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Abstract

Problems in many applications, such as physics, computing sciences, economic and
engineering, can be formulated as tensor problems that usually have special struc-
tures. In recently years, there are some classes structured tensors including Toeplitz
tensors, Hankel tensors, Hilbert tensors, Vandermonde tensors, Cauchy tensors, M-
tensors, P-tensors and others have been generalized from matrices and studied.

Hankel tensors and Toeplitz tensors arise from signal processing and some other
applications. The positive semi-definiteness of Hankel tensors is a condition that
guarantee the existence of solution for a multidimensional moment problem. To
identify a general tensor is positive semi-definite (PSD) or not is NP-hard but it is
easier to check for structured tensors. The aim of this work is to identify the positive
semi-definiteness of Hankel tensors and circulant tensors.

A symmetric tensor is uniquely corresponding to a homogeneous polynomial.
SOS (sum-of-squares) tensors are connected with SOS polynomials, which is easily
to check by solving a semi-definite linear programming problem. SOS tensors are
PSD tensors, but not vice versa. Based on these facts, we study the existence problem
of PSD non SOS Hankel tensor in the following cases: sixth order three dimensional
Hankel tensors, fourth order four dimensional Hankel tensors and generalized anti-
circulant tensors. There are no PSD non SOS Hankel tensors to be found in these
cases.

We also study the three dimensional strongly symmetric circulant tensors, which

Vil



are special Toeplitz tensors. We give a sufficient and necessary condition for an
even order three dimensional strongly symmetric circulant tensors to be positive
semi-definite in some cases.

For a given even order symmetric tensor, it is positive semi-definite (positive
definite) if and only if all of its H- or Z-eigenvalues are nonnegative (positive). In
other words, it is positive semi-definite if and only if the smallest H- or Z-eigenvalue is
nonnegative. We propose an algorithm to compute extreme eigenvalues of large scale
Hankel tensors, which can be used to not only identify positive semi-definiteness but
also solve many problems in other applications, such as automatic control, medical
imaging, quantum information, and spectral graph theory. Numerical examples show

the efficiency of the proposed method.
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Chapter 1

Introduction

1.1 Background

Just as linear operators and their coordinate representations i.e., matrices, are the
main objects of interest in linear algebra. Tensors and their coordinate represen-
tations i.e., hypermatrices, are the main objects of interest in multilinear algebra.
Tensors can be represented as multidimensional array and the order of a tensor is
the number of indices. Without misleading, we use the tensor instead of multidi-
mensional arrays or hypermatrices.

Tensors provide a framework for solving the problems in many applications, such
as physics, engineering, medical science and fluid mechanics. Tensors were first
introducted by Tullio Levi-Civita and Gregorio Ricci-Curbastro, who continued the
earlier work of Bernhard Riemann and Elwin Bruno Christoffel and others, as part
of the absolute differential calculus [48].

Many problems in computing sciences, economic and engineering can be reduced
to tensor problems that usually have special structures. In recent years, there are
some classes structured tensors such as Toeplitz tensors [19], Hankel tensors [74,
30, 58, 92|, Hilbert tensors [86], Vandermonde tensors [74, 92], Cauchy tensors [14,
13], M-tensors [93, 29], P-tensors [87] and others that have been extended from the

corresponding matrices and their properties have been studied.



Most tensor problems are NP-hard [41]. The problems for determining a general
even order symmetric tensor is positive semi-definite (PSD) or not is NP-hard and is
also important both theoretically and practically [1, 40, 73]. However, to determining
the tensors with some special structure is PSD or not may not be NP-hard. Recently,
it was discovered that several easily checkable classes of special even order symmetric
tensors are PSD or there are easily checkable conditions to identify, including even
order symmetric diagonally dominated tensors [73], even order symmetric By tensors
[77], even order Hilbert tensors [86], even order symmetric M tensors [93], even order
symmetric double By tensors [55], even order symmetric strong H tensors [56, 47],
even order strong Hankel tensors [74], even order positive Cauchy tensors [14], etc.
However, some kinds of structured tensors are not easy to identify their positive
semi-definiteness, such as Hankel tensors and Toeplitz tensors.

