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Abstract 

 

In view of the recent advancement in the development of techniques for 

fabrication of metal nanoparticles, plasmonic chains of nanoparticle, has 

been widely studied theoretically and experimentally in recent years. In this 

thesis, we focus on the nonlinear and non-Hermitian electrodynamics in 

chains of plasmonic nanoparticles. Two special configurations, namely, the 

plasmonic resonator and the diatomic plasmonic chain were studied and 

presented. The ideology of a plasmonic resonator, which presumes metal 

nanoparticles in a one-dimensional array as mechanical resonators, can 

greatly simplify the mathematics behind. A proper design of the 

one-dimensional plasmonic chain was outlined, in which the respective 

linear and nonlinear behaviour were studied by the method of linearization, 

eigenvalue problem and Runge-Kutta iterations. With the data sets obtained 

by the Runge-Kutta method, Fourier analysis and mode energy analysis 

could be exploited which led to various phenomena in the classical FPU 

model, such as the equipartition and the spatial energy localization. In the 

meanwhile, the diatomic plasmonic chain also performs various astonishing 

features due to its distinctive spatial configuration to open up band gap in 

the dispersion relation. A finite one-dimensional diatomic chain having 

coated metal nanoparticles with alternatively changing separations was 

investigated. The coupled dipole equation together with quasistatic 

polarizability having radiation corrections suggested the existence of edge 

state localized at the two edges of the finite chain, which was then further 

verified by setting up a compatible simulation in Lumerical FDTD. Upon 
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implementing balanced gain/loss into the system, the diatomic plasmonic 

chain could be PT-symmetric by nature, which would eventually induce the 

disappearance of the extinction of the edge state supported by the chain. The 

aforesaid effect was examined through a precise formulation of the coupled 

dipole equation, and by simulations conducted in FDTD together with an 

analytic calculation using the multiple scattering theory (MST). Both results 

suggested that the zero extinction property was given by the perfect 

cancelation of the scattering and absorbing behaviour within the diatomic 

chain at the edge state frequency. 
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List of figures 

 

1.1 Schematic picture of the FPU model: masses that can move only in one 

dimension are coupled by nonlinear spring, 𝑢𝑢𝑛𝑛  is the relative displacement with 

respect to the equilibrium position of the 𝑛𝑛th mass in longitudinal direction. 

2.1  (Color online) Schematic of a nonlinear plasmonic nanoparticle chain with 

oscillating electron clouds. The chain contains fixed positive volume charge and 

movable negatively charged electron cloud in a unit cell, denoted by red solid spheres 

and blue semi-transparent clouds with dashed boundaries, respectively. All 

nanoparticles are of the same size with radius 𝑅𝑅, and the charges have centers of mass 

represented by the red/blue spots. The nanoparticles are separated by a fixed distance 

𝑎𝑎. The electron cloud are assumed to be undertaken a longitudinal motion such that 

that the 𝑛𝑛th one has its center of mass displaced by 𝑢𝑢𝑛𝑛 with respect to the center of 

mass of the 𝑛𝑛th positive volume charge along the chain axis 𝑥𝑥. 

2.2 (a) The pick off normalized displacement vector, with 𝑥𝑥-axis being the site 

number representing 10 discrete electron clouds along the one-dimensional plasmonic 

chain, and  𝑦𝑦-axis being the normalized longitudinal displacement of the center of 

mass. Here the pick off eigenmode is at the 4th eigenfrequency found in Fig. 2.2(b). 

(b) The dispersion band of the 10 discrete eigenfrequencies, with 𝑥𝑥-axis being the 

mode number 𝑘𝑘, and 𝑦𝑦-axis being the eigenfrequency in terms of rad s−1.  
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2.3 (a) The displacement graph, with 𝑦𝑦-axis being the longitudinal displacement of 

the center of mass in terms of m and 𝑥𝑥-axis being the site number representing 10 

discrete electron clouds along the one-dimensional plasmonic chain. (b) The velocity 

graph, with 𝑦𝑦-axis being the longitudinal velocity of the center of mass in terms of 

m/s and 𝑥𝑥-axis being the site number. The above figure is capped when time =

3000/𝜔𝜔0, i.e. 3 × 107 RK iterations.  

2.4 (Color online) Time-domain simulation of the net dipole moment, with 𝑥𝑥-axis 

being the site number representing 10 discrete electron clouds, 𝑦𝑦-axis being the time 

in terms of s and 𝑧𝑧-axis being the dipole moment normalized by electron charge 𝑒𝑒 =

1.602 × 10−19C. This graph is in the early cutoff of the RK iterations. The small black 

dots indicate the corresponding dipole strength at each iteration. The colored surface 

formed by dots is for the purpose of a more distinguishable results along different sites 

in the chain. The most vigorous oscillation stays in site 1, 4, 7, and 10. 

2.5 (Color online) The net dipole moment-time graph of the 9th electron cloud 

along the plasmonic chain, i.e. site number = 9, with 𝑦𝑦-axis being the dipole moment 

normalized by 𝑒𝑒 = 1.602 × 10−19C and 𝑥𝑥-axis being the time in terms of s. The 

program executed at around 5.5 × 10−13s results in an execution of the dipole 

moment.  

2.6 (Color online) (a) The net dipole moment-time graph of the 9th electron cloud 

along the plasmonic chain, with 𝐵𝐵 = 1.25 × 10−8m. Note that the deep blue and light 

blue color in the graph is meaningless because it is related to a compression of large 

quantities of data points. (b) Time-domain simulation of the net dipole moment with 

respect to 10 electron clouds. Through the two figures, a quasi-linear behavior is 

observed.  
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2.7 (Color online) (a) The net dipole moment-time graph of the 9th electron cloud 

along the plasmonic chain, with 𝐵𝐵 = 1.5 × 10−8m. (b) Time-domain simulation of the 

net dipole moment with respect to 10 electron clouds. A nonlinear oscillation is 

observed after time 𝑡𝑡 = 1 × 10−13s.  

2.8 The total energy-time graph of the system using initial multiplying parameter 

𝐵𝐵 = 0.5 × 10−8m, having 10 sites along the one-dimensional array, using the 4th 

eigenmode as initial configuration. The program executes at 3 × 107 RK iterations, 

i.e. 𝑡𝑡 = 5.5 × 10−13s. 

2.9  Fourier transform of the dipole moment-time data of the 9th electron cloud in 

the one-dimensional plasmonic chain using initial configuration of eigenvector 

corresponds to 4th eigenfrequency and an initial multiplying parameter 𝐵𝐵 = 0.5 ×

10−8m. At spiky peak at 8.35 × 1014Hz is observed. 

2.10 Fourier transform of the dipole moment-time data of the 9th electron cloud in 

the one-dimensional plasmonic chain using initial configuration of eigenvector 

corresponds to the 4th  eigenfrequency and an initial multiplying parameter 𝐵𝐵 =

1.0 × 10−8m. A spiky peak at 8.33 × 1014Hz is observed with the existence of small 

peaks from other frequencies. 

2.11 (a) The pick off normalized displacement vector, with 𝑥𝑥-axis being the site 

number representing 512 discrete electron clouds along the one-dimensional plasmonic 

chain and 𝑦𝑦-axis being the normalized longitudinal displacement vector of the center 

of mass. Here the pick off displacement vector is of the 1st  eigenfrequency 

(fundamental mode). (b) The dispersion band of the 512 discrete eigenfrequencies, 

with 𝑥𝑥-axis being the mode number 𝑘𝑘, and 𝑦𝑦-axis being the eigenfrequency in terms 

of rad s−1.  
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2.12 (Color online) (a) The net dipole profile right before program execute, with 

𝑦𝑦-axis being the dipole moment normalized by 𝑒𝑒 = 1.602 × 10−19C and 𝑥𝑥 -axis 

being the site number representing 512 discrete electron clouds; Time-domain 

simulation of the net dipole moments on individual particle sites in a chain of  𝑁𝑁 =

512 particles (b) and in a chain of 𝑁𝑁 = 10 particles (c). Both cases are initially 

excited with the fundamental eigenmode, i.e., all dipole moments are almost in phase; 

nanoparticle radius 𝑅𝑅 = 5nm; lattice constant 𝑎𝑎 = 15nm; time step for RK-4 𝑑𝑑𝑑𝑑 =

10−4/𝜔𝜔0  while the displaying time step for the graph 𝑑𝑑𝑡𝑡′ = 0.1/𝜔𝜔0 , and the 

resonance frequency 𝜔𝜔0 = 5.420 × 1015rad s−1  (Au). For (c), the black dots 

indicate the corresponding dipole strength at each iteration. The colored surface formed 

by dots is for the purpose of a more distinguishable results along different sites in the 

chain. The data shown here is in an early cut off. While for (b), the dots are omitted 

and only the surface is displayed. The simulation stops at 𝑡𝑡 = 1.2307 × 10−12s.  

2.13 (Color online) Energy indicating-time graph of the data set obtained in Fig. 

2.12(b). An 'equipartition' is likely to be acquired as energy distributes along modes by 

symmetry. The energy here is with arbitrary unit as it is a comparative value for modes. 

Modes 2, 4, 6...etc. cannot be found in the graph as they have a comparatively zero 

energy with respect to the excited eigenmode. 
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3.1 Schematic figure of a one-dimensional coated diatomic plasmonic chain for 

which the above setup is assumed to be duplicated till infinite. There are two spherical 

dispersive metal nanoparticles with dielectric function 𝜖𝜖1 coated with non-dispersive 

dielectric of different permittivity 𝜖𝜖2 and 𝜖𝜖3 in one single unit cell having two sites, 

namely A and B. All coated nanoparticles are of the same size with outer radius 𝑏𝑏, 

inner radius 𝑎𝑎. The length of the unit cells and the separation between site A and site B 

are denoted as 𝑑𝑑 and 𝑡𝑡 respectively. There is also a dashed-line rectangle showing 

the unit cell of the one-dimensional diatomic chain. The chain is assumed to be 

embedded in a medium with relative permittivity 𝜖𝜖m = 1. 

3.2 Schematic figure of a 'two-nanoparticles system' picking from the unit cell of the 

diatomic plasmonic chain. The distance between site A and B is denoted as 𝑟𝑟, site A 

and site B's nanoparticle is having dipole moment 𝐩𝐩1 and 𝐩𝐩2 respectively. 

3.3 Band dispersion of a 1-D diatomic plasmonic chain using identical coated metal 

nanoparticles for both site A and site B, with 𝑥𝑥-axis being the wave vector 𝑘𝑘𝑘𝑘/2 

covering both the 1st and 2nd Brillouin zone, 𝑦𝑦-axis being the normalized plasma 

frequency 𝜔𝜔/𝜔𝜔𝑝𝑝. It shows the longitudinal dispersion relation of the diatomic chain 

with 𝑑𝑑 = 57.1nm, 𝑡𝑡 = 34.3nm. Since there are two coated metal nanoparticles in one 

unit cell, two non-degenerated longitudinal bands are observed. A band gap ranging 

from 0.515𝜔𝜔𝑝𝑝 to 0.542𝜔𝜔𝑝𝑝 is observed as 𝑡𝑡 ≠ 𝑑𝑑/2 for a diatomic chain. 
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3.4 Plotting of 1/min|𝜆𝜆|  against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝  for a 

one-dimensional diatomic plasmonic chain using identical coated metal nanoparticles 

for both site A and site B, with chain length 𝑁𝑁 = 32. Results are obtained using 

quasistatic approximation and nearest neighbor approximation on Green's function, a 

quasistatic polarizability with core of coated nanoparticle described by lossless-Drude 

model. It shows the coupled longitudinal modes supported in the diatomic chain 

whenever a large quantity of 1/min|𝜆𝜆| appears. The diatomic chain is with 𝑑𝑑 =

57.1nm, 𝑡𝑡 = 34.3nm. A band gap is observed in between 0.515𝜔𝜔𝑝𝑝 and 0.542𝜔𝜔𝑝𝑝, 

also a supported longitudinal mode is found in between the band gap at about 0.529𝜔𝜔𝑝𝑝, 

which should be the topological edge state as expected. 

3.5 (Color online) Plotting of magnitude of the dipole moment 𝑝𝑝𝑛𝑛 along the finite 

one-dimensional diatomic chain at three eigenstates suggested in Fig. 3.4. (a) 

Eigenstate below the band gap for 𝜔𝜔 = 0.515𝜔𝜔𝑝𝑝; (b) Eigenstate in between the band 

gap for 𝜔𝜔 = 0.529𝜔𝜔𝑝𝑝; (c) Eigenstate above the band gap for 𝜔𝜔 = 0.545𝜔𝜔𝑝𝑝; The blue 

line represents real part of the magnitude of the dipole moment, the orange line 

represents complex part. Fig. 3.5(b) verifies the supported mode found in between the 

band gap in Fig. 3.4 is an edge state having fields localized in two edges of the 

diatomic chain. 

 

 

 

 

 

 

 

 



xiii 

3.6 Plotting of 1/min|𝜆𝜆|  against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝  for a 

one-dimensional diatomic plasmonic chain using identical coated metal nanoparticles 

for both site A and site B, with chain length 𝑁𝑁 = 32. Results are obtained without 

using quasistatic approximation and nearest neighbor approximation on Green's 

function, a quasistatic polarizability with core of coated nanoparticle described by 

Drude model having loss = 0.0001 × 𝜔𝜔𝑝𝑝. It shows the coupled longitudinal modes 

supported in the diatomic chain whenever a large quantity of 1/min|𝜆𝜆| appears. The 

diatomic chain is with 𝑑𝑑 = 57.1nm, 𝑡𝑡 = 34.3nm. A band gap is observed in between 

0.515𝜔𝜔𝑝𝑝 and 0.542𝜔𝜔𝑝𝑝, also a supported longitudinal mode is found in between the 

band gap at about 0.529𝜔𝜔𝑝𝑝, which should be the topological edge state as expected. 

3.7 (Color online) Plotting of magnitude of the dipole moment 𝑝𝑝𝑛𝑛 along the finite 

one-dimensional diatomic chain at three eigenstates suggested in Fig. 3.6. (a) 

Eigenstate below the band gap for 𝜔𝜔 = 0.515𝜔𝜔𝑝𝑝; (b) Eigenstate in between the band 

gap for 𝜔𝜔 = 0.529𝜔𝜔𝑝𝑝; (c) Eigenstate above the band gap for 𝜔𝜔 = 0.545𝜔𝜔𝑝𝑝; The blue 

line represents real part of the magnitude of the dipole moment, the orange line 

represents complex part. Fig. 3.7(b) verifies the supported mode found in between the 

band gap in Fig. 3.6 is an edge state having fields localized in two edges of the 

diatomic chain. 

3.8 Illustration of the setup in FDTD simulation. We can see the diatomic chain is 

with configuration mentioned in Fig. 3.1. The two short dotted lines in the edge of the 

chain simply means you can pad the chain with more unit cells. The box with 

grey-colored dash-line denotes the TFSF source and must cover the entire chain. Inside 

the box it calculates the total field, while only scattered field will be calculated outside 

the box. The red arrow denotes the polarization direction (i.e. electric field oscillating 

along) and the blue arrow denotes the propagating direction. 
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3.9 Illustration of a general setup in calculating the extinction cross section of a 

cluster of scatters. The incident electric field is polarized along the chain axis, and 

propagates in the 𝐤𝐤0 direction. There will be excited dipole moment 𝐩𝐩𝑗𝑗 on the 𝑗𝑗th 

nanoparticles which having distance 𝐫𝐫𝑗𝑗  from origin. The observing point has 

displacement 𝐑𝐑 from origin and experiences the dipole electric field 𝐄𝐄𝑗𝑗 generated by 

𝐩𝐩𝑗𝑗. From the figure, we know 𝐧𝐧0 ∙ 𝐩𝐩𝑗𝑗 = 0, 𝐧𝐧0 ∙ 𝐫𝐫𝑗𝑗 = constant, 𝐄𝐄0∗ ∙ 𝐩𝐩𝑗𝑗 = 𝐸𝐸0𝑝𝑝𝑗𝑗. 

3.10 Plotting of 1/min|𝜆𝜆|  against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝  for a 

one-dimensional diatomic plasmonic chain using identical coated metal nanoparticles 

for both site A and site B, with chain length 𝑁𝑁 = 8. Results are obtained using 

dynamic Green's function without nearest neighbor approximation, a quasistatic 

polarizability with core of coated nanoparticle described by Drude model having loss 

= 0.0001 × 𝜔𝜔𝑝𝑝. It shows the coupled longitudinal modes supported in the diatomic 

chain whenever a large quantity of 1/min|𝜆𝜆| appears. The diatomic chain is with 

𝑑𝑑 = 57.1nm, 𝑡𝑡 = 34.3nm. The supported mode in the middle is at about 0.530𝜔𝜔𝑝𝑝, 

which is in between two other supported mode at about 0.515𝜔𝜔𝑝𝑝 and 0.546𝜔𝜔𝑝𝑝, are 

presumed to be the edge state and the range of band gap, respectively. 

3.11 Analytic extinction cross section (in unit of 𝜆𝜆𝑝𝑝/8𝜋𝜋2𝑑𝑑3 ) of  the 

one-dimensional diatomic plasmonic chain using identical coated metal nanoparticles 

for both site A and site B mentioned in Fig. 3.1, with chain length 𝑁𝑁 = 8, against 

normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝 . The three peaks are at around 0.499𝜔𝜔𝑝𝑝 , 

0.515𝜔𝜔𝑝𝑝 and 0.530𝜔𝜔𝑝𝑝 such that they are all supported mode shown in Fig. 3.10 and 

are presumed to be coming from the lower band for the 0.499𝜔𝜔𝑝𝑝 and the 0.515𝜔𝜔𝑝𝑝 

one, and an edge state for the 0.530𝜔𝜔𝑝𝑝 one. This figure tells the actual response of the 

diatomic chain among various frequencies. 
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3.12 (Color online) Cross sections (in unit of m2 ) of  the one-dimensional 

diatomic plasmonic chain using identical coated metal nanoparticles for both site A and 

site B mentioned in Fig. 3.1 using setup explained in Fig. 3.8, with chain length 𝑁𝑁 = 8, 

against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝. The mesh in use is 1.5nm within the 

TFSF source and the simulation time is long enough for a relevant Fourier-transform to 

take place. Extinction, absorption and scattering cross sections are plotted in different 

color. The three peaks are at around 0.476𝜔𝜔𝑝𝑝, 0.483𝜔𝜔𝑝𝑝 and 0.499𝜔𝜔𝑝𝑝 such that they 

are presumed to be the three excited mode shown in Fig 3.11 with slightly shifted 

frequencies coming from the lower band and the edge state. 

3.13 (Color online) (a) The spatial magnitude profile of the dipole moments 

calculated analytically in the one-dimensional diatomic plasmonic chain with identical 

coated metal nanoparticles being the individuals, having chain length 𝑁𝑁 = 8, at three 

different picked off frequencies described in Fig. 3.11, (i) 𝜔𝜔 = 0.499𝜔𝜔𝑝𝑝, (ii) 𝜔𝜔 =

0.515𝜔𝜔𝑝𝑝 , (iii) 𝜔𝜔 = 0.530𝜔𝜔𝑝𝑝  such that it corresponds to the edge state. (b) The 

electric field profile obtained by setting the similar setup in FDTD using 2D field 

monitor to record the magnitude of 𝐸𝐸𝑥𝑥 throughout the entire spatial distribution of the 

setup at three different picked off frequencies described in Fig. 3.12, (i) 𝜔𝜔 = 0.476𝜔𝜔𝑝𝑝, 

(ii) 𝜔𝜔 = 0.483𝜔𝜔𝑝𝑝, (iii) 𝜔𝜔 = 0.499𝜔𝜔𝑝𝑝. The mesh in use is 1.5nm. By comparing the 

magnitude of the dipole moments in (a) with the electric field profile in (b), one can 

justify the three peaks mentioned in Fig. 3.11 match those mentioned in Fig. 3.12 with 

Fig. 3.13(a.iii) and Fig. 3.13(b.iii) being the edge state. 
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3.14 Schematic figure of a PT-symmetric one-dimensional coated diatomic plasmonic 

chain. There are two spherical dispersive metal nanoparticles with dielectric function 

𝜖𝜖1 coated with non-dispersive dielectrics of different permittivity 𝜖𝜖2 and 𝜖𝜖3 = 𝜖𝜖2∗ in 

one single unit cell having two sites, namely A and B. All coated nanoparticles are of 

the same size with outer radius 𝑏𝑏, inner radius 𝑎𝑎. The length of the unit cells and the 

separation between site A and site B are denoted as 𝑑𝑑 and 𝑡𝑡 respectively. The chain is 

assumed to be embedded in a medium with relative permittivity 𝜖𝜖𝑚𝑚 = 1. Also an 

illustration of defining origin in the diatomic chain having number of unit cells an odd 

number is shown. 

3.15 Analytic extinction cross section (in unit of 𝜆𝜆𝑝𝑝/8𝜋𝜋2𝑑𝑑3 ) of the diatomic 

plasmonic chain using (a) identical coated metal nanoparticles and (b) coated 

nanoparticles with gain/loss dielectric shells alternatively, PT-symmetric; against 

normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝 are plotted for comparison. The two diatomic 

chains have chain length 𝑁𝑁 = 8, with 𝑑𝑑 = 57.1nm, 𝑡𝑡 = 34.3nm, 𝑏𝑏 = 10nm, 𝑎𝑎 =

7.14nm, plasma collision frequencies for the cores are set to be 𝑣𝑣𝑐𝑐 = 0.0001𝜔𝜔𝑝𝑝. By 

comparing Fig. 3.15(a) and (b), we can see that at the edge state frequency 𝜔𝜔 =

0.530𝜔𝜔𝑝𝑝 , the extinction cross section 𝐶𝐶ext  is significantly reduced and almost 

vanished when the system switches from a non-PT-symmetric one to a PT-symmetric 

one. 

3.16 (Color online) The spatial magnitude profile of the excited dipole moments 

calculated analytically in the PT-symmetric diatomic plasmonic chain having chain 

length 𝑁𝑁 = 8, at the edge state frequency 𝜔𝜔 = 0.530𝜔𝜔𝑝𝑝 found in non-PT-symmetric 

diatomic chain, see Fig. 3.11. The blue and orange line represent real and imaginary 

part of the excited dipole moments, respectively. The real part of the magnitude forms 

an even function of 𝑥𝑥 while the imaginary part forms an odd function of 𝑥𝑥, most 

likely. 
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3.17 (Color online) Cross sections (in unit of m2) of the PT-symmetric diatomic 

plasmonic chain using coated metal nanoparticles with setup mentioned in Fig. 3.14, 

with chain length 𝑁𝑁 = 8, against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝. The mesh in 

use is 1.5nm within the TFSF source and the simulation time is short due to the 

divergence of electric field. Extinction, absorption and scattering cross sections are 

plotted in red, blue and green color respectively. The three peaks are at around 

0.476𝜔𝜔𝑝𝑝, 0.483𝜔𝜔𝑝𝑝 and 0.499𝜔𝜔𝑝𝑝 such that they are presumed to be the three excited 

mode mentioned in Fig 3.15(b) with slightly shifted frequencies. The most right-hand 

side peak corresponds to the edge state and is of great fluctuation. The fluctuation 

mainly comes from the Fourier-transform as the simulation time is not long enough. 

3.18 (Color online) (a) The spatial magnitude profile of the dipole moments calculated 

analytically in the PT-symmetric diatomic plasmonic chain with coated metal 

nanoparticles having setup mentioned in Fig. 3.14, adopting chain length 𝑁𝑁 = 8, at 

three different picked off frequencies described in Fig. 3.15(b), (i) 𝜔𝜔 = 0.499𝜔𝜔𝑝𝑝, (ii) 

𝜔𝜔 = 0.515𝜔𝜔𝑝𝑝, (iii) 𝜔𝜔 = 0.530𝜔𝜔𝑝𝑝 such that it corresponds to the edge state. (b) The 

electric field profile obtained by setting the similar setup in FDTD using 2D field 

monitor to record the magnitude of 𝐸𝐸𝑥𝑥 throughout the entire spatial distribution of the 

setup at three different picked off frequencies described in Fig. 3.17, (i) 𝜔𝜔 = 0.476𝜔𝜔𝑝𝑝, 

(ii) 𝜔𝜔 = 0.483𝜔𝜔𝑝𝑝, (iii) 𝜔𝜔 = 0.499𝜔𝜔𝑝𝑝. The mesh in use is 1.5nm. By comparing the 

magnitude of the dipole moments in (a) with the electric field profile in (b), one can 

justify the three peaks mentioned in Fig. 3.15(b) match those mentioned in Fig. 3.17 

with Fig. 3.18 (a.iii) and (b.iii) being the edge state with vanished extinction. 
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3.19 (Color online) (a) Cross sections (in unit of m2) of the PT-symmetric diatomic 

plasmonic chain using coated metal nanoparticles with setup mentioned in Fig. 3.14, 

with chain length 𝑁𝑁 = 8, against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝. The mesh in 

use is 1.5nm within the TFSF source. The simulation time is doubled compare to the 

results obtained in Fig. 3.17. The field diverges as the peak at the resonant frequency of 

the edge state is having magnitude over 100times bigger than that in Fig. 3.17. The 

absorption cross section and scattering cross section seems like about to cancel each 

other to obtain a zero extinction cross section. (b) Plotting of the cross sections with 

the absorption cross section having a flipped sign, i.e. −𝐶𝐶abs, it shows that the 

negative absorption cross section is almost the same as the scattering cross section, i.e. 

−𝐶𝐶abs = 𝐶𝐶sca, and supposes to give a zero extinction at the edge state frequency 𝜔𝜔 =

0.499𝜔𝜔𝑝𝑝. 

3.20 (Color online) Normalized cross sections of the diatomic plasmonic chain using 

(a) identical coated nanoparticles with no gain/loss in its dielectric shell, (b) coated 

nanoparticles with gain/loss dielectric shells alternatively, therefore PT-symmetric, 

against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝. The diatomic chain has chain length 

𝑁𝑁 = 8, with 𝑑𝑑 = 57.1nm, 𝑡𝑡 = 34.3nm, 𝑏𝑏 = 10nm, 𝑎𝑎 = 7.14nm, plasma collision 

frequencies for the cores are set to be 𝑣𝑣𝑐𝑐 = 0.0001𝜔𝜔𝑝𝑝. Absorption, scattering and 

extinction cross sections are plotted using red-dashed line, blue-dashed line and dark 

line respectively. The three peaks (include the 'vanished peak') is at around 0.493𝜔𝜔𝑝𝑝, 

0.508𝜔𝜔𝑝𝑝  and 0.525𝜔𝜔𝑝𝑝 . The non-PT-symmetric chain shares same resonant 

frequencies with the PT-symmetric one, which is of expected. Looking into the 

'vanished extinction' of resonant state at the edge state frequency, it shows the 

cancelation effect of the absorption and scattering cross sections. 
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A.1 (Color online) Energy indicator-time graph of several modes, with 𝑦𝑦-axis 

being the energy-level indicator and the 𝑥𝑥-axis being the time. The plot stops at 6238 

oscillations. Note that there does not have the plot of modes 1, 2, 4, 5, 6…etc. because 

those modes have comparatively zero energy with respect to the excited one. Also 

other than modes 3, 9, 15, others are plotted with doted lines as they are not of 

interests. The denoted red spots pointed by yellow doted arrows are points picked, such 

that at those particular time, a specified mode is somewhat dominated. From left to 

right, we denotes the marked point as point 1, 2, 3 … 7 as it will be useful later. 

A.2 The initial configuration of the normalized displacement vector corresponding 

to the 3rd eigenmode, with 𝑥𝑥-axis being the site number representing 512 discrete 

electron clouds, 𝑦𝑦-axis being the normalized 𝑢𝑢. The 3 red arrows point at the 3 picked 

particular sites, which is the 128th, 170th and the 256th one. 

A.3 (Color online) (a) Using the 128th eigenmode as the initial configuration, the 

energy indicator-time graph of several modes, with 𝑦𝑦-axis being the energy-level 

indicator and 𝑥𝑥-axis being the time, this system does not have the overlapping of 

electron cloud within the simulation time. (b) Using the 384th eigenmode as the 

initial configuration, the energy indicator-time graph of several modes, with 𝑦𝑦-axis 

being the energy-level indicator and the 𝑥𝑥-axis being the time, the plot stops at 2487 

oscillations as overlapping happens. 

A.4 (Color online) Energy indicator-time graph of several modes using the 256th 

eigenmode as the initial configuration, with 𝑦𝑦-axis being the energy-level indicator 

and the 𝑥𝑥-axis being the time, the plot stops at 594 oscillations. 

A.5 Energy indicator-time graph of several modes using the 512th eigenmode as 

the initial configuration, with 𝑦𝑦-axis being the energy-level indicator and the 𝑥𝑥-axis 

being the time, the plot stops at 547 oscillations. 
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Chapter 1 Introduction 

 

1.1  Electrodynamics in arrays of plasmonic nanoparticles  

 The immense flow of research in plasma started in 1879 after it was 

recognized as one of the four fundamental states of matter (others are solid, 

liquid and gas) by Sir William Crookes [1]. Plasma is generally described as 

a neutral medium consisting of unbound positive and negative particles, 

interacting each other through electromagnetic fields [2, 3]. Similar to the 

relationship between photons and electromagnetic vibrations, plasmon 

comes from the quantization of plasma oscillations, which is a collective 

oscillation of the free electron gas density with respect to its positive ion. 

