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Abstract

Problems in many applications, such as physics, computing sciences, economic and

engineering, can be formulated as tensor problems that usually have special struc-

tures. In recently years, there are some classes structured tensors including Toeplitz

tensors, Hankel tensors, Hilbert tensors, Vandermonde tensors, Cauchy tensors, M-

tensors, P-tensors and others have been generalized from matrices and studied.

Hankel tensors and Toeplitz tensors arise from signal processing and some other

applications. The positive semi-definiteness of Hankel tensors is a condition that

guarantee the existence of solution for a multidimensional moment problem. To

identify a general tensor is positive semi-definite (PSD) or not is NP-hard but it is

easier to check for structured tensors. The aim of this work is to identify the positive

semi-definiteness of Hankel tensors and circulant tensors.

A symmetric tensor is uniquely corresponding to a homogeneous polynomial.

SOS (sum-of-squares) tensors are connected with SOS polynomials, which is easily

to check by solving a semi-definite linear programming problem. SOS tensors are

PSD tensors, but not vice versa. Based on these facts, we study the existence problem

of PSD non SOS Hankel tensor in the following cases: sixth order three dimensional

Hankel tensors, fourth order four dimensional Hankel tensors and generalized anti-

circulant tensors. There are no PSD non SOS Hankel tensors to be found in these

cases.

We also study the three dimensional strongly symmetric circulant tensors, which
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are special Toeplitz tensors. We give a sufficient and necessary condition for an

even order three dimensional strongly symmetric circulant tensors to be positive

semi-definite in some cases.

For a given even order symmetric tensor, it is positive semi-definite (positive

definite) if and only if all of its H- or Z-eigenvalues are nonnegative (positive). In

other words, it is positive semi-definite if and only if the smallest H- or Z-eigenvalue is

nonnegative. We propose an algorithm to compute extreme eigenvalues of large scale

Hankel tensors, which can be used to not only identify positive semi-definiteness but

also solve many problems in other applications, such as automatic control, medical

imaging, quantum information, and spectral graph theory. Numerical examples show

the efficiency of the proposed method.

viii



Underlying papers

This thesis is based on the following papers written by the author during the period

of stay at the Department of Applied Mathematics, The Hong Kong Polytechnic

University as a graduate student:

1. G. Li, L. Qi, and Q. Wang. Are there sixth order three dimensional Hankel

tensors? arXiv:1411.2368, November 2014, submitted.

2. Y. Chen, L. Qi, and Q. Wang. Positive semi-definiteness and sum-of-squares

property of fourth order four dimensional Hankel tensors. Journal of Compu-

tational and Applied Mathematics, 302 (2016) 356-368.

3. G. Li, L. Qi and Q. Wang. Positive semi-definiteness of generalized anti-

circulant tensors. Communications in Mathematical Sciences, 14 (2016) 941-

952.

4. L. Qi, Q. Wang and Y. Chen. Three dimensional strongly symmetric circulant

tensors. Linear Algebra and Its Applications, 482 (2015) 207-220.

5. Y. Chen, L. Qi, and Q. Wang. Computing extreme eigenvalues of large scale

Hankel tensors. Journal of Scientific Computing, DOI:10.1007/s10915-015-

0155-8 (2016).

In addition, the following is a list of other papers written by the author during

the period of her Ph.D study.

ix



1. L. Qi, J. Shao and Q. Wang. Regular uniform hypergraphs, s-cycles, s-paths

and their largest Laplacian H-eigenvalues. Linear Algebra and Its Applications,

443 (2014) 215-227.

x



Acknowledgements

I would like to express my thanks and gratitude to all the people who always en-

courage and support me. It is impossible to complete my Ph.D program without

them.

First and foremost, I want to give special thanks to my supervisor Prof. Liqun

Qi for his guidance, assistance and expertise. In the last three years, he gave me

advice and suggestions for research subjects and provided professional knowledge

and insightful discussions about the research. I learned a lot from him not only in

the study, but also in life. He shared his experience and ideas with me and taught

me how to face and handle with problems. I hope that I could be smart, enthusiastic

and energetic like him.

Furthermore, I am very thankful to my co-supervisor Dr. Xun Li for his en-

couragement and support. His optimism will always influence me in the future. My

appreciation extends to Dr. Guoyin Li for the joint work, his friendship and sug-

gestions. My gratitude is also extended to Dr. Yannan Chen for the joint work,

guidance, encouragement and help for all the time. I wish to express my sincere

appreciation to Prof. Deren Han for his help and advice.

Finally, I would like to thank to my family and my friends for their love and

understanding.

xi



xii



Contents

Certificate of Originality iii

Abstract vii

Underlying papers ix

Acknowledgements xi

List of Figures xvii

List of Tables xix

List of Notations xxi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of contributions of the thesis . . . . . . . . . . . . . . . . . 7

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 11

2.1 Structured tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Positive semi-definite and positive definite tensors . . . . . . . . . . . 13

2.3 PSD Hankel tensors and SOS Hankel tensors . . . . . . . . . . . . . . 14

3 Low Order Low Dimensional Hankel Tensor 17

3.1 Sixth order three dimensional Hankel tensors . . . . . . . . . . . . . . 18

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Sixth order three dimensional truncated Hankel tensors . . . . 22

xiii



3.1.3 Sixth order three dimensional quasi-truncated Hankel tensors . 25

3.1.4 Sixth order three dimensional anti-circulant tensors . . . . . . 30

3.1.5 Sixth order three dimensional alternatively anti-circulant tensors 33

3.1.6 Numerical tests and a conjecture . . . . . . . . . . . . . . . . 35

3.2 Fourth order four dimensional Hankel tensors . . . . . . . . . . . . . 37

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 A PNS-free segment . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3 A PNS-free planar cone . . . . . . . . . . . . . . . . . . . . . 49

3.2.4 A PNS-free ray . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.5 A PNS-free point . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 53

4 Generalized Anti-circulant Tensors 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 A theorem on circulant numbers . . . . . . . . . . . . . . . . . . . . . 59

4.3 The case that r is odd . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 The case that r = 1 . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 The case that GCD(m, r) = 1 . . . . . . . . . . . . . . . . . . 61

4.3.3 The case that GCD(m, r) 6= 1 . . . . . . . . . . . . . . . . . . 62

4.4 The case that r is even . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 The case that r = 2 . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 The case that GCD(m, r) = 2 . . . . . . . . . . . . . . . . . . 69

4.4.3 The case that GCD(m, r) = 2l for l ≥ 2 . . . . . . . . . . . . 71

5 Three Dimensional Strongly Symmetric Circulant Tensors 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Functions Mc(u) and Nc(u) . . . . . . . . . . . . . . . . . . . . . . . 75

xiv



5.3 c = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 c = −1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 c = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Computing Extreme Eigenvalues of Large Scale Hankel Tensors 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Hankel tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 A curvilinear search algorithm . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4.1 Basic convergence results . . . . . . . . . . . . . . . . . . . . . 102

6.4.2 Further results based on the Kurdyka- Lojasiewicz property . . 105

6.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.1 Small Hankel tensors . . . . . . . . . . . . . . . . . . . . . . . 112

6.5.2 Large scale problems . . . . . . . . . . . . . . . . . . . . . . . 114

6.5.3 Initial step sizes . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusions and Future Work 121

Bibliography 123

xv



xvi



List of Figures

3.1 The value of φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 The segment L, the planar closed convex cone C, the ray R and the
point A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 The contour profile of M0(v2, v6, 0, 0, 0) = N0(v2, v6, 0, 0, 0). . . . . . . 54

3.4 The contour profile of M0(0, v6, 0, 0, v5). . . . . . . . . . . . . . . . . . 54

3.5 The contour profiles of M0(v2, v6, v1, v3, v5) which are equivalent to
N0(v2, v6, v1, v3, v5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 The smallest Z- and H-eigenvalues of the parameterized fourth order
four dimensional Hankel tensors. . . . . . . . . . . . . . . . . . . . . . 113

6.2 The largest Z-eigenvalue and its upper bound for Hilbert tensors. . . 117

6.3 The computed largest H-eigenvalue and its upper bound for Hilbert
tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Comparisons of four sorts of step size strategies. . . . . . . . . . . . . 118

xvii



xviii



List of Tables

3.1 The values of φ for different v0 . . . . . . . . . . . . . . . . . . . . . . 31

3.2 The values of M0(v2, v6, 0, 0, 0) = N0(v2, v6, 0, 0, 0) on some grid points. 53

5.1 The values of M0(1) and N0(1). . . . . . . . . . . . . . . . . . . . . . 79

5.2 The values of M−1(u) and N−1(u) for m = 6. . . . . . . . . . . . . . . 82

5.3 The values of M−1(u) and N−1(u) for m = 8. . . . . . . . . . . . . . . 82

5.4 The values of M−1(u) and N−1(u) for m = 10. . . . . . . . . . . . . . 82

5.5 The values of M−1(u) and N−1(u) for m = 12. . . . . . . . . . . . . . 83

5.6 The values of M1(u) and N1(u) for m = 6. . . . . . . . . . . . . . . . 86

5.7 The values of M1(u) and N1(u) for m = 8. . . . . . . . . . . . . . . . 86

5.8 The values of M1(u) and N1(u) for m = 10. . . . . . . . . . . . . . . 86

5.9 The values of M1(u) and N1(u) for m = 12. . . . . . . . . . . . . . . 87

6.1 Computed Z-eigenvalues of the Hankel tensor in Example 6.1. . . . . 112

6.2 CPU times (second) for computing Z- and H-eigenvalues of the pa-
rameterized Hankel tensors shown in Example 6.2. . . . . . . . . . . . 114

6.3 The largest Z-eigenvalues of Vandermonde tensor in Example 6.3. . . 116

xix



xx



List of Notations

< set of real numbers

<n set of n-dimensional real vectors

<m×n set of m× n real matrices

xT transpose of matrix/vector x

I the unit tensor

O the zero tensor

Sm,n set of all the real symmetric tensors of order m and

dimension n.

ei the i-th unit vector in <n.

xi the ith component of x

0 zero vector in <n.

‖ · ‖ the Euclidean norm.[
n
]

the index set {1, · · · , n}.

GCD(m, r) the greatest common divisor of the two nonnegative

integers m and r.

Fl l × l Fourier matrix.

dxe the smallest integer that is not less than x.

xxi



xxii



Chapter 1

Introduction

1.1 Background

Just as linear operators and their coordinate representations i.e., matrices, are the

main objects of interest in linear algebra. Tensors and their coordinate represen-

tations i.e., hypermatrices, are the main objects of interest in multilinear algebra.

Tensors can be represented as multidimensional array and the order of a tensor is

the number of indices. Without misleading, we use the tensor instead of multidi-

mensional arrays or hypermatrices.

Tensors provide a framework for solving the problems in many applications, such

as physics, engineering, medical science and fluid mechanics. Tensors were first

introducted by Tullio Levi-Civita and Gregorio Ricci-Curbastro, who continued the

earlier work of Bernhard Riemann and Elwin Bruno Christoffel and others, as part

of the absolute differential calculus [48].

Many problems in computing sciences, economic and engineering can be reduced

to tensor problems that usually have special structures. In recent years, there are

some classes structured tensors such as Toeplitz tensors [19], Hankel tensors [74,

30, 58, 92], Hilbert tensors [86], Vandermonde tensors [74, 92], Cauchy tensors [14,

13], M-tensors [93, 29], P-tensors [87] and others that have been extended from the

corresponding matrices and their properties have been studied.
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Most tensor problems are NP-hard [41]. The problems for determining a general

even order symmetric tensor is positive semi-definite (PSD) or not is NP-hard and is

also important both theoretically and practically [1, 40, 73]. However, to determining

the tensors with some special structure is PSD or not may not be NP-hard. Recently,

it was discovered that several easily checkable classes of special even order symmetric

tensors are PSD or there are easily checkable conditions to identify, including even

order symmetric diagonally dominated tensors [73], even order symmetric B0 tensors

[77], even order Hilbert tensors [86], even order symmetric M tensors [93], even order

symmetric double B0 tensors [55], even order symmetric strong H tensors [56, 47],

even order strong Hankel tensors [74], even order positive Cauchy tensors [14], etc.

However, some kinds of structured tensors are not easy to identify their positive

semi-definiteness, such as Hankel tensors and Toeplitz tensors.

Hankel tensors arise from signal processing and some other applications [74, 30,

4, 72]. They are symmetric tensors. If a multidimensional sequence generates Hankel

tensors and all the Hankel matrices, generated by this sequence, are positive semi-

definite, then this sequence is a multidimensional moment sequence [75].

Moment problems are important topic in mathematics [7, 8, 81, 90]. The theory

of one dimensional moment problems have received wide attention. For a sequence

of real numbers S = {sk} with integers k ≥ 0, the moment problem [81, 90] is to find

sufficient and necessary conditions on S that guarantee the existence of a positive

measure µ such that
∫
tkdµ = sk. If such a measure µ exists, the sequence S is called

a moment sequence.

There are three classical moment problems: the Hamburger moment problem in

which the support interval of µ is the whole real line <, the Stieltjes moment problem

for interval [0,+∞), and the Hausdorff moment problem for a bounded interval [0, 1].

It is well know that the Hamburger moment problem is solvable if and only if the

Hankel matrix H = H(S) := (si+j)i,j is positive semi-definite [81].
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The multidimensional moment problem generalizes the moment problem to higher

dimensions. According to [8, 81, 75], a multidimensional sequence

S = {bj1···jn−1 : j1, · · · , jn−1 ≥ 0} (1.1)

is called a multidimensional moment sequence if there is a nonnegative measure µ

on <n−1 satisfying:

bj1···jn−1 =

∫
<n−1

tj11 · · · t
jn−1

n−1 dµ, for j1, · · · , jn−1 ≥ 0, (1.2)

are all finite. For a given multidimensional sequence S defined by (1.1), is it a

multidimensional moment sequence? i.e., Is there a nonnegative measure such that

(1.2) holds? This problem is called the multidimensional moment problem [7, 8, 81].

For any m > 0 , we may define a homogeneous polynomial of n variables and

degree m:

f(x) =
∑
{bj1···jn−1

m!
j1!···jn−1!(m−j1−···−jn−1)!

xj11 x
jn−1

n−1 x
m−j1−···−jn−1

0

: j1, · · · , jn−1 ≥ 0, j1 + · · ·+ jn−1 ≤ m}. (1.3)

According to [81], S is a multidimensional moment sequence if and only if for all

m, f(x) has a sum of mth power (SOM) form. A homogeneous polynomial f(x) of

n variables and degree m is corresponding to an mth order n-dimensional symmetric

tensor A = (ai1···im), where

ai1···im = bj1···jn−1 (1.4)

for jn−1 ≥ 0, j1 + · · ·+ jn−1 ≤ m, if in {i1, · · · , im}, the frequency of k is exactly jk,

k = 1, · · · , n− 1. Then f(x) is an SOM form if and only if there are vectors uk ∈ <n

for k = 1, · · · , r such that

A =
r∑

k=1

umk , (1.5)
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where for a vector v ∈ <n, vm = (vi1 · · · vim) denotes a symmetric rank-one tensor.

Such a symmetric tensor is called a completely decomposable tensor in [58].

Thus, a given multidimensional sequence S defined by (1.1), is a multidimensional

moment sequence if and only if all the symmetric tensors A generated by it are

completely decomposable tensors for all m. Note that when m is odd, a symmetric

tensor is always completely decomposable [58].

Suppose now that for j1, · · · , jn−1, l1, · · · , ln−1 ≥ 0, we have

bj1···jn−1 = bl1···ln−1

if

j1 + 2j2 + · · ·+ (n− 1)jn−1 = l1 + 2l2 + · · ·+ (n− 1)ln−1. (1.6)

By (1.4), for i1, · · · , in, k1, · · · , kn ≥ 0, we have

ai1···im = ak1···km (1.7)

as long as

i1 + · · ·+ im = k1 + · · ·+ km. (1.8)

By [74], such a tensor is called a Hankel tensor. Thus, we call a multidimensional

sequence S satisfying (1.8) a Hankel multidimensional sequence.

By [58], a strong Hankel tensor is completely decomposable. An explicit decom-

position expression of a strong Hankel tensor is given in [31]. Furthermore, by (1.6),

we see that

vj1+2j2+···+(n−1)jn−1 = bj1···jn−1 , (1.9)

for j1, · · · , jn−1 ≥ 0, i.e., the components of v are independent from m. Thus, (1.9)

defines an infinite sequence V = {vk : k ≥ 0}. This infinite sequence V generates a

sequence of Hankel matrices Hp = (hij), with i, j = 0, · · · , p− 1, p > 0 , and

hij = vi+j (1.10)
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for i, j ≥ 0. We have the following theorem.

Theorem 1.1. Suppose that a given multidimensional sequence S defined by (1.1),

satisfies (1.6), i.e., it is a Hankel multidimensional sequence. If all the Hankel tensors

generated by V are strong Hankel tensors, i.e., all the Hankel matrices Hp generated

by the sequence V are positive semi-definite, then S is a multidimensional moment

sequence.

This links the classical result for the Hamburger moment problem [81], and gives

an application of the results in [58, 74, 31].

The positive semi-definiteness of Hankel tensors is a condition that guarantees

the existence of solution for a multidimensional moment problem.

It is not easy to identify the positive semi-definiteness of Hankel tensors. In [43],

sum of squares (SOS) tensors were introduced and SOS tensors are connected with

SOS polynomials. SOS tensors are PSD, but not vice versa. This result is from [40].

In 1888, Hilbert proved that only in the following three cases, a PSD homogeneous

polynomial of degree m in n variables is an SOS polynomial: 1) m = 2; 2) n = 2; 3)

m = 4 and n = 3. Hilbert proved that in all the other possible combinations of n and

even m, there are PSD non-SOS (PNS) homogeneous polynomials. Chesi [20] used

the abbreviation PNS for PSD non-SOS in 2007. However, Hilbert did not give an

explicit example for PNS homogeneous polynomials. The first explicit example for

PNS homogeneous polynomials was given by Motzkin [66] in 1967. More examples

of PNS homogeneous polynomials can be found in [22, 82].

In [13], there are some classes of structured tensors that have been proved to be

SOS tensors, including positive Cauchy tensors, weakly diagonally dominated ten-

sors, B0-tensors, double B-tensors, quasi-double B0-tensors, MB0-tensors, H-tensors,

absolute tensors of positive semi-definite Z-tensors and extended Z-tensors.

The question raised in [58] is the Hilbert’s seventeenth problem under the Hankel
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constraint. It can be stated as:

Does there exist a PNS Hankel tensor?

If there are no PNS Hankel tensors, then the problem for determining a given

even order Hankel tensor is PSD or not is polynomial time solvable [58].

In [74], two classes of positive semi-definite Hankel tensors were identified. They

are even order strong Hankel tensors and even order complete Hankel tensors. It was

proved that complete Hankel tensors are strong Hankel tensors, and even order strong

Hankel tensors are SOS Hankel tensors in [58]. Some other PSD Hankel tensors were

identified in [58]. They are not strong Hankel tensors. But they are still SOS Hankel

tensors.

According to Hilbert [40, 82], the cases with low values of m and n, in which

there are PNS homogeneous polynomials, are that m = 6 and n = 3 and m = n = 4.

We explore the conditions for positive semi-definiteness of Hankel tensors with order

six and dimension three and order four and dimension four in Chapter 3 . If there

are PNS Hankel tensors in these two cases, the answer of the above problem is no.

Anti-circulant tensors were introduced in [30] and have applications in exponential

data fitting. They are extensions of anti-circulant matrices in matrix theory [27,

94]. Anti-circulant tensors are Hankel tensors that arise from signal processing and

some other applications [74, 4, 72]. An anti-circulant tensor with order six and

dimension three has been studied as a special case in [57]. We extend anti-circulant

tensors to generalized anti-circulant tensors, which are still Hankel tensors, and study

the conditions for positive semi-definiteness of generalized anti-circulant tensors in

Chapter 4.

Toeplitz tensors are special classes of even order symmetric tensors, whose positive

semi-definiteness is also not easily checkable. Are they PNS? A good candidate for

such PNS tensors is the class of even order strongly symmetric circulant tensors.
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Strongly symmetric tensors were introduced in [79]. Circulant tensor has applications

in stochastic process and spectral hypergraph theory [19, 76] and is a special class of

Toeplitz tensor. An even order circulant B0 tensor is positive semi-definite. An even

order circulant B tensor is positive definite [19]. This shows that the Laplacian tensor

and the signless Laplacian tensor of a directed circulant even-uniform hypergraph are

positive semi-definite [19]. If a stochastic process is mth order stationary, where m is

even, then its mth order moment, which is a circulant tensor, must be positive semi-

definite [19]. We study even order three dimensional strongly symmetric circulant

tensors in Chapter 5.

In many applications, large scale tensors are important tools. For a given even

order symmetric tensor, it is positive semi-definite (positive definite) if and only if all

of its H- or Z-eigenvalues are nonnegative (positive) [73]. In other words, it is positive

semi-definite if and only if the smallest H- or Z-eigenvalue is nonnegative. Qi [74] and

Xu [92] studied the spectra of Hankel tensors and gave some upper bounds and lower

bounds for the smallest and the largest eigenvalues. In [30], Ding et al. proposed

a fast computational framework for products of a Hankel tensor and vectors. In

Chapter 6, we propose a method to compute the smallest and the largest eigenvalues

of relatively large Hankel tensors. The algorithms to compute eigenvalues of large

scale Hankel tensors can be used to not only identify the positive semi-definiteness

but also solve many problems in other applications, such as automatic control [68],

medical imaging [84, 80, 16], quantum information [67], and spectral graph theory

[24].

1.2 Summary of contributions of the thesis

The original contributions of this thesis are as follows:

• We study the existence problem of several classes of PNS Hankel tensors, in-
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cluding sixth order three dimensional Hankel tensors, fourth order four dimen-

sional Hankel tensors, generalized anti-circulant tensors. We examine various

important classes of sixth order three dimensional Hankel tensors and there are

no PNS Hankel tensors are found in these cases. We show that there are no

fourth order four dimensional PNS hankel tensor in a 45-degree planar closed

convex cone, a segment, a ray and an additional point. Numerical tests check

various grid points and find that there are no PNS Hankel tensors found. For

some cases, we give necessary and sufficient conditions for even order PSD

generalized anti-circulant tensors and show that in these cases, they are SOS

tensors.

• We give a necessary and sufficient condition for an even order three dimensional

strongly symmetric circulant tensor to be positive semi-definite and this con-

dition can be a sufficient condition for such a tensor to be SOS in some cases.

There are no PNS strongly symmetric circulant tensors found in numerical

tests.

• We propose an algorithm to get the largest and the smallest H- (or Z-)eigenvalues

of Hankel tensors which can be used to not only identify the positive semi-

definiteness but also solve many problems in other applications, such as au-

tomatic control, medical imaging, quantum information, and spectral graph

theory.

1.3 Organization of the thesis

The thesis is structured as follows.

• Chapter 2 reviews the preliminary knowledge, including some definitions and

some preliminary results which are useful in the following chapters.
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• Chapter 3 focuses on the existence problem of low order low dimensional PNS

Hankel tensors. One case is sixth order three dimensional Hankel tensors, and

we study four special classes Hankel tensors: truncated Hankel tensors, quasi-

truncated Hankel tensors, anti-circulant tensors and alternatively anti-circulant

tensors.

Another case is fourth order four dimensional Hankel tensor. Under the as-

sumption that the generating vector is symmetric, we show that there are no

fourth order four dimensional PNS Hankel tensors in a 45-degree planar closed

convex cone, a segment, a ray and an additional point. Numerical tests also

show that no PNS Hankel tensor is found.

• Chapter 4 is devoted to an special subclasses of Hankel tensors, generalized

anti-circulant tensors, which is extended from the definition of anti-circulant

tensors by using a circulant index r such that the entries of generating vector of

a Hankel tensor are circulant with module r. For the cases thatGCD(m, r) = 1,

GCD(m, r) = 2 and some other cases, we give the conditions for positive semi-

definiteness of even order generalized anti-circulant tensors and they also are

SOS tensors in these cases.

• Chapter 5 shows that the sufficient and necessary condition for positive semi-

definiteness of an even order three dimensional strongly symmetric circulant

tensor, and this condition can be a sufficient condition for such a tensor to be

SOS in some cases. Numerical tests indicate that this is also true in the other

cases.

• Chapter 6 proposes an inexact curvilinear search optimization method to com-

pute the extreme H- (or Z-) eigenvalues of large scale Hankel tensors. The

sequence generated by the new algorithm converges to a unique critical point,
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which is an eigen-pair of Hankel tensor. We analyze the linear convergence

rate of iterate sequence by the Kurdyka- Lojasiewicz property. The numerical

experiments are reported to show the efficiency for computing the extreme H-

(or Z-) eigenvalues of large scale Hankel tensors by the new method.

• Chapter 7 concludes the whole thesis and plans for the future work.
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Chapter 2

Preliminaries

2.1 Structured tensors

Denote that [n] := {1, · · · , n}, m,n and k are integers and m,n ≥ 2. A tensor

A = (ai1···im) of order m and dimension n has entries ai1···im with ij ∈ [n] for j ∈ [m].

Tensor A is said to be a symmetric tensor if its entries ai1···im is invariant under any

index permutation. Denote the set of all the real symmetric tensors of order m and

dimension n by Sm,n. Then Sm,n is a linear space. Throughout this thesis, we only

discuss real symmetric tensors. We use ‖A‖ to denote the Frobenius norm of tensor

A = (ai1···im), i.e., ‖A‖ =
∑

i1···im∈[n] a
2
i1···im .

