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ABSTRACT 

Abstract of thesis entitled:    Robust Optimal Design of HVAC Systems 

Considering Uncertainty and Reliability 

Submitted by          :    Cheng Qi 

For the degree of       :    Doctor of Philosophy at The Hong Kong Polytechnic 

University in September, 2016 

This thesis presents a robust optimal design method of HVAC systems in buildings 

concerning the uncertainties of design inputs and the reliability of system components. 

The developed methods include uncertainty-based optimal design considering 

uncertainties only, robust optimal design concerning uncertainties and reliability, 

probabilistic approach for generating the cooling load distribution of required accuracy 

and reliability quantification methods (including Markov method and sequential Monte 

Carlo simulation). 

Monte Carlo simulation is a broad class of computational algorithms that rely on 

repeated random sampling to obtain numerical results. In this thesis, Monte Carlo 

simulation is used for generating cooling load distributions. In order to represent the 

characteristics of the uncertainties of design input in cooling load distribution, sufficient 

number of Monte Carlo simulation is required. A probabilistic approach is developed 

to determine the minimum number of Monte Carlo simulations for accuracy. 

Reliability analysis or assessment is necessary to avoid/reduce losses caused by both 

the normal situations and abnormal situations such as the failure of some components. 

Markov method and sequential Monte Carlo simulation are frequently used to conduct 
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the reliability assessment in other fields such as electrical engineering. In this thesis, 

both the two methods are used to conduct the reliability assessment of HVAC system. 

Availability risk cost is considered as the index to evaluate the system reliability. 

An uncertainty-based optimal design is developed and used to optimize the chiller plant 

design. It ensures that the chiller plant operate at a high efficiency and the minimum 

annual total cost (including annual operational cost and annualized capital cost) could 

be achieved under various possible cooling load conditions, considering the uncertain 

variables in cooling load calculation (i.e., weather conditions). A case study on the 

chiller plant of a building in Hong Kong is conducted to demonstrate the design process 

and validate the uncertainty-based optimal design. 

A robust optimal design method is proposed to optimize the design of chiller plants 

concerning impacts of uncertainty in the design input data and the system reliability in 

operation. Monte Carlo simulation is used to generate the cooling load distribution and 

Markov method is used to obtain the probability distribution of system states 

considering the different failure rates between constant-speed chillers and variable-

speed chillers. A case study of a building in Hong Kong is conducted to demonstrate 

the design process and validate the robust optimal design method. Comparisons are 

made among the conventional design, uncertainty-based optimal design and robust 

optimal design. The results show that the system could operate at a relatively high 

efficiency and the minimum total annual total cost could be achieved under various 

possible cooling load conditions considering the uncertainties and system reliability. 
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A robust optimal design method is proposed to optimize the design of chilled water 

pump systems while concerning the uncertainties of design inputs and models as well 

as the component reliability in operation. Monte Carlo simulation is used to generate 

the cooling load distribution and hydraulic resistance distribution by quantifying the 

uncertainties. Markov method is used to obtain the probability distribution of the system 

state. Under different control methods, this proposed design method minimizes the 

annual total cost. A case study on a building in Hong Kong is conducted to demonstrate 

the design process and validate the robust optimal design method. Results show that the 

system could operate at a relatively high efficiency and the minimum total life-cycle 

cost could be achieved. 

A robust optimal design based on sequential Monte Carlo simulation is proposed to 

optimize the design of cooling water system. Monte Carlo simulation is used to obtain 

accurate cooling load distributions, power consumptions and unmet cooling loads. 

Convergence assessment is conducted to terminate the sampling process of Monte Carlo 

simulation. Under different penalty ratios and repair rates, this proposed design 

minimizes the annual total cost of cooling water system. A case study of a building in 

Hong Kong is conducted to demonstrate the design process and test the robust optimal 

design method. The results show that the minimum total cost could be achieved under 

various possible cooling load conditions considering the uncertainties of design inputs 

and reliability of system components. 
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NOMENCLATURE 

TC total cost 

OC operation cost 

CC capital cost 

RC availability risk cost 

EC equipment cost 

SC space cost 

COP coefficient of performance 

PLR part load ratio 

CL cooling load 

N number 

a minimum number of simulations 

b minimum number of simulations 

C capacity 

D coefficient 

e coefficient 

f coefficient 

g coefficient 

MTTF mean time to failure 

MTTR mean time to repair 

p probability 

m water flow rate 
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H pump head 

t temperature 

c specific heat of water 

S resistance coefficient 

B convergence band 

i number of simulations 

k The kth simulation 

Σ summation 

Greek symbols 

η efficiency 

µ repair rate 

α coefficient 

β coefficient 

γ confidence level 

λ failure rate 

Δ variation 

Subscripts 

n total number of components 

T total 

op operating 

C constant-speed chiller 

V variable-speed chiller 
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re required 

ava available 

pu pump 

ch chiller 

cwp cooling water pump 

cot cooling tower 

VFD variable speed drive 

set set-point 

in inlet 

out outlet 

wb wet bulb 

tot total 
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CHAPTER 1 INTRODUCTION 

 

1.1 Background and Motivation 

The building sector is usually the largest energy consumer in most countries and districts 

worldwide, especially in the metropolis such as Hong Kong (EMSD 2014; CSD 1998). In 

commercial buildings, about 40-60% of the total electricity consumption is consumed by 

the Heating, Ventilation and Air-Conditioning (HVAC) system (Wang and Ma 2008). 

Effective measures to achieve the energy saving of HVAC systems are vital for alleviating 

the energy shortage and reducing the greenhouse gas emissions. It is found that a 

significant energy-saving potential could be achieved through the optimal design and 

energy efficient operation (Lee et al. 2001; Lee and Lee 2007). 

Two main ways can be used to achieve the energy saving of HVAC systems. One is to use 

energy-efficient HVAC systems which can meet the thermal comfort requirement with 

less energy usage. The other is to use supervisory and optimal control of HVAC systems. 

The optimal control strategies, such as chiller sequence control (Wang and Ma 2008), 

pressure set-point resetting and demand control ventilation, are frequently used in the 

HVAC system. 

Optimal design of HVAC systems needs to be investigated for avoiding or reducing the 

possible energy waste and adverse impacts in the design stage. Appropriate design of 

HVAC systems is significant because it not only relates to the capital cost, but also will 
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influence the operation cost of the entire cooling system throughout the life cycle. 

Determination of the design cooling capacity plays a significant role in the selection and 

sizing of HVAC systems, which depends on the cooling load. Three conventional methods 

are often used to calculate the cooling load and determine the size and configuration of 

the HVAC system (ASHRAE 2009; Lu 2008; Rudoy and Cuba 1979): 

1) The simplest way is to estimate the cooling load based on an index for a typical building 

in typical climate zones. With the gross floor area and the index, the maximum cooling 

load can be determined and the capacity of the HVAC system can be obtained. 

2) The cooling load of one design day or one hour is calculated, where the outdoor weather 

data are selected based on the statistical outdoor weather condition and maximum values 

are assigned for variables representing the internal heat sources such as the occupants, 

lighting, plug-in equipment, etc. 

3) Professional simulation platforms such as EnergyPlus (2015), DOE-2 (2009), TRNSYS 

(2015) and DeST (2011) are employed to get the annual cooling load based on typical 

meteorological year (TMY) data and schedules of the occupants, lighting and plug-in 

equipment. TMY data for typical regions are used. Based on the peak cooling load and 

the cooling load distribution, the design cooling capacity and configuration of the HVAC 

system can be determined. 

The cooling loads obtained from the above three methods are commonly subject to a 

deterministic model-based simulation. Even for the third method, parameters used in the 

calculation are constants for each time step, like the number of occupants and lighting, 

etc. However, in actual operations, these parameters are very likely to be different from 
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those used in the design calculation, which will cause the deviation between actual cooling 

load and the design cooling load. Due to the inevitable uncertainty of weather data, indoor 

occupants and internal heat gain, designers tend to select a much larger capacity than the 

peak duty (e.g., multiply a safety factor) so that the HVAC system can fulfil the cooling 

demand under any uncertain conditions for safety (Domínguez-Muñoz et al. 2010 and Sun 

et al. 2014). This may result in significant oversizing of HVAC system and thus a large 

amount of energy waste because the actual operating conditions are seldom the same as 

the design condition (Yik et al. 1999; Djunaedy et al. 2011 and Woradechjumroen et al. 

2014). To reduce the oversizing of HVAC systems and the associated energy waste, some 

measures, such as using a detailed simulation method, statistic weather data, model 

calibration and even experiments, have been recommended (Domínguez-Muñoz et al. 

2010). However, these methods cannot help to eliminate or minimize the oversizing due 

to the adoption of conservative criteria for estimating the cooling loads of buildings 

(Cheng et al. 2015). Besides, some engineers think they can grossly oversize the HVAC 

system and then use variable speed drives to maintain high efficiency and reduce 

operation cost during the part load period (Walski et al. 2003; Hartman 2001; Koury et al. 

2001; Tassou and Qureshi 1998 and Ma and Wang 2011). 

Reliability can be defined as the probability of successful operation or performance of 

systems and their related equipment, with minimum risk of loss or disaster (Stapelberg 

2009). It is another very important issue in the design of HVAC system besides uncertainty. 

In conventional design and optimization methods, the components or subsystems of 

HVAC systems are always assumed to be healthy (i.e. they only have a system state). 



 13 

However, in fact, they might be unavailable due to maintenance or failures. Failure of one 

component may result in the incapability to fulfill the cooling demands of users. The most 

commonly used way is to install a standby or backup component of equal capacity in 

addition to the basic working systems to supply sufficient cooling in case that the 

equipment fails to operate or needs to be maintained (ASHRAE Handbook 2012). Such a 

conventional design method is reasonable but not optimal. Without considering the 

uncertainty and reliability in a quantified way, the empirical method may result in serious 

oversizing problems, low efficiency and energy waste. 

To address the above issues, the research in this thesis, therefore, focuses on developing 

a new optimal design method to obtain the appropriately sized and configured HVAC 

systems (including chillers, chilled water systems and cooling water systems) by 

considering uncertainties of design inputs and reliability of system component in 

quantified ways. The proposed design method could ensure that the HVAC system can 

always operate at high-energy performance even though the actual operating conditions 

deviate from the design conditions significantly due to uncertainties of design inputs and 

reliability of system components. 

1.2 Aim and Objectives 

The aim of this study is develop robust optimal design methods for the HVAC system. 

The new methods should render the designed systems to maintain good performance 

when uncertainty or failures occur in operation. 
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The objectives of this study can be summarized as follows: 

1) To generate accurate cooling load distributions considering uncertainties of design 

inputs. Factors that contain uncertainty are classified and quantified. A probabilistic 

approach is developed to determine the minimum number of Monte Carlo simulations 

for achieving the required accuracy. 

2) To quantify the reliability of system components by using Markov method and 

sequential Monte Carlo simulation. Comparison between Markov method and 

sequential Monte Carlo simulation is conducted.  

3) To develop an uncertainty-based optimal design method of chiller plant when only 

considering uncertainties at design stage. By using the proposed design method, the 

design cooling capacity and configuration of chiller plant can be determined based on 

the minimized total life-cycle cost. 

4) To develop a robust optimal design method of chiller plant when considering both 

the uncertainties of design inputs and reliability of system components. Different failure 

rates are considered for constant-speed chiller and variable-speed chiller. 

5) To develop a robust optimal design method of chilled water system under different 

control methods considering the uncertainties of design inputs and reliability of system 

components. The chilled water pumps are assumed to be identical in parallel and have 

the same failure rate. 

6) To develop a robust optimal design method of cooling water system based on 

sequential Monte Carlo simulation considering the uncertainties of design inputs and 

reliability of system components. Each individual cooling water pump and each 
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individual cooling tower are assumed to be independent from the other components. 

1.3 Organization of this Thesis 

In this thesis, Chapter 2 presents a comprehensive literature review on the conventional 

design method of HVAC systems. The oversizing problem of HVAC systems and 

subsystems is discussed. In addition, the uncertainty in HVAC fields is introduced in 

this chapter. The uncertainty analysis and reliability assessment of building energy 

systems are also discussed. 

Chapter 3 presents the design optimization method of HVAC systems and the 

quantification methods of uncertainty and reliability. The concept of robust optimal 

design used in HVAC systems is presented. Four optimal design methods are proposed 

for handling different uncertainty and reliability conditions. The proposed methods 

contain the uncertainty-based optimal design, robust optimal design with different 

failure rates, robust optimal design with the same failure rate and robust optimal design 

based on sequential Monte Carlo simulation, which are used in Chapters 4, 5, 6 and 7 

respectively for the design of HVAC subsystems.  

Chapter 4 presents a probabilistic approach for generating the accurate cooling load 

distribution considering the uncertainties of inputs. In the design optimization of HVAC 

systems, generating the accurate cooling load distribution is the key process to 

determine the optimal configuration of HVAC systems. The proposed approach is used 

to evaluate the stability of cooling load distribution and determine the minimum 
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simulation number. In addition, the minimum Monte Carlo simulations corresponding 

to each threshold are determined. 

Chapter 5 comprehensively presents the quantification methods of reliability. The 

probability distribution of system state is generated by the reliability assessment, which 

plays an important role in the robust optimal design of HVAC systems. In this chapter, 

both the Markov method and sequential Monte Carlo simulation are used to quantify 

the reliability. A comparison is made between Markov method and sequential Monte 

Carlo simulation. 

Chapter 6 presents an uncertainty-based optimal design method of chiller plant based 

on probabilistic approach. Only uncertainties in the cooling load of a building are 

considered. A statistic method is developed to conduct the convergence assessment of 

generating accurate cooling load distributions. Design cooling capacity and 

configuration of the chiller plant are optimized based on the generated cooling load 

distributions. Total life-cycle cost of the chiller plant using the uncertainty-based 

optimal design method is analyzed and compared with that using the conventional 

design method. 

Chapter 7 presents a robust optimal design method of chiller plant concerning both 

uncertainty and reliability simultaneously. Different from the Chapter 4, the reliability 

assessment of chiller plant is considered. Moreover, the failure rate difference between 

constant-speed chiller and variable-speed chiller is considered and quantified. The 

cooling load distribution is generated based on the quantified uncertainty. Searching 
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range of the cooling capacity of chiller plant is obtained based on the cooling load 

distribution. Based on the probability distribution of chiller plant state, design cooling 

capacity and configuration of the chiller plant are optimized. Total life-cycle cost of the 

chiller plant using the robust optimal design method is analyzed. 

Chapter 8 presents a robust optimal design method of chilled water systems considering 

both uncertainty and reliability simultaneously. In this chapter, the chilled water pumps 

are assumed to have the same failure rate. Design chilled water flow rate and pump 

head are determined based on the cooling load distribution and hydraulic resistance 

distribution respectively. Under different control methods, the total pump flow capacity 

and number/size of pump are optimized. Total life-cycle cost of the chilled water system 

using the robust optimal design method is analyzed. 

Chapter 9 presents a robust optimal design method of cooling water system based on 

sequential Monte Carlo simulation. Different from Chapters 5 and 6 which use the 

Markov method to quantify the reliability, in this chapter sequential Monte Carlo 

simulation is used for the quantification of reliability. Uncertainties in the cooling load 

and reliability of system components are quantified. A statistic method is used to 

conduct the convergence assessment of obtaining the accurate cooling load distribution, 

operation cost and unmet cooling load. Design cooling water flow rate and 

configurations of the condenser water pumps and cooling towers are optimized. Total 

life-cycle cost of the cooling water system using the robust design method is analyzed 

and compared with that using the conventional method and uncertainty-based optimal 
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design. 

Chapter 10 presents the main conclusions and contributions. Shortcomings of this study 

and recommendations for the future study are presented.
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CHAPTER 2 LITERATURE REVIEW 

2.1 An Overview 

Since this study attempts to develop robust optimal design methods considering 

uncertainties of design inputs and reliability of system components, previous research 

efforts on the design and optimization of HVAC systems, uncertainty study and 

reliability assessment in building energy systems are reviewed. 

Section 2.2 presents the conventional design methods of chillers, chilled water systems 

(i.e. chilled water pumps) and cooling water systems (i.e. cooling water pumps and 

cooling towers). In Section 2.3, applications of uncertainty analysis in building energy 

systems are reviewed, especially in the design of HVAC subsystems. In Section 2.4, 

reliability assessment and its application in building energy systems are reviewed. In 

Section 2.5, research on the above three sections is summarized. Limitations of existing 

studies and challenges for future work are also presented. 

2.2 Conventional Design of HVAC Systems 

A typical central air-conditioning system is usually comprised of a chilled water loop, a 

condenser water loop and indoor air loops (Lu et al. 2004), as shown in Fig.2.1. In this 

thesis, the research focuses on the chilled water loop and condenser water loop. The 

main components of a chilled water loop are comprised of chiller evaporators, chilled 

water pumps and AHUs. Chiller evaporators transfer the cooling generated by 

refrigerant into the chilled water. Chilled water pumps circulate chilled water from 
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chiller evaporators to AHUs. The main components of a condenser water loop consist 

of chiller condensers, cooling water pumps, cooling towers and fans (ASHRAE 

handbook 2009). Chiller condensers transfer the indoor cooling load and the heat 

generated by the compressors into the cooling water. Cooling water pumps circulate 

cooling water from chiller condensers to cooling towers. The heat load is rejected to the 

ambient through heat transfer and evaporation by cooling towers. 

 

Fig. 2.1 A typical central air-conditioning system 

2.2.1 Chiller plant 

Among all HVAC components and equipment, chiller plant is usually the largest energy 

consumer, accounting for up to 50% of the total energy consumption of the entire HVAC 

systems (Sun et al. 2013). The sizing and selection of chiller plants play the most 

important role in determining the energy performance of the HVAC systems (Lee et al. 

2001). The conventional design of chiller plant, proposed by ASHRAE (ASHRAE 
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handbook 2012), is usually based on sizing the components individually to meet a peak 

duty at a nominal operating point under the design conditions. Due to the inevitable 

uncertainty of weather data, indoor occupants and internal heat gain, designers tend to 

select a larger capacity than the peak duty (e.g., multiply a safety factor) in order that 

the plant can fulfil the cooling demand under any uncertain conditions for safety 

(Domínguez-Muñoz et.al 2010; Sun et al. 2014 and Cheng et al. 2015). This may result 

in significant oversizing of chiller plant and a large amount of energy wastes because 

the actual operating conditions are seldom the same as the design condition (Yik et al. 

1999). Oversizing of chiller plants is usually encountered because of improper cooling 

load calculation method, predefined weather data, and internal heat-gain criteria (Lee et 

al. 2001; Yu and Chow 2000). Some measures, such as using a detailed simulation 

method, statistic weather data, model calibration and even the experiments, have been 

recommended to reduce the oversizing problems to a certain degree caused by 

uncertainties (Domínguez-Muñoz et.al 2010). However, these methods cannot help to 

minimize the oversizing due to the adoption of conservative criteria for estimating the 

cooling loads of buildings (Cheng et al. 2015). 

Different from the early design methods that only address the peak cooling load of 

selected design day, some studies also have taken part load conditions into account in 

order to achieve a high efficiency in most of operating time of chiller plants (Trane 

2005). There are several approaches available to improve the energy performance of 

chiller plants under part load conditions since such conditions frequently occur 

throughout the entire cooling season (Gorter 2012). In order to improve the systems 
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PLR (part load ratio) that affects the COP (coefficient of performance) strongly, optimal 

sequence control is considered as an effective approach for the chiller plant with 

multiple chillers (Braun et al. 1989; Gidwani 1987; Kaya 1991 and Chang et al. 2005). 

When the actual cooling load falls down from the peak duty, some of the chillers can be 

shut down so that each of the operating chillers can operate at a relatively higher PLR. 

Another important approach to ensure the performance of a chiller plant at high level is 

to use high efficiency chillers, particularly the chillers having good performance 

characteristics even under part load conditions (Yu and Chan 2007). For instance, 

variable-speed chillers may be employed to improve the energy efficiency when the 

chiller plant operate at part loads (Hartman 2001; Koury et al. 2001; Tassou and Qureshi 

1998 and Ma and Wang 2011). In addition, some studies show that the high COP of 

chiller plants can also be achieved by using hybrid chillers with different types of 

compressors or different energy sources, which can ensure all operating chillers within 

the optimum loading ranges (Celuch 2001). 

When the part load conditions are considered in conventional optimal chiller design 

methods, they are typically based on the annual cooling load under the predefined 

conditions, which is commonly subject to a deterministic model-based simulation (Sun 

et al. 2014; Ashouri et al. 2014). The system may achieve a satisfactory performance 

when the actual operating conditions are the same or similar as the predefined 

conditions. However, when the actual conditions are different from predefined 

conditions caused due to various uncertain factors, the chiller plant is very likely to 

operate at a low efficiency (Ashouri et al. 2014; Van Gelder et al. 2013). 
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2.2.2 Chilled water system 

The sizing and selection of chilled water pump systems is the second most important 

aspects in determining the energy performance of the HVAC systems (Tirmizi et al. 

2012; Nolte 2004). The conventional design of chilled water pump systems, proposed 

by ASHRAE Handbook (ASHRAE handbook 2012), mainly concerns the design flow 

required and design pressure head required. The intersection of the required head and 

flow on the pump curve should occur close to or perhaps a little to the left of best 

efficiency point (BEP), which may maintain the pumps operating at high efficiency and 

thus minimize the electricity cost of operating the pumps (Ahlgren 2001). Considering 

that pumps are only manufactured in certain sizes, selection range between 66% and 

115% of design flow at the BEP are suggested (ASHRAE handbook 2008). In a central 

air-conditioning system, the designer tends to use identical pumps in parallel to share 

the system flow (ASHRAE handbook 2004). In addition, a standby or backup pump of 

equal capacity and pressure installed in parallel to the main pumps is recommended to 

operate to ensure continuous operation when a pump fails to operate or needs to be 

maintained (ASHRAE handbook 2004). 

Oversizing of chilled water pump systems, which is a common problem in HVAC fields 

(Mansfield 2001), may result in high capital cost, high operation cost, and increased 

maintenance problems over the system life-cycle when compared to properly sized 

systems (Ahlgren 2001). Oversizing of pump systems contain the oversizing of design 

flow and oversizing of design pressure head (Cheng et al. 2016). Due to the inevitable 

uncertainty of input parameters (e.g., weather condition, occupancy) on cooling load 
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calculation (Ashouri et al. 2014), designers tend to select a larger design cooling 

capacity than the peak duty (e.g., multiply a safety factor) in order that the design 

cooling capacity can fulfil the cooling demand for safety (Domínguez-Muñoz et al. 

2010; Sun et al. 2014). This may result in significant oversizing of cooling capacity and 

design flow (Yik et al. 1999). Based on the design flow rate and the design information 

of the chilled water loop, the component pressure drops are calculated for determining 

the assumed pump head. Additional design safety factors are added on the assumed 

pump head to get the design pump head to allow the changes of system load and to 

cover unknown or unforeseen pressure drop factors (Mansfield 2001). Sometimes an 

artificial aging factor (e.g., an extra 15%) is included to account for the decrease in pipe 

diameter as deposits build up on the inside surfaces of the pipes due to aging (Ahlgren 

2001). Since part load conditions frequently occur throughout the entire cooling season 

(Gorter 2012), some engineers think they can grossly oversize a pump system and then 

use variable speed drives to maintain high efficiency and reduce operation cost during 

the part load period (Walski et al. 2003). However, the capital cost and operation cost 

are still high while the system is not properly designed even variable speed drives are 

used. 

2.2.3 Cooling water system 

The sizing and selection of cooling water systems plays a significant role in 

determining the energy performance of the HVAC systems (Jin et al. 2007; Bernier 

1995 and Crowther et al. 2004). According to ASHRAE Handbook (ASHRAE 

handbook 2012), the thermal performance of cooling towers is determined by 
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following parameters, i.e. return and supply cooling water temperatures, inlet air 

wet-bulb temperature and design cooling water flow rate (Stanford 2011; United 

Nations Environment Program 2006; Cooling tower fundamentals 1983; 

Milosavljevic and Heikkilä 2001 and Mohiuddin et al. 1996). Design cooling water 

flow rate depends on the total heat rejection of condensers under the given working 

conditions. The total heat rejection contains the design cooling capacity and heat 

of compression (Cooling tower fundamentals 1983). Due to the inevitable 

uncertainty of weather data, indoor occupants and internal heat gain, designers tend 

to select a larger design cooling capacity than the peak duty (e.g., multiply a safety 

factor) in order that the plant can fulfil the cooling demand under any uncertain 

conditions for safety (Domínguez-Muñoz et al. 2010; Sun et al. 2014). At the same 

time, additional cooling tower capacity is added in case that the ambient 

temperature is off-design or heat rejection varies from the design condition 

(Stanford 2011). This may result in significant oversizing of design cooling 

capacity and cooling tower capacity and thus a large amount of energy wastes.  

In selecting a pump for cooling water system, considerations are mainly given to 

the static pressure and the system friction loss (ASHRAE handbook 2012). The 

pump inlet must have an adequate net positive suction pressure (Mansfield 2001). 

