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Abstract 

Identifying the source camera of images is becoming increasingly important nowadays 

with the popularity of image capturing devices and easy access of image processing 

software.  In this thesis, commonly used camera identification approaches have been 

reviewed.  These methods rely on extracting features derived from different stages of 

image acquisition process so as to identify the source camera.  Example features 

include lens distortion, pixel defects, CFA interpolation, image processing artifacts and 

pattern noise called Photo Response Non-uniformity (PRNU) and dark currents.   

Among these methods, the pattern noise approach has recently emerged as a powerful 

tool for digital image forensics.  It is because the pattern noise contains device 

specific features that can be used to uniquely identify each individual camera with a 

high accuracy while other methods can only identify the model of the source camera.  

Despite that, the PRNU estimation is sensitive towards scene content and image 

intensity.  The PRNU estimation is poor in areas having low or saturated intensity, or 

in areas with complicated texture.  Though applying distinct weightings to different 

image regions of image for camera detection may improve the accuracy, it is difficult 

to determine the appropriate weightings.  If the weightings are assigned too 

aggressively, the detection accuracy may even drop. 

In this thesis, the relation between the reliability of PRNU-based camera identification 

and various features are studied.  To solve the scene content problem, two schemes 

have been proposed in this thesis.  In the first scheme, we considered that the intensity 

and texture features can be used to indicate if the block is severely affected by the 
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scene content or not.  Hence, they are inputted to the neural network so that the 

network can allocate different weighting to different image blocks.  The neural 

network is trained to produce the weightings that better separate the positive and 

negative data.  The second scheme utilizes the local variance to characterize the 

severeness of the scene content artifacts.  The local variance is then incorporated to 

the framework of the general matched filter and Peak to Correlation Energy detector 

to provide an optimal framework for PRNU signal detection.  A comparative study 

with existing start-of-the-art algorithms has been performed.  Results show that the 

proposed scheme achieves the highest True Positive Rate (TPR) for different levels of 

False Positive Rate (FPR) with different image sizes. The future direction using the 

PRNU signal for face spoof detection is also discussed with some preliminary 

experiments.  
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Chapter 1 Introduction 

1.1 Introduction 

In recent years, we have witnessed the overwhelming popularity of image capturing 

devices.  According to the estimation from Sony Corporation [1], the production of 

the digital image sensor has a compound annual growth rate (CAGR) of 11% from 

year 2009 to 2016 as shown in Figure 1.1.  The easy accessibility of digital image 

capturing devices such as smart phones makes the digital images more frequently 

presented as pieces of evidence in the court.  The observers of a crime scene can 

record the details of the whole event with their smart phones or digital cameras by 

simply pressing a button.  On the other hand, crimes related to digital images such as 

the child pornography and infringement of privacy occur more often in the current age 

of digitalization.  However, digital images differ fundamentally from the traditional 

photography in the way it is created, stored and edited.  The release of numerous 

sophisticated image editing software allows users to modify digital images without 

much expertise knowledge.  This situation undermines the credibility of digital 

images as evidence in the court of law.  Therefore, digital image forensics is becoming 

increasingly important nowadays.  Advancement in the field of digital image 

forensics is required to restore people’s trust in the digital data. 

One major objective of digital forensics is camera source identification (CSI).  In the 

cases involving illegal digital photos, the possessor of the device that captures the 

images can be a suspect.  On the other hand, when presented as evidence, the 

trustworthiness of the digital images will be doubted if the images are not captured by 

the device they are claimed to be captured with.  Another interest of digital image 



2 

 

forensics is forgery detection.  It aims to discover malicious processing, examples of 

which are object removal or adding that often try to change the hidden message in the 

photo. 

 

 

Figure 1.1 Image sensor market as estimated from Sony Annual Report 2012 [1] 

 

There are several possible approaches for solving the camera source identification 

problem.  The simplest one is to examine the information contained within the header 

of image file.  One example is the Exchangeable Image File (EXIF) header that 

records the details about the digital camera model and the settings that were used to 

taken that photo.  However, recompressing or changing the format of the photos may 

cause the information to be lost.  Moreover, information in the header can be easily 
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modified which compromises the credibility of this method.  Another approach to 

tackle the source camera identification problem is to embed digital watermark in the 

images that would carry information about the digital cameras[2][3].  However, 

adding watermarking feature in cameras incurs an additional cost and most consumer 

cameras do not have this feature [4].  So this method cannot be used in general.  The 

artifacts introduced by post processing such as JPEG compression, color interpolation 

and demosaic algorithms can be used to determine the model of the source camera.  

In[5] [6], a vector of numerical features is extracted from each image, and the feature 

vectors are used to train a support vector machine (SVM) to classify image sources.  

However, the accuracy of this method does not meet the requirement of forensics 

applications in the court.  Moreover, this method is not capable of distinguishing 

images taken by different cameras from the same model since they are using the same 

post processing algorithms.  Pixel defects are also employed to identify the camera 

source.  This method also has limitation because dead pixels may not exist in images 

or be eliminated by post processing operations.  Apart from the aforementioned 

methods, one of the most popular approaches is based on the imaging sensor pattern 

noise, where each sensor pattern noise uniquely corresponds to an imaging device and 

serves as the intrinsic fingerprint.  The sensor pattern noise method provides a reliable 

identifier and it is capable of distinguishing cameras of the same brand and model. 
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1.2 Motivation 

While many different methods for source camera identification have been proposed, 

recently, a powerful approach based on the photo-response non uniformity (PRNU) 

emerges.  The PRNU can be considered as a kind of intrinsic fingerprint of a specific 

digital camera sensor.  It results from the imperfections and differences in the silicon 

wafer used to manufacture the imaging sensor [7]: pixels respond differently to the 

illumination of light.  The pixel by pixel difference forms some artifacts which will 

remain unchanged for all the images taken by that specific camera. This unique artifact 

can be used as a fingerprint of the camera.  Since the PRNU is distinct from one 

camera to another, it can identify not only different camera models but also different 

individual cameras of the same model.  Another advantage of PRNU is its robustness.  

The PRNU signal will remain detectable after processing operations like lossy 

compression, cropping, printing, downsizing etc [8][9][10][11].  Apart from source 

camera identification, the PRNU based techniques can also be used for image forgery 

detection[12][13][14][15]. 

The PRNU signal is a very weak signal.  The average signal to noise ratio is around 

51db only [16].  In most of the papers, the PRNU signals are extracted by subtracting 

the denoised image from the original image.  The noise residual obtained can be used 

for PRNU signal detection.  With the denoising filter the scene content of the image 

can be suppressed.  Nevertheless, due to the nonideal character of the denoising filter, 

the noise residual obtained from denosing usually contains a significant level of scene 

artifacts.  This in turn compromise the accuracy of PRNU signal extraction since the 

scene artifacts lower the signal to noise ratio in the noise residual.  If images contain 
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a lot of textures, have low or saturated intensities, the accuracy of source identification 

will drop.  Several methods have been proposed to suppress the influence of scene 

content.  The approaches which make use of the idea of reliable regions have been 

proposed in [17][18][19][20][21].  In[19][20], learning based methods are adopted, in 

which a training phase is required before camera identification.  In [19], the author 

proposed to construct a correlation predictor and allocate the weighting for image 

blocks according to the predicted correlation values.  However, the correlation 

predictor is constructed by simple polynomial regression.  The simplicity of the 

model may not be capable of revealing the underlying relationship between the 

reliability of image block and features.  Furthermore, this method requires gathering 

a considerable size of data for training the predictor.  In [17], Li made a hypothesis 

that the stronger a signal component is, the more likely that it is associated with strong 

scene details, and thus the less trustworthy the component should be.  Based on this 

hypothesis, Li proposed five different models to shrink the noise residuals with large 

magnitude.  However, there is no theory showing that the five models give the optimal 

weightings.   

 

There are some other methods trying to reduce the scene content artifact from different 

aspects.  Kang et al. [22] proposed to suppress the scene content artifacts by using the 

phase component of the pattern noise. The noise residuals are normalized by its 

magnitude in the Fourier domain to eliminate the scene content artifact before they are 

used to estimate the reference fingerprint. Some other studies focus on the influence 

of denoising filters [23] [24].  Since no denoising filter can perfectly separate the 

scene content from noise, a good model which estimates the reliability and allocates 
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weightings for different regions are always necessary. From pervious analysis, there 

are two possible directions to further improve the PRNU-based detection accuracy. 

The first one is to use more powerful machine learning tools to establish the relation 

between image local features and the regional reliability.  Therefore, we propose to 

use training an Artificial Neural Network to predict the reliability of image regions.  

The Artificial Neural Network has been proved to be a universal approximator which 

can represent any continuous functions with nonlinear activation function[25].  The 

other direction is to find an efficient scheme to allocate the weightings such that no 

training nor extra effort on implementing the learning algorithm are needed.  To 

achieve this goal, a method which regards each pixel as a random variable and 

estimates its distribution is proposed. The General Matched Filter which is considered 

as the optimal detector in that it gives the best False Rejection Rate for any False 

Acceptance Rate. 
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1.3 Organization of the thesis 

The remainder of the thesis is organized as follows.  In Chapter 2, the image capture 

model will be firstly introduced.  Then several common methods for camera 

identification will be presented.  After that, details of using pattern noise for source 

camera identification will be described.  In Chapter 3, the proposed method of using 

the neural network for weighting optimization will be discussed in details.  

Experimental results will be given and analyzed.  In Chapter 4, the relationship 

between the reliability of each pixel and some local features are analyzed. .The 

proposed enhancement method utilizing the local variance of the noise residual and 

the General Matched Filter are described.  Finally, the conclusion and the direction of 

future work will be described in Chapter 5.  
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Chapter 2 Literature Review 

While different features from image capturing systems have been utilized to identify 

the image origin, there are several advantages which make the PRNU-based techniques 

the most powerful approach for source camera identification.  First of all, the PRNU-

based method is capable of identifying the individual source device while some other 

methods can only identify the source camera model.  Secondly, the PRNU-based 

method is robust to various image processing operations e.g. cropping, JPEG 

compression, printing etc.  Thirdly, it is a passive technique which does not require 

any change of digital camera and the PRNU signal exists in all the consumer cameras 

regardless of whether the image sensors are CMOS or CCD.  The identification 

accuracy is higher as compared with other methods.  

In this chapter, a simplified image capture model of digital camera will be described 

in Section 2.1.  Then some of the existing source camera identification methods based 

on features from different phases of the digital camera system are described in Section 

2.2.  Specifically, the techniques based on lens distortions, pixel defects, CFA 

interpolation artifacts, composite image processing artifacts are reviewed.  Then the 

general framework of the PRNU based source camera identification methods are 

introduced in Section 2.3.  The various ways to enhance the PRNU based camera 

identification method are reviewed in Section 2.4.  Finally, Section 2.5 gives a 

summary of this chapter. 
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2.1 Image capture model 

The general structure of a digital camera is shown is Figure. 2.1.  A typical camera 

consists of lens system, filters, color filter array (CFA), image sensor and digital image 

processor (DIP) [26].  The main use of lens is to focus the incident light onto the 

image sensor such that the image captured would be in focus.  The lens system is also 

used to reduce the effects of chromatic aberration and spherical aberration.  

Chromatic aberration arises when the lights with different wavelengths cannot 

converge to the same position while spherical aberration arises when lights pass 

through the periphery of a spherical lens and converge to a point closer to the lens than 

the lights passing through the center of the spherical length.  These aberrations can be 

minimized with special combinations of convex and concave lenses.  The lens system 

may also include auto-exposure control, auto-focus control and stabilization unit.  A 

set of filters are used to enhance the quality of image generated.  They help to filter 

out the invisible part of the spectrum such as infrared and ultraviolet which ensures 

that sensor would only respond to the light that can be visualized by human visual 

system.  The filters also help to reduce aliasing which happens when spacing between 

pixels cannot support the finer spatial frequency of the scene.  As the sensors only 

record brightness of the light, color filter array needs to be used in front of the sensor 

to capture different color components in a single image sensor.  The Green – Red – 

Green – Blue (GRGB) Bayer pattern of CFA is most commonly used in digital cameras.  

The image sensor is a matrix of photondiode elements which is also called pixels.  

When the sensor is exposed to light, each element in the sensor will generate an analog 

signal which is proportional to the intensity of light.  The analog signal will then be 
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converted to digital signal.  After the sensor output is obtained, the sensor output 

signal undergoes various in-camera processing such as CFA interpolation, white 

balancing, noise reduction etc.  

In the whole image capture process, many features have been utilized to perform 

source camera identification in literature.  In the next part, methods using the lens 

aberration, pixel defects, CFA interpolation and sensor pattern noise for camera 

identification will be introduced.  

 

Figure 2.1 Digital camera output model from [17] 
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2.2 Introduction to camera identification approaches 

2.2.1 Using lens aberration 

Lens of camera can produce aberrations in images because of the design and 

manufacturing process.  The lens radial distortion is the most severe component of 

the aberrations.  It makes straight lines in the object space rendered as curved lines on 

the camera sensor.  The radial distortion arises because the lens has different focal 

length and magnifications in different areas.  The transverse magnification is a 

function of the off-axis distance instead of a constant.  When the magnification of 

scene decreases with off-axis image distance, it is called barrel distortion.  If the 

magnification of scene increases with off-axis image distance, it is named as the 

pincushion distortion.  In [27], the radial distortion is modeled by the following 

equation: 

5
2

3
1 dddu rkrkrr   (2.1) 

where ur  and dr  are the undistorted radius and distorted radius respectively, and 1k

and 2k  are the first and second order distortion parameters respectively.  The radius 

is the radial distance of a point (x,y) from the center of the distortion which is assumed 

to be the center of the image.  The distortion parameter 1k  and 2k  are estimated with 

an iterative process.  It firstly extracts the distorted line segments and measures the 

distortion error between the distorted line segments and their corresponding straight 

lines.  Then the distortion parameters 1k and 2k , are tuned to minimize the distortion 

error.  The process will be repeated until the relative change of distortion error is less 

than a predefined threshold.  In [27], the two estimated parameters are used as input 

features of a classifier.  They are also used together with other 34 features proposed 
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in [5] to classify images according to their sources.  The accuracy obtained with the 

two methods in [27] and [5] are 91.54% and 91.39% respectively. 

However, the lens aberration-based method requires that there must be straight lines 

in the image to measure the distortion.  Otherwise the two distortion parameters 

cannot be estimated.  Moreover, cameras from the same manufacturer or same model 

may have similar distortion property which would lower the accuracy of identification.   

 

2.2.2 Using pixel defects 

Since the sensors contain large number of elements, pixel defects will arise during the 

manufacturing process of the sensor.  The pixel defects can be classified into point 

defects, hot point defects, dead pixels, pixel traps and cluster defects.  Geradts et al 

[28] examine the defects of CCD pixels and use them to match target images to the 

source camera.  They tested on 12 different cameras of the brand Trust and found that 

there were at least 5 pixel defects in each camera.  However, the pixel defects are 

often compensated by the electronics and image processing operations in the camera.  

Therefore the pixel defects are not clearly visible in the final image.  The visibility of 

pixel defects also depends on the temperature of the environment in which the images 

was taken.  Furthermore, the pixel defects can be hardly seen in the cameras with 

high-end CCD.  It is possible that there is no pixel defect in the camera sensor. 

Therefore, the method cannot be directly applied for all digital cameras.  
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2.2.3 Using CFA interpolation 

As we discussed before, the camera sensor can only capture the intensity of the light.  

Therefore to obtain a color image, a mask named color filter array (CFA) is added in 

front of the sensor.  With this approach, each sensor element can only sense one band 

of the wavelength.  Therefore, the raw image collected from the sensor is a mosaic of 

different colors which are typically red, green and blue. Figure 2.2 shows a CFA pattern 

which is commonly used in cameras.  

