpAq ď 3 “ n.

Suppose that Case (iii) holds, i.e., n “ 3 and m ě 3e ´ 4. In the case of

m “ en ´ 2 “ 3e ´ 2 and m “ en “ 3e, using similar argument as in the Case (i),

we see that the conclusion follows. The only remaining case is when m “ 3e´ 4. In

this case, as A is a BD-tensor with order m, dimension 3 and exponent e and A has

SOS decomposition, we have

Axm “ xe1x
e
2x

e
3Gpx

´1
1 , x´1

2 , x´1
3 q,

where G is a positive semi-definite form and is of 3 dimension and degree 4. It then

from Hilbert’s theorem [34] that Gpt1, t2, t3q can be expressed as at most the sum of

3 squares of 3-dimensional quadratic forms. Thus, using similar line of argument as

in Case (i) and noting that e ě 4 (as m “ 3e´4 and m ě 4), we have SOSrankpAq ď

n “ 3.
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Combining these three cases, we see that SOSrankpAq ď n, and SOSrankpAq “ 1

ifm “ en. In particular, we have SOS-widthpBDe
m,nXSOSm,nq ď n, and SOS-widthpBDe

m,n

XSOSm,nq “ 1 if m “ en. To see the conclusion, we consider the homogeneous poly-

nomial

f0pxq “

$

&

%

xe1 ¨ ¨ ¨ x
e
np
řn
i“1 x

´2
i q if n ě 3 and m “ en´ 2

x2
1x

2
2 ` x

2
2x

2
3 ` x

2
3x

2
1 if n “ 3 and m “ 4

xe1x
e
2x

e
3px

´2
1 x´2

2 ` x´2
2 x´2

3 ` x´2
3 x´2

1 q if n “ 3 and m “ 3e´ 4

and its associated BD-tensor A0 such that f0pxq “ A0x
m. It can be directly verified

that

SOSrankpA0q “

$

&

%

n if n ě 3 and m “ en´ 2,
3 if n “ 3 and m “ 4,
3 if n “ 3 and m “ 3e´ 4.

For example, in the case n ě 3 and m “ en ´ 2, to see SOSrankpA0q “ n, we only

need to show SOSrankpA0q ě n. Suppose on the contrary that SOSrankpA0q ď n´1.

Then, there exists r ď n´1 and homogeneous polynomial fi with degreem{2 “ e
2
n´1

such that

xe1 ¨ ¨ ¨ x
e
n

˜

n
ÿ

i“1

x´2
i

¸

“

r
ÿ

i“1

fipxq
2.

This implies that for each x “ px1, ¨ ¨ ¨ , xnq with xi ‰ 0, i “ 1, ¨ ¨ ¨ , n

n
ÿ

i“1

x´2
i “

r
ÿ

i“1

«

fipxq

x
e
2
1 ¨ ¨ ¨ x

e
2
n

ff2

Letting ti “ x´1
i , by continuity, we see that the quadratic form

řn
i“1 t

2
i can be written

as a sum of at most r many squares of rational functions in pt1, , ¨ ¨ ¨ , tnq. Then, the

Cassels-Pfister’s Theorem [22, Theorem 17.3] (see also [22, Corollary 17.6]), implies

that the quadratic form
řn
i“1 t

2
i can be written as a sum of at most r many sums of

squares of polynomial functions in pt1, , ¨ ¨ ¨ , tnq, which is impossible.
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In the case n “ 3 and m “ 4, we only need to show SOSrankpA0q ě 3. Suppose

on the contrary that SOSrankpA0q ď 2. Then, there exist ai, bi, ci, di, ei, fi P R,

i “ 1, 2, such that

x2
1x

2
2 ` x

2
2x

2
3 ` x

2
3x

2
1 “ pa1x

2
1 ` b1x

2
2 ` c1x

2
3 ` d1x1x2 ` e1x1x3 ` f1x2x3q

2

`pa2x
2
1 ` b2x

2
2 ` c2x

2
3 ` d2x1x2 ` e2x1x3 ` f2x2x3q

2.

Comparing with the coefficients gives us that a1 “ a2 “ b1 “ b2 “ c1 “ c2 “ 0 and

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

d2
1 ` d

2
2 “ 1

e2
1 ` e

2
2 “ 1

f 2
1 ` f

2
2 “ 1

d1e1 ` d2e2 “ 0
d1f1 ` d2f2 “ 0
e1f1 ` e2f2 “ 0.

From the last three equations, we see that one of d1, d2, e1, e2, f1, f2 must be zero.

Let us assume say d1 “ 0. Then, the first equation shows d2 “ ˘1 and hence, e2 “ 0

(by the fourth equation). This implies that e1 “ ˘1 and f2 “ 0. Again, we have

f1 “ ˘1 and hence

e1f1 ` e2f2 “ p˘1qp˘1q ` 0 “ ˘1 ‰ 0.

This leads to a contradiction.

For the last case, suppose again by contradiction that SOSrankpA0q ď 2. Then,

there exist two homogeneous polynomial fi with degree m{2 “ 3e
2
´ 2 such that

xe1x
e
2x

e
3px

´2
1 x´2

2 ` x´2
2 x´2

3 ` x´2
3 x´2

1 q “

2
ÿ

i“1

fipxq
2.

This implies that for each x “ px1, ¨ ¨ ¨ , xnq with xi ‰ 0, i “ 1, ¨ ¨ ¨ , n

x´2
1 x´2

2 ` x´2
2 x´2

3 ` x´2
3 x´2

1 “

2
ÿ

i“1

«

fipxq

x
e
2
1 ¨ ¨ ¨ x

e
2
3

ff2
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Letting ti “ x´1
i , using a similar line argument in the case m “ en ´ 2, we see that

the polynomial t21t
2
2 ` t

2
2t

2
3 ` t

2
3t

2
1 can be written as sums of 2 squares of polynomials

in pt1, t2, t3q. This is impossible by the preceding case. Therefore, the conclusion

follows.

Below, let us mention that calculating the exact SOS-rank of SOS tensor decom-

position is not a trivial task even for the identity tensor, and this relates to some

open question in algebraic geometry in the literature. To explain this, we recall

that the identity tensor I with order m and dimension n is given by Ii1¨¨¨im “ 1 if

i1 “ ¨ ¨ ¨ “ im and Ii1¨¨¨im “ 0 otherwise. The identity tensor I induces the polynomi-

al fIpxq “ Ixm “ xm1 `¨ ¨ ¨`x
m
n . It is clear that, I has an SOS tensor decomposition

when m is even and the corresponding SOS-rank of I is less than or equal to n. It

was conjectured by Reznick [91] that fIpxq cannot be written as sums of pn ´ 1q

many squares, that is, SOSrankpIq “ n. The positive answer for this conjecture in

the special case of m “ n “ 4 was provided in [108, 112]. On the other hand, the

answer for this conjecture in the general case is still open to the best of our knowl-

edge. Moreover, this conjecture relates to another conjecture of Reznick [91] in the

same paper where he showed that the polynomial fRpxq “ xn1 ` ¨ ¨ ¨ ` x
n
n ´ nx1 ¨ ¨ ¨ xn

can be written as sums of pn ´ 1q many squares whenever n “ 2k for some k P N,

and he conjectured that the estimate of the numbers of squares is sharp. Indeed, he

also showed that this conjecture is true whenever the previous conjecture of “fIpxq

cannot be written as sums of pn´ 1q many squares” is true.

6.4 Applications

In this section, we provide some applications for the SOS tensor decomposition of

the structure tensors such as finding the minimum H-eigenvalue of an even order ex-

tended Z-tensor and testing the positive definiteness of a multivariate form. We also
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provide some numerical examples/experiments to support the theoretical findings.

Throughout this section, all numerical experiments are performed on a desktop, with

3.47 GHz quad-core Intel E5620 Xeon 64-bit CPUs and 4 GB RAM, equipped with

Matlab 2015.

Finding the minimum eigenvalue of a tensor is an important topic in tensor com-

putation and multilinear algebra, and has found numerous applications including

automatic control and image processing [78]. Recently, it was shown that the min-

imum H-eigenvalue of an even order symmetric Z-tensor [38, 37] can be found by

solving a sums-of-squares optimization problem, which can be equivalently refor-

mulated as a semi-definite programming problem, and so, can be solved efficiently.

In [38], some upper and lower estimates for the minimum H-eigenvalue of general

symmetric tensors with even order are provided via sums-of-squares programming

problems. Examples show that the estimate can be sharp in some cases.

On the other hand, it was unknown in [37, 38] that whether similar results can

continue to hold for some classes of symmetric tensors which are not Z-tensors, that

is, for symmetric tensors with possible positive entries on the off-diagonal elements.

In this section, as applications of the derived SOS decomposition of structured ten-

sors, we show that the class of even order symmetric extended Z-tensor serves as one

such class. To present the conclusion, the following Lemma plays an important role

in our later analysis.