In addition, continuous contact with air introduces oxygen into the water and 

concentrates minerals that can cause scale and corrosion on a continuing basis 

(ASHRAE handbook 2012). Fouling factors and an increased pressure caused by 

aging of the piping must be taken into account in the design of cooling water pump 
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(Ahlgren 2001).  

However, research on cooling water systems has focused on the individual 

components of cooling systems, not the system as a whole (Kim and Smith 2001). 

In addition, very limited attention has been placed to the interactions among 

cooling towers, cooling water pumps and condensers of chillers (Panjeshahi et al. 

2009), even though changes to operating conditions of cooling water systems 

frequently happen. 

2.2.4 Concluding remarks 

Conventional design methods and previous optimal design methods in HVAC field 

mainly address the design capacity and operational performance of systems under 

predefined conditions (without considering the uncertainties). However, the actual 

operating conditions may change significantly throughout the lifetime of the 

building energy system. Under the deterministic inputs (e.g., weather conditions, 

number of occupants), HVAC systems could be possibly ensured to operate at a 

high efficiency using the statistic and historic data. However, given the fluctuations 

of weather conditions and number of occupants, the optimal design alone cannot 

guarantee the HVAC systems operating at high efficiency. Based on the predefined 

conditions, conventional design and even optimal design would result in obvious 

deviations between the design and the actual system performance and thus a large 

amount of energy waste. Therefore, the uncertainties of variables in these condition 

should not be ignored in the engineering practice. 
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2.3 Studies on Uncertainty Issue in HVAC Fields 

Uncertainty is a term used to encompass many concepts with different definitions 

(Morgan et al. 1992). It has been defined as a degree of ignorance (Beven 2010), a state 

of incomplete knowledge (Cullen and Frey 1999), insufficient information (Murray 

2002), or a departure from the unattainable state of complete determinism (Walker et al. 

2003). In building and structure field, the various sources and categories of uncertainty 

identified in the literature can be classified into four categories (Keith 2011): epidemic 

uncertainty, variability, linguistic uncertainty (Carey and Burgman 2008) and decision 

uncertainty (Finkel 1990). Epistemic uncertainty is the uncertainty associated with 

imperfect knowledge, which could be reduced by additional research and observation, 

i.e. model calibration and realistic data (Gillund et al. 2008). Variability is the 

uncertainty associated with diversity or heterogeneity, which cannot be minimized or 

eliminated with additional research or observation (Anderson and Hattis 1999; McCann 

et al. 2006). Since HVAC fields contain epidemic uncertainty and variability only, 

linguistic uncertainty and decision uncertainty are not considered in this study (Cheng 

et al. 2015). 

According to engineering practice, the uncertainties in the HVAC field could be divided 

into two types, including design uncertainties and operation uncertainties. Fig.2.2 

presents an outline of uncertainties in the HVAC domain (Cheng et al. 2015). Operation 

uncertainties mainly consist of information uncertainty and system reliability. Design 

uncertainties are mainly related to the cooling load uncertainty since the selection and 

sizing of HVAC subsystems (i.e., chillers, pumps, AHUs and cooling towers) mainly 
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depends on building cooling load. Cooling load uncertainty consists of the epidemic 

uncertainty and variability. Variability mainly consists of the number of occupants and 

weather conditions, which cannot be minimized or eliminated with additional research 

or observations. As for epidemic uncertainty, it concerns heat transfer performance of 

building envelopes and efficiency of air-conditioning equipment, which could be 

minimized and narrowed with additional research and observations, i.e. model 

calibration, realistic data and even correction factor. 

 

Fig.2.2 Types of uncertainties in HVAC field 

By considering and quantifying the uncertainty, the configuration of building energy 

system can be determined with confidence. Extensive studies have been done regarding 

the uncertainty and sensitivity analysis of building energy systems, which is reviewed 

in this section. 

2.3.1 Uncertainty analysis in HVAC fields 

Conventional design of HVAC system is typically based on the annual cooling load 
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under the predefined conditions, which is commonly subject to a deterministic model-

based simulation (Sun et al. 2014; Ashouri et al. 2014). The system may achieve a 

satisfactory performance when the actual operating conditions are the same or similar 

as the predefined conditions. However, when the actual conditions are different from 

predefined conditions due to various uncertain factors, the HVAC system is very likely 

to operate at a low efficiency (Ashouri et al. 2014; Van Gelder et al. 2013).  

In order to address the problem caused by uncertainties, several studies have taken the 

impact of uncertain variables into account when designing building energy systems or 

assessing the performance of the systems (Brohus et al. 2011; Eisenhower et al. 2011; 

Heiselberg et al. 2009; Hopfe et al. 2011; Zhou et al. 2013). Energy consumption of 

dwellings considering uncertainties in climate, building construction and inhabitants 

was studied by Pettersen (1994). Results show that the energy consumption can vary 

with an uncertainty of ±25-40%. Smith et al. (2010) and Li et al. (2008) presented an 

analysis on a CCHP (combined cooling, heating and power) system model considering 

uncertainties of inputs and models. Case studies under different operating strategies 

were conducted to investigate the significance and sensitivity of uncertainties in 

predicting the CCHP system performance. The source of uncertainties in a housing 

stock model was studied and method to handle the uncertainties was proposed (Booth 

et al. 2012). Zhou et al. (2013) proposed a two-stage stochastic programming model for 

the optimal design of distributed energy systems. They use genetic algorithm to perform 

the search in the first stage and Monte Carlo simulation to deal with uncertainties in the 

second stage. Burhenne et al. (2013) developed a Monte Carlo based methodology for 
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uncertainty quantification to combine the building simulation and cost-benefit analysis.  

Uncertainty analysis can be also used to assess the performance of retrofit of building 

energy systems. Eisenhower et al. (2011) conducted an uncertainty study in the 

intermediate processes by performing decomposition, aiming to find the most important 

subsystem in modelling. Lee et al. (2013) proposed a statistic method to conduct 

probabilistic risk assessment of the energy saving in energy performance contracting 

projects. Uncertainties in weather conditions, occupancy, operating hours, thermostat 

set-point, etc. were considered. Possible energy saving was obtained with quantified 

confidence. The necessity to decouple uncertainties in HVAC systems and building 

models was investigated by Augenbroe et al (2013). The coupled simulation method 

usually requires a higher level of expertise of system modeling and can be 

computationally intensive. Sun et al. (2014) proposed a design method to size building 

energy systems considering uncertainties in weather conditions, building envelope and 

operation. Menassa (2011) presented a quantitative approach to determine the 

investment value in sustainable retrofits for existing buildings considering different 

uncertainties associated with the life cycle costs and perceived benefits of the 

investment. The proposed methodology provided the decision maker with managerial 

flexibility to determine, prioritize and evaluate the required retrofits over time. O’Neill 

and Eisenhower (2013) used measured data to conduct model calibration and the 

uncertainty study was implemented to tune the models. 

However, the above studies have recognized and analyzed the impact of uncertainties 

on system performance, but they did not consider or propose effective approaches to 
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overcome or reduce these impacts, which is most important for improving the operating 

efficiency and robustness since uncertainties exist inevitably. 

2.3.2 Design of building energy systems involving uncertainty 

Design inputs such as weather conditions are used in the calculation of annual cooling 

load and most of them contain uncertainties (Li et al. 2003; Sun et al. 2014; Yıldız and 

Arsan 2011). The peak cooling load distribution was studied by Domínguez-Muñoz et 

al. (2010) considering the uncertainties in the building material, heat transfer 

coefficients of external and internal wall, internal sources, etc. The impact of furniture 

and contents (i.e. internal mass) on zone peak cooling loads, which is not accounted in 

traditional simulations, is investigated (Raftery et al. 2014). Results show that involving 

internal mass can change the peak cooling load by a median value of -2.28% (-5.45% 

and -0.67% lower and upper quartiles respectively). Uncertainties in the peak load 

prediction are investigated (Huang et al. 2015), which is used for the determination of 

design cooling capacity of HVAC system. Multi-criteria optimization is conducted 

including the energy consumption, initial cost and failure time. The annual cooling and 

heating load considering the physical, design and scenario uncertainties was 

investigated by Hopfe et al. (2011). The distribution of the annual heating/cooling load, 

weighted overheating and under heating hours related to the thermal comfort was 

analyzed. 

Uncertainty was also considered in the design optimization of building energy systems. 

The impact of uncertainties in the building performance evaluations was addressed by 
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De Wit and Augenbroe (2002). Results show that considering the uncertainties can 

change the decision maker’s choice for the same project. Sun et al. (2014) proposed a 

new design method considering the uncertainty involved in the cooling/heating load 

calculation. Results recommend that using actual weather data in the load calculation 

helps to alleviate the oversize problem in the cooling/heating system design. Zhang and 

Augenbroe (2014) investigated that how to right size a photovoltaic system. 

Uncertainties in the building’s physical properties, solar irradiance, efficiency and 

degradation rates of PV panels are considered. A method was proposed to estimate 

building energy performance in early design decisions (Rezaee et al. 2014). Design 

uncertainties involving in early design were quantified and their impact on design 

decisions was examined. Results using different models or software indicate different 

solutions. It indicates that uncertainties in the models have to be fully addressed. 

2.3.3 Concluding remarks 

From the above reviewed studies, it can be found that research on building energy 

systems involving uncertainty mainly focuses on presenting the result distribution, 

comparing with the deterministic results, finding the most important factors, calibrating 

models and analyzing the impact on system performance. However, they did not 

consider or propose effective approaches to overcome or reduce these impacts, which 

is most important for improving the operating efficiency and robustness since 

uncertainties exist inevitably. Even for the selection and sizing of HVAC system, the 

design considering uncertainties is rarely studied. 
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2.4 Reliability Assessment of Building Energy Systems 

Reliability can be defined as the probability of successful operation or performance of 

systems and their related equipment, with minimum risk of loss or disaster (Stapelberg 

2009). Reliability design has been widely applied and studied in the fields such as 

structure, military industry, power system, electronic hardware, etc. (Frangopoulos and 

Dimopoulos 2004; Heising 1991). Redundancy is usually adopted to improve the 

reliability of systems. Redundancy can be active where the additional components may 

also work under normal conditions, or passive where these components only are 

switched on during abnormal conditions or maintenance occurrence (Aguilar et al. 

2008). Passive redundancy is usually used in building energy systems. It means that a 

standby or backup component of equal capacity is installed in parallel to the main work 

systems to ensure continuous operation in case of failure or maintenance, which is 

frequently used in the convention design method to ensure the system capability 

(ASHRAE handbook 2012). 

Reliability analysis or assessment is necessary to avoid/reduce losses caused by both 

the normal situations and abnormal situations such as the failure of some components 

(Vanderhaegen 2001). Myrefelt (2004) used actual data collected from buildings of 

seven large real estate operators to analyze the reliability of the HVAC systems. Peruzzi 

et al. (2014) emphasized the importance of the reliability parameters considering 

financial (reduction of energy and maintenances costs), environmental and resources 

managing (both concerning the energy and staff) profits. Chinese et al. (2011) used a 

multi-criteria approach to select the space heating system for an industrial building, 
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where the criteria included reliability, operation cost, comfort, etc. Au-Yong et al. (2014) 

investigated the maintenance characteristics of HVAC systems that affect occupants' 

satisfaction, subsequently established a relationship between the characteristics and 

occupants' satisfaction through questionnaire surveys and interviews and finally 

develop a regression model for prediction purpose. Kwak et al. (2004) proposed a 

method to predict an optimal inspection period for condition-based preventive 

maintenance based on reliability assessment of air-conditioning systems in office 

buildings.  

From the above studies, it shows that very limited studies are done considering 

reliability of system components using quantitative methods in the design process of 

HVAC systems. Therefore, study on design optimization considering both uncertainties 

of design inputs and reliability of system components needs to be continued and 

furthered. 

2.5 Summary 

This chapter presents a comprehensive review on the design of HVAC system (including 

chillers, chilled water systems and cooling water systems), uncertainty study and 

reliability assessment in building energy systems. From the above review, the following 

research gaps can be summarized: 

I. Based on the predefined conditions, conventional design and even optimal 

design would result in obvious deviations between the design and the actual 

system performance and thus a large amount of energy wastes. 
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II. Oversizing of HVAC system is a prevalent problem for conventional design 

method due to the adoption of conservative criteria for estimating the cooling 

loads of buildings, which results in high capital cost, low operating efficiency 

and thus energy waste; 

III. Research on building energy systems involving uncertainty mainly focuses on 

analyzing the impact on system performance. However, there are few effective 

design methods developed to improve the operating efficiency and robustness 

since uncertainties exist inevitably. Even for the selection and sizing of HVAC 

system, the design considering uncertainties is rarely studied. 

IV. Reliability assessment, particularly quantitative assessment, is rarely considered 

in the design optimization of HVAC system. 

Therefore, this study attempts to develop a new design method considering uncertainties 

of design inputs and reliability of system component, aiming at providing the system 

with the capability to operate at relatively high efficiency at various possible conditions 

considering the uncertainties of design inputs and system reliability in operation. At the 

same time, the minimum total life-cycle cost could be achieved through the design 

optimization method.  
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CHAPTER 3 DESIGN OPTIMIZATION METHODS AND 

QUANTIFICATIONS OF UNCERTAINTY AND 

RELIABILITY 

 

In order to achieve more flexible, resilient and cost-effective design of the HVAC 

system, a robust optimal design method is developed in this thesis. It can ensure that 

the HVAC system could operate at high energy performance and the minimum total life-

cycle cost could be achieved under various possible cooling load conditions considering 

the uncertainties of design inputs and reliability of the components.  

This chapter presents the concept of uncertainty-based optimal design (i.e. robust 

optimal design considering uncertainty only) and robust optimal design method (i.e. 

robust optimal design considering uncertainty and reliability). Then, four types of 

design optimization methods are introduced, which contains uncertainty-based optimal 

design, robust optimal design based on Markov method with the same failure rate, 

robust optimal design based on Markov method with the different failure rates and 

robust optimal design based on sequential Monte Carlo simulation. Finally, the 

quantifications of uncertainty and reliability are presented. 

3.1 Concept of Robust Optimal Design 

Robust optimal design is essential for improving engineering productivity (Zang et al. 

2005). The typical definition of robust design is described as “a product or process is 

said to be robust when it is insensitive to the effects of sources of uncertainties, even 
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though the design parameters and the process variables have large tolerances for ease 

of manufacturing and assembly” (Fowlkes et al. 1995; Phadke 1995 and Park 2007). The 

aim of the robust optimal design is to achieve an optimal design option of minimized 

life-cycle cost, which provides the system with the capability to operate at relatively high 

efficiency at various possible conditions considering the uncertainties of design inputs 

and system reliability in operation. This proposed method takes into account the 

uncertainty and reliability compared with the conventional/optimal design method, 

which has the following features: 

• Uncertainty being considered: the designed system has enough tolerance towards 

the deviation between the actual condition and the predefined information, associated to 

the design inputs such as weather conditions and number of occupants.  

• Reliability being considered: the designed system has the capability to fulfill the 

cooling demands of users under the normal situations and abnormal situations (i.e., the 

failure of systems), associated to the uncertain heath situations of equipment. 

The fundamental difference between the robust optimal design method and other design 

methods is illustrated in Fig. 3.1. Conventional optimal design in HVAC field guarantees 

the optimization over predefined conditions (without considering the uncertainties and 

reliability) (Sun et al. 2014). It can be seen that the conventional method determines the 

HVAC system without quantitative uncertainty and reliability analysis. Uncertainty-

based method determines the size of the systems (Sun et al. 2014) or investigates the 

building performance (Hopfe et al. 2011) considering uncertainties in design. However, 

this design method may result in the insufficient cooling under the normal conditions 
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(i.e. the design capacity is small) or abnormal conditions (i.e. the failure and maintenance 

occur). Reliability-based method ensures the system capability by minimizing the effect 

of sources of design parameters or process variables, which is rarely studied in HVAC 

field (Gang et al. 2015). In addition, this method may result in the low efficiency due to 

the low load ratio (i.e. the nominal capacity of system component is large). Robust 

optimal design method concerns quantitative uncertainty and reliability analysis as well 

as quantitative performance optimization simultaneously. It provides the system with the 

capability to operate at relatively high efficiency at various possible conditions 

considering the uncertainties of design inputs and system reliability in operation. 

 

Fig.3.1 Illustration of different design methods (Gang et al. 2015) 

3.2 Design Optimization Method Proposed 

In this thesis, both the uncertainty-based optimal design and robust optimal design are 

used in the design of HVAC subsystems. Uncertainty-based optimal design method 

mainly focuses on improving the energy efficiency of HVAC system and achieving the 
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minimum total life-cycle cost considering uncertainties of design inputs only. Monte 

Carlo simulation is usually used for the quantification of uncertainty. To achieve the 

minimum total cost, there is a balance between the operation cost and capital cost. 

Besides, under the same cooling load distribution, the operation cost depends on the 

rated energy efficiency and part load ratio. The minimum operation cost can be achieved 

through the optimization of number and size of HVAC components. A detailed 

introduction of uncertainty-based optimal design will be given in the Chapter 4. Robust 

optimal design mainly focuses on improving the energy efficiency of HVAC system, 

ensuring the sufficient capacity to supply the cooling and achieving the minimum total 

life-cycle cost considering both the uncertainties of design inputs and the reliability of 

system components. There is a comprised level of reliability (i.e. system capacity) 

among availability risk cost, operation cost and capital cost. To achieve the minimum 

total cost, the total design capacity, number and size of system components are 

optimized. 

Fig.3.2 illustrates the design optimization methods in this thesis, which contains 

conventional design, uncertainty-based optimal design and robust optimal design. Since 

many studies were conducted on the conventional design of HVAC system, this thesis 

will not focus on the conventional design. Table 3.1 shows the implementation methods 

of uncertainty and reliability under different design methods and the application of 

different design methods in this thesis.  
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Fig.3.2 Proposed design optimization method 

Table 3.1 Design methods and Application 

Design method Uncertainty Reliability Application 

Conventional 

design 
   

Uncertainty-based 

optimal design 

Monte Carlo 

simulation 
 Chapter 6 

Robust optimal 

design 

Monte Carlo 

simulation 

Markov Method 

(different failure rates) 
Chapter 7 

Markov Method 

(the same failure rate) 
Chapter 8 

Sequential Monte 

Carlo simulation 
Chapter 9 

The sequential Monte Carlo simulation method and the Markov method are two of the 

most commonly used methods for quantifying the reliability. Sequential Monte Carlo 

simulation is a simulation-based method, which provides a convenient and attractive 

approach to compute the posterior distributions. It is very flexible, easy to implement, 

parallelizable and applicable in very general settings. In HVAC subsystems, all the 

Design optimization 

method

Conventional design
Uncertainty-based 

optimal design
Robust optimal design

Analytical method 

(e.g. Markov method)

Sequential Monte Carlo 

simulation

The same failure rate The different failure rates

Monte Carlo simulation
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components of each subsystem are parallel and independent. This method can be used in 

the reliability assessment of HVAC subsystems. Chapter 7 gives the detail introduction 

of sequential Monte Carlo simulation for robust optimal design. 

Markov method is frequently used for conducting the reliability assessment of HVAC 

systems. It contains the Markov method with the same failure rate and Markov method 

with different failure rates. In this thesis, it is assumed that all the chillers, pumps and 

cooling towers with constant speed drives have the same failure rates and all the chillers, 

pumps and cooling towers with variable speed drives have different failure rates. 

In HVAC subsystems, the chilled water pumps, cooling water pumps and cooling towers 

are usually identical in parallel. Therefore, robust optimal design with the same failure 

rate can be used for the design of chilled water pumps, cooling water pumps and cooling 

towers. Chapter 6 gives a detailed introduction of robust optimal design with the same 

failure rate. 

In order to improve the energy efficiency of chiller plant, both the constant-speed chillers 

and variable-speed chillers are used in parallel to supply the cooling. The failure rate of 

constant-speed chillers is different from that of variable-speed chillers. Therefore, robust 

optimal design with different failure rates can be used for the design of chiller plant. 

Chapter 5 gives the detail introduction of robust optimal design with different failure 

rates. 

3.3 Quantification of Uncertainty 

The uncertainties in the building load calculation involve: 
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a) Number of occupants and weather conditions, which cannot be predicted accurately; 

b) Infiltration flow rate between outdoor environment and indoor air, heat rejection 

by equipment, etc., which can be narrowed through some proper measures but 

cannot be eliminated. 

As mentioned in Chapter 2.3, the uncertain variables are divided into two parts, i.e. 

variability and epidemic uncertainty. Variability including weather conditions and 

number of occupants may not be accurately predicted due to the irregular fluctuations. 

Weather conditions may be assumed to be subject to normal distribution, which is 

described by the mean value and standard deviation. The number of occupants may be 

assumed to be subject to triangular distribution (described by the mean value, minimum 

value and maximum value), which is selected based on the forecast of building 

management department. As for epidemic uncertainty (i.e., infiltration flow rate), it 

usually fluctuates around the mean value, and can be predicted according to the regular 

fluctuation. Uniform distribution is used to consider this type of uncertainties in cooling 

load calculation. Table 3.2 shows an example of the settings of uncertainties of the 

variables. 

It is worth noting that the selection of uncertainties may also influence the sizing of a 

chilled water system. For example, if a larger range of uncertainties is used, the total 

design capacity of chilled water pumps may be larger to reduce the availability risk cost 

and thus the optimal option may be different. More details will be discussed in later 

chapters. 
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Table 3.2 Distributions of stochastic input parameters 

Parameters Distributions 

Outdoor temperature (℃) N(0,1) 

Relative Humidity (%) N(0,1.35) 

Number of Occupants T(0.3,1.2,0.9) 

Infiltration rate (m3/s) U(2.7, 3.3) 

Equipment rejection load (kW) U(376, 464) 

Remarks: N(µ, σ) - normal distribution with mean value µ and standard deviation σ;  

U(a, b) - uniform distribution between a and b; T (a, b, c) - triangular distribution 

with lower limit a, upper limit b and mode c. 

3.4 Quantification of Reliability 

Fig.3.3 is a reliability and maintainability history chart of a three-state machine. The 

state “Operate” indicates that the equipment currently resides in a working state (i.e. 

State 1). The lengths of this state are the holding times of being in working state. The 

holding time is random and determined by analysis of historical reliability and 

maintainability data. In practice, the mean time to failure (MTTF, 1/λ) is often used to 

represent this holding time, as shown in Equation (3.1) (Ge and Asgarpoor 2011). The 

state “Maintenance” and “Failure” (i.e. State 0) indicate that the equipment currently 

resides in an inoperative (i.e. failure or maintenance) state. The lengths of these state 

are the holding times of being in this state. In practice, the mean time to repair (MTTR, 

1/μ) is often used to represent this holding time, as shown in Equation (3.2) (Ge and 

Asgarpoor 2011). Commonly, failure rate (λ) and repair rate (μ) are usually used as the 
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major parameters for conducting the reliability assessment. 

 operatetMTTF


1
                     (3.1) 

  failmain ttMTTR


1                     (3.2) 

 

Fig.3.3 Health states of a component in the life cycle 

Markov method 

Conventional design and uncertainty-based optimal design usually assume that all 

equipment and components are at healthy states and a standby or backup component of 

equal capacity is used in case that one of the components fails to operate or needs to be 

maintained. Using the Markov method, the HVAC subsystems are usually regarded as 

multi-state systems. A multi-state system contains three states or situations: no failure 

of component, failure of one component and up to failure of all components. It is 

assumed that the state probabilities at a future instant do not depend on the states 

occurred in the past. The system either keeps current state or transfer to other states at 

the next time step.  

It is assumed that each component of HVAC subsystems has two states only: normal (0) 

and failure (1). State 0 symbolizes that no component fail and state k symbolizes that k 

(1≤k≤n) components fail (i.e. n is the total number of components). From state 0 to state 

n, the failure rate λ is used to represent the probability from one state to another. From 

 …

State

TimeA period of component

Operate

Maintenance Failure Maintenance

Operate Operate
1

0



 45 

state n to state 0, the repair rate μ is used to represent the probability from one state to 

another. The transition probability is determined by a state transition density matrix. 

Then the steady state probabilities can be obtained by solving the linear algebraic 

equations. 

Sequential Monte Carlo simulation 

Sequential Monte Carlo simulation is based on the assumption that the components in 

parallel are independent and each component has no relationship with the other 

components. The reliability indices, such as availability, pavailability (percentage of time 

staying in a working state) and unavailability, punavailability (percentage of time staying in 

a failure and maintenance state) are used for the reliability assessment of system 

component, which can be calculated by Equation (3.3) & (3.4). With the assumption 

that each component is independent and it has no relationship with the other components, 

the system component is assumed to be subject to the binary distribution. Where, toperate 

is the total operation time in an entire period, tmain is the total maintenance time in an 

entire period, tfail is the total failure time in an entire period, λ is failure rate, μ is repair 

rate. 