 

Figure 2.2 CFA pattern 

Since each pixel only carries the information about one color band, the missing colors 

need to be interpolated for each pixel to generate a color image.  The interpolation is 

usually done by applying a weighting matrix (kernel) to the neighborhood around a 

missing value.  There are many different interpolation algorithms and different 

manufacturers may use different ones, i.e. they use kernels with different sizes and 

shapes.  In [29], Bayram et al. used an iterative Expectation Maximization Algorithm 

(EM) to obtain two sets of features which are the interpolation coefficients from the 

images and the peak location and magnitudes in the frequency spectrum of the 

probability maps.  Using these features, two cameras can be classified with an 

accuracy of 95.71%.  However, the accuracy droped to 83.33%, when the experiment 
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was carried on three cameras.  Large scale testing involving more cameras was 

required to test the effectiveness of the method.  Again, this method may not be 

capable of identify cameras from the same model or manufacturer, because we can 

expect a similar interpolation algorithm will be used in such situation. 

 

2.2.4 Using Composite features from Image 

Since different manufacturers usually use different techniques on CFA configuration, 

demosaicing algorithm and color processing/ transformation, the image taken by 

certain camera may exhibit certain traits and patterns regardless of the original image 

content.  In [5], Kharrazi extracted 34 features from images to classify a camera 

model.  These features can be categorized into 3 groups which are color features, 

image quality metrics and wavelet domain statistics.  Features are extracted from two 

cameras to train and test a SVM classifier.  The result was as high as 98.73% for 

uncompressed image and 93.42% for compressed image with a quality factor of 75.  

The result drops to 88% when five cameras are involved in the experiments.  However, 

this method still cannot identify cameras of the same model.  In [30], Tsai reported 

that using image features, the accuracy was low (66.7%) when the cameras being 

classified have similar sensors.  Moreover, this method requires all cameras to take 

the same content at similar resolution which is hard to achieve in practice.  
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2.3 Sensor pattern noise based approach 

2.3.1 Sensor noise and the sensor output model 

There are many sources of noises which enter into different stages of the image 

capturing process described in the previous section.  Even when the cameras are 

exposed to an evenly illuminated scene, the output intensity slightly varies from one 

pixel to another.  This difference comes from two sources.  The first one is called the 

shot noise or photonic noise [31, 32], which is a random component.  The second 

source is the pattern noise, which is a deterministic component that retains similar 

characteristics when images of different scenes are taken.  Thus the pattern noise can 

be used for camera identification. 

The pattern noise mainly consists of fixed pattern noise (FPN) and photo-response 

nonuniformity noise(PRNU).  The FPN is caused by dark current.  It is the noise 

pattern generated by the sensor when it is not exposed to light.  The PRNU mainly 

arise from the inhomogenity of silicon wafers and imperfections during the sensor 

manufacturing process which is called pixel nonuniformity (PNU).  The PRNU is 

unique for each individual sensor and thus can be used as a fingerprint for that camera 

sensor.   

In [31], FPN has been used as fingerprint for camera identification. However, using 

FPN as fingerprint has limitation that FPN can only be extracted from dark frames.  

Furthermore, the FPN is usually suppressed by automatically subtracting a dark frame 

from the image they take in middle-to-high-end cameras.  Therefore, FPN cannot be 

used as a reliable fingerprint for camera identification.  The use of PRNU as camera 

fingerprint was firstly proposed by Lukas [33].  The PRNU is the dominant part of 
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pattern noise.  It is much stronger than FPN and it can better survive from various 

image processing operations.  Therefore, PRNU is more reliable for camera 

identification tasks.  

In [34], a general image output model was given and it will be introduced here.  

Denote Y(i, j) to be the intensity of the incident light at pixel location (i, j).  The sensor 

output signal with PRNU added is, 

),()),(1( jiYjiK  (2.2) 

where ),( jiK is a constant which represents the PRNU characteristic of each pixel.  

The value of ),( jiK varies from one pixel to another.  It has a mean of 0 and variance

2
K over all the pixels.   Let ),( jiNDC and ),( jiN s be the fixed pattern noise and shot 

noise respectively.  The sensor output signal now becomes, 

),(),(),()),(1( jiNjiNjiYjiK sDC   (2.3) 

The charge at each pixel will be transferred to the output amplifier.  The amplifier 

transforms the charge into a measurable voltage for readout.  This process will incur 

additional noise with zero mean to the signal.  Let the gain of the amplifier be A and 

the amplifier noise be RN , the sensor output signal will become,  

 ANjiNjiNjiYjiK RsDC )),(),(),()),(1((   (2.4) 

The signal is subsequently quantized by the analog to digital converter.  With the 

quantization noise Q(i, j), the final output signal will become, 

 ),()),(),(),()),(1(( jiQANjiNjiNjiYjiK RsDC   (2.5) 

In [35], Chen et al. used a simplified camera output model which only captures the 

most relevant parts to the camera identification tasks.  In this model, only white 

balance and gamma correction are considered.  Thus the camera output becomes, 
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 ),()),(),(),(),()),(1(( jiQAjiNjiNjiNjiYjiK RsDC  
 (2.6) 

where   denotes the gamma correction factor.  This model is further simplified to 

be, 

 ),()),(),()),(1(( jiQAjijiYjiK    (2.7) 

where ),( ji is the combination of the camera noise except PRNU.  Dropping the 

pixel indices, the model becomes,  

 QAYK  ))1((  (2.8) 

Factor out I and use Taylor expansion approximation to keep the first two terms, the 

model is simplified to be 

 

''

))1(()(

))1(()(

)0()0( QKII

Q
Y

YKAY

Q
Y

YKAYI


















 (2.9) 

where )()0( AYI  , KK ' and Q
Y

r
AYQ 


 )()('  .  Hence, the output intensity 

contains three terms.  They are the input intensity, a term containing the multiplication 

of the input intensity and the PRNU, as well as a sum of random noises. 

 

2.3.2 Overview of camera identification procedure with pattern noise 

The PRNU based source camera identification was firstly proposed in [7].  The 

general procedure of camera identification is shown in Figure 2.3.  We have two sets 

of images which are set A, B.  Set A are the test images which may be obtained from 

camera C or some other cameras, Set B is used to estimate the reference PRNU of 

camera C.  Firstly, we need to extract the PRNU feature from all the images.  A 
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denoising filter is applied to all the images and the PRNU feature will be the difference 

between the original image and the denoised image.  In the original work [7], the 

reference PRNU was estimated with the noise residual obtained from set B using 

simple average.  Later in [12], a maximum likelyhood estimator was proposed to 

estimate the reference PRNU.  Then we can calculate the correlation between the 

noise residual of the test images and the reference PRNU.  The correlation value will 

measure the similarity between the test images and the reference PRNU.  A threshold 

can be determined by Neyman Pearson threshold decision approach to determine 

whether the image is taken by camera C or not.  The detailed procedure will be 

introduced in the following sections.  

 

Figure 2.3 Camera identification procedures 
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PRNU feature 
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PRNU feature 
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2.3.3 Pattern noise estimation from images 

The first step of camera identification is to estimate the reference PRNU feature K̂ .  

To estimate K̂ , a set of images from the camera is needed.  We firstly suppress the 

image content by applying a denoising filter to each image and obtain the noise 

residual W by subtracting the denoised image from the original image I, 

εKI

QKI)I(IIKI

IIW

(0)(0)(0)

(0)







ˆ

ˆˆ




 (2.10) 

where  is the combination of Q and two additional terms introduced by the 

denoising filter.  ε  is modeled as white Gaussian noise with variance 2 .  Then the 

noise residue can be used to estimate the PRNU.  In [7], the reference PRNU is 

calculated by, 

 


N

k k
N 1

1ˆ WK  (2.11) 

where N is the total number of images used to obtain the reference PRNU.  In [35], a 

maximum likelihood estimator was derived to estimate K̂ .  For N images k=1,…,N, 

equation (2.10) can be changed to, 

 
kk

k

I

ε
K

I

W
 ˆ  (2.12) 

The log-likelihood of observing 
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W
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Taking partial derivatives, the estimated PRNU can be calculated as, 
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To obtain a reliable PRNU K


, the number of images N should be large enough.  It is 

suggested that N should be larger than 50. Also, K̂ can be better estimated from bright 

images with smooth scene like the blue sky.  However, the image cannot be saturated 

because saturated image carries no information about PRNU.  

2.3.4 PRNU Preprocessing 

It was found that the estimated PRNU K̂ contains systematic artifacts which present in 

every image[12].  The main source of the artifacts is color interpolation, on sensor 

signal transfer [36], and sensor design [37].  These kinds of artifacts are common 

among the cameras of the same manufacturer or sharing the similar sensor design.  

Due to the systematic artifacts, the estimated PRNU K̂ from different cameras might 

be weakly correlated.  The weak correlation can increase the probability of false alarm.  

Thus, the systematic artifacts should be removed before calculating the correlation 

values.  The color interpolation artifacts and the row-wise and column-wise 

operations can produce periodic patterns along the rows and columns of an image.  

Such patterns can be removed by a two step operation: 1) subtract the column average 

from each column of the estimated PRNU and 2) subtract the row average from each 

row of the output of step one. This operation is denoted as )ˆ(ZM K .  Some other 

artifacts in the estimated PRNU such as the sensor design artifact appear to have 
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certain structure in the Fourier Domain. Therefore, a Wiener filter is applied in the 

Fourier Domain to remove such artifacts.  The overall preprocessing operation can be 

expressed as,  

))))ˆ(ZMW(DFT())ˆ(ZM(DFT(IDFT))ˆ(WF(ZM KKK   (2.16) 

where W is a 3 by 3 Wiener filter with the variance obtained as the sample variance of 

the magnitude of the Fourier coefficient of )ˆ(ZM K .  With preprocessing operation, 

the resultant PRNU are more reliable for the reason that PRNU from different devices 

have a correlation close to 0.  

2.3.4 Correlation detector 

Lukas [33] proposed to use the cross correlation measure to test whether a photo is 

taken by certain camera, and while the form of correlation slightly varies, it is still 

commonly used in PRNU based camera identification.  In [35], the author calculates 

the correlation between the noise residue 
pppp εKIW  ' obtained from equation 

(2.10) and 
CpKI


 as,  
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


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ppp

ppp

pcorrp  (2.17) 

where 
CK


is the PRNU estimated from camera C, the bar above the symbol denotes 

its mean value, · denotes dot product and ||.|| denotes the 
2L  norm.  The correlation 

value measures the similarity between the noise residue extracted from the testing 

image and the camera reference pattern.  A high correlation value indicates a high 

probability that the testing image is taken by the same camera as the reference PRNU.  

Alternatively, the peak to correlation energy (PCE) [38][39] can also be used to 
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calculate the detection statistics.  The PCE has been reported to be more suitable for 

camera fingerprint detection because the presence of hidden periodic signal will lower 

PCE and reduce the possibility of false alarm [39].  The PCE can be expressed as, 
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 (2.18) 

where ρ(s, x, y) is the dot product between x − x̅ and y(s) − y̅, y(s) is obtained by 

circularly shift y by a two dimension vector s, A is a small neighbor around the peak 

and M, N are respectively the width and height of the image. 

A threshold is needed to make the decision whether the obtained PCE value is large 

enough that the noise residue of the testing image is considered to be identical to the 

reference PRNU.  The threshold can be decided by the Neyman Pearson theorem 

which is described in the next section.  

 

2.3.5 Neyman Pearson theorem for threshold decision 

Given two sets of images, one set is taken by camera C, and the other set is taken by 

some other cameras.  Then the problem can be formulated as a binary hypothesis test, 
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 (2.19) 

The hypothesis 0H should be εKI  0pW , where 0K is the PRNU of other cameras, 

however, since the combined noise term  is much larger than the 0KI p term, 0KI p is 

omitted in the equation.  The distribution of )|( 0Hp  and )|( 1Hp  can be obtained 

with the correlation detector introduce in Section 2.3.4.  The probability density 
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function of )|( 0Hp  and )|( 1Hp  can be modeled with a Generalized Gaussian model 

using the method of moment[40].  With the probability density function )|( 0Hp  we 

can then determine the threshold 0t by setting the FAR toleration at a particular small 

value, says 10-3.  The threshold 0t  can be used to make the decision whether the 

photo is taken by the camera C.  In addition, with the FAR set, together with 

probability density function of )|( 1Hp  , FRR can be used to evaluate the system 

performance. 
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2.4 Various Issues related to PRNU-based camera 

identification 

2.4.1 Scene content effect 

As introduced in the previous section, a denoising filter is used to extract the PRNU 

feature from images.  The most commonly used filter is the wavelet denoising filter 

which is described in Appendix A of [7].  However, the scene content can severely 

contaminate the extracted PRNU and make the PRNU signal very weak.  This 

problem is illustrated in Figure 2.4.  Figure 2.4 (a) shows a clean PRNU which is 

obtained by averaging 50 images of blue sky.  Figure 2.4 (b) is an image of natural 

scene taken by the same camera.  Figure 2.4 (c) is the PRNU extracted from Figure 

2.4 (b).  It can be observed that Figure 2.4 (c) contains a lot of scene details and the 

PRNU signal can be hardly seen as compared with Figure 2.4 (a).  

 

 

 

(a)                          (b)                          (c) 

Figure 2.4 The scene content problem. (a) The clean PRNU, (b) a natural scene and 

(c) the noise residue of (b). 

In the process of camera identification, the reference PRNU can usually be obtained 
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by averaging a number of PRNU features extracted from smooth images.  However, 

for the testing image to be identified, the noise residue is extracted from one image 

only.  It is possible that the testing image contains complicated texture.  In turn, the 

noise residue extracted will have a lot of scene details such that the accuracy of 

identification becomes low.  This problem can be approached from different aspects.  

The first possible approach is on the denoising filter used to extract the PRNU and the 

other approach is on selecting more reliable regions from image for feature extraction.  

These two approaches will be introduced in the next two sections. 

 

2.4.2 Using different denoising filters 

Since the PRNU signal can be corrupted by the scene content, one approach to solve 

the scene content problem to improve the denoising filter used such that the scene 

content of images can be better suppressed.  In the original publication [7], the author 

has tested a few different denoising filters and found that the wavelet-based filters [41] 

performs the best among all the filters tested. 

There are more studies on the denoising filters.  In [23] the author has studied two 

denoising filters operating in the wavelet domain and considered two different noise 

models.  The first one was the original wavelet-based filter as suggested in [7], the 

other is a minimum mean square error (MMSE) filter operating in the undecimated 

wavelet domain [42].  The author made the assumption that the camera noise is 

dependent on the sensed signal and the MMSE filter will utilize this assumption.  In 

contrast, the filter used in [7] used a signal-independent noise model.  These two 

filters and a low-pass filter were tested with a set of 10 digital cameras.  With the 
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experimental results, they concluded that when the noise model matched the actual 

situation, the filter gains better performance if the parameters of the filter are 

accurately estimated.   

In [24], the author has used the BM3D filter based on the non-local multipoint 

approach for image forgery detection.  The BM3D takes the advantage of both the 

context and the spatial correlation.  The BM3D and the original wavelet filter were 

tested with two digital cameras. The experimental results showed that BM3D 

significantly improves the performance compared with the filter used in [7]. 

[43] simplified the filtering strategy by using a combination of adaptive wiener 

filtering and median fitering applied in the spatial domain.  Three cameras from 

different manufacturers are used to test the performance of the filter.  It is found that 

the distribution for the correlation of matching set and non-matching set were more 

widely separated as compared with the wavelet filter.  Thus the author concludes that 

the proposed filter outperformed the wavelet filter adopted in [7]. 

 

2.4.3 Ideas of image regions reliability 

Due to the fact that an ideal separation between the noise and scene content is not 

achievable, it is always necessary to evaluate the reliability of different regions.  The 

other approach to suppress the influence of scene content is to analyze the content of 

image and make more use of the reliable areas which are smooth and bright but not 

saturated.  