Lemma 6.6 ([78]). Let A be a symmetric tensor with even order m and dimension

n. Denote the minimum H-eigenvalue of A by λminpAq. Then, we have

λminpAq “ min
x‰0

Axm

}x}mm
“ min
}x}m“1

Axm, (6.5)

where }x}m “ p
řn
i“1 |xi|

mq
1
m .
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Theorem 6.8. (Finding the minimum H-eigenvalue of an even order sym-

metric extended Z-tensor) Let m be an even number. Let A be a symmetric

extended Z-tensor with order m and dimension n. Then, we have

λminpAq “ max
µ,rPR

tµ : fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxsu,

where fApxq “ Axm and Σ2
mrxs is the set of all SOS polynomials with degree at most

m.

Proof. Consider the following problem

pP q mintAxm : }x}mm “ 1u

and denote its global minimizer by a “ pa1, ¨ ¨ ¨ , anq
T P Rn. Clearly,

řn
i“1 a

m
i “ 1.

Then, λminpAq “ fApaq “ Aam. It follows that for all x P Rnzt0u

fApxq ´ λminpAq
n
ÿ

i“1

xmi “ fApxq ´ fApaq
n
ÿ

i“1

xmi

“

n
ÿ

i“1

xmi

ˆ

fAp
x

p
řn
i“1 x

m
i q

1
m

q ´ fApaq

˙

ě 0,

where the last inequality holds as m is even and x “ x

p
řn

i“1 x
m
i q

1
m

belongs to the

feasible set of (P). This shows that gpxq :“ fApxq´λminpAq
řn
i“1 x

m
i is a homogeneous

polynomial which always take non-negative values. As A is an extended Z-tensor,

there exist s P N and index sets Γl Ď t1, ¨ ¨ ¨ , nu, l “ 1, ¨ ¨ ¨ , s with
Ťs
l“1 Γl “

t1, ¨ ¨ ¨ , nu and Γl1 X Γl2 “ H such that for all x P Rn

fApxq “
n
ÿ

i“1

fm,ix
m
i `

s
ÿ

l“1

ÿ

αlPΩl

fαl
xαl (6.6)

such that, for each l “ 1, ¨ ¨ ¨ , s, either one of the following two condition holds: (1)

fαl
“ 0 for all but one αl P Ωl; (2) fαl

ď 0 for all αl P Ωl. Thus,

gpxq “
n
ÿ

i“1

pfm,i ´ λminpAqqxmi `
s
ÿ

l“1

ÿ

αlPΩl

fαl
xαl ,
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is an extended Z-polynomial which always takes non-negative values. Let B be a

symmetric tensor such that gpxq “ Bxm. Then, B is a positive semi-definite extended

Z-tensor and so is SOS by Theorem 6.3. Thus, gpxq is an SOS polynomial with degree

m. Note that gpxq “ fApxq ´ λminpAq
řn
i“1 x

m
i “ fApxq ´ λminpAqp

řn
i“1 x

m
i ´ 1q ´

λminpAq. This shows that

λminpAq ď max
µ,rPR

tµ : fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxsu.

To see the reverse inequality, take any pµ, rq with fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxs.

Then, for all x P Rn,

fApxq ´ rp}x}
m
m ´ 1q ´ µ ě 0.

This shows that r ě µ and fApxq ě r}x}mm for all x P Rn. This shows that λminpAq ě

r ě µ, and so, the conclusion follows.

Remark 6.2. Let A be an extended Z-tensor. As in (6.6), its associated polynomial

fA can be written as fApxq “
řn
i“1 fm,ix

m
i `

řs
l“1

ř

αlPΩl
fαl

xαl. Then, Remark 6.1

implies that

λminpAq “ max
µ,rPR

tµ : fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxsu

“ max
µ,rPR

tµ : fApxq ´ r}x}
m
m P Σ2

mrxs, r ´ µ ě 0u

“ max
µ,rPR

tµ :
ÿ

iPΓl

fm,ix
m
i `

ÿ

αlPΩl

fαl
xαl ´ r}xplq}mm P Σ2

mrx
plq
s, l “ 1, ¨ ¨ ¨ , s

r ´ µ ě 0u

where, for each l “ 1, ¨ ¨ ¨ , s, xplq “ pxiqiPΓl
and Σ2

mrx
plqs is the set of all SOS poly-

nomials in xplq.

As explained in [37, 38], the sums-of-squares problem

max
µ,rPR

tµ : fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxsu
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can be equivalently rewritten as a semi-definite programming problem (SDP), and

so, can be solved efficiently. Indeed, this conversion can be done by using the com-

monly used Matlab Toolbox YALMIP [64, 65]. On the other hand, the size of the

equivalent SDP problem of the relaxation problem increase dramatically when the

dimension/order of the tensor increases. For example, as illustrate in Table 1, for

a 4th-order 50-dimensional tensor, the equivalent SDP problem has 1326 variables

and 316251 constraints. Fortunately, a robust SDP software (SDPNAL [117]) has

been established recently which enables us to solve large-scale SDP (dimension up to

5000 and number of constraint of the SDP up to 1 million). This enables us to find

the minimum H-eigenvalue for medium-size tensor. Later on, we will explain how

to use SDPNAL together with the observation in Remark 6.2 to find the minimum

H-eigenvalue for large-size tensor.

We first illustrate how to compute the minimum H-eigenvalue of an extended

Z-tensor A using the above sums-of-squares problem via Matlab Toolbox YALMIP

[64, 65] via two small-size problems. We will show the performance of the method

for various larger-size problem later.

Example 6.1. Consider the symmetric tensor A with order 6 and dimension 4 where

A111111 “ A222222 “ A333333 “ A444444 “ 1,

Ai1¨¨¨i6 “
1

5
, for all pi1, ¨ ¨ ¨ , i6q “ σp1, 1, 1, 2, 2, 2q,

Ai1¨¨¨i6 “
2

5
, for all pi1, ¨ ¨ ¨ , i6q “ σp3, 3, 4, 4, 4, 4q,

and Ai1¨¨¨i6 “ 0 otherwise. Here σpi1, ¨ ¨ ¨ , i6q denotes all the possible permutation of

pi1, ¨ ¨ ¨ , i6q. The associated polynomial

fApxq “ Axm “ x6
1 ` x

6
2 ` x

6
3 ` x

6
4 ` 4x3

1x
3
2 ` 6x2

3x
4
4
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is an extended Z-polynomial. So, A is an extended Z- tensor. It can be easily verified

that A is not a Z-tensor.

To compute its minimum H-eigenvalue, we note that the corresponding sums-of-

squares optimization problem reads

max
µ,rPR

tµ : fApxq ´ rp}x}
6
6 ´ 1q ´ µ P Σ2

6rxsu.

Convert this sums-of-squares optimization problem into a semi-definite programming

problem using the Matlab Toolbox YALMIP [64, 65], and solve it by using the SDP

software SDPNAL we obtain that λminpAq “ ´1. The simple code using YALMIP is

appended as follows:

sdpsettings(’solver’,’sdpnal’)

sdpvar x1 x2 x3 x4 r mu

f = x1^6+x2^6+x3^6+x4^6+4*x1^3*x2^3+6*x3^2*x4^4;

g = [(x1^6+x2^6+x3^6+x4^6)-1];

F = [sos(f-mu-r*g)];

solvesos(F,-mu,[],[r;mu])

Moreover, note from the geometric mean inequality that |x3
1x

3
2| “ px6

1q
1
2 px6

2q
1
2 ď

1
2
x6

1 `
1
2
x6

1. It follows that

fApxq ` }x}
6
6 “ 2x6

1 ` 2x6
2 ` 2x6

3 ` 2x6
4 ` 4x3

1x
3
2 ` 6x2

3x
4
4 ě 0 for all x P Rn.

On the other hand, consider x̄ “ p 6

b

1
2
,´ 6

b

1
2
, 0, 0q. We see that fApx̄q ` }x̄}

6
6 “ 0.

This shows that λminpAq “ mintfApxq : }x}6 “ 1u “ ´1. This verifies the correctness

of our computed minimum H-eigenvalue.

Example 6.2. Let α, β P R and consider the symmetric tensor A with order 6 and

dimension 4 where

A111111 “ A222222 “ A333333 “ A444444 “ 1,
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Ai1¨¨¨i6 “ α, for all pi1, ¨ ¨ ¨ , i6q “ σp1, 1, 1, 2, 2, 2q,

Ai1¨¨¨i6 “ β, for all pi1, ¨ ¨ ¨ , i6q “ σp3, 3, 3, 4, 4, 4q,

and Ai1¨¨¨i6 “ 0 otherwise. Here σpi1, ¨ ¨ ¨ , i6q denotes all the possible permutation of

pi1, ¨ ¨ ¨ , i6q. The associated polynomial

fApxq “ Axm “ x6
1 ` x

6
2 ` x

6
3 ` x

6
4 ` 20αx3

1x
3
2 ` 20β x3

3x
3
4

is an extended Z-polynomial. So, A is an extended Z- tensor. It can be easily verified

that if either α ą 0 or β ą 0, then A is not a Z-tensor.

