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Abstract 

Production and distribution scheduling are two key activities at the operational level 

in a supply chain. Due to fierce competition in the market and high expectation on the 

service level from customers, the linkage between production and distribution become 

more and more close. However, achieving customer satisfaction, as well as controlling 

the overall cost, is a critical issue. On the one hand, to meet the customized needs from 

global clients in the competitive market environment, more and more manufacturers 

are changing their production network from centralized to decentralized. For multi-

factory manufacturing systems, production and distribution scheduling problems are 

much more complicated than the single-factory integrated scheduling problems, 

because bi-assignment problems are involved. On the other hand, as the connected 

channel between manufacturers and overseas customers, maritime transport cannot be 

avoided in global supply chains. However, the regular shipping schedules and the long 

shipping lead-time dominate the production and distribution decisions made by the 

manufacturers. When the actual schedules deviate from the published ones, not only 

the shippers (manufacturers) but also their customers face uncountable losses because 

of the delays. In reality, schedule unreliability is a common problem in the shipping 

industry. Both internal and external factors, which are not under the control of the 

shipping companies, bring about negative impacts on the timely arrivals of vessels. As 

for the manufacturer with a decentralized production network, there is no doubt that 

the assignment and scheduling decisions become much more complicated in 

compensating for the effects of shipping limitations as well as uncertainties. However, 

most of the literature studied the integrated scheduling problem under a single-factory 

manufacturing system in a local supply chain without consideration of the limitations 
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from liner shipping. In addition, almost all the existing studies focus on shipping 

unreliability from the perspective of the shipping companies. Studies for identifying 

the impact of shipping uncertainties on the production and distribution scheduling 

from the perspective of the shippers are quite limited.  

 

This research mainly focuses on the study of the effects of shipping limitations and 

uncertainties on the production and distribution scheduling for a decentralized 

manufacturing system and fills the research gaps aforementioned. The main 

contributions made through this research are as follows:  

 

Firstly, a new and practical deterministic model was proposed for multi-factory job 

allocation and production–distribution scheduling problems in which inland distance-

dependent transportation lead-time and maritime transport limits and variations are 

taken into consideration. The objective was to minimize the total operating costs, i.e., 

cost of production, storage, inland and maritime transport, earliness and tardiness. A 

pure mathematical approach was proposed and formulated into a mixed-integer 

programming (MIP). A new valid inequality called due-date based cut-off rule (DBC) 

was exploited to reduce the computational burden of the exact algorithm without 

removing the optimal solutions. Moreover, a hybrid 2-level fuzzy guided genetic 

algorithm (H2LFGGA) was developed for more practical and large-scale problems. In 

this GA, a new mutation operation based on a novel fuzzy controller was introduced. 

The numerical experiments demonstrated the reliable performance of the proposed 

integrated model for the variations in external shipment schedules and production cost 

difference among factories. Managerial insights were obtained in terms of the 

production scheduling decisions under a multi-factory manufacturing environment. 

Thirdly, a new stochastic model was proposed for the multi-factory production and 
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distribution scheduling problem under liner shipping uncertainty. The aim was to make 

a trade-off between total operating costs and risk costs to achieve more reliable 

decisions. The closed form of the individual risk cost for any arbitrary probability 

distribution was formulated corresponding to the loss function composed of both 

earliness and tardiness penalties. It verified the effects of shipping uncertainty on jobs 

allocation, production scheduling and shipment selections. The computational and 

statistical evaluation clearly demonstrated that the new approach can compensate for 

the amplification effects between the high penalty level and shipping uncertainty. 

Managerial insights were obtained when facing liner shipping uncertainties.  
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Chapter 1           Introduction 

In Chapter 1, the research background is briefly discussed in Section 1.1, 

followed by the scope, objectives and significance of this research in Section 1.2. 

Lastly, the organization of this thesis is elaborated in Section 1.3. 

 

1.1 Research background 

Facing with increasing product diversification and customization demands, more 

and more manufacturers are adopting the make-to-order business modes. Such 

kind of manufacturing environment covers a wide range of industries, including 

electronics products (Li et al. 2005; Stecke and Zhao 2007), fashion 

manufacturing (Chen and Pundoor 2006), food catering (Chen and Vairaktarakis 

2005), electrical appliances/devices, and other fast moving consumer goods 

(FMCG) industries. Under the fierce market competition, manufacturers try to 

keep the operating cost as low as possible; on the other hand, they pursue high 

service quality, i.e., on-time delivery. Therefore, as the key functional activities 

in the supply chain, production and distribution become intimately linked. The 

traditional methods, in practice, separate the decisions for production and 

distribution. The distribution decisions are made after the production scheduling, 

which is obvious sub-optimal and cannot achieve overall benefit. Therefore, the 

integrated decisions of production and distribution are essential for make-to-order 

manufacturers to achieve the trade-off between various costs and service levels. 

 

Most studies discuss the production and distribution scheduling under relative 
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simple manufacturing systems, e.g., single-machine and parallel-machines. 

(Chen 2009). However, the production and distribution scheduling methods based 

on the single-factory environment are not suitable any more. With the growing 

trend of globalization, increasing numbers of manufacturers are extending their 

production network from single-factory to multiple-factory manufacturing 

systems, located in different regions and countries. This adds geographical and 

production flexibility as well as competitiveness to meet the global customers’ 

requirements. Information sharing and coordination planning among the factories 

are remarkably important when facing the common external constraints. For 

instance, under a make-to-order business mode, production has close linkage with 

distribution, which makes it inevitable to take the transport related constraints 

into consideration to achieve overall benefit. There is no doubt that coordination 

among factories can further facilitate effective and efficient resource integration 

and reduce the resource waste in no value-add activities. However, differing from 

the single-factory scheduling problems, bi-assignment problems are involved 

under the multi-factory manufacturing environment, i.e., the assignment of each 

order among different factories, and the assignment of each order to the 

production line in the factory. The decisions are linked with each other and affect 

a series of successive decisions. Therefore, under the restriction of production and 

distribution, how to obtain optimal bi-assignment and scheduling solutions 

determines how well the resource integration is. 

 

Thanks to the rapid development of the logistic industry, the distribution stage 

becomes more flexible for the manufacturers, but new challenges emerge as well. 

Except those companies owning their own vehicle fleet, more and more 

manufacturers count on the logistics providers, especially, the third-party logistics 
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providers (3PL) for the distribution to their customers (Wang and Lee 2005; 

Stecke and Zhao 2007; Huo et al. 2010; Agnetis et al. 2014; Azadian et al 2015; 

Cheng et al. 2015; Li et al. 2015; Guo et al. 2017). Usually, the 3PL provides 

multiple transport modes, e.g., regular delivery and express delivery. More 

convenient and efficient means higher transportation cost. Under such a situation, 

mixed delivery methods, i.e., immediate delivery and batch delivery, may be 

involved and more complex scheduling decisions are needed.  

 

However, more challenges are faced by the make-to-order manufacturers, when 

multiple transport modes involve availability restrictions, e.g., rail, air, sea 

transport (Li et al. 2005; Wang et al. 2005; Li et al. 2006; Leung and Chen 2013; 

Ma et al. 2013; HaGarciaghaei-Keshteli and Aminnayeri 2014; Mensendiek et al. 

2015). As the main support of the international trade, maritime transport is the 

crucial link in the global supply chain. As for the make-to-order manufacturer 

with global customers, the characteristics of maritime transport cannot be ignored 

during production and distribution decision making. 

 

Shipping companies usually publish the expected shipping schedules several 

months in advance so that shippers can make appropriate decisions, including the 

departure times from the port, expected shipping lead-times, specific freight rates, 

etc. However, in reality, schedule unreliability is a common problem in the 

shipping industry. Both internal and external factors, which are not under the 

control of the shipping companies, bring about negative impacts on the timely 

arrivals of vessels. As reported by Notteboom (2006), the actual vessel schedule 

reliability can be as low as 50% for many shipping routes compared with their 

expected schedules. In a recent report by Drewry (2015), the statistics showed 
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that only 49% to 55% of ships in three key East–West trade routes arrived within 

24 h of the expected time of arrival (ETA), whereas the average deviation from 

the ETA was 1.9 days and 2.1 days in January 2015 and February 2015, 

respectively. The situation has not improved much. As reported by Drewry (2016), 

the reliability of universal average on-time performance according to the shipping 

schedule in February 2016 was 62.7%, and for Asia–Europe trade, it was less than 

60%. The main source of the schedule unreliability arises from the congestion of 

vessels in ports and the unexpected low handling efficiency at ports/terminals.  

 

In recent years, many researchers have focused on the shipping routing design 

problems with uncertainties in the shipping operations. Shipping schedules were 

redesigned or the shipping speed was controlled from time to time to minimize 

the cost of fuel consumption as well as improve the service reliability (Qi and 

Song 2012; Wang and Meng 2012). Except for the regular uncertainties (port-

related uncertainties), disruptive events (extreme weather conditions, labor 

strikes) are also involved in maritime transport (Li et al.2015). Although some 

studies considered the customer service levels as constraints in the fleet 

deployment and route scheduling problems, their priority was the profitability of 

the shipping companies. When conflicts cannot be resolved, the shipping 

companies have to sacrifice the schedule reliability for controlling the total cost. 

Therefore, how to obtain a more reliable production and distribution decisions are 

of high concerned to the manufacturers. 

 

All the challenges faced by the make-to-order manufacturer under unprecedented 

globalization of supply chains motivate this research. The following section 

mainly discusses the research scope, objectives and significance. 
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1.2 Research scope, objectives and significance 

The scope of this research focuses on the production and distribution problems at 

the detailed scheduling level, rather than the planning level. The production is 

required according to the customers’ orders rather than the stock level. Therefore, 

the production and distribution planning and lot scheduling related problems are 

not discussed in this research. In addition, this research focuses on the supply 

chain operational risk, other than supply chain disruption risk. According to the 

challenges faced by the make-to-order manufacturers in the global supply chain, 

the objectives for this research are established as follows: 

 

1. To develop an exact integrated model for a make-to-order manufacturer with 

a decentralized production network to determine optimal production and 

distribution scheduling solutions so as to make trade-off between the total 

operating cost and delivery timeliness under the consideration of both 3PL 

and maritime transport. 

 

2. To develop a new application-oriented approach for this multi-factory 

integrated scheduling model with consideration of both 3PL and maritime 

transport so as to make it practical in reality. 

 

3. To develop a stochastic model to deal with the operational risk coming from 

maritime transport for this multi-factory integrated scheduling problem in 

order to obtain a more reliable integrated scheduling solution in terms of the 

total operating cost when liner shipping uncertainty cannot be avoided. 
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In general, this research not only makes contributions to academia but also 

provides managerial insights to the industry: a) it provides exact mathematical 

modeling which can be used as a benchmark for the multi-factory integrated 

scheduling problems with dominated transport modes consideration and just-in-

time objectives; b) it provides new ideas on supply chain risk management at the 

operational level for production and distribution scheduling problems when the 

uncertainty is coming from the outbound distribution; c) it not only provides 

useful managerial insights for the manufacturers but also the 3PL companies, 

forwarders and port related operators and service providers. Further the level of 

communication among them affects the reliability of the production and 

distribution scheduling decisions. Moreover, the big data and advanced analytics 

are essential for risk-averse decisions. 

 

1.3 Organization of the thesis 

The thesis is mainly composed of six chapters: 

 

In Chapter 1, the background and challenges of the production and distribution 

scheduling problems are discussed first. Accordingly, the research objectives are 

established followed by the significance of this research. 

 

In Chapter 2, a systematic review of the related fields, including the development 

of the studies of production scheduling, production and distribution scheduling 

under both simple and complex manufacturing configurations are presented in 

detail. For the production and distribution scheduling models, besides the 

common delivery methods, immediate and identical delivery and batch delivery, 
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the models with different delivery methods and multi-factory manufacturing 

environments are reviewed in the recent literature. It is followed by the related 

literature on stochastic programming, exact and approximation algorithms for 

solving production and distribution scheduling models. Finally, a summary of the 

literature review including research gaps and detailed objectives is presented. 

 

In Chapter 3, a pure mathematical approach is presented for the novel and 

practical integrated multi-factory production and distribution scheduling model. 

The detailed modeling is displayed in Chapter 3. In addition, the development 

procedure of the new proposed valid inequality for accelerating the computational 

efficiency for the enumerated branch and bound is presented. The superiority of 

the proposed model and the valid inequality is discussed through numerical 

experiments. 

 

In Chapter 4, a novel hybrid 2-level fuzzy guided genetic algorithm is developed 

in detail for application-oriented purposes. The principles of the proposed fuzzy 

controller are explained. Comparisons between the proposed genetic algorithm 

and exact algorithm, as well as between the proposed genetic algorithm and 

simple genetic algorithm, are conducted to verify the effectiveness and efficiency 

of the proposed heuristic approach. 

 

In Chapter 5, a new stochastic model which is based on the model in Chapter 3 is 

developed for the integrated multi-factory scheduling problem with shipping 

uncertainty. The approximate deterministic equivalent is formulated with detailed 

procedures, in which the closed form of the individual risk cost is proved. The 

numerical experiments are carried out to verify the effectiveness of the proposed 
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method. 

 

In Chapter 6, overall conclusions including the main contributions and findings 

are presented. Some recommendation for future work are discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



9 
 

Chapter 2   Literature Review  

In Chapter 2, a systematic review of the literature on production scheduling under 

both a deterministic and stochastic background is firstly presented in Section 2.1. 

In Section 2.2, a systematic review on the production and distribution scheduling 

is provided with recent literature. Then it is followed by the related literature on 

stochastic programming in Section 2.3, exact and approximation algorithms for 

solving production and distribution scheduling models in Section 2.4 and 2.5. In 

section 2.6, a summary of the literature review as well as the research gaps and 

detailed objectives are presented. 

 

2.1 Production scheduling 

Production scheduling is defined as the effective and efficient allocation of the 

limited resources to the activities over time (Graves 1981; Lawler et al. 1993). 

The problem type can be classified into mainly three fields: machine 

configuration/environment, job characteristic and performance criteria. The 

schedule is called optimal if it reaches minimization or maximization, the specific 

performance criteria. Motivated by the complexity in the real world and the 

development of scheduling theory, more complex machine configurations are 

considered. In addition, more irregular performance criteria are proposed for 

different purposes, which makes the scheduling problems even more challenging. 

In this section, the content is divided two parts. In the first part, the development 

of single-factory production scheduling with one-stage machine configurations 

under both deterministic and stochastic situations is stated through the related 
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literature. In the second part, the literature related to more complex machine 

configurations, i.e., multiple factories located in different regions, is reviewed. 

 

2.1.1 Single-factory production scheduling 

The main machine configurations discussed in the literature, from easy to 

complex, are: 

 Single machine; 

 Parallel machines (e.g., identical, uniform, unrelated); 

 Open shop; 

 Flow shop; 

 Jop shop. 

 

Actually, the single machine environment is a special case of the parallel machine 

environment. For the single machine environment and parallel machines 

environment, only one-stage operation is involved in the production process for 

each job. Whereas, multiple operations are required for each job in open shop, 

flow shop and job shop environments. The open shop is a more general case 

compared with the flow shop, in which the ordering of the operations of each job 

is not fixed. The flow shop is a case in which each job has to operate on each 

machine with a specified processing order. The job shop specifies that each job 

may have different operations to deal with under its specified ordering. In this 

section, we mainly focus on the literature related to the scheduling problems 

under single and parallel machines environment. 

 

The job characteristics mainly indicate the restrictions of the jobs during 
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production, i.e., allowance of preemption or non-preemption, precedence 

relationship between jobs, release date specified for each job, unit processing 

requirement or arbitrary nonnegative processing requirement for each job. 

 

The regular performance criteria discussed in most of the literature are the non-

decreasing functions of completion times of jobs, i.e.,  

sum of weighted completion times: ∑ 𝑤𝑗𝑐𝑗𝑗∈𝐽   

maximum completion times (i.e., makespan): 𝐶𝑚𝑎𝑥 = max (𝑐𝑗 , ∀ 𝑗 ∈ 𝐽) 

maximum lateness: 𝐿𝑚𝑎𝑥 = max( 𝐿𝑗 , ∀ 𝑗 ∈ 𝐽), 𝐿𝑗 = 𝑐𝑗 − 𝑑𝑗 

weighted number of tardiness: ∑ 𝑤𝑗max(𝑐𝑗 − 𝑑𝑗 , 0) =𝑗∈𝑗 ∑ 𝑤𝑗𝑇𝑗𝑗∈𝑗  

weighted number of tardy jobs: ∑ 𝑤𝑗𝑈𝑗𝑗∈𝑗  

 

However, more and more researchers are starting to consider irregular 

performance criteria to make the measurement more reasonable due to different 

problem types, i.e., 

Earliness and tardiness with common due dates: ∑ (𝑐𝑗 − 𝑑)
−

𝑗∈𝐽 + ∑ (𝑐𝑗 − 𝑑)
+

𝑗∈𝐽  

Weighted earliness and tardiness with common due dates: ∑ 𝑤𝑗(𝑐𝑗 − 𝑑)
−

𝑗∈𝐽 +

∑ 𝑤𝑗
′(𝑐𝑗 − 𝑑)

+
𝑗∈𝐽  

Weighted earliness and tardiness with distinct due dates: ∑ 𝑤𝑗(𝑐𝑗 − 𝑑𝑗)
−

𝑗∈𝐽 +

∑ 𝑤𝑗
′(𝑐𝑗 − 𝑑𝑗)

+
𝑗∈𝐽 . 

 

In this subsection, the literature related to the one-stage machine environment, 

from single to parallel, under both deterministic and stochastic situations are 

reviewed to demonstrate the development of the scheduling theory in this branch. 
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Single machine environment 

The scheduling problems under a single machine environment are the special 

cases for all other scheduling problems under complicated machine environments. 

Due to its simplification, many optimal properties are verified under a specific 

problem type, which provides insights for the problems under the parallel 

machine environment. Sidney and Steiner (1986) verified that the Weighted 

Shortest Processing Time first (WSPT) rule is optimal for the one machine 

scheduling problem with the objective of weighted total completion times. The 

Earliest Due Date (EDD) rule was first proposed by Jackson (1955) for the 

problem to minimize the maximum lateness with common released time 0. 

However, most problems cannot be solved optimally by using simple dispatch 

rules. For example, if each job has its specific release time, then the problem 

1|𝑟𝑗|𝐿𝑚𝑎𝑥 become strongly NP-hard (Lenstra, Rinnooy Kan, and Brucker 1977). 

Karp (1972) verified that the computational complexity of problem 

1| | ∑ 𝑤𝑗𝑈𝑗𝑗∈𝑗   is NP-hard. More powerful methods are needed to solve the 

problems, such as branch-and-bound. Baptiste et al. (2003) proposed a branch 

and bound algorithm in order to be solved the one machine scheduling problem 

with arbitrary release time under the objective function to minimize the total 

number of tardy jobs, i.e., 1|𝑟𝑗| ∑ 𝑈𝑗𝑗∈𝐽 . The proposed algorithm enabled large-

scale problems to be solved by imbedding the elimination rules and strong 

dominance relations. Bock and Pinedo (2010) proposed a speeding up scheduling 

algorithm for the NP-hard problem 1|𝑟𝑗, 𝑝𝑗| ∑ 𝑤𝑗𝑈𝑗𝑗∈𝑗   by a decomposition 

scheme. For the problems with the performance criteria minimizing total 

weighted tardiness, a pseudo-polynomial-time algorithm was proposed by Lawler 

(1977). However, the computational complexity of the problem to minimize total 

weighted tardiness was proven as NP-hard (Du and Leung 1990). Potts and van 
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Wassenhove (1985) proposed a new branch and bound algorithm to solve the 

single machine total weighted tardiness problem. Fast lower bound calculation 

was achieved by using a Lagrangian relaxation approach. The subproblems was 

to minimize the total weighted completion time. A multiplier adjustment method 

was proposed to substitute the sub-gradient technique.  

 

The above-mentioned problems were all discussed under regular performance 

measures, that is the objective function was a non-decreasing function of the 

completion times. However, in reality, more complicated performance criteria are 

needed such as minimizing the total earliness and tardiness (E/T). It is the case 

motivated by the just-in-time philosophy. On the one hand, penalties will be 

induced by late delivery of the orders. On the other hand, storage costs will be 

induced by early arrival of the orders. Compared with the aforementioned 

problems, the E/T problems are more difficult to solve, even under single machine 

environment, and are strongly NP-hard. Baker and Scudder (1990) provided a 

comprehensive review about problems with E/T. Two key properties of E/T 

models were proposed in a general form and were often considered under the 

assumption of a common due date (Bagchi et al.1987; De et al. 1989; Hall and 

Posner 1991).  

 

In more recent studies, general cases were discussed. Wan and Yen (2002) 

proposed a Tabu search procedure together with the optimal timing algorithm to 

solve the single machine E/T scheduling problem with distinct due windows. 

Hassin and Shani (2005) studied the E/T problems with distinct processing times 

and distinct due dates given the sequence of tasks. A modified GTW algorithm, 

which was originated proposed by Garey et al. (1988) for symmetric earliness 
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and tardiness penalties, was developed by the authors to solve the special case of 

common processing times.  

 

Other advanced single machine scheduling problems including multiple objective 

problems (Hoogeveen 2005; Wan and Yen 2009), problems with sequence 

dependent setup times (Allahverdi, Ng, Cheng, and Kovalyov 2008) and 

problems with batching scheduling (Potts and Kovalov 2000) were also widely 

explored. 

 

Stochastic single machine environment 

Numerous studies have been conducted for stochastic single machine scheduling 

problems. Rothkopf (1966) undertook one of the very first studies for single 

machine scheduling problems a under stochastic environment. It was proven that, 

when the processing time follows exponential distribution and the objective is to 

minimize the expected total completion time, the problem can be reduced to an 

equivalent deterministic problem, and the optimal solutions are non-preemptive 

schedules. However, the result did not hold for the parallel machine environment 

when preemption was allowed. Therefore, the Weighted Shortest Expected 

Processing Time (WSEPT) rule is not necessarily optimal for the parallel machine 

environment. The dynamic allocation indices approach proposed by Gittins (1979) 

has been extensively studied by many researchers for stochastic scheduling 

problems under a single machine environment (Pinedo 1983; GLazebrook 1984; 

Pinedo and Rammouz 1998; Weiss 1992; Seo et al. 2005). Pinedo (1983) studied 

the single machine scheduling problems with exponential distributed processing 

times, random release dates as well as random due dates. The performance criteria 

were the expected weighted sum of completion times and expected weighted 
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number of tardy jobs. The results showed the solutions properties were distinct to 

those under deterministic situations. No polynomial algorithms were known for 

these types of problems. Glazebrook (1984) proposed strategies for the single 

machine scheduling problem where Bernoulli-type breakdowns were involved. 

The objective was to maximize the total expected reward earned during 

processing.  

 

Afterwards, different problem types were discussed. The problems with E/T 

criteria were studied in more general cases (Soroush and Fredendall 1994; 

Soroush 1999; Soroush 2007). Cai and Tu (1996) proposed a single machine 

scheduling problem with random processing time and stochastic breakdown and 

common due date, in which the breakdown occurrence was assumed to follow a 

general Poisson process. The performance criterion was the sum of the squared 

deviations of the job completion times from the common due date. The optimal 

properties were established and a sufficient condition was derived in which the 

optimal sequences were V-shaped with respect to mean processing times. Jia 

(2001) discussed a similar problem but with random common due dates. Both the 

processing time and the due dates were assumed to have exponential distributions. 