Collective excitation of these plasma-like charge carries can exist in metal 

nanoparticles, especially at their surfaces. A chain of plasmonic 

nanoparticles with tunable setting can be considered as a kind of 

electromagnetic metamaterial which consists of meta-atoms. The 

meta-atoms here form an exacting structures with repeating patterns which 

poses desirable properties, such kind of artificial engineered material are 

called Metamaterial [4-6]. One-dimensional chain of plasmonic metal 

nanoparticles has been investigated intensively as it had been considered to 

be an extremely good intermediary for light confinement and wave guiding 

[7, 8]. Such an aggregation of the nanoparticles could allow some specified 

modes to propagate by the coupling between the localized plasmon among 

them, and is of great interest to study.   
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 While we are studying the one-dimensional plasmonic chain and 

electromagnetic metamaterials, not only do we want to investigate the 

respective linear aspect as it has been studied in a number of publications 

[9-11], but also to perform the analysis in a nonlinear approach because of 

the needs of a desired nonlinear response, such that it could be found in the 

electromagnetic metamaterials compared to the conventional nonlinearity in 

natural materials recently [12]. Unlike the traditional researching approach, 

the rapid development in metamaterials has significantly enhanced the 

control of lights, which in turn has also reinforced the development of 

plasmonic devices in both linear and nonlinear regimes. 

 

1.2  Overview on nonlinear metamaterials  

 The concept of nonlinear metamaterials was first introduced by three 

groups independently [13-15], and the publications on such topic have 

started growing since 2005. With the present of nonlinearity in the 

metamaterials, Shadrivov [20] suggested that it might lead to the creation of 

new families of waves known as solitons. Such solitons can be further 

classified into spatial solitons and temporal solitons [21]. Under the intense 

discussions, a wide range of nonlinear phenomena was discovered, yet the 

discussion on nonlinear plasmonics has just begun. 

 

 To get familiar with the nonlinear plasmonics, we have to first look 

into the nonlinear metamaterials. In the numerical perspective of the 

nonlinear metamaterials, Zeng et al. [16] suggested an alternative approach 

by analyzing the eigenmodes of the substrates, which appeared to be useful 
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in describing the resulting phenomena linearly. Furthermore, second 

harmonic generation (SHG) depends strongly on shape and symmetry of 

particles and their couplings. While the impact on the SHG by particle 

shape have been generally discussed in a few publications [17-19], the 

effect of their couplings is not well-understood.  Since the nonlinear 

aspects of the one-dimensional plasmonic chain and the nonlinear coupling 

among plasmonic particles are of great interest to look at, we would provide 

a number of ways to analyze the one-dimensional nonlinear plasmonic 

chain by covering the theoretical aspects of the design and results in 

Chapter 2, and explaining various nonlinear phenomena in the field of 

nonlinear metamaterials. 

 

1.3  FPU-model 

 Although the plasmonic chain is a kind of electromagnetic 

metamaterials, FPU model perhaps is the one that shares the largest 

similarity with the plasmonic chain if we treat the chain as a system of 

coupled resonators. Here the term 'resonator' simply represents the one as 

described in classical mechanics. As we are considering a one-dimensional 

nonlinear plasmonic chain with evenly separated plasmonic metal 

nanoparticles in Chapter 2, the interactions between the respective on-site 

electron cloud will result in an oscillating behavior like resonators. 

Although the mathematical equations are different, we will consider a 

situation where the nonlinear plasmonic would behave like an FPU model. 

In the following paragraphs, we will introduce the FPU model. 
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 The FPU paradox, named after three scientists Fermi, Pasta and 

Ulam, consists of a chain of masses connected by springs with nonlinear 

components in the relation between deformation and restoring force. Fig. 

1.1 shows a schematic picture of the nonlinear mass-spring system 

investigated by Fermi et al. If 𝑢𝑢𝑛𝑛 denotes the displacement of the 𝑛𝑛th 

mass from its original position in the longitudinal direction, and 𝛼𝛼 denotes 

the nonlinear coefficient of the quadratic terms in the force between the 

neighboring sites and 𝛽𝛽 denotes the nonlinear cubic term, a general FPU 

model were governed by the following equations: 

 𝑢𝑢𝑛̈𝑛 = (𝑢𝑢𝑛𝑛+1 + 𝑢𝑢𝑛𝑛−1 − 2𝑢𝑢𝑛𝑛) + 𝛼𝛼[(𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2 − (𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2], (1.1) 

 𝑢𝑢𝑛̈𝑛 = (𝑢𝑢𝑛𝑛+1 + 𝑢𝑢𝑛𝑛−1 − 2𝑢𝑢𝑛𝑛) + 𝛽𝛽[(𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)3 − (𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)3]. (1.2) 

 

Figure 1.1: Schematic picture of the FPU model: masses that can move only in one 

dimension are coupled by nonlinear spring, 𝑢𝑢𝑛𝑛  is the relative displacement with 

respect to the equilibrium position of the 𝑛𝑛th mass in longitudinal direction. 

 

 The evenly separated one-dimensional nonlinear plasmonic chain in 

Chapter 2 can thus transform into a FPU model once the electron clouds and 

the electrostatic force between them are regarded as masses and nonlinear 

coupling springs respectively, where the masses in the FPU case are also 

resonators. Upon considering the classical FPU model, Fermi [22] expected 

that setting the system into motion in a way that all of the energy was 

initially in one of the normal mode of the linear system would lead to a state 

called equipartition, which energy was shared equally among all normal 
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modes. To the great surprise of Fermi, the equipartition did not take place, 

the energy was instead shared among few modes and then returned to the 

starting mode, known as the 'super-recurrence relation' [23]. In order to 

explain the 'FPU phenomenon', Zabusky and Kruskal [24] suggested the 

numerical integration of the Korteweg-de-Vries equation led to a generation 

of solitons emerged from the generic initial conditions and travelled through 

the media in 1965. In order to achieve the equipartition, Zabusky and Deem 

[25] were the first to consider putting energy into a high frequency mode. 

The numerical calculations later found that such a condition with large 

amplitude oscillation could lead to equipartition. Systematic studies 

summarized by Lichtenberg et al. [26] showed the existence of two 

thresholds; a transition from regular motion to weakly chaotic state with the 

dominance of regular motion within the first threshold, and a quick 

equipartition led by strong chaos in the second threshold. Besides the 

aforementioned, there are a lot of topics to be discussed in the area of FPU 

paradox: Metastability and the blow-up conditions [27, 28], questions on the 

dimension dependent, 'breathers and travelling breathers' [29], applicability 

of KAM theory [30], etc. Note that all these analyses were done by using 

the classical FPU model only, it is a worthy topic to study when such a 

system is being applied to the field of nonlinear plasmonic chain and 

perform the 'numerical experiments' to see how it will differ from the 

classical FPU model, which would be discussed in chapter 2. 

 

1.4  Non-Hermitian one-dimensional diatomic plasmonic chain 

 In chapter 3, we switch our focus from the evenly separated 



6 

one-dimensional nonlinear plasmonic chain to a non-Hermitian diatomic 

plasmonic chain.  

 

 From the previous sections, we know the one-dimensional 

plasmonic chain had been put under extensive investigations and most of 

them were regarded as 'monatomic' chains, including the setup we 

mentioned in Chapter 2. The term 'monatomic' here implies the plasmonic 

chain is formed by uniformly spaced identical plasmonic nanoparticles, for 

which they are having one single plasmonic nanoparticle to be the unit cell. 

Now, we consider a dimer consisting of two plasmonic nanoparticles A and 

B (they might not be necessarily identical), and the dimer eventually linked 

together to form a one-dimensional chain. With this spatial configuration, 

the chain is known as a 'diatomic' chain as it has a dimer (2 nanoparticles, A 

and B) in its unit cell. This kind of configuration had an increasing 

significance recently owing to their possibility to have topological edge 

states, nonreciprocal bands and unidirectional wave propagations [44, 45]. 

In Chapter 3, we would like to consider a one-dimensional diatomic 

plasmonic chain with a unit cell dimer consisting of coated metal 

nanoparticles. Nanoparticles with coated layers could support astonishing 

phenomena such as parity-time (PT) symmetry phase transition and the gain 

or loss could be easily implemented into the system to consider the 

non-Hermitian aspects. 

 

1.5  Overview on PT-symmetric system 

 In the late Chapter 3, efforts would be spent on a recent material 
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advancement which challenged the traditional conception of light-matter 

interaction, known as the parity-time (PT) symmetric media, using the 

configuration of one-dimensional coated diatomic plasmonic chain. 

 

 Over the years, intensive investigations on the Hermitian 

Hamiltonian systems are of great success because of the calculation on the 

allowed bands and forbidden gaps [31]. It was widely accepted in quantum 

mechanics that the physical observables are associated with the eigenvalues 

of Hermitian operators, which are real quantities in reality. For example, a 

Hamiltonian operator, 𝐻𝐻�, has only real eigenvalues would result in a real 

energy spectrum. This feature is implied by that the Hamiltonian is 

Hermitian (self adjoint), i.e. 𝐻𝐻+ = 𝐻𝐻  [32]. In contrast, the so-called 

non-Hermitian system had far less attention until the late 1900's. When 

considering a non-Hermitian system, a ubiquitous configuration is adopting 

gain and loss and hence posing a non-Hermitian Hamiltonian. Bender and 

Boettcher were known as the first to introduce the idea of parity-time 

symmetry to study this kind of system in the approach of quantum field 

theory [33]. In this work they found that a broad family of non-Hermitian 

Hamiltonian could exhibit the entire real spectra and so as the real 

eigenvalues in the presence of PT (parity-time) symmetry. Indeed, the 

eigenvalues are purely real only below a certain critical threshold of those 

non-Hermiticity parameter [34], above which the eigenvalues will enter the 

complex plane such that the system undergoes a spontaneous 

PT-symmetry-breaking, materials will exhibit an increased gain and loss, 

results in entering a broken PT symmetry regime [33 ,35]. The point for 

which the eigenvalues transit from real to complex plane is known as the 
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'exceptional point' nowadays [36]. Such kind of phase transition is of great 

interest as it was unexpected to have same features with Hermitian systems 

under some circumstances. 

 

 Recently, PT-symmetry in optics has an area of intense study [38-43]. 

These include the band merging effects in PT-symmetric lattices [39], 

double refraction, power oscillation associated with dynamic beam 

evolution and unidirectional invisibility [40-42]. Also, optical solitons are 

being excited in the numerical calculation using nonlinear material having 

PT-systems [38], nonreciprocal wave propagation in combing PT-symmetry 

and nonlinearity [43]. 

 

1.5.1 PT-Symmetry 

 In the field of conventional quantum mechanics, a PT-symmetric 

system simply means that a non-Hermitian Hamiltonian theory having 

PT-symmetric condition imposed on the Hermitian Hamiltonian, that is, a  

PT-symmetric Hamiltonian should share the same eigenfunctions with the 

𝑃𝑃�𝑇𝑇�  operator, also: 

 𝑃𝑃�𝑇𝑇�  𝐻𝐻� = 𝐻𝐻� 𝑃𝑃�𝑇𝑇� . (1.3) 

Here, the Hamiltonian 𝐻𝐻� can be written as 

 𝐻𝐻� = 𝑝̂𝑝2/𝑚𝑚 +  𝑉𝑉(𝑥𝑥�), (1.4) 

𝑝̂𝑝 and 𝑥𝑥� are the momentum operator and position operator respectively. 

The parity operator 𝑃𝑃�, whose effect is to make spatial inversion, and the 

time operator 𝑇𝑇� , which is a time reversal operator, i.e. 
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 𝑃𝑃�:     𝑝̂𝑝 → −𝑝̂𝑝,      𝑥𝑥� → −𝑥𝑥�, (1.5.1) 

 𝑇𝑇� :     𝑝̂𝑝 → −𝑝̂𝑝,      𝑥𝑥� → −𝑥𝑥�,     𝑡𝑡 → −𝑡𝑡. (1.5.2) 

 

 To conclude, Bender and Boettcher demonstrated that a real spectra 

could be obtained if the Hamiltonian was PT-symmetric even it was 

non-Hermitian by itself, while entering a broken PT-phase (complex 

eigenspectrum) if it did not share the same eigenfunctions with the 𝑃𝑃�𝑇𝑇�  

operator. However, the PT-symmetry in optics was not witnessed until 2007. 

Recently, D. N. Christodoulides et al. suggested the possibility to observe 

the complex PT-symmetric effect within an optical framework [37-39]. A 

PT-symmetric system will guarantee Eq. (1.3) to be true and impose the 

Hamiltonian to commute with the 𝑃𝑃�𝑇𝑇�  operator such that: 

 𝑃𝑃�𝑇𝑇�  𝐻𝐻� = 𝑝̂𝑝2/𝑚𝑚 + 𝑉𝑉∗(−𝑥𝑥�), (1.6) 

 𝐻𝐻� 𝑃𝑃�𝑇𝑇� = 𝑝̂𝑝2/𝑚𝑚 + 𝑉𝑉(𝑥𝑥�). (1.7) 

Thus, Eq. (1.3) implies that: 

 𝑉𝑉∗(−𝑥𝑥�) = 𝑉𝑉(𝑥𝑥�), (1.8) 

Eq. (1.8) basically gives constraint to the potential by stating that the real 

part of the potential must be an even function and the imaginary part must 

be an odd function, in terms of position 𝑥𝑥. Such a condition was then 

modified by D. N. Christodoulides et al. who postulated to include a 

symmetric index guiding and an anti-symmetric gain/loss profile in order to 

realize the PT-symmetric effect in optics [37]. Notice that such kind of gain 

profile cannot be obtained naturally in reality, but can be achieved by 

various way, such as two-wave mixing, etc. In general, by substituting wave 

propagation direction 𝑧̂𝑧 to the time evolution term when dealing with the 

paraxial wave equation and Schrodinger equation, the refractive index plays 
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the role of potential in optics, rewrite Eq. (1.8), we have: 

 𝑛𝑛∗(−𝑥𝑥�) = 𝑛𝑛(𝑥𝑥�), (1.9) 

 𝜀𝜀∗(−𝑥𝑥�) = 𝜀𝜀(𝑥𝑥�). (1.10) 

That is, if the real part of the refractive index profile is an even function of 

position 𝑥𝑥 while the imaginary part is an odd function, light will propagate 

as if it undergoes a PT-symmetric potential, for which Eq. (1.9) and (1.10) 

are equivalent. 

 

1.6  Objective 

 Owing to the extensive development in linear and nonlinear 

metamaterials which use plasmonic material as the 'building blocks', it is 

definitely a good starting point to give a closer look into the 

one-dimensional plasmonic chain first. In Chapter 2, we would like to first 

build up a model of a one-dimensional nonlinear plasmonic chain for which 

its nonlinearity comes from the Coulomb interaction of charges using 

Nearest Neighbour Approximation (NNA), then we would perform the 

linear analysis through linearization and solving eigenvalue-problem, and 

obtain the time-domain behaviour through the Runge-Kutta Method. Next, 

we would provide evaluation on Hamiltonian and the Fourier analysis to 

explain the nonlinear results. Finally, in the last part of Chapter 2, we would 

end up with the FPU approach on analysing the energy-indicator diagram 

and discussing the nonlinear localization and frequency conversion found in 

long finite chain system. 

 

 In Chapter 3, as aforementioned, we switched our focus to the 
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non-Hermitian PT-symmetric diatomic chain. Efforts would be spent on the 

verification of edge state in a one-dimensional coated diatomic plasmonic 

chain through coupled dipole equation and dynamic Green's function in the 

analytic approach, and also the realization on simulations of 

Finite-difference time-domain (FDTD) in the numerical approach, as FDTD 

is a powerful Maxwell solver in calculating the EM-waves. An interesting 

scattering phenomena [46] in the system would also be discussed, which 

was described as the zero extinction cross section of edge state in 

PT-symmetric coated diatomic plasmonic chain.  

 

 In the last chapter, an overall summary on the topic would be given. 
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Chapter 2 One-dimensional nonlinear 

plasmonic chain 

 

2.1  Modelling 

 In order to investigate the plasmonic oscillation, we always consider 

a collective oscillation of the free electron gas density with respect to the 

positive ion. And inside the model world, we want to leave out as much of 

the complexity as we can. Therefore, we only consider a one-dimensional 

nonlinear plasmonic nanoparticle chain with equally-spaced nanoparticles 

of identical sizes. Through external electric field excitation, charges within 

nanoparticles oscillate, thus each of the nanoparticle can be characterized by 

a movable negatively charged electron cloud (−𝑞𝑞) and a fixed positive 

volume charge (+𝑞𝑞). To start with, we assume the positive volume charge 

having center of mass always fixed at the entries along the one-dimensional 

chain, while the negatively charged electron cloud are given a slightly push 

in direction parallel to the chain axis so as to undertake a back and forth 

oscillation (longitudinal motion) with respect to the overlapped positive 

volume charge and its movement is being affected by the neighbouring 

charges, see Fig. 2.1. 

 

 Here the displacing electron clouds form plasmonic oscillation, 

which gives energy to the system so that the electron cloud can gain a 

degree of freedom with respect to the positive ion. 
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Figure 2.1: (Color online) Schematic of a nonlinear plasmonic nanoparticle chain with 

oscillating electron clouds. The chain contains fixed positive volume charge and 

movable negatively charged electron cloud in a unit cell, denoted by red solid spheres 

and blue semi-transparent clouds with dashed boundaries, respectively. All 

nanoparticles are of the same size with radius 𝑅𝑅, and the charges have centers of mass 

represented by the red/blue spots. The nanoparticles are separated by a fixed distance 

𝑎𝑎. The electron cloud are assumed to be undertaken a longitudinal motion such that 

that the 𝑛𝑛th one has its center of mass displaced by 𝑢𝑢𝑛𝑛 with respect to the center of 

mass of the 𝑛𝑛th positive volume charge along the chain axis 𝑥𝑥. 

 

 We assume the longitudinal motion of the 𝑛𝑛th negatively charged 

electron cloud can be denoted by 𝑢𝑢𝑛𝑛, the displacement of center of mass 

with respect to the 𝑛𝑛th positive volume charge (the displacement here does 

not state the particle oscillates, but describing an electron oscillation); the 

corresponding velocity and acceleration are defined as follow:   

 𝑣𝑣𝑛𝑛 =
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑢𝑢𝑛𝑛), (2.1) 

 𝑎𝑎𝑛𝑛 =
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑣𝑣𝑛𝑛) =
𝑑𝑑2

𝑑𝑑𝑑𝑑2
(𝑢𝑢𝑛𝑛). (2.2) 
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 In the model world, the motion or say the trajectory of the 𝑛𝑛th 

electron cloud is affected by the 𝑛𝑛th positive volume charge, the (𝑛𝑛 − 1)th 

positive volume charge/electron cloud, the (𝑛𝑛 + 1)th  positive volume 

charge/electron cloud. If we use all other parameters denoted in the past 

(separation = 𝑎𝑎, radius of nanoparticle = 𝑅𝑅, total charge in the electron 

cloud = −𝑞𝑞 ), one can easily write down the equation of motion by 

considering the force exerting on the 𝑛𝑛th negatively charged electron cloud, 

that is:  

 𝐹𝐹 = 𝑚𝑚𝑢𝑢𝑛̈𝑛 = −𝑚𝑚𝑚𝑚0
2𝑢𝑢𝑛𝑛 +

𝑞𝑞2

4𝜋𝜋𝜀𝜀0
1

(𝑎𝑎 − 𝑢𝑢𝑛𝑛)2

−
𝑞𝑞2

4𝜋𝜋𝜀𝜀0
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2 −
𝑞𝑞2

4𝜋𝜋𝜀𝜀0
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛)2

+
𝑞𝑞2

4𝜋𝜋𝜀𝜀0
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2, 

(2.3) 

where in the right-hand side, the first term is the influence of the 𝑛𝑛th 

positive volume charge, 𝜔𝜔0 is a constant such that it is obtained from the 

plasma frequency of the respective material and is directly proportional to 

the charge density. The terms later on are describing the influences of the 

adjacent positive volume charge and negatively charged electron cloud. 

Notice that the nonlinearity inside our equation of motion basically comes 

from the Coulomb interaction, that is, to assume the charged medium being 

a point charge. Back to the equation, we then divide 𝑚𝑚 on each side: 

 𝑢𝑢𝑛̈𝑛 = −𝜔𝜔0
2𝑢𝑢𝑛𝑛 +

𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑚𝑚
1

(𝑎𝑎 − 𝑢𝑢𝑛𝑛)2 −
𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑚𝑚
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2

−
𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑚𝑚
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛)2 +
𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑚𝑚
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2. 
(2.4) 

 

 Since the problem is a plasmonic oscillation, we can do the 

following replacement: 
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 𝜔𝜔0
2𝑅𝑅3 =

𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑚𝑚
�=

𝜔𝜔𝑝𝑝2𝑅𝑅3

3
�, (2.5) 

 ∴ 𝑢𝑢𝑛̈𝑛 = −𝜔𝜔0
2𝑢𝑢𝑛𝑛

+ 𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 − 𝑢𝑢𝑛𝑛)2 −

1
(𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2

−
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛)2 +
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2�, 

(2.6) 

where 𝜔𝜔𝑝𝑝 is the material plasma frequency which can be found by a given 

plasmon energy in terms of eV, take Au as an example. Assume Au has a 

plasmon energy 6.18eV, therefore: 

 𝜔𝜔𝑝𝑝 =
6.18 × 1.602 × 10−19 × 2𝜋𝜋

6.626 × 10−34
= 9.388 × 1015rad s−1, (2.7) 

 𝜔𝜔0 =
𝜔𝜔𝑝𝑝
√3

= 5.420 × 1015rad s−1. (2.8) 

 

 The above equations imply that there will be a specific 𝜔𝜔0 

corresponds to a specific material. Also, Eq. (2.6) is a useful equation of 

motion in computing the acceleration mentioned in Chapter 2.3. 

 

 But for now, in Eq. (2.6), we can see the only not unified term is the 

acceleration on the left-hand side, by making the following change: 

 𝑢𝑢𝑛̈𝑛 = −𝜔𝜔2𝑢𝑢𝑛𝑛, (2.9) 

where 𝜔𝜔 is the oscillating frequency of the whole system we are interested 

in, Eq. (2.6) will eventually turn into: 

 −𝜔𝜔2𝑢𝑢𝑛𝑛 = −𝜔𝜔0
2𝑢𝑢𝑛𝑛

+ 𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 − 𝑢𝑢𝑛𝑛)2 −

1
(𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2

−
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛)2 +
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2�. 

(2.10) 



16 

2.2  Linear analysis (Linearization & Eigenvalue-problem) 

 We first linearize the model by considering that 𝑥𝑥 is small enough, 

 (1 + 𝑥𝑥)𝑝𝑝 ≈ 1 + 𝑝𝑝𝑝𝑝. (2.11) 

In this case, we have 

 1
(𝑎𝑎 − 𝑥𝑥)2 ≈

1
𝑎𝑎2
�1 + 2

𝑥𝑥
𝑎𝑎
�, (2.12) 

and 

 1
(𝑎𝑎 + 𝑥𝑥)2 ≈

1
𝑎𝑎2
�1 − 2

𝑥𝑥
𝑎𝑎
�. (2.13) 

 

 The above relation will then transform the complex equation of 

motion into a simple and solvable eigenvalue-problem, i.e. Eq. (2.10) will 

transform to: 

 −𝜔𝜔2𝑢𝑢𝑛𝑛 = −𝜔𝜔0
2𝑢𝑢𝑛𝑛

+ 𝜔𝜔0
2𝑅𝑅3 �4

𝑢𝑢𝑛𝑛
𝑎𝑎3

− 2
𝑢𝑢𝑛𝑛
𝑎𝑎3

+ 2
𝑢𝑢𝑛𝑛−1
𝑎𝑎3

+ 2
𝑢𝑢𝑛𝑛+1
𝑎𝑎3

− 2
𝑢𝑢𝑛𝑛
𝑎𝑎3
�

= −𝜔𝜔0
2𝑢𝑢𝑛𝑛 +

2𝜔𝜔0
2𝑅𝑅3

𝑎𝑎3
𝑢𝑢𝑛𝑛−1 +

2𝜔𝜔0
2𝑅𝑅3

𝑎𝑎3
𝑢𝑢𝑛𝑛+1, 

(2.14) 

which implies that: 

 𝜔𝜔2𝑢𝑢𝑛𝑛 = 𝜔𝜔0
2𝑢𝑢𝑛𝑛 −

2𝜔𝜔0
2𝑅𝑅3

𝑎𝑎3
𝑢𝑢𝑛𝑛−1 −

2𝜔𝜔0
2𝑅𝑅3

𝑎𝑎3
𝑢𝑢𝑛𝑛+1. (2.15) 

 

 Indeed, we can now see the equation of motion of the 𝑛𝑛th 

negatively charged electron cloud has transformed into a recurrence 

equation such that the 𝑛𝑛th  term depends on its (𝑛𝑛 − 1)th , 𝑛𝑛th  and 

(𝑛𝑛 + 1)th terms. 

 

 Recall the form of an eigenvalue-problem, 

 𝐀𝐀𝐀𝐀 = 𝜆𝜆𝐯𝐯, (2.16) 
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we rewrite Eq. (2.15) using the format of Eq. (2.16) and eventually get: 

 
𝐀𝐀 �

𝑢𝑢1
⋮
𝑢𝑢𝑛𝑛
⋮
� = 𝜔𝜔2 �

𝑢𝑢1
⋮
𝑢𝑢𝑛𝑛
⋮
�, (2.17) 

where 𝐀𝐀 is an 𝑛𝑛 × 𝑛𝑛 matrix having dimension depends on the number of 

charged nanoparticles in the one-dimensional plasmonic chain, and is 

defined by: 

𝐀𝐀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜔𝜔0

2 −
2𝜔𝜔0

2𝑅𝑅3

𝑎𝑎3
0 0 ⋯ 0

−
2𝜔𝜔0

2𝑅𝑅3

𝑎𝑎3
𝜔𝜔0
2 −

2𝜔𝜔0
2𝑅𝑅3

𝑎𝑎3
0 ⋯ 0

0 −
2𝜔𝜔0

2𝑅𝑅3

𝑎𝑎3
𝜔𝜔0
2 −

2𝜔𝜔0
2𝑅𝑅3

𝑎𝑎3
⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ 0 −
2𝜔𝜔0

2𝑅𝑅3

𝑎𝑎3
𝜔𝜔0
2 −

2𝜔𝜔0
2𝑅𝑅3

𝑎𝑎3

0 ⋯ ⋯ 0 −
2𝜔𝜔0

2𝑅𝑅3

𝑎𝑎3
𝜔𝜔0
2

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

  (2.18) 

 

 Here zero boundary condition is adopted as shown in Eq. (2.18), i.e. 

there will not be extra nanoparticles beyond two ends of the chain. Eq. (2.17) 

has a similar form with the eigenvalue-problem, where the square-root of 

the eigenvalue of matrix 𝐀𝐀 is the oscillating frequency 𝜔𝜔 of the system, 

and its corresponding eigenvector is the displacement vector of the center of 

mass of the negatively charged electron cloud in the entire chain. 

 

 The main concept of this method is that, once we know the form of 

𝐀𝐀 , we can get 𝑛𝑛  discrete eigenvalues ( 𝜔𝜔2 ) and 𝑛𝑛  corresponding 

eigenvectors (displacement of the center of mass of the negatively charged 

electron cloud throughout the whole chain). 
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 Here we use MATLAB as the simulation tool as it works with 

essentially one kind of object, a rectangular numerical matrix with possibly 

complex entries. To proceed, we first consider 10 nanoparticles in the chain 

(i.e. 𝑛𝑛 = 10) and use Au as the material having natural resonant frequency 

𝜔𝜔0 = 5.420 × 1015rad s−1; the nanoparticles are having the same size 

such that its radius 𝑅𝑅 = 5nm and are evenly separated by 𝑎𝑎 = 15nm 

initially. 

 

 
Figure 2.2: (a) The pick off normalized displacement vector, with 𝑥𝑥-axis being the site 

number representing 10 discrete electron clouds along the one-dimensional plasmonic 

chain, and 𝑦𝑦-axis being the normalized longitudinal displacement of the center of mass. 

Here the pick off eigenmode is at the 4th eigenfrequency found in Fig. 2.2(b). (b) The 

dispersion band of the 10 discrete eigenfrequencies, with 𝑥𝑥-axis being the mode 

number 𝑘𝑘, and 𝑦𝑦-axis being the eigenfrequency in terms of rad s−1. 

 

 The output is shown above, see Fig. 2.2. The graph is divided into 2 
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parts. Fig. 2.2(a) displays the eigenvector of the selected eigenfrequency, 

while Fig. 2.2(b) displays the dispersion band of the eigenfrequencies. This 

gives us a basic idea of how the system behave – if the oscillation is linear, 

there should exist 10 kinds of waveform correspond to those 10 

eigenfrequencies, since 𝐀𝐀 is a 10 × 10 matrix. 

 

 The outcome is of expectation since there are 10 discrete 

eigenfrequencies shown in Fig. 2.2(b), ranging from 5.0 × 1015rad s−1 to 

5.8 × 1015rad s−1. It suggests that practically, the range of oscillating 

frequency when oscillating linearly should be about 0.9𝜔𝜔0  to 1.1𝜔𝜔0 . 