To compute its minimum H-eigenvalue, we randomly generate 100 instance of

pα, βq P r´5, 5s ˆ r´5, 5s. For each pα, βq, we convert the corresponding sums-of-

squares optimization problem

max
µ,rPR

tµ : fApxq ´ rp}x}
6
6 ´ 1q ´ µ P Σ2

6rxsu

into a semi-definite programming problem using the Matlab Toolbox YALMIP [64,

65], and solve it by using the SDP software SDPNAL. We then compare the computed

minimum H-eigenvalue with the true minimum H-eigenvalue of A. Indeed, similar

to the preceding example, we can verify that λminpAq “ mpα, βq where

mpα, βq :“

"

1´ 10|α| if |α| ě |β|,
1´ 10|β| if |α| ă |β|.

For all the 100 generated pα, βq, the maximum difference of the computed H-

minimum eigenvalue and the true H-minimum eigenvalue is 6.2039e´ 05.

Medium-size examples

We now consider a few medium-size examples which involves symmetric extended

Z-tensor with order up to 30 or dimension up to 60 .

109



Example 6.3. Let m “ 10k with k P N. Consider the symmetric tensor A with

order m and dimension 4 where

A1¨¨¨1 “ A2¨¨¨2 “ A3¨¨¨3 “ A4¨¨¨4 “ 1,

Ai1¨¨¨im “ α, for all pi1, ¨ ¨ ¨ , imq “ σp1, ¨ ¨ ¨ , 1
looomooon

m{2

, 2, ¨ ¨ ¨ , 2
looomooon

m{2

q,

Ai1¨¨¨im “ β, for all pi1, ¨ ¨ ¨ , imq “ σp3, ¨ ¨ ¨ , 3
looomooon

m{5

, 4, ¨ ¨ ¨ , 4
looomooon

4m{5

q,

Ai1¨¨¨im “ β, for all pi1, ¨ ¨ ¨ , imq “ σp3, ¨ ¨ ¨ , 3
looomooon

4m{5

, 4, ¨ ¨ ¨ , 4
looomooon

m{5

q,

with α “ 2
`

m
m{2

˘´1
and β “ ´

`

m
m{5

˘´1
, and Ai1¨¨¨im “ 0 otherwise. Here σpi1, ¨ ¨ ¨ , imq

denotes all the possible permutation of pi1, ¨ ¨ ¨ , imq. The associated polynomial

fApxq “ Axm “ xm1 ` x
m
2 ` x

m
3 ` x

m
4 ` 2x

m
2

1 x
m
2

2 ´ x
m
5

3 x
4m
5

4 ´ x
4m
5

3 x
m
5

4 ,

is an extended Z-polynomial. So, A is an extended Z-tensor. It can be easily verified

that A is not a Z-tensor. Moreover, using weighted geometric mean inequality, we

can directly verify that the true minimum H-eigenvalue is 0.

We compute the minimum H-eigenvalue by solving the corresponding sums-of-

squares problem for the case m “ 20, 30, and compare with the true minimum H-

eigenvalue. The results are summarized in Table 1.

Example 6.4. Let n “ 4k with k P N. Consider the symmetric tensor A with order

4 and dimension n where

A1111 “ A2222 “ ¨ ¨ ¨ “ Annnn “ n,

Ai1i2i3i4 “
1

6
, for all pi1, i2, , i3, i4q “ σp4i´ 3, 4i´ 2, 4i´ 1, 4iq, i “ 1, ¨ ¨ ¨ ,

n

4
,
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and Ai1i2i3i4 “ 0 otherwise. Here σpi1, ¨ ¨ ¨ , i4q denotes all the possible permutation

of pi1, ¨ ¨ ¨ , i4q. The associated polynomial

fApxq “ Axm “ npx4
1 ` ¨ ¨ ¨ ` x

4
nq ` 4

n{4
ÿ

i“1

x4i´3 x4i´2 x4i´1 x4i

is an extended Z-polynomial. So, A is an extended Z-tensor. It can be easily verified

that A is not a Z-tensor. Moreover, using geometric mean inequality, we can directly

verify that the true minimum H-eigenvalue is n´ 1.

We compute the minimum H-eigenvalue by solving the corresponding sums-of-

squares problem for the case n “ 20, 40, 50, 60, and compare with the true minimum

H-eigenvalue. The results are summarized in Table 1.

Table 6.1: Test results for medium size tensors

Problem m n NV NC Computed True Time (YAL.) Time (SDP.)
eigenvalue eigenvalue

Ex. 6.3 20 4 1001 1001 -1.7634e-09 0 11.9487 0.5700
Ex. 6.3 30 4 3876 6936 1.1382e-12 0 198.8141 8.2700
Ex. 6.4 4 20 231 10626 19.0000 19 4.6951 0.4763
Ex. 6.4 4 40 861 135751 39.0000 39 440.8231 1.7727
Ex. 6.4 4 50 1326 316251 49.0000 49 2365.9043 5.1109
Ex. 6.4 4 60 1891 635376 59.0000 59 9322.0631 50.2934

The table above summarizes the numerical results of Example 5.3 and Example

5.4 where we compute the minimum H-eigenvalue by first converting the correspond-

ing sums-of-squares problem to an SDP problem using YALMIP and solving this S-

DP problem using SDPNAL. We observe that, for all the above numerical examples,

the minimum H-eigenvalues can be found successfully for medium-size tensors. In

particular, the data of the above table are explained as follows.

• m: the order of the symmetric tensor,
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• n: the dimension of the symmetric tensor,

• NV : the number of variables of the equivalent SDP problem,

• NC: the number of constraints in the equivalent SDP problem,

• Computed eigenvalue: the calculated minimum H-eigenvalue,

• True eigenvalue: the true minimum H-eigenvalue

• Time (YALMIP): the CPU-time for converting the sums-of-squares problem to

SDP (measured in seconds).

• Time (SDPNAL): the CPU-time for solving SDP via SDPNAL (measured in

seconds).

6.4.1 Large size examples

Finally, we illustrate with an example that using SDPNAL together with the obser-

vation in Remark 6.2 enables us to solve some large size tensors (dimension up to

2000).

As one can observed in Table 1, most of the time are occupied in YALMIP in

converting the sums-of-squares problem into an SDP problem. This process involves

matching up the coefficients of all the involved
`

m`n´1
m

˘

many monomials, and so,

can be time-consuming. On the other hand, by using the sums-of-squares problem

discussed in Remark 6.2 and letting k “ max1ďlďs |Γl|, the corresponding process

only involves s
`

m`k´1
m

˘

many monomials which is much smaller than
`

m`n´1
m

˘

when

s is large and k is small. For example, as in Example 5.4, we can set s “ n{4, k “ 4

and m “ 4, and so, s
`

m`k´1
m

˘

is of the order n; while
`

m`n´1
m

˘

“
`

n`3
4

˘

which is of

the order n4.

The following table summarizes the numerical results of Example 6.4 with di-

mension from 500 to 2000, where we compute the minimum H-eigenvalue by first

112



converting the corresponding sums-of-squares problem discussed in Remark 6.2 to

an SDP problem using YALMIP and solving this SDP problem using SDPNAL.

We observe that, for all the instances, the minimum H-eigenvalues can be found

successfully. The meaning of the data are the same as in Table 1.

Table 6.2: Test results for large size tensors

Problem m n NV NC Computed True Time(YAL.) Time(SDP.)
eigenvalue eigenvalue

Ex. 6.4 4 500 1250 1375 499.0000 499 4.6299 6.8295
Ex. 6.4 4 1000 2500 2750 999.0000 999 8.8298 66.5566
Ex. 6.4 4 2000 5000 5500 1999.0000 1999 20.9729 563.6903

6.4.2 Testing positive definiteness of a multivariate form

For a multivariate form Axm, we say it is positive definite if Axm ą 0 for all x ‰ 0.

Testing positive definiteness of a multivariate form Axm is an important problem in

the stability study of nonlinear autonomous systems via Lyapunov’s direct method in

automatic control [78]. Researchers in automatic control have studied the conditions

of such positive definiteness intensively. However, for n ě 3 and m ě 4, this is, in

general, a hard problem in mathematics. Recently, some efficient methods based on

eigenvalues of tensors were proposed to solve the problem in the case where m “ 4

[72].

In this part, we show that testing positive definiteness of a multivariate form

Axm where A is an extended Z-tensor can be computed by sums-of-squares problem

via Theorem 6.8. Indeed, a direct consequence of Theorem 6.8 and Lemma 6.6 give

us the following useful test:

Corollary 6.2. Let A be an extended Z-tensor. Then, the associated multivariate

113



form Axm is positive definite if and only if

max
µ,rPR

tµ : fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxsu ą 0,

where fApxq “ Axm and Σ2
mrxs is the set of all SOS polynomials with degree at most

m.