The necessary conditions for optimal schedules were demonstrated to be 

weighted expected shortest processing time (WESPT). Soroush (2007) proposed 

a model for random processing times with arbitrary distributions and distinct due 

dates, aiming at minimizing the total weighted number of early and tardy jobs. 

An efficient heuristic was proposed for generating optimal schedule candidates 

due to the NP-hardness of the problem. 
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Parallel machine environment 

As extension research and generalization of the single machine scheduling, many 

studies have been carried out in parallel machine scheduling. Some dispatching 

rules have also been proposed for different types of problems. For the simplified 

problem Pm| | ∑ 𝑐𝑗𝑗∈𝐽  , where Pm  represents identical parallel machine 

environment, the Shortest Processing Time (SPT) rule was proved as the optimal 

schedule rule. The Longest Processing Time (LPT) rule was applied to the 

problem Pm| |𝐶𝑚𝑎𝑥  whose worst-case analysis was conducted by Graham 

(1966) and Hwang et al. (2005). Kawaguchi and Kyan (1986) provided a worst-

case bound for the WSPT rule in terms of the identical parallel machine problem 

with weighted total flowtime Pm| | ∑ 𝑤𝑗𝑐𝑗𝑗∈𝐽 . Vepsalainen and Morton (1987) 

proposed more complex priority rules, Apparent Tardiness Cost (ATC) and 

Weighted Cost Over Expected Remaining Time (WCOVERT) for problems with 

weighted tardiness related objectives. The superiority of the complex priority 

rules was demonstrated compared with EDD, S/RPT, WSPT. Leung and Pinedo 

(2003) discussed a parallel machine scheduling problem with the common 

performance criterion, i.e., makespan minimization. It was shown that for the 

situation of unrelated machines, the problem with preemption allowed was 

strongly NP-hard.  

 

For the situation of identical machines, a polynomial-time algorithm was 

developed to solve the problem. Li (2006) considered an identical parallel 

machine scheduling problem with common performance criteria. The main 

restriction was from machine eligibility. For more general cases, the parallel 

machine scheduling problem with processing set restrictions were further studied 

(Lin and Li 2004; Lee et al. 2011). The objective function usually minimized the 
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makespan. Leung and Li (2008) provided a more detailed review on processing 

set restriction scheduling problems. When considering parallel machine 

scheduling problems with earliness and tardiness related criteria, no simple 

dispatched rules could be applied and the general problems are NP-hard.  

 

The literature for parallel machine scheduling problems under E/T objective 

functions is much less than in a single machine environment. Cheng and Chen 

(1994) studied a problem of assigning a common due date and sequencing jobs 

under identical parallel machine environment. The objective was to minimize 

sum of earliness and tardiness penalties and due date value. The problem was 

shown as NP-hard, under the special case of an identical processing time, and 

could be solved in polynomial times. Sivrikaya-Şerifoǧlun and Ulusoy (1999) 

studied a more practical problem, in which distinct due dates, distinct release 

dates for jobs, different processing rates for machines and sequence-dependent 

setup times were involved, with the aim at minimizing the total weighted earliness 

and tardiness penalties. A genetic algorithm (GA) with new proposed crossover 

operator called multi-component uniform order-based crossover, was developed 

and verified for its effectiveness and efficiency for solving large-scale problems 

compared with traditional GA with neighborhood exchange type of search. Later, 

Radhakrishnan and Ventura (2000) utilized simulated annealing (SA) combined 

with a local search heuristic to solve almost the same problem but with a different 

objective function which was to minimize the total absolute deviations of 

completion times from the corresponding due dates. Ventura and Kim (2003) 

further considered the problem with additional resource constraints under the 

assumption of an identical processing time. The problem was formulated into a 

binary integer programming and solved by a Lagrangian relaxation approach.  
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Stochastic parallel machine environment 

Stochastic scheduling problem under parallel machine environment afterwards 

got much attention due to its practical applicability. At the very beginning, the 

studies focused on the discussion on the case of the processing time following 

exponential distributions. Good and simple optimal schedule policies were 

verified for some special problem types. Pinedo and Weiss (1979) verified that 

the LEPT (SEPT) rule was optimal for identical parallel machine scheduling 

problems with the objective of minimizing the expected makespan (flow time). 

Weber (1982) generalized the theorem for arbitrary distributions with monotone 

hazard rates. Emmons and Pinedo (1990) studied a more complex problem in 

which the due dates were random variables. The objective was to minimize the 

expected weighted tardy jobs, and optimal polices were obtained under various 

assumptions. Chang et al. (1992) gave optimal conditions for the LEPT rule to 

minimize the expected tardiness cost at time t for problems with exponential 

distributed processing times and random release dates. Cai and Zhou (1999) solve 

the parallel machine scheduling problem with random breakdown consideration. 

The objective was to minimize the expected costs for both earliness and tardiness. 

 

When the problems considered become more applied, the optimal properties 

could be very complicated and the simple dispatching rules could not be optimal 

and effective any more. More powerful heuristic algorithms and approximation 

methods were inevitably needed to solve more complicated problems. Al-Kham’s 

and M’ hallah (2011) studied a parallel machine scheduling problem to maximize 

the expected net profit by determining machine capacities, in which the due dates 

were assumed uncertain. An iterative sampling average approximation method 

was proposed. Zhang et al. (2012) solved the unrelated machine scheduling 
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problem to minimize the mean weighted tardiness in which the jobs arrived in a 

Poisson process and the due dates were random. An average-reward 

reinforcement learning method was proposed to solve this problem. It was 

demonstrated that the solutions under the policy through learning outperformed 

WSPT, Weighted Modified Due Date (WMDD), ATC and WCOVERT. 

Jagtenberg et al. (2013) proved that for the parallel machine scheduling problems 

with exponential distribution processing time, the lower bound of the worse-case 

performance of the WSEPT rule was worse than the upper bound of its worse-

case performance corresponding to its deterministic counterpart. Xu et al. (2013) 

discussed an identical parallel machine scheduling problem with uncertain 

processing time. A robust min-max regret scheduling model was proposed 

because of limited knowledge of probability distribution. Heuristics were 

developed to solve the problem. Von Hoyningen-Huene and Kiesmüller (2015) 

considered the problem with random machine failure. Both preventive and 

corrective maintenance was involved in the problem. An approximated objective 

of the expected makespan was proposed for evaluating the schedule in a 

simplified pattern.  

 

2.1.2 Multiple-factory production scheduling 

Due to the increasing trend of globalization, researchers and industrialists have 

paid attention to multi-factory scheduling problems (Behnamian and Fatemi 

Ghomi 2014). For the multi-factory scheduling problem, it can be further 

classified into two categories, i.e., multi-agent and single-agent. The literature 

reviewed focuses on the single-agent multi-factory scheduling problems. In a 

multi-factory production scheduling model, the factories can be structured in 
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parallel or in series. A parallel structure model means each factory can produce 

the finished goods with the same quality that can be supplied to the customers 

directly (Timpe and Kallrath 2000, Chan et al. 2005a, Chan et al. 2006, Chung et 

al. 2009a, De Giovanni and Pezzella 2010), while a series structure model means 

the finished items from one factory become the raw materials or components of 

another factory for further production. The finished goods will be delivered to 

customers by the end of production in the last factory in series (Chung et al. 2009b, 

Chung et al. 2010, Ruifeng and Subramaniam 2011, Karimi and Davoudpour 

2015). In the literature, the problems under different machine environments, i.e., 

single machine, parallel machine, flow shop, job shop and open shop, were 

discussed. Almost all the studies of this research stream were under a 

deterministic background. In the following two subsections, the relative literature 

has been reviewed. 

 

2.1.2.1 Series-structured production network 

Thoney et al. (2002) considered a multi-factory scheduling problem in series and 

showed that the vehicle limit can be the main constraint for the system 

performance with the due-dates related objectives, in three different scenarios: 

two factories feeding one, one factory feeding two, three factories in series.  

 

Garcia et al. (2004) considered a scheduling problem of production and 

distribution planning with no stock process which is called just-in-time 

scheduling. It was assumed that production costs between the different factories 

were the same. Therefore, the distribution cost is the only factor in the objective 

function. An integer programming model was described for small-case problems. 
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Safaei et al. (2010) studied integrated planning instead of scheduling problem to 

minimize total operating costs with consideration of limited vehicles in a series-

structured multi-factory manufacturing system. Each factory in this system could 

produce both finished goods which could deliver to local customers directly, and 

components of the finish goods, which were the input for downstream factory in 

this system. Two stages of the distribution were considered with limited vehicles. 

 

The machine failure not only affects the production in one factory, but it may 

induce a chain reaction to other factories in a series-structured multi-factory 

production network. Chung et al. (2009a) suggested a double tier GA to solve the 

simultaneous scheduling of perfect and imperfect maintenance during production 

scheduling in order to maintain the systematic reliability at a revised acceptable 

level. In general, the measures of customer service level are based on delivery 

lead time or due dates. Chung et al. (2010) took into account the total delivery 

lead time without cost for the objective function of the integrated production and 

distribution model in the multi-factory environment. The authors discussed a 

multi-factory production scheduling problem where the parallel machines with 

multiple purpose in each factory took the capacity for producing partial finished 

goods or finished goods. The objective was to minimize the total makespan, 

consisting of processing time, distribution time between factories and set-ups 

time.          

 

2.1.2.2 Parallel-structured production network 

For multi-factory or multi-site scheduling problems in a parallel-structure, it 

usually involves jobs (orders) allocation to the factories and production sequence 
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in each factory.  

 

Timpe and Kallrath (2000) considered a multi-purpose multi-factory 

manufacturing system in which the factories were geographically dispersed 

nearby the customers located in different countries. This model was subject to 

different production modes with changeover times. Moon et al. (2002) solved an 

integrated process planning and scheduling problem under a multi-factory 

environment in which each factory strong coordinated and cooperated with each 

other, like belonging to the same company. Alternative machines and sequences, 

sequence-dependent set-ups and distinct due dates were taken into account. The 

objective was to minimize total tardiness. A genetic algorithm based heuristic 

approach was developed to obtain good approximate solutions. In order to solve 

for an advanced process planning and scheduling model with precedence 

constraints under the multi-factory environment, Moon and Seo (2005) developed 

an evolutionary algorithm to minimize makespan. Jia et al. (2003) proposed a 

modified genetic algorithm for solving parallel-structured multi-factory 

scheduling, which can be used to solve various scheduling objectives, including 

makespan minimization, cost and weighted multiple criteria minimization. Later 

Jia et al. (2007) further modified the algorithm by integrating the GA with the 

Gantt chat for deciding on the factory combination and schedule in a distributed 

manufacturing environment. Multiple objectives, including minimizing 

makespan, job tardiness and operating cost, could be efficiently solved by the 

proposed approach for small and medium-sized problem. Chan et al. (2005a) 

solved a similar distributed scheduling problem in which decisions to be made 

included job assignment to suitable factories and production scheduling in each 

factory. An adaptive GA was proposed in which a new crossover operator called 
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dominated gene crossover was developed to enhance the performance of the 

genetic search. The problem to determine optimal crossover rate was excluded. 

The numerical experiments indicated significant improvement achieved by the 

proposed GA, compared with the well-known optimization approaches. Later, 

Chan et al. (2006) further consider the distributed scheduling problem with 

machine maintenance constraints, which affected the availability of the machines. 

The objective was to maximize the system efficiency. A dominant genes GA was 

proposed to solve the problem with better reliability compared with other existing 

approaches.  

 

Chen and Pundoor (2006) solved a parallel-machine multiple plant production 

scheduling problem in a global supply chain. In this problem, multiple plants were 

located overseas and one distribution center was located locally. For each plant, 

due to different productivity and labor costs, the processing time and cost of each 

job differed from the plant assigned to. The decisions to be made included order 

assignment among plants, production schedule for the jobs in the same plant and 

shipping schedule of the completed orders from each plant. Four different 

performance criteria were considered which involved both delivery lead time and 

total production and distribution cost. The analyses for the computational 

complexity of the problem under different objectives were carried out. Both exact 

and heuristic algorithms were proposed to solve the problems. Worst-case 

analysis for the heuristics were carried out. Randomly generated test instances 

evaluated the capacity of the heuristics to generate quick near-optimal solutions. 

Moon et al. (2008) proposed an integrated process planning and scheduling to 

determine resource selection and operation schedule simultaneously. The 

objective was to minimize the makespan. The problem was formulated into MILP 
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with sequence and precedence constraints. A new topological sort based 

evolutionary search approach was proposed to solve this integrated model. The 

topological sort was used to generate feasible sequences to guarantee the 

feasibility of the proposed evolutionary search approach. The efficiency of the 

proposed approach was demonstrated by the numerical experiments for various 

sizes of problems. De Giovanni and Pezzella (2010) discussed flexible 

manufacturing systems where each manufacturing cell had multi-purpose 

machines. In this model, three decisions need to be made: the assignment of jobs 

to appropriate manufacturing cell, the assignment of job operations to each 

machine and the processing sequence on each machine in the manufacturing cell. 

The objective was to minimize the make-span of the whole decentralized 

manufacturing systems through the 3-level decisions. Kerkhove and Vanhoucke 

(2014) studied a parallel machine multi-factory scheduling problem with 

consideration of changeover interference whose objective was to minimize a 

weighted combination of job lateness and tardiness. The problem came from a 

real case of a Belgian producer of knitted fabrics. A hybrid meta-heuristic based 

on both simulated annealing and genetic algorithm was proposed to solve the real-

scale scheduling problem. The impact of changeover interference was reduced by 

23% compared with the random scenario. 

 

“Production planning results in medium and long-term decisions, whereas 

production scheduling determines the timing and sequence of operations in the 

short term.” Hooker (2005) proposed a multi-factory production scheduling 

problem under one-stage parallel machine environment. The problem was divided 

into parts. The part involving allocating tasks to different facilities with resource 

constraints were formulated by mixed integer linear programming. The part for 
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tasks scheduling was formulated by constraint programming. These two parts 

were linked via logic-based benders decomposition. The objective was to 

minimize cost and makespan in which all tasks had the same release date and 

deadline. Errdirik-Dogan and Grossmann (2008) solved a simultaneous planning 

and scheduling problem under one-stage continuous plants with parallel units, 

aiming at maximizing total profit over multi-period planning horizon. A bi-level 

decomposition algorithm was proposed to solve upper level planning and lower 

level scheduling successively. Later, Terrazes-Moreno and Grossmann (2011) 

solved an integrated production planning and scheduling problem in a production 

and distribution network that involved short-term as well as long-term decisions. 

In this production–distribution network, the production sites were responsible for 

different markets geographically dispersed. A hybrid decomposition method 

combining the bi-level (Erdirik-Dogan and Grossmann 2008) and spatial 

Lagrangian decomposition methods was identified to have a faster convergent 

speed than bi-level decomposition alone.  

 

A popular objective for parallel-structured multi-factory models in very recent 

studies was minimization of the makespan (Behnamian and Fatemi Ghomi 2013, 

Lin et al. 2013, Ziaee 2014, Naderi and Ruiz 2014, Xiong et al. 2014). The focus 

was on the production scheduling under complex processing environment without 

consideration of transportation constraints. Behnamian and Fatemi Ghomi (2013) 

modeled each factory with parallel identical machines. A genetic algorithm with 

a new encoding scheme and local search was developed to find near-optimal 

solutions. Yazdani et al. (2015) proposed new models and three artificial bee 

colony algorithms for the same problem proposed in Behnamian and Fatemi 

Ghomi (2013). The new proposed models significantly outperformed the original 
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one and the proposed metaheuristics performed more effectively. Lin et al. (2013) 

proposed a modified iterated greedy algorithm for a distributed permutation flow-

shop scheduling problem which was simpler and more efficient. A similar 

problem was solved by Naderi and Ruiz (2014) by a scatter search algorithm 

which was seldom explored previously in the flow-shop setting. Ziaee (2014) 

solved a parallel structured scheduling problem in job-shop setting by a fast 

heuristic algorithm. In the same year, Naderi and Azab (2014) solved a similar 

distributed job-shop scheduling problem. Two mixed integer linear programming 

models were proposed for small-scale problems and the newly proposed greedy 

heuristic could find optimal solutions for small-scale problems efficiently. 

 

Other optimization criteria were also explored. A distributed parallel-factory 

scheduling problem with transshipment lead time in which each factory had 

different objective (i.e., processing cost minimization and profit maximization) 

was recently discussed and solved by a hybrid variable neighborhood search/tabu 

search algorithm (Behnamian 2013). A hybrid GA with reduced variable 

neighborhood search was developed to minimize the weighted sum of the 

makespan and mean completion time for a two-stage assembly scheduling 

problem (Xiong and Xing 2014). Behnamian (2017) solved a parallel-factory 

scheduling problem with consideration of transshipment among the factories to 

minimize the total production cost.  

 

2.2 Production and distribution scheduling  

The coordinated production and distribution problems have drawn more and more 

attention in the last two decades. In order to meet customized needs and stay 
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competitive in the market, more and more companies are adopting the make-to-

order business mode. In this way, the finished orders are usually delivered to their 

customers directly, or shortly after production, without inventory. With the fast 

development of logistics, such companies have opportunities to realize low cost 

and high service level by integration of production and distribution planning and 

scheduling (Thomas and Griffin 1996). More and more researchers are studying 

production scheduling with transport constraints. Danese and Bortolotti (2014) 

recently verified that only entire supply chain integration makes a notable benefit 

for the company rather than partially integrated activities. The majority of the 

existing literature for integrated production and distribution scheduling problems 

was modeled in a single-factory production network and focused on the single 

machine and parallel machine manufacturing environment. In terms of the 

distribution part, there are mainly three delivery methods, i.e., individual and 

immediate delivery, batch delivery and other delivery methods provided by 3-

party logistics companies. The following subsections review part of the related 

literature in the research stream of production and distribution scheduling. 

 

2.2.1 Single machine manufacturing environment 

Numerous studies on integrated production and distribution scheduling under a 

single machine manufacturing environment have been conducted. The most 

common delivery methods considered in such literature are individual and 

immediate delivery and batch delivery. The former usually occurred when time 

was the priority and cost was ignored. For batch delivery, it can be further 

categorized in different situations, i.e., direct shipping and vehicle routing. The 

jobs belonging to the same customer can be batched together for direct shipping. 
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On the other hand, the jobs belonging to different customers can be batched 

together and shipped through vehicle routing. Vehicles available for shipping can 

have capacity limitation or be without capacity limitation. The former is 

applicable to the situation where the manufacturer owns its fleet. The latter is for 

the situation when the distribution part is handled by third-party logistics 

providers. Except for some special cases, most of the problems were proven to be 

NP-hard. The following subsections discuss the literature related to single 

machine integrated scheduling under the common delivery method. 

 

2.2.1.1 Individual and immediate delivery 

At the beginning of the development of production and distribution scheduling 

problems, the constraints in the problems mainly came from the production part. 

The common constraints included fixed release date, processing time, and 

delivery time of each job. For the distribution part, homogenous and sufficient 

vehicles were available. So, the mainly the production part dominated the 

distribution part. The objective was to minimize the maximum delivery time of 

all the jobs (Potts 1980; Hall and Shmoys 1992; Hoogevenn and Vestjens 2000; 

Liu and Cheng 2002). 

 

Potts (1980) was the first study on integrated production and distribution 

scheduling. The author proposed a heuristic to solve the single machine 

sequencing problem with release dates and delivery times. It was demonstrated 

that the deviation of the solutions by the heuristics was no more than 50% from 

the optimal value. Hall and Shmoys (1992) proposed a similar problem with 

precedence constraints. A better approximation algorithm was developed based 
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on Jackson’s Rule. Hoogevenn and Vestjens (2000) considered an on-line 

production and distribution scheduling problem where the information about jobs 

in terms of release dates, processing times, delivery time were not known in 

advance. An on-line algorithm based on a priority rule was proposed which had a 

performance bound within 1.62. The author showed that there was no better 

deterministic on-line algorithm existing for the performance ratio for this problem. 

Liu and Cheng (2002) considered single machine production and production 

scheduling with a preemptive penalty where a setup would take place after 

preemption. NP-hardness was proven by the authors and a dynamic programming 

was proposed to solve the problem with a polynomial time approximation scheme. 

 

2.2.1.2 Batch delivery  

Batch delivery was the common shipping method for the manufacturer to make a 

trade-off between transportation cost and service level, or to achieve overall 

efficiency improvement and overall cost reduction under a single machine 

manufacturing system. It can be further divided into two types, direct shipping 

and vehicle routing. For batch delivery with direct shipping, the problem may 

involve single or multiple customers. However, the batch delivery with vehicle 

routing was only involved in the problems with multiple customers located in 

distinct geographical regions. The majority of studies on production and 

distribution scheduling focused on batch delivery with direct shipping (Chen 

1996; Hall and Potts 2003; Li and Ou 2005; Pundoor and Chen 2005; Averbakh 

and Xue 2007; Armstrong et al. 2008; Chen and Lee 2008; Steiner and Zhang 

2009; Condotta et al. 2013; Rasti-Barzoki and Hejazi 2013; Tang et al. 2014; 

Cheng et al. 2015; Gao and Lei 2015; Rasti-Barzoki and Hejazi 2015; Cheng et 
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al. 2017; Karaoğlan and Kesen 2017; Koç et al. 2017). Only a handful of studies 

discussed the production and distribution problems with vehicle routing (Li et al. 

2005; Geismar et al. 2008; Viergutz and Knust 2014; Li et al. 2016; Devapriya et 

al. 2017). 

 

Chen (1996) undertook one of the very limited studies considering the production 

and distribution problem with E/T related objective. The author solved a 

production scheduling problem integrated with batch delivery and common due 

date assignment for all jobs. There was no limitation assumption on the batch 

capacity. The cost per batch was independent of the number of finished jobs in 

the batch. The problem was to determine the job schedules on the single machine 

and the delivery date of each job so as to minimize the total earliness and tardiness 

penalties, due date penalty and delivery costs. Polynomial dynamic programming 

was proposed to solve the problem. Hall and Potts (2003) studied a coordination 

scheduling problem between one supplier and several manufacturers for a three-

stage supply chain. The jobs were first scheduled and formed into batches, 

delivered to the downstream. Under the total system objective of minimizing the 

total operating cost, it was demonstrated that total system cost may be reduced by 

at least 20% through cooperation between the supplier and the manufacturer. Liu 

and Ou (2005) studied a problem integrating job scheduling with pickup and 

delivery of the raw material and finished goods. Only one capacitated vehicle was 

available for both pickup and delivery. The objective function was to minimize 

the makespan of the whole system’s schedule. An efficient heuristic was 

developed for the general problem. Koç et al. (2017) studied a similar production 

and distribution problem with both inbound and outbound transportation. In this 

problem, multiple capacitated vehicles were available. Inventory costs would be 
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induced by unprocessed jobs and finished jobs stored at the facility. The objective 

was to minimize total transportation costs and inventory holding costs. The 

problem was proven to be NP-hard and solved by an efficient heuristic.  