MTTRMTTF

MTTF
p tyavailabili


                    (3.3) 

MTTRMTTF

MTTR
p lityunavailabi


                    (3.4) 

3.5 Summary 

This chapter presents the concept of robust optimal design, the methodologies to achieve 

robust optimal design and the quantification methods of uncertainty and reliability. 
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Compared with the other design methods, robust optimal design method concerns 

quantitative uncertainty and reliability analysis as well as performance optimization 

simultaneously. It allows the designed system with the capability to operate at relatively 

high efficiency at various possible conditions considering the uncertainties of design 

inputs and system reliability in operation. 

Then, three design optimization methods are presented and compared. It contains 

uncertainty-based optimal design and robust optimal design. Monte Carlo simulation is 

used for the quantification of uncertainty. The methods for quantifying the reliability 

contain Markov method and sequential Monte Carlo simulation. Markov method 

includes Markov method with the same failure rate and Markov method with different 

failure rates. 

Finally, the quantifications of uncertainty and reliability are presented. Three types of 

distributions (including normal distribution, triangular distribution and uniform 

distribution) are commonly used to describe the uncertainties of inputs. For reliability 

assessment, the settings under analytical method and sequential Monte Carlo simulation 

are introduced respectively.  
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CHAPTER 4 PROBABILISTIC APPROACH FOR 

GENERATING THE COOLING LOAD DISTRIBUTION 

OF REQUIRED ACCURACY 

 

In the design optimization of HVAC systems, generating the accurate cooling load 

distribution is the key issue to determine the optimal configuration of HVAC systems. 

In this thesis, Monte Carlo simulation is used to generating the cooling load distribution. 

Monte Carlo simulation is a broad class of computational algorithms that rely on 

repeated random sampling to obtain numerical results. In order to represent the 

characteristics of the uncertainties of design input in cooling load distribution, sufficient 

number of Monte Carlo simulation is required. When using a Monte Carlo simulation, 

a question that usually arises in connection with such simulations is to ask how many 

iterations of a particular Monte Carlo simulation are sufficient for achieving the 

required accuracy. This chapter presents a probabilistic approach for determining the 

minimum number of Monte Carlo simulations for accuracy. This systematical approach 

is used to evaluate the stability of cooling load distribution and determine the minimum 

simulation number. 

Section 8.1 presents an introduction of this probabilistic approach. Section 4.2 presents 

the criteria of determining the minimum simulation number. Section 4.3 presents the 

procedure for implementing this approach. Section 4.4 gives a case study to illustrate 

the process of this approach. A summary of this chapter is given in Section 4.5. 
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4.1 Introduction 

In general, the required number of Monte Carlo simulation is related to the inputs 

including the sampling method adopted and uncertain parameters. However, in this 

study, the output of cooling load distribution is directly used to evaluate the variation 

of cooling load distribution and determine the minimum simulation number (Ata 2007; 

Sadeghi et al. 2014). Different from previous research that only used the mean value at 

one point to determine the number of simulations needed (Ata 2007), both cooling load 

distribution profile and the mean value at a specific point, i.e. the peak cooling load in 

99.6 percentile which represents the peak cooling load, are used for determining the 

minimum number of simulations needed.  

4.2 Criteria for Determining the Minimum Simulation Number 

In this study, two types of deviations, called as convergence band width in Reference 

(Ata 2007), are used for determining the minimum simulation number. The single-step 

deviation means the deviation between the average of i simulations and the average of 

i-1 simulations. The validation deviation (multi-step deviation) means the deviation 

between the average of i simulations and the average of i+j simulations (0<j≤BL). The 

validation deviation at the “peak cooling load” is used to ensure the accuracy of the 

design capacity and the validation deviation of the cooling load distribution profile is 

used to ensure the accuracy of cooling load distribution for calculating the operation 

cost of different chiller plant configurations. Two criteria are defined as follows: 

 The validation deviation of the cooling load distribution profile should be within 
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its threshold Bw1 over a number of simulation trials defined as convergence band 

length BL.  

 The validation deviation of the “peak cooling load” should be within it threshold 

Bw2 over a number of simulation trials defined as convergence band length BL. 

The band length is expressed as a minimum number of simulations to verify whether 

the trials of Monte Carlo simulations are sufficient or not (Ata 2007). To achieve a 

desired level of confidence (i.e., 100(1-γ) %), the minimum simulation number BL can 

be determined using the stopping rule as shown in Equation (8.1) (Tanner et al. 2014). 

In reference (Sadeghi et al. 2014; Tanner et al. 2014), the minimum number is 50, 

corresponding to a confidence interval of 99. 5% (γ=0.0001). 

  
1

)1.0In(9.0 L

B
BL                       (4.1) 

It is important to notice that two criteria request deviations are not beyond their 

thresholds over a number of simulation trials, defined as convergence band length BL, 

to ensure reliability of convergence as shown in Fig.4.1. For the RegionⅠfrom 0 to n0, 

the single-step deviation is used for obtaining the initial simulation number n0. The 

initial simulation number n0 is the minimum number of simulations allowing the single-

step deviation to be within the threshold. For the RegionⅡ(A) from n0 to n, the 

validation deviation is over the threshold after a number of simulation trials (less than 

BL) and thus the simulation number from n0 to n is not sufficient. For the RegionⅡ(B) 

from n to (n+BL), the validation deviations are within the threshold after BL simulation 

trials and thus the minimum sufficient simulation number is n. 



 50 

 

Fig.4.1 Scheme of threshold and convergence band length 

4.3 Implementation Procedure of the Probabilistic Approach 

A deviation index f(n,m) is defined to represent the difference between average cooling 

load distribution profiles of n number of simulations and m number of simulations 

respectively, as shown in Equation (4.2) and Fig.4.2. 
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where, pn(i) is the probability at the load of CLi of n trials of simulations, pm(i) is the 

probability at the load of CLi of m trials of simulations, △CLi is the cooling load 

interval and k is the total number of intervals. To validate if the number of simulations 

b is sufficient for obtaining accurate cooling load distribution profile, one should ensure 

that the deviation index f (n,m) at each of BL trials of simulations over the convergence 

band length falls within the threshold Bw1. Equation (4.3) presents this criteria in 

mathematic form, i.e. for all last BL simulations, the deviation index is within the 

threshold Bw1. 
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Lw BjjBbjbf ,...,2,1,),( 1                  (4.3) 

 

Fig.4.2 Difference of cooling load distribution with different simulation numbers 

The second deviation index g(x,y) is defined to represent the difference between the 

peak cooling load in 99.6 percentile of x number of simulations and y number of 

simulations respectively, as shown in Equation (4.4). It is worth noticing that the peak 

cooling load in 99.6 percentile is corresponding to the 30 unsatisfied hours per year. 
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where, CLx,99.6% is the peak cooling load in 99.6 percentile at x trials of simulations, 

CLy,99.6% is the peak cooling load in 99.6 percentile at y trials of simulations. To validate 

that the number of simulations a is sufficient for obtaining accurate “peak cooling load”, 

one should ensure that the deviation index g(x,y) at each of BL trials of simulations falls 

within the threshold Bw2 over the convergence band length. Equation (4.5) presents the 

criteria in mathematic form, i.e. for all last BL simulations, the deviation of the peak 

cooling load in 99.6 percentile is within the threshold Bw2. 
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Lw BjjBajag ,...,2,1,),( 2                  (4.5) 

Fig.4.3 illustrates the scheme for determining minimum efficient simulation number in 

practical design optimization computation. At first, it is essential to obtain the initial 

simulation number a0 and b0, which can be computed by Equation (4.6). 

200100 ),(),( ww BaiagandBbibf                (4.6) 

where, i is the interval of simulation number. The initial numbers are increased further 

until the one-step deviations reach their thresholds. When the initial simulation number 

a0 and b0 are determined, the simulation number is validated from the initial value until 

the convergence condition is achieved. If the convergence condition is achieved, the 

larger one out of the two simulation numbers is chosen as the minimum sufficient 

simulation number.  

 

Fig.4.3 Scheme for determining minimum efficient simulation number 
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4.4 Case Study 

To conduct the Monte Carlo simulations to obtain the cooling load distribution, it is 

essential to determine the settings of uncertainties of the variables. According to the 

settings in Table 3.2, the uncertainties of the input parameters are computed by Matlab. 

Combining the output uncertainties from Matlab, the TRNSYS building model is used 

to generate the building cooling load with considering of uncertainties. 

In order to obtain the reasonable cooling load distribution, a sufficient simulation 

number should be selected for computational efficiency and accuracy. In this study, both 

validation deviation thresholds for the cooling load distribution profile and peak cooling 

load in 99.6 percentile are chosen to be 0.5%. 

The test results show that the initial simulation number should be 20. Then the minimum 

simulation number can be obtained until the convergence condition is achieved, as 

shown in Table 4.1. It can be seen that 20 trials of simulations are sufficient as the 

corresponding validation deviation is within the threshold over 50 validation trials of 

simulations.  

Table 4.1 Minimum simulation number for the “peak cooling load” 

Simulation time 20 30 40 50 60 70 

“Peak cooling load” 5177 5179 5179 5178 5177 5176 

Deviation - 0.0004 0.0004 0.0002 0 0.0002 

In order to obtain the accurate operational cost, the validation deviation of cooling load 

distribution profile f(n,m) is used to select the minimum simulation number. Fig.4.4 
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shows the results in determining the initial simulation number of cooling load 

distribution. It can be observed that the initial simulation number should be 350. Then 

the minimum simulation number can be obtained when the convergence condition is 

achieved, as shown in Table 4.2. It can be observed that 780 trials of simulations are 

sufficient for the cooling load distribution profile as the corresponding validation 

deviation is within the threshold over 50 validation trials of simulations. 

 

Fig.4.4 Determination of initial simulation number for cooling load distribution 

Table 4.2 Minimum simulation number for the cooling load distribution 

Simulation time 780 790 800 810 820 830 

cooling load distribution 3231 3231 3231 3231 3231 3231 

Deviation - 0.0020 0.0032 0.0037 0.0041 0.0048 

Compared with the minimum simulation number for accurate “peak cooling load”, the 

minimum simulation number for accurate cooling load distribution is much larger. To 

obtain the accurate cooling load distribution and peak cooling load, at least 780 times 
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of Monte Carlo simulations are required to achieve the computational efficiency and 

accuracy. Table 4.3 shows the minimum simulation number of other thresholds for your 

reference. In some literatures (Gang et al. 2015), the researchers assumed that 1000 

simulation trials are sufficient without a quantized index to evaluate the accuracy and 

attempted to use 1000 simulation trials to generate the required cooling loads. 

Table 4.3 Minimum simulation number for the other thresholds 

Thresholds 1% 0.9% 0.8% 0.7% 0.6% 0.5% 0.4% 

Initial simulation number 180 190 220 250 300 350 440 

Minimum simulation number 380 420 470 510 620 780 1020 

4.5 Summary 

This chapter presents a probabilistic approach to determine the minimum sufficient 

number of Monte Carlo simulation. This approach is used to obtain the cooling load 

distribution of required accuracy considering the uncertainties in inputs. A case study is 

given as an example to demonstrate the proposed method. Conclusions can be made as 

follows: 

 Determining the minimum simulation number is very important for obtaining 

the accurate peak cooling load and cooling load distribution. 780 simulation 

trials are found and used and to achieve an accuracy of 0.5% for both of them. 

 The minimum simulation required depends on the required accuracy. 
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CHAPTER 5 RELIABILITY QUANTIFICATION 

METHODS  

 

Reliability analysis or assessment is necessary to avoid/reduce losses caused by both 

the normal situations and abnormal situations such as the failure of some components.  

However, very limited studies considering reliability of system components are found 

in the design process of HVAC systems. Markov method and sequential Monte Carlo 

simulation are frequently used to conduct the reliability assessment in the other fields 

such as electrical engineering. The probability distribution of system state is generated 

by the reliability assessment, which plays an important role in the robust optimal design 

of HVAC systems. According to the publication in other fields, in this chapter, both the 

two methods are compared to conduct the reliability assessment of HVAC system. 

Availability risk cost is considered as the indices to evaluate the system reliability. 

Section 5.1 presents a brief introduction of Markov method and sequential Monte Carlo 

simulation. Section 5.2 presents the sequential Monte Carlo simulation to obtain the 

probability distribution of HVAC system. Section 5.3 presents the Markov method to 

obtain the probability distribution. Section 5.4 gives a case study to illustrate the process 

of the two methods and a comparison is made between Markov method and sequential 

Monte Carlo simulation. A summary of this chapter is given is Section 5.5. 

5.1 Introduction 

As mentioned in Chapter 3, the commonly used methods for quantifying the reliability 
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contains Markov method and sequential Monte Carlo simulation. The objective of 

Markov method is to obtain the probability distribution of each healthy state of a multi-

state system at the steady period. According to the probability distribution, the capacity 

of the system under each state can be estimated. It is assumed that the state probabilities 

at a future instant do not depend on the states occurred in the past. The system either 

keeps current state or transfer to another state at the next time step. Markov method will 

be used for reliability modeling of aging equipment in Chapter 6 and Chapter 7. The 

advantages of the Markov method include high accuracy and relatively fast computation 

time; the disadvantages are the inability to provide more reliability information (i.e. this 

method can only provide the average probability distribution of steady state of system).  

Sequential Monte Carlo simulation is a simulation-based method that provides a 

convenient and attractive approach to compute the posterior distributions. It is very 

flexible, easy to implement, parallelizable and applicable in very general settings. In 

HVAC subsystems, all the components of each subsystem are parallel and independent. 

Based on the characteristics of the HVAC subsystems, this method can be used in the 

reliability assessment of HVAC subsystems. Compared with Markov method, the 

sequential Monte Carlo simulation is capable of providing more comprehensive results 

than Markov method. Chapter 7 gives an example to show the application of robust 

optimal design based on sequential Monte Carlo simulation. 

5.2 Sequential Monte Carlo Simulation 

As mentioned above, availability risk cost, which depends on the unmet cooling load 

directly, is considered as the indices to evaluate the system reliability. Unmet cooling 
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load is the load difference between the required cooling load and the available cooling 

supply capacity. Fig. 5.1 shows the simulation loop for obtaining the accurate cooling 

load distribution and average “unmet cooling load”. Cooling load distribution is 

generated by the TRNSYS building energy model based on the uncertainties of design 

inputs. Available cooling capacity is the maximum cooling capacity corresponding to 

the capacity under the design weather conditions. Available cooling capacity is 

determined by the health state of system components and nominal capacity. 

Convergence assessment is conducted to justify the cooling load distribution and 

average “unmet cooling load”.  

 

Fig.5.1 Simulation loop for obtaining the accurate cooling load distribution and 

average “unmet cooling load” 
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Monte Carlo simulation is employed to obtain the cooling load conditions considering 

uncertainties. The calculation process can be illustrated by Equation (5.1). With the 

inputs x1, x2,…, xn (e.g., the outdoor temperature, ventilation rate), the output y (the 

cooling load) can be obtained. 

   nxxxfyyyY ,...,,,...,, 21876021                (5.1) 

Two reliability indices, which includes the availability, pavailability (percentage of time 

staying in a working state) and unavailability, punavailability (percentage of time staying in 

a failure and maintenance state) can be calculated from the reliability and 

maintainability history chart above by Equation (5.2) and (5.3). Where, MTTF is mean 

time to failure, MTTR is mean time to repair. 
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With the assumption that each component is independent and it has no relationship with 

the other components, the probability of each component is assumed to be subject to the 

binary distribution. Monte Carlo simulation is used to obtain the state (i.e. normal or 

failure) of system component under each cooling load condition, as shown in Equation 

(5.4). The total available cooling capacity is calculated by Equation (5.5). The unmet 

cooling load is calculated by Equation (5.6). Where, f is the availability of system 

capacity, CLind is the nominal capacity, CLavailable is the available cooling capacity, CL(i) 

is the cooling load, CLunmet is the unmet cooling load. 
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 0,)( availableunmet CLiCLMaxCL                 (5.6)                 

As mentioned above, the cooling load distribution and available cooling capacity can 

be generated by a sequential Monte Carlo simulation. For the purpose of checking the 

convergence and terminating the sampling process, the threshold is used to evaluate the 

uncertainty and reliability in this study. 

A deviation index f(n+i,n) is defined to represent the difference between average 

cooling load distribution profiles of (n+i) number of simulations and n number of 

simulations respectively, as shown in Equation (5.7) and Fig. 4.2. 
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where, pn(j) is the probability at the load of CLj of n trials of simulations, pn+i(j) is the 

probability at the load of CLj of n+i trials of simulations, △CLj is the cooling load 

interval and k is the total number of intervals. Equation (5.8) presents this criteria in 

mathematic form, i.e. for all last BL simulations, the deviation index is within the 

threshold Bw. Where, b is the required sampling time. 

( , ) , 1,2,...,w Lf b j b B j j B                     (5.8) 

The second deviation index g(n+i,n) is defined to represent the difference between 

average unmet cooling load of (n+i) number of simulations and n number of simulations 

respectively, as shown in Equation (5.9). 

,( ) ,
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un n i un n
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 
                  (5.9) 

where, CLun,n is the average unmet cooling load at n trials of simulations, CLun,(n+i) is the 

average unmet cooling load at (n+i) trials of simulations. Equation (5.10) presents the 
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criteria in mathematic form, i.e. for all last BL simulations, the deviation of the unmet 

cooling load is within the threshold Bw. Where, c is the required sampling time. 

( , ) , 1,2,...,w Lg c j c B j j B                    (5.10) 

5.3 Markov Method 

Markov method is used in this thesis because of its wide application in reliability 

analysis of multi-state systems. A system is comprised of n components in parallel. It is 

assumed that each component has two states only: normal (0) and failure (1). As shown 

in Fig. 5.2, from failure condition to normal condition, the repair rate μ is used to 

represent the probability from one state to another. From normal condition to failure 

condition, the failure rate λ is used to represent the probability from one state to another. 

Totally the system has n states (i.e., each states contains several situations) considering 

the reliability of each component, as shown in Fig.5.3. It can be observed that state 0 

symbolizes that no component fail and state k symbolizes that k (1≤k≤n) components 

fail. The transition probability between each two states is represented by a state 

transition density matrix A (Equation (5.11)), which only involves the repair rate and 

failure rate of components. It can be deduced from the initial state by Equation (5.12) 

and Equation (5.13). When the time approaches to infinity, P(∞) will keep stable 

(Equation (5.14)). Then the steady state probabilities can be obtained by solving the 

linear algebraic equations (Equation (5.15) and Equation (5.16)). The mean steady 

system performance under each state thus can be calculated. In addition, it is worth 

noticing that how much time is required to reach the steady condition is significant in 

the method. If the time is very long such as two years, it should be considered in the 
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reliability assessment. If the time is very short such as one month, then it will not be 

considered in this method. Probability of state 0 is selected as the standard to assess the 

time achieving the steady state, as shown in Fig. 5.4. 

 

Fig.5.2 Two-state Markov process 

 

Fig.5.3 States of a n-parallel system and possible transitions 
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Fig.5.4 Scheme of the time achieving the steady condition 

5.4 Comparison Case Study 

5.4.1 Convergence assessment of iteration time of Markov method 

As mentioned above, Markov method is used to obtain the probability of each (health) 

state of the pump system and to calculate the mean steady performance and capability 

under each state. In this chapter, the system is assumed to be comprised of about 2~8 

chilled water pumps and the system there have 2~8 states accordingly. The failure rate 

is assumed to be 0.0001/hour (Blanchard et al. 1998), the repair rate is assumed to be 
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0.002/hour (Gang et al. 2015) and the ratio of repair rate/failure rate is 20. Fig. 5.5 shows 

the iteration time achieving the steady state 0 under different pump numbers. It is worth 

noticing that the system comprised of less pumps needs more time to achieve the steady 

state 0. The probabilities of state 0 under 2, 3, 4, 5 and 6 pumps are 0.9222, 0.8906, 

0.8494, 0.7951 and 0.7289 respectively. For the system comprised of two pumps, about 

1500 hours (i.e., 83 days if the system works 18 hours daily) is required to achieve the 

steady state 0, which could be ignored during the life cycle of system.  

 

Fig.5.5 Iteration time achieving the steady state 0 under different pump numbers 

It is worth noticing that the failure rate and repair rate may have significant impact on 

the iteration time. When the repair rate varies from 0.001 to 0.005, the ratio of repair 
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1750, 900, 750, 600 and 400 hours are required to reach the steady state 0 respectively. 

At the same time, the probabilities of state 0 are 0.79, 0.88, 0.93, 0.95 and 0.96 

respectively when the ratio increases from 10 to 50 with an increment of 10. Therefore, 

when the ratio of repair rate to failure rate increases, less iteration time is required to 

reach the steady state, and the probability of state 0 increases to higher level. In this 

study, the ratio is assumed to be 20, which has high robustness concerning the system 

reliability. 

 

Fig.5.6 Iteration time under different ratios of repair rate to failure rate 
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The repair rate of cooling towers is 0.002/hour, which means that it totally needs 500 

hours to repair or maintain the cooling towers. Therefore, the availability of cooling 

towers is 0.995 respectively. 

According to the Markov methods, Table 5.1 shows the probability distribution of each 

steady state under different cooling tower numbers. It can be observed that the 

probability of state 0 decreases as the increase of cooling tower number. It also can be 

observed that only the failure of one component and the failure of two components are 

required to be considered.   

Table 5.1 Probability distribution of steady states of cooling towers 

state 2 3 4 5 6 7 

0 0.9900 0.9851 0.9801 0.9751 0.9702 0.9652 

1 0.0099 0.0148 0.0196 0.0244 0.0291 0.0338 

2 0 0.0001 0.0003 0.0005 0.0007 0.0010 

3 - 0 0 0 0 0 

4 - - 0 0 0 0 

5 - - - 0 0 0 

6 - - - - 0 0 

7 - - - - - 0 

Fig.5.7 shows the average unmet cooling loads of 3 cooling towers using sequential 

Monte Carlo simulation and Markov method. It is obvious that the average unmet 

cooling load is smaller when the number of cooling tower increases. It can be seen that 

the average unmet cooling load varies greatly when the simulation trial is less than 250. 

It can be also seen that about 530 sampling times are needed to obtain the accurate 

average unmet cooling load and the average unmet cooling load fluctuates around the 
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converged value 7330kW. The unmet cooling load using analytical method is equal to 

about 7314kW, which is almost equal to that using sequential Monte Carlo simulation.  

Fig.5.8 shows the average unmet cooling loads of 5 cooling towers using sequential 

Monte Carlo simulation and Markov method. It can be seen that about 530 sampling 

times are needed to obtain the accurate average unmet cooling load and the average 

unmet cooling load fluctuates around the converged value 814kW. It can be also 

observed that the unmet cooling load based on the Markov method is almost equal to 

the converged average unmet cooling load based on the sequential Monte Carlo 

simulation.  

 

Fig.5.7 Unmet cooling load of 3 cooling towers 
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Fig.5.8 Unmet cooling load of 5 cooling towers 

Fig.5.9 shows the average unmet cooling loads of 7 cooling towers using sequential 

Monte Carlo simulation and Markov method. It shows the average unmet cooling load 

of 7 cooling towers under different simulation trials. It can be seen that about 480 

sampling times are needed to obtain the accurate average unmet cooling load and the 

average unmet cooling load fluctuates around the converged value 100kW.  

 

Fig.5.9 Unmet cooling load of 7 cooling towers 
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Table 5.2 shows the converged average unmet cooling load under different options of 

cooling towers. It can be seen that the converged average unmet cooling load decreases 

rapidly when the number of cooling towers increases. When the number of cooling 

towers is large, the average unmet cooling load does not change greatly. 

Table 5.2 Converged average unmet cooling load and average operation cost of 

different cooling tower options 

Options 

 (Size (L/s) number) 

1652 1103 834 665 556 477 418 

Average unmet cooling load 

(kW) 

26504 7341 1961 814 325 100 60                                                                                                                                                                                                                                                                                                                                                            

From the above three cases, using Markov method can obtain accurate unmet cooling 

load and consume less computation time compared with sequential Monte Carlo 

simulation. However, Monte Carlo simulation approach is capable of providing more 

comprehensive results than Markov methods such as the detailed changes of unmet 

cooling load. 

5.5 Summary 

This chapter presents two quantification methods of reliability. It contains the Markov 

method and sequential Monte Carlo simulation. Both the two methods are commonly 

used to conduct reliability assessment. The details of how to implement these two 

methods are presented in this chapter. A case study is given as an example to 

demonstrate the proposed methods. Conclusions can be made as follows: 
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 The transition hours of Markov method could be ignored during the lifespan of 

system. About 1500 hours (i.e., 83 days if the system works 18 hours daily) is 

required to achieve the steady state 0 when the Markov method is used.  

 The advantages of the Markov method include high accuracy and relatively fast 

computation time; the disadvantages are the inability to provide more reliability 

information (i.e. this method can only provide the average probability 

distribution of steady state of system).  

 Compared with Markov method, the sequential Monte Carlo simulation is 

capable of providing more comprehensive results than Markov method. 