Let v = (v0, · · · , v(n−1)m)>. Define A = (ai1···im) ∈ Sm,n by

ai1···im = vi1+···+im−m, (2.1)

for i1, · · · , im ∈ [n]. ThenA is a Hankel tensor [74, 58, 18, 17, 31, 57] and v is called

the generating vector of A. We see that a sufficient and necessary condition for

A = (ai1···im) ∈ Sm,n to be a Hankel tensor is that whenever i1+· · ·+im = j1+· · ·+jm,

ai1···im = aj1···jm . (2.2)

If the entries of the generating vector of a Hankel tensor satisfy

vi = vi+n,
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for i = 0, · · · , (n− 1)m− n, then A is called an anti-circulant tensor.

A tensor A is called a Hilbert tensor [86] if

ai1···im =
1

i1 + i2 + · · ·+ im −m+ 1

for i1, · · · , im ∈ [n]. An mth order n dimensional Hilbert tensor is a Hankel tensor

with v =
(
1, 1

2
, 1

3
, · · · 1

mn

)
.

If for i1, · · · , im ∈ [n− 1], we have

ai1···im = ai1+1···im+1,

then we say that A is an mth order Toeplitz tensor [19]. By the definition, all the

diagonal entries of a Toeplitz tensor are the same.

An mth order n dimensional tensor A = (ai1···im) is called a circulant tensor

[19] if

ai1···im ≡ aj1···jm

as long as jl ≡ il + 1, (mod n) for l = 1, · · · ,m. Clearly, a circulant tensor is

a Toeplitz tensor. Circulant tensors have applications in stochastic process and

spectral hypergraph theory [19].

Strongly symmetric tensors were introduced in [79]. An mth order n dimensional

tensor A = (ai1···im) is called a strongly symmetric tensor if

ai1···im ≡ aj1···jm

as long as {i1, · · · , im} = {j1, · · · , jm}. Note that a symmetric matrix is a strongly

symmetric tensor of order 2. Hence, strongly symmetric tensors are also extensions

of symmetric matrices.
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2.2 Positive semi-definite and positive definite ten-

sors

Let x ∈ <n. Then xm is a rank-one symmetric tensor with entries xi1 · · ·xim . For

A ∈ Sm,n and x ∈ <n, we have a homogeneous polynomial f(x) of n variables and

degree m,

f(x) = Ax⊗m ≡
∑

i1,··· ,im∈[n]

ai1···imxi1 · · ·xim . (2.3)

Note that there is a one to one relation between homogeneous polynomials and

symmetric tensors. If f(x) ≥ 0 for all x ∈ <n, then homogeneous polynomial f(x)

and symmetric tensor A are called positive semi-definite(PSD). If f(x) > 0 for

all x ∈ <n, x 6= 0, then f(x) and A are called positive definite (PD). In (2.3), if

A is a Hankel tensor, then f(x) is called a Hankel polynomial. Clearly, if m is odd,

there is no positive definite symmetric tensor and there is only one positive semi-

definite tensor O. Thus, we assume that m = 2k when we discuss positive definite

and semi-definite tensors (polynomials). Axm−1 is a column vector

(Axm−1)i =
n∑

i2,i3,··· ,im=1

ai,i2,··· ,imxi2 · · ·xim , for i = 1, · · · , n.

For a vector x ∈ <n, we use xi to denote its components, and x[m] to denote a

vector in <n such that

x
[m]
i = xmi

for all i. In [73], Qi introduced that the definition of the H-eigenvalue (eigenvalue)

and the Z-eigenvalue (E-eigenvalue) of a tensor A ∈ <mn .

A real number λ ∈ < is called an H-eigenvalue of A, iff ∃x ∈ <n satisfies

Axm−1 = λx[m−1],

x is called the H-eigenvector corresponding to λ.
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A real number λ ∈ < is called an Z-eigenvalue of A, iff ∃x ∈ <n satisfies

Ax
m−1 = λx

x>x = 1,
(2.4)

x is called the Z-eigenvector corresponding to λ.

Theorem 2.1. [73] Assume that m is even. The following conclusions hold for

A ∈ Sm,n :

(1) A always has H-eigenvalues. A is positive definite (positive semi-definite) if and

only if all of its H-eigenvalues are positive (nonnegative).

(2) A always has Z-eigenvalues. A is positive definite (positive semi-definite) if and

only if all of its Z-eigenvalues are positive (nonnegative).

This theorem shows that a tensor A is positive semi-definite if and only if the

smallest H- or Z-eigenvalue of A is nonnegative.

2.3 PSD Hankel tensors and SOS Hankel tensors

If f(x) can be decomposed to the sum of squares of polynomials of degree k, then

f(x) is called a sum-of-squares polynomial, and the corresponding symmetric tensor

A is called an SOS tensor [43]. SOS polynomials play a central role in the modern

theory of polynomial optimization [53, 54]. Clearly, an SOS polynomial (tensor) is

a PSD polynomial, but not vice versa. Actually, this was shown by young Hilbert

[40, 66, 22, 82] that for homogeneous polynomial, only in the following three cases,

a PSD polynomial definitely is an SOS polynomial: 1)n = 2; 2)m = 2; 3)m = 4 and

n = 3. For tensors, the second case corresponds to the symmetric matrices, i.e., a

PSD symmetric matrix is always an SOS matrix. Hilbert proved that in all the other
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possible combinations of m = 2k and n, there are PNS homogeneous polynomials.

The most well-known PNS homogeneous polynomial is the Motzkin polynomial [66]

fM(x) = x6
3 + x2

1x
4
2 + x4

1x
2
2 − 3x2

1x
2
2x

2
3.

By the Arithmetic-Geometric inequality, we see that it is a PSD polynomial. But it

is not an SOS polynomial [82]. The other two PNS homogeneous polynomials with

small m and n are given by Choi and Lam [22]

fCL1(x) = x4
4 + x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3 − 4x1x2x3x4

and

fCL2(x) = x4
1x

2
2 + x4

2x
2
3 + x4

3x
2
1 − 3x2

1x
2
2x

2
3.

Denote the set of all SOS tensors in Sm,n by SOSm,n. Then it is also a closed convex

cone [43].

By (2.2), the three PNS polynomials fM(x), fCL1(x) and fCL2(x) are not Hankel

polynomials. These three polynomials are still non-SOS PSD polynomials if we

switch the indices of their variables.

Suppose that A is a Hankel tensor defined by (2.1). Let A = (aij) be an

d (n−1)m+2
2
e × d (n−1)m+2

2
e matrix with aij ≡ vi+j−2, where v

2d (n−1)m
2
e is an additional

number when (n−1)m is odd. Then A is a Hankel matrix, associated with the Hankel

tensor A. Clearly, when m is even, such an associated Hankel matrix is unique. Re-

call from [74] that A is called a strong Hankel tensor if there exists an associated

Hankel matrix A is positive semi-definite. Thus, whether a tensor is a strong Hankel

tensor or not can be verified by using tools from matrix analysis. It has also been

shown in [74] that A is a strong Hankel tensor if and only if it is a Hankel tensor and

there exists an absolutely integrable real valued function h : (−∞,+∞) → [0,+∞)

such that its generating vector v = (v0, v1, · · · , v(n−1)m)> satisfies

vk =

∫ ∞
−∞

tkh(t)dt, k = 0, 1, · · · , (n− 1)m. (2.5)
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Such a real valued function h is called the generating function of the strong Hankel

tensor A. A vector u = (1, γ, γ2, · · · , γn−1)> for some γ ∈ < is called a Vandermonde

vector [74]. If tensor A has the form

A =
∑
i∈[r]

αi(ui)
m, (2.6)

where ui for i = 1, · · · , r , are all Vandermonde vectors, then we say that A has

a Vandermonde decomposition. It was shown in [74] that a symmetric tensor is a

Hankel tensor if and only if it has a Vandermonde decomposition. If the coefficients

αi for i = 1, · · · , r, are all nonnegative, then A is called a complete Hankel tensor

[74].

Let A ∈ Sm,n. If there are vectors xj ∈ <n for j ∈ [r] such that

A =
∑
j∈[r]

x⊗mj ,

then we say that A is a completely r-decomposable tensor, or a completely

decomposable tensor. If xj ∈ <n+ for all j ∈ [r], then A is called a completely

positive tensor [79].

Clearly, a complete Hankel tensor is a completely decomposable tensor. Unlike

strong Hankel tensors, there is no clear method to check whether a Hankel tensor is

a complete Hankel tensor or not, as the Vandermonde decompositions of a Hankel

tensor are not unique.

It was proved that even order strong or complete Hankel tensors are positive semi-

definite in [74], complete Hankel tensors are strong Hankel tensors and all of them

are SOS Hankel tensors in [58]. A even order strong Hankel tensor is a completely

decomposable tensor and a completely decomposable tensor is a SOS Hankel tensor.

There is a even order strong Hankel tensor which is not a complete Hankel tensor,

whenever m is a positive even number and n ≥ 2.
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Chapter 3

Low Order Low Dimensional
Hankel Tensor

If there are no PNS Hankel tensor, then the problem for determining an even order

Hankel tensor is PSD or not can be solved in polynomial-time. By Hilbert, the cases

of low order (degree) and dimension (number of variables), in which PNS symmetric

tensors (homogeneous polynomials) exists, is of order six and dimension three and

order four and dimension four.

In this chapter, we study the existence problem of sixth order three dimensional

and fourth order four dimensional PNS Hankel tensors. We examine various impor-

tant classes of sixth order three dimensional Hankel tensors. No PNS Hankel tensors

are found in these cases. We also show that there are no fourth order four dimen-

sional PNS Hankel tensors to be found in the following cases: a 45-degree planar

closed convex cone, a segment, a ray and an additional point. Numerical tests check

various grid points, and no PNS Hankel tensors are found.
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3.1 Sixth order three dimensional Hankel tensors

3.1.1 Introduction

Let v = (v0, v1, · · · , v12)> ∈ <13. A sixth order three dimensional Hankel tensor

A = (ai1···i6) is defined by

ai1···i6 = vi1+···+i6−6,

for i1, · · · , i6 = 1, 2, 3. The corresponding vector v that defines the Hankel tensor A

is called the generating vector of A. For x = (x1, x2, x3)> ∈ <3, A uniquely defines

a homogeneous polynomial (a ternary sextic)

f(x) ≡ Ax⊗6 =
3∑

i1,··· ,i6=1

ai1···i6xi1 · · ·xi6 =
3∑

i1,··· ,i6=1

vi1+···+i6−6xi1 · · ·xi6 . (3.1)

We call such a polynomial a (ternary sextic) Hankel polynomial.

We study several special classes of sixth order three dimensional Hankel tensors.

The first class of Hankel tensors we examined is called truncated Hankel tensors.

The generating vector v of a sixth order three dimensional truncated Hankel tensorA

has only three nonzero entries: v0, v6 and v12. We provide a sufficient and necessary

condition that a sixth order three dimensional truncated Hankel tensor to be PSD.

We show that such truncated Hankel tensors are PSD if and only if they are SOS.

We also show that such SOS Hankel tensors are not strong Hankel tensors unless

v6 = 0.

The second class of Hankel tensors is called quasi-truncated Hankel tensors. The

generating vector v of a sixth order three dimensional quasi-truncated Hankel tensor

A has five nonzero entries: v0, v1, v6, v11 and v12. It is still true that such SOS Hankel

tensors are not strong Hankel tensors unless v1 = v6 = v11 = 0. In this case, still no

PNS Hankel tensors are found.

To motivate the third class of Hankel tensors, we recall that, beside the Motzkin
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polynomial, there is another well-known PNS homogeneous polynomial for m = 6

and n = 3. This is the Choi-Lam polynomial [22, 82]:

fCL(x) = x4
1x

2
2 + x4

2x
2
3 + x4

3x
2
1 − 3x2

1x
2
2x

2
3.

An important property of the Choi-Lam polynomial is that

f(x1, x2, x3) = f(x2, x3, x1) = f(x3, x1, x2)

for any x ∈ <3. The generating vector v of a sixth order three dimensional Hankel

tensor A, associated with such a ternary sextic has the property

vi = vi+3, (3.2)

for i = 0, · · · , 9. By [30], a Hankel tensor satisfying (3.2) is called an anti-circulant

tensor. The name “anti-circulant tensor” is an extension of the name “anti-circulant

matrix” [27]. We show that a sixth order three dimensional anti-circulant tensor is

PSD if and only if it is a nonnegative multiple of the all one tensor, which is an SOS

Hankel tensor. Thus, no PNS Hankel tensors are found in this case.

The fourth class of Hankel tensors is defined that the generating vectors v of such

Hankel tensors satisfy

vi = vi+2,

for i = 0, · · · , 10. We call such Hankel tensors alternatively anti-circulant tensors.

We give a sufficient and necessary condition for a sixth order three dimensional

alternatively anti-circulant tensor to be PSD, and show that a sixth order three

dimensional PSD alternatively anti-circulant tensor is a strong Hankel tensor, hence

an SOS Hankel tensor. Thus, still no PNS Hankel tensors are found.

Since we cannot find sixth order three dimensional PNS Hankel tensors in all

the above four special cases, we turn our search to numerical tests. To conduct

the numerical tests, we randomly generate several thousands of sixth order three
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dimensional Hankel tensors and make them PSD but not positive definite by adding

adequate multiple of a fixed sixth order three dimensional positive definite Hankel

tensor. Again, still no PNS Hankel tensors are found. Thus, we make a conjecture

that there are no sixth order three dimensional PNS Hankel tensors. If this conjecture

is true, then the problem for determining a given sixth order three dimensional Hankel

tensor is PSD or not can be solved by a semi-definite linear programming problem.

In (3.1), if f(x) ≥ 0 for all x ∈ <3, then f is called a PSD Hankel polynomial and

A is called a PSD Hankel tensor [73]. Denote 0 = (0, 0, 0)> ∈ <3. If f(x) > 0 for all

x ∈ <3,x 6= 0, then f and A are called positive definite. If f can be decomposed to

the sum of squares of polynomials of degree three, then f is called an SOS Hankel

polynomial and A is called an SOS Hankel tensor [44, 43, 58, 63]. Clearly, an SOS

Hankel tensor is a PSD Hankel tensor but not vice versa. By [74], a necessary

condition for A to be PSD is that

v0 ≥ 0, v6 ≥ 0, v12 ≥ 0. (3.3)

Let e1 = (1, 0, 0)>, e2 = (0, 1, 0)> and e3 = (0, 0, 1)>. Substitute them to (3.1). Then

we get (3.3) directly. The generating vector v may also generate a 7×7 Hankel matrix

A = (aij) by

aij = vi+j−2,

for i, j = 1, · · · , 7. If the associated Hankel matrix A is PSD, then the Hankel tensor

A is called a strong Hankel tensor [74]. In [58], it was proved that an even order

strong Hankel tensor is an SOS Hankel tensor. On the other hand, the converse is

not true in general [74, 58]. A necessary condition for A to be a strong Hankel tensor

is that

v0 ≥ 0, v2 ≥ 0, v4 ≥ 0, v6 ≥ 0, v8 ≥ 0, v10 ≥ 0, v12 ≥ 0. (3.4)

A simple example of Hankel tensor is the Hilbert tensor. The sixth order three

dimensional Hilbert tensor H has the form H = ( 1
i1+···+i6−5

). Its generating vector is
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v = (1, 1
2
, · · · , 1

13
)>. It was shown in [86] that H is positive definite. It is easy to see

that the associated Hankel matrix of the Hilbert tensor is a Hilbert matrix, which

is positive definite. Thus, the sixth order three dimensional Hilbert tensor H is a

strong Hankel tensor, and hence is an SOS tensor.

We may write out (3.1) explicitly in terms of the coordinates of its generating

vector v. Then we have

f(x) = v0x
6
1 + 6v1x

5
1x2 + v2(15x4

1x
2
2 + 6x5

1x3) + v3(20x3
1x

3
2 + 30x4

1x2x3)

+v4(15x2
1x

4
2 + 60x3

1x
2
2x3 + 15x4

1x
2
3) + v5(6x1x

5
2 + 60x2

1x
3
2x3 + 60x3

1x2x
2
3)

+v6(x6
2 + 30x1x

4
2x3 + 90x2

1x
2
2x

2
3 + 20x3

1x
3
3) (3.5)

+v7(6x5
2x3 + 60x1x

3
2x

2
3 + 60x2

1x2x
3
3) + v8(15x4

2x
2
3 + 60x1x

2
2x

3
3 + 15x2

1x
4
3)

+v9(20x3
2x

3
3 + 30x1x2x

4
3) + v10(15x2

2x
4
3 + 6x1x

5
3) + 6v11x2x

5
3 + v12x

6
3.

Let g(y) = y>Ay, where y = (y1, · · · , y7)> ∈ <7 and A is the associated Hankel

matrix of A. Then

g(y) = v0y
2
1 + 2v1y1y2 + v2(y2

2 + 2y1y3) + v3(2y1y4 + 2y2y3)

+v4(y2
3 + 2y1y5 + 2y2y3) + v5(2y1y6 + 2y2y5 + 2y3y4)

+v6(y2
4 + 2y1y7 + 2y2y6 + 2y3y5) (3.6)

+v7(2y2y7 + 2y3y6 + 2y4y5) + v8(y2
5 + 2y3y7 + 2y4y6)

+v9(2y4y7 + 2y5y6) + v10(y2
6 + 2y5y7) + 2v11y6y7 + v12y

2
7.

Thus, A is a strong Hankel tensor if and only if g is PSD.

These will be helpful for our further discussion.

If v = (1, 1, · · · , 1)>, then A is the all one tensor. By (3.5), in this case, f(x) =

(x1 + x2 + x3)6. Thus, the all one tensor is an SOS Hankel tensor, but not a positive

definite tensor. By (3.6), it is a strong Hankel tensor.

Now we may have some simple properties of sixth order three dimensional Hankel

tensors.

21



Theorem 3.1. Suppose that A = (ai1···i6) is a Hankel tensor generated by its gen-

erating vector v = (v0, v1, · · · , v12)> ∈ <13. If A is a PSD (or positive definite,

or SOS, or strong) Hankel tensor, then the Hankel tensors B, C,D, generated by

(v12, v11, · · · , v0)>, (v0,−v1, v2,−v3, · · · , v12)>, (v0, 0, v2, 0, · · · , v12)> are also a PSD

(or positive definite, or SOS, or strong) Hankel tensor.

Proof. In (3.5) and (3.6), changing x = (x1, x2, x3)> and y = (y1, · · · , y7)> to

(x3, x2, x1)> and (y7, · · · , y1)> respectively, we see that the conclusions on B hold.

In (3.5) and (3.6), changing x = (x1, x2, x3)> and y = (y1, · · · , y7)> to (x1,−x2, x3)>

and (y1,−y2, y3,−y4, · · · , y7)> respectively, we get the conclusions on C.

Since D = A+C
2

, the conclusions on D follow.

3.1.2 Sixth order three dimensional truncated Hankel ten-
sors

In this section, we consider the case that the Hankel tensor A is generated by v =

(v0, 0, 0, 0, 0, 0, v6, 0, 0, 0, 0, 0, v12)>. Now, (3.5) and (3.6) have the simple form

f(x) = v0x
6
1 + v6(x6

2 + 30x1x
4
2x3 + 90x2

1x
2
2x

2
3 + 20x3

1x
3
3) + v12x

6
3 (3.7)

and

g(y) = v0y
2
1 + v6(y2

4 + 2y1y7 + 2y2y6 + 2y3y5) + v12y
2
7. (3.8)

We call such a Hankel tensor a truncated Hankel tensor. Since we are only

concerned about PSD Hankel tensors, we may assume that (3.3) holds. From (3.7)

and (3.8), we have the following proposition.

Proposition 3.1. Suppose that (3.3) holds. If v6 = 0, then the truncated Hankel

tensor A is a strong Hankel tensor and an SOS Hankel tensor. If v6 > 0, then A is

not a strong Hankel tensor.
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Proof. When v6 = 0, from (3.7) and (3.8), we see that the truncated Hankel tensor

A is a strong Hankel tensor and an SOS Hankel tensor. If v6 > 0, consider ȳ =

(0, 0, 1, 0,−1, 0, 0)>. We see that g(ȳ) = −2v6 < 0. Hence A is not a strong Hankel

tensor in this case.

We now give the main result of this section.

Theorem 3.2. The following statements are equivalent:

(i) The truncated Hankel tensor A is a PSD Hankel tensor;

(ii) The truncated Hankel tensor A is an SOS Hankel tensor;

(iii) The relation (3.3) holds and

√
v0v12 ≥ (560 + 70

√
70)v6. (3.9)

Furthermore, the truncated Hankel tensor A is positive definite if and only if v0, v6, v12 >

0 and strict inequality holds in (3.9).

Proof. [(i)⇒ (iii)] Suppose that A is PSD, then clearly (3.3) holds. To see (iii), we

only need to show (3.9) holds. Let t ≥ 0 and let x̄ = (x̄1, x̄2, x̄3)>, where

x̄1 = v
1
6
12, x̄2 =

√
t(v0v12)

1
12 , x̄3 = −v

1
6
0 .

Substitute them to (3.7). If A is PSD, then f(x̄) ≥ 0. It follows from (3.7) that

v0v12 + v6(t3 − 30t2 + 90t− 20)
√
v0v12 + v0v12 ≥ 0.

From this, we have

√
v0v12 ≥

−t3 + 30t2 − 90t+ 20

2
v6.

Substituting t = 10 +
√

70 to it, we have (3.9).
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[(iii) ⇒ (ii)] We now assume that (3.3) and (3.9) hold. We will show that A is

SOS. If v6 = 0, then by Proposition 3.1, A is an SOS Hankel tensor. Assume that

v6 > 0. By (3.9), v0 > 0 and v12 > 0. We now have

f(x) = f1(x) + 10v6

((
v0

v12

) 1
4

x3
1 +

(
v12

v0

) 1
4

x3
3

)2

+v6

√10−
√

70

2
x3

2 +

√
150 + 15

√
70x1x2x3

2

,

where

f1(x) =

(
v0 − 10v6

(
v0

v12

) 1
2

)
x6

1 +

√
70− 8

2
v6x

6
2 +

(
v12 − 10v6

(
v12

v0

) 1
2

)
x6

3

−(60 + 15
√

70)v6x
2
1x

2
2x

2
3. (3.10)

We see that f1(x) is a diagonal minus tail form [33]. By the arithmetic-geometric

inequality, we have

(
v0 − 10v6

(
v0

v12

) 1
2

)
x6

1 +

√
70− 8

2
v6x

6
2 +

(
v12 − 10v6

(
v12

v0

) 1
2

)
x6

3

≥ 3

(√
70− 8

2
v6(
√
v0v12 − 10v6)2

) 1
3

x2
1x

2
2x

2
3.

By (3.9),

3

(√
70− 8

2
v6(
√
v0v12 − 10v6)2

) 1
3

x2
1x

2
2x

2
3 ≥ (60 + 15

√
70)v6x

2
1x

2
2x

2
3. (3.11)

Thus, f1 is a PSD diagonal minus tail form. By [33], f1 is an SOS polynomial. Hence,

f is also an SOS polynomial if (3.3) and (3.9) hold.
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[(ii)⇒ (i)] This implication is direct by the definition.

We now prove the last conclusion of this theorem. First, we assume that A is

positive definite. Then, v6 = f(e2) > 0 as e2 6= 0. Similarly, v0 = f(e1) > 0 and

v12 = f(e3) > 0. Note that in the above [(i)⇒ (iii)] part, f(x̄) > 0 as x̄ 6= 0. Then

strict inequality holds for the last two inequalities in the above [(i) ⇒ (iii)] part.

This implies that strict inequality holds in (3.9).

On the other hand, assume that v0, v6, v12 > 0 and strict inequality holds in (3.9).

Let x = (x1, x2, x3)> 6= 0. If x1 6= 0, x2 6= 0 and x3 6= 0, then strict inequality holds

in (3.11) as v6 > 0 and strict inequality holds in (3.9). Then f1(x) > 0. If x2 6= 0

but x1x3 = 0, then from (3.10), we still have f1(x) > 0. If x2 = 0 and one of x1

and x3 are nonzero, then we still have f1(x) > 0 by (3.10). Thus, we always have

f1(x) > 0 as long as x 6= 0. This implies f(x) > 0 as long as x 6= 0. Hence, A is

positive definite.

3.1.3 Sixth order three dimensional quasi-truncated Hankel
tensors

In this section, we consider the case that the Hankel tensor A is generated by v =

(v0, v1, 0, 0, 0, 0, v6, 0, 0, 0, 0, v11, v12)> ∈ <13. Adding v1 and v11 to the case in the last

section, we get this case. We call such a Hankel tensor a quasi-truncated Hankel

tensor. Hence, truncated Hankel tensors are quasi-truncated Hankel tensors.

Since we are only concerned about PSD Hankel tensors, we may assume that

(3.3) holds. Now, (3.5) and (3.6) have the simple form

f(x) = v0x
6
1 + 6v1x

5
1x2 + v6(x6

2 + 30x1x
4
2x3 + 90x2

1x
2
2x

2
3 + 20x3

1x
3
3) + 6v11x2x

5
3 + v12x

6
3,

(3.12)

and

g(y) = v0y
2
1 + 2v1y1y2 + v6(y2

4 + 2y1y7 + 2y2y6 + 2y3y5) + 2v11y6y7 + v12y
2
7. (3.13)
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We first show that a result with the form of Proposition 3.1 continues to hold in

this case.

Proposition 3.2. Suppose that (3.3) holds. If v6 = 0, then the quasi-truncated

Hankel tensor A is PSD if and only if v1 = v11 = 0. In this case, A is a strong

Hankel tensor and an SOS Hankel tensor. If v6 > 0, then A is not a strong Hankel

tensor.