Notice that the 𝑦𝑦-axis of Fig. 2.2(b) is in the unit of rad s−1 which shows 

the exact value of the eigenfrequencies. To obtain the ratio toward 𝜔𝜔0, one 

should over the value by the importing 𝜔𝜔0  initially, in this case it is 

5.420 × 1015 rad s−1. We can expect later on, when we consider about the 

time-domain simulations, the system will have its oscillation property 

depends on what initial condition of displacement vector is in used.  

 

 Trivially, if there are 𝑁𝑁 sites in the chain, we will have 𝑁𝑁 discrete 

normalized eigenvectors. Such a normalized eigenvector is useful for being 

an initial condition in next part by multiplying a factor 𝐵𝐵, which allows a 

considerable control on the inputting energy into the system, that is: 

 
𝐮𝐮0 = 𝐵𝐵 × normalized mode �

𝑢𝑢1
⋮
𝑢𝑢𝑛𝑛
⋮
�, (2.19) 

for some value 𝐵𝐵, 𝐮𝐮0 is the collective displacement vector formed by 𝑢𝑢𝑖𝑖 

of the 𝑖𝑖th negatively electron cloud describing initial condition. 
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2.3  Nonlinear analysis (Runge-Kutta Method) 

 From the previous section, what we get is 10 sets of 

eigenfrequencies with their corresponding initial displacement vectors 

(normalized eigenvector). In this part, we will try to examine its time 

domain behaviour by a method called Classical Runge-Kutta Method 

(RK-4). 

 

 The Classical Runge-Kutta Method, also known as 'RK4', is a useful 

mathematical tool in solving differential equations. The concept of RK4 is 

as follow: 

 

 We first have a differential equation of function 𝑦𝑦, with a known 

expression or value of the initial condition, that is: 

 𝑦̇𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦),          𝑦𝑦(𝑡𝑡𝑜𝑜) = 𝑦𝑦𝑜𝑜 . (2.20) 

Instead of solving it analytically, we define a time step ℎ, for each step size 

ℎ > 0, RK4 states that: 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 +

1
6
ℎ(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)

𝑡𝑡𝑛𝑛+1 = 𝑡𝑡𝑛𝑛 + ℎ
𝑘𝑘1 = 𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑦𝑦𝑛𝑛)

𝑘𝑘2 = 𝑓𝑓 �𝑡𝑡𝑛𝑛 +
1
2
ℎ, 𝑦𝑦𝑛𝑛 +

ℎ
2
𝑘𝑘1�

𝑘𝑘3 = 𝑓𝑓 �𝑡𝑡𝑛𝑛 +
1
2
ℎ,𝑦𝑦𝑛𝑛 +

ℎ
2
𝑘𝑘2�

𝑘𝑘4 = 𝑓𝑓(𝑡𝑡𝑛𝑛 + ℎ,𝑦𝑦𝑛𝑛 + ℎ𝑘𝑘3)

, (2.21) 

for 𝑛𝑛 =  0, 1, 2, 3 … …                                       

 

 When we considering the nonlinear oscillation of electron cloud 

with respect to a fixed positive volume charge, the relation between 
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displacement vector, velocity vector and acceleration vector is always a 

differential equation with EM components. Knowing that such differential 

equations are difficult to solve, RK4 gives an alternative way to obtain the 

answer 𝑦𝑦 respect to time 𝑡𝑡 without solving the differential equation but 

doing iteration against time 𝑡𝑡 instead. By using this method, the time 

corresponding displacement vector, velocity vector and acceleration vector 

of plasmonic oscillation can be found easily. 

 

 In order to use RK4, there are three things to fulfil. First, we must 

have a known form of 𝑦̇𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦). Second, a known initial condition for 

𝑦𝑦(𝑡𝑡𝑜𝑜) = 𝑦𝑦𝑜𝑜 is needed. Finally, we have to define a suitable time step ℎ. 

 

 We first apply the RK4 on the displacement vector 𝐮𝐮 and velocity 

vector 𝐯𝐯 of the one-dimensional plasmonic chain simultaneously. Using the 

form of Eq. (2.20), we have: 

 

⎩
⎪
⎨

⎪
⎧

𝑑𝑑𝐮𝐮
𝑑𝑑𝑑𝑑

= 𝐯𝐯,     𝐮̇𝐮 = 𝐯𝐯 = 𝐟𝐟(𝑡𝑡𝑛𝑛,𝐮𝐮𝑛𝑛),

𝑑𝑑𝐯𝐯
𝑑𝑑𝑑𝑑

= 𝐚𝐚,      𝐯̇𝐯 = 𝐚𝐚 = 𝐟𝐟(𝑡𝑡𝑛𝑛, 𝐯𝐯𝑛𝑛),

define ℎ = interval of one iteration = 𝑑𝑑𝑑𝑑,

 (2.22) 

to proceed, we then write down the iteration equations. Using the form of 

Eq. (2.21), iteration equations of displacement vector: 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐮𝐮𝑛𝑛+1 = 𝐮𝐮𝑛𝑛 +

1
6
ℎ(𝐦𝐦1 + 2𝐦𝐦2 + 2𝐦𝐦3 + 𝐦𝐦4)

𝐦𝐦1 = 𝐟𝐟(𝑡𝑡𝑛𝑛,𝐮𝐮𝑛𝑛)

𝐦𝐦2 = 𝐟𝐟 �𝑡𝑡𝑛𝑛 +
1
2
ℎ,𝐮𝐮𝑛𝑛 +

ℎ
2
𝐦𝐦1�

𝐦𝐦3 = 𝐟𝐟 �𝑡𝑡𝑛𝑛 +
1
2
ℎ,𝐮𝐮𝑛𝑛 +

ℎ
2
𝐦𝐦2�

𝐦𝐦4 = 𝐟𝐟(𝑡𝑡𝑛𝑛 + ℎ,𝐮𝐮𝑛𝑛 + ℎ𝐦𝐦3)

, (2.23) 

for 𝑛𝑛 =  0, 1, 2, 3 … … 
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Iteration equations of velocity vector: 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐯𝐯𝑛𝑛+1 = 𝐯𝐯𝑛𝑛 +

1
6
ℎ(𝐤𝐤1 + 2𝐤𝐤2 + 2𝐤𝐤3 + 𝐤𝐤4)

𝐤𝐤1 = 𝐟𝐟(𝑡𝑡𝑛𝑛, 𝐯𝐯𝑛𝑛)

𝐤𝐤2 = 𝐟𝐟 �𝑡𝑡𝑛𝑛 +
1
2
ℎ, 𝐯𝐯𝑛𝑛 +

ℎ
2
𝐤𝐤1�

𝐤𝐤3 = 𝐟𝐟 �𝑡𝑡𝑛𝑛 +
1
2
ℎ, 𝐯𝐯𝑛𝑛 +

ℎ
2
𝐤𝐤2�

𝐤𝐤4 = 𝐟𝐟(𝑡𝑡𝑛𝑛 + ℎ, 𝐯𝐯𝑛𝑛 + ℎ𝐤𝐤3)

, (2.24) 

for 𝑛𝑛 =  0, 1, 2, 3 … … 

 

 Indeed, the concept of RK4 is to divide each time step ℎ into 4 

parts, 𝐦𝐦1 , 𝐤𝐤1  represent the change of first small increment, 𝐦𝐦2 , 𝐤𝐤2 

represent the change of second small increment…etc. And each iteration 

equals to different proportion of those four increments. In the next part, I 

will evaluate the first iteration deeply. 

 

 Here, let us look at the table of 𝐮𝐮, 𝐯𝐯, 𝐚𝐚 in first iteration: 

 

Table 2.1: Illustration of displacement vector, velocity vector and acceleration vector in 

first time step of iterations of RK4. 

Time: 0 → h u v a 

1st increment 𝐮𝐮0 𝐯𝐯0 𝐚𝐚0 

2nd increment unknown unknown 𝐚𝐚1 

3rd increment unknown unknown 𝐚𝐚2 

4th increment unknown unknown 𝐚𝐚3 

 

Note that we only have 𝐮𝐮0 from the previous part and assume 𝐯𝐯0 equals 

0, also we assume we can compute the value of acceleration at any time by 

some sort of equations. Throughout the first iteration, 
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⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝐮𝐮1 = 𝐮𝐮0 +

1
6
ℎ(𝐦𝐦1 + 2𝐦𝐦2 + 2𝐦𝐦3 + 𝐦𝐦4)

𝐦𝐦1 = 𝐟𝐟(𝑡𝑡0,𝐮𝐮0) = 𝐯𝐯0

𝐦𝐦2 = 𝐟𝐟 �𝑡𝑡0 +
d𝑡𝑡
2

,𝐮𝐮0 +
d𝑡𝑡
2
𝐦𝐦1� = 𝐯𝐯 at 2nd increment = 𝐯𝐯0 + 0.5 × d𝑡𝑡 × 𝐚𝐚0

𝐦𝐦3 = 𝐟𝐟 �𝑡𝑡0 +
d𝑡𝑡
2

,𝐮𝐮0 +
d𝑡𝑡
2
𝐦𝐦2� = 𝐯𝐯 at 3rd increment = 𝐯𝐯0 + 0.5 × d𝑡𝑡 × 𝐚𝐚1

𝐦𝐦4 = 𝐟𝐟(𝑡𝑡0 + d𝑡𝑡,𝐮𝐮0 + d𝑡𝑡 × 𝐦𝐦3) = 𝐯𝐯 at 4th increment = 𝐯𝐯0 + d𝑡𝑡 × 𝐚𝐚2

. 

  (2.25) 

Here we obtain the expressions of velocity at different increments in the set 

of iteration equations of velocity vector as shown below, 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝐯𝐯1 = 𝐯𝐯0 +

1
6
ℎ(𝐤𝐤1 + 2𝐤𝐤2 + 2𝐤𝐤3 + 𝐤𝐤4)

𝐤𝐤1 = 𝐟𝐟(𝑡𝑡0, 𝐯𝐯0) = 𝐚𝐚0

𝐤𝐤2 = 𝐟𝐟 �𝑡𝑡0 +
d𝑡𝑡
2

, 𝐯𝐯0 +
d𝑡𝑡
2
𝐤𝐤1� = 𝐚𝐚 at 2nd increment = 𝐚𝐚1

𝐤𝐤3 = 𝐟𝐟 �𝑡𝑡0 +
d𝑡𝑡
2

, 𝐯𝐯0 +
d𝑡𝑡
2
𝐤𝐤2� = 𝐚𝐚 at 3rd increment = 𝐚𝐚2

𝐤𝐤4 = 𝐟𝐟(𝑡𝑡0 + d𝑡𝑡, 𝐯𝐯0 + d𝑡𝑡 × 𝐤𝐤3) = 𝐚𝐚 at 4th increment = 𝐚𝐚3

. (2.26) 

 

 By the above equations, we can now complete the first iteration.  

Table 2.2: Complete form of displacement vector, velocity vector and acceleration 

vector in first time step of iterations of RK4. 

Time: 0 → h u v a 

1st increment 𝐮𝐮0 𝐯𝐯0 𝐚𝐚0 

2nd increment 𝐮𝐮0 +
d𝑡𝑡
2
𝐦𝐦1 𝐯𝐯0 +

d𝑡𝑡
2
𝐤𝐤1 𝐚𝐚1 

3rd increment 𝐮𝐮0 +
d𝑡𝑡
2
𝐦𝐦2 𝐯𝐯0 +

d𝑡𝑡
2
𝐤𝐤2 𝐚𝐚2 

4th increment 𝐮𝐮0 + d𝑡𝑡 × 𝐦𝐦3 𝐯𝐯0 + d𝑡𝑡 × 𝐤𝐤3 𝐚𝐚3 

 

 We have the initial conditions of 𝐮𝐮 & 𝐯𝐯, the remaining part is to 

write down the expression of acceleration at any time and compute it. 
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Recalling Eq. (2.6) in Chapter 2.1, 

 𝑢𝑢𝑛̈𝑛 = −𝜔𝜔0
2𝑢𝑢𝑛𝑛 + 𝜔𝜔0

2𝑅𝑅3 �
1

(𝑎𝑎 − 𝑢𝑢𝑛𝑛)2 −
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2

−
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛)2 +
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2� − 𝛾𝛾𝑢̇𝑢, 
(2.27) 

note that the equation is not exactly the same with Eq. (2.6) as there is a 

linear damping term in the above equation. By applying the above equation 

to each of the nanoparticles in the chain, the corresponding acceleration 

vector 𝐚𝐚 at any moment can be computed. Also the existence of damping 

term may help the realization of exceptional point in Chapter 3 as it may 

lead to certain gain and loss in this system. 

 

 Therefore, with a known initial 𝐮𝐮0, 𝐯𝐯0, and the time dependent 

acceleration of every single negatively charged electron cloud, one can use 

RK4 to simulate the 𝐮𝐮 and 𝐯𝐯 at any time. Also, taking advantages of 𝐮𝐮 a 

vector describing displacement vectors of the centers of mass of the 

negatively charged electron clouds, the corresponding vector for dipole 

moment 𝐩𝐩 can be computed easily by the following equation: 

 𝐩𝐩 = −|𝑄𝑄| ∙ 𝐮𝐮, (2.28) 

where 𝑄𝑄 is describing the total charge in an electron cloud and can be 

found by rewriting Eq. (2.5): 

 𝜔𝜔0
2𝑅𝑅3 =

(𝑁𝑁 ∙ 𝑞𝑞𝑒𝑒)2

4𝜋𝜋𝜀𝜀0(𝑁𝑁 ∙ 𝑚𝑚𝑒𝑒)
, (2.29) 

where 𝑁𝑁 represents the number of electrons in the electron cloud and 𝑞𝑞𝑒𝑒 

represents charge of one single electron. As long as we fixed the material in 

used, a fixed 𝜔𝜔0; the number of electrons in the electron cloud 𝑁𝑁 can be 

deduced by Eq. (2.29), and so as the total charge 𝑄𝑄 = 𝑁𝑁 ∙ 𝑞𝑞𝑒𝑒.   
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 Again, we use MATLAB to simulate the solutions by setting the 

following parameter. We use the configuration (displacement vector of 

center of mass) of the 4th eigenmode as an initial condition, the factor 

multiplying on the normalized eigenvector is set by 𝐵𝐵 = 0.5 × 10−8m, the 

time step, also known as interval for one iteration in RK-4 is defined by 

d𝑡𝑡 = 10−4/𝜔𝜔0(s) and we assume there is no linear damping effect within 

each of the nanoparticles, i.e. 𝛾𝛾 = 0.0 × 𝜔𝜔0. 

 

 

Figure 2.3: (a) The displacement graph, with 𝑦𝑦 -axis being the longitudinal 

displacement of the center of mass in terms of m and 𝑥𝑥-axis being the site number 

representing 10 discrete electron clouds along the one-dimensional plasmonic chain. (b) 

The velocity graph, with 𝑦𝑦-axis being the longitudinal velocity of the center of mass in 

terms of m/s and 𝑥𝑥-axis being the site number. The above figure is capped when 

time =  3000/𝜔𝜔0, i.e. 3 × 107 RK iterations. 
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 With suitable syntax in MATLAB, the program gives a moving 

figure to show how the displacement vector and velocity vector of 𝑛𝑛 

discrete negatively charged electron clouds varies with time, see Fig. 2.3 a 

snapshot. Also a 3D-surface plot can be generated for the investigation of all 

the net dipole moments on individual particle sites along the plasmonic 

chain over time, see Fig. 2.4. 

 

 

Figure 2.4: (Color online) Time-domain simulation of the net dipole moment, with 

𝑥𝑥-axis being the site number representing 10 discrete electron clouds, 𝑦𝑦-axis being the 

time in terms of s and 𝑧𝑧-axis being the dipole moment normalized by electron charge 

𝑒𝑒 = 1.602 × 10−19C. This graph is in the early cutoff of the RK iterations. The small 

black dots indicate the corresponding dipole strength at each iteration. The colored 

surface formed by dots is for the purpose of a more distinguishable results along 

different sites in the chain. The most vigorous oscillation stays in site 1, 4, 7, and 10. 

 

 According to the observation of whole process, when 𝐵𝐵 = 0.5 ×
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10−8m, the system kept oscillating with the form of initial condition, see 

Fig. 2.3(a), which is similar to the result predicted in Chapter 2.2, we can 

thus conclude that the system is behaving linearly, and assume it will 

behave the same as time goes beyond 5.5351 × 1013s since there is no 

tendency of such system to run into chaotic behavior. Indeed, the periodicity 

of such a linear system can be seen clearly in Fig. 2.4. 

 

 In the above figure, what we concern is the periodicity. It can be 

seen that all electron clouds share a high degree of linearity by having a 

time-translating behavior. In order to have the nonlinear oscillation, some 

parameters have to be changed. 

 

 Theoretically, a lot of parameters can be changed, such as the radius 

of nanoparticle 𝑅𝑅 , the separation 𝑎𝑎  between them, original driver 

frequency 𝜔𝜔0 , initial displacement vector 𝐮𝐮𝟎𝟎  in used…etc. Here we 

choose to change the magnitude of driver, which is denoted as 𝐵𝐵 as shown 

in Eq. (2.19), since it can be easily done by adjusting the energy input in the 

system. In order to demonstrate the existence of the nonlinearity in the 

system, we also compute the net dipole moment-time graph of one 

particular electron cloud later. 

 

 We start the investigation of the net dipole moment-time graph of 

one particular electron cloud by using an initial value 𝐵𝐵 = 0.5 × 10−8m, 

and gradually tune up the value of 𝐵𝐵 with investigation on that particular 

electron cloud repeatedly. Here we randomly picked the 9th electron cloud 

to study its dipole moment-time graph, i.e. site number = 9. 
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Figure 2.5: (Color online) The net dipole moment-time graph of the 9th electron 

cloud along the plasmonic chain, i.e. site number = 9, with 𝑦𝑦-axis being the dipole 

moment normalized by 𝑒𝑒 = 1.602 × 10−19C and 𝑥𝑥-axis being the time in terms of s. 

The program executed at around 5.5 × 10−13s results in an execution of the dipole 

moment.  

 

 Once again, the resulting Fig. 2.5 verifies that the system behave 

almost linearly. The net dipole moment-time graph of the 9th electron 

cloud, see Fig. 2.5, shows that the electron cloud is oscillating at a constant 

frequency and a relatively constant amplitude. Note that the two different 

colors (dark blue/light blue) found in the graph are meaningless as it 

indicates the data points are closely packed together, a magnification of 
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small fraction of the oscillation is shown on the top side of the dipole 

moment-time graph for clarification.  

 

 And by Fig. 2.4, it shows that the whole system (the 10 electron 

clouds) is oscillating linearly. This can be proved by steady oscillation 

shown in the spectrum, as it is predictable such that we give the system an 

initial condition with respect to the 4th eigenfrequency, the energy kept 

allocating at those sites as the initial condition does if the oscillation stays in 

linear regime. 

 

 Among raising 𝐵𝐵, in Fig. 2.6(a), we observe the nonlinear part in Eq. 

(2.27) becomes more significant than the previous case, due to the increase 

of 𝐵𝐵 , from 0.5 × 10−8m  to 1.25 × 10−8m . Combing the net dipole 

moment-time graph and the 3D-surface plot in Fig. 2.6(b), it shows a 

quasi-linear behavior. The quasi-linear behavior is observed through 

investigation in Fig. 2.6(a), which shows that the starting part (𝑡𝑡 = 0s to 

𝑡𝑡 = 1 × 10−13s) and the ending part (𝑡𝑡 = 4 × 10−13s to 𝑡𝑡 = 5 × 10−13s) 

are relatively linear while the middle part (𝑡𝑡 = 1 × 10−13s to 𝑡𝑡 = 4 ×

10−13s) shows a vigorous oscillation. Such kind of 'ABA' (A=linear, 

B=nonlinear) oscillating format is expected to repeat itself as time goes 

beyond. 
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Figure 2.6: (Color online) (a) The net dipole moment-time graph of the 9th electron 

cloud along the plasmonic chain, with 𝐵𝐵 = 1.25 × 10−8m. Note that the deep blue 

and light blue color in the graph is meaningless because it is related to a compression 

of large quantities of data points. (b) Time-domain simulation of the net dipole moment 

with respect to 10 electron clouds. Through the two figures, a quasi-linear behavior is 

observed. 
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Figure 2.7: (Color online) (a) The net dipole moment-time graph of the 9th electron 

cloud along the plasmonic chain, with 𝐵𝐵 = 1.5 × 10−8m. (b) Time-domain simulation 

of the net dipole moment with respect to 10 electron clouds. A nonlinear oscillation is 

observed after time 𝑡𝑡 = 1 × 10−13s. 
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 Among further increasing the parameter 𝐵𝐵, from 1.25 × 10−8m to 

1.5 × 10−8m, the nonlinear terms seems like to become uncontrollable after 

an approximated time 𝑡𝑡 = 1 × 10−13s, the quasi-linear behaviour turns into 

a total nonlinear oscillation, for which the nonlinear effect dominates the 

whole system. 

 

2.4  Hamiltonian and Fourier Analysis 

 In order to understand the reason behind the quasi-linear behaviour 

and the total nonlinear behaviour, one way is to look into the Hamiltonian of 

the system. Recall Eq. (2.10) in Chapter 2.1. 

 𝑢𝑢𝑛̈𝑛 = −𝜔𝜔0
2𝑢𝑢𝑛𝑛 + 𝜔𝜔0

2𝑅𝑅3 �
1

(𝑎𝑎 − 𝑢𝑢𝑛𝑛)2 −
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2

−
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛)2 +
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2�, 
 

while we generalized it, 

 𝑢𝑢𝑛̈𝑛 + 𝑓𝑓(𝑢𝑢) = 0, (2.30) 

integrate both side, the generalized equation becomes, 

 𝑢𝑢𝑛̇𝑛/2 + 𝐹𝐹(𝑢𝑢) = 𝐻𝐻, (2.31) 

that is, 

 𝐸𝐸k + 𝐸𝐸p = Hamiltonian(Total Energy). (2.32) 

 

 Assume there are 10 sites along the plasmonic chain which gives the 

expression below: 

 
𝐸𝐸k = �

1
2
𝑣𝑣𝑛𝑛2

10

𝑛𝑛=1

, (2.33) 
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 Onsite linear 𝐸𝐸p

= 𝐸𝐸p due to the 𝑛𝑛th positive volume charge

= integrate[𝜔𝜔0
2𝑢𝑢𝑛𝑛] = �

1
2
𝜔𝜔0
2𝑢𝑢𝑛𝑛2

10

𝑛𝑛=1

, 

(2.34.1) 

 

 Onsite nonlinear 𝐸𝐸p 

= 𝐸𝐸p due to (𝑛𝑛 + 1)th & (𝑛𝑛 − 1)th positive charge 

= integrate �𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢𝑛𝑛)2 −

1
(𝑎𝑎 − 𝑢𝑢𝑛𝑛)2�� 

= �𝜔𝜔0
2𝑅𝑅3(−

1
𝑎𝑎 + 𝑢𝑢𝑛𝑛

10

𝑛𝑛=1

−
1

𝑎𝑎 − 𝑢𝑢𝑛𝑛
+

2
𝑎𝑎

), 

(2.34.2) 

 

 Coupling 𝐸𝐸p 

= 𝐸𝐸p due to (𝑛𝑛 + 1)th & (𝑛𝑛 − 1)th negative charge 

= integrate �𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2 −

1
(𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2��, 

 

alternatively, we want some expression 𝐶𝐶 for coupling 𝐸𝐸p such that, 

 �
𝜕𝜕
𝜕𝜕𝑢𝑢1

+
𝜕𝜕
𝜕𝜕𝑢𝑢2

+
𝜕𝜕
𝜕𝜕𝑢𝑢3

+ ⋯+
𝜕𝜕
𝜕𝜕𝑢𝑢9

+
𝜕𝜕

𝜕𝜕𝑢𝑢10
� ∙ 𝐶𝐶

= 𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2 −

1
(𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2�, 

 

for 𝑛𝑛 = 1, 2, … , 10. 

∴ 𝐶𝐶 = 𝜔𝜔0
2𝑅𝑅3 �

1
𝑎𝑎 + 𝑢𝑢1

−
1
𝑎𝑎
�

+ �𝜔𝜔0
2𝑅𝑅3 �

1
𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1

−
1
𝑎𝑎
� + 𝜔𝜔0

2𝑅𝑅3 �
1

𝑎𝑎 − 𝑢𝑢10
−

1
𝑎𝑎
�

10

𝑛𝑛=2

. 

 

We will try to verify the expression of 𝐶𝐶 below, 
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�
𝜕𝜕
𝜕𝜕𝑢𝑢1

+
𝜕𝜕
𝜕𝜕𝑢𝑢2

+
𝜕𝜕
𝜕𝜕𝑢𝑢3

+ ⋯+
𝜕𝜕
𝜕𝜕𝑢𝑢9

+
𝜕𝜕

𝜕𝜕𝑢𝑢10
� ∙ 𝐶𝐶 

= −𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢1)2� + 𝜔𝜔0

2𝑅𝑅3 �
1

(𝑎𝑎 + 𝑢𝑢2 − 𝑢𝑢1)2� − 𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢2 − 𝑢𝑢1)2�

+ 𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢3 − 𝑢𝑢2)2� − 𝜔𝜔0

2𝑅𝑅3 �
1

(𝑎𝑎 + 𝑢𝑢3 − 𝑢𝑢2)2�

+ 𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢4 − 𝑢𝑢3)2� − ⋯+ ⋯

−𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢9 − 𝑢𝑢8)2� + 𝜔𝜔0

2𝑅𝑅3 �
1

(𝑎𝑎 + 𝑢𝑢10 − 𝑢𝑢9)2�

− 𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢10 − 𝑢𝑢9)2� + 𝜔𝜔0

2𝑅𝑅3 �
1

(𝑎𝑎 − 𝑢𝑢10)2� 

= 𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢2 − 𝑢𝑢1)2 −

1
(𝑎𝑎 + 𝑢𝑢1)2 +

1
(𝑎𝑎 + 𝑢𝑢3 − 𝑢𝑢2)2 −

1
(𝑎𝑎 + 𝑢𝑢2 − 𝑢𝑢1)2

+
1

(𝑎𝑎 + 𝑢𝑢4 − 𝑢𝑢3)2 −
1

(𝑎𝑎 + 𝑢𝑢3 − 𝑢𝑢2)2 + ⋯+
1

(𝑎𝑎 + 𝑢𝑢10 − 𝑢𝑢9)2

−
1

(𝑎𝑎 + 𝑢𝑢9 − 𝑢𝑢8)2 +
1

(𝑎𝑎 − 𝑢𝑢10)2 −
1

(𝑎𝑎 + 𝑢𝑢10 − 𝑢𝑢9)2� 

= �𝜔𝜔0
2𝑅𝑅3 �

1
(𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2 −

1
(𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2�

10

𝑛𝑛=1

, 

 ∴ Coupling 𝐸𝐸p

= 𝜔𝜔0
2𝑅𝑅3 �

1
𝑎𝑎 + 𝑢𝑢1

−
1
𝑎𝑎
�

+ �𝜔𝜔0
2𝑅𝑅3 �

1
𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1

−
1
𝑎𝑎
�

10

𝑛𝑛=2

+ 𝜔𝜔0
2𝑅𝑅3 �

1
𝑎𝑎 − 𝑢𝑢10

−
1
𝑎𝑎
�. 

(2.35) 

 

Rewrite Eq. (2.32), we have: 

 𝐸𝐸k + Onsite linear 𝐸𝐸p + Onsite nonlinear 𝐸𝐸p

+ Coupling 𝐸𝐸p

= Hamiltonion(Total Energy), 

(2.36) 
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 Combining Eq. (2.33), Eq. (2.34.1), Eq. (2.34.2), Eq. (2.35), Eq. 

(2.36), one can compute the total energy-time graph of the system. Normally, 

since this is a close system, we expect the total energy keeps constant over 

time, either it is posing a linear oscillation or a nonlinear oscillation. We 

thus start considering the energy-time analysis on the first case, using 𝐵𝐵 =

0.5 × 10−8m, known as the linear one, see Fig. 2.8. 

 

 
Figure 2.8: The total energy-time graph of the system using initial multiplying 

parameter 𝐵𝐵 = 0.5 × 10−8m, having 10 sites along the one-dimensional array, using 

the 4th eigenmode as initial configuration. The program executes at 3 × 107 RK 

iterations, i.e. 𝑡𝑡 = 5.5 × 10−13s.  

 

 It is obvious that the accuracy of the calculation is verified in Fig. 

2.8. Also when the oscillation is subjected to initial condition of 4th 

eigenfrequency with different values of 𝐵𝐵, like the example in the previous 

three distinct sections 𝐵𝐵 = 0.5 × 10−8 ,  1.25 × 10−8mand1.5 × 10−8m , 
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their energy-time graphs give the same behavior, a constant-like straight line. 

It turns out that these 3 models (3 different values of 𝐵𝐵) are valid under the 

consideration of Hamiltonian even though two of them are having a 

comparatively significant nonlinearity. However if initial configuration 

corresponds to the 8th  eigenfrequency is in used, the nonlinearity 

eventually force the dipole moment of electron clouds being unbounded, 

results in a ramping in the Hamiltonian. Such a scenario raises another issue, 

the overlapping of the adjacent charges, either the positive volume charge or 

the negatively charged electron cloud. 