However, the computation time using sequential Monte Carlo simulation is 

much longer than that using Markov method. 
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CHAPTER 6 UNCERTAINTY-BASED OPTIMAL DESIGN 

OF CHILLER PLANT 

 

This chapter presents an uncertainty-based optimal design method of chiller plant using 

a probabilistic approach. It can ensure high chiller performance and achieve the 

minimum operation cost under various possible cooling load conditions, even though 

the load conditions deviating from the design conditions significantly due to various 

uncertainties of design information. In contrast to previous research, a probabilistic 

approach, which contains a wide range of so-called uncertainty “scenarios” generated 

by Monte Carlo simulation, is used for evaluating the performance of uncertainty-based 

optimal design. This design is based on two statistical objectives, i.e., a maximization 

of the expected COP and a minimization of the expected value of the annual total cost. 

Meanwhile, an uncertainty-based optimization is conducted to identify the best 

combination of number, sizes and types of chillers to achieve high operating efficiency 

and minimum total cost (including the operational cost and capital cost) under any 

cooling load conditions.  

Section 6.1 gives a brief introduction about the uncertainty-based optimal design of 

chiller plant based on probabilistic approach. Section 6.2 presents the method of the 

uncertainty-based optimal design for chiller plants in detail. Section 6.3 shows a case 

study on the uncertainty-based optimal design of the chiller plant of a building in Hong 

Kong. A summary of this chapter is given in Section 6.4. 
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6.1 Introduction 

The uncertainty-based optimal design is performed in three steps as follows: 

 First step: generate the cooling load distribution involving uncertainties; 

 Second step: determine the total design capacity of the chiller plant based on the 

cooling load distribution;  

 Third step: determine optimal chiller plant configuration, i.e. number and sizes of 

chillers, types of chillers (constant speed chiller/variable speed chiller), by 

minimizing the life-cycle total cost of the chiller plant at the cooling load involving 

uncertainties. 

6.2 Uncertainty-based Optimal Design Method 

6.2.1 Cooling load distribution of required accuracy involving uncertainties 

To conduct the proposed uncertainty-based optimal design, the first step is to obtain the 

cooling load distribution involving uncertainties. In order to consider various possible 

cooling load conditions under uncertainties (including variability and epidemic 

uncertainty), how to deal with the certain and uncertain factors is critical. Fig.6.1 

illustrates the schematic of a stochastic cooling load simulation. In this scheme, some 

input factors (e.g., building characteristics and equipment characteristics) are 

considered to be well-known or non-influential factors. Therefore, the values are 

represented by scalar numbers (Domínguez-Muñoz et al. 2010). In addition, some input 

factors (e.g., weather conditions, occupants and heat transfer coefficients of building 

envelopes) are uncertain, and they are therefore described by probability distributions 
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of different types (Saltelli et al. 2004). When the certain and uncertain factors are 

determined, a more accurate model among alternative cooling load models is selected 

to calculate the cooling load in each scenario (Gentle 2003). 

 

Fig.6.1 Scheme of the framework for cooling load simulation 

In order to generate the cooling load considering uncertainties, Monte Carlo simulation 

is employed. Monte Carlo simulation is a sampling-based technique that performs 

multiple model runs with random samples generated from the input distributions 

(Gentle 2003). These simulations provide a series of possible results, which involve 

uncertainties in the variables. In this thesis, the uncertainties of the input parameters are 

computed by Matlab. 

Combining the output uncertainties from Matlab, the TRNSYS building model is used 

to generate the building cooling load distribution considering the uncertainties based on 

the determined simulation number. After conducting the minimum trials of Monte Carlo 

simulations of required accuracy, the cooling load distribution involving uncertainties 

is determined. The peak cooling load is used for the determination of design capacity 

and cooling load distribution is used for calculating the operation cost of different chiller 

plant configurations. When using a Monte Carlo simulation, it is essentially important 
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to determine the minimum number of Monte Carlo simulation, which is presented in 

detail in Chapter 4. 

6.2.2 Total design capacity determination 

The second step is to determine the total design cooling capacity, which plays a 

significant role in the design of chiller plant. To determine the total design cooling 

capacity, it is essential to obtain the design capacities with numbers of hours when the 

cooling demand cannot be met (marked as unmet hours). Based on the cooling load 

distribution, the “mean” design capacity of the total simulation trials are calculated and 

shown in Figure 6.2. The “mean” value represents the design capacity of chiller plant, 

corresponding to different unmet hours per year, based on the average cooling load 

distribution profile. The “max” value represents the maximum value among all the 

simulation trials. The “reference” value represents the design capacity determined using 

conventional method, i.e. based on the cooling load distribution of typical year. The 

peak cooling load in typical year is presented for comparison. It can be observed that 

when all the cooling load conditions are met, the design capacities based on average 

annual load profile (“mean”) and maximum load among all the simulation trials (“max”) 

are much higher than the peak cooling load in typical year. However, when certain 

number of unmet hour is allowed (as required in design guide), the design capacities 

based on the average annual load profile and the maximum load profile become 

significantly lower than the peak cooling load in typical year. Therefore, using the peak 

cooling load in typical year as the design capacity may lead to the oversizing of chiller 

plant. At most of the unmet hours, the design capacities based on the average annual 
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cooling profile and that in typical year are very close. 

 

Fig.6.2 Design capacity vs. annual unmet hours 

6.2.3 Chiller plant configuration optimization 

When the total design capacity is determined, the other key issue is to determine the 

optimal number, sizes and types of chillers in order to achieve minimum annual total 

cost. The annual total cost TCn contains two parts, i.e. annual capital cost CCn and 

annual operational cost OCn(N), as shown in Equation (6.1).  

)()( NCCNOCTC nnn                     (6.1)  

The annual capital cost is the fixed expense in purchasing and installing the chillers and 

associated components, which is influenced by the number, sizes and types of chillers. 

As for the annual operational cost, it is mainly related to the annual cooling load 

distribution and the energy efficiency. The energy efficiency is subject to the number, 

sizes and types of chillers. 

The optimization of the chiller plant configuration is achieved, as shown in Fig.6.3, 
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mainly based on three major modules. The optimization process and main assumptions 

are summarized as follows. 

I. Calculate the operating COP of chiller plant with different chiller numbers. At 

least two chillers are employed for convenient control and maintenance.  

II. Under different number, optimize the sizes of chillers to maximize the operating 

COP. In practice, two types of sizes are preferred for convenient maintenance 

and control. Besides, more (or same number) chillers with larger capacity and 

fewer (or same number) chillers with smaller capacity are reasonable and 

therefore assumed in the optimization trials. 

III. Under different number and associated optimal sizes of chillers, optimize the 

types of chillers (e.g. constant speed chiller/variable speed chiller). 

IV. Having optimal sizes and types of chillers for different chiller numbers, select 

the optimal chiller number to achieve the minimum total cost when the capital 

cost is considered. 

The operating COP mainly relates to the number, size and type of chillers. In general, 

these three factors should be optimized together to achieve a high operating COP, which 

may result in that the calculations may be very complex. However, it is worth noticing 

that the number and size of chillers is subject to the total design capacity and the type 

of chillers mainly affects the operation efficiency of the chiller plant. To enhance the 

computation efficiency, the number and size of chillers are optimized together and then 

the type of chillers is optimized later, which may have no obvious impact on the 

optimization results compared with the situation that these three factors are considered 
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together. 

 

Fig.6.3 Determination of optimal chiller plant configuration 

Module 1 – Optimization of number and sizes of chillers concerning energy efficiency 

As mentioned above, the annual operational cost is mainly related to the annual cooling 

load distribution and system energy efficiency. The energy efficiency of chiller plants, 

usually evaluated by COP, strongly depends on the operating PLR. It is well known that 

the larger the PLR, the higher COP once the impact of other operating parameters (e.g. 

condensing and evaporating temperatures) are separated (Hong et al. 2014; Wang et al. 

2012), as shown in Equation (6.2). 
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where, D0-D3 are the coefficients that can be identified from chiller catalogue or field 

measurement data. The PLR is usually determined by the number and size of chillers. 

Therefore, the optimization of number and size of chillers is conducted to improve the 

operating PLR and thus COP. 

    Module 3:

Optimization of chiller plant configuration to 

achieve minimum annual total cost 

    Module 1:

Optimization of number and sizes of chillers to 

achieve high COP

    Module 2:

Optimization of types of chillers to achieve high 

COP
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PLR is simply defined as the ratio of the required cooling load (CLre) to the available 

cooling capacity (CLava) (i.e. that of operating chillers) as shown in Equation (6.3). 
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
                   (6.3) 

where, CLNominal is the nominal cooling capacity of each chiller. Nop is the number of 

operating chillers. It means that the more chillers are selected, the higher operating PLR 

can be achieved through more flexible sequence control. On the other hand, selecting 

more chillers means that the size of individual chillers is smaller. Generally, the rated 

COP of chiller decreases when the nominal capacity of chillers reduces in certain extent 

(Harvey 2012). Therefore, the operating COP increases when the number of chillers 

increases to certain value and it reduces when the number of chillers increases further, 

as shown in Fig.6.4. Since at least two chillers are used for convenient maintenance and 

control, the calculation of the chiller number starts from two until the operating COP 

begins to decrease. 

 

Fig.6.4 Effects of number of chillers on the operating COP 
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The sizes of individual chillers, which determine the rated COP, influence the PLR and 

operating COP of the chiller plant. In practice, two types of sizes of chillers are proper 

for the convenient maintenance and control. Besides, the number of chillers of larger 

capacity is selected to be at least the same as that of smaller capacity in the optimization 

trials. To determine the optimal sizes of chillers at a given chiller number, the larger size 

increases gradually from the mean value (i.e., all the chillers are equally sized) until the 

operating COP achieves the maximum value in the optimization trials. At the same time, 

the smaller size decreases accordingly. The constraint of chiller plant configuration is 

shown in Equation (6.4).  
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where, C1 and n1 are the nominal design capacity and number of the larger chillers 

respectively. C2 and n2 are the nominal design capacity and number of the smaller 

chillers respectively. CLT is the total design capacity of the chiller plant. Equation (6.5) 

formulates the optimization problem for selecting the chiller number/sizes. 
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where, COPop is the operating COP based on annual cooling load distribution. 

Module 2 – Optimization of types of chillers 

It is well known that the chiller plant usually operates at part load condition for most of 

time. Under the same operating PLR conditions (with the same cooling load 
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distribution), chillers with better part load performance are preferred to be used. Fig.6.5 

presents the COP profile of two typical types of chillers (i.e., variable-speed chiller and 

constant-speed chiller). The COP of constant-speed chillers may be the same as or even 

larger than that of the variable-speed chillers near the full load conditions while the 

variable-speed chiller performs much better under other load conditions, particularly 

the low PLR conditions. Therefore, both the constant-speed chillers and variable-speed 

chillers could be used to achieve a high operating COP. 

In order to achieve high operating COP while minimizing the initial cost, more constant-

speed chillers and fewer variable-speed chillers are used. In actual operation, the 

constant-speed chillers are maintained to operate at full load to achieve high COP. The 

insufficient cooling load, which is larger than the total capacity of operating constant-

speed chillers, is covered by variable-speed chillers for their stable COP at part load 

condition. Equation (6.6) formulates the optimization problem for selecting chiller types. 

Where, Nc is number of constant-speed chillers, Nv is number of variable-speed chillers. 

 

Fig.6.5 COP of constant-speed chiller and variable-speed chiller 
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Module 3 – Optimization of chiller plant configuration to achieve minimum total cost 

As mentioned above, when number of chillers increases up to certain extent, the 

operating COP of operating chillers increases and the operation cost reduces. Normally, 

the capital cost of the chiller plant of given total capacity increases when more chillers 

are used. Therefore, there should be a compromised number of chillers when both the 

operating cost and the capital cost are considered. 

Fig.6.6 illustrates the effects of number of chillers on minimum total cost. If the selected 

number of chillers is too small, the limited number of chillers will result in low energy 

efficiency and thus high operational cost while the capital cost of the chiller plant will 

be high if the selected number of chillers is too large. The optimal number of chillers is 

determined when the minimum total cost is achieved. 

 

Fig.6.6 Effects of number of chillers on minimum total cost 
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6.3 Implementation and Evaluation of Uncertainty-based Optimal 

Design Method 

A case study on the chiller plant design for a building in Hong Kong is conducted to 

test and evaluate the proposed uncertainty-based optimal design. At first, Monte Carlo 

simulation is used to generate the cooling load distribution profile for the assessment of 

proposed uncertainty-based optimal design. Then, the total design capacity is 

determined according to the cooling load distribution profile. Finally, optimal chiller 

plant configuration is conducted to achieve the minimum total cost. 

6.3.1 Cooling load distribution and design cooling capacity 

To conduct the Monte Carlo simulations to obtain the cooling load distribution, it is 

essential to determine the settings of uncertainties of the variables. According to the 

settings in Table 3.2, the uncertainties of the input parameters are computed by Matlab. 

Combining the output uncertainties from Matlab, the TRNSYS building model is used 

to generate the building cooling load considering the uncertainties. 

After conducting 780 times of Monte Carlo simulations, the cooling load distribution is 

obtained, as shown in Fig.6.7. The reference case is the cooling load distribution without 

considering the uncertainties. It can be seen that the cooling load distribution profile of 

780 simulation trials is smoother than that of reference case because more cooling load 

conditions are considered. The cooling load distribution mostly locates between about 

2200kW and 4500kW. 
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Fig.6.7 Distribution of cooling load considering uncertainties 

Then, it is essential to determine the total design capacity of the chiller plant. The design 

capacities corresponding to different unmet hours are presented in Fig.6.8. The 

meanings of the symbols can be found in Section 6.2.2. It can be seen that using the 

peak cooling load of typical year (i.e. 5600kW) as design capacity may lead to the 

oversizing of chiller plant. When the annual unmet hours are equal to 0, the design 

capacity of the “mean” and the “max” can be much higher than the peak cooling load 

of typical year in conventional design, which could result in the serious oversizing of 

chiller plant. It can be also observed that the profile of “mean” is close to that of the 

reference case. The decision makers can size the chiller plant based on their specific 

requirements. In this study, the number of unmet hours should be no more than 50. The 

chiller plant can be sized based on the load of 5121 kW according to the “max”. If the 
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the design capacity. 
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Fig.6.8 Design capacity vs. number of annual unmet hours 

6.3.2 Optimal configuration of chiller plant 

The capacity of all the chillers should be equal to the design capacity 5100kW. As shown 

in Fig.6.4, the operating COP increases when the number of chillers increases in certain 

extent. It decreases when the number of chillers increases further. To facilitate the 

operation and control, at least two chillers are employed for practical reasons. The tried 

number of chillers starts from 2 until the number where the operating COP begins to 

decrease. The sizes of chillers are also optimized under each given chiller number based 

on the rated chiller COP of different capacities, as shown in Fig.6.9. 

 

Fig.6.9 Rated COP vs. chiller capacity 

4500

5000

5500

6000

6500

7000

0 10 20 30 40 50 60 70 80 90 100

d
es

ig
n

 c
ap

ac
it

y
 (

k
W

)

annual unmet hours

"mean" "max" "reference"

peak cooling load in typical  year

6.3

6.4

6.5

6.6

800 1200 1600 2000 2400 2800 3200

C
O

P

chiller capacity (kW)



 85 

Using Module 1 described in Section 6.2.3, the optimization of number and sizes of 

chillers is conducted. The results are listed in Table 6.1. It can be observed that the 

operating PLR increases when the number of chillers increases and the operating COP 

increases when the number of chillers increases from 2 to 5. When the number of 

chillers increases up to 6, the operating COP reduces. Therefore, the number of chillers 

is tried between 2 and 6. Combining the chiller plant options from 5 to 8, the chiller 

plant options consisting of some chillers of larger capacity and one chiller of smaller 

capacity have a larger operating COP compared with the other options. It means that the 

optimal chiller plant option consists of more chillers with larger capacity and one chiller 

with smaller capacity. Among these options, the option 6 has the largest operating COP 

(6.09) although its PLR (0.91) is not the largest among options. The options 4, 6 and 8 

have the better energy performance than options 3, 5 and 7 correspondingly under their 

chiller numbers. Therefore, the options 3, 5 and 7 will not be considered and the options 

1, 2, 4, 6 and 8 are selected for the optimization of types of chillers. 

After the number and sizes of chillers are determined, what needs to do is to optimize 

the types of chillers to improve the COP at part load conditions. Fig.6.10 presents the 

typical COP profiles of a constant-speed chiller (1200kW) and a variable-speed chiller 

(1200kW) according to the data from the chiller manufacturer. In this study, under the 

same PLR, the COPs of constant-speed chillers are assumed to be proportional to their 

capacities. 
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Table 6.1 optimization of number and sizes of chillers 

Option No. 

Chiller 

Number 

Chiller plant 

option 

PLRop COPop 

1 2 1*3200+1*1900 0.790 5.56 

2 3 2*2050+1*1000 0.863 5.84 

3 4 2*1500+2*1050 0.919 5.89 

4 4 3*1400+1*900 0.921 5.95 

5 5 3*1200+2*750 0.941 5.95 

6 5 4*1100+1*700 0.910 6.09 

7 6 4*950+2*650 0.956 6.05 

8 6 5*900+1*600 0.932 6.07 

 

Fig.6.10 COP of constant-speed chiller and variable-speed chiller (1200kW) 
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of four constant-speed chillers (1100kW) and one variable-speed chiller (700kW) has 

the largest operating COP (6.15) compared with other options. The option consisting of 

six chillers has a more concentrated COP distribution (from 5.45 to 6.4) than that 

consisting of two chillers. From Table 6.2, the optimal chiller plant option consists of 

more constant-speed chillers and one variable-speed chillers to achieve minimum 

operation cost. 

Table 6.2 Optimization of types of chillers 

Chiller Number Chiller plant option COPop 

2 1*3200*CSD+1*1900*VSD 5.65 

3 2*2050*CSD+1*1000*VSD 5.91 

4 3*1400*CSD+1*900*VSD 5.98 

5 4*1100*CSD+1*700*VSD 6.15 

6 5*900*CSD+1*600*VSD 6.12 

3 3*1700*CSD (conventional design) 4.75 

 

Fig.6.11 Distribution of COP 
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According to the cooling load distribution shown in Fig.6.7 and the COP distribution 

shown in Fig.6.11, the annual operation costs of the chiller plants are computed, as listed 

in Table 6.3. It can be seen that the chiller plant of four constant-speed chillers (1100kW) 

and one variable-speed chiller (700kW) has the lowest annual operation cost 

(3,474,483kW) compared with that of other options, while the design option with one 

constant-speed chiller and one variable-speed chiller has the highest annual operation 

cost (4,501,630kW). Considering the electricity price (0.8 HK$/kWh), Table 4.6 also 

shows the annual electricity cost.  

Table 6.3 Annual operation cost and electricity cost of different design options 

Types 

Annual operation cost 

(kW) 

Electricity cost 

(k HK$) 

1*3200*CSD+1*1900*VSD 3,729,780 3,006 

2*2050*CSD+1*1000*VSD 3,627,834 2,902 

3*1400*CSD+1*900*VSD 3,512,582 2,810 

4*1100*CSD+1*700*VSD 3,474,483 2,780 

5*900*CSD+1*600*VSD 3,492,110 2,794 

3*1700*CSD (conventional design) 4,501,630 3,601 

The annual total cost also contains the annual capital cost of chiller plants. The capital 

cost contains the equipment, relevant accessories and space rent fees. The lifespan of 

the chiller plant is assumed to be 10 years. The capital cost of 900kW variable-speed 

chiller is HKD 1.2M and the capital cost of 900kW constant-speed chiller is HKD 0.9 

M, referring to the data from a manufacture. As for the capital cost of other constant-
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speed chillers and variable-speed chillers, they are computed by Equation (6.7) (Guthrie 

1969; Biegler et al. 1997). 

 00 /CCCCCC                       (6.7) 

where, CC0 is the capital cost of a reference chiller with the capacity C0. CC is capital 

cost of chiller with the capacity C. α is the coefficient, which set to be 0.4 in this study 

(Biegler et al. 1997; Seider et al. 2009). The annual total costs under the different 

options are computed using Equation (6.8) and presented in Table 6.4. It can be seen 

that the option consisting of one constant-speed chiller and one variable-speed chiller 

has the lowest annual capital cost (311k HK$). From Table 6.4, the annual capital cost 

increases when chiller number increases at given total capacity. 

Table 6.4 Capital cost of constant-speed chillers and variable-speed chillers 

Types 

Annual capital cost 

(k HK$) 

1*3200*CSD+1*1900*VSD 311 

2*2050*CSD+1*1000*VSD 375 

3*1400*CSD+1*900*VSD 442 

4*1100*CSD+1*700*VSD 499 

5*900*CSD+1*600*VSD 552 

3*1700*CSD (conventional design) 348 

Combining the annual operational cost shown in Table 6.3 and the capital cost shown 

in Table 6.4, the annual total costs under the different options are computed and 

presented in Table 6.5. It can be observed that the option with three constant-speed 
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chillers (1400kW) and one variable-speed chiller (900kW) is the optimum design option. 

Table 6.5 Annual total costs of the chiller plants 

Types 

Annual operation 

cost (k HK$) 

Annual 

capital cost (k 

HK$) 

Annual total 

cost (k HK$) 

1*3200*CSD+1*1900*VSD 3,006 311 3,317 

2*2050*CSD+1*1000*VSD 2,902 375 3,277 

3*1400*CSD+1*900*VSD 2,810 442 3,252 

4*1100*CSD+1*700*VSD 2,780 499 3,279 

5*900*CSD+1*600*VSD 2,794 552 3,346 

3*1700*CSD (conventional 

design) 

3,601 348 3,949 

6.3.3 Comparison between conventional design and uncertainty-based design 

From Table 6.5, the plant option with one constant-speed chiller (3200kW) and one 

variable-speed chiller (1900kW) has the least annual capital cost while the option with 

four constant-speed chillers (1100kW) and one variable-speed chiller (700kW) has the 

least annual operation cost. To achieve a compromised annual operational cost and 

annual capital cost and thus the minimum annual total cost, the chiller plant option with 

three constant-speed chillers (1400kW) and one variable-speed chiller (900kW) can be 

considered as the optimum selection for the design, and the minimum annual total cost 

is reduced by 17.7% compared with the conventional design option (3*1700kW 
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constant-speed chiller). 

6.4 Summary 

This chapter presents an uncertainty-based optimal design method considering 

uncertainties to ensure the high performance of chiller plants and achieve the minimum 

annual total cost under various possible cooling load conditions by optimize the 

capacity and configuration of chiller plants. A case study is given as an example to 

demonstrate the proposed method. Conclusions can be made as follows: 

 Annual average cooling load varies largely when considering uncertainties. It 

can be seen that the cooling load distribution profile of 780 simulation trials is 

smoother than that of reference case because more cooling load conditions are 

considered. 

 Having the quantitative relation between unmet hours and the design capacity, 

decision makers can properly size the chiller plant with quantified confidence 

according to their specific requirements. 

 The configuration of the chiller plant can be selected by achieving the minimum 

total cost when considering uncertainties. The selected chiller plant can perform 

well under various possible cooling load conditions. The results of the case study 

show that the total cost of optimized chiller plant can be reduced significantly 

(i.e. 17.7%) compared with the conventional design. 

The test results and experiences from the case study show that the proposed 

optimization method can determine the optimal design of the chiller plant effectively in 
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terms of the human effort of programming for implementing the method and the 

computing effort in using the method for optimizing a chiller plant design. The 

optimization is conducted by separating optimizing trials into three steps, i.e. plant 

cooling capacity, number and size of chillers and type of chillers. The computation 

efficiency is dramatically improved and the computation for the optimization of a chiller 

plant can be completed within about 10 minutes performed completed execution. It is 

worth noticing that the optimization output may not the perfect one as not all 

options/combinations are tested.
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CHAPTER 7 ROBUST OPTIMAL DESIGN OF CHILLER 

PLANT 

 

Different from the Chapter 6 which presents an uncertainty-based optimal design of 

chiller plant considering uncertainty only, this chapter presents a robust optimal design 

method of chiller plant considering both uncertainty and reliability simultaneously. A 

series of so-called uncertainty “scenarios” generated by Monte Carlo simulation are 

used for obtaining the accurate cooling load distribution. Considering that the failure 

rate of constant-speed chillers is different from that of variable-speed chillers, robust 

optimal design with different failure rates is used to obtain the steady probability 

distribution of each state of the chiller plant considering the reliability. The searching 

range of total cooling capacity is determined based on the cooling load distribution. In 

order to achieve the minimum total cost, trials of simulations on different total cooling 

capacities and different numbers/sizes of chillers are conducted to obtain the optimum 

chiller plant.  

