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Abstract  

The study of aerosol dynamics is of great importance to a variety of scientific 

fields including air pollution, vehicle emissions, combustion and chemical 

engineering science. A new stochastically weighted operator splitting Monte Carlo 

(SWOSMC) method is first proposed and developed in the present study in which 

weighted numerical particles and operator splitting technique are coupled in order 

to reduce statistical error and accelerate the simulation of particle-fluid systems 

undergoing simultaneous complex aerosol dynamic processes.  

This new SWOSMC method is first validated by comparing its simulation 

results with the corresponding analytical solution for the selected cases.        

Some cases involving the evolution and formation of complex particle processes in 

fluid-particle systems are studied using this SWOSMC method. The obtained results 

are compared with those obtained by the sectional method and good agreement is 

obtained. Computational analysis indicates that this new SWOSMC method has high 

computational efficiency and accuracy in solving complex particle-fluid system 

problems, particularly simultaneous aerosol dynamic processes. 

In order to solve multi-dimensional aerosols dynamics interacting with 

continuous fluid phase, this validated SWOSMC method for population balance 

equation (PBE) is coupled with computational fluid dynamics (CFD) under      

the Eulerian-Lagrangian reference frame. The formulated CFD-Monte Carlo  

(CFD-MC) method is used to study complex aerosol dynamics in turbulent flows.       

Several typical cases of aerosol dynamic processes including turbulent coagulation, 
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nucleation and growth are studied and compared to the population balance sectional 

method (PBSM) with excellent agreement. The effects of different jet Reynolds (Rej) 

numbers on aerosol dynamics in turbulent flows are fully investigated for each of 

the studied cases in an aerosol reactor. The results demonstrate that Rej has 

significant impact on a single aerosol dynamic process (e.g. coagulation) as well as 

the competition between simultaneous aerosol dynamic processes in turbulent flows. 

This newly proposed and developed CFD-Monte Carlo/probability density function 

(CFD-MC/PDF) method renders an efficient method for simulating complex aerosol 

dynamics in turbulent flows and provides a better insight into the interaction between 

turbulence and the full particle size distribution (PSD) of aerosol particles. 

Finally, aerosol dynamics in turbulent reactive flows i.e., soot dynamics in 

turbulent reactive flows, is investigated and validated with corresponding 

experimental results available in literature. Excellent numerical results in 

temperature, mixture fraction and soot volume fraction as well as PSD of soot 

particles are obtained when compared with the experimental results, which validates 

the capability of this new CFD-MC/PDF method with the soot and radiation models 

for solving aerosol dynamics in turbulent reactive flows.  

In summary, this newly proposed and developed CFD-MC/PDF method in 

the present study has demonstrated high capability, and computational efficiency 

and accuracy in the numerical simulation of complex aerosol dynamics in     

multi-scale systems.
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Ea activation energy, kJ/mol 

f unspecified function 

(f g)soot linear branching-termination coefficient, 1/s 

fv volume fraction of soot particles 

fU,ψ joint composition and velocity PDF 

fU joint velocity PDF 

fψ joint composition PDF 

F fine-grained density function 

g0 linear termination on soot particles, m3/(particle-s). 

G particle growth kernel, m/s 

G0 the reduction rate of the smallest size particles by coagulation, #/s 

GO2 particle oxidation rate of oxygen (O2), #/(m2∙s) 

GOH particle oxidation rate of hydroxide (OH), #/(m2∙s) 
 

GSG particle growth rate, m/s 

Gt generation rate of turbulent kinetic energy, m2/s3 

H source of energy, J 

h small time interval, s 

i subscript of ordering 

I particle condensation kernel, 1/(m3∙s)   

j subscript of ordering 

k turbulent kinetic energy, m2/s2 
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kB Boltzmann constant, J/K 

ke heat conductivity, m2/s 

kn reaction constant of nucleation, #/(m3∙s)   

ks the reaction rate per unit area, #/(m2∙s) 

kHW reaction constant of growth, #/(m∙s) 

ka,kb reaction constant of oxidation, #/(m2∙s)   

K coagulation kernel    

Kn Knudsen number 

l model exponent constant 

Lj internal coordinate in the physical and scalar space 

mp mass of the particle, p, kg   

M a vector space 

Mj rate of certain aerosol dynamic process, j  

Mp mass of an incipient soot particle, kg  

n number density of aerosol particles, #/m3  

N particle number concentration, #/m3  

NA Avogadro constant, 1/mol    

NCFL local CFL number in the computational domain 

Ng0 the number density of newly generated smallest size particles 

Nl local concentration of particles, #/m3    

Nn normalized particle number density  

Nnorm reference number density of soot particles, particle10−15/m3 
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N0 initial particle number concentration, #/m3  

 N∞ total number of particles in the system 

NU0  nucleation rate, #/(m3∙s)       

p particle phase 

P pressure, kg/(m∙s2) 

pfuel fuel partial pressure, Pa 

q mass density of aerosol particles, kg/m3 

q  relative mass density of aerosol particles, kg/kg 

Q total mass of aerosol particles, kg 

Qc,  physical quantity in a cell, c    

Qp physical quantity carried by particle, p 

Qrad the source term due to radiation  

Q̇laminar the volumetric flow rate of laminar flow 

Q̇turbulent the volumetric flow rate of turbulent flow 

r equivalence ratio exponent  

R universal gas constant, J/(mol∙K) 

R*
nuc normalized net rate of nuclei generation,             

particle10−15/(m3⋅s) 

R0 reduction rate that creates the smallest size particles, #/s   

Rsoot net rate of soot generation, kg/(m3∙s) 

Rsoot,form soot formation rate, kg/(m3∙s) 

Rsoot, combst soot combustion rate, kg/(m3∙s) 
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Rej Reynolds number of the jet based on the nozzle diameter 

s molecular ratio of fuel to oxidizer 

S0 the surface area of the smallest size particles, m2 

Sa the source term due to chemical reaction   

t time, s 

rms root mean square  

T endpoint of a time interval, s 

Tα activation temperature for nucleation reaction, K  

Tγ activation temperature for surface growth reaction, K 

Tω activation temperature for oxidation reaction, K 

Ttemp temperature, K 

u   particle volume, m3 

u⃑  velocity of carrier fluid phase, m/s 

v particle volume, m3 

vsoot, vfuel mass stoichiometries for soot and fuel combustion, respectively  

v̅ average particle volume, m3 

𝑉⃑  velocity space in PDF 

V total volume of the aerosol system in simulation, m3 

V0 initial volume of the aerosol system in simulation, m3 

Vs volume of a subsystem of aerosol particles, m3 

w particle mass weight, kg/kg 
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W 

Wd 

Wiener process  

operator of deterministic process   

WH2 molecular weight of hydrogen, g/mol 

WC2H2 molecular weight of acetylene, g/mol 

WC6H5 molecular weight of benzene radical, g/mol   

WC6H6 molecular weight of benzene, g/mol 

WP particle weight  

Ws operator of stochastic process  

X the position of notional particles 

Xd deterministic process    

Xprec mole fraction of soot precursor, mol/mol 

Xs stochastic process  

Xsgs the mole fraction of the participating surface growth species, 

mol/mol 
 

y size of aerosol particles, m3   

Y mass fraction of aerosol particles, kg/kg 

YO,YF molecular fraction of oxidizer and fuel, respectively. 

Yox,Yfuel mass fractions of oxidiser and fuel, respectively, kg/kg 

Ysoot soot mass fraction, kg/kg 

Z mixture fraction in the jet flame 
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Greek Symbols 

 

α empirical constant 

 coagulation kernel, m3/s 

Γ turbulent diffusivity, m2/s 

∆m mass change during a single reaction event, kg 

δ Kronecker delta function 

ε turbulent dissipation rate, m2/s3  

max maximum relative error  

ηcoll collision efficiency  

ηv dimensionless particle volume, m3/m3 

ηd dimensionless particle diameter 

μ molecular viscosity, kg/(m⋅s) 

μt turbulent viscosity 

νk kinematic viscosity, m2/s 

ρ mass density, kg/m3 

σk, σε turbulent Prandtl number 

σnuc turbulent Prandtl number for nuclei transport 

σs the Stefan-Boltzmann constant, kg/(s3⋅K4)  

σsoot turbulent Prandtl number for soot transport 

τ dimensionless time 
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ϕ total volume of particles in the system 

ϕα unspecified reacting scalar 

ϕcombst equivalence ratio for combustion process   

Φ micro-mixing term 

ψ composition space in PDF 

ψv  dimensionless function of particle volume 

ψd dimensionless function of particle diameter 

ω weight of numerical particles 

 

Abbreviations 
 

ADCHEM aerosol dynamics, gas and particle phase chemistry 

CFD computational fluid dynamics 

CFL Courant–Friedrichs–Lewy condition 

CMAQ community multi-scale air quality modeling systems 

3D-CTM three-dimensional chemical transport model 

DEM discrete element method 

DGM dusty gas model 

DSMC direct simulation Monte Carlo 

DPD dissipative particle dynamics 

EMST Euclidean minimum spanning tree 

FBR fluidized bed reactor 

GCM multi-scale global aerosol-climate model   
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GDE general dynamics equation 

GHS generalized variable hard sphere model 

HS hard sphere model 

IC internal combustor 

LBM Lattice Boltzmann method 

LMC-PDF Lagrangian Monte Carlo-probability density function 

LPDA linear process deferment algorithm 

MALTE model to predict aerosol formation in lower troposphere 

MATCH multi-scale atmospheric transport and chemistry model 

MC Monte Carlo method 

MCMC Markov chain Monte Carlo method 

MD molecular dynamics 

MFA mass flow algorithm 

MP-PIC multi-phase particle in cell 

MTO methanol to olefins 

ODE ordinary differential equations 

OSMC operator splitting Monte Carlo method 

PBE population balance equation 

PDE partial differential equation 

PBM population balance method 

PBSM population balance sectional method 

PDF probability density function 

PSD particle size distribution 
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PSI-Cell particle source in cell 

DQMOM direct quadrature method of moments 

RANS Reynolds averaged Navier-Stokes equation 

SDE stochastic differential equation 

SEF stochastic Eulerian field method 

SEM scanning electron microscopy 

SWOSMC stochastically weighted operator splitting Monte Carlo 

method 

SWPM stochastically weighted particle method 

TCI turbulence chemistry interaction 

TRI turbulence radiation interation 

TEM transmission electron microscopy 

TEMOM Taylor-series expansion method of moments 
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Chapter 1 Introduction 

 

1.1 Research Background and Scope  

The study of aerosol dynamics is of great importance to a variety of scientific 

fields including air pollution, vehicle emissions, combustion and chemical 

engineering science. It is essential to improve the numerical simulation on efficient 

aerosol dynamics processes in order to have a deeper understanding of the behavior 

of complex multi-scale aerosol systems. Such numerical simulation makes it 

possible to reconcile the theoretical description of the physical principles of aerosol 

dynamic systems with the experimental results of these systems. There are various 

physical processes involved in aerosol dynamics including coagulation, nucleation, 

condensation/surface growth processes etc. (Zhang et al., 1999). A lot of 

mathematical models as well as algorithms have been developed to simulate these 

complex and simultaneous aerosol dynamic processes (Efendiev, 2004;       

Chan et al., 2009; Yu et al., 2009; Chan et al., 2010; Zhou and Chan, 2011;     

Geng et al., 2013, Zhou and Chan, 2014; Fede et al., 2015; Liu and Chan, 2016 and 

2017). Thus, it is of significance to identify the key aerosol dynamic processes in     

multi-scale systems in order to reduce the difficulty in obtaining closures for aerosol 

dynamic models.  

Most current research on aerosol dynamics focuses on monodispersed 

homogeneous particle system. However, it is well known that phase segregation will 

take place within the aerosol system under proper conditions. So it is essentially 

required to extend the existing aerosol dynamics modelling to multi-component and 

heterogeneous case in order to achieve the desired accuracy of modelling    
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(Efendiev, 2004). A large number of studies concerning complex aerosol dynamics 

and applications have been reported (Efendiev, 2002; Efendiev, 2004; Fu et al., 2012; 

Gac and Gradoń, 2013; Trump et al., 2015; Feng et al., 2016).            

However, novel numerical methods are still much needed due to the multi-scale 

nature of complex aerosol dynamics, some as shown in Figure 1.1        

(Kulmala et al., 2009). 

 

Figure 1.1 Modelling and simulation of multi-scale aerosol dynamics     

(Kulmala et al., 2009).  

On the other hand, it is also necessary to include particle chemistry as well 

as gas-phase chemistry module in the model of aerosol system in order to simulate 

aerosol dynamics more accurately. A detailed aerosol dynamics model named 

University of Helsinki multicomponent aerosol model (UHMA) coupled with     

a detailed gas-phase chemistry module as well as a meteorological module was 

proposed by Boy et al., (2006). This UHMA model to predict new aerosol formation 

in the lower troposphere (MALTE) (Boy et al., 2006) is primarily designed to model 

new particle formation in the lower troposphere as shown in Figure 1.2.  
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Figure 1.2   Schematic diagram of the model to predict aerosol formation in lower 

troposphere (MALTE) model (Boy et al., 2011). 

 

A more detailed and comprehensive model including aerosol dynamics,  

gas and particle phase CHEMistry and radiative transfer (ADCHEM)       

(Roldin et al., 2011) as shown in Figure 1.3 is then proposed based on the developed 

MALTE model. The aim of the ADCHEM model was to develop a model suitable 

for the investigation of multi-scale complex aerosol dynamics coupled with gas and 

particle chemistry. The ADCHEM model was used to identify the most important 
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aerosol dynamic process in order to obtain accurate representation of aerosol 

dynamics coupled with detailed chemistry (Roldin et al., 2011).           

However, the complexity of the ADCHEM model may affect its wide applicability. 

Nevertheless, these results are useful when developing more simplified aerosol 

dynamics, gas and particle phase chemistry modules or parameterizations for global 

scale models (Roldin et al., 2011). Given the increased complexity caused by 

including particle chemistry as well as gas phase chemistry, the optimization and 

improvement of current numerical techniques are greatly needed.  

 

 

Figure 1.3   Schematic diagram of the aerosol dynamics, gas and particle phase 

chemistry (ADCHEM) model (Roldin et al., 2011). 

 

The evolution of aerosol system is governed by the PBE (also called  

general dynamics Equation, GDE) i.e. Equation (1-1), which could include all    

the typical aerosol dynamic processes accounting for the birth, growth and death of 

particles (Wei and Kruis, 2013).  
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∂n(v,t) ∂t⁄ = 1 2⁄ ∫ β(vu,u)n(u,t)n(vu,t)du n(v,t) ∫ β(v,u)n(u,t)du
∞

0

v

0
   (1-1) 

where n(v,t) is the particle size distribution (PSD) at time t and β(v,u) is         

the coagulation rate for two particles with the volumes u and v, respectively.       

The first term on the right-hand side of Equation (1-1) represents the formation of 

particles with volume v due to the coagulation events between particles of volume u 

and particles of volume (v-u); the factor 1/2 is introduced because the collisions are 

counted twice for a single collision event. The second term on the right-hand side of     

Equation (1-1) represents the loss of particles with volume v because of collisions 

with particles of other sizes. 

There are different numerical methods to solve the Equation (1-1),    

including sectional methods (Jeong and Choi, 2001; Mitrakos et al., 2007;  

Agarwal and Girshick, 2012), methods of moments (Lin and Chen, 2013;       

Yu et al., 2008; Park et al., 2013; Chen et al., 2014; Yu and Chan, 2015;     

Pollack et al., 2016), and Monte Carlo methods (Zhao et al., 2009; Zhao and Zheng, 

2012; Wei, 2013; Zhou et al., 2014; Liu et al., 2015; Liu and Chan, 2016).       

The computational time of sectional methods is moderate, but the algorithms for the 

sectional representations could be quite complicated (Wei and Kruis, 2013). 

Methods of moments have relatively high computational efficiency, but require 

input of the initial PSD, which is variable during the numerical simulation, 

particularly when another aerosol dynamic process like nucleation takes place  

(Wei and Kruis, 2013). The methods of moment perform best only when the size 

distribution is lognormal. Besides these two deterministic methods, the Monte Carlo 

method with a stochastic nature is considered feasible to deal with the multi-scale 
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nature of complex aerosol dynamics (Kruis et al., 2000; Hao et al., 2013). Figure 1.4 

shows a typical flow chart of Monte Carlo algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4  A typical flow chart of Monte Carlo algorithm (Efendiev, 2004). 

Compared with Monte Carlo method, both the sectional methods and 

methods of moments have the following drawbacks: 

1.    There is no information about the history of each particle since the particles 

are described by means of their volume, so the information about the internal 

structure is lost (Kruis et al., 2000). 

2.   When multi-dimensional system is encountered, the sectional representation 

results in very complex algorithms (Kruis et al., 2000). 

For each droplet 

Randomly choose two droplets and calculate their collision probability 

Calculate the elapsed time, dt for the coagulation 

event 

Perform k enclosure interactions such that the total sum of inter-event times 

spent during the enclosure interactions greater than or equal to dt 

 

Calculate the extra time spent during the enclosure interactions in each 

droplet, which will be taken into account during the next droplet 
coagulation event 

Implement the coagulation of the chosen droplets and 

calculate the enclosure distribution for the new droplet 

If the number of droplets is less than half of the initial number of 

droplets, duplicate the particles with their internal state. Increase the 

size of the computational domain twice 

T = t+dt 
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Monte Carlo simulation is a classical method to be used to overcome     

the above drawbacks. The major shortcomings of the Monte Carlo methods are   

the high computational cost (i.e., computational time, computer memory etc.) 

required in order to obtain satisfactory accuracy. This is because Monte Carlo 

methods are essentially stochastic methods and the computational error is inversely 

proportional to the square root of the total number of the numerical particles   

(Oran et al., 1998).  

High performance computing (HPC) clusters are thus used in order to reduce 

the high computational cost (i.e., computational time, computer memory etc.) at high 

expense. Moreover, the development of parallel computing technique makes it 

possible to use many-core processors for Monte Carlo simulation, in which parallel 

computing is applied to stochastic processes (Wei and Kruis, 2013). 

Since the Direct Simulation Monte Carlo (DSMC) method is a stochastic 

particle method, the movement of particles is independent of each other except for 

the inter-particle collisions (Wu and Lian, 2003). Thus, it is inherently justified to 

execute the DSMC method using the parallel processors in order to reduce 

computational time (Wu and Lian, 2003; Mohammadzadeh et al., 2013).         

A typical flow chart of parallel DSMC algorithm is shown in Figure 1.5      

(Roohi and Darbandi, 2012). 
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Figure 1.5   A typical flow chart of direct simulation Monte Carlo (DSMC) method 

(left) and parallel DSMC method (right) (Roohi and Darbandi, 2012).  

 

Another method to accelerate the conventional Monte Carlo simulation 

which selects all processes (i.e., nucleation, surface growth and coagulation) 

randomly at a time, the new methods of Linear Process Deferment (LPDA) and 

Operator Splitting Monte Carlo (OSMC) are proposed by Patterson et al. (2006) and 

Zhou et al. (2014), respectively, which separates coagulation from other nucleation 
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and surface growth processes. In most of the conventional Monte Carlo methods, 

every simulation particle is associated with the uniform number of real particles.  

The accuracy of the simulation thus depends on the number of numerical particles 

used. Hence, it decreases the applicability of Monte Carlo method to the spatially 

resolved gas simulations, and regions with few physical particles cannot be modeled 

accurately. A stochastically weighted particle method (SWPM) is thus introduced 

by Rjasanow and Wagner (1996) to deal with this problem of simulation accuracy. 

A new stochastically weighted operator splitting Monte Carlo (SWOSMC) method 

based on the idea of operator splitting and a stochastic weight for every simulation 

particle is newly proposed in the present study. The purpose of this new method aims 

to solve complex aerosol dynamic problems with high accuracy and efficiency, 

which will provide a better knowledge of the evolution of aerosol system and a better 

deal with the multi-scale, multi-component and heterogeneous aerosol dynamics 

with high performance computing. In fact, parallel DSMC method has been studied 

and implemented in many fields such as multiphase flow, aerosol coagulation 

phenomena; molecular dynamics etc. (Kruis et al., 2000; Liffman, 1992; 

Mohammadzadeh et al., 2013). In the present study, further research development 

of implementing this new SWOSMC method to multi-scale aerosol systems will be 

presented.  

However, in actual industrial and engineering applications,             

an inhomogeneous flow field is generally encountered which has a profound impact 

on aerosol dynamic processes. Those processes are dependent on local flow field 

variables (e.g., temperature and concentration). Thus, the solution for 

multidimensional PBE including convection and diffusion terms becomes 
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significant for aerosol dynamics in turbulent flow. Coupling the PBE of aerosol 

dynamics with CFD method provides a very promising approach to deal with    

the spatially inhomogeneous problems of aerosol dynamics (Kruis et al., 2012;     

Zhao and Zheng, 2013; Zhou and Chan, 2014; Zhou and He, 2014;         

Akridis and Rigpoulos, 2015; Amokrane et al., 2016). In laminar flow, the coupling 

of CFD to PBE can be easily accomplished via proper transformation of PBE.       

However, in turbulent flow, the closure problems arise due to the effect of turbulence 

on aerosol dynamic processes (e.g. coagulation, nucleation and growth) as such 

physical processes are highly dependent on the local field variables.       

Moreover, the relationship between turbulence, particle properties and collision 

kernels of aerosol dynamics is not well understood and is rarely reported due to their 

theoretical and experimental limitations (Lesniewski and Friedlander, 1995;  

Reade and Collins, 2000; Rigopoulos, 2007; Balachadar and Eaton, 2010;    

Minier, 2015). Thus, particular attention is paid to examine the effect of turbulence 

on aerosol dynamics and the evolution of PSD of aerosol dynamics in the present 

study. 

Probability density function (PDF) methods based on a PDF transport 

equation of the full PSD have been proposed and used to overcome the closure 

problems due to interaction between turbulence and particle evolution in turbulent 

reactive flows (Pope, 1981; Pope, 1985; Valino, 1998; Sabel’nikov and Soulard, 

2005; Meyer, 2010; Pope and Tirunagari, 2014; Consalvi and Nmira, 2016).    

Both PSD and particle number density distribution are treated without additional 

assumptions for closure via the transported PDF methods. The full PSD can thus be 

obtained directly without reconstructing it from moments. Moreover, complex and 
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arbitrary kernels of aerosol dynamics are allowed since no closure is required for   

the PBE. These PDF methods can be divided into three categories i.e.,      

Eulerian particle method (Pope, 1981), Lagrangian particle method (Pope, 1985) and 

Eulerian field method (Sabel’nikov and Soulard, 2005). Both the advantages and 

disadvantages of the methods and possible improvements can easily be identified in 

the comparison between Eulerian and Lagrangian Monte Carlo PDF methods 

(Möbus et al., 2001; Zhang and Chen, 2007; Haworth, 2010; Jaishree and Haworth, 

2012). 

Lagrangian particle Monte Carlo algorithms (Pope, 1985; Jaishree and 

Haworth, 2012) have been regarded as the mainstream approach for solving PDF 

transport equations in most applications of PDF methods to date (Haworth, 2010; 

Haworth and Pope, 2011). A great number of notional particles that evolve according 

to the prescribed stochastic differential equations (SDE) (Celis and Silva, 2015) 

represents the PDF, and weighted averages over the particles in a small amount of 

neighboring grids are used to approximate the local mean quantities. As the mean 

velocity and turbulence scales are required before advancing in every time step,    

it is necessary to couple the Lagrangian particle method with a conventional CFD 

solver to formulate a consistent hybrid Lagrangian particle/Eulerian mesh PDF 

method (Jaishree and Haworth, 2012; Jangi et al., 2015). The main advantage of 

Lagrangian particle method relative to Eulerian PDF method is that the spatial-

transport algorithm has much higher accuracy. The number of grid cells required for 

equivalent accuracy is thus considerably smaller and the total computational cost 

(i.e., computational time, computer memory etc.) of Lagrangian PDF is only 

proportional to the number of notional particles despite the special care required for 
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reducing statistical error. A consistent hybrid Lagrangian particle /Eulerian mesh 

PDF method (Jaishree and Haworth, 2012; Jangi et al., 2015) based on the work of 

Pope (1985) is proposed for the coupled CFD-Monte Carlo simulation of aerosol 

dynamics in turbulent flow in the present study.  Further application of the coupled 

CFD-Monte Carlo method to turbulent reactive flows is also studied in the following 

content. 

 

1.2 Research Motivation and Objectives 

 

 In the present study, a stochastically weighted operator splitting Monte Carlo 

(SWOSMC) method is first formulated based on the improvement of Monte Carlo 

(MC) method with the coupling of operator splitting technique and stochastic weight 

method. Then the SWOSMC method is coupled to computational fluid dynamics 

(CFD) in terms of Lagrangian probability density function (PDF) representation 

approximating the discretized population balance equation (PBE).  

The objectives of the present study are as follows: 

1. To gain a better understanding of the aerosol dynamic processes such as 

coagulation, nucleation, condensation etc. in aerosol dynamics in turbulent 

flows by the development of the stochastically weighted operator splitting 

Monte Carlo (SWOSMC) method; 

2. To develop a novel coupled CFD-Monte Carlo/PDF method for spatially 

inhomogeneous aerosol dynamic system in turbulent flows with wide 

applicability by combining with a CFD method to formulate a CFD-based 
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aerosol dynamics method with applications to complex particle-fluid 

systems; and 

3. To extend the CFD-Monte Carlo/PDF method for the application to turbulent 

reactive flows by including a chemical reactions module in this method. 

4.    This newly proposed CFD-Monte Carlo/PDF method is expected to render 

an efficient method for simulating complex aerosol dynamics in turbulent 

reactive flows and provides a better insight into the interaction between 

turbulence and the full PSD of aerosol particles.  

1.3 Outline of the Thesis 

 

Chapter 1 introduces an overview of the background and scope related to  

the present study, indicating that the knowledge gap of the numerical simulation of 

multi-scale interaction of complex aerosol dynamics in polydispersed turbulent 

reactive flows. The objectives of the present study are intended to fill this knowledge 

gap.  

 

 Chapter 2 provides a more detailed literature review of aerosol dynamics 

including the knowledge of aerosol dynamics obtained via the experimental and 

numerical studies, indicating the development and state-of-the-art that          

the researchers have acquired, and the shortcomings of these research areas and 

where the knowledge gap lies.  
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 Chapter 3 provides theoretical fundamentals of the present study,    

which contains necessary mathematical and numerical models that will be used in   

Chapters 4 to 6.  

Chapter 4 provides this newly proposed SWOSMC method with its 

validation and applications to simultaneous complex aerosol dynamics.  

 

Chapter 5 presents this newly proposed CFD-Monte Carlo/PDF method 

with applications to the study of interaction between turbulence and aerosol 

dynamics in turbulent flows.  

 

Chapter 6 provides the extension of this proposed and developed     

CFD-Monte Carlo method to turbulent reactive flows by including a chemical 

reaction module. This method is then used to study the soot formation in       

non-premixed turbulent reactive flows. 

 

Chapter 7 provides the conclusions and major scientific findings revealed 

by the present study, and some recommendations for future work. 
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Chapter 2  Literature Review 

 

2.1  Aerosol Dynamics in Multi-scale Systems 

There are miscellaneous multi-scale systems concerning aerosol dynamics in 

nature as well as in human activities. Some typical examples regarding the aerosol 

dynamics in multi-scale systems will be reviewed briefly in the following sections.  