We now use the above corollary to test the positive definiteness of extended Z-

tensors. To do this, we first generate 100 extended Z-tensors as numerical examples.

These extended Z-tensors are randomly generated by the following procedure.

Procedure 1

(i) Given pm,n, s, k,Mq with m is an even number and n “ sk, where n and m

are the dimension and the order of the randomly generated tensor, respectively,

and M is a large positive constant.

(ii) Randomly generate a random positive integer L and a partition of the index set

t1, ¨ ¨ ¨ , nu, tΓ1, ¨ ¨ ¨ ,Γsu, such that |Γi| “ k, i “ 1, ¨ ¨ ¨ , s and Γi X Γi1 “ H for

all i ‰ i1. For each i “ 1, ¨ ¨ ¨ , s´ 1, generate a random multi-index pli1, ¨ ¨ ¨ , l
i
mq

with lij P Γi, j “ 1, ¨ ¨ ¨ ,m and a random number āli1¨¨¨lim P r0, 1s. Generate one

randomly mth-order k-dimensional symmetric tensor B, such that all elements

of B are in the interval r0, 1s.

(iii) We define extended Z-tensor A “ pai1i2¨¨¨imq such that

ai1¨¨¨im “

$

’

’

&

’

’

%

p´1qLM if i1 “ ¨ ¨ ¨ “ im “ i for all i “ 1, ¨ ¨ ¨ , n,
āli1¨¨¨lim if pi1, ¨ ¨ ¨ , imq “ σpli1, ¨ ¨ ¨ , l

i
mq, l

i
1, ¨ ¨ ¨ , l

i
m P Γi, i P rs´ 1s,

´Bi1¨¨¨im if i1, ¨ ¨ ¨ , im P Γs,
0 othewise.

Here σpi1, ¨ ¨ ¨ , imq denotes all the possible permutation of pi1, ¨ ¨ ¨ , imq.
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From the construction of A, it can be verified that A is an extended Z-tensor.

Let fApxq “ Axm. We then solve the sums-of-squares problem

max
µ,rPR

tµ : fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxsu

and use the preceding corollary to determine whether Axm is a positive definite

multivariate form or not. Here, to speed up the algorithm, as we did for the large

size tensors, we first convert the sums-of-squares problem into an SDP by using

Remark 6.2 and YALMIP. Then, we solve the equivalent SDP by using the software

SDPNAL. The correctness can be verified by looking at the randomly generated

positive number L. Indeed, from the construction, if L is an even number and M is

a large positive number, the diagonal elements will strictly dominate the sum of the

off-diagonal elements, and so, Axm is a positive definite multivariate form. On the

other hand, if L is an odd number, then the diagonal elements will be negative, and

so, Axm is not a positive definite multivariate form in this case.

The following table summarize the results for the correctness of testing the pos-

itive definiteness of a multivariate form generated by an extended Z-tensor. As we

can see the results, in our numerical experiment, all the 100 randomly generated

instance has been correctly identified.

m n s k M PD NPD Correctness
4 20 4 5 100 48 52 100%
4 25 5 5 100 46 54 100%
4 40 4 10 100 52 48 100%
4 60 4 15 100 45 55 100%
4 100 4 25 100 44 56 100%

6.5 Final remarks

In this chapter, we establish SOS tensor decomposition of various even order sym-

metric structured tensors available in the current literature. These include weakly di-

agonally dominated tensors, B0-tensors, double B-tensors, quasi-double B0-tensors,
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MB0-tensors, H-tensors, absolute tensors of positive semi-definite Z-tensors and ex-

tended Z-tensors. We also examine the SOS-rank of SOS tensor decomposition and

the SOS-width for SOS tensor cones. In particular, we provide an explicit sharp esti-

mate for SOS-rank of tensors with bounded exponent and SOS-width for the tensor

cone consisting of all such tensors with bounded exponent that have SOS decompo-

sition. Finally, applications for the SOS decomposition of extended Z-tensors are

provided and several numerical experiments illustrate the significance.

Below, we raise some open questions which might be interesting for future work:

Question 1: Can we evaluate the SOS-rank of symmetric B0-tensors?

Question 2: Can we evaluate the SOS-rank of symmetric Z-tensors?

Question 3: Can we evaluate the SOS-rank of symmetric diagonally dominated

tensors?

Question 4: Can we use the techniques in Section 5 to find the minimum H-

eigenvalue of an even order symmetric structured tensors other than the extended

Z-tensors?
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Chapter 7

Positive semi-definiteness and
extremal H-eigenvalues of

extended essentially non-negative
tensors

In this chapter, we study a new class of structured tensors named extended essentially

non-negative tensors, which are extensions of the class of essentially non-negative

tensors [38, 114]. The extended essentially non-negative tensors allow the off-diagonal

elements can have negative values. We then show that its largest and smallest H-

eigenvalues can be found by using polynomial optimization techniques under suitable

conditions.

One of the important structured tensor classes is the class of non-negative tensors,

that is, tensors with non-negative entries. The non-negative tensors arise naturally in

spectral hypergraph theory and high-order Markov chain theory. Recently, efficient

numerical schemes have been proposed to calculate the maximum eigenvalue based

on a Perron-Frobenius type theorem for non-negative tensors [70]. Recently, Hu

et al. [38] and Zhang et al. [114], studied a more general class called essentially

non-negative tensors which means all the off-diagonal elements of the underlying

tensor are non-negative. Hu et al. showed that the largest H-eigenvalue of an even
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order essentially non-negative tensor can be found by solving a sum of squares (SOS)

polynomial optimization problem, which can be equivalently reformulated as a semi-

definite linear programming problem [76]. Then, using this technique, two different

upper bounds for the maximum H-eigenvalue of general even order symmetric tensors

are provided [38]. Now, one question can be raised naturally: whether similar results

still hold for some classes of tensors which are not essentially non-negative tensors,

that is, for tensors with possible negative entries on the off-diagonal elements. This

is the main motivation of this part.

7.1 Positive semi-definiteness of symmetric extend-

ed essentially non-negative tensors

In this section, we formally define extended essentially non-negative tensors and

examine their positive semi-definiteness. Let A “ pai1i2¨¨¨imq be a symmetric even

order tensor. We say A is an extended essentially non-negative tensor if there

exist s P N with s ď n and index sets Γl Ď rns, l P rss with
Ťs
l“1 Γl “ rns such that

(i) Γl1 X Γl2 “ H, l1 ‰ l2;

(ii) for any l1 ‰ l2, ai1i2¨¨¨im “ 0 if ti1, i2, ¨ ¨ ¨ , imu X Γl1 ‰ H and ti1, i2, ¨ ¨ ¨ , imu X

Γl2 ‰ H;

(iii) for each l P rss, either one of the following two conditions holds:

(1) the off-diagonal entries ai1i2¨¨¨im “ 0 for all but possible permutations of one

fixed pi1, i2, ¨ ¨ ¨ , imq P Γml ;

(2) the off-diagonal entries ai1i2¨¨¨im ě 0 for all pi1, i2, ¨ ¨ ¨ , imq P Γml .

In the following analysis, we always denote ApΓlq “ pali1i2¨¨¨imq, l P rss to be the

condensed subtensors of A where the corresponding entries are given by

ali1i2¨¨¨im “ ai1i2¨¨¨im , i1, i2, ¨ ¨ ¨ , im P Γl,
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and ali1i2¨¨¨im “ 0 otherwise. So it holds that A “
řs
l“1ApΓlq.

Theorem 7.1. Let m be even. Assume A is a symmetric even order extended es-

sentially non-negative tensor with order m and dimension n. Then, A is positive

semi-definite if and only if its condensed subtensors ApΓ1q,ApΓ2q, ¨ ¨ ¨ ,ApΓsq are all

positive semi-definite.

Proof. Suppose that all the condensed subtensors are positive semi-definite. Then,

the sufficiency part follows easily as

Axm “
s
ÿ

l“1

ApΓlqxm ě 0, @ x P Rn.

To prove the necessary conditions, without loss of generality, we assume that ApΓ1q

is not positive semi-definite. Then, there is x P Rn, x ‰ 0 satisfying

ApΓ1qx
m
“

ÿ

ijPrns,jPrms

a1
i1¨¨¨im

xi1 ¨ ¨ ¨ xim “
ÿ

i1,¨¨¨ ,imPΓ1

ai1¨¨¨imxi1xi2 ¨ ¨ ¨ xim ă 0.