Proof. Suppose that v6 = 0. Assume that v1 6= 0. If v0 = 0, consider x̂ =

(1,−v1, 0)>. Then f(x̂) < 0. If v0 > 0, consider x̃ = (1,−v0
v1
, 0)>. Then f(x̃) < 0.

Thus, A is not PSD in these two cases. Similar discussion holds for the case that

v11 = 0. Assume now that v1 = v11 = 0. By Proposition 3.1, we see that the trun-

cated Hankel tensor A is a strong Hankel tensor and an SOS Hankel tensor in this

case. This proves the first part of this proposition.

Suppose that v6 > 0. Consider ȳ = (0, 0, 1, 0,−1, 0, 0)> ∈ <7. We see that

g(ȳ) = −2v6 < 0. Hence A is not a strong Hankel tensor in this case.

To present a necessary condition for a sixth order three dimensional quasi-truncated

Hankel tensor to be PSD, we first prove the following lemma.

Lemma 3.1. Consider

f̂(x1, x2) = v0x
6
1 + 6v1x

5
1x2 + v6x

6
2.

Then f̂ is PSD if and only if v0 ≥ 0, v6 ≥ 0 and

|v1| ≤
(v0

5

) 5
6
v

1
6
6 . (3.14)

Proof. Suppose that v0 ≥ 0, v6 ≥ 0 and (3.14) holds. Then, by the arithmetic-
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geometric inequality, one has

v0x
6
1 + v6x

6
2 =

1

5
v0x

6
1 +

1

5
v0x

6
1 +

1

5
v0x

6
1 +

1

5
v0x

6
1 +

1

5
v0x

6
1 + v6x

6
2

≥ 6

((v0

5

)5

x30
1 v6x

6
2

) 1
6

≥ 6|v1x
5
1x2|.

This implies that f̂(x1, x2) ≥ 0 for any (x1, x2)> ∈ <2, i.e., f̂(x1, x2) is PSD.

Suppose that f̂(x1, x2) is PSD. It is easy to see that v0 ≥ 0 and v6 ≥ 0. Assume

now that (3.14) does not hold, i.e.,

|v1| >
(v0

5

) 5
6
v

1
6
6 . (3.15)

If v0 = v6 = 0, let x1 = 1 and x2 = −v1. Then f̂(x1, x2) < 0. We get a contradiction.

If v0 = 0 and v6 6= 0, let x1 = v
1
5
6 and x2 = −v

1
5
1 . Again, f̂(x1, x2) < 0. We get a

contradiction. Similarly, if v0 6= 0 and v6 = 0, we may get a contradiction. If v0 6= 0

and v6 6= 0, let x1 = (5v6)
1
6 and x2 = − v1

|v1|v
1
6
0 . Then by (3.15),

f̂(x1, x2) = 6v0v6 − 6|v1|(5v6)
5
6v

1
6
0 < 0.

We still get a contradiction. This completes the proof.

We now present a necessary condition for a sixth order three dimensional quasi-

truncated Hankel tensor to be PSD.

Proposition 3.3. Suppose that (3.3) holds. If A is a PSD quasi-truncated Hankel

tensor, then (3.14) and the following inequalities

|v1| ≤
(v12

5

) 5
6
v

1
6
6 (3.16)
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and

√
v0v12 ≥ 10v6 (3.17)

hold. If furthermore

v1v
5
6
12 = v11v

5
6
0 , (3.18)

then (3.9) also holds.

Proof. Suppose that A is PSD. In (3.12), let x3 = 0. By Lemma 3.1, (3.14) holds.

In (3.12), let x1 = 0. By an argument similar to Lemma 3.1, (3.16) holds. In (3.12),

let x2 = 0. Since A is PSD, we may easily get (3.17).

Suppose further that (3.18) holds. As in [(i)⇒ (iii)] part of the proof of Theorem

3.2, we let t ≥ 0 and let x̄ = (x̄1, x̄2, x̄3)>, where x̄1 = v
1
6
12, x̄2 =

√
t(v0v12)

1
12 , x̄3 =

−v
1
6
0 . It follows from (3.18) that

6v1x̄
5
1x̄2 + 6v11x̄2x̄

5
3 = 0. (3.19)

This together with (3.12) implies that

f(x̄) = v0v12 + v6(t3 − 30t2 + 90t− 20)
√
v0v12 + v0v12 ≥ 0.

Proceed as in [(i) ⇒ (iii)] part of the proof of Theorem 3.2, we see that (3.9) holds

in this case. This completes the proof.

We may also present a sufficient condition for a sixth order three dimensional

quasi-truncated Hankel tensor to be SOS.

Proposition 3.4. Let A be a quasi-truncated Hankel tensor. Suppose that v0, v6, v12 >

0. Let t1, t2 > 0 . If

|v1| ≤
1

t1
− 10v6

t1
√
v0v12

(3.20)

|v11| ≤
1

t2
− 10v6

t2
√
v0v12

(3.21)
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|v1|
(

5

t1v0

)5

+ |v11|
(

5

t2v12

)5

≤
√

70− 8

2
v6 (3.22)

and (
v0 − 10v6

(
v0

v12

) 1
2

− |v1|t1v0

)(
v12 − 10v6

(
v12

v0

) 1
2

− |v11|t2v12

)

×

(√
70− 8

2
v6 − |v1|

(
5

t1v0

)5

− |v11|
(

5

t2v12

)5
)

≥ 1

27
v3

6(60 + 15
√

70)3 (3.23)

hold, then A is SOS.

Proof. We write f(x) =
∑5

i=1 fi(x), where

f2(x) = 10v6

((
v0

v12

) 1
4

x3
1 +

(
v12

v0

) 1
4

x3
3

)2

,

f3(x) = |v1|t1v0x
6
1 + 6v1x

5
1x2 + |v1|

(
5

t1v0

)5

x6
2,

f4(x) = |v11|t2v12x
6
3 + 6v11x

5
3x2 + |v11|

(
5

t2v12

)5

x6
2,

f5(x) = v6

√10−
√

70

2
x3

2 +

√
150 + 15

√
70x1x2x3

2

and

f1(x)

=

(
v0 − 10v6

(
v0

v12

) 1
2

− |v1|t1v0

)
x6

1 −

(
v12 − 10v6

(
v12

v0

) 1
2

− |v11|t2v12

)
x6

3

+

(√
70− 8

2
v6 − |v1|

(
5

t1v0

)5

− |v11|
(

5

t2v12

)5
)
x6

2

−v6(60 + 15
√

70)x2
1x

2
2x

2
3.
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Clearly, f2 and f5 are squares. From Lemma 1, we may show that f3 and f4 are PSD.

Since each of f3 and f4 has only two variables, they are SOS. If (3.20-3.23) hold, by

the arithmetic-geometric inequality, f1 is PSD. In this case, f1 is a PSD diagonal

minus tail form. By [33], f1 is SOS. Thus, if (3.20-3.23) hold, then f , hence A, is

SOS.

To get more insights for quasi-truncated Hankel tensors, we conduct some nu-

merical tests for sixth order three dimensional quasi-truncated Hankel tensors. For

simplicity purpose, we let v0 = v12 and v1 = v11. Note that in this case (3.18)

holds. Thus, by Proposition 3.3, (3.9) holds, i.e., a necessary condition for A to be

PSD is that v0 ≥ 560 + 70
√

70. Numerically, we observe that there is a function

φ(θ) ≥ 0, defined for θ ≥ 560 + 70
√

70 such that in this case, A is PSD if and only

if v0 ≥ 560 + 70
√

70 and |v1| ≤ φ(v0). In this case, A is also SOS. In the following,

we give a table and a figure to sketch the graph of the function φ.

We get the value of φ by using the toolbox ( Gloptipoly3 and SeDuMi ) to confirm

whether a sixth order three dimensional Hankel tensor is PSD or not and use the

toolbox ( YALMIP ) [61] to test whether a sixth order three dimensional Hankel

tensor is SOS or not. We tested ten different values of v0 and the corresponding

values of φ are in Table 3.1 and Figure3.1. Note that approximately

560 + 70
√

70 ≈ 1145.7.

Hence, no PNS Hankel tensors are found in this case.

3.1.4 Sixth order three dimensional anti-circulant tensors

In this section, we consider sixth order three dimensional Hankel tensorsA, satisfying

f(x) ≡ Ax⊗6 ≡ f(x1, x2, x3) = f(x2, x3, x1) = f(x3, x1, x2). (3.24)
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Table 3.1: The values of φ for different v0

v0 φ v0 φ
1146 1.3034 1160 8.4925
1147 2.5853 1170 11.0947
1148 3.4183 1180 13.2144
1149 4.0855 1190 15.0563
1150 4.6585 1200 16.7130

1140 1150 1160 1170 1180 1190 1200
0

2

4

6

8

10

12

14

16

18

v
0

φ

Figure 3.1: The value of φ

Notably, the all one tensor satisfies (3.24). Comparing (3.24) with (3.5), we find that

the entries of the generating vector of a sixth order three dimensional anti-circulant

tensor A satisfy

vi = vi+3,

for i = 0, · · · , 9. By [30], such a Hankel tensor is called an anti-circulant tensor.

Thus, the generating vector of such a Hankel tensor has the following form

v = (v0, v1, v2, v0, v1, v2, v0, v1, v2, v0, v1, v2, v0)> ∈ <13.
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There are only three independent entries v0, v1 and v2. Now, (3.5) has the simple

form:

f(x)

= v0

[
x6

1 + x6
2 + x6

3 + 20(x3
1x

3
2 + x3

2x
3
3 + x3

1x
3
3) + 30(x4

1x2x3 + x1x
4
2x3 + x1x2x

4
3) + 90x2

1x
2
2x

2
3

]
+v1

[
6(x5

1x2 + x5
2x3 + x1x

5
3) + 15(x2

1x
4
2 + x2

2x
4
3 + x4

1x
2
3) + 60(x3

1x
2
2x3 + x1x

3
2x

2
3 + x2

1x2x
3
3)
]

+v2

[
6(x1x

5
2 + x2x

5
3 + x5

1x3) + 15(x4
1x

2
2 + x4

2x
2
3 + x2

1x
4
3) + 60(x2

1x
3
2x3 + x3

1x2x
2
3 + x1x

2
2x

3
3).
]

(3.25)

Since we are only concerned about PSD Hankel tensors, we may assume that

(3.3) holds which, in this case, means v0 ≥ 0.

Let us write

f(x) = v0f0(x) + v1f1(x) + v2f2(x),

where f0, f1 and f2 are given by

f0(x) = x6
1 +x

6
2 +x

6
3 +20(x3

1x
3
2 +x

3
2x

3
3 +x

3
1x

3
3)+30(x4

1x2x3 +x1x
4
2x3 +x1x2x

4
3)+90x2

1x
2
2x

2
3,

(3.26)

f1(x) = 6(x5
1x2 + x5

2x3 + x1x
5
3) + 15(x2

1x
4
2 + x2

2x
4
3 + x4

1x
2
3) + 60(x3

1x
2
2x3 + x1x

3
2x

2
3 + x2

1x2x
3
3),

(3.27)

f2(x) = 6(x1x
5
2 + x2x

5
3 + x5

1x3) + 15(x4
1x

2
2 + x4

2x
2
3 + x2

1x
4
3) + 60(x2

1x
3
2x3 + x3

1x2x
2
3 + x1x

2
2x

3
3).

(3.28)

Next, we provide a characterization for a sixth order three dimensional anti-

circulant tensor A to be PSD.

Theorem 3.3. Suppose that A is a sixth order three dimensional anti-circulant ten-

sor. Then A is PSD if and only v0 = v1 = v2 ≥ 0. In this case,

f(x) = v0(x1 + x2 + x3)6. (3.29)
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This implies that A is SOS if only if it is PSD.

Proof. Suppose that A is PSD. Then f(1,−1, 0) ≥ 0 and f(1, 1,−2) ≥ 0. From

(3.25), we derive that v1 + v2 ≥ 2v0 and v1 + v2 ≤ 2v0 respectively. So, v1 + v2 = 2v0.

Let v1 = v0(1 + α) with α ∈ <. Then v2 = v0(1− α) and

f(x) = v0(x1 + x2 + x3)6 + v0α(f1(x)− f2(x)),

where f1 and f2 are defined as in (3.27) and (3.28) respectively. From this and

f(1, 2,−3) ≥ 0, we have α ≥ 0. From this and f(1,−3, 2) ≥ 0, we have α ≤ 0. Thus

α = 0 and (3.29) follows.

Thus, there are no sixth order three dimensional PNS anti-circulant tensors.

3.1.5 Sixth order three dimensional alternatively anti-circulant
tensors

In this section, we consider sixth order three dimensional Hankel tensors A, whose

generating vector has the form v = (v0, v1, v0, v1, v0, v1, v0, v1, v0, v1, v0, v1, v0)>. We

call such a Hankel tensor an alternatively anti-circulant tensor. Since we are

only concerned about PSD Hankel tensors, we may assume that (3.3) holds, i.e.,

v0 ≥ 0. Now, (3.5) and (3.6) have the simple form

f(x) = v0

[
x6

1 + x6
2 + x6

3 + 6(x5
1x3 + x1x

5
3) + 20x3

1x
3
3 + 30x1x

4
2x3 + 90x2

1x
2
2x

2
3

+15(x4
1x

2
2 + x2

1x
4
2 + x4

1x
2
3 + x4

2x
2
3 + x2

1x
4
3 + x2

2x
4
3) + 60(x3

1x
2
2x3 + x1x

2
2x

3
3)
]

+v1

[
6(x5

1x2 + x1x
5
2 + x5

2x3 + x2x
5
3) + 20(x3

1x
3
2 + x3

2x
3
3)

+60(x2
1x

3
2x3 + x3

1x2x
2
3 + x1x

3
2x

2
3 + x2

1x2x
3
3) + 30(x4

1x2x3 + x1x2x
4
3)
]

(3.30)
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and

g(y) = v0(y
2
1 + y2

2 + y2
3 + y2

4 + y2
5 + y2

6 + y2
7)

+2v0(y1y3 + y1y5 + y2y3 + y1y7 + y2y6 + y3y5 + y3y7 + y4y6 + y5y7)

+2v1(y1y2 + y1y4 + y2y3 + y1y6 + y2y5 + y3y4 + y2y7 + y3y6 + y4y5

+y4y7 + y5y6 + y6y7). (3.31)

We have the following theorem which provides a characterization for a sixth order

three dimensional alternatively anti-circulant tensor A to be PSD.

Theorem 3.4. Suppose that A is a sixth order three dimensional alternatively anti-

circulant tensor defined above. Then A is PSD if and only if |v1| ≤ v0. In this case,

A is a strong Hankel tensor, and thus an SOS Hankel tensor.

Proof. Suppose that A is PSD. From f(1, 1, 0) ≥ 0 and (3.30), we have v0 + v1 ≥ 0.

From f(1,−1, 0) ≥ 0 and (3.30), we have v0 − v1 ≥ 0. This implies that v0 ≥ |v1|.

On the other hand, suppose that v0 ≥ |v1|. We may write v1 = v0(2t − 1), where

t ∈ [0, 1]. Write f(x) = v0f0(x) + v1f1(x) where

f0(x) = x6
1 + x6

2 + x6
3 + 6(x5

1x3 + x1x
5
3) + 20x3

1x
3
3 + 30x1x

4
2x3 + 90x2

1x
2
2x

2
3

+15(x4
1x

2
2 + x2

1x
4
2 + x4

1x
2
3 + x4

2x
2
3 + x2

1x
4
3 + x2

2x
4
3) + 60(x3

1x
2
2x3 + x1x

2
2x

3
3)

and

f1(x) = 6(x5
1x2 + x1x

5
2 + x5

2x3 + x2x
5
3) + 20(x3

1x
3
2 + x3

2x
3
3) + 30(x4

1x2x3 + x1x2x
4
3)

+60(x2
1x

3
2x3 + x3

1x2x
2
3 + x1x

3
2x

2
3 + x2

1x2x
3
3).

It can be verfied that f0(x)+f1(x) = (x1+x2+x3)6 and f0(x)−f1(x) = (x1−x2+x3)6
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for all x = (x1, x2, x3)> ∈ <13. It then follows from (3.30) that

f(x) = v0f0(x) + v1f1(x) = v0f0(x) + (2t− 1)v0f1(x)

= tv0(f0(x) + f1(x)) + (1− t)v0(f0(x)− f1(x))

= tv0(x1 + x2 + x3)6 + (1− t)v0(x1 − x2 + x3)6.

Similarly, we have

g(y) = tv0(y1 +y2 +y3 +y4 +y5 +y6 +y7)2 +(1− t)v0(y1−y2 +y3−y4 +y5−y6 +y7)2.

The conclusions now follow from the definitions of PSD, SOS and strong Hankel

tensors.

Thus, there are no sixth order three dimensional PNS alternatively anti-circulant

tensors. We also note that the above theorem can be easily extended to general even

order alternatively anti-circulant tensors.

3.1.6 Numerical tests and a conjecture

In this section, we conduct numerical experiments to search sixth order three dimen-

sional PNS Hankel tensors. We first explain how to generate a positive semi-definite

Hankel tensor Aα with a parameter α randomly, and determine a value α0 such that

Aα is PSD if and only if α ≥ α0 .

We first generate a vector v ∈ <13 randomly. We form a Hankel tensor A0 by

using v as its generating vector. Then, we consider a parameterized tensor Aα =

A0 + α
2
(H + H̃) where α ∈ <, H is the sixth order three dimensional Hilbert tensor

and H̃ is the Hankel tensor generating by ṽ = ( 1
13
, 1

12
, · · · , 1)> ∈ R13. As H is a

positive definite Hankel tensor, H̃ is also positive definite Hankel tensor by Theorem

3.1. So, Aα is also a Hankel tensor and Aα is positive definite if α is large enough.

We then find α0 to be the smallest number α such that Aα is positive semi-definite.
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Here, α0 can be negative if A0 is positive definite. Now we test if Aα0 is SOS or not.

If Aα0 is not SOS, then we find a sixth order three dimensional PNS Hankel tensor.

If Aα0 is SOS, then we see that Aα is also an SOS Hankel tensor if α > α0, as

Aα = Aα0 +
α− α0

2
(H + H̃)

and α−α0

2
(H + H̃) is also an SOS Hankel tensor. Thus, if Aα0 is SOS, then there is

no α with α ≥ α0 such that Aα is a PNS Hankel tensor.

We use 1
2
(H+ H̃) as the reference positive definite Hankel tensor instead of using

H, as the entries of the generating vector of 1
2
(H+H̃) is distributed somewhat evenly.

This makes our numerical tests more efficient in terms of finding Aα0 .

Due to numerical inaccuracy, instead of finding α0, we find α1 such that α1 ≥ α0

and α1− α0 ≤ ε, where ε is a given very small positive number. Then we test if Aα1

is SOS or not.

Here, we use the toolbox ( Gloptipoly3 and SeDuMi ) to confirm whether a sixth

order three dimensional Hankel tensor is PSD or not and use the toolbox ( YALMIP

) to test whether a sixth order three dimensional Hankel tensor is SOS or not. All

codes were written by Matlab 2014a and run on a Lenovo desktop computer with

Core processor 2.83 GHz and 4 GB memory. We have not found any PNS Hankel

tensor in six thousand tests.

Taking into account of the four special classes we examined and our numerical

experiment, we now make the following conjecture:

There are no sixth order three dimensional PNS Hankel tensors.

If this conjecture turns out to be true, then determining a given sixth order three

dimensional Hankel tensor is PSD or not can be solved by a semi-definite linear

programming problem.
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3.2 Fourth order four dimensional Hankel tensors

3.2.1 Introduction

Let v = (v0, v1, . . . , v12)> ∈ <13. A fourth order four dimensional Hankel tensor

A = (ai1i2i3i4) is defined by

ai1i2i3i4 = vi1+i2+i3+i4−4,

for i1, i2, i3, i4 = 1, 2, 3, 4. The corresponding vector v that defines the Hankel tensor

A is called the generating vector of A. For x = (x1, x2, x3, x4)> ∈ <4, a Hankel

tensor A uniquely defines a Hankel polynomial

f(x) ≡ Ax⊗4 =
4∑

i1,i2,i3,i4=1

ai1i2i3i4xi1xi2xi3xi4 =
4∑

i1,i2,i3,i4=1

vi1+i2+i3+i4−4xi1xi2xi3xi4 .

(3.32)

We may see that the role of vj is symmetric in f(x). We assume that

vj = v12−j (3.33)

for j = 0, . . . , 5. Under this assumption, if A is PSD, we have v0 = v12 ≥ 0 and

v4 = v8 ≥ 0. Moreover, if v4 = v8 = 0 and A is PSD, A is SOS. Thus, we may only

consider the case that v4 = v8 > 0. Since A is PSD or SOS or PNS if and only if

αA is PSD or SOS or PNS respectively, where α is an arbitrary positive number, we

may simply assume that

v4 = v8 = 1. (3.34)

Next, we show that there is a function η(v5, v6) such that η(v5, v6) ≤ 1 if A is PSD.

We propose that there are two functions M0(v2, v6, v1, v3, v5) ≥ N0(v2, v6, v1, v3, v5),

defined for η(v5, v6) < 1, such that A is SOS if and only if v0 ≥ M0, and A is PSD

if and only if v0 ≥ N0. If M0 = N0 for some v2, v6, v1, v3, v5, then there are no

fourth order four dimensional PNS Hankel tensors for such v2, v6, v1, v3, v5 under the
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symmetric assumption (3.33). We call such a point P = (v2, v6, v1, v3, v5)> ∈ <5 a

PNS-free point of fourth order four dimensional Hankel tensors, or simply a PNS-

free point. We call the set of points in <5, satisfying η(v5, v6) < 1, the effective

domain of fourth order four dimensional Hankel tensors, or simply the effective

domain, and denote it by S. We show that if all the points in S are PNS-free,

then there are no fourth order four dimensional PNS Hankel tensors with symmetric

generating vectors.

We show that a point P in S is PNS-free if there is a value M , such that when v0 =

M , f0(x) ≡ f(x) has an SOS decomposition, and f0(x̄) = 0 for x̄ = (x̄1, x̄2, x̄3, x̄4)> ∈

<4 with x̄2
1 + x̄2

4 6= 0. We call such a value M , such an SOS decomposition of f0(x),

and such a vector x̄ the critical value, the critical SOS decomposition and

the critical minimizer of A at P , respectively. Then, we show that the segment

L = {(v2, v6, v1, v3, v5)> = (1, 1, t, t, t)> : t ∈ [−1, 1]} is PNS-free. We conjecture

that this segment is the minimizer set of both M0 and N0. Then, we show that the

45-degree planar closed convex cone C = {(v2, v6, v1, v3, v5)> = (a, b, 0, 0, 0)> : a ≥

b ≥ 1}, the ray R = {(v2, v6, v1, v3, v5)> = (a, 0, 0, 0, 0)> : a ≤ 0} and the point

A = (1, 0, 0, 0, 0)> are also PNS-free. We illustrate L, C, R and A in Figure 3.2.

Numerical tests check various grid points, and find that M0 = N0 there. Thus,

they are also PNS-free. Therefore, numerical tests indicate that there are no fourth

order four dimensional PNS Hankel tensors with symmetric generating vectors.

We write out (3.32) explicitly in terms of the coordinates of its generating vector
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Figure 3.2: The segment L, the planar closed convex cone C, the ray R and the
point A.

v:

f(x) = v0x
4
1 + 4v1x

3
1x2 + v2(4x3

1x3 + 6x2
1x

2
2) + v3(4x1x

3
2 + 4x3

1x4 + 12x2
1x2x3)

+ v4(x4
2 + 6x2

1x
2
3 + 12x1x

2
2x3 + 12x2

1x2x4)

+ v5(4x3
2x3 + 12x1x2x

2
3 + 12x1x

2
2x4 + 12x2

1x3x4)

+ v6(4x1x
3
3 + 4x3

2x4 + 6x2
1x

2
4 + 6x2

2x
2
3 + 24x1x2x3x4) (3.35)

+ v7(4x2x
3
3 + 12x2

2x3x4 + 12x1x
2
3x4 + 12x1x2x

2
4)

+ v8(x4
3 + 6x2

2x
2
4 + 12x2x

2
3x4 + 12x1x3x

2
4)

+ v9(4x3
3x4 + 4x1x

3
4 + 12x2x3x

2
4) + v10(4x2x

3
4 + 6x2

3x
2
4) + 4v11x3x

3
4 + v12x

4
4.

The following theorem gives some necessary conditions for fourth order four di-

mensional Hankel tensors being PSD. Particularly, we note that four key elements

of its generating vector v0, v4, v8, v12 must be nonnegative.

Theorem 3.5. Suppose that A = (ai1i2i3i4) is a Hankel tensor generated by its gen-

erating vector v = (v0, v1, . . . , v12)> ∈ <13. If A is a PSD (or positive definite, or
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SOS, or strong) Hankel tensor, then we have

vi ≥ 0, (3.36)

for i = 0, 4, 8, 12,

vi + 6vi+2 + vi+4 ≥ 4|vi+1 + vi+3|, (3.37)

for i = 0, 4, 8,

vi + 6vi+4 + vi+8 ≥ 4|vi+2 + vi+6|, (3.38)

for i = 0, 4, and

v0 + 6v6 + v12 ≥ 4|v3 + v9|. (3.39)

Proof. Let ek be the kth column of a 4-by-4 identity matrix, for k = 1, 2, 3, 4.