2.1.1  Atmospheric Aerosols 

A variety of liquids and solids existing as poly-dispersed phases in       

the atmosphere can be generally called atmospheric aerosols, which can be regarded 

as a two-phase system comprised of solid particles and fluid (air)         

(Valsaraj and Kommalapati, 2009). The typical physical properties of atmospheric 

aerosols including diameter, specific surface area, liquid water content as well as 

lifetime are shown in Table 2.1 (Valsaraj and Kommalapati, 2009). The mass 

concentrations and diameters of aerosols in different areas are shown in Table 2.2 

(Valsaraj and Kommalapati, 2009). According to Table 2.1 and 2.2, the atmospheric 

aerosols can be regarded as a multi-scale system ranging from 10 nm to 106 nm or 

even larger.  
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Table 2.1 Typical physical properties of atmospheric aerosols            

(Valsaraj and Kommalapati, 2009). 

Nature of 

droplet 

Size 

(μm) 

Specific 

surface area 

(m2/m3) 

Liquid water 

content (m3/m3 air) 

Typical 

lifetime 

Aerosols 10−2−10 10−3 10−11−10−10 4−7 days 

Fog droplets 1−10 8 10−4 5 10−8−5 10−7 3 hours 

Cloud drops 10−102 2 10−1 10−7−10−6 7 hours 

Raindrops 102−103 5 10−4 10−7−10−6 3−15 minutes 

Snowflakes 103−105 3 10−1 − 15−50 minutes 

 

Table 2.2  Mass concentrations and diameters of atmospheric aerosols (Valsaraj 

and Kommalapati, 2009). 

Area Concentration (μg/m3) Diameter (μm) 

Urban >100 0.03 

Rural 30-50 0.07 

Marine >10 0.16 

   

Many aerosol species are not generated directly, but are originated from 

complex reactions between gaseous precursors and aerosol species in          

the atmosphere and have complex physical properties and lifetimes (Valsaraj and 

Kommalapati, 2009), which forms complicated multi-scale problems. Hence, it is 

necessary to develop multi-scale numerical simulation methods. The various 

radiative mechanisms with cloud effects of atmospheric aerosols are shown in Figure 

2.1 (Valsaraj and Kommalapati, 2009). 
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Figure 2.1   Various mechanisms with cloud effects of atmospheric aerosols 

(Valsaraj and Kommalapati, 2009). 

 

 

Figure 2.2   Scatterplot of daily average PM2.5 concentrations from continental U.S. 

monitoring stations for the period of June 15-July 16, 1999 versus comparable 

CMAQ model estimates (Byun and Schere, 2006). 

 

Many multi-scale models relating to atmospheric aerosols have been 

developed such as Community Multi-scale Air Quality (CMAQ) Modeling System 

(Byun and Schere, 2006), Multi-scale Global Aerosol-climate Model (GCM)  
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(Wang et al., 2014) and Multi-scale Atmospheric Transport and Chemistry Model 

(MATCH) (Robertson et al., 1999). However, more robust and versatile models are 

still needed to simulate atmospheric aerosols in multiple scales. The simulation 

results of PM2.5 obtained by the GCM model were compared with that from 

observation in Figure 2.2 (Byun and Schere, 2006). A similar numerical simulation 

results of tracer transport obtained from MATCH model is shown in Figure 2.3 

(Robertson et al., 1999). 

 

 

Figure 2.3   Calculated distribution of a passive tracer released from a surface point 

source using a fifth-order scheme in the horizontal advection (Robertson et al., 1999). 

2.1.2  Multi-scale Fluid-particle Systems in Chemical Reactors 

Multi-scale structure originates generally from the multi-phases occurring in 

fluid-particle industrial chemical reactors. Different numerical simulation methods, 

mainly Computational Fluid Dynamics (CFD) methods and other methods have 

been developed and applied to modeling the multi-scale behaviors of fluid-particle 

systems.  
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Fluidized Bed Reactor 

Computational fluid dynamics (CFD) method is often used for the modeling 

of multi-scale reaction inside a fluidized bed reactor (FBR) (Zhuang et al., 2014; 

Wang et al., 2014; Deen and Kuipers, 2014; Klimanek et al., 2015; Lu et al., 2016). 

CFD approaches for the simulation of gas-solid flows in FBRs can be divided into 

two categories: Eulerian-Lagrangian and constant Eulerian–Eulerian methods 

(Zhuang et al., 2014).  Compared with the Eulerian–Lagrangian method, in which 

the movement of particles is tracked individually, the Eulerian–Eulerian method 

treats particulate phase as a continuous phase (Zhuang et al., 2014). 

The velocity vector profiles of both particle and gas phases of a fluidized bed 

reactor (Zhuang et al., 2014) is shown in Figure 2.4, which is obtained with a 

combined computational fluid dynamics (CFD) method and discrete element method 

(DEM) (Zhang et al., 2008). The main reaction parameter distribution profiles in the 

MTO FBR are shown in Figure 2.5.  

 

Figure 2.4   Velocity vector profiles inside a fluidized bed reactor obtained with 

computational fluid dynamics-discrete element method (CFD-DEM) method:     

(a) particle phase; and (b) gas phase (Zhuang et al., 2014).  
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Figure 2.5   Main reaction parameter distribution profiles in the methanol to 

olefins (MTO) fluidized bed reactor (FBR) at t = 0.052 s: (a) gas-phase temperature; 

(b) particle temperature; (c) coke content; (d) ethane mole concentration; (e) propene 

mole concentration; and (f) butene mole concentration; space (velocity= 2.8 m/s, 

inlet feed temperature= 723K, feed ratio of water to methanol= 0 (Zhuang et al., 2014).  

Fixed Bed Reactor 

Fluid flow through fixed bed of spheres is often accompanied by complex 

phenomena such as heat and mass transfer (Rong et al., 2014). Methods such as CFD 

method and DEM method together with stochastic methods such as Lattice 

Boltzmann Method (LBM) (Rong et al., 2014; Asensio et al., 2014;      

Mahmoudi et al., 2014; Brumby et al., 2015; Kruggel-Emden et al., 2016) are often 

used to simulate multi-scale particle-fluid systems in a fixed bed reactor. 
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Figure 2.6   Parallel Lattice Boltzmann simulation results for flow within a fixed 

bed packed with the binary mixture of two types of spheres: (a) velocity vector; and 

(b) velocity contour and vector on the mid-plane (Rong et al., 2014). 

Simulation results of velocity profiles and the spatial distribution of drag forces 

on particles for flow within a fixed bed packed with the binary mixture of two types 

of spheres obtained with parallel Lattice Boltzmann method (LBM) are shown in 

Figures 2.6 and 2.7, respectively. LBM shows its applicability to multi-scale 

modeling for a fixed bed reactor and offers an alternative to traditional CFD methods. 

 

Figure 2.7   Parallel Lattice Boltzmann simulation results for flow within a fixed 

bed packed with the binary mixture of two types of spheres: spatial distribution of 

the drag forces on individual particle across the mid-plane (Rong et al., 2014). 
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2.1.3  Multi-scale Flows and Particle Issues 

Another important application of multi-scale particle-fluid systems is the 

study of multi-scale flows (Nie et al., 2004; Koumoutsakos, 2005; Bergdorf and 

Koumoutsakos, 2006; Oñate et al., 2014; Zhang et al., 2014; He et al., 2014; 

Giannakopoulos et al., 2014; Li et al., 2015; Lee and Engquist, 2016). Multi-scale 

flow simulations using particles is a widely used method and considered to be an 

efficient one.  

An example of coupling an atomistic method with continuous method for  

the reference solution of the flow of argon around a carbon nanotube is shown in   

Figure 2.8 (Koumoutsakos, 2005). It can be seen that the multi-scale method yields 

more reasonable numerical simulation results. 

 

Figure 2.8  (a) Computational domain using a purely atomistic description;       

(b) Hybrid atomistic/continuum computational domain; (c) Velocity field for the 

reference solution averaged over 4 ns; and (d) Velocity field of the hybrid solution 

after 50 iterations (Koumoutsakos, 2005).  

Another example of numerical simulation of multi-scale flow using 

combined particle method of dissipative particle dynamics and coarse-grained 
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molecular dynamics is shown in Figure 2.9. It can be seen that with the increase of 

coarsening parameters in both temporal and spatial directions, the resolution of 

simulation results increase significantly. 

 

Figure 2.9   The velocity profiles of flowing platelets in blood plasma with a multi-

scale method of dissipative particle dynamics and coarse-grained molecular 

dynamics (Zhang et al., 2014). 

Particles issues are used herein to refer the multi-scale problems in relation 

to the simulation of particles behaviors such as synthesis, evolution, transport etc.  

A schematic diagram of nano particles synthesis is shown in Figure 2.10     

(Balgis et al., 2014). The multi-scale particle methods mentioned above such as VM, 

DPD and DSMC could be well applied to particles issues herein. 
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Figure 2.10   A schematic diagram of nano particles synthesis (Balgis et al., 2014). 

This DSMC method has been widely used in the simulation of gas diffusion 

in porous nano structures (Ge and Gutheil, 2008; Dreyer et al., 2014), the prediction 

of particle behavior in gas-particle two-phase impinging streams         

(Makinde et al., 2013; Du et al., 2013) and the aerosol evolution (Kruis et al., 2000; 

Hao et al., 2013; Liffman, 1992; Wu and Lian, 2003; Palaniswaamy and Loyalka, 

2008; Roohi and Darbandi, 2012;  Du et al., 2013; Dreyer et al., 2014;         

He et al., 2015; Campbell et al., 2016). The simulation of gas diffusion via DSMC 

in porous nano structures is shown in Figure 2.11 (Dreyer et al., 2014). 

 

Figure 2.11  A schematic diagram of gas diffusion in nano structures      

(Dreyer et al., 2014). 
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2.2    Experimental investigation of aerosol dynamics 

The experimental investigation of aerosol dynamics mainly includes      

the collection, examination and characterization of aerosol particles, which will be 

introduced respectively in the following sections. 

2.2.1  Collection of Aerosol Particles 

The collection of aerosol particles can be conducted in a batchwise way or 

continually such as continuous online sampling. Some online sampling methods 

have been developed particularly for the online sampling of aerosol particles 

originating from combustion (Chen et al., 1998; Maricq et al., 2003;          

Zhao et al., 2003; Jiménez and Ballester, 2005; Laitinen et al., 2010;           

Hess et al., 2016) and vehicle emissions (Chan et al., 2004; Alvarez et al., 2008; 

Ježek et al., 2015). Considering the impact of external electrostatic field, the 

collection of aerosol particles can be conducted in the presence of external 

electrostatic fields (Intra et al., 2014) or in the absence of them (Smith and Phillips, 

1975). Figure 2.12 shows a typical example of online sampling system (Zhao et al., 

2003). 

 
Figure 2.12  A schematic diagram of an online sampling system            

(Zhao et al., 2003). 
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2.2.2  Examination and Characterization of Aerosol Particles 

Chromatography and mass spectrometry have been widely used for      

the analysis of small scale of aerosol particles after proper pretreatment.       

Nuclear magnetic resonance and Raman spectroscopy have also been used to 

examine more microscopic properties of certain aerosol particles such as soot.  

Laser desorption has been connected to mass spectrometry (Bouvier et al., 2007; 

Öktem et al., 2005; Laskin et al., 2010; Ozawa et al., 2016) to measure the relative 

abundance of organic components on soot particles. 

For a larger scale examination of aerosol particles, optical methods such as 

transmission electron microscopy (TEM) and scanning electron microscopy (SEM) 

can be used. For a sample with large number of aerosol particles, light scattering and 

absorption measurements can be used to estimate particle diameters and obtain          

a multi-modal PSD (Erickson et al., 1964). 

2.3    Numerical Methods for the Simulation of Aerosol Dynamics 

Various numerical methods have been developed to solve Equation (1-1),  

the population balance equation (PBE) governing the evolution of particle number 

density as a function of particle size and time. The main numerical methods for 

aerosol dynamics include sectional methods (Jeong and Choi, 2001;       

Mitrakos et al., 2007; Agarwal and Girshick, 2012), method of moments       

(Lin and Chen, 2013; Yu et al., 2008; Park et al., 2013; Chen et al., 2014;        

Yu and Chan, 2015; Pollack et al., 2016) as well as stochastic method        

(Zhao et al., 2009; Zhao et al., 2012; Wei, 2013, Zhou et al., 2014; Liu et al., 2015; 

Liu and Chan, 2016 and 2017).   
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2.3.1  Sectional Method 

Sectional methods can be classified into fixed sectional methods and moving 

sectional methods. The fixed sectional methods first proposed by Gelbard and 

Seinfeld (1980) use a grid placed on the particle type or state space with an a priori 

assumption of the shape of PSD in every section bin or grid cell (Patterson, 2007). 

The moving sectional methods proposed by Kumar et al. (1997) adjust          

the boundaries of section bins to account for the particle size changes due to aerosol 

dynamic processes. 

 

 

Figure 2.13   Comparison between sectional and analytical methods: normalized 

number and volume concentrations under constant coagulation and linear 

condensation (Mitrakos et al., 2007). 

Figure 2.13 shows the evolution of the normalized particle number and 

volume concentrations of the aerosols as a function of the dimensionless time 

(Mitrakos et al., 2007). The decrease of normalized particle number due to 

coagulation as well as the increase of particle volume due to condensation are well 
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captured by numerical simulation compared with the analytical solution    

(Mitrakos et al., 2007) as is shown in Figure 2.18. 

2.3.2  Method of Moments 

The main advantage of methods of moments in the simulation for aerosol 

dynamics is the relatively low computational cost (i.e., computational time, 

computer memory, etc.) as a small number of additional equations i.e.,          

the moments equations of the PSD are to be solved while the main disadvantage is 

the requirement of initial PSD in order to obtain the closure of the transport equations       

(Mitrakos et al., 2007).  

However, a new method of moments i.e., Taylor-series expansion method of 

moments (TEMOM) using the Taylor-series expansion technique to dispose     

the collision terms and the fractional moments to obtain a new form for the moment 

equations without prior assumptions for PSD was proposed by Yu et al. (2008). 

Figure 2.14 shows the comparison of TEMOM method in comparison with other 

methods. It can be seen that the TEMOM method shows good agreement with other 

numerical methods. 

 

Figure 2.14   The second order moment and the relative error for various methods 

in the free molecular regime. The relative error denotes the ratio of second order 

moment from various methods to the QMOM with 6 points (Yu et al., 2008). 
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2.3.3  Stochastic Method 

The direct simulation Monte Carlo (DSMC) method was first proposed by 

Bird (1994). The basic idea of DSMC is to use a set of numerical particles to 

represent the real physical particles. However, only the particle properties of interest 

such as momentum and mass are tracked. The random generation of collisions based 

on prescribed probability laws is justified by the molecular chaos          

(Baxter and Olafsen, 2007) in homogeneous grid cells. A review of the DSMC 

methods and some practical application in solving the Boltzmann equation can be 

found in Oran et al. (1998). Figure 2.15 shows the regimes of validity of DSMC and 

other methods. 

 

Figure 2.15   Regimes of validity of molecular dynamics, direct simulation Monte 

Carlo, and Navier-Stokes, as a function of the characteristic length scale and mean 

molecular spacing of a system (Oran et al., 1998). 
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2.4    Direct Simulation Monte Carlo Method 

2.4.1  Overview 

The direct simulation Monte Carlo Method (DSMC) proposed by Bird (1994) 

uses numerical particles to represent a large number of physical molecules or atoms, 

which is a well-established method in the simulation of non-equilibrium gas flows. 

The DSMC method models gas at the microscopic level and the gas physics is thus 

captured through the motion of particles and collisional interaction between them. 

The DSMC method is statistical in nature because of the probabilistical and 

phenomenological treatment of physical process like collision in order to reproduce 

the macroscopic behavior of particles (Wu and Lian, 2003). 

The primary advantage of the DSMC method is that it can capture       

the non-equilibrium effects which may occur in aerosol dynamics due to the 

relatively high Knudsen number (denoted by Kn), which is defined as the ratio of 

the mean free path length of the gas to the characteristic length of interest       

(the aerosol size). As aerosol particles are of micro- or nano- level, it generally yields 

a Knudsen number falling into the transitional regime (10−3<Kn<10). By tracking 

representative particles through space and considering collisions between particles, 

the DSMC method can directly simulate the physics of aerosol dynamics. 

Mathematically, the Boltzmann equation can be derived by following DSMC 

procedures. 
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2.4.2  Particle Representation 

Particles in a DSMC simulation are set to represent a large number of real 

gas particles (Rieffel, 1999). Each simulation particle can be considered as        

a representative sample from the physical particulate system or as an average of   

the real particles according to the mean field theory. Particles are generally 

considered to be point particles or spheres with associated properties such as species, 

velocity and internal energy. The actual shape of molecules and the associated  

three-dimensional force fields are generally neglected for computational simplicity. 

Collisions between particles are treated probabilistically using corresponding 

models. The common collisional models include hard sphere (HS) model,   

variable hard sphere (VHS) model, generalized hard sphere (GHS) model,   

variable soft sphere (VSS) model and some other models (Bird, 1994). 

The operation of collision and sampling steps requires particles to be grouped 

into the cells of certain computational cells. The particles thus need to be sorted 

properly into corresponding groups. Collisions between the particles make it 

possible for the properties of gas to be transmitted through bulk flow.          

The exact calculation of collision kinematics involves many physical properties of 

particles such as the particles’ trajectories, angles of incidence and impact parameter 

which is much costly. So collisions are calculated statistically between particles 

residing in the same computational cell. After being grouped into certain cells,     

a list of possible collision pairs is thus formed. A common method to decide whether 

collision happens is the acceptance-rejection method. Once the collision model and 

sampling scheme are determined, the collision probability is the function of      

the relative velocities, collision cross section and the number density of particles in 
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the cells. However, the collision probability is also related to the time step previously 

set and the particle weight, which will be introduced in Chapter 4.  

A pair of particles is accepted for collision if the collision probability 

mentioned above is greater than a random number. The average collision rate is 

equal to that given by the kinetic theory, which guarantees the reliability of      

the statistical collision models. Several schemes had been proposed to be the criteria 

of collision occurrence such as the time counter and no time counter methods by 

Bird (1994). 

Once a pair is selected for collision, momentum and energy are exchanged, 

the actual trajectories and dynamics of the particles are not taken into account in 

determining the collision mechanics. This is because the distribution function based 

on mean field theory is applied to the whole cell being considered.          

Instead, the scattering angle and degree of inelasticity can be selected statistically in 

order to generate post collision properties. Energy and momentum are obviously 

conserved in each collision.  

2.4.3  Algorithm and Numerical Simulation Parameters 

The DSMC method assumes that particle movement can be decoupled from 

collisional behavior in a small time step. Particles then move along straight line paths 

with discrete changes in velocity and energy caused by collisions. In order to 

accomplish this, the simulation is broken up into time steps for the magnitude of 

which are small compared to the average time between collisions (He and Zhao, 

2016). In this small interval of time, these two processes can realistically be treated 

as independent. 
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A complete DSMC simulation consists of a series of discrete time steps or 

iterations. During each iteration, particles are moved and collisional pair is chosen 

and computed. The typical algorithm of a single iteration in the DSMC method is as 

follows: 

Step 1:  Move particles; 

Step 2:  Perform boundary interaction; 

Step 3:  Sort particles into cells; 

Step 4:  Select collision pairs; 

Step 5:  Compute collision mechanics; and 

Step 6:  Sample macroscopic properties of interest. 

The first five operations are performed in each iteration. The sixth step is 

performed only when flow properties are desired. In the present study, the common 

numerical simulation parameters include particle weight, WP, time step and grid cell 

size.  

Particle Weight 

Each simulation particle in DSMC simulation represents a large number of 

real particles (Guan et al., 2014). The ratio of the number of numerical particles,  

NS to the number of physical particles, NR (or real particles) is defined as the particle 

weight. 

    WP = NR/NS                          (2-1) 

The smaller the particle weight, the larger number of numerical particles and 

thus better resolution of the flow physics. However, the larger number of numerical 
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particles means larger computational cost (i.e., computational time, computer 

memory, etc.). So the particle weight is selected to strike a reasonable balance 

between resolution of results, and computational cost and efficiency.  

In traditional DSMC method, numerical particles are associated with equal 

weight regardless of the broad PSD, in which the particle number density in different 

particle size ranges may be quite different. The resulting statistical error and limited 

particle size spectrum will no doubt restrict the application of the DSMC method 

(Zhao et al., 2009). One method to deal with this problem is to introduce variable 

particle weights. For example, varying weights in the radial direction are used in the 

axisymmetric flows. In this case, the particle weight is increased in cells away from 

the axis to counteract the increasing volumes of these cells. Moreover, different 

weighting scales can be used to increase resolution in regions of the flow field with 

low particle number density or to increase computational efficiency where there is 

an excessive number of particles. This is why the stochastic weights are associated 

with numerical particles in the present study. 

There is a problem of continuity on the interface concerning the usage of 

varying weights i.e., cells across the interface are with different weights.          

A discontinuity in mass flux across the interface is thus created when a particle 

crosses the interface and suddenly represents a different number of real particles.       

This discontinuity can be overcome by allowing a probability that the particle is 

either cloned when moving into a cell with a lower particle weight or destroyed when 

moving into a cell with a higher particle weight. The scheme can be described as 

follows: 
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    WP
old>WP

new:Pclone= WP
old WP

new⁄ 1             (2-2) 

   WP
old<WP

new:Pdestroy = WP
old WP

new⁄               (2-3) 

where  WP
old , WP

new , Pdestroy and Pclone represent the particle weights of the old 

cell, the particle weight of the new cell, the probability of the particle to be destroyed 

and the probability that the particle to be cloned, respectively. The clone-destroy 

operation conserves mass flux across the interface when many crossings are 

averaged. The stochastically weighted Monte Carlo method will be further described 

in Chapter 4. 

Time Step 

A certain finite number of time steps are used to decouple the movement of 

particles from collisions. In order to do this, the time step must be a small fraction 

of the mean time between collisions. The exact expression is dependent on       

the collision model employed but is in general a function of density and temperature. 

For purpose of statistical accuracy, it is also desirable that a particle not remain in  

a single cell for a large number of time steps. A high residence time tends to bias  

the sampling of macroscopic properties. The time step should then be set at a large 

enough value so that the majority of particles moving at the bulk fluid velocity will 

cross a given cell in a small number of time steps. Residence time and mean collision 

time provide bounds for the selection of a simulation time step. 

Grid Cell Size  

Grid cells in computational domain is used in DSMC to group particles for 

the purposes of calculating collisions and sampling macroscopic properties.     
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The size of the computational cells is limited by the constraints of physical accuracy 

and computational efficiency. As previously mentioned, collisions are calculated 

statistically between pairs of particles residing in the same cell. The two particles 

participating in a collision may be separated in space by as much as one cell 

dimension. In a real gas, two particles will not collide if they are separated by more 

than one mean free path. This provides a limit on the size of the computational cell. 

Ideally, cell dimensions should be smaller than the local mean free path such as    

30 percent of the mean free path at all points as recommended by Bird (1994). 

Sampling of Macroscopic Properties 

The macroscopic properties can be taken as the average of the local 

properties of the molecules consisting of the gas. Density, velocity and temperature 

are the zeroth, first and second order moments of the velocity distribution function.  

Since the DSMC method directly depicts the distribution function, flow field results 

can be determined by sampling particles properties and calculating the moments of   

the distribution function of the sample. The computational grid is used to group 

particles for the purpose of sampling their properties and calculation is also 

conducted in every cell.  

Calculation of smooth flow properties requires a large sample size in order 

to accurately describe the distribution function as the statistical noise is generally 

proportional to the inverse of the square root of the sample size (Darbandi et al., 

2010). One of the methods to reduce the statistical noise is to sample over a number 

of iterations to increase the sample size and thus reduce the simulation fluctuations. 

In time dependent flows, it is often necessary to perform an ensemble average over 

many different simulations to obtain acceptable simulation results. 
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2.5   Operator Splitting Monte Carlo Method 

2.5.1  Overview  

Differential equations, including partial differential equations (PDE) and 

ordinary differential equations (ODE) have gained a wide range of engineering and 

scientific applications in terms of models of various physical phenomena.     

These differential equations are becoming increasingly complicated as the models 

to be described are becoming more and more complicated, representing increasingly 

complicated physical phenomena. It is common that a model contains different terms 

(operators) reflecting different physical or chemical processes. Consider the general 

dynamic equation (GDE) (Friedlander, 2000) in Equation (2-4),                

it contains convection, diffusion, nucleation, growth and coagulation terms.    

These different terms reflecting different aspects of the model appear in the same 

equation, making it rather difficult to analyze and solve both analytically and 

numerically. 

 
∂n

∂t
+∇⋅D∇n= [

∂n

∂t
] coag+ [

∂n

∂t
] grow+ [

∂n

∂t
] nucl 

                                              

where the subscripts coag, grow and nucl represent the processes of coagulation, 

surface growth and nucleation, respectively. 

Operator splitting based on the idea of divide and conquer is a very efficient 

and successful strategy to deal with those complex PDEs (Mclachlan and Quispel, 

2002). The idea behind operator splitting is that the overall evolution operator is 

written as a sum of evolution operators for each operator (term), that is,         

one just splits the model into a set of sub-equations, where each sub-equation is of  

(2-4) 
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a type for which solution to the equation can be found more easily. The overall 

numerical method is then formed by picking an appropriate numerical scheme for 

each sub-equation and piecing the schemes together by operator splitting    

(Holden et al., 2010). 

Splitting methods arise when a vector space can be split into a sum of two or 

more parts that are each simpler to integrate that the original equation, which are 

composed to form the integrator once a splitting is constructed (Mclachlan and 

Quispel, 2002). Consider a simple time dependent differential equation, dx/dt = X(x) 

with x within phase, M where X is a vector field on phase M, the splitting methods 

involve the following three important steps (Mclachlan and Quispel, 2002): 

1.    Choosing a set of vector fields, Xi such that X = ∑ Xi ; 

2.    Integrating either exactly or approximately for each Xi ; and 

3.    Combining these solutions to yield an integrator for X. 

Consider the following Cauchy problem, the splitting method can be 

formulated as follows: 

dU

dt
+A(U)=0, U(0)=U0 

where A is some unspecified operator. Consider the following solution: A = A1+A2 

is assumed and then one can solve the sub-problems more easily (Holden et al., 

2010).  

dU

dt
+Aj(U) = 0, U(0) = U0,  j=1, 2, ... 

 

(2-5) 

(2-6) 
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with formal solutions as follows: 

Uj(t) = e tAjU0,  j=1, 2, …                      (2-7) 

      In its simplest form, the operator splitting reads as follows: let tn = n∙∆t  

(∆t is small and positive) (Holden et al., 2010). Approximately, it is written as: 

  U(tn+1) = e∆tA1e∆tA2U(tn)                      (2-8) 

For commuting operators, e tA1e tA2 = e tA , the method would be exact. 

Holden et al. (2010) suggested that an operator splitting may be considered as    

the method of choice if the operators are weakly coupled, that is, if the interaction 

of the different physical phenomena has a long time scale, an operator-splitting 

scheme will be efficient over a wide range of sizes for the splitting steps.       

Furthermore, it may be the only feasible method for higher dimensional problems. 

On the other hand, if the operators interact significantly over a short time scale,   

the operator splitting may be subject to severe restrictions on the splitting step.  

For nonlinear operators, Holden et al. (2010) pointed out that interaction 

between elementary operators is often nonlinear, and splitting them into separate 

steps may result in large and unwanted errors. Operator splitting has been applied 

widely to many areas such as celestial mechanics, molecular dynamics,   

accelerator physics and biology diffusion-reaction system.  