Let y “ py1, . . . , ynq
T P Rn be defined in a way such that yi “ xi when i P Γ1, and

yi “ 0 otherwise. It is easy to check that y ‰ 0 and

ApΓ1qy
m
“ ApΓ1qx

m
ă 0. (7.1)

By the definition of condensed subtensor, we know that

ApΓlqym “
ÿ

i1,¨¨¨ ,imPΓl

ai1¨¨¨imyi1yi2 ¨ ¨ ¨ yim “ 0, l “ 2, 3, ¨ ¨ ¨ , s. (7.2)

Thus, by (7.1) and (7.2), we obtain

Aym “
s
ÿ

l“1

ApΓlqym “ ApΓ1qy
m
ă 0,

which contradicts the fact that A is positive semi-definite. So, all condensed subten-

sors of A are positive semi-definite and the desired results hold.
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Remark 7.1. From Theorem 7.1, checking the positive semi-definiteness of a giv-

en symmetric extended essentially non-negative tensor is equivalent to checking the

positive semi-definiteness of all its condensed subtensors. Note that each subtensors

ApΓlq only has nonzero values if the indices pi1, . . . , imq P Γl. So, the positive semi-

definiteness of the subtensor ApΓlq is equivalent to the positive semi-definiteness of

a tensor with dimension |Γl| which is smaller comparing with the original tensor.

So, from the computation point of view, it is often much easier to check the positive

semi-definiteness of the condensed subtensor than the original extended essentially

non-negative tensor.

Theorem 7.2. Let m be even. Assume A is a symmetric even order extended es-

sentially non-negative tensor with order m and dimension n. Then, A is positive

definite if and only if its condensed subtensors ApΓlq, l P rss satisfy that

ApΓlqxm ą 0, for all x P Rn such that D i P Γl, xi ‰ 0. (7.3)

Proof. For sufficient conditions, if x P Rn,x ‰ 0, then there exist l1 P rss and at

least one i P Γl1 such that xi ‰ 0. By (7.3) and Theorem 7.1, we have

Axm “
s
ÿ

l“1

ApΓlqxm ě ApΓl1qxm ą 0,

which implies that A is positive definite by the arbitrariness of x P Rn.

To prove the necessary conditions, without loss of generality, suppose that there

is x P Rn with at least one i P Γ1 such that xi ‰ 0 and ApΓ1qx
m ď 0. Let y P Rn be

defined by yi “ xi when i P Γ1 and yi “ 0 for the others. Then y ‰ 0 and it follows

that

ApΓ1qy
m
“ ApΓ1qx

m
ď 0

and ApΓlqym “ 0 for l “ 2, 3, ¨ ¨ ¨ , s. Thus, we know that

Aym “
s
ÿ

l“1

ApΓlqym “ ApΓ1qy
m
ď 0,
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which is contradict with the fact that A is positive definite and the desired results

hold.

To present the next conclusion, we first recall the notion of Z-tensors, which have

been studied in [19, 116]. Z-tensor is a tensor with non-positive off-diagonal entries

and positive semi-definite Z-tensors are called M -tensors.

Theorem 7.3. Let m be even. Assume A is a symmetric even order extended es-

sentially non-negative tensor with order m and dimension n. If A is positive semi-

definite, then A is a non-negative tensor or M-tensor, or the sum of a non-negative

tensor and an M-tensor.

Proof. From the definition of an extended essentially non-negative tensor, if all off-

diagonal entries of A are non-negative, and by the positive semi-definiteness of A,

we have

aii¨¨¨i “ Aemi ě 0, @ i P rns,

which implies that A is non-negative. If all off-diagonal entries of A is non-positive,

then A is a Z-tensor and then A is an M -tensor since A is positive semi-definite.

Now, suppose that A has non-negative off-diagonal entries and non-positive off-

diagonal entries at the same time. Denote the condensed subtensors ofA to beApΓlq,

l P rss. Then A “
řs
l“1ApΓlq. From the structure of the extended essentially non-

negative tensor, without loss of generality, assumeApΓ1q, ApΓ2q, ¨ ¨ ¨ ,ApΓtq have non-

negative off-diagonal entries, and ApΓt`1q, ApΓt`2q, ¨ ¨ ¨ ,ApΓsq have nonpositive off-

diagonal entries. Since A is positive semi-definite, by Theorem 7.1 and the definition

of M -tensor it follow that

ApΓ1q `ApΓ2q ` ¨ ¨ ¨ `ApΓtq

is a non-negative tensor and

ApΓt`1q `ApΓt`2q ` ¨ ¨ ¨ `ApΓsq
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is an M -tensor. Thus, the desired results hold.

An eigenvalue method was provided in Theorem 5 of [78] to check the positive

semi-definiteness of a symmetric even order tensor. So, a question raises naturally:

can we compute the H-eigenvalues of a symmetric extended essentially non-negative

tensor through its condensed subtensors? The following theorem shows the relation-

ship between H-eigenvalues of a symmetric extended essentially non-negative tensor

and its condensed subtensors.

Theorem 7.4. Let A be a symmetric extended essentially non-negative tensor with

order m and dimension n. Then, we have the following result:

(i) all nonzero H-eigenvalues of the condensed subtensors of A are H-eigenvalues

of A;

(ii) each H-eigenvalue of A is the H-eigenvalue of some condensed subtensors of

A.

Proof. Let ApΓ1q,ApΓ2q, ¨ ¨ ¨ ,ApΓsq be the condensed subtensors of A.

(i) For any t P rss, let λ ‰ 0 be an H-eigenvalue of ApΓtq. Then, by Definition

2.1, there is x P Rn, x ‰ 0 such that

ApΓtqxm´1
“ λxrm´1s.

Since λ ‰ 0, from the notion of condensed subtensor, we obtain that xi “ 0 for all

i R Γt. So, it follows that

Axm´1
“

s
ÿ

l“1

ApΓlqxm´1
“ ApΓtqxm´1

“ λxrm´1s,

which means that λ is an H-eigenvalue of A.
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(ii) Let λ be any H-eigenvalue of A with H-eigenvector x P Rn, x ‰ 0, So, there

is at least one t P rss and one i P Γt such that xi ‰ 0. Let y P Rn be defined by

yi “ xi, i P Γt and yi “ 0 otherwise. Thus y ‰ 0. When i R Γt, it follows that

pApΓtqym´1
qi “ 0 “ λym´1

i . (7.4)

When i P Γt, we have

pApΓtqym´1
qi “

ÿ

i2,¨¨¨ ,imPΓt

aii2¨¨¨imyi2yi3 ¨ ¨ ¨ yim

“
ÿ

i2,¨¨¨ ,imPΓt

aii2¨¨¨imxi2xi3 ¨ ¨ ¨ xim

“
ÿ

i2,¨¨¨ ,imPrns

aii2¨¨¨imxi2xi3 ¨ ¨ ¨ xim

“pAxm´1
qi “ λxm´1

i

“λym´1
i .

(7.5)

From (7.4) and (7.5), we know that λ is an H-eigenvalue of ApΓtq with H-eigenvector

y and the desired conclusions hold.

Remark 7.2. The conclusion of Theorem 7.4 means that the spectrum of a sym-

metric extended essentially non-negative tensor is a subset of the union of spectral

sets of all its condensed subtensors. In the symmetric even order case, if the con-

densed subtensors of a extended essentially non-negative tensor do not have negative

H-eigenvalues, then the extended essentially non-negative tensor is positive semi-

definite.
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7.2 The SOS tensor decomposition of symmetric

extended essentially non-negative tensors and

its applications

In this section, we study the SOS tensor decomposition of symmetric even order ex-

tended essentially non-negative tensors. Sufficient conditions are given to guarantee

the SOS tensor decomposition of a given symmetric extended essential non-negative

tensor and, as a application, we show that the derived SOS tensor decomposition

can be used to compute the minimum H-eigenvalue of a given symmetric even order

extended essentially non-negative tensor.

Theorem 7.5. Let A “ pai1i2¨¨¨imq be a symmetric extended essentially non-negative

tensor with even order m and dimension n. Suppose A is positive semi-definite. For

x P Rn, if each positive off-diagonal element corresponds to an SOS term i.e.

ai1i2¨¨¨im ą 0 ñ xi1xi2 ¨ ¨ ¨ xim P Σ2
mrxs, (7.6)

then A has an SOS tensor decomposition.

Proof. For any x P Rn, to prove the result, we only need to prove that

fApxq “ Axm P Σ2
mrxs. (7.7)

By Theorem 7.3, we prove the conclusion from the three cases below.

(1) If A is a non-negative tensor, by (7.6), we know that (7.7) holds since m is

even.

(2) If A is an M -tensor, note that all even order symmetric positive semi-definite

Z-tensors or M -tensors have SOS decompositions [37, 38], so equation (7.7)

holds.
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(3) If A “ B ` C, where B is non-negative and C is an M -tensor, from Theorem

7.1, if follows that B and C are all positive semi-definite tensors. By (1) and

(2), we have (7.7) holds since

fApxq “ Axm “ Bxm ` Cxm P Σ2
mrxs.

Thus, the desired conclusions follows.

Now, we compute the minimum H-eigenvalue of an extended essentially non-

negative tensor defined as in Theorem 7.1 via sum-of-squares polynomial technique,

which has been much applied in optimization theory [38, 42, 48, 50].