 

The common objectives considered are related to delivery time, including 

minimizing maximum delivery time (Li and Ou 2005; Geismar et al. 2008; Cheng 

et al. 2015; Karaoğlan and Kesen 2017), sum of delivery times (Li et al. 2005), 

and maximum lateness (Condotta et al.2013). Many other studies considered the 

problem with an objective composed of a monotonic function of delivery times 

and sum of delivery costs, in which the delivery cost was determined by the 

number of the batches and the job-dependent distances (Pundoor and Chen 2005; 

Chen and Pundoor 2009). Pundoor and Chen (2005) studied a make-to-order 

production–distribution system with one supplier and multiple customers. The 

jobs coming from the same customer could be batched together and shipped by a 

direct shipment with a capacity limit. The objective was to minimize the 

maximum delivery tardiness and total distribution cost. A fast heuristic was 

proposed for solving the general problem. The value of production–distribution 

integration was evaluated and compared with two sequential approaches. 

Averbakh and Xue (2007) studied an on-line scheduling problem with the 

objective of minimizing the total flow time and delivery cost. Preemption was 

allowed and due dates were not involved in the problem. A on-line two-

competitive algorithm was demonstrated to have the best competitive ratio. Chen 

and Lee (2008) considered a more general problem in which multiple 

transportation modes were available. The transportation mode was defined by the 

transportation speed. Higher speed incurs higher cost. The objective was to 

minimize the total weighted job delivery time and transportation costs. 
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Polynomial algorithms were developed for special cases and an approximation 

algorithm was proposed to solve more general cases with performance guarantees. 

Steiner and Zhang (2009) consider the supply chain scheduling problem with 

multiple customers, whose jobs had their own due dates. Several jobs coming 

from the same customer could be delivered in a batch by direct shipping. The 

objective was to minimize the weighted number of late jobs and total delivery 

costs. The proposed approximation algorithm was proven to have near-optimal 

solutions for the original general problem by parametric analysis of its 

performance ratio. Rasti-Barzoki and Hejazi (2013) considered a similar problem 

with due date assignment. The objective was to minimize the total weighted 

number of tardy jobs, total due date assignment costs and total batch delivery 

costs. The problem was modeled by an integer programming (IP). Two methods, 

the heuristic algorithm and the branch and bound method were developed and 

demonstrated for computational efficiency. Later, Rasti-Barzoki and Hejazi (2015) 

further considered the problem with controllable processing times which was not 

involved in the former study. A pseudo-polynomial dynamic programming 

algorithm was proposed to solve the problem. 

 

Some other objectives such as cost oriented were also considered, such as 

maximizing total demand satisfied (Armstrong et al.2008), minimizing makespan 

and the number of batches (Tang et al. 2014), minimizing production, delivery 

and inventory costs in which production cost was proportional to the total 

production time (Cheng et al.2017). 

 

Some recent studies discussed problems under a batching machine manufacturing 

system, in which a batch of jobs could be handled at the same time and the 
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processing time was determined by the longest processing time of the job in the 

batch. Tang et al. (2014) studied a batching machine scheduling problem with 

batch delivery for steel production. The author considered a system in which the 

raw material was shipped to the batching machine from the holding area for 

production by a vehicle. The processing time for production would increase due 

to the deterioration of the raw material. The objective was to minimize the 

makespan and the number of batches. The problem was proven to be NP-hard. 

Both heuristic and exact algorithms based on branch and bound were proposed. 

The optimal solutions could be obtained for small-scale problems by the exact 

algorithm. Cheng et al. (2015) proposed a model in which jobs were shipped to 

the customer after the production under the batching machine. One vehicle with 

multiple-batch capacity was available for transportation. The objective was to 

minimize the service span, and a polynomial heuristic was developed. Later, the 

author further studied the problem with a cost oriented objective and a fast 

approximation algorithm with less than 2 worst-case ratio was developed (Cheng 

et al.2017). 

 

A handful of the existing studies under a single machine manufacturing 

environment integrated scheduling with vehicle routing (Li et al. 2005; Geismar 

et al. 2008; Devapriya et al. 2017). They studied the problems for perishable 

products which had short lifespans. The products must be delivered within the 

lifespan without inventory. In this case, less constraints were involved in terms of 

the number of the vehicles available.  
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2.2.2 Parallel machine manufacturing environment 

More and more studies on integrated production and distribution scheduling 

under more complex manufacturing environment, i.e., parallel machine 

environment, have been conducted due to practicability issues. The most common 

delivery methods considered were individual and immediate delivery and batch 

delivery. Due to the NP-hardness of the problems, more heuristics and meta-

heuristics have been developed. The following subsections discuss the literature 

related to parallel machine integrated scheduling under the common deliver 

methods. 

 

2.2.2.1 Individual and immediate delivery 

Similar to the situation under single machine manufacturing systems, the focus 

of the integrated scheduling problem was mainly on the production part, and the 

objective was the traditional performance criterion for production scheduling, i.e., 

makespan. Woeginger (1994) studied a parallel machine scheduling problem with 

delivery time in which the objective was to minimize the maximum delivery time. 

Due to NP-hardness of the problem, heuristics based on list scheduling were 

proposed with worst-case analysis. Gharbi and Haouari (2002) studied an 

identical parallel machine scheduling problem with release dates and delivery 

time. The objective was to minimize the makespan for production. A exact 

algorithm was proposed, imbedded with a preprocessing algorithm, a new tight 

bounding scheme and a polynomial selection algorithm, to obtain optimal 

solutions.  
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In recent studies, different objectives were considered under immediate and 

identical delivery methods. Garcia and Lozano (2005) considered integrated 

scheduling with limited vehicles and delivery time windows. The problem was 

equivalent to a two-stage flow-shop scheduling problem with parallel machines. 

The objective was to maximize the total profit, equal to the total value of jobs 

minus earliness and tardiness penalties. The problem was modeled by IP and 

solved by a tabu search based solution procedure. Gideon et al. (2014) studied a 

similar problem under an unrelated parallel machine environment. The objective 

was to minimize the weighted sum of the total weighted job delivery time and the 

total distribution cost. An ant colony optimization algorithm was proposed for 

near-optimal solutions which showed the value of integrated scheduling. 

 

2.2.2.2 Batch delivery 

For the integrated scheduling problem under a parallel machine manufacturing 

environment, most studies discussed the problems under typical production 

scheduling performance criteria, i.e., makespan, maximum tardiness, maximum 

lateness, number of tardy jobs (Lee and Chen 2001; Chang and Lee 2004; Wang 

and Cheng 2007; Zhong et al. 2007; Ullrich 2013; Cheng et al. 2015; Liu and Lu 

2016; Joo and Kim 2017; Kergosien et al. 2017). 

In the problem discussed by Lee and Chen (2001), two types of transportation 

situations were involved, i.e., delivering semi-finished goods between machines 

by automated guided vehicles and delivering finished goods from machine to the 

customer or warehouse. Both transportation capacity and transportation times 

were considered. The complexity of the problem was analyzed, and polynomial 

and pseudo-polynomial algorithms were proposed for the problem under certain 
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scenarios. Chang and Lee (2004) proved the NP-hardness of the integrated 

scheduling problem under three single-vehicle scenarios. A heuristic was 

proposed with worse-case analysis. Machine availability was further considered 

for a one customer, one capacitated vehicle problem by Wang and Cheng (2007). 

The complexity of the problem was analyzed under three scenarios and the 

heuristics within 2/3 worst-case error bounds was proposed. A similar study was 

carried out by Liu and Lu (2016), who proposed an approximation algorithm with 

3/2 worse-case ratio. Zhong et al. (2007) discussed a one customer, one 

capacitated vehicle problem in which a job’s occupied space during 

transportation was assumed different. Cheng et al. (2015) consider the integrated 

problem under an identical batching machine. Both cases of infinite vehicles and 

limited number of vehicles were proven to be NP-hard and an effective 

polynomial time algorithm was designed. Most of the studied mentioned above 

focus on discussion of the complexity of a simple structured problem. Joo and 

Kim (2017) studied a more practical integrated scheduling problem in which both 

unrelated parallel machines, multiple customers, heterogeneous vehicles with 

different capacities and travel times were involved. An optimal solution was 

obtained by the mathematical model, and the author further proposed a rule-based 

single-stage GA to solve the problem. 

 

Despite the traditional scheduling performance criteria, a combined objective 

function, i.e., delivery time related monotonic functions and delivery cost, was 

also discussed in the literature (Wang and Cheng 2000; Chen and Vairaktarakis 

2005; Hall and Potts 2005; Rasti-Barzoki et al. 2013; Gong et al. 2016; Guo et al. 

2016). Wang and Cheng (2000) discussed an integrated parallel machine 

scheduling problem for minimizing the total flow time and delivery cost, in which 
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the delivery cost was dependent on the number of deliveries. The NP-

completeness was proven for the two -machine case. Pseudo-polynomial dynamic 

programming was proposed to solve the problem when the number of machines 

was fixed the number of the batches had a fixed upper bound. Chen and 

Vairaktarakis (2005) studied an integrated scheduling model applicable for the 

computer and food catering service industries. They discussed the problem under 

two objective functions, respectively. One was to minimize the average delivery 

times and total distribution cost, the other was to minimize the maximum delivery 

time of all the jobs and the total distribution cost. The distribution cost was 

composed of a fixed cost and a distance-dependent cost. The computational 

results showed that a significant benefit could be achieved by integration, in many 

situations. Hall and Potts (2005) discussed the coordination of scheduling and 

batch deliveries with the general objective function combined of scheduling cost 

and delivery cost. Here, the scheduling cost indicated the regular performance 

criteria for the production scheduling. In the problem, a fixed number of vehicles 

without capacity limitation were available. Their results implicated the value of 

coordination in terms of customer service improvement. Rasti-Barzonki et al. 

(2013) solved the integrated problem with one customer, one vehicle by a new 

branch and bound based on analysis of the structure properties of a single machine 

problem. It was assumed that there was no limit on the capacity of the vehicle. 

The objective was to minimize the total weighted number of tardy jobs and 

delivery cost. Recently, Guo et al. (2016) proposed a bi-level mixed integer 

nonlinear program to solve the integrated problem under an unrelated parallel 

machine manufacturing environment and batch-based delivery. Two objective 

functions were involved, i.e., minimizing the total number of tardy batches and 

minimizing the total cost including labor cost, holding cost, transport cost and 
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tardiness penalty. An optimization approach was developed by integrating a 

memetic algorithm and heuristic rules which was evaluated by industrial data 

based numerical experiments. Chen et al. (2015) studied an integrated production 

scheduling and shipment problem with the bi-objective, which was a weighted 

combination of production simultaneity and shipment punctuality. The problem 

was solved by a modified GA. 

 

In addition, the cost oriented objective functions were also discussed for 

integrated parallel machine scheduling problems in very recent studies (Lee et al. 

2014; Masoud and Mason 2016; Fu et al. 2017). Lee et al. (2014) studied an 

integrated problem with a time window for short-life nuclear medicine. There was 

an effective time duration after the starting of production and was prohibited to 

deliver the medicine during or before this duration. Heterogenous vehicles and 

unrelated parallel machines were involved in the problem. The objective was to 

minimize the total costs including production cost, fixed vehicle cost and travel 

cost. Masoud and Mason (2016) considered the integrated problem in an 

automotive supply chain in which two-stage operations for production and one-

stage delivery were involved. Capacitated vehicles were available to deliver the 

finished parts to meet predefined due dates. The objective was to minimize the 

total set-up cost, inventory cost, transportation cost and production outsourcing 

cost. A hybrid simulated annealing algorithm was proposed to get near-optimal 

solutions. 

 

All the above-mentioned literature in this subsection focused on the integrated 

problem with batch delivery under direct shipping method. Very limited studies 

considered integrated parallel machine scheduling with vehicle routing (Ullrich 
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2013; Fu et al. 2017; Kergosien et al. 2017). Ullrich (2013) considered the 

integrated problem with machine-dependent ready times as well as the available 

time of the heterogenous vehicles. The objective was to minimize the total 

tardiness. Fu et al. (2017) studied an integrated problem met in the metal 

packaging industry, in which delivery time windows were involved, and sufficient 

heterogenous vehicles were available for delivery. The problem was solved by a 

two-phase iterative heuristic. The first phase, responsible for the production part, 

was to minimize the total set-up cost. The second phase, responsible for the 

distribution part was to minimize total transportation cost. Both were solved by 

mathematical models respectively and the benefit of coordination was evaluated. 

Kergosien et al. (2017) addressed an integrated scheduling for a chemotherapy 

production and delivery problem, which was treated as a combination of classical 

parallel machine scheduling with the multi-trip travelling salesman problem. The 

objective was to minimize the maximum delivery tardiness under the chemical 

stability duration constraint. A Benders decomposition-based heuristic was 

proposed to solve the problem. 

 

2.2.3 Other delivery methods  

With the rapid development of the third-party logistics companies (3PL), some 

researchers started to consider the production scheduling problem integrated with 

3PL, especially in the increasing trend of make-to-order business modes (Wang 

and Lee 2005; Stecke and Zhao 2007; Huo et al. 2010; Agnetis et al. 2014; 

Azadian et al 2015; Cheng et al. 2015; Li et al. 2015; Guo et al. 2017). A handful 

of studies considered the production scheduling problem with dominated 

transportation modes, i.e., fixed delivery departure time (Hall et al. 2001; Li et al. 
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2005; Wang et al. 2005; Li et al. 2006; Leung and Chen 2013; Ma et al. 2013; 

HaGarciaghaei-Keshteli and Aminnayeri 2014; Mensendiek et al. 2015).  

 

Wang and Lee (2005) studied single machine production and transport logistics 

scheduling integrated with two transport modes selection. The transport mode 

was dependent on the transportation time. High cost was induced by a shorter 

transportation time. No limitation existed on the shipment availability and 

capacity. The decision involved the job scheduling on the machine and the 

transportation mode selection. The objective was to minimize the total 

transportation cost and weighted tardiness cost. A branch and bound algorithm 

was developed with two effective lower bounds. The efficiency was demonstrated 

by comparing with the computational running time of Cplex. Stecke and Zhao 

(2007) considered a similar integrated production and transportation problem for 

a make-to-order manufacturing company with multiple transport modes 

consideration provided by 3PL companies such as, FedEx and UPS. The key point 

was to find the optimal production schedule to leave enough time for a longer 

shipping lead time and lower cost shipment selection. When allowing partial 

delivery, the problem could be modeled as an MIP and minimum cost flow 

network and solved optimally by the NEDD rule under the convex shipping cost 

function. For the problem without partial delivery, it was proven to be NP-hard. 

A polynomial heuristic algorithm was proposed for the NP-hard problem. Other 

scenarios with regard to shipping cost were also analyzed.  

 

Huo et al. (2010) considered production–distribution scheduling under parallel 

and identical machine manufacturing environments. The delivery time of each 

job was given at the beginning of the planning horizon. The decision was to select 
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a subset of jobs to produce so as to maximize the total profit. Corresponding to 

the three scenarios considered: arbitrary profit; equal profit; processing time 

dependent profit, optimal and near-optimal algorithms were proposed and solved 

the problem in polynomial time. The bound improvement technique of Kovalyov 

was utilized to improve the computational efficiency. Li et al. (2015) further 

considered the problem with identical and parallel batching machines. It was 

assumed the 3PL picked up jobs on given dates by vehicles with identical capacity. 

The problem had to decide the delivery time of each job. The objective was to 

minimize the total profit coming from the on-time delivery jobs. Azadian et al. 

(2015) considered the integrated production–distribution problem under a more 

general manufacturing configuration, i.e., unrelated parallel machines. Different 

shipping options with different costs and transit times were available through 3PL. 

The objective was to minimize total cost including tardiness penalties. The 

problem was modeled as a MIP and solved by a decomposition scheme which 

was composed of an exact dynamic programming and heuristic approach. Cheng 

et al. (2015) considered the integrated scheduling problem under batching 

machines. Sufficient identical vehicles were provided by 3PL. The objective was 

to minimize the total production and distribution cost. The problem was solved 

by a decomposition method composed of an improved ant colony optimization 

method and a heuristic method. Guo et al. (2017) proposed a harmony search-

based memetic optimization model to solve the integrated scheduling problem for 

a make-to-order manufacturer with multiple transportation modes. The 

transportation mode differed according to its specific cost and capacity. It was 

shown that the proposed memetic optimization process outperformed genetic 

algorithm-based and traditional memetic optimization process.  
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Usually, 3PL companies provide more flexible selections in term of transportation 

cost, time, and usually provide sufficient vehicles responsible for picking up 

customer’s orders at the appointed date and time. However, in reality, dominated 

transportation modes can be avoided in the supply chain involving shipping 

schedules, i.e. air, sea, rail transportation. The limited related literature studied 

the problem under simple machine configurations, i.e., single machine and 

identical parallel machines. Li et al. (2005) studied an integrated assembly 

scheduling with air transportation. Different available time, capacity, shipping 

lead-time with different price was involved for each flight. The problem was 

solved by a decomposition method. The first sub-problem of multi-destination air 

transportation allocation was modeled as ILP and solved optimally. The second 

sub-problem of assembly scheduling was solved based on typical dispatching 

rules. The objective for the first sub-problem was to minimize the total 

transportation cost as well as earliness and tardiness penalties. The second sub-

problem was to minimize the average waiting cost at the machine. It was shown 

that considerable cost reduction was achieved compared with exiting method 

used in industry.  

 

Later, Li et al. (2006) further studied the problem with consideration of the 

process delays coming from the production part. The scenario that the machine 

would not be available at the beginning, until some given time, was considered 

in the sub-problem of assembly scheduling. The objective was changed into 

minimizing the delivery costs due to adjustment of air transportation allocation. 

The problem was solved by a decomposition method. Wang et al. (2005) studied 

a mail processing and distribution scheduling problem with a fixed trucks 

schedule. The trucks were responsible for different regions with limited capacities. 
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The processing system was treated as a single machine. The objective was to 

sequence the mail so as to minimize the total unused truck capacity. The problem 

was solved based on dispatching rules and heuristics. Leung et al. (2013) studied 

an integrated one machine scheduling problem with fixed delivery departure 

dates. Three different objectives with regards to monotonous functions of 

delivery dates or number of vehicle used were considered and solved by the 

proposed polynomial algorithm. Ma et al. (2013) studied an integrated production 

scheduling problem with maritime shipping schedules under a single-factory 

environment with the objective of minimizing total earliness and tardiness 

penalties. A two-level GA was proposed to solve the problem. The numerical 

results demonstrated the significance of shipping information in consideration of 

integrated scheduling. Hajiaghaei-Keshteli and Aminnayeri (2014) considered an 

integrated one machine scheduling with rail transportation. In this problem, two 

kinds of trains were considered, ordinary trains and charter trains. The objective 

was to minimize the total cost including transportation cost, earliness and 

tardiness penalties. It was solved by two metaheuristics, i.e., the GA and Keshtel 

algorithm, which were encoded by specific procedures and heuristics. 

Mensendiek et al. (2015) considered an integrated scheduling problem with fixed 

delivery departure dates under a more complex manufacturing configuration, i.e., 

identical parallel machines. The objective was to minimize the total tardiness. The 

problem was formulated into mathematical programming and solved by a branch 

and bound algorithm for small scale problems. A tabu search and a hybrid GA 

were further developed for large scale problems. 
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2.2.4 Problems with multi-factory manufacturing environment  

Some interesting studies were conducted for multi-factory production and 

distribution problems. The integrated problem was simplified with the sufficient 

and identical vehicle assumption (Timpe and Kallrath 2000; Chen and Pundoor 

2006). The finished goods could be delivered right after completion. Thoney et 

al. (2002) showed that vehicle limits can be the main constraint for the system 

performance with the due-dates related objectives. Garcia at al. (2004) assumed 

the production costs were the same among the factories, therefore, only 

transportation cost was involved in the objective function. The objective function 

was to maximize total profit of the on-time served orders.  

 

Li and Ou (2007) studied a two-machine decentralized production network with 

heterogenous capacitated vehicles. Each job was composed of two tasks which 

had to be handled on both machines. The finished parts were bundled together at 

the distribution center and delivered to customers. The objective was to minimize 

the total delivery cost and customers total waiting cost. The customer waiting cost 

was the weighted sum of the delivery times. Most studies on production and 

distribution scheduling were discussed for just-in-time manufacturing or make-

to-order business models. Pundoor and Chen (2009) proposed an integrated 

model for a cyclic scheduling problem with constant demand. Multiple suppliers 

producing different products, one warehouse and one customer were involved in 

the supply chain. The objective was to find joint cyclic production and delivery 

schedules so as to minimize total production, inventory and distribution cost 

without backlog. 

Kim and Oron (2013) studied an integrated problem for a parallel-structured 
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multi-location production network. In the problem, one vehicle with unlimited 

capacity was responsible for delivery jobs in batches to the central customer. The 

objective was to minimize the total delivery cost and weighted sum of tardy jobs. 

The problem was reduced into a shortest path problem and a corresponding 

algorithm based on a directed acyclic graph method was proposed to solve small 

and medium size problems. Other studies focused on integrated scheduling for 

series-structured multi-site manufacturing system with inner transport 

consideration (Chan et al. 2013; H’Mida and Lopez 2013; Agnetis et al. 2014; 

Karimi and Davoudpour 2015; Agnetis et al. 2016). Agnetis et al. (2014) 

considered a supply chain scheduling problem between factories where the semi-

finished products would be delivered in batches from one production site to 

another production site belong to the same manufacturer. Two transportation 

modes, i.e., regular transportation with fixed departure time, express 

transportation with flexible departure time were considered. The objective was to 

minimize transportation cost. Two situations in which the manufacturer 

dominated or the 3PL provider dominated were analyzed. Karimi and 

Davoudpour (2015) considered the integrated problem with both transportation 

situations, i.e., the transportation among factories and delivery from factory to the 

customer. The objective was make trade-off between transportation cost and 

tardiness cost. 

 

2.3 Stochastic programming 

Stochastic programming is a framework for modeling optimization problems in 

which uncertainty is involved (Mínguez et al. 2011). Since uncertainty cannot be 

avoided in the real world, stochastic programming had got rapid development for 
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its wide range of applications. Stochastic programming is solved based on the 

probabilistic information of the uncertainty parameters. If the probabilistic 

information is available, the stochastic programming can be transferred into its 

deterministic counterpart by taking expected values of the random variables 

(Rawls and Turnquist, 2010) or by its designed probabilistic constrained 

programming, which is also called chance constrained programming (CCP). 

 

However, it is difficult to formulate the equivalent deterministic counterparts 

which are converted from CCP with its distinct structure. Several optimization 

theories/methods that are based on convex programming cannot be applied 

because of the non-convexity of the probabilistic constrained programming 

problems. Therefore, finding good approximation methods becomes significant 

for solving the CCP. Mainly two types of approaches are proposed for solving the 

CCP: sampling/scenario based approach (Cao et al. 2010; Wang et al. 2013; Shen 

2014; Giovanni et al. 2016) and analytical approximation. Analytical 

approximations are aimed at converting the CCP problems into their equivalent 

or approximate deterministic counterparts, which are more reliable than the 

sample average and scenario-based approximations. To simplify the CCP 

problems, the linearization of nonlinear deterministic equivalents is inevitable. 

Based on the proposed linear transformation theorem, Bilsel and Ravindran (2011) 

solved a multi-objective CCP for the selection of a supplier under uncertainties 

by using goal programming.  

 

By using discretization and linearization, Wang and Meng (2012) converted the 

mixed-integer nonlinear convex programming into a mixed-integer programming 

and solved the problem by a cutting-plane based exact algorithm. Sun et al. (2013) 
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developed an inexact joint probabilistic left-hand-side chance constrained model 

and solved by a non-equivalent but sufficient linearization form. Bentaha et al. 