2.5.2  Operator Splitting Schemes 

The Equation (2-4) includes various aerosol dynamic processes. Operator 

splitting is very efficient in solving such evolution equation. In the implementation 
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of this method, the time interval [0, t] is discretized into many sections with ∆ti 

denoting one time step. The solution n(t) can be constructed by a classical Euler 

method (Zhou et al., 2014). Instead of integrating all the physical processes 

simulataneously in one timestep (denoted as exp(tX)), the operator splitting method 

divides the integration into multiple steps, as follows (Zhou et al., 2014): 

exp(tX) = exp(tXd) exp(tXs)+O(t2)               (2-9) 

= exp(1/2tXd) exp(tXs) exp(1/2tXd) +O(t3)         (2-10)                                                            

  = exp(1/2tXs) exp(tXd) exp(1/2tXs) +O(t3)        
 
(2-11)

   
 

   
                                                                                                                          

where Xd denotes nucleation and surface growth processes, which is solved by 

deterministic integration method, and Xs denotes coagulation, which is solved by 

stochastic method. Eq. (2-9) is of first-order accuracy while Equations (2-10) and   

(2-11) are of second-order accuracy. The operator splitting schemes are shown as 

Figure 2.16 (Zhou et al., 2014): 

 

Figure 2.16   Operator splitting schemes: (a) first-order Lie scheme; (b) second-

order Strang scheme (Zhou et al., 2014). 
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2.5.3  Implementation of Operator Splitting 

The flowchart of operator splitting for solving GDE is shown in Figure 2.17 

(Zhou et al., 2014). The GDE including deterministic processes (nucleation, surface 

growth) and stochastic process (coagulation) can be solved efficiently through 

solving the different aerosol processes separately and making further 

approximations, which neglect the diffusion and convection terms under certain 

conditions. 

 

Figure 2.17   Flowchart of the operator splitting steps. (Xd and Xs have the same 

meaning with those in Equation (2.9) (Zhou et al., 2014).  

The specific implementation of the coupling of stochastic soot formation to 

gas-phase chemistry using operator splitting is presented here. An operator splitting 

technique is used to solve the two parts of problem with ODE solver (Chemkin codes) 
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and Monte Carlo (MC) solver, respectively (Celnik et al., 2007). The governing 

equations are as follows: 

dfi

dt
=Wd (x1, x2, x3)+Ws (x1, x2, x3) 

where fi is parameter of interest, Wd and Ws are deterministic processes and stochastic 

processes, respectively. Then Equation (2-12) can be solved as follows: 

ODE solver:   

 
df'

dt
=Wd (x'1, x'2, x'3), f'i (t0)= fi (t0), t0<t<t0+h/2 

 

MC solver:  

df''

dt
=Ws(x''1, x''2, x''3), f''i (t0) = f'i (t0+h/2), t0<t<t1 

            

ODE solver: 

  f''' i (t0) = f''i (t0+h/2), t0+h/2<t<t1 

Finally, the computed values are assigned at the step endpoint. 

f (t1)= f''i (t1)                          (2-16)       

2.6   Weighted Monte Carlo Methods  

2.6.1  Overview 

In most of the conventional Monte Carlo methods, each simulation particle 

is associated with the uniform number of particles. The accuracy of the numerical 

(2-12) 

(2-13) 

(2-14) 

(2-15) 
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simulation thus depends on the number of numerical particles used          

(Zhao et al., 2005). This decreases the applicability of Monte Carlo method alone to 

the spatially resolved gas simulations, by which regions with few physical particles 

cannot be modeled accurately. In most Monte Carlo methods, a subsystem out of a 

total system is simulated. In general, numerical particles are equally weighted with 

a value of V/Vs, where V and Vs are the volume of the whole system and those of the 

subsystem, respectively (Zhao et al., 2009). Consider a system with a total particle 

number concentration of 1×1010 m−3 contains 1×104 numerical particles, so each 

simulation particle represents 106 real particles and the weight can be defined as the 

ratio of the number of real particles to that of the numerical particles, which is 1×106. 

It is obvious by this definition that every numerical particle represents the same 

number of real particles. However, there is insufficient number of particles at the 

edges of the size spectrum, which makes it impossible to accurately capture the 

particle size distribution in this area using Monte Carlo method alone (Zhao et al., 

2010). This becomes especially significant when the particle size distribution 

function is displayed in the usual logarithmic representation (Zhao et al., 2009).  

2.6.2  Different Weighting Numerical Particles Schemes 

The concept of weighting numerical particles is widely used as described 

above to overcome the conflict between large number of real particles and limited 

computational capacity (Zhao et al., 2009). A stochastically weighted particle 

method (SWPM) was thus introduced by Rjasanow and Wagner (1996) to deal with 

this problem of simulation accuracy, in which each simulation particle was 

associated with a stochastic weight, i.e., the number of real particles that they are 

associated with. With this SWPM, a larger number of numerical particles with 
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smaller stochastic weights can be applied in regions with lower density than was  

the case with basic DSMC. A similar problem could occur in zero-dimensional 

particle coagulation problems, in which the resolution of the upper end of the PSD 

in the DSMC simulation can be quite low because of the small number of numerical 

particles over there and thus causes a great statistical error. Different weighted 

schemes are proposed to deal with these problems (Eibeck and Wagner, 2001;  

Zhao et al., 2009; DeVille et al., 2011; Liu and Chan, 2017). The particle-weighting 

scheme proposed by Eibeck and Wagner (2001) can be further generalized into mass 

flow algorithm (MFA) by the proper derivations.  

2.7   CFD-Population Balance Modelling of Aerosol Dynamics 

In zero-dimensional simulation of aerosol dynamics, the spatially 

homogeneous flow field is assumed, neglecting the spatial inhomogeneity and 

coupling between the dispersed phase (aerosol particles) and continuous phase 

(fluid). However, the spatial inhomogeneity and inter-phase interaction become 

significant in most scientific and engineering applications. In order to obtain more 

accurate simulation results, a better control over particle size distribution and design 

of the equipment related to particulate processes, the population balance modelling 

(PBM) coupling with CFD to realize the multi-dimensional simulation of aerosol 

dynamics is required (Zhao and Zheng, 2013). CFD-PBM methods for aerosol 

dynamics are thus formulated to account for the spatial inhomogeneity and     

inter-phase interaction of aerosol dynamics in many practical applications        

(Kruis et al., 2012; Zhao and Zheng, 2013; Zhou and Chan, 2014; Zhou and He, 

2014; Akridis and Rigpoulos, 2015; Amokrane et al., 2016; Liu and Chan, 2016). 

Taking into the consideration on inter-phase interaction between the particulate 
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phase and fluid phase, the coupling between the PBM and CFD codes can be divided 

into one-way coupling, two-way coupling or even four-way coupling. In one-way 

coupling, only the influence of fluid phase on particulate phase is considered (Zucca 

et al., 2007; Kruis et al., 2012; He and Zhao, 2016). In two-way coupling, the 

interaction between particulate phase and fluid phase are taken into account while 

the inter-particle interaction is neglected (Boivin et al., 2000; Pialat et al., 2006; 

Zhang and You, 2015). However, due the complexity of implementation, four-way 

coupling between the PBM and CFD codes is rarely reported (Zhao and Zheng, 2013; 

He and Zhao, 2016). 

According to the simulation methodology for dispersed phase i.e.,    

aerosol particles, the CFD-PBM methods can be classified into Eulerian-Eulerian 

models and Eulerian-Lagrangian models. In the Eulerian-Eulerian models,      

the deterministic methods such as method of moments (Settumba and Garrick, 2004;       

Balthasar and Frenklach, 2005; Zucca et al., 2006; Chen et al., 2011; Basavarajappa 

and Miskovic, 2016) and sectional methods (Jeong and Choi, 2003; Wen et al., 2005; 

Nere and Ramkrishna, 2006; Mitrakos et al., 2007; Agarwal and Girshick, 2012) are 

used to directly solve the PBE (i.e., Equation (1-1)) of aerosol particles.  

Meanwhile, in the Eulerian-Lagrangian models, stochastic methods such as Monte 

Carlo methods (Kruis et al., 2012; Zhao and Zheng, 2013; Fede et al., 2015;      

He et al., 2015; Consalvi and Nmira, 2016) are used to simulate the evolution of 

PBE of aerosol particles. The deterministic methods, which solve the PBE based on 

the Eulerian reference frame, are easier and more straightforward to couple with   

the Eulerian models of hydrodynamics of fluid phase than stochastic methods.  

However, the deterministic PBM methods for aerosol dynamics exhibit relatively 
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lower resolution on particle dynamics and are unable to consider polydispersity of 

particles. Besides these, deterministic PBM methods are unable to capture       

the history information and are at disadvantage to get more than two physical 

properties of particles (Zhao and Zheng, 2013). Stochastic PBM methods i.e.,  

Monte Carlo PBM methods avoid all these disadvantages of the deterministic PBM 

methods except for a relatively higher computational cost (i.e., computational time,  

computer memory etc.), which can be overcome with the high-speed development 

of computer hardware and parallel computing techniques (Zhou et al., 2014;     

Xu et al., 2015). 

2.8   Transported PDF Methods for Turbulent Reactive Flows 

2.8.1  Overview 

Transported PDF methods have been developed to overcome the closure 

problems due to interaction between turbulence and particle evolution in turbulent 

reactive flows by many researchers (Pope, 1981; Pope, 1985; Valino, 1998; 

Sabel’nikov and Soulard, 2005; Meyer, 2010; Haworth, 2010; Pope and Tirunagari, 

2014; Consalvi and Nmira, 2016). No additional assumptions are made for closure 

of PSD and particle number density distribution via the transported PDF methods. 

The work of Di Veroli and Rigopoulos (2010) was the first paper to develop       

a Lagrangian Monte Carlo method for solving the PDF of the PSD in a reactive 

precipitation problem and this method was used on an aerosol condensation problem 

in Di Veroli and Rigopoulos (2011). The concept was applied to LES in 

Pesmazoglou et al. (2014) and to deal with the aggregation in Pesmazoglou et al. 

(2016). The theory underlying transported PDF methods was provided in detail by 
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Fox (2003). Additionally, the complex and arbitrary kernels of aerosol dynamics are 

allowed since no closure is required for the PBE.  

Transported PDF methods can be divided into two categories i.e.,   

Eulerian PDF methods (Pope, 1981; Pope, 1985) and Lagrangian PDF methods 

(Pope, 1994; Jenny et al., 2001), respectively. Improvements of the PDF methods 

such as Eulerian field methods (Valiño, 1998; Sabel’nikov and Soulard, 2005;             

Jaishree and Haworth, 2012; Consalvi and Nmira, 2016) have also been proposed., 

The transported PDF is approximated by an ensemble of particles that remain fixed 

on the nodes of a CFD grid for the Eulerian particle method, but is approximated by 

an ensemble of particles that move along a CFD grid in accordance with the flow 

field obtained by the CFD codes for the Lagrangian particle method    

(Rigopoulos, 2007). Eulerian field method has been proposed in recent years,             

where the transported PDF is approximated by an ensemble of stochastic fields 

obtained via the CFD codes (Rigopoulos, 2007). Compared to Lagrangian particle 

methods, the Eulerian field methods are more compatible with conventional CFD 

codes and is thus possible to have higher computational efficiency        

(Jaishree and Haworth, 2012). The advantages and disadvantages of different 

transported PDF methods are available in the comparison between Eulerian and 

Lagrangian Monte Carlo PDF methods (Möbus et al., 2001; Zhang and Chen, 2007; 

Haworth, 2010). A modelled composition PDF transport equation is given in 

Equation (2-17) (Pope, 1985): 

∂ρfϕ

∂t
+

∂ρũi fϕ

∂xi
+

∂ρSαfϕ

∂ψα
= 

+
∂

∂xi
[ΓTϕ

∂(ρfϕ <ρ>⁄ )

∂xi
]

∂[Sα(ψ)ρfϕ]

∂ψα
 (2-17) 
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where the terms on the left-hand side are the accumulative and the convection 

transport terms in real space due to the mean velocity and the convection transport 

terms in composition space. The terms on the right-hand side are               

the turbulent-diffusivity and the source terms. 

Due to the high dimensionality of velocity and composition PDF transport 

equation, it is computationally intractable to use the traditional finite-difference or 

finite-volume methods to solve the PDF transport equation. Monte Carlo simulations 

are thus used to solve the PDF transport equation, which can handle the curse of 

dimensionality. The disadvantage of Monte Carlo simulation codes is the statistical 

noise that must be minimized or controlled before the valid comparisons can be 

made with other methods or experimental data. But the advantages of Monte Carlo 

simulation codes for PDF methods are as follows: 

 Computational cost (i.e., computational time, computer memory, etc.) only 

increases linearly with the number of independent variables (Pope, 1985); 

 Realizability and boundness of all variables are assured. Since the chemical 

source term is treated exactly, the mass conservation is guaranteed at           

the notional-particle level (Fox, 2003); and 

 Using particle partition, the particle codes exhibit excellent scalability on 

distributed computing platforms. However, for turbulent reactive flows, additional 

care must be taken when carrying out chemical lookup tables to avoid scale-up 

problems (Fox, 2003). 
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2.8.2  Eulerian PDF methods 

In Eulerian PDF methods, the notional particles are associated with certain 

cell centers. Notional particles are used to represent a set of composition vectors 

(Fox, 2003). The number of notional particles, N in the lth grid cell is denoted by Nl. 

The set of composition vectors of notional particles in the lth grid cell can be written 

as follows (Amani and Nobari, 2010): 

{ϕ}l ={ϕ(1),…, ϕ(Nl)}                     (2-18) 

where ϕ(n) is the composition vector of the nth notional particle, which represents 

the composition PDF at a certain location. 

The estimation of statistical quantities including mean velocity (<U>),    

the turbulent diffusivity (ΓT) and turbulent frequency (ω) are obtained via a separate 

finite volume method to the Eulerian PDF codes. The estimated scalar mean in   

the lth grid cell is given as follows: 

{ϕa}Nl (xl, t)  = ∑ ϕa
(n)Nl

1 (xl, t)                  (2-19) 

where (xl,t) is the position and time of the notional particle in the lth grid cell.   

The number of notional particles Nl in lth grid cell, Nl can be different in different 

flow zones (Amani and Nobari, 2010).  

Two types of processes can be identified in Eulerian PDF methods,      

i.e., (1) intra-cell processes such as micro-mixing, chemical reactions and aerosol 

dynamic processes; and (2) inter-cell processes including convection and diffusion 

processes. The intra-cell processes are treated the same in both the Eulerian and 
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Lagrangian PDF methods while the inter-cell processes are treated differently due 

to the discrete representation of space in terms of xl (Fox, 2003). The inter-cell flow 

variables between a rectangular cell and its four neighboring cells in the Eulerian 

PDF method (Pope, 1981) are shown in Figure 2.18. 

 

Figure 2.18  Flow variables for the lth grid cell and four neighboring cells in 

Eulerian PDF methods (Fox, 2003).  

The basic procedures of numerical implementation of Eulerian PDF methods 

are as follows (Fox, 2003): 

Step 1:  Computing the effective inflow rates for every cell in the flow domain; 

Step 2:  Computing the numbers of notional particles, that flow into the lth grid cell 

from the neighboring cells; and 

Step 3:  Randomly selecting the new set of notional particles at the lth grid cell with 

replacement from the old sets of notional particles. The random selection is carried 

out by generating Gaussian random numbers U⊂[0, 1]. It is noteworthy that for 

constant-density, statistically stationary flows, the effective flow rates are constant 
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so that Steps 1 and 2 are completed only once while the Monte Carlo simulation is 

advanced by repeating Step 3 and computing intra-cell processes including aerosol 

dynamics. 

The advantages of Eulerian PDF methods are as follows (Fox, 2003): 

 The locations of notional particles correspond to the grid cells used in    

the finite volume code; 

 The estimated statistical quantities are found using cell averages since all 

notional particles have equal weight; 

 It is straightforward to implement mixing and chemical reactions and   

intra-cell processes; 

 By combining with finite volume code, it is easy to implement the spatial 

transport algorithm on orthogonal grids; and  

 The computational time expense increases linearly with the total number of 

notional particles and the algorithm is easy to parallelize. 

Although Eulerian PDF methods have these advantages, they also have fatal 

disadvantages (Fox, 2003): 

 The effective flow rates of every cell are highly grid-dependent and 

computing them for arbitrary non-orthogonal grids; Very fine grids are thus 

required in order to obtain grid-independent results; 

 Numerical diffusion remains the principal shortcoming because         

the computation of spatial transport is limited to first-order, up-wind schemes, 



 

Chapter 2                                            Literature Review 

  52 

which leads to a relatively large number of notional particles in order to 

reduce statistical error to an acceptable level. 

 If flow rates vary significantly over the computational domain,       

special algorithms are needed to ensure that Nl
k ≥ 1. 

2.8.3  Lagrangian PDF Methods 

In Lagrangian PDF methods, Lagrangian notional particles follow 

trajectories in the velocity-composition-physical space originating from random 

locations in the physical space. Each notional particle is associated with 

corresponding position, composition and velocity. Notional particles with various 

weights can be used to represent the inhomogeneity of the flow field.          

The information of mean velocity and turbulent fields (i.e., turbulent diffusivity and 

frequency) is provided by a finite volume code coupled with the Lagrangian PDF 

methods. In the case of constant-density flows, the position and number density of   

a notional particle after one time step, Δt can be written as follows (Fox, 2003):  

Xn(t+Δt)=Xn(t)+[<U>(Xn(t),t)+∇ΓT (Xn(t),t)]∆t+2ΓT (Xn(t),t)1/2ΔW    (2-20)       

Nn(t+Δt)=Nn(t)+[CN/2(<Nn(t)>Nn(t))+Ẇi (N,Y)]∆t          (2-21) 

Moreover, the composition of a notional particle is given as follows: 

dϕ(n) dt⁄ = Cϕ 2⁄ ω (X
n(t),t)(ϕ

α

∗
 ϕ

α

n
)+S(ϕ(n))             (2-22) 

where ΔWi is a Gaussian pseudo-random number for representing the stochastic 

fluctuations of Wiener process with mean, <ΔWi>=0 and covariance, <ΔWiΔWj> 

=  ∆tδi,j , CN is the characteristic scale concerning micro mixing, Ẇi (N,Y) is the 
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source term for accounting the variation of particle number density,  ΓT  is the 

turbulent diffusion coefficient, <U> is the average velocity. ϕ(n)  is the vector 

properties of the notional particles. Cϕ is the characteristic factor and S(ϕ(n)) is the 

source term related to chemical reactions and aerosol dynamic processes. The 

superscript ‘*’ refers to any notional particle. In Monte Carlo simulation, the 

Equations (2-20) to (2-22) are simulated numerically with fractional time stepping. 

By applying a local Courant-Freidrich-Lewy (CFL) condition, the time step, Δt can 

be determined from the finite volume code (Jenny et al., 2001). For steady flow, the 

local time stepping technique can be used in the simulation (Möbus et al., 2001). In 

order to maintain uniform statistical error, the particle weights ωn(t) are initialized 

according the grid cell volumes and then modified during the Monte Carlo 

simulation (Fox, 2003). 

The principal steps of the implementation of the Lagrangian PDF methods 

are shown in Figure 2.19. The first step is to initialize the particle properties and 

turbulence fields. Then the simulation time step Δt is obtained based on the local 

CFL condition. The flow field is advanced with the finite volume code and return 

turbulent fields. Monte Carlo simulation is then carried out with the turbulent fields 

from the finite volume code to compute Xn(Δt). Meanwhile, the intra-cell processes 

of micro-mixing, chemical reactions and aerosol dynamic processes are computed 

to determine the ϕn(Δt). The particle-field estimates are obtained with the updated 

particle properties. The simulation time is then incremented by Δt. The last step is 

to check if the simulation time has reached the stopping time.  
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Figure 2.19  Flow diagram of Lagrangian PDF methods (Fox, 2003). 

The main advantages of Lagrangian PDF methods are as follows (Fox, 2003): 

 The spatial transport algorithm has much higher accuracy, which reduces  

the number of grid cells required for equivalent accuracy when compared to 

Eulerian PDF methods; 

 The numerical algorithm for intra-cell processes is straightforward and     

the local mass conservation is guaranteed; and 

 The total computational cost (i.e., computational time, computer memory, 

etc.) only increases linearly with the number of notional particles. 

The main disadvantages of Lagrangian PDF methods are that the tracking 

and sorting of notional particles on non-orthogonal grids is computationally 

intensive (Pope, 1994), particularly in the case of significant variation of local time 
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scale over the computational domain. However, local time stepping technique can 

be used to reduce the computational cost to some extent (Möbus et al., 2001). 

2.8.4  Improvements of the PDF Methods 

Besides the Eulerian particle based PDF methods and Lagrangian particle 

based PDF methods, stochastic Eulerian field (SEF) PDF methods         

(Valiño, 1998; Sabel’nikov and Soulard, 2005; Jaishree and Haworth, 2012; 

Consalvi and Nmira, 2016) have been proposed to improve the existing PDF 

methods. In the SEF-PDF methods, the notional particles are replaced by notional 

Eulerian fields that evolve according to the stochastic partial differential equations 

(PDEs) (Celis and Silva, 2015). The stochastic PDEs of the SEF method can be 

solved using Eulerian CFD algorithm.  

A deterministic Eulerian field method coupled with direct quadrature method 

of moments (DQMOM) is developed to a multi-environment PDF-MEPDF method 

(Jaishree and Haworth, 2012), which shows higher computational efficiency in 

comparison to Eulerian and Lagrangian particle based PDF methods.         

More recent improvements of the PDF methods can be found in the literature  

(Meyer, 2010; Pope and Tirunagari, 2014; Consalvi and Nmira, 2016). 

2.9   Summary of Literature Review 

The fundamental concepts, knowledge and methods of aerosol dynamics in 

multi-scale systems are reviewed in this chapter to shed light on the development 

and state-of-the-art that the researchers have acquired as well as the knowledge gap 

for this research area. The literature review is summarized as follows: 
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1. Aerosol dynamics in multi-scale systems is widely encountered in 

engineering and environmental areas including the production of functional 

aerosol particles and the prevention of industrial emissions. It is of great 

importance to gain a better insight and more intrinsic understanding on 

aerosol particles including the generating and evolution mechanisms and 

other physiochemical properties. 

2. Both experimental and numerical methods play important roles in       

the investigation of aerosol dynamics. However, experimental study is quite 

limited to relatively simple cases and would be become difficult even 

impossible as far as more complex and practical cases are concerned. 

Numerical simulation provides an alternative solution to the study of aerosol 

dynamics under complex conditions, which is also the focus of the present 

study. The advantages of numerical methods are mainly their high capability 

and low cost. 

3. Numerical methods for aerosol dynamics can be divided into two categories 

(i.e., deterministic methods and stochastic methods). Deterministic methods 

provide an efficient and accurate approach for the numerical simulation of 

aerosol dynamics. However, the inherent limitations of deterministic 

methods are also very obvious and difficult to overcome, among which the 

inability to provide history information of particles and difficulty to apply to 

multi-dimensional and multi-scale problems are fatal in the study of complex 

aerosol dynamics. Stochastic methods such as Monte Carlo methods have 

unique advantages in dealing with multi-scale and multi-dimensional 
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problems concerning aerosol dynamics and can provide the history 

information and arbitrary number of variables.  

4. Various modifications have been made to increase the computational 

efficiency and guarantee the computational accuracy of Monte Carlo 

methods. In order to solve multi-dimensional problems involving aerosol 

dynamic processes, Monte Carlo codes of PBE are coupled to CFD codes to 

formulate the coupled CFD-PBM methods, which will also be presented in 

Chapters 5 and 6.                

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3                     Theoretical Fundamentals of the Present Study 

  58 

Chapter 3 Theoretical Fundamentals of the Present Study 

3.1  Introduction   

This chapter briefly presents the theoretical fundamentals related to      

the newly proposed CFD-Monte Carlo/PDF method including the population 

balance equation, Monte Carlo methods, Eulerian-Lagrangian models for     

multi-phase flows, and transported PDF methods for turbulent reactive flows. 

3.2 Population Balance Equation  

3.2.1  Overview 

Population balance equations (PBE) in Equation (1-1) can be derived from 

the Boltzmann equation (Cercignani, 1988) as shown in Equation              

(3-1), which describes a gas particle behavior. PBE is derived to describe how 

populations of separate entities evolve or vary in specific properties over time.  

They are a set of integro-partial differential equations , which give the behavior of  

a population of particles from the analysis of a single particle behavior in local 

conditions (Ramkrishna, 2000). Particulate systems feature the birth and death of 

particles.  

∂f

∂t
= (

∂f

∂t
)force + (

∂f

∂t
)diff + (

∂f

∂t
)coll 

where  f  is an unspecified function. The term on the left-hand side (LHS) is      

the accumulative term. On the right-hand side (RHS), the first term is the source 

(3-1) 

https://en.wikipedia.org/wiki/Boltzmann_equation
https://en.wikipedia.org/wiki/Partial_differential_equations
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term due to external force, the second term is the diffusion term and the last term is 

the cumulative effect of inter-particle collisions. 

Population balance equation (PBE) is used to describe the evolution of PSD 

of particulate systems mathematically (Ramkrishna, 2000), which is a transport 

equation of particle number density function or other variables of particles such as 

mass and volume dependent on space coordinates, time and particle size.  

Depending on actual aerosol dynamic processes, different source terms such as 

coagulation, nucleation and growth may appear in PBE, as shown in Equation (2-4).   

Combining different source terms into different physical processes, the PBE    

(i.e., in Equation (2-4)) is obviously an integro-differential equation. There has been    

a large number of research studies concerning the solution of PBE in spatially 

homogeneous domain i.e., zero dimensional PBE (Efendiev, 2004; Yu et al., 2009; 

Chan et al., 2010; Zhou and Chan, 2011; Geng et al., 2013; Yu and Chan, 2015;  

Liu et al., 2015; Liu and Chan, 2017). Zero dimensional PBE here refers to the PBE 

expressed in terms of particle number density, which is independent of any spatial 

coordinate. The aerosol particles involve no convection or diffusion process.    

The particulate phase is not affected by any fluid phase either. 

The fundamental assumption in the formulation of PBE is that there is      

a uique particle number density for every spatial coordinate in the particle scalar 

space (Ramkrishna, 2000), which consists of internal (quantitative characterization 

of particle properties) and external (particle location in the physical space) 

coordinates. Both the internal and external coordinates of particles may be 

discretized under certain conditions. This renders the theoretical basis on which the 

discretization of the PBE of particulate systems is performed. Another fundamental 
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assumption of population balance theory is that the variation rate of any particle state 

vector is dependent only on the state of the particles of interest as well as the local 

variables of the continuous phase, which renders the coupling between the transport 

equation and the population balance equation (Ramkrishna, 2000). 

3.2.2  The Self-preserving Behavior of PBE  

The self-preserving behavior (also called self-similar behavior) is associated 

with the invariant domains in the space of the independent variables within which 

the solution to PBE i.e., the reconstructed particle size distribution (PSD) remains 

identical or partially identical (Ramkrishna, 2000). A similar transformation for  

the PSD function was proposed by Swift and Friedlander (1964) and Friedlander and 

Wang (1966) to obtain self-preserving solutions to the PBE, which are asymptotic 

forms and independent of the initial PSD. 

Based on the assumption that the fraction of the particles in a given size range 

is a function only of particle volume normalized by the average particle volume 

(Epstein and Ellison, 1987), the similarity transformation can be carried out as 

follows: 

Firstly, the dimensionless particle size distribution can be written as:  

n(v,t)dv

N∞
 = ψv(

v

v̅
)d(

v

v̅
) 

where  v  is particle volume, v̅  is the average particle volume,  N∞  is the total 

number of particles, ψv is a dimensionless function whose form is invariant with 

time. By rearranging Equation (3-2), it can be written as:  

(3-2) 
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n(v,t) = 
(N∞) 2

ϕ
ψv(ηv) 

where ηv = v/v̅  = N∞v/ϕ, represents dimensionless particle volume, ϕ is the total 

volume of all the particles. Equation (3-3) is the similarity transformation for the 

PSD in terms of particle volume, n(v,t) . The boundary conditions are that 

n(v,t)→0 for v→0 and v→∞.  The form of ψv  can be determined in two-steps. 