2.4.3.1 Correlation Predictor 

In [12], a correlation predictor has been constructed with a polynomial regression 
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model.  Test images were firstly divided into small blocks. The correlation predictor 

predicted the correlation value for each block with block intensity, texture and 

flattening as the the input.  A high predicted correlation value implies that the block 

has strong PRNU signal and less undesired artifacts.  The general matched filter was 

used to measure the similarity between the test image and reference PRNU.   

Specifically, the source camera identification problem is formulated as, 
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where matrix T is a pixel-wise multiplicative attenuation factor, a and c are unknown 

multiplicative factor that are the same for all the blocks.  For block b, the shaping 

factor T and
2

Ξ , are considered as constants and denote as Tb and 2

b  respectively. 

The optimal detector will be the normalized general matched filter which can be 

expressed as, 
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where   represents the dot products, bW  and bX  are the noise residual and 

reference PRNU of block b respectively..  Under H1 the shaping factor T and the 

variance 
2

Ξ  can be estimated as,  
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where 
b is the normalized correlation between Xb and Wb.and 

bB  is the size of 

block b. Since 
bBc2  and a  are the same for all the blocks, their value will not 

affect the identification result and can be skipped.  The only value that is unknown is 

b .  To address this problem, a correlation predictor is constructed to estimate
b . 

Three features that are considered highly influential to the correlation value were 

selected as the predictor input.  They are the image intensity, the texture and signal 

flating. 

The correlation value will be higher in the areas with high intensity due to the fact that 

the PRNU signal IK  is proportional to the signal intensity of the image.  However, 

the PRNU signal will not present in the saturated regions. The correlation value will 

be attenuated if the intensity of image is close to the maximum value.  Therefore the 

intensity feature is defined as, 
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where the constant parameters and critI are determined empirically. 

The correlation will be low in the high textured regions because the scene artifacts 

contaminate the PRNU signal and part of the PRNU will be removed by the denosing 

filter yielding a smaller T.  Therefore, the texture feature is defined as, 

   


bBi
b jiB

f
],[var1

11

5

T
F

(2.25) 

where F is the high pass filtered image generated from the high frequency band of the 

wavelet transform and var5(F(i,j)) is the variance of F in the 5 × 5 neighboor of i. 
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The image processing operations like JPEG compression tend to flatten the image due 

to its low pass filtering nature.  As a result, the predictor will overestimate the 

correlation if the signal is too flat.  For this reason, a signal flating feature is added 

which is defined as,  
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where c is a constant depending on the variance of the PRNU signal K and ],[2 jiI  

is the variance within a 5 × 5 neighboor of i, j. 

Since the correlation value strongly depends on the mutual effects of texture and 

intensity, the texture-intensity feature is also included, 
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With these features 
If ,

Tf , Sf  and
TIf , a simple multivariate polynomial regression 

is used to predict the correlation values.  The predictor is formulated as, 

][][][][][][][][][][ TI6II5TI4S3T2I10 kkfkfkfkfkfkfkfkfk   

(2.28) 

where ][k  is the model noise and ],...,,[ 1410 θ are parameters to be estimated. 

With a large training set, the parameters can be found using the least square estimator.  

Then the predicted correlation value can be used to calculate the weighting of each 

block accordingly. 

 

2.4.3.2 Li’s PRNU Enhancement Model 

In [17], Li made the assumption that the stronger a signal component in noise residue 

is, the more likely that it is associated with strong scene details, and thus the less 
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trustworthy the component should be.  Thus, he proposed five models to attenuate the 

pattern noise with large magnitude.  Thereby the scene content artifacts are 

suppressed as well.  The five models will assign less weighting to the strong 

components in the noise residue.  Figure 2.5 shows the shrinkage function for the five 

models where the x-coordinate is the magnitude of the original noise signal and the y-

coordinate is the magnitude of the attenuated attenuated noise signal.  Among these 

models, model 1 and 2 are linear transformation and model 3-5 are nonlinear 

exponential transformations.  The proposed five models were tested with six digital 

cameras.  The experimental results showed that all of the five models can improve the 

performance of camera identification.  Furthermore, model 3-5 are more preferable 

because they are more stable with the setting of the parameters in shrinkage function. 

 

Figure 2.5 Shrinkage function for five models 
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2.4.3.3 Phase Approach 

In [22], it has been found that the large magnitude values of the noise residual in the 

Fourier domain are usually caused by the texture artifact in the image.  Therefore, to 

reduce the scene content effect, the phase component of the pattern noise was to be 

used to perform camera identification tasks. Before estimating the reference PRNU, 

the noise residual Wk will be transform to Fourier domain using Discrete Fourier 

Transform, i.e,  

)DFT( kk Ww   (2.29) 

Then the signal will be normalized by its magnitude as, 
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where 
kw  is themagnitude of kw .  The reference PRNU is then computed by 

averaging the phase component 
kw in the frequency domain which is then inversely 

transformed into spatial domain, 
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where N is the number of image used to estimate the phase PRNU and real(.) denotes 

the real part of the input.  In this way, the scene content artifacts are suppressed.  The 

estimated phase PRNU can be used to replace the conventional reference PRNU for 

computing the detection statistics with PCE or cross correlation. 

 

In [44], Hu et al. proposed to only compare the larger components of the noise signal 

and the reference one instead of using all the signals.  They assume that the large 

component of PRNU is more reliable and thus should be used in correlation detection 
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while the other components should be discarded.  The values of the PRNU are sorted 

firstly, then, a certain percent of top values are recorded with their location information. 

The correlation is calculated between these points and their corresponding points in 

the noise residue of test image.  The method was tested with several cameras.  

Identification results of two cameras were shown in the paper.  In particular, the 

proposed method can better separate the two data sets and thus the accuracy of 

detection was expected to be increased.  Moreover, since only a portion of image 

blocks were used to calculate the correlation, this method has less computational 

complexity than the traditional method.   

Similar studies have been done in [45].  In this paper, images pixels are classified into 

four classes according two features,i.e. brightness and texture, using a fuzzy system.  

Then only a portion of blocks that is closest to the “high brightness, low texture” class 

are selected for correlation calculation.  The experiments with 5 cameras showed that 

the detection rate was improved with this method.   

 

In [46], Liu has developed a model to estimate the signal-to-noise ratio (SNR) for 

different regions of an image.  The signal refers to the PRNU and the noise refers to 

the combination of other noise sources.  A high SNR value implies that the strength 

of the PRNU signal is comparatively strong and the region with high SNR is more 

reliable for camera identification.  The regions with low SNR value are usually 

corrupted by noise or scene content and they are not reliable for camera identification. 

In this paper, the image blocks are sorted according to the value of SNR and only a 

portion of the blocks with the largest SNR are selected to calculate the correlation.  

The proposed algorithm was tested with three different digital cameras.  The 
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experimental results showed that the proposed method could better separate the 

distribution of the data under the two hypothesizes and decrease the false rejection rate.  

 

In [47], Li proposed a method that utilizes the Pinciple Component Analysis (PCA) 

and Linear Discriminant Analysis (LDA) to extract features from the pattern noise.  

With a training set of images from different cameras, a PCA transform matrix can be 

calculated.  The transformed coefficient will be the PCA features. Only the top few 

PCA features with largest variance are selected for camera identification because they 

are believed to contain the most of the PRNU information. The remaining PCA 

features discarded as they mainly consist of scene artifacts.  In this way, a compact 

representation of the PRNU can be obtained and the scene content artifacts can be 

removed.  Then the LDA will utilize the label information of the training data and 

transform the PCA features into a space where different classes are more separated.  

The identification accuracy was improved with this method.  However, the false 

identification rate will increase if the camera is not involved in the training stage 

because the important features of the PRNU of the new camera may be discarded.  

Besides, if a new camera is to be added into the training set, the PCA and LDA transfer 

function must be recalculated.   

 

Chan[19] et al. proposed to use the Kernel Principal Component Analysis Regression 

to predict the correlation for each individual pixel and build a confidence map.  The 

confidence map is then used as pixel-wise weights for calculating the weighted 

correlation.   
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2.4.4 Other works related to PRNU based camera identification 

There are some works that try to improve the performance of camera identification 

from other aspects.  In [48], Li et al. proposed to firstly decompose each color channel 

into 4 sub-images and then extracts the PRNU noise from each sub-image.  This 

method can improve the interpolation effect in the PRNU feature extraction.  The 

experimental results showed that the performance was improved.   

In summary, current research on PRNU-based camera identification mainly focuses on 

three aspects. The first one is to extract accurate PRNU from images by using good 

denoising filter and eliminating different kinds of artifacts.  The second one is to 

select reliable regions in images for camera identification.  The last one is to different 

detectors other than the cross correlation one.   
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2.5 Artificial neural network 

Neural networks mimic the biological central nervous system.  They are designed to 

nonlinearly map a set of inputs to a set of outputs.  Neural networks are usually 

presented as a system of interconnected simple processing elements (PEs) which are 

analogous to neurons.  They are adaptive information processing system that can 

adaptively adjust the weighting of each connection in response to the information 

environment.  Hence, neural networks are capable of performing machine learning 

and pattern recognition tasks.  The behavior of neural networks depends on its 

structure and weights.  The weights are referred as the strength of connections 

between PEs.  Neural networks bring some advantages including generalization 

capability, distributed memory, parallelism, redundancy, and learning compared with 

conventional processing technique[49]. 

 

Figure 2.6 Architecture of a three layer feed-forward neural network 

 

While many neural networks with different structures have been developed, the basic 
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three layer feed-forward neural network will be introduced here.  Figure 2.6 shows 

the architecture of a three layer feed-forward neural network.  The input and output 

relationship is given by, 

  (2.32) 

where ini niz ,...,2,1,  are input variables; inn denotes the number of inputs; hn denotes 

the number of hidden nodes; hig ngw ,...,2,1,  denotes the weights of the connection 

between i-th input and g-th hidden node; ghv  denotes the weights of the connection 

between g-th hidden node and h-th output node; 1
gb and 2

hb denotes the bias for hidden 

nodes and output nodes respectively.  )(1 gtf and )(2 htf denote the transfer function in the 

hidden nodes and output nodes respectively.  The commonly used transfer functions 

are the logarithmic sigmoid transfer function (logsig), hyperbolic tangent sigmoid 

transfer function (tansig), and linear transfer function (pureline). They are defined as, 

  (2.33) 

  (2.34) 

  (2.35) 

The transfer function determines the output of the node given the inputs.  The total 

number of parameters can be calculated by, 

  (2.36) 

When the architecture of the neural network is determined, the parameters can be 

tuned by some optimization algorithms to meet certain requirement.   
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2.6. Discussion 

As introduced in the previous sections, there are mainly two directions to improve the 

performance of camera identification.  They are the denoising filter design and scene 

content suppression approach.  In [23], a denosing filter based on a signal dependent 

noise model was proposed, however, its performance is similar to the one using the 

original wavelet filter.  In [24], BM3D filter was proposed to be used for PRNU 

extraction for forgery detection.  Besides, the predictor was used in [35] to predict the 

reliability of each image block.  Comparative studies between the BM3D filter and 

the original wavelet filter with and without the predictor were carried out.  In the case 

of no predictor, the performance of BM3D was better than the original filter.  But in 

the case when predictor was added, the performance of two filters became similar.  

The predictor actually utilized the image features in an attempt to suppress the scene 

content problem. 

For the scene content suppression approach, five models were proposed to attenuate 

the influence of scene details[17].  With the proposed scheme, the performance was 

significantly improved.  For a block size of 512 by 512, the true positive rate was 

improved by 12.21%.  In [45], the proposed method has decreased the false rejection 

rate by 16%.  The improvement was much larger than that reported in [23] and [24].  

As discussed in [24], the predictor (which falls in the category of scene content 

suppression approach) can improve the performance with a poorer denoising filter 

such that its performance is similar to that with a better denoising filter.  Therefore, it 

is likely that adopting scene content suppression method is more promising than 

improving the denosing filters.  Therefore, further research works on improving the 
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scene content suppression approach for camera identification were carried out. 
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Chapter 3 Weighting optimization with Neural 

Network 

3.1  Motivation 

The influence of scene content to PRNU based camera identification can be illustrated 

in Figure 3.1. 

 

     (a)          (d)     

 

     (c)          (d)     

Figure 3.1 Natural images and their correlation map 

Figure 3.1 (a) and (c) are two images of the natural scene and Figure 3.1 (b) and (d) 

show the local correlation energy map with its reference PRNU calculated within a 64 

by 64 window for each pixel for image (a) and (c) respectively.  It can be observed 
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that the blue sky regions have the highest correlation energy due to the fact that those 

areas are smooth and have high luminance.  In Figure 3.1 (a), the tree area is of 

complicated texture and its correlation is much lower than that in the blue sky region.  

However, for the tree region, though highly textured, it can still be seen that the 

correlation on the left is higher than that in the shaded area on the right.  This is 

because the luminance is higher in the left than that in the right.  As described in last 

chapter, the scene content-based method tries to make more use of the reliable regions 

and avoids the regions with complicated texture and low luminance.   

While different schemes have been proposed to attenuate the influence of scene details, 

it is difficult to find a method to determine how much should we bias to the reliable 

regions.  For example, in [17], the author made the assumption that the stronger a 

signal component in noise residue is, the more likely that it is associated with strong 

scene details, and thus the less trustworthy the component should be.  Therefore the 

strong signals in the noise residue should be attenuated.  However, it is difficult to 

determine how much we should attenuate the strong signal.  Thus five different 

models for assigning the weighting factors to the noise residue were proposed.  

Despite that, the five models may not include the best model for assigning weighting 

factors.  Moreover there is one parameter  needs to be tuned in each model.  In [44], 

the author proposed to use only a portion of the signal with largest reference PRNU 

magnitude for the detection.  However, deciding the exact number of pixels to be used 

is a problem.  Using too few noise signals may lead to an increase of the standard 

deviation of the correlation value.  But using too many, the improvement will be small.  

Hence the portion of signal to be used is determined empirically in [44].  In view of 

this, a neural network is proposed to find the weighting factors adaptively.  Some 
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features of images will be extracted first and they will be used as input of the neural 

network.  A set of training data will be used to train the neural network.  Thanks to 

the good learning capability of neural network, optimal weighting factors to each 

region will be assigned.  
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3.2 Proposed weighting optimization with Neural Network 

The overall framework of the proposed system for camera identification is shown in 

Figure 3.2.  It consists of two main parts: training phase and testing phase.  In the 

training phase, the neural network was trained using a set of training images. By 

optimizing the objective function, a set of optimal weighting factors is expected to be 

obtained.  In the testing phase, the testing image would use the weights from the 

neural network and then decide whether the testing image is obtained from a particular 

source camera or not.   

 

Figure 3.2 Overall framework of the proposed system 

 

In both training and testing phases, an image is divided into a number of blocks.  
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Features are then extracted from each block.  PRNU signal is lost in dark or saturated 

regions and complicated textures can contaminate the PRNU signal [35].  Hence, 

intensity feature and texture complexities feature are extracted from each block.  The 

intensity feature and texture feature are defined respectively as, 
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where ),( yxIi  is the intensity of the ith image iI  at pixel ),( yx , bN  denotes the total 

number of pixels in the jth block and )),(var( yxI i  is the variance within a 3 by 3 

neighborhood of the pixel ),( yx .   

 

Figure 3.3 shows the architecture of the proposed neural network for weighting 

optimization. The two features in equation (3.1) and (3.2) are used as inputs to a three 

layer feed forward neural network to calculate the weightings for each block of the 

image. Let k
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Figure 3.3 Neural Network for weighting optimization 

 

hinij njniv ,...,2,1;,...,2,1,  denotes the weight of the link between the i-th input node 

and the j-th hidden node; inn and hn represent the number of inputs and the number of 

hidden nodes respectively; jw  denotes the weight of the link between the j-th hidden 

node and the single output; 1
jb and 2b denote the biases for the hidden nodes and output 

node, respectively.  In this case, 2inn and 7hn .  The parameters to be tuned are ijv ,

jw , 1
jb and 2b .  So the total number of parameters is 29.  