Hankel tensors arise from signal processing and some other applications [74, 30,
4, 72]. They are symmetric tensors. If a multidimensional sequence generates Hankel
tensors and all the Hankel matrices, generated by this sequence, are positive semi-
definite, then this sequence is a multidimensional moment sequence [75].

Moment problems are important topic in mathematics [7, 8, 81, 90]. The theory
of one dimensional moment problems have received wide attention. For a sequence
of real numbers S = {s;} with integers & > 0, the moment problem [81, 90] is to find
sufficient and necessary conditions on S that guarantee the existence of a positive
measure p such that [t*du = si. If such a measure p exists, the sequence S is called
a moment sequence.

There are three classical moment problems: the Hamburger moment problem in
which the support interval of y is the whole real line R, the Stieltjes moment problem
for interval [0, +00), and the Hausdorff moment problem for a bounded interval [0, 1].
It is well know that the Hamburger moment problem is solvable if and only if the
Hankel matrix H = H(S) := (s;4,):; is positive semi-definite [81].
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The multidimensional moment problem generalizes the moment problem to higher

dimensions. According to [8, 81, 75|, a multidimensional sequence
S = {bjl"'jn—l : jla U 7jn—1 > O} (1].)

is called a multidimensional moment sequence if there is a nonnegative measure p

on R satisfying:
bjl"'jn—l = / t{l s tf{ffd,u, for jl, ce 7jn—1 > 0, (12)
Frn—1

are all finite. For a given multidimensional sequence S defined by (1.1), is it a
multidimensional moment sequence? i.e., Is there a nonnegative measure such that
(1.2) holds? This problem is called the multidimensional moment problem [7, 8, 81].

For any m > 0 , we may define a homogeneous polynomial of n variables and

degree m:
f(X) = Z{bjl"'j"*j1!---jn71!(mTJ!'17...7]'”71)!xjilxin:llligl_jl_"'_jn—l
it e Z 001+ ey S m} (1.3)

According to [81], S is a multidimensional moment sequence if and only if for all
m, f(x) has a sum of mth power (SOM) form. A homogeneous polynomial f(x) of
n variables and degree m is corresponding to an mth order n-dimensional symmetric

tensor A = (a;,...;,, ), where

Ay ey, = bjl...jn71 (14>
for j,_1 > 0,71+ + Jno1 <m, if in {iy, -+ , i}, the frequency of k is exactly jg,
k=1,--- ,n—1. Then f(x) is an SOM form if and only if there are vectors u; € R"

for k=1,---,r such that



" = (v, - -+ v;, ) denotes a symmetric rank-one tensor.

where for a vector v € R”, v
Such a symmetric tensor is called a completely decomposable tensor in [58].

Thus, a given multidimensional sequence S defined by (1.1), is a multidimensional
moment sequence if and only if all the symmetric tensors A generated by it are
completely decomposable tensors for all m. Note that when m is odd, a symmetric

tensor is always completely decomposable [58].

Suppose now that for 71, , jn_1, 1, ,l,—1 > 0, we have

bjl"'jn—l = bl1"~ln71
if
i+2e+ -+ =D =bL+2+ -+ (n—1),_1. (1.6)

By (1.4), for iy, ,in, k1, -+, k, > 0, we have

Ay oy, = Akyovkopy (17)

as long as

gt =k 4+ kg (1.8)

By [74], such a tensor is called a Hankel tensor. Thus, we call a multidimensional
sequence S satisfying (1.8) a Hankel multidimensional sequence.

By [58], a strong Hankel tensor is completely decomposable. An explicit decom-
position expression of a strong Hankel tensor is given in [31]. Furthermore, by (1.6),

we see that
Vj14 244 (n1)jn1 = Oji-jni (1.9)
for ji,--+,jn—1 > 0, i.e., the components of v are independent from m. Thus, (1.9)

defines an infinite sequence V' = {v;, : k > 0}. This infinite sequence V' generates a

sequence of Hankel matrices H, = (h;;), with ¢, =0,--- ,p—1,p > 0, and

hij = Viyj (110)
4



for i, 7 > 0. We have the following theorem.

Theorem 1.1. Suppose that a given multidimensional sequence S defined by (1.1),
satisfies (1.6), i.e., it is a Hankel multidimensional sequence. If all the Hankel tensors
generated by V' are strong Hankel tensors, i.e., all the Hankel matrices H, generated
by the sequence V' are positive semi-definite, then S is a multidimensional moment

sequence.