 

 In our formalism, if the displacement of the 𝑛𝑛th negatively charged 

electron cloud is being unbounded, it will touch the (𝑛𝑛 + 1)th  or the 

(𝑛𝑛 − 1)th boundaries of the charges theoretically. Furthermore, they may 

overlap with each other. Upon overlapping, the Eq. (2.10) in Chapter 2.1 is 

no longer valid and will affect the simulation later on since the acceleration 

vector in the RK iterations is based on Eq. (2.10). Therefore it is essential to 

check whether there is overlapping happened or not.  

 

 There are 2 kinds of overlapping could be happened in the system. 

The first condition is about the overlapping of the 𝑛𝑛th negatively charged 

electron cloud with either the (𝑛𝑛 + 1)th  or the (𝑛𝑛 − 1)th  negatively 

charged electron cloud, while the second condition is about the overlapping 

of the 𝑛𝑛th negatively charged electron cloud with either the (𝑛𝑛 + 1)th or 

the (𝑛𝑛 − 1)th positive volume charge. With a known radius of all 

nanoparticles being 𝑅𝑅 = 5nm and a known separation of the sites being 

𝑎𝑎 = 15nm, the condition of overlapping are as follow: 
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 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛 < −5 × 10−9m, or 

𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛+1 > 5 × 10−9m,     or 

|𝑢𝑢𝑛𝑛| > 5 × 10−9m. 

(2.37) 

 

 Indeed, after the implementation of the overlapping equations, the 

results of the original case (eigenvector of the 4th eigenfrequency as initial 

condition) are quite astonishing. We can see the summarization in the table 

below. 

 

Table 2.3: Time for the overlapping of electron clouds happened when applying 

different material, initial eigenmode, (/) denotes no overlapping, (X osc.) denotes after 

X oscillations, overlapping occurs. 

𝜔𝜔0(rad s−1) 𝜔𝜔0 = 5.420 ×

1015(Au) 

𝜔𝜔0 = 7.982 ×

1015(Ag) 

𝜔𝜔0 = 5.420 ×

1015(Au) 

𝜔𝜔0 = 5.420 ×

1015(Au) 

Initial config. 4th eigenfreq. 4th eigenfreq. 2nd eigenfreq. 5th eigenfreq. 

Differrent 𝐵𝐵 0.5(/) 1.075(/) 1.075(/) 0.75(/) 

(10nm) 0.75(/) 1.08(141osc.) 1.08(/) 0.9(/) 

 1.07(/) 1.09(24.5osc.) 1.09(/) 0.901(368osc.) 

 1.075(/) 1.10(24.5osc.) 1.10(/) 0.902(97osc.) 

 1.08(141osc.) 1.11(16.5osc.) 1.15(/) 0.903(97osc.) 

 1.09(24.5osc.) 1.12(16.5osc.) 1.20(/) 0.904(97osc.) 

 1.10(24.5osc.) 1.13(15.5osc.) 1.30(/) 0.905(97osc.) 

 1.11(16.5osc.) >1.14(0osc.) 1.40(/) 0.906(38.5osc.) 

 1.12(16.5osc.)  1.50(/) 0.907(38.5osc.) 

 1.13(15.5osc.)   0.907(38.5osc.) 

 >1.14(0osc.)   >0.910(0osc.) 

 

 From the table above, we can draw into some conclusion. First of all, 

for the system of one-dimensional plasmonic chain, the nonlinear effect will 
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not be changed among using different materials, this fact can be seen by 

investigating the 2 columns in left-hand side of Table 2.3. Even though there 

are two kinds of material (Au and Ag), a similar response of oscillation can 

be obtained by applying a same initial condition (eigenvector corresponding 

to 4th eigenfrequency). Here, the response of oscillation, whether being 

oscillating vigorously or peacefully, is greatly depending on the initial 

condition. We observe that for an initial condition from 2nd 

eigenfrequency, the oscillation is so steady such that the overlapping will 

never take place. While the initial condition from 5th  eigenfrequency 

behaves so much different such that it will easily overlap. If the easiness of 

overlapping is proportional to the nonlinearity inside the system, we can 

somehow assume the following statement be true: The order of eigenmode 

is proportional to the nonlinearity inside the one-dimensional plasmonic 

chain. 

 

 Yet the most unbelievable part is that if we compare the results from 

Fig. 2.6 and Fig. 2.7 in Chapter 2.3 with the Table 2.3, for some reason the 

Hamiltonian remains conserve even though the overlapping of electron 

clouds happens (This case should not happen as previous example shows 

that energy should be undergoing a ramp). And if you try tracking the dipole 

moment-time graph, it is not difficult to find that the Quasi-linear behaviour 

in Fig. 2.6 and the nonlinear behaviour in Fig. 2.7 happens once there is 

overlapping, which makes the results having inconsistency. 

 

 On behalf of the Hamiltonian evaluation and overlapping effect, we 

can perform the Fourier transform on the net dipole moment-time graph of 
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different electron clouds. Fourier transform can sort out the frequency 

domain in a system, so as to have a better understanding of the nonlinearity 

in the one-dimensional plasmonic chain. This time, we will study the 

Fourier transform of one particular electron cloud ( 9th site in the 

one-dimensional chain) by using the same normalized eigenvector (4th 

eigenmode) with different parameter 𝐵𝐵 (0.5 × 10−8m in Fig. 2.9, 1.0 ×

10−8m in Fig. 2.10). With the previous results, Fig. 2.5, Fig. 2.6, and Fig. 

2.7 in Chapter 2.3, we know that the nonlinearity inside the system 

increased with the parameter 𝐵𝐵. 

 

 

Figure 2.9: Fourier transform of the dipole moment-time data of the 9th electron 

cloud in the one-dimensional plasmonic chain using initial configuration of 

eigenvector corresponds to 4th eigenfrequency and an initial multiplying parameter 

𝐵𝐵 = 0.5 × 10−8m. At spiky peak at 8.35 × 1014Hz is observed. 

 

 According to the numerical calculation in Fig. 2.9, we can see a peak 
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eventually located at a frequency of 8.3471 × 1014Hz . Now if we 

transform such a value in terms of radian, it equals about 8.3471 × 1014 ×

2𝜋𝜋 = 5.245 × 1015rad s−1, which shows the system is oscillating at about 

this eigenfrequency. And if we compare this result to the theoretical one, the 

𝜔𝜔0  we use is 5.420 × 1015rad s−1 , and the 4th  eigenfrequency is in 

used as the initial condition, which is at about 0.9687 × 𝜔𝜔0, the theoretical 

eigenfrequency in the system is thus denoted by 0.9687 × 5.420 × 1015 =

5.250 × 1015rad s−1. The small error between the numerical experiment 

and theoretical result may due to a lot of things, like the numerical error in 

MATLAB, or the nonlinearity in the system. But still, we can judge that the 

experimental result is supported by the theory. Now if we further look into 

Fig. 2.9, we can observe a small peak appears at a frequency about 9.25 ×

1014Hz, we could guess this is one kind of results from the nonlinearity in 

the system at this moment. 

 

 In the next part, we start investigating the Fourier-transformed 

frequency spectrum of the 9th electron cloud again in the one-dimensional 

plasmonic chain using 𝐵𝐵 = 1.0 × 10−8m, see Fig. 2.10. 
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Figure 2.10: Fourier transform of the dipole moment-time data of the 9th electron 

cloud in the one-dimensional plasmonic chain using initial configuration of 

eigenvector corresponds to the 4th  eigenfrequency and an initial multiplying 

parameter 𝐵𝐵 = 1.0 × 10−8m. A spiky peak at 8.33 × 1014Hz is observed with the 

existence of small peaks from other frequencies. 

 

 Like the previous analysis, we start by looking into the highest peak, 

that is the one located at a frequency of 8.3290 × 1014Hz. Again we 

transform such a value in terms of radian, it equals about 8.3290 × 1014 ×

2𝜋𝜋 = 5.233 × 1015rad s−1, which is comparatively smaller than the one in 

Fig. 2.9. We define this spiky peak as 'main frequency'. Indeed, by 

observing a larger set of 𝐵𝐵, we found that a bigger 𝐵𝐵 will result in a lower 

'main frequency', such frequency conversion is commonly found in 

nonlinear problem. Not only the lower frequency it brought, but also more 

'side frequency' will be brought into the system. We can see that there are 

four more peaks around the 'main frequency' in which you will not find 
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them in a linear oscillation. Unfortunately, the design of the 

one-dimensional plasmonic chain do not support a higher value of 𝐵𝐵 for 

which the system will literally undergoes overlapping, and makes the 

Fourier transform analysis became meaningless. 

 

2.5  Energy analysis (FPU-approach) 

 Now if we look into our one-dimensional plasmonic chain, one can 

imagine that the negatively charged electron clouds are the masses in 

FPU-model, and the electrostatic force in between are combined as the 

nonlinear spring. In that sense, they share a high degree of similarity indeed. 

This can be verified by the equation of motion in these two systems, like the 

FPU-one, recall the Eq. (2.6) in Chapter 2.1, the equation of motion is a 

recurrence equation such that its 𝑛𝑛th term depends on the (𝑛𝑛 − 1)th, 𝑛𝑛th 

and (𝑛𝑛 + 1)th terms. Under this consideration, there are no difference at all 

compared to Eq. (1.1) and Eq. (1.2) in Chapter 1.3.  

 

 We begin the FPU-approach analysis by lengthening the length of 

our modelling chain from 10 to 512. Using 512 nanoparticles to form the 

chain means there will be 512 discrete eigenfrequencies and 512 

corresponding normalized eigenvectors. To start with, one important 

approach is to compute the mode energy indicator-time graph. Since the 

main idea of FPU model is the energy distribution among different modes in 

the system, it is important to figure out how is the energy flow. 

 

 In order to get the mode energy indicator-time graph in our system, 
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recall Eq. (2.6) in Chapter 2.1.  

 𝑢𝑢𝑛̈𝑛 = −𝜔𝜔0
2𝑢𝑢𝑛𝑛 + 𝜔𝜔0

2𝑅𝑅3 �
1

(𝑎𝑎 − 𝑢𝑢𝑛𝑛)2 −
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛)2

−
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛)2 +
1

(𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1)2�. 
 

 

 We then perform the same procedure in Chapter 2.4, the extraction 

of Hamiltonian using Eq. (2.30), (2.31), 

 𝑢𝑢𝑛̈𝑛 + 𝑓𝑓(𝑢𝑢) = 0,  

 1
2
𝑢𝑢𝑛̇𝑛 + 𝐹𝐹(𝑢𝑢) = 𝐻𝐻,  

since Hamiltonian is the sum of kinetic energy and potential energy, we can 

write the following expression: 

 𝐸𝐸𝑢𝑢𝑛𝑛
kin + 𝐸𝐸𝑢𝑢𝑛𝑛

pot =
1
2
𝑢𝑢𝑛𝑛2̇ +

1
2
𝜔𝜔0
2𝑢𝑢𝑛𝑛2 + 𝜔𝜔0

2𝑅𝑅3 �−
1

𝑎𝑎 + 𝑢𝑢𝑛𝑛
−

1
𝑎𝑎 − 𝑢𝑢𝑛𝑛

+
2
𝑎𝑎
�

+
1
2
�𝜔𝜔0

2𝑅𝑅3 �
1

𝑎𝑎 + 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1
−

1
𝑎𝑎
�

+ 𝜔𝜔0
2𝑅𝑅3 �

1
𝑎𝑎 + 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛

−
1
𝑎𝑎
��. 

(2.38) 

 

 Note that Eq. (2.38) is a general expression of Hamiltonian 

including both the linear terms and the nonlinear terms. In the field of FPU, 

for simplicity, we use linear approximation to approximate the Hamiltonian. 

On this circumstance, the Hamiltonian is the sum of the energies in the 

normal modes for the linear system. Eq. (2.38) is thus transformed to: 

 𝐸𝐸𝑢𝑢𝑛𝑛
kin + 𝐸𝐸𝑢𝑢𝑛𝑛

pot =
1
2
𝑢𝑢𝑛𝑛2̇ +

1
2
𝜔𝜔0
2𝑢𝑢𝑛𝑛2 . (2.39) 

 

 Next we replace the displacement vector by applying Spatial Fourier 

Transform on it, 
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⎩
⎪
⎨

⎪
⎧𝑎𝑎𝑘𝑘 = �𝑢𝑢𝑛𝑛 sin

𝑛𝑛𝑛𝑛𝑛𝑛
𝑁𝑁 + 1

,
𝑁𝑁

𝑛𝑛=1

𝑎𝑎𝑘̇𝑘 = �𝑣𝑣𝑛𝑛 sin
𝑛𝑛𝑛𝑛𝑛𝑛
𝑁𝑁 + 1

,
𝑁𝑁

𝑛𝑛=1

 (2.40) 

substitute Eq. (2.40) into Eq. (2.39) yields: 

 𝐸𝐸𝑘𝑘kin + 𝐸𝐸𝑘𝑘
pot =

1
2
𝑎𝑎𝑘𝑘2̇ +

1
2
𝜔𝜔𝑘𝑘
2𝑎𝑎𝑘𝑘2. (2.41) 

 

 The above procedure successfully turns the variable 𝑛𝑛 (the site 

number of electron clouds) in Eq. (2.39) into another variable 𝑘𝑘 (the mode 

number, from 1 to 512 in our system) in Eq. (2.41). This definition of 

energy in a normal mode will remain valid provided that the amplitudes of 

the normal modes remain sufficiently small so that the nonlinear terms in Eq. 

(2.38) will not become dominated. By using Eq. (2.41), one can now 

compute the mode energy indicator-time graph to see how energy is 

distributed among different modes over time. 

 

 We start with using eigenvector corresponding to the 1st 

eigenfrequency (most fundamental mode) to be the initial condition as it is 

the most easily excited mode. Since the number of sites along the chain has 

been lengthened from 10 to 512, the normalized eigenvector is greatly 

diminished compare to that of using 10 nanoparticles, see Fig. 2.11. In order 

to shorten the simulation time, we input a larger value 𝐵𝐵 = 3.5 × 10−8m 

to have a faster response from the nonlinearity inside the system. 

 

 Unlike FPU model, the value of 𝐵𝐵 in our system is not unlimited. 

The main difference between them is that the FPU one is considering the 
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oscillation of mass, which would not have the case to overlap, while our 

case is considering the movable electron cloud interacting with the charges 

nearby, overlapping is theoretically possible but not favoured. The con of 

using a larger 𝐵𝐵 is an earlier execution of the program since the results 

beyond overlapping would require more accurate model. 

 

 

Figure 2.11: (a) The pick off normalized displacement vector, with 𝑥𝑥-axis being the 

site number representing 512 discrete electron clouds along the one-dimensional 

plasmonic chain and 𝑦𝑦-axis being the normalized longitudinal displacement vector of 

the center of mass. Here the pick off displacement vector is of the 1st eigenfrequency 

(fundamental mode). (b) The dispersion band of the 512 discrete eigenfrequencies, 

with 𝑥𝑥-axis being the mode number 𝑘𝑘, and 𝑦𝑦-axis being the eigenfrequency in terms 

of rad s−1. 
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Figure 2.12: (Color online) (a) The net dipole profile right before program execute, 

with 𝑦𝑦-axis being the dipole moment normalized by 𝑒𝑒 = 1.602 × 10−19C and 𝑥𝑥-axis 
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being the site number representing 512 discrete electron clouds; Time-domain 

simulation of the net dipole moments on individual particle sites in a chain of  𝑁𝑁 =

512 particles (b) and in a chain of 𝑁𝑁 = 10 particles (c). Both cases are initially 

excited with the fundamental eigenmode, i.e., all dipole moments are almost in phase; 

nanoparticle radius 𝑅𝑅 = 5nm; lattice constant 𝑎𝑎 = 15nm; time step for RK-4 𝑑𝑑𝑑𝑑 =

10−4/𝜔𝜔0  while the displaying time step for the graph 𝑑𝑑𝑡𝑡′ = 0.1/𝜔𝜔0 , and the 

resonance frequency 𝜔𝜔0 = 5.420 × 1015rad s−1  (Au). For (c), the black dots 

indicate the corresponding dipole strength at each iteration. The colored surface formed 

by dots is for the purpose of a more distinguishable results along different sites in the 

chain. The data shown here is in an early cut off. While for (b), the dots are omitted 

and only the surface is displayed. The simulation stops at 𝑡𝑡 = 1.2307 × 10−12s.  

 

 Unlike the numerical calculations done in the previous section, this 

time with 𝑛𝑛 = 512 and 𝐵𝐵 = 3.5 × 10−8m, the system directly jumps into 

a nonlinear regime till 1061 oscillations, the executing time, see Fig. 2.12. 

 

 From Fig. 2.12(a), we know that the overlapping happens at the site 

number = 256. For a moment the 256th  electron cloud is oscillating 

vigorously such that it overlaps with the 257th positive volume charge, 

which is why the program stopped there. One interesting phenomena is that 

even though the system exhibits nonlinear oscillation, right before 

overlapping it shows the tendency of energy localization at the middle part 

of the plasmonic chain such that the dipole strength is greatly enhanced by 

|𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚|/𝑒𝑒 = 1.23 × 10−4m, see Fig. 2.12(b). And we notice that such kind 

of behaviour can only be observed in a long finite chain as shown in Fig. 

2.12(b) but not in a short plasmonic nanoparticle chain, i.e. Fig. 2.12(c), as 
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it is also excited by a similar fundamental mode but posing a linear 

oscillation with |𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚|/𝑒𝑒 = 3.21 × 10−5m. Indeed, if the above procedure 

is repeated for several more different initial conditions starting from the 

lower band of the dispersion band in Fig. 2.11(b), i.e. the 1st, 2nd,… 

eigenmode, before overlapping happens, there is always a tendency of 

energy localization, such that the extreme-point(s) of the initial eigenvector 

will always be the localized site(s). We believe the localization of dipole 

moment in our case is driven by the nonlinearity brought by the Coulomb 

interactions between charges, as it accounts for most of the unstable factors 

in our formalism. Given the nonlinear localization can only be found in a 

much longer plasmonic chain with unit cell 𝑁𝑁 = 512 but not in a shorter 

one, it might be explained by the mode energy transfer [55]. In this final 

part of Chapter 2, we will look into the mode energy indicator-time graph of 

the system. 

 

 Since we start the program by using eigenvector corresponds to 1st 

eigenfrequency in the dispersion band as initial condition in Fig. 2.12(b), 

which implies that initially all energy is allocated in mode 1, as shown in 

Fig. 2.13. Unlike the results from Fermi [22], instead of staying at the 

fundamental eigenmode (Mode 1) as found in a short chain in Fig. 2.12(c), 

the energy distributes to some higher order eigenmodes, and the plasmonic 

system has quickly drawn into equipartition instead of taking the 

super-recurrence behaviour. Our system shows a generic ergodicity such 

that it 'forgets' initial state as time evolved. If one neglects the impact from 

overlapping, the plasmonic chain might be an answer to the ergodicity since 

in traditional FPU model, the equipartition will only be happened if the 
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initial energy is putted into a high frequency mode and with large amplitude. 

 

 

Figure 2.13: (Color online) Energy indicating-time graph of the data set obtained in Fig. 

2.12(b). An 'equipartition' is likely to be acquired as energy distributes along modes by 

symmetry. The energy here is with arbitrary unit as it is a comparative value for modes. 

Modes 2, 4, 6...etc. cannot be found in the graph as they have a comparatively zero 

energy with respect to the excited eigenmode. 

 

 From Fig. 2.11(a) we know the initial configuration is a half sine 

wave, the system tends to keep its symmetry since the force acts 

symmetrically, this explains why the even modes are having comparatively 

zero energy in the above case. Moreover, in Fig. 2.13, we observe as time 

evolve, the up-conversion of frequencies lead to raises of different sine 

functions correspond to different eigenmodes due to the energy distribution 

among them. This might be able to explain why energy localization happens 

in Fig. 2.12 as the superposition of different sine functions may form a delta 
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function which in turn favours the formation of field localization. You can 

find more results on higher order eigenmodes in Appendix A. 

 

2.6  Conclusion 

 We presented an overview of ways to analyse the one-dimensional 

plasmonic chain through the linear and nonlinear aspects by treating the 

plasmonic nanoparticle a resonator. The nonlinearity in our system basically 

comes from the Coulomb interaction between charges. Here we adopted 

methodology of the Runge-Kutta Method and MATLAB was used to 

perform the RK-iterations to simulate the time-domain behaviour of the 

one-dimensional plasmonic resonators. The impact of using different initial 

configurations had been discussed and the Hamiltonian of the system had 

been evaluated explicitly. By performing the Fourier transform, we found 

the order of eigenmode and the value of initial multiplying parameter 𝐵𝐵 are 

directly proportional to the nonlinearity inside the system. Last we 

performed the FPU-approach energy-analysis by using initial configuration 

from the first eigenmode, it turns out that the equipartition and the 

nonlinearity energy localization were mutual interpreted. The equipartition 

itself also suggested the up-conversion of frequencies takes place, which is 

commonly found in nonlinear system. In the meanwhile, we do not show 

any experimental realization on the up-conversion nonlinear localization 

because of the limitation in fabricating a highly precise long nanoparticle 

chain, yet the localization is still possible as the dipole oscillation dominates 

in sub-wavelength system. 
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Chapter 3 One-dimensional coated diatomic 

plasmonic chain 

 

3.1  Modelling 

 To begin with, we first build up the model world by considering a 

one-dimensional problem like Chapter 2 while the biggest difference is that 

we do not treat the plasmonic nanoparticle a resonator this time. Instead, we 

model it as a dispersive metal nanoparticle together with a non-dispersive 

coated dielectric layer. Since we are considering a diatomic plasmonic chain, 

the 'building blocks' of the one dimensional chain will consist of two sites, 

namely A and B. Each site will contain an identical metal nanoparticle with 

material dielectric function 𝜖𝜖1, and is coated by a dielectric layer with 

permittivity 𝜖𝜖2  and 𝜖𝜖3  respectively, which are separated by an 

alternatively changing distances 𝑡𝑡 and 𝑑𝑑 − 𝑡𝑡, see Fig. 3.1. Note that the 

coated dielectric layers for the two sites in a unit cell are defined by a 

different permittivity, it is for the simplicity of showing the formulation as 

they will be regarded as identical in the first part-realization of edge state in 

diatomic plasmonic chain, and a pair of complex conjugate in the second 

part-verification of zero extinction in PT-symmetric diatomic plasmonic 

chain. From Fig. 3.1, the chain contains two nanoparticles in each of its unit 

cell, therefore regarded as a 'diatomic chain', and is assumed to be 

embedded in air with vacuum permittivity 𝜖𝜖0. 

 

 We will start the analogy by considering the classical approach for a 
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monatomic plasmonic chain as it shares a lot of similarities with our 

diatomic plasmonic chain, that is, to consider its dispersion relations. 

 

 

Figure 3.1: Schematic figure of a one-dimensional coated diatomic plasmonic chain for 

which the above setup is assumed to be duplicated till infinite. There are two spherical 

dispersive metal nanoparticles with dielectric function 𝜖𝜖1 coated with non-dispersive 

dielectric of different permittivity 𝜖𝜖2 and 𝜖𝜖3 in one single unit cell having two sites, 

namely A and B. All coated nanoparticles are of the same size with outer radius 𝑏𝑏, 

inner radius 𝑎𝑎. The length of the unit cells and the separation between site A and site B 

are denoted as 𝑑𝑑 and 𝑡𝑡 respectively. There is also a dashed-line rectangle showing 

the unit cell of the one-dimensional diatomic chain. The chain is assumed to be 

embedded in a medium with relative permittivity 𝜖𝜖m = 1. 

 

 First of all, we assume the diatomic plasmonic chain is infinitely 

long and the nanoparticles are denoted by 𝑛𝑛 such that site A is always an 

even number while site B is an odd number, i.e. site A: 𝑛𝑛 = ⋯− 2, 0, 2, …; 

site B: 𝑛𝑛 = ⋯− 1, 1, 3, …; also an external E-field is incident onto the chain 

as a stimulate. Instead of using the equations of motion, we model the 

system by coupled dipole equation this time. It comes from the fact that the 

coated nanoparticles are not too close together such that the electromagnetic 
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response of the 𝑛𝑛th nanoparticle among stimulate can be modelled by the 

surrounding induced dipole moment and the external E-field incident on it, 

which is known as the dipole approximation [47]. Here we denote the 

excited dipole moment on the 𝑛𝑛th nanoparticle as 𝐩𝐩𝑛𝑛 while the external 

E-field experienced by it as 𝐄𝐄ext,𝑛𝑛 . And the coupled dipole equation 

guarantee the following statement describing the behaviour of 𝐩𝐩𝑛𝑛 to be 

true: 

 �(𝛼𝛼𝑛𝑛−1𝛿𝛿𝑛𝑛𝑛𝑛 − 𝐆𝐆𝑛𝑛𝑛𝑛)𝐩𝐩𝑚𝑚 = 𝐄𝐄ext,𝑛𝑛
𝑚𝑚

, (3.1) 

where 𝑚𝑚 is a number sweeping the entire sites in the chain, i.e. different 𝑛𝑛, 

𝛿𝛿𝑛𝑛𝑛𝑛  is a Kronecker delta function, 𝛼𝛼𝑛𝑛  is known as the quasistatic 

polarizability with radiation correction of the 𝑛𝑛th nanoparticle, 𝐆𝐆𝑛𝑛𝑛𝑛 is a 

dyadic Green's function describing the coupling between the dipole moment 

on 𝑛𝑛th nanoparticle and the one on 𝑚𝑚th nanoparticle [48]. Since we are 

first considering a one-dimensional coated diatomic plasmonic chain with 

identical nanoparticles in site A and site B, those nanoparticles will 

therefore share a same polarizability, Eq. (3.1) can be simplified: 

 𝛼𝛼−1𝐩𝐩𝑛𝑛 = � 𝐆𝐆𝑛𝑛𝑛𝑛𝐩𝐩𝑚𝑚 +
𝑚𝑚≠𝑛𝑛

𝐄𝐄ext,𝑛𝑛. (3.2) 

 

 Reports have been shown that the quasistatic approximation and 

nearest neighbour approximation work fine when finding the longitudinal 

mode [47]. With such simplicity, we are aiming for the solution of 

longitudinal mode by first considering the explicit Green's function 

mentioned by J. D. Jackson [48] as follow: 

 𝐄𝐄 =
1

4𝜋𝜋𝜖𝜖0
�𝑘𝑘2(𝐧𝐧 × 𝐩𝐩) × 𝐧𝐧

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟
+ [3𝐧𝐧(𝐧𝐧 ∙ 𝐩𝐩) − 𝐩𝐩](

1
𝑟𝑟3
−
𝑖𝑖𝑖𝑖
𝑟𝑟2

)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖�. (3.3) 
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 Eq. (3.3) describes the electric dipole field generated by dipole 

moment 𝐩𝐩 , where 𝑘𝑘 = 𝜔𝜔/𝑐𝑐  is the wave number, 𝑟𝑟  is the distance 

between observing point and the point dipole, while 𝐧𝐧 is a unit vector 

pointing from the point dipole to the observing point. Indeed, Eq. (3.3) can 

be plugged into Eq. (3.2) as Eq. (3.2) can be rewrite in this form: 

 𝛼𝛼−1𝐩𝐩𝑛𝑛 = � 𝐄𝐄 experienced by 𝑛𝑛th nanoparticle 
induced by dipole moment 𝐩𝐩𝑚𝑚

+
𝑚𝑚≠𝑛𝑛

𝐄𝐄ext,𝑛𝑛. (3.4) 

 

 Since we are only interested in the longitudinal mode, Eq. (3.3) can 

be greatly simplified by considering a 'two-nanoparticles system', see Fig. 

3.2. The excited dipole moment in site A and site B are denoted by 𝐩𝐩1 and 

𝐩𝐩2 respectively, and are having direction pointing along the chain axis 

indicating the solutions are in a longitudinal form by interests. We will first 

consider the electric dipole field generated by 𝐩𝐩2, experienced by 𝐩𝐩1, then 

vice versa. To start with, we write down the vector form of 𝐩𝐩1, 𝐩𝐩2 and 𝐧𝐧: 

 
𝐩𝐩1 = �

𝑝𝑝1
0
0
� , 𝐩𝐩2 = �

𝑝𝑝2
0
0
� , and    𝐧𝐧 = �

−1
0
0
�, (3.5) 

note that the above equation for 𝐧𝐧 is valid only when observing E-field 

generated by 𝐩𝐩2 at site A. And Eq. (3.3) gives: 

 𝐄𝐄 at site A =
1

4𝜋𝜋𝜖𝜖0
�𝑘𝑘2(𝐧𝐧 × 𝐩𝐩2) × 𝐧𝐧

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟

+ [3𝐧𝐧(𝐧𝐧 ∙ 𝐩𝐩2) − 𝐩𝐩2](
1
𝑟𝑟3
−
𝑖𝑖𝑖𝑖
𝑟𝑟2

)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖�, 
(3.6) 

where 𝑟𝑟 denotes the distance between site A and site B. We then evaluate 

the dot product and cross product in Eq. (3.6) yields: 

 
𝐧𝐧 × 𝐩𝐩2 = �

𝑥𝑥� 𝑦𝑦� 𝑧̂𝑧
−1 0 0
𝑝𝑝2 0 0

� = 0,     𝐧𝐧 ∙ 𝐩𝐩2 = −𝑝𝑝2, (3.7) 
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which implies that: 

 𝐄𝐄 at site A =
1

4𝜋𝜋𝜖𝜖0
[3𝐧𝐧(𝐧𝐧 ∙ 𝐩𝐩2) − 𝐩𝐩2] �

1
𝑟𝑟3
−
𝑖𝑖𝑖𝑖
𝑟𝑟2
� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

=
1

4𝜋𝜋𝜖𝜖0
�2𝑝𝑝2 �

1
𝑟𝑟3
−
𝑖𝑖𝑖𝑖
𝑟𝑟2
� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖� 𝑥𝑥�. 