(2015) converted the original CCP into second order conic programming by 

piecewise linear approximation for the probabilistic cumulative function. Robust 

optimization was also used for solving the CCP because of the mild requirement 

of the probability distribution of the random variables in robust optimization (Li 

and Li 2015). Borodin et al. (2016) assumed the stochastic component 

procurement lead-times to follow discrete distributions and reformulated the 

original joint chance constrained programming into a mixed-integer 

programming 

 

2.4 Exact algorithm 

Researchers have proposed many different optimization methodologies for 

production and distribution network problems, from linear deterministic models 

to non-linear stochastic model. Some researchers formulated the problems into 

mathematical programming, i.e., integer linear programming, mixed-integer 

linear programing, dynamic programming (Lee and Chen 2001; Lei et al. 2006; 

M’Hallah and Al-khamis 2012; Bilgen and Celebi 2013). Thereby, the problem 

can be solved by exact optimization procedures, branch and bound algorithm and 

dynamic programming algorithm. In this section, some of the literature regarding 

to branch and bound and dynamic programming algorithms applied for the 

problem of production and distribution scheduling is discussed. 

 

Branch and bound, as one of the most successfully exact solution procedures for 

solving constrained optimization problems, has been developed for more than 60 
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years (Lawler and Mood 1966). The basic idea is based on branching and 

bounding schemes, especially the lower bounding scheme to search the partial 

solution step by step on the solution space tree by fathoming the inferior or 

unfeasible solution space until finding the optimal solution. Therefore, 

appropriate upper and lower bounding schemes directly determine the search 

efficiency of the algorithms. In addition, the branching scheme, which determines 

the search order and direction, also greatly affects the performance of the 

algorithm. Many researchers, have developed advanced branch and bound 

methods to even solve large-scale problems, without rigor, in terms of time. 

Additional pruning rules based on specific properties of the problems were 

proposed to solve integrated production scheduling problems. Branch and bound 

mainly adopts a breadth first search strategy. Some researchers used a depth first 

search strategy in their branch and bound algorithms. 

 

Timpe and Kallrath (2000) formulated a multi-factory supply chain problem into 

mixed integer programming. They proposed a branch and bound method with 

directives defined for discrete variables, including factory state, binary tank 

variables and semi-continuous transport variables. Gharbi and Haouari (2002) 

proposed a global schedule construction algorithm to determine the upper bound. 

The lower bounding scheme, called the modified general bound, was proposed 

based on the so-called general bound proposed by Webster (1996). Wang and Lee 

(2005) solved a single machine scheduling problem with two transport modes by 

the branch and bound approach. They utilized the backward sequencing 

branching rule, i.e. WSPT, to determine the selection order of the unscheduled 

jobs. Two lower bounds, which were based on the assignment problem and 

Lagrangian relaxation, were proposed to fathom those inferior solutions. In 
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addition, pruning rules based on dominance properties were further proposed to 

help fathom inferior branches. Armstrong et al. (2008) proposed a lower bound 

determined by the proposed heuristics and a branching scheme that ensured the 

search only branched to feasible schedules. Rasti-Barzoki et al. (2013) studied a 

one-machine scheduling problem with sufficient vehicles. They proposed a 

heuristic to determine the upper bound and calculated the lower bound with 

discussion of different cases of batching of unscheduled jobs. Pruning rules were 

further developed to decrease the search space. Later, a more complicated 

problem was solved with due date assignment by a new lower bounding scheme 

(Rasti-Barzoki and Hejazi 2013). Tang et al. (2014) proposed a branch and bound 

algorithm which was conducted in a depth-first fashion. The branching order was 

based on the transportation time of each unscheduled job. The lower bound was 

calculated by consideration of a fixed number of batches. Karimi and Davoudpour 

(2015) also applied a depth first search strategy for searching the solution tree. 

The branching scheme was based on the revised due date of the unscheduled jobs. 

The lower bounding scheme was based on analyses of the shipment modes. A 

further pruning scheme was also established.  

 

For most cases, the branch and bound algorithm can only solve simple structured 

problems or small-scale problems. In order to solve comparative large-scale 

problems or more complicated ones with exact solutions, the branch and cut 

method, which is based on the branch and bound method, was proposed. In very 

recent studies regarding production and distribution scheduling, Karaoğlan and 

Kesen (2017) developed a new branch and cut algorithm for a single-machine 

scheduling and vehicle routing problem. The upper bound was iteratively 

improved during the search process by a simulated annealing based algorithm. A 
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lower bounding and separation algorithm was proposed to separate the solutions 

violating the valid inequalities. A routing priority based branching scheme was 

developed for this problem. The authors also provided a detailed review for more 

implementations of the branch and cut algorithm. 

 

2.5 Approximation algorithm 

In order to solve large-scale problems in an efficient and acceptable way, 

approximation algorithms that determine the near-optimal solutions have had 

rapid development. Moreover, for some complicated problems which could not 

be modeled by mathematical programming or solved by exact algorithms, various 

approximation algorithms were developed. Some recent literature related to 

production and distribution and multi-factory scheduling problems is discussed 

here.  

 

Ulusoy at al. (1997) designed a GA with a two-allelic representation scheme and 

a special uniform crossover operator to solve the simultaneous scheduling of 

operations on machine centers and automated guided vehicles in a flexible 

manufacturing system. Jia et al. (2003) presented a modified GA with once gene 

crossover and twice gene mutation to solve distribution scheduling problems in a 

multi-factory environment with various objectives which include minimizing 

makespan, cost and weighted multiple criteria. Later, Jia et al. (2007) proposed a 

Gantt Chart integrated GA to solve a similar distributed scheduling problem with 

consideration of multiple objectives. Gen and Syarif (2005) proposed a hybrid 

GA for a multi period production and distribution problem at planning level. A 

new technique called spanning tree-based GA was proposed which was 
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hybridized with the fuzzy logic controller to auto-tuning the parameters of the 

GA. Chan at al. (2005b) proposed a GA embedded with analytic hierarchy process 

to solve the job allocation problem in a parallel-structured multi-factory system. 

Chan et al. (2006) and Chung et al. (2009) both proposed a modified GADG 

(genetic algorithm with dominant genes) based on the GA presented by Chan et 

al. (2005a), respectively. De Giovanni and Pezzella (2010) proposed an improved 

GA with a new local search based operator which started from the simple 

chromosome encoding of MGA proposed by Jia et al. (2003). Behnamian and 

Fatemi Ghomi (2014) solved a heterogeneous multi-factory production 

scheduling problem by a novel GA with a new encoding scheme and theorem 

based local search proposed. Nasiri et al. (2014) developed a Lagrangian 

relaxation approach which was further solved by GA for a three-echelon multi-

site production–distribution problem with stochastic demand. Liu et al. (2014) 

proposed a GA with a refined encoding operator that integrated probability 

concepts into a real-parameter encoding method. By the proposed GA, 

computation space was saved due to reduction on the length of chromosome. 

Chang and Liu (2015) proposed a hybrid GA for solving a distributed and flexible 

job-shop scheduling problem. The Taguchi method was utilized to optimize the 

parameters and a new encoding mechanism was proposed to solve job 

assignments between factories. Various crossover and mutation operators were 

adopted in the GA to solve a flexible job-shop scheduling problem. Assarzadegan 

and Rasti-Barzoki (2016) modeled a single machine integrated scheduling 

problem into a mixed integer non-linear programming and solved by an adaptive 

GA and a parallel simulated annealing algorithm (PSA). The crossover and 

mutation operators were used in the structure of optimal solutions. The results 

showed the superiority of the proposed GA over PSA. In recent years, GA 
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approaches with different features were proposed for integrated production–

distribution scheduling problems with heterogeneous fleet consideration (Zegordi 

et al. 2010; Ullrich 2013; Low et al. 2014; Hajiaghaei-Keshteli and Aminnayeri 

2014; Chen et al. 2015). Zegordi et al. (2010) proposed a gender genetic algorithm 

which considered non-equivalent structured chromosomes for solving integrated 

production and distribution scheduling with consideration of different transport 

speeds and transport capacities.  

 

Other meta-heuristic approaches were also utilized for production–distribution 

scheduling or planning problems. Varthanan et al. (2013) proposed a multi-

criterion integrated production–distribution planning approach. A novel analytic 

hierarchy process (AHP) based heuristic discrete particle swarm optimization 

(DPSO) algorithm was developed to solve this multi-period, multi-product and 

multi-plant model. Chang et al. (2014) used an ant colony optimization heuristic 

to solve a joint production–distribution schedule with parallel machines and 

capacitated vehicles by a make-to-order strategy. Toptal et al. (2013) proposed a 

tabu search heuristic for a joint production and transportation planning problem 

and Vanhoucke (2014) proposed a hybrid meta-heuristic which combined 

simulated annealing and genetic algorithms to solve a geographically dispersed 

parallel machine scheduling problem with limited server availability. Joo and 

Kim (2017) proposed rule based meta-heuristics using a single-stage GA 

framework. 

 

2.6 Summary 

According to the literature reviewed above, the research gaps were identified as 
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follows: 

 

1. Although the development of production scheduling has been intensively 

developed for more than sixty years, intensive studies for integrated 

production and distribution problems under detailed scheduling level has only 

conducted for two decades (Chen 2009). Most of the studies focused on the 

single-factory integrated scheduling problems, especially, under a single 

machine and parallel machine manufacturing environment. The integrated 

scheduling problem under multi-factory manufacturing environments were 

quite limited. For the sparse literature, the problems considered either had 

fewer constraints for the distribution part or considered a series-structured 

multi-factory manufacturing system. Therefore, a parallel-structured multi-

factory scheduling model with consideration of both restrictions from 

distribution and bi-assignment among factories is proposed to fill the gap. 

 

2. In terms of the delivery methods assumed in the literature, the common 

delivery methods were immediate and identical delivery and batch delivery 

under identical transport modes. In recent years, due to the rapid development 

of third-parity logistics companies, more and more researchers studied the 

integrated scheduling problem with multiple transport modes selections. For 

that case, no restriction was assumed for the availability of the shipment. 

Although some researchers considered more realistic cases, such as air and 

rail transport, which have high limitations on the available time and 

transportation time. However, studies on the integrated scheduling problem 

with maritime transport variation and limitation consideration under global 

supply chains was quite limited. 
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3. In terms of the methodology, the proposed methods in the existing literature 

were applicable for single-factory integrated scheduling problems. For the 

parallel-structured multi-factory integrated scheduling problem, bi-

assignment problems, i.e., job allocation among factories, job assignment on 

machines in each factory, are involved. A general integrated mathematical 

model and new meta-heuristics are necessary to solve the integrated 

scheduling problem in more complicated manufacturing system. 

 

4. Almost all the studies on integrated scheduling problems were analyzed under 

a deterministic environment. Very limited studies carried out by Sawik (2016) 

considered disruption risk for an integrated supply, production and 

distribution scheduling problem. However, the uncertainty in the problem 

comes from the suppliers. On the other hand, the existing literature discussed 

the impact of the shipping uncertainty from the perspective of the carriers 

(Lee et al. 2015; Song et al. 2015; Adulyasak and Jaillet 2016) or the 

downstream parties (Kouvelis and Li 2012; Kouvelis and Tang 2012; Hung 

and Hsiao 2013; Heydari 2014; Borodin et al. 2016), but not from the 

perspective of the upstream parties (i.e., manufacturers), especially for 

maritime transport.  

 

5. Most of objective functions considered for production and distribution 

scheduling problems were the regular performance criteria of the production 

scheduling problems, or a combination of the regular performance criteria and 

distribution costs. The irregular performance criteria, i.e. E/T related 

objectives, which are more realistic for the make-to-order business mode with 
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just-in-time philosophy, were seldom considered for the problem a under 

deterministic problem background. 

 

To fill the research gaps, firstly a novel deterministic integrated scheduling model 

for multi-factory job allocation and production–distribution scheduling problems 

was formulated by mathematical programming to solve the first and second 

research gaps. Secondly, new methodologies were proposed to solve such a 

complicated integrated scheduling problem to fill the third research gap. Thirdly, 

a new stochastic model was proposed to solve the fourth research gap. Finally, 

new objective functions related to both earliness and tardiness were proposed 

both in deterministic model and stochastic model to solve the fourth research gap. 

The research objectives can be summarized as follows: 

 

1. To develop a new deterministic mathematical model for a multi-factory 

scheduling problem with consideration of E/T related performance criteria 

and practical transport constraints in global supply chains, i.e., inland 

distance-dependent transportation lead time and maritime transport limits and 

variations 

 

2. To develop a problem property-based method to accelerate the enumerate 

branch and bound algorithm so as to obtain optimal solutions of the 

complicated integrated model in a reasonable time. 

 

3. To develop a new meta-heuristic to solve the multi-factory integrated 

scheduling problem with two transport types for more practical and large-

scale problems. 
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4. To develop a new stochastic model for solving the multi-factory integrated 

scheduling problem with liner shipping uncertainty. 

 

5. To formulate the closed form of the risk cost corresponding to both earliness 

and tardiness induced by the shipping uncertainty so as to analyze the impact 

of the liner shipping uncertainty on the multi-factory production–distribution 

scheduling.  

 

The following chapters describe the development of the modeling and solution 

methodologies for both deterministic and stochastic problems. 
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Chapter 3   Development of the valid cuts for 

computational burden reduction 

In this Chapter, firstly the problem description is presented in detail in Section 

3.1. The pure mathematical programming, i.e., MIP, is formulated in Section 3.2 

for the integrated scheduling problem under multi-factory production network 

with two types of transportation. A problem property based valid cut is then 

developed in Section 3.3. Section 3.4 presents the design of the numerical 

experiments. A discussion of the results is provided in Section 3.5, with a 

summary in Section 3.6. 

 

3.1 Problem description for the integrated multi-factory 

production and distribution scheduling  

In this study, a job allocation, production and distribution scheduling problem is 

addressed with consideration of both multi-distance inland transport and maritime 

transport limits under the multi-factory environment with unrelated parallel 

production lines in each factory. There are n jobs 𝐽 = {1,2, … , 𝑛}  from the 

overseas customers and m factories 𝑀 = {1,2, … ,𝑚}  domestically located at 

different locations with total k production lines  𝐼 = {1,2, … , 𝑘} . The jobs are 

transported to terminals 𝑇 = {1,2… , 𝑡}  after completion and shipped by the 

vessels 𝑆 = {1,2, … , 𝑠} berthed at the terminals to the overseas customers (see 

Fig. 3.1). 
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Figure 3.1. The integrated production and distribution model in multi-factory manufacturing 

system. 

 

In the production part, we consider production lines with different productivity 

for different factories. The production lines in the same factory are identical and 

unrelated to those in other factories. Each job 𝑗 ∈ 𝐽  corresponds to a given 

processing requirement of 𝑝𝑖𝑗  time units depending on the factory and 

production line they are assigned to, operated on the production line without 

interruption and immediately stored in the warehouse near the factory. The 

delivery time and cost between the factory and warehouse is negligible, compared 

to the processing time of the jobs in the factory. All jobs and production lines are 

available at time 0. 

 

In the distribution part, we consider two different transportation situations. Firstly, 

there are sufficient homogeneous vehicles available at time 0. Here transshipment 

between the factories does not exist. The travelling cost of each job is determined 

by the variable quantity travelled and the route, dependent on the factory and 

terminal to which the job is assigned. Secondly, there are limited shipments with 

fixed delivery time and shipping lead time at each of the terminals. Each job can 
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be shipped by exactly one shipment while each shipment may deliver several jobs 

at a time. Each shipment has a specific unit shipping cost. Thereby, the shipping 

cost of each job is determined by its quantity and the shipment to which it is 

assigned. The available time of the shipment to which the job is assigned is not 

earlier than the sum of its departure time from the warehouse and the travelling 

time spent on the way to the terminal. The job is stored in the warehouse 

immediately after completion, waiting for its assigned vessel available at the 

terminal. On the other hand, the job will be saved in the overseas distribution 

center immediately after the shipment if the due date is not yet met. The delivery 

time and cost between the distribution center and customers are negligible, 

compared to the shipping lead time and cost. 

 

3.2 Methodology 

In this section, a mathematical approach is developed for this multi-factory 

integrated scheduling problem.  

 

3.2.1 Mixed integer programming (MIP) 

Objective function 

Z = Min ∑ 𝑞𝑗(𝑗∈𝐽 𝑐𝑗
𝑝𝑟𝑜 + 𝑐𝑗

𝑤 + 𝑐𝑗
𝑡𝑟 + c𝑗

𝑠 + 𝑐𝑗
𝐷𝐶ℎ𝑗

𝐷𝐶 + 𝑐𝑗
𝑝𝑙𝑗),            (3.1) 

                                  

where,                                 

     𝑐𝑗
𝑝𝑟𝑜 = ∑ ∑ 𝑐𝑖𝑗

𝑝𝑟𝑜𝑥𝑖𝑗𝑘𝑘≠𝑗,∈𝐽∪𝑜(𝑒)𝑖∈𝐼 ,           (3.2) 

Objective function (3.1) aims at minimizing the sum of the cost of all jobs 

generated throughout the supply chain, which includes production cost, travelling 
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cost, storage cost in warehouse, shipping cost, storage cost of overseas 

distribution center, and penalty cost. Eq. (3.2) defines the unit production cost of 

job j, equal to the unit production cost on the production line i to which job j is 

assigned. 

𝑐𝑗
𝑤 = ∑ 𝑐𝑗

𝑤𝑖
𝑖∈𝐼 ℎ𝑗

𝑤𝑖 ,            (3.3) 

   where, 

  ℎ𝑗
𝑤𝑖 = max( 𝑤𝑖𝑗 − 𝑐𝑗 , 0),             (3.4) 

      where, 

     𝑤𝑖𝑗 = ∑ 𝑦𝑖𝑗𝑠𝑎𝑠𝑠∈𝑆 − ∑ ∑ 𝑦𝑖𝑗𝑠𝑇𝑠𝑡𝑡𝑟𝑖𝑡𝑡∈𝑇𝑠∈𝑆 ,          (3.5) 

Eq. (3.3) defines the unit storage cost of job j in warehouse 𝑤𝑖 close to the factory 

with production line i, equal to the unit storage cost of job j per day in the 

warehouse 𝑤𝑖 multiplied by its holding days in that warehouse. If job j is stored 

in the warehouse 𝑤𝑘, then ℎ𝑗
𝑤𝑘 ≥ 0, ℎ𝑗

𝑤𝑖 = 0, ∀ 𝑖 ∈ 𝐼, where 𝑖 ≠ 𝑘. Eq. (3.4) 

defines the holding days of job j in warehouse  𝑤𝑖  close to the factory with 

production line i. If 𝑤𝑖𝑗 > 𝑐𝑗 ,  then the departure time of job j from 

warehouse 𝑤𝑖 is greater than its completion time, thus ℎ𝑗
𝑤𝑖 > 0, otherwise ℎ𝑗

𝑤𝑖 =

0. If the shipment s is available at terminal t, 𝑇𝑠𝑡 = 1, otherwise 𝑇𝑠𝑡 = 0. Eq. 

(3.5) defines the departure time of job j from the warehouse 𝑤𝑖 which is close to 

the factory with production line i, equal to the available time of the shipment s 

assigned to job j minus the travelling time from the factory with the production 

line i to the terminal with the shipment s, and is true only if job j is assigned to 

production line i. Otherwise, 𝑤𝑖𝑗 = 0. 

𝑐𝑗
𝑡𝑟 = ∑ ∑ ∑ 𝑦𝑖𝑗𝑠𝑇𝑠𝑡𝑐𝑖𝑗𝑡

𝑡𝑟
𝑠∈𝑆𝑡∈𝑇𝑖∈𝐼 ,         (3.6) 

c𝑗
𝑠 = ∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑠𝑠∈𝑆𝑖∈𝐼 ,           (3.7) 

Eq. (3.6) defines the travelling cost of job j per quantity, equal to the unit 

travelling cost for the distance from the factory with the production line i to which 
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job j is assigned to terminal t where its assigned shipment s is available. Eq. (3.7) 

defines the unit shipping cost of job j, equal to the unit shipping cost of shipment 

s assigned to job j. 

   ℎ𝑗
𝐷𝐶 = max(𝑑𝑗 − 𝑟𝑗 , 0),                            (3.8) 

𝑙𝑗 = max(𝑟𝑗 − 𝑑𝑗 , 0),                                (3.9) 

Eqs. (3.8) and (3.9) define the earliness and tardiness of the job as the difference 

between its arrival time at distribution center and the due date. If 𝑑𝑗 > 𝑟𝑗, then 

job j is early, thus ℎ𝑗
𝐷𝐶 > 0. On the other hand, if 𝑟𝑗 > 𝑑𝑗 , then job j is tardy, 

thus 𝑙𝑗 > 0. If 𝑟𝑗 = 𝑑𝑗 , then job j is on time, thus ℎ𝑗
𝐷𝐶 = 0, 𝑙𝑗 = 0. 

 

Constraints: 

Two dummy jobs o(𝑠) and 𝑜(𝑒) are set in this model as the starting point and 

ending point of the sequence of jobs scheduled in each production line, whose 

processing times are zero. The starting point 𝑜(𝑠)  precedes the ‘first’ job 

assigned to the production line, while the ending point 𝑜(𝑒) is preceded by the 

‘last’ job assigned to the production line. 

∑ ∑ 𝑥𝑖𝑗𝑘𝑘≠𝑗,∈𝐽∪𝑜(𝑒)𝑖∈𝐼 = 1     ∀ 𝑗 ∈ 𝐽,                   (3.10) 

    ∑ ∑ 𝑥𝑖𝑗𝑘𝑗≠𝑘,∈𝐽∪𝑜(𝑠)𝑖∈𝐼 = 1     ∀ 𝑘 ∈ 𝐽,              (3.11) 

Constraints (3.10) state that each job is assigned to only one production line and 

is immediately preceded at most with one other job. If job j is the ‘last’ job on the 

production line i, then 𝑥𝑖𝑗𝑜(𝑒) = 1 , otherwise 𝑥𝑖𝑗𝑜(𝑒) = 0 . Constraints (3.11) 

state that each job is assigned to only one production line and is immediately 

preceded by at most one other job. If job k is the ‘first’ job on production line i, 

then 𝑥𝑖𝑜(𝑠)𝑘 = 1, otherwise 𝑥𝑖𝑜(𝑠)𝑘 = 0. 

         ∑ ∑ (𝑥𝑖𝑗𝑘 − 𝑥𝑖𝑘𝑛)𝑛∈𝐽∪𝑜(𝑒)𝑗∈𝐽∪𝑜(𝑠) = 1     ∀ 𝑘 ∈ 𝐽;  𝑖 ∈ 𝐼,            (3.12) 

        ∑ 𝑥𝑖𝑜(𝑠)𝑘 = 𝑘∈𝐽∪𝑜(𝑒) 1    ∀ 𝑖 ∈ 𝐼,                         (3.13) 
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        ∑ 𝑥𝑖𝑗𝑜(𝑒) = 𝑗∈𝐽∪𝑜(𝑠) 1    ∀ 𝑖 ∈ 𝐼,                      (3.14) 

Constraints (3.12) guarantee that each job always has one immediate predecessor 

and one immediate successor. The immediate predecessor of the ‘first’ job in the 

factory is o(𝑠) , and o(𝑒)  is the immediate successor of the ‘last’ job. 