Substituting x = ek to (3.35) for k = 1, 2, 3, 4, by f(ek) ≥ 0, we have (3.36) for

i = 0, 4, 8, 12.

Substituting x = ek + ek+1 to (3.35) for k = 1, 2, 3, by f(ek + ek+1) ≥ 0, we have

vi + 4vi+1 + 6vi+2 + 4vi+3 + vi+4 ≥ 0,

for i = 0, 4, 8. Substituting x = ek−ek+1 to (3.35) for k = 1, 2, 3, by f(ek−ek+1) ≥ 0,

we have

vi − 4vi+1 + 6vi+2 − 4vi+3 + vi+4 ≥ 0,

for i = 0, 4, 8. Combining these two inequalities, we have (3.37) for i = 0, 4, 8.

Similarly, by f(ek + ek+2) ≥ 0 and f(ek − ek+2) ≥ 0 for k = 1, 2, we have (3.38)

for i = 0, 4. By f(e1 + e4) ≥ 0 and f(e1 − e4) ≥ 0, we have (3.39). The theorem is

proved.

Whereafter, we say that a PSD Henkel tensor is SOS if there is a key element

of its generating vector v0, v4, v8, v12 vanishes. Before we show this, the following

lemma is useful.
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Lemma 3.2. If a polynomial in one variable is always nonnegative:

p(t) = a0t
2k+1 + a1t

2k + · · ·+ a2k+1 ≥ 0, ∀ t ∈ <.

Then a0 = 0.

Proof. If a0 > 0, we let t→ −∞ and get p(t)→ −∞, which contradicts that p(t) is

nonnegative.

If a0 < 0, we let t → +∞ and get p(t) → −∞, which also contradicts that p(t)

is nonnegative.

Hence, there must be a0 = 0.

Theorem 3.6. Suppose the fourth order four dimensional Hankel tensor A is PSD

and its generating vector is v. If v0v12 = 0, then vj = 0, for j = 1, . . . , 11, and A is

SOS.

Proof. Without loss of generality, we assume that v0 = 0.

To prove v1 = 0, we take x1 = (t, 1, 0, 0)>. Then, the homogeneous polynomial

(3.35) reduces to

f(x1) = 4v1t
3 + 6v2t

2 + 4v3t+ v4.

From Lemma 3.2, we have v1 = 0 since f(x1) is nonnegative. Similarly, we can prove

v2 = v3 = 0 if we take x2 = (t, 0, 1, 0)> and x3 = (t, 0, 0, 1)> respectively.

From Theorem 3.5, we know v4 ≥ 0. When we take x4 = (t2, t,− 1√
6
, 0)>, the

homogeneous polynomial (3.35) reduces to

f(x4) = −(2
√

6− 2)v4t
4 +O(t3).

Let t → ∞. Since f(x4) is always nonnegative, we have v4 ≤ 0. Hence, there must

be v4 = 0.

If we take x5 = (t3, 0, t, 1)>, the homogeneous polynomial (3.35) is

f(x5) = 12v5t
7 +O(t6).
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From Lemma 3.2, we have v5 = 0 since f(x5) is nonnegative.

We take x6 = (t, 0, 1, 0)>. Then, the homogeneous polynomial (3.35) is

f(x6) = 4v6t+ v8.

From Lemma 3.2, we have v6 = 0 since f(x6) is nonnegative. Similarly, we can prove

v7 = 0 when we take x7 = (0, t, 1, 0)>.

We take x8 = (t4, 0, t, 1)>. Then we have

f(x8) = 12v8t
5 +O(t4).

From Lemma 3.2, we have v8 = 0 since the polynomial f(x8) is nonnegative.

We could prove v9 = 0, v10 = 0 and v11 = 0 if we takes x9 = (t, 0, 0, 1)>,

x10 = (0, t, 0, 1)> and x11 = (0, 0, t, 1)>, respectively.

Finally, since v0 = v1 = · · · = v11 = 0, we have

f(x) = v12x
4
4.

By Theorem 3.5, we get v12 ≥ 0. Hence, the Hankel tensor A is obviously SOS.

Theorem 3.7. Suppose the fourth order four dimensional Hankel tensor A is PSD

and its generating vector is v. If v4v8 = 0, then vj = 0 for j = 1, 2, . . . , 11, and A is

SOS.

Proof. By symmetry, we only need to prove this theorem under the condition v4 = 0.

If we take x1 = (1, t, 0, 0)>, the homogeneous polynomial (3.35) reduces to

f(x1) = 4v3t
3 + 6v2t

2 + 4v1t+ v0.

From Lemma 3.2, we have v3 = 0 since f(x1) is nonnegative. Similarly, we can prove

v5 = v6 = 0 if we take x2 = (0, t, 1, 0)> and x3 = (0, t, 0, 1)> respectively.
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To prove v7 = 0, we take x4 = (0, t2, t, 1)>. Then, the homogeneous polynomial

(3.35) reduces to

f(x4) = 16v7t
5 +O(t4).

From Lemma 3.2, we have v7 = 0 since f(x4) is nonnegative.

From Theorem 3.5, we know v8 ≥ 0. When we take x5 = (0,−t2, t, 1)>, the

homogeneous polynomial (3.35) reduces to

f(x5) = −5v8t
4 +O(t3).

Let t → ∞. Since f(x5) is always nonnegative, we have v8 ≤ 0. Hence, there must

be v8 = 0.

If we take x6 = (0, 0, t, 1)>, the homogeneous polynomial (3.35) is

f(x6) = 4v9t
3 +O(t2).

From Lemma 3.2, we have v9 = 0 since f(x6) is nonnegative. Similarly, we could

prove v10 = 0 and v11 = 0 if we takes x7 = (0, t, 0, 1)> and x8 = (0, 0, t, 1)>,

respectively.

The prove of v1 = 0 and v2 = 0 could be similarly obtained if we take x9 =

(1, t, 0, 0)> and x10 = (1, 0, t, 0)> respectively.

Finally, since vj = 0 for j = 1, . . . , 11, we have

f(x) = v0x
4
1 + v12x

4
4.

By Theorem 3.5, we get v0 ≥ 0 and v12 ≥ 0. Hence, the Hankel tensor A is obviously

SOS.

Now, we make assumptions (3.33) and (3.34). At the beginning, we consider a

mini problem which is the Hankel polynomial with x1 = x4 = 0. This problem helps

us to analyze the effective domain of two important surfaces M0 and N0.
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We consider a two variable quartic polynomial

g(y1, y2) = αy4
1 + 4βy3

1y2 + 6γy2
1y

2
2 + 4βy1y

3
2 + αy4

2.

Its PSD property is completely characterized by the following theorem.

Theorem 3.8. The quartic polynomial g(y1, y2) is PSD if and only if

α ≥ η(β, γ) :=


4|β| − 3γ if γ ≤ |β|,

3γ −
√

9γ2 − 8β2

2
if γ > |β|.

Proof. First, if g(y1, y2) is PSD, from g(1,−1) ≥ 0 and g(1, 1) ≥ 0, we have α ≥

4|β| − 3γ. Thus, in any case, η(β, γ) ≥ 4|β| − 3γ.

Second, suppose that α ≥ 4|β| − 3γ. If γ ≤ 0, we get

g(y1, y2) = (α−4|β|+ 3γ)(y4
1 +y4

2) + 4|β|(y1 +y2)2(y2
1−y1y2 +y2

2)−3γ(y2
1−y2

2)2 ≥ 0.

If 0 < γ ≤ |β|, we rewrite g(y1, y2) as follows

g(y1, y2) = (α−4|β|+3γ)(y4
1+y4

2)+(y1+y2)2
[
(4|β| − 3γ)(y2

1 + y2
2)− (4|β| − 6γ)y1y2

]
.

Since (4|β| − 6γ)2− 4(4|β| − 3γ)2 = −48|β|(|β| − γ) ≤ 0, it yields that g(y1, y2) ≥ 0.

Finally, we consider the case γ > |β|. Let ᾱ =
3γ−
√

9γ2−8β2

2
> 0. Then, we have

g(y1, y2) = (α− ᾱ)(y4
1 + y4

2) + ᾱ

(
y2

1 +
2β

ᾱ
y1y2 + y2

2

)2

.

Obviously, if α ≥ ᾱ, g(y1, y2) is SOS and PSD.

Next, we show that y2
1 + 2β

ᾱ
y1y2 + y2

2 = 0 has nonzero real roots. For the conve-

nience, we denote t = y1
y2

and prove that t2 + 2β
ᾱ
t+ 1 = 0 has real roots. It is easy to

see that t = 0 is not its root. Since γ > |β|, we have

|β|
ᾱ

=
2|β|

3γ −
√

9γ2 − 8β2
=

2|β|(3γ +
√

9γ2 − 8β2)

8β2
≥ 8|β|γ

8β2
≥ 1.
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Hence, |β| ≥ ᾱ. The discriminant of the quadratic in t is

(
2β

ᾱ

)2

− 4 = 4
β2 − ᾱ2

ᾱ2
≥ 0.

Therefore, there are nonzero (y1, y2) such that g(y1, y2) = (α−ᾱ)(y4
1 +y4

2). Obviously,

if g(y1, y2) is PSD, we have α ≥ ᾱ. Thus, we say η(β, γ) = ᾱ if γ > |β|.

Then we have another necessary condition for a fourth order four dimensional

Hankel tensor A to be PSD under assumptions (3.33) and (3.34).

Corollary 3.1. Under assumptions (3.33) and (3.34), if A is PSD, then η(v5, v6) ≤

1.

Proof. Let x1 = x4 = 0, x2 = y1 and x3 = y2. By Theorem 3.8, we have the

conclusion.

We now establish two surface M0 and N0, in the following theorem.

Theorem 3.9. Suppose that assumptions (3.33) and (3.34) hold. Then, there are

two functions M0(v2, v6, v1, v3, v5) ≥ N0(v2, v6, v1, v3, v5) > 0 defined for

η(v5, v6) < 1, (3.40)

such that A is SOS if and only if v0 ≥ M0(v2, v6, v1, v3, v5), and A is PSD if and

only if v0 ≥ N0(v2, v6, v1, v3, v5). If for all v5 and v6 satisfying (3.40), we have

M0(v2, v6, v1, v3, v5) = N0(v2, v6, v1, v3, v5), then there are no fourth order four di-

mensional PNS Hankel tensors under assumption (3.33).

Proof. Using assumptions (3.33) and (3.34), we rewrite (3.35) as

f(x) = v0(x4
1 + x4

4) + v̄4(x4
2 + x4

3) + f1(x) + f2(x),

where

f1(x) = η(v5, v6)(x4
2 + x4

3) + 4v5(x3
2x2 + x2x

3
3) + 6v6x

2
2x

2
3
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and

v̄4 = 1− η(v5, v6).

Then v̄4 > 0 by (3.40). By Theorem 3.8, f1(x) is PSD. Since f1(x) has only two

variables, it is also SOS by Hilbert [40, 82].

We now consider terms in f2(x). Each monomial in f2(x) has at least one factor

as a power of x1 or x4. We may order the monomials of f2(x). For example, consider

12v5x1x2x
2
3. Assume that it is ordered as the kth monomial of f2(x). Then by the

arithmetic-geometric inequality, we may see that

−12v5x1x2x
2
3 ≤ 3|v5|

(
1

ε3k
x4

1 + εkx
4
2 + 2εkx

4
3

)
,

where εk is a small positive number. We may let εk be small enough such that the

sum of the coefficients for x4
2 on the right hand side of the above inequality for all

possible k is less than v̄4. By symmetry, the sum of the coefficients for x4
3 on the

right hand side of the above inequality for all possible k is less than v̄4. We see that

12v5x1x2x
2
3 + 3|v5|

(
1

ε3k
x4

1 + εkx
4
2 + 2εkx

4
3

)

is a PSD diagonal minus tail form. By [33], it is SOS. Thus, as long as v0 is big

enough, when (3.40) is satisfied, f(x) is SOS. From this, we see that M0 and N0

exist, such that they are defined as long as (3.40) is satisfied, M0 ≥ N0, A is SOS if

and only if v0 ≥M0, and A is PSD if and only if v0 ≥ N0.

By Theorem 3.8, we now only need to consider the case that η(v5, v6) = 1.

Suppose that for all v5 and v6 satisfying (3.40), we have M0(v2, v6, v1, v3, v5) =

N0(v2, v6, v1, v3, v5). Since the sets for PSD Hankel tensors and SOS Hankel ten-

sors are closed [58], this implies that for all v5 and v6 satisfying η(v5, v6) = 1, we also

have M0(v2, v6, v1, v3, v5) = N0(v2, v6, v1, v3, v5), as long as N0 is defined there. Thus,
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in this case, by Theorem 3.7, there are no fourth order four dimensional PNS Hankel

tensors under assumption (3.33).

For the variables of M0 and N0, we put v2 and v6 before v1, v3 and v5, as v2, v6

play a more important role in the PSD and SOS properties of A, comparing with

v1, v3 and v5.

We now regard P = (v2, v6, v1, v3, v5)> as a point in <5. If M0(P ) = N0(P ), P is

called a PNS-free point. We call

S = {(v2, v6, v1, v3, v5)> ∈ <5 : η(v5, v6) < 1}

the effective domain. Theorem 3.9 says that if all the points in the effective domain

are PNS-free, then there are no fourth order four dimensional PNS Hankel tensors

with symmetric generating vectors. In the next sections, we will study more on

PNS-free points.

For the convenience, we present formally three ingredients used in theoretical

proofs. If a point belongs to the effective domain and enjoys these ingredients, it is

PNS-free.

Definition 3.1. Suppose that assumptions (3.33) and (3.34) hold and P = (v2, v6, v1, v3, v5)> ∈

S. Suppose that there is a number M such that A is SOS if v0 = M , and a point

x̄ = (x̄1, x̄2, x̄3, x̄4)> ∈ <4 such that x̄2
1 + x̄2

4 > 0 and f0(x̄) = 0, where f0(x) ≡ f(x)

with v0 = M . Then we call M the critical value of A at P , the SOS decomposition

f0(x) the critical SOS decomposition of A at P , and x̄ the critical minimizer

of A at P .

Theorem 3.10. Let P ∈ S. Then P is PNS-free if A has a critical value M , a

critical SOS decomposition f0(x) and a critical minimizer x̄ at P .

Proof. Suppose that A has a critical value M , a critical SOS decomposition f0(x)

and a critical minimizer x̄ at P . Then we have M ≥M0(P ) by the definition of M0.
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If v0 < M , then

f(x̄) = (v0 −M)(x̄4
1 + x̄4

4) + f0(x̄) < 0.

This implies that N0(P ) ≥ M by the definition of N0. But N0(P ) ≤ M0(P ). Thus,

M0(P ) = N0(P ) = M , i.e., P is PNS-free.

We believe that all the effective domain S is PNS-free. In the next four subsec-

tions, we theoretically prove that some regions of S are PNS-free.

3.2.2 A PNS-free segment

We have the following theorem.

Theorem 3.11. Suppose that P = (v2, v6, v1, v3, v5)> = (1, 1, t, t, t)>, where t ∈

[−1, 1]. Then, P is PNS-free, with the critical value 1 and the critical minimizer

(1, 0,−1, 0)>.

Proof. For P = (v2, v6, v1, v3, v5)> = (1, 1, t, t, t)>, where t ∈ [−1, 1], and M = 1, we

have

f0(x) =
1 + t

2
(x1 + x2 + x3 + x4)4 +

1− t
2

(x1 − x2 + x3 − x4)4

is SOS, and

f0(1, 0,−1, 0) = 0.

Hence, P is PNS-free.

By numerical experiments, we have the following conjecture.

Conjecture 1. The segment L = {(v2, v6, v1, v3, v5)> = (1, 1, t, t, t)> : t ∈ [−1, 1]},

is the minimizer set of both M0 and N0.
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3.2.3 A PNS-free planar cone

Theorem 3.12. Suppose that P = (v2, v6, v1, v3, v5)> = (v2, v6, 0, 0, 0)> with v2 ≥

v6 ≥ 1. Then, P is PNS-free.

If we parameterize v6 = b and v2 = (θ + 3b− 1)(θ2 + (3b− 2)θ − 3b + 4). Then,

the critical value at P is

M = (θ + 3b− 1)2(3θ2 + (10b− 6)θ + 3b2 − 10b+ 9)

and the critical minimizer is x̄ = (1, 0,−(θ + 3b− 1), 0)>.

Proof. Note that for v2 ≥ v6 ≥ 1, we may let v6 = b and v2 = (θ+ 3b− 1)(θ2 + (3b−

2)θ − 3b+ 4), where the parameter

θ ≥ θ̄ = (b− 1)
1
3 (b+ 1)

2
3 + (b− 1)

2
3 (b+ 1)

1
3 − 2b+ 1.

In fact, θ̄ is the largest real root of the cubic equation v2 − v6 = 0.

With the critical value as M = (θ + 3b − 1)2(3θ2 + (10b − 6)θ + 3b2 − 10b + 9),

the critical SOS decomposition at P is as follows

f0(x) =
1

v0

(v0x
2
1 + 2v2x1x3 + α1x

2
3)2 +

1

v0

(v0x
2
4 + 2v2x2x4 + α1x

2
2)2

+ α2((θ + 3b− 1)x1x3 + x2
3)2 + α2((θ + 3b− 1)x2x4 + x2

2)2

+
6

b
(x1x2 + x3x4 + bx2x3 + bx1x4)2 +

6(b2 − 1)

b
(x1x2 + x3x4)2

+ 6(v2 − b)[x2
1x

2
2 + x2

3x
2
4],

where the involved parameters are as follows:

α1 = −(θ2 + (4b− 2)θ + 3b2 − 4b+ 1),

α2 =
2(θ2 + (4b− 2)θ + b2 − 4b+ 4)

3θ2 + (10b− 6)θ + 3b2 − 10b+ 9
.

Since f0(1, 0,−(θ + 3b − 1), 0) = 0, the corresponding critical minimizer is x̄ =

(1, 0,−(θ+3b−1), 0)>. Hence, P = (v2, v6, 0, 0, 0)> with v2 ≥ v6 ≥ 1 is PNS-free.
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The cone C = {(v2, v6, v1, v3, v5)> = (a, b, 0, 0, 0)> : a ≥ b ≥ 1} is a 45-degree

planar closed convex cone. Its end point is just the mid point of the segment L =

{(v2, v6, v1, v3, v5)> = (1, 1, t, t, t)> : t ∈ [−1, 1]}, discussed in the last subsection.

3.2.4 A PNS-free ray

In this subsection, we show that the ray R = {(v2, v6, v1, v3, v5)> = (a, 0, 0, 0, 0)> :

a ≤ 0} is PNS-free. Let a = −ρ, where ρ ≥ 0 is a constant. We report that, at a

point P = (−ρ, 0, 0, 0, 0)>, A has the critical value

M = 3
3

√
θ1 + 32

√
θ2 +

θ3

3 3
√
θ1 + 32

√
θ2

+ 6ρ2 + 138ρ+ 609,

where

θ1 := −ρ6 + 272ρ5 + 12608ρ4 + 204032ρ3 + 1558528ρ2 + 5750784ρ+ 8290304,

θ2 := −(ρ+ 6)2(ρ+ 4)3(ρ2 + 4ρ− 16)3,

θ3 := 9(ρ+ 8)(ρ3 + 152ρ2 + 1728ρ+ 5120).

The function f0(x) enjoys a critical SOS decomposition:

f0(x) =
5∑

k=1

q2
k(x),

where

q1(x) = x2
3 + 6x2x4 + α1x

2
1 + α2x

2
4,

q2(x) = x2
2 + 6x1x3 + α2x

2
1 + α1x

2
4,

q3(x) = α3x2x4 + α4x
2
1 + α5x

2
4,

q4(x) = α3x1x3 + α5x
2
1 + α4x

2
4,

q5(x) = α6x
2
1 − α6x

2
4.
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The involved parameters are listed as follows:

α1 = −(ρ+ 23)M1(−ρ)− 9ρ3 − 21ρ2 + 105ρ+ 9

M1(−ρ) + 3ρ2 + 6ρ− 33
,

α2 = −3ρ,

α3 =
√
−30− 2α15,

α4 =
6(1− α15)

α33

,

α5 =
16ρ

α33

,

α6 =

√
−6ρα15 −

192ρ(α15 − 1)

α2
33

.

Theorem 3.13. Suppose that assumptions (3.33) and (3.34) hold. Then, for any

constant ρ ≥ 0, P = (−ρ, 0, 0, 0, 0)> is PNS-free.

Proof. We only need to prove that there is a critical minimizer. Let

x̄ = (α33, α35 + α36,−α35 − α36,−α33)>.

Then, we get q3(x̄) = q4(x̄) = q5(x̄) = 0 immediately. Moreover, we have

q1(x̄) = q2(x̄) = (α35 + α36)2 − 6(α35 + α36)α33 + α15α
2
33 − 3ρα2

33 = 0.

We check the validation of the last equality by a mathematical software Maple.

Hence, f0(x̄) = 0 and x̄ is a critical minimizer at P . Hence, we get the conclusion

by Theorem 3.10.

3.2.5 A PNS-free point

We now show that the point A = (1, 0, 0, 0, 0)> is PNS-free. In fact, the critical value

at A is

M = 477 + 3
3

√
3906351 + 9120

√
57 +

74403
3
√

3906351 + 9120
√

57
.
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The critical SOS decomposition of f0(x) is as follows

f0(x) =
7∑

k=1

qk(x)2,

where

q1(x) = x2
3 + 6x2x4 − 21x2

1 + α1x
2
4,

q2(x) = x2
2 + 6x1x3 − 21x2

4 + α1x
2
1,

q3(x) = 2
√

3x2x4 + α2x
2
1 + α3x

2
4,

q4(x) = 2
√

3x1x3 + α2x
2
4 + α3x

2
1,

q5(x) = α4x
2
1 − α4x

2
4,

q6(x) = β1x1x2 + β2x1x4,

q7(x) = β1x3x4 + β2x1x4.

Some involved parameters are listed as follows:

β1 =

√
−6(M2 − 36)(3M2 − 4336)√
M2

2 − 1302M2 + 25056
,

β2 =
β1(3β2

1 + 116)

β2
1 + 12

,

α1 = 3− 1

2
β2

1 ,

α2 = 22
√

3−
√

3

6
β1β2,

α3 = −8
√

3

3
+

√
3

2
β2

1 ,

α4 =
√
−42α1 + 2α2α3 + β2

2 .

Theorem 3.14. Suppose that assumptions (3.33) and (3.34) hold. Then, A =

(1, 0, 0, 0, 0)> is PNS-free.
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v2 \ v6 −.2 −.1 0 .5 1 1.5 2 4
-4.0 3.54e4 8.74e3 3.76e3 4.78e2 3.12e2 3.92e2 6.23e2 6.37e3
-2.0 2.98e4 6.77e3 2.73e3 2.75e2 1.25e2 1.70e2 3.57e2 6.11e3
-1.0 2.72e4 5.85e3 2.26e3 1.91e2 6.15e1 9.26e1 2.73e2 6.06e3
-0.5 2.59e4 5.42e3 2.04e3 1.53e2 3.78e1 6.41e1 2.48e2 6.06e3
0.0 2.46e4 4.99e3 1.82e3 1.20e2 1.96e1 4.50e1 2.39e2 6.07e3
0.5 2.34e4 4.57e3 1.62e3 8.90e1 7.058 4.18e1 2.45e2 6.09e3
1.0 2.21e4 4.17e3 1.42e3 6.21e1 1.000 4.93e1 2.56e2 6.11e3
1.5 2.09e4 3.78e3 1.23e3 3.90e1 4.191 5.69e1 2.67e2 6.14e3
2.0 1.98e4 3.41e3 1.06e3 2.02e1 8.00e0 6.46e1 2.78e2 6.16e3
3.0 1.75e4 2.70e3 7.28e2 7.16e0 1.66e1 8.01e1 3.01e2 6.21e3
4.0 1.53e4 2.04e3 4.41e2 1.23e1 2.60e1 9.60e1 3.23e2 6.25e3

Table 3.2: The values of M0(v2, v6, 0, 0, 0) = N0(v2, v6, 0, 0, 0) on some grid points.

Proof. Using the mathematical software Maple, we calculate

f(x)−
7∑

k=1

q2
k(x) =

−β6
1 − 120β4

1 + (4v0 − 4944)β2
1 + 48v0 − 69376

4(β2
1 + 12)

(x4
1 + x4

4).

Substituting the value of v0 = M and β1, we get f0(x)−
∑7

k=1 q
2
k(x) = 0.

Let x̄ = (β1, β2,−β2,−β1)>. Obviously, we obtain q5(x̄) = q6(x̄) = q7(x̄) = 0.

We find that q3(x̄) and q4(x̄) vanishes if we rewrite all the parameters using β1. Using

the value of each parameter, we find that q1(x̄) = q2(x̄) = 0. Since x̄1 = β1 ≈ 1.73,

x̄ is the critical minimizer. Therefore, this theorem is valid according to Theorem

3.10.

3.2.6 Numerical experiments

We have proved that some regions are PNS-free. What about the other cases? We

try to answer this problem by a numerical approach. We use the YALMIP software

with an SOS module [61, 60] to compute M0(v2, v6, v1, v3, v5), which is the smallest

value of v0 such that the fourth order four dimensional Hankel tensor A with the

generating vector (v0, v1, v2, v3, 1, v5, v6, v5, 1, v3, v2, v1, v0)> is SOS. Gloptipoly [25]

and SeDuMi [88] are employed to compute N0(v2, v6, v1, v3, v5), which is the smallest
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Figure 3.3: The contour profile of M0(v2, v6, 0, 0, 0) = N0(v2, v6, 0, 0, 0).

value of v0 such that the Hankel tensor A is PSD.