Section 5.1 presents an introduction of design optimization of chiller plant. Section 7.2 

describes the objective of robust optimal design for chiller plant. Section 7.3 presents 

the method of the robust optimal design for chiller plant. Section 7.4 presents a case 

study on the implementation of the proposed robust optimal design of the chiller plant 

of a building in Hong Kong. A summary of this chapter is given in Section 7.5. 
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7.1 Introduction 

A chiller plant is usually comprised of constant-speed chillers and variable-speed 

chillers. Regarding the reliability issue, most of the previous studies are based on the 

assumption that all the components in parallel have the same failure rate. In this study, 

different failure rates of constant-speed chillers and variable-speed chillers are 

considered.  

According to the conclusion of Chapter 6, the optimum chiller plant option using 

uncertainty-based optimal design method should consist of more constant-speed chillers 

with larger capacity and one variable-speed chiller with smaller capacity, which could 

ensure that the selected option operate at high efficiency. In order to achieve high 

operating COP, more constant-speed chillers and fewer variable-speed chillers are used 

due to the higher COP of constant-speed chillers at nearly full load. For taking both the 

uncertainty and reliability into account of chiller plant design, following assumptions 

are made:  

• a chiller plant consists of two or more constant-speed chillers and no more than 

two variable-speed chillers. 

• the number of constant-speed chillers is no less than that of variable-speed 

chillers; 

• the failure rate of constant-speed chiller is smaller than that of variable-speed 

chillers; 

• all the constant-speed chillers are identical and they have the same failure rate 

under each nominal capacity;  
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• all the variable-speed chillers are identical and they have the same failure rate 

under each nominal capacity. 

The robust optimal design aims at ensuring the high operating efficiency and sufficient 

cooling capacity to fulfill the cooling demands. 

7.2 Objective of Robust Optimal Design of Chiller Plant 

The objective the proposed method is to ensure that the chiller plant operates at high 

efficiency over the entire cooling season and achieve the minimum annual total cost 

considering uncertainties of design inputs and reliability of chillers. In this study, the 

annual total cost (TCn) consists of three parts: annualized capital cost (CCn), annual 

operation cost (OCn) and annual availability risk cost (RCn). Annualized capital cost 

includes the expense in purchasing/installing chillers and associated components and 

the space cost, which is determined by the number of and capacity of equipment. Annual 

operational cost is the cost charging for the electricity consumption of the chiller plant 

in operation, which is mainly associated to the annual cooling load, the rated COP of 

chillers and the part load ratio of chillers in operation. Availability risk cost is a virtual 

“expense” for accounting the service sacrifice due to insufficient cooling supply, which 

is considered only when the cooling demands cannot be fulfilled. Fig.7.1 illustrates the 

conceptual relationship between the costs and cooling capacity of chiller plant. 

Generally speaking, larger cooling capacity means higher reliability. The capital cost 

increases as the total cooling capacity increases. Under the optimal configuration of 

chiller plant, the operation cost may change slightly as the total cooling capacity 

increases. On the other hand, the availability risk cost decreases as the total cooling 
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capacity increases. The total life-cycle cost is comprised of the capital cost, operation 

cost and availability risk cost, as shown in Equation (7.1). According to Fig. 7.1, there 

should be a comprised total cooling capacity to achieve the minimum total life-cycle 

cost, at which the optimal capacity is achieved. 

n n n nTC CC OC RC                         (7.1) 

 

Fig.7.1 Total cost vs total cooling capacity 
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 Uncertainty quantification: Monte Carlo simulation is used to generate the cooling 
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 Trials of simulations on the total cooling capacity and number/size of chillers: 

conduct the trials on each total cooling capacity step by step; obtain the operation 

cost, capital cost and availability risk cost under different number/size of chillers 

on each total cooling capacity; obtain the optimal chiller plant option under each 

total cooling capacity. 

 

Fig.7.2 Procedure of the proposed robust optimal design 
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of inputs. Table 3.2 shows an example of the settings of uncertainties of the inputs. 

Combining the output uncertainties from Matlab, the TRNSYS building model is used 

to generate the building cooling load distribution considering the uncertainties based on 

the determined simulation number. The required trials of Monte Carlo simulations are 

determined by a statistic method [26]. After conducting the required trials of Monte 

Carlo simulations, the cooling load distribution involving uncertainties is determined. 

In this study, about 780 times of Monte Carlo simulations are used to generate the 

cooling load distribution. 

The selection of uncertainties may influence the final sizing of chiller plant. If a larger 

range of uncertainties is used, the total cooling capacity of chiller plant may be larger 

to reduce the availability risk cost and thus the optimal option may be different. 

Considering that this paper focuses on the design method, it will be discussed in later 

chapter. 

7.3.2 Quantification of total cooling capacity 

Then, it is necessary to determine the searching range of total cooling capacity of chiller 

plant, which plays a significant role in the design of chiller plant. If an inappropriate 

(overlarge in most cases) total cooling capacity is selected, it may result in that a chiller 

plant is significantly oversized in actual operation and it thus causes significant energy 

and cost wastes. 

To determine the searching range of total cooling capacity of chiller plant, it is essential 

to obtain the cooling capacities with numbers of hours when the cooling demand cannot 



 99 

be met (marked as unmet hours). Based on the cooling load distribution, the “mean” 

capacity of the total simulation trials are calculated and shown in Figure 7.3. The “mean” 

value represents the cooling capacity corresponding to different unmet hours per year, 

based on the average cooling load distribution profile. The “reference” value represents 

the cooling capacity based on the cooling load distribution of typical year. The peak 

cooling load in typical year is presented for comparison. It can be observed that the 

cooling capacities based on the average annual load profile are significantly lower than 

the peak cooling load in typical year, when certain number of unmet hour is allowed (as 

required in design guide). Therefore, using the peak cooling load in typical year as the 

design capacity may lead to the oversizing of chiller plant. At most of the unmet hours, 

the cooling capacities based on the average annual cooling profile and that in typical 

year are very close.  

 

Fig.7.3 Cooling capacity vs. unmet hours 
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capacity is assumed to be the capacity corresponding to 50 unmet hours. The maximum 

cooling capacity is assumed to be the capacity when all the cooling load conditions are 

met. The interval of each trial is 2.5% of the minimum cooling capacity. 

7.3.3 Quantification of probability distribution of chiller plant 

Markov method is used in this study because of its wide application in reliability 

analysis of multi-state systems (Lisnianski and Levitin 2003). The aim of using Markov 

method is to obtain the probability of each state of a multi-state system at a specific 

period and then the performance of the system and capability can be estimated. It is 

assumed that the state probabilities at a future instant do not depend on the states 

occurred in the past. 

The life cycle of each component in this study contains the operating period, 

maintenance period and failure period. The mean time to failure (MTTF, 1/λ) is often 

used to represent the operating time, as shown in Equation (7.2). The mean time to 

repair (MTTR, 1/μ) is often used to represent the maintenance time and failure time, as 

shown in Equation (7.3). Commonly, failure rate (λ) and repair rate (μ) are usually used 

as the major parameters for conducting the reliability assessment. 



1
MTTF

                       (7.2) 



1
MTTR

                         (7.3) 

It is assumed that each chiller has two states only: normal (0) and failure (1). The 

variable-speed chillers have no more than three states (i.e. no chillers fail, one chiller 
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fails and two chillers fail) considering the reliability of variable-speed chillers. The 

probability of the states of variable-speed chillers can be easily obtained through the 

calculation of transition matrix. The constant-speed chillers have (n1+1) states (i.e., each 

states contains several situations) considering the reliability of constant-speed chillers, 

as shown in Fig.7.4 (Lisnianski et al. 2012). Totally, the chiller plant has 3(n1+1) states, 

as shown in Equation (7.4) - (7.6). Where, n1 is the number of constant-speed chillers, 

n2 is the number of variable-speed chillers. p2,n2 is equal to 0 when only one variable-

speed chiller is used. 

1)()(
222111111 ,2,1,0,,1,1,0   nnnnnnnnn ppppppp

           (7.4) 

1
111111 ,,1,1,0   nnnnnn pppp

                    (7.5) 

1
222 ,2,1,0  nnn ppp

                          (7.6) 

According to Fig.7.4, it can be observed that state 0 symbolizes that no constant-speed 

chillers fail and state k symbolizes that k (1≤k≤n) constant-speed chillers fail. From 

state 0 to state n1, the failure rate λ1 is used to represent the probability from one state 

to another. From state n1 to state 0, the repair rate μ is used to represent the probability 

from one state to another. The transition probability is determined by a state transition 

density matrix A (Equation (7.7)), which only involves the repair rate and failure rate 

of constant-speed chillers. Probability distribution of the constant-speed chillers at each 

state at time t can be represented with a vector P(t) (Equation (7.8)). It can be deduced 

from the initial state by Equation (7.9) and Equation (7.10). When the time approaches 

to infinity, P(∞) will keep stable (Equation (7.11)). Then the steady state probabilities 

can be obtained by solving the linear algebraic equations (Equation (7.12) and Equation 
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(7.13)).  

 

Fig.7.4 States of n1 constant-speed chillers and possible transitions 
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7.3.4 Quantification of configuration of chiller plant 

Different from previous design method that mainly focused on the optimal 

configuration on a typical total cooling capacity (e.g., the cooling capacity 

corresponding to 50 unmet hours), in this study, a series of total cooling capacities 

within the searching range are selected to determine the optimal chiller plant option, 

which could operate at high energy efficiency and have sufficient capacity to fulfill the 

cooling demands. Considering that the chillers are only manufactured in certain discrete 

size, trials of simulations on different total cooling capacities and different and discrete 

number/size of chillers are conducted to select the optimal chiller plant option. 

Figure 7.5 presents the implementation of trials of simulation on each total cooling 

capacity. It contains two parts, i.e. the trials under the condition that only one variable-

speed chiller is used and the trials under the condition that two variable-speed chillers 

are used. For the trials under the condition that only one variable-speed chiller is used, 

the number of constant-speed chillers are calculated from one (minimum two chillers, 

including the variable-speed chiller, is assumed concerning the basis requirement for 

reliability and maintenance) until the operation cost begins to increase. The option 

which has the lowest total cost under each total cooling capacity is selected. Equation 

(7.14) formulates the optimization problem for selecting the number/size of constant-

speed chillers when only one variable-speed chillers is used.  
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For the trials under the condition that two variable-speed chillers are used, the number 

of constant-speed chillers are calculated from two (i.e. the number of constant-speed 

chillers is not less than that of variable-speed chillers) until the operation cost begins to 

increase. The option that has the lowest total cost under each total cooling capacity is 

selected. Equation (7.15) formulates the optimization problem for selecting the 

number/size of constant-speed chillers when only one variable-speed chillers is used.  
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                     (7.15) 

A comparison is made between the optimal option with one variable-speed chillers and 

the optimal option with two variable-speed chillers. Eventually, among the options 

corresponding to various total cooling capacities, the option that has the minimum total 

cost is selected as the optimum design for a building. 

 

Fig.7.5 Trials of simulation to select optimum chiller plant design 
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The annual operational cost is mainly related to the annual cooling load distribution and 

energy efficiency of chiller plant. The energy efficiency of chiller plant, usually 

evaluated by COP, strongly depends on the operating PLR. It is well known that the 

larger the PLR, the higher COP once the impact of other operating parameters (e.g. 

condensing and evaporating temperatures) are separated, as shown in Equation (7.16). 

3

3

2

210 iiii PLRDPLRDPLRDDCOP 
               (7.16) 

where, D0-D3 are the coefficients that can be identified from chiller catalogue or field 

measurement data. The PLR is usually determined by the number and size of operating 

chillers. It is simply defined as the ratio of the required cooling load (CLre) to the 

available cooling capacity (CLava) (i.e. that of operating chillers) as shown in Equation 

(7.17). 

                
  ominalNop
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ava
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PLR


                   (7.17) 

where, CLNominal is the nominal cooling capacity of each chiller. Nop is the number of 

operating chillers. It means that the more chillers are selected, the higher operating PLR 

can be achieved under appropriate sequence control strategies. On the other hand, 

selecting more chillers means that the size of individual chillers is smaller. Generally, 

the rated COP of chiller decreases when the nominal capacity of chillers reduces in 

certain extent. Therefore, the operating COP increases when the number of chillers 

increases to certain value and it reduces when the number of chillers increases further, 

as shown in Fig.7.6 (Harvey 2012). 
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Fig.7.6 COP vs. number of chillers 

The sizes of individual chillers, which determine the nominal COP, influence the PLR 

and operating COP of the chiller plant. In practice, two types of sizes of chillers are 

proper for the convenient maintenance and control. Besides, the number of chillers of 

larger capacity is selected to be at least the same as that of smaller capacity in the 

optimization trials. To determine the optimal sizes of chillers at a given chiller number, 

the larger size increases gradually from the mean value (i.e., all the chillers are equally 

sized) until the operating COP achieves the maximum value in the optimization trials. 

At the same time, the smaller size decreases accordingly. 

7.4 Case Study and Results 

A case study on the chiller plant design for a building in Hong Kong is conducted to 

test and evaluate the proposed robust optimal design. At first, Monte Carlo simulation 

is used to generate the cooling load distribution of required accuracy. Then, the 

searching range of total cooling capacity of chiller plant is determined according to the 
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obtain the probability of each state considering the failure rate difference between 

constant-speed chiller and variable-speed chiller. Finally, the trials of simulations on 

different total cooling capacities and numbers/sizes of chillers are conducted to select 

the optimum chiller plant which has the minimum total cost. 

7.4.1 Cooling load distribution and searching range of design cooling capacity 

To conduct the Monte Carlo simulations in order to obtain the cooling load distribution, 

it is essential to select the parameters of uncertainties of the design inputs. Combining 

the output uncertainties from Matlab, the TRNSYS building model is used to generate 

the building cooling load involving the uncertainties. After conducting 780 times of 

Monte Carlo simulations, the cooling load distribution is obtained, as shown in Fig.7.7. 

The reference case is the normal cooling load distribution without considering the 

uncertainties. It can be seen that the cooling load distribution profile of 780 simulation 

trials is smoother than that of reference case because more cooling load conditions are 

considered. 

Then, it is essential to determine the searching range of the total cooling capacity of the 

chiller plant. The cooling capacities corresponding to different unmet hours are 

presented in Fig.7.8. The meanings of the symbols can be found in Section 7.3.2. It can 

be observed that the profile of “mean” is close to that of the reference case. It can be 

seen that the peak cooling load of typical year (i.e. 5600kW) is higher than the minimum 

cooling capacity (i.e. about 5100kW). When the annual unmet hours are equal to 0, the 

maximum cooling capacity (i.e. 6600kW) is much higher than the peak cooling load of 

typical year in conventional design. The searching range of the total cooling capacity is 
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between 5100 kW and 6600 kW and the interval is assumed to be 100kW. 

 

Fig.7.7 Distribution of cooling load considering uncertainties 

 

Fig.7.8 Cooling capacity vs. number of annual unmet hours 
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chillers totally. The failure rate of constant-speed chillers is assumed to be 0.0001/hour 

and the failure rate of variable-speed chillers is assumed to be 0.000125/hour. Both their 

repair rates are assumed to be 0.002/hour.  

Then, it is essential to obtain the probability distribution of each steady state under 

various numbers of constant-speed chillers. As mentioned above, the chiller plant 

consists of one or two variable-speed chillers. According to Equation (7.6), the 

probability distribution of variable-speed chillers can be obtained. Table 7.1 shows the 

probability distribution of each steady state of variable-speed chillers. It can be observed 

that the probability of state 0 is 0.9412 and the probability of state 1 is 0.0588 when 

only one variable-speed chiller is used. The probabilities of state 0, 1 and 2 are 0.8828, 

0.1103 and 0.0069 respectively when two variable-speed chiller are used. 

Table 7.1 Probability distribution of steady states of variable-speed chillers 

State 

Variable-speed chillers 

1 2 

0 0.9412 0.8828 

1 0.0588 0.1103 

2 - 0.0069 

According to Equation (7.5), the probability distribution of constant-speed chillers can 

be obtained. Table 7.2 shows the probability distribution of each steady state of under 

different number of constant-speed chillers. It can be observed that the probability of 

state 0 decreases when the number of constant-speed chillers increases. 
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Table 7.2 Probability distribution of steady states of constant-speed chillers 

State 

Number of constant-speed chillers 

1 2 3 4 5 

0 0.9524 0.9050 0. 8578 0.8109 0.7644 

1 0.0476 0.0905 0.1278 0.1622 0.1911 

2 - 0.0045 0.0129 0.0243 0.0382 

3 - - 0.0006 0.0024 0.0057 

4 - - - 0.0001 0.0006 

5 - - - - 0 

According to Equation (7.4), the probability distribution of the chiller plant can be 

obtained. Table 7.3 shows an example of the probability distribution of chiller plant, 

which consists of five constant-speed chillers and two variable-speed chillers. This 

chiller plant has 18 states totally, i.e. three states of variable-speed chillers and six states 

of constant-speed chillers. The probability of the chiller plant under the state 0 of 

constant-speed chillers and state 0 of variable-speed chillers is 0.67481, and the 

probability of the chiller plant under state 5 of constant-speed chillers and state 2 of 

variable-speed chillers is 0. 
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Table 7.3 An example of the probability distribution of chiller plant 

Probability distribution of 

      chiller plant 

State of variable-speed chillers 

0 1 2 

State of 

constant-speed 

chillers 

0 0.67481 0.08431 0.00527 

1 0.16870 0.02108 0.00132 

2 0.03372 0.00421 0.00026 

3 0.00503 0.00063 0.00004 

4 0.00053 0.00007 0 

5 0 0 0 

7.4.3 Trials on the total cooling capacities and numbers/sizes of chillers 

As mentioned above, the searching range of total cooling capacity is assumed to be 

5100-6600 kW and the searching interval is selected to be 100 kW in this study. Trials 

of simulations are conducted on the 16 total cooling capacities respectively (i.e. 5100 

kW, 5200 kW, …, 6500 kW and 6600 kW). 

For example, it is assumed that total cooling capacity of chiller plant is 6000 kW. 

According to Fig.7.6, the operating COP increases when the number of chillers 

increases in certain range and it decreases when the number of chillers increases further. 

According to Section 7.3.4, the evaluation of the number of constant-speed chillers on 

the operation cost is conducted. Meanwhile, the nominal capacities of constant-speed 

chillers and variable-speed chillers are optimized. The electricity price used in this study 

is 1 HKD/kW, which is the typical rate in Hong Kong. The results are shown in Table 
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7.4. It can be observed that the operation costs decrease when the number of chillers 

increases. It can also be observed that the operation cost of the chiller plant option with 

two variable-speed chillers is lower than that with one variable-speed chiller. Compared 

with the chiller plant option with two variable-speed chillers, the chiller plant with one 

variable-speed chiller might operate at lower efficiency at part load conditions when the 

variable-speed chiller could not work. The design option comprised of 4 constant-speed 

chillers (1050 kW) and 2 variable-speed chillers has the lowest operation cost compared 

with the other options. 

Table 7.4 Annual operation cost and annualized capital cost of different design options 

Chiller 

Number 

Chiller plant option  

(Size (kW) number) 

Operation cost 

(103 HKD) 

Capital cost  

(103 HKD) 

2 32001CSD+28001VSD 3,502 373 

3 21002CSD+18001VSD 3,478 461 

4 15503CSD+13501VSD 3,461 542 

4 16002CSD+14002VSD 3,446 580 

5 12504CSD+10001VSD 3,436 616 

5 13003CSD+10502VSD 3,403 653 

6 10505CSD+7501VSD 3,435 685 

6 10504CSD+9002VSD 3,392 723 

Remarks: CSD – constant-speed chiller, VSD – variable-speed chiller 

Annualized capital cost contains the equipment cost and space cost. The lifespan of the 

chiller plant is assumed to be 10 years. The annual space costs of constant-speed chillers 
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and variable-speed chillers are assumed to be 15,000 HKD and 20, 000 HKD 

respectively. Equipment costs of constant-speed chiller (900 kW) and variable-speed 

chiller (900 kW) are 0.9 MHKD and 1.2 MHKD respectively, referring to the data from 

a manufacture. As for the equipment cost of other chillers, they are estimated using 

Equation (7.18) (Guthrie 1969; Biegler et al. 1997). 

 00 /CCECEC                       (7.18) 

where, EC0 is the equipment cost of a reference chiller with the capacity C0. EC is 

equipment cost of chiller with the capacity C. α is the coefficient, which set to be 0.15 

in this study. The annualized capital costs under the different design options are 

estimated using Equation (7.18) and shown in Table 7.4. 

Availability risk cost is the “expense” or service sacrifice which should be considered 

when the cooling demands cannot be fulfilled. Table 7.5 shows the annual availability 

risk costs and total costs of different design options under three penalty ratios (i.e., 1, 

10 and 100 HKD/kW). It can be seen that, when the number of chillers is small, the 

annual availability risk cost decreases rapidly when the chiller number increases. It can 

also be observed that the total cost decreases when the number of chillers increases in 

certain range and it decreases when the chiller number increases further. Since the 

availability risk cost is high when the chiller number is small and the capital cost is high 

when the chiller number is large, there is a comprised numbers/sizes of chillers which 

has the minimum total cost. In this study, the penalty ratio is assumed to be 10HKD/kW. 

Among these options, the option with 4 constant-speed chillers (1250 kW) and 1 

variable-speed chiller (1000 kW) has the minimum total cost 4,237103HKD, which 
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has good robustness towards the uncertainties and reliability. Therefore, it can be 

considered as the best option under the total cooling capacity 6000 kW. If the penalty 

ratio is 1HKD/kW, the best option under the total cooling capacity is the option with 2 

constant-speed chillers (2100 kW) and 1 variable-speed chiller (1800kW). The 

designers can select the best option based on their specific requirement of penalty ratio. 

Table 7.5 Annual availability risk cost (103HKD) and total cost (103HKD) of different 

design options 

Penalty ratio 

(HKD/kW) 

1 10 100 

Option 

(size(kW)number) 

RC TC RC TC RC TC 

32001CSD+28001VSD 102 3,978 1,021 4,897 10,210 14,085 

21002CSD+18001VSD 39 3,977 387 4,326 3871 7,810 

15503CSD+13501VSD 25 4,140 247 4,362 2,468 6,583 

16002CSD+14002VSD 25 4,053 254 4,282 2,542 6,570 

12504CSD+10001VSD 19 4,070 185 4,237 1,851 5,903 

13003CSD+10502VSD 28 4,084 275 4,331 2,755 6,811 

10505CSD+7501VSD 15 4,135 145 4,265 1,451 5,571 

10504CSD+9002VSD 22 4,165 216 4,331 2,161 6,276 

Remarks: RC- availability risk cost, TC- total cost. 
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Table 7.6 Best design options under different total cooling capacities (penalty 

ratio:10HKD/kW) 

Total cooling 

capacity 

(kW) 

Best option 

(size (kW)  

number) 

Availability 

risk cost 

(103HKD) 

Operation 

cost 

(103HKD) 

Total cost 

(103HKD) 

5,100 

10504CSD+ 

9001VSD 

490 3,397 4,469 

5,400 

11004CSD+ 

10001VSD 

343 3,412 4,350 

5,700 

11504CSD+ 

11001VSD 

246 3,421 4,274 

6,000 

12504CSD+ 

11001VSD 

185 3,436 4,237 

6,300* 

13004CSD+ 

11001VSD 

131 3,463 4,222 

6,600 

23002CSD+ 

20001VSD 

253 3,501 4,231 

After conducting the trials on other total cooling capacities, the minimum total costs are 

computed and presented in Table 7.6. When the total cooling capacity increases from 

5100 kW to 6300 kW, the availability risk costs of the best options decrease rapidly and 

the total costs are also reduced. When the total cooling capacity is over 6300 kW, the 

total cost increases. It can be observed that the best option of each total cooling capacity 



 116 

has only one variable-speed chillers. Although the chiller plant with two variable-speed 

chillers may operate at higher efficiency at part load conditions, the variable-speed 

chiller is more expensive than the constant-speed chiller. Therefore, using one variable-

speed chiller is economical in spite of the lower operating efficiency. It can be seen that 

the option with 4 constant-speed chillers (1300 kW) and 1 variable-speed chiller (1100 

kW) has the minimum total cost 4,222103 HKD compared with other options. It means 

that the selected option has better robustness to uncertainties and system reliability. 

7.4.4 Comparison among the three design methods 

Table 7.7 shows the design option of robust optimal design, uncertainty-based design 

and conventional design. Compared with conventional design and uncertainty-based 

optimal design, the total cost under robust optimal design (4,222103HKD) is reduced 

by about 26% and 11.4% respectively when the penalty ratio is 10 HKD/kW. To achieve 

the minimum annual total cost, the option with 4 constant-speed chillers (1300 kW) and 

1 variable-speed chiller (1100 kW) can be selected as the optimum selection for the 

design. This best option also has the minimum total cost, which may indicate that it has 

good robustness considering the uncertainties of design inputs and reliability of system 

components. 
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Table 7.7 Optimal options using different design methods (penalty ratio:10HKD/kW) 

 

Total 

cooling 

capacity 

(kW) 

Best option 

(size (kW)  

number) 

Availability 

risk cost 

(103HKD) 

Operation 

cost 

(103HKD) 

Total cost 

(103HKD) 

Robust optimal 

design 

6,300 

13004CSD+ 

11001VSD 

131 3,463 4,222 

Uncertainty-

based design 

5100 

14003CSD+ 

9001VSD 

656 3,495 4,765 

Conventional 

design 

5100 17003CSD 992 4,318 5,703 

7.5 Summary 

This chapter presented a robust optimal design method, which is based on a minimized 

life-cycle cost to ensure the high performance of chiller plant and achieve the minimum 

annual total cost considering uncertainties of inputs and system reliability. It is realized 

by optimizing the total cooling capacity and numbers/sizes of chiller plant. A case study 

is given as an example to test and demonstrate the proposed method. Conclusions can 

be made as follows: 

• Quantification of uncertainties of design inputs is very important in determining the 

cooling load distribution of required accuracy.  