Firstly, the special form of PSD function n(v,t)  in Equation (3-3) is tested by 

substituting in the Equation (1-1) with appropriate collision frequency function, 

β(v,u). If the similar transformation is in accordance with the PBE, one can obtain 

an ordinary integro-differential equation for ψv as a dimensionless function of ηv.      

Secondly, a solution to the transformed equation is to be found subject to        

the following integral constraints:   

∫ nvdv = ϕ
∞

0

 

∫ ndv = N∞

∞

0

 

Based on the assumption that the fraction of the particles in a given size range 

is a function only of particle diameter normalized by the average particle diameter, 

which is similar to Equation (3-2) and it can be written as: 

 

n(dp,t)d(dp)

N∞
 = ψd(

dp

dp̅

)d(
dp

dp̅

) 

 

Let 𝜂d= dp dp̅⁄  and dp̅=(ϕ/N∞)1/3, the obtained similarity transformation for 

the PSD in terms of n(dp,t) can be written as:  

(3-3) 

(3-4) 

(3-5) 

(3-6) 
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n(dp,t) = 
(N∞) 4/3

ϕ1/3 ψd(ηd) 

where ηd = dp(N∞/ϕ)1/3 , represents dimensionless particle diameter, dp  is       

the particle diameter, ψd  is a dimensionless function of particle diameter,      

and the other variables have the same meaning as in Equation (3-3).       

Similarity transformation can be used to obtain closed form solutions for the upper 

and lower ends of the PSD while numerical method such as Monte Carlo method 

can be used to match the solutions for intermediate-size particles. More details 

regarding the existence and feasibility of the self-similar solution to the PBE can be 

found in the similarity analysis of PBE (Ramkrishna, 2000). 

3.2.3  The Solution of PBE  

Except for very special and limited cases to which analytical solutions to 

PBE exist (Zhou et al., 2014; Liu and Chan, 2017), it is quite difficult to solve PBE 

with analytical methods. Thus, numerical methods e.g., sectional methods    

(Jeong and Choi, 2001; Mitrakos et al., 2007；Agarwal and Girshick, 2012), method 

of moments (Yu et al., 2008; Lin and Chen, 2013; Park et al., 2013; Chen et al., 2014; 

Yu and Chan, 2015; Pollack et al., 2016) as well as Monte Carlo method      

(Zhao et al., 2009; Wei, 2013, Zhou et al., 2014; Liu et al., 2015; Liu and Chan, 

2017) are often used to solve the PBE. In the present study, Monte Carlo method is 

used to obtain the solution of PBE.  

Monte Carlo methods are based on artificial realization of the system 

behavior (Ramkrishna, 2000). Consider a number of particles distributed in        

(3-7) 
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a computational domain with statistically known initial distribution of particle states, 

the birth and death processes corresponding to the appearance and disappearance of 

particles in the computational domain are random and satisfying certain probabilities 

distribution. By artificially generating random variables satisfying the specified 

probability laws, a “sample path” can be thus constructed. If a large enough number 

of “sample paths” are constructed, the expected behavior and evolution of       

the particle population can be obtained by taking the statistical average over all   

the sample paths. Two routes for the computations of average particle population 

behavior via Monte Carlo simulation and PBE are shown in Figure 3.1  

(Ramkrishna, 2000). More underlying mathematical fundamentals of Monte Carlo 

methods are presented in Section 3.3. 

 

 

 

 

  

 

 

Figure 3.1  Computations of average population behavior via Monte Carlo 

simulation (left) and PBE (right) (Ramkrishna, 2000). 

 

Solution Solution 

Simulation 

Averaging and 

elimination of low 

probability events 

  Direct averaging 

Hypotheses about 

single particle behavior 

Master density 

function 

Population 

balance equation 

Computationally 

complex solution 
Average values 



 

Chapter 3                     Theoretical Fundamentals of the Present Study 

  64 

3.3 Monte Carlo Methods 

3.3.1  Overview 

Monte Carlo methods are widely used to solve problems with a probabilistic 

interpretation. According to the law of large numbers (Sznitman and Zerner, 1999), 

integrals described by the  mean value of some random variables can be estimated 

by taking the empirical average i.e., the mean values of independent samples out of 

the variables. A Markov Chain Monte Carlo (MCMC) sampler (Hastings, 1970) can 

be used if the probability distribution of the variables is parameterized. The principal 

concept is to design a Markov chain model following certain probability law.   

This distribution can be estimated by the empirical knowledge of Monte Carlo 

sampler according to the ergodic theorem (Chacon and Ornstein, 1960).  

3.3.2  Implementation Procedures 

Monte Carlo method is applied to the solution of Boltzmann equation of fluid 

flow with finite Knudsen number to formulate the DSMC method (Bird, 1994).   

As mentioned in Chapter 2, the basic idea of DSMC is to use a set of numerical 

particles to represent the real physical particles. However, only the particle 

properties of interest such as momentum and mass are tracked. A random generation 

of collision events is justified by the molecular chaos assumption (Maxwell, 1867) 

that the velocities of collision particles are independent of position within         

a homogenous volume. Baxter and Olafsen (2007) reported the first experimental 

observation of molecular chaos, which proves the assumption of molecular chaos is 

indeed accurate.  

https://en.wikipedia.org/wiki/Law_of_large_numbers
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Sample_mean_and_sample_covariance
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Empirical_measure
https://en.wikipedia.org/wiki/Ergodic_theorem
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The basic procedures of Monte Carlo methods are as follows (Hesamzadeh 

et al., 2011): 

Step 1:  Define a simulation domain for the possible inputs;  

Step 2:  Generate inputs randomly following a specified probability distribution 

law over the domain; 

Step 3:  Perform a deterministic computation on the inputs; and 

Step 4:  Aggregate the results. 

3.4 Eulerian-Lagrangian Models 

3.4.1  Overview 

The multi-phase flow models for particulate flows fall into two classes    

(i.e., Eulerian-Eulerian two-fluid models and Eulerian-Lagrangian fluid-trajectory 

models), which is subject to the numerical simulation methodology of the discrete 

phase as shown in Figure 3.2 (Subramaniam, 2013).  

 

Figure 3.2   Eulerian-Eulerian and Eulerian-Lagrangian multi-phase models under 

different representations of the discrete phase (Subramaniam, 2013). 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Deterministic_algorithm
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The Eulerian-Eulerian models are formulated if the deterministic PBM 

methods e.g. the sectional method is used to simulate the discrete phase  

(particulate phase). In the present study, a stochastic PBM-Monte Carlo method is 

used for the simulation of aerosol dynamics, which is integrated into the    

Eulerian-Lagrangian models for complex aerosol dynamics in turbulent flows. With 

the Eulerian-Lagrangian models, the spatiotemporal evolution of particle population 

can be obtained, which is rarely reported (Zhao and Zheng, 2013). 

3.4.2  Interphase Coupling  

In the Eulerian-Lagrangian models, the continuous phase is computed in   

an Eulerian reference frame while the discrete phase is computed in a Lagrangian 

reference frame (Edge et al., 2011). According to the effect and volume fraction of 

the discrete phase, the interaction between discrete phase and continuous phase are 

treated with different ways. For fine particles in a dilute flow at low Reynolds 

number such as atmospheric aerosols, the effect of particles on the fluid can be 

neglected and the solution of the Eulerian-Lagrangian models is simplified to track 

particle trajectories in a flow field which is independent of particles (Kruis et al., 

2012; Zucca et al., 2007). Fine particles are airborne particles which are smaller than 

coarse particles. They have an aerodynamic diameter of 2.5 µm or less (PM2.5). 

However, the momentum exchange between particles and fluid must be 

considered if particles have high enough momentum to affect the motion of fluid. 

Moreover, if the volume fraction of particles in a grid cell is high, the continuity and 

momentum equations of fluid need to be modified to model the effective viscosity 

of the particle suspension in the viscous stress term (Patankar and Joseph, 2001). 
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The mutual coupling between the fluid phase and particulate phase for the 

inter-particle interactions can be taken into account with the mutiphase particle-in-

cell (MP-PIC) method (Andrews and O’Rourke, 1996; Snider, 2001). In the MP-

PIC method, where the particle phase is treated both as continuous and discrete 

phases, an accurate mapping from Lagrangian particles is used to associate a particle 

with a computational grid. While on the grid, the continuum derivative terms that 

treat the particle phase as a fluid are readily evaluated and then mapped back to 

individual particles (Andrews and O’Rourke, 1996). For two-way coupling,     

the particle source in cell (PSI-Cell) method (Crowe et al., 1977) can be used,  

which regards the particle phase as a source of mass, momentum, and energy to the 

gaseous phase (Novozhilov et al., 1997). 

3.5 Transported PDF Methods for Turbulent Reactive Flows 

3.5.1  Overview 

Probability density function (PDF) methods have become one of the most 

promising and powerful approaches for accommodating the effects of turbulent 

fluctuations in velocity and chemical composition in CFD-based modeling of 

turbulent reactive flows (Haworth, 2010). Transported PDF methods have also been 

developed to overcome the closure problems due to interaction between turbulence 

and particle evolution in turbulent reactive flows by many researchers (Pope, 1981; 

Pope, 1985; Valino, 1998; Sabel’nikov and Soulard, 2005; Meyer, 2010; Pope and 

Tirunagari, 2014; Consalvi and Nmira, 2016).  
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3.5.2 Transport Equations for Turbulent Reactive Flows 

The transport equations for constant-density turbulent reactive flows consist 

of the Navier-Stokes equation for the fluid-phase velocity, U (Bird et al., 2002):  

∂Ui

∂t
+ Uj

∂Uj

∂xj
= v

∂2Uj

∂xj∂xj


1

ρ

∂p

∂xi
 

and the transport equation for reacting scalar, ϕα  (i.e., chemical species 

concentration or enthalpy):  

∂ϕα

∂t
+ Uj

∂ϕα

∂xj
= v

∂2ϕα

∂xj∂xj
+S(ϕα) 

where U is the fluid velocity, v is the kinematic viscosity,  ρ  is the density,        

p is the pressure, S(ϕα) is the source term which accounts for aerosol dynamics and 

chemical reactions. Equation (3-8) is coupled with Equation (3-9), which forms a 

complex nonlinear multi-phase system. For reacting scalar turbulent flows,      

the chemical reaction source term poses novel and difficult closure problems    

(Fox, 2003), which necessitate the introduction of PDF methods. 

3.5.3 Transported PDF Methods  

The random velocity field U1(x, t) for a fixed point in space, x and a given 

instant, t can be characterized by a one-point probability density function (PDF) 

which is defined as follows (Fox, 2003) 

fU1(V⃑⃑ 1; x, t)dV⃑⃑ 1≡P{V⃑⃑ 1≤U1(x, t)≤V⃑⃑ 1+dV⃑⃑ 1}            (3-10) 

(3-9) 

(3-8) 
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Equation (3-10) can be extended to include any number of random variables 

or other random variables. The joint velocity and composition PDF is shown in 

Equation (3-11) and composition PDF is shown in Equation (3-12) (Fox, 2003): 

fU,ψ(V⃑⃑ , ψ; x, t)dV⃑⃑ 1dψ ≡ P{V⃑⃑ ≤U(x, t)≤V⃑⃑ 1 + dV⃑⃑ 1∩ψ≤ϕ(x, t)≤ψ+dψ}   (3-11) 

The joint composition PDF fψ(ψ; x, t) can be found by integrating the joint 

velocity and composition PDF over velocity phase space, as shown in        

Equation (3-12) (Fox, 2003): 

fψ(ψ; x, t)=∫ fU,ψ(V⃑⃑ , ψ; x, t)dV⃑⃑ 
+∞

−∞
                 (3-12) 

Although from the composition PDF approach, all one-point scalar statistics 

can be computed exactly including chemical source term, the joint velocity and 

composition PDF approach provides an improved description of the turbulent 

velocity field and its coupling to the composition fields such as scalar flux and 

mixing term (Fox, 2003). The transport equation of the composition PDF is shown 

in Equation (2-17). 

3.6 Summary 

The theoretical fundamentals of the main ingredients that are used to 

formulate the proposed CFD-Monte Carlo/PDF method are briefly introduced to 

present a theoretical framework of the methodology in the present study. The basic 

concepts, assumptions as well as mathematical theories/governing equations of these 

ingredients i.e., PBE, Monte Carlo methods, Eulerian-Lagrangian multi-phase 

models, and transported PDF methods for turbulent reactive flows are presented so 

that the methodology used in the present study can be more easily reassembled.
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Chapter 4   Zero-dimensional Monte Carlo Simulation of 

Aerosol Dynamics 

 

4.1  Introduction  

The purpose of this chapter is to study the complex aerosol dynamic 

processes by using this newly proposed and developed stochastically weighted 

operator splitting Monte Carlo (SWOSMC) method. Stochastic weighted particle 

method and operator splitting method are coupled to formulate the SWOSMC 

method for the numerical simulation of particle-fluid systems undergoing       

the complex simultaneous aerosol dynamic processes.  

This SWOSMC method is first validated by comparing the numerical 

simulation results of constant rate coagulation and linear rate condensation with the 

corresponding analytical solutions. Coagulation and nucleation cases are further 

studied whose results are compared with the sectional method in excellent agreement. 

This SWOSMC method has also demonstrated its high numerical simulation 

capability when used to deal with simultaneous aerosol dynamic processes including 

coagulation, nucleation and condensation. The comparison between the numerical 

method used here (SWOSMC method) and the analytical solution is shown in   

Table 4.1.  
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Table 4.1  A comparison between the developed SWOSMC method and analytical 

solutions. 

 

 Advantages Disadvantages 

The analytical 

solutions 

Accurate, stable, simple 

expression and fully validated by 

many experimental and numerical 

simulation results.  

Only exist for limited cases; 

For complex cases, 

additional assumptions or 

approximations are needed 

The SWOSMC 

method 

Wide applicability to complex 

cases. Independent of additional 

assumptions or approximations, 

high repeatability, low cost. 

Not as accurate as analytical 

solutions or experimental 

results, requires full 

validation and repetitions to 

reduce numerical error. 

There always exists conflict and tradeoffs between computational cost   

(i.e., computational time, computer memory, etc.) and accuracy for Monte Carlo 

based methods for the numerical simulation of aerosol dynamics. Operator splitting 

method has been widely used in solving complex partial differential equations while 

stochastic weighted particle method is commonly used in numerical simulation of 

aerosol dynamics. However, the integration of these two methods has not been well 

investigated. 

4.2  Numerical Methodology 

4.2.1  General Dynamics Equation 

The governing equation of the time dependent evolution of particle number 

density n(v,t) for a single-component aerosol can be written as (Debry et al., 2003): 

0

0

0

0
0 0

( , ) 1 / 2 ( , ) ( , ) ( , )

( )
( , ) ( , ) ( , ) ( , ) ( , ) ( )

v v

v

v

n
v t K u v u n u t n v u t du

t

I n
n v t K u v n u t du v t v v J t

v







  




  






        

(4-1) 
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where K(u,v), I0(u,v) and J0(t) are the coagulation, condensation and nucleation 

kernels, respectively.  

Compared to the original Smoluchowski’s equation which deals only with 

coagulation, the extended Smoluchowski’s equation describes more physical 

processes which exchange mass between individual particles and the environment 

such as the fluid in which particles are contained and new particles are also 

introduced into the particle population (Patterson et al., 2011). 

4.2.2  Operator Splitting 

For complex aerosol dynamic processes, the terms on the right hand side 

(RHS) of PBE, i.e., Equation (2-4) may include terms of different physical processes 

besides coagulation term. Operator splitting is very efficient in solving such complex 

equation. Instead of integrating all the physical processes simulataneously in one 

timestep, the operator splitting method divides the integration into multiple steps,  

as shown in Equations (2-9) to (2-11). 

4.2.3  Aerosol Dynamics Kernels 

For free molecular regime, the coagulation kernel, K(u,v) can be written as 

(Zhou et al., 2014): 

2
2 1 11 1

B3 3 32 2
6 1 1

( , ) ( ) ( ) ( )
2

Kk T
K u v u v

u v



 

 
   

   

where u and v are the volume of the spherical particles; TK is the temperature, kB is 

the Boltzmann’s constant and ρ is the density of particles. 

(4-2) 
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In continuous regime, for the size of spherical particles, u and v,         

the coagulation kernel can be written as (Debry et al., 2003): 

1/3 1/3

B K air( , ) 2 / 3 [2 ( / ) ( / ) ]K u v k T v u u v  
        

where μair is the viscosity of air and the other parameters have the same physical 

meanings as that in Equation (4-2).  

The homogeneous nucleation rate can be generally written as      

(Seinfeld and Pandis, 1998): 

J0(t)=Cexp(∆G*/kBT) 

where ∆G* is the free energy that is required to form a stable nucleus and C is      

a constant which is related to vapor pressure. 

As condensation/evaporation process involves the relaxation to an 

equilibrium state between aerosol and gas phases for one chemical species   

(Debry et al., 2003), the kernels are thus proportional to the pressure difference 

between the bulk gas and the equilibrium pressure:  

I0(v,t) = CI exp(p
i
∞ p

i

eq
) 

where CI is a constant which is related to the diffusion species and temperature,    

pi
∞ and pi

eq
 are the vapor pressure and the equilibrium vapor pressure of species,  

i from the particle, respectively. 

 

 

(4-3) 

(4-4) 

(4-5) 
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4.2.4  Non-dimensionalization 

The GDE Equation (4-1) is non-dimensionalized based on the relative mass 

density, q̃(v,t) of aerosol particles (Debry et al., 2003) which can be expressed as 

Equation (4-6):  

q̃(v,t)=
q(v,t)

Q0
, Q0 = ∫ q0(v)dv

∞

0

 

where q(v,t) is the mass density of aerosol particles and Q0 is the total initial mass 

of aerosol particles.  

Substituting n(v,t) into Equation (4-1) with q̃(v,t), it can be expressed as 

(Debry et al., 2003): 

   
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0
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0

0 0 0
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q v t Q q u t du
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I q v J t
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v Q






 
 

 

 


 




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4.2.5  Algorithm Formulation 

The main idea of the present method is to introduce stochastic weights to 

various numerical particles according to the mass change caused by different aerosol 

dynamic processes in order to increase the numerical stability of Monte Carlo 

method. Operator splitting technique is used to treat stochastic process         

(i.e., coagulation) and deterministic processes (i.e., condensation, nucleation etc.) 

separately with corresponding methods to reduce computational time for        

the simulation of complex aerosol dynamics. The idea of using numerical particles 

(4-6) 

(4-7) 
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with varying mass weights (Debry et al., 2003) is adopted herein, where the i-th 

numerical particle is associated with a varying mass weight, wi(t) of real aerosol 

particle of size, yi(t), thus the i-th numerical particle now stands for a number of 

wi(t)/yi(t) of real aerosol particles.  

The introduction of such a varying mass weight to numerical particles in 

stochastic simulation of simultaneous aerosol dynamic processes is necessary and 

well justified. When mass weights are adhered to numerical particles (i.e., numerical 

particles are connected with a certain mass of real aerosols), the total number of 

numerical particles remains constant and no re-sampling is needed for coagulation 

process (Eibeck and Wagner, 2001). This is because the total mass of real aerosol 

particles remains constant in coagulation process although the total number of real 

aerosol particles decreases.  

If the numerical particles are directly connected with the number of real 

aerosol particles and no further up sampling (adding new particles to           

the particle-fluid system) is conducted, the decreasing number of numerical particles 

may cause severe numerical diffusion as coagulation converges on an infinite 

number of numerical particles. However, for some other aerosol dynamic processes 

including nucleation, condensation, evaporation, deposition and removal, the total 

mass of aerosol particles in the particle-fluid system actually varies with time.          

By introducing varying mass weights to numerical particles, the weights, wi(t) will 

evolve with time for mass-varying process such as condensation and evaporation.  

In here, nucleation is conducted by creating a certain mass of new particles according 

to nucleation rate which is independent of pre-existing particles. The integration 
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details for an individual process will be presented in Section 4.3.2. The main 

algorithm of stochastically weighted operator splitting Monte Carlo (SWOSMC) 

method over a time period [0, T] is presented as follows: 

Initialization: setting of the following quantities: 

 0 0[ , ,i iwy
01,2, .. ].., i N

; 

Operator splitting over time loop [0, T]:  

Integration of Equation (4-7) from tk to tk+1 = tk + τk, where τk is the time step 

determined previously: 

(i)   Integration of coagulation based on Monte Carlo based methods     

(Gillespie, 1972); 

(ii)   Integration of condensation using an ODE solver from Zhou et al., (2014);  

(iii)   Integration of nucleation: creation of new particles, J; and  

(iv) Updating the particle-fluid system and when t >T, stop the simulation and 

take average over the results. 

4.3   Numerical Setup 

4.3.1  Time Step Determination 

According to Debry et al., (2003), the time scales for different physical 

processes can be calculated as Equations (4-8) to (4-10) in order to allow an accurate 

integration result as well as avoid too much computational time:  
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For coagulation of aerosols, y
i
k, y

j
k:  

coag

0

=
( , )

k

j

k kk
j i j

y
t

KQ y yw
  

For condensation/evaporation of aerosols, y
j
k,  

cond/evap

0

=
( , )

k

j

k

ki

y
t

y tI
                                   

For nucleation of aerosols:   

∆tnucl =
Q0

v0J0(t)
 

      

To ensure an accurate integration, the time step should be less than the 

minimum of all the time scales (Zhao et al., 2005) from Equations (4-8) to (4-10) 

which is set as the minimum time step.  

4.3.2  Integration Details 

The system state after a time step is calculated by integrating over a time step. 

Noting that a varying mass weight is used, only condensation/evaporation processes 

that cause the mass change to the particle-fluid system will have numerical particles 

with varying weights.  

For integration of coagulation, the collision criterion should be met.      

The volume of particle i after a splitting time step becomes the total volume of 

particle i and its collision partner, while the weight of i-th numerical particle remains 

(4-8) 

(4-9) 

(4-10) 
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unchanged. For the i-th numerical particle at k-th time step, the integration procedure 

is written as:  

1/2 0
( , )

,  if 
k kk

k k k Ji i Ji
ki i Ji k

Ji

KQ y yw
ry y y

y



  

 

=min( )
( , )

k

Ji
k k k k

Ji i Ji

y
c

KQw y y


 

where y
i
k+1/2, y

i
k, y

Ji
k  are the volume size after the collision step, the volume of i-th 

particle and the volume collided with i-th particle at k-th time step, respectively.  

For the criterion part, r is a random number uniformly distributed over [0, 1],      

τk is the defined time step based on the minimum coagulation time scale and is also 

defined as the collison probability is within [0, 1], c is a constant which is usually 

0
( , )

k kk
Ji i Ji

kk

Ji

KQ y yw

y
 equal to 0.1 (Debry et al., 2003).  

For integration of condensation, it is performed via integration using       

a self-adaptive fifth-order Runge-Kutta method (Zhou et al., 2014) over the splitting 

time step of varying weight function, which is determined by the mechanistic rate of 

condensation. For the i-th numerical particle at k-th time step, the results obtained 

from the above coagulation step are used as input for this step, the integration 

procedure is written as:  

dyi

dt
=I0(yi,t), 

dwi

dt
=wi

I0(yi,t)

yi
 

y
i
k+1=y

i
k+1/2+∆tI0(y

i
k+1/2, tk), wi

k+1=wi
k+1/2

y
i
k+1

y
i
k+1/2

 

where y
i
k+1/2, y

i
k+1 are the volume size, wi

k+1/2, wi
k+1 are the weights, I0(yi

k+1/2, tk) 

and I0(yi,t) are the condensation rates after the condensation step and that obtained 

(4-11b) 

(4-12b) 

(4-11a) 

(4-12a) 
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from the previous coagulation step for the i-th particle and the k-th time step, 

respectively. Δt is the integration time step. 

For integration of nucleation, only a certain mass of new particles with    

the minimum nucleus volume, v0 are created and added to the particle-fluid system.  

For the i-th newly created particle, it is defined as:  

1
0 0 0,  1,  ( )k

i c ki
v m v J t ty w

    
 

where  y
i
k+1 is the volume size of the i-th newly created particle, wi is the weight of 

the i-th newly created particle, J0(tk) is the nucleation rate mass of of the i-th newly 

created particle, mc is the total mass of all the newly created particles within one time 

step and v0 is the initial volume size of the newly created particles. 

4.3.3  Initial Conditions and Cases with Analytical Solutions  

4.3.3.1 Initial Conditions 

The initial particle number density is 1.01018 /m3 and initial particle dimeter 

is set as 1.24 nm for Case 1 (constant rate coagulation and linear rate condensation 

case) and Case 2 (constant rate coagulation and nucleation) so that the following 

simple dimensionless expressions for moments can be obtained. The initial 

conditions of the other cases in the present study can be found in Frenklach and 

Harris (1987). All the studied cases in the present study are listed in Table 4.2.  

These cases are selected to represent the typical aerosol dynamic processes taking 

place in the actual particle-fluid systems such as particulate emission from vehicles 

and industrial boilers, aerosol formation, collodial solution, etc. These studied cases 

are so arranged that the complexity of numerical simulation cases increases from 

(4-13) 
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Case 1 to Case 4, which is used for the evaluation of computational accuracy and 

efficiency of this newly proposed SWOSMC method (Liu and Chan, 2017).  

Table 4.2  Summary of the studied cases (Liu and Chan, 2017). 

Cases Description 

Case 1 Constant rate coagulation and linear rate condensation for 
validation with analytical solution. (The free molecular 
regime coagulation is only shown as a part of Case 1.) 

Case 2 Constant rate coagulation and constant rate nucleation. 

Case 3 Free molecular regime coagulation and constant rate 
nucleation. 

Case 4 Simultaneous aerosol dynamic processes including 
coagulation, nucleation and condensation. 

4.3.3.2 Constant Rate Coagulation and Linear Rate Condensation  

Analytical solutions to the GDE Equation (4-1) is only available for very 

limited cases, among which the case of constant rate coagulation and linear rate 

condensation is selected for the first validation case. For constant rate coagulation 

and linear rate condensation, when the coagulation and condensation kernel are both 

set as unity for simplicity, the particle number density n(v,t) and the dimensionless 

zeroth order moment, M0 and first order moments, M1 with respect to the particle 

volume can be derived as (Ramabhadran et al., 1976):  

n(v,t)=
(M0(t))

2

M1(t)
exp(-

M0(t)

M1(t)
v) 

M0(t)=
2

2+t
 

M1(t)= exp(t) (4-14c) 

(4-14a) 

(4-14b) 
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4.3.3.3 Constant Rate Coagulation and Nucleation  

If both coagulation and nucleation rates are constant (i.e., both are set as unity 

for simplicity in the present study), an analytical solution is available to Equation 

(4-1). The analytical solutions of relative particle number density and relative 

particle volume concentration can be expressed as (Maisels et al., 2004):  

N

N0
=B

1+Btanh(τ0/2)

B+tanh(τ0/2)
 

V

V0
=1+

B

2
τ0 

where V and V0 are the total volume of particles at time, t and at initial time,       

t0, respectively. N and N0 are the number density of particles at time, t and at initial 

time, t0 respectively. B, E (in Equation (4-17)) and τ0 are dimensionless parameters 

determined by the initial conditions and the detailed expressions can be found in 

Maisels et al. (2004). 

4.3.3.4 Simultaneous Coagulation, Nucleation and Condensation 

For simultaneous aerosol dynamic processes, if the nucleation, coagulation, 

condensation rates and monomer concentration are constant, the analytical solution 

to these simultaneous processes including coagulation, nucleation and condensation 

exists (Maisels et al., 2004). The analytical expression of relative particle number 

denstity is given in Equation (4-15) since condensation involves no change in    

the particle number. The analytical expression of the relative particle volume 

concentration for simultaneous coagulation, nucleation and condensation is written 

as: 

(4-15) 

(4-16) 
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V

V0
=1+[(

B

2
+E)τ0+2Eln(

1+exp(-τ0)

2
+

1-exp(-τ0)

2B
)] 

where all the parameters in Equation (4-17) have the same physical meanings with 

those in Equations (4-15) and (4-16). More information of this case study can be 

found in Liu et al. (2015).  