This links the classical result for the Hamburger moment problem [81], and gives
an application of the results in [58, 74, 31].

The positive semi-definiteness of Hankel tensors is a condition that guarantees
the existence of solution for a multidimensional moment problem.

It is not easy to identify the positive semi-definiteness of Hankel tensors. In [43],
sum of squares (SOS) tensors were introduced and SOS tensors are connected with
SOS polynomials. SOS tensors are PSD, but not vice versa. This result is from [40].
In 1888, Hilbert proved that only in the following three cases, a PSD homogeneous
polynomial of degree m in n variables is an SOS polynomial: 1) m = 2; 2) n = 2; 3)
m = 4 and n = 3. Hilbert proved that in all the other possible combinations of n and
even m, there are PSD non-SOS (PNS) homogeneous polynomials. Chesi [20] used
the abbreviation PNS for PSD non-SOS in 2007. However, Hilbert did not give an
explicit example for PNS homogeneous polynomials. The first explicit example for
PNS homogeneous polynomials was given by Motzkin [66] in 1967. More examples
of PNS homogeneous polynomials can be found in [22, 82].

In [13], there are some classes of structured tensors that have been proved to be
SOS tensors, including positive Cauchy tensors, weakly diagonally dominated ten-
sors, By-tensors, double B-tensors, quasi-double By-tensors, MBy-tensors, H-tensors,
absolute tensors of positive semi-definite Z-tensors and extended Z-tensors.

The question raised in [58] is the Hilbert’s seventeenth problem under the Hankel
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constraint. It can be stated as:
Does there exist a PNS Hankel tensor?

If there are no PNS Hankel tensors, then the problem for determining a given
even order Hankel tensor is PSD or not is polynomial time solvable [58].

In [74], two classes of positive semi-definite Hankel tensors were identified. They
are even order strong Hankel tensors and even order complete Hankel tensors. It was
proved that complete Hankel tensors are strong Hankel tensors, and even order strong
Hankel tensors are SOS Hankel tensors in [58]. Some other PSD Hankel tensors were
identified in [58]. They are not strong Hankel tensors. But they are still SOS Hankel
tensors.

According to Hilbert [40, 82], the cases with low values of m and n, in which
there are PNS homogeneous polynomials, are that m = 6 and n = 3 and m = n = 4.
We explore the conditions for positive semi-definiteness of Hankel tensors with order
six and dimension three and order four and dimension four in Chapter 3 . If there
are PNS Hankel tensors in these two cases, the answer of the above problem is no.

Anti-circulant tensors were introduced in [30] and have applications in exponential
data fitting. They are extensions of anti-circulant matrices in matrix theory [27,
94]. Anti-circulant tensors are Hankel tensors that arise from signal processing and
some other applications [74, 4, 72]. An anti-circulant tensor with order six and
dimension three has been studied as a special case in [57]. We extend anti-circulant
tensors to generalized anti-circulant tensors, which are still Hankel tensors, and study
the conditions for positive semi-definiteness of generalized anti-circulant tensors in
Chapter 4.

Toeplitz tensors are special classes of even order symmetric tensors, whose positive
semi-definiteness is also not easily checkable. Are they PNS? A good candidate for

such PNS tensors is the class of even order strongly symmetric circulant tensors.
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Strongly symmetric tensors were introduced in [79]. Circulant tensor has applications
in stochastic process and spectral hypergraph theory [19, 76] and is a special class of
Toeplitz tensor. An even order circulant By tensor is positive semi-definite. An even
order circulant B tensor is positive definite [19]. This shows that the Laplacian tensor
and the signless Laplacian tensor of a directed circulant even-uniform hypergraph are
positive semi-definite [19]. If a stochastic process is mth order stationary, where m is
even, then its mth order moment, which is a circulant tensor, must be positive semi-
definite [19]. We study even order three dimensional strongly symmetric circulant
tensors in Chapter 5.