First, we focus on two elements v2 and v6 of generating vectors and set v1 = v3 =

v5 = 0. By Theorem 3.8, owing to the effective domain, we have b > −1
3
. We choose

v2 = −4,−2,−1,−0.5, 0, 0.5, 1, 1.5, 2, 3, 4 and v6 = −0.2,−0.1, 0, 0.5, 1, 1.5, 2, 4 and

compute M0 and N0 in these grid points respectively. By our experiments, we found
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Figure 3.4: The contour profile of M0(0, v6, 0, 0, v5).
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that these two functions are equivalent on all of the grid points. Thus, no PNS

tensors are detected here. The detailed value of M0 and N0 are reported in Table

3.2.

A more intuitional profile of M0 = N0 is illustrated in Figure 3.3. It is easy to

see that (v2, v6) = (1, 1) is the minimizer of both M0 and N0 when we set v1 = v3 =

v5 = 0.

We consider the case that the generating vector of a fourth order four dimensional

Hankel tensor has nonzero odd elements. According to Theorem 3.9, we say that

v5 and v6 must satisfy η(v5, v6) < 1. So we study them first and set v1 = v2 =

v3 = 0. We compute a plenty of grid points with different v5 and v6. The function

M0(0, v6, 0, 0, v5) is still equivalent to the function N0(0, v6, 0, 0, v5). That is to say,

no PNS tensors are found.

The contour of M0(0, v6, 0, 0, v5) = M0(0, v6, 0, 0, v5) is shown in Figure 3.4. We

could see that the nonlinear contour of M0 = N0 = 500 looks like a fire balloon.

Finally, we consider all of the elements of symmetric generating vectors of fourth

order four dimensional Hankel tensors. The contours of M0(v2, v6, v1, v3, v5) and

N0(v2, v6, v1, v3, v5) for various combinations of v2, v6, v1, v3 and v5 are reported in

Figure 3.5. In all of our tests, values of the function M0(v2, v6, v1, v3, v5) in grid points

are always equivalent to the corresponding values of the function N0(v2, v6, v1, v3, v5).

So, no fourth order four dimensional PNS Hankel tensors with symmetric generating

vectors are detected.

From Figures 3.4 and 3.5, we could say that the second element v1 of the generat-

ing vector of a Hankel tensor affect functionsM0(v2, v6, v1, v3, v5) andN0(v2, v6, v1, v3, v5)

slightly. When we fix v4 = 1, the middle element v6 of the generating vector v plays

a more important role since it has direct impact on the effective domain.
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Figure 3.5: The contour profiles of M0(v2, v6, v1, v3, v5) which are equivalent to
N0(v2, v6, v1, v3, v5).

56



Chapter 4

Generalized Anti-circulant Tensors

Anti-circulant tensors have applications in exponential data fitting. They are special

Hankel tensors. In this chapter, we extend the definition of anti-circulant tensors

to generalized anti-circulant tensors by introducing a circulant index r such that

the entries of the generating vector of a Hankel tensor are circulant with module

r. In the special case when r = n, where n is the dimension of the Hankel ten-

sor, the generalized anticirculant tensor reduces to the anti-circulant tensor. Hence,

generalized anti-circulant tensors are still special Hankel tensors. For the cases that

GCD(m, r) = 1, GCD(m, r) = 2 and some other cases, including the matrix case

that m = 2, we give necessary and sufficient conditions for positive semi-definiteness

of even order generalized anti-circulant tensors, and show that in these cases, they are

sum of squares tensors. This shows that, in these cases, there are no PNS (positive

semidefinite tensors which are not sum of squares) Hankel tensors.

4.1 Introduction

Anti-circulant tensors were introduced in [30]. They are extensions of anti-circulant

matrices in matrix theory [27, 94]. They have applications in exponential data fitting

[30]. Anti-circulant tensors are Hankel tensors. Hankel tensors arise from signal
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processing and some other applications [4, 72, 74].

Let v = (v0, · · · , v(n−1)m)> ∈ <(n−1)m+1, where m,n ≥ 2. An mth order n

dimensional Hankel tensor A = (ai1···im) is defined by

ai1···im = vi1+···+im−m,

for i1, · · · , im = 1, · · · , n. If

vi = vi+r, (4.1)

for i = 0, · · · , (n− 1)m− r, where 1 ≤ r ≤ n, then A is called a generalized anti-

circulant tensor with circulant index r. If r = n, then A is an anti-circulant

tensor according to [30].

For x = (x1, · · · , xn)> ∈ <n, A uniquely define a homogeneous polynomial

f(x) ≡ Ax⊗m =
n∑

i1,··· ,im=1

ai1···imxi1 · · ·xim =
n∑

i1,··· ,im=1

vi1+···+im−mxi1 · · ·xim . (4.2)

We call such a polynomial a Hankel polynomial. By [74], a necessary condition

for A to be PSD is that

vjm ≥ 0, (4.3)

for j = 0, · · · , n− 1. In [58], it was proved that an even order strong Hankel tensor

is an SOS Hankel tensor. Then, a necessary condition for A to be a strong Hankel

tensor is that

v2j ≥ 0, (4.4)

for j = 0, · · · , (n− 1)k.

When r is odd, for the case that m = 2k, k ≥ 1, GCD(m, r) = 1 and n ≥ r, we

show that A is PSD if and only if v0 = · · · = vr−1 ≥ 0. In this case, we show that

f(x) = v0(x1 + · · ·+ xn)m,
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and A is a strong Hankel tensor. We show that this result is still true for r = 3, n ≥ r

and m = 6, 12, 18, 30, 42.

When r is even, for the case that m = 2k, k ≥ 1, GCD(m, r) = 2 and n ≥ r, we

show that A is PSD if and only if v0 = v2 = · · · = vr−2, v1 = v3 = · · · = vr−1, and

v0 ≥ |v1|. In these cases, we may write v1 = v0(2t − 1), where t ∈ [0, 1]. We show

that

f(x) = tv0(x1 + · · · xn)m + (1− t)v0

(
x1 − x2 + x3 − · · ·+ (−1)n−1xn

)m
,

and A is a strong Hankel tensor. We show that this result is still true in the case

that m = 4, r = 4 and n ≥ 4.

Note that these two results are true in the matrix case for all r ≥ 1. In fact, in

the matrix case, for even r, we show the result is true as long as 2 ≤ r ≡ 2p ≤ 2n−4.

We believe that our results are new even in the matrix case.

4.2 A theorem on circulant numbers

We have the following theorem.

Theorem 4.1. Let M ≥ 1 and p ≥ 2. Suppose that we have a sequence {uj : j =

0, 1, · · · }, satisfying

uj+p = uj,

for j = 0, 1, · · · . If

M∑
j=0

(
M

j

)
(−1)jui+j ≥ 0, (4.5)

for i = 0, · · · , p− 1, or

M∑
j=0

(
M

j

)
(−1)jui+j ≤ 0, (4.6)

for i = 0, · · · , p− 1, then u0 = u1 = · · · = up−1.
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Proof. We may prove this theorem by induction on M . Obviously, it is true for

M = 1, 2. Suppose that it is true for M = 2, · · · , k. We now prove that it is true for

M = k + 1. Define

wi =
k∑
j=0

(
k

j

)
(−1)jui+j

for i = 0, · · · , p− 1. Then wi+p = wi for i = 0, · · · , p− 1. Suppose that (4.5) holds

for M = k + 1. Note that

wi − wi+1

=

(
u0 +

k∑
j=1

(
k

j

)
(−1)jui+j

)
−

(
k−1∑
j=0

(
k

j

)
(−1)jui+j+1 + (−1)kui+k+1

)

= u0 +

(
k∑
j=1

((
k

j

)
+

(
k

j − 1

))
(−1)jui+j

)
+ (−1)k+1ui+k+1

= u0 +

(
k∑
j=1

(
k + 1

j

)
(−1)jui+j

)
+ (−1)k+1ui+k+1

=
k+1∑
j=0

(
k + 1

j

)
(−1)jui+j.

Then (4.5) is equivalent to

wi − wi+1 ≥ 0

for i = 0, · · · , p − 1. This implies that w0 = w1 · · · = wp−1. Thus, either (4.5) or

(4.6) holds for M = k. By our induction assumption, we have u0 = u1 = · · · = up−1.

Similarly, if (4.6) holds for M = k+1, we may show that u0 = u1 = · · · = up−1. This

proves the theorem.
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4.3 The case that r is odd

4.3.1 The case that r = 1

This case is trivial. However, we present the statement of the result for the reader’s

convenience here, as it covers the sufficiency part of the results for the cases that r

is an odd number with r ≥ 3.

Proposition 4.1. Suppose that A is an mth order n dimensional generalized anti-

circulant tensor with circulant index 1, where m = 2k ≥ 2 and n ≥ 2. Then A is

PSD if and only if v0 ≥ 0. In this case, we have

f(x) = v0(x1 + · · ·+ xn)m. (4.7)

and

y>Ay = v0

(
y1 + · · ·+ y(nk−k+1)

)2
, (4.8)

where A is the associated Hankel matrix, which implies that A is a strong Hankel

tensor and hence an SOS Hankel tensor.

The proof is trivial and we omit it here.

4.3.2 The case that GCD(m, r) = 1

We have the following theorem.

Theorem 4.2. Suppose that A is an mth order n dimensional generalized anti-

circulant tensor with m = 2k, GCD(m, r) = 1, 1 ≤ r ≤ n and k ≥ 1. Then A is

PSD if and only if v0 = · · · = vr−1 ≥ 0. In this case, we still have (4.7) and (4.8),

which implies that A is a strong Hankel tensor and hence an SOS Hankel tensor.

Proof. Suppose that A is PSD. Let x = eq − eq+1 for q = 1, · · · , n, with en+1 ≡ e1.

From f(x) ≥ 0, we have

m∑
j=0

(
m

j

)
(−1)jv(q−1)m+j ≥ 0, (4.9)
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for q = 1, · · · , n. Since GCD(m, r) = 1, for each i = 0, · · · , r− 1, there is an integer

q, 1 ≤ q ≤ n such that (q − 1)m = i, mod(r). Then vi+j = v(q−1)m+j for such i, q

and j = 0, · · · ,m. Thus, (4.9) implies that

m∑
j=0

(
m

j

)
(−1)jvi+j ≥ 0,

for i = 0, · · · , r− 1. Applying Theorem 4.1 with M = m,uj = vj and p = r, we have

v0 = · · · = vr−1. By (4.3), v0 ≥ 0. Thus, we have v0 = · · · = vr−1 ≥ 0.

The “if” part follows from Proposition 4.1.

4.3.3 The case that GCD(m, r) 6= 1

The case that GCD(m, r) 6= 1 and r is odd includes the case that r = 3,m = 6l for

l ≥ 1, the case that r = 5,m = 10l for l ≥ 1, etc. By [57], Theorem 4.2 still holds for

the case that m = 6 and r = 3. We may see that Theorem 4.2 still holds for more

cases that GCD(m, r) 6= 1 and r is odd.

We now assume that m = 6l, r = 3 for l ≥ 1.

In this case, (4.1) and (4.2) have the following form:

vi = vi+3 (4.10)

for i = 0, · · · , (n− 1)m− 3, and for x = (x1, · · · , xn)> ∈ <n,

f(x) ≡ Ax⊗m =
n∑

i1,··· ,im=1

vi1+···+imxi1 · · · xim = v0f0(x) + v1f1(x) + v2f2(x), (4.11)

where

fj(x) =
∑
{xi1 · · ·xim : i1 + · · ·+ im = j, mod(3), i1, · · · , im = 1, · · · , n} , (4.12)

for j = 0, 1, 2. We may see that

f0(x) + f1(x) + f2(x) = (x1 + · · ·+ xn)m. (4.13)
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Since we are concerned about PSD generalized anti-circulant tensors, we may

assume that (4.3) holds, i.e., v0 ≥ 0.

Proposition 4.2. Suppose that A is an mth order n dimensional generalized anti-

circulant tensor with circulant index 3, where m = 6, 12, 18, 30, 42 and n ≥ 3. As-

sume that v0 ≥ 0. If A is PSD, then

v1 + v2 = 2v0. (4.14)

Proof. Suppose that A is PSD and v0 ≥ 0. Then we have f(1,−1, 0, · · · , 0) ≥ 0.

Note that

f0(1,−1, 0, · · · , 0)

=
∑
{xi1 · · ·xim : i1 + · · ·+ im = 0, mod(3), i1, · · · , im = 1, 2, x1 = 1, x2 = −1}

=
∑
{xi1 · · ·xim : the number of ij = 1 is m− p, the number of ij = 2 is p,

p = 0, 3, · · · ,m, x1 = 1, x2 = −1}

=
∑{

(−1)p
(
m

p

)
: p = 0, 3, · · · ,m

}
.

Similarly, we can prove that

f1(1,−1, 0, · · · , 0) =
∑{

(−1)p
(
m

p

)
: p = 1, 4, · · · ,m− 2

}
and

f2(1,−1, 0, · · · , 0) =
∑{

(−1)p
(
m

p

)
: p = 2, 5, · · · ,m− 1

}
.

By direct calculation, for m = 6, 18, 30, 42, we have

f0(1,−1, 0, · · · , 0) < 0. (4.15)

Since
(
m
p

)
≡
(

m
m−p

)
, we have

f1(1,−1, 0, · · · , 0) = f2(1,−1, 0, · · · , 0). (4.16)
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By (4.13),

f0(1,−1, 0, · · · , 0) + f1(1,−1, 0, · · · , 0) + f2(1,−1, 0, · · · , 0) = 0. (4.17)

By (4.11), (4.15-4.17) and f(1,−1, 0, · · · , 0) ≥ 0, we have v1 + v2 − 2v0 ≥ 0.

On the other hand, for m = 6, 18, 30, 42,

f0(1, 1,−2, 0, · · · , 0)

=
∑
{xi1 · · ·xim : i1 + · · ·+ im = 0, mod(3), i1, · · · , im = 1, 2, 3, x1 = 1,

x2 = 1, x3 = −2}

=
∑
{xi1 · · ·xim : the number of ij = 1 is m− p− q, the number of ij = 2

is q, the number of ij = 3 is p, 2p+ q = 0, mod(3), 0 ≤ p, q ≤ m,

x1 = 1, x2 = 1, x3 = −2}

=
m∑
p=0

∑
{xi1 · · ·xim : the number of ij = 1 is m− p− q, the number of ij = 2

is q, the number of ij = 3 is p, 2p+ q = 0, mod(3), 0 ≤ q ≤ m,

x1 = 1, x2 = 1, x3 = −2}

=
m∑
p=0

∑{
(−2)p

(
m

p

)(
m− p
q

)
: 2p+ q = 0, mod(3), 0 ≤ q ≤ m

}
.

Similarly, we can prove that

f1(1, 1,−2, 0, · · · , 0)

=
m∑
p=0

∑{
(−2)p

(
m

p

)(
m− p
q

)
: 2p+ q = 1, mod(3), 0 ≤ q ≤ m

}

and

f2(1, 1,−2, 0, · · · , 0)

=
m∑
p=0

∑{
(−2)p

(
m

p

)(
m− p
q

)
: 2p+ q = 2, mod(3), 0 ≤ q ≤ m

}
.
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By direct calculation, for m = 6, 18, 30, 42, we have

f0(1, 1,−2, 0, · · · , 0) > 0. (4.18)

Note that
(
m−p
q

)
≡
(

m−p
m−p−q

)
. Also, 2p + q = 2, mod(3) is equivalent to 2p + m −

p− q = 1, mod(3). Thus,

f1(1, 1,−2, 0, · · · , 0) = f2(1, 1,−2, 0, · · · , 0). (4.19)

By (4.13),

f0(1, 1,−2, 0, · · · , 0) + f1(1, 1,−2, 0, · · · , 0) + f2(1, 1,−2, 0, · · · , 0) = 0. (4.20)

By f(1, 1,−2, 0, · · · , 0) ≥ 0, (4.11) and (4.18-4.20) we can derive v1+v2−2v0 ≤ 0.

This proves (4.14).

For the case that m = 12, (4.16) still holds. By direct computation, we have

f0(1,−1, 0, 0, · · · , 0) > 0. (4.21)

By (4.11), (4.16-4.17) and (4.21), we have v1 + v2 − 2v0 ≤ 0. On the other hand,

consider f(1,−3, 2, 0, · · · , 0) and f(1, 2,−3, 0, · · · , 0). By direct computation, we

have

f0(1,−3, 2, 0, · · · , 0) < 0. (4.22)

We have that

f0(1,−3, 2, 0, · · · , 0)

=
m∑
p=0

∑{
2p(−3)q

(
m

p

)(
m− p
q

)
: 2p+ q = 0, mod(3), 0 ≤ q ≤ m

}

and

f0(1, 2,−3, 0, · · · , 0)

=
m∑
p=0

∑{
2q(−3)p

(
m

p

)(
m− p
q

)
: 2p+ q = 0, mod(3), 0 ≤ q ≤ m

}
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We may see that 2p+ q = 0, mod(3) if and only if p+ 2q = 0, mod(3). Thus,

f0(1, 2,−3, 0, · · · , 0) = f0(1,−3, 2, 0, · · · , 0) < 0. (4.23)

Similarly, we may show that

f1(1, 2,−3, 0, · · · , 0)− f2(1, 2,−3, 0, · · · , 0) (4.24)

= f2(1,−3, 2, 0, · · · , 0)− f1(1,−3, 2, 0, · · · , 0).

By f(1,−3, 2, 0, · · · , 0) + f(1, 2,−3, 0, · · · , 0) ≥ 0, (4.11) and (4.23-4.24) we can

derive v1 + v2 − 2v0 ≥ 0. This proves that (4.14) still holds for m = 12.

We now have the following theorem.

Theorem 4.3. Suppose that A is an mth order n dimensional generalized anti-

circulant tensor with m = 6, 12, 18, 30, 42, r = 3 and n ≥ r. Then A is PSD if and

only if v0 = v1 = v2 ≥ 0. In this case, we still have (4.7) and (4.8), which implies

that A is a strong Hankel tensor and hence an SOS Hankel tensor.

Proof. Suppose that A is PSD. Then v0 ≥ 0. Without loss of generality, assume that

v0 > 0. By Proposition 4.2, v1 + v2 = 2v0. Let v1 = v0(1 + α). Then v2 = v0(1− α)

and

f(x) = v0(x1 + · · ·+ xn)m + v0α(f1(x)− f2(x)), (4.25)

where f1 and f2 are defined as in (4.12). We may see that

f1(1, 2,−3, 0, · · · , 0)− f2(1, 2,−3, 0, · · · , 0)

= f2(1,−3, 2, 0, · · · , 0)− f1(1,−3, 2, 0, · · · , 0) 6= 0.

Then from this, (4.25), f(1, 2,−3, 0, · · · , 0) ≥ 0 and f(1,−3, 2, 0, · · · , 0) ≥ 0, we have

α = 0. This proves that v0 = v1 = v2 ≥ 0. The remaining conclusions now follow from

Proposition 4.1.
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In the proof of Proposition 4.2, we use direct calculation to show (4.15), (4.18),

(4.21) and (4.22). Are (4.15) and (4.18) still true for m = 12l + 6 with l ≥ 4? Are

(4.21) and (4.22) still true for m = 12l with l ≥ 2? How can we prove these by some

analytical technique? The case that m = 2k, r = 2p + 1, GCD(m, r) 6= 1 for k ≥ 2

and p ≥ 2 also remains unknown. These are some further research topics.

4.4 The case that r is even

4.4.1 The case that r = 2

We see that the results in [57] for m = 6 and n = 3 can be extended to this case.

In this case, (4.1) and (4.2) have the following form:

vi = vi+2 (4.26)

for i = 0, · · · , (n− 1)m− 2, and for x = (x1, · · · , xn)> ∈ <n,

f(x) ≡ Ax⊗m =
n∑

i1,··· ,im=1

vi1+···+im−mxi1 · · · xim = v0f0(x) + v1f1(x), (4.27)

where

fj(x) =
∑
{xi1 · · · xim : i1 + · · ·+ im = j, mod(2), i1, · · · , im = 1, · · · , n} , (4.28)

for j = 0, 1. We may see that

f0(x) + f1(x) = (x1 + · · ·+ xn)m. (4.29)

Since we are concerned about PSD generalized anti-circulant tensors, we may

assume that (4.3) holds, i.e., v0 ≥ 0.

Theorem 4.4. Suppose that A is an mth order n dimensional generalized anti-

circulant tensor with circulant index r = 2, where m = 2k ≥ 2 and n ≥ 2. Then A
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is PSD if and only if |v1| ≤ v0. In these cases, we may write v1 = v0(2t− 1), where

t ∈ [0, 1]. We have that

f(x) = tv0(x1 + · · · xn)m + (1− t)v0

(
x1 − x2 + x3 − · · ·+ (−1)n−1xn

)m
,

and A is a strong Hankel tensor.

Proof. Suppose that A is PSD and v0 ≥ 0. Then we have f(1, 1, 0, · · · , 0) ≥ 0. Note

that

f0(1, 1, 0, · · · , 0)

=
∑
{xi1 · · · xim : i1 + · · ·+ im = 0, mod(2), i1, · · · , im = 1, 2, x1 = 1, x2 = 1}

=
∑
{xi1 · · · xim : the number of ij = 1 is m− p, the number of ij = 2 is p,

p = 0, 2, · · · ,m, x1 = 1, x2 = 1}

=
∑{(

m

p

)
: p = 0, 2, · · · ,m

}
.

Similarly, we can prove that

f1(1, 1, 0, · · · , 0) =
∑{(

m

p

)
: p = 1, 3, · · · ,m− 1

}
,

f0(1,−1, 0, · · · , 0) =
∑{(

m

p

)
: p = 0, 2, · · · ,m

}
and

f1(1,−1, 0, · · · , 0) =
∑{

(−1)p
(
m

p

)
: p = 1, 3, · · · ,m− 1

}
.

We may see that

f0(1,−1, 0, · · · , 0) + f1(1,−1, 0, · · · , 0) = 0,

f0(1, 1, 0, · · · , 0) = f0(1,−1, 0, · · · , 0) > 0,

f1(1, 1, 0, · · · , 0) = −f1(1,−1, 0, · · · , 0) > 0. (4.30)
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By (4.27), we have v0 + v1 ≥ 0. From f(1,−1, 0, · · · , 0) ≥ 0 and (4.27), we have

v0 − v1 ≥ 0. This implies that v0 ≥ |v1|. On the other hand, suppose that v0 ≥ |v1|.

We may write v1 = v0(2t− 1), where t ∈ [0, 1]. Write f(x) = v0f0(x) + v1f1(x) such

that f0(x) + f1(x) = (x1 + · · · + xn)m and f0(x) − f1(x) = (x1 − x2 + x3 − · · · +

(−1)n−1xn)m for all x = (x1, · · · , xn)> ∈ <n. It then follows from (4.27) that

f(x) = v0f0(x) + v1f1(x)

= v0f0(x) + (2t− 1)v0f1(x)

= tv0(f0(x) + f1(x)) + (1− t)v0(f0(x)− f1(x))

= tv0(x1 + · · ·+ xn)m + (1− t)v0(x1 − x2 + x3 − · · ·+ (−1)n−1xn)m.

Similarly, we have

g(y) = y>Ay (4.31)

= tv0(y1 + · · ·+ ynk−k+1)2 + (1− t)v0(y1 − y2 + y3 − · · ·+ (−1)nk−kynk−k+1)2,

where A is the associated Hankel matrix of A. The conclusions now follow from the

definitions of PSD, SOS and strong Hankel tensors.

4.4.2 The case that GCD(m, r) = 2

In this section, we allow r ≤ 2n − 4 instead of r ≤ n, and still call such a tensor a

generalized anti-circulant tensor. We have the following theorem.

Theorem 4.5. Suppose that A is an mth order n dimensional generalized anti-

circulant tensor with m = 2k, k ≥ 1, 4 ≤ r = 2p ≤ 2n− 4. If GCD(m, r) = 2, then

A is PSD if and only if v0 = v2 = · · · = vr−2, v1 = v3 = · · · = vr−1 and v0 ≥ |v1|. In

this case, we may write v1 = v0(2t− 1), where t ∈ [0, 1]. Then we have

f(x) = tv0(x1 + · · · xn)m + (1− t)v0

(
x1 − x2 + x3 − · · ·+ (−1)n−1xn

)m
.

This implies that A is PSD if only if it is SOS. Furthermore, in this case, A is a

strong Hankel tensor.
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Proof. Suppose that A is PSD. Let x = eq − eq+2 for q = 1, · · · , n, with en+1 ≡ e1

and en+2 ≡ e2. By f(x) ≥ 0, we have that

m∑
j=0

(
m

j

)
(−1)jv(q−1)m+2j ≥ 0, (4.32)

for q = 1, · · · , n. Since GCD(m, r) = 2, for each i = 0, · · · , p− 1, there is an integer

q, 1 ≤ q ≤ n such that (q − 1)m = 2i, mod(r). Then v2(i+j) = v(q−1)m+2j for such i,

q and j = 0, · · · ,m. Thus, (4.32) implies that

m∑
j=0

(
m

j

)
(−1)jv2(i+j) ≥ 0,

for i = 0, · · · , p − 1. Applying Theorem 4.1 with M = m and uj = v2j, we have

v0 = v2 = · · · = vr−2.

Let x = αeq−1 + eq − αeq+1 for q = 1, · · · , n with e0 ≡ en. Since v0 = v2 =

· · · = vr−2, in the expression of f(x), the coefficient for power αm is zero. Hence, the

highest power of α in f(x) is the term for power αm−1, which is

mαm−1

(
m−1∑
j=0

(
m− 1

j

)
(−1)jvmq−2m+1+2j

)
.