Constraints (3.13) limit only one job being assigned as the ‘first’ job for each 

factory. If no job is assigned to the production line i, then 𝑥𝑖𝑜(𝑠)𝑜(𝑒) = 1 . 

Constraints (3.14) limit only one job being assigned as the ‘last’ job for each 

production line. 

       𝑥𝑖𝑗𝑘 + 𝑥𝑖𝑘𝑗 ≤ 1    ∀ 𝑖 ∈ 𝐼;  𝑗 ∈ 𝐽; 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘,             (3.15) 

Constraints (3.15) reinforce the precedence relations between any pair of jobs j 

and k. Either j immediately precedes k or k immediately precedes j (if both are 

scheduled to the same production line), or neither relation holds. 

       𝑐𝑗 = 𝑠𝑗 + ∑ ∑ 𝑥𝑖𝑗𝑘𝑝𝑖𝑗𝑘≠𝑗∈𝐽∪𝑜(𝑒)𝑖∈𝐼     ∀𝑗 ∈ 𝐽,                       (3.16) 

       𝑠𝑘 − 𝑠𝑗 ≥ ∑ 𝑥𝑖𝑗𝑘𝑝𝑖𝑗𝑖∈𝐼 − 𝑁(1 − ∑ 𝑥𝑖𝑗𝑘𝑖∈𝐼 )    ∀ 𝑗 ∈ 𝐽; 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘      (3.17a) 

       𝑠𝑘 − 𝑠𝑗 ≤ ∑ 𝑥𝑖𝑗𝑘𝑝𝑖𝑗𝑖∈𝐼 + 𝑁(1 − ∑ 𝑥𝑖𝑗𝑘𝑖∈𝐼 )    ∀ 𝑗 ∈ 𝐽; 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘,     (3.17b) 

Constraints (3.16) set the completion time of j to the sum of its starting and 

processing time. Constraints (3.17a and 3.17b) relate the starting times of two 

successive jobs on the same production line. If both j and k are assigned to the 

same production line, and j immediately precedes k, then the starting time of k is 

equal to the sum of the starting time of job j and its processing time, which means 

idle time is not allowed between two consecutive jobs. The constraints do not 

establish any relationship between 𝑠𝑗  and 𝑠𝑘  when j does not immediately 

precede k, or job j and k are not scheduled to the same production line. N is a 

large positive number such that 𝑁 → ∞. 

    ∑ ∑ 𝑦𝑖𝑗𝑠 =𝑠∈𝑆𝑖∈𝐼 1    ∀ 𝑗 ∈ 𝐽,                                    (3.18) 

Constraints (3.18) state that each job is finished by exact one production line and 
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shipped by exactly one shipment.  

     𝑟𝑗 = ∑ ∑ 𝑦𝑖𝑗𝑠(𝑎𝑠 + 𝑡𝑠)𝑠∈𝑆𝑖∈𝐼     ∀𝑗 ∈ 𝐽,                            (3.19) 

     ∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠𝑠∈𝑆𝑖∈𝐼 − ∑ ∑ ∑ 𝑦𝑖𝑗𝑠𝑇𝑠𝑡𝑡𝑟𝑖𝑡𝑡∈𝑇𝑠∈𝑆𝑖∈𝐼 ≥ 𝑐𝑗     ∀ 𝑗 ∈ 𝐽,             (3.20) 

Constraints (3.19) set the arrival time of job j at the distribution center to the sum 

of the available time and shipping lead time of the shipment to which job j is 

assigned. Constraints (3.20) limit the departure time of each job from the 

warehouse to be not earlier than its production completion time in the factory. 

    ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐽∪𝑜(𝑒) − ∑ ∑ 𝑦𝑖𝑗𝑠𝑇𝑠𝑡𝑠∈𝑆𝑡∈𝑇 = 0    ∀ 𝑖 ∈ 𝐼;  𝑗 ∈ 𝐽,               (3.21) 

Constraints (3.21) relate the factory with the production line to which job j is 

assigned with the shipment by which it will be shipped from the terminal. In other 

words, it links and integrates the production planning with the transportation 

policy which lead them to have impacts on each other. 

 

3.3 Due-date based primary cut-off rule (DBC) 

In order to improve the efficiency of the model and extend the problem scale that 

can be solved in a reasonable time, a rule is created to cut those unreasonable and 

less considered shipments so as to shrink the range of the shipping information 

and increase the efficiency of the original model. The rule is as follows: 

 

Each shipment has its available time and lead time which, to some extent, 

determine the arrival time of the jobs. Therefore, for each job, its assigned 

shipment greatly affects the size of its penalty caused by tardiness. In 

consideration of the customer service level, those shipments which cause huge 

penalties are not considered. Here, the extent of “huge penalty” is that it is greater 

than the sum of total other component costs, including production cost, storage 
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cost and transportation cost. In other words, each job may only be considered to 

be assigned to part of the shipments whose arrival time will not lead to huge 

penalties for that job at the beginning of scheduling.  

It can be demonstrated by 

    𝑐𝑗
𝑝𝑟𝑜 + 𝑐𝑗

𝑤 + 𝑐𝑗
𝑡𝑟 + c𝑗

𝑠 ≥ 𝑐𝑗
𝑝𝑙𝑗    ∀𝑗 ∈ 𝐽.           (3.22) 

Which, in detail, is 

∑ ∑ 𝑐𝑖𝑗
𝑝𝑟𝑜
𝑥𝑖𝑗𝑘𝑘≠𝑗,∈𝐽∪𝑜(𝑒)𝑖∈𝐼 + ∑ 𝑐𝑗

𝑤𝑖 ∗ max ( ∑ 𝑦𝑖𝑗𝑠𝑎𝑠𝑠∈𝑆 −𝑖∈𝐼

         ∑ ∑ 𝑦𝑖𝑗𝑠𝑇𝑠𝑡𝑡𝑟𝑖𝑡𝑡∈𝑇𝑠∈𝑆 − 𝑐𝑗  , 0) + ∑ ∑ ∑ 𝑦𝑖𝑗𝑠𝑇𝑠𝑡𝑐𝑖𝑗𝑡
𝑡𝑟

𝑠∈𝑆𝑡∈𝑇𝑖∈𝐼 +

          ∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑠𝑠∈𝑆𝑖∈𝐼 ≥ 𝑐𝑗
𝑝 ∗ max(𝑟𝑗 − 𝑑𝑗 , 0),     ∀𝑗 ∈ 𝐽.                   (3.23) 

Through numerical experiments, it greatly aggravates the computational 

complexity instead of reducing the runtime which is unacceptable and inefficient. 

Therefore, a relaxed pattern is developed based on the original rule as follows: 

𝑚𝑎𝑥𝑐𝑝𝑟𝑜 +max𝑐𝑤 ∗ max ( ∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠𝑠∈𝑆𝑖∈𝐼 −∑ ∑ ∑ 𝑦𝑖𝑗𝑠𝑇𝑠𝑡𝑡𝑟𝑖𝑡𝑡∈𝑇𝑠∈𝑆𝑖∈𝐼 −

         𝑐𝑗  , 0) + 𝑚𝑎𝑥𝑐
𝑡𝑟 +𝑚𝑎𝑥𝑐𝑠 ≥ 𝑐𝑗

𝑝 ∗ (𝑟𝑗 − 𝑑𝑗)     ∀𝑗 ∈ 𝐽.    (3.24) 

Here, 𝑚𝑖𝑛𝑡𝑟𝑓𝑡 = 𝑚𝑖𝑛 (𝑡𝑟𝑓𝑡, ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇),  𝑚𝑖𝑛𝑡𝑠 = 𝑚𝑖𝑛(𝑡𝑠, ∀ 𝑠 ∈ 𝑆),  are 

the minimum transportation time and minimum shipping time for each job 

respectively. After collection, a new restriction for the shipments selection is 

obtained as follows: 

(𝑐𝑗
𝑝
−  max𝑐𝑤) × ∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠𝑠∈𝑆𝑖∈𝐼 ≤ 𝑚𝑎𝑥𝑐𝑝𝑟𝑜 +𝑚𝑎𝑥𝑐𝑡𝑟 −max𝑐𝑤 ×

(𝑚𝑖𝑛𝑡𝑟𝑓𝑡 + 𝑐𝑗) + 𝑚𝑎𝑥𝑐
𝑠 + 𝑐𝑗

𝑝 × 𝑑𝑗 − 𝑐𝑗
𝑝 ×𝑚𝑖𝑛𝑡𝑠    ∀𝑗 ∈ 𝐽.            (3.25) 

When 𝑐𝑗
𝑝 > max𝑐𝑤, based on inequalities (3.25), the final DBC rule is obtained 

as: 

∑ ∑ 𝒚𝒊𝒋𝒔𝒂𝒔𝒔∈𝑺𝒊∈𝑰 ≤ 𝐀 × 𝒅𝒋 +  𝐁 × 𝒄𝒋 + 𝐂       ∀𝑗 ∈ 𝐽.        (3.26) 

Here,  A =
𝑐𝑗
𝑝

𝑐
𝑗
𝑝
− max𝑐𝑤

, B = −
max𝑐𝑤

𝑐
𝑗
𝑝
− max𝑐𝑤

,  

C =
𝑚𝑎𝑥𝑐𝑝𝑟𝑜+𝑚𝑎𝑥𝑐𝑡𝑟−max𝑐𝑤×𝑚𝑖𝑛𝑡𝑟𝑓𝑡+𝑚𝑎𝑥𝑐

𝑠−𝑐𝑗
𝑝
×𝑚𝑖𝑛𝑡𝑠

𝑐
𝑗
𝑝
− max𝑐𝑤

.                                                                                                                               
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The DBC rule found the lower limit of the upper boundary for shipment selection, 

that is the departure time of the selected shipment for job j, should be less than 

the linear combination of its due date and completion time in the factory. We relax 

the inequalities (3.21) by enlarging or narrowing the values of the parameters so 

as to attain the expected improvement of computational efficiency. This approach 

enhances the restriction for shipments which might be assigned to job j through 

greatly relating the job’s due date information with shipment information.  

 

To illustrate the principle of the proposed valid cuts, an example is displayed 

below in Fig. 3.2. As is displayed in the following figure, the completion time of 

job j is 11, and its due date is 21. Firstly, those shipments earlier than Day 11 have 

been removed represented by shaded area. In this way, the selection area of 

shipments for job j is from Day 12 to Day 36. Secondly, on the right-hand side, 

those shipments whose arrival times are far from job j’s due date will be removed. 

Then, the question is how to find the boundary of this removed area. This is 

critical because it may affect the solution optimality, meanwhile it influences the 

computational time. In this described example, this boundary may be Day 24, 26 

or any other Day after Day 21. The larger the data is, the more the computational 

time it induced. Similarly, the smaller the data is, the less the computational time 

it is. But it may cut-off the optimal solution.  

 

So, the contribution of the proposed DBC is to find the lower boundary of 

shipments selected for each job so as to achieve high computational efficiency 

without affecting final optimal solutions. 

 

Through the above development procedure, the valid cut is obtained and 
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displayed in inequality (3.26). By this valid cut, the invaluable shipments can be 

removed from the feasible area and the selection range may be narrowed by 

almost half in this example. The numerical experiments verified this valid cut 

DBC worked as expected. 

 
        Figure 3.2. Illustration of the due-date based primary cut-off rule. 

 

3.4 Numerical experiments 

We firstly conducted numerical experiments to test the performance of the 

proposed MIPD by MIP and MIP+DBC coded in CPLEX, run on the Intel® 

Core™ i5-3210M CPU @ 2.50GHz. We tested the problems with 10 jobs 

composed of different products. Two geographically dispersed factories with two 

production lines were considered in the manufacturing system. In addition, two 

terminals were considered in the test. The number of shipments available in 

Terminal 2 was assumed to be 3 times as many as that in Terminal 1, on average. 

3 cases in which 20, 40 and 60 shipments were available in the planning horizon 

were considered respectively to observe the impacts on the integrated scheduling 

and system performance of MIPD. Test problems were randomly generated as 

follows: 

a. The unit production cost difference between the factories varied from 0% to 

50%. 

b. The unit warehouse storage cost 𝑐
𝑗

𝑤𝑓
 was 2% or 3% of the unit production 

costs required by its nearby factory. The capacity of production in the “expensive” 

Day 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Completion time Due date
Removed area to be confirmed 
by DBC
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factory was 20% less than that in the “cheaper” factory. The production capacity 

for each product in the “cheaper” factory is random, from uniform distribution 

𝑈(5,10). The quantity of each job 𝑞𝑗 was randomly generated by 𝑁(75, 52).  

c. The unit penalty cost and the due date of job j are respectively generated 

by  𝑈(0.4,0.5) ∗ 𝑚ax(𝑐𝑖𝑗
𝑝𝑟𝑜 , ∀ 𝑖 ∈ 𝐼)   around 40%~50% of its standard unit 

production cost, and 𝑁(𝐸(𝑝𝑖𝑗) + 𝐸(𝑡𝑠), 0.01[𝐸(𝑝𝑖𝑗) + 𝐸(𝑡𝑠)]
2) , the expected 

time for production and shipping with 10% deviation.  

d. The unit transportation cost of job j was 5%𝑐𝑖𝑗
𝑝𝑟𝑜𝑡𝑟𝑓𝑡, i.e., 5% of its production 

cost multiplied by its travel time. 

e. The shipping lead times 𝑡𝑠 were randomly generated by 𝑈(10,30), and the 

unit shipping cost of each job was the multiple of  
300

𝑡𝑠
2  , which had negative 

correlation with its shipping lead time. 

f. The unit storage cost per day at DC was 5% of the standard unit production cost 

for each job. 

g. The standard unit production cost of each job was the cost required by the 

“expensive” factory, which was random from the uniform distribution 𝑈(15,20). 

 

3.4.1 Problem generation 

To demonstrate the significance of the MIPD, another practical model with 

shipment schedules consideration is introduced and analyzed in this study. 
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3.4.2 Multi-factory Separated Production Scheduling Model 

(MSPS) 

 

In MSPS, the jobs were assigned evenly to each factory according to their 

production cost and, in this case, production scheduling was independent between 

these two factories, equivalent to two parallel single-factory integrated 

production and distribution models. We tested 10 randomly generated data sets 

for each problem instance. Since we had a total of 4*3 = 12 different instances, 

we got a total of 120 different problem data sets. For each instance, we calculated 

the corresponding reduction between the proposed MIPD and MSPS, namely  

𝑍𝑆−𝑍𝐼

𝑍𝑆
× 100% , where 𝑍𝑆  is the solution of MSPS and 𝑍𝐼  is the solution of 

MIPD. 

 

3.5 Results of the MIPD vs the MSPS model 

Table 3.1 gives the details of the performance of the MIPD model compared with 

MSPS. It shows that the overall average and maximum cost reductions compared 

with MSPS are 20.10% and 25.94%, respectively, which demonstrate the new 

proposed MIPD greatly outperforms MSPS for integrated production scheduling 

with specific shipment schedules. 

 

Compared with MSPS, the average cost reductions by MIPD under shipment 

schedules with 20, 40, 60 shipments available are 25.64%, 18.22% and 15.20%, 
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respectively, and the corresponding maximum reductions are 35.69%, 23.80% 

and 18.34%, respectively. Fig. 3.2 shows the contribution made by the MIPD 

model decreases as the number of available shipments increases. This result 

demonstrates that when available shipments are very limited, the significance of 

integrated production scheduling between factories becomes much stronger. Fig. 

3.3 displays an increased trend on the contribution made by MIPD when the 

production cost difference between two factories becomes large. The production 

cost difference between the factories is assumed to be 0%, 10%, 30% and 50% in 

sequence. For each case, the average reduction on the total cost contributed by 

MIPD is 17.39%, 17.60%, 18.51% and 19.45% respectively. It verifies that the 

cost difference between factories has positive impacts on the performance of the 

newly proposed MIPD. 

 

Table 3.2 presents the contributions made by each component cost to the total 

cost reduction. By comparison, the main contribution comes from the penalty cost, 

while the inventory cost in the warehouses and DC are in second place. For MSPS, 

its penalty cost is reduced by 47.26% as a whole. Fig. 3.4 gives the average 

number of tardy days for each given job under different shipping situations. It 

shows that the tardy days increase when the shipments available are limited. 

However, MIPD decreases almost 50% for the tardy days brought about by MSPS 

on average, and controls the tardiness of each job within one day (Fig. 3.5). 

Therefore, the improvement of customer service level is achieved by MIPD.  
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Table 3.1 Performance of the MIPD model compared with MSPS. 

|𝐽| |𝑆| 
Diff. of 

𝑐𝑖𝑗
𝑝𝑟𝑜

(%) 

Average cost 

reduction (%) 

Max cost 

reduction (%) 

10 
20 

0 24.53 34.07 

10 24.81 34.88 

30 26.02 36.23 

50 27.21 37.58 

average   25.64 35.69 

10 
40 

0 17.55 22.45 

10 17.69 22.95 

30 18.42 24.22 

50 19.22 25.58 

average   18.22 23.80 

10 
60 

0 14.00 17.44 

10 14.27 17.71 

30 15.64 18.60 

50 16.90 19.62 

average   15.20 18.34 

Overall     20.10 25.94 

 

Figure 3.3. Cost reduction of MIPD compared with MSPS in terms of number of shipments 

available in the planning horizon. 
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Figure 3.4. Cost reduction of MIPD compared with MSPS in terms of production cost difference 

between factories. 

 

Table 3.2 Component contribution of MIPD compared with MSPS. 

|𝐽| |𝑆| 
Diff. of 

𝑐𝑖𝑗
𝑝𝑟𝑜

(%) 

Average Reduction (%) 

Production Warehouse Transport Shipping DC Penalty 

10 20 

0 0.00 22.13 8.32 -13.62 -4.75 53.14 

10 -0.75 23.31 7.46 -13.54 -5.42 53.14 

30 -0.75 19.63 2.72 -13.66 11.84 52.73 

50 -1.46 16.32 4.11 -12.60 -43.09 52.73 

10 40 

0 0.00 20.56 -3.15 -8.48 8.08 48.59 

10 -0.65 17.88 -3.43 -7.93 8.08 48.50 

30 -1.56 17.80 -4.69 -6.63 32.70 47.12 

50 -2.36 12.56 -5.53 -7.33 26.40 47.33 

10 60 

0 0.00 25.52 -2.10 -5.29 -79.29 41.05 

10 0.02 18.27 -4.99 -5.60 26.18 41.05 

30 0.43 25.53 -5.37 -5.22 23.11 41.05 

50 1.73 22.85 -6.26 -5.92 16.67 40.70 

Overall   -0.45 20.20 -1.08 -8.82 1.71 47.26 

 

Additionally, the inventory costs in the warehouses and DC are reduced by 

20.20% and 1.71%. It demonstrates that additionally MIPD performs well in 
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inventory control by decreasing the holding days through the production 

coordination between factories, as well taking the consideration of the distance-

dependent inland transportation lead time. 

 

Figure 3.5. Average tardy days per job under different shipment situations.  

 

 

Figure 3.6. Average tardy days per job. 
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3.6 Results and discussions of MIP with DBC vs MIP 

Through the computational results, it can be identified that the MIP with DBC 

obtain the same optimal solutions as the MIP. Table 3.3 presents the effectiveness 

of DBC. It demonstrates that the time efficiency of the original exact algorithm 

is, on average, improved by 80.78% and at maximum by almost 90%, with the 

assistance of DBC. 

 

Table 3.3 Effectiveness of the DBC rule. 

|𝑆| 
Average CPU time(s) Reduction (%) Sol. difference 

(%) Without DBC With DBC Average Maximum 

20 7537 1814 75.93 91.9 0 

40 23470 3886 83.44 86.34 0 

60 33058 5629 82.97 89.58 0 

overall     80.78 89.27 0 

 

3.7 Summary 

In this research, we proposed a new model and a new solution method for multi-

factory job allocation and production–distribution scheduling problems. In this 

new model, we considered the variations and limits of maritime transport and 

their impacts on production and distribution scheduling. The objective was to 

determine integrated production and inland/maritime transport scheduling in a 

multi-factory manufacturing system, for the mutual benefit of both the 

manufacturer and customers. This problem has not been addressed in the existing 

literature. 

 

The numerical experiments demonstrated that substantial cost savings and 
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delivery efficiency were achieved by the new developed integrated model. In 

addition, its performance is reliable for the variations in external shipment 

schedules and production cost difference among factories. The newly proposed 

due-date based cut-off rule (DBC) achieved 80% improvement for the 

computational efficiency of the exact algorithm. 
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Chapter 4        Hybrid 2-level fuzzy guided genetic algorithm 

for the multi-factory integrated scheduling problem 

In Chapter 4, a hybrid genetic algorithm embedded with a new fuzzy logic 

controller and DBC is introduced. The proposed heuristic approach is aimed at 

improving the time efficiency and solution quality of large-scale problems. The 

proposed heuristic approach is composed of two levels. Section 4.1 describes the 

level 1 with the principles of the fuzzy controllers in the mutation operator in 

detail. Section 4.2 presents level 2 which is responsible for scheduling and 

shipment selections combined with a DBC based exhaustive search. The results 

of numerical experiments are discussed in Section 4.3., and a summary of the 

proposed heuristic approach was given in Section 4.4. 

 

4.1 Outline of the proposed 2-level hybrid GA 

In this algorithm, we decompose the problem into 3 interrelated sub-problems 

and solve them iteratively, i) Assignment of Jobs to Production Lines, ii) 

Production Scheduling of Jobs in Production Line, and iii) Shipment Selection. 

Fig. 4.1 shows the outline of the proposed hybrid 2-Level Fuzzy Guided Genetic 

Algorithm (H2LFGGA). It consists of 2 interrelated genetic algorithms with an 

exhaustive heuristic algorithm under DBC application and a fuzzy controller to 

guide the mutation.  
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4.2 Level 1 GA 

The Level 1 GA optimizes the assignment of jobs to the production lines. The 

objective in this part is to minimize the total cost of the whole system. This is the 

highest level of decision making, controlling the global search in this problem, as 

is hereafter named as Level 1 GA. The fuzzy controller that guides the mutation 

proposed in level 1 aims to solve the drawbacks of the traditional GA when 

dealing with multi-factory job allocation problems. Two conditions, the Workload 

Condition and the Busy Condition, are considered by the fuzzy controller in order 

to balance the utilization of each production line. 

 

4.2.1 Encoding and decoding of chromosome 

In encoding, chromosomes consist of n columns and 2 rows, as an example shown 

in Fig. 4.2 Each column represents an assignment of a job to a production line. 

Row 1 represents the job, and Row 2 represents the production line. The 

production schedule is represented by the production priority, with the highest on 

the left the lowest on the right. For example, in Fig. 4.2, there are 10 jobs being 

assigned to 2 production lines. For the decoding, Jobs 8, 2, 7, and 9 will be 

produced in the order stated in Production line 2. Note that the shipment of each 

job is not being decided on at this moment and will be determined later by using 

the exhaustive heuristic with the application of DBC in the Level-2 GA part. 
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Figure 4.2. Sample encoding and decoding of chromosome in Level 1.  