Theorem 7.6. Suppose A “ pai1i2¨¨¨imq is a symmetric extended essentially non-

negative tensor with even order m and dimension n. Let fApxq “ Axm. For x P Rn,

if each positive off-diagonal element corresponds to an SOS term i.e.

ai1i2¨¨¨im ą 0 ñ xi1xi2 ¨ ¨ ¨ xim P Σ2
mrxs.

Then, it holds that

λminpAq “ max
µ,rPR

 

µ : fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxs
(

.

Proof. By Lemma 2.2, consider the following optimization problem

mintAxm : }x}mm “ 1u

and denote its global minimizer by x˚ “ px˚1 , ¨ ¨ ¨ , x
˚
nq
T P Rn. Then, λminpAq “

fApx
˚q “ Ax˚m. For all x P Rnzt0u, it follows that

fApxq ´ λminpAq}x}mm “ fApxq ´ fApx
˚
q}x}mm “ }x}

m
m

ˆ

fAp
x

}x}m
q ´ fApx

˚
q

˙

ě 0.

(7.8)
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Since A is an extended essentially non-negative tensor such that (7.6) holds, the

tensor corresponding to fApxq ´ λminpAq}x}mm is also an extended essentially non-

negative tensor satisfying (7.6). Then, from (7.8) and Theorem 7.5, we know that

fApxq ´ λminpAqp}x}mm ´ 1q ´ λminpAq P Σ2
mrxs,

which implies that

λminpAq ď max
µ,rPR

 

µ : fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxs
(

.

To see the reverse inequality, take any pµ, rq with fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxs.

Then, for all x P Rn,

fApxq ´ rp}x}
m
m ´ 1q ´ µ ě 0.

This shows that r ě µ and fApxq ě r}x}mm for all x P Rn. This shows that λminpAq ě

r ě µ, and so, the conclusion follows.

We now obtain the following result as a direct corollary of Theorem 7.6 and

Theorem 5 of [78].

Corollary 7.1. Let A “ pai1i2¨¨¨imq be a symmetric extended essentially non-negative

tensor with even order m and dimension n. Let fApxq “ Axm. For x P Rn, if each

positive off-diagonal element corresponds to an SOS term i.e.

ai1i2¨¨¨im ą 0 ñ xi1xi2 ¨ ¨ ¨ xim P Σ2
mrxs.

Then, A is positive semi-definite if and only if

max
µ,rPR

 

µ : fApxq ´ rp}x}
m
m ´ 1q ´ µ P Σ2

mrxs
(

ě 0.

Next, we present several numerical examples to illustrate how to compute the

minimum H-eigenvalue of a symmetric extended essentially non-negative tensor A

using the above sum-of-squares problem via Matlab Toolbox YALMIP [64, 65].
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Example 7.1. Let A be a symmetric tensor with order 6 dimension 4 such that

a111111 “ a222222 “
11

4
, a333333 “ a444444 “ 1,

and

aπp1,1,1,2,2,2q “ ´
3

4
, aπp3,3,4,4,4,4q “

2

5
,

and ai1¨¨¨i6 “ 0 otherwise, where πpi1, ¨ ¨ ¨ , i6q denotes all permutations of i1, ¨ ¨ ¨ , i6.

Then, A is a symmetric extended essentially non-negative tensor and the associated

polynomial

fApxq “ Ax6
“

11

4
x6

1 `
11

4
x6

2 ` x
6
3 ` x

6
4 ´

15

2
x3

1x
3
2 ` 6x2

3x
4
4.

It can be easily verified that A is not an essentially non-negative tensor.

To compute its minimum H-eigenvalue, we note that the corresponding sums-of-

squares optimization problem reads

max
µ,rPR

tµ : fApxq ´ rp}x}
6
6 ´ 1q ´ µ P Σ2

6rxsu.

Convert this sums-of-squares optimization problem into a semi-definite programming

problem using the Matlab Toolbox YALMIP [64, 65], and solve it by using the SDP

software SDPNAL we obtain that λminpAq “ ´1. The simple code using YALMIP is

appended as follows:

sdpsettings(’solver’,’sdpnal’)

sdpvar x1 x2 x3 x4 r mu

f = 11/4*x1^6+11/4*x2^6+x3^6+x4^6-15/2*x1^3*x2^3+6*x3^2*x4^4;

g = [(x1^6+x2^6+x3^6+x4^6)-1];

F = [sos(f-mu-r*g)];

solvesos(F,-mu,[],[r;mu])
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Moreover, note from the geometric mean inequality that |x3
1x

3
2| “ px6

1q
1
2 px6

2q
1
2 ď

1
2
x6

1 `
1
2
x6

2. It follows that

fApxq ` }x}
6
6 “ Axm “

15

4
x6

1 `
15

4
x6

2 ` x
6
3 ` x

6
4 ´

15

2
x3

1x
3
2 ` 6x2

3x
4
4 ě 0 for all x P Rn.

On the other hand, consider x̄ “ p 6

b

1
2
,´ 6

b

1
2
, 0, 0q. We see that fApx̄q ` }x̄}

6
6 “ 0.

This shows that λminpAq “ mintfApxq : }x}6 “ 1u “ ´1. This verifies the correctness

of our computed minimum H-eigenvalue.

Example 7.2. Let m “ 20. Consider the symmetric tensor A with order m and

dimension 4 such that

a1¨¨¨1 “ a2¨¨¨2 “ a3¨¨¨3 “ a4¨¨¨4 “ 1,

aπp1, ¨ ¨ ¨ , 1
looomooon

m{2

,2, ¨ ¨ ¨ , 2
looomooon

m{2

q
“ ´

2
`

m
m{2

˘ ,

aπp3, ¨ ¨ ¨ , 3
looomooon

m{5

,4, ¨ ¨ ¨ , 4
looomooon

4m{5

q
“

1
`

m
m{5

˘ ,

aπp3, ¨ ¨ ¨ , 3
looomooon

4m{5

,4, ¨ ¨ ¨ , 4
looomooon

m{5

q
“

1
`

m
m{5

˘ ,

and ai1¨¨¨im “ 0 otherwise, where πpi1, ¨ ¨ ¨ , imq denotes all permutations of i1, ¨ ¨ ¨ , im.

Then A is a symmetric extended essentially non-negative tensor and the associated

polynomial

fApxq “ Axm “ x20
1 ` x

20
2 ` x

20
3 ` x

20
4 ´ 2x10

1 x
10
2 ` x

4
3x

16
4 ` x

16
3 x

4
4.

It can be easily verified that A is not a essentially non-negative tensor. Moreover,

using geometric mean inequality, we can directly verify that the true minimum H-

eigenvalue of A is 0.

We compute the minimum H-eigenvalue by solving the corresponding sums-of-

squares problem and we get the computed H-eigenvalue is 7.4108e-09.
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7.3 The largest H-eigenvalue of symmetric even

order extended essentially non-negative ten-

sors

In this section, we study the largest H-eigenvalue for general even order symmetric

extended essentially non-negative tensors. To proceed, we recall an useful result

about symmetric extended Z-tensors, which were studied in last chapter. In fact,

if tensor A “ pai1i2¨¨¨imq is an extended essentially non-negative tensor, then ´A “

p´ai1i2¨¨¨imq is an extended Z-tensor.

Theorem 7.7. Let A be a symmetric extended essentially non-negative tensor with

even order m and dimension n. For x P Rn, suppose fApxq “ Axm. Then, it holds

that

λmaxpAq “ min
tPR,µPR

tt | t´ fApxq ` µp}x}
m
m ´ 1q P Σ2

mrxsu. (7.9)

Proof. By Lemma 2.2, there is x0 P Rn, }x0}m “ 1 satisfying

λmaxpAq “ fApx0q “ max
}x}m“1

Axm.

Assume t “ µ “ λmaxpAq, then we have that

t´ fApxq ` µp}x}
m
m ´ 1q “ }x}mm

ˆ

´fp
x

}x}m
q ` λmaxpAq

˙

ě 0. (7.10)

Since A is an extended essentially non-negative tensor, A´λmaxpAqI is an extended

essentially non-negative tensor. So, ´A` λmaxpAqI is an extended Z-tensor. From

(5.2) and Theorem 6.3, we know that

´ fApxq ` µ}x}
m
m P Σ2

mrxs. (7.11)

Let t˚ be the optimal value of the optimization problem (7.9). Then, by (7.10) and

(7.11), we obtain that

t˚ ď λmaxpAq.
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On the other hand, for all x P Rn, take any pt, µq with t´ fpxq ` µp}x}mm ´ 1q P

Σ2
mrxs. Then, it holds that

t´ fApxq ` µp}x}
m
m ´ 1q ě 0, @ x P Rn,

which implies that t ě µ and µ}x}mm ě fApxq. Thus, we know that t˚ ě fApxq, for

all x P Rn, }x}mm “ 1 and the desired result follows.