• Based on the cooling load distribution, the searching range of total cooling capacity 

of chiller plant can be determined by the cooling capacities with numbers of hours. 
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The minimum cooling capacity is 5100 kW and the maximum cooling capacity is 

6600 kW.  

• Markov method can be effectively used to obtain the probability distribution of 

system state (health) for high accuracy and fast computation time. In this study, the 

failure rate different between constant-speed chillers and variable-speed chillers is 

considered. Results show that the probability distribution of chiller plant can be 

divided into the states of constant-speed chiller and the states of variable-speed 

chillers. 

• Compared with the chiller plant option with two variable-speed chillers, the chiller 

plant with one variable-speed chiller might operate at lower efficiency at part load 

conditions when the variable-speed chiller could not work. Given that the variable-

speed chiller is more expensive than the constant-speed chiller, using one variable-

speed chiller is economical in spite of the lower operating efficiency. 

• The design option of the chiller plant can be selected by achieving the minimum 

total cost when considering uncertainties and system reliability. The selected chiller 

plant can perform well under various possible cooling load conditions and have the 

good robustness towards the system reliability. The results of the case study show 

that the total cost of optimized chiller plant can be reduced significantly (26% and 

11.4%) compared with the conventional design and uncertainty-based optimal 

design respectively. 

• It is worth noticing that the optimization output may be slightly different from the 

best one in principle as not all options/combinations are tested due to the chosen test 

interval in computation and available chillers sizes in practice. 
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CHAPTER 8 ROBUST OPTIMAL DESIGN OF CHILLED 

WATER SYSTEM 

 

This chapter presents a life-cycle based robust optimal design method of chilled water 

systems. It can ensure that the designed chilled water systems could operate at high 

energy performance and the minimum total life-cycle cost could be achieved under 

various possible cooling load conditions considering the uncertainties of design inputs 

and reliability of the components. In this study, the chilled water pumps are assumed to 

be identical in parallel and thus they have the same failure rate. A series of so-called 

uncertainty “scenarios” generated by Monte Carlo simulation, is used for obtaining the 

accurate cooling load distribution and accurate hydraulic resistance distribution. 

Markov method is used to obtain the steady probability distribution of each state of the 

pump system considering the reliability. Effective pump models and three typical 

control methods are considered for evaluating the effectiveness and robustness of the 

proposed design method. In order to achieve the minimum total cost, trials of 

simulations on different design flows and different nominal flows are conducted to 

obtain the optimum chilled water pump system.  

Section 8.1 gives a brief introduction of the chilled water pump system. Section 8.2 

describes the objective of robust optimal design for chilled water systems. Section 8.3 

presents the method of the robust optimal design for chilled water pump systems. 

Section 8.4 shows a case study on the robust optimal design of the chilled water pump 

system of a building in Hong Kong. A summary of this chapter is given in Section 8.5. 
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8.1 Introduction 

There are two main types of chilled water systems i.e. primary-secondary pump system 

and primary only pump system for distributing the chilled water from chillers to 

terminal users (air handling unit) (Tirmizi et al. 2012). For primary-secondary pump 

systems, constant-speed pumps are usually used to circulate the water in the primary 

loop whereas variable-speed pumps are usually employed for varying the water 

circulation in the secondary loop depending upon the cooling demands of terminal users. 

For a primary only pump system, variable-speed pumps are used to circulate the chilled 

water through the entire system, and the chilled water flow rate varies corresponding to 

building load. 

In this chapter, a typical primary only pump system as shown in Fig. 8.1 is used for 

developing the robust optimal design method. Identical variable-speed pumps are 

employed to circulate the chilled water through the entire system and the chilled water 

flow rate varies corresponding to the load. Bypass is used to maintain the minimum 

flow rate for safety, and the cooling demands of three terminal users are similar. 
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Fig.8.1 Scheme of primary only pump system 

8.2 Objective of the Design Optimization Method 

The objective of the proposed method is to ensure that the system operates at high 

efficiency over the entire cooling season and achieve the minimum annual total cost 

considering uncertainties and system reliability. The annual total cost (TCn) consists of 

three parts: annualized capital cost (CCn), annual operation cost (OCn) and annual 

availability risk cost (RCn). Annualized capital cost includes the expense in 

purchasing/installing the pumps and associated components (equipment cost) and the 

spaces for accommodating them (space cost), which is determined by the number and 

size of pumps. Annual operational cost is the cost electricity consumed by the pumps in 

operation, which is mainly associated to the annual cooling load distribution and the 

pump energy efficiency. Availability risk cost is the “expense” or service sacrifice which 

should be considered when the cooling demands cannot be fulfilled. Fig. 8.2 illustrates 

the conceptual relationship between the costs and system total capacity under the 

optimized pump head. It is well-known that large system capacity means higher system 

reliability. The capital cost increases as the system capacity increases. Under the optimal 
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configuration of chilled water pumps system, the operation cost may change slightly as 

the system capacity increases. On the other hand, the availability risk cost decreases as 

the system total capacity increases. The total life-cycle cost is comprised of the capital 

cost, operation cost and availability risk cost, as shown in Equation (8.1). According to 

Fig. 6.2, there should be a comprised system capacity to achieve the minimum total life-

cycle cost, at which a comprised level of reliability is achieved (Billinton et al. 2001). 

n n n nTC CC OC RC                         (8.1) 

 

Fig.8.2 Total cost vs system capacity 

8.3 Optimal Design Method for Chilled Water Pump System 

The robust optimal design is performed by four steps as shown in Fig. 8.3. Details of 

the four steps are explained as follows. 

I. Uncertainty quantification: generate the cooling load distribution involving 

uncertainties and determine the design flow; then generate the hydraulic 

resistance distribution and determine the design pressure head; 
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II. Reliability quantification: obtain the probability distribution of each state of 

chilled water pumps; 

III. Modeling and control methods of chilled water pumps: obtain the pump models 

on the calculation of electricity consumption; determine the basic, medium and 

advanced control methods of chilled water pumps. 

IV. Trials of simulations on the total flow and nominal flow: determine the searching 

range of total pump flow capacity and conduct trials on each design flow step 

by step; obtain the operation cost, capital cost and availability risk cost under 

different pump numbers on each design flow; obtain the optimal chilled water 

pumps under each design flow. 

 

Fig.8.3 Procedure of the proposed robust optimal design 
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8.3.1 Modeling of chilled water pumps and control methods 

The charging for the electricity consumption of chilled water system, also regarded as 

the operation cost, is one of the most important aspects in selecting the optimum chilled 

water pumps. The electricity consumption of the system (also called operation cost OCpu) 

mainly depends on the pressure drop (Hpu), the water flow rate (mw), pump efficiency 

(ηpu) and VFD (variable frequency drive) efficiency (ηVFD), which can be computed by 

Equation (8.2) (Wang et al. 2001). 

VFDpu

puw

pu

Hm
OC

102
                          (8.2) 

The three efficiencies of variable speed pumps can be modeled using a series of 

polynomial approximations (Bahnfleth et al. 2006). The characteristics of pump 

efficiency and VFD efficiency are based on the manufacturers’ data at the full speed 

operation and extended to the variable speed operation using the pump affinity laws. 

Pump efficiency is modeled using Equation (8.3), which is a function of the fraction of 

the nominal flow (Rishel et al. 2006). VFD efficiency is modeled using Equation (8.4), 

which is a function of the fraction of the nominal speed (Hansen 1995). The coefficients 

in these polynomials can be regressed using the pump performance data or performance 

curves and VFD efficiency curve provided by the manufacturers. 

)( 3
3

2
210 xexexeedesignpump                      (8.3) 

3
3

2
210 yfyfyffVFD                       (8.4) 

where, ηdesign is design pump efficiency, x is the fraction of nominal flow, y is the fraction 

of the nameplate brake horsepower or the nominal speed, e0–e3 and f0–f3 are coefficients. 
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The pressure head of chilled water pump systems depends on the control method. In 

this study, three levels of control optimization methods, i.e. basic level, medium level 

and advanced level, are proposed for determining the pressure set-point in operation 

and then the operation cost of systems, as shown in Fig. 8.4. Users can select them based 

on the expected level of the control optimization of the system to be optimized. The 

basic level method is that the pressure set-point of the chilled water loop Δpset,b (a 

major part of the pump pressure head) in the building is assumed to be a constant value 

regardless of the water flow rate as shown in Fig. 8.4 and Equation (8.5). The medium 

level method is that the pressure set-point of the chilled water loopΔpset,m in the 

building is assumed to be linear to the water flow rate (mw) as shown in Fig.8.4 and 

Equation (8.6). The advanced level method is that the pressure set-point of the chilled 

water loopΔpset,a in the building is assumed to be square to the water flow rate (mw) as 

shown in Fig. 8.4 and Equation (8.7). The minimum pressure set-point is assumed to be 

30% of design pump pressure head. The chilled water flow rate in the building is 

assumed to be linear to cooling load and the minimum water flow rate is assumed to be 

20% of design flow rate.  

,set b Dp p                               (8.5) 

, min
w

set m
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p p

m

 
                            (8.6) 
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m

 

    
 

                        (8.7) 

where, pD is design pressure head, mD is design flow rate, α and β are coefficients. 
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Fig.8.4 Pressure set-point of chilled water loop vs flow rate 
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building cooling load distribution considering the uncertainties based on the determined 

simulation number. The required trials of Monte Carlo simulations are determined by a 

statistic method (Cheng et al. 2015). After conducting the required trials of Monte Carlo 

simulations, the cooling load distribution involving uncertainties is determined. In this 

study, about 780 times of Monte Carlo simulations are used to generate the cooling load 

distribution (Cheng et al. 2015). Then, the designers can determine the design cooling 

capacity based on their specific requirements. 

Besides, the design flow is determined by the temperature difference and design cooling 

load. In practice, the designers tend to choose a constant temperature difference in the 

design of cooling systems (i.e., the supply chilled water temperature is 7℃ and the 

return chilled water temperature is 12℃). The flow required is then calculated by 

Equation (8.8). Where, mD is the design flow, CLD is the design cooling load, cp is the 

specific heat of chilled water and Δt is the temperature difference. 

tc

CL
m

p

D
D


                           (8.8) 

Module 2 – Obtain the hydraulic resistance distribution and pressure head 

In practice, the pressure head is determined by the overall pressure drop of the “worst 

case circuit”. Fig.8.1 presents the simplified structure of the pressure-flow balance 

model for the chilled water network at the primary pump only system, in which only 

three terminal units are included as examples. The bypass is used to maintain the actual 

flow rate above the minimum flow rate of chilled water through chillers (i.e., 60% of 

the design flow rate of an individual chiller). The overall pressure drop of the entire 
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system, i.e., along the sub-branch C-C1, can be mathematically described as in Equation 

(8.9), which includes the pressure drop on the chillers, the pressure drop on the fittings 

around pumps (including the pressure drop on the headers that direct the flow into and 

from each pump and the pressure drop on the valves in the pump headers), the pressure 

drops on main supply and return pipelines, the pressure drop across the sub-branch (i.e., 

C-C1) and the pressure drops on the pipeline sections of A-B and B-C. 

2 2 2 2 2

0 0 0 0 1 1 2 2( )
puch

pump c c c C

ch pu

SS
p m m S k m S k m S k S m

N N
              (8.9) 

where, ΔPpump is the pressure drop of the entire chilled water loop. Sch and Spu are the 

coefficients of chillers and pumps. S0, S1 and S2 are the coefficients of pipeline. SC is 

the coefficient of AHU. m0, m1 and m2 are the flow rate of chilled water. 

The pump pressure head is also affected by the hydraulic resistance coefficients, chilled 

water distribution in each terminal unit and aging factor of the pipelines as well as the 

fluctuation of the chilled water flow. For a given design cooling load, the design chilled 

water flow is influenced by the fluctuation (i.e. uncertainty) of the difference between 

return and supply chilled water temperatures. The flow of chilled water in each terminal 

unit usually fluctuates around the design flow considering the uncertainty of its heat 

transfer performance. The flow of chilled water in each terminal unit is assumed to be 

subject to normal distribution. Uniform distribution is used to describe the uncertainties 

of the hydraulic resistances of components. In addition, an artificial aging factor is 

adopted to account for a decrease in pipe diameter as the system ages. According to 

Equation (8.9), the distribution of pressure head can be generated and the design 

pressure head is assumed to be 99.6 percentile of the distribution. 
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8.3.3 Probability distribution of each state considering system reliability 

Markov method is used in this chapter because of its wide application in reliability 

analysis of multi-state systems (Lisnianski and Levitin 2003). The aim of using Markov 

method is to obtain the probability of each state of a multi-state system at a specific 

period and then the performance of the system and capability can be estimated. It is 

assumed that the state probabilities at a future instant do not depend on the states 

occurred in the past. The system either keeps current state or transfer to other states at 

the next time step. Several steps are required using Markov method (Gang et al. 2015), 

including: 

 List all the possible states of the chilled water pump system; 

 Determine the state transition density matrix; 

 Obtain how much is required to reach the steady state; 

 Obtain the probability of each state of the system; 

 Calculate the mean steady performance and capability under each state. 

A chilled water system is comprised of n chilled water pumps. It is assumed that each 

pump has two states only: normal (0) and failure (1). Totally the system has n states (i.e., 

each states contains several situations) considering the reliability of pumps, as shown 

in Fig. 8.5 (Lisnianski et al. 2012). It can be observed that state 0 symbolizes that no 

pump fail and state k symbolizes that k (1≤k≤n) pumps fail. From state 0 to state n, the 

failure rate λ is used to represent the probability from one state to another. From state n 

to state 0, the repair rate μ is used to represent the probability from one state to another. 

The transition probability is determined by a state transition density matrix A (Equation 
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(8.10)), which only involves the repair rate and failure rate of pumps (Lisnianski et al. 

2007). Probability distribution of the system at each state at time t can be represented 

with a vector P(t) (Equation (8.11)). It can be deduced from the initial state by Equation 

(8.12) and Equation (8.13). When the time approaches to infinity, P(∞) will keep stable 

(Equation (8.14)). Then the steady state probabilities can be obtained by solving the 

linear algebraic equations (Equation (8.15) and Equation (8.16)). 

 

Fig.8.5 States of a n-pump system and possible transitions 
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However, the key issue for using Markov method is to determine the transition density 

matrix A. As mentioned above, transition density matrix is related to the failure rate and 

repair rate of pump only. When the repair rate and failure rate are regarded as time-

independent, these two variables can be obtained by Equation (8.17) and (8.18) (Tian et 

al. 2009). Considering that each state (i.e. same number of failure pumps) may contain 

several situations (i.e. different combinations of failure pumps), the probability that the 

situations in a state transfer to those in another state in various possible conditions 

should be obeyed to the law of combinations, as shown in Equation (8.19). 

MTTF/1                               (8.17) 

MTTR/1                                 (8.18) 
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where, λ is failure rate, μ is repair rate, MTTF is mean time to failure, MTTR is mean 

time to repair, aij is the probability from state i to state j. 

8.3.4 Trials of simulation on total pump flow capacities and pump sizes 

Different from previous research that is mainly based on the BEP, in this study, the 

cooling load distribution are selected to determine the optimal chilled water pumps, 

which could improve the total operating efficiency and reduce the operation cost. 
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Considering that pumps are only manufactured in certain size, trials of simulations on 

different total pump flow capacities and different and discrete pumps sizes are 

conducted to select the optimal pump system. At start, the searching range of total pump 

flow capacity should be determined to facilitate the trials on design flow. In this study, 

the searching range of total pump flow capacity is assumed to be about 1~2 times of the 

design flow and the interval of total pump flow capacity is 2.5% of the design flow. 

After the searching range and interval of total pump flow capacity are determined, the 

trials of simulations on each total pump flow capacity based on the cooling load 

distribution can be implemented as shown in Fig. 8.6. The option which has the lowest 

total cost under each total pump flow capacity is selected. Eventually, among the options 

corresponding to various total pump flow capacities, the option which has the minimum 

total cost is selected as the optimum design for a building. 

 

Fig.8.6 Trials of simulation to select optimum pump design 

The main step in this searching process is “Calculate the pump number/size from two 

Determine the searching range of total pump flow capacity 

and conduct trials on each total pump flow capacity

Calculate the pump number from two pumps and obtain 

the total cost

OCnumber-1 < OCnumber ?

Obtain the optimal chilled water pumps 

P
u
m

p
 n

u
m

b
er

 +
1

NO

T
o
tal p

u
m

p
 cap

acity
 +

 2
.5

%
 o

f d
esig

n
 flo

w

Obtain the optimal chilled water pumps under all design 

flow



 133 

pumps and obtain the total cost”. Under each total pump flow capacity, simulation trials 

start from two pumps (minimum two is assumed concerning the basis requirement for 

reliability and maintenance) until the operation cost begins to increase. At the same time, 

the capital cost and availability risk cost are determined. Identical variable-speed pumps 

are assumed in this study, which is typical particularly when chillers of identical 

capacity are selected.  

The overall efficiency of pump systems is determined by the pump efficiency and VFD 

efficiency, as shown in Equation (8.20). It is well known that for a given building, if the 

number of pumps used is larger, the nominal flow of individual pumps is lower, the 

design pump efficiency is lower (Harvey 2012), and the VFD efficiency and load ratio 

of pumps are larger in operation because they can operate near their full load. Fig. 8.7 

presents the relationship between the rated pump efficiency and pump capacity in this 

study. It can be observed that the rated pump efficiency increases when the pump 

capacity increase. 

VFDpue                          (8.20) 

 

Fig.8.7 Rated pump efficiency vs. pump capacity 
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Fig. 8.8 shows the conceptual relationship between the number of pumps and overall 

pumps efficiency. When the number of pumps is small, the increase of pump number 

may result in the increase of overall efficiency because the VFD efficiency and load 

ratio of pumps increase significantly along with the decrease of the design efficiency of 

pumps. When the number of pumps is large, the increase of pump number may result 

in the decrease of overall efficiency because the VFD efficiency and load ratio of pumps 

have no obvious further improvement. Since at least two pumps are assumed, the 

number of pumps is tested starting from two until the operation cost begins to increase. 

Equation (8.21) presents the typical pump efficiency profiles of a variable-speed pump 

(120L/s) according to the data from a pump manufacturer. In this study, under the same 

part load ratio, the pump efficiency of variable-speed pumps is assumed to be 

proportional to their capacity. The operation cost is calculated using Equation (8.22), 

the capital cost and availability risk cost are calculated using Equation (8.23) and (8.24). 

Where, pi (t) and OCi are the probability and operation cost under the cooling load CLi. 

n is the number of pumps, ECind is the equipment cost of individual pump, and SCind is 

the space cost of accommodating an individual pump. RCi is the availability risk cost 

under the cooling load CLi. 
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Fig.8.8 pump number vs. overall efficiency 

8.4 Case Study and Results 
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different pump numbers. It can be observed that the probability of state 0 decreases as 

the increase of pump number. 

Table 8.1 Probability distribution of steady states of pumps 

state 
pumps 

2 3 4 5 6 7 8 

0 0.9222 0.8906 0.8494 0.7951 0.7289 0.6575 0.5711 

1 0.0605 0.0809 0.1114 0.1517 0.1973 0.2381 0.2913 

2 0.0173 0.02 0.0247 0.0327 0.0462 0.0666 0.0865 

3 - 0.0085 0.0096 0.0115 0.0146 0.0198 0.0273 

4 - - 0.0049 0.0057 0.0068 0.0084 0.0106 

5 - - - 0.0033 0.0039 0.0047 0.0057 

6 - - - - 0.0024 0.0029 0.0036 

7 - - - - - 0.0019 0.0023 

8 - - - - - - 0.0016 

8.4.2 Implementation of proposed design method of chilled water system 

Obtain the cooling load distribution and design chilled water flow 

To conduct the Monte Carlo simulations for obtaining the cooling load distribution, it 

is essential to select the parameters of uncertainties of the design inputs (Cheng et al. 

2015). Combining the output uncertainties from Matlab, the TRNSYS building model 

is used to generate the building cooling load involving the uncertainties. After 

conducting 780 times of Monte Carlo simulations (Cheng et al. 2015), the cooling load 

distribution is obtained, as shown in Fig. 8.9. The reference case is the normal cooling 

load distribution without considering the uncertainties. It can be seen that the cooling 

load distribution profile of 780 simulation trials is smoother than that of reference case 
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because more cooling load conditions are considered. The design cooling capacity can 

be sized based on the load of 5100 kW according to the design standard “50 unmet 

hours” (Cheng et al. 2015). 

 

Fig.8.9 Distribution of cooling load considering uncertainties 
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head can be generated as shown in Fig. 8.13. The design pump pressure head is assumed 

to be about 26m, which is equivalent to 99.6% of the distribution of hydraulic resistance. 

Table 8.2 Settings of hydraulic parameters 

Parameters Pressure drop of fittings (m) Uncertainty 

Chiller 5.8 U (0.9,1.1) 

Pump 7.2 U (0.9,1.1) 

Pipe (main) 5.7 U (0.9,1.1) 

Pipe (branch) 2.9 U (0.9,1.1) 

AHU 4.5 U (0.9,1.1) 

Valve 4.4 U (0.9,1.1) 

Chilled water flow rate - 1+N (0,0.05) 

Chilled water flow in each 

branch 

1/3 of the total 1+N (0,0.05) 

Aging factor of pipes 15% - 

 

Fig.8.10 Accumulative probability distribution of the overall hydraulic resistance 
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Trials of simulations on the total pump flow capacity and pump size 

At the previous steps, the design chilled water flow and pump pressure head are 

determined to be 240L/s and 26m respectively. To conduct the trials of simulation on 

the total pump flow capacity and pump size, it is essential to determine the searching 

range of total pump flow capacity. As mentioned above, the searching range of total 

pump flow capacity is assumed to be 1~2 times of design flow and the searching interval 

is selected to be 2.5% in this study. Trials of simulations are conducted on the 41 total 

pump flow capacities respectively (i.e. 240L/s, 246L/s, …, 474L/s and 480L/s). 

For example, it is assumed that total pump flow capacity is 336L/s. According to Fig. 

8.9, the overall efficiency increases when the number of pumps increases in certain 

range and it decreases when the number of pumps increases further. According to 

Section 8.3.4, the evaluation of the number of pumps on the operation cost is conducted. 

The electricity price used in this study is 1 HKD/kW, which is the typical rate in Hong 

Kong. The results are shown in Table 8.3. It can be observed that the operation costs 

under basic and medium levels of control optimization decrease when the pump number 

increases from 2 to 7 and they increase when the pump number increases to 8. Under 

the advanced level of control optimization, the operation cost does not have obvious 

change when the number of pumps is 3 or more. In this paper, the detailed results the 

case study under medium level of control optimization are presented to demonstrate the 

design process. The design option comprised of 7 pumps has the lowest operation cost 

compared with the other options. 
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Table 8.3 Annualized capital cost of different design options 

Option 

(size (L/s) 

number) 

Operation cost (103HKD) 

EC 

(103HKD) 

SC 

(103HKD

) 

CC   

(103HKD

) 

Basic Medium Advanced 

1682  579 452 380 60 10 70 

1123  547 439 364 77 15 92 

844 517 435 366 92 20 112 

675 511 433 366 105 25 130 

566 493 431 362 117 30 147 

487 485 424 366 128 35 163 

428 483 431 366 139 40 179 

Remarks: EC- equipment cost, SC- space cost, CC- capital cost 

Annualized capital cost contains the equipment cost and space cost. The life cycle of 

the chilled water pump system is assumed to be 10 years. Equipment cost of variable-

speed pump (26m, 60L/s) is 150103HKD, referring to the data from a manufacture. As 

for the equipment cost of other variable-speed pumps, they are estimated using Equation 

(8.25) (Taal et al. 2003; Guthrie 1969). 

 00 /CCECEC                       (8.25) 

where, EC0 is the equipment cost of a reference pump with the capacity C0. EC is 

equipment cost of pump with the capacity C. α is the coefficient, which set to be 0.15 

in this study (Biegler et al. 1997; Seider et al. 2009). The annualized capital costs under 

the different design options are estimated using Equation (8.22) and presented in Table 
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8.3. From Table 8.3, the annualized capital cost increases when pump number increases 

at a given design flow. 