(3.8) 

And if we repeat the step by considering the electric dipole field generated 

by 𝐩𝐩1, experienced by 𝐩𝐩2, it gives: 

 𝐄𝐄 at site B =
1

4𝜋𝜋𝜖𝜖0
[3𝐧𝐧(𝐧𝐧 ∙ 𝐩𝐩1) − 𝐩𝐩1] �

1
𝑟𝑟3
−
𝑖𝑖𝑖𝑖
𝑟𝑟2
� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

=
1

4𝜋𝜋𝜖𝜖0
�2𝑝𝑝1 �

1
𝑟𝑟3
−
𝑖𝑖𝑖𝑖
𝑟𝑟2
� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖� 𝑥𝑥�. 

(3.9) 

 

 

Figure 3.2: Schematic figure of a 'two-nanoparticles system' picking from the unit cell 

of the diatomic plasmonic chain. The distance between site A and B is denoted as 𝑟𝑟, 

site A and site B's nanoparticle is having dipole moment 𝐩𝐩1 and 𝐩𝐩2 respectively. 

 

 Eq. (3.8) & (3.9) suggest that if we are considering a longitudinal 

mode, the complicated form of Eq. (3.3) could be reduced as follow: 

 𝐄𝐄𝑝𝑝𝑚𝑚;𝑛𝑛 =
1

4𝜋𝜋𝜖𝜖0
�2𝑝𝑝𝑚𝑚 �

1
𝑟𝑟3
−
𝑖𝑖𝑖𝑖
𝑟𝑟2
� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖� 𝑥𝑥�, (3.10) 

where 𝐄𝐄𝑝𝑝𝑚𝑚;𝑛𝑛 is the electric dipole field generated by dipole moment 𝑝𝑝𝑚𝑚 

experienced at some site 𝑛𝑛, 𝑟𝑟 is the distance between the point dipole 𝑝𝑝𝑚𝑚 

and site 𝑛𝑛. 
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 So if we go back to the model mentioned in Fig. 3.1, combining Eq. 

(3.4) & (3.10), we have: 

 𝛼𝛼−1𝐩𝐩𝑛𝑛 = �
2

4𝜋𝜋𝜖𝜖0
�𝑝𝑝𝑚𝑚 �

1
𝑟𝑟𝑚𝑚𝑚𝑚3

−
𝑖𝑖𝑖𝑖
𝑟𝑟𝑚𝑚𝑚𝑚2

� 𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟𝑚𝑚𝑚𝑚� 𝑥𝑥� +
𝑚𝑚≠𝑛𝑛

𝐄𝐄ext,𝑛𝑛, (3.11) 

which gives us a system of equations of dipole moment 𝐩𝐩 with size 𝑛𝑛. 

 

 The only left unknown is the quasistatic polarizability 𝛼𝛼  with 

radiation correction. In this part, the nanoparticles in site A and site B are 

identical, i.e. 𝜖𝜖2 = 𝜖𝜖3, for simplicity, we will use 𝜖𝜖2 as the permittivity of 

the non-dispersive dielectric shell mentioned in Fig. 3.1 for both site A and 

B. Here we adopt the quasistatic polarizability suggested by Bohren [49] for 

a perfect coated sphere using the parameters mentioned in Fig. 3.1, 

 𝛼𝛼 = 4𝜋𝜋𝜖𝜖0𝜖𝜖m𝑏𝑏3
(𝜖𝜖2 − 𝜖𝜖m)(𝜖𝜖1 + 2𝜖𝜖2) + 𝑓𝑓(𝜖𝜖1 − 𝜖𝜖2)(𝜖𝜖m + 2𝜖𝜖2)

(𝜖𝜖2 + 2𝜖𝜖m)(𝜖𝜖1 + 2𝜖𝜖2) + 𝑓𝑓(2𝜖𝜖2 − 2𝜖𝜖m)(𝜖𝜖1 − 𝜖𝜖2)
, (3.12) 

where 𝜖𝜖0 is the vacuum permittivity, 𝜖𝜖m is the relative permittivity of the 

embedded medium, 𝜖𝜖2  is a constant relative permittivity of the 

non-dispersive dielectric shell for sites A and B, 𝜖𝜖1  is the dielectric 

function of the dispersive metal nanoparticles' core using Drude model [47] 

such that 𝜖𝜖1(𝜔𝜔) = 1 − 𝜔𝜔𝑝𝑝2/𝜔𝜔(𝑖𝑖𝑣𝑣𝑐𝑐 + 𝜔𝜔), 𝑏𝑏 is the outer radius of the coated 

nanoparticles, 𝑓𝑓 is the volume fraction of the inner sphere towards the 

outer sphere, i.e. 𝑓𝑓 = (𝑎𝑎/𝑏𝑏)3 where 𝑎𝑎 is the inner radius. The expression 

of the dielectric function of the core 𝜖𝜖1(𝜔𝜔) have 𝜔𝜔𝑝𝑝, 𝑣𝑣𝑐𝑐  denoting the 

plasma frequency and plasma collision frequency (Loss) respectively. Upon 

adding radiation correction to the polarizability mentioned by Capolino [50], 

we have: 
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 𝛼𝛼−1(𝜔𝜔)

=
1

4𝜋𝜋𝜖𝜖0𝜖𝜖𝑚𝑚𝑏𝑏3
�
(𝜖𝜖2 + 2𝜖𝜖𝑚𝑚)(𝜖𝜖1 + 2𝜖𝜖2) + 𝑓𝑓(2𝜖𝜖2 − 2𝜖𝜖𝑚𝑚)(𝜖𝜖1 − 𝜖𝜖2)

(𝜖𝜖2 − 𝜖𝜖𝑚𝑚)(𝜖𝜖1 + 2𝜖𝜖2) + 𝑓𝑓(𝜖𝜖1 − 𝜖𝜖2)(𝜖𝜖𝑚𝑚 + 2𝜖𝜖2)

− 𝑖𝑖
2(𝑘𝑘𝑘𝑘)3

3
�, 

(3.13) 

where 𝑘𝑘 = 𝜔𝜔/𝑐𝑐 is the wave number defined before. 

 

 Although Eq. (3.13) looks complicated, it is easier to think the 

quasistatic polarizability with radiation correction is nothing but a function 

of 𝜔𝜔. With a known form of 𝛼𝛼−1, Eq. (3.11) could be solved now. 

 

3.2  Dispersion relation, Band gap, topological edge state 

 Now if one wants to calculate the dispersion relation 𝜔𝜔(𝑘𝑘) , 

recalling Eq. (3.11), by putting the external E-field experienced by 𝐩𝐩𝑛𝑛 to 

be zero, we have: 

 𝛼𝛼−1𝐩𝐩𝑛𝑛 = �
2

4𝜋𝜋𝜖𝜖0
�𝑝𝑝𝑚𝑚 �

1
𝑟𝑟𝑚𝑚𝑚𝑚3

−
𝑖𝑖𝑖𝑖
𝑟𝑟𝑚𝑚𝑚𝑚2

� 𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟𝑚𝑚𝑚𝑚� 𝑥𝑥�
𝑚𝑚≠𝑛𝑛

, (3.14) 

since it is a longitudinal solution, quasistatic approximation is applicable 

(i.e. 𝑘𝑘 → 0) in both Eq. (3.14) and Eq. (3.13) describing the quasistatic 

polarizability with radiation correction which makes the radiation term 

disappeared literally. Also the nearest neighbor approximation is adopted 

such that when considering the electromagnetic response of dipole moment 

𝐩𝐩𝑛𝑛 on the 𝑛𝑛th nanoparticle, only the electric dipole field generated by the 

dipole moment 𝐩𝐩𝑛𝑛−1  and 𝐩𝐩𝑛𝑛+1  on the respective (𝑛𝑛 − 1)th  and 

(𝑛𝑛 + 1)th nanoparticle will be considered. The left-hand side of Eq. (3.14) 

is having excited dipole moment 𝐩𝐩𝑛𝑛  in 𝑥𝑥� -direction, therefore 𝑥𝑥�  in 

right-hand side can be omitted. Giving such conditions eventually turn Eq. 
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(3.14) into a simpler form when plugging into the setup in Fig. 3.1: 

 

⎩
⎨

⎧𝛼𝛼−1𝑝𝑝𝑛𝑛 =
2

4𝜋𝜋𝜖𝜖0
�
𝑝𝑝𝑛𝑛−1

(𝑑𝑑 − 𝑡𝑡)3
+
𝑝𝑝𝑛𝑛+1
𝑡𝑡3

�  for site A nanoparticles,

𝛼𝛼−1𝑝𝑝𝑛𝑛 =
2

4𝜋𝜋𝜖𝜖0
�
𝑝𝑝𝑛𝑛−1
𝑡𝑡3

+
𝑝𝑝𝑛𝑛+1

(𝑑𝑑 − 𝑡𝑡)3
�  for site B nanoparticles.

 (3.15) 

 

 From the aforementioned, site A nanoparticles are those denoted by 

𝑛𝑛 = ⋯− 2, 0, 2, … while site B nanoparticles referred to those denoted by 

𝑛𝑛 = ⋯− 1, 1, 3, …  . In finding the dispersion relation, we assume the 

diatomic chain is infinitely long, due to the periodicity, we can apply the 

Bloch's theorem, which states the dipole moment can be replaced by: 

 � 𝑝𝑝2𝑚𝑚 = 𝑝𝑝A𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,
𝑝𝑝2𝑚𝑚+1 = 𝑝𝑝B𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 .

 (3.16) 

 

 Substituting Eq. (3.16) into Eq. (3.15) yields: 

 

⎩
⎪
⎨

⎪
⎧𝛼𝛼−1𝑝𝑝A =

2
4𝜋𝜋𝜖𝜖0

�
𝑝𝑝B𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

(𝑑𝑑 − 𝑡𝑡)3
+
𝑝𝑝B
𝑡𝑡3
� ,

𝛼𝛼−1𝑝𝑝B =
2

4𝜋𝜋𝜖𝜖0
�
𝑝𝑝A
𝑡𝑡3

+
𝑝𝑝A𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

(𝑑𝑑 − 𝑡𝑡)3
� ,

 (3.17) 

with 𝑝𝑝A and 𝑝𝑝B representing dipole moment excited in site A and site B 

nanoparticles within a unit cell of the diatomic chain, respectively. Rewrite 

Eq. (3.17) in matrix form: 

 

⎣
⎢
⎢
⎢
⎡ 0

2
4𝜋𝜋𝜖𝜖0

�
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

(𝑑𝑑 − 𝑡𝑡)3
+

1
𝑡𝑡3
�

2
4𝜋𝜋𝜖𝜖0

�
1
𝑡𝑡3

+
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

(𝑑𝑑 − 𝑡𝑡)3
� 0

⎦
⎥
⎥
⎥
⎤
�
𝑝𝑝A
𝑝𝑝B� = 𝛼𝛼−1 �

𝑝𝑝A
𝑝𝑝B�. (3.18) 

 

 Notice that the 2 × 2 matrix in left-hand side of the Eq. (3.18), now 

denoted by 𝐌𝐌𝑘𝑘 , is Hermitian in 𝑘𝑘  space, which will guarantee real 

eigenvalues such that the eigenvalues equal to the quasistatic polarizability, 
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a function in terms of 𝜔𝜔: 

 𝛼𝛼−1(𝜔𝜔) = Eigenvalues of 𝐌𝐌𝑘𝑘 .  

With the above relation, the dispersion relation can be computed once the 

configuration of the system is well defined. Knowing the fact that a 

monatomic plasmonic chain will give no band gap when considering its 

dispersion relation using quasistatic Green's function and quasistatic 

polarizability in the formalism [44], i.e. 𝑡𝑡 = 𝑑𝑑/2, a natural starting point is 

in considering a diatomic plasmonic chain, i.e. 𝑡𝑡 ≠ 𝑑𝑑/2. C. W. Ling [44] 

has verified that for a diatomic plasmonic chain with individuals being pure 

metal nanoparticles described by Drude model can have two 

non-degenerated longitudinal bands when considering the dispersion 

relation, and a topological edge state can be sustained in the diatomic chain 

if certain requirements are being acquired. We will try to verify it in our 

one-dimensional coated diatomic plasmonic chain. 

 

 Using the configuration mentioned in Fig. 3.1, we first set the coated 

metal nanoparticles having outer radius 𝑏𝑏 = 10nm, for simplicity all other 

spatial parameters are in ratio of this term. The inner radius 𝑎𝑎 = 10 ×

0.125
0.175

= 7.143nm. The core of the coated metal nanoparticles are having 

dielectric function described by lossless-Drude model, i.e. 𝜖𝜖1 = 1 −

(𝜔𝜔𝑝𝑝/𝜔𝜔)2  with plasma frequency 𝜔𝜔𝑝𝑝 = 2𝜋𝜋 × 1.6 × 1015 = 1.01 ×

1016rad s−1, which is a reasonable value for silver (Ag). The coated layers 

are assumed to be non-dispersive with a constant relative permittivity 𝜖𝜖2 =

1.5. The embedded medium is assumed to be air with vacuum permittivity 

𝜖𝜖0 = 8.85 × 10−12F m−1. The separation between coated nanoparticles, 
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which are governed by length of the unit cell and inner separation between 

site A and site B within the unit cell, are defined by 𝑑𝑑 = 10
0.175

= 57.1nm 

and 𝑡𝑡 = 10 × 0.6
0.175

= 34.3nm  respectively. Note that 𝑡𝑡 ≠ 𝑑𝑑/2  implies 

that the chain is a diatomic chain. Plugging in all the parameters mentioned 

above into Eq. (3.18), the dispersion relation 𝜔𝜔(𝑘𝑘)  can be solved 

numerically using Wolfram Mathematica, one of the most extensive 

mathematics resource when handling alphabetical problems, through the 

eigenvalue problem mentioned above, see Fig. 3.3.  

 

 
Figure 3.3: Band dispersion of a 1-D diatomic plasmonic chain using identical coated 

metal nanoparticles for both site A and site B, with 𝑥𝑥-axis being the wave vector 

𝑘𝑘𝑘𝑘/2 covering both the 1st and 2nd Brillouin zone, 𝑦𝑦-axis being the normalized 

plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝. It shows the longitudinal dispersion relation of the diatomic 

chain with 𝑑𝑑 = 57.1nm, 𝑡𝑡 = 34.3nm. Since there are two coated metal nanoparticles 

in one unit cell, two non-degenerated longitudinal bands are observed. A band gap 

ranging from 0.515𝜔𝜔𝑝𝑝 to 0.542𝜔𝜔𝑝𝑝 is observed as 𝑡𝑡 ≠ 𝑑𝑑/2 for a diatomic chain. 



61 

 Here the two non-degenerated longitudinal band in the dispersion 

figure is given by two kinds of coupling between the adjacent nanoparticles 

as there are two coated metal nanoparticles in one unit cell, see Fig. 3.3. 

Also, similar to the case of using purely metal nanoparticles, the diatomic 

configuration of the plasmonic chain opens a band gap in between the range 

of 0.515𝜔𝜔𝑝𝑝 < 𝜔𝜔 < 0.542𝜔𝜔𝑝𝑝 , which will not be found in the case of 

monatomic chain. 

 

 Among opening the band gap in the dispersion relation of 

calculating the longitudinal band in a one-dimensional diatomic chain using 

coated metal nanoparticles, next part we will aim for verifying the edge 

state in such a system, i.e. 𝑑𝑑 = 10
0.175

= 57.1nm  and 𝑡𝑡 = 10 × 0.6
0.175

=

34.3nm, as the topological edge state is commonly found in between band 

gap. Furthermore, to verify the existence of the edge state, we cannot 

premeditate an infinitely long chain as the edge state is expected to be 

localized at the interface between two topological different configurations. 

In this sense, we expect a finite one-dimensional diatomic chain with 

identical coated metal nanoparticles allocated in site A and site B as 

mentioned in Fig. 3.1 will allow an edge state to sustain for which the field 

will be localized in two edges of the diatomic chain. This prediction is based 

on the fact that the surrounding medium: air with vacuum permittivity 𝜖𝜖0 =

8.85 × 10−12F m−1 is already a kind of topological different configuration 

with respect to the finite one-dimensional diatomic chain. Therefore, in 

between the interface of these two configurations, the two edges of the finite 

one-dimensional diatomic chain, will be favorable for the sustain of a 
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localized edge state. We will try to verify this edge state in an analytical 

approach in Chapter 3.2, and will try to verify it in a numerical approach 

through simulation in Chapter 3.3. 

 

 To consider the finite one-dimensional diatomic chain, the Bloch's 

theorem is no longer applicable since it is only valid when the chain is 

infinitely long, which makes the substitution in using Eq. (3.16) failed. A 

natural starting point for the finite diatomic chain is to get back to the Eq. 

(3.14), which gives us an explicit electromagnetic response of the 

longitudinal dipole moment 𝐩𝐩𝑛𝑛  on the 𝑛𝑛th  nanoparticle among 

considering the influences of electric dipole field induced by other dipole 

moment 𝐩𝐩𝑚𝑚  such that 𝑚𝑚 ≠ 𝑛𝑛 . Without the presence of an external 

oscillating electric field 𝐄𝐄ext, that is: 

 𝛼𝛼−1𝑝𝑝𝑛𝑛 = �
2

4𝜋𝜋𝜖𝜖0
�𝑝𝑝𝑚𝑚 �

1
𝑟𝑟𝑚𝑚𝑚𝑚3

−
𝑖𝑖𝑖𝑖
𝑟𝑟𝑚𝑚𝑚𝑚2

� 𝑒𝑒𝑖𝑖𝑖𝑖𝑟𝑟𝑚𝑚𝑚𝑚�
𝑚𝑚≠𝑛𝑛

. (3.19) 

For simplicity, we directly cancel the 𝑥𝑥� on right-hand side as all vectors are 

lying on the direction of chain axis 𝑥𝑥�. Also, note that the expression of 

quasistatic polarizability with radiation loss in Eq. (3.13) can be used 

normally as it has no assumption with the Bloch's Theorem.  

 

 Eq. (3.19) is an important starting point for all the analytic analysis 

on the longitudinal behavior as it is a response function using dynamic 

Green's function when considering the coupling between dipole moment. 

Later on, for the purpose of comparison, results will be computed under two 

aspects: one is with quasistatic approximation (i.e. 𝑘𝑘 → 0) on the Green's 
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function and the quasistatic polarizability having radiation correction 

mentioned in Eq. (3.13), the core of nanoparticles are having dielectric 

function governed by lossless-Drude model, together with the nearest 

neighbour approximation on the Green's function; while the other one will 

keep using the exact form of Eq. (3.19) without doing any approximation on 

both the Green's function and the quasistatic polarizability having radiation 

correction, a Drude model having small damping term is used to describe 

the dielectric function of the core of the coated metal nanoparticles. 

 

 Once again, we are using the configuration mentioned in Fig. 3.1, a 

one-dimensional diatomic chain with identical coated metal nanoparticles, 

i.e. non-dispersive dielectric shell having identical permittivity 𝜖𝜖2 = 𝜖𝜖3 for 

site A and site B, for simplicity, we use 𝜖𝜖2  to describe the constant 

permittivity of all the shells. While unlike Chapter 3.1, the chain is not 

infinitely long but with a finite length this time. We first study a finite 

diatomic chain with total chain length 𝑁𝑁 = 32 , i.e. 32  coated metal 

nanoparticles, for which the nanoparticles are denoted by 𝑛𝑛 such that it is 

ranging from 0 to 31, site A nanoparticles are defined by 𝑛𝑛 = 0, 2, … ,30, 

while site B nanoparticles are defined by 𝑛𝑛 = 1, 3, … ,31. 

 

 In the first set of computation, a quasistatic approximation and 

nearest neighbour approximation are applied to the dynamic Green's 

function mentioned in Eq. (3.19), which gives a set of equations: 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝛼𝛼−1𝑝𝑝0 =

2
4𝜋𝜋𝜖𝜖0

�
𝑝𝑝1
𝑡𝑡3
� ,

𝛼𝛼−1𝑝𝑝𝑛𝑛 =
2

4𝜋𝜋𝜖𝜖0
�
𝑝𝑝𝑛𝑛−1

(𝑑𝑑 − 𝑡𝑡)3
+
𝑝𝑝𝑛𝑛+1
𝑡𝑡3

�  for 𝑛𝑛 = 2,4, … ,30,

𝛼𝛼−1𝑝𝑝𝑛𝑛 =
2

4𝜋𝜋𝜖𝜖0
�
𝑝𝑝𝑛𝑛−1
𝑡𝑡3

+
𝑝𝑝𝑛𝑛+1

(𝑑𝑑 − 𝑡𝑡)3
�  for 𝑛𝑛 = 1,3, … ,29,

𝛼𝛼−1𝑝𝑝31 =
2

4𝜋𝜋𝜖𝜖0
�
𝑝𝑝30
𝑡𝑡3
� .

 (3.20) 

 

 Note that the first and the last equations in Eq. (3.20) are identified 

separately owing to the fact that they are describing the electromagnetic 

response of the dipole moments in the edge sites of the one-dimensional 

diatomic chain. Also, quasistatic approximation is adopted for the explicit 

polarizability states in Eq. (3.13), which eventually makes the radiation 

correction term disappeared, with the core of the coated metal nanoparticles 

described by lossless-Drude model, i.e. 𝜖𝜖1 = 1 − (𝜔𝜔𝑝𝑝/𝜔𝜔)2. Now, rewrite 

Eq. (3.20) in a matrix form yields: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0

2
4𝜋𝜋𝜖𝜖0

1
𝑡𝑡3

0 ⋯ 0

2
4𝜋𝜋𝜖𝜖0

1
𝑡𝑡3

0
2

4𝜋𝜋𝜖𝜖0
1

(𝑑𝑑 − 𝑡𝑡)3
⋯ 0

0
2

4𝜋𝜋𝜖𝜖0
1

(𝑑𝑑 − 𝑡𝑡)3
0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 ⋯
2

4𝜋𝜋𝜖𝜖0
1
𝑡𝑡3

0
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑝𝑝0
𝑝𝑝1
𝑝𝑝2
⋮
𝑝𝑝31⎦

⎥
⎥
⎥
⎤

= 𝛼𝛼−1

⎣
⎢
⎢
⎢
⎡
𝑝𝑝0
𝑝𝑝1
𝑝𝑝2
⋮
𝑝𝑝31⎦

⎥
⎥
⎥
⎤
. 

(3.21) 

 

 Eq. (3.21) looks very much similar to the eigenvalue problem 

mentioned in Eq. (3.18) when we were considering the infinitely long chain 

using Bloch's Theorem previously. Yet the biggest difference is that the 
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matrix on the left-hand side is no longer a 2 × 2 matrix, instead it is a 

32 × 32 matrix, denoted by 𝐌𝐌𝑁𝑁, which is already generalized as an 𝑁𝑁 ×

𝑁𝑁 matrix having its size depends on the chain length 𝑁𝑁. Knowing the fact 

that the diatomic plasmonic chain is with finite length, Bloch's Theorem is 

no longer applicable thereby implies that 𝐌𝐌𝑁𝑁 is not in 𝑘𝑘 space, dispersion 

relation cannot be obtained. In spite of this, one can plot the coupled 

longitudinal modes supported by the diatomic chain in frequency-domain 

through the formalism below, rewrite Eq. (3.21), we have: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝛼𝛼−1

−2
4𝜋𝜋𝜖𝜖0

1
𝑡𝑡3

0 ⋯ 0

−2
4𝜋𝜋𝜖𝜖0

1
𝑡𝑡3

𝛼𝛼−1
−2

4𝜋𝜋𝜖𝜖0
1

(𝑑𝑑 − 𝑡𝑡)3
⋯ 0

0
−2

4𝜋𝜋𝜖𝜖0
1

(𝑑𝑑 − 𝑡𝑡)3
𝛼𝛼−1 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 ⋯
−2

4𝜋𝜋𝜖𝜖0
1
𝑡𝑡3

𝛼𝛼−1
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑝𝑝0
𝑝𝑝1
𝑝𝑝2
⋮
𝑝𝑝31⎦

⎥
⎥
⎥
⎤

= 0. 

  (3.22) 

 

 We regard the 32 × 32 matrix in the left-hand side of Eq. (3.22) a 

modified 𝐌𝐌32, denoted by 𝐌𝐌32,modified, that is, 

 𝐌𝐌32,modified𝑝𝑝𝑛𝑛 = 0, (3.23) 

where, 

𝐌𝐌32,modified =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝛼𝛼−1

−2
4𝜋𝜋𝜖𝜖0

1
𝑡𝑡3

0 ⋯ 0

−2
4𝜋𝜋𝜖𝜖0

1
𝑡𝑡3

𝛼𝛼−1
−2

4𝜋𝜋𝜖𝜖0
1

(𝑑𝑑 − 𝑡𝑡)3
⋯ 0

0
−2

4𝜋𝜋𝜖𝜖0
1

(𝑑𝑑 − 𝑡𝑡)3
𝛼𝛼−1 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 ⋯
−2

4𝜋𝜋𝜖𝜖0
1
𝑡𝑡3

𝛼𝛼−1
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

  (3.24) 
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 In order to have a non-trivial solution, determinant of 𝐌𝐌32,modified 

must be zero. Recall the formalism of the quasistatic polarizability in Eq. 

(3.13), we know it is indeed a function of 𝜔𝜔, which tells us that the 

𝐌𝐌32,modified  is also a function of 𝜔𝜔 . Generally, as the chain under 

consideration is not always sufficiently short or with a simple expression, 

which in turn gives us a big complicated matrix 𝐌𝐌𝑁𝑁,modified(𝜔𝜔), where 𝑁𝑁 

= Chain length. It is usually hard to search the root directly for the equation 

det�𝐌𝐌𝑁𝑁,modified(𝜔𝜔)� = 0 in locating the resonant states supported by the 

plasmonic chain. An alternatively way in doing this is to do the density plot 

on the quantity 1/det�𝐌𝐌𝑁𝑁,modified(𝜔𝜔)� against 𝜔𝜔 as it consumes much 

less computational power [7]. By sweeping the 𝜔𝜔 within certain range, the 

quantity 1/det�𝐌𝐌𝑁𝑁,modified(𝜔𝜔)� will give a big value whenever there is a 

supported plasmon mode, hence resonant states can be located easily. 

Furthermore, each distinct sweeping frequency 𝜔𝜔 will imply the matrix 

𝐌𝐌𝑁𝑁,modified(𝜔𝜔) having 𝑁𝑁 eigenvalues together with 𝑁𝑁 eigenvectors. By 

definition, det�𝐌𝐌𝑁𝑁,modified(𝜔𝜔)� = ∏ 𝜆𝜆𝑖𝑖𝑁𝑁
𝑖𝑖  , which equals to the product of 

all eigenvalues of 𝐌𝐌𝑁𝑁,modified(𝜔𝜔) at that specified frequency. Now if we 

consider a particular frequency where resonant states should be found, 

obviously at that particular frequency det�𝐌𝐌𝑁𝑁,modified(𝜔𝜔)� = 0, or we can 

justify there exist one eigenvalue, or some eigenvalues 𝜆𝜆𝑖𝑖  of 

𝐌𝐌𝑁𝑁,modified(𝜔𝜔) vanished at that particular frequency. In this way, plotting 

1/det�𝐌𝐌𝑁𝑁,modified(𝜔𝜔)�  or 1/min|𝜆𝜆|  against 𝜔𝜔  are literally the same, 

both of them will give a huge quantity at the resonant states of coupled 

plasmon mode where min|𝜆𝜆| =  the minimum eigenvalue of 

𝐌𝐌𝑁𝑁,modified(𝜔𝜔) after taking the absolute sign. 
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 Like the aforesaid, we will analyze the coupled longitudinal mode 

supported in the one-dimensional diatomic chain by plotting the 1/min|𝜆𝜆| 

against 𝜔𝜔 using Eq. (3.24), see Fig. 3.4. The results are obtained using 

previous setup in calculating band gap (see Fig. 3.3) except chain length 

𝑁𝑁 = 32 for this time. 