From f(x) ≥ 0, letting α→∞, we have

m−1∑
j=0

(
m− 1

j

)
(−1)jvmq−2m+1+2j ≥ 0, (4.33)

for q = 1, · · · , n. Since GCD(m, r) = 2, as in the first part of this proof, (4.33)

implies that

m−1∑
j=0

(
m− 1

j

)
(−1)jv2i+1+2j ≥ 0,

for i = 0, · · · , p−1. Applying Theorem 4.1 with M = m−1 and uj = v2j+1, we have

v1 = v3 = · · · = vr−1. The remaining conclusions now follow from Theorem 4.4.
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4.4.3 The case that GCD(m, r) = 2l for l ≥ 2

In this case, we have the following theorem for m = 4, n ≥ r = 4.

Theorem 4.6. Suppose that A is a fourth order n dimensional generalized anti-

circulant tensor with circulant index r = 4, where n ≥ 4. Then A is PSD if and only

if v0 = v2, v1 = v3 and |v1| ≤ v0. In these cases, we may write v1 = v0(2t− 1), where

t ∈ [0, 1]. We have that

f(x) = tv0(x1 + · · ·xn)4 + (1− t)v0

(
x1 − x2 + x3 − · · ·+ (−1)n−1xn

)4
,

and A is a strong Hankel tensor.

Proof. In this case, (4.1) and (4.2) have the following form:

vi = vi+4 (4.34)

for i = 0, · · · , 4n− 8. From (4.2), for x = (x1, · · · , xn)> ∈ <n, we have

f(x) ≡ Ax⊗4 (4.35)

=
n∑

i1,··· ,i4=1

vi1+···+i4xi1 · · ·xi4 = v0f0(x) + v1f1(x) + v2f2(x) + v3f3(x),

where

fj(x) =
∑
{xi1 · · ·xi4 : i1 + · · ·+ i4 = j, mod(4), i1, · · · , i4 = 1, · · · , n} , (4.36)

for j = 0, 1, 2, 3. Furthermore, we have

f0(x1, x2, x3, x4, 0, · · · 0) (4.37)

= x4
1 + x4

2 + x4
3 + x4

4 + 6(x2
1x

2
3 + x2

2x
2
4) + 12(x2

1x2x4 + x1x
2
2x3 + x2x

2
3x4 + x1x3x

2
4),

f1(x1, x2, x3, x4, 0, · · · 0) (4.38)

= 4(x3
1x2 + x3

2x3 + x3
3x4 + x1x

3
4) + 12(x2

1x3x4 + x1x
2
2x4 + x1x2x

2
3 + x2x3x

2
4),
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f2(x1, x2, x3, x4, 0, · · · 0) (4.39)

= 4(x3
1x3 + x1x

3
3 + x3

2x4 + x2x
3
4) + 6(x2

1x
2
2 + x2

2x
2
3 + x2

3x
2
4 + x2

1x
2
4) + 24x1x2x3x4,

f3(x1, x2, x3, x4, 0, · · · 0) (4.40)

= 4(x1x
3
2 + x2x

3
3 + x3x

3
4 + x3

1x4) + 12(x2
1x2x3 + x2

2x3x4 + x1x
2
3x4 + x1x2x

2
4).

Suppose now that A is PSD. From (4.38) and (4.40), we see that

f1(1, 0,−1, 0, · · · , 0) = f3(1, 0,−1, 0, · · · , 0) = 0.

From (4.37) and (4.39), we have

f0(1, 0,−1, 0, · · · , 0) = −f2(1, 0,−1, 0, · · · , 0) > 0.

Then by f(1, 0,−1, 0, · · · , 0) ≥ 0, we have v0 ≥ v2.

Similarly, from (4.37-4.40), we have

f1(1,−1,−1, 1, 0, · · · , 0) = f3(1,−1,−1, 1, 0, 0, · · · , 0) = 0

and

f0(1,−1,−1, 1, 0, · · · , 0) = −f2(1,−1,−1, 1, 0, · · · , 0) < 0.

Then by f(1,−1,−1, 1, 0, · · · , 0) ≥ 0, we have v0 ≤ v2. Thus, we derive that v0 = v2.

From f(α, 1,−α, 0, · · · , 0) ≥ 0, f(α,−1,−α, 0, · · · , 0) ≥ 0 and (4.36), we derive

that v0 ≥ φ(α)|v3 − v1|, where φ(α)→∞ if α→∞. Letting α tend to ∞, we have

v1 = v3. The remaining conclusions now follow from Theorem 4.4.
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Chapter 5

Three Dimensional Strongly

Symmetric Circulant Tensors

In this chapter, we give a necessary and sufficient condition for an even order three

dimensional strongly symmetric circulant tensor to be positive semi-definite. We

show that this condition can be a sufficient condition for such a tensor to be sum-

of-squares in some cases. There are no PNS strongly symmetric circulant tensors to

be found in numerical tests.

5.1 Introduction

We consider even order three dimensional strongly symmetric circulant tensors. A

general three dimensional strongly symmetric circulant tensor has only three inde-

pendent entries: the diagonal entry d, the off-diagonal entries of value u with two

different indices in ai1···im , and the off-diagonal entries of value c with three different

indices in ai1···im . Let A = (ai1···im) be an mth order three dimensional strongly

symmetric circulant tensor. Here m can be even or odd. We denote

aS ≡ ai1···im
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if S = {i1, · · · , im}. Then there are seven cases for S: {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},

and {1, 2, 3}. Since A is also circulant, we have

a{1} = a{2} = a{3}, and a{1,2} = a{2,3} = a{1,3}.

Let d = a{1} = a{2} = a{3}, u = a{1,2} = a{2,3} = a{1,3} and c = a{1,2,3}. Then we see

that d is the diagonal entry of A: d = a1···1 = a2···2 = a3···3, and an mth order three

dimensional strongly symmetric circulant tensor has only three independent entries

d, u and c. Thus, we may denote a general three dimensional strongly symmetric

circulant tensor A = A(m, d, u, c), where m is its order. When the context is clear,

we only use A to denote it.

In our discussion, we need the concept of H-eigenvalues of symmetric tensors,

which was introduced in [73] and is closely related to positive semi-definiteness of

even order symmetric tensors. When m is even, H-eigenvalues always exist. T is

PSD if and only if its smallest H-eigenvalue is nonnegative by Theorem 2.1. From

now on, we denote the smallest H-eigenvalue of A(m, d, u, c) as λmin(m, d, u, c).

Now, let m = 2k be even. We show that there are two one-variable functions

Mc(u) and Nc(u), such that Mc(u) ≥ Nc(u) ≥ 0, A is SOS if and only if d ≥Mc(u),

and A is PSD if and only if d ≥ Nc(u). If Mc(u) = Nc(u), then three dimensional

strongly symmetric PNS circulant tensors do not exist for such u and c. We show that

if u, c ≤ 0 or u = c > 0, then Mc(u) = Nc(u). Explicit formulae for Mc(u) = Nc(u)

are given there in these cases. Thus, it is PNS-free for such u and c.

Note that A is PSD or SOS if and only if αA is PSD or SOS, respectively. Thus,

we only need to consider three cases that c = 0, c = 1 and c = −1.

We discuss the case that c = 0. In this case, for u > 0, we have M0(u) =

uM0(1) and N0(u) = uN0(1). We show that −N0(1) is the smallest H-eigenvalue of

A(m, 0, 1, 0). Numerical tests show that M0(1) = N0(1) for m = 6, 8, 10, 12 and 14.

Next, we study the case that c = −1. We show that there is a u0 > 0 such that
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if u ≤ u0, N−1(u) is linear and the explicit formula of N−1(u) can be given, and

if u > u0, N−1(u) is the smallest H-eigenvalue of a tensor with u as a parameter.

Numerical tests show that for u > 0, we still have M−1(u) = N−1(u) for m = 6, 8, 10

and 12.

Furthermore, we study the case that c = 1. We show that there is a v0 < 0

such that if u ≤ v0, N1(u) is linear and the explicit formula of N1(u) can be given,

and if u > v0, N1(u) is the smallest H-eigenvalue of a tensor with u as a parameter.

Numerical tests show that for u 6= 1, we still have M1(u) = N1(u) for m = 6, 8, 10

and 12.

5.2 Functions Mc(u) and Nc(u)

In this section and the next three sections, we assume that n = 3 and m = 2k is

even. Let A be an mth order three dimensional strongly symmetric circulant tensor.

Then we may write f(x) = Axm as

f(x) = d(xm1 + xm2 + xm3 ) + u
m−1∑
p=1

(
m

p

)
(xm−p1 xp2 + xm−p1 xp3 + xm−p2 xp3)

+c
m−2∑
p=1

m−p−1∑
q=1

(
m

p

)(
m− p
q

)
xm−p−q1 xp2x

q
3. (5.1)

We now establish two functionsMc(u) andNc(u), in the following theorem. Recall

that for an mth order n dimensional tensor A = (ai1···im), the sum of the absolute

values of its ith off-diagonal entries, i.e.,

ri =
n∑

i2,··· ,im=1

|aii2···im| − |aii···i|.

If ai···i ≥ ri for i = 1, · · · , n, then A is called diagonally dominated. It is shown

in [73] that all the H-eigenvalues of a diagonally dominated tensor, if there is, are
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nonnegative. Furthermore, an even order symmetric diagonally dominated tensor is

PSD [73] and SOS [13].

Theorem 5.1. Let A be an mth order three dimensional strongly symmetric circulant

tensor. For given off-diagonal entries u and c, we define

Mc(u) ≡ inf{d ∈ < : A(m, d, u, c) is SOS},

Nc(u) ≡ inf{d ∈ < : A(m, d, u, c) is PSD}.

Then, functions Mc(u) and Nc(u) are well-defined and convex. Furthermore, we have

0 ≤ Nc(u) ≤Mc(u) ≤ |u|(2m − 2) + |c|(3m−1 − 2m + 1). (5.2)

Proof. Since A is a circulant tensor, then it has the same off-diagonal entry absolute

value sum for different rows, i.e., r1 = r2 = r3. By (5.1), this row sum is equal to

the right hand side of (5.2). Thus, if d is greater than or equal to this value, A is

diagonally dominated and thus PSD and SOS. This shows that functions Mc(u) and

Nc(u) are well-defined and the inequalities in (5.2) hold. As the set of PSD tensors

and the set of SOS tensors are convex [58], Mc(u) and Nc(u) are convex. Since a

necessary condition for an even order circulant tensor to be PSD is that its diagonal

entry to be nonnegative [19], we have Nc(u) ≥ 0 for all u and c.

By definition, we have Nc(u) ≤ Mc(u). Clearly, if Mc(u) = Nc(u), then mth

order three dimensional PNS strongly symmetric circulant tensors do not exist for

such u and c. The theorem is proved.

Theorem 5.1 means that A is SOS if and only if d ≥ Mc(u), and A is PSD if

and only if d ≥ Nc(u). If Mc(u) = Nc(u), then mth order three dimensional PNS

strongly symmetric circulant tensors do not exist for such u and c. If Mc(u) = Nc(u),

u is called a PNS-free point for c.

For the convenience, we present formally three ingredients used in theoretical

proofs of PNS-free points. If a point u enjoys these ingredients, it is PNS-free.
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Definition 5.1. Suppose that n = 3 and m is even. Suppose that there is a number

M such that f ∗(x) ≡ A(m,M, u, c)xm is SOS for given u and c, and a nonzero vector

x̄ ∈ <3 such that f ∗(x̄) = 0. Then we call M the critical value of A at u and c,

the SOS decomposition f ∗(x) the critical SOS decomposition of A at u and c,

and x̄ the critical minimizer of A at u and c.

Theorem 5.2. Let u ∈ <. Then u is PNS-free point for c if A has a critical value

M , a critical SOS decomposition f ∗(x) and a critical minimizer x̄ at u and c.

Proof. Suppose that A has a critical value M , a critical SOS decomposition f ∗(x)

and a critical minimizer x̄ at u. Then we have M ≥ Mc(u) by the definition of

Mc(u). If d < M , then

f(x̄) = (d−M)(x̄m1 + x̄m2 + x̄m3 ) + f ∗(x̄) < 0.

This implies that Nc(u) ≥M by the definition of Nc(u). But Nc(u) ≤Mc(u). Thus,

Mc(u) = Nc(u) = M , i.e., u is PNS-free point for c.

Corollary 5.1. If u, c ≤ 0, then

Mc(u) = Nc(u) = −u(2m − 2)− c(3m−1 − 2m + 1). (5.3)

Thus, it is PNS-free for such u and c.

Proof. Suppose that u, c ≤ 0. Let M be the value of the right hand side of (5.2), and

x̄ = (1, 1, 1)>. If d = M , then f(x) = f ∗(x) has an SOS decomposition as A is an

even order diagonally dominated symmetric tensor [13]. We also see that f ∗(x̄) = 0.

The result follows.

Corollary 5.2. If u = c > 0, then

Mc(u) = Nc(u) = u = c.

Thus, it is PNS-free for such u and c.
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Proof. Suppose that u = c > 0. Let M = u = c, and x̄ = (2,−1,−1)>. If d = M ,

then f(x) = f ∗(x) = (x1 + x2 + x2)m has an SOS decomposition. We also see that

f ∗(x̄) = 0. The result follows.

Corollary 5.3. If u > 0, then

M0(u) = uM0(1)

and

N0(u) = uN0(1).

Hence, for c = 0, it is PNS-free if and only if M0(1) = N0(1).

Proof. Suppose that u > 0 and d ≥ uM0(1). By (5.1), we have

f(x) = (d− uM0(1))(xm1 + xm2 + xm3 )

+u

(
M0(1)(xm1 + xm2 + xm3 ) +

m−1∑
p=1

(
m

p

)
(xm−p1 xp2 + xm−p1 xp3 + xm−p2 xp3)

)
.

We see that f(x) is SOS. Hence, M0(u) = uM0(1). Similarly, we may prove that

N0(u) = uN0(1). By these and Corollary 5.1, we have the last conclusion.

As discussed in the introduction, for the PNS-free problem, we only need to

consider three cases: c = 0, 1 and −1.

5.3 c = 0

If u ≤ 0, by Corollary 5.1, we have M0(u) = N0(u) = −u(2m − 2). If u > 0, by

Corollary 5.3, we have M0(u) = uM0(1) and N0(u) = uN0(1). We only need to

consider the case that u = 1.

Proposition 5.1. We have that N0(1) = −λmin(m, 0, 1, 0).
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Proof. By [73], A(m, d, 1, 0) is PSD if and only if λmin(m, d, 1, 0) ≥ 0. By the struc-

ture of circulant tensors, λmin(m, d, 1, 0) = d + λmin(m, 0, 1, 0). Thus, A(m, d, 1, 0)

is PSD if and only if d ≥ −λmin(m, 0, 1, 0). By the definition of Nc(u), we have

N0(1) = −λmin(m, 0, 1, 0).

For m = 6, 8, 10, 12 and 14, we compute M0(1) and N0(1) by using softwares

Matlab (YALMIP, GloptiPloy and SeDuMi) and Maple [25, 61, 60, 88], respectively.

We find for such m, M0(1) = N0(1). The results are displayed in Table 5.1.

m M0(1) N0(1)
6 1.737348471173345 1.737348471777547
8 1.882980354978972 1.882980356780414
10 1.947977161918168 1.947977172341075
12 1.976878006619490 1.976878047128592
14 1.989722829997529 1.989723542124766

Table 5.1: The values of M0(1) and N0(1).

5.4 c = −1

If u ≤ 0, then Corollary 5.1 indicates that M−1(u) = N−1(u) = −u(2m−2)+(3m−1−

2m + 1). We now discuss the case that u > 0.

In this section and the next section, we denote that B = A(m, 3m−1−2m+1, 0,−1)

and T = A(m, 2m − 2,−1, 0). Then, B and T are obviously diagonally dominated.

Hence, they are PSD and SOS [13]. And all of their H-eigenvalues are nonnegative.

Theorem 5.3. Let

ϕ(u) ≡ λmin(B − uT ),

where λmin(·) denotes the smallest H-eigenvalue. Then, ϕ(u) ≤ 0. If ϕ(u) = 0, then

we have

N−1(u) = 3m−1 − 2m + 1− u(2m − 2). (5.4)
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If ϕ(u) < 0, then we have

N−1(u) = 3m−1−2m+1−u(2m−2)−λmin(m, 3m−1−2m+1−u(2m−2), u,−1). (5.5)

Furthermore, the set C = {u : ϕ(u) = 0} is a nonempty closed convex ray (−∞, u0]

for some u0 ≥ 0.

Proof. Let x̄ = (1, 1, 1)>. Then Bx̄m = 0 and T x̄m = 0. Thus, (B − uT )x̄m = 0 for

any u. By [73], we see that

ϕ(u) ≡ λmin(B − uT ) ≤ 0.

If ϕ(u) = 0, we let d = 3m−1−2m+1−u(2m−2). Then A(m, d, u,−1) = B−uT .

We have λmin(m, d, u,−1) = 0. This implies (5.4).

If ϕ(u) < 0, then, because

f(x) = (d− (3m−1 − 2m + 1) + u(2m − 2))Ixm + Bxm − uT xm ≥ 0,

we have

N−1(u) = inf{d : λmin((d− (3m−1 − 2m + 1) + u(2m − 2))I + B − uT ) ≥ 0}

= (3m−1 − 2m + 1)− u(2m − 2)− λmin(B − uT )

= 3m−1 − 2m + 1− u(2m − 2)− λmin(m, 3m−1 − 2m + 1− u(2m − 2), u,−1).

We have (5.5).

By Corollary 5.1, C is nonempty and u ∈ C as long as u ≤ 0. By Theorem

5.1, N−1(u) is a convex function. It follows, together with (5.4) and (5.5), that C is

convex. Since λmin is a continuous function [73], C is closed. Since u ∈ C for any

u ≤ 0, C is a ray, with the form (−∞, u0] for some u0 ≥ 0.

Corollary 5.4. Let u0 ≡ max{û : ϕ(û) = 0}. Then u0 is well-defined and u0 ≥ 0.

Furthermore, for u ≤ u0, we have (5.4), and for u > u0, we have (5.5).
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Proposition 5.2. If M−1(u0) = N−1(u0) = 3m−1 − 2m + 1 − u0(2m − 2), then for

u ≤ u0, we have M−1(u) = N−1(u) = 3m−1 − 2m + 1− u(2m − 2).

Proof. By Theorem 5.1, M−1(u) is convex. By Corollary 1, M−1(u) = 3m−1 − 2m +

1− u(2m − 2) for u ≤ 0. Since u0 ≥ 0, the conclusion follows.

Proposition 5.3. Suppose u0 = max{û : ϕ(û) = 0}. Then, we have

0 ≤ u0 ≤ ū0(m) ≡ 3m−1 + 1

2m
− 1. (5.6)

Proof. Since B is PSD and has a H-eigenvalue 0, we have ϕ(0) = 0 and u0 ≥ 0.

On the other hand, we consider the case u > ū0. Let x0 = (1, 1,−3)>. We have

(B − ū0T )xm0 = 0 and T xm0 = 2m(3m − 1).

Then,

(B − uT )xm0 = (B − ū0T )xm0 − (u− ū0)T xm0 = −(u− ū0)2m(3m − 1) < 0.

Hence, we have ϕ(u) = λmin(B − uT ) < 0 when u > ū0. Therefore, u0 ≤ ū0.

For m = 6, 8, 10, 12 and 14, we find that B − ū0T is PSD. This shows that for

such m, ϕ(ū0) = 0, i.e.,

u0 = ū0(m) ≡ 3m−1 + 1

2m
− 1. (5.7)

It remains a further research topic to show that B− ū0T is PSD for all even m with

m ≥ 16. If this is true, then (5.7) is true for all even m with m ≥ 6.

In Tables 5.2-5.5, the values of M−1(u) and N−1(u) for m = 6, 8, 10, 12 and u =

0.1, 2, 45
16
, 5, 10, 40, 300, u = 1, 3, 483

64
, 10, 40, 140, 300, u = 1, 10, 4665

256
, 20, 40, 140, 300

and u = 1, 20, 43263
1024

, 60, 100, 140, 300 are reported, respectively. We find for such m

and u, M−1(u) = N−1(u).
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u M−1(u) N−1(u)
0.1 173.799999999899 173.8
2 55.9999999995172 56
45
16

5.62499991033116 5.625
5 9.42544641511067 9.4254465011842588
10 18.1121860822789 18.112186280892696
40 70.2326321651344 70.232638183914150
300 521.943237017699 521.94324013633004

Table 5.2: The values of M−1(u) and N−1(u) for m = 6.

u M−1(u) N−1(u)
1 1677.99999992219 1678
3 1169.99999999356 1170

483
64

15.0937478786308 15.09375
10 19.7129359300341 19.7129361640501
40 76.2023466001335 76.2023468071730
140 264.500365037152 264.500382469583
300 565.777184078832 565.777239551091

Table 5.3: The values of M−1(u) and N−1(u) for m = 8.

u M−1(u) N−1(u)
1 17637.9999999549 17638
10 8439.99999783081 8440

4665
256

36.4452603485520 36.4453125
20 39.9075358817909 39.9075375522954
40 78.8670625326286 78.8670809985488
140 273.664775923815 273.664798232238
300 585.341085323688 585.341145806726

Table 5.4: The values of M−1(u) and N−1(u) for m = 10.

5.5 c = 1

Corollary 5.2 indicates that M1(1) = N1(1) = 1. Hence, we only need to consider

the case that u 6= 1. Let B and T be the same as in the last section. We have the

following theorem.
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u M−1(u) N−1(u)
1 168957.999979042 168958
20 91171.9999996683 91172

43263
1024

84.4971787852022 84.498046875
60 119.589505579120 119.589562756497
100 198.664532858285 198.664684641639
140 277.739708996851 277.739806526784
300 594.040191670531 594.040294067366

Table 5.5: The values of M−1(u) and N−1(u) for m = 12.

Theorem 5.4. Let

ψ(u) ≡ λmin(−uT − B).

Then, ψ(u) ≤ 0. If ψ(u) = 0, then we have

N1(u) = −(3m−1 − 2m + 1)− u(2m − 2). (5.8)

If ψ(u) < 0, then we have

N1(u) = −(3m−1−2m + 1)−u(2m−2)−λmin(m,−(3m−1−2m + 1)−u(2m−2), u, 1).

(5.9)

Furthermore, if the set C = {u : ψ(u) = 0} is nonempty, then it is a closed convex

ray (−∞, v0] for some v0 < 0.

Proof. The proof of this theorem is similar to the proof of Theorem 5.3. However,

we cannot apply Corollary 5.1 here.

If C is nonempty, we may show that C is closed and convex as in the proof of

Theorem 5.3.

If there is a û ≤ 0 such that λmin(−ûT − B) = 0, for u ≤ û ≤ 0, we have

ψ(u) = λmin(−uT − B)

= λmin(−ûT − B + (−u+ û)T )

≥ λmin(−ûT − B)

= 0.
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Hence, ψ(u) = 0 for all u ≤ û ≤ 0. So if C is not empty, it is a ray with the form

(−∞, v0] for some v0. Clearly, ψ(0) ≡ λmin(−B) < 0 as B is PSD and not a zero

tensor. Hence, v0 < 0.

The other parts of the proof are similar to the proof of Theorem 5.3.

Corollary 5.5. If there is one point û such that ψ(û) = 0, let v0 ≡ max{û : ψ(û) =

0}. Then for u ≤ v0, we have (5.8), and for u ≥ v0, we have (5.9).

We also have the following proposition.

Proposition 5.4. If M1(v0) = N1(v0) = −(3m−1 − 2m + 1) − v0(2m − 2), then for

u ≤ v0, we have M1(u) = N1(u) = −(3m−1 − 2m + 1)− u(2m − 2).

Proof. Suppose that M1(v0) = N1(v0) = −(3m−1 − 2m + 1) − v0(2m − 2). By (5.3),

if u ≤ v0 and d = −(3m−1 − 2m + 1)− u(2m − 2), we have

f ∗(x) = −ūg1(x) + g2(x),

where

g1(x) = A(m, 2m − 2,−1, 0),

g2(x) = A(m,−(3m−1 − 2m + 1)− v0(2m − 2), v0, 1)

and

ū ≡ u− v0 ≤ 0.

We see that g2(x) is equal to the critical SOS decomposition of A at c = 1 and

u = v0, and g1(x) is equal to the critical SOS decomposition of A at c = 0 and

u = −1. Hence both g1(x) and g2(x) are SOS polynomials. This implies that f ∗(x)

is an SOS polynomial. Let x̄ = (1, 1, 1)>, we see that f ∗(x̄) = 0. Then the conclusion

follows from Theorem 5.2.
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Proposition 5.5. Suppose that C is not empty. Let v0 = max{û : ψ(û) = 0}.

Then, we have

v0 ≤ v̄0(m) ≡ 1− 3m−1

2m−1 + 1
. (5.10)

Proof. Let x0 = (1, 1,−1
2
)>. We have

(−B − v̄0T )xm0 = 0 and T xm0 = 2m + 1− 21−m.

Then,

(−B − uT )xm0 = (−B − v̄0T )xm0 − (u− v̄0)T xm0 = −(u− v̄0)(2m + 1− 21−m) < 0.

Hence, we have ψ(u) = λmin(−B − uT ) < 0 when u > v̄0. Therefore, v0 ≤ v̄0.