Availability risk cost is the “expense” or service sacrifice which should be considered 

when the cooling demands cannot be fulfilled. Table 8.4 shows the annual availability 

risk costs and total costs of different pump numbers under three different penalty ratios 

(i.e., 1, 10 and 100 HKD/kW). It can be seen that, when the pumps number is small, the 

annual availability risk cost decreases rapidly when the pump number increases. The 

annual availability risk cost of options having 2, 3, 4 and 5 pumps is very sensitive to 

the penalty ratio when the pump number is small, but it is not sensitive any more when 

the number of pumps is 6 or more. It can also be observed that the total cost decreases 

when the pump number increases in certain range and it increases when the pump 

number increases further. Since the availability risk cost is high when the pump number 

is small and the capital cost is high when the pump number is large, there is a comprised 

pump number/size which has the minimum total cost. In this study, the penalty ratio is 

assumed to be 10HKD/kW. Among these options, the option 56L/s6 pumps has the 

minimum total cost 586103HKD, which is not sensitive to the penalty ratio. Therefore, 

it can be considered as the best option under the total pump capacity 336L/s. If the 

penalty ratio is 1HKD/kW, the best option under the total pump capacity is 67L/s5 

pumps. The designers can select the best option based on their specific requirement of 

penalty ratio. 
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Table 8.4 Annual availability risk cost (103HKD) and total cost (103HKD) of different 

pump design options 

Penalty ratio 

(HKD/kW) 

1 10 100 

Option 

(size(L/s)number) 

RC TC RC TC RC TC 

1682  1,377 1,900 13,770 14,294 13,7700 13,8240 

1123  442 973 4,420 4,951 4,4200 44,729 

844 96 643 963 1,510 9,630 10,179 

675  10 573 100 662 1000 1,559 

566 1 578 9 586 92 669 

487  0 587 0 587 0 587 

428 0 609 0 609 0 609 

Remarks: RC- availability risk cost, TC- total cost. 

After conducting the trials on other total pump flow capacities, the minimum total costs 

are computed and presented in Table 8.5. It can be observed that the options comprised 

of more pumps may have lower operation cost compared with those design options 

comprised of less pumps. When the total pump flow capacity increases from 240L/s to 

336L/s, the availability risk costs of the best options decrease rapidly and the total costs 

are also reduced. When the total pump flow capacity is over 384 L/s (i.e. 384 L/s to 

480L/s), the availability risk cost of the best option is almost equal to 0. When the total 

pump capacity is low, more number of pumps is required to reduce the availability cost 
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resulting in high capital cost. When the total pump capacity is large, less number of 

pumps is sufficient to keep low availability risk cost while the capital cost is low. It can 

be seen that the option with 78 L/s5 pumps has the minimum total cost 569103 HKD 

compared with other options. It means that the selected option has better robustness to 

uncertainties and system reliability. 

Table 8.5 Best pump design options under different total pump flow capacities 

(penalty ratio:10HKD/kW) 

Total 

capacity 

(L/s) 

Best option 

(size (L/s)  

number) 

Availability 

risk cost 

(103HKD) 

Operation 

cost 

(103HKD) 

Total cost 

(103HKD) 

240 308 588 431 1,181 

264 338 142 432 740 

288 368 25 431 626 

312 457 11 428 598 

336 487 0 424 587 

360 725 24 430 587 

384 775 3 431 574 

390* 785 1 432 569 

408 825 0 438 572 

432 865 0 438 579 

456 1144 5 446 574 

480 1204 0 456 581 
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8.4.3 Comparison among the three design methods 

Table 8.6 shows the results of robust optimal design, uncertainty-based design and 

conventional design. It can be seen that the total cost under conventional design 

(698103HKD) is close to that (700103HKD) under uncertainty-based optimal design. 

Compared with conventional design and uncertainty-based optimal design, the total cost 

under robust optimal design (569103HKD) is reduced by about 18.6% when the 

penalty ratio is 10 HKD/kW. To achieve the minimum annual total cost, the option with 

5 variable-speed pumps (78L/s) can be selected as the optimum selection for the design. 

Compared with conventional design (OC=461103HKD) and uncertainty-based design 

(OC=431103HKD), the proposed robust optimal design (OC=432103HKD) could 

achieve a relatively low operation cost. This best option also has the minimum total cost 

(569103HKD), which may indicate that it has good robustness considering the 

uncertainties of design inputs and reliability of system components. 
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Table 8.6 Best pump design options under different total pump flow capacities and 

optimal options using different design methods (penalty ratio:10HKD/kW) 

 

Total 

capacity 

(L/s) 

Best option 

(size (L/s)  

number) 

Availability 

risk cost 

(103HKD) 

Operation 

cost 

(103HKD) 

Total cost 

(103HKD) 

Robust 

optimal 

design 

390 785 1 432 569 

Uncertainty-

based design 

280 

407 (including 

1 standby 

pump) 

116 431 700 

Conventional 

design 

400 

1004 

(including 1 

standby pump) 

116 461 698 

8.5 Discussion 

Table 8.7 shows the results under all the three levels of control methods. The optimal 

design option is 50 L/s7 pumps under the basic level of control and its total cost is 

643103 HKD. The optimal design option is 79 L/s5 pumps under the advanced level 

of control and its total cost is 501103HKD. The users can choose the preferred option 

based on their specific level of control methods. 
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Table 8.7 Minimum total cost under different levels of control methods 

 

Control 

level 

Best option 

(size (L/s)  

number) 

Total 

capacity 

(L/s) 

Operation 

cost (103 

HKD) 

Total cost  

(103 

HKD) 

Robust 

optimal 

design 

Basic 507 350 478 643 

Medium 785 390 432 569 

Advanced 795 395 365 501 

Uncertainty-

based design 

Basic 407 280 480 749 

Medium 407 280 431 700 

Advanced 407 280 378 647 

Conventional 

design 

Basic 1004 400 527 761 

Medium 1004 400 461 698 

Advanced 1004 400 368 602 

8.6 Summary 

This chapter presented a robust optimal design method that is based on a minimized 

life-cycle cost to ensure the high performance of chilled water pump systems and 

achieve the minimum annual total cost considering uncertainties of inputs and system 

reliability. It is realized by optimizing the pump pressure head, the total pump flow 

capacity and number of chilled water pumps. A case study is presented as an example 

to test and demonstrate the proposed method. Conclusions can be made as follows: 

 Annual average cooling load varies largely when considering uncertainties. If the 

sizing of design cooling capacity is based on the cooling load without considering 



 147 

uncertainties, the design cooling capacity and design chilled water flow will be very 

likely oversized. If the pump head is determined without considering the 

uncertainties of hydraulic resistance and water flow distribution, the oversize of 

pump head will be greatly increased. 

 Markov method can be effectively used to obtain the probability distribution of 

system state (health) for high accuracy and fast computation time. In this study, the 

iteration time under different repair rate and failure rate is obtained. Results show 

that the iteration time is less when more pumps are used and when the ratio of repair 

rate to failure rate is small. 

 In this study, the design cooling capacity is that corresponding to the capacity under 

“50 unmet hours”. According to this design capacity, the design chilled water flow 

and searching range of total pump flow capacity are determined. If different design 

cooling capacity is selected, the design chilled water flow and the searching range 

of total pump flow capacity will change accordingly. Then, the optimal option may 

also change. 

 The design option of the chilled water pump system can be selected by achieving 

the minimum total cost when considering uncertainties and system reliability. The 

selected pump system can perform well under various possible cooling load 

conditions and have the good robustness towards the system reliability. The results 

of the case study show that the total cost of optimized pump system can be reduced 

significantly (totally 18.6%) compared with the conventional design and 
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uncertainty-based optimal design. 

The robust optimization is conducted by separating optimizing trials into two steps, i.e. 

the determination of design chilled water flow and pump head, the optimization of total 

pump flow capacity and number/size of pumps. It is worth noticing that the optimization 

output may be slightly different from the best one in principle as not all 

options/combinations are tested due to the chosen test interval in computation and 

available pumps sizes in practice. 
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CHAPTER 9 ROBUST OPTIMAL DESIGN OF COOLING 

WATER SYSTEMS BASED ON SEQUENTIAL MONTE 

CARLO SIMULATION 

 

This chapter presents a sequential Monte Carlo simulation-based robust optimal design 

method of cooling water system. In this chapter, sequential Monte Carlo simulation is 

used for the quantification of reliability of equipment and components. In order to 

achieve the minimum total cost, trials of simulations on different cooling water flows 

and different number/size of cooling water pump and cooling tower are conducted to 

obtain the optimum cooling water system. A series of so-called uncertainty “scenarios” 

generated by Monte Carlo simulation, is used for obtaining the accurate average cooling 

load and average “unmet cooling load”. Several indices are developed for the 

convergence assessment of average cooling load and average “unmet cooling load”. 

Average cooling load is used to evaluate the operation cost of cooling water system. 

“Unmet cooling load” is used to evaluate the availability risk cost of cooling water 

system.  

Section 9.1 presents an introduction of cooling water system. Section 9.2 describes the 

objective of robust optimal design for cooling water system. Section 9.3 presents the 

method of the robust optimal design for cooling water systems. Section 9.4 shows a 

case study on the proposed robust optimal design of the cooling water system of a 

building in Hong Kong. A summary of this chapter is given in Section 9.5. 
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9.1 Introduction 

Fig.9.1 shows the schematic of a cooling water loop. Identical constant-speed pumps 

are used to circulate the cooling water through the entire system and the pumps are 

assumed to work at the rated power. Identical cooling towers are used to reject the heat 

load to the ambient. Variable speed fans are used in the cooling towers. 

 

Fig.9.1 Scheme of a typical cooling water loop 

In a cooling water loop, the energy balance is shown in Equation (9.1) and (9.2). 
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chillerncompressio COPCLQ /                        (9.2) 

where, CL is cooling load, Qcompression is heat of compression, mfluid is the cooling water 

flow rate, cfluid is the specific heat of water, Tfluid,in is the return cooling water temperature, 

Tfluid,out is the supply cooling water temperature. 

The total heat load rejected by the cooling towers is determined by the cooling load and 
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the COP of chillers. Under the given range (i.e. the temperature difference between the 

supply cooling water temperature and return cooling water temperature) and approach 

temperature (i.e. the temperature difference between supply cooling water temperature 

and wet-bulb temperature of inlet air), the design cooling flow rate is determined by the 

total heat load. 

9.2 Objective of this Design Optimization Method 

The objective of the proposed method is to ensure that the cooling water system operates 

at high efficiency over the entire cooling season and achieve the minimum total cost 

considering uncertainties of inputs and reliability of system components in operation. 

The total cost (TCn) consists of annualized capital cost (CCn), annual operation cost 

(OCn) and annual availability risk cost (RCn). Annualized capital cost includes the 

expense in purchasing/installing the pumps and cooling towers and associated 

components (equipment cost) and the spaces for accommodating them (space cost), 

which is determined by the number and size of pumps and cooling towers. Annual 

operational cost is the cost of electricity consumed by the pumps and fans in cooling 

towers in operation, which is mainly associated to the annual cooling load distribution 

and the energy efficiency of pumps and fans. Availability risk cost is the “expense” or 

service sacrifice penalty that should be considered when the cooling demands cannot 

be fulfilled. In the cooling water loop, the overall total cost contains the total cost of 

cooling towers and the total cost of cooling water pumps, as shown in Equation (9.3). 

Fig.9.2 illustrates the conceptual relationship between the costs and system total 

capacity. It is well-known that a larger system capacity means higher system reliability. 
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The capital cost and operation cost increase as the system capacity increases. On the 

other hand, the availability risk cost decreases as the system total capacity increases. 

The total life-cycle cost is comprised of the capital cost, operation cost and availability 

risk cost, as shown in Equation (9.4) and (9.5). According to Fig.9.2, there should be a 

comprised system capacity to achieve the minimum total life-cycle cost, at which a 

comprised level of reliability is achieved. 

, ,cot ,n all n n cwpTC TC TC                     (9.3) 

,cot ,cot ,cot ,cotn n n nTC CC OC RC                  (9.4) 

, , , ,n cwp n cwp n cwp n cwpTC CC OC RC                  (9.5)             

 

Fig.9.2 Total cost vs system capacity 

9.3 Computing Procedure of the Robust Optimal Design Method 

9.3.1 Procedure outline 

Fig.9.3 shows the overall procedure of the proposed robust optimal design. It mainly 

addresses the determination of design cooling water flow, the pump head of cooling 

co
st

system capacity

capital cost availability risk cost operation cost total cost
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water pumps and number/size of cooling towers and cooling water pumps. Considering 

that the cooling towers and cooling water pumps are only manufactured in certain 

discrete sizes, trials on different design cooling water flow rates and different 

numbers/sizes of cooling towers and cooling water pumps are conducted to select the 

optimal cooling water system. 

 

Fig.9.3 Design optimization procedure of cooling water system 

Searching range of design cooling water flow rate is assumed to be 1 to 2 times of the 

minimum design cooling water flow. The minimum design cooling water flow is 

equivalent to the required cooling water flow based on the design cooling capacity and 

the rated COP of chillers concerned. Under a given design cooling water flow rate, the 

pump head is determined by the hydraulic resistance distribution involving uncertainties. 

Then, the operation cost, unmet cooling load and capital cost are obtained under 

different numbers/sizes of cooling tower and cooling water pump. Under this given 
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design cooling water flow rate, the optimal option of cooling water system is selected 

based on the minimized total costs of the cooling water pumps and cooling towers. 

Simulation trials of cooling water pumps start from two pumps (the minimum of two is 

assumed concerning the basic requirement for reliability and maintenance) until the 

total cost of pumps begins to increase. For the same reason, simulation trials of cooling 

towers also start from two cooling towers until the total cost of cooling towers in the 

life-cycle begins to increase. Eventually, among the options corresponding to various 

design cooling water flow rates, the option that has the minimum total cost is selected 

as the optimum design for application.  

Equation (9.6) formulates the optimization problem for selecting the total design 

cooling water flow rates and numbers/sizes of cooling towers and cooling water pumps. 

Where, TC is the total cost, M is the design cooling water flow, mcot is the individual 

capacity of cooling water, ncot is the number of cooling towers, mcwp is the individual 

capacity of cooling water pump, ncwp is the number of cooling water pumps, Mmin is the 

minimum design cooling water flow. 

 find     cwpcwp nmnmM ,,,, cotcot  

    minimize     ),,,,( cotcot, cwpcwpialln nmnmMTC    

constraint     minmin 2, MMMM ii                   (9.6) 

             cwpcwpi nmnmM  cotcot  

     2,2cot  cwpnn  
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9.3.2 Sequential Monte Carlo simulation 

Fig.9.4 shows the simulation procedure for obtaining the cooling load distribution, 

average operation cost and average “unmet cooling load”. Cooling load distribution is 

generated by the TRNSYS building energy model based on the uncertainties of design 

inputs. Average operation cost and average “unmet cooling load” are determined by the 

cooling load conditions, heat of compression and available cooling capacity. Unmet 

cooling load is the load difference when the available cooling capacity is less than the 

actual cooling load conditions. Available cooling capacity is determined by the 

uncertainties of health states of components in the system, which can be calculated by 

the component reliability model. When some cooling towers fail, the capacity of cooling 

towers might not be able to meet the capacity of chiller plant. Heat of compression is 

determined by the COP of chiller plant. The COP is affected by the condensing 

temperature which depends on the cooling water temperature. Convergence assessment 

is conducted to verify the cooling load distribution, average operation cost and average 

“unmet cooling load”. If not, more Monte Carlo sampling times of simulation are 

conducted until these three values converge. 
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Fig.9.4 Simulation procedure for obtaining the accurate cooling load distribution, 

average operation cost and average “unmet cooling load” 

9.3.3 Implementation flowchart of the proposed design method 

Quantification of pump head of cooling water pump 

The simplified model structure for the pressure-flow balance of the cooling water loop 

is presented earlier in Fig.9.1. The overall pressure drop of the system can be 

mathematically described as in Equation (9.7), which consists of five parts of pressure 

drops, including (1)  the pressure drop on the condensers of chillers, (2) the pressure 

drop on the fittings around pumps (including the pressure drop on the headers that direct 

the flow into/from each pump and the pressure drop on the valves), (3) the pressure 

Initialize the simulation 

sampling time

Uncertainties of inputs

Building energy 

model (TRNSYS)

Uncertainties of health of 

system components

Chiller model 

Actual cooling load Heat of compression

System reliability model

“Available cooling 

load”

Average“Unmet cooling 

load”

Converged? Converged?

Average operation cost, capital cost and 

average availability risk cost and total cost

NO

Average operation cost

Converged?

YES YES YES

NONO



 157 

drops on main supply and return pipelines, (4) the pressure drop measured from the 

operating water level in the cold water basin to the spray system (i.e. nozzle) and, (5) 

the pressure drop of nozzle required to effect proper distribution of the water to the fill.  

2 2 2 2

cot

cwpcon
w w pipe c w noz w

chiller cwp

SS
p m m S k m H S m

N N
                    (9.7) 

Where, Δp is the pressure drop of the entire cooling water loop, Scon is the coefficient 

of chiller condenser, Nchiller is the number of chillers, Scwp is the coefficient of cooling 

water pumps, Ncwp is the number of pumps, Spipe is the coefficient of pipelines, kc is the 

aging factor of pipes, Hcot is the height from the operating water level in the cold water 

basin to the spray system, Snoz is the coefficient of nozzles, mw is the cooling water flow 

rate. 

The pump pressure head is then determined by the hydraulic resistance coefficients and 

aging factor of the pipelines as well as the fluctuation of the cooling water flow. For a 

given design cooling load, the cooling water flow is influenced by the fluctuation (i.e. 

uncertainty) of the difference between return and supply cooling water temperatures. 

The cooling water flow usually fluctuates around the design cooling water flow 

considering the uncertainty of its heat transfer performance. The cooling water flow is 

assumed to be subject to normal distribution. Uniform distribution is used to describe 

the uncertainties of the hydraulic resistances of components. In addition, an artificial 

aging factor is adopted to account for the decrease in pipe diameter as the system ages. 

According to Equation (9.7), the distribution of pressure head can be generated and the 

design pressure head is assumed to be 99.6 percentile of the distribution. 
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Quantification of cooling load conditions 

Monte Carlo simulation is employed to obtain a representative and reasonable cooling 

load distribution considering uncertainties. The calculation process can be illustrated by 

Equation (9.8). With the inputs x1, x2,…, xn (e.g., the outdoor temperature, ventilation 

rate), the output y (the cooling load) can be obtained. In this study, the uncertainties of 

the design inputs are computed by Matlab. Three types of distributions (including 

normal distribution, tri-angular distribution and uniform distribution) are used to 

describe the uncertainties of inputs. Combining the output uncertainties from Matlab, 

the TRNSYS building model is used to obtain the cooling load conditions. 

   nxxxfyyyY ,...,,,...,, 21876021                (9.8) 

Model of heat of compression 

Heat of compression is the amount of heat added to refrigerant during the compression 

process, which depends on the actual cooling load and the operating COP of chillers 

COPop. Usually, the COPop of chiller varies depending on the part load ratio (PLR). It 

is well understood that the larger the PLR, the higher COP, as shown in Equation (9.9):  

 33
2

210

15.273
PLRDPLRDPLRDD

TT

T
COP

evacon
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op 




         (9.9) 

where, Teva and Tcon are evaporating and condensing temperature (°C), respectively; D0-

D3 are the correlation coefficients that can be identified from chiller catalogues or field 

measurement data. The outlet water temperature of the evaporator (Teva,out) is set to be 

7℃ in simulation tests, and the inlet water temperature of condenser (Tcon,in) is assumed 

to have a difference of 5 K with the wet-bulb temperature of the cooling tower inlet air 

(Twb,in) as shown in Equation (9.10). 
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5,,  inwbincon TT                       (9.10) 

Model of available cooling capacity 

Fig.9.5 is a reliability and maintainability history chart of a three-state machine. The 

state “Operate” indicates that the equipment currently resides in a working state (i.e. 

State 1). The lengths of this state are the holding times of being in working state. The 

holding time is random and determined by analysis of historical reliability and 

maintainability data. In practice, the mean time to failure (MTTF, 1/λ) is often used to 

represent this holding time, as shown in Equation (9.11). The state “Maintenance” and 

“Failure” (i.e. State 0) indicate that the equipment currently resides in an inoperative 

(i.e. failure or maintenance) state. The lengths of these state are the holding times of 

being in this state. In practice, the mean time to repair (MTTR, 1/μ) is often used to 

represent this holding time, as shown in Equation (9.12). Given a reliability and 

maintainability history chart, the reliability indices, such as availability, pavailability 

(percentage of time staying in a working state) and unavailability, punavailability 

(percentage of time staying in a failure and maintenance state) can be calculated from 

the reliability and maintainability history chart above by Equation (9.13) and (9.14). 

Where, toperate, tmain and tfail are the total operation time, the total maintenance time, and 

the total failure time respectively in an entire period. λ is failure rate, μ is repair rate. 

 

Fig.9.5 Health states of a component in the life cycle 
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With the assumption that each component is independent and has no relationship with 

the other components, the probability of cooling water pump and cooling tower are 

assumed to be subject to the binary distribution, as shown in Equation (9.15) and (9.16). 

The total available cooling load of cooling water pumps and cooling towers are 

calculated by Equation (9.17) and (9.18). The unmet cooling load of cooling water 

pumps and cooling towers are calculated by Equation (9.19) and (9.20). Where, 

pavailablility,cot and pavailability,cwp are the availabilities of cooling towers and cooling water 

pumps. fcot(i) and fcwp(i) are the states of cooling tower and cooling water pump. 

CLavailable,cwp and CLavailable,cot are the available cooling load of cooling water pumps and 

cooling towers, CLind,cwp and CLind,cot are the nominal capacity of cooling water pumps 

and cooling towers. CLunmet,cot and CLunmet,cwp are the unmet cooling loads of cooling 

towers and cooling water pumps. CLactual is the annual cooling load. 

cot ,cot( ) (1, )availabilityf i B p                        (9.15) 

,( ) (1, )cwp availability cwpf i B p                        (9.16) 
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        ,cot ,cot( ,0)unmet actual availableCL Max CL CL                  (9.19) 
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  , ,( ,0)unmet cwp actual available cwpCL Max CL CL                 (9.20) 

Model of condenser water loop 

Pump model 

Cooling water pumps are constant speed pumps and they are assumed to work at their 

rated powers. Their electricity consumptions depend on the pressure drop (Δpcwp), the 

cooling water flow rate (mw) and pump efficiency (ηcwp) as shown by Equation (9.21). 

In this study, the pressure drop of the cooling water loop is equivalent to the pressure 

head of cooling water pump. The pump efficiency depends on the pump capacity. 
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                        (9.21) 

Cooling tower model 

The electricity consumption of cooling towers is calculated based on the design 

efficiency of fan and load ratio of fan (Equation (9.22)). The fans of cooling towers are 

equipped with variable speed drives. The cooling tower model (TYPE510) in TRNSYS 

is used in this study. The air at tower outlet is assumed to be saturated air. The load ratio 

of fan (γair) can be then calculated by Equation (9.23) and (9.24). Where, Pfan and 

Pfan,rated are the power consumption of fans and the rated power consumption of fans. 

γair is the load ratio. g0-g3 are the correlation coefficients provided by the manufacturer. 

hsat is the enthalpy of saturated air, hair is the enthalpy of air.    
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Convergence of Monte Carlo simulation 

As mentioned above, the cooling load distribution, the operation cost and available 

cooling capacity are generated by a sequential Monte Carlo simulation. For the purpose 

of checking the convergence and terminating the sampling process, there are several 

different types of stop criteria in literature, such as coefficient of variance, maximum 

number of iterations and convergence band (i.e. also called as threshold). Among these 

criteria, the threshold is used to evaluate the uncertainty and reliability in this study. 

As mentioned above, the convergence assessment needs to be conducted on the average 

cooling load distribution, average operation cost and average unmet cooling load. Two 

convergence criteria are applied as follows: 

 The deviation of the cooling load distribution profile should be within its threshold 

Bw over a number of simulation trials (i.e. over convergence band length BL).  

 The deviations of the dimensionless operation cost and unmet cooling load should 

be within their threshold Bw over the same convergence band length BL. 

The profile deviation f(n+i,n) is defined as the difference between average cooling load 

distribution profiles over (n+i) number of simulations and n number of simulations 

respectively, as shown in Equation (9.25) and Fig.9.6 . 
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where, pn(j) is the probability at the load CLj over n trials of simulations, pn+i(j) is the 
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probability at the load CLj over n+i trials of simulations. △CLj is the cooling load 

interval and k is the total number of intervals.  