 

To let the neural network is trained so that desired outputs can be generated.  An 

objective function should be defined appropriately for training the neural network to 

produce desired outputs.  In the conventional neural network, the objective function 

(that is going to be minimized) is the mean squared error (MSE) of the Neural Network 
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outputs.  However, in this situation, the ground truth output i.e. the optimal weighting 

is not available.  Therefore to guide the Neural Network towards generating 

appropriate weightings, the objective function is defined as: 
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
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where N is the number of images used to train the neural network and M is the number 

of blocks in an image. irrweightedco  calculates the weighted correlation for the ith 

image and corrk is the correlation of the kth image block.  By maximizing this objective 

function, we are trying to find the parameters which maximize the average weighted 

correlation of the training images based on the two input features.  The training process 

of the neural network is shown in Figure 3.4.  Training images are first divided into 

blocks and the outputs for each of the block are obtained.  The objective function is 

evaluated using each block output, the reference PRNU and the noise image at function 

input. 
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Figure 3.4 Training Process of the proposed Neural Network 

The objective function is optimized with Differential Evolution (DE) [50] which is a 

simple yet efficient population-based stochastic method for global optimization 

problems. DE is easy to implement, robust, requires fewer parameters to be tuned and 

has a fast convergence speed[51].  Thus DE has been employed in many industrial 

applications in the last few years.  Example areas of application include power system 

optimization[52], digital filter design[53, 54], mechanical engineering[55], etc. 
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3.3 Experimental results and analysis 

Images from the Dresden Image Database[56] are used for the experiments. Six 

cameras from three different models are considered.  Hence, we have three pairs of 

cameras that are of the same model.  Table 3.1 summarizes the camera model, sensor 

type, resolution and picture format of the testing cameras.  The size of the image is 

cropped to 256 x 256.  The block size for applying the weighting is set to be 32 x 32.  

So there are a total of 64 blocks and 64 weighting factors for each image.  150 images 

from each camera are used.  These images are randomly divided into 3 sets.  50 

images are used to extract the PRNU of the camera, 50 images are used to train the 

neural network and another 50 images are used to test the performance of the proposed 

algorithm.  Both the original images and the compressed images with a quality factor 

of 70 are tested.  The color images are converted to gray level image before PRNU 

extraction.  

 

The classification problem is formulated as a binary hypothesis problem.  Let H0 be 

the hypothesis that the image under test and the reference PRNU are from the same 

camera while H1 represents the hypothesis that they are from different cameras.  

Therefore, for each camera, there will be 50 images for hypothesis H0 and 250 images 

for hypothesis H1.  The performance of our proposed method is compared with the 

basic algorithm [7], the MLE method [12], the phase pattern noise method [22] and Li’s 

enhancement pattern noise method [17].  For Li’s method, model 3 and model 5 are 

selected for comparison because of their superior performance as compared with other 

models in [17]. 
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Camera model Sensor Resolution Format 

Canon Ixus70 1/2.5” 3072 x2304 JPEG 

Nikon Coolpix 

S710 

1/1.72” 4352 x 3264 JPEG 

Sony DSC-H50 1/2.3” 3456 x2592 JPEG 

Table 3.1 Camera details for the experiment 

The Receiver Operating Curve (ROC) curve shows the true positive rate (TPR) versus 

the false positive rate (FPR).  Figure 3.5 and Figure 3.6 show the averaged ROC 

performance over the 6 cameras for different methods for the original and the 

compressed images respectively.  Table 3.2 and Table 3.3 show the averaged TPR 

when the threshold is set such that the FPR equals 0.01 and 0.05 for the original image 

and compressed image respectively.  

Figure 3.5 shows that the proposed method outperforms other methods at low FPR 

regions. In Table 3.2, the proposed method is the second best for FPR at 0.05 and 0.01. 

 

Figure 3.7 shows the distribution of correlation for one camera. The left figure is the 

distribution without applying weighting and the right figure is the weighted correlation.  

The blue color represents that the image under test is not from the reference camera 

while the red color represents the contrary. Table 3.4 lists the averaged correlation 

values with and without applying the proposed weighting scheme.  It can be seen that 

with the weighting scheme, the averaged correlation value has become larger than that 

without weighting scheme.  This means that the proposed weighting scheme puts 

emphasis on reliable regions in source camera identification.  
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Figure 3.8 shows the weighting map derived from the proposed method for some 

images. The left figures are natural images and the right figures are their corresponding 

weighting map.  A white block indicates a weighting factor of 1 and a black block 

indicates a weighting factor of 0.  From these figures, we can see that the area with 

high luminance and low texture complexity will be assigned high weighting factors 

and low weightings will be given to the dark areas or highly textured regions.  

In Figure 3.6, it can be observed that for the compressed images, the basic method 

performs the best and our proposed method performs the second best among all the 

methods.  With some experiments, we have found that all the other methods have 

adopted a wiener filter after the denoising filter to remove random noise from the 

PRNU.  Experimentally, it was found that the wiener filter may lower the 

identification accuracy for compressed images.  We removed the wiener filters for all 

the methods and redo the experiments.  Figure 3.9 shows the results without wiener 

filtering.  It can be seen that the MLE and the proposed method will have comparable 

performance with the basic method.  The wiener filtering can enhance the 

performance of the basic method, but not all the other methods. 

In order to further test the performance of the proposed scheme, 5-fold cross validation 

are adopted to select the training and testing images. In this experiment, for each 

camera, 50 images out of 150 images are selected randomly for estimating the 

reference PRNU. The remaining 100 images are randomly divided into 5 groups of 20 

images each. As shown in Fig. 3.10, for each run, 1 group of images are used for testing 

and the other 4 groups are used for training the neural network. The overall result for 

all the test images is shown in Table 3.5. In the 5-fold cross validation test, the 
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proposed method outperforms other methods at all the FPR levels. The reason for this 

improvement may be due to the increase of training data. In this experiment the 

number of training images has been increased from 50 to 80 for each camera. 

Recently the deep learning architectures, especially the convolutional neural network 

(CNN) has been proven to be very powerful for image processing tasks. Convolutional 

filters are used to extract features at different abstract levels. In the proposed method, 

the texture and intensity are used as hand crafted features for the application.  For 

these rough features, deep model may not be necessary.  However detailed features 

are missing which can be captured by CNN. CNN may be a promising approach for 

estimating the weight for each image pixels. The training algorithm need to be 

redesigned, since there is no ground truth for the optimal weighting. Speed is concern 

because the complexity of CNN is usually very high. 

The characteristic of PRNU varies with the camera model.  If the neural network is 

trained with images from different models. The performance may be compromised.  

However, the PRNU based approach requires the suspect camera or a set of images 

taken by the camera is available for estimating the PRNU.  A portion of the images 

can be used as training set for the neural network. However, training the neural network 

for each camera model is inconvenient in practice. Therefore, another approach which 

is easy to implement and does not require a training phase will be introduced in the 

next chapter. 
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 FPR=0.05 FPR=0.01  FPR=0.001 

Basic 0.8925 0.7667  0.4866 

MLE 0.9183 0.8525  0.6016 

Phase 0.9125 0.8575  0.5850 

Model3 0.9000 0.8425  0.6050 

Model5 0.8592 0.7733  0.5200 

Proposed Method 0.9150 0.8550  0.6733 

Table 3.2 True Positive Rate at different False Positive Rate for original images 

 

 FPR=0.05 FPR=0.01 

Basic 0.6825 0.5308 

MLE 0.5242 0.3492 

Phase 0.5042 0.3200 

Model3 0.9000 0.3692 

Model5 0.4975 0.3008 

Proposed Method 0.5817 0.3842 

 

Table 3.3 True Positive Rate at different False Positive Rate for compressed images 
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Figure 3.5 ROC for various algorithms for original images 
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Figure 3.6 ROC for various algorithms for compressed images 

 

Figure 3.7 Distribution of correlation for (1) correlation without weighting and (2) 

weighted correlation 

 

Camera No. Averaged weighted 

correlation 

Averaged correlation  

1 0.0355 0.0312 

2 0.0315 0.0278 

3 0.0167 0.0158 

4 0.0215 0.0204 

5 0.0585 0.0564 

6 0.0344 0.0327 

Table 3.4  Averaged correlation values with/without weighting 
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Figure 3.8 weighting map for given images 
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Figure 3.9 ROC curves for various algorithms for compressed images without wiener 

filter

 

Figure 3.10 Illustration of 5-fold cross validation 
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  FPR=0.05 FPR=0.01  FPR=0.001 

Basic 0.8850 0.7567 0.4867 

MLE 0.9167 0.8550  0.6016 

Phase 0.9117 0.8700  0.5850 

Model3 0.8967 0.8517  0.6050 

Model5 0.8667 0.7667  0.5200 

Proposed 

Method 

0.9200 0.8833  0.6850 

Rank of 

Proposed 

1 1 1 

Table 3.4  True Positive Rate at different False Positive Rate for 5-fold cross 

validation test 

 

 

 

 

 

 

3.4 Chapter Summary 

Though PRNU has been proved as a powerful tool for source camera identification, 

the scene content effect can severely deteriorate the performance of PRNU-based 

camera identification. While some methods have been proposed to give higher 
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weighting to reliable regions in images, it is difficult to find the optimal weighting 

values.  In this chapter, we have developed a new scheme to obtain the weighted 

correlation for source camera identification using an artificial neural network.  Since 

minimize the mean squared error is applicable for this weighting determination 

application, the neural network is trained to maximize the separation between the 

positive and negative data sets.  The resultant neural network can be used to find the 

optimal weightings for different image regions. The proposed method is compared 

with several state-of-art methods.  The experiments show an encouraging result in 

terms of the ROC curve, the true positive rate and the false positive rate. 
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Chapter 4 A Local Variance Based Approach to 

Alleviate the Scene Content Interference for Source 

Camera Identification 

4.1 Introduction 

To obtain the PRNU signal, denoising is applied to those images under test and the 

resultant noise residual forms the PRNU signal.  One problem of using PRNU for 

source camera identification is that the scene content can severely contaminate the 

extracted PRNU and noise residues.  If images contain a lot of textures, have low or 

saturated intensities, the accuracy of identification will drop.  Several methods have 

been proposed to suppress the influence of scene content.  In [35], a maximum 

likelihood method is proposed to estimate the camera reference PRNU.  Kang et al. 

[22] proposed to whiten the PRNU in the frequency domain to estimate the reference 

PRNU.  The approaches which make use of the idea of reliable regions have been 

proposed in [17][18][19][20].  In[19][20], learning based methods are adopted, in 

which a training phase is required before camera identification.  In [17], Li made a 

hypothesis that the stronger a signal component is, the more likely that it is associated 

with strong scene details, and thus the less trustworthy the component should be.  

Based on this hypothesis, Li proposed five different models to shrink the noise 

residuals with high magnitude.  However, there is no theory showing that the five 

models give the optimal weightings and the parameters for these models are chosen 

empirically.  It is very important to allocate appropriate weightings to different 

regions of the image.  If the weightings are assigned too aggressively, for example 
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assign a weighting of 1 to the smoothest regions and assign 0 to other regions, the 

decision statistics obtained will be highly unstable because only small portion out of 

the whole image is utilized for the detection.  On the contrary, if we assign the 

weightings too conservatively, the improvement of accuracy will not be significant.  

This problem is illustrated in Figure 4.1.  Figure 4.1 shows the distribution of the 

decision statistics for positive and negative cases.  Figure 4.1 (a) is the distributions 

when no weighting is applied and (b) is the distributions when weighting an over 

aggressive weighting is adopted.  In the case of (b), although the mean correlation for 

matching case becomes larger, the chance of false detection is higher because the 

standard deviation of correlation becomes larger which results in a larger overlapping 

between the positive and negative situations.  Hence, the accuracy of detection can 

only be improved if the weighting is selected appropriately. 

 

Figure 4.1 Illustration of aggressive weighting problem 

In this chapter, on one hand, we study how the noise residual strength affects the source 

camera detection accuracy.  On the other hand, we proposed a method to obtain the 

weighting for each pixel based on the general matched filter which has been proved to 

be the optimal detector. 
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According to Chen and Fridrich et al. [12], the noise residual can be expressed as, 

ΞTIKIIW  )(F .  (4.1) 

whereΞcontains a combination of other independent noise and scene content artifact 

due to the imperfection of the denoising filter F(.) and T is an attenuation factor which 

indicates how much the PRNU signal is retained in W because the denoising filter may 

remove part of the PRNU signal .  In the source camera identification problem, we 

may refer the term IK as the signal of interest and Ξas the undesired noise.  Because 

of the scene content artifacts, Ξ is not stationary within images.  In areas with 

complicated texture, the noiseΞwill be likely to have large variance.   

To resolve the scene content problem, Li [17] has proposed five models to suppress 

the noise residual whose magnitude is large for the reason that the large the noise 

magnitude is, the more likely that it is caused by the scene content artifacts.  From 

equation (4.1), it can be seen that Li [17]’s assumption is plausible as the scene content 

artifact may lead to a large value forΞand if IK is much smaller than Ξ , the noise 

residual W will be large as well.  If we examine the correlation detector in (2.17) or 

(2.18) carefully, we can find that the element with large magnitude in W contribute 

more to the resultant correlation value, despite that the large noise residual may not be 

reliable.  Therefore attenuating large values in noise residual should be an effective 

method to compensate for the scene content problem.   

However, equation (4.1) also indicates that the large magnitude of W may also arise 

from the strong PRNU signal.  That means a large IK may also produce a large value 

of W even when it does not contain any scene content.   

Motivated by this, for each pixel, instead of using its own value, we propose to utilize 

its neighbor pixels to estimate the amount of scene content artifacts.  Let Ii,j, be the 
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intensity value of the pixel (i,j) in an image.  The local variance and the mean of the 

noise residual can be calculated coarsely by, 
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where A is the neighbor of the pixel Ii,j, W̅local is the mean of the noise residual within 

A.  As scene content artifact usually occurs in the complicated texture areas, the noise 

residual with scene content artifact is likely to have large variance.  Therefore, for 

each pixel, the variance of its neighbor pixels (not including itself) is calculated.  The 

variance value can be used as a measure of the scene content artifact.  The local 

variance is a more reliable estimate of the amount of scene content artifact than the 

magnitude of the noise residual.  Since pixel of interest is not involved in the 

calculation, the large PRNU component IK will not increase the value of the variance. 