Next, we present an example to verify the preceding result.

Example 7.3. Suppose A is a symmetric tensor with even order m and dimension

4 such that

a11¨¨¨1 “ a22¨¨¨2 “ a33¨¨¨3 “ a44¨¨¨4 “ ´1,

aπp1, ¨ ¨ ¨ , 1
looomooon

m
2

,2, ¨ ¨ ¨ , 2
looomooon

m
2

q
“ α, aπp3, ¨ ¨ ¨ , 3

looomooon

m
2

,4, ¨ ¨ ¨ , 4
looomooon

m
2

q
“ β, α, β P r´5, 5s, αβ ‰ 0,

and ai1¨¨¨im “ 0 otherwise, where πpi1, ¨ ¨ ¨ , imq denotes any permutation of i1, ¨ ¨ ¨ , im.

So, A is an extended essentially non-negative tensor and the associated polynomial

is

fApxq “ Axm “ ´xm1 ´ x
m
2 ´ x

m
3 ´ x

m
4 ` 20αx

m
2

1 x
m
2

2 ` 20β x
m
2

3 x
m
2

4 .

Since |x
m
2
i x

m
2
j | ď

xmi `x
m
j

2
, for all x P Rn and }x}mm “ 1, we know that

fApxq “ ´x
m
1 ´ x

m
2 ´ x

m
3 ´ x

m
4 ` 20αx

m
2

1 x
m
2

2 ` 20β x
m
2

3 x
m
2

4

ď

$

&

%

´1 α ă 0, β ă 0, m
2
is even

maxt10α, 10βu ´ 1 αβ ă 0, m
2

is even
maxt10|α|, 10|β|u ´ 1 otherwise.

From Lemma 2.2, by a direct computation, it is easy to check that the largest H-

eigenvalue of A is

λmaxpAq “

$

&

%

´1 α ă 0, β ă 0, m
2
is even

maxt10α, 10β, 0u ´ 1 αβ ă 0, m
2
is even

maxt10|α|, 10|β|u ´ 1 otherwise.
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According to Theorem 7.7, we compute the largest H-eigenvalue using the Matlab

Toolbox YALMIP [64, 65] and the computed largest H-eigenvalue and the true largest

H-eigenvalue are listed in the following table.

m n α β computed eigenvalue true eigenvalue
6 4 4.7060 3.6693 46.0599 46.0600
6 4 -3.2314 4.5738 44.7384 44.7380
10 4 4.7977 -2.1518 46.9765 46.9770
10 4 4.0307 -2.8181 39.3069 39.3070
16 4 -3.6955 -0.9794 -1 -1
16 4 -3.9077 4.7379 46.3788 46.3790
20 4 3.1472 4.0579 39.5792 39.5790
20 4 -4.2465 -1.6186 -1 -1

7.4 Applications to testing the co-positivity of sym-

metric extended Z-tensors

The definition of co-positive tensors was introduced in [79]. It is a natural extension

of the definition of co-positive matrices. Recently, co-positive tensors found impor-

tant applications in the tensor complementarity problem [9, 102, 101]. Che, Qi and

Wei [9] showed that the tensor complementarity problem defined by a strictly co-

positive tensor has a nonempty and compact solution set. Song and Qi [102] proved

that a real tensor is strictly semi-positive if and only if the corresponding tensor

complementarity problem has a unique solution for any non-negative vector and a

real tensor is semi-positive if and only if the corresponding tensor complementarity

problem has a unique solution for any positive vector. It was shown there that a

real symmetric tensor is a (strictly) semi-positive tensor if and only if it is (strict-

ly) co-positive. Song and Qi [101] further presented global error bound analysis

for the tensor complementarity problem defined by a strictly semi-positive tensor.

Thus, co-positive and strictly co-positive tensors play an important role in the tensor

complementarity problem.
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A tensor A with order m and dimension n is co-positive if and only if Axm ě

0, @ x P Rn
`, and A is strictly co-positive if and only if Axm ą 0, @ x P Rn

`zt0u.

Recall that positive semi-definite tensors are co-positive tensors and positive definite

tensors are strictly co-positive tensors. Generally speaking, it is NP-hard to verify

the co-positivity of a symmetric tensor.

In this section, as an application of Theorem 7.7, we will test the co-positvity of

symmetric extended Z-tensors (odd or even order). Numerical experiments are also

presented to verify the efficiency of our conclusion. By the way, in subsection 7.4.1,

we first present an answer to the following question, which is left behind in [79]:

Question: When the order m is odd, does a co-positive tensor A always have

an H-eigenvalue?

7.4.1 H-eigenvalues of odd order co-positive tensors

We first provide an example of a co-positive tensor with odd order where its H-

eigenvalue does not exists

Example 7.4. (An odd order co-positive tensor without H-eigenvalues) Let

us consider the following symmetric tensor with order 3 and dimension 2 with

A111 “ 10, A222 “ 4,

and

A112 “ A121 “ A211 “ ´
?

3, and A221 “ A212 “ A122 “
?

3.

Then, it can be verified that

Ax3
“ 10x3

1 ` 4x3
2 ´ 3

?
3x2

1x2 ` 3
?

3x1x
2
2.

From the geometric inequality, for any x1, x2 ě 0,

10x3
1 ` 4x3

2 “
2

3
p

3
?

15x1q
3
`

1

3
p

3
?

12x2q
3
ě p

3
?

15x1q
2
p

3
?

12x2q ě 3
?

3x2
1x2.
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This shows that

Ax3
ě 0 for all x P R2

`,

and so, A is co-positive.

We now see that A does not have any H-eigenvalue. To see this, we proceed by

the method of contradiction and suppose that there exists an H-eigenpair px, λq P

pR2zt0uq ˆ R of A. Then, by Definition 2.1, we have

"

10x2
1 ´ 2

?
3x1x2 `

?
3x2

2 “ λx2
1

´
?

3x2
1 ` 2

?
3x1x2 ` 4x2

2 “ λx2
2

Clearly, if x2 “ 0 then x1 “ 0, which is impossible. If x2 ‰ 0, by dividing x2
2 on both

sides, we see that the following equations have a real solution pz, λq P R2 with z ‰ 0:

"

p10´ λqz2 ´ 2
?

3z `
?

3 “ 0
´
?

3z2 ` 2
?

3z ` p4´ λq “ 0

By looking at the determinant of these two quadratic equations, we have 12´4
?

3p10´

λq ě 0 and 12` 4
?

3p4´ λq ě 0, and so,

λ ě 10´
?

3 and λ ď 4`
?

3

which is impossible.

Next, in the non-degenerated case, we prove that any co-positive tensor always

has a non-negative H-eigenvalue with non-negative H-eigenvector. To do this, we

first define a polynomial with order 2m in the following way

hpxq “
n
ÿ

i1,...,im“1

ai1...imx
2
i1
¨ ¨ ¨ x2

im ,

where A “ pai1...imq is a symmetric tensor with order m and dimension n. Denote

its associated symmetric tensor by Ah, that is,

hpxq “ Ahx2m for all x P Rn (7.12)
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Proposition 7.1. Consider a co-positive symmetric tensor A with order m (odd or

even) and dimension n. Suppose that A is non-degenerated in the sense that there

exists an H-eigenvector x of Ah such that the following implication holds:

x P Rn
`zt0u, xi “ 0 ñ pAxm´1

qi “ 0.

Then, A has a non-negative H-eigenvalue with non-negative eigenvector.

Proof. Let Ah be defined as in (7.12). As A is co-positive, we know that

Ahx2m
“

n
ÿ

i1,...,im“1

ai1...imx
2
i1
¨ ¨ ¨ x2

im ě 0, @ x P Rn,

which implies that Ah is positive semi-definite. Combining this with the fact that

Ah is a tensor with even order, Ah has at least one H-eigenvalue and all the H-

eigenvalues must be non-negative [78]. Let px̄, λ̄q P pRnzt0uq ˆ R be an H-eigenpair

of Ah. Then, λ̄ ě 0. Let fpxq “ Axm Note that

hpxq “ Ahx2m
“ fpx2

1, . . . , x
2
nq, @ x P Rn.

This shows that for all x “ px1, . . . , xnq P Rn and @ i P rns, it holds that

2m
`

Ahx2m´1
˘

i
“
`

∇hpxq
˘

i
“ 2

`

∇fpx2
1, . . . , x

2
nq
˘

i
xi.

Now, as px̄, λ̄q P pRnzt0uq ˆ R is an H-eigenpair of Ah, we have

1

m

`

∇fpx̄2
1, . . . , x̄

2
nq
˘

i
x̄i “

`

Ahx̄2m´1
˘

i
“ λ̄x̄2m´1

i , @ i P rns,

which means that

`

∇fpx̄2
1, . . . , x̄

2
nq
˘

i
“ mλ̄x̄2m´2

i if xi ‰ 0, i P rns.