 

 
Figure 3.4: Plotting of 1/min|𝜆𝜆| against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝 for a 

one-dimensional diatomic plasmonic chain using identical coated metal nanoparticles 

for both site A and site B, with chain length 𝑁𝑁 = 32. Results are obtained using 

quasistatic approximation and nearest neighbor approximation on Green's function, a 

quasistatic polarizability with core of coated nanoparticle described by lossless-Drude 

model. It shows the coupled longitudinal modes supported in the diatomic chain 

whenever a large quantity of 1/min|𝜆𝜆| appears. The diatomic chain is with 𝑑𝑑 =

57.1nm, 𝑡𝑡 = 34.3nm. A band gap is observed in between 0.515𝜔𝜔𝑝𝑝 and 0.542𝜔𝜔𝑝𝑝, 

also a supported longitudinal mode is found in between the band gap at about 0.529𝜔𝜔𝑝𝑝, 

which should be the topological edge state as expected. 
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 From Fig. 3.4, we confirm that there is a band gap in between 

0.515𝜔𝜔𝑝𝑝  and 0.542𝜔𝜔𝑝𝑝  when considering a one-dimensional diatomic 

chain with chain length 𝑁𝑁 = 32, which shows an exact conformity to the 

results obtained from an infinitely long diatomic chain, see Fig. 3.3. This 

result is predictable as in both case, quasistatic approximation and nearest 

neighbor approximation are in used. Moreover, Fig. 3.4 states that there is a 

state exist within the band gap at about 0.529𝜔𝜔𝑝𝑝, which should be the 

topological edge state with fields localized at the two edges of the finite 

diatomic chain. 

 

 In order to verify the existence of the edge state in the diatomic 

chain, we look into the magnitude profile of the dipole moments at different 

eigenstates. Here, we can compute the dipole moment if there is an external 

electric field exists so that Eq. (3.11) is valid, combining with Eq. (3.22): 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝛼𝛼−1

−2
4𝜋𝜋𝜖𝜖0

1
𝑡𝑡3

0 ⋯ 0

−2
4𝜋𝜋𝜖𝜖0

1
𝑡𝑡3

𝛼𝛼−1
−2

4𝜋𝜋𝜖𝜖0
1

(𝑑𝑑 − 𝑡𝑡)3
⋯ 0

0
−2

4𝜋𝜋𝜖𝜖0
1

(𝑑𝑑 − 𝑡𝑡)3
𝛼𝛼−1 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 ⋯
−2

4𝜋𝜋𝜖𝜖0
1
𝑡𝑡3

𝛼𝛼−1
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑝𝑝0
𝑝𝑝1
𝑝𝑝2
⋮
𝑝𝑝31⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝐸𝐸ext,0
𝐸𝐸ext,1
𝐸𝐸ext,2
⋮

𝐸𝐸ext,31⎦
⎥
⎥
⎥
⎤

, 

(3.25) 

where 𝐸𝐸ext,𝑛𝑛 =  external electric field experienced by the coated 

nanoparticle denoted by 𝑛𝑛. For simplicity, we assume all the nanoparticles 
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in the finite diatomic chain experiencing an identical arbitrary electric field 

𝐸𝐸ext,𝑛𝑛 = 1 for 𝑛𝑛 = 0,1,2, … ,31. Therefore the dipole moment 𝑝𝑝 can be 

easily determined: 

 

⎣
⎢
⎢
⎢
⎡
𝑝𝑝0
𝑝𝑝1
𝑝𝑝2
⋮
𝑝𝑝31⎦

⎥
⎥
⎥
⎤

= Inverse�𝐌𝐌32,modified(𝜔𝜔)� ∙

⎣
⎢
⎢
⎢
⎡
1
1
1
⋮
1⎦
⎥
⎥
⎥
⎤
, (3.26) 

 

 Using the results in Fig. 3.4, we know the eigenstates supported by 

the diatomic chain in certain frequency (Lower band, upper band, a state 

within band gap). Putting the corresponding 𝜔𝜔 into Eq. (3.26), dipole 

moments along the chain can be plotted, see Fig. 3.5. As the band gap is 

ranging from 0.515𝜔𝜔𝑝𝑝 < 𝜔𝜔 < 0.542𝜔𝜔𝑝𝑝, the magnitude profile of real part 

and complex part of the dipole moment 𝑝𝑝𝑛𝑛 for 𝑛𝑛 = 0,1, … ,31 is plotted 

for eigenstates right below band gap at around 𝜔𝜔 = 0.515𝜔𝜔𝑝𝑝, within the 

band gap at 𝜔𝜔 = 0.529𝜔𝜔𝑝𝑝 and above the band gap at 𝜔𝜔 = 0.545𝜔𝜔𝑝𝑝 in 

Fig. 3.5(a), (b) and (c) respectively. Notice that Fig. 3.5(b) is showing the 

magnitude profile of the eigenstate located within the band gap, which we 

suspect it is an edge state with fields localized in two edges of the diatomic 

chain, is being verified now as the dipole moments at two edges of the 

diatomic chain posing a strong magnitude and is decaying among going 

inwards of the diatomic chain. 
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Figure 3.5: (Color online) Plotting of magnitude of the dipole moment 𝑝𝑝𝑛𝑛 along the 

finite one-dimensional diatomic chain at three eigenstates suggested in Fig. 3.4. (a) 

Eigenstate below the band gap for 𝜔𝜔 = 0.515𝜔𝜔𝑝𝑝; (b) Eigenstate in between the band 

gap for 𝜔𝜔 = 0.529𝜔𝜔𝑝𝑝; (c) Eigenstate above the band gap for 𝜔𝜔 = 0.545𝜔𝜔𝑝𝑝; The blue 

line represents real part of the magnitude of the dipole moment, the orange line 

represents complex part. Fig. 3.5(b) verifies the supported mode found in between the 

band gap in Fig. 3.4 is an edge state having fields localized in two edges of the 

diatomic chain. 

 

 It seems there are a lot of approximation in the above calculation, 
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the core of the identical coated metal nanoparticles are so ideal that they do 

not have any loss. While in this part, we will repeat the calculation on a 

finite chain with a similar setup, yet without using quasistatic approximation 

and nearest neighbor approximation on both the Green's function and 

polarizability, also the core of the coated metal nanoparticles is described by 

a commonly used Drude model. 

 

 Since we are not going to use the approximation this time, we have 

to get back to Eq. (3.11), that is: 

 𝛼𝛼−1𝑝𝑝𝑛𝑛 = �
2

4𝜋𝜋𝜖𝜖0
�𝑝𝑝𝑚𝑚 �

1
𝑟𝑟𝑚𝑚𝑚𝑚3

−
𝑖𝑖𝑖𝑖
𝑟𝑟𝑚𝑚𝑚𝑚2

� 𝑒𝑒𝑖𝑖𝑖𝑖rmn� +
𝑚𝑚≠𝑛𝑛

𝐸𝐸ext,𝑛𝑛. (3.27) 

Note that the 𝑥𝑥� term is directly canceled in right-hand side of Eq. (3.11) for 

simplicity. Luckily, with all the calculation done previously, this time we 

will directly aim for the expression on 1/min|𝜆𝜆| so that we can do the 

sweeping on frequency 𝜔𝜔 in identifying the coupled longitudinal plasmon 

mode supported by the diatomic chain. To find the expression of 1/min|𝜆𝜆|, 

we first omit the external electric field, rewrite Eq. (3.27) in the format of 

Eq. (3.22), we have: 

 

  (3.28) 

where 𝑟𝑟𝑚𝑚,𝑛𝑛 is the distance between the sites denoted by 𝑚𝑚 and 𝑛𝑛 in the 
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one-dimensional diatomic chain, 𝑘𝑘 is a wave number and can be replaced 

by 𝑘𝑘 = 𝜔𝜔/𝑐𝑐. Here we denote the 32 × 32 matrix in the left-hand side of 

Eq. (3.28) by 𝐌𝐌32,precise, which gives: 

 𝐌𝐌32,precise𝑝𝑝𝑛𝑛 = 0. (3.29) 

Also, by replacing wave number 𝑘𝑘  with 𝜔𝜔/𝑐𝑐 , the 32 × 32  matrix 

𝐌𝐌32,precise can be once again became a function of 𝜔𝜔, as long as the wave 

number found in the explicit expression of the quasistatic polarizability 

having radiation loss in Eq. (3.13) has been replaced with 𝜔𝜔/𝑐𝑐, since it 

exists this time as there is no quasistatic approximation working on it. 

 

 So far, the concepts of finding roots (supported eigenstates) using 

det�𝐌𝐌32,precise(𝜔𝜔)� = 0 , plotting 1/det�𝐌𝐌32,precise(𝜔𝜔)�  or 1/min|𝜆𝜆| 

against 𝜔𝜔 show no contradiction without using quasistatic approximation 

and nearest neighbor approximation. Therefore we may plot the 1/min|𝜆𝜆| 

against 𝜔𝜔 using Eq. (3.28) such that min|𝜆𝜆| = the minimum eigenvalue 

of 𝐌𝐌32,precise(𝜔𝜔) after taking the absolute sign, see Fig. 3.6. The results 

are obtained using previous configuration mentioned in Fig. 3.4 except core 

described by a common Drude model 𝜖𝜖1 = 1 − 𝜔𝜔𝑝𝑝2/𝜔𝜔(𝑖𝑖𝑣𝑣𝑐𝑐 + 𝜔𝜔)  with 

plasma frequency 𝜔𝜔𝑝𝑝 = 2𝜋𝜋 × 1.6 × 1015 = 1.01 × 1016rad s−1 , plasma 

collision frequency (Loss) 𝑣𝑣𝑐𝑐 = 0.0001 × 𝜔𝜔𝑝𝑝 = 1.01 × 1012rad s−1. 

 

 Although we are considering a system without using the 

approximation, from Fig. 3.6, we notice the range of band gap is almost 

exactly the same with the one using approximation, which is also ranging 

from 0.515𝜔𝜔𝑝𝑝 to 0.542𝜔𝜔𝑝𝑝. A longitudinal coupled plasmon mode is found 
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in the band gap at about 0.529𝜔𝜔𝑝𝑝 in both of the case. Comparing the 

results of Fig. (3.4) and (3.6), the nearest neighbor approximation and 

quasistatic approximation is good enough in our system. Nevertheless, we 

still take a closer look on the dipole moments of the supported eigenstates. 

 

 

Figure 3.6: Plotting of 1/min|𝜆𝜆| against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝 for a 

one-dimensional diatomic plasmonic chain using identical coated metal nanoparticles 

for both site A and site B, with chain length 𝑁𝑁 = 32. Results are obtained without 

using quasistatic approximation and nearest neighbor approximation on Green's 

function, a quasistatic polarizability with core of coated nanoparticle described by 

Drude model having loss = 0.0001 × 𝜔𝜔𝑝𝑝. It shows the coupled longitudinal modes 

supported in the diatomic chain whenever a large quantity of 1/min|𝜆𝜆| appears. The 

diatomic chain is with 𝑑𝑑 = 57.1nm, 𝑡𝑡 = 34.3nm. A band gap is observed in between 

0.515𝜔𝜔𝑝𝑝 and 0.542𝜔𝜔𝑝𝑝, also a supported longitudinal mode is found in between the 

band gap at about 0.529𝜔𝜔𝑝𝑝, which should be the topological edge state as expected. 
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 Following Eq. (3.25), combining with Eq. (3.27), we have: 

 

𝐌𝐌32,precise

⎣
⎢
⎢
⎢
⎡
𝑝𝑝0
𝑝𝑝1
𝑝𝑝2
⋮
𝑝𝑝31⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝐸𝐸ext,0
𝐸𝐸ext,1
𝐸𝐸ext,2
⋮

𝐸𝐸ext,31⎦
⎥
⎥
⎥
⎤

, (3.30) 

for which 𝐌𝐌32,precise  is a complicated matrix with size 32 × 32 . 

Assuming an arbitrary external incidents electric field 𝐸𝐸ext,𝑛𝑛 = 1 for 𝑛𝑛 =

0,1,2, … ,31, dipole moments can be calculated by:  

 

⎣
⎢
⎢
⎢
⎡
𝑝𝑝0
𝑝𝑝1
𝑝𝑝2
⋮
𝑝𝑝31⎦

⎥
⎥
⎥
⎤

= �𝐌𝐌32,precise(𝜔𝜔)�
−1
∙

⎣
⎢
⎢
⎢
⎡
1
1
1
⋮
1⎦
⎥
⎥
⎥
⎤
. (3.31) 

 

 Similiar to Fig. 3.5, we pick three eigenstates to plot in Fig. 3.7(a), 

(b), and (c) respectively. That is, the eigenstate right below band gap at 

𝜔𝜔 = 0.515𝜔𝜔𝑝𝑝, within the band gap at 𝜔𝜔 = 0.529𝜔𝜔𝑝𝑝, and above the band 

gap at 𝜔𝜔 = 0.545𝜔𝜔𝑝𝑝. Among comparing the results with Fig. 3.5(a), (b), 

and (c), the magnitude profile of the dipole moment 𝑝𝑝𝑛𝑛 does not vary much 

as expected. If we further look into the eigenstates located within band gap, 

see Fig. 3.5 (b) and Fig. 3.7(b), although the dipole moments flip from real 

plane to complex plane, still, it is strongly localized in two edges of the 

diatomic chain, which tells that there is a longitudinal edge mode supported 

in the chain within the band gap range. 

 



75 

 

Figure 3.7: (Color online) Plotting of magnitude of the dipole moment 𝑝𝑝𝑛𝑛 along the 

finite one-dimensional diatomic chain at three eigenstates suggested in Fig. 3.6. (a) 

Eigenstate below the band gap for 𝜔𝜔 = 0.515𝜔𝜔𝑝𝑝; (b) Eigenstate in between the band 

gap for 𝜔𝜔 = 0.529𝜔𝜔𝑝𝑝; (c) Eigenstate above the band gap for 𝜔𝜔 = 0.545𝜔𝜔𝑝𝑝; The blue 

line represents real part of the magnitude of the dipole moment, the orange line 

represents complex part. Fig. 3.7(b) verifies the supported mode found in between the 

band gap in Fig. 3.6 is an edge state having fields localized in two edges of the 

diatomic chain. 
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3.3  Extinction cross section 

 In this part, we would like to verify the existence of edge state in a 

finite one-dimensional diatomic chain with identical coated metal 

nanoparticles in site A and site B embedded in air with vacuum permittivity 

𝜖𝜖0 = 8.85 × 10−12F m−1 , see Fig. 3.1, using a powerful 3D Maxwell 

solver named Finite-difference time-domain [51] to perform the 

simulations.  

 

 To do this, we first consider a one-dimensional diatomic chain using 

the setup mentioned in Fig. 3.1. In order to excite the longitudinal dipole 

moments, a plane wave acts as a stimulate by doing the job of 𝐄𝐄ext,𝑛𝑛 in Eq. 

(3.11) such that it propagates in a direction perpendicular to the chain axis 

while polarized along the chain axis. Instead of defining a plane wave 

source in Lumerical FDTD, we use an advanced source called Total-field 

scattered-field (TFSF), see Fig. 3.8. The TFSF source is often used to study 

scattering from small particles, owing to its ability to separate the 

computation region into two distinct region. Upon defining a TFSF source, 

the source itself has a box-like structure, inside the box it contains the total 

field (i.e. sum of the incident field and scattered field), while outside the 

box it only contains the scattered field. The incident field is simulated as a 

plane wave having its wave vector perpendicular to the injection plane. The 

main advantage of using the TFSF source is that the absorption cross section 

𝐶𝐶abs and scattering cross section 𝐶𝐶sca can be obtained easily by adding a 

built-in analysis box named 'cross_section' inside and outside the TFSF 

source (box-like) respectively. With a known absorption cross section and 
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scattering cross section, the extinction cross section 𝐶𝐶ext can be calculated 

manually using 𝐶𝐶ext = 𝐶𝐶abs + 𝐶𝐶sca . The reason of why having the 

observation on extinction cross section helps identifying edge states will be 

explained below, also the formulation will lead us to calculate an analytic 

extinction spectrum, which can also be used to compare to simulation 

results in FDTD. 

 

 

Figure 3.8: Illustration of the setup in FDTD simulation. We can see the diatomic chain 

is with configuration mentioned in Fig. 3.1. The two short dotted lines in the edge of 

the chain simply means you can pad the chain with more unit cells. The box with 

grey-colored dash-line denotes the TFSF source and must cover the entire chain. Inside 

the box it calculates the total field, while only scattered field will be calculated outside 

the box. The red arrow denotes the polarization direction (i.e. electric field oscillating 

along) and the blue arrow denotes the propagating direction. 

 

 We begin with the exact solution of the extinction cross section 

expressed by J. D. Jackson [48], using the configuration of Fig. 3.9: 

 𝐶𝐶ext =
4𝜋𝜋
𝑘𝑘

Im �
𝐄𝐄0∗

|𝐄𝐄0| ∙
𝐅𝐅(𝐧𝐧 = 𝐧𝐧0)

|𝐄𝐄0| �, (3.32) 
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 where 𝐄𝐄0 =  external plane wave, 𝐅𝐅 =  scattering amplitude, 𝐧𝐧 = 𝐑𝐑� , 

𝐧𝐧0 = 𝐤̂𝐤0, if the observing point is placed infinitely far away, we have: 

 �𝐑𝐑 − 𝐫𝐫𝑗𝑗� ≈ 𝑅𝑅 − 𝐫𝐫𝑗𝑗 ∙ 𝐧𝐧 →  𝐧𝐧𝑗𝑗 =
𝐑𝐑 − 𝐫𝐫𝑗𝑗
�𝐑𝐑 − 𝐫𝐫𝑗𝑗�

≈ 𝐧𝐧, (3.33) 

 

 

Figure 3.9: Illustration of a general setup in calculating the extinction cross section of a 

cluster of scatters. The incident electric field is polarized along the chain axis, and 

propagates in the 𝐤𝐤0 direction. There will be excited dipole moment 𝐩𝐩𝑗𝑗 on the 𝑗𝑗th 

nanoparticles which having distance 𝐫𝐫𝑗𝑗  from origin. The observing point has 

displacement 𝐑𝐑 from origin and experiences the dipole electric field 𝐄𝐄𝑗𝑗 generated by 

𝐩𝐩𝑗𝑗. From the figure, we know 𝐧𝐧0 ∙ 𝐩𝐩𝑗𝑗 = 0, 𝐧𝐧0 ∙ 𝐫𝐫𝑗𝑗 = constant, 𝐄𝐄0∗ ∙ 𝐩𝐩𝑗𝑗 = 𝐸𝐸0𝑝𝑝𝑗𝑗. 

 

 If we want to calculate the scattering amplitude 𝐅𝐅, we have to first 

consider the scattered electric field generated by dipole moment 𝐩𝐩𝑗𝑗, using 

the expressions given by [48], combining with Eq. (3.33) yields:  

 𝐄𝐄𝑗𝑗 ≈
𝑘𝑘2

4𝜋𝜋𝜖𝜖0
�𝐩𝐩𝑗𝑗 − �𝐧𝐧 ∙ 𝐩𝐩𝑗𝑗�𝐧𝐧�𝑒𝑒−𝑖𝑖𝑖𝑖𝐧𝐧∙𝐫𝐫𝑗𝑗

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅
. (3.34) 
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And the total scattered electric field is just summing all the scattered electric 

field generated by all dipole moments, which gives: 

 
𝐄𝐄𝑠𝑠 = �𝐄𝐄𝑗𝑗 = 𝐅𝐅(𝐧𝐧)

𝑗𝑗

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅
 → 

 𝐅𝐅(𝐧𝐧) =
𝑘𝑘2

4𝜋𝜋𝜖𝜖0
�(𝐩𝐩𝑗𝑗 − �𝐧𝐧 ∙ 𝐩𝐩𝑗𝑗�𝐧𝐧)𝑒𝑒−𝑖𝑖𝑖𝑖𝐧𝐧∙𝐫𝐫𝑗𝑗
𝑗𝑗

. 

(3.35) 

Notice that 𝐅𝐅(𝐧𝐧) is the scattering vector amplitude we want, substituting 

the expression of 𝐅𝐅(𝐧𝐧) in Eq. (3.35) into Eq. (3.32) using the relation 

concluded from Fig. 3.9, 

 
𝐶𝐶ext =

𝑘𝑘
𝜖𝜖0|𝐄𝐄0| Im�𝑝𝑝𝑗𝑗

𝑗𝑗

, (3.36) 

Eq. (3.36) basically tells an important information, that is the extinction 

cross section is obviously a variable in frequency domain and is greatly 

depends on the imaginary part of the magnitude of all the dipole moments in 

the chain. In the previous section, we successfully calculated the magnitude 

of the excited dipole moment throughout the chain, if one carefully looks at 

Fig. 3.7(b), a magnitude profile of dipole moments for the edge state when 

considering a one-dimensional diatomic chain with no quasistatic 

approximation and nearest neighbor approximation, you can see that the 

imaginary part of the dipole moments at the edge will give a significant 

value, while Eq. (3.36) tells you that if this is the case, then the extinction 

spectrum of that particular frequency for the edge state to sustain will also 

pose a large value. Therefore, from the analytic aspect, doing observation on 

the extinction spectrum will definitely help locating the edge state, 

especially for Lumerical FDTD as it already turns the output data into 

frequency domain using Fourier transform automatically. 
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 Unlike the previous section, due to the limitations on computational 

power, we consider a finite one-dimensional diatomic chain using the setup 

mentioned previously in Fig. 3.6 except we consider chain length 𝑁𝑁 = 8 

instead of 32 this time. 

 

 Using the above framework, results are obtained in two approaches: 

the analytic one using dynamic Green's function without nearest neighbor 

approximation and a quasistatic polarizability with radiation corrections, a 

plotting of 1/min|𝜆𝜆|  against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝  to 

locate the band gap and edge state as shown in Fig. 3.10, and the analytic 

extinction cross section 𝐶𝐶ext against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝 

is plotted using Eq. (3.36) such that we treat |𝐄𝐄0| = 1, see Fig. 3.11; while 

the setup mentioned in Fig. 3.8 is conducted by FDTD in the numerical 

approach with the source being a pulse having frequency ranging from 

0.45𝜔𝜔𝑝𝑝 to 0.51𝜔𝜔𝑝𝑝 and amplitude = 1. Note that Lumerical FDTD is a 

time-domain solver, thus gives results in frequency-domain ranging from 

0.45𝜔𝜔𝑝𝑝 to 0.51𝜔𝜔𝑝𝑝, a simulated extinction cross section 𝐶𝐶ext, together with 

absorption and scattering cross section 𝐶𝐶abs & 𝐶𝐶sca , is plotted against 

frequency-domain to compare with the analytic one, see Fig. 3.12. 

 

 In Fig. 3.10, as the size of the one-dimensional diatomic chain is 

significantly reduced from 𝑁𝑁 = 32  to 𝑁𝑁 = 8,  which results in less 

supported modes within the diatomic chain. From the previous results, we 

know the difference between applying quasistatic approximation/nearest 

neighbor approximation and using dynamic Green's function is little in 

comparing Fig. 3.4 and Fig. 3.6, therefore we can deduce the range of band 
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gap should also be around 0.515𝜔𝜔0 to 0.546𝜔𝜔0 this time and the peak at 

around 0.530𝜔𝜔0  should be the edge state we aim for. By further 

substituting the external electric driving field has amplitude = 1, we can 

calculate the dipole moments in frequency domain, which will eventually 

help us get the extinction spectrum through Eq. (3.36), see Fig. 3.11. 

 

 
Figure 3.10: Plotting of 1/min|𝜆𝜆| against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝 for a 

one-dimensional diatomic plasmonic chain using identical coated metal nanoparticles 

for both site A and site B, with chain length 𝑁𝑁 = 8. Results are obtained using 

dynamic Green's function without nearest neighbor approximation, a quasistatic 

polarizability with core of coated nanoparticle described by Drude model having loss 

= 0.0001 × 𝜔𝜔𝑝𝑝. It shows the coupled longitudinal modes supported in the diatomic 

chain whenever a large quantity of 1/min|𝜆𝜆| appears. The diatomic chain is with 

𝑑𝑑 = 57.1nm, 𝑡𝑡 = 34.3nm. The supported mode in the middle is at about 0.530𝜔𝜔𝑝𝑝, 

which is in between two other supported mode at about 0.515𝜔𝜔𝑝𝑝 and 0.546𝜔𝜔𝑝𝑝, are 

presumed to be the edge state and the range of band gap, respectively. 
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Figure 3.11: Analytic extinction cross section (in unit of 𝜆𝜆𝑝𝑝/8𝜋𝜋2𝑑𝑑3 ) of  the 

one-dimensional diatomic plasmonic chain using identical coated metal nanoparticles 

for both site A and site B mentioned in Fig. 3.1, with chain length 𝑁𝑁 = 8, against 

normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝 . The three peaks are at around 0.499𝜔𝜔𝑝𝑝 , 

0.515𝜔𝜔𝑝𝑝 and 0.530𝜔𝜔𝑝𝑝 such that they are all supported mode shown in Fig. 3.10 and 

are presumed to be coming from the lower band for the 0.499𝜔𝜔𝑝𝑝 and the 0.515𝜔𝜔𝑝𝑝 

one, and an edge state for the 0.530𝜔𝜔𝑝𝑝 one. This figure tells the actual response of the 

diatomic chain among various frequencies. 

 

 In Fig. 3.11, the extinction cross section is plotted in unit of 

𝜆𝜆𝑝𝑝/8𝜋𝜋2𝑑𝑑3 such that 𝜆𝜆𝑝𝑝 is the plasma wavelength and 𝑑𝑑 is the length of a 

unit cell mentioned in Fig. 3.1. The changing of unit comes from the fact 

that the wave number 𝑘𝑘 in Eq. (3.36) can be replaced by 𝑘𝑘 = 𝜔𝜔/𝜔𝜔𝑝𝑝

c/𝜔𝜔𝑝𝑝
=

𝜔𝜔/𝜔𝜔𝑝𝑝

𝜆𝜆𝑝𝑝
2𝜋𝜋 in the purpose of easier reading. By definition, the extinction 

spectrum tells whether extinction of fields will occur or not at different 

frequencies, an actual response of the system. We can see there are three 
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significant peaks at around 0.499𝜔𝜔𝑝𝑝 , 0.515𝜔𝜔𝑝𝑝  and 0.530𝜔𝜔𝑝𝑝  such that 

they are all supported modes within the diatomic chain stated in Fig. 3.10. If 

we compare the frequency domain in Fig. 3.10 and 3.11, the edge state 

should be the one with most spiky peak at around 0.530𝜔𝜔𝑝𝑝. 

 

 

Figure 3.12: (Color online) Cross sections (in unit of m2) of  the one-dimensional 

diatomic plasmonic chain using identical coated metal nanoparticles for both site A and 

site B mentioned in Fig. 3.1 using setup explained in Fig. 3.8, with chain length 𝑁𝑁 = 8, 

against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝. The mesh in use is 1.5nm within the 

TFSF source and the simulation time is long enough for a relevant Fourier-transform to 

take place. Extinction, absorption and scattering cross sections are plotted in different 

color. The three peaks are at around 0.476𝜔𝜔𝑝𝑝, 0.483𝜔𝜔𝑝𝑝 and 0.499𝜔𝜔𝑝𝑝 such that they 

are presumed to be the three excited mode shown in Fig 3.11 with slightly shifted 

frequencies coming from the lower band and the edge state. 

 

 Now if we compare the results obtained in using the Lumerical 
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FDTD as shown in Fig. 3.12, the extinction cross section (red line) shows a 

lot of conformities with the analytic one, i.e. both of them have three sharp 

peaks with a broaden one in the most left-hand side...etc., except the peaks 

are all shifted to a slightly lower frequencies. This looks relevant as the 

FDTD performs simulations based on the actual parameters and integration 

through meshes, when we solve the equations analytically, we always treat 

the sites as point dipole like the coated nanoparticles having electron 

distribution in phase throughout it while it might not be the case in the 

actual simulations. If the core of the nanoparticles experiences electron 

dipole force having phase slightly behind the coated layer, this may result in 

a decrease in the restoring force, hence the resonance frequencies as shown 

in Fig. 3.12. In this sense, the peak at the most right-hand side at around 

0.499𝜔𝜔𝑝𝑝 should be the edge state in our analytic calculation. 

 

 To verify this, a 2D field-profile monitor on 𝑥𝑥𝑥𝑥 -plane (𝑦𝑦  the 

propagating direction of the plane wave) is set to monitor the magnitude of 

the electric field along the direction of the chain axis 𝐸𝐸𝑥𝑥 throughout the 

entire spatial distribution in the FDTD simulations. As the results are in 

frequency-domain, the field patterns of the particular frequencies for the 

three peaks to take place in Fig. 3.12 will be plotted in Fig. 3.13(b) to 

compare with Fig. 3.13(a), the magnitude profile of the dipole moments 

calculated analytically with respect to the resonant frequencies obtained in 

extinction spectrum in Fig. 3.11, see Fig. 3.13. 
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Figure 3.13: (Color online) (a) The spatial magnitude profile of the dipole moments 

calculated analytically in the one-dimensional diatomic plasmonic chain with identical 

coated metal nanoparticles being the individuals, having chain length 𝑁𝑁 = 8, at three 

different picked off frequencies described in Fig. 3.11, (i) 𝜔𝜔 = 0.499𝜔𝜔𝑝𝑝, (ii) 𝜔𝜔 =

0.515𝜔𝜔𝑝𝑝 , (iii) 𝜔𝜔 = 0.530𝜔𝜔𝑝𝑝  such that it corresponds to the edge state. (b) The 

electric field profile obtained by setting the similar setup in FDTD using 2D field 

monitor to record the magnitude of 𝐸𝐸𝑥𝑥 throughout the entire spatial distribution of the 

setup at three different picked off frequencies described in Fig. 3.12, (i) 𝜔𝜔 = 0.476𝜔𝜔𝑝𝑝, 

(ii) 𝜔𝜔 = 0.483𝜔𝜔𝑝𝑝, (iii) 𝜔𝜔 = 0.499𝜔𝜔𝑝𝑝. The mesh in use is 1.5nm. By comparing the 

magnitude of the dipole moments in (a) with the electric field profile in (b), one can 

justify the three peaks mentioned in Fig. 3.11 match those mentioned in Fig. 3.12 with 

Fig. 3.13(a.iii) and Fig. 3.13(b.iii) being the edge state. 