Experiments were conducted to reveal the effectiveness of the local variance on 

characterizing the scene content artifact.  A total of 300 natural images of six cameras 

from the Dresden image database [56] are selected.  The camera details are 

summarized in Table 4.1.  Each image is cropped into a size of 256×256.  Another 

50 images are used to estimate the reference PRUN K of each camera using equation 

(2.15).  For each pixel, the product of the noise residual and the PRNU is calculated 

i.e.  Ci,j = Wi,j·Ii,jKi,j which is the covariance between the noise residual and PRNU 

for that pixel because the mean of Wi,j and Ki,j over an image will approach 0 if the 

image size is large.  To study the relationship between Ci,j and the noise residual 

magnitude |Wi,j|, the domain of |Wi,j| is divided into 20 equal intervals in which the 

mean value μ and standard deviation 𝜎 of Ci,j in each interval is calculated.  The 

result is shown in Figure 4.2(a), where the red dots represent the mean value 𝜇 and 
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the red bars are of the length of 0.1σ.  The standard deviation is scaled in the figure 

because it is too large compared with 𝜇 .  A large mean value indicates that the 

strength of the PRNU signal is strong for the pixels in that bin.  On the other hand, if 

the standard deviation of the covariance is large, the undesired noise like the scene 

artifact associated with that pixel should be large since the undesired noise is 

independent to the PRNU signal.  Hence, a reliable pixel should have a large mean 

covariance and small standard deviation.  In Figure 4.2 (a) it can be observed that 

both the mean value μ and the standard deviation σ increase with the magnitude of 

noise residual |Wi,j|.  Hence the reliability of pixels can be hardly decided from Figure 

4.2 (a).  Therefore, Figure 4.2 (b) plots the signal to noise ratio μ/σ which can better 

measure the reliability of the data.  From Figure 4.2 (b), it can be seen that μ/σ will 

not increase with |Wi,j| when |Wi,j|.becomes large.  Similarly, the relation between Ci,j 

and the local standard deviation σlocal are plotted in Figure 4.3.  Although Figure 

4.2 (a) is similar to Figure 4.3 (a) in that both the mean value μ and standard deviation 

σ  increase with the local variance, it is noticeable that the value of  μ/σ  drops 

with σlocal increasing which indicates that when σlocal gets larger, the corresponding 

pixel is less reliable.  Therefore σlocal should be a more sensitive measure for the 

reliability of the pixel.  Hence the local variance can be used as a measure of the 

severeness of the scene content artifact.  The advantage of using the local variance of 

the noise residual over the original image is that, the textures in the original image 

might be removed by the denoising filter.  Some textures, though with large variance, 

can be completely removed by the denoising filter and result in a small variance in the 

noise residual.  Such regions will be considered as unreliable if the local variance of 

the original image is used. However, these regions should be of high reliability since 
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the scene artifacts have been removed.  Therefore, using the local variance of the 

noise residual is a better measurement than that of the original image.   

In the next section we will demonstrate how to weight the pixels according to the local 

variance.   

 

Camera model Number Sensor Resolution Format 

Canon Ixus70 2 1/2.5” 3072 ×2304 JPEG 

Nikon Coolpix 

S710 

2 1/1.72” 4352×3264 JPEG 

Sony DSC-H50 2 1/2.3” 3456×2592 JPEG 

Table 4.1 Camera details for the experiment. 
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(b) 

Figure 4.2 The relation of (a) Ci,j and (b) 𝜇/σ with respect to the magnitude of the noise 

residual 
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(b) 

Figure 4.3 The relation of (a) Ci,j and (b) 𝜇/σ with respect to the magnitude of the 

local variance 
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4.2 The Proposed Method 

The source identification problem is formulated in the framework of hypothesis testing.  

In the general signal detection problem, the two hypothesis are defined as, 

H0: 𝑥𝑗 = 𝑤𝑗 

and 

H1: 𝑥𝑗 = 𝑠𝑗 + 𝑤𝑗 

where 𝑥𝑗 is the observed noisy signal, 𝑠𝑗 is the noise free signal, 𝑤𝑗 is the white 

Gaussian noise (WGN) and j is the signal index.  For such signal detection problem, 

the optimal detector will be the general matched filter [57][58] in that it gives the 

largest True Positive Rate for any given False Positive Rate.   

Assuming that 𝐰 = {𝑤𝑗|𝑗 = 1,2 … 𝑁} ~ 𝐍(0, 𝐂), where N denotes the multivariate 

Gaussian distribution, N is the length of the signal and C is the covariance matrix of 

w.  The distribution of x can be expressed as, 

𝑝(𝐱; H1) =
1

(2π)
𝑁
2 det

1
2(𝐂)

exp [−
1

2
(𝐱 − 𝐬)T𝐂−1(𝐱 − 𝐬)]  (4.3) 

𝑝(𝐱; H0) =
1

(2π)
𝑁
2 det

1
2(𝐂)

exp [−
1

2
𝐱T𝐂−1𝐱]  (4.4) 

where det(.) is the determinant of input matrix.  According to the Neyman-Pearson 

theorem, the detection rate can be maximized for a given false alarm rate 𝛼  by 

deciding H1 when 

𝐿(𝐱) =
𝑝(𝐱;H1)

𝑝(𝐱;H0)
> 𝛾  (4.5) 

where 𝛾 is the threshold that results in the False Alarm rate 𝛼. Taking log for both 

sides the expression will become, 
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𝑙(𝐱) = ln
𝑝(𝐱;H1)

𝑝(𝐱;H0)
> ln(𝛾)  (4.6) 

Using equation (4.3) and equation (4.4), 𝑙(𝐱) can be expressed as, 

𝑙(𝐱) = −
1

2
[(𝐱 − 𝐬)T𝐂−1(𝐱 − 𝐬) − 𝐱T𝐂−1𝐱] 

= −
1

2
[𝐱T𝐂−1𝐱 − 2𝐱T𝐂−1𝐬 + 𝐬T𝐂−1𝐬 − 𝐱T𝐂−1𝐱] 

= 𝐱T𝐂−1𝐬 −
1

2
𝐬T𝐂−1𝐬 > 𝛾′ (4.7) 

Since the second term −
1

2
𝐬T𝐂−1𝐬 is not data dependent, it can be moved to the right 

hand side and combines with 𝛾′.  The optimal detector then becomes, 

𝑦 = 𝐱T𝐂−1𝐬 > 𝛾′′ (4.8) 

If the noise is uncorrelated and 𝑤𝑗 ~ 𝐍(0, 2

jσ ), the general matched filter can be 

reduced to, 

 
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where 𝜎𝑗
2 is the expected variance of wj, N is the length of the signal and y is the 

output of the filter.   

Under the problem of source camera identification, xi,j is the noise residual Wi,j of pixel 

Ii,j, 𝑠𝑖,𝑗 = 𝑇𝑖,𝑗𝐼𝑖,𝑗𝐾𝑖,𝑗 and 𝑤𝑖,𝑗 =  Ξ𝑖,𝑗 [12]. 

Hence, the detection problem will become,  

H0: 𝑥𝑖,𝑗 = Ξ𝑖,𝑗 

H1: 𝑥𝑖,𝑗 = 𝑇𝑖,𝑗𝐼𝑖,𝑗𝐾𝑖,𝑗 + Ξ𝑖,𝑗 

Therefore the optimal detector will be 
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From equation (4.10), it can be seen that to achieve the optimal detection performance, 

the value of the attenuation factor Ti,,j and Ξ𝑖,𝑗  must be known.  However, their 

values cannot be estimated easily, due to the fact that they depend on the scene content 

and the characteristic of the denoising filter.  Therefore, usually the cross-correlation 

or the peak to correlation energy (PCE) is used as detection filter instead of general 

matched filter.  Nevertheless, neither cross-correlation nor PCE is a good detector for 

the reason that they do not take the distinct distribution of each pixel into consideration.  

Hence, the distribution of the test statistics is difficult to be modeled due to the fact 

that the expected variance of PCE and cross correlation vary from one image to another. 

The value of Ti,,j and Ξ𝑖,𝑗 can be calculated by learning based approached as in [12].  

The learning based approach requires a large data set for training and the parameters 

value will be camera model dependent.  Therefore, we propose a simple method from 

which we can estimate the distribution parameter from the single image and take 

advantage of the optimal detector. 

Since Ξ𝑖,𝑗  contains the scene content artifacts, 𝜎𝑖,𝑗
2  is scene content dependent.  

Although Ξ𝑖,𝑗is not stationary due to the variation of scene content artifact, we may 

assume Ξ𝑖,𝑗to be locally stationary because of the local similarity property of images.  

Thereby, for each pixel Ii,j, we calculate the local variance σlocal,𝑖,𝑗
2  from equation 

(4.2).  Given Ξ𝑖,𝑗is stationary around pixel Ii,j and Ξ𝑖,𝑗 is independent to the PRNU 

signal, we will have, 

σlocal,𝑖,𝑗
2 = var(𝐖local) ≈ σ𝑖,𝑗

2 + σ𝑃𝑅𝑁𝑈,𝑖,𝑗
2   (4.11) 

where σ𝑖,𝑗
2  is the variance of Ξ𝑖,𝑗 and σ𝑃𝑅𝑁𝑈,𝑖,𝑗

2  is the variance due to the PRNU.   

σ𝑃𝑅𝑁𝑈,𝑖,𝑗
2 = 𝐼𝑖,𝑗

2 𝑇𝑖,𝑗
2 var(𝐊) (4.12) 
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where var(𝐊) is the variance of the PRNU factor K.  Combining equation (4.11) 

and (4.12) the variance of Ξ𝑖,𝑗 can be calculated as, 

σ𝑖,𝑗
2 = σlocal,𝑖,𝑗

2 − 𝐼𝑖,𝑗
2 𝑇𝑖,𝑗

2 var(𝐊) (4.13) 

Since PRNU K is independent to the image content and for different region of each 

sensor K should have similar properties, K can be considered stationary over the image 

and var(𝐊) should be constant in the image.  Though the value of var(𝐊) varies 

from one sensor to another, it is small as compared with σ𝑖,𝑗
2 .  Therefore, the value 

of var(𝐊) does not have significant influence on the estimation of σlocal,𝑖,𝑗
2  and an 

accurate estimate of var(𝐊) is not necessary.  To calculate the optimal weighting 

we still need to know the shaping factor T.  However, since the noise residual is 

obtained from a very complex process, it is difficult to obtain the value of T.  In this 

paper, to simplify the problem, we assume the shaping factor to be constant 1 over the 

image.  Whereas, it is worth to mention that any model for estimating T can be 

incorporated into our model.  Note that σ𝑗
2 cannot be negative and it cannot be 0.  

Even at smooth regions Ξ𝑖,𝑗 contains the random noise like the quantization noise, 

σ𝑖,𝑗
2  cannot be zero and must be positive.  Hence a lower bound for σ𝑖,𝑗

2  is set.  

Therefore,  

σ𝑖,𝑗
2 = max (σlocal,𝑖,𝑗

2 − 𝐼𝑖,𝑗
2 𝑇𝑖,𝑗

2 var(𝐊), 𝑏𝑙)  (4.14) 

where 𝑏𝑙 is the lower bound for σ𝑘
2 .  Assuming that σ𝑘

2  is Gaussian distributed, 

the following can be calculated, 

E(y ∶ H0) = 0  (4.15) 

E(y ∶ H1) = ∑
(𝑇𝑖,𝑗𝐼𝑖,𝑗𝐾𝑖,𝑗)

2

σ𝑖,𝑗
2

𝑖=𝑀,𝑗=𝑁
𝑖=1,𝑗=1   (4.16) 
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var(y ∶ H0) = var(y, : H1) = ∑
(𝑇𝑖,𝑗𝐼𝑖,𝑗𝐾𝑖,𝑗)

2

σ𝑖,𝑗
2

𝑖=𝑀,𝑗=𝑁
𝑖=1,𝑗=1  (4.17) 

where E(y ∶ H0) and E(y ∶ H1)is the expectation of y under H0 and H1 respectively 

and var(y ∶ H0) and var(y ∶ H1) are the variance.  The general matched filter is 

normalized by std(y, : H0) such that all the detection statistics will have variance 

equal to 1.  Therefore, the normalized general matched filter will be  
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However, in practice, there are some weak correlations between the PRNU fingerprints 

estimated from different cameras due to the JPEG compression, color interpolation etc.  

The cameras from the same manufacturer usually have higher correlations than those 

from different manufacturers.  This correlation is likely to increase the False 

Acceptance Rate since such inter camera correlation might be detected as positive 

samples.  The general matched filter does not take this situation into consideration.  

The Peak to Correlation Energy (PCE) does well in reducing the False Acceptance 

Rate caused by inter camera correlation.  As discussed in chapter 4, the PCE is 

defined as, 
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where ρ(𝐬, 𝒙, 𝒚) is the dot product between 𝒙 − 𝒙̅ and 𝒚(s) − 𝒚̅, 𝒚(s) is obtained 

by circularly shift y by a two dimension vector s, A is a small neighbor around the peak 

and MN is the width and height of the image.  Since the image is assumed not to be 

scaled or translated, the peak should be at the location 0.  The nominator of the PCE 
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is the square of the correlation between signals 𝒙 and 𝒚 without normalization.  The 

correlation can then be normalized by the denominator which is the square of the 

correlation value for all the possible shift vector s except for the shift close to the 

original position.  Owing to the fact that the patterns that are shared among different 

cameras usually have a periodic nature, the correlations between cameras sensor will 

still exist even though the images are shifted.  Hence, if there is a strong pattern that 

is shared between the two cameras tested, the denominator of PCE is likely to be high 

and the PCE value will be lowered.  Thereby, the chance of False Acceptance can be 

reduced.  To utilize this great feature of PCE, we propose to incorporate the general 

match filter into the PCE detector.  The unormalized general matched filter in 

equation (4.10) can be rewritten as, 
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The first term in the equation is the noise residual term which is normalized by the 

standard deviation of the undesired noise.  The second term is the reference PRNU 

signal which is also normalized by the standard deviation of the undesired noise.  We 

proposed to use the normalized signal as the input of the PCE detector.  Hence, the 

final detector can be expressed as, 
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where all the variables are written in matrix from.  
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4.3 Local variance estimation 

 

Figure 4.4 Local variance estimated using square window with equal weight 

Since the weighting of each pixel is determined by the local variance in the proposed 

model, it is very important to estimate the local variance more precisely.  A more 

accurate estimation of the local variance will improve the overall performance of the 

source identification.  In section 4.2, a square window with equal weight is used to 

estimate the local variance.  The resultant local variance is likely to be discontinuous 

with many blocks as show in Figure 4.4.  A better option is to use a Gaussian kernel 

as weighting to estimate the local variance.  The local variance estimated with a 

Gaussian kernel is expressed as, 

  


Anm
jimnGji WWjinmh

A ),(

2

,local,,

2

,local, ),,,(
1

  (4.22) 

2

2

2

),,,(-D

2

1
),,,( G

jinm

G

G ejinmh



  (4.23) 

where function D(m,n,i,j) is the distance between pixel (m,n) and (i,j) and σ is the 

standard deviation parameter for the kernel.  With the Gaussian kernel, pixels that are 
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far from the center will be assigned small weightings for estimating the local variance.  

Figure 4.5 (c) and Figure 4.6 (c) show the local variance estimated from the Gaussian 

kernel for two images.  However, it is found that the large variance of the noise 

residual often appeared along the edges of the original image.  The Gaussian kernel 

tends to underestimate this kind of local variance because the local variance along the 

edge is averaged by its nearby pixels.  In order to precisely estimate the local variance, 

the bilateral kernel can be used.  The bilateral kernel [59]penalizes the pixels that 

have large variation compared with the center pixel such that they will have smaller 

weightings.  By using the standard deviation map of the original image as guide 

image, the joint bilateral filtering can be used to estimate the local variance of the noise 

residual.  The joint bilateral kernel[60] is defined as,  
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where 𝜎s and 𝜎r are the spatial and range parameters of the bilateral filter which 

determines how sensitive the filter is towards the change of distance and value 

difference to the centre pixel respectively and g(.) is the local standard deviation of the 

original image for a given position.  Since the variance for the edge region is large 

while that for the smooth region is small, with the guided bilateral filter, the local 

variance will be estimated along the edges if they are presented in the image.  Figure 

4.5(d) and Figure 4.6(d) show the local variance estimated with the guided bilateral 

filter.  It can be observed that, compared with the estimation of Gaussian filter, the 
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edge regions have a larger local variance which is closer to the expected value.  The 

joint bilateral filter can be implemented efficiently using the method described in [61] 

 

Figure 4.5 Local variance estimated with different methods. (a) the original image (b) 

the noise residual (c) the local variance estimated with the Gaussian kernel (d) the 

local variance estimated with bilateral kernel 

In summary, the proposed algorithm for source camera identification will be as 

follows, 

1. Estimate the reference PRNU with equation (2.15). 

2. Extract the Noise residual W with equation (2.10). 

3. Preprocess the reference PRNU and noise residual with zero mean operation and 

Wiener Filter in frequency domain.  