In many applications, large scale tensors are important tools. For a given even
order symmetric tensor, it is positive semi-definite (positive definite) if and only if all
of its H- or Z-eigenvalues are nonnegative (positive) [73]. In other words, it is positive
semi-definite if and only if the smallest H- or Z-eigenvalue is nonnegative. Qi [74] and
Xu [92] studied the spectra of Hankel tensors and gave some upper bounds and lower
bounds for the smallest and the largest eigenvalues. In [30], Ding et al. proposed
a fast computational framework for products of a Hankel tensor and vectors. In
Chapter 6, we propose a method to compute the smallest and the largest eigenvalues
of relatively large Hankel tensors. The algorithms to compute eigenvalues of large
scale Hankel tensors can be used to not only identify the positive semi-definiteness
but also solve many problems in other applications, such as automatic control [68],
medical imaging [84, 80, 16], quantum information [67], and spectral graph theory
[24].

1.2 Summary of contributions of the thesis

The original contributions of this thesis are as follows:

e We study the existence problem of several classes of PNS Hankel tensors, in-
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cluding sixth order three dimensional Hankel tensors, fourth order four dimen-
sional Hankel tensors, generalized anti-circulant tensors. We examine various
important classes of sixth order three dimensional Hankel tensors and there are
no PNS Hankel tensors are found in these cases. We show that there are no
fourth order four dimensional PNS hankel tensor in a 45-degree planar closed
convex cone, a segment, a ray and an additional point. Numerical tests check
various grid points and find that there are no PNS Hankel tensors found. For
some cases, we give necessary and sufficient conditions for even order PSD
generalized anti-circulant tensors and show that in these cases, they are SOS

tensors.

e We give a necessary and sufficient condition for an even order three dimensional
strongly symmetric circulant tensor to be positive semi-definite and this con-
dition can be a sufficient condition for such a tensor to be SOS in some cases.
There are no PNS strongly symmetric circulant tensors found in numerical

tests.

e We propose an algorithm to get the largest and the smallest H- (or Z-)eigenvalues
of Hankel tensors which can be used to not only identify the positive semi-
definiteness but also solve many problems in other applications, such as au-
tomatic control, medical imaging, quantum information, and spectral graph

theory.

1.3 Organization of the thesis

The thesis is structured as follows.

e Chapter 2 reviews the preliminary knowledge, including some definitions and

some preliminary results which are useful in the following chapters.



e Chapter 3 focuses on the existence problem of low order low dimensional PNS
Hankel tensors. One case is sixth order three dimensional Hankel tensors, and
we study four special classes Hankel tensors: truncated Hankel tensors, quasi-
truncated Hankel tensors, anti-circulant tensors and alternatively anti-circulant

tensors.

Another case is fourth order four dimensional Hankel tensor. Under the as-
sumption that the generating vector is symmetric, we show that there are no
fourth order four dimensional PNS Hankel tensors in a 45-degree planar closed
convex cone, a segment, a ray and an additional point. Numerical tests also

show that no PNS Hankel tensor is found.

e Chapter 4 is devoted to an special subclasses of Hankel tensors, generalized
anti-circulant tensors, which is extended from the definition of anti-circulant
tensors by using a circulant index r such that the entries of generating vector of
a Hankel tensor are circulant with module r. For the cases that GCD(m,r) = 1,
GCD(m,r) = 2 and some other cases, we give the conditions for positive semi-
definiteness of even order generalized anti-circulant tensors and they also are

SOS tensors in these cases.

e Chapter 5 shows that the sufficient and necessary condition for positive semi-
definiteness of an even order three dimensional strongly symmetric circulant
tensor, and this condition can be a sufficient condition for such a tensor to be
SOS in some cases. Numerical tests indicate that this is also true in the other

cases.

e Chapter 6 proposes an inexact curvilinear search optimization method to com-
pute the extreme H- (or Z-) eigenvalues of large scale Hankel tensors. The

sequence generated by the new algorithm converges to a unique critical point,



which is an eigen-pair of Hankel tensor. We analyze the linear convergence
rate of iterate sequence by the Kurdyka-Lojasiewicz property. The numerical
experiments are reported to show the efficiency for computing the extreme H-

(or Z-) eigenvalues of large scale Hankel tensors by the new method.

e Chapter 7 concludes the whole thesis and plans for the future work.
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Chapter 2