 

4.2.2 Generation of initial pool 

The first chromosome among the population is created according to the heuristic 

which is trying to equally balance the loading between factories. Jobs are ranked 

according to the due date from the earliest to the latest and assigned to factory 

one by one. The rest of chromosomes are generated randomly. For example, 

assuming that the due date increases along with the job number, then the first 

chromosome is in the order of 1-2-3-4-5-6-7-8-9-10 as shown in Fig. 4.3 and the 

rest are randomly scheduled. 

 

    1 1 2 3 4 5 6 7 8 9 10 

      1 2 1 2 1 2 1 2 1 2 

    2 3 5 8 1 10 2 4 7 9 6 

Chromosome No.   1 1 2 1 1 2 1 2 2 2 

    3 5 6 2 4 3 8 7 9 1 10 

      1 2 1 2 2 1 2 1 1 2 

    4 8 7 4 5 2 3 1 6 9 10 

      1 1 2 2 1 2 1 2 2 1 

 

Figure 4.3. Sample initial pool for Level 1. 
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4.2.3 Calculation of fitness value 

The objective is to minimize the total cost of the system. It corresponds to the 

main objective function, as in Eq. (1). Thus, the fitness value of chromosome 𝑓𝑖
𝐿1 

in Level 1 GA is defined as: 

𝑓𝑖
𝐿1 = 1 −

𝑍𝑖
∑ 𝑍𝑛𝑛=𝑁𝐿1

 

 

where NL1 is the pool size of the Level 1 GA, and Zi is the objective value 

obtained according to the structure of chromosome i after optimization of the 

production sequence and shipment selection by using the Level-2 GA.    

 

4.2.4 Crossover operations 

A uniform crossover approach is adopted here, in which a certain portion of the 

chromosomes between 2 chromosomes is exchanged. A number of genes are 

randomly selected depending on a predefined crossover rate cr. A high cr favors 

a global search as the chromosome structure is changed more, while a low rate 

favors a local search. A low cr rate is used throughout the whole evolution in 

Level 1 because we want to control the chromosome changes at a slow pace as it 

deals with a global search.  

 

Fig. 4.4 shows an example of a 2-point crossover for Level 1, in which, assuming 

2 columns, i.e. 4th and 8th, are randomly selected for crossover. After crossover, 

the offspring(s) become invalid as duplication of jobs occur (e.g. two Job 5s and 

two Jobs 8s in Offspring 1, with two Job 1s and two Job 7s in Offspring 2). 
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Meanwhile, some jobs are missing (e.g. Jobs 1 and 7 in Offspring 1, Jobs 5 and 8 

in Offspring 2). For validation, therefore, the duplicated job(s), which is (are) not 

the one selected for crossover, are changed into the corresponding missing job(s) 

(i.e. Job 7 is the corresponding job for Job 5, Job 1 is then the corresponding job 

for Job 8). In addition, to avoid the chromosome structure changing too rapidly, 

the production line assigned to each missing job (Jobs 1 & 7 for Offspring 1) is 

the same as that assigned to the job in the Parent stage. 

 

 
 

Figure 4.4. Sample crossover operations for Level 1.  

 

4.2.5 Mutation operations: Fuzzy guided approach 

Mutation here aims to diversity the chromosomes in the solution pool in terms of 

Jobs Reallocation to Production Lines. Accordingly, in the classical GA mutation 

approach, a number of genes could be randomly selected to undergo mutation, i.e. 

reassigning the randomly selected job(s) from one production line to another 
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randomly selected one(s). However, this approach may have several drawbacks 

when applied in multi-factory job allocation problems. First of all, the loading 

condition of the production line during job reallocation has not been considered. 

For example, if a production line is already very busy, further increasing its 

workload will definitely result in even higher penalty. Similarly, if the workload 

of the selected mutation production line is low, further reducing its workload is 

also meaningless. Such mutations are not wise. Another drawback comes from 

the due date condition of the jobs. If the jobs being assigned in the same 

production line have close due dates, it may easily induce a penalty due to 

tardiness or high storage cost. In this connection, we designed and proposed a 

fuzzy controller to guide the mutation.  

 

The mutation aims to reallocate jobs to the production lines. Therefore, two 

production lines will be selected randomly. Then the fuzzy controller will 

determine the number and direction of job(s) being reallocated due to the 

workload condition and due date condition. Accordingly, for the fuzzy controller, 

we need two sets of fuzzy input. First of all, we need to model the difference of 

workload condition 𝑊𝐶̅̅ ̅̅ ̅ between the two selected production lines (α and 𝛽). 

𝑊𝐶̅̅ ̅̅ ̅ is classified as Less (L), Same (S), and More (M) as in Fig. 6. If the workload 

of the production line α is 20% less than that of the production line β, then it 

has less workload. If the workload of α is the same as that of β, then it has the 

same workload. If the workload of α is 20% more than that of β, then it has 

more workload, where % difference = 
(∑ 𝑞𝑗𝑗=𝐽𝛼 −∑ 𝑞𝑘𝑘=𝐽𝛽

)

∑ 𝑞𝑘𝑘=𝐽𝛽
, in which 𝐽𝛼 = set of 

jobs being assigned to production in 𝛼, and 𝐽𝛽 = set of jobs being assigned to 

production in 𝛽. 
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Another fuzzy input set is used to model the difference of busy condition 𝐵𝐶̅̅ ̅̅  

between the two selected production lines in a particular period. 𝐵𝐶̅̅ ̅̅  is classified 

as Less (L), Same (S), and More (M) as in Fig. 4.5. Accordingly, a period [𝜋, 𝜋 +

𝑡] is randomly selected for comparison, where t is smaller than 1/3 of the total 

horizon. Then, we calculate the total quantity of jobs with due date falling in that 

period for the production lines α and 𝛽. Similarly, if the total quantity calculated 

in that period in α is 20% less than that in 𝛽, then it is “Less” busy, same as 

each other is “Same” and, 20% more than the other is “More” busy. 

 

 

 

 

 

 

 

The output set is the number of jobs being released from production line α to 𝛽, 

or taken in from production lines 𝛽 to α, as shown in Fig. 4.6. They are classified 

as Few (F), Normal (N), Large (L), and Very Large (VL) numbers of jobs. The 

rule sets used to construct the fuzzy controller is shown in Fig. 4.7. They are all 

in the “and” relationship, for example if production line α was less workload and 

is less busy than that of 𝛽  in a randomly selected period, then a very large 

number of jobs will be taken-in from production lines 𝛽 to α. The commonly 

used centroid method is used for the influence of each rule on the output. 

 

Workload Condition 𝑊𝐶 

M S L 

0 −20% +20% 

1 

0 
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Busy Condition 𝐵𝐶 
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1 

0 
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Figure 4.5. Fuzzy input set. 
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Figure 4.7. Rules sets. 

  

 

4.3 Level 2 GA 

Level 2 GA is designed to optimize the production sequence of the chromosome 

(production lines) generated in Level 1 and shipment selection for each gene (job) 

by optimizing each chromosome independently. The objective in this part is to 

minimize the total cost except the production cost of the jobs allocated to the 

particular production line. As this functions for the local fine tuning of the 

chromosome in Level 1 GA, hereafter named as Level 2 GA. The exhaustive 

heuristic algorithm with DBC is devised for level 2, which aims to select the best 

shipment for each job on the production line, according to its objective, in an 

efficient way. 
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Figure 4.6. Fuzzy output set. 
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4.3.1 Encoding and decoding of chromosome 

It is noted that the Level 2 GA aims at optimizing the production sequence of 

production line i of the chromosome generated in level 1 and the shipment 

selection for each job. Thus in encoding, the length of the chromosome will be 

equal to the number of jobs being assigned to the production line i. Each gene 

represents one job number, and the production priority is the one with the highest 

value on the left, as in Level 1 as shown in Fig. 4.8.  

 

 

 

 

 

 

 

4.3.2 Generation of initial pool 

The initial pool is generated based on the chromosomes generated in Level 1 after 

fuzzy guided mutation. Inside the initial pool, the first chromosome is generated 

by the earliest due date heuristic. The rest of the chromosomes are generated 

randomly. For example, if the Level 2 GA is currently optimizing the production 

scheduling for production line 1 (the Level 1 example in Fig. 4.2), the jobs 

involved are Jobs 1, 3, 4, 5, 6, and 10 as shown in Fig. 4.8. Assuming the due date 

increases with the job number, then the first chromosome is in the order of 1-3-

4-5-6-10, as shown in Fig. 4.9 and the rest will be randomly scheduled.  

 

 

 

 Job 3 5 1 10 4 6 

 

Encoding 

Decoding 
Production Line 1 3 5 1 10 4 6 

 

Job 

Figure 4.8. Sample encoding and decoding of chromosome in Level 2. 
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 1 1 3 4 5 6 10 

 2 3 5 1 10 4 6 

 3 10 6 1 5 4 3 

 4 4 10 3 1 5 6 

 

Figure 4.9. Sample initial pool for Level 2. 

 

4.3.3 Calculation of fitness value 

For Level 2 GA, the objective is to minimize the total costs except the production 

cost of the jobs allocated to the production line that deviated due to different 

production sequence, i.e., storage cost in warehouse, transportation cost, shipping 

cost, storage cost in DC, and penalty cost. We set Z′ = ∑ 𝑞𝑗(𝑗∈𝐽′ 𝑐𝑗
𝑤 +

𝑐𝑗
𝑡𝑟 + c𝑗

𝑠 + 𝑐𝑗
𝐷𝐶ℎ𝑗

𝐷𝐶 + 𝑐𝑗
𝑝𝑙𝑗) , where J’ is the set of jobs being allocated to the 

currently optimizing production line. Thus, the fitness value of chromosome 𝑓𝑖
𝐿2 

in Level 2 GA is defined as: 

𝑓𝑖
𝐿2 = 1 −

𝑍𝑖
′

∑ 𝑍𝑛′𝑛=𝑁𝐿2
 

, where NL2 is the pool size of Level 2 GA, and 𝑍𝑖
′ is objective value obtained 

according to the structure of chromosome i.  

 

To select the best shipment for each job, an exhaustive searching approach with 

the assistance of DBC is applied. After the application of DBC, only a small 

number of potential shipments are left for selection. Thus, the exhaustive search 

heuristic is efficient.  

 

Chromosome No. 
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4.3.4 Crossover and mutation operations 

Fig. 4.10 shows an example of a 2-point crossover for Level 2. The mechanism 

of the crossover is the same as in Level 1. Assuming 2 columns, i.e. 2th and 4th, 

are randomly selected for crossover, after crossover, the offspring(s) become 

invalid as duplication of jobs occur (e.g. two Job 3s and two Jobs 6s in Offspring 

1, while two Job 5s and two Job 10s in Offspring 2). Meanwhile, some jobs are 

missing (e.g. Jobs 5 and 10 in Offspring 1, Jobs 3 and 6 in Offspring 2). For 

validation, therefore, the duplicated job(s), which is not the one selected for 

crossover, is changed into the corresponding missing job(s) (i.e. Job 3 is the 

corresponding job for Job 10, Job 6 is the corresponding job for Job 5). For 

Mutation, the main idea is to reschedule the production priority of the jobs. 

Therefore, two genes are randomly selected and swapped (Fig. 4.11), and 

invalidation does not occur in this operation.  

 

 

Figure 4.10. Sample crossover operations for Level 2. 
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Parent   Job 10 6 1 3 4 5 

                  

Offspring   Job 10 6 5 3 4 1 

 

Figure 4.11. Sample mutation operations for Level 2. 

 

4.4 Results and discussions of H2LFGGA vs MIP with DBC and 

classical GA 

In this section, the proposed GA is firstly compared with the exact algorithm 

proposed in Chapter 2 in Section 4.3.1, followed by a discussion of the 

comparison between the proposed GA and simple GA. 

 

4.4.1 Performance of H2LFGGA vs MIP with DBC 

The objective here is to test the performance of the proposed H2LFGGA in terms 

of solution quality and computational time. We compare the results obtained by 

the MIP with the DBC above with the proposed H2LFGGA in the 12 different 

situations used above. The results are summarized in Table 4.1. The results show 

that the proposed algorithm can obtain results as good as the MIP. This 

demonstrates that in terms of solution quality, the proposed algorithm is good. 

However, when comparing the computational time, the proposed algorithm is 

much better. The time required is only about 1s, 2s, and 2s for the problem size 

of 10 jobs with 20, 40 and 60 shipments respectively. Thus, in terms of 

computational time, there is a significant improvement. In addition, it can be seen 

that although the problems size increased from 20 shipments to 60 shipments, the 
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computational time required by the proposed algorithm does not increase much 

along with the increased problem computational complexity. This also 

demonstrates that the adoption of the proposed DBC can successfully reduce the 

shipment selection range. Therefore, the total computational time does decrease 

dramatically. 

  

Table 4.1 Testing of solution quality of the proposed H2LFGGA. 

|𝐽| |𝑆| 
Diff. of 

𝑐𝑖𝑗
𝑝𝑟𝑜

(%) 

MIP with 

DBC 

Time 

Req.(s) 

Proposed 

GA 

Time 

Req.(s) 

Sol. Difference 

(%) 

10 20 

0 23357 2237 23357 

1 

0 

10 22655 1765 22655 0 

30 21042 1650 21042 0 

50 19311 1606 19311 0 

10 40 

0 23571 3553 23571 

2 

0 

10 22826 3357 22826 0 

30 21283 4702 21283 0 

50 19653 3934 19653 0 

10 60 

0 22139 5389 22139 

2 

0 

10 21251 6425 21251 0 

30 19420 6324 19420 0 

50 17642 4380 17642 0 

 

4.4.2 Performance of H2LFGGA with classical GA 

We further test the performance of the proposed H2LFGGA at a larger problem 

scale. However, since the computational time spent by using MIP with DBC still 

cannot find solutions for a larger problem scale, even after 24 hours, we compare 

it with classical GA in this multi-factory production and distribution problem 

instead. The same problem parameters are used to generate larger problem sizes 

with 20 jobs and 50 jobs.  
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First of all, the classical GA is applied to solve the 10 job problems above. The 

purpose is to have a benchmark for the performance of H2LFGGA. The results 

indicating the average percentage difference between the solutions obtained by 

classical GA and H2LFGGA after convergence are summarized in Table 4.2. It 

additionally presents their corresponding evolution numbers and computational 

times for convergence for each case.  

 

As for the solution quality, it can be seen that even in the small-scale problem, 

the classical GA cannot obtain optimal solutions as H2LFGGA does. In addition, 

when the problem complexity increases along with the number of shipments 

being increased from 20 to 60, the percentage of the solution value difference gets 

wider. This further demonstrates the significant of applying the proposed DBC 

heuristic. In the rest of the large-scale problems, the performance of H2LFGGA 

clearly outperforms the classical GA. On the other hand, it is shown that the 

number of evolutions required by H2LFGGA for convergence is far less than that 

of classical GA. Therefore, H2LFGGA is much more efficient than the classical 

GA with notable improvement in solution quality for large-scale problems. 
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Table 4.2 Comparison of classical GA with the proposed H2LFGGA. 

|𝐽| |𝑆| 

Evolution numbers Time required (s) Sol. 

Difference 

(%) H2LFGGA 

Classical 

GA H2LFGGA 

Classical 

GA 

10 20 10 2500 1 2 2.8 

10 40 10 2500 1 2 7.1 

10 60 10 10000 1 8 9.7 

average           6.5 

20 20 50 10000 2 8 5.9 

20 40 100 50000 4 40 14.0 

20 60 100 50000 4 40 19.1 

average           13.0 

50 20 200 50000 8 40 24.1 

50 40 1000 100000 15 75 31.9 

50 60 1000 100000 15 75 44.2 

average 
     

33.4 

 

4.5 Summary 

In this chapter, a new hybrid meta-heuristic called hybrid 2 level fuzzy guided 

genetic algorithm, was proposed to solve the multi-factory production and 

distribution scheduling model proposed in Chapter 3 for practical problem size. 

The new proposed due-date based cut-off rule was embedded into the new 

proposed fuzzy guided heuristic approach to further accelerate the computational 

efficiency. By comparison with the improved efficiency of the exact algorithm in 

Chapter 3, the new proposed fuzzy guided heuristic approach achieved optimal 

solutions and better computational efficiency for small-size problems. Moreover, 

it was identified that, after the application of DBC, it is applicable to practical and 

large-scale problems with superior solution quality in comparison with the 

classical genetic algorithm. 
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Chapter 5   A risk-averse model for integrated 

multi-factory production scheduling and shipment 

assignment under liner shipping uncertainty 

In this Chapter, a new stochastic model is presented to solve the multi-factory 

integrated scheduling problem with shipping uncertainty due to maritime 

transport. A detailed description and formulation for the stochastic problem is 

presented in Section 5.1. The solution methodology, including the proof of the 

individual risk cost, was given in Section 5.2. Section 5.3 presents the design of 

numerical experiments. The results and discussion between the proposed model 

and the expected method are provided in three aspects in Section 5.4, followed 

by a summary of the chapter in Section 5.5. 

 

5.1 Problem description and formulation 

A stochastic integrated production–distribution scheduling problem in a multi-

factory manufacturing system is studied, considering the uncertain shipping lead-

times. As illustrated in Fig. 5.1, the factories are located in different regions. In 

each factory, parallel identical production lines are available to produce multiple 

products with the same quality. The capacities of the production lines of the 

factories are different. Therefore, the processing time for each job is different 

depending on the factory to which it is assigned. The finished jobs are stored in a 

nearby warehouse for shipping. The transportation time between the factory and 
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a nearby warehouse is negligible compared to the production lead-time.  

 

For distribution, two main transport types, i.e., inland transport and uncertain 

maritime transport are involved. First, the finished jobs should be transported 

from the warehouses to the assigned terminals. In this process, transportation time 

depends on the distance, while transportation cost depends on both the distance 

and quantity. In the problem considered, multiple terminals are involved that are 

located at different coastal cities. At each terminal, different shipments to 

overseas destinations are available with specific expected schedules. Each 

shipment has a specific freight rate, which has a negative correlation with its 

shipping lead-time. Moreover, each shipment can carry more than one job, but 

each job can only be shipped in a single shipment. Partial delivery is not allowed. 

The timely delivery of each job is particularly vulnerable to the shipping lead-

time of the assigned shipment, which represents the time between the departure 

from one of the domestic ports to the arrival at the destination port. However, in 

reality, this is often uncertain because of the unexpected waiting and operation 

time at ports, bad weather, etc. Unlike other studies, mirroring reality, we assume 

the shipping lead-time of each shipment to be an independent continuous random 

variable 𝑡𝑠 (∀ 𝑠 ∈ 𝑆)  with known distributions. Additionally, we assume the 

following: 

(i) Jobs and production lines are given and available at the beginning of the 

planning horizon. 

(ii) The penalty is due to tardiness. 

(iii) The cost of the storage in overseas distribution centres (DC) is introduced 

because of the early arrival of the shipment.  

(iv) The time and cost of transportation from the destination port to the overseas 
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DC are negligible. 

 

 

Figure 5.1. Illustration of the production–distribution problem in a multi-factory manufacturing 

system with uncertain shipping lead-time. 

 

The objective function aims at minimizing the sum of the total operating costs 

generated in the planning horizon. Six component costs are involved: production 

cost 𝑐𝑗
𝑝𝑟𝑜

 , warehouse storage cost 𝑐𝑗
𝑤 , inland transportation cost 𝑐𝑗

𝑡𝑟 , liner 

shipping cost c𝑗
𝑠, storage cost in the overseas DC 𝑐𝑗

𝐷𝐶𝐸𝑗
𝐷𝐶 and penalty cost 𝑐𝑗

𝑝𝑇𝑗. 

The objective function is formulated as shown below: 

 

min Z1 = ∑ 𝑞𝑗(𝑗∈𝐽 𝑐𝑗
𝑝𝑟𝑜 + 𝑐𝑗

𝑤 + 𝑐𝑗
𝑡𝑟 + c𝑗

𝑠 + 𝑐𝑗
𝐷𝐶𝐸𝑗

𝐷𝐶 + 𝑐𝑗
𝑝𝑇𝑗)   (5.1) 

 

(i) Production cost                                

𝑐𝑗
𝑝𝑟𝑜 = ∑ ∑ 𝑐𝑖𝑗

𝑝𝑟𝑜𝑥𝑖𝑗𝑘𝑘∈𝐽∪{𝑜(𝑒)},𝑘≠𝑗𝑖∈𝐼         (5.2) 

The unit production cost of job j depends on production line i to which the job is 

assigned. 
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(ii) Warehouse storage cost 

𝑐𝑗
𝑤 = ∑ 𝑐

𝑗

𝑤𝑓
𝑓∈𝐹 ℎ

𝑗

𝑤𝑓
             (5.3) 

The unit storage cost of job j in a warehouse 𝑤𝑓 nearby the factory depends on 

factory f that job j is assigned to and the duration for which job j is stored in 

warehouse 𝑤𝑓. The duration is determined as follows: 

ℎ
𝑗

𝑤𝑓 = max( ∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠𝑠∈𝑆 𝐿𝑓𝑖𝑖∈𝐼 − ∑ ∑ ∑ 𝑦𝑖𝑗𝑠𝐿𝑠𝑡𝐿𝑓𝑖𝑡𝑟𝑓𝑡𝑡∈𝑇𝑠∈𝑆𝑖∈𝐼 − 𝑐𝑗 , 0) (5.4) 

The duration not only depends on the completion time of production 𝑐𝑗 and the 

available time of the assigned shipment 𝑎𝑠 but also depends on its corresponding 

inland transportation time 𝑡𝑟𝑓𝑡. 

 (iii) Inland transport cost 

𝑐𝑗
𝑡𝑟 = ∑ ∑ ∑ ∑ 𝑦𝑖𝑗𝑠𝐿𝑠𝑡𝐿𝑓𝑖𝑐𝑓𝑗𝑡

𝑡𝑟
𝑠∈𝑆𝑡∈𝑇𝑖∈𝐼𝑓∈𝐹          (5.5) 

It depends on the distance between the warehouse and the terminal at which the 

assigned shipment of job j is available. 

(iv) Liner shipping cost  

c𝑗
𝑠 = ∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑠𝑠∈𝑆𝑖∈𝐼              (5.6) 

It depends on the unit shipping cost of shipment s to which the job is assigned. 

(v) Storage cost in the overseas DC 

𝑐𝑗
𝐷𝐶𝐸𝑗

𝐷𝐶 = 𝑐𝑗
𝐷𝐶(𝑑𝑗 − 𝑟𝑗)

+            (5.7) 

(vi) Penalty cost 

𝑐𝑗
𝑝𝑇𝑗 = 𝑐𝑗

𝑝(𝑑𝑗 − 𝑟𝑗)
−             (5.8) 

Here 𝑥+ = max(𝑥, 0) , 𝑥− = −min(𝑥, 0). In this problem, the early arrival of the 

job and tardiness are random variables. 

 

Constraints: 

(i) Production constraints 
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Constraints (5.9) – (5.14) control the production sequence on each production line 

in different factories. All the production lines start producing to maximize the 

utilization of the facility, and each job can be assigned to only one production line. 

In addition, each job can have only one predecessor and one successor. 𝑥𝑖𝑜(𝑠)𝑗 

and 𝑥𝑖𝑘𝑜(𝑒)  indicate that jobs j and k are the first and last jobs served on 

production line i.  

∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐽∪{𝑜(𝑒)},𝑘≠𝑗𝑖∈𝐼 = 1     ∀ 𝑗 ∈ 𝐽                    (5.9) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝐽∪{𝑜(𝑠)},𝑗≠𝑘𝑖∈𝐼 = 1     ∀ 𝑘 ∈ 𝐽               (5.10) 

∑ ∑ (𝑥𝑖𝑗𝑘 − 𝑥𝑖𝑘𝑛)𝑛∈𝐽∪{𝑜(𝑒)}𝑗∈𝐽∪{𝑜(𝑠)} = 1     ∀ 𝑘 ∈ 𝐽;  𝑖 ∈ 𝐼          (5.11) 

∑ 𝑥𝑖𝑜(𝑠)𝑘 = 𝑘∈𝐽∪{𝑜(𝑒)} 1    ∀ 𝑖 ∈ 𝐼                  (5.12) 

∑ 𝑥𝑖𝑗𝑜(𝑒) = 𝑗∈𝐽∪{𝑜(𝑠)} 1    ∀ 𝑖 ∈ 𝐼                     (5.13) 

𝑥𝑖𝑗𝑘 + 𝑥𝑖𝑘𝑗 ≤ 1    ∀ 𝑖 ∈ 𝐼;  𝑗 ∈ 𝐽; 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘             (5.14) 

Constraints (5.15) – (5.16) state the relationship of the production starting times 

between two successive jobs and the calculation of the completion time of each 

job. Here, N represents a large constant. 

𝑐𝑗 = 𝑠𝑗 + ∑ ∑ 𝑥𝑖𝑗𝑘𝑝𝑖𝑗𝑘∈𝐽∪{𝑜(𝑒)},𝑘≠𝑗𝑖∈𝐼     ∀𝑗 ∈ 𝐽                  (5.15) 

𝑠𝑘 − 𝑠𝑗 ≥ ∑ 𝑥𝑖𝑗𝑘𝑝𝑖𝑗𝑖∈𝐼 − 𝑁(1 − ∑ 𝑥𝑖𝑗𝑘𝑖∈𝐼 )    ∀ 𝑗 ∈ 𝐽; 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘       (5.16a) 

𝑠𝑘 − 𝑠𝑗 ≤ ∑ 𝑥𝑖𝑗𝑘𝑝𝑖𝑗𝑖∈𝐼 + 𝑁(1 − ∑ 𝑥𝑖𝑗𝑘𝑖∈𝐼 )    ∀ 𝑗 ∈ 𝐽; 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘       (5.16b) 

(ii) Shipment constraints 

Constraint (5.17) limits each job to be assigned to just one shipment. 

∑ ∑ 𝑦𝑖𝑗𝑠 =𝑠∈𝑆𝑖∈𝐼 1    ∀ 𝑗 ∈ 𝐽                            (5.17) 

Constraint (5.18) sets the arrival time of each job at the overseas DC. 

𝑟𝑗 = ∑ ∑ 𝑦𝑖𝑗𝑠(𝑎𝑠 + 𝑡𝑠)𝑠∈𝑆𝑖∈𝐼     ∀𝑗 ∈ 𝐽                             (5.18) 

(iii) Transportation constraints 

Constraint (5.19) states that the available time of the assigned shipment cannot 

be earlier than the production completion time and inland transportation time of 
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the job. 

∑ ∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠𝑠∈𝑆𝑖∈𝐼 𝐿𝑖𝑓𝑓∈𝐹 − ∑ ∑ ∑ ∑ 𝑦𝑖𝑗𝑠𝐿𝑠𝑡𝐿𝑖𝑓𝑡𝑟𝑓𝑡𝑡∈𝑇𝑠∈𝑆𝑖∈𝐼𝑓∈𝐹 ≥ 𝑐𝑗     ∀ 𝑗 ∈ 𝐽     

(5.19) 

(iv) Connection constraints 

Constraint (5.20) links the production scheduling with the shipment selection for 

each job. 

∑ 𝑥𝑖𝑗𝑘𝑘∈𝐽∪{𝑜(𝑒)} − ∑ ∑ 𝑦𝑖𝑗𝑠𝐿𝑠𝑡𝑠∈𝑆𝑡∈𝑇 = 0    ∀ 𝑖 ∈ 𝐼;  𝑗 ∈ 𝐽              (5.20) 

(v) Due date based cut-off rule 

Particularly, constraint (5.21) is a heuristic called the due date based cut-off rule. 

Sun et al. (2015) verified the computational efficiency of the rule without 

sacrificing the optimality of the exact algorithm. Due to the complexity of the 

problem, it is included in the modelling as a new constraint to decrease the 

computational burden. 

∑ ∑ 𝒚𝒊𝒋𝒔𝒂𝒔𝒔∈𝑺𝒊∈𝑰 ≤ 𝐀𝒋 × 𝒅𝒋 + 𝐁𝒋 × 𝒄𝒋 + 𝐂𝒋       ∀𝑗 ∈ 𝐽       (5.21) 

where 

 𝐴𝑗 =
𝑐𝑗
𝑝

𝑐
𝑗
𝑝
− max𝑐𝑤

, 𝐵𝑗 = −
max𝑐𝑤

𝑐
𝑗
𝑝
− max𝑐𝑤

, 𝐶𝑗 =

max𝑐𝑝𝑟𝑜+max𝑐𝑡𝑟−max𝑐𝑤×min𝑡𝑟𝑓𝑡+max𝑐
𝑠−𝑐𝑗

𝑝
×min𝑡𝑠

𝑐
𝑗
𝑝
− max𝑐𝑤

.  

(vi) Non-negativity constraints 

𝑥𝑖𝑗𝑘, 𝑦𝑖𝑗𝑠 ∈ {0,1}; 𝑠𝑗, 𝑐𝑗 ∈ 𝑍
+; 𝑟𝑗 , 𝑐𝑗

𝑝𝑟𝑜, 𝑐𝑗
𝑤, 𝑐𝑗

𝑡𝑟 , c𝑗
𝑠, 𝐸𝑗

𝐷𝐶 , 𝑇𝑗 ∈ 𝑅
+.  (5.22) 

 

In this model, random variables are present in objective function (5.1), constraint 

(5.18) and constraint (5.21). As constraint (5.18) is included in objective function 

(5.1), it can be removed by substitution. Additionally, constraint (5.21) is a right-

hand-side stochastic constraint. Therefore, we set the joint probabilistic 

restriction on constraint (5.21) to further relax the cut-off rule. 
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𝑃𝑟(∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠𝑠∈𝑆𝑖∈𝐼 ≤ A𝑗 × 𝑑𝑗 + B𝑗 × 𝑐𝑗 + C𝑗 ,   ∀𝑗 ∈ 𝐽) ≥  𝛽       (5.23) 

where 𝛽 is a given confidence/reliability level. As random variable 𝑡𝑠∗, where 

𝑠∗ = 𝑎𝑟𝑔min
𝑠∈𝑆

𝜇𝑠 is involved only in term C𝑗, the probabilistic constraint (5.23) 

can be converted into 

𝑃𝑟(−C𝑗 ≤ −∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠 +𝑠∈𝑆𝑖∈𝐼 A𝑗 × 𝑑𝑗 + B𝑗 × 𝑐𝑗 ,   ∀𝑗 ∈ 𝐽)  

= 𝑃𝑟

(

 𝑡𝑠∗ ≤
−∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠+𝑠∈𝑆𝑖∈𝐼 A𝑗×𝑑𝑗+ B𝑗×𝑐𝑗+𝐶𝑗

′

𝑐
𝑗
𝑝

𝑐
𝑗
𝑝
− max𝑐𝑤

,   ∀𝑗 ∈ 𝐽

)

 ≥  𝛽    (5.24) 

where 𝐶𝑗
′ =

max𝑐𝑝𝑟𝑜+max𝑐𝑡𝑟−max𝑐𝑤×min𝑡𝑟𝑓𝑡+max𝑐
𝑠

𝑐
𝑗
𝑝
− max𝑐𝑤

. We set F𝑡𝑠∗
−1(∙) as the inverse 

cumulative distribution function (CDF) of 𝑡𝑠∗. Then probabilistic constraint (5.24) 

is equivalent to 

min

(

 −∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠+𝑠∈𝑆𝑖∈𝐼 A𝑗×𝑑𝑗+ B𝑗×𝑐𝑗+𝐶𝑗
′

𝑐
𝑗
𝑝

𝑐
𝑗
𝑝
− max𝑐𝑤

,   ∀𝑗 ∈ 𝐽

)

 ≥ F𝑡𝑠∗
−1(𝛽), 

which is also equivalent to  

−∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠+𝑠∈𝑆𝑖∈𝐼 A𝑗×𝑑𝑗+ B𝑗×𝑐𝑗+𝐶𝑗
′

𝑐
𝑗
𝑝

𝑐
𝑗
𝑝
− max𝑐𝑤

≥ F𝑡𝑠∗
−1(𝛽)    ∀𝑗 ∈ 𝐽, 

namely,   

∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠𝑠∈𝑆𝑖∈𝐼 ≤ A𝑗 × 𝑑𝑗 + B𝑗 × 𝑐𝑗 + 𝐶𝑗
′ −

𝑐𝑗
𝑝

𝑐
𝑗
𝑝
− max𝑐𝑤

F𝑡𝑠∗
−1(𝛽)   (5.25) 

where  

𝐴𝑗 =
𝑐𝑗
𝑝

𝑐
𝑗
𝑝
− max𝑐𝑤

, 𝐵𝑗 = −
max𝑐𝑤

𝑐
𝑗
𝑝
− max𝑐𝑤

, 𝐶𝑗
′ =

max𝑐𝑝𝑟𝑜+max𝑐𝑡𝑟−max𝑐𝑤×min𝑡𝑟𝑓𝑡+max𝑐
𝑠

𝑐
𝑗
𝑝
− max𝑐𝑤

.  

Therefore, Eq. (5.25) is the deterministic equivalent counterpart of the joint 

probabilistic constraint (5.23). 

 

Hitherto, the uncertainty terms in the problem are present only in objective 
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function (5.1). It is reasonable and feasible to minimize the total operating cost 

with a given confidence/reliability level to obtain a reliable production–

distribution scheduling under uncertainty. According to this concept, the 

probabilistic constraint is further applied to objective function (5.1) to solve the 

stochastic production–distribution scheduling problem. 

 

5.2 Solution methodology 

In this study, the stochastic multi-factory integrated production and distribution 

problem with an uncertain shipping lead-time is first modelled into a joint 

probabilistic constrained integer programming as an approach to measure the 

reliability of the solutions in terms of total operating cost, which is shown in 

Subsection 5.2.1. It is then transformed into an approximate linear deterministic 

equivalent proposed and formulated in Subsection 5.2.2. Fig.5.2 illustrates the 

procedure for the development of the model. 
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5.2.1 Joint probabilistic constrained integer programming 

(JPCIP) 

We define 𝑀 = {(𝑥𝑖𝑗𝑘, 𝑦𝑖𝑗𝑠, ∀ 𝑖 ∈ 𝐼 ; 𝑗 ∈ 𝐽 ⋃𝑜(𝑠) ;  𝑘 ∈ 𝐽 ⋃𝑜(𝑒) ; 𝑠 ∈

𝑆)| (5.9) − (5.17), (5.19), (5.20), (5.22), (5.25)} to be the feasible solutions of 

the problem modelled in Section 5.1 and use (𝑥, 𝑦) to symbolize the element of 

set M, i.e., (x, y) ∈ M where x symbolizes any feasible production assignments 

and sequencings, whereas y symbolizes any feasible shipment selections of all the 

jobs. Then the objective function can be expressed as 

min𝑍2 = 𝑓(𝑥, 𝑦)                        (5.26) 

Stochastic programming 

Monte Carlo 

sampling method 

Sample average 

method 

Equivalent deterministic formulation 

Probabilistic constrained 

programming 

Non-linear 

Non-convexity 

Quadratic 

forms 

Other compound 

functions 

Analytical 

Linear 

Convexity 

Non-linear Linear 

Exact linearization 

techniques 

Linear 

approximation  

Figure 5.2. Description of model development. 
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where                                 

𝑓(𝑥, 𝑦) = min(𝛼 |𝛲𝑟 (∑ 𝑞𝑗(𝑐𝑗
𝑝𝑟𝑜 + 𝑐𝑗

𝑤 + 𝑐𝑗
𝑡𝑟 + 𝑐𝑗

𝑠 + ∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑗
𝑝(𝑡𝑠 +𝑠∈𝑆𝑖∈𝐼𝑗∈𝐽

𝑎𝑠 − 𝐷𝑗)
+
+ ∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑗

𝐷𝐶(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)
−

𝑠∈𝑆𝑖∈𝐼 ) ≤ 𝛼) ≥ 𝛽)    (5.27) 

subject to (𝑥, 𝑦) ∈ 𝑀. 

Objective function (5.26) of the JPCIP aims to minimize the total operating cost 

throughout the system with a probability of at least 𝛽. Here, 𝛽 is a predetermined 

confidence/reliability level, which usually takes the values 0.9, 0.95 and 0.99. 

The detailed formulas of each component cost in Eq. (5.27) are the same as shown 

in (2) – (6). As the probability in (5.27) is continuous and non-decreasing with 

respect to 𝛼, Eq. (5.27) is equivalent to   

𝑓(𝑥, 𝑦) = (𝛼 |𝛲𝑟 (∑ 𝑞𝑗(𝑐𝑗
𝑝𝑟𝑜 + 𝑐𝑗

𝑤 + 𝑐𝑗
𝑡𝑟 + 𝑐𝑗

𝑠 + ∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑗
𝑝(𝑡𝑠 + 𝑎𝑠 −𝑠∈𝑆𝑖∈𝐼𝑗∈𝐽

𝐷𝑗)
+
+ ∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑗

𝐷𝐶(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)
−

𝑠∈𝑆𝑖∈𝐼 ) ≤ 𝛼) = 𝛽)     (5.28) 

Eq. (5.28) indicates that f(x  y) is the maximum total operating cost for reliability 

level 𝛽, given a feasible production and distribution decision (x  y). Therefore, 

the decisions that can keep the maximum total operating cost as low as possible 

under a certain reliability level 𝛽 need to be determined. The constraints for the 

JPCIP are almost the same as formulated in section 5.1 except for constraint 

(5.18), which is removed by substitution, and constraint (5.21), which is replaced 

by its deterministic equivalent counterpart (5.25) by using the joint probabilistic 

restriction. 

Given a feasible solution (𝑥, 𝑦) ∈ 𝑀, the expression of probability in Eq. (5.28) 

becomes 

𝛲𝑟(∑ (𝑎𝑗𝜂𝑗𝑠
+ + 𝑏𝑗𝜂𝑗𝑠

− )𝑗∈𝐽 ≤ 𝛼′) = 𝛽         (5.29) 

where  𝑎𝑗 = 𝑞𝑗𝑐𝑗
𝑝, 𝑏𝑗 = 𝑞𝑗𝑐𝑗

𝐷𝐶 , 𝛼′ = 𝛼 − ∑ 𝑞𝑗(𝑐𝑗
𝑝𝑟𝑜 + 𝑐𝑗

𝑤 + 𝑐𝑗
𝑡𝑟 + c𝑗

𝑠)𝑗∈𝐽 , 𝜂𝑗𝑠 =
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𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗 . Each component on the left side of the probability (5.29) is a 

function of 𝑡𝑠 , i.e., 𝑓𝑗(𝑡𝑠) =  𝑎𝑗𝜂𝑗𝑠
+ + 𝑏𝑗𝜂𝑗𝑠

−  .  Neither the probability 

distribution of 𝑓𝑗(𝑡𝑠)  nor the joint probability distribution of 

∑ 𝑓𝑗(𝑡𝑠)𝑗∈𝐽 can be expressed explicitly.  Therefore, 𝛼′  cannot be transformed 

into a convex deterministic equivalent of (x  y) by Eq. (5.29), i.e., second order 

conic function, and the convexity cannot be further verified. In order to utilize the 

convex optimization method and solve for optimality, JPCIP is transformed into 

an approximate linear deterministic equivalent by considering the reliability of 

the jobs separately. 

 

5.2.2 Approximate linear deterministic equivalent 

In this section, it is shown that the model developed in Subsection 5.2.1 can be 

transformed into approximate equivalent mixed-integer programming by relaxing 

the JPCIP into the individual probabilistic constrained integer programming 

(IPCIP). 

 

When 𝛽𝑗 is set as the reliability level of job j, the reliability level of the entire 

system is  𝛽 ≥  ∏ 𝛽𝑗𝑗∈𝐽  . A high-reliability level of each job guarantees the 

reliability of the entire system. In addition, each job belongs to a different 

customer; thus, it is reasonable to set the reliability level of each job according to 

the service requirement of its corresponding customer.  The solution of the 

IPCIP is then the upper bound of the JPCIP under a specified reliability level. We 

define (𝑥𝑗,𝑦𝑗) to symbolize any feasible decision for production assignment and 

sequencing, as well as shipment selection of job j. The objective function can be 

expressed as 
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min  Z3 = ∑ 𝑓𝑗(𝑗∈𝐽 𝑥𝑗 , 𝑦𝑗)                      (5.30) 

where 

𝑓𝑗(𝑥𝑗 , 𝑦𝑗) = min (𝛼𝑗 |Ρ𝑟 (𝑞𝑗(𝑐𝑗
𝑝𝑟𝑜 + 𝑐𝑗

𝑤 + 𝑐𝑗
𝑡𝑟 + c𝑗

𝑠 + ∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑗
𝑝(𝑡𝑠 +𝑠∈𝑆𝑖∈𝐼

𝑎𝑠 − 𝑑𝑗)
+
+ ∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑗

𝐷𝐶(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)
−

𝑠∈𝑆𝑖∈𝐼 ) ≤ 𝛼𝑗) ≥ 𝛽𝑗)  ∀𝑗 ∈ 𝐽   

               (5.31) 

Objective function (5.30) of the IPCIP is aimed at minimizing the sum of the 

maximum total operating costs of each job under the individual reliability level 

𝛽𝑗. Given the feasible solution of job j (𝑥𝑗 , 𝑦𝑗) ∈ (𝑥, 𝑦) ∈ 𝑀, we set 𝛼𝑗
′ = 𝛼𝑗 −

𝑞𝑗(𝑐𝑗
𝑝𝑟𝑜 + 𝑐𝑗

𝑤 + 𝑐𝑗
𝑡𝑟 + c𝑗

𝑠) (∀𝑗 ∈ 𝐽). Then Eq. (31) can be reformulated into 

𝑓𝑗(𝑥𝑗 , 𝑦𝑗) = 𝑞𝑗(𝑐𝑗
𝑝𝑟𝑜 + 𝑐𝑗

𝑤 + 𝑐𝑗
𝑡𝑟 + c𝑗

𝑠) + 𝑓𝑗
′(𝑦𝑗)      (5.32) 

where 

𝑓𝑗
′(𝑦𝑗) = min (𝛼𝑗

′ |Ρ𝑟 (𝑞𝑗(∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑗
𝑝
(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)

+
+𝑠∈𝑆𝑖∈𝐼

∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑗
𝐷𝐶(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)

−
𝑠∈𝑆𝑖∈𝐼 ) ≤ 𝛼𝑗

′) ≥ 𝛽𝑗)      (5.33) 

Eq. (5.33) shows the implication of function 𝑓𝑗
′(𝑦𝑗)(∀𝑗 ∈ 𝐽)  under a feasible 

solution, which is the risk cost for the penalty and storage cost in the DC of job j 

under reliability level 𝛽𝑗. 

 

Therefore, the objective function can be reformulated as 

 

min  Z3 =∑ (𝑞𝑗(𝑗∈𝐽 𝑐𝑗
𝑝𝑟𝑜 + 𝑐𝑗

𝑤 + 𝑐𝑗
𝑡𝑟 + c𝑗

𝑠) + 𝑓𝑗
′(𝑦𝑗))     (5.34) 

 

subject to (𝑥, 𝑦) ∈ 𝑀. In this case, the equivalent deterministic counterpart of the 

IPCIP can be obtained by the following procedures. Before the transformation, 

let us recall the Principle of Total Probability. 
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Theorem: Principle of Total Probability – 

Let 𝐵1, 𝐵2, … , 𝐵𝑛  be such that ⋃ 𝐵𝑖
𝑛
𝑖=1 = Ω  and 𝐵𝑖 ∩ 𝐵𝑗 = ∅  for all 𝑖 ≠ 𝑗 , 

with Ρ𝑟(𝐵𝑖) > 0 for all i. Then, for any event A,  

Ρ𝑟(𝐴) = ∑ Ρ𝑟(𝐴 ∩ 𝐵𝑖) = ∑ Ρ𝑟(𝐴|𝐵𝑖)Ρ𝑟(𝐵𝑖)
n
𝑖=1

𝑛
𝑖=1 . 

 

As explained in section 5.2.1, Eq. (5.33) is equivalent to 

𝑓𝑗
′(𝑦𝑗)=(𝛼𝑗

′ |Ρ𝑟 (
𝑞𝑗[∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑗

𝑝(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)
+

𝑠∈𝑆𝑖∈𝐼

+∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑗
𝐷𝐶(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)

−
]𝑠∈𝑆𝑖∈𝐼 ≤ 𝛼𝑗

′
) = 𝛽𝑗)  ∀𝑗 ∈ 𝐽 

(5.35) 

then the probability in Eq. (5.35) can be expressed as 

Ρ𝑟 (∑ ∑ 𝑦𝑖𝑗𝑠(𝑐𝑗
𝑝𝜂𝑗𝑠

+ + 𝑐𝑗
𝐷𝐶𝜂𝑗𝑠

− ) ≤
𝛼𝑗
′

𝑞𝑗
𝑠∈𝑆𝑖∈𝐼 ) = 𝛽𝑗                      (5.36) 

where 𝜂𝑗𝑠 = 𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗. 

According to constraint (5.17), there exists one shipment  𝑠∗ ∈ 𝑆   for 𝑦𝑖𝑗𝑠∗ = 1 

and 𝑦𝑖𝑗𝑠 = 0 (∀ 𝑠 ∈ 𝑆, 𝑠 ≠ 𝑠∗). The expression of Eq. (5.36) becomes 

Ρ𝑟((𝑐𝑗
𝑝𝜂𝑗𝑠∗

+ + 𝑐𝑗
𝐷𝐶𝜂𝑗𝑠∗

− ) ≤
𝛼𝑗𝑠∗
′

𝑞𝑗
) = 𝛽𝑗.        (5.37) 

If 𝜂𝑗𝑠∗ ≥ 0, then 𝑐𝑗
𝑝𝜂𝑗𝑠∗

+ + 𝑐𝑗
𝐷𝐶𝜂𝑗𝑠∗

− = 𝑐𝑗
𝑝𝜂𝑗𝑠∗ ≤

𝛼𝑗𝑠∗
′

𝑞𝑗
, 𝜂𝑗𝑠∗ ≤

𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗

. 

If 𝜂𝑗𝑠∗ < 0, then 𝑐𝑗
𝑝𝜂𝑗𝑠∗

+ + 𝑐𝑗
𝐷𝐶𝜂𝑗𝑠∗

− = −𝑐𝑗
𝐷𝐶𝜂𝑗𝑠∗ ≤

𝛼𝑗𝑠∗
′

𝑞𝑗
, 𝜂𝑗𝑠∗ ≥ −

𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

. 