 

 As we presume the resonant frequencies obtained in the cross 

section plotting in Fig. 3.12 using FDTD simulations are decreased compare 
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to those obtained in the calculated extinction spectrum in Fig. 3.11, Fig. 

3.13 shows agreement with our prediction. For the most left-hand side 

broaden peaks found in Fig. 3.11 and Fig. 3.12, Fig. 3.13(a.i) tells the dipole 

moments in the middle part of the chain will have strongest magnitude, 

results in a strong field localization in the middle of the diatomic chain 

which decays on moving outward, is being verified in Fig. 3.13(b.i). For the 

middle spiky peaks observed in Fig. 3.11 and Fig. 3.12, Fig. 3.13(a.ii and 

b.ii) gives agreement of their dipole moments magnitude and the spatial 

distribution of the electric field 𝐸𝐸𝑥𝑥. While for the most right-hand side 

peaks found in Fig. 3.11 and Fig. 3.12, we expect it is an edge state as Fig. 

3.10 predicts that particular supported mode inside the diatomic chain is 

allocated in between band gap, is being proofed in Fig. 3.13(a.iii and b.iii), 

as you can see the dipole moments in the edge is of significant magnitude 

compare to others and the electric field profile suggested that the fields are 

localized in the edges of the diatomic chain. Going through the results 

aforesaid once, we can justify that the topological protected edge state do 

exists in a one-dimensional diatomic chain with identical coated 

nanoparticles in both the analytic approach and numerical simulations. 

 

3.4  PT-symmetry in diatomic chain 

 In this last part of Chapter 3, we are going to consider the effect 

brought by PT-symmetry in the one-dimensional diatomic chain mentioned 

in Fig. 3.1. The unit cell of the diatomic chain consist of two sites denoted 

by A and B. Both sites contain a coated metal nanoparticle with core 

described by dispersive material dielectric function 𝜖𝜖1, and is coated by a 



88 

non-dispersive dielectric layer with permittivity 𝜖𝜖2  and 𝜖𝜖3 = 𝜖𝜖2∗ 

respectively, with an alternatively changing spatial separation 𝑡𝑡 and 𝑑𝑑 − 𝑡𝑡 

between sites, see Fig. 3.14.  

 

 

Figure 3.14: Schematic figure of a PT-symmetric one-dimensional coated diatomic 

plasmonic chain. There are two spherical dispersive metal nanoparticles with dielectric 

function 𝜖𝜖1 coated with non-dispersive dielectrics of different permittivity 𝜖𝜖2 and 

𝜖𝜖3 = 𝜖𝜖2∗  in one single unit cell having two sites, namely A and B. All coated 

nanoparticles are of the same size with outer radius 𝑏𝑏, inner radius 𝑎𝑎. The length of 

the unit cells and the separation between site A and site B are denoted as 𝑑𝑑 and 𝑡𝑡 

respectively. The chain is assumed to be embedded in a medium with relative 

permittivity 𝜖𝜖𝑚𝑚 = 1. Also an illustration of defining origin in the diatomic chain 

having number of unit cells an odd number is shown. 

 

 To verify the diatomic chain is PT-symmetric, a one dimension 

coordinate system is plugged in along the 𝑥𝑥-direction (direction of the 

chain axis), the origin 𝑥𝑥 = 0 is assumed to be in the middle of site A and 

site B of the [(𝑈𝑈 + 1)/2]th unit cell where 𝑈𝑈 is the total number of unit 

cell in the diatomic chain and is an odd number, or in the middle of site B of 



89 

the (𝑈𝑈/2)th unit cell and site A of the (𝑈𝑈/2 + 1)th unit cell if 𝑈𝑈 is an 

even number. The right-hand side is denoted as positive 𝑥𝑥 direction and 

vice versa. Recalling Eq. (1.10) in Chapter 1.5.1, it states that light will 

undergoes a PT-symmetric potential if the real part of the permittivity is an 

even function of position 𝑥𝑥 while the imaginary part is an odd function, 

which can be satisfied using the above mentioned coordinating system. 

Since the coated dielectric layer of site A and site B have their permittivity 

formed a complex conjugate pair, which is like implementing a balanced 

gain/loss into the dielectric shells in site A and site B separately. Such a 

balanced gain/loss in the spatial configuration breaks the P-symmetry and 

T-symmetry, but makes the system PT-symmetric. 

 

 As the phenomena of obtaining zero extinction cross section at the 

frequency of topological protected edge state takes place reported by C. W. 

Ling [46] can be easily observed once the system is PT-symmetric, one may 

try computing the extinction cross section before optimization. For 

simplicity and easiness of comparison, we first consider a finite 

PT-symmetric one-dimensional diatomic chain having chain length 𝑁𝑁 = 8 

using the setup mentioned in Fig. 3.14, such that the coated metal 

nanoparticles are slightly different for site A and site B by having a complex 

conjugate pair for the coated layer permittivity i.e. 𝜖𝜖2 = 1.5 + 0.01𝑖𝑖 (loss) 

and 𝜖𝜖2∗ = 1.5 − 0.01𝑖𝑖 (gain), while all are having outer radius 𝑏𝑏 = 10nm, 

inner radius 𝑎𝑎 = 10 × 0.125
0.175

= 7.143nm, core described by Drude model 

𝜖𝜖1 = 1 − 𝜔𝜔𝑝𝑝2/𝜔𝜔(𝑖𝑖𝑣𝑣𝑐𝑐 + 𝜔𝜔)  with plasma frequency 𝜔𝜔𝑝𝑝 = 2𝜋𝜋 × 1.6 ×

1015 = 1.01 × 1016rad s−1 , plasma collision frequency (Loss) 𝑣𝑣𝑐𝑐 =
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0.0001 × 𝜔𝜔𝑝𝑝 = 1.01 × 1012rad s−1  and is denoted by 𝑛𝑛 = 0,1,2, … ,7 ; 

with embedded medium permittivity 𝜖𝜖0 = 8.85 × 10−12F m−1, length of 

unit cell 𝑑𝑑 = 10
0.175

= 57.1nm, separation between site A and site B 𝑡𝑡 =

10 × 0.6
0.175

= 34.3nm. Here the chain center (origin) is in the middle of site 

B of the 2nd unit cell and site A of the 3rd unit cell, upon using this 

spatial configuration, 𝜖𝜖∗(−𝑥𝑥) = 𝜖𝜖(𝑥𝑥) is satisfied, which implies the system 

is PT-symmetric. Dynamic Green's function without nearest neighbor 

approximation together with quasistatic polarizability with radiation 

corrections are used, employing the form of Eq. (3.31) by assuming an 

arbitrary external electric field 𝐸𝐸ext,𝑛𝑛 = 1 for 𝑛𝑛 = 0,1,2, … ,7 incidents on 

all the coated nanoparticles, dipole moments in frequency-domain can be 

calculated by: 
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⎢
⎢
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. (3.37) 

 

 Note that if we generalize the problem to write the matrix in terms of 

chain length 𝑁𝑁 , the matrix mentioned here, which is denoted by 

𝐌𝐌𝑁𝑁,PT−symmetric, is having a little difference when compare to the one 

mentioned in Eq. (3.31) denoted by 𝐌𝐌𝑁𝑁,precise. By replacing the diagonal 

terms an identical quasistatic polarizability (with radiation correction) to 

two kinds of polarizabilities having gain/loss coated dielectric layer 

alternatively using Eq. (3.13), 𝐌𝐌𝑁𝑁,precise  can eventually turn into 

𝐌𝐌𝑁𝑁,PT−symmetric. Among obtaining the expressions of dipole moments, one 

can repeat the steps of applying Eq. (3.36) to find the extinction cross 
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section in frequency-domain.  

 

 In Fig. 3.15, the analytic extinction cross section 𝐶𝐶ext  against 

normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝 for (a) diatomic chain with coated 

nanoparticles having dielectric shell permittivity 𝜖𝜖2 = 1.5 + 0.00𝑖𝑖 (NOT 

PT-symmetric); and (b) with dielectric shell permittivity 𝜖𝜖2 = 1.5 + 0.01𝑖𝑖 

(PT-symmetric), are plotted for comparison. From Fig. 3.15(a), we can see 

the most right-hand side peak describing the resonant of the edge state 

having edge state frequency 𝜔𝜔 = 0.530𝜔𝜔𝑝𝑝, as aforesaid in Fig. 3.11, is 

reduced and almost vanished once the system switches into PT-symmetric 

regime in Fig. 3.15(b), thus gives the zero extinction property of the edge 

state in PT-symmetric diatomic chain. In order to study what is happening, 

among considering a PT-symmetric diatomic chain, we plot the magnitude 

profile of real part and complex part of the dipole moment 𝑝𝑝𝑛𝑛 for 𝑛𝑛 =

0,1, … ,7 at the edge state frequency 𝜔𝜔 = 0.530𝜔𝜔𝑝𝑝 having zero extinction 

using Eq. (3.37), see Fig. 3.16. From Fig. 3.16, we can see that the edge 

state will still be excited yet it gives a zero extinction in the extinction 

spectrum, such a property can be explained by observing the imaginary part 

of the excited dipole moments at the edge state frequency 𝜔𝜔 = 0.530𝜔𝜔𝑝𝑝. 

By formulation in Eq. (3.36), we know the extinction cross section depends 

on the summation of all the imaginary part of the excited dipole moments in 

the diatomic chain, while the edge state frequency for a PT-symmetric 

diatomic chain implies the Im(𝑝𝑝(𝑥𝑥)) being an odd function, results in a 

zero extinction property at the edge state frequency. 
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Figure 3.15: Analytic extinction cross section (in unit of 𝜆𝜆𝑝𝑝/8𝜋𝜋2𝑑𝑑3) of the diatomic 

plasmonic chain using (a) identical coated metal nanoparticles and (b) coated 

nanoparticles with gain/loss dielectric shells alternatively, PT-symmetric; against 

normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝 are plotted for comparison. The two diatomic 

chains have chain length 𝑁𝑁 = 8, with 𝑑𝑑 = 57.1nm, 𝑡𝑡 = 34.3nm, 𝑏𝑏 = 10nm, 𝑎𝑎 =

7.14nm, plasma collision frequencies for the cores are set to be 𝑣𝑣𝑐𝑐 = 0.0001𝜔𝜔𝑝𝑝. By 

comparing Fig. 3.15(a) and (b), we can see that at the edge state frequency 𝜔𝜔 =

0.530𝜔𝜔𝑝𝑝 , the extinction cross section 𝐶𝐶ext  is significantly reduced and almost 

vanished when the system switches from a non-PT-symmetric one to a PT-symmetric 

one. 
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Figure 3.16: (Color online) The spatial magnitude profile of the excited dipole 

moments calculated analytically in the PT-symmetric diatomic plasmonic chain having 

chain length 𝑁𝑁 = 8 , at the edge state frequency 𝜔𝜔 = 0.530𝜔𝜔𝑝𝑝  found in 

non-PT-symmetric diatomic chain, see Fig. 3.11. The blue and orange line represent 

real and imaginary part of the excited dipole moments, respectively. The real part of 

the magnitude forms an even function of 𝑥𝑥 while the imaginary part forms an odd 

function of 𝑥𝑥, most likely. 

 

 Since the analytic results using dynamic Green's function without 

nearest neighbor approximation together with quasistatic polarizability with 

radiation corrections successfully verify the existence of zero extinction 

property of the edge state frequency in PT-symmetric diatomic chain, in this 

part we will aim for the verification in Lumerical FDTD through setting up 

a compatible simulation. Once again we consider a diatomic plasmonic 

chain using the setup mentioned in Fig. 3.14, with configuration taken from 

Fig. 3.15(b). The chain is PT-symmetric as 𝜖𝜖∗(−𝑥𝑥) = 𝜖𝜖(𝑥𝑥) is satisfied as 

previous stated. The TFSF source mentioned in Fig. 3.8 acts as an external 

longitudinal stimulate to excite the dipole moments within the 

PT-symmetric diatomic chain, the source itself is once again a pulse having 
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frequency ranging from 0.45𝜔𝜔𝑝𝑝  to 0.51𝜔𝜔𝑝𝑝  and amplitude = 1, which 

will return the cross sections in frequency-domain. A 2D field-profile 

monitor on 𝑥𝑥𝑥𝑥-plane (𝑦𝑦 the propagating direction of the plane wave) is set 

simultaneously to give the field profile of 𝐸𝐸𝑥𝑥 this time, so that the results 

can be used to compare with the analytic one. 

 

 

Figure 3.17: (Color online) Cross sections (in unit of m2) of the PT-symmetric 

diatomic plasmonic chain using coated metal nanoparticles with setup mentioned in 

Fig. 3.14, with chain length 𝑁𝑁 = 8, against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝. The 

mesh in use is 1.5nm within the TFSF source and the simulation time is short due to 

the divergence of electric field. Extinction, absorption and scattering cross sections are 

plotted in red, blue and green color respectively. The three peaks are at around 

0.476𝜔𝜔𝑝𝑝, 0.483𝜔𝜔𝑝𝑝 and 0.499𝜔𝜔𝑝𝑝 such that they are presumed to be the three excited 

mode mentioned in Fig 3.15(b) with slightly shifted frequencies. The most right-hand 

side peak corresponds to the edge state and is of great fluctuation. The fluctuation 

mainly comes from the Fourier-transform as the simulation time is not long enough. 
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 In Fig. 3.17, like the previous simulation results, the absorption 

cross section (green-line) and scattering cross section (blue-line) are plotted 

against the frequency-domain, and the extinction cross section is obtained 

by 𝐶𝐶ext = 𝐶𝐶abs + 𝐶𝐶sca . While looking into the extinction cross section, 

there are approximately three peaks at around 0.476𝜔𝜔𝑝𝑝 , 0.483𝜔𝜔𝑝𝑝  and 

0.499𝜔𝜔𝑝𝑝 with the last one presumed to be the resonant of the edge state in 

the PT-symmetric diatomic chain. This shows conformity to the FDTD 

results of the non-PT-symmetric diatomic chain using identical coated metal 

nanoparticles as shown in Fig. 3.12 if we only consider the 

frequency-domain but not the magnitude, this makes sense as the analytic 

solutions for the non-PT-symmetric one also have similar resonant 

frequencies with the PT-symmetric one if we compare Fig. 3.15(a) and (b). 

To further verify this, the analytic magnitude profile of the excited dipole 

moments at the resonant peaks (include the 'vanished peaks' with edge state 

frequency) shown in Fig. 3.15(b) together with the simulated field-pattern 

for those resonant peaks obtained in Fig. 3.17 using FDTD are plotted in Fig. 

3.18(a) and (b) respectively. By comparing Fig. 3.18(a.i) and (b.i), (a.ii) and 

(b.ii), the sites where a large magnitude of dipole moment is observed 

posing a relatively strong field localization, which suggests the peaks 

mentioned in Fig. 3.15(b) from the analytic approach is coherent to those 

obtained through FDTD in Fig. 3.17. For the resonant edge state having 

zero extinction property in Fig. 3.15(b), the magnitude profile of the dipole 

moments in Fig. 3.18(a.iii) implies the field is localized in the edges, yet 

this time the system is not that PT-symmetric due to the slightly imbalance 

of permittivity with a lossy plasmonic core within each nanoparticle when it 

comes to actual simulation using FDTD, therefore the localized fields stay 
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in the gain side to balance the excessive lose, results in an asymmetric 

field-pattern observed in Fig. 3.18(b.iii). 
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Figure 3.18: (Color online) (a) The spatial magnitude profile of the dipole moments 

calculated analytically in the PT-symmetric diatomic plasmonic chain with coated 

metal nanoparticles having setup mentioned in Fig. 3.14, adopting chain length 𝑁𝑁 = 8, 

at three different picked off frequencies described in Fig. 3.15(b), (i) 𝜔𝜔 = 0.499𝜔𝜔𝑝𝑝, (ii) 

𝜔𝜔 = 0.515𝜔𝜔𝑝𝑝, (iii) 𝜔𝜔 = 0.530𝜔𝜔𝑝𝑝 such that it corresponds to the edge state. (b) The 

electric field profile obtained by setting the similar setup in FDTD using 2D field 

monitor to record the magnitude of 𝐸𝐸𝑥𝑥 throughout the entire spatial distribution of the 

setup at three different picked off frequencies described in Fig. 3.17, (i) 𝜔𝜔 = 0.476𝜔𝜔𝑝𝑝, 

(ii) 𝜔𝜔 = 0.483𝜔𝜔𝑝𝑝, (iii) 𝜔𝜔 = 0.499𝜔𝜔𝑝𝑝. The mesh in use is 1.5nm. By comparing the 

magnitude of the dipole moments in (a) with the electric field profile in (b), one can 

justify the three peaks mentioned in Fig. 3.15(b) match those mentioned in Fig. 3.17 

with Fig. 3.18 (a.iii) and (b.iii) being the edge state with vanished extinction. 

 

 If we focus back to Fig. 3.17, the so called 'zero extinction property' 
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we expect to happen at the edge state frequency 𝜔𝜔 = 0.499𝜔𝜔𝑝𝑝 can not be 

observed since the magnitude of the extinction cross section around that 

range is fluctuating vigorously, we can only deduce there is a downward 

trend for the absorption cross section around. Knowing the fact that the 

fluctuation comes from the Fourier-transform, one natural approach is to 

extend the simulation time to obtain more data points. Unluckily, this time 

we are doing the simulations with gain media, enabling a large simulating 

time will significantly increase the probability of the electric field to be 

diverged, which will eventually make the results unreasonable. But still, we 

try to evaluate the cross sections by using a longer simulation time and the 

results are astonishing as shown in Fig. 3.19(a). 

 

 In Fig. 3.19(a), we plot the cross sections (absorption, scattering and 

extinction) against frequency domain of the PT-symmetric diatomic chain 

using TFSF source as stimulate. Having more than double the simulation 

time when compare to that obtained in Fig. 3.17, we can see that the edge 

mode becomes the only dominated resonant state within the diatomic chain 

by gaining a huge magnitude in both the absorption cross section and 

scattering cross section. Note that the absorption cross section 𝐶𝐶abs has a 

negative peak, which seems like a total opposite of the scattering cross 

section 𝐶𝐶sca, if one flips the sign to plot the negative value of absorption 

cross section −𝐶𝐶abs as shown in Fig. 3.19(b), they look very much similar 

such that −𝐶𝐶abs = 𝐶𝐶sca  at frequencies around the edge state of the 

PT-symmetric diatomic chain. Recalling the definition of extinction cross 

section 𝐶𝐶ext = 𝐶𝐶abs + 𝐶𝐶sca, if −𝐶𝐶abs = 𝐶𝐶sca is really the case around edge 

state frequency 𝜔𝜔 = 0.530𝜔𝜔𝑝𝑝 , it literally means the 𝐶𝐶ext = 0  which 
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implies the prediction we verified previously, that is, a 'zero extinction 

property' at the edge state frequency of a PT-symmetric diatomic chain.  

 

 

Figure 3.19: (Color online) (a) Cross sections (in unit of m2) of the PT-symmetric 

diatomic plasmonic chain using coated metal nanoparticles with setup mentioned in 

Fig. 3.14, with chain length 𝑁𝑁 = 8, against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝. The 

mesh in use is 1.5nm within the TFSF source. The simulation time is doubled 

compare to the results obtained in Fig. 3.17. The field diverges as the peak at the 
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resonant frequency of the edge state is having magnitude over 100times bigger than 

that in Fig. 3.17. The absorption cross section and scattering cross section seems like 

about to cancel each other to obtain a zero extinction cross section. (b) Plotting of the 

cross sections with the absorption cross section having a flipped sign, i.e. −𝐶𝐶abs, it 

shows that the negative absorption cross section is almost the same as the scattering 

cross section, i.e. −𝐶𝐶abs = 𝐶𝐶sca, and supposes to give a zero extinction at the edge 

state frequency 𝜔𝜔 = 0.499𝜔𝜔𝑝𝑝. 

 

 Yet in FDTD simulation, there is a little numerical error which 

makes the absorption cross section and scattering cross section cannot be 

perfectly canceled at the edge state frequency, and because the simulation 

time is long enough for the fields to diverge, the magnitude of the cross 

sections of that particular resonant state having fields localized in the gain 

coated nanoparticle has already became over one hundred times compare to 

those normal resonant peaks mentioned in Fig. 3.17. If one can overcome 

the numerical error to have perfect cancelation around edge state frequency 

so as to make 'zero extinction' happens, we should be able to observe those 

two resonant peaks on the left-hand side as shown in Fig. 3.17. 

 

 Finally, in this last part of Chapter 3, I will try to verify the 'zero 

extinction property' of the edge state in PT-symmetric diatomic plasmonic 

chain using a method called multiple scattering theory, also known as MST, 

which is highly precise numerically for spherical objects. The MST 

basically consider the EM fields expanded by adopting vector spherical 

harmonics, and the accuracy can be increased by increasing the truncating 

number (𝐿𝐿), which represents the angular momentum in the multipole 
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expansion. The MST formulation for a finite number of nanoparticles can be 

found in several publication [52-54], which will not be discussed here, and 

we will focus on the resulting extinction spectrum here, see Fig. 3.20. Fig. 

3.20(b) is plotted by adopting the exact configuration mentioned in Fig. 

3.15(b) for the finite PT-symmetric diatomic chain, also a similar setup by 

using identical coated nanoparticles having dielectric shell permittivity 

𝜖𝜖2 = 1.5 is plotted in Fig. 3.20(a) for comparison. 

 

 In Fig. 3.20(a) and (b), both the absorption, scattering and extinction 

cross sections are plotted in a normalized scale against the normalized 

plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝 using red-dashed line, blue-dashed line and dark 

line, respectively. Although using MST is much more complicated, the main 

advantage is that the absorption and scattering behavior can be computed 

instead of only formulating the extinction cross section when considering 

the coupled dipole equation. Like the results obtained in using coupled 

dipole equation and Lumerical FDTD, the MST verifies three spiky peaks in 

a non-PT-symmetric diatomic chain which are around 0.493𝜔𝜔𝑝𝑝, 0.508𝜔𝜔𝑝𝑝 

and 0.525𝜔𝜔𝑝𝑝; and verifies the existence of the 'zero extinction property' in 

a PT-symmetric diatomic chain by showing a greatly diminished peak at the 

resonant frequency of the edge state 𝜔𝜔 = 0.525𝜔𝜔𝑝𝑝 among comparing Fig. 

3.20(a) and (b). Also from Fig. 3.20(b), it suggests that the zero extinction 

property is given by the simultaneous cancelation of the scattering and 

absorption cross sections. This gives support to our results obtained through 

Lumerical FDTD simulations as shown in Fig. 3.18(a) and (b), which we 

predict the zero extinction cross section is caused by the perfect cancelation 

of the scattering and absorption cross sections.  
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Figure 3.20: (Color online) Normalized cross sections of the diatomic plasmonic chain 

using (a) identical coated nanoparticles with no gain/loss in its dielectric shell, (b) 

coated nanoparticles with gain/loss dielectric shells alternatively, therefore 

PT-symmetric, against normalized plasma frequency 𝜔𝜔/𝜔𝜔𝑝𝑝. The diatomic chain has 

chain length 𝑁𝑁 = 8 , with 𝑑𝑑 = 57.1nm , 𝑡𝑡 = 34.3nm , 𝑏𝑏 = 10nm , 𝑎𝑎 = 7.14nm , 

plasma collision frequencies for the cores are set to be 𝑣𝑣𝑐𝑐 = 0.0001𝜔𝜔𝑝𝑝. Absorption, 

scattering and extinction cross sections are plotted using red-dashed line, blue-dashed 

line and dark line respectively. The three peaks (include the 'vanished peak') is at 
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around 0.493𝜔𝜔𝑝𝑝, 0.508𝜔𝜔𝑝𝑝 and 0.525𝜔𝜔𝑝𝑝. The non-PT-symmetric chain shares same 

resonant frequencies with the PT-symmetric one, which is of expected. Looking into 

the 'vanished extinction' of resonant state at the edge state frequency, it shows the 

cancelation effect of the absorption and scattering cross sections. 

 

3.5  Conclusion 

 In this Chapter, we provided number of ways to analyse the 

one-dimensional diatomic plasmonic chain through theoretical aspects and 

numerical simulations. We first considered a one-dimensional diatomic 

chain having individuals an identical coated metal nanoparticle. The 

analogy was started by considering the governing equations using coupled 

dipole equation and quasistatic polarizability with radiation corrections. By 

considering the longitudinal solutions only, formulations were shown to be 

greatly simplified. The dispersion relation 𝜔𝜔(𝑘𝑘) had been discussed by 

applying Bloch's Theorem to the coupled dipole equation, and among 

opening a band gap in the dispersion relation when considering a diatomic 

chain, topological protected edge state is favoured once the chain became 

finite. Upon considering a finite diatomic chain, methods in finding the edge 

state and the corresponding dipole moments were discussed in both 

conditions: using quasistatic Green's function and polarizability with nearest 

neighbour approximation, and with dynamic Green's function without using 

nearest neighbour approximation. Results showed that the two conditions do 

not differ much when considering longitudinal solutions. Extinction cross 

section had also been evaluated explicitly and was used to help finding the 

edge state. Here we used Lumerical FDTD to verify the existence of edge 
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state as cross sections could be easily computed and the results were not 

disappointed as it showed conformity to the analytic one. Last, we 

considered a PT-symmetric diatomic chain by inserting balanced gain/loss 

into the system, and we tried to verify the 'zero extinction property' of the 

edge state frequency by using coupled dipole equation, Lumerical FDTD 

simulations and also the multiple scattering theory, it turns out that three of 

them shared quite a conformity and suggest that the 'zero extinction 

property' is came from the cancelation of the scattering and absorbing 

behaviour of the PT-symmetric diatomic system. Unluckily the FDTD one 

was posing certain numerical error in computing the extinction cross section 

such that a perfect cancelation of scattering and absorption cross section 

cannot be achieved.  
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Chapter 4 Summary 

 

 In this thesis, the nonlinear and non-Hermitian electrodynamics in 

chains of plasmonic nanoparticles were studied and presented. 

 

 In Chapter 2, we built a model for the one-dimensional nonlinear 

plasmonic chain for which its nonlinearity comes from the Coulomb 

interaction of charges using Nearest Neighbour Approximation (NNA). 

Upon using linearization and rewriting the equations in the form of 

eigenvalue problem, we were able to obtain the initial configuration of 

different eigenmodes. By numerical calculation using the Runge-Kutta 

Method, an iteration skill to deal with differential equations without doing 

integrations, together with the use of MATLAB, we obtained the data set 

describing how the system behave in a long term consideration such that 

adjusting the initial configuration would give us different responses. 

Knowing the fact that the system is nonlinear in nature, the inconsistent 

results were explained by an explicit evaluation on the Hamiltonian which 

tells the electron clouds start to overlap. Also analysis on Fourier-transform 

was performed and we found the order of eigenmode and the value of initial 

multiplying parameter 𝐵𝐵 are directly proportional to the nonlinearity inside 

the system, which gives rise to the shifting of 'main frequency' and the 

appearance of 'side frequencies'. To explain this phenomena, we considered 

the classical FPU-model by doing the mode energy analysis, upon using 

initial configuration from the first eigenmode and the observation on the 

mode energy-indicator diagram, the frequency conversion phenomena was 
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understood by the sharing of energy among different eigenmodes, also 

known as the 'Equipartition'. It turns out that the equipartition and the 

nonlinearity energy localization were being explained by each other. 

 

 In Chapter 3, we switched our focus to the one-dimensional diatomic 

chain by setting up the model through 'dimerization' in traditional plasmonic 

chain, i.e. adding one more nanoparticle in a unit cell along the chain. We 

first considered a diatomic chain with unit cell having two identical coated 

metal nanoparticles. The governing equation we picked is the coupled 

dipole equation since it works good when the nanoparticles are small 

enough by treating the individual along the chain as a point scatter and can 

couple to each other to support plasmon mode propagation. By adopting a 

quasistatic approximation and nearest neighbour approximation in 

considering the Green's function together with a quasistatic polarizability, 

the dispersion relation 𝜔𝜔(𝑘𝑘)  was computed using Bloch's Theorem 

together with rewriting equations in form of eigenvalue problem. Since the 

special spatial configuration of diatomic plasmonic chain would lead to an 

opening of band gap, it is natural to predict an edge state would be favoured 

once the diatomic chain became finite. As Bloch's Theorem is no longer 

applicable in finite system, we presented another way of computing 

1/min|𝜆𝜆| by sweeping the frequency 𝜔𝜔 to locate the band gap and the 

resonant state supported by the finite diatomic chain. Both the analytical 

results obtained by plotting the excited dipole moments using Mathematica 

and the numerical results obtained by setting up simulations in FDTD 

verified the existence of edge state in a finite diatomic chain. Extinction 

spectrum was computed in both analytic regime and in simulations of 
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FDTD as it helped locating the resonant frequency of edge state. In the late 

Chapter 3, the influences brought by PT-symmetry on diatomic chain had 

been discussed. We first reformulated the equations so that the model had 

switched into a PT-symmetric diatomic chain by implementing balanced 

gain/loss to the coated dielectric shell of the corresponding nanoparticles 

such that they satisfied the relation 𝜀𝜀∗(−𝑥𝑥�) = 𝜀𝜀(𝑥𝑥�). By doing so we tried to 

verify the 'zero extinction property' found at resonant frequency of the edge 

state in the diatomic chain through different aspects. Here, results were 

mainly expressed in the form of extinction spectrum, magnitude profile of 

the dipole moments and the electric field profile at resonant state. It turns 

out that the coupled dipole equation formalisms, Lumerical FDTD 

simulations and also the analytic calculations of adopting multiple scattering 

theory give quite a conformal answer that the 'zero extinction property' is 

given by the cancelation of the scattering and absorbing behaviour of the 

PT-symmetric diatomic system. 