4. Compute the local variance σlocal,𝑖,𝑗
2  with equation (4.24) and (4.25). 

(a) (b)

(c) (d)
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5. Estimate the variance of the undesired noise σ𝑖,𝑗
2  with equation (4.14). 

6. Compute the detection statistics with equation (4.21). 

7. Make decision based on the detection statistics obtained. 

 

 

Figure 4.6 Local variance estimated with different methods. (a) the original image (b) 

the noise residual (c) the local variance estimated with the Gaussian kernel (d) the 

local variance estimated with bilateral kernel 

 

  

(a) (b)

(c) (d)
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4.4  Experimental Result 

4.4.1 Experimental setup 

Images from the Dresden Image Database [56] are used as testing data for the 

experiments.  Nineteen different cameras are randomly selected from the database 

for testing.  The cameras covered a wide range of brands and models.  For most of 

the camera models selected, two cameras are used to test the distinguishing ability 

within the same model.  For the cameras of the same make or model, similar post 

processing operations like JPEG compression and color interpolation are applied.  

Therefore, there should be small correlations among the noise residual of these devices 

and it is more difficult to distinguish photos from them.  Table 4.2 summarizes the 

details about the cameras under test, including the camera model, the number of 

cameras in each model.  The images cover a large variety of scenes and they are taken 

with different camera settings such as different ISO and different focal length which 

makes the source camera identification more difficult.  Example photos are shown in 

Figure 4.7.  For each camera, 50 images are selected randomly to estimate the 

reference PRNU, and another 50 images are used as testing image.  Totally 950 

images are tested.  The color images are converted to gray level image before PRNU 

extraction.  
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Figure 4.7 Examples of Test Photos from Dresden Image Database 

As the identification accuracy is usually very high for large images, it is difficult to 

compare the performance of different algorithms.  To obtain a clear idea about the 

performance of different algorithms, the size of the image is cropped to 256 × 256 and 

128 × 128.  The experiment is conducted only on the two image sizes respectively.   

Device ID Camera model Sensor Resolution Format No. of 

Devices 
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1 Canon Ixus 55 1/2.5” 2592 × 1944 JPEG 1 

2, 3 Canon Ixus 70 1/2.5” 3072 × 2304 JPEG 2 

4, 5 Casio_EX-Z150 1/2.5” 3264 × 2448 JPEG 2 

6, 7 Nokon CoolPix S710 1/1.72” 4352 × 3264 JPEG 2 

8, 9 Nikon_D200 23.6×15.8 3872 × 2592 JPEG 2 

10, 11 Olympus 1050 SW 1/2.33” 3648 × 2736 JPEG 2 

12, 13 Panasonic DMC FZ50 1/2.5” 3648 × 2736 JPEG 2 

14, 15 Samsung NV15 1/2.5” 3648 × 2736 JPEG 2 

16, 17 Sony DSC T77 1/2.5” 3648 × 2736 JPEG 2 

18, 19 Sony DSC W170 1/2.5” 3648 × 2736 JPEG 2 

Table 4.2 Camera details for the experiment 

 

4.4.2 Experiment Methodology 

The performance of our proposed method is compared with the basic algorithm [7], 

the MLE method [12], the phase pattern noise method [22] and Li’s enhancement 

pattern noise method [17].  For Li’s method, model 3 is selected for comparison 

because of their superior performance as compared with other models in [17]. 

To extract the noise residual W, the wavelet denoising filter described in [3] is used 

since it has been reported as an effective method.  For the basic algorithm [7], the 

reference PRNU for each camera is estimated from 50 images with equation (2.11).  

For our method, Li’s method [17] and the MLE method [12], the reference PRNU is 

estimated with equation (2.15) and the correlation for a particular image will be 

calculated by equation (2.17). For the phase pattern method [22], before estimating 

reference PRNU, the images are whitened in the frequency domain and transformed 

back to the spatial domain.  To remove the periodical patterns, zero-mean operation 
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and Wiener filter in frequency domain are used to preprocess the image as described 

in [12]. 

For the proposed method, the detection statistics is calculated by the proposed detector 

as equation (4.21).  For other methods, both the cross correlation and the peak to 

correlation energy (PCE) [38][39] are used as detection statistics as equation (2.18).  

The PCE has been reported more suitable for camera fingerprint detection because the 

presence of hidden periodic signal will lower PCE and reduce the possibility of false 

alarm [39].   

The choice of the lower bound 𝑏𝑙 is important in that it decides the largest possible 

weight for the image pixels.  The weight of a pixel cannot be infinitely large since at 

least there will be some unpredictable random noise for each pixel.  To study the 

influence of 𝑏𝑙, we have tested the proposed algorithm with different settings of 𝑏𝑙 

i.e. 𝑏𝑙 = 1, 2, 3, 4, 5 and 6 for 128 ×128 images, the Receiver Operating Curve (ROC) 

and the detection rate for given false acceptance rates are shown in Figure 4.8 and 

Table 4.3 respectively.  We can observe that the proposed algorithm is not sensitive 

to the choice of 𝑏𝑙.  The algorithm performs slightly better when 𝑏𝑙=2, 3 or 4.  The 

value of 𝑏𝑙 is then set to 4 in the following experiment.   

The guided bilateral filter is used to estimate the local variance of the noise image. The 

spatial parameter and the range parameter determine the characteristics of the bilateral 

filter.  Since the parameter of the bilateral filter will only influence the estimation of 

the local variance, it does not directly influence the performance of the algorithm.  

The performance of the algorithm is not sensitive to the parameter of bilateral filter.  

Similar experiments are carried with a set of different parameter settings and the spatial 
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and range parameter are determined as 𝜎s
2 = 5 and 𝜎r

2 = 3 which achieve good 

detection accuracy.  

The size of the window for estimating the local variance is set to 21.  The size of the 

window cannot be too small because the estimation will be reliable for a small window 

size.  Since the pixels far from the centre of the window contribute little to the 

estimation of the local variance due to the property of the bilateral filter, it is not 

necessary to make the window too large. 

 

 

 

Figure 4.8 ROC curves using different bl for image of size 128 ×128 
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𝑏𝑙 FPR=10-3 FPR=10-2 

1 0.51579 0.68000 

2 0.52842 0.68105 

3 0.52526 0.68211 

4 0.51684 0.68421 

5 0.50526 0.68000 

6 0.49895 0.68211 

Table 4.3 The TPR for given FPR using different 𝑏𝑙 

 

4.4.3 Experimental result and analysis 

The ROC curve illustrates the performance of the source camera identification system 

by plotting the True Positive Rate (TPR) versus the False Positive Rate (FPR).  

Figure 4.9 and Figure 4.10 show the overall ROC performance over the 19 cameras 

for different methods at different settings.  In practice, a low False Positive Rate is 

desired to ensure a low probability of False Alarm.  Hence we set the thresholds of 

detection such that the False Positive Rate equals to 10-3 and 10-2.  The True Positive 

Rates at the given False Positive Rate are shown in Table 4.4 and Table 4.5 for image 

of size image of size 128 ×128 and 256 × 256 respectively.   

It can be seen that for all the methods tested, the accuracy with the PCE as the test 

statistics is higher than that using the cross correlation detector.  For the same 

methods, using the PCE as the detector can always improve the detection accuracy.  

Another observation is that, for the phase method, the accuracy of detection using the 

cross correlation and PCE is very close. Using the correlation as the detector, the 

detection accuracy is better than other methods except the proposed method.  
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Possible explanation is that the phase method can remove the common patterns caused 

by image post processing operations.  Since the PCE can also reduce the effect of 

common patterns in the sensor noise, the two detectors will make little difference for 

the phase method.  

From the experimental results we can see that the proposed method outperforms other 

state-of-the-art methods tested.  The ROC curve obtained with the proposed methods 

is above those produced by other methods for both image size tested.  The proposed 

method also gives the highest TPR at different levels of FPR among all the methods 

tested for both image sizes.  For images of size 128 × 128, the TPR improvement is 

3.58% - 9.96% at FPR = 10-3 and 3.58% - 9.16% at FPR = 10-2 as compared with other 

methods.  The second best method is the phase method which performs well at FPR 

= 10-3 but it does not perform so well at the FPR = 10-2.  On the contrary, the proposed 

method, performs constantly well for both FPR levels.  For images of 256 × 256, the 

TPR improvement is 2.42% - 7.15% at FPR = 10-3 and 1.26% - 4.10% at FPR = 10-2.  

It can be seen that the improvement is larger for smaller images.  The reason for 

which the proposed method outperforms other methods is that the proposed method 

can better handle the scene content artifacts problems.  The local variance estimated 

from the guided bilateral filter provides an accurate measure of the reliability of each 

pixel.  The scene content artifacts make the detection statistics unreliable while the 

general matched filter can allocate optimal weightings to all the pixels such that the 

resultant detection statistics becomes more reliable.  The combination of general 

matched filter and PCE detector can also resolve the problem of correlation among 

different sensors.     
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Figure 4.9 The overall ROC curve for different methods for image size of 128 × 128  
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Figure 4.10 The overall ROC curve for different methods for image size of 256 × 256 
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FPR=10-3 FPR=10-2 

TPR 
Improvement 

of proposed 

method 

TPR 
Improvement 

of proposed 

method 

Basic + correlation 0.42421 +9.26316% 0.59263 +9.15789% 

Basic + PCE 0.44316 +7.36842% 0.61474 +6.94737% 

MLE + correlation 0.44784 +6.90023% 0.60906 +7.51484% 

MLE + PCE 0.44000 +7.68421% 0.63895 +4.52632% 

Model3 + correlation 0.41728 +9.95608% 0.61855 +6.56647% 

Model3 + PCE 0.46842 +4.84211% 0.64842 +3.57895% 

Phase + correlation 0.47684 +4.00000% 0.62316 +6.10526% 

Phase + PCE 0.48105 +3.57895% 0.62211 +6.21053% 

Proposed Method 0.51684 - 0.68421 - 

 

Table 4.4 The True Positive Rate for given False Positive Rate for image size 128 × 

128 

 

 

FPR=10-3 FPR=10-2 

TPR 
Improvement 

of proposed 

method 

TPR 
Improvement 

of proposed 

method 

Basic + correlation 0.72947 +7.15789% 0.84105 +4.10526% 

Basic + PCE 0.75579 +4.52632% 0.85158 +3.05263% 

MLE + correlation 0.73973 +6.13266% 0.85248 +2.96290% 

MLE + PCE 0.77684 +2.42105% 0.85684 +2.52632% 

Model3 + correlation 0.74499 +5.60579% 0.83983 +4.22739% 

Model3 + PCE 0.76737 +3.36842% 0.86947 +1.26316% 

Phase + correlation 0.76105 +4.00000% 0.85579 +2.63158% 

Phase + PCE 0.76421 +3.68421% 0.85895 +2.31579% 

Proposed Method 0.80105 - 0.88211 - 
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Table 4.5 The True Positive Rate for given False Positive Rate for image size 256 × 

256 

 

For the source camera classification problem, all the images will be classified 

according to their source camera.  To further evaluate the performance of the 

proposed method, the experiment for source camera classification is also conducted 

over the same set of data.  In this experiment, each image will be attributed to the 

camera whose fingerprint produces the largest test statistics.  The classification 

accuracy is tabulated in Table 4.6 which shows that the proposed method performs the 

best among all the methods for the source camera classification problem.  For 128 × 

128 image, the improvement in accuracy is 3.69% - 4.43% and for 256 × 256 images, 

the improvement of accuracy is 1.47% - 2.63%.  The experimental results also 

indicate that the proposed method improves the accuracy more significantly when the 

image size become smaller.  Table 4.7 shows the classification result for each camera 

where the row number is the device ID of real source camera and the column number 

is the device ID that the image is classified to.  It is noticeable that the classification 

accuracy varies from camera to camera.  The classification accuracy is low for 

devices 5 and 11.  It can also be observed that the images are misclassified to different 

cameras and the misclassification within the same model is low.  It indicates that the 

correlation within the same model has limited influence to the classification accuracy.  

Table 4.8 shows the classification result of each camera for all the methods tested from 

which we can see that the improvement of overall accuracy is attributed from different 

cameras.  The accuracy of the proposed method is the highest for 12 cameras and for 
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other cameras the proposed method also has accuracy close to that of the highest 

method. 

To show the merit of the joint bilateral filter, the performance for the proposed method 

using the Gaussian kernel and joint bilateral kernel for image of size 128 × 128 is 

shown in Table 4.9. It can be observed that, even using the Gaussian Kernel, the 

proposed method has a better performance compared with other state-of-the-art 

method. The joint bilateral filter can further improve the accuracy of the proposed 

method compared with the Gaussian Kernel. 

In Figure 4.11, the experimental result of the two proposed method is shown. The 

experiment setup is the same with Chapter 3. It can be seen that the scheme 1 i.e. the 

neural network based method performs better at lower FPR and the local variance 

based method performs well at higher FPR.  

In summary, the proposed method has the best performance for both the source camera 

identification and source camera classification problem among all the methods tested.  

The computation complexity for the two schemes proposed were also tested by 

measuring their computation time. All the method were implemented with MatLab on 

a PC with Intel i7 K6700 CPU. The computation time is tested on 300 images from 6 

cameras. For each image, it computes the correlation with the PRNU from the 6 

cameras. The computation time for each method is shown in Table 4.10. It can be seen 

that the first scheme, i.e. the neural network method, only increase the computation 

time by 0.6938%. This is because the neural network size is small (27 parameters) and 

it is applied to each block instead of each pixels. For the scheme 2, which is the local 

variance based method, the computation time increased by 14.2813%. The increase in 

time is mainly due to the joint-bilateral filter. However, in large scale test, each image 
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needs to be compared with a large amount of camera fingerprint in the database. The 

increase the in computation time will be reduced because the weighting only needs to 

be calculated once for each image.  