Now, let z “ px̄2
1, . . . , x̄

2
nq P Rn

`zt0u, it follows from the non-degenerated condition

that

`

Azm´1
˘

i
“
` 1

m
∇fpzq

˘

i
“

"

λ̄z̄m´1
i if z̄i “ x̄2

i ‰ 0
0 if z̄i “ x̄2

i “ 0.

“ λ̄z̄m´1
i .
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From Definition 2.1, we obtain that pz, λ̄q is an H-eigenpair of A. Thus, the conclu-

sion follows.

7.4.2 Testing the co-positivity of symmetric extended Z-
tensors

Let A “ pai1i2¨¨¨imq be a symmetric tensor with order m dimension n. Then A is

co-positive if and only if

Axm “
n
ÿ

i1,...,im“1

ai1...imxi1 ¨ ¨ ¨ xim ě 0, @ x P Rn
`,

which is equivalent to

hpxq “ Ahx2m
“

n
ÿ

i1,...,im“1

ai1...imx
2
i1
¨ ¨ ¨ x2

im ě 0, @ x P Rn, (7.13)

where Ah is a symmetric tensor with order 2m and dimension n defined as in (7.12).

In particular, if A is a symmetric extended Z-tensor (odd or even order), then Ah

is an even order extended Z-tensor. Thus, ´Ah is an even order extended essentially

non-negative tensor. Let fpxq “ ´Ahx2m. Then, by Theorem 7.7 and (7.13), we

have the following corollary.

Corollary 7.2. Let A be a symmetric extended Z-tensor with order m and dimension

n. For x P Rn, suppose Ah and fpxq are defined as above. Then, A is co-positive if

and only if

min
tPR,µPR

tt | t´ fpxq ` µp}x}2m2m ´ 1q P Σ2
2mrxsu ď 0. (7.14)

We now use the above corollary to test the co-positivity of symmetric extended

Z-tensors with order m and dimension n. The concrete process is listed below.

Procedure
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(i) Given pm,n, s, k,Mq with m is an even number and n “ sk, where n and m

are the dimension and the order of the randomly generated tensor, respectively,

and M is a large positive constant.

(ii) Randomly generate a partition of the index set t1, ¨ ¨ ¨ , nu, tΓ1, ¨ ¨ ¨ ,Γsu, such

that |Γi| “ k, i “ 1, ¨ ¨ ¨ , s and Γi X Γi1 “ H for all i ‰ i1. For each i “

1, ¨ ¨ ¨ , s ´ 1, generate a random multi-index pli1, ¨ ¨ ¨ , l
i
mq with lij P Γi, j “

1, ¨ ¨ ¨ ,m and a random number āli1¨¨¨lim P r0, 1s. Generate one randomly mth-

order k-dimensional symmetric tensor B, such that all elements of B are in the

interval r0, 1s.

(iii) We define extended Z-tensor A “ pai1i2¨¨¨imq such that

ai1¨¨¨im “

$

’

’

&

’

’

%

M if i1 “ ¨ ¨ ¨ “ im “ i for all i “ 1, ¨ ¨ ¨ , n,
āli1¨¨¨lim if pi1, ¨ ¨ ¨ , imq “ σpli1, ¨ ¨ ¨ , l

i
mq with li1, ¨ ¨ ¨ , l

i
m P Γi, i “ 1, ¨ ¨ ¨ , s´ 1,

´Bi1¨¨¨im if i1, ¨ ¨ ¨ , im P Γs,
0 othewise.

Here σpi1, ¨ ¨ ¨ , imq denotes all the possible permutation of pi1, ¨ ¨ ¨ , imq.

(iv) Let Ah “ pahi1i2¨¨¨i2mq be a extended Z-tensor with order 2m and dimension n

such that

ahσpi1i1i2i2¨¨¨imimq “ ai1i2¨¨¨im , @ i1, i2, ¨ ¨ ¨ , im P rns,

and ahi1i2¨¨¨i2m “ 0 otherwise.

(v) Suppose fpxq “ ´Ahx2m, x P Rn. Then solve the SOS programming problem

(7.14) by Matlab Toolbox YALMIP [64, 65] and SeDuMi [103].

Table 7.1 summarizes the results for the percent of co-positivity of symmetric

extended Z-tensors which is generated by the above procedure. We perform 100

tests for fourth order and sixth order symmetric extended Z-tensors. Obviously,

for fixed order m and dimension n, the percent of co-positive extended Z-tensors
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increase as the parameter M grow. If M is large enough, the extended Z-tensor is

positive definite, so it must be co-positive.

pm,n, s, kq “ p3, 12, 4, 3q
M 3 4 5 6 7

Copositivity 4% 31% 70% 95% 100%

pm,n, s, kq “ p4, 9, 3, 3q
M 10 12 14 16 18

Copositivity 9% 28% 59% 82% 97%

pm,n, s, kq “ p5, 6, 2, 3q
M 30 35 40 45 50

Copositivity 7% 18% 46% 78% 95%

pm,n, s, kq “ p6, 6, 2, 3q
M 80 100 120 140 160

Copositivity 3% 16% 57% 86% 98%

Table 7.1: The percentage of copositive instances of randomly generated extended
Z-tensors.

7.5 Final remarks

In this chapter, we extend the essentially non-negative tensor to a more general form.

Positive semi-definiteness and SOS tensor decomposition of symmetric essentially

non-negative tensors are studied. Then, by SOS optimization technique, the extremal

H-eigenvalues of a symmetric even order extended essentially non-negative tensor can

be computed by solving an SOS optimization problem. Numerical examples illustrate

the significance. At last, an important application is presented that is checking the

co-positivity of symmetric tensors with even or odd orders.

Here, the extended essentially non-negative tensors considered are all with even

order. So, can we compute the extremal H-eigenvalues of odd order symmetric

extended essentially non-negative tensors? This may be interesting in the future

work.
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Chapter 8

Conclusions and future work

The purpose of this paper is to study structure properties and spectral properties

of structured tensors in the literature. Several new class of structured tensors are

defined, which are natural extensions of matrix. Furthermore, some numerical ex-

amples and applications are provided to verify the theoretical conclusions.

8.1 Conclusions of the paper

The main content of the article are listed below:

• Cauchy tensors and generalized Cauchy tensors are defined. Several necessary

and sufficient conditions for an even order Cauchy tensor to be positive semi-

definite or positive definite are given. SOS tensor decomposition property

and completely positivity property of generalized Cauchy tensors are studied.

Furthermore, H-spectral properties and Z-spectral properties of these two class

of tensors and some new properties of Hankel tensors are presented.

• To study the relationship of the largest H-eigenvalues between symmetric Z-

tensors and their absolute tensors, we define odd-bipartite and even-bipartite

tensors in this paper. Using this notions, sufficient and necessary conditions

for the equality of these largest H-eigenvalues are given when the Z-tensor has
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even order. For the odd order case, sufficient conditions are presented. On the

other side, relation between spectral sets of an even order symmetric Z-tensor

with non-negative diagonal entries and its absolute tensor are studied.

• The SOS tensor decomposition property is established for various even order

symmetric structured tensors available in the current literature. In particular,

an explicit sharp estimate is provided for SOS-rank of tensors with bounded

exponent and SOS-width for the tensor cone consisting of all such tensors with

bounded exponent that have SOS decomposition. Then, applications for the

SOS decomposition of extended Z-tensors are presented.

• We study the extended essentially non-negative tensor, which are general forms

of essentially non-negative tensor. Positive semi-definiteness and SOS tensor

decomposition of symmetric essentially non-negative tensors are studied. Then,

by SOS optimization technique, the extremal H-eigenvalues of a symmetric

even order extended essentially non-negative tensor can be computed by solving

an SOS optimization problem. Numerical examples illustrate the significance.

An important application is presented that is checking the co-positivity of

symmetric tensors with even or odd orders.

8.2 Future works

Although many results about structured tensors are provided in this paper, there

are still some questions that we are not sure now. Now, we list some questions here,

which may be interesting in the future.

• Can we get the type of Cauchy-Toeplitz tensors? If so, how about their spectral

properties? What are the necessary and sufficient conditions for their positive

semi-definiteness?
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• In Chapter 5, we only study the relationships of H-eigenvalues of Z-tensors and

their absolute tensors, do Z- eigenvalues of Z-tensors also hold in such case?

Are there some sufficient and necessary conditions to guarantee the equality of

those two largest Z-eigenvalues?

• Can we evaluate the SOS-rank of symmetric B0-tensors?

• Can we evaluate the SOS-rank of symmetric Z-tensors?

• Can we evaluate the SOS-rank of symmetric diagonally dominated tensors?

• Can we use the techniques in Chapter 6 to find the minimum H- eigenvalue of

an even order symmetric structured tensors other than the extended Z-tensors?

• In Chapter 7, the extended essentially non-negative tensors considered are all

with even order. So, can we compute the extremal H-eigenvalues of odd order

symmetric extended essentially non-negative tensors?
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