4.3.4  Calculation of Maximum Relative Error 

The maximum relative error used to evaluate the numerical simulation 

results is defined as:  

max = {√[(X(t) X0(t)) X0(t)⁄ ]2}max 

where max is the maximum relative error, X(t) is the numerical simulation results 

obtained with this newly proposed SWOSMC method, and X0(t) is the reference 

value for comparison. 

4.4   Results and discussion 

4.4.1  Initial Validation 

This newly proposed SWOSMC method (Liu and Chan, 2017) is first 

validated for constant rate coagulation and linear rate condensation processes.   

The dimensionless zeroth order moment, M0 which is proportional to the number 

density of particles, is shown in Figure 4.1. An increasing number of numerical 

particles are used for the numerical simulation. It can be seen that the numerical 

simulation results agree well with the analytical solution when only 1000 numerical 

(4-17) 

(4-18) 
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particles are used, which shows the good capability of the SWOSMC method in 

dealing with simultaneous coagulation and condensation processes.  

 

Figure 4.1  Zeroth order moment, M0 under coagulation and condensation 

processes for SWOSMC (Liu and Chan, 2017) versus the analytical solution 

(Ramabhadran et al., 1976) where N is the number of numerical particles used in 

each simulation run.  

An excellent agreement between the dimensionless first order moment, M1 

obained by the SWOSMC method and analytical solution is also observed in   

Figure 4.2. The exponentially increasing M1 with respect to simulation time 

represents the rapid increase of the total volume of particles in the numerical 

simulation particle-fluid system due to condensation.  
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Figure 4.2  First order moment, M1 under coagulation and condensation processes 

for SWOSMC (Liu and Chan, 2017) versus the analytical solution (Ramabhadran et 

al., 1976) where the number of numerical particles, N used in each simulation run is 

1000. 

Figure 4.3 shows another application of the SWOSMC method to free 

molecular regime coagulation and the numerical simulation results is validated by 

comparing to the sectional method (Prakash et al., 2003). Excellent agreement can 

be also observed between the particle number density obtained by these two methods 

with the maximum relative error (by taking the sectional method as reference) of 

less than 1% during the whole simulation time.  
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Figure 4.3  Particle number density under free molecular regime coagulation for 

SWOSMC (Liu and Chan, 2017) versus the sectional method (Prakash et al., 2003) 

where the number of numerical particles, N used in each simulation run is 1000. 

4.4.2  Constant Rate Coagulation and Nucleation 

For constant rate coagulation and nucleation, an increasing number of 

numerical particles are used in the SWOSMC method. Figure 4.4 shows the relative 

particle number density, N/N0 obtained via the SWOSMC method and the analytical 

solution (Maisels et al., 2004), respectively. It can be seen that the SWOSMC 

method agrees well with the analytical solution with increased number of numerical 

particles. The increasing relative particle number density implies the nucleation is 

dominant within the simulation time. As the simulation proceeds, some statistical 

fluctuations can be observed, but the maximum relative error compared with the 

analytical solution remains less than 2% during the whole simulation time, which 

also proves the reliability of this newly proposed SWOSMC method (Liu and Chan, 

2017). 
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Figure 4.4  Relative particle number density, N/N0 under constant rate coagulation 

and nucleation processes for SWOSMC (Liu and Chan, 2017) versus the analytical 

solution (Maisels et al., 2004) where N is the number of numerical particles used in 

each simulation run.  

The relative particle volume concentration, V/V0 under the constant rate 

coagulation and nucleation is shown in Figure 4.5. The agreement between the 

SWOSMC method and the anlytical solution is so excellent that even for using 1000 

numerical particles, the maximum relative error is less than 1%. The linear increase 

in relative particle volume concentration can be well explained by the constant rate 

nucleation that continously creates new particles in the particle-fluid system.    

This SWOSMC method has demonstrated the ability to reach a high accuarcy of 

numerical simulation with acceptable number of numerical particles. 
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Figure 4.5  Relative particle volume concentration, V/V0 under constant rate 

coagulation and nucleation processes for SWOSMC (Liu and Chan, 2017) versus 

the analytical solution (Maisels et al., 2004) where N is the number of numerical 

particles used in each simulation run. 

4.4.3  Free Molecular Regime Coagulation and Constant Rate Nucleation  

Figure 4.6 shows the evolution history of particle number density of 

simultaneous free molecular regime coagulation and constant rate nucleation  

obtained via the SWOSMC method (Liu and Chan, 2017) and the sectional method 

(Prakash et al., 2003). A very satisfactory agreement can be found between the two 

methods for even 100 numerical particles used for the SWOSMC method,    

which demonstrates the good applicability and computational efficency of this 

SWOSMC method in solving simultaneous free molecular regime coagulation and 

constant nucleation problem. As the number of numerical particles increases from 

100 to 2000, the maximum relative error between these two methods remains 
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reach very good agreement compared with the sectional method. Some fluctuations 

can be found for numerical simulation with different number of numerical particles 
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e.g. the simulation results with 500 numerical particles are closer to the results via 

the sectional method than that using 1000 particles at the initial stage of simulation, 

specifically before 210-3s. This may be explained by the statistical fluctuations of 

the particle-fluid system at the initial stage. Similar fluctuations can also be found in 

Figure 4.7. 

 

Figure 4.6  Particle number density under free molecular regime coagulation and 

constant rate nucleation for SWOSMC (Liu and Chan, 2017) versus the sectional 

method (Prakash et al., 2003) where N is the number of numerical particles used in 

each simulation run.  

The evolution history of number average diameters of particles, dave is 

tracked and shown in Figure 4.7. An increasing number of numerical particles from 

100 to 2000 are used in the SWOSMC simulation. The number average diameter of 

particles shows good agreement between the SWOSMC and the sectional methods. 

A rapid increase of the average particle diameter is observed due to nucleation and 

coagulation. With the increase of the number of numerical particles, the maximum 
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relative error between these two methods signifcantly decreases, reaching far less 

than 1% when only 500 numerical particles are used.  

 

Figure 4.7  Average diameter of the numerical particles, dave under free molecular 

regime coagulation and constant rate nucleation via SWOSMC               

(Liu and Chan, 2017) versus the sectional method (Prakash et al., 2003) where N is 

the number of numerical particles used in each simulation run.  

The second order moment, M2 with respect to the particle size distribution 

(PSD) is shown in Figure 4.8. As particles are continually created by nucleation 

process, the second order moment shows rapid increase once the nucleation process 

begins. With the increase of the number of numerical particles, the maximum 

relative error relative to the sectional method (Prakash et al., 2003) decreases rapidly 

to less than 1% when only 500 numerical particles are used. However, no significant 

improvement is achieved with the number of numerical particles increasing from 

500 to 2000. It shows that 500 numerical particles are good enough to obtain as high 

computational accuracy as that via the sectional method (Prakash et al., 2003). It can 

be seen from Figure 4.8 that the newly proposed SWOSMC method             
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(Liu and Chan, 2017) is highly promising to capture the evolution of high-order 

moments with a relatively low computational cost (i.e., computational time, 

computer memory etc.).  

 

Figure 4.8   Second order moment, M2 of the particles under free molecular regime 

coagulation and constant rate nucleation processes for SWOSMC             

(Liu and Chan, 2017) versus the sectional method (Prakash et al., 2003) where N is 

the number of numerical particles used in each simulation run). 
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time, which is also consistent with the theoretical expression given in      

Equation (4-17). As the simulation time is very short, the nonlinear term in the 

theoretical expression in Equation (4-17) can be neglected, which yields a linear 

relationship between the particle volume concentration and dimensionless time, as 

shown in Figure 4.9.  

 

Figure 4.9  Particle volume concentration, V/V0 under simultaneous aerosol 

dynamic processes for SWOSMC (Liu and Chan, 2017) versus the analytical 

solution (Maisels et al., 2004) where the number of numerical particles, N used in 

each simulation run is 4000. 

The particle number density, N/N0 of this simultaneous aerosol dynamic 

processes is shown in Figure 4.10. For the reason of short simulation time,       

the theoretical expression in Equation (4-15) also approximates a linear relationship 

between the particle number density and the dimensionless time. However, even 

with small simulation time and only 4000 numerical particles, the results obtained 

via the SWOSMC method agree well with the analytical solution, which shows the 
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high potential of this newly proposed SWOSMC method in solving simultaneous 

full processes in complex aerosol dynamics. 

 

Figure 4.10  Particle number concentration, N/N0 under simultaneous aerosol 

dynamic processes for SWOSMC (Liu and Chan, 2017) versus the analytical 

solution (Maisels et al., 2004) where the number of numerical particles, N used in 

each simulation run is 4000. 
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(Prakash et al., 2003), the SWOSMC method takes shorter simulation time even with 

the largest number of numerical particles in Case 3. This new SWOSMC method 

has demonstrated its capability to obtain higher computaional accuracy with shorter 

simulation time than the sectional method for the same case.  

 

Table 4.3        Analysis of main numercial simulation parameters (Liu and Chan, 2017). 

 

Cases 
Number of numerical 

particles 

Normalized 

computational time 

Maximum relative 

error (%) 

Case 1 

50 1 11 

500 3 5 

1000 5 2 

2000  7.5 <1 

Case 2 

1000 5 3.7 

2000 7 3 

3000 9 2 

4000 11 <1 

Case 3 

100 1.5 6.5 

500 4 5.3 

1000 6 <1 

2000 9 <1 

Sectional method >100 N/A 

Case 4 4000 45 <1 

Note:  Cases 1, 2 and 3 are evaluated by the simulation results of zeroth order 

moment, M0 while the particle number concentration is considered for Case 4. 

The maximum relative error is calculated according to Equation (4-18). 

Computational time is normalized based on the ratio of any computational time 

to the shortest computational time (i.e., the computational time of Case 1 with 

50 numerical particles) in the present study.   
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4.5    Summary  

The simulation results of this newly proposed and developed stochastically 

weighted operator splitting Monte Carlo (SWOSMC) method (Liu and Chan, 2017) 

are fully validated with corresponding analytical solution (Maisels et al., 2004) and 

the sectional method (Prakash et al., 2003) for various aerosol dynamic processes 

(i.e., coagulation, condensation and nucleation) in different flow regimes.      

This validated SWOSMC method also offers higher capacity of numerical 

simulation for solving simultaneous aerosol dynamic processes occurring in 

complex particle-fluid systems. Further development of this new method will be 

presented in the study of multi-dimensional and inhomogeneous aerosol dynamic 

processes of turbulent particle-fluid systems in Chapter 5. 
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Chapter 5   CFD-PBM Simulation of Aerosol Dynamics in 

Turbulent Flows 

5.1  Introduction  

A computational fluid dynamics (CFD) coupling with a Monte Carlo  

(CFD-Monte Carlo) method is presented to simulate complex aerosol dynamics in 

turbulent flows. A Lagrangian particle method based probability density function 

(PDF) transport equation is formulated to solve the population balance equation 

(PBE) of aerosol particles. The formulated CFD-Monte Carlo method allows 

investigating the interaction between turbulence and aerosol dynamics and 

incorporating individual aerosol dynamic kernels as well as obtaining full particle 

size distribution (PSD). Several typical cases of aerosol dynamic processes including 

turbulent coagulation, nucleation and growth are studied and compared to the 

sectional method with excellent agreement. Coagulation in both laminar and 

turbulent flows is simulated and compared to demonstrate the effect of turbulence 

on aerosol dynamics. The effect of jet Reynolds (Rej) number on aerosol dynamics 

in turbulent flows is fully investigated for each of the studied cases.            

The results demonstrate that Rej has significant impact on a single aerosol dynamic 

process (e.g. coagulation) and the competitive and simultaneous aerosol dynamic 

processes in turbulent flows. This newly proposed and validated CFD-Monte 

Carlo/PDF method renders an efficient method for simulating complex aerosol 

dynamics in turbulent flows and provides a better insight into the interaction between 

turbulence and the full PSD of aerosol particles. The novelty of the present study is 

to investigate the effect of Rej number on the PSD of typical aerosol dynamic 

processes in turbulent flows. The enhancing effect of turbulence on aerosol dynamic 
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processes as well as the competition and transition between different aerosol 

dynamic processes are proved and analyzed. A new particle tracking method with 

high computational efficiency is adopted in the Monte Carlo simulation.       

Moreover, the operator splitting technique recently proposed by Liu and Chan (2017) 

for solving simultaneous aerosol dynamic processes is also used to increase      

the computational efficiency and accuracy. 

5.2  Numerical Methodology 

5.2.1  Governing Equations of Aerosol Dynamics in Turbulent Flows 

The governing equations of the coupled fluid dynamics-aerosol dynamics in 

turbulent flows include the PBE in terms of particle number density (i.e., Equation 

(1-1)) as well as continuity, momentum equations (i.e., Navier-Stokes equations) 

and energy equation, which are written as: 

∇⋅u (x, t)= 0                            (5-1) 

∂u (x, t)/∂t + (u (x, t)⋅∇)u (x, t)=  νk∇2u (x, t) ∇P (x, t)⋅∇ ρ⁄       (5-2a) 

∂T (x, t)/∂t + (u (x, t)⋅∇2T = ke∇2T (x, t) + H ρ⁄ cp     (5-2b) 

where u is the velocity of the carrier fluid phase, νk is the kinematic viscosity, 

which is assumed constant, x is the coordinates of particles, P is the pressure, ρ is 

the fluid density, ke is the heat conductivity, H is the source of energy and cp is 

the specific heat capacity, T is temperature. An in-house time dependent Reynolds-

Averaged Navier Stokes (RANS) code and k-ε turbulence model (also used in the 

transported PDF method of Akridis and Rigopoulos (2015)) are used together with 

the following transported PDF method. 
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The CFD code is discretized with a finite volume scheme. The averaged 

momentum and k-ε equations are solved in a two-dimensional axisymmetric domain. 

The mean velocity field and the turbulence time scale are applied to the scalar PDF 

by the CFD code while the micro mixing term is obtained via the estimation of 

ensemble mean scalars in each computational cell of the computational grid.      

In order to reduce statistical error, a time-averaging method is further used.     

The following equations show the k-ε turbulence model in Cartesian tensor notation 

form and repeated indices mean summation (Akridis and Rigopoulos, 2015):  

∂

∂t
[ρ̅k]+

∂

∂xj

[ρ̅ũjk] = 
∂

∂xj
[(μ+

μt

σk
)

∂k

∂xj
] +G ρ̅ε 

 

∂

∂t
[ρ̅ε]+

∂

∂xj

[ρ̅ũjε] = 
∂

∂xj
[(μ+

μt

σε
)

∂ε

∂xj
] +

ε

k
[Cε1G Cε2ρ̅ε] 

where Reynolds averaged quantities are shown with a bar on top while Favre 

averaged quantities are shown with a tilde on top. 𝜌 is the mixture density, μ is 

the molecular viscosity of the mixture, μt  is the turbulent viscosity, σ  is the 

turbulent Prandtl number and G is the generation rate of turbulent kinetic energy. 

Estimates of mean quantities in PDF/Monte-Carlo simulation are obtained 

by means of a particle-cloud-in-cell method and the Favre average of a quantity,   

Q in a cell, c is shown as follows (Mehta, 2008):  

Q̃c =
∑ mpQpp∈c

∑ mpp∈c

 

where mp is the mass of particle, p and Qp is the quantity carried by particle, p in 

a cell, c. The summation is carried out over all the particles in cell, c. 

(5-3) 

(5-4) 

(5-5) 
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The PBE in terms of particle number density, n(v, x, t), a function of particle 

volume as well as of space coordinates and time, can be written as Equation (5-6), 

in which n(v, x, t) is written as n(v) for simplicity: 

∂n(v)/∂t + ∇(u⋅n(v))+ ∂(G(Y1, Y2,…,Ym,v) ∂v⁄ ⋅n(v)) 

=Dp∇2n(v) + Bn(Y1, Y2,…,Ym,v)⋅δ(v v0)  

+ 1/2 ∫ K(u, vu)n(u, t)n(vu, t)dun(v,t) ∫ K(u, v)n(u, t)du
∞

0

v-v0

v0

  (5-6)                  

The terms in PBE i.e., Equation (5-6) from the left-hand side to the right-hand side 

are:  

 Accumulation term of the particle number density. 

 Convection term in physical space. 

 Condensation/growth term in phase space, where G(Y1, Y2,…,Ym, v) is the 

growth kernel, a function species concentration Ym and particle volume v. 

 Particle diffusion term, where Dp is the diffusion coefficients of particles. 

 Nucleation term, where Bn (Y1, Y2,…,Ym, v) is the nucleation kernel, Ym is 

a function of species concentration and v is particle volume. This term 

contributes a source for particle with the size of v0 which is the minimum 

particle size of the nuclei. 

 Coagulation term, which consists of two parts. The first part is the birth part 

accounting for all the possible gains in particle number density of particles 

with size of v due to the coagulation between particle of size (v-v0) and v0. 

The factor 1/2 is used to prevent double counting the coagulation events.  
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The second part is the death part accounting for all the loss of particles with 

size of v due to all the possible combinations. K(u,v) is the coagulation kernel 

dependent on the size of colliding pairs. 

5.2.2  PDF Transport Equation Formulation 

The derivation of PDF formulation for aerosol dynamics in turbulent flows 

is based on the work of Rigopoulos (2007). First, a joint multipoint PDF of the mass 

concentration and particle number density of species at full size range is introduced 

so that the expected PSD at any point can be determined:  

Y(x, t), n(v, x, t) ≡ f (Y, N; x, t)                 (5-7) 

where Y ≡ y1, y2, …, ym and N ≡ n1, n2, …, nn have the following constraints: 

ya < Ya(x, t) < ya+dy                     (5-8a) 

n < N(vi, x, t) < n+dn                     (5-8b) 

and the normalization property is also satisfied: 

∫ ∫ f (Y, N; x, t)dY dN  = 1
∞

0

1

0
                  (5-9) 

5.2.2.1 Discretization of the Continuous PBE  

As the continuous function of n(v, x, t) is needed for the source terms     

(e.g., the nucleation growth/condensation and coagulation), the continuous PBE is 

discretized based on the approximation of infinite space points with finite space 

points (Rigopoulos and Jones, 2003): 

N(v) ≈ {N(v1), N(v2), …, N(vn)} = {N1, N2,…, Nn}               (5-10) 
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The growth term in Equation (5-6) is discretized as follows: 

∂(G(Y1, Y2,…,Ym,v) ∂v⁄ ⋅n(v)) 

≈ (G(Y1, Y2,…,Ym,v)⋅(
Ni

vi-vi-1
-

Ni-1

vi-vi-1
) + Ni ⋅∂(G(Y1, Y2,…,Ym,v) ∂v⁄ ) 

= G1(Y1, Y2,…,Ym,v)⋅Ni + G2(Y1, Y2,…,Ym,v)⋅Ni-1     (5-11)                           

where 

G1 = G(Y1, Y2,…,Ym,v)⋅ 1 (vivi-1⁄ ) + ∂(G(Y1, Y2,…,Ym,vi)  ∂v⁄   

G2 =  G(Y1, Y2,…,Ym,v)⋅ 1  (vivi-1⁄ ) 

The nucleation term in Equation (5-3) is discretized as: 

B(Y1, Y2,…,Ym,v)⋅δ(vv0) 

≈ B(Y1, Y2,…,Ym,v)/[1/2(v1 v0)]+B(Y1, Y2,…,Ym,v)/[1/2(v0 0)] 

= B1(Y1, Y2,…,Ym)                                       (5-12) 

The coagulation term is discretized as: 

C ≈ 1/2 ∑ ai-j,j(vi-j,vj)⋅Ni-jNjNi ∑ a'i-j,j(vi,vj)∙Nj
i-1
j=1

i-1
j=1             (5-13) 

 

where C represents the coagulation term in Equation (5-6), ai-j,j and a'i-j,j are the 

coagulation kernels. 

Based on the above discretized terms, the discretized form of PBE can be written as: 
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∂Ni/∂t + ∇(u⋅Ni) + G1⋅Ni + G2⋅Ni-1 

= Dp∇2n(v) + B1(Y) + 1/2 ∑ ai-j,j(vi-j,vj)⋅Ni-jNj  Ni ∑ a'i-j,j(vi,vj)⋅Nj
i-1
j=1

i-1
j=1        (5-14) 

5.2.2.2 Final PDF Transport Equation 

The transport equation PDF can be obtained via averaging the time derivative 

of the fine-grained density (Lundgren, 1967) which is given as follows: 

∂f

∂t
 =  <

∂F

∂t
> = < ∑

∂F

∂ya

∂Ya

∂t


M

a=1

∑
∂F

∂ni

∂Ni

∂t

N

i =1

>                     (5-15a) 

where 

               𝐹 = ∏ δ(Ya ya)∙
M
a=1 ∏ δ(Ni ni)                            

N
i=1 (5-15b) 

Substituting the derivative terms in Equation (5-15) with corresponding 

terms in Equation (5-14), the following equation can be obtained: 

∂F

∂t
 = ∑

∂F

∂ya
[ ∇(u⋅Ya)+D∇2Ya+ẇ(Y1, Y2,…,Ym)]

M

a=1

 

∑
∂F

∂ni
[∇(u⋅Ni)-G1⋅Ni  G2⋅Ni-1 + Dp∇2Ni  + B1(Y1, Y2,…,Ym)

N

i =1

 

+ 1/2 ∑ ai,j⋅Ni-jNj   Ni ∑ ai,j⋅Nj

i1

j=1

i1

j=1

]                                                    (5-16) 

Substituting Equation (5-16) into Equation (5-15), the final transport equation of 

PDF is obtained as follows: 
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∂f

∂t
 =  u∙f  <u'∇F>∑∑ D

∂2(∇Ya∙∇Ya∙F)

∂ya∂yb

m

b=1

m

a=1

 

∑∑ Dp

∂2(∇Ni∙∇Ni∙F)

∂ni∂nj

m

b=1

m

a=1


∂

∂ya
[B1(y1, y2,…,ym)∙f ] 

+
∂

∂ni
[(G1(y1, y2,…,ym)niG2∙ni-1)∙f ] 

−∑
∂

∂ni
[1/2 ∑ (ai,j∙ni-jnj )

i-1

j=1

∙f ] + ∑
∂

∂ni
[ni ∑[(ai,j∙Nj)∙f ]

𝑛

𝑖=1

𝑛

𝑖=1

 

n

i=1

  (5-17) 

5.2.3  Monte Carlo Simulation of the PDF Transport Equation 

The Monte Carlo method developed by Fox (2003) is further extended to 

solve the PDF transport equation of aerosol dynamics in turbulent flows.       

The underlying concept of this Monte Carlo method is to simulate a number of 

stochastic entities, whose evolution statistics obtained via stochastic differential 

equations as well as CFD method approximate the PDF of interest.            

The stochastic model for the evolution of particle position and particle number 

density used to advance PDF is as follows:  

Xn(t+∆t) = Xn(t)+[<U>(Xn(t),t)+∇ΓT (X
n(t),t)]∆t+2ΓT (X

n(t),t)1/2ΔW      (5-18) 

Nn(t+Δt) = Nn(t)+[CN/2(<Nn(t)> Nn(t))+Ẇi (N,Y)]∆t             (5-19) 

where ΔWi is a Gaussian pseudo-random number for representing the stochastic 

fluctuations of Wiener process with mean <ΔWi> = 0 and covariance <ΔWi ∙ ΔWj> 

=  ∆tδi,j , CN is the characteristic scale concerning micro mixing, Ẇi (N,Y) is the 

source term for accounting the variation of particle number density,  ΓT  is the 

turbulent diffusion coefficient, <U> is the average velocity.  
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It is noteworthy that in the simulation of coagulation event of particles with 

a certain size, instead of looping several neighboring grid cells which contain a large 

amount of notional particles, the loop checking will be carried out within only one 

grid cell. It implies that the loop checking will be performed over all the particles 

located within the grid cell to counter check if they are involved in coagulation 

events. The possible grid cell in which the tracked particles may be located after    

a time step, Δt  is determined before sorting its possible coagulation partners.   

Then Monte Carlo method is applied to determine the probability of certain aerosol 

dynamic events in the certain grid cell. It is reasonably assumed that all the 

coagulation events within one time step, Δt of a tracked notional particle take place 

in one same grid cell. By this assumption, the computational time spent on sorting 

particles for coagulation is greatly reduced, thus increasing the computational 

efficiency. 

The procedures of one loop of Monte Carlo simulation are as follows (several 

repetitions may be carried out in order to reduce the statistical errors caused by    

the intrinsic nature Monte Carlo method): 

Step 1:  Initialization of particle properties (particle size distribution,     

particle number density and initial positions) and the turbulence field (average 

velocity < U >(x, 0) , turbulence frequency 𝜔(x, 0)  and turbulent diffusion 

coefficient ΓT (x, 0); 

Step 2:   Based on the turbulence field parameters in the previous step,    

calculate the time step to advance the transport PDF according to Equation (5-20) 

i.e., constraints of Courant-Friedrichs-Lewy (CFL) number and minimum 



 

Chapter 5       CFD-PBM Simulation of Aerosol Dynamics in Turbulent Flows 

  104 

characteristic time scale of all the aerosol dynamic processes. The final time step is 

calculated as follows: 

∆t = c⋅Minimum{ NCFL ( ∑
ui

ΔLi

m
i=1 )⁄ , tcoag, tnuclea, tgrowth}     (5-20)                     

where c is a constant factor to guarantee the decoupling between the particle 

dynamics processes and the particle transport, NCFL is the maximum CFL number 

which is also a constant (NCFL = 0.5 is used in the present study). m is the number of 

dimensions (for two-dimensional flow, m = 2), ui is the velocity at i-direction,     

Li is the width of the grid cell in i-direction, tcoag, tnuclea, tgrowth are the characteristic 

time scale of coagulation, nucleation and growth processes, respectively which are 

dependent on the local field parameters (i.e., mass concentration, particle size etc.); 

Step 3:  Advance the computing of flow field with a finite volume method (FVM) 

CFD code and return the turbulence field parameters including average velocity, 

<U>(x, ∆t) , turbulence frequency, ω(x, ∆t)  and turbulent diffusion coefficient, 

ΓT (x, ∆t); 

Step 4:  Monte Carlo method is used to calculate the particle position Xn(∆t) and 

particle number density, Nn(Δt). A sorting algorithm based on random number is 

used to determine the Npl particles and renumber them according to their grid cells. 

The intra cell process, particularly aerosol dynamic processes, are advanced to 

determine the source terms in the PDF transport equation (in Equation (5-17)).  

Step 5: Update the particle properties accordingly. Using these updated particle 

properties, particle-field estimates are constructed by particle source in cell (PSIC) 
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scheme (Crowe et al., 1977) after one time step, ∆t to obtain PDF. More details can 

be referred to Fox (2003); 

Step 6: Check whether the accumulative simulation time, t has reached       

the prescribed stopping time, tstop, if not, go to Step 2 to continue the simulation.       

If t ≥ tstop, stops the Monte Carlo simulation. Figure 5.1 presents a flowchart of the 

Monte Carlo simulation procedures.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1   Flow chart of the coupled CFD-Monte Carlo/PDF method       

(Liu and Chan, 2016). 