 

 

128 × 128 256 × 256 

Accuracy 
Improvement 

of proposed 

method 

Accuracy 
Improvement 

of proposed 

method 

Basic + correlation 0.7189 +4.43% 0.9042 +2.21% 

Basic + PCE 0.7232 +4.00% 0.9011 +2.52% 

MLE + correlation 0.7263 +3.69% 0.9116 +1.47% 

MLE + PCE 0.7284 +3.48% 0.9032 +2.31% 

Model3 + correlation 0.7263 +3.69% 0.9063 +2.00% 

Model3 + PCE 0.7326 +3.06% 0.9116 +1.47% 

Phase + correlation 0.7263 +3.69% 0.9000 +2.63% 

Phase + PCE 0.7263 +3.69% 0.9000 +2.63% 

Proposed Method 0.7632 - 0.9263 - 

 

Table 4.6 The source camera classification accuracy 
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ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 38 2 0 1 0 0 1 0 2 1 0 1 1 0 2 0 1 0 0 

2 0 40 2 1 1 1 2 1 0 1 1 0 0 0 0 0 0 0 0 

3 0 1 37 0 1 1 0 3 2 1 0 1 0 1 1 0 0 0 1 

4 0 3 3 33 0 1 0 0 0 2 1 1 0 0 2 1 1 2 0 

5 3 0 1 2 28 0 1 1 1 1 4 1 1 1 1 2 1 1 0 

6 4 1 2 1 4 31 3 2 2 3 1 3 1 1 3 2 2 1 1 

7 0 2 2 1 1 2 36 0 1 1 1 0 1 1 0 1 0 0 0 

8 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 

10 1 0 0 0 2 4 1 1 2 28 1 2 1 1 4 1 0 0 1 

11 0 1 3 1 1 2 1 2 3 2 26 0 0 1 4 2 1 0 0 

12 0 0 0 1 0 2 0 0 1 0 0 34 2 1 0 3 0 6 0 

13 0 1 2 0 0 0 0 1 0 0 0 2 38 0 0 3 2 1 0 

14 2 0 1 0 0 0 0 1 0 2 0 0 0 42 1 0 0 0 1 

15 0 2 0 0 0 0 0 0 0 1 1 0 0 1 44 0 0 1 0 

16 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 42 1 2 1 

17 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 43 1 2 

18 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 2 2 42 2 

19 0 0 0 1 0 0 0 0 0 0 0 2 1 0 0 1 0 1 44 

Table 4.7 Source Classification Matrix 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Basic + correlation 36 41 34 28 23 27 35 50 50 17 24 33 35 38 44 44 45 40 39 

Basic + PCE 37 41 34 29 23 28 33 50 50 17 25 35 37 38 43 44 44 40 39 

MLE + correlation 34 36 32 31 25 27 36 50 49 25 23 33 34 42 44 42 42 40 45 

MLE + PCE 35 41 35 30 23 28 34 50 49 22 23 32 36 40 44 43 44 41 43 

Model3 + 

correlation 

35 41 34 30 22 28 34 50 49 21 24 32 33 41 44 43 44 41 44 

Model3 + PCE 34 38 35 31 25 28 36 50 50 26 23 34 36 41 44 42 41 40 43 

Phase + correlation 35 42 32 29 26 33 36 50 50 19 28 29 31 36 43 41 45 42 43 

Phase + PCE 35 43 32 29 26 33 36 50 50 19 27 29 31 36 43 41 45 42 43 

Proposed Method 38 40 37 33 28 31 36 50 50 28 26 34 38 42 44 42 43 42 44 

Table 4.8 Number of correct classification for each camera 
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  FPR=10-3 FPR=10-2 

TPR TPR 

Basic + correlation 0.42421 0.59263 

Basic + PCE 0.44316 0.61474 

MLE + correlation 0.44784 0.60906 

MLE + PCE 0.44000 0.63895 

Model3 + correlation 0.41728 0.61855 

Model3 + PCE 0.46842 0.64842 

Phase + correlation 0.47684 0.62316 

Phase + PCE 0.48105 0.62211 

Proposed Method 

(Gaussian Kernel) 

0.49789 0.65368 

Proposed Method 

(Joint Bilateral Kernel) 

0.51684 0.68421 

Table 4.9 Performance comparison between Gaussian Kernel and Bilateral Kernel for 

128 × 128 images 
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Method Basic Li’s method Phase method 

Proposed 

Scheme 1 

Proposed 

Scheme 2 

Speed 

(s/image) 

0.361612 0.363233 0.366265 0.364121 0.413255 

Complexity 

Gain compared 

with Basic 

0% 0.45% 1.29% 0.6938% 14.2813% 

 

Table 4.10 Computation time for the different approaches 

  FPR=0.05 FPR=0.01  FPR=0.001 

Basic 0.8925 0.7667  0.4866 

MLE 0.9183 0.8525  0.6016 

Phase 0.9125 0.8575  0.5850 

Model3 0.9000 0.8425  0.6050 

Model5 0.8592 0.7733  0.5200 

Proposed scheme 1 0.9150 0.8550  0.6733 

Proposed scheme 2 0.9333 0.8933 0.6667 

Table 4.11 Performance comparison of the two scheme proposed 

 

4.5 Chapter Summary 

Though PRNU has been proved as an effective means for source camera identification, 

the scene content artifact can severely deteriorate the performance of PRNU-based 

camera identification.  The detection accuracy will be low if the image contains dark 

areas and complicated texture, the image size is small and the quality of image is bad.  

In this paper, we have studied the pixel reliability of detection over the local variance 
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and the noise residual magnitude.  We use the local variance of each pixel to estimate 

the distribution of the undesired noise signal.  With the estimated distribution, the 

general matched filter which is an optimal detector theoretically is incorporated into 

the peak to correlation detector to perform the source camera identification tasks.  The 

proposed method is compared with several state-of-art methods.  The experiments 

show that the proposed method outperformed other state-of-the-art methods in terms 

of the ROC curve and detection accuracy for both source camera identification and 

classification problems. 
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Chapter 5 Conclusion and future work 

5.1 Conclusion 

While the advancement of technology brings countless benefit to the daily life of 

modern people, several pressing issues also come to surface due to the dramatic change 

of our life style.  The digital image forensics is becoming increasingly important in 

the current age for three reasons.  Firstly, the widespread use of digital imaging 

devices makes digital images more frequently presented in the court as pieces of 

evidence.  Secondly, the dedicated image editing software allows a layman to modify 

the digital images without leaving any obvious traces.  Last but not least, the digital 

images differ fundamentally from the traditional images in the way they are taken and 

stored which makes the conventional laws/practices for evidence admission not valid 

for digital images.  

The Photo Response Non-uniformity (PRNU) has recently emerged as the most 

powerful tool for source camera identification.  The PRNU based method is capable 

of identifying the source device with a high accuracy while most of the other methods 

can only identifying the model of the source camera.  The PRUN based method can 

also be utilized to perform image forgery detection.  The detection accuracy of PRNU 

based source camera identification method depends on the size of the image 

investigated.  If the resolution of the testing image is low, the detection statistics 

obtained by the correlation detector will be not reliable.  Improving the detection 

accuracy for small images is important because the images may be cropped or resized.  

It is also important for the forgery detection in that if a certain portion of the image is 

believed to be forged, the PRNU-based detection need to be performed in a small area 
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of the image.  Apart from the resolution of the image, another factor that influences 

the accuracy of PRNU-based detection is the scene content.  Due to the non-ideal 

property of the image denoising filter, the noise residual which contains the PRNU 

signal might be contaminated by the scene artifact if the testing image has complicated 

scene content.  This thesis, therefore, studies how the scene content affects the 

performance of PRNU-based source camera identification and proposes some methods 

to alleviate the problem.   

The scene content effects on the accuracy of PRNU based camera identification are 

analyzed.  The PRNU-based source camera identification method can be formulated 

as a two hypothesis signal detection problem.  H0 represents the query image not 

coming from the camera under test.  H1 represents query image that is taken by the 

camera under test.  It has been shown that the distribution of the correlation under H1 

is significantly influenced by the texture of the image.  The mean correlation of the 

image block decreases with the variance of the image while the standard deviation of 

the correlation increases with the variance.  Both changes increase the overlap 

between the distribution of the correlation under H0 and that under H1.  Hence false 

identification is more likely to occur if an image contains more textures in its content.  

However, the relation between the texture and reliability of the image is very hard to 

model due to the complexity of denoising filters.  Therefore, in Chapter 3, the 

artificial neural network is proposed to model the relation between the reliability of 

the image and different features.  It has been proved as a universal approximator for 

different functions.  The neural network is trained to improve the reliability of an 

image for PRNU-based detection by allocating the optimal weightings to each block 

of the image.   
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Though the proposed neural network improves the performance of PRNU based source 

camera identification, the training phase requires a large number of data which may 

not be accessible under some cases.  Therefore, in Chapter 4, a simple method, that 

utilizes the characteristics of the noise residual to determine the weightings of each 

individual pixel of the query images, is proposed.  The relation between image 

features and it is reliability is more complex to model since some texture patterns can 

be removed effectively by the denoising filter while some texture patterns cannot.  

Instead of using the image features, the noise residual features can better characterize 

the reliability of the image.  The regions with large noise residual variance are less 

reliable for PRNU-based detection.  Baseed on the general matched filter which is 

proved to be the optimal detector, we have derived the model which allocates the 

weighting for each individual pixels based on the local variance of the noise residual.   

In conclusion, this thesis studies the scene content problem of existing PRNU-based 

camera identification methods and two algorithms are proposed to resolve the problem.  

The first one is to build a neural network to predict the weightings of different blocks 

and the second method is to estimate the variance of the undesired artifacts and 

compute the optimal weightings based on the general matched filter.  Experimental 

results show that the proposed methods can achieve better identification results as 

compared with the state-of-art methods.  
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5.2 Future works 

The face-based authentication system has gained increasing popularity in recent years 

in the access control application.  This kind of system can be used for security check, 

mobile phone unlocking and mobile payment.  As a biometric authentication system 

similar to the fingerprint authentication system, the face recognition system does not 

require any additional sensor since all the smart phones are equipped with the digital 

image sensors.  However, the face recognition system is vulnerable to the face spoof 

attacks.  The face spoof attack refers to the attempts of using the copied photos or 

videos played on display devices like the tablet to deceive the face recognition system.  

Since it is relatively easy to gain access to the personal face images or videos, the 

security level of the face recognition will be greatly undermined by the face spoof 

attacks.  Studies [62] have shown that the state-of-art Commercial Off-the-Shelf 

(COTS) face recognition system has poor capability of detecting the face spoof attacks.   

Several methods have been proposed in the literature to deal with the face spoof attacks.  

These methods can be classified into four categories i.e. motion based 

method[61][63][64][65], texture based methods[66][67][68][69], image quality 

analysis based methods [70]and methods based on other cues[71][72][73].  The state-

of-art method [62] can achieves detection rate of 86.7% - 94.7% accuracy at a false 

alarm rate at 10%.  The accuracy is not very high and it still has some room for 

improvement. 

The printed photos or displayed videos might bring an additional noise to the face 

recognition camera due to the imperfection of printer and displaying device.  This 

noise will in turn contaminate the PRNU signal and decrease the correlation between 
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the noise residual of spoof face image and the reference PRNU.  Some preliminary 

experiments have been done on the camera of a LG G3 smart phone to verify the 

hypothesis.   

 

Image No PCE for Natural Image PCE for corresponding 

Printed Image 

1 752.8186 2.0642e+003 

2 813.7045 3.6590e+003 

3 1.1552e+003 1.6977e+003 

4 3.5437e+003 2.5982e+003 

5 4.1478e+003 3.2444e+003 

6 4.5767e+003 3.9264e+003 

7 4.4322e+003 4.4125e+003 

8 8.5010e+003 5.4183e+003 

9 6.3818e+003 3.9956e+003 

10 1.0119e+004 6.7510e+003 

11 (blue sky) 3.5230e+004 7.1038e+003 

Table 5.1 PCE for natural images and it printed version 
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Figure 5.1 Examples of Natural Image (left) and its printed version (right) 

In the first experiment, ten images of the natural scene and a blue sky image are 

selected and printed out. The PCE for the natural images and printed images are 

calculated.  Table 5.1 shows their PCE values.  It can be seen that for the images with 

large PCE, the PCE drops obviously. For the images with small PCE, the PCE may 

increase.  However, the experiment is considered to be biased because the lighting 

condition is different for images in comparison. The printed images are taken indoors 

with a good lighting condition. Some of the natural scene images are taken in poor 

lighting condition.  

Therefore the second experiment was carried on. In this experiment, the face 

recognition system was simulated. Ten face images were taken with a fixed 

background (smooth wall). Then one face images are printed out (all the face images 

are similar).  The printed face images are placed in the same place where the face 

images are taken.  Ten images containing the original background are also taken for 

comparison.  Example of images is shown in Figure 5.1.  In this way, all the images 

are guaranteed to be taken in the same lighting condition. The result of PCE value is 

shown in Table 5.2. It can be seen that the PCE for the background is the highest.  The 

PCE for natural face image is lower than that of the background because the texture of 
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the face will reduce the correlation value.  The PCE drops for over 200 for the printed 

face image as compared with the live face image.  To further verify that the decrease 

of correlation is caused by the noise of printer, the variance of the noise residual for 

both the live image and spoof image were calculated.  For the whole image the 

variances of the noise residual for live and spoof image is 2.33 and 2.56 respectively.  

For the smooth regions, the variance becomes 2.17 and 2.56 respectively.  This data 

suggests that the printed image has a higher noise level as compared with the live 

captured one.  The experiment shows that the additional noise caused by printing will 

decrease the correlation statistics in the PRNU-based detection process.  

Therefore, for the live face detection of an authentication system, a PCE predictor can 

be built with machine learning algorithms using image features such as the intensity 

and texture as input features.  Since the PCE predictor is built under the assumption 

that image is live captured, the PCE value will be lower than the predicted value if a 

printed image is used to deceive the face recognition system.  Given that the camera 

is fixed and under the control of system owner, the predict value can be of high 

accuracy and the statistical distribution of predicting error can also be established. 

Then with Neyman Pearson theory, a threshold can be determined to achieve a certain 

FRR, e.g. 10-3.  If the PCE of an image is smaller than the threshold, it can be decided 

that it is not a live capture.  To the best of our knowledge, the proposed method differs 

fundamentally to all the existing methods in the literature.  Besides it is also possible 

to combine PRNU based features with other features such as the image distortion 

analysis features used in [62] to further improve the detection performance. 

In summary, the face spoof attacks may affect the detection of PRNU signal of the 

captured image because of the additional noise introduced by the printing or displaying 
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device.  Such interference can be utilized to detect the face spoof attacks.  A face 

image can be considered not a live capture if the correlation between its noise residual 

and the reference value is lower than the value it should be.   

 

Image No PCE for 

background(Wall) 

PCE for Natural 

Face image 

PCE for printed 

Face image 

1 1.3613e+004 1.1412e+004 8.4559e+003 

2 1.3179e+004 1.0335e+004 7.7814e+003 

3 1.2506e+004 1.0488e+004 7.3662e+003 

4 1.2907e+004 1.0487e+004 7.9190e+003 

5 1.3058e+004 1.0589e+004 7.9751e+003 

6 1.3615e+004 1.0350e+004 7.8215e+003 

7 1.3030e+004 1.0221e+004 8.0317e+003 

8 1.3461e+004 1.0466e+004 7.5776e+003 

9 1.2541e+004 1.0275e+004 7.6398e+003 

10 1.3241e+004 1.0084e+004 8.0876e+003 

Table 5.2 PCE for background, face image and printed face images 
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Appendix A 

Proof of Neyman – Pearson Theorem 

Neyman – Pearson Theorem 

When performing a binary hypothesis test between H0 and H1, to maximize the 

detection rate PD for a given false alarm rate PF A = α, H1 is decided if 
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Proof: 

The proof of Neyman – Pearson Theorem can be found in [74] and is shown here.  

To maximize the detection rate PD for a given PF A, the Lagrangian multipliers can be 

used which is expressed as,  
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where R1 is the range of x that corresponds to H1,  is the Lagrangian multiplier and 

 is the false alarm rate.  To maximize F, R1 should contain all the x values that make 
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Therefore, H1 can be decided if the following condition is satisfied, 
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where )(rL  is the likelihood ratio which is always non-negative and the value of

should be larger than zero.  Otherwise, H1 will be always be decided and the false 

alarm rate PF A will be 1.  The value of can be found from, 
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Therefore, let λγ  , the Neyman – Pearson Theorem is proved. 

 

  



103 

 

Appendix B 

Wavelet Denoising Filter 

The wavelet denoising filter proposed in [41] is used for PRNU feature extraction in 

this thesis.  This filter has been reported in [7] to have the best performance among 

several denoising filters.   

The wavelet filter [41] models the high frequency wavelet coefficients as an additive 

mixture of locally stationary noise i.e. signal with zero mean (the noise free image) 

and a stationary white Gaussian noise N(0, σ0
2) .  The local image variance is 

estimated firstly. Then a Wiener filter is used to obtain an estimate of the denoised 

image in the wavelet domain.  The details are described as follows. 

1. Compute the four level wavelet decomposition of the noisy image with the 8-tap 

Daubechies Quadrature Mirror Filters (QMF).  For each level, the high frequency 

subbands, i.e. vertical, horizontal and diagonal subbands are denoted respectively 

as h(i,j), v(i,j), d(i,j) in which i and j are the coefficient index for the corresponding 

decomposition level. 

2. Maximum a Posteriori (MAP) estimation is used to estimate the local variance of 

the noise-free image for all the wavelet coefficients in different subbands.  The 

local variance is estimated with four different window sizes i.e. 3 × 3, 5 × 5, 7 × 7 

and 9 × 9. Let the window size be W × W.  The local variance in the horizontal 

subband can be estimated by, 
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where J is the index set for the corresponding subband.  The minimum of the four 

estimated variance are selected as the final estimate i.e. 
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3. Use the Wiener filter to remove the noise in the wavelet domain.  
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For d(i, j) and v(i, j), the denoised coefficients are calculated in the same way. 