By a similar discussion on u0, we find that −v̄0T − B is PSD for m = 6, 8, 10, 12

and 14. This shows that for such m, ψ(v̄0) = 0, i.e.,

v0 = v̄0(m) ≡ 1− 3m−1

2m−1 + 1
. (5.11)

This also shows that C is not empty for such m. It remains a further research topic

to show that −v̄0T − B is PSD for all even m with m ≥ 16. If this is true, then

(5.11) is true for all even m with m ≥ 6.

In Tables 5.6-5.9, the values of M1(u) and N1(u) for m = 6, 8, 10, 12 and u =

−40,−10,−70
11
,−5,−1, 10, 40, u = −40,−20,−686

43
,−10,−1, 10, 40, u = −100,−40,

− 710
19
,−20,−1, 10, 40 and u = −140,−100,−58366

683
,−60,−1, 10, 40 are reported, re-

spectively. We find for such m and u, M1(u) = N1(u).
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u M1(u) N1(u)
-40 2299.99999993444 2300
-10 439.999999987168 440
−70

11
214.545454213196 214.54545454545454

-5 173.991050854352 173.99105151869704
-1 55.8846973214056 55.884697712412670
10 16.6347897201042 16.634789948247836
40 68.7552353830704 68.755241242186800

Table 5.6: The values of M1(u) and N1(u) for m = 6.

u M1(u) N1(u)
-40 8228.00000000754 8228
-20 3147.99999997053 3148
−686

43
2120.18604151092 2120.18604651163

-10 1371.80748977461 1371.80749709544
-1 243.740078469126 243.740080311110
10 17.9466697015668 17.9466711544215
40 74.4360734714431 74.4360817805826

Table 5.7: The values of M1(u) and N1(u) for m = 8.

u M1(u) N1(u)
-100 83539.9999994888 83540
-40 22219.9999995661 22220
−710

19
19530.5255392283 19530.5263157895

-20 10678.1156381743 10678.1156702343
-1 1004.40451207948 1004.40454284172
10 18.5317674915799 18.5317776218259
40 76.9710868541002 76.9710927899669

Table 5.8: The values of M1(u) and N1(u) for m = 10.
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u M1(u) N1(u)
-140 400107.999992756 400108
-100 236347.999998551 236348
−58366

683
176802.173593347 176802.170881802

-60 124727.840916646 124727.840144917
-1 4063.38103939314 4063.38106552746
10 18.7918976770375 18.7919005425937
40 78.0982265029468 78.0982419563963

Table 5.9: The values of M1(u) and N1(u) for m = 12.
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Chapter 6

Computing Extreme Eigenvalues

of Large Scale Hankel Tensors

Large scale tensors, including large scale Hankel tensors, have many applications in

science and engineering. In this chapter, we propose an inexact curvilinear search

optimization method to compute Z- and H-eigenvalues of mth order n dimensional

Hankel tensors, where n is large. Owing to the fast Fourier transform, the computa-

tional cost of each iteration of the new method is about O(mn log(mn)). Using the

Cayley transform, we obtain an effective curvilinear search scheme. Then, we show

that every limiting point of iterates generated by the new algorithm is an eigen-pair

of Hankel tensors. Without the assumption of a second-order sufficient condition, we

analyze the linear convergence rate of iterate sequence by the Kurdyka- Lojasiewicz

property. Finally, numerical experiments for Hankel tensors, whose dimension may

up to one million, are reported to show the efficiency of the proposed curvilinear

search method.

6.1 Introduction

With the coming era of massive data, large scale tensors have important applications

in science and engineering. How to store and analyze these tensors? This is a pressing

and challenging problem. In the literature, there are two strategies for manipulating
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large scale tensors. The first one is to exploit their structures such as sparsity [5].

For example, we consider an online store (e.g. Amazon.com) where users may review

various products [65]. Then, a third order tensor with modes: users, items, and

words could be formed naturally and it is sparse. The other one is to use distributed

and parallel computation [28, 23]. This technique could deal with large scale dense

tensors, but it depends on a supercomputer. Recently, researchers applied these two

strategies simultaneously for large scale tensors [46, 21].

In this chapter, we consider a class of large scale dense tensors with a special

Hankel structure. Hankel tensors appear in many engineering problems such as signal

processing [10, 30], automatic control [85], and geophysics [70, 89]. For instance, in

nuclear magnetic resonance spectroscopy [45], a Hankel matrix was formed to analyze

the time-domain signals, which is important for brain tumour detection. Papy et

al. [72, 71] improved this method by using a high order Hankel tensor to replace

the Hankel matrix. Ding et al. [30] proposed a fast computational framework for

products of a Hankel tensor and vectors. On the mathematical properties, Luque

and Thibon [64] explored the Hankel hyperdeterminants. Qi [74] and Xu [92] studied

the spectra of Hankel tensors and gave some upper bounds and lower bounds for the

smallest and the largest eigenvalues. In [74], Qi raised a question: Can we construct

some efficient algorithms for the largest and the smallest H- and Z-eigenvalues of a

Hankel tensor?

Numerous applications of the eigenvalues of higher order tensors have been found

in science and engineering, such as automatic control [68], medical imaging [84, 80,

16], quantum information [67], and spectral graph theory [24]. For example, in mag-

netic resonance imaging [80], the principal Z-eigenvalues of an even order tensor

associated to the fiber orientation distribution of a voxel in white matter of human

brain denote volume factions of several nerve fibers in this voxel, and the corre-

sponding Z-eigenvectors express the orientations of these nerve fibers. The smallest
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eigenvalue of tensors reflects the stability of a nonlinear multivariate autonomous

system in automatic control [68]. For a given even order symmetric tensor, it is

positive semidefinite if and only if its smallest H- or Z-eigenvalue is nonnegative [73].

The conception of eigenvalues of higher order tensors was defined independently

by Qi [73] and Lim [59] in 2005. Unfortunately, it is an NP-hard problem to compute

eigenvalues of a tensor even though the involved tensor is symmetric [41]. For two

and three dimensional symmetric tensors, Qi et al. [78] proposed a direct method to

compute all of its Z-eigenvalues. It was pointed out in [50, 51] that the polynomial

system solver, NSolve in Mathematica, could be used to compute all of the eigenvalues

of lower order and low dimensional tensors. We note that the mathematical software

Maple has a similar command solve which is also applicable for the polynomial

systems of eigenvalues of tensors.

For general symmetric tensors, Kolda and Mayo [50] proposed a shifted symmetric

higher order power method to compute its Z-eigenpairs. Recently, they [51] extended

the shifted power method to generalized eigenpairs of tensors and gave an adaptive

shift. Based on the nonlinear optimization model with a compact unit spherical

constraint, the power methods [52] project the gradient of the objective at the cur-

rent iterate onto the unit sphere at each iteration. Its computation is very simple

but may not converge [49]. Kolda and Mayo [50, 51] introduced a shift to force the

objective to be (locally) concave/convex. Then the power method produces increas-

ing/decreasing steps for computing maximal/minimal eigenvalues. The sequence of

objectives converges to eigenvalues since the feasible region is compact. The conver-

gence of the sequence of iterates to eigenvectors is established under the assumption

that the tensor has finitely many real eigenvectors. The linear convergence rate is

estimated by a fixed-point analysis.

Inspired by the power method, various optimization methods have been estab-

lished. Han [37] proposed an unconstrained optimization model, which is indeed a
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quadratic penalty function of the constrained optimization for generalized eigenval-

ues of symmetric tensors. Hao et al. [39] employed a subspace projection method

for Z-eigenvalues of symmetric tensors. Restricted by a unit spherical constraint,

this method minimizes the objective in a big circle of n dimensional unit sphere at

each iteration. Since the objective is a homogeneous polynomial, the minimization

of the subproblem has a closed-form solution. Additionally, Hao et al. [38] gave a

trust region method to calculate Z-eigenvalues of symmetric tensors. The sequence

of iterates generated by this method converges to a second order critical point and

enjoys a locally quadratic convergence rate.

Since nonlinear optimization methods may produce a local minimizer, some con-

vex optimization models have been studied. Hu et al. [42] addressed a sequential

semi-definite programming method to compute the extremal Z-eigenvalues of ten-

sors. A sophisticated Jacobian semi-definite relaxation method was explored by Cui

et al. [11]. A remarkable feature of this method is the ability to compute all of the

real eigenvalues of symmetric tensors. Recently, Chen et al. [15] proposed homotopy

continuation methods to compute all of the complex eigenvalues of tensors. When

the order or the dimension of a tensor grows larger, the CPU times of these methods

become longer and longer.

In some applications [45, 70], the scales of Hankel tensors can be quite huge. This

highly restricted the applications of the above mentioned methods in this case. How

to compute the smallest and the largest eigenvalues of a Hankel tensor? Can we

propose a method to compute the smallest and the largest eigenvalues of a relatively

large Hankel tensor, say 1, 000, 000 dimension?

Owing to the multi-linearity of tensors, we model the problem of eigenvalues of

Hankel tensors as a nonlinear optimization problem with a unit spherical constraint.

Our algorithm is an inexact steepest descent method on the unit sphere. To preserve

iterates on the unit sphere, we employ the Cayley transform to generate an orthogonal
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matrix such that the new iterate is this orthogonal matrix times the current iterate.

By the Sherman-Morrison-Woodbury formula, the product of the orthogonal matrix

and a vector has a closed-form solution. So the subproblem is straightforward. A

curvilinear search is employed to guarantee the convergence. Then, we prove that

every accumulation point of the sequence of iterates is an eigenvector of the involved

Hankel tensor, and its objective is the corresponding eigenvalue. Furthermore, using

the Kurdyka- Lojasiewicz property of the eigen-problem of tensors, we prove that

the sequence of iterates converges without an assumption of second order sufficient

condition. Under mild conditions, we show that the sequence of iterates has a linear

or a sublinear convergence rate. Numerical experiments show that this strategy is

successful.

6.2 Hankel tensors

Suppose A is an mth order n dimensional real symmetric tensor

A = (ai1,i2,...,im), for ij = 1, . . . , n, j = 1, . . . ,m,

where all of the entries are real and invariant under any index permutation. Two

products of the tensor A and a column vector x ∈ <n are defined as follows.

• Axm is a scalar

Axm =
n∑

i1,...,im=1

ai1,...,imxi1 · · ·xim .

• Axm−1 is a column vector

(
Axm−1

)
i

=
n∑

i2,...,im=1

ai,i2,...,imxi2 · · · xim , for i = 1, . . . , n.

When the tensor A is dense, the computations of products Axm and Axm−1 require

O(nm) operations, since the tensor A has nm entries and we must visit all of them
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in the process of calculation. When the tensor is symmetric, the computational

cost for these products is about O(nm/m!) [83]. Obviously, they are expensive. In

this section, we will study a special tensor, the Hankel tensor, whose elements are

completely determined by a generating vector. So there exists a fast algorithm to

compute products of a Hankel tensor and vectors. Let us give the definitions of two

structured tensors.

Definition 6.1. An mth order n dimensional tensor H is called a Hankel tensor if

its entries satisfy

hi1,i2,...,im = vi1+i2+···+im−m, for ij = 1, . . . , n, j = 1, . . . ,m.

The vector v = (v0, v1, . . . , vm(n−1))
> with length ` ≡ m(n − 1) + 1 is called the

generating vector of the Hankel tensor H.

An mth order ` dimensional tensor C is called an anti-circulant tensor if its

entries satisfy

ci1,i2,...,im = v(i1+i2+···+im−m mod `), for ij = 1, . . . , `, j = 1, . . . ,m.

It is easy to see that H is a sub-tensor of C. Since for the same generating vector

v, we have

ci1,i2,...,im = hi1,i2,...,im , for ij = 1, . . . , n, j = 1, . . . ,m.

For example, a third order two dimensional Hankel tensor with a generating vector

v = (v0, v1, v2, v3)> is

H =

[
v0 v1 v1 v2

v1 v2 v2 v3

]
.

It is a sub-tensor of an anti-circulant tensor with the same order and a larger dimen-
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sion

C =


v0 v1 v2 v3 v1 v2 v3 v0 v2 v3 v0 v1 v3 v0 v1 v2

v1 v2 v3 v0 v2 v3 v0 v1 v3 v0 v1 v2 v0 v1 v2 v3

v2 v3 v0 v1 v3 v0 v1 v2 v0 v1 v2 v3 v1 v2 v3 v0

v3 v0 v1 v2 v0 v1 v2 v3 v1 v2 v3 v0 v2 v3 v0 v1

 .
As discovered in [30, Theorem 3.1], the mth order ` dimensional anti-circulant

tensor C could be diagonalized by the `-by-` Fourier matrix F`, i.e., C = DFm
` , where

D is a diagonal tensor whose diagonal entries are diag(D) = F−1
` v. It is well-known

that the computations involving the Fourier matrix and its inverse times a vector

are indeed the fast (inverse) Fourier transform fft and ifft, respectively. The

computational cost is about O(` log `) multiplications, which is significantly smaller

than O(`2) for a dense matrix times a vector when the dimension ` is large.

Now, we are ready to show how to compute the products introduced in the

beginning of this section, when the involved tensor has a Hankel structure. For any

x ∈ <n, we define another vector y ∈ <` such that

y ≡
[

x
0`−n

]
,

where ` = m(n− 1) + 1 and 0`−n is a zero vector with length `− n. Then, we have

Hxm = Cym = D(F`y)m = ifft(v)> (fft(y)◦m) .

To obtain Hxm−1, we first compute

Cym−1 = F`
(
D(F`y)m−1

)
= fft

(
ifft(v) ◦

(
fft(y)◦(m−1)

))
.

Then, the entries of vector Hxm−1 is the leading n entries of Cym−1. Here, ◦ denotes

the Hadamard product such that (A ◦ B)i,j = Ai,jBi,j. Three matrices A, B and

A◦B have the same size. Furthermore, we define A◦k = A◦ · · · ◦A as the Hadamard

product of k copies of A.
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Since the computations of Hxm and Hxm−1 require 2 and 3 fft/iffts, the com-

putational cost is about O(mn log(mn)) and obviously cheap. Another advantage of

this approach is that we do not need to store and deal with the tremendous Hankel

tensor explicitly. It is sufficient to keep and work with the compact generating vector

of that Hankel tensor.

6.3 A curvilinear search algorithm

We consider the generalized eigenvalue [12, 32] of an mth order n dimensional Hankel

tensor H

Hxm−1 = λBxm−1,

where m is even, B is an mth order n dimensional symmetric tensor and it is positive

definite. If there is a scalar λ and a real vector x satisfying this system, we call λ

a generalized eigenvalue and x its associated generalized eigenvector. Particularly,

we find the following definitions from the literature, where the computation on the

tensor B is straightforward.

• Qi [73] called a real scalar λ a Z-eigenvalue of a tensor H and a real vector x

its associated Z-eigenvector if they satisfy

Hxm−1 = λx and x>x = 1.

This definition means that the tensor B is an identity tensor E such that

Exm−1 = ‖x‖m−2x.

• If B = I, where

(I)i1,...,im =

 1 if i1 = · · · = im,

0 otherwise ,

the real scalar λ is called an H-eigenvalue and the real vector x is its associated

H-eigenvector [73]. Obviously, we have (Ixm−1)i = xm−1
i for i = 1, . . . , n.
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To compute a generalized eigenvalue and its associated eigenvector, we consider

the following optimization model with a spherical constraint

min f(x) ≡ Hxm

Bxm
s.t. ‖x‖ = 1, (6.1)

where ‖ · ‖ denotes the Euclidean norm or its induced matrix norm. The denom-

inator of the objective is positive since the tensor B is positive definite. By some

calculations, we get its gradient and Hessian, which are formally presented in the

following lemma.

Lemma 6.1. Suppose that the objective is defined as in (6.1). Then, its gradient is

g(x) =
m

Bxm

(
Hxm−1 − Hxm

Bxm
Bxm−1

)
. (6.2)

And its Hessian is

H(x) =
m(m− 1)Hxm−2

Bxm
− m(m− 1)HxmBxm−2 +m2(Hxm−1 } Bxm−1)

(Bxm)2

+
m2Hxm(Bxm−1 } Bxm−1)

(Bxm)3
, (6.3)

where x } y ≡ xy> + yx>.

Let Sn−1 ≡ {x ∈ <n | x>x = 1} be the spherical feasible region. Suppose the

current iterate is x ∈ Sn−1 and the gradient at x is g(x). Because

x>g(x) =
m

Bxm

(
x>Hxm−1 − Hxm

Bxm
x>Bxm−1

)
= 0, (6.4)

the gradient g(x) of x ∈ Sn−1 is located in the tangent plane of Sn−1 at x.

Lemma 6.2. Suppose ‖g(x)‖ = ε, where x ∈ Sn−1 and ε is a small number. Denote

λ = Hxm

Bxm . Then, we have

‖Hxm−1 − λBxm−1‖ = O(ε).
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Moreover, if the gradient g(x) at x vanishes, then λ = f(x) is a generalized eigen-

value and x is its associated generalized eigenvector.

Proof. Recalling the definition of gradient (6.2), we have

‖Hxm−1 − λBxm−1‖ =
Bxm

m
ε.

Since the tensor B is positive definite and the vector x belongs to a compact set

Sn−1, Bxm has a finite upper bound. Thus, the first assertion is valid.

If ε = 0, we immediately know that λ = f(x) is a generalized eigenvalue and x is

its associated generalized eigenvector.

Next, we construct the curvilinear search path using the Cayley transform [36].

Cayley transform is an effective method which could preserve the orthogonal con-

straints. It has various applications in the inverse eigenvalue problem [34], p-harmonic

flow [35], and matrix optimization [91].

Suppose the current iterate is xk ∈ Sn−1 and the next iterate is xk+1. To preserve

the spherical constraint x>k+1xk+1 = x>k xk = 1, we choose the next iterate xk+1 such

that

xk+1 = Qxk, (6.5)

where Q ∈ <n×n is an orthogonal matrix, whose eigenvalues do not contain −1.

Using the Cayley transform, the matrix

Q = (I +W )−1(I −W ) (6.6)

is orthogonal if and only if the matrix W ∈ <n×n is skew-symmetric.1 Now, our task

is to select a suitable skew-symmetric matrix W such that g(xk)
>(xk+1 − xk) < 0.

For simplicity, we take the matrix W as

W = ab> − ba>, (6.7)

1 See “http://en.wikipedia.org/wiki/Cayley transform”.

98



where a,b ∈ <n are two undetermined vectors. From (6.5) and (6.6), we have

xk+1 − xk = −W (xk + xk+1).

Then, by (6.7), it yields that

g(xk)
>(xk+1 − xk) = −[(g(xk)

>a)b> − (g(xk)
>b)a>](xk + xk+1).

For convenience, we choose

a = xk and b = −αg(xk). (6.8)

Here, α is a positive parameter, which serves as a step size, so that we have some

freedom to choose the next iterate. According to this selection and (6.4), we obtain

g(xk)
>(xk+1 − xk) = −α‖g(xk)‖2x>k (xk + xk+1)

= −α‖g(xk)‖2(1 + x>kQxk).

Since −1 is not an eigenvalue of the orthogonal matrix Q, we have 1+x>kQxk > 0 for

x>k xk = 1. Therefore, the conclusion g(xk)
>(xk+1 − xk) < 0 holds for any positive

step size α.

We summarize the iterative process in the following Theorem.

Theorem 6.1. Suppose that the new iterate xk+1 is generated by (6.5), (6.6), (6.7),

and (6.8). Then, the following assertions hold.

• The iterative scheme is

xk+1(α) =
1− α2‖g(xk)‖2

1 + α2‖g(xk)‖2
xk −

2α

1 + α2‖g(xk)‖2
g(xk). (6.9)

• The progress made by xk+1 is

g(xk)
>(xk+1(α)− xk) = − 2α‖g(xk)‖2

1 + α2‖g(xk)‖2
. (6.10)
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Proof. From the equality (6.4) and the Sherman-Morrison-Woodbury formula, we

have

xk+1(α)

= (I − αxkg(xk)
> + αg(xk)x

>
k )−1(I + αxkg(xk)

> − αg(xk)x
>
k )xk

= (I + αg(xk)x
>
k − αxkg(xk)

>)−1(xk − αg(xk))

=

(
I −

[
αg(xk) −xk

]([ 1 0
0 1

]
+

[
x>k

αg(xk)
>

]
I
[
αg(xk) −xk

])−1

·

[
x>k

αg(xk)
>

])
(xk − αg(xk))

= xk − αg(xk)−
[
αg(xk) −xk

] [ 1 −1
α2‖g(xk)‖2 1

]−1 [
1

−α2‖g(xk)‖2

]

=
1− α2‖g(xk)‖2

1 + α2‖g(xk)‖2
xk −

2α

1 + α2‖g(xk)‖2
g(xk).

The proof of (6.10) is straightforward.

Whereafter, we devote to choose a suitable step size α by an inexact curvilinear

search. At the beginning, we give a useful theorem.

Theorem 6.2. Suppose that the new iterate xk+1(α) is generated by (6.9). Then,

we have

df(xk+1(α))

dα

∣∣∣∣
α=0

= −2‖g(xk)‖2.

Proof. By some calculations, we get

x′k+1(α) =
−2

1 + α2‖g(xk)‖2
g(xk) +

−4α‖g(xk)‖2

(1 + α2‖g(xk)‖2)2
(xk − αg(xk)).

Hence, x′k+1(0) = −2g(xk). Furthermore, xk+1(0) = xk. Therefore, we obtain

df(xk+1(α))

dα

∣∣∣∣
α=0

= g(xk+1(0))>x′k+1(0) = g(xk)
>(−2g(xk)) = −2‖g(xk)‖2.
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Algorithm 1 A curvilinear search algorithm (ACSA).

1: Give the generating vector v of a Hankel tensor H, the symmetric tensor B, an
initial unit iterate x1, parameters η ∈ (0, 1

2
], β ∈ (0, 1), ᾱ1 = 1 ≤ αmax, and

k ← 1.
2: while the sequence of iterates does not converge do
3: Compute Hxmk and Hxm−1

k by the fast computational framework introduces
in Section 2.

4: Calculate Bxmk , Bxm−1
k , λk = f(xk) =

Hxmk
Bxmk

and g(xk) by (6.2).

5: Choose the smallest nonnegative integer ` and determine αk = β`ᾱk such that

f(xk+1(αk)) ≤ f(xk)− ηαk‖g(xk)‖2, (6.11)

where xk+1(α) is calculated by (6.9).
6: Update the iterate xk+1 = xk+1(αk).
7: Choose an initial step size ᾱk+1 ∈ (0, αmax] for the next iteration.
8: k ← k + 1.
9: end while

The proof is completed.

According to Theorem 6.2, for any constant η ∈ (0, 2), there exists a positive

scalar α̃ such that for all α ∈ (0, α̃],

f(xk+1(α))− f(xk) ≤ −ηα‖g(xk)‖2.

Hence, the curvilinear search process is well-defined.

Now, we present a curvilinear search algorithm (ACSA) formally in Algorithm

1 for the smallest generalized eigenvalue and its associated eigenvector of a Hankel

tensor. If our aim is to compute the largest generalized eigenvalue and its associated

eigenvector of a Hankel tensor, we only need to change respectively (6.9) and (6.11)

used in Steps 5 and 6 of the ACSA algorithm to

xk+1(α) =
1− α2‖g(xk)‖2

1 + α2‖g(xk)‖2
xk +

2α

1 + α2‖g(xk)‖2
g(xk),

and

f(xk+1(αk)) ≥ f(xk) + ηαk‖g(xk)‖2.
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When the Z-eigenvalue of a Hankel tensor is considered, we have Exm = ‖x‖m = 1

and the objective f(x) is a polynomial. Then, we could compute the global minimizer

of the step size αk (the exact line search) in each iteration as [39]. However, we use

a cheaper inexact line search here. The initial step size of the next iteration follows

Dai’s strategy [26]

ᾱk+1 =
‖∆xk‖
‖∆gk‖

, (6.12)

which is the geometric mean of Barzilai-Borwein step sizes [6].

6.4 Convergence analysis

Since the optimization model (6.1) has a nice algebraic nature, we will use the

Kurdyka- Lojasiewicz property [62, 9] to analyze the convergence of the proposed

ACSA algorithm. Before we start, we give some basic convergence results.

6.4.1 Basic convergence results

If the ACSA algorithm terminates finitely, there exists a positive integer k such that

g(xk) = 0. According to Lemma 6.2, f(xk) is a generalized eigenvalue and xk is its

associated generalized eigenvector.

Next, we assume that ACSA generates an infinite sequence of iterates.

Lemma 6.3. Suppose that the even order symmetric tensor B is positive definite.

Then, all the functions, gradients, and Hessians of the objective (6.1) at feasible

points are bounded. That is to say, there is a positive constant M such that for all

x ∈ Sn−1

|f(x)| ≤M, ‖g(x)‖ ≤M, and ‖H(x)‖ ≤M. (6.13)

Proof. Since the spherical feasible region Sn−1 is compact, the denominator Bxm of

the objective is positive and bounds away from zero. Recalling Lemma 6.1, we get

this theorem immediately.
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Theorem 6.3. Suppose that the infinite sequence {λk} is generated by ACSA. Then,

the sequence {λk} is monotonously decreasing. And there exists a λ∗ such that

lim
k→∞

λk = λ∗.

Proof. Since λk = f(xk) which is bounded and monotonously decreasing, the infinite

sequence {λk} must converge to a unique λ∗.

This theorem means that the sequence of generalized eigenvalues converges. To

show the convergence of iterates, we first prove that the step sizes bound away from

zero.

Lemma 6.4. Suppose that the step size αk is generated by ACSA. Then, for all

iterations k, we get

αk ≥
(2− η)β

5M
≡ αmin > 0. (6.14)

Proof. Let α ≡ 2−η
5M

. According to the curvilinear search process of ACSA, it is

sufficient to prove that the inequality (6.11) holds if αk ∈ (0, α].