 

NO 

YES 

Start  

Initialize turbulence fields and particle properties 

Calculate time step ∆t 

Compute turbulence field with CFD method 

Compute and return turbulence field with CFD code 

Compute particle number density and position for PDF via Monte Carlo simulation 

Update particle properties and construct particle-field estimates 

 t ≥ tstop 

Stop  



 

Chapter 5       CFD-PBM Simulation of Aerosol Dynamics in Turbulent Flows 

  106 

5.2.4  Simulation Analysis 

Maximum relative error, ε and convergence time are used to show       

the computational accuracy and efficiency. The definition of the maximum relative 

error, max is written as:  

 max = {√[
(n n0)

n0
⁄ ]2} max                    (5-21) 

where n is the particle number density obtained via CFD-MC method and n0 is    

the particle number density obtained via the PBSM method based on the work of 

Hounslow (1988). ε is the maximum relative error taken over the whole PSD 

obtained via the above-mentioned two methods. Convergence time is defined as   

the time needed for the physical quantities to reach the convergence criteria (1105) 

with the proposed CFD-MC method. Normalized convergence time is defined as  

the ratio of any convergence time to the shortest convergence time (i.e., the 

convergence time of turbulent coagulation with Rej of 3200) in the present study.  

The developed PBE (Hounslow, 1988) is used together with a dimensional 

splitting technique (Ma et al., 2002) to formulate the PBSM method in this    

Chapter 5 which makes the method applicable to multi-dimensional PBE.  

Although the method of Hounslow (1988) is for a homogeneous PBE, it can be 

modified to be applicable to multi-dimensional cases in the present study.       

The specific method is to apply the one-dimensional high-resolution algorithm to 

each one-dimensional homogeneous PBE (Equation 5-22) by setting the velocities 

to be zero except for one certain coordinate sequentially at each time step (Gunawan 

et al., 2004):  
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∂f

∂t
+ ∑

∂(Mj(L)f)

∂Lj
 = 0

n

j=1

 

where Mj is the rate of certain aerosol dynamic process, Lj is the internal coordinate 

including spatial coordinate, j is the number of internal coordinates.  

In order to analyze the variation of particle number density along the axial 

distance, the particle number density is sampled at different evenly distributed 

positions in the axial direction with the interval of 0.125 m, which is then plotted 

versus axial distances. The normalized particle number density is defined as the ratio 

of local particle number density to the particle number density at the outlet of the 

nozzle as follows:  

Nn =
Nl

N0
 

where Nn is the normalized particle number density, Nl is the local particle number 

density in the computational domain and N0 is the particle number density at the 

outlet of the nozzle. 

5.3    Simulation Setup 

The configuration of the aerosol reactor in the present study is shown in 

Figure 5.2. The aerosol reactor is a cylindrical aerosol reactor with radius of   

0.225 m and length of 2 m. A nozzle with radius of 0.005m and length of 0.01 m is 

located at the center of the cylindrical aerosol reactor. Three internals with height of 

0.05 m and thickness of 0.0005 m are evenly mounted in the axial direction inside 

cylindrical aerosol reactor in order to enhance mixing. For aerosol dynamics in 

(5-22) 

(5-23) 
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turbulent flows, particles with a volume fraction of 0.1 in the carrier gas (air) is 

injected from the nozzle while gas phase (air) is injected through the gas phase inlet. 

The injected particles are potassium chloride (KCl) particles with a size range of  

0.1 μm to 6.4 μm and density of 1980 kg/m3 (Calvo et al., 2013). The injection 

velocity of particulate phase ranges from 10 m/s to 40 m/s, the inlet velocity of gas 

phase is 0.5 m/s. Coagulation kernel is obtained using the turbulent coagulation 

model by Saffman and Turner (1956). The nucleation rate is kept constant at 

7.510−6 m-3s−1 with constant growth rate of 6.210−11 m/s. Aerosol dynamics in 

laminar flow is also investigated in the same aerosol reactor for comparison with 

aerosol dynamics in turbulent flows, which is carried out by switching the inlet 

conditions of velocity and species between inlets of the nozzle and the gas phase. 

The Reynolds number Rej of particulate phase is 1440 in the laminar flow. In the 

turbulent flow, particles are injected from the nozzle of the aerosol reactor at 10 m/s 

as shown in Figure 5.2. However, in the laminar flow, particles are injected through 

the air inlet at 0.1m/s. Although the velocity of the jet in turbulent flow (10 m/s) is 

higher than that of laminar flow (0.1 m/s), the cross-sectional area of the entrance 

for particles in laminar flow (i.e., the cross-sectional area of the aerosol reactor with 

a diameter of 0.225 m) is much higher than that for turbulent flow (i.e., the cross-

sectional area of the nozzle with a diameter of 0.005 m). Thus, the volume flowrate 

for laminar flow is much higher than that for turbulent flow in the present study, 

which is shown as follows:  

Q̇laminar = 20.25Q̇turbulent 

where Q̇laminar  and Q̇turbulent  are the volumetric flow rates of laminar flow and 

turbulent flow, respectively. So the result of laminar flow in Figure 5.5 is scaled 

(5-24) 
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down to be consistent with the volumetric flow rate of the turbulent flow. 

Specifically, for the study of aerosol dynamics in the laminar flow, particles enter 

the gas phase inlet instead of the nozzle as shown in Figure 5.2 while the nozzle is 

used for the entry of air at a low velocity of 0.5 m/s.  

 

Figure 5.2  Three-dimensional schematic configuration of a cylindrical aerosol 

reactor (Two-dimensional axisymmetric grid is generated in the rectangular domain 

ABDC, not in scale) (Liu and Chan, 2016).  

Due to the axisymmertrical configuration of the studied cylindrical aerosol 

reactor, a two-dimensional axisymmetric unstructured grid corresponding to      

the aerosol reactor is treated as shown in Figure 5.3. There are totally 8112 cells and 

8444 nodes in the grid. The grid near the nozzle zone and internals is refined. Four 

injection velocities of particulate phase i.e., 10 m/s, 15 m/s, 20 m/s and 40 m/s are 

used to investigate the effect of jet Reynolds (Rej) number on the aerosol dynamics 

in turbulent flows. Temperature is kept at 300 K for all the computational domain. 

The standard k-ε turbulence model is used for the turbulence computation.      

After balancing the computational accuracy and cost (i.e., computational time, 

computer memory etc.), 30 notional particles are allocated in each cell in the present 
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Monte Carlo simulation. The simulation parameters for aerosol dynamics in 

turbulent flows are summarized in Table 5.1 

 

Figure 5.3  Two-dimensional axisymmetric unstructured computational grid of   

a cylindrical aerosol reactor (Liu and Chan, 2016). 

 

Table 5.1  Simulation parameters for aerosol dynamics in turbulent flows     

(Liu and Chan, 2016). 

 

Particulate phase Potassium chloride (KCl) 

Particle density (kg/m3) 1980 

Initial particle size range (μm) 0.1-6.4 

Injection velocity of the jet (m/s) 10-40 

Corresponding Rej of the jet 3200−12800 

Velocity of continuous phase (m/s) 0.5 

Coagulation model Turbulent kernel (Saffman 

and Turner, 1956) 

Nucleation rate (m-3s-1) 7.5106 

Growth rate (m/s) 6.210−11 

The number of cells in the computational 

domain 

8112   

The number of numerical particles per cell 30 

Turbulence model k-ε model 
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5.4   Results and Discussion 

5.4.1  Comparison of Coagulation in Both Laminar and Turbulent Flows 

As mentioned above in Section 5.3, the inlet of fluid and particulate phases 

is switched to simulate laminar flow, i.e., the particles are injected into the aerosol 

reactor through the air inlet while air is injected through the nozzle (as shown in 

Figure 5.2). The Rej number at the nozzle is 3200 with the injection velocity of    

10 m/s for turbulent flows. The entry velocity of the gas phase (air) is 0.5 m/s for 

both cases.  

Figure 5.4 shows the initial PSD of particles before entering the aerosol 

reactor. It can be seen that small particles account for the majority of the total particle 

population. Figure 5.5 shows the PSD for particles after coagulation in both laminar 

and turbulent flows. Compared with the PSD in Figure 5.4, it can be seen that    

the PSD in Figure 5.5 varies significantly in its shape and order of magnitude 

(decreasing the order of magnitude from 1019 to 1016) due to coagulation. 

Coagulation is obviously enhanced in turbulent flows which can be seen from the 

wider spectrum of PSD and higher maxima of particle number density when 

compared to that in laminar flow. This is because coagulation in an inter-particle 

process is dependent on the concentration and the mixing effect of particles. 

Enhanced coagulation leads to a higher particle number density of particles with 

diameter of 0.6 μm. As coagulation is only enhanced but the coagulation mechanism 

is not changed, the peaks of the PSDs for laminar coagulation and turbulent 

coagulation in Figure 5.5 appear in the same particle size. 
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Figure 5.4  Initial PSD of particles before entering the aerosol reactor        

(Liu and Chan, 2016). 

 

 

 

Figure 5.5  PSD in laminar and turbulent coagulation (Liu and Chan, 2016). 

Figure 5.6 shows the particle number density distribution within the same 

aerosol reactor for laminar and turbulent flows, respectively. As particle number 
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density decreases during pure coagulation process, the coagulation rate distribution 

can be characterized by the particle number density distribution within the aerosol 

reactor. From Figure 5.6(a), the high particle number density regions can be found 

throughout the first half of the aerosol reactor in laminar flow which implies low 

coagulation rates in these regions. The particle number density does not decrease 

significantly until the second half of the aerosol reactor. It suggests that coagulation 

mainly takes place in the second half of the aerosol reactor, which renders high 

particle number density and low average coagulation rate throughout the whole 

aerosol reactor in laminar flow. It can be seen from Figure 5.6(b), however,      

the particle number density in turbulent flows remains very low in most of       

the regions within the aerosol reactor except for some zones near the outlet of     

the aerosol reactor and behind the internals. It demonstrates that coagulation process 

is obviously enhanced in turbulent flows compared to coagulation in laminar flow. 

 

 

Figure 5.6  Particle number density (m−3) contour in laminar and turbulent 

coagulation (Liu and Chan, 2016). 

 

 



 

Chapter 5       CFD-PBM Simulation of Aerosol Dynamics in Turbulent Flows 

  114 

5.4.2  The Effect of Rej Number on Coagulation in Turbulent Flows 

The enhanced effect of turbulence on coagulation is shown in Section 5.4.1. 

The effect of different Rej numbers on coagulation process in turbulent flows is 

further studied. Varied jet velocities of 10 m/s, 15 m/s, 20 m/s and 40 m/s are used 

with corresponding Re numbers of 3200, 4800, 6400 and 12800, respectively.   

The results obtained via the proposed Lagrangian Monte Carlo/PDF (LMC-PDF) 

method are directly compared with those obtained via the modified population 

balance sectional method (PBSM) (Hounslow, 1988).  

 

 

Figure 5.7  PSD in turbulent coagulation: Case A, Rej = 3200; Case B, Rej =4800; 

Case C, Rej = 6400; Case D, Rej =12800 (The PBSM results are obtained based on 

the method proposed by Hounslow (1988)) (Liu and Chan, 2016). 

Figure 5.7 shows the obvious effect of different Rej numbers on the PSD of 

aerosol particles experiencing coagulation process in turbulent flows. With Re 

number of the jet increasing from 3200 to 12800, the PSDs become wider and higher, 

with the peaks moving towards the larger end of particle size range, which yields a 
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more evenly distributed population of particles. By controlling proper turbulent flow 

field, the control over PSD of aerosol particles can be achieved which is of 

importance in industrial and engineering applications. Comparing the results 

obtained with the proposed LMC-PDF method and PBSM (Hounslow, 1988), an 

excellent agreement can be found, which validates the reliability and computational 

efficiency of this proposed LMC-PDF method. The wider PSD with increasing Rej 

number is also in accordance with the previous research studies by Reade and 

Collins (2000) and Garrick (2015), which reveals the effect of turbulence on PSD. 

By increasing Rej numbers, turbulence induced mixing is greatly enhanced, which 

leads to enhanced coagulation process. Meanwhile, the peaks of PSD moving 

towards the upper end of particle size spectrum with increasing Rej number implies 

that more and larger particles are produced by enhanced coagulation. In other words, 

as coagulation is enhanced, larger particles have a better chance to appear due to 

more frequent collisions.  

 

Figure 5.8  Average diameter of particles in turbulent coagulation           

(Liu and Chan, 2016). 
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According to the definition of particle number based on average diameter of 

particles (Friedlander, 2000), the number averaged particle diameter can be obtained 

by integrating the PSD over the entire particle diameter range and then averaging 

over the total particle number density of particles. Using this method, the initial 

average diameter and average diameters of particles under the turbulent coagulation 

for different Rej numbers are obtained and shown in Figure 5.8. An increase in 

average diameter from 0.124 μm to 0.245 μm can be observed with increasing Rej 

number from 0 to 12800, which is an obvious increase considering the large number 

of aerosol particles in the aerosol reactor. The Rej number of zero corresponds to  

the initial PSD of aerosol dynamics before entering the aerosol reactor. As higher 

Reynold number of the jet is related to higher turbulent intensity in the present study, 

the increase of average particle diameter with Rej number indicates that coagulation 

is significantly enhanced, which may be explained by the enhanced mixing and more 

frequent collisions between particles. 

The turbulent kinetic energy (m2/s2) under different Rej numbers is presented 

in Figures 5.9(a) to (d). As the length of aerosol reactor is 2 m, which is much longer 

than the nozzle whose length is only 0.01 m, the turbulent zones directly caused by 

the injection of particulate phase are quite limited as shown in Figure 5.9.        

The maximum axial length is around 0.5 m (determined from the first internal in   

the aerosol reactor) and the maximum radial length is around 0.05 m, which is less 

than a quarter of the radius of the aerosol reactor. With the increasing Rej number, 

the turbulent kinetic energy (m2/s2) also increases according to Figure 5.9.  

However, the results presented in Figure 5.7 indicate that turbulence has significant 

impact on coagulation process in turbulent flows despite of the limited zones of 
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turbulence. Coagulation in highly turbulent regions is greatly enhanced as more 

frequent collisions take place producing more and larger particles. 

The particle number density (m-3) contour in turbulent coagulation under 

different Rej is shown in Figure 5.10. It can be seen that despite of the similar 

distribution pattern of particle number density in the aerosol reactor, the particle 

number density decreased with increasing Rej number due to coagulation,     

which suggests an increase in average coagulation rate with the increase of Rej 

number. The results in Figure 5.10 are also consistent with those in Figure 5.8, 

indicating the enhancing effect of turbulence on coagulation. 

 

Figure 5.9  Turbulent kinetic energy (m2/s2) contour in turbulent coagulation    

(Liu and Chan, 2016). 
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Figure 5.10  Particle number density (m−3) contour in turbulent coagulation     

(Liu and Chan, 2016). 

Figure 5.11 shows the variation of normalized particle number density with 

the axial distance under different Rej. As coagulation process continuously reduces 

particle number density, it can be seen that the normalized particle number density 

for any fixed Rej decreases with the axial distance as coagulation process takes place. 

Consider the same axial position, the difference between the normalized particle 

number density shows the different coagulation rates. Obviously, a higher Rej yields 

higher turbulence, which in turn leads to a higher coagulation rate. The results in 

Figure 5.11 show clearly the enhancing effect of turbulence on coagulation.   

When Rej reaches 12800, the maximum value used in the present study, it can be 

observed that the normalized particle number density first decreases rapidly, then 

decreases slightly and finally decreases with the rate almost equal to that with Rej of 
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6400.  The three-stage decrease of normalized particle number density indicates 

that the coagulation rate experiences with three different stages. This may be 

explained by the physical nature of coagulation process. Coagulation is a binary 

particle event which is dependent on local concentration and micro-mixing. 

Coagulation rate is first increased due to the enhanced mixing caused by high 

turbulence, which consumes a large number of particles in a short time. As a result, 

a low local concentration of particles in turn reduces the coagulation rate until more 

particles are accumulated and coagulation rate increases again in the final stage.  

 

 

Figure 5.11  Normalized particle number density of turbulent coagulation     

(Liu and Chan, 2016). 

 

5.4.3  The Effect of Rej Number on Coagulation and Nucleation in Turbulent 

Flows 

The effect of different Rej numbers on two simultaneous aerosol dynamic 

processes (i.e., coagulation and nucleation) in turbulent flows is studied.        

The adopted Rej numbers are the same as described before. Coagulation process is 
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modeled by the turbulence model used in Saffman and Turner (1956) while 

nucleation rate is kept constant as 7.510−6 m-3s−1 for all the studied cases.     

Also, the results are validated with the PBSM (Hounslow, 1988). 

 

 

Figure 5.12  PSD for simultaneous coagulation and nucleation in turbulent flows: 

Case A, Rej = 3200; Case B, Rej =4800; Case C, Rej = 6400; Case D, Rej =12800   

(The PBSM results are obtained based on the method proposed by Hounslow (1988)) 

(Liu and Chan, 2016). 

The PSD of turbulent coagulation and nucleation for different Rej numbers 

is shown in Figure 5.12. Compared with the PSD shown in Figure 5.7, in which only 

coagulation is involved, the PSDs presented in Figure 5.12 become much more 

complicated due to the simultaneous coagulation and nucleation processes in 

turbulent flows. For the case with Rej number of 3200, the PSD extends throughout 

the full particle size range with peaks falling into both small size range         

(less than 1 μm) and large size range (larger than 2 μm), which suggests that the 

simultaneous nucleation and coagulation processes taking place and producing small 

particles and relatively large particles simultaneously. As Rej number increases from 
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3200 to 4800, a new peak appears on the new PSD whose position is around 2.5 μm 

while the other part of the PSD only varies slightly. It indicates that coagulation 

process is enhanced, which produces relatively larger particles to some extent. 

However, as Rej number increases from 4800 to 6400, a new peak appears at the 

position of 1μm on the PSD while the other part of the PSD remains basically the 

same. It is probably because nucleation process is enhanced which will be discussed 

in the following Figure 5.13. With further increasing Rej number from 6400 to 12800, 

the shape of PSD and the positions of peaks both remain unchanged, but the values 

of the peaks are greatly increased, which implies the competition between 

coagulation and nucleation is not changed. With Rej number increases from 4800 to 

12800, a transition from coagulation-dominant mechanism to competition between 

coagulation and nucleation can be reasonably concluded from Fig. 5.12.  

According to Garrick (2015), nucleation is the dominant process until    

the collapse of the jet potential core and turbulent mixing begins in the proximal 

region of the jet, where coagulation becomes the dominant process and leads to    

a broader PSD. Although increasing Rej number may lead to stronger turbulence in 

order to enhance coagulation, but high velocity of jet also causes the delay of 

turbulent mixing in which nucleation becomes dominant in the proximal region of 

the jet.  The reason accounting for the change of PSD mentioned above can be 

verified by the evolution of average diameter of particles with increasing Rej number 

as shown in Figure 5.13. It can be seen that the average diameter of particles 

increases slightly with increasing Rej number from 3200 to 4800, and reaches    

the peak of around 0.8 μm on the PSD. This is due to the enhanced coagulation as 

nucleation leads to smaller average diameter of particles. Moreover, Figure 5.13 
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shows that average diameter of particles decreases when Rej number is larger than 

4800, which yields a maximum average diameter of particles at Rej = 4800 for these 

four studied cases. The Rej number at zero corresponds to the initial average diameter 

of particles before entering into the aerosol reactor. 

 

 

Figure 5.13  Average diameter of particles for simultaneous coagulation and 

nucleation in turbulent flows (Liu and Chan, 2016). 

The contour of turbulent kinetic energy for different Rej numbers is presented 

in Figure 5.14. It can be seen that with Rej number increasing from 3200 to 12800, 

the maxima of turbulent kinetic energy is increased from 2.73 m2/s2 to 47.2 m2/s2,  

a significant increase of turbulence in the aerosol reactor, which affects the aerosol 

dynamics in turbulent flows by enhanced mixing as well as stochastic fluctuations. 

Actually, the interaction between turbulence and aerosol dynamics is the very 

challenging problem that is to be solved. The particle number density contour for 

simultaneous coagulation and nucleation is shown in Figure 5.15. With Rej number 

increasing from 3200 to 4800, the maxima of the particle number density decreases, 
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implying that coagulation process which reduces particle density is dominant. An 

increase of the maxima of particle number density is observed when Rej number 

increases from 4800 to 12800.  

 

 

Figure 5.14  Turbulent kinetic energy (m2/s2) contour for simultaneous coagulation 

and nucleation in turbulent flows (Liu and Chan, 2016). 
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Figure 5.15  Particle number density (m−3) contour for simultaneous coagulation 

and nucleation processes in turbulent flows (Liu and Chan, 2016). 

Comparing Figure 5.15 with Figure 5.13, it can be found that the variation 

particle number density contour is consistent with the variation of average particle 

diameter in Figure 5.13, which reflects the fact that coagulation becomes dominant 

with Rej number increasing from 3200 to 4800. However, as Rej number increases 

from 4800 to 12800, nucleation becomes dominant in the competition with 

coagulation as the average particle diameter decreases continuously. 
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Figure 5.16  Normalized particle number density for simultaneous coagulation and 

nucleation in turbulent flows (Liu and Chan, 2016). 

 

Figure 5.16 shows the variation of normalized particle number density with 

axial distance. It can be seen clearly that the normalized particle number density 

experiences significant change with Rej number increasing from 3200 to 12800. The 

normalized particle number density increases rapidly with Rej number of 3200, 

which implies that nucleation is the dominant mechanism resulting in a large number 

of new particles. As Rej number increases from 3200 to 4800, the normalized particle 

number density decreases significantly, indicating that the dominant mechanism in 

the aerosol reactor changes from nucleation to coagulation as the latter reduces the 

total number of particles, which is also in accordance with the increase of average 

diameter as shown in Figure 5.13. However, as the Rej number further increases from 

4800 to 12800, the normalized particle number density also increases when 

compared with that with Rej number of 4800 at the same axial position. These results 

indicate that coagulation is weakened while nucleation is enhanced when Rej number 

increases from 4800 to 12800, which is consistent with the findings in       
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Garrick (2015) that too high injection velocity causes the delay of turbulent mixing 

and in turn reduces coagulation rate as mentioned above. 

5.4.4  Simultaneous Coagulation, Nucleation and Growth Processes in 

Turbulent Flows 

Complex aerosol dynamics in turbulent flows has been widely encountered 

and is a challenging problem in the numerical research. The PSDs of aerosol 

particles experiencing simultaneous coagulation, nucleation and growth processes 

for different Rej numbers are shown in Figure 5.17. The results are also validated 

with PBSM (Hounslow, 1988). Comparing with the results of PSDs in Figure 5.12, 

it can be found that the shape of the PSDs are basically the same except for       

the positons and values of some peaks on them. The PSD at Rej=3200 is also 

characterized by its peaks, which are closer to the lower end of the particle size range 

in Figure 5.17 when compared to that in Figure 5.12. The different positions of peaks 

of the PSD should be due to the growth process since the other conditions in this 

case are the same with that in turbulent coagulation and nucleation processes except 

that growth process is introduced. With Rej number increasing from 3200 to 4800,   

a new peak at around 1.5 μm appears on the new PSD. This is caused by the growth 

and coagulation processes as nucleation process forms much smaller particles rather 

than particles with diameter of 1.5 μm, which is shown by the increase of average 

particle diameter with Rej number increasing from 3200 to 4800 in Figure 5.18. 

However, as Rej number increases from 4800 to 6400, the value of the peak       

at 1.5 μm decreases very slightly while the value of the peak at around 0.6 μm 

increases significantly, which may be due to the enhanced nucleation process as 

nucleation produces more particles with the smallest size. The value of the peak   
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at 0.6 μm increased sharply again with Rej number increasing from 6400 to 12800, 

implying that nucleation process is further enhanced to be the dominant process. 

 

 

Figure 5.17  PSD for simultaneous coagulation, nucleation and growth in turbulent 

flows: Case A, Rej = 3200; Case B, Rej =4800; Case C, Rej = 6400; Case D,       

Rej =12800 (The PBSM results are obtained based on the method proposed by 

Hounslow (1988)) (Liu and Chan, 2016). 

The average diameters of particles for different Rej numbers are calculated 

in order to reveal the physical mechanism behind the change of the PSD. Figure 5.18 

shows an increase in average diameter of particles for increasing Rej number from 

3200 to 4800. Whereas for Rej number larger than 4800 (within these four studied 

Rej numbers for this case), the average diameter of particles decreases with 

increasing Rej number. Based on the average diameter of particles calculated from 

the obtained PSD, it can be concluded that, with increasing Rej number from 4800 

to 6400, the change of the peak at around 0.6 μm is due to pure nucleation as neither 

growth nor coagulation leads to the decrease in average diameter of particles. 

Comparing the case of turbulent coagulation and nucleation processes in Figure 5.13 
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with this case in Figure 5.18, it can be found that the particle number density of small 

particles increases with Rej number in both of the two cases, which implies that 

nucleation, is the dominant process among the simultaneous processes in the present 

study.  

 

 

 

Figure 5.18      Average diameter of particles for simultaneous coagulation, nucleation 

and growth processes in turbulent flows (Liu and Chan, 2016). 

 

Figure 5.19 shows the particle number density contour for simultaneous 

coagulation, nucleation and growth in turbulent flows. Consistent with the variation 

of average diameter of particles, the maxima of the particle number density contour 

also increases with increasing Rej number from 3200 to 4800 and then decreases 

with Rej number for larger than 4800. The variation of particle number density 

contour also verifies the effect of Rej number on the competition between 

coagulation and nucleation. The dominant process changes from coagulation to 

nucleation with increasing Rej number from 3200 to 12800 in the present study. 
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Figure 5.19 Particle number density (m−3) contour for simultaneous coagulation, 

nucleation and growth in turbulent flows (Liu and Chan, 2016).  

 

Comparing with the results in Figure 5.15, regions with high particle number 

density appear within the core of the jet in Figure 5.19(a) to (c), which may be due 

to the growth processes taking place in these regions. The regions with high particle 

number density regions in Figure 5.19(d), however, move from the core of the jet to 

the zone between the second and the third internals, and close to the wall of      

the aerosol reactor. This may be because this zone becomes a dead zone of flow and 

mixing for Rej= 12800, which leads to weakened coagulation process in this dead 

zone of flow and mixing.  
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Figure 5.20  Normalized particle number density for simultaneous coagulation, 

nucleation and growth in turbulent flows (Liu and Chan, 2016). 

Figure 5.20 presents the variation of normalized particle number density with 

axial distance. It can be seen that the variation of normalized particle number density 

is basically the same for all the four studied Rej numbers despite small differences, 

which increases first until a peak appears between the second and the third partition 

of the aerosol reactor. Except for the case with Rej number of 12800, the normalized 

particle number density after the peak decreases, and then basically remains stable 

with slight increase at the outlet of the aerosol reactor for all the other three cases. 

The variation of normalized particle number density for Rej number ranging from 

3200 to 6400 can be explained by the competition of multiple aerosol dynamic 

processes including coagulation, nucleation and growth. However, the particle 

number density at the peak is so high that coagulation process takes place,     

which reduces the particle number density to a basically dynamic equilibrium 

between the increasing factor (nucleation) and decreasing factor (coagulation) of 

particle number density. Although coagulation is not the dominant process in    
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the four studied cases, it is still shown in Fig. 5.20 that once the Rej number is larger 

than 4800, the normalized particle number density increases due to the delay of 

turbulent mixing at high injection velocity (Garrick, 2015). As for the case with Rej 

number of 12800, the low particle number density near the outlet of the aerosol 

reactor may be caused by the dead zone between the second and the third partitions 

of the aerosol reactor where those particles are trapped. 