 

 Overall, we have studied the one-dimensional plasmonic chain by 

treating the metal nanoparticle a resonator, and also the plasmonic chain 

with diatomic configuration using various methodology such as eigenvalue 

problem, coupled dipole equation, Runge-Kutta iterations...etc. It is an 

interesting topic to study as it might favor many plausible applications, such 

as nonlinear optics and subwavelength waveguiding. 
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Appendix A 

 

 We continue discussing the nonlinear plasmonic chain mentioned in 

Chapter 2 with 512 entries along the chain in this Appendix. The analysis on 

using eigenvector corresponds to 2nd  eigenfrequency in the dispersion 

band in Fig. 2.11(b) in Chapter 2 as initial conditions will be skipped since 

it behaves almost the same with the 1 st eigenfrequency. They both start 

by a nonlinear oscillation, but this time end up with energy localized on two 

extreme-points in the initial configuration instead of one, the energy 

indicator-time graph shows the energy is dispersed by symmetry from mode 

2 to mode 6, 10, 14, 18…etc. The equipartition is also acquired this time. 

 

A.1 𝟑𝟑𝐫𝐫𝐫𝐫 eigenfrequency 

 What makes the system interesting to study comes from the next part, 

the initial configuration dedicated by eigenvector corresponds to 3rd 

eigenfrequency. From the previous case, we will easily assume equipartition 

happens within the lower dispersion band yet the outcome is quite against 

the conjectured conclusion this time. We start by looking into the energy 

indicator-time graph directly, see Fig. A.1. The initial eigenvector is taken 

from the 3rd eigenfrequency and parameter 𝐵𝐵 = 2.0 × 10−8m, it is tuned 

to be lower than the previous case to prevent an early overlapping. 
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Figure A.1: (Color online) Energy indicator-time graph of several modes, with 𝑦𝑦-axis 

being the energy-level indicator and the 𝑥𝑥-axis being the time. The plot stops at 6238 

oscillations. Note that there does not have the plot of modes 1, 2, 4, 5, 6…etc. because 

those modes have comparatively zero energy with respect to the excited one. Also 

other than modes 3, 9, 15, others are plotted with doted lines as they are not of 

interests. The denoted red spots pointed by yellow doted arrows are points picked, such 

that at those particular time, a specified mode is somewhat dominated. From left to 

right, we denotes the marked point as point 1, 2, 3 … 7 as it will be useful later. 

 

 Since the picked points in Fig. A.1 are chosen for some particular 

described mode (either mode 3, 9, 15) to be dominated, if the system is 

subjected to oscillation by an initial condition of 3rd eigenmode, when we 

look into the system at a certain time, say point 1 for which mode 3 is 

dominated, we will expect the system oscillates in a frequency either equal 

to or close to the 3rd eigenfrequency in the dispersion band in Fig. 2.11(b) 

in Chapter 2 (The dispersion band is unchanged with a changing initial 
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condition, as Fig. 2.11(a) depends on the applied initial eigenfrequency 

while Fig. 2.11(b) is unchanged, it is fixed for the system.) To verify this, 

we pick out 3 particular electron clouds, the 128th , 170th  and 256th 

electron clouds along the chain, see Fig. A.2, examine their dipole 

moment-time graph, perform the Fourier Transform and take out the 'main 

frequency' mentioned in Chapter 2.4, compare it with the dominated 

frequency mentioned in Fig. A.1 to see the difference. 

 

 

Figure A.2: The initial configuration of the normalized displacement vector 

corresponding to the 3rd eigenmode, with 𝑥𝑥-axis being the site number representing 

512 discrete electron clouds, 𝑦𝑦-axis being the normalized 𝑢𝑢. The 3 red arrows point at 

the 3 picked particular sites, which is the 128th, 170th and the 256th one. 

 

 The table below gives the exact value of the eigenfrequencies in the 

dispersion band: 

Table A.1: The exact value of the eigenfrequencies for 3 picked mode 𝑘𝑘 = 3, 9, 15. 

Used in comparison of main frequencies in Fig. 2.14 and Table 2.5. 

Mode number 3 9 15 

Eigenfrequency(Hz) 7.9617x1014 7.9627x1014 7.9645x1014 
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Table A.2: The main frequency for the Fourier transform of the 3 picked electron 

clouds (128th, 170th, 256th) at different stopping time (7 points denoted in Fig. A.1) 

with the information of dominated eigenmode found in Fig. A.1 at those 7 stopped time. 

(*) denotes extremely dominated eigenmode at that particular time. 

Particles 

Point 

128 

Main freq. (Hz) 

170 

Main freq. (Hz) 

256 

Main freq. (Hz) 

Dominated 

Eigenmode in 

Fig. 2.14 

1 7.9596x1014 7.9596x1014 7.9596x1014 Mode 3 

2 7.9590x1014 7.9590x1014 7.9462x1014 Mode 3* 

3 7.9590x1014 7.9636x1014 7.9450x1014 Mode 15 

4 7.9589x1014 7.9627x1014 7.9439x1014 Mode 3* 

5 7.9589x1014 7.9621x1014 7.9462x1014 Mode 9* 

6 7.9589x1014 7.9616x1014 7.9453x1014 Mode 15 

7 7.9589x1014 7.9569x1014 7.9472x1014 Mode 9 

 

 The point 1, 2, 3…7 also indicate another kind of time evolvement 

since those represented point are picked from left to right in Fig. A.1. We 

will start by first looking into the behaviour of the 128th electron cloud in 

Table A.2. We can see that among time evolvement, although the dominated 

eigenmode keeps changing, the 'main frequency' of the 128th  electron 

cloud remains almost the same, only a small deviation is found at point 1 

yet data of point 1 are not that reliable normally since the time duration 

from the beginning to point 1 is very short, which makes the Fourier 

transform meaningless as it gains accuracy from a larger time scale. This is 

quite astonishing as we initially assumed that when the system is subjected 
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to nonlinear oscillation, the nonlinearity will spread to the entire system, 

such nonlinearity would be found everywhere. And the results from the 

128th electron cloud tell a different story, it shows contradiction with the 

conjectured assumption such that there are some sites in the plasmonic 

chain remain relatively stable even if the system is subjected into certain 

nonlinearity. Note that we despite the 'side frequencies' here and only 

concern about the 'main frequency'. 

 

 Next, we will look into the behaviour of the 170th electron cloud. 

From Fig. A.2, we can see that the 170th electron cloud is located at 

around zero displacement in the initial configuration. Theoretically it should 

be one of the most stable sites as it will remain at zero displacement if the 

system is allowed to oscillate linearly. Yet the results show contradiction 

once again, with 128th electron cloud being the stable site instead, the 

170th electron cloud shows a nearest results with the dominated eigenmode 

defined in Fig. A.1, especially at the points with extremely dominated mode, 

i.e. point 2, 4 and 5. Upon comparing the 'main frequency' obtained from 

Fourier transform of the dipole moment-time graph of the 170th electron 

cloud, we can see that at point 2, the experimental result 7.9590 × 1014Hz 

compares to the theoretical result 7.9617 × 1014Hz ; at point 4, the 

experimental result 7.9617 × 1014Hz compares to the theoretical result 

7.9617 × 1014Hz; at point 5, the experimental result 7.9621 × 1014Hz 

compares to the theoretical result 7.9627 × 1014Hz; three sets of data show 

a small deviation between experimental results and theoretical results, 

which suggest that the energy transfer between modes could be an answer to 

the shifting of 'main frequency' or creation of peaks – 'side frequencies' in 
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Fourier transform. With a suitable configuration, we expect the energy 

indicator-time graph can explain the Fourier diagram well. 

 

 We will end up the analysis on the 3rd eigenmode by considering 

the behaviour of the 256th electron cloud. It can be clearly shown in Fig. 

A.2 that the 256th  electron cloud represents one of the three 

extreme-points in the initial configuration. By the assumption from the 

previous cases in this section, we do expect energy localization will take 

place here before the system comes to an execution by overlapping of 

electron clouds. Here we recall the conjecture conclusion in the last part of 

Chapter 2.4, that is, using a larger initial multiplying parameter 𝐵𝐵 will 

result in a lower 'main frequency'. It is not difficult to find that the data of 

256th electron cloud in Table A.2 is comparatively smaller than the 128th 

one and the 170th one. If one tries to explain this phenomena and map the 

conclusion above, one possible guess is the energy localization. Since 

localization of energy will amplify the oscillation amplitude on that 

particular site, it is by means the same with using a larger initial multiplying 

parameter 𝐵𝐵, which results in a lower 'main frequency', as you can see the 

'main frequencies' of 256th electron cloud is significantly lower than that 

of the others now. 

 

 Among examining this set of Eigen parameter, we confirm that the 

nonlinearity in one-dimensional plasmonic chain is strongly depending on 

the localization of energy in the chain. In our case (512 entries along the 

chain), the 128th  entries is a relatively stable site, the 170th  entries 

shares a relatively similar behaviour with the energy indicator-time graph in 
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mode-energy analysis, while the 256th entries is obviously the site where 

energy localization take place. 

 

A.2 Selection Rules (Lower band) 

 With the few sets of data discussed previously, one can draw the 

selection rules for lower band as it will describe what mode would be 

excited for some initial condition. And after discussing this we will start 

looking at some initial conditions with shorter wavelength (higher 

frequency) obtained in the dispersion diagram in Fig. 2.11(b) in Chapter 2. 

Basically, if 𝑘𝑘  denotes the eigenmode to be applied initially to the 

one-dimensional plasmonic chain, eigenmodes denoted by 𝑘𝑘 + 2a𝑘𝑘 would 

be subjected to excitation lately for a = 0,1,2,3 …. 

 

 We do not clearly define the range of lower band since we only 

know it works for 𝑘𝑘 = 1, 2, 3 currently and assume it will work for initial 

conditions started with a lower dispersion eigenfrequency. 

 

A.3 𝟏𝟏𝟏𝟏𝟏𝟏𝐭𝐭𝐭𝐭 & 𝟑𝟑𝟑𝟑𝟑𝟑𝐭𝐭𝐭𝐭 eigenfrequency 

 We combine the analysis of these two sets of Eigen parameters 

because they are symmetrically opposite in Fig. 2.11(b) in Chapter 2. We 

expect two systems share some degrees of similarity. You can find the 

energy indicator-time graph of using eigenvector corresponds to 128th 

eigenfrequency and 384th eigenfrequency as initial condition in Fig. A.3(a) 

and (b) respectively, both using same 𝐵𝐵 = 3.0 × 10−8m.  
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Figure A.3: (Color online) (a) Using the 128th eigenmode as the initial configuration, 

the energy indicator-time graph of several modes, with 𝑦𝑦-axis being the energy-level 

indicator and 𝑥𝑥-axis being the time, this system does not have the overlapping of 

electron clouds within the simulation time. (b) Using the 384th eigenmode as the 

initial configuration, the energy indicator-time graph of several modes, with 𝑦𝑦-axis 

being the energy-level indicator and the 𝑥𝑥-axis being the time, the plot stops at 2487 

oscillations as overlapping happens. 
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 Basically, these two data sets show a high degree of similarity at the 

beginning. The energy is almost 100% maintained in the mode they initially 

putted in. The energy stored in 384th eigenmode is comparatively less 

stable to that of the 128th one, as you can see the energy indicating line of 

384th eigenmode is thicker because of some small oscillation over time. 

Such a small difference leads them behave totally different later. The energy 

stored in 128th one keep constant till the end, which explains why the 

system do not overlap as there does not have energy distribution, the system 

is oscillating almost linearly. Yet on the other side the energy stored in 

384th one starts to fade before overlapping happens (the plot stops at 2487 

oscillations because of overlapping). In Fig. A.3(b), we can only see the 

eigenmode 390 is being excited while there should be some other 

eigenmode is being excited too. It is interesting to study why there is 

similarity and difference coexist between two symmetrically opposite 

eigenmode. 

 

A.4 𝟐𝟐𝟐𝟐𝟐𝟐𝐭𝐭𝐭𝐭 eigenfrequency 

 The analysis with an initial condition of eigenvector corresponds to 

256th eigenfrequency will be meaningful as it is located in the middle of 

the dispersion band in Fig. 2.11(b) in Chapter 2. Once again, we are using 

an initial multiplying parameter 𝐵𝐵 = 3.0 × 10−8m. And the result is so 

much different from the previous cases, see Fig. A.4. 

 

 In Fig. A.4, although the simulation time is short because of an early 

overlapping takes place, it is not like the case of equipartition (1st and 2nd 
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eigenmode as initial condition), the super-recurrence relation ( 3rd 

eigenmode as initial condition) or the case of linear-dominated nonlinear 

oscillation (128th and 384th eigenmode as initial condition). Indeed, the 

energy distribution among different eigenmode is very hard to predict as the 

degree of dispersion is so random. What conclusion we can draw from Fig. 

A.4 is that it looks like only even modes are being excited. From Fig. A.4, 

energy is fading in eigenmode 256 and is redistributed to eigenmode 254, 

258, 260 and 262. Although the plotting itself does not include all 

eigenmode, it is a reasonable guess for the even mode around eigenmode 

256 to be excited first. The energy is assumed to be distributed to both 

upper even mode and lower even mode in the dispersion band. 

 

 

Figure A.4: (Color online) Energy indicator-time graph of several modes using the 

256th eigenmode as the initial configuration, with 𝑦𝑦-axis being the energy-level 

indicator and the 𝑥𝑥-axis being the time, the plot stops at 594 oscillations. 
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A.5 𝟓𝟓𝟓𝟓𝟓𝟓𝐭𝐭𝐭𝐭 eigenfrequency 

 We will end this section by last looking into the energy 

indicator-time graph using eigenmode 512 as an initial condition. For the 

fact that putting energy into a high-frequency mode with large amplitude 

will lead to a quick equipartition conducted by Zabusky and Deem [25], we 

perform the numerical calculations in a different way by using a lower 

initial multiplying parameter 𝐵𝐵 = 2.5 × 10−8m instead. The truth is, no 

matter how we adjust the value of 𝐵𝐵, equipartition still takes place quickly, 

see Fig. A.5, this is quite contradicting with the conclusion of Zabusky and 

Deem [25].  

 

 For an initial multiplying parameter 𝐵𝐵 = 2.5 × 10−8m, this time the 

overlapping occurs when there are only 547 oscillations, which is the 

shortest lasting time among different initial configuration. Within the 

simulation time, one can see from Fig. A.5 that the energy stored in 

eigenmode 512 initially is quickly redistributed to eigenmode 510, then 508, 

506…etc. This set of data tells us that the equipartition or the energy 

distribution is not a 'one way trip', normally the energy tends to redistribute 

from one mode to modes with higher frequency, but when there is no such 

higher mode exists, the energy will transfer backward, that is, to redistribute 

themselves to lower mode by symmetry. It is like when one climbs up a 

ladder from the bottom and eventually reaches the top, instead of staying 

there, he or she climbs down the ladder with the same step of climbing up. 

 

 Unluckily, we cannot further study this case by not changing the 
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system as the overlapping happens too early. If there is a way to prevent the 

overlapping happens in this Section, we can draw conclusion in a more 

general way. With the existence of such issue, we can only guess the 

behaviour beyond overlapping. 

 

 

Figure A.5: (Color online) Energy indicator-time graph of several modes using the 

512th eigenmode as the initial configuration, with 𝑦𝑦-axis being the energy-level 

indicator and the 𝑥𝑥-axis being the time, the plot stops at 547 oscillations. 

 

 

 

 

 

 



120 

References 

 

1. William Crookes, On Radiant Matter, Lecture delivered before the 

British Association for the Advancement of Science, at Sheffield, 

Friday, 22 August 1879 (The Popular Science Monthly, 1880). 

2. R. D. Hazeltine, and F. L. Waelbroeck, The Framework of Plasma 

Physics: Frontier in Physics, (Westview Press, 2004). 

3. P. A. Sturrock, Plasma Physics: An Introduction to the Theory of 

Astrophysical, Geophysical & Laboratory Plasmas, (Cambridge 

University Press, 1994). 

4. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and 

Engineering Explorations, (Wiley & Sons, 2006). 

5. S. Zouhdi, A. Sihvola, and A. P. Vinogradov, Metamaterials and 

Plasmonics: Fundamentals, Modeling, Applications, (Springer, 

2008). 
6. D. R. Smith, What are Electromagnetic Metamaterials? , (Novel 

Electromagnetic Materials, The research group of D.R. Smith, 
2009). 

7. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal 
nanoparticle chains: a direct dynamic eigenmode analysis,” Optics 
Letters 32, 973 (2007). 

8. R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, “Tailoring the 
transmittance of integrated optical waveguides with short metallic 
nanoparticle chains,” Phys. Rev. B 69, 085,407 (2004). 

9. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, 

“Electromagnetic energy transport via linear chains of silver 

nanoparticles,” Optics Letters 23, 1331 (1998). 

10. S. A. Tretyakov and A. J. Viitanen, “Line of periodically arranged 

passive dipole scatters,” Electrical Engineering 82, 353 (2000). 
11. A. Alu and N. Engheta, “Theory of linear chains of 

metamaterial/plasmonic particles as subdiffraction optical 
nanotransmission lines,” Phys. Rev. B 74, 205,436 (2006). 

12. M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: 
Nonlinear metamaterials,” Rev. Mod. Phys. 86, 1093 (2014). 

http://en.wikipedia.org/wiki/Nader_Engheta
http://books.google.com/?id=51e0UkEuBP4C
http://books.google.com/?id=51e0UkEuBP4C
http://en.wikipedia.org/wiki/Wiley_%26_Sons
http://books.google.com/?id=OqRi4s_EskoC&pg=PA6
http://books.google.com/?id=OqRi4s_EskoC&pg=PA6
http://en.wikipedia.org/wiki/David_R._Smith
http://people.ee.duke.edu/%7Edrsmith/about_metamaterials.html
http://dx.doi.org/10.1103/RevModPhys.86.1093


121 

13. M. Lapine, M. Gorkunov, and K. H. Ringhofer, “Nonlinearity of a 
metamaterial arising from diode insertions into resonant conductive 
elements,” Phys. Rev. E 67, 065,601 (2003). 

14. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear 
Properties of Left-Handed Metamaterials,” Phys. Rev. Lett. 91, 
037,401 (2003). 

15. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, 
“Linear and nonlinear wave propagation in negative refraction 
metamaterials,” Phys. Rev. B 69, 165,112 (2004). 

16. Y. Zeng, D. A. R. Dalvit, J. O’Hara, and S. A. Trugman, “Modal 
analysis method to describe weak nonlinear effects in 
metamaterials,” Phys. Rev. B 85, 125,107 (2012). 

17. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, 
“Classical theory for second-harmonic generation from metallic 
nanoparticles,” Phys. Rev. B 79, 235,109 (2009). 

18. J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, 
“Experimental study of optical second-harmonic scattering from 
spherical nanoparticles,” Phys. Rev. A 73, 023,819 (2006). 

19. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. 
Turunen, and M. Kauranen, “Local field asymmetry drives 
second-harmonic generation in noncentrosymmetric nanodimers,” 
Nano Letters 7, 1251 (2007). 

20. I. V. Shadrivov, “Nonlinear guided waves and symmetry breaking 
in left-handed waveguides,” Photonics and Nanostructures: 
Fundamentals and Applications 2, 175 (2004). 

21. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to 
Photonic Crystals, (Academic Press, San Diego, 2003). 

22. E. Fermi, J. Pasta, and S. Ulam, “Studies of the Nonlinear 
Problems,” Los Alamos Report LA-1940, (1955). 

23. J. L. Tuck, Los Alamos Report LA-3990, (1968). 
24. N. J. Zabusky and M. D. Kruskal,“Interaction of ‘Solitons’ in a 

Collisionless Plasma and the Recurrence of Initial States,” Phys. 
Rev. Lett. 15, 240 (1965). 

25. N.J. Zabusky and G.S. Deem, “Dynamics of Nonlinear Lattices. 
Localized Optical Excitations, Acoustic Radiations and Strong 
Nonlinear Behavior,” J. Comp. Phys. 2, 126 (1967). 

26. A. J. Lichtenberg, R. Livi, M. Pettini, and S. Ruffo, “Dynamics of 
oscillator chains,” Lect. Notes Phys. 728, 21 (2007). 

http://dx.doi.org/10.1103/PhysRevE.67.065601
http://dx.doi.org/10.1103/PhysRevLett.91.037401
http://dx.doi.org/10.1103/PhysRevLett.91.037401
http://dx.doi.org/10.1103/PhysRevB.69.165112
http://dx.doi.org/10.1103/PhysRevB.85.125107
http://dx.doi.org/10.1016/j.photonics.2004.08.003
http://dx.doi.org/10.1016/j.photonics.2004.08.003


122 

27. B. Rink, “Proof of Nishida’s conjecture on anharmonic lattices,” 
Comm. Math. Phys. 261, 613 (2006). 

28. D. Bambusi and A. Ponno, “Resonance, metastability and blow up 
in FPU,” Lect. Notes Phys. 728, 191 (2007). 

29. G. James and Y. Sire, “Center manifold theory in the context of 
infinite one-dimensional lattices,” Lect. Notes Phys. 728, 207 
(2007). 

30. B. Rink, “An integrable approximation for the Fermi-Pasta-Ulam 
Lattice,” Lect. Notes Phys. 728, 283 (2007). 

31. N. W. Ashcroft and N. D. Mermin, Solid State Physics, edited by F. 
Seitz and D. Turnbull (Brooks-Cole, Belmont, 1976). 

32. M. Stone and P. Goldbart, Mathematics for Physics: A guided tour 
for graduated students, (Cambridge, 2008). 

33. C. M. Bender and S. Boettcher, “Real Spectra in Non-Hermitian 
Hamiltonians Having PT Symmetry,” Phys. Rev. Lett. 80, 5243 
(1998); C. M. Bender, “Making sense of non-Hermitian 
Hamiltonians,” Rept. Prog. Phys. 70, 947 (2007). 

34. H. Schomerus, “From scattering theory to complex wave dynamics 
in non-Hermitian PT-symmetric resonators,” Phil. Trans. R. Soc. A 
371, 20120,194 (2013). 

35. G. Levai and M. Znojil, “Systematic search for PT-symmetric 
potentials with real energy spectra,” J. Phys. A 33, 7165 (2000); A. 
Mostafazadeh, “Pseudo-Hermiticity versus PT symmetry: The 
necessary condition for the reality of the spectrum of a 
non-Hermitian Hamiltonian,” J. Math. Phys. 43, 205 (2002). 

36. A. Lupu, H. Benisty, and A. Degiron, “Switching using PT 
symmetry in plasmonic systems: positive role of the losses,” Optics 
Express 21, 21,651 (2013). 

37. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. 
Musslimani, “Theory of coupled optical PT-symmetric structures,” 
Optics Letters 32, 2632 (2007). 

38. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. 
Christodoulides, “Optical solitons in PT Periodic Potentials,” Phys. 
Rev. Lett. 100, 030,402 (2008). 

39. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. 
Musslimani, “Beam Dynamics in PT Symmetric Optical Lattices,” 
Phys. Rev. Lett. 100, 103,904 (2008). 



123 

40. A. Regensburger, M. A. Miri, C. Bersch, J. Nager, G. Onishchukov, 
D. N. Christodoulides, and U. Peschel, “Observation of Defect 
States in PT-Symmetric Optical Lattices,” Phys. Rev. Lett. 110, 
223,902 (2013). 

41. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. B. E. Oliveira, V. R. 
Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration 
of a unidirectional relectionless parity-time metamaterial at optical 
frequencies,” Nat. Mater. 12, 108 (2013). 

42. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. 
Christodoulides, “Unidirectional Invisibility Induced by 
PT-Symmetric Periodic Structures,” Phys. Rev. Lett. 106, 213,901 
(2011). 

43. H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, 
“Unidirectional nonlinear PT-symmetric optical structures,” Phys. 
Rev. A 82, 043,803 (2010). 

44. C. W. Ling, M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, 
“Topological edge plasmon modes between diatomic chains of 
plasmonic nanoparticles,” Optics Express 23, 2021 (2015). 

45. C. W. Ling, J. Wang, and K. H. Fung, “Formation of nonreciprocal 
bands in magnetized diatomic plasmonic chains,” Phys. Rev. B 92, 
165,430 (2015). 

46. C. W. Ling, K. H. Choi, T. C. Mok, Z. Q. Zhang, and K. H. Fung, 
“Anomalous Light Scattering by Topological PT-Symmetric 
Particle Arrays.” arXiv:1606.05851 (2016).  

47. W. H. Weber and G. W. Ford, “Propagation of optical excitations by 
dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 
125,429 (2004). 

48. J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, 
1998) Third Edition. 

49. C. F. Bohren and D. R. Huffman, Absorption and Scattering of 
Light by Small Particles (John Wiley and Sons, 1998) 

50. Filippo Capolino Edited, Theory and Phenomena of Metamaterials 
(Taylor and Francis Group, LLC, 2009) 

51. I. Lumerical Solutions, “MS Windows NT Kernel Description,” 
(1999). from http://www.lumerical.com/tcad-products/fdtd/ 

52. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres,” 
Appl. Opt. 34, 4573 (1995). 



124 

53. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of 
photonic crystals: frequency bands and transmission coefficients,” 
Comput. Phys. Commun. 113, 49 (1998). 

54. J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, “Photonic Clusters 
formed by dielectric microspheres: numerical simulations,” Phys. 
Rev. B 72, 085,130 (2005). 

55. T. C. Mok, Raymond P. H. Wu, C. W. Ling, C. H. Lam, N. Boechler, 
and K. H. Fung, “Possible Energy Localization by Classical 
Nonlinear Interaction in Chain of Plasmonic Nanoparticles” Opt. 
Lett. (manuscript to be submitted). 

 


	Abstract
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Chapter 1 Introduction
	1.1   Electrodynamics in arrays of plasmonic nanoparticles
	1.2   Overview on nonlinear metamaterials
	1.3   FPU-model
	1.4   Non-Hermitian one-dimensional diatomic plasmonic chain
	1.5   Overview on PT-symmetric system
	1.5.1 PT-Symmetry

	1.6   Objective

	Chapter 2 One-dimensional nonlinear plasmonic chain
	2.1   Modelling
	2.2   Linear analysis (Linearization & Eigenvalue-problem)
	2.3   Nonlinear analysis (Runge-Kutta Method)
	2.4   Hamiltonian and Fourier Analysis
	2.5   Energy analysis (FPU-approach)
	2.6   Conclusion

	Chapter 3 One-dimensional coated diatomic plasmonic chain
	3.1   Modelling
	3.2   Dispersion relation, Band gap, topological edge state
	3.3   Extinction cross section
	3.4   PT-symmetry in diatomic chain
	3.5   Conclusion

	Chapter 4 Summary
	Appendix A
	A.1 ,𝟑-𝐫𝐝. eigenfrequency
	A.2 Selection Rules (Lower band)
	A.3 ,𝟏𝟐𝟖-𝐭𝐡. & ,𝟑𝟖𝟒-𝐭𝐡. eigenfrequency
	A.4 ,𝟐𝟓𝟔-𝐭𝐡. eigenfrequency
	A.5 ,𝟓𝟏𝟐-𝐭𝐡. eigenfrequency

	References
	45. C. W. Ling, J. Wang, and K. H. Fung, “Formation of nonreciprocal bands in magnetized diatomic plasmonic chains,” Phys. Rev. B 92, 165,430 (2015).
	46. C. W. Ling, K. H. Choi, T. C. Mok, Z. Q. Zhang, and K. H. Fung, “Anomalous Light Scattering by Topological PT-Symmetric Particle Arrays.” arXiv:1606.05851 (2016).
	49. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1998)
	50. Filippo Capolino Edited, Theory and Phenomena of Metamaterials (Taylor and Francis Group, LLC, 2009)
	51. I. Lumerical Solutions, “MS Windows NT Kernel Description,” (1999). from http://www.lumerical.com/tcad-products/fdtd/
	52. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573 (1995).
	53. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
	54. J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, “Photonic Clusters formed by dielectric microspheres: numerical simulations,” Phys. Rev. B 72, 085,130 (2005).
	55. T. C. Mok, Raymond P. H. Wu, C. W. Ling, C. H. Lam, N. Boechler, and K. H. Fung, “Possible Energy Localization by Classical Nonlinear Interaction in Chain of Plasmonic Nanoparticles” Opt. Lett. (manuscript to be submitted).