4. Repeat 1-3 for color channel and each wavelet decomposition level.  The denoised 

wavelet coefficients are transformed back to the spatial domain and form the 

denoised image.   

The parameter
0 which is the standard deviation of the stationary white Gaussian 

noise is set to 5 as suggested in [7]. 

 

 

 

  



105 

 

References  

[1] Sony Corporation, "Annual report 2012," Sony Corporation, available at 

http://www.sony.net/SonyInfo/IR/library/ar/2012/common/docs/EAR.pdf;, Japan, 

2012.  

[2] P. Blythe and J. Fridrich. Secure digital camera. Presented at Digital Forensic 

Research Workshop. 2004, .  

[3] P. W. Wong, "A watermark for image integrity and ownership verification," in IS 

AND TS PICS CONFERENCE, 1998, pp. 374-379.  

[4] H. T. Sencar and N. Memon, "Overview of state-of-the-art in digital image 

forensics," Algorithms, Architectures and Information Systems Security, vol. 3, pp. 

325-348, 2008.  

[5] K. Mehdi, H. T. Sencar and N. Memon. Blind source camera identification. 

Presented at Image Processing, 2004. ICIP'04. 2004 International Conference on. 

2004, .  

[6] S. Lyu and H. Farid. Detecting hidden messages using higher-order statistics and 

support vector machines. Presented at Information Hiding. 2003, .  

[7] J. Lukas, J. Fridrich and M. Goljan. Digital camera identification from sensor 

pattern noise. Information Forensics and Security, IEEE Transactions on 1(2), pp. 

205-214. 2006.  

http://www.sony.net/SonyInfo/IR/library/ar/2012/common/docs/EAR.pdf;


106 

 

[8] J. Fridrich, "Digital image forensics," Signal Processing Magazine, IEEE, vol. 

26, pp. 26-37, 2009.  

[9] K. Rosenfeld and H. T. Sencar, "A study of the robustness of prnu-based camera 

identification," in IS&T/SPIE Electronic Imaging, 2009, pp. 72540M-72540M-7.  

[10] M. Goljan, J. Fridrich and J. Lukáš, "Camera identification from printed 

images," in Electronic Imaging 2008, 2008, pp. 68190I-68190I-12.  

[11] E. J. Alles, Z. J. Geradts and C. J. Veenman, "Source camera identification for 

low resolution heavily compressed images," in Computational Sciences and its 

Applications, 2008. ICCSA'08. International Conference on, 2008, pp. 557-567.  

[12] M. Chen, J. Fridrich, M. Goljan and J. Lukás. Determining image origin and 

integrity using sensor noise. Information Forensics and Security, IEEE Transactions 

on 3(1), pp. 74-90. 2008.  

[13] G. Chierchia, D. Cozzolino, G. Poggi, C. Sansone and L. Verdoliva, "Guided 

filtering for PRNU-based localization of small-size image forgeries," in Acoustics, 

Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, 

2014, pp. 6231-6235.  

[14] G. Chierchia, G. Poggi, C. Sansone and L. Verdoliva, "PRNU-based forgery 

detection with regularity constraints and global optimization," in Multimedia Signal 

Processing (MMSP), 2013 IEEE 15th International Workshop on, 2013, pp. 236-241.  



107 

 

[15] G. Chierchia, G. Poggi, C. Sansone and L. Verdoliva, "A Bayesian-MRF 

approach for PRNU-based image forgery detection," Information Forensics and 

Security, IEEE Transactions on, vol. 9, pp. 554-567, 2014.  

[16] H. T. Sencar and N. Memon, "Digital image forensics," 2013.  

[17] C. Li, "Source camera identification using enhanced sensor pattern noise," 

Information Forensics and Security, IEEE Transactions on, vol. 5, pp. 280-287, 

2010.  

[18] S. McCloskey, "Confidence weighting for sensor fingerprinting," in Computer 

Vision and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE Computer 

Society Conference on, 2008, pp. 1-6.  

[19] L. Chan, N. Law and W. Siu, "A confidence map and pixel-based weighted 

correlation for PRNU-based camera identification," Digital Investigation, vol. 10, pp. 

215-225, 2013.  

[20] C. Shi, N. Law, H. Leung and W. Siu, "Weighting optimization with neural 

network for photo-response-non-uniformity-based source camera identification," in 

Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit 

and Conference (APSIPA), 2014, pp. 1-7.  

[21] X. Kang, J. Chen, K. Lin and P. Anjie, "A context-adaptive SPN predictor for 

trustworthy source camera identification," EURASIP Journal on Image and Video 

Processing, vol. 2014, pp. 1-11, 2014.  



108 

 

[22] X. Kang, Y. Li, Z. Qu and J. Huang, "Enhancing source camera identification 

performance with a camera reference phase sensor pattern noise," Information 

Forensics and Security, IEEE Transactions on, vol. 7, pp. 393-402, 2012.  

[23] I. Amerini, R. Caldelli, V. Cappellini, F. Picchioni and A. Piva, "Analysis of 

denoising filters for photo response non uniformity noise extraction in source camera 

identification," in Digital Signal Processing, 2009 16th International Conference on, 

2009, pp. 1-7.  

[24] G. Chierchia, S. Parrilli, G. Poggi, C. Sansone and L. Verdoliva. On the 

influence of denoising in PRNU based forgery detection. Presented at Proceedings of 

the 2nd ACM Workshop on Multimedia in Forensics, Security and Intelligence. 

2010, .  

[25] M. Kubat, Neural Networks: A Comprehensive Foundation by Simon Haykin, 

Macmillan, 1994, ISBN 0-02-352781-7., 1999.  

[26] T. Van Lanh, K. Chong, S. Emmanuel and M. S. Kankanhalli, "A survey on 

digital camera image forensic methods," in Multimedia and Expo, 2007 IEEE 

International Conference on, 2007, pp. 16-19.  

[27] K. San Choi, E. Y. Lam and K. K. Wong, "Source camera identification using 

footprints from lens aberration," in Electronic Imaging 2006, 2006, pp. 60690J-

60690J-8.  



109 

 

[28] Z. J. Geradts, J. Bijhold, M. Kieft, K. Kurosawa, K. Kuroki and N. Saitoh, 

"Methods for identification of images acquired with digital cameras," in Enabling 

Technologies for Law Enforcement, 2001, pp. 505-512.  

[29] S. Bayram, H. Sencar, N. Memon and I. Avcibas, "Source camera identification 

based on CFA interpolation," in Image Processing, 2005. ICIP 2005. IEEE 

International Conference on, 2005, pp. III-69-72.  

[30] M. Tsai and G. Wu, "Using image features to identify camera sources," in 

Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 

IEEE International Conference on, 2006, pp. II-II.  

[31] J. R. Janesick, Scientific Charge-Coupled Devices. SPIE press Bellingham, 

Washington, 2001.  

[32] G. C. Holst, CCD Arrays, Cameras, and Displays. JCD publishing, 1998.  

[33] J. Luk, J. Fridrich and M. Goljan. Detecting digital image forgeries using sensor 

pattern noise. Presented at Proceedings of the SPIE. 2006, .  

[34] G. E. Healey and R. Kondepudy, "Radiometric CCD camera calibration and 

noise estimation," Pattern Analysis and Machine Intelligence, IEEE Transactions on, 

vol. 16, pp. 267-276, 1994.  

[35] M. Chen, J. Fridrich, J. Lukáš and M. Goljan, "Imaging sensor noise as digital 

x-ray for revealing forgeries," in Information Hiding, 2007, pp. 342-358.  



110 

 

[36] A. El Gamal, B. A. Fowler, H. Min and X. Liu, "Modeling and estimation of 

FPN components in CMOS image sensors," in Photonics West'98 Electronic 

Imaging, 1998, pp. 168-177.  

[37] M. Chen, J. Fridrich and M. Goljan, "Digital imaging sensor identification 

(further study)," in Electronic Imaging 2007, 2007, pp. 65050P-65050P-13.  

[38] M. Goljan, J. Fridrich and T. Filler, "Large scale test of sensor fingerprint 

camera identification," in IS&T/SPIE Electronic Imaging, 2009, pp. 72540I-72540I-

12.  

[39] M. Goljan, "Digital camera identification from images–Estimating false 

acceptance probability," in Digital WatermarkingAnonymous Springer, 2009, pp. 

454-468.  

[40] J. A. Dominguez-Molina, G. González-Farías, R. M. Rodríguez-Dagnino and I. 

C. Monterrey, "A practical procedure to estimate the shape parameter in the 

generalized Gaussian distribution," Technique Report I-01-18_eng.Pdf, Available 

through Http://www.Cimat.mx/reportes/enlinea/I-01-18_eng.Pdf, vol. 1, 2003.  

[41] M. K. Mıhçak, I. Kozintsev and K. Ramchandran, "Spatially adaptive statistical 

modeling of wavelet image coefficients and its application to denoising," in 

Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE 

International Conference on, 1999, pp. 3253-3256.  

http://www.cimat.mx/reportes/enlinea/I-01-18_eng.Pdf


111 

 

[42] F. Argenti, G. Torricelli and L. Alparone, "MMSE filtering of generalised 

signal-dependent noise in spatial and shift-invariant wavelet domains," Signal 

Process, vol. 86, pp. 2056-2066, 2006.  

[43] A. J. Cooper, "Improved photo response non-uniformity (PRNU) based source 

camera identification," Forensic Sci. Int., vol. 226, pp. 132-141, 2013.  

[44] Y. Hu, B. Yu and C. Jian, "Source camera identification using large components 

of sensor pattern noise," in Computer Science and its Applications (CSA’09). 2nd 

International Conference on, 2009, pp. 1-5.  

[45] F. Gharibi, F. Akhlaghian, J. RavanJamjah and B. ZahirAzami, "Using the local 

information of image to identify the source camera," in Signal Processing and 

Information Technology (ISSPIT), 2010 IEEE International Symposium on, 2010, pp. 

515-519.  

[46] B. Liu, Y. Hu and H. Lee, "Source camera identification from significant noise 

residual regions," in Image Processing (ICIP), 2010 17th IEEE International 

Conference on, 2010, pp. 1749-1752.  

[47] R. Li, C. Li and Y. Guan, "A compact representation of sensor fingerprint for 

camera identification and fingerprint matching," in Acoustics, Speech and Signal 

Processing (ICASSP), 2015 IEEE International Conference on, 2015, pp. 1777-1781.  

[48] Y. Li and C. Li, "Decomposed photo response non-uniformity for digital 

forensic analysis," in Forensics in Telecommunications, Information and 

MultimediaAnonymous Springer, 2009, pp. 166-172.  



112 

 

[49] L. C. Jain and N. Martin, Fusion of Neural Networks, Fuzzy Systems and 

Genetic Algorithms: Industrial Applications. CRC press, 1998.  

[50] R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic 

for global optimization over continuous spaces," J. Global Optimiz., vol. 11, pp. 341-

359, 1997.  

[51] J. Vesterstrom and R. Thomsen, "A comparative study of differential evolution, 

particle swarm optimization, and evolutionary algorithms on numerical benchmark 

problems," in Evolutionary Computation, 2004. CEC2004. Congress on, 2004, pp. 

1980-1987 Vol. 2.  

[52] L. Lakshminarasimman and S. Subramanian, "Applications of Differential 

Evolution in Power System Optimization," Advances in Differential Evolution, pp. 

257-273, 2008.  

[53] R. Storn, "Differential evolution design of an IIR-filter," in Evolutionary 

Computation, 1996., Proceedings of IEEE International Conference on, 1996, pp. 

268-273.  

[54] R. Storn, "Designing nonstandard filters with differential evolution," Signal 

Processing Magazine, IEEE, vol. 22, pp. 103-106, 2005.  

[55] J. Lampinen and I. Zelinka, "Mechanical engineering design optimization by 

differential evolution," in New Ideas in Optimization, 1999, pp. 127-146.  

[56] T. Gloe and R. Böhme, "The dresden image database for benchmarking digital 

image forensics," Journal of Digital Forensic Practice, vol. 3, pp. 150-159, 2010.  



113 

 

[57] G. L. Turin, "An introduction to digitial matched filters," Proc IEEE, vol. 64, 

pp. 1092-1112, 1976.  

[58] S. M. Kay, "Fundamentals of statistical signal processing, Vol. II: Detection 

Theory," Signal Processing.Upper Saddle River, NJ: Prentice Hall, 1998.  

[59] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," in 

Computer Vision, 1998. Sixth International Conference on, 1998, pp. 839-846.  

[60] L. Caraffa, J. Tarel and P. Charbonnier, "The Guided Bilateral Filter: When the 

Joint/Cross Bilateral Filter Becomes Robust," Image Processing, IEEE Transactions 

on, vol. 24, pp. 1199-1208, 2015.  

[61] Q. Yang, K. Tan and N. Ahuja, "Real-time O (1) bilateral filtering," in 

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 

2009, pp. 557-564.  

[62] D. Wen, H. Han and A. K. Jain, "Face spoof detection with image distortion 

analysis," Information Forensics and Security, IEEE Transactions on, vol. 10, pp. 

746-761, 2015.  

[63] L. Sun, G. Pan, Z. Wu and S. Lao, "Blinking-based live face detection using 

conditional random fields," in Advances in BiometricsAnonymous Springer, 2007, 

pp. 252-260.  

[64] S. Bharadwaj, T. I. Dhamecha, M. Vatsa and R. Singh, "Computationally 

efficient face spoofing detection with motion magnification," in Computer Vision 



114 

 

and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on, 2013, pp. 

105-110.  

[65] K. Kollreider, H. Fronthaler, M. I. Faraj and J. Bigun, "Real-time face detection 

and motion analysis with application in “liveness” assessment," Information 

Forensics and Security, IEEE Transactions on, vol. 2, pp. 548-558, 2007.  

[66] J. Yang, Z. Lei, S. Liao and S. Z. Li, "Face liveness detection with component 

dependent descriptor," in Biometrics (ICB), 2013 International Conference on, 2013, 

pp. 1-6.  

[67] T. de Freitas Pereira, A. Anjos, J. M. De Martino and S. Marcel, "Can face anti-

spoofing countermeasures work in a real world scenario?" in Biometrics (ICB), 2013 

International Conference on, 2013, pp. 1-8.  

[68] I. Chingovska, A. Anjos and S. Marcel, "On the effectiveness of local binary 

patterns in face anti-spoofing," in Biometrics Special Interest Group (BIOSIG), 2012 

BIOSIG-Proceedings of the International Conference of the, 2012, pp. 1-7.  

[69] T. de Freitas Pereira, A. Anjos, J. M. De Martino and S. Marcel, "LBP− TOP 

based countermeasure against face spoofing attacks," in Computer Vision-ACCV 

2012 Workshops, 2013, pp. 121-132.  

[70] J. Galbally, S. Marcel and J. Fierrez, "Image quality assessment for fake 

biometric detection: Application to iris, fingerprint, and face recognition," Image 

Processing, IEEE Transactions on, vol. 23, pp. 710-724, 2014.  



115 

 

[71] T. Wang, J. Yang, Z. Lei, S. Liao and S. Z. Li, "Face liveness detection using 3d 

structure recovered from a single camera," in Biometrics (ICB), 2013 International 

Conference on, 2013, pp. 1-6.  

[72] J. Komulainen, A. Hadid and M. Pietikainen, "Context based face anti-

spoofing," in Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE 

Sixth International Conference on, 2013, pp. 1-8.  

[73] G. Chetty, "Biometric liveness checking using multimodal fuzzy fusion," in 

Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, 2010, pp. 1-8.  

[74] H. L. Van Trees, Detection, Estimation, and Modulation Theory. John Wiley & 

Sons, 2004.  

 