5.4.5  Computational Accuracy and Efficiency 

The term “accuracy” here refers to the agreement between the numerical  

simulation results via the proposed coupled CFD-Monte Carlo method and the 

reference method (i.e. the PBSM method). The maximum relative error and 

normalized convergence time for different studied cases are shown in Table 5.2. It 

can be seen that for the same Rej number, the maximum relative error only varies 

very slightly for different aerosol dynamic processes. With the Rej number 

increasing from 3200 to 12800, however, the maximum relative error for any of the 

studied cases in Table 5.2 increases rapidly, which may be explained by the 

increasing turbulent fluctuations caused by the increasing Rej number. The 

maximum relative error amongst all the studied cases is only 4.83%, which proves 

the high accuracy of this newly proposed and developed CFD-MC method. The 

normalized convergence time is used to represent the computational efficiency of 

the numerical simulation. It can be seen that for any fixed case amongst the studied 

cases in Table 5.2, the normalized convergence time only increases very slightly 

with increasing Rej number. However, comparing different studied cases with the 

same Rej number shows that the normalized convergence time increases 

significantly with the complexity of the studied cases. When Rej number is 12800, 
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for instance, the normalized convergence time of pure coagulation process is about 

1.10, which increases to 5.00 for coagulation and nucleation processes and to 11.25 

for simultaneous coagulation, nucleation and growth processes, respectively. The 

variation of the normalized convergence time shows that the complexity of the 

studied cases has much greater influence on the computational efficiency than Rej 

number, which may be because more computational time is needed for more 

complex aerosol dynamic processes in order to reach convergence. It can be also 

seen that although PBSM method needs a shorter normalized convergence time than 

the LMC-PDF method for the simple cases, almost the same normalized 

convergence time is needed for complex cases. Thus, this newly proposed and 

validated LMC-PDF provides an efficient but relatively simple algorithm. 

Table 5.2   Maximum relative error and normalized convergence time for different 

studied cases (Liu and Chan, 2016).  

Studied 

cases 
Rej 

Maximum 

relative error, 

max (%) 

Normalized 

convergence time 

of LMC-PDF 

Normalized 

convergence 

time of PBSM  

Coagulation 

3200 1.00 1.00 0.75 

4800 3.00 1.08 0.88 

6400 4.10 1.08 0.88 

12800 4.60 1.10 1.00 

Coagulation 

and 

nucleation 

3200 1.00 4.50 4.00 

4800 2.90 4.50 4.00 

6400 4.30 4.63 4.25 

12800 4.80 5.00 5.00 

Coagulation, 

nucleation 

and growth 

3200 1.10 10.00 10.00 

4800 3.00 10.25 10.25 

6400 4.30 10.75 10.50 

12800 4.80 11.25 11.25 

LMC-PDF: Lagrangian Monte Carlo-PDF method; PBSM: Population balance 

sectional method. The convergence time is normalized based on the ratio of any 

convergence time to the shortest convergence (i.e., the convergence time of 

turbulent coagulation for Rej = 3200) in the present study.   
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5.4.6  Numerical Stability Analysis 

The typical grid independence analysis is given in Table 5.3. For the 

relatively simple turbulent coagulation case (Rej=3200), the normalized 

convergence time increases to more than nine times (i.e., from 1.00 to 9.36) with the 

number of grid cells increasing from 8112 to 22800 while the maximum relative 

error hardly changes (i.e, from 1.00% to 0.99%). For the relatively complex 

simultaneous case such as coagulation, nucleation and growth processes       

(Rej = 12800), the normalized convergence time increases rapidly and drastically 

(i.e., from 11.25 to 112.50) with number of grid cells increasing from 8112 to 22800 

while the maximum relative error hardly changes (i.e., from 4.80% to 4.78%).    

So the grid cell independence can be confirmed from Table 5.3 and the optimal grid 

cells is selected to be 8112 in the present study.  

  

Table 5.3  Typical grid cell independence analysis. 

Selected cases 
Number of 

grid cells 

Maximum relative 

error, max (%) 

Normalized convergence 

time  

Turbulent 

Coagulation 

(Rej,= 3200) 

8112 

12044 

15200 

22800 

1.00 1.00 

0.99 2.25  

0.99 4.00 

0.99 9.36 

Coagulation 

nucleation and 

growth 

(Rej= 12800) 

8112 4.80 11.25 

12044 4.80 25.30 

15200 4.79 45.00 

22800 4.78 112.50 

The normalized convergence time is defined by the ratio of any convergence 

time to the shortest convergence (i.e., the convergence time of turbulent 

coagulation for Rej = 3200) in the present study. 
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Table 5.4  Typical analysis of the number of simulation particles per grid cell. 

Selected cases 

Number of 

simulation particles 

per grid cell 

Maximum relative 

error, max (%) 

Normalized 

convergence time  

Turbulent 

Coagulation 

(Rej = 3200) 

20 

30 

60 

100 

2.00 0.80 

1.00 1.00 

0.99 4.50 

0.99 16.36 

Coagulation 

nucleation and 

growth 

(Rej = 12800) 

20 4.90 10.90 

30 4.80 11.25 

60 4.79 52.80 

100 4.79 125.50 

The normalized convergence time is defined by the ratio of any convergence time 

to the shortest convergence (i.e., the convergence time of turbulent coagulation 

for Rej = 3200) in the present study. The total number of grid cells used is 8112.  

The effect of the number of simulation particles per grid cell is shown in Table 5.4. 

Similar variations can be found in Table 5.4, the normalized convergence time 

becomes unacceptably high while the maximum relative error remains almost 

unchanged for the studied Rej from 3200 to 12800 with the increasing number of 

simulation particles per grid cell. Hence, the number of simulation particles is set as 

30 to strike a balance between the computational accuracy and time in the present 

study. The numerical stabilities can be well verified by the results presented in 

Tables 5.3 and 5.4 and the above discussions. 

5.5   Summary 

Typical simultaneous aerosol dynamic processes (i.e., coagulation, 

nucleation and growth) are widely encountered in turbulent flows.           

They are investigated with this newly proposed and developed Lagrangian PDF 

approach based CFD-Monte Carlo method. The effect of different Rej numbers on 
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the interaction between turbulence and aerosol dynamics is fully studied.       

The results reveal the significant impact of Rej on both single aerosol process (e.g. 

coagulation) and the competitive and simultaneous aerosol dynamic processes in 

turbulent flows.  

This newly proposed and validated CFD-Monte Carlo/PDF method renders an 

efficient and accurate method to deal with the interaction between turbulence and 

aerosol dynamics by overcoming the closure problems. The full PSD of aerosol 

particles is accurately obtained. The enhancing effect of turbulence on coagulation 

is demonstrated by comparison of laminar coagulation and turbulent coagulation. 

Further study reveals the effect of turbulence on the PSDs for simultaneous aerosol 

dynamic processes and significant impact of turbulence on the final PSD of particles.               

For simultaneous complex aerosol dynamics in turbulent flows, turbulence plays an 

important role in broadening the PSD. The coupled CFD-Monte Carlo/PDF method 

also shows excellent numerical stability according to typical grid cell independence 

analysis and typical analysis of the number of simulation particles per grid cell. 
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Chapter 6   Simulation of Aerosol Dynamics in Turbulent 

Reactive flows  

6.1  Introduction  

Combustion processes of the fossil fuels contain brief descriptions that 

convert the chemical energy into sensible energy in the products.             

The fossil fuels provide a major source of energy for miscellaneous applications 

ranging from household and industrial heating to power generation and metallurgy 

as well as combustion chamber in engine and propulsion systems            

(Kuo and Acharya, 2012). Turbulent reactive flows conditions are widely 

encountered in most practical combustion devices such as internal combustion (IC) 

engine and fluidized bed.  The release of chemical energy involves radiative heat 

transfer (Modest, 2003) and pollutant emissions (Boushaki et al., 2016).      

Models accounting for all aspects of combustion devices ranging from gas turbines 

and IC engines to industrial furnaces are needed to meet the increasingly stricter 

emissions regulations from combustion devices and the higher combustion 

efficiency requirements. Thus, it is necessary to develop models with various 

physical sub-processes and detailed chemistry in combustion process to evaluate the 

performance of different combustion flows. Moreover, turbulence adds to the 

complexity required for modeling of combustion processes resulting from the 

turbulence chemistry interaction (TCI) and turbulence radiation interaction (TRI) 

(Mehta, 2008). The modeling of soot formation in turbulent reactive flows is the 

focus of this chapter.  

 

A comprehensive modeling of turbulent reactive flows, including detailed 

chemistry, radiation and soot models with detailed closures for TCI and TRI is 
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presented in this chapter. This newly proposed and validated CFD-MC method  

(Liu and Chan, 2016) derived from the transported PDF approach coupling with PBE 

in Chapter 5 is used to simulate a turbulent non-premixed jet flame of methane.      

A time-dependent Reynolds-averaged Navier-Stokes (RANS) model is used in 

conjunction with the k-ε turbulence model as the CFD code to solve the turbulent 

combustion flow fields. One of the advantages of using the transported PDF 

approach is that the chemical reaction source, radiation emission and soot generation 

source terms appear in closed form (Akridis and Rigopoulos, 2015).  

Both the kinetics of soot formation kinetics and the chemistry of combustion 

are taken into account in the numerical simulation. The classical combustion 

mechanism GRI 1.2 (Frenklach et al., 1995), which is still widely used today in 

combustion simulation (Akridis and Rigopoulos, 2015; Pant et al., 2016; Buchmayr 

et al., 2016). It is used to describe the combustion chemistry in the present study. 

The particle representations of mixture fraction, species, enthalpy and particle size 

distribution (PSD) are obtained with the Lagrangian Monte Carlo method.      

The turbulence-chemistry interaction (TCI) and turbulence-radiation interaction 

(TRI) are also considered to provide a better insight into soot dynamics in       

the turbulent non-premixed jet flame of methane. The transported PDF method is 

used to capture the TCI (as described by Lindstedt and Louloudi, 2005) and TRI      

(as described by Mehta et al., 2010). Temperature, mixture fraction and soot 

distribution are computed in both radial and axial direction. The numerical 

simulation results are then compared with the classical experimental results 

(Brookes and Moss, 1999) available in the literature. 
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6.2  Numerical Methodology 

6.2.1  The CFD Code 

The governing equations of the coupled fluid dynamics-aerosol dynamics in 

turbulent flows include the continuity, momentum equations (i.e., Navier-Stokes 

equations) and energy equation as well as the discretized population balance 

equation (PBE) of particle number density given in Chapter 5.  

The one-point, one-time composition PDF approach is coupled with a time-

dependent RANS code with a k-ε turbulence model. The CFD code is discretized 

with a finite volume scheme. The averaged momentum and k-ε turbulence equations 

are solved in a two-dimensional axisymmetric domain. The boundary conditions and 

the geometry of the domain are set by following the experiment of Brookes and 

Moss (1999). The mean velocity field and the turbulence time scale are provided to 

the scalar PDF by the CFD code while the micro mixing term is obtained via      

the estimation of ensemble mean scalars in each computational cell of          

the computational grid. In order to reduce the statistical error, a time-averaging 

method is further used. The following equations show the k-ε turbulence model in 

Cartesian tensor notation form and repeated indices mean summation      

(Akridis and Rigopoulos, 2015): 

∂

∂t
[ρ̅k]+

∂

∂xj

[ρ̅ũjk] = 
∂

∂xj
[(μ+

μt

σk
)

∂k

∂xj
] +Gt ρ̅ε 

∂

∂t
[ρ̅ε]+

∂

∂xj

[ρ̅ũjε] = 
∂

∂xj
[(μ+

μt

σε
)

∂ε

∂xj
] +

ε

k
[Cε1Gt  Cε2ρ̅ε] 

(6-1) 

(6-2) 
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where Reynolds averaged quantities are shown with a bar on top while Favre 

averaged quantities are shown with a tilde on top. ρ  is the mixture density,       

μ is the molecular viscosity of the mixture, μt is the turbulent viscosity, σ is the 

turbulent Prandtl number and Gt is the generation rate of turbulent kinetic energy. 

The default standard model constants are modified and listed in Table 6.1,     

where the constant Cε2 is changed from 1.92 to 1.8 for correction in order to obtain 

better prediction of turbulence (Akridis and Rigopoulos, 2015).  

Table 6.1  Model constants for the k-ε turbulence model 

Cμ Cε1 Cε2 σk σε 

0.09 1.44 1.8 1.0 1.3 

6.2.2  The Lagrangian PDF Method 

In the Lagrangian PDF method, stochastic particles are used to represent  

the quantities including mixture fraction, species mass fraction, total enthalpy and 

the particle size distribution (PSD). Although deterministic techniques such as finite 

difference or finite volume schemes can be used to solve the transported PDF 

equations, the computational time increases exponentially (Leonard and Dai, 1994) 

and becomes intractable for transported PDF equations with a large number of 

scalars of interest. Thus, stochastic algorithm i.e., Monte Carlo algorithm is used to 

solve the transported PDF equations, in which the computational time only increases 

linearly with the number of independent scalars (Leonard and Dai, 1994). 
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The motion equation of notional particles in physical domain is similar to 

Equation (5-18) and is shown as below:   

dX (P)(t)=[ũ +
∇ΓT

ρ̅
](P)dt + [2

ΓT

ρ̅
]1/2

(P)dW 

where W is an isotropic vector Wiener process, ΓT is the turbulent diffusivity, X is 

the position and ũ  is the Favre averaged velocity of notional particles, ρ  is     

the mixture density. The subscript P represents a single Lagrangian notional particle. 

The Euclidean minimum spanning tree (EMST) model (Subramaniam and 

Pope, 1998) is chosen as the mixing model, in which the variation of particle 

composition is obtained by computing the interaction of particles along the edges of 

Euclidean minimum spanning trees based on ensembles of particles in          

the composition space. The complete equation of Lagrangian particles in scalar 

space is shown as below:  

dXa
(P)(t)=Φmix

(P)
+Sa

(P)
dt+δrad

Q̇
rad

(P)

ρ(P)
dt 

where Φmix
(P)

 in the first term is the micro-mixing term, Sa
(P)

 in the second term is 

the chemical reaction source term, Q̇
rad

(P)
 in the last term is the radiation by emission 

source term, δrad is Kronecker delta function, ρ(P) is the density of particles on the 

right-hand side of Equation (6-4). With the assumption of equal diffusivities for all 

scalars, the micro-mixing term is assumed the same for all scalars. As more than one 

mechanism appear in Equation (6-4), a time step operator splitting method       

(Liu and Chan, 2017) is used to compute different mechanisms one by one.      

The Lagrangian Monte Carlo method is used to obtain the ensemble mean scalars by 

(6-3) 

(6-4) 
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time averaging and then input the results to the CFD (RANS) code to close other 

terms. The detailed procedures of one loop of Monte Carlo simulation can be found 

in Chapter 5. 

6.2.3  Particle Tracking Algorithm 

The particle tracking algorithm of Subramaniam and Haworth (2000) is 

adopted here. For a particle, j in cell, i, let the minimum time of particle, j to intersect 

a face of cell, i be ti,j, and the time step be ∆t. If ti,j >∆t, the particle, j stays in cell,  

i at the end of one time step. If ti,j <∆t, the particle, j is moved to the face intersection 

point of cell, i at the end of one time step, and its cell pointer is updated and     

time-step is decremented by ti,j. Repeat the tracking particles until the remaining time 

of all the particles becomes zero. The total number of particles in a cell is maintained 

within a prescribed range by cloning or destroying particles if a lower bound or upper 

bound is reached. The time step, ∆ti in a cell is chosen to be the minimum time for 

satisfying the turbulence time scale and CFL conditions in Chapter 5.     

Moreover, the final time step ∆t is chosen to be the minimum amongst all the cells 

in the computational domain as follows:  

∆t=min{∆ti, i=1, 2,…,n}                  (6-5) 

where n is the total number of cells in the computational domain. 
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6.2.4  Estimation of Mean Field 

Estimates of mean quantities in PDF/Monte-Carlo simulation are obtained 

by means of a particle-cloud-in-cell method and the Favre average of a quantity,   

Q in a cell, c is shown as follows (Mehta, 2008):  

Q̃c =
∑ mpQpp∈c

∑ mpp∈c

 

where mp is the mass of particle p and Qp is the quantity carried by particle, p in  

a cell, c. The summation is carried out over all the particles in cell, c. 

6.2.5  Soot Model  

An acetylene based soot model with only growth/oxidation and nucleation 

processes (Akridis and Rigopoulos, 2015; Liu et al., 2003) is used in the present 

study. According to the experimental results of the same jet flame (Brookes and 

Moss, 1999), the soot volume concentration in the jet flame is only of magnitude 

order 10-7, in which the coagulation events of soot particles hardly take place. Thus, 

coagulation process is not included in the soot model here. An important assumption 

is that the shape of soot particles is considered spherical. Nucleation and surface 

growth rate are assumed the first-order dependent on acetylene concentration while 

the oxidation rate is a function of molecular oxygen and hydroxyl concentrations, 

which is as follows (Akridis and Rigopoulos, 2015): 

Nucleation rate:  

 NU0 =
2NAkn(T)[C2H2]

Cmin
 

(6-6) 

(6-7) 
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Growth rate:  

 GSG =
2kHW(T)[C2H2]As

ρs
 

Oxidation rates:  

GO2 =
120[

kαXO2χ1

1 + kzXO2
+kbXO2(1 χ1)]As

ρs
 

GOH =

167XOH

√T
As

ρs
 

where k is reaction rate constant, a function of temperature. Cmin is the minimum 

number of carbon atoms that is needed to produce an incipient soot particle,   

which is assumed 700 here with an initial soot diameter of 2.4 nm (Liu et al., 2003). 

NA is the Avogadro constant. The density of soot, ρs  is assumed 1800 kg/m3.     

As is the surface area of soot particles. X is the mole fraction of a species.      

Other constants are set according to Hall et al. (1997) and Liu et al. (2003). 

6.2.6  Radiation Model 

An optically thin radiation model is chosen as the radiation model in     

the present study where the gaseous phase and soot particles only emit radiation but 

do not re-absorb any energy. The radiation coefficients are calculated according to 

Akridis and Rigopoulos (2015). The radiation model with CH4, H2O, CO and CO2 

taken into account is shown as follows:  

Q̇rad  = 4σ(T4  Tb
4) ∑ piap,i

Nsp

i=1

+ 4σfv(T
5  Tb

5) 

(6-8) 

(6-9b) 

(6-9a) 

(6-10) 
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where σ is the Stefan-Boltzmann constant, Tb is the background temperature of  

the experiment and Nsp is the total number of species. pi is the partial pressure and 

ap,i is the Planck mean absorption coefficient of species, i. fv is the volume fraction 

of soot particles (Lindstedt and Louloudi, 2005). 

6.3  Numerical Simulation Setup 

 The configuration of the combustor in the numerical simulation is shown in 

Figure 6.1, which is a piloted non-premixed combustor in the experiment of Brookes 

and Moss (1999). The combustor consists of a jet burner with internal diameter of 

4.07 mm having a jet flame at 20.3 m/s. The Reynolds number of the jet at exit is 

5000. An air co-flow is supplied at 0.5 m/s surrounding the central fuel tube.      

A Pyrex tube with internal diameter of 156 mm and height of 600 mm is used to 

confine the jet flame. The outlet of the burner is at 290 K and atmospheric pressure.     

The detailed jet burner parameters of the studied combustor is shown in Table 6.2.  
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Figure 6.1   Jet burner configuration of the combustor (Brookes and Moss, 1999). 

Table 6.2   Jet burner parameters and conditions for the studied combustor. 

Absolute pressure 1 atm 

Velocity of methane 20.3 m/s 

Flow rate of methane 10.3 g/min 

Inlet temperature of methane 290 K 

Velocity of air 0.5 m/s 

Flow rate of air 708 g/min 

Inlet temperature of air 290 K 

Reynolds number of jet flame exit, Rej 5000 

Internal diameter of the burner 4.07 mm 

Internal diameter of confined Pyrex tube  156 mm 

Number of notional particles per cell 50 
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 The computational domain is shown in Figure 6.2, which is              

a two-dimensional (2D) axisymmetric jet domain. The non-uniform 2D grid is 

generated with 160 points in the axial direction and 100 points in the radial direction. 

There are totally 5542 cells and 5597 nodes in the grid. The number of notional 

particles used for each cell is 50 to compute the scalar variables in the Lagrangian 

PDF method. In addition, the scalar variables are time averaged with 3000 iterations 

in order to reduce the statistical error. The mixture fraction is defined as the mass 

fraction of species originating from the fuel stream amongst all the species,    

which is used to characterize the instantaneous thermochemical state of         

the non-premixed turbulent combustion in the present study.  

 

 
 

Figure 6.2   The computational grid used in the numerical simulation of         

an axisymmetric combustor. 
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The mixture fraction is defined as a normalized ratio by the following newly added 

Equation (6-11), measuring the fuel/oxidizer ratio (Turns, 2011):  

Z = 
sYF − YO+ (YO)0

sYF + (YO)0  

where Z is the mixture fraction, YF is the molecular fraction of fuel in the mixture, 

YO is the molecular fraction of oxygen in the mixture, (YO)0 is the initial molecular 

fraction of fuel, s is the molecular ratio of fuel to oxidizer (i.e., air). 

6.4  Results and Discussion 

6.4.1  Axial and Radial Jet Temperature Variations of the Studied Combustor 

In the present studied axisymmetric combustor, the jet temperature varies in 

both radial and axial directions. It can be seen that axial distance is actually      

the height above the inlet of the burner as shown in Figure 6.2. The simulation results 

are compared with the classical experimental results available from Brookes and 

Moss (1999). Figure 6.3 shows the axial jet temperature variation at the centerline 

of the studied combustor for Rej = 5000. The numerical results agree well with    

the experimental results. With increasing axial distance from zero (the inlet of the 

burner) to 0.6 m, the sampling position in the jet flame moves from the inner layer 

to the outer layer of methane flame, which corresponds to the increase of jet 

temperature axially.  

 

(6-11) 
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Figure 6.3  Axial jet temperature variation at the centerline of the studied 

combustor for Rej=5000 (The experimental results are obtained from Brookes and 

Moss (1999)). 

 

 Figure 6.4 shows the radial jet temperature variation at the axial distance of 

250 mm for the studied combustor at Rej = 5000. Excellent agreement can be 

observed between the jet temperature from numerical simulation and that from the 

experiment of Brookes and Moss (1999). The radial distance of zero corresponds to         

the centerline of the jet flame. With increasing radial distance from zero to 0.06 m,   

the sampling position moves from the centerline of jet flame to the outer layer of  

the methane flame and finally out of the flame region. Thus, the radial jet 

temperature in Figure 6.4 increases first and then decreases when the sampling 

position moves out of the flame region. It is obvious that the simulation results 

obtained by the proposed coupled CFD-Monte Carlo method accurately capture  

the radial jet temperature variation in the combustor.  
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Figure 6.4   Radial jet temperature variation at the axial distance of 250 mm for 

the studied combustor at Rej=5000 (The experimental results are obtained from 

Brookes and Moss (1999)). 

 

The radial jet temperature variation at the axial distance of 350 mm for    

the studied combustor at Rej = 5000 is shown in Figure 6.5. A higher jet temperature 

at radial distance of zero can be observed in Figure 6.4 than that in Figure 6.5,    

which reflects the effect of axial distance on jet temperature. With increasing radial 

distance from 0 to 0.06 m, the temperature first increases slightly then decreases 

gradually to about 290 K (i.e., ambient temperature), which is consistent with    

the results in Figure 6.4. The temperatures predicted by numerical simulation agree 

well with the classical experimental results available from Brookes and Moss (1999). 
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Figure 6.5  Radial jet temperature variation at the axial distance of 350 mm for  

the studied combustor at Rej =5000 (The experimental results are obtained from 

Brookes and Moss (1999)). 

 

6.4.2  Axial and Radial Jet Mixture Fraction Variations of the Studied 

Combustor 

Figure 6.6 shows the axial jet mixture fraction variation at the centerline of 

the studied combustor for Rej=5000. Comparing the numerical results obtained by 

this newly proposed coupled CFD-Monte Carlo method and the experimental results 

(Brookes and Moss), a good agreement can be found. With increasing axial distance 

from zero (i.e., the outlet of the burner centerline) to 0.6 m, the mixture fraction 

decreases rapidly, indicating the processing of the non-premixed methane 

combustion.  
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Figure 6.6  Axial jet mixture fraction variation at the centerline of the studied 

combustor for Rej =5000 (The experimental results are obtained from Brookes and 

Moss (1999)). 

 

The radial jet mixture fraction variation at the axial distance of 250 mm for 

the studied combustor at Rej =5000 is shown in Figure 6.7. The numerical results 

obtained agree well with the experimental results despite slight over prediction of 

mixture fraction. However, the discrepancy at 0.005 m in the radial distance may be 

caused by the instability and stagnation region of jet flame. With increasing radial 

distance from 0 to 0.04 mm, the mixture fraction in Figure 6.8 decreases gradually 

to almost zero at 0.04 mm in the radial direction. 
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Figure 6.7  Radial jet mixture fraction variation at the axial distance of 250 mm for 

the studied combustor at Rej =5000 (The experimental results are obtained from 

Brookes and Moss (1999)). 

 

Figure 6.8 shows the radial jet mixture fraction variation at the axial distance 

of 350 mm for the studied combustor at Rej =5000. Good agreement can be obtained 

between the numerical results and the experimental results except for the mixture 

fraction at the radial distance of 0 mm (i.e., centerline of jet flame) which may be 

caused due to the instability and stagnation region of jet flame. Comparing the 

mixture fraction in Figures 6.7 and 6.8, it can be found that the mixture fraction at 

250 mm in the axial direction is higher than that at 350 mm in the axial direction if 

radial distance is less than 0.03 m. With increasing radial distance from 0 to      

0.04 mm, the mixture fraction in Figure 6.8 decreases gradually to a stable value at 

0.04 mm in the radial direction. The higher mixture fraction at 0.04 m in Figure 6.8 
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implies that the configuration of jet flame at different heights above the burner are 

different.   

 

Figure 6.8  Radial jet mixture fraction variation at the axial distance of 350 mm for 

the studied combustor at Rej=5000 (The experimental results are obtained from 

Brookes and Moss (1999)). 

 

6.4.3  Axial and Radial Jet Soot Volume Fraction Variations of the Studied 

Combustor  

Figure 6.9 shows the axial jet soot volume fraction variation at the centerline 

of the studied combustor for Rej =5000. It can be seen that the numerical results 

provide excellent prediction of the soot volume fraction compared with         

the experimental results (Brookes and Moss, 1999). The slight under prediction at 

the axial distance of 0.55 m may be due to the instability and stagnation region of 

jet flame.  
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Figure 6.9   Axial jet soot volume fraction variation at the centerline of the studied 

combustor for Rej = 5000 (The experimental results are obtained from Brookes and 

Moss (1999)). 

 

 

Comparing Figure 6.9 with Figure 6.3, it can be seen that as jet temperature 

increases with the axial distance, the soot volume fraction increases accordingly, 

implying that high jet temperature is conducive to the formation of soot particles. 

This can be explained from the Equations (6.7) to (6.9). As jet temperature increases, 

the aerosol dynamic processes including nucleation, growth and oxidation are all 

accelerated, resulting in the increase of soot volume fraction in the axial direction. 

Figure 6.10 shows the radial jet soot volume fraction variation at the axial 

distance of 350 mm for the studied combustor at Rej = 5000. An excellent agreement 

between the numerical results and experimental results can be obtained in     

Figure 6.10. With increasing radial distance from 0 to 0.05 m, an obvious gradient 

of soot volume fraction can be observed. Comparing Figure 6.10 with Figure 6.5,   
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it can be found that the higher soot volume fraction corresponds to higher jet 

temperature. As jet temperature decreases in the radial direction, the soot volume 

fraction decreases accordingly. The numerical simulation with the newly proposed 

coupled CFD-Monte Carlo method demonstrates high capability in capturing    

the variation of soot volume fraction in the non-premixed turbulent jet flame of 

methane.  