Preliminaries

2.1 Structured tensors

Denote that [n] := {1,--- ,n}, m,n and k are integers and m,n > 2. A tensor
A = (a;..i,,) of order m and dimension n has entries a;,...;,, with i; € [n] for j € [m].
Tensor A is said to be a symmetric tensor if its entries a;, ..., is invariant under any
index permutation. Denote the set of all the real symmetric tensors of order m and
dimension n by Sy, ,. Then S,,,, is a linear space. Throughout this thesis, we only
discuss real symmetric tensors. We use ||.A|| to denote the Frobenius norm of tensor
A = (i), e, Al =320 0 e az . -
Let v = (vo,*** ,Vn-1ym) . Define A = (a;,..i,,) € Sin by

iy iy, = Vit tip,—ms (21)

foriy, - i, € [n]. Then Ais a Hankel tensor [74, 58, 18, 17, 31, 57] and v is called
the generating vector of 4. We see that a sufficient and necessary condition for

A = (aj,...i,,) € Smn to be a Hankel tensor is that whenever i+ - -+, = j14- -+ Jm,
Wi iy, = Ay (2.2)
If the entries of the generating vector of a Hankel tensor satisfy

Vi = Vjtn,

11



fori =0,---,(n—1)m —n, then A is called an anti-circulant tensor.

A tensor A is called a Hilbert tensor [86] if

1
Wiy oy =
T 4y iy —mt 1
for 4y, ,im € [n]. An mth order n dimensional Hilbert tensor is a Hankel tensor

Withvz(l Ll ... 1).

1213 mn

If for iy, -+ i, € [n — 1], we have

Qg iy = Qg1 +15

then we say that A is an mth order Toeplitz tensor [19]. By the definition, all the
diagonal entries of a Toeplitz tensor are the same.

An mth order n dimensional tensor A = (a;,..;,,) is called a circulant tensor
19] if

Qi = Wy

as long as j; = 4, + 1,(mod n) for [ = 1,--- ;m. Clearly, a circulant tensor is
a Toeplitz tensor. Circulant tensors have applications in stochastic process and
spectral hypergraph theory [19].

Strongly symmetric tensors were introduced in [79]. An mth order n dimensional

tensor A = (a;,..;,,) is called a strongly symmetric tensor if
Ay iy, = Ajyeejn

as long as {iy, - ,im} = {j1,"*+ ,Jm}- Note that a symmetric matrix is a strongly
symmetric tensor of order 2. Hence, strongly symmetric tensors are also extensions

of symmetric matrices.

12



2.2 Positive semi-definite and positive definite ten-
sors

Let x € R". Then x™ is a rank-one symmetric tensor with entries z;, --- ;. For
A€ S, and x € ", we have a homogeneous polynomial f(x) of n variables and
degree m,

F(x) = Ax®™

Z iy ey Lig *** Ly - (2.3)

i1, ,tm €[n]
Note that there is a one to one relation between homogeneous polynomials and
symmetric tensors. If f(x) > 0 for all x € R", then homogeneous polynomial f(x)
and symmetric tensor A are called positive semi-definite(PSD). If f(x) > 0 for
all x € R", x # 0, then f(x) and A are called positive definite (PD). In (2.3), if
A is a Hankel tensor, then f(x) is called a Hankel polynomial. Clearly, if m is odd,
there is no positive definite symmetric tensor and there is only one positive semi-
definite tensor 0. Thus, we assume that m = 2k when we discuss positive definite

and semi-definite tensors (polynomials). Ax™! is a column vector

-1 .
(Axm )z = E Qi o, imLio " " Ly for i = 1, e, n.

12,13, im=1

For a vector z € R, we use x; to denote its components, and z!™ to denote a

vector in R” such that

for all 4. In [73], Qi introduced that the definition of the H-eigenvalue (eigenvalue)
and the Z-eigenvalue (E-eigenvalue) of a tensor A € R

A real number A € R is called an H-eigenvalue of A, iff 3z € R" satisfies
Azt = \glm 1

x is called the H-eigenvector corresponding to .

13



A real number A\ € R is called an Z-eigenvalue of A, iff 3z € R™ satisfies

Az = \x

rz x=1,
x is called the Z-eigenvector corresponding to A.