 

Fig.9.6 Difference between cooling load distributions over simulation of two different 

simulation numbers 

The deviation Δy(n+i,n) is defined as the difference between the average value of (n+i) 

number of simulations and the average value of n number of simulations respectively, 

as shown in Equation (9.26). This deviation is used to evaluate the convergence of the 

dimensionless operation cost and unmet cooling load. 
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where, yn is the average value over n trials of simulations, yn+i is the average value over 

(n+i) trials of simulations.  
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9.4 Case study and evaluation of the proposed design optimization 

method 

A case study on the cooling water system design for a building in Hong Kong is 

conducted to test and evaluate the proposed robust optimal design method. The 

performance of the system designed using the proposed robust optimal design method 

is compared with that using conventional design method, conventional optimal design 

method and uncertainty-based design method. 

9.4.1 Outline of implementation 

The main steps of design method implementation are summarized as follows: 

• At first step, the minimum design cooling water flow rate and searching range of 

design cooling water flow rate are determined;  

• Under each given design cooling water flow rate, the pressure head of cooling water 

pumps is determined by the hydraulic resistance distribution involving uncertainties; 

• Then, the trials of different number of cooling towers and cooling water pumps on 

each given design cooling water flow rate are conducted;  

• A sequential Monte Carlo simulation is used to obtain the cooling load distribution 

profile, operation cost and unmet cooling load;  

• The optimal option under each design cooling water flow rate is selected based on 

the minimized total cost;  
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• Among these options, the option which has the minimum total cost is selected as 

the best option used in the building energy system. 

9.4.2 Determination of cooling load distribution and head of cooling water pumps 

According to Equation (9.1) and (9.2), the minimum design cooling water flow rate is 

285L/s. The searching range of design cooling water flow rate is assumed to be 

285~420L/s and the interval of the trials is 15L/s. The failure rates of pump and cooling 

tower are 0.0001/hour and 0.00001/hour respectively, which means that the total 

working time of cooling water pumps and cooling towers are 10,000 hours and 100,000 

hours during an entire period (see Fig.9.5). The repair rates of both pumps and cooling 

towers are 0.002/hour, which means that totally 500 hours are needed to repair or 

maintain each of the pumps and cooling towers during the same period. Therefore, the 

availabilities of pumps and cooling towers are 0.9524 and 0.995 respectively. 

For example, when the design cooling water flow rate is assumed to be 330L/s, the 

annual cooling load profile and annual unmet cooling load of cooling towers under five 

years can be obtained as shown in Fig.9.7. It can be observed that the annual cooling 

load profile is different over the five years and the annual unmet cooling load varies 

greatly under different years. Therefore, sufficient sampling is required to obtain the 

accurate cooling load distribution, operation cost and unmet cooling load. 
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Fig.9.7 Annual cooling load and unmet cooling load of cooling towers 

The pressure head of cooling water pumps is determined by the cooling water flow rate, 

hydraulic resistance coefficient and aging factor of the pipelines. Table 9.1 shows the 

settings of pressure drops of components and aging factor, which are selected referring 

to the literature. According to Equation (9.7), the distribution of pump pressure head 

can be generated as shown in Fig.9.8. The design pump pressure head is assumed to be 

25.5m, which is equivalent to 99.6% of the distribution of the hydraulic resistance. 

Table 9.1 Settings of hydraulic parameters 

Parameters Pressure drop of fittings (m) Uncertainty 

Condenser of Chiller 5.8 U (0.9,1.1) 

Pump 7.2 U (0.9,1.1) 

Pipe 5.7 U (0.9,1.1) 

Nozzle 4.4 U (0.9,1.1) 

Height 2.6 - 

Cooling water flow - 1+N(0,0.05) 

Aging factor of pipes 15% - 
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Fig.9.8 Accumulative probability distribution of the overall pressure drop 

Then, the trials on different numbers/sizes of cooling towers and cooling water pumps 

are conducted based on the minimized total cost respectively. The cooling load 

distribution depends on the uncertainties of inputs and it is independent from the design 

cooling water flow rate. After conducting 780 times of Monte Carlo simulations, a 

cooling load distribution of sufficient accuracy is obtained based on the convergence 

assessment, as shown in Fig.9.9. The reference case is the cooling load distribution in 

the typical year without considering uncertainties. 

 

Fig.9.9 Distribution of annual cooling load 
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9.4.3 Sequential Monte Carlo simulation for quantifying unmet cooling load 

Fig.9.10 shows the average unmet cooling loads when using 3, 5 and 7 cooling towers 

using sequential Monte Carlo simulation. It is obvious that the average unmet cooling 

load is getting smaller when the number of cooling tower increases. Fig.9.10 (a) shows 

the average unmet cooling load when using 3 cooling towers under different simulation 

trials. The average unmet cooling load varies greatly when the simulation trial is less 

than 250. About 530 sampling times (years) are needed to obtain the accurate average 

unmet cooling load and the average unmet cooling load fluctuates around the converged 

value 7330kWh. Fig.9.10 (b) shows the average unmet cooling load when using 5 

cooling towers under different simulation trials. About 530 sampling times (years) are 

needed to obtain the accurate average unmet cooling load and the average unmet cooling 

load fluctuates around the converged value 814kWh. Fig.9.10 (c) shows the average 

unmet cooling load when using 7 cooling towers under different simulation trials. About 

480 sampling times (years) are needed to obtain the accurate average unmet cooling 

load and the average unmet cooling load fluctuates around the converged value 100kWh. 

Therefore, Monte Carlo simulation approach is capable of providing more 

comprehensive information, such as the detailed changes of unmet cooling load. 

Table 9.2 shows the converged average unmet cooling load under different options of 

cooling towers. It can be seen that the converged average unmet cooling load decreases 

rapidly when the number of cooling towers increases. When the number of cooling 

towers is large, further increase of the number will not result in obvious change of the 

average unmet cooling load any more. 
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(a) 3 cooling towers 

 

(b) 5 cooling towers 

 

(c) 7 cooling towers 

Fig.9.10 Average unmet cooling load vs number of simulation trials when using 

different tower numbers 
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Table 9.2 Converged average unmet cooling load and average operation cost of 

different cooling tower options 

Options 

 (Size (L/s) number) 

1652 1103 834 665 556 477 418 

Average unmet cooling load 

(kWh) 

26504 7341 1961 814 325 100 60                                                                                                                                                                                                                                                                                                                                                            

Operation cost  

(103 HKD) 

570 620 643 661 676 688 698 

 

The electricity price used in this study is 1 HKD/kWh, which is within the range of the 

typical rate in Hong Kong. Fig.9.11 shows the average operation costs when using 3, 5 

and 7 cooling towers. It is obvious that the average operation cost is larger when more 

cooling towers are used. Fig.9.11 (a), (b) and (c) show the average operation costs when 

using 3, 5 and 7 cooling towers under different numbers of simulation trials respectively. 

It can be seen that the average operation costs have no obvious change under different 

simulation trials. The converged average operation costs when using 3, 5 and 7 cooling 

towers are 6.2105, 6.62105 and 6.88105 respectively. Table 9.2 shows the converged 

average operation costs using different design options of cooling towers. It can be seen 

that the converged average operation cost increases when the number of cooling towers 

increases. 
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(a) 

 

(b) 

 

(c) 

Fig.9.11 Average operation cost under different simulation trials 
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9.4.4 Optimal configuration of cooling water system 

Annualized capital cost contains the equipment cost and space cost. The lifespan of the 

cooling water system is assumed to be 10 years. Equipment cost of cooling tower 

(110L/s) is 110,000HKD, referring to the data from a manufacturer. The cooling tower 

cost of other sizes are estimated using Equation (9.28). 

 00 /CCECEC                       (9.28) 

where, EC0 is the equipment cost of the reference cooling tower with the capacity C0. 

EC is equipment cost of cooling tower with the capacity C. α is the coefficient, which 

set to be 0.15 in this study. The space cost of cooling tower is assumed to be 

5000HKD/unit/year. 

Table 9.3 shows the capital costs, annual availability risk costs and total costs of 

different numbers of cooling towers under three penalty ratios (i.e., 1, 10 and 100 

HKD/kWh). It is obvious that the annualized capital cost becomes larger when the 

number of cooling tower increases. It can be seen that, when the number of cooling 

towers is small, the annual availability risk cost decreases rapidly when the number of 

cooling tower increases. It can also be observed that the total cost decreases when the 

number of cooling tower increases in certain range and increases when the number of 

cooling tower increases further. Since the availability risk cost is high when the number 

of cooling towers is small and the capital cost and operation cost is high when the 

number of cooling towers is large, there is a comprised number/size of cooling tower 

which has the minimum total cost. In this study, the penalty ratio is assumed to be 

10HKD/kWh. Among options assessed, the option, 83L/s4 cooling towers, has the 
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minimum total cost 1.035106HKD, which can be considered as the best option under 

the design cooling water flow, 330L/s. If the penalty ratio is 1HKD/kWh, the best 

cooling tower option under the design cooling water flow is 165L/s2. If the penalty 

ratio is 100HKD/kWh, the best cooling tower option under the design cooling water 

flow is 55L/s6. The designers can select the best option based on their specific concern 

on the predefined penalty ratio. 

Table 9.3 Annual availability risk cost (103HKD) and total cost (103HKD) of different 

cooling tower design options 

Penalty ratio 

(HKD/kWh) 

1 10 100 

Option 

(size (L/s)number) 

CC RC TC CC RC TC CC RC TC 

1652 313 26.5 910 313 265 1148 313 2650 3534 

1103 345 7.3 972 345 73.3 1038 345 733 1698 

834 371 2 1017 371 19.6 1035 371 196 1211 

665 393 0.81 1055 393 8.1 1063 393 81 1136 

556 412 0.3 1090 412 3.3 1093 412 33 1122 

477 430 0 1118 430 1 1119 430 10 1128 

418 446 0 1144 446 1 1145 446 6 1150 

Remarks: CC- capital cost, RC- availability risk cost, TC- total cost 

Table 9.4 shows the capital costs, annual availability risk costs and total costs of 

different numbers of pumps under three penalty ratios (i.e., 1, 10 and 100 HKD/kWh). 
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It is also obvious that the annualized capital cost becomes larger when the number of 

pumps increases. It can be seen that the annual availability risk cost of pumps is larger 

than that of cooling towers because of the larger failure rate of pumps. It can also be 

observed that the total cost decreases when the number of cooling tower increases. 

Among these options, the option 41L/s8 pumps has the minimum total cost 

1.119106HKD, which can be considered as the best option in principle under the 

design cooling water flow of 330L/s. In practice, the number of cooling water pumps 

should be integer times of the number of chillers for the convenient capacity control 

when the cooling water pumps are constant speed pumps. Therefore, the option 41L/s6 

pumps may be considered as the best design option under the design cooling water flow 

330L/s. If the penalty ratio is 1HKD/kWh, the best option under the design cooling 

water flow is 110L/s3 pumps. If the penalty ratio is 100HKD/kWh, the best option 

under the design cooling water flow is 55L/s6 pumps. The designers can select the 

best option based on their specific concern on the penalty ratio. Therefore, the best 

option of the cooling water system consists of 83L/s4 cooling towers and 55L/s6 

pumps under the design cooling water flow rate 330L/s. 
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Table 9.4 Annual availability risk cost (103HKD) and total cost (103HKD) of different 

pump design options 

Penalty ratio 

(HKD/kWh) 

1 10 100 

Option (size 

(L/s)number) 

CC RC TC CC RC TC CC RC TC 

1652 70 325 1129 70 3250 4054 70 32500 33298 

1103 91 114 978 91 1140 2003 91 11400 12249 

834 111 55.3 962 111 553 1460 111 5530 6441 

665 129 35.4 977 129 354 1296 129 3540 4480 

556 146 20.1 994 146 201 1175 146 2010 2982 

477 162 12.4 1016 162 124 1127 162 1240 2243 

418 178 8.9 1039 178 89 1119 178 890 1923 

Remarks: CC- capital cost, RC- availability risk cost, TC- total cost 

After conducting the trials on other design cooling water flow rates within the range 

between 285 L/s and 420 L/s, the minimum total costs are computed corresponding to 

each design flow rate respectively as shown in Table 9.5. When the design cooling water 

flow rate increases from 285L/s to 375L/s, the total cost of cooling tower increases, the 

total cost of pumps decreases and the total cost of the cooling water system decreases. 

When the design cooling water flow rate is over 375 L/s (i.e. 375 L/s to 420L/s), the 

total costs of both the cooling towers and pumps increase, which result in the increase 

of total cost of the cooling water system. Among the options assessed, the option with 
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120L/s3 cooling towers and 60L/s6 pumps has the minimum total cost (i.e. 2.166106 

HKD) compared with other options. This option selected therefore has better robustness 

to uncertainties and system reliability. 

Table 9.5 Best design options of cooling water system under different design cooling 

water flow rates (penalty ratio:10HKD/kW) 

Design cooling water flow 

(L/s) 

300 330 345 360 375 390 

Cooling 

towers 

Best options 

(size (L/s) 

number) 

605 834 1153 1203 1253 1303 

Total cost 

(103HKD) 

1,026 1,035 1,067 1,076 1,098 1,130 

Cooling 

water 

pumps 

Best options 

(size (L/s) 

number) 

506 556 586 606 636 656 

Total cost 

(106HKD) 

1.422 1.175 1.107 1.090 1.087 1.113 

Total cost (106HKD) 2.448 2.210 2.178 2.166 2.185 2.243 

9.4.5 System performance using different design methods 

Table 9.6 shows the results of uncertainty-based design, conventional design and robust 

optimal design. It can be seen that the unmet cooling load of uncertainty-based design 

is much larger than that of conventional design and robust optimal design. Compared 
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with the total costs of conventional design (2.801106HKD) and uncertainty-based 

optimal design (4.65106HKD), the total cost under robust optimal design 

(2.166106HKD) is reduced by about 22.7% and 53.4% respectively when the penalty 

ratio is 10 HKD/kW. To achieve the minimum annual total cost, the option with 

120L/s3 cooling towers and 60L/s6 cooling water pumps can be selected as the 

optimum design option. This option has the minimum total cost and it also has good 

robustness considering the uncertainties of design inputs and reliability of system 

components. 

Table 9.6 Best options using different design methods (penalty ratio:10HKD/kW) 

 

 

Conventional 

design 

Uncertainty-

based design 

Robust 

optimal design 

Design cooling water flow 

(L/s) 

345 285 360 

Cooling 

towers 

Best options (size 

(L/s) number) 

1153 953 1203 

Total cost 

(106HKD) 

1.067 1.122 1.076 

Cooling 

water 

pumps 

Best options (size 

(L/s) number) 

1154 (one 

standby) 

954 (one 

standby) 

606 

Total cost 

(106HKD) 

1.734 3.528 1.090 

Total cost (106HKD) 2.801 4.650 2.166 
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9.5 Discussion 

Table 9.7 shows the best design options under different repair rates. It can be observed 

that the required design cooling water flow rate decreases when the repair rate increases 

(i.e. the availabilities of cooling tower and pump increase). Users can choose the 

preferred repair rate based on their specific level or efficiency of handling the problems 

such as maintenance and failure. 

Table 9.7 Best design options under different repair rates 

Repair rate 0.001 0.002 0.003 0.004 0.005 

Design cooling water flow (L/s) 375 360 345 315 315 

Cooling 

towers 

Best options (size 

(L/s) number) 

1253 1203 1153 794 1053 

Total cost 

(103HKD) 

1,072 1,076 1,044 1,009 1,001 

Cooling 

water 

pumps 

Best options (size 

(L/s) number) 

636 606 586 536 536 

Total cost 

(103HKD) 

1,284 1,090 1,020 999 975 

Total cost (103HKD) 2,355 2,166 2,064 2,013 1,975 

9.6 Summary 

This chapter presented a robust optimal design method of cooling water system, which 

is based on a sequential Monte Carlo simulation to achieve the minimum annual total 
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cost of cooling water system considering both uncertainties of design inputs and 

reliability of system components in operation. It is realized by optimizing the design 

cooling water flow rate, the number/size of cooling towers and the number of cooling 

water pumps. The design method is tested and evaluated by conducting a case study. 

Based on the results, conclusions can be made as follows: 

 Annual average cooling load and annual unmet cooling load varies largely when 

considering uncertainties. Sufficient sampling times are required to obtain the 

accurate cooling load distribution, operation cost and unmet cooling load. 

Sequential Monte Carlo simulation can be effectively used to obtain the accurate 

cooling load distribution, operation cost and unmet cooling load by quantifying the 

uncertainties of design inputs and the reliability of system components. 

 Using Markov method can obtain accurate unmet cooling load and consume less 

computation time compared to sequential Monte Carlo simulation. However, 

Monte Carlo simulation approach is capable of providing more comprehensive 

information than Markov methods such as the detailed changes of unmet cooling 

load. 

 The penalty ratio and repair rate can affect the determination of design cooling 

water flow rate and thus the selected best option. The optimal design cooling water 

flow rate is larger at the higher penalty ratio. The results also show that the design 

cooling water flow reduces when the repair rate increases. 

 The design option of cooling water systems can be selected by achieving the 
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minimum total cost when considering uncertainties and system reliability. The 

selected cooling water system has the good robustness towards the uncertainties of 

design inputs and system reliability. The results of the case study show that the total 

cost of optimized system can be reduced significantly (totally 22.7%) compared 

with the conventional design. 

It is worth noticing that the optimization output may be slightly different from the best 

one in principle as not all options/combinations are tested due to the interval selected in 

the tests and limitations on the available sizes of cooling towers and pumps in practice. 
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CHAPTER 10 CONCLUSIONS AND FUTURE WORK 

 

In this chapter, main contributions of this thesis are summarized. Conclusions are made 

based on the above studies. Recommendations for future work are also presented. 

10.1 Main Contributions of This Study 

This study addresses the design optimization of HVAC systems (including chiller plant, 

chilled water system and cooling water system) considering uncertainties of design 

inputs and reliability of system components in operation. Main contributions are 

summarized as follows: 

i. An uncertainty-based optimal design method for chiller plant is developed. 

Performance of the chiller plant using the proposed method is analyzed and 

compared with that using the conventional design method. 

ii. Robust optimal design methods considering both uncertainty and reliability are 

developed and implemented in HVAC system (including chiller plant, chilled water 

system and cooling water system). The performance of HVAC systems using the 

robust optimal design method is evaluated and compared with that using the 

conventional method and uncertainty-based method. 

iii. The uncertainties of the design inputs are quantified. Monte Carlo simulation is used 

for the quantification of uncertainty. 

iv. The reliabilities of system components are quantified. Markov method and 

sequential Monte Carlo simulation are used for the quantification of reliability. 
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Markov method contains the Markov method with the same failure rate and Markov 

method with different failure rates. 

v. A probabilistic approach is developed to determine the minimum sufficient number 

of Monte Carlo simulation. This approach is used to obtain the cooling load 

distribution of required accuracy considering the uncertainties of inputs. 

10.2 Conclusions 

Conclusions from the uncertainty-based optimal design method of chiller plant 

i. An uncertainty-based optimal design method considering uncertainties of inputs 

is developed. It can ensure that the high performance and the minimum annual 

total cost of chiller plants could be achieved by optimizing the capacity and 

configuration of chiller plants. 

ii. Annual average cooling load varies largely when considering uncertainties. It can 

be seen that the cooling load distribution profile of 780 simulation trials is 

smoother than that of reference case because more cooling load conditions are 

considered.  

iii. The optimum configuration of the chiller plant can be selected by achieving the 

minimum total cost when considering uncertainties. The results of the case study 

show that the total cost of optimized chiller plant can be reduced significantly 

(i.e. 17.7%) compared with the conventional design. 

Conclusions from the robust optimal design method of chiller plant 
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i. Quantification of uncertainties of design inputs is very important in determining the 

cooling load distribution of required accuracy. Based on the cooling load distribution, 

the searching range of total cooling capacity of chiller plant can be determined by 

the cooling capacities corresponding to different number of unmet hours. 

ii. Markov method can be effectively used to obtain the probability distribution of 

system state (health) for high accuracy and fast computation time. In this study, 

different failure rates are considered for constant-speed chillers and variable-speed 

chillers. 

iii. Compared with the chiller plant option with two variable-speed chillers, the chiller 

plant with one variable-speed chiller might operate at lower efficiency at part load 

conditions when the variable-speed chiller could not work. Given that the variable-

speed chiller is more expensive than the constant-speed chiller, using one variable-

speed chiller is economical in spite of the lower operating efficiency. 

iv. The optimum design option of the chiller plant can be selected by achieving the 

minimum total cost when considering uncertainties and system reliability. The 

results of the case study show that the total cost of optimized chiller plant can be 

reduced significantly (totally 26% and 11.4%) compared with the conventional 

design and uncertainty-based optimal design. 

Conclusions from the robust optimal design method of chilled water system 

i. Annual average cooling load varies largely when considering uncertainties, which 

greatly affects the design of chilled water system. If the sizing of design cooling 

capacity is based on the cooling load without considering uncertainties, the design 

cooling capacity and design chilled water flow will be very likely oversized. If the 
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pump head is determined without considering the uncertainties of hydraulic 

resistance and water flow distribution, the oversize of pump head will be greatly 

increased. 

ii. Markov method can be effectively used to obtain the probability distribution of 

system state (health) for high accuracy and fast computation time. 

iii. The design option of the chilled water pump system can be selected by achieving 

the minimum total cost when considering uncertainties and system reliability. The 

results of the case study show that the total cost of optimized pump system can be 

reduced significantly (totally 18.6%) compared with the conventional design and 

uncertainty-based optimal design. 

Conclusions from the robust optimal design method of cooling water system 

i. Sufficient sampling times are required to obtain the accurate cooling load 

distribution, operation cost and unmet cooling load. Sequential Monte Carlo 

simulation can be effectively used to obtain the accurate cooling load distribution, 

operation cost and unmet cooling load by quantifying the uncertainties of design 

inputs and the reliability of system components. 

ii. The penalty ratio and repair rate can affect the determination of design cooling 

water flow rate and thus the selected best option. The optimal design cooling water 

flow rate is larger at the higher penalty ratio. The results also show that the design 

cooling water flow reduces when the repair rate increases. 

iii. The design option of cooling water systems can be selected by achieving the 
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minimum total cost when considering uncertainties and system reliability. The 

results of the case study show that the total cost of optimized system can be reduced 

significantly (totally 22.7%) compared with the conventional design. 

Conclusions from the probabilistic approach for generating the cooling load 

distribution 

i. Determining the minimum simulation number is very important for obtaining the 

accurate peak cooling load and cooling load distribution. The minimum simulation 

number required depends on the required accuracy. 780 simulation trials are found 

and used and to achieve an accuracy of 0.5% for both the peak cooling load and the 

cooling load distribution. 

Conclusions from the reliability quantification methods 

i. The transition hours of Markov method could be ignored during the lifespan of a 

HVAC system. About 1500 hours (i.e., 83 days if the system works 18 hours daily) 

is required to achieve the steady state 0 when the Markov method is used.  

ii. The advantages of the Markov method include high accuracy and relatively fast 

computation time; the disadvantages are the inability to provide more reliability 

information (i.e. this method can only provide the average probability distribution 

of steady state of system). 

iii. Compared with Markov method, the sequential Monte Carlo simulation is capable 

of providing more comprehensive results than Markov method. However, the 

computation time using sequential Monte Carlo simulation is much longer than that 

using Markov method. 
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10.3 Further Work 

This thesis answers several important questions about the robust optimal design of 

HVAC system but many other problems still need to be solved. Following points are 

recommended for further studies: 

i. The selection of uncertainties may influence the final sizing of HVAC system. 

If a larger range of uncertainties is used, the total design capacity of HVAC 

system may be larger to reduce the availability risk cost and thus the optimal 

option may be different. Further study on the proper selection of uncertainties 

needs to be conducted. 

ii. Effective and accessible tools are necessary to implement the proposed design 

methods in HVAC systems considering uncertainty and reliability. It will be 

helpful if such tools can be integrated with popular building energy simulation 

tools such as EnergyPlus, TRNSYS, etc. Similar tools for building energy 

systems are available such as GURA-Workbench. However, for the central 

cooling plant, such tools are still needed to be developed. 

iii. Probability density functions to quantify the uncertainties of design inputs 

(except that representing the weather condition) in this study are mainly 

determined based on experiences or assumptions. It is necessary and important 

to develop more reliable methods to obtain probability density functions as 

reasonable/accurate as possible. 
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iv. The robust optimal design method can determine the optimal design of the 

HVAC system effectively in terms of the human effort of programming for 

implementing the method. It is worth noticing that the optimization output may 

not the perfect one as not all options/combinations are tested. It is necessary and 

significant to make a software package to implement the proposed design 

method with a small interval, which could include the design options as many 

as possible. 

v. In this study, the chilled water pumps, cooling water pumps and cooling towers 

are assumed to be identical in parallel respectively, which can facilitate the 

control and maintenance in operation. Further study needs to be conducted on 

the optimization of the sizes of them, which could reduce the annual operation 

cost. 

vi. The robust optimal design method is used for the design optimization of chiller 

plant, chilled water system and cooling water system. The quantifications of 

reliability of each subsystem are considered individually Further study needs to 

be conducted on the robust optimal design of HVAC system as a whole. 

Sequential Monte Carlo simulation can be effectively used to quantify the 

reliability of the whole HVAC system.  
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