 

 

Figure 6.10  Radial jet soot volume fraction variation at the axial distance of     

350 mm for the studied combustor at Rej=5000 (The experimental results are 

obtained from Brookes and Moss (1999)). 
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425 mm above the burner for the studied combustor at Rej=5000 in Figure 6.11. With 

the increase of radial distance, the soot volume fraction decreases obviously. An 

excellent agreement can be obtained between the numerical results and the 

experimental results of Brooke and Moss (1999). The variation of jet soot volume 

0.00 0.01 0.02 0.03 0.04 0.05
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
o
o
t 

v
o
lu

m
e 

fr
a
ct

io
n

 (





)

 

 

Radial distance (m)

 Numerical simulation results

 Experimental results



 

Chapter 6          Simulation of Aerosol Dynamics in Turbulent Reactive Flow 

  156 

fraction in Figure 6.11 can also be explained by the decrease of temperature in    

the radial direction of jet flame, which is consistent with the soot kinetics described 

by Equations (6.7) to (6.9). Combining the results in Figures 6.9 to 6.11,          

it can be concluded that the variation of jet temperature directly affects the variation 

of jet soot volume fraction. 

 

 

Figure 6.11  Radial jet soot volume fraction variation at the axial distance of      

425 mm for the studied combustor at Rej = 5000 (The experimental results are 

obtained from Brookes and Moss (1999)). 

 

 

6.4.4  Soot Size Distribution 

Figure 6.12 shows the jet soot particle size distribution (PSD) at the axial 

distances of 138 mm and 308 mm. The PSD results obtained with the coupled  

CFD-Monte Carlo method proposed in the present study are compared with those 

obtained by Akridis and Rigopoulos (2015).  

0.00 0.01 0.02 0.03 0.04 0.05
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
o
o
t 

v
o
lu

m
e 

fr
a
ct

io
n

 (





)

 

 

Radial distance (m)

 Numerical simulation results

 Experimental results



 

Chapter 6          Simulation of Aerosol Dynamics in Turbulent Reactive Flow 

  157 

  

Figure 6.12  PSD of jet soot particles at the axial distances of 138 mm and 308 mm 

(The benchmark results are obtained from Akridis and Rigopoulos (2015)). 

The PSD results are presented in a logarithmic coordinate system.        

The definition of normalized particle number density can be found in Equation 

(5.23). An excellent agreement is found between the numerical results obtained with 

the coupled CFD-Monte Carlo method and those obtained by Akridis and 

Rigopoulos (2015), which again validates this proposed method in predicting    

the PSD of soot particles in turbulent reactive flows. The PSD at 308 mm in the axial 

direction is higher than the PSD at 138 mm in the axial direction, which is consistent 

with the results in Figure 6.9, i.e., a higher axial distance corresponds to a higher 

soot volume fraction. It can be observed that the soot particles cover a size spectrum 

ranging from 1 nm to 100 nm. With the increase of soot particle diameter, the 

normalized particle number density decreases obviously. A wider PSD can be 

observed at 308 mm in the axial direction than that at 138 mm in Figure 6.12. 
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Comparing Figure 6.12 with Figure 6.3 implies that temperature has vital effect on 

soot formation as temperature directly affects the soot formation processes such as 

nucleation and growth. 

6.4.5  Relative Error Analysis 

Table 6.3 shows the relative error analysis between the present numerical 

and experimental results (Brookes and Moss, 1999). It can be seen from Table 6.3 

that the maximum relative error mainly appears at the physical boundary locations. 

For example, at axial distance of 0.05 m, the maximum relative error of the 

temperature is as high as 50.0%, which may be due to the experimental uncertainties 

in the boundary conditions as similar discrepancy can also be found in the numerical 

simulation results by Akridis and Rigopoulos (2015) which are also compared to the 

experiments by Brookes and Moss (1999). Akridis and Rigopoulos (2015) also 

pointed out the fact of experimental uncertainties. However, the particle size 

distribution (PSD) obtained via the present coupled CFD-Monte Carlo method is 

found to have the smallest relative error (less than 0.1%), which indicates the high 

capability of this method in obtaining accurate PSD of soot particles in turbulent 

non-premixed flames.  

 

 

 

 



 

Chapter 6          Simulation of Aerosol Dynamics in Turbulent Reactive Flow 

  159 

Table 6.3  Relative error analysis between the present numerical and experimental 

results (Brookes and Moss, 1999). 

 
Temperature Mixture fraction 

Soot volume 

fraction  
PSD 

Position 

(m) 

Error 

(%) 

Position 

(m) 

Error 

(%) 

Position 

(m) 

Error 

(%) 

Value 

(%) 

Axial 

direction 
0.05 50.0 0.05 16.7 0.55 11.1 N/A 

Radial 

direction 
0.35 14.0 0.05 15.0 0.05 4.3 <0.1 

Note:  The “relative error” is defined by Equation (4.18). “Position” is used to 

represent the axial or radial distance of the sampling point at which the 

corresponding relative error appears. Particle size distribution (PSD) is taken in the 

radial direction in the experiments (Brookes and Moss, 1999), but no PSD results 

are given in the axial direction. N/A: not applicable. 

6.5  Summary 

The newly proposed and validated CFD-Monte Carlo method in Chapter 5 

is used together with the soot and radiation models to investigate aerosol dynamics 

i.e., soot dynamics in non-premixed turbulent reactive flows. The variation of jet 

temperature, and mixture fraction and soot volume fractions in both axial and radial 

direction are obtained and compared with experimental results of Brookes and Moss 

(1999). Excellent agreement is obtained between the numerical results and       

the experimental results, which validates the reliability and capability of this 

proposed method. Moreover, the PSDs of jet soot particles at different axial 

distances predicted by this newly modified and developed CFD-Monte Carlo 

method agree very well with the results of Akridis and Rigopoulos (2015).      

The numerical results demonstrate that temperature is of great significance to soot 

dynamics and high temperature is conducive to the formation of soot particles in the 

present studied low sooty flame. However, considering the low soot volume 
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concentration in the studied flame (< 0.2 ppm), it should not be interpreted to be of 

any generality in other turbulent sooty flames. Relative error analysis of the 

numerical simulation results shows that the highest discrepancy with the 

experimental results (Brookes and Moss, 1999) appears at boundary locations in the 

jet flame, which may be due to the uncertainties of the experimental boundary 

conditions. However, the present modified CFD-Monte Carlo method still 

demonstrates high capability of obtaining PSD with high accuracy.  
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Chapter 7   Conclusions and Recommendations for Future Work 

7.1  Review of the Present Research 

This thesis is mainly focused on the numerical simulation of multi-scale and 

multi-dimensional turbulent reactive flows with the newly proposed and developed 

computational fluid dynamics (CFD) based Monte Carlo method. The research work 

in this thesis can be divided into three major parts: 

In the first part of the current research, a newly proposed and developed 

stochastically weighted operator splitting Monte Carlo (SWOSMC) method is used 

for the simulation of complex aerosol dynamics. Stochastically weighted particle 

method is coupled with operator splitting method to formulate the SWOSMC 

method for the numerical simulation of particle-fluid systems undergoing       

the complex simultaneous aerosol dynamic processes. The studied cases cover all 

the typical aerosol dynamic processes including coagulation, nucleation, growth and 

condensation. This proposed SWOSMC method is first validated by comparing its 

numerical simulation results of constant rate coagulation and linear rate 

condensation with the corresponding analytical solutions. Coagulation and 

nucleation cases are further studied and the results show excellent agreement with 

the sectional method. This newly proposed SWOSMC method has also 

demonstrated its high numerical simulation capability when used to deal with 

simultaneous aerosol dynamic processes including coagulation, nucleation and 

condensation. 
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The second part of the current research is the development of             

a CFD-population balance modelling (PBM) method for simulating aerosol 

dynamics in turbulent flows. The validated SWOSMC method in Chapter 4 is further 

modified and coupled with CFD method based on the transported probability density 

function (PDF) approach. The formulated CFD-Monte Carlo method allows 

investigating the interaction between turbulence and aerosol dynamics, and 

incorporating individual aerosol dynamic kernels as well as obtaining full particle 

size distribution (PSD). Several typical cases of aerosol dynamic processes including 

turbulent coagulation, nucleation and growth processes are studied and compared to 

the sectional method with excellent agreement. Coagulation in both laminar and 

turbulent flows is simulated and compared to demonstrate the effect of turbulence 

on aerosol dynamics. The effect of different jet Reynolds (Rej) numbers on aerosol 

dynamics in turbulent flows is fully investigated for each of the studied cases.  

The third part of the current research is the simulation of aerosol dynamics 

in turbulent reactive flows by using the newly proposed and developed CFD-PBM 

method together with GRI 1.2 combustion chemistry and soot kinetics models.  

Soot formation in turbulent non-premixed flames of methane as well as its 

interaction with radiation is studied. The particle representations of mixture fraction, 

species, enthalpy and distribution of soot number density are solved using       

the Lagrangian particle method. Both turbulence-radiation and turbulence-chemistry 

interactions are considered.  
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7.2   Main Conclusions of the Thesis 

7.2.1  Conclusions of the Zero-Dimensional Monte Carlo Simulation of 

Aerosol Dynamics 

The simulation results of this newly proposed and developed stochastically 

weighted operator splitting Monte Carlo (SWOSMC) method are fully validated 

with corresponding analytical solutions (Ramabhadran et al., 1976; Maisels et al., 

2004) and the sectional method (Prakash et al., 2003) for various aerosol dynamic 

processes (i.e., coagulation, condensation and nucleation) in different flow regimes. 

Excellent results are obtained from this new SWOSMC method. For just an average 

number of numerical particles 2000 used, the maximum relative error is less than 

1%. 

With the increase of the complexity from the studied Case 1 to Case 4,     

an increasing computational time is obviously required for using a fixed number of 

numerical particles. However, for a certain case, the computational error is inversely 

proportional to the square root of the total number of the numerical particles (Oran 

et al., 1998). It also suggests that further optimization of this newly proposed 

SWOSMC method is needed in order to improve the computational efficiency and 

accuracy for the complex particle-fluid systems. Compared with the sectional 

method (Prakash et al., 2003), this newly proposed SWOSMC method takes a much 

shorter computational time even with the largest number of numerical particles in 

the studied Case 3.  

There always exists conflicts and tradeoffs between computational cost (i.e., 

computational time, computer memory, etc.) and accuracy for Monte Carlo based 
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methods for the numerical simulation of complex aerosol dynamics.       

However, this validated SWOSMC method has clearly demonstrated a promising 

high capacity to obtain higher computational accuracy and efficiency with a much 

shorter computational time than the sectional method for the same typical studied 

case.  

7.2.2  Conclusions of the CFD-PBM Simulation of Aerosol Dynamics in 

Turbulent Flows 

Typical simultaneous aerosol dynamic processes including coagulation, 

nucleation and growth are widely encountered in turbulent flows.             

They are investigated with this newly proposed and developed Lagrangian particle 

method based CFD-Monte Carlo method.  

The effect of different Rej numbers on the interaction between turbulence 

and aerosol dynamics is fully investigated. The results reveal the significant impact 

of Rej on both single aerosol process (e.g. pure coagulation) and the competitive and 

simultaneous aerosol dynamics processes in turbulent flows. The newly proposed 

CFD-Monte Carlo/PDF method renders an efficient method to deal with        

the interaction between turbulence and aerosol dynamics by overcoming the closure 

problems.  

The full particle size ditribution (PSD) of aerosol particles is readily obtained. 

The enhancing effect of turbulence on coagulation is demonstrated by comparison 

of laminar coagulation and turbulent coagulation. Further investigation of the effect 

of turbulence on the PSDs of simultaneous aerosol dynamics reveals the competition 

between aerosol dynamic processes, which also has significant impact on the final 
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PSD of particles. For simultaneous complex aerosol dynamics in turbulent flows, 

turbulence has an effect of broadening the PSD. The coupled CFD-Monte Carlo/PDF 

method also shows excellent numerical stability according to typical grid cell 

independence analysis and typical analysis of the number of simulation particles per 

grid cell.

7.2.3  Conclusions of Simulation of Aerosol Dynamics in Turbulent Reactive 

Flows  

The variation of jet temperature, and mixture and soot volume fractions in 

both axial and radial directions of a turbulent non-premixed jet flame of methane are 

obtained and compared with the classical experimental results available from 

Brookes and Moss (1999). Excellent agreement is found between the numerical and 

the experimental results, which validates the high reliability of this newly proposed 

and developed CFD-PBM method coupled with combustion chemistry and soot 

kinetics models.  

Moreover, the PSDs of jet soot particles at different axial distances predicted 

by the newly proposed and developed CFD-Monte Carlo method agree very well 

with the results obtained from Akridis and Rigopoulos (2015). The numerical results 

demonstrate clearly that temperature is of great significance to soot dynamics and 

high temperature is conducive to the formation of soot particles for this special low 

sooty flame. Relative error analysis of the numerical results shows that the highest 

discrepancy with the experimental results (Brookes and Moss, 1999) appears at 

boundary locations in the jet flame, which may be due to the uncertainties of the 

experimental boundary conditions. However, the present modified CFD-Monte 

Carlo method still demonstrates high capability of obtaining PSD with high accuracy.   



 

Chapter 7                Conclusions and Recommendations for Future Work 

  166 

7.3    Recommendations for Future Work 

The thesis presents the numerical simulation of typical and complex aerosol 

dynamic processes ranging from zero-dimensional complex aerosol dynamics to 

multi-dimensional aerosol dynamics in reactive flows with consideration of     

the effect of turbulence. Based on the coupled stochastic weighted particle and 

operator splitting methods, the aim of the thesis is to propose a robust and highly 

efficient CFD-Monte Carlo method for solving complex aerosol dynamics in multi-

scale systems. Multi-dimensional aerosol dynamics and transport as well as 

interaction with turbulence and reactive flows are fully investigated in the thesis with 

this newly proposed and developed SWOSMC and CFD-Monte Carlo methods.      

However, further research work is still recommended to overcome the limitations of 

these proposed numerical methods and optimizations are also needed to make    

the methods more robust and powerful. 

7.3.1  Limitations of the Current Research 

The limitations of this newly proposed and developed SWOSMC and CFD-

Monte Caro methods are as follows: 

1. The two-dimensional axisymmetric grid cells are used for the numerical 

simulation of aerosol dynamics in turbulent reactive flow.         

However, for practical applications, aerosol reactors with arbitrary 

configuration are widely encountered. Thus, a three-dimensional simulation 

can be performed to further validate this newly proposed and developed 

method, subject to the relevant and appropriate experimental datasets 
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available and accessible in literature for the study on the complexity of 

aerosol processes and phenomena.  

2. Parallel computing is not implemented in the present study. Considering the 

stochastic motion of large number of Monte Carlo numerical particles, a 

parallel computing approach may further improve the computational 

efficiency and accuracy of the numerical simulation with this newly 

proposed and developed method; and  

3. Due to the fact that very few analytical solutions and experimental data are 

available for complex aerosol dynamics in literature especially for aerosol 

dynamic processes in turbulent reactive flows, the validation of this newly 

proposed and developed methods is therefore limited to mainly comparing 

with other numerical methods. Only for very limited cases, validation can be 

performed by comparing with the analytical/experimental results available 

in literature. 

 

7.3.2  Recommendations for Future Work 

Considering the above-mentioned limitations on the present study, 

recommendations are made as follows: 

1. Three-dimensionalization. The programs of this newly proposed methods 

can be modified and optimized so that they can be fully applied to     

three-dimensional simulations of complex aerosol dynamics in aerosol 

reactors or other fluid-particle systems with arbitrary configurations for 

validation, but subject to the relevant availability and accessibility of the 
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three-dimensional experimental datasets in literature. Moreover, with 

appropriate modifications to this proposed and developed CFD-Monte Carlo 

method,  the large eddy simulation (LES) model can be applied to provide 

better insight into the interaction between aerosol dynamics and turbulence; 

2. Parallelization. In order to reduce computational cost (i.e., computational 

time, computer memory, etc.) and increase computational efficiency, 

parallelization of the source codes of these proposed and developed 

numerical methods is required which is consistent with                

the three-dimensionalization of these methods. It is because          

three-dimensional simulation with more complicated turbulence models 

requires higher computational cost. 

3. Experimental investigations. More results from the related experiments are 

needed in order to provide more reliable experimental data for the numerical 

validation. Individually designed experiments are necessary to obtain   

first-hand reliable results and validate these proposed and developed 

numerical methods. 
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Appendices    

A.1   Coagulation Process 

Coagulation process is a binary particle event, which means that two smaller 

particles collide and coalesce to form a larger particle. The colliding particles are 

reasonably assumed to be a spherical particle according to the kinetic molecular 

dynamics (Mitchelle and Frenklach, 2003; Mehta et al., 2010). Coagulation can be 

modelled in three flow regimes according to different Kn numbers (Kandlikar et al., 

2005). 

If Kn >> 1, the free molecular regime coagulation kernel is applicable,  

which is as follows: 

2
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If Kn <<1, the continuous regime coagulation kernel is applicable, which is 

as follows: 

1/3 1/3

B K air( , ) 2 / 3 [2 ( / ) ( / ) ]K u v k T v u u v  
 

If 10−3<< Kn <<103, the transition regime coagulation kernel is applicable, 

which is the harmonic mean of the limit values as follows:  

K(u,v) = KcKfm/(Kc+Kfm) 

where K(u,v) is the coagulation kernel, Kc and Kfm are the coagulation kernels at 

continous regime and free molecular regime, respectively. Other parameters have 

the same physical meanings as mentioned in Chapter 4. 

(A-1) 

(A-2) 

(A-3) 
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A.2   Nucleation Process  

Nucleation a single particle event, which generates the smallest size particles 

in soot formation. The general equation of nucleation can be written as follows 

(Kazakov and Frenklach, 1998):  

dN0

dt
= R0 G0 kss0Ng0/∆m 

where Ng0  is the number density of newly generated smallest size particles,      

R0 is the chemical rate that creates the smallest size particles, G0 is the reduction rate 

of the smallest size particles by coagulation. The last term on the right-hand side of 

Equation (A-4) is the reduction rate of the smallest size particles by surface reaction 

where ks is the reaction rate per unit area, s0 is the surface area of the smallest size 

particles and ∆m is the change during a single reaction event.  

A.3   Surface Reactions in Soot Formation 

The soot surface reactions using the Hydrogen-abstraction-Carbon-addition 

mechanism is shown as follows (Frenklach and Wang, 1994; Wang et al., 1996):  

 

Cs + H ⇌ Cs
* + H2 

Cs + OH ⇋ Cs
* + H2O 

Cs
* + H → Cs 

Cs + C2H2 → Cs + H 

Cs + C2H2 → Cs
* + H 

Cs
* + O2 → 2CO + products 

Cs
*+OH → CO + products 

(A-4) 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

(A-11) 
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The surface growth is assumed to occur due to the reactions of C2H2 with 

surface radicals, and condensation of polyaromatic hydrocarbon on the particle 

surface and surface reactions with O2 and OH (Mehta, 2008). Another assumption 

is that all soot particles are assumed to be spherical one (Akridis and Rigopoulos, 

2015).  

A.4   Soot Formation Models 

A.4.1  The One-Step Soot Formation Model 

The one-step soot formation model was proposed by Khan and Greeves 

(1974), which solves the following transport equation of soot mass fraction:  

∂

∂t
(ρYsoot) + ∇⋅(ρv Ysoot)=∇⋅ (

μt

σsoot
∇Ysoot) + Rsoot 

where Ysoot is soot mass fraction, σsoot is turbulent Prandtl number for soot transport, 

Rsoot is the net rate of soot generation (kg/m3∙s), which equals to the balance between 

soot formation, Rsoot, form and soot combustion, Rsoot, combst.  

Rsoot, form is calculated using an empirical rate equation as follows:  

Rsoot, form = Cs pfuel ϕcombst
re(Ea/RT) 

where Cs is soot formation constant (kg/N-m-s), pfuel is fuel partial pressure (Pa), 

ϕcombst  is equivalence ratio, r is equivalence ratio exponent, Ea/R is activation 

temperature, T is the temperature. 

 

(A-12) 

(A-13) 
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The rate of soot combustion, Rsoot, combst is calculated as follows:  

 Rsoot, combst = min [Asoot ρYsoot

ε

k
, Asoot ρ(

Yox

vsoot
)(

Ysootvsoot

Ysootvsoot + Yfuelvfuel
)

ε

k
] 

where Asoot is constant in the Magnussen model, Yox and Yfuel are mass fractions of 

oxidiser and fuel, respectively. vsoot and vfuel are mass stoichiometries for soot and 

fuel combustion, respectively. 

A.4.2  The Two-Step Soot Formation Model 

The two-step soot formation model proposed by Tesner (1971) is used to 

predict the generation of radical nuclei and then computes the formation of soot on 

these nuclei (Vela, 2009). The transport of soot mass fraction in Equation (A-12) is 

solved with the following transport equation of the normalized radical nuclei 

concentration:  

∂

∂t
(ρb*

nuc) + ∇⋅(ρv b*
nuc) = ∇⋅ (

μt

σnuc
∇b*

nuc)  + R*
nuc 

where b*
nuc  is the normalized radical nuclei concentration (particle10−15/kg),  

σnuc is the turbulent Prandtl number for nuclei transport and R*
nuc is the normalized 

net rate of nuclei generation (particle10−15/m3⋅s) (Patki et al., 2014).  

A.4.2.1 Net Rate of Soot Generation  

The rates of nuclei and soot generation in both Equations (A-12) and (A-15) 

are the net rates that involve a balance between formation rate, Rsoot,form and 

combustion rate Rsoot,combst (Heravi et al., 2010). The rate of soot combustion in two-

(A-14) 

(A-15) 
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step model is calculated similarly to the one-step model (Equation (A-14)), while 

the rate of soot formation is calculated as follows:  

Rsoot, form = mp(αβNsoot)cnuc 

where  mp  is the average mass of soot particle (kg), Nsoot  is the soot particle 

concentration, cnuc  is the concentration radical nuclei (/m3), α and β  are       

the empirical constants. 

A.4.2.2 Net Rate of Nuclei Generation  

The net rate of nuclei generation is given by the balance of nuclei formation 

rate, R*
nuc,form (particles10−15/m3-s) and combustion rate,  R*

nuc, combst 

(particles10−15/m3-s) (Peglow et al., 2006):  

    R*
nuc = R*

nuc,form  R*
nuc, combst 

In two-step model, the rates of nuclei formation and combustion are 

calculated as follows (Patki et al., 2014):  

R*
nuc, form = a0*cfuele

(-Ea/RT) + (f g)soot c
*
nuc g0 c

*
nucNsoot 

where c*
nuc  is the normalized nuclei concentration, a0*  is pre-exponential rate 

constant, cfuel  is fuel concentration (kg/m3), (f g)soot  is the linear       

branching-termination coefficient (s−1), g0 is the linear termination term of soot 

particles (m3/particle-s) (Patki et al., 2014). 

The rate of the combustion of nuclei is regarded as the linear function of  

the rate of soot combusiton Rsoot,combst in Equation (A-14):  

(A-16) 

(A-17) 

(A-18) 
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R*
nuc, combst = Rsoot,combst

b*
nuc

Ysoot
 

where b*
nuc is the normalized radical nuclei concentration (particle10-15/kg) and 

Ysoot is soot mass fraction. 

A.4.3 The Moss-Brookes Model 

Both the transport equaitons of normalized radical nuclei concentration, 

 b*
nuc and soot mass fraction, Ysoot are solved in the Moss-Brookes soot formation 

model (Brookes and Moss, 1999), which are shown as follows:  

∂

∂t
(ρYsoot) + ∇⋅(ρv Ysoot)=∇⋅ (

μt

σsoot
∇Ysoot) +

dM

dt
 

∂

∂t
(ρb*

nuc) + ∇⋅(ρv b*
nuc) = ∇⋅ (

μt

σnuc
∇b*

nuc)+
1

Nnorm

dN

dt
 

where M is soot mass concentration, N is soot particle number density and        

Nnorm = 1015 particles. 

 The instantaneous generation rate of soot particles due to nucleation and 

free molecular coagulation, is shown as follows:  

dN

dt
 = CαNA( XprecP RT⁄ )l exp (

Tα

T
) Cβ( 24RT ρsoot NA⁄ )1/2dp

1/2N2 

where Cα, Cβ  and l are dimensionless constants of the model, NA  is Avogadro 

number, Xprec is the mole concentration of soot precursor, ρsoot is soot mass density, 

dp is the mean diameter of soot particles and Tα is the activation temperature for 

nucleation reaction.   

(A-22) 

(A-19) 

(A-21) 

(A-20) 
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The source term of soot formation process is shown as follows:  

dM

dt
 = MP Cα ( XprecP RT⁄ )l exp (

Tα

T
) 

+ Cγ ( XsgsP RT⁄ )m exp (
Tγ

T
) [(πN)1/3(6M ρsoot⁄ )2/3]n 

 Coxid Cω ηcoll (
XOHP

RT
)√T (πN)1/3(6M ρsoot⁄ )2/3 

The terms on the right-hand side of Equation (A-23) are nucleation, surface growth 

and oxidation terms, respectively. Cγ, Coxid, Cω, m and n are also dimensionless 

constants. MP is the mass of an incipient soot particle, Xsgs is the mole fraction of 

the species participating surface growth process, M is the total source term due to all 

the aerosol dynamic processes. The set of constants in the Moss-Brookes model for 

methane flame is given (Brookes and Moss, 1999) as: 

Cα = 54 s-1 (soot inception rate constant), Cβ  = 1.0 (coagulation rate constant),    

Cγ  = 11700 kg ⋅ m ⋅ kmol−1 ⋅ s−1 (scaling factor of surface growth rate),            

Cω = 105.8125 kg⋅m⋅kmol-1⋅K-1/2⋅s−1, Coxid = 0.015 (scaling parameter of oxidation 

rate), Tγ =12100 K (activation temperature of surface growth reaction) and 

ηcoll =0.04 (collision efficiency). The closure of the source terms in the above 

equations (A-20) to (A-23) can be found in Brookes and Moss (1999) . 

A.4.4  The Moss-Brookes-Hall Model 

The Moss-Brookes model proposed for methane flames has been extended 

to Moss-Brookes-Hall model for higher hydrocarbon fuels by Hall et al., (1997) and 

Wen et al., (2003) based on the work of Lee et al., (1962). The soot inception 

mechanism developed by Hall et al., (1997) is as follows:   

(A-23) 
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 2C2H2 + C6H5 ⇌ C10H7 + H2 

C2H2 + C6H6 + C6H5 ⇌ C14H10 + H2 

Based on the laminar methane flame data (Hall et al., 1997), the inception rate of 

soot particles is expressed as the generation rate of species C10H7  and C14H10 

multiplied by eight as follows:  

 (
dN

dt
)inception = 8Cα,1[ρ

2(
YC2H2

WC2H2

)2
YC6H5WH2

WC6H5YH2

]exp (
Tα,1

T
) 

 

+ 8Cα,2[ρ
2

YC2H2

WC2H2

YC6H6

WC6H6

YC6H5WH2

WC6H5YH2

]exp (
Tα,2

T
) 

 

where Cα,1, Cα,2, Tα,1, Tα,2 are constants determined by Hall et al., (1997). 

Compared with the oxidiation term in Equation (A-23), oxidation due to O2 based 

on the measurements of Lee et al., (1962) is added to the oxidation term in       

the Moss-Brookes-Hall model, which yields the following full soot oxidation term:  

dM

dt
 =  CoxidCω,1ηcoll (

XOHP

RT
)√T(πN)1/3(6M ρsoot⁄ )2/3 

 CoxidCω,2ηcoll (
XO2P

RT
) exp (

Tω,2

T
)√T(πN)1/3(6M ρsoot⁄ )2/3 

where the efficiency of inter-particle collisions, ηcoll is set as 0.13 in this model 

(0.04 in Moss-Brookes model) and the scaling parameter of oxidation rate, Coxid is 

assumed to be unity. Cω,1 =105.8125 kg ⋅ m ⋅ kmol−1 ⋅ K−1/2 ⋅ s−1,  Cω,2 = 8903.51 

kg⋅m⋅kmol−1⋅K−1/2⋅s−1, Tω,2 = 19778 K.  

(A-24a) 

(A-25) 

(A-26) 

(A-24b) 
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