Theorem 2.1. [73] Assume that m is even. The following conclusions hold for

A€ Smn:

(1) A always has H-eigenvalues. A is positive definite (positive semi-definite) if and

only if all of its H-eigenvalues are positive (nonnegative).

(2) A always has Z-eigenvalues. A is positive definite (positive semi-definite) if and

only if all of its Z-eigenvalues are positive (nonnegative).

This theorem shows that a tensor A is positive semi-definite if and only if the

smallest H- or Z-eigenvalue of A is nonnegative.

2.3 PSD Hankel tensors and SOS Hankel tensors

If f(x) can be decomposed to the sum of squares of polynomials of degree k, then
f(z) is called a sum-of-squares polynomial, and the corresponding symmetric tensor
A is called an SOS tensor [43]. SOS polynomials play a central role in the modern
theory of polynomial optimization [53, 54]. Clearly, an SOS polynomial (tensor) is
a PSD polynomial, but not vice versa. Actually, this was shown by young Hilbert
40, 66, 22, 82] that for homogeneous polynomial, only in the following three cases,
a PSD polynomial definitely is an SOS polynomial: 1)n = 2; 2)m = 2; 3)m = 4 and
n = 3. For tensors, the second case corresponds to the symmetric matrices, i.e., a

PSD symmetric matrix is always an SOS matrix. Hilbert proved that in all the other
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possible combinations of m = 2k and n, there are PNS homogeneous polynomials.
The most well-known PNS homogeneous polynomial is the Motzkin polynomial [66]

6 2.4 4.2 2,2, 2

By the Arithmetic-Geometric inequality, we see that it is a PSD polynomial. But it
is not an SOS polynomial [82]. The other two PNS homogeneous polynomials with

small m and n are given by Choi and Lam [22]
fori(x) = o + 2225 4+ 22l 4+ viel — 4o xoxsny

and
fora(x) = 2ial + 2522 + 2322 — 3x2xiwd.
Denote the set of all SOS tensors in S, , by SOS,, . Then it is also a closed convex
cone [43].
By (2.2), the three PNS polynomials fa/(x), fori(x) and fore(x) are not Hankel
polynomials. These three polynomials are still non-SOS PSD polynomials if we

switch the indices of their variables.

Suppose that A is a Hankel tensor defined by (2.1). Let A = (a;;) be an

n—1)m-+42 n—1)m+42
[t 2] o plosmt

| matrix with a;; = v;4;_2, where Vg te=tym is an additional
number when (n—1)m is odd. Then A is a Hankel matrix, associated with the Hankel
tensor A. Clearly, when m is even, such an associated Hankel matrix is unique. Re-
call from [74] that A is called a strong Hankel tensor if there exists an associated
Hankel matrix A is positive semi-definite. Thus, whether a tensor is a strong Hankel
tensor or not can be verified by using tools from matrix analysis. It has also been

shown in [74] that A is a strong Hankel tensor if and only if it is a Hankel tensor and

there exists an absolutely integrable real valued function h : (—o0, +00) — [0, +00)

such that its generating vector v = (vg, v1,"+ , Un_1)m) ' satisfies
vp = / t*n(t)dt, k=0,1,--- (n—1)m. (2.5)
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Such a real valued function h is called the generating function of the strong Hankel
tensor A. A vector u = (1,7,72,--+,v" 1) for some v € R is called a Vandermonde
vector [74]. If tensor A has the form

A= ;i (u)™, (2.6)

i€(r]
where u; for i = 1,--- ,r , are all Vandermonde vectors, then we say that A has
a Vandermonde decomposition. It was shown in [74] that a symmetric tensor is a
Hankel tensor if and only if it has a Vandermonde decomposition. If the coefficients
a; fori=1,--- ,r, are all nonnegative, then A is called a complete Hankel tensor
[74].
Let A € S, . If there are vectors z; € R" for j € [r] such that
A= a:f-@m,
jelr]

then we say that A is a completely r-decomposable tensor, or a completely
decomposable tensor. If z; € R" for all j € [r], then A is called a completely
positive tensor [79].

Clearly, a complete Hankel tensor is a completely decomposable tensor. Unlike
strong Hankel tensors, there is no clear method to check whether a Hankel tensor is
a complete Hankel tensor or not, as the Vandermonde decompositions of a Hankel
tensor are not unique.