From the iterative formula (6.9) and the equality (6.4), we get

‖xk+1(α)− xk‖2 =

∥∥∥∥ −2α2‖g(xk)‖2

1 + α2‖g(xk)‖2
xk −

2α

1 + α2‖g(xk)‖2
g(xk)

∥∥∥∥2

=
4α4‖g(xk)‖4‖xk‖2 + 4α2‖g(xk)‖2

(1 + α2‖g(xk)‖2)2

=
4α2‖g(xk)‖2

1 + α2‖g(xk)‖2
.

Hence,

‖xk+1(α)− xk‖ =
2α‖g(xk)‖√

1 + α2‖g(xk)‖2
. (6.15)
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From the mean value theorem, (6.9), (6.4), and (6.15), we have

f(xk+1(α))− f(xk) ≤ g(xk)
>(xk+1(α)− xk) +

1

2
M‖xk+1(α)− xk‖2

=
1

1 + α2‖g(xk)‖2

(
−2α2‖g(xk)‖2g(xk)

>xk − 2α‖g(xk)‖2 +
M

2
4α2‖g(xk)‖2

)

≤ α‖g(xk)‖2

1 + α2‖g(xk)‖2
(4αM − 2) .

It is easy to show that for all α ∈ (0, α]

4αM − 2 ≤ −η(1 + α2M2).

Therefore, we have

f(xk+1(α))− f(xk) ≤
−η(1 + α2M2)

1 + α2‖g(xk)‖2
α‖g(xk)‖2 ≤ −ηα‖g(xk)‖2.

The proof is completed.

Theorem 6.4. Suppose that the infinite sequence {xk} is generated by ACSA. Then,

the sequence {xk} has an accumulation point at least. And we have

lim
k→∞
‖g(xk)‖ = 0. (6.16)

That is to say, every accumulation point of {xk} is a generalized eigenvector whose

associated generalized eigenvalue is λ∗.

Proof. Since the sequence of objectives {f(xk)} is monotonously decreasing and

bounded, by (6.11) and (6.14), we have

2M ≥ f(x1)− λ∗ =
∞∑
k=1

f(xk)− f(xk+1) ≥
∞∑
k=1

ηαk‖g(xk)‖2 ≥ ηαmin

∞∑
k=1

‖g(xk)‖2.

It yields that

∑
k

‖g(xk)‖2 ≤ 2M

ηαmin

< +∞. (6.17)

104



Thus, the limit (6.16) holds.

Let x∞ be an accumulation point of {xk}. Then x∞ belongs to the compact set

Sn−1 and ‖g(x∞)‖ = 0. According to Lemma 6.2, x∞ is a generalized eigenvector

whose associated eigenvalue is f(x∞) = λ∗.

6.4.2 Further results based on the Kurdyka- Lojasiewicz prop-
erty

In this subsection, we will prove that the iterates {xk} generated by ACSA converge

without an assumption of the second-order sufficient condition. The key tool of our

analysis is the Kurdyka- Lojasiewicz property. This property was first discovered by

S.  Lojasiewicz [62] in 1963 for real-analytic functions. Bolte et al. [9] extended this

property to nonsmooth subanalytic functions. Whereafter, the Kurdyka- Lojasiewicz

property was widely applied to analyze regularized algorithms for nonconvex op-

timization [2, 3]. Significantly, it seems to be new to use the Kurdyka- Lojasiewicz

property to analyze an inexact line search algorithm, e.g., ACSA proposed in Section

3.

We now write down the Kurdyka- Lojasiewicz property [9, Theorem 3.1] for com-

pleteness.

Theorem 6.5 (Kurdyka- Lojasiewicz (KL) property). Suppose that x∗ is a critical

point of f(x). Then there is a neighborhood U of x∗, an exponent θ ∈ [0, 1), and a

constant C1 such that for all x ∈ U , the following inequality holds

|f(x)− f(x∗)|θ

‖g(x)‖
≤ C1. (6.18)

Here, we define 00 ≡ 1.

Lemma 6.5. Suppose that x∗ is one of the accumulation points of {xk}. For the

convenience of using the Kurdyka- Lojasiewicz property, we assume that the initial
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iterate x1 satisfies x1 ∈ B(x∗, ρ) ≡ {x ∈ <n | ‖x− x∗‖ < ρ} ⊆ U where

ρ >
2C1

η(1− θ)
|f(x1)− f(x∗)|1−θ + ‖x1 − x∗‖.

Then, we have the following two assertions:

xk ∈ B(x∗, ρ), ∀ k = 1, 2, . . . , (6.19)

and ∑
k

‖xk+1 − xk‖ ≤
2C1

η(1− θ)
|f(x1)− f(x∗)|1−θ. (6.20)

Proof. We prove (6.19) by the induction. First, it is easy to see that x1 ∈ B(x∗, ρ).

Next, we assume that there is an integer K such that

xk ∈ B(x∗, ρ), ∀ 1 ≤ k ≤ K.

Hence, the KL property (6.18) holds in these iterates. Finally, we prove that xK+1 ∈

B(x∗, ρ).

For the convenience of presentation, we define a scalar function

ϕ(s) ≡ C1

1− θ
|s− f(x∗)|1−θ.

Obviously, ϕ(s) is a concave function and its derivative is ϕ′(s) = C1

|s−f(x∗)|θ if s >
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f(x∗). Then, for any 1 ≤ k ≤ K, we have

ϕ(f(xk))− ϕ(f(xk+1)) ≥ ϕ′(f(xk))(f(xk)− f(xk+1))

=
C1

|f(xk)− f(x∗)|θ
(f(xk)− f(xk+1))

[by KL property] ≥ 1

‖g(xk)‖
(f(xk)− f(xk+1))

[since (6.11)] ≥ 1

‖g(xk)‖
ηαk‖g(xk)‖2

≥ ηαk‖g(xk)‖√
1 + α2

k‖g(xk)‖2

[because of (6.15)] ≥ η

2
‖xk+1 − xk‖.

It yields that

K∑
k=1

‖xk+1 − xk‖ ≤
2

η

K∑
k=1

ϕ(f(xk))− ϕ(f(xk+1))

=
2

η
(ϕ(f(x1))− ϕ(f(xK+1)))

≤ 2

η
ϕ(f(x1)). (6.21)

So, we get

‖xK+1 − x∗‖ ≤
K∑
k=1

‖xk+1 − xk‖+ ‖x1 − x∗‖

≤ 2

η
ϕ(f(x1)) + ‖x1 − x∗‖

< ρ.

Thus, xK+1 ∈ B(x∗, ρ) and (6.19) holds.

Moreover, let K →∞ in (6.21). We obtain (6.20).
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Theorem 6.6. Suppose that the infinite sequence of iterates {xk} is generated by

ACSA. Then, the total sequence {xk} has a finite length, i.e.,

∑
k

‖xk+1 − xk‖ < +∞,

and hence the total sequence {xk} converges to a unique critical point.

Proof. Since the domain of f(x) is compact, the infinite sequence {xk} generated

by ACSA must have an accumulation point x∗. According to Theorem 6.4, x∗ is a

critical point. Hence, there exists an index k0, which could be viewed as an initial

iteration when we use Lemma 6.5, such that xk0 ∈ B(x∗, ρ). From Lemma 6.5, we

have
∑∞

k=k0
‖xk+1 − xk‖ < +∞. Therefore, the total sequence {xk} has a finite

length and converges to a unique critical point.

Finally, we give an estimation for the convergence rate of ACSA, which is a

specialization of Theorem 2 in Attouch and Bolte [2]. The proof here is clearer since

we have a new bound in Lemma 6.6.

Lemma 6.6. There exists a positive constant C2 such that

‖xk+1 − xk‖ ≥ C2‖g(xk)‖. (6.22)

Proof. Since αmax ≥ αk ≥ αmin > 0 and (6.15), we have

‖xk+1 − xk‖ =
2αk‖g(xk)‖√

1 + α2
k‖g(xk)‖2

≥ 2αmin

1 + αmaxM
‖g(xk)‖.

Let C2 ≡ 2αmin

1+αmaxM
. We get this lemma.

Theorem 6.7. Suppose that x∗ is the critical point of the infinite sequence of iterates

{xk} generated by ACSA. Then, we have the following estimations.
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• If θ ∈ (0, 1
2
], there exists a γ > 0 and % ∈ (0, 1) such that

‖xk − x∗‖ ≤ γ%k.

• If θ ∈ (1
2
, 1), there exists a γ > 0 such that

‖xk − x∗‖ ≤ γk−
1−θ
2θ−1 .

Proof. Without loss of generality, we assume that x1 ∈ B(x∗, ρ). For convenience of

following analysis, we define

∆k ≡
∞∑
i=k

‖xi − xi+1‖ ≥ ‖xk − x∗‖.

Then, we have

∆k =
∞∑
i=k

‖xi − xi+1‖

[since (6.20)] ≤ 2C1

η(1− θ)
|f(xk)− f(x∗)|1−θ

=
2C1

η(1− θ)
(
|f(xk)− f(x∗)|θ

) 1−θ
θ

[KL property] ≤ 2C1

η(1− θ)
(C1‖g(xk)‖)

1−θ
θ

[for (6.22)] ≤ 2C1

η(1− θ)
(
C1C

−1
2 ‖xk − xk+1‖

) 1−θ
θ

=
2C

1
θ
1 C
− 1−θ

θ
2

η(1− θ)
(∆k −∆k+1)

1−θ
θ

≡ C3 (∆k −∆k+1)
1−θ
θ , (6.23)

where C3 is a positive constant.
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If θ ∈ (0, 1
2
), we have 1−θ

θ
≥ 1. When the iteration k is large enough, the inequality

(6.23) implies that

∆k ≤ C3(∆k −∆k+1).

That is

∆k+1 ≤
C3 − 1

C3

∆k.

Hence, recalling ‖xk − x∗‖ ≤ ∆k, we obtain the estimation if we take % ≡ C3−1
C3

.

Otherwise, we consider the case θ ∈ (1
2
, 1). Let h(s) = s−

θ
1−θ . Obviously, h(s) is

monotonously decreasing. Then, the inequality (6.23) could be rewritten as

C
− θ

1−θ
3 ≤ h(∆k)(∆k −∆k+1)

=

∫ ∆k

∆k+1

h(∆k) ds

≤
∫ ∆k

∆k+1

h(s) ds

= − 1− θ
2θ − 1

(∆
− 2θ−1

1−θ
k −∆

− 2θ−1
1−θ

k+1 ).

Denote ν ≡ −2θ−1
1−θ < 0 since θ ∈ (1

2
, 1). Then, we get

∆ν
k+1 −∆ν

k ≥ −νC
− θ

1−θ
3 ≡ C4 > 0.

It yields that for all k > K,

∆k ≤ [∆ν
K + C4(k −K)]

1
ν ≤ γk

1
ν ,

where the last inequality holds when the iteration k is sufficiently large.

We remark that if the Hessian H(x∗) at the critical point x∗ is positive definite,

the key parameter θ in the Kurdyka- Lojasiewicz property is θ = 1
2
. Under Theorem

6.7, the sequence of iterates generated by ACSA has a linear convergence rate. In
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this viewpoint, the Kurdyka- Lojasiewicz property is weaker than the second order

sufficient condition of x∗ being a minimizer.

6.5 Numerical experiments

To show the efficiency of the proposed ACSA algorithm, we perform some numerical

experiments. The parameters used in ACSA are

η = .001, β = .5, αmax = 10000.

We terminate the algorithm if the objectives satisfy

|λk+1 − λk|
max(1, |λk|)

< 10−12
√
n

or the number of iterations exceeds 1000. The codes are written in MATLAB R2012a

and run in a desktop computer with Intel Core E8500 CPU at 3.17GHz and 4GB

memory running Windows 7.

We will compare the following four algorithms in this section.

• An adaptive shifted power method [50, 51] (Power M.) is implemented as

eig sshopm and eig geap in Tensor Toolbox 2.6 for Z- and H-eigenvalues of

even order symmetric tensors.

• An unconstrained optimization approach [37] (Han’s UOA) is solved by fminunc

in MATLAB with settings: GradObj:on, LargeScale:off, TolX:1.e-10,

TolFun:1.e-8, MaxIter:10000, Display:off.

• For general symmetric tensors without considering a Hankel structure, we im-

plement ACSA as ACSA-general.

• The ACSA algorithm (ACSA-Hankel) is proposed in Section 3 for Hankel ten-

sors.
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6.5.1 Small Hankel tensors

First, we examine some small tensors, whose Z- and H-eigenvalues could be computed

exactly.

Example 6.1 ([69]). A Hankel tensor A whose entries are defined as

ai1i2···im = sin(i1 + i2 + · · ·+ im), ij = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Its generating vector is v = (sin(m), sin(m+ 1), . . . , sin(mn))>.

If m = 4 and n = 5, there are five Z-eigenvalues which are listed as follows

[11, 15]

λ1 = 7.2595, λ2 = 4.6408, λ3 = 0.0000, λ4 = −3.9204, λ5 = −8.8463.

Table 6.1: Computed Z-eigenvalues of the Hankel tensor in Example 6.1.

Algorithms Power M. Han’s UOA ACSA-general ACSA-Hankel
-8.846335 54% 58% 72% 72%
-3.920428 46% 42% 28% 28%

CPU t. (sec) 23.09 9.34 8.39 0.67

We test four kinds of algorithms: power method, Han’s UOA, ACSA-general and

ACSA-Hankel. For the purpose of obtaining the smallest Z-eigenvalue of the Hankel

tensor, we select 100 random initial points on the unit sphere. The entries of each

initial point is first chosen to have a Gaussian distribution, then we normalize it

to a unit vector. The resulting Z-eigenvalues and CPU times are reported in Table

6.1. All of the four methods find the smallest Z-eigenvalue −8.846335. But the

occurrences for each method finding the smallest Z-eigenvalue are different. We say

that the ACSA algorithm proposed in Section 3 could find the extremal eigenvalues

with a higher probability.

112



10
−10

10
−8

10
−6

10
−4

10
−2

10
0

−10
0

−10
−2

−10
−4

−10
−6

−10
−8

−10
−10

−10
−12

ε

S
m

al
le

st
 e

ig
en

va
lu

es

 

 
Z−eigenvalues
H−eigenvalues

Figure 6.1: The smallest Z- and H-eigenvalues of the parameterized fourth order four
dimensional Hankel tensors.

Form the viewpoint of totally computational times, ACSA-general, and ACSA-

Hankel are faster than the power method and Han’s UOA. When the Hankel structure

of a fourth order five dimensional symmetric tensor A is exploited, it is unexpected

that the new method is about 30 times faster than the power method.

Example 6.2. We study a parameterized fourth order four dimensional Hankel ten-

sor Hε whose generating vector has the following form

vε = (8− ε, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 8− ε)>.

If ε = 0, H0 is positive semidefinite but not positive definite [18]. When the parameter

ε is positive and trends to zero, the smallest Z- and H-eigenvalues are negative and

trends to zero. In this example, we will illustrate this phenomenon by a numerical

approach.
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Table 6.2: CPU times (second) for computing Z- and H-eigenvalues of the parame-
terized Hankel tensors shown in Example 6.2.

Algorithms Power M. Han’s UOA ACSA-general ACSA-Hankel
Z-eigenvalues 41.980 46.629 17.878 1.498
H-eigenvalues 29.562 45.833 16.973 1.544

Total CPU times 71.542 92.462 34.851 3.042

Again, we compare the power method, Han’s UOA, ACSA-general, and ACSA-

Hankel for computing the smallest Z- and H-eigenvalues of the parameterized Hankel

tensors in Example 6.2. For the purpose of accuracy, we slightly modify the setting

TolX:1.e-12, TolFun:1.e-12 for Han’s UOA. In each case, thirty random initial

points on a unit sphere are selected to obtain the smallest Z- or H-eigenvalues. When

the parameter ε decreases from 1 to 10−10, the smallest Z- and H-eigenvalues returned

by these four algorithm are congruent. We show this results in Figure 6.1. When ε

trends to zero, the smallest Z- and H-eigenvalues are negative and going to zero too.

The detailed CPU times for these four algorithms computing the smallest Z- and

H-eigenvalues of the parameterized fourth order four dimensional Hankel tensors are

drawn in Table 6.2. Obviously, even without exploiting the Hankel structure, ACSA-

general is two times faster than the power method and Han’s UOA. Furthermore,

when the fast computational framework for the products of a Hankel tensor time

vectors is explored, ACSA-Hankel saves about 90% CPU times.

6.5.2 Large scale problems

When the Hankel structure of higher order tensors is explored, we could compute

eigenvalues and associated eigenvectors of large scale Hankel tensors.

Example 6.3. A Vandermonde tensor [74, 92] is a special Hankel tensor. Let

α =
n

n− 1
and β =

1− n
n

.
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Then, u1 = (1, α, α2, . . . , αn−1)> and u2 = (1, β, β2, . . . , βn−1)> are two Vander-

monde vectors. The following mth order n dimensional symmetric tensor

HV = u1 ⊗ u1 ⊗ · · · ⊗ u1︸ ︷︷ ︸
m times

+ u2 ⊗ u2 ⊗ · · · ⊗ u2︸ ︷︷ ︸
m times

is a Vandermonde tensor which satisfies the Hankel structure. Here ⊗ is the outer

product. Obviously, the generating vector of HV is v = (2, α + β, . . . , αm(n−1) +

βm(n−1))>.

Proposition 6.1. Suppose the mth order n dimensional Hankel tensor HV is defined

as in Example 6.3. Then, when n is even, the largest Z-eigenvalue of HV is ‖u1‖m

and its associated eigenvector is u1

‖u1‖ .

Proof. Since αβ = −1 and n is even, u1 and u2 are orthogonal. We consider the

optimization problem

max HV xm = (u>1 x)m + (u>2 x)m,

s.t. x>x = 1.

Since ‖u1‖ > ‖u2‖, when x = u1

‖u1‖ , the above optimization problem obtains its

maximal value ‖u1‖m. We write down its KKT condition, and it is easy to see that

(‖u1‖m, u1

‖u1‖) is a Z-eigenpair of HV .

Now, we employ the proposed ACSA algorithm which works with the generating

vector of a Hankel tensor to compute the largest Z-eigenvalue of the Vandermonde

tensor defined in Example 6.3. We consider different orders m = 4, 6, 8 and various

dimension n = 10, . . . , 106. For each case, we choose ten random initial points, which

has a Gaussian distribution on a unit sphere. Table 6.3 shows the computed largest

Z-eigenvalues and the associated CPU times. For all case, the resulting largest

Z-eigenvalue is agree with Proposition 6.1. When the dimension of the tensor is
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Table 6.3: The largest Z-eigenvalues of Vandermonde tensor in Example 6.3.

m n largest Z-eigenvalues Occurrences CPU times (sec.)
4 10 9.487902e02 8 0.062
4 100 1.013475e05 8 0.140
4 1,000 1.019800e07 7 0.889
4 10,000 1.020431e09 8 9.048
4 100,000 1.020494e11 10 150.245
4 1,000,000 1.020500e13 5 2066.592
6 10 2.922505e04 5 0.140
6 100 3.226409e07 5 0.234
6 1,000 3.256659e10 7 1.919
6 10,000 3.259683e13 7 17.753
6 100,000 3.259985e16 9 211.537
6 1,000,000 3.260016e19 4 3190.439
8 10 9.002029e05 5 0.359
8 100 1.027131e10 5 0.437
8 1,000 1.039992e14 7 2.917
8 10,000 1.041279e18 7 30.561
8 100,000 1.041408e22 8 1058.248

one million, the computational times for fourth order and sixth order Vandermonde

tensors are about 35 and 55 minutes respectively.

Example 6.4. An mth order n dimensional Hilbert tensor [86] is defined as

HH =
1

i1 + i2 + · · ·+ im −m+ 1
ij = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Its generating vector is v = (1, 1
2
, 1

3
, . . . , 1

m(n−1)+1
)>. When the order m is even, the

Hilbert tensors are positive definite. Its largest Z-eigenvalue and largest H-eigenvalues

are bounded by n
m
2 sin π

n
and nm−1 sin π

n
respectively.

We illustrate by numerical experiments to show whether these bounds are tight?

First, for the dimension varying from ten to one million, we calculate the theoretical

upper bounds of the largest Z-eigenvalues of corresponding fourth order and sixth

order Hilbert tensors. Then, for each Hilbert tensor, we choose ten initial points
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Figure 6.2: The largest Z-eigenvalue and its upper bound for Hilbert tensors.
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Figure 6.3: The computed largest H-eigenvalue and its upper bound for Hilbert
tensors.

and employ the ACSA algorithm equipped with a fast computational framework

for products of a Hankel tensor and vectors to compute the largest Z-eigenvalues.

These results are shown in the left sub-figure of Figure 6.2. The right sub-figure of

Figure 6.2 shows the corresponding CPU times for ACSA-Hankel. We can see that

the theoretical upper bounds for the largest Z-eigenvalues of the Hilbert tensors are

almost tight up to a constant multiple.

Similar results for the largest H-eigenvalues and their theoretical upper bounds

of Hilbert tensors are illustrated in Figure 6.3.
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Figure 6.4: Comparisons of four sorts of step size strategies.

6.5.3 Initial step sizes

In the process of the curvilinear search, how to determine a suitable step size is a

critical problem. Barzilai and Borwein [6] provided two candidates

ᾱBB−I
k+1 :=

∆x>k ∆gk
‖∆gk‖2

and ᾱBB−II
k+1 :=

‖∆xk‖2

∆x>k ∆gk
,

which satisfy the quasi-Newton condition approximately. However, when the opti-

mization problem is nonconvex, the inner product ∆x>k ∆gk maybe zero or negative,

which could destroy the curvilinear search. Dai [26] proposed to use their geometric

mean.

Next, we compare four sorts of strategies for the initial step size of curvilinear

search: (i) Dai’s step size (6.12), (ii)-(iii) absolute values of ᾱBB−I
k+1 and ᾱBB−II

k+1 , (iv) a

fixed step size ᾱOne
k+1 = 1. Using these strategies, we compute the largest Z-eigenvalue

of a fourth order 10, 000 dimensional Hilbert tensor. All of the four approaches

start from the same ten initial points and reach the same Z-eigenvector. Figure
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6.4 illustrates counting results of the curvilinear search parameter `. Obviously,

the fixed step size one performs poorly since ` is always great than or equal to 2.

By exploiting the quasi-Newton condition approximately, BB-I and BB-II perform

satisfactory, where BB-I seems better. The performance of Dai’s step size is in the

medium place of BB-I and BB-II. It only requires ` = 0.78 times curvilinear search

per iteration on average. We employ Dai’s step size since it is positive and hence

safe in theory.
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Chapter 7

Conclusions and Future Work

This chapter draws conclusions on the thesis, and points out some possible research

directions related to the work done in this thesis.

We investigate the problem whether there exist PNS Hankel tensors, including

sixth order three dimensional Hankel tensors, fourth order four dimensional Hankel

tensors and anti-circulant tensors. In Chapter 3, we examine four classes of sixth

order three dimensional Hankel tensors and give the sufficient conditions and neces-

sary conditions for these cases. We also randomly generate several thousands sixth

order three dimensional PSD Hankel tensors and identify that they are SOS or not.

There are no PNS Hankel tensors to be found by this way. For fourth order four

dimensional PNS Hankel tensors with symmetric generating vectors, we prove that

PNS Hankel tensors do not exist on a segment, a cone, a ray and a point. Numerical

tests also indicate that PNS Hankel tensors do not exist. However, a complete proof

that sixth order three dimensional and fourth order four dimensional PNS Hankel

tensors do not exist may not be easy.

In Chapter 4, we extend the definition of anti-circulant tensors to generalized

anti-circulant tensors by introducing a circulant index. For some cases, including

the matrix case, we give necessary and sufficient conditions for even order PSD

generalized anti-circulant tensors, and show that in these cases, they are SOS tensors.
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This shows that, there are no PNS Hankel tensors in these cases. We see that

Theorem 4.2 may still hold as long as r is odd, even if GCD(m, r) > 1; and that

Theorem 4.5 may still hold as long as r is even, even if GCD(m, r) > 2. Are these

true in general? How can we prove these? We may see that the proofs of Theorems

4.2 and 4.5 rely on Theorem 4.1, but the proofs of Theorems 4.3 and 4.6 do not use

a unified technique like Theorem 4.1. Can we have a unified technique to study the

case that r is odd, GCD(m, r) > 1, and the case that r is even, GCD(m, r) > 2?

In Chapter 5, we give a sufficient and necessary condition for an even order three

dimensional strongly symmetric circulant tensor to be positive semi-definite, and

circulant tensor is a special class of Toeplitz tensor. For u, c ≤ 0 and u = c > 0,

we show that this condition is also sufficient for this tensor to be sum-of-squares.

Numerical tests indicate that this is also true in the other cases. How can B − ū0T

and −v̄0T −B be shown to be PSD for all even m ≥ 6? If these are true, then (5.7)

and (5.11) are true for all even m ≥ 6. More efforts are needed to prove that this

problem is PNS-free eventually.

In Chapter 6, we propose an inexact steepest descent method processing on a

unit sphere for generalized eigenvalues and associated eigenvectors of Hankel ten-

sors. Owing to the fast computation framework for the products of a Hankel tensor

and vectors, the new algorithm is fast and efficient as shown by some preliminary

numerical experiments. Since the Hankel structure is well-exploited, the new method

could deal with some large scale Hankel tensors, whose dimension is up to one million

in a desktop computer.
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