According to the Principle of Total Probability, the left hand side of Eq. (5.37) is 

Ρ𝑟 ((𝑐𝑗
𝑝𝜂𝑗𝑠∗

+ + 𝑐𝑗
𝐷𝐶𝜂𝑗𝑠∗

− ) ≤
𝛼𝑗𝑠∗
′

𝑞𝑗
)  

= Ρ𝑟 ((𝑐𝑗
𝑝𝜂𝑗𝑠∗

+ + 𝑐𝑗
𝐷𝐶𝜂𝑗𝑠∗

− ) ≤
𝛼𝑗𝑠∗
′

𝑞𝑗
 ∩   𝜂𝑗𝑠∗ ≥ 0)  
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+Ρ𝑟 ((𝑐𝑗
𝑝𝜂𝑗𝑠∗

+ + 𝑐𝑗
𝐷𝐶𝜂𝑗𝑠∗

− ) ≤
𝛼𝑗𝑠∗
′

𝑞𝑗
 ∩   𝜂𝑗𝑠∗ < 0)  

= Ρ𝑟 (max(0, 𝑙𝑗𝑠∗) ≤  𝜂𝑗𝑠∗ ≤ min (
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
, 𝑢𝑗𝑠∗))  

+Ρ𝑟 (max (−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, 𝑙𝑗𝑠∗) ≤  𝜂𝑗𝑠∗ < min (0, 𝑢𝑗𝑠∗))      (5.38) 

where (𝑙𝑗𝑠∗ , 𝑢𝑗𝑠∗) are the lower and upper bounds of the random variable 𝜂𝑗𝑠∗, 

which depends on the probability distribution of 𝑡𝑠∗. 

 

Lemma 5.1. For uniform distribution, the corresponding closed form of the 

individual risk cost 𝛼𝑗𝑠∗
′  is: 

𝛼𝑗𝑠∗
′ =

         

{
  
 

  
 𝑐𝑗

𝐷𝐶𝑞𝑗[(𝑢𝑠 − 𝑙𝑠)𝛽𝑗 − 𝑢𝑠 − 𝑎𝑠 + 𝑑𝑗] (𝑢𝑠 − 𝑙𝑠)𝛽𝑗 > (1 +
𝑐𝑗
𝑝

𝑐𝑗
𝐷𝐶)(𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗)

𝑐𝑗
𝑝𝑞𝑗[(𝑢𝑠 − 𝑙𝑠)𝛽𝑗 + 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗] (𝑢𝑠 − 𝑙𝑠)𝛽𝑗 > −(1 +

𝑐𝑗
𝐷𝐶

𝑐
𝑗
𝑝 )(𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗)

(𝑢𝑠 − 𝑙𝑠)𝑞𝑗𝛽𝑗/ (
1

𝑐
𝑗
𝑝 +

1

𝑐𝑗
𝐷𝐶) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

where 𝑢𝑠 and 𝑙𝑠 are the upper and lower bounds of the stochastic shipping 

lead-times 𝑡𝑠, i.e., 𝑡𝑠 ~𝑈(𝑙𝑠, 𝑢𝑠)(𝑠 ∈ 𝑆).  

Proof: 

Let 𝜂𝑗𝑠 = 𝑎𝑠 + 𝑡𝑠 − 𝑑𝑗. As 𝑡𝑠~𝑈(𝑙𝑠, 𝑢𝑠), thus the CDF of 𝑦𝑗𝑠 is: 

F(𝜂𝑗𝑠) = {

0 𝜂𝑗𝑠 ≤ 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗
𝜂𝑗𝑠−(𝑙𝑠+𝑎𝑠−𝑑𝑗)

𝑢𝑠−𝑙𝑠
𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 < 𝜂𝑗𝑠 ≤ 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗

1 𝜂𝑗𝑠 > 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗

  

We have 

𝑃𝑟(𝑐𝑗
𝑝𝑞𝑗𝜂𝑗𝑠

+ + 𝑐𝑗
𝐷𝐶𝑞𝑗𝜂𝑗𝑠

− ≤ 𝛼𝑗𝑠∗
′ ) 

= 𝑃𝑟(𝑐𝑗
𝑝𝑞𝑗𝜂𝑗𝑠

+ + 𝑐𝑗
𝐷𝐶𝑞𝑗𝜂𝑗𝑠

− ≤ 𝛼𝑗𝑠∗
′ ∩ 𝜂𝑗𝑠 ≥ 0) 

+𝑃𝑟(𝑐𝑗
𝑝𝑞𝑗𝜂𝑗𝑠

+ + 𝑐𝑗
𝐷𝐶𝑞𝑗𝜂𝑗𝑠

− ≤ 𝛼𝑗𝑠∗
′ ∩ 𝜂𝑗𝑠 < 0)                                                  (∗)  
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Case 1. 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 ≥ 0 

(∗) = 𝑃𝑟(𝑐𝑗
𝑝𝑞𝑗(𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗) ≤ 𝑐𝑗

𝑝𝑞𝑗𝜂𝑗𝑠 ≤ 𝛼𝑗𝑠∗
′ ) + 0 

= 𝑃𝑟(𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 ≤ 𝜂𝑗𝑠 ≤
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
)  

= F(
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
) − 0  

= 𝛽𝑗  

Thus, 

𝛼
𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
−(𝑙𝑠+𝑎𝑠−𝑑𝑗)

𝑢𝑠−𝑙𝑠
= 𝛽𝑗.  

𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝑝𝑞𝑗[(𝑢𝑠 − 𝑙𝑠)𝛽𝑗 + 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗]. 

 

Case 2. 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 < 0 & 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗 ≥ 0 

(∗) = 𝑃𝑟(0 ≤ 𝑐𝑗
𝑝𝑞𝑗𝜂𝑗𝑠 ≤ 𝛼𝑗𝑠∗

′ ∩ 𝜂𝑗𝑠 ≤ 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗) + 𝑃𝑟(−𝑐𝑗
𝐷𝐶𝑞𝑗𝜂𝑗𝑠 ≤ 𝛼𝑗𝑠∗

′ ∩

𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 ≤ 𝜂𝑗𝑠 < 0)  

= 𝑃𝑟(0 ≤ 𝜂𝑗𝑠 ≤ min(
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
, 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗)) + 𝑃𝑟(max (−

𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗) ≤

𝜂𝑗𝑠 < 0)  

= 𝑃𝑟(max (−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗) ≤ 𝜂𝑗𝑠 ≤ min (
𝛼𝑗𝑠∗
′

𝑐𝑗
𝑝𝑞𝑗

, 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗)) 

= 𝛽𝑗 

If 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗 <
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗

 and 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 ≤ −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, then 

𝑢𝑠+𝑎𝑠−𝑑𝑗+
𝛼
𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

𝑢𝑠−𝑙𝑠
= 𝛽𝑗. 

Therefore, 

𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝐷𝐶𝑞𝑗[(𝑢𝑠 − 𝑙𝑠)𝛽𝑗 − 𝑢𝑠 − 𝑎𝑠 + 𝑑𝑗], under the situation that 

𝑐𝑗
𝐷𝐶𝑞𝑗[(𝑢𝑠 − 𝑙𝑠)𝛽𝑗 − 𝑢𝑠 − 𝑎𝑠 + 𝑑𝑗] > 𝑐𝑗

𝑝𝑞𝑗(𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗), namely 

(𝑢𝑠 − 𝑙𝑠)𝛽𝑗 > (1 +
𝑐𝑗
𝑝

𝑐𝑗
𝐷𝐶)(𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗). 

If 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗 >
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗

 and 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 > −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, then 

𝛼
𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
−(𝑙𝑠+𝑎𝑠−𝑑𝑗)

𝑢𝑠−𝑙𝑠
= 𝛽𝑗. 
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Therefore,  

𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝑝𝑞𝑗[(𝑢𝑠 − 𝑙𝑠)𝛽𝑗 + 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗], under the situation that 

𝑐𝑗
𝑝𝑞𝑗[(𝑢𝑠 − 𝑙𝑠)𝛽𝑗 + 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗] > −𝑐𝑗

𝐷𝐶𝑞𝑗(𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗), namely 

(𝑢𝑠 − 𝑙𝑠)𝛽𝑗 > −(1 +
𝑐𝑗
𝐷𝐶

𝑐
𝑗
𝑝 )(𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗). 

If 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗 >
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗

 and 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 ≤ −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, then 
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
+

𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

=

(𝑢𝑠 − 𝑙𝑠)𝛽𝑗. So, 𝛼𝑗𝑠∗
′ =

(𝑢𝑠−𝑙𝑠)𝛽𝑗𝑞𝑗
1

𝑐
𝑗
𝑝+

1

𝑐𝑗
𝐷𝐶

 under the situation that 
(𝑢𝑠−𝑙𝑠)𝛽𝑗𝑞𝑗

1

𝑐
𝑗
𝑝+

1

𝑐𝑗
𝐷𝐶

<

𝑐𝑗
𝑝𝑞𝑗(𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗) and 

(𝑢𝑠−𝑙𝑠)𝛽𝑗𝑞𝑗
1

𝑐
𝑗
𝑝+

1

𝑐𝑗
𝐷𝐶

≤ −𝑐𝑗
𝐷𝐶𝑞𝑗(𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗), namely 

(𝑢𝑠 − 𝑙𝑠)𝛽𝑗 < min ((1 +
𝑐𝑗
𝑝

𝑐𝑗
𝐷𝐶)(𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗), −(1 +

𝑐𝑗
𝐷𝐶

𝑐
𝑗
𝑝 )(𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗)). 

 

Case 3. 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗 < 0 

(∗) = 0 + 𝑃𝑟(−𝑐𝑗
𝐷𝐶𝑞𝑗𝜂𝑗𝑠 ≤ 𝛼𝑗𝑠∗

′  ∩  𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 ≤ 𝜂𝑗𝑠 ≤ 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗)  

= 𝑃𝑟(max(𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 , −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

) ≤ 𝜂𝑗𝑠 ≤ 𝑢𝑠 + 𝑎𝑠 − 𝑑𝑗)  

= 1 − 𝐹(max(𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 , −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

))  

= 𝛽𝑗  

If −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

> 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 , then 1 −

−
𝛼
𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

−(𝑙𝑠+𝑎𝑠−𝑑𝑗)

𝑢𝑠−𝑙𝑠
= 𝛽𝑗. So, 𝛼𝑗𝑠∗

′ =

−𝑐𝑗
𝐷𝐶𝑞𝑗[(1 − 𝛽𝑗)(𝑢𝑠 − 𝑙𝑠) + 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗]. 

If −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

≤ 𝑙𝑠 + 𝑎𝑠 − 𝑑𝑗 , then 1 − 0 = β, in which equality does hold as 𝛽𝑗 <

1. Therefore, the case is impossible to happen. □ 

                         

Lemma 5.2. For exponential distribution, the individual cost under a given 

reliability level 𝛽𝑗  is as follows 
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𝛼𝑗𝑠∗
′ =

{
 
 

 
 𝑐𝑗

𝑝𝑞𝑗[𝑎𝑠 −
1

𝜆𝑠
ln(1 − 𝛽𝑗) − 𝑑𝑗] −

ln(1 − 𝛽𝑗)

𝜆𝑠
> (1 +

𝑐𝑗
𝐷𝐶

𝑐𝑗
𝑝 )(𝑑𝑗 − 𝑎𝑠)

𝑐𝑗
𝑝𝑞𝑗[𝑎𝑠 −

1

𝜆𝑠
ln(1 − 𝑝𝑗𝑠) − 𝑑𝑗] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑝𝑗𝑠 is the root of the equation 

𝑐𝑗
𝑝 [𝑎𝑠 −

1

𝜆𝑠
ln(1 − 𝛽𝑗) − 𝑑𝑗] = 𝑐𝑗

𝐷𝐶[𝑑𝑗 − 𝑎𝑠 +
1

𝜆𝑠
ln(1 − (𝑝𝑗𝑠 − 𝛽𝑗))]. 

, where 𝜆𝑠 is the mean value of the stochastic shipping lead-times 𝑡𝑠, i.e., 

𝑡𝑠~𝐸𝑥𝑝(𝜆𝑠). 

Proof: 

As 𝑡𝑠~𝐸𝑥𝑝(𝜆𝑠), the CDF F(𝑡𝑠) = 1 − 𝑒−𝜆𝑠𝑡𝑠. 

𝑃𝑟(𝑐𝑗
𝑝𝑞𝑗(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)

+ + 𝑐𝑗
𝐷𝐶𝑞𝑗(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)

− ≤ 𝛼𝑗𝑠∗
′ ) 

= 𝑃𝑟(𝑐𝑗
𝑝𝑞𝑗(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)

+
+ 𝑐𝑗

𝐷𝐶𝑞𝑗(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)
−
≤ 𝛼𝑗𝑠∗

′ ∩ 𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗 > 0) 

+𝑃𝑟(𝑐𝑗
𝑝𝑞𝑗(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)

+
+ 𝑐𝑗

𝐷𝐶𝑞𝑗(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)
−
≤ 𝛼𝑗𝑠∗

′ ∩ 𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗 ≤ 0) 

= 𝑃𝑟(𝑐𝑗
𝑝𝑞𝑗(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗) ≤ 𝛼𝑗𝑠∗

′ ∩ 𝑡𝑠 > 𝑑𝑗 − 𝑎𝑠) 

+𝑃𝑟(−𝑐𝑗
𝐷𝐶𝑞𝑗(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗) ≤ 𝛼𝑗𝑠∗

′ ∩ 0 < 𝑡𝑠 ≤ 𝑑𝑗 − 𝑎𝑠)  

= 𝑃𝑟(𝑑𝑗 − 𝑎𝑠 < 𝑡𝑠 ≤
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
+ 𝑑𝑗 − 𝑎𝑠) + 𝑃𝑟(max (𝑑𝑗 − 𝑎𝑠 −

𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, 0) < 𝑡𝑠 ≤

𝑑𝑗 − 𝑎𝑠)  

= 𝑃𝑟(max(𝑑𝑗 − 𝑎𝑠 −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, 0) ≤ 𝑡𝑠 ≤
𝛼𝑗𝑠∗
′

𝑐𝑗
𝑝𝑞𝑗

+ 𝑑𝑗 − 𝑎𝑠)                                   (∗) 

Case 1. If 𝑑𝑗 − 𝑎𝑠 −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

>0 

(∗) = 𝑃𝑟(𝑑𝑗 − 𝑎𝑠 −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

≤ 𝑡𝑠 ≤
𝛼𝑗𝑠∗
′

𝑐𝑗
𝑝𝑞𝑗

+ 𝑑𝑗 − 𝑎𝑠) 

= 𝐹(
𝛼𝑗𝑠∗
′

𝑐𝑗
𝑝𝑞𝑗

+ 𝑑𝑗 − 𝑎𝑠) − 𝐹(𝑑𝑗 − 𝑎𝑠 −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

) 

= (1 − 𝑒
−𝜆𝑠(

𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
+𝑑𝑗−𝑎𝑠)

) − (1 − 𝑒
−𝜆𝑠(𝑑𝑗−𝑎𝑠−

𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

)

) 

= 𝛽𝑗 
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Set 𝑃1 = 1 − 𝑒
−𝜆𝑠(

𝛼
𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
+𝑑𝑗−𝑎𝑠)

, 𝑃2 = 1 − 𝑒
−𝜆𝑠(𝑑𝑗−𝑎𝑠−

𝛼
𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

)

, then 

𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝑝𝑞𝑗[𝑎𝑠 −
1

𝜆𝑠
ln(1 − 𝑃1) − 𝑑𝑗]  

where 𝑝𝑗𝑠 is the root of the equation 

{
𝑐𝑗
𝑝 [𝑎𝑠 −

1

𝜆𝑠
ln(1 − 𝑃1) − 𝑑𝑗] = 𝑐𝑗

𝐷𝐶[𝑑𝑗 +
1

𝜆𝑠
ln(1 − 𝑃2) − 𝑎𝑠]

𝑃1 − 𝑃2 = 𝛽𝑗

 

Case 2. If 𝑑𝑗 − 𝑎𝑠 −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

< 0 

(∗) = 𝐹(
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
+ 𝑑𝑗 − 𝑎𝑠) = 𝛽𝑗, thus 1 − 𝑒

−𝜆𝑠(
𝛼
𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
+𝑑𝑗−𝑎𝑠)

= 𝛽𝑗. Therefore, 

𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝑝𝑞𝑗 [𝑎𝑠 −
1

𝜆𝑠
ln(1 − 𝛽𝑗) − 𝑑𝑗] , under the situation that 𝑐𝑗

𝑝 [𝑎𝑠 −

1

𝜆𝑠
ln(1 − 𝛽𝑗) − 𝑑𝑗] > 𝑐𝑗

𝐷𝐶(𝑑𝑗 − 𝑎𝑠),  

namely −
ln(1−𝛽𝑗)

𝜆𝑠
> (1 +

𝑐𝑗
𝐷𝐶

𝑐
𝑗
𝑝 )(𝑑𝑗 − 𝑎𝑠). □ 

 

Lemma 5.3. For normal distribution, the individual cost under a given reliability 

level 𝛽𝑗 is as follows 

𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝑝𝑞𝑗[𝜇𝑠 + 𝜎𝑠Φ
−1(𝑝𝑗𝑠) + 𝑎𝑠 − 𝑑𝑗] 

where 𝑝𝑗𝑠 is the root of the equation 

𝑐𝑗
𝑝
[𝜇𝑠 + 𝜎𝑠Φ

−1(𝑝𝑗𝑠) + 𝑎𝑠 − 𝑑𝑗] = 𝑐𝑗
𝐷𝐶[𝑑𝑗 − 𝑎𝑠 − 𝜇𝑠 − 𝜎𝑠Φ

−1(𝑝𝑗𝑠 − 𝛽)],  

and Φ−1(∙) is the inverse CDF of standard normal distribution, 𝑡𝑠~𝑁(𝜇𝑠, 𝜎𝑠
2). 

Proof: 

𝑃𝑟(𝑐𝑗
𝑝𝑞𝑗(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)

+ + 𝑐𝑗
𝐷𝐶𝑞𝑗(𝑡𝑠 + 𝑎𝑠 − 𝑑𝑗)

− ≤ 𝛼𝑗𝑠∗
′ ) 

= 𝑃𝑟(−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

+ 𝑑𝑗 − 𝑎𝑠 < 𝑡𝑠 ≤
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
+ 𝑑𝑗 − 𝑎𝑠)  

= Φ(

𝛼
𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
+𝑑𝑗−𝑎𝑠−𝜇𝑠

𝜎𝑠
)−Φ(

−
𝛼
𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

+𝑑𝑗−𝑎𝑠−𝜇𝑠

𝜎𝑠
)  



109 
 

= 𝛽𝑗  

Set 𝑃1 = Φ(

𝛼
𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
+𝑑𝑗−𝑎𝑠−𝜇𝑠

𝜎𝑠
), 𝑃2 = Φ(

−
𝛼
𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

+𝑑𝑗−𝑎𝑠−𝜇𝑠

𝜎𝑠
), thus 

𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝑝𝑞𝑗[𝜇𝑠 + 𝜎𝑠Φ
−1(𝑃1) + 𝑎𝑠 − 𝑑𝑗]  

where 𝑃1 is the root of the equation 

{
𝑐𝑗
𝑝[𝜇𝑠 + 𝜎𝑠Φ

−1(𝑃1) + 𝑎𝑠 − 𝑑𝑗] = 𝑐𝑗
𝐷𝐶[𝑑𝑗 − 𝑎𝑠 − 𝜇𝑠 − 𝜎𝑠Φ

−1(𝑃2)]

𝑃1 − 𝑃2 = 𝛽𝑗
 □ 

 

Proposition 5.1. The general formula of the individual risk cost under a given 

reliability level 𝛽𝑗 is as follows: 

𝛼𝑗𝑠∗
′ = 

{

𝑐𝑗
𝐷𝐶𝑞𝑗[𝑑𝑗 − 𝑎𝑠∗ − 𝐹

−1(1 − 𝛽𝑗)]   

𝑐𝑗
𝑝
𝑞𝑗[𝐹

−1(𝛽𝑗) + 𝑎𝑠∗−𝑑𝑗]

𝑐𝑗
𝑝𝑞𝑗[𝐹

−1(𝑃𝑗𝑠∗) + 𝑎𝑠∗−𝑑𝑗]

𝑐𝑗
𝑝(𝑈𝑠∗ + 𝑎𝑠∗ − 𝑑𝑗) ≤ 𝑐𝑗

𝐷𝐶(𝑑𝑗 − 𝑎𝑠∗ − 𝐹
−1(1 − 𝛽𝑗))

𝑐𝑗
𝑝
[𝐹−1(𝛽𝑗) + 𝑎𝑠∗−𝑑𝑗] ≥ 𝑐𝑗

𝐷𝐶(𝑑𝑗 − 𝑎𝑠∗ − 𝐿𝑠∗)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

where 𝑃𝑗𝑠∗ is the root of  

{
𝑐𝑗
𝑃[𝐹−1(𝑃𝑗𝑠∗) + 𝑎𝑠∗−𝑑𝑗] = 𝑐𝑗

𝐷𝐶[𝑑𝑗 − 𝑎𝑠∗ − 𝐹
−1(𝑃𝑗𝑠∗

′ )]

𝑃𝑗𝑠∗ − 𝑃𝑗𝑠∗
′ = 𝛽𝑗

 

Here, 𝐹−1(∙)  represents the inverse CDF of the shipping lead-time 𝑡𝑠∗ , 

and (𝐿𝑠∗ , 𝑈𝑠∗) are its lower and upper bounds.  

 

Proof: For the case that 0 < 𝑢𝑗𝑠∗ ≤
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗

 and 𝑙𝑗𝑠∗ > 0, Eq. (5.38) becomes 

  Ρ𝑟(𝑙𝑗𝑠∗ ≤  𝜂𝑗𝑠∗ ≤ 𝑢𝑗𝑠∗) + Ρ𝑟(𝑙𝑗𝑠∗ ≤  𝜂𝑗𝑠∗ < 0) > 1  

which is impossible, so 𝑙𝑗𝑠∗ ≤ 0. Thus Eq. (5.38) is converted into 

Ρ𝑟(0 ≤  𝜂𝑗𝑠∗ ≤ 𝑢𝑗𝑠∗) + Ρ𝑟 (max (−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, 𝑙𝑗𝑠∗) ≤  𝜂𝑗𝑠∗ < 0) 

= Ρ𝑟 (max (−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, 𝑙𝑗𝑠∗) ≤  𝜂𝑗𝑠∗ < 𝑢𝑗𝑠∗)       (5.39) 
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If 𝑙𝑗𝑠∗ < −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, Eq. (5.39) becomes 

Ρ𝑟 (−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

≤  𝜂𝑗𝑠∗ < 𝑢𝑗𝑠∗) = Ρ𝑟 (−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

+ 𝑑𝑗 − 𝑎𝑠∗ ≤  𝑡𝑠∗ < 𝑈𝑠∗) = 𝛽𝑗 (5.40) 

Then, Ρ𝑟 ( 𝑡𝑠∗ < −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

+ 𝑑𝑗 − 𝑎𝑠∗) = 1 − 𝛽𝑗 , −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

+ 𝑑𝑗 − 𝑎𝑠∗ = 𝐹−1(1 −

𝛽𝑗). 

So, in this case, 𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝐷𝐶𝑞𝑗[𝑑𝑗 − 𝑎𝑠∗ − 𝐹
−1(1 − 𝛽𝑗)].  

If 𝑙𝑗𝑠∗ ≥ −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, Eq. (5.39) is 

Ρ𝑟(𝑙𝑗𝑠∗ ≤  𝜂𝑗𝑠∗ ≤ 𝑢𝑗𝑠∗