It was proved that even order strong or complete Hankel tensors are positive semi-
definite in [74], complete Hankel tensors are strong Hankel tensors and all of them
are SOS Hankel tensors in [58]. A even order strong Hankel tensor is a completely
decomposable tensor and a completely decomposable tensor is a SOS Hankel tensor.
There is a even order strong Hankel tensor which is not a complete Hankel tensor,

whenever m is a positive even number and n > 2.
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Chapter 3

Low Order Low Dimensional
Hankel Tensor

If there are no PNS Hankel tensor, then the problem for determining an even order
Hankel tensor is PSD or not can be solved in polynomial-time. By Hilbert, the cases
of low order (degree) and dimension (number of variables), in which PNS symmetric
tensors (homogeneous polynomials) exists, is of order six and dimension three and
order four and dimension four.

In this chapter, we study the existence problem of sixth order three dimensional
and fourth order four dimensional PNS Hankel tensors. We examine various impor-
tant classes of sixth order three dimensional Hankel tensors. No PNS Hankel tensors
are found in these cases. We also show that there are no fourth order four dimen-
sional PNS Hankel tensors to be found in the following cases: a 45-degree planar
closed convex cone, a segment, a ray and an additional point. Numerical tests check

various grid points, and no PNS Hankel tensors are found.
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3.1 Sixth order three dimensional Hankel tensors

3.1.1 Introduction

Let v = (vg, v, -+ ,v12)] € RB. A sixth order three dimensional Hankel tensor
A = (aj,..;;) is defined by
iy ig = Vig+-4ig—6;

for iy,--- ,ig = 1,2,3. The corresponding vector v that defines the Hankel tensor A
is called the generating vector of A. For x = (1,79, 23)" € N3, A uniquely defines

a homogeneous polynomial (a ternary sextic)

3 3

f(x) = Ax®S = Z Qi origTiy * ** Tig = Z Vigtootig—6Tiy * ** Lig - (3.1)
i1, yig=1 i1, ig=1
We call such a polynomial a (ternary sextic) Hankel polynomial.

We study several special classes of sixth order three dimensional Hankel tensors.

The first class of Hankel tensors we examined is called truncated Hankel tensors.
The generating vector v of a sixth order three dimensional truncated Hankel tensor A
has only three nonzero entries: vy, v and v15. We provide a sufficient and necessary
condition that a sixth order three dimensional truncated Hankel tensor to be PSD.
We show that such truncated Hankel tensors are PSD if and only if they are SOS.
We also show that such SOS Hankel tensors are not strong Hankel tensors unless
vg = 0.

The second class of Hankel tensors is called quasi-truncated Hankel tensors. The
generating vector v of a sixth order three dimensional quasi-truncated Hankel tensor
A has five nonzero entries: vg, v1, vg, v11 and vi9. It is still true that such SOS Hankel
tensors are not strong Hankel tensors unless v; = vg = v1; = 0. In this case, still no
PNS Hankel tensors are found.

To motivate the third class of Hankel tensors, we recall that, beside the Motzkin
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polynomial, there is another well-known PNS homogeneous polynomial for m = 6

and n = 3. This is the Choi-Lam polynomial [22, 82]:

4.2 4.2 4.2 2,2, 2

An important property of the Choi-Lam polynomial is that

(@1, 20, 23) = f(22,23,21) = f(23, 21, 22)

for any x € 3. The generating vector v of a sixth order three dimensional Hankel

tensor A, associated with such a ternary sextic has the property
Vi = Vg3, (3.2)

fori =0,---,9. By [30], a Hankel tensor satisfying (3.2) is called an anti-circulant
tensor. The name “anti-circulant tensor” is an extension of the name “anti-circulant
matrix” [27]. We show that a sixth order three dimensional anti-circulant tensor is
PSD if and only if it is a nonnegative multiple of the all one tensor, which is an SOS
Hankel tensor. Thus, no PNS Hankel tensors are found in this case.

The fourth class of Hankel tensors is defined that the generating vectors v of such
Hankel tensors satisfy

V; = Viy2,

for i = 0,---,10. We call such Hankel tensors alternatively anti-circulant tensors.
We give a sufficient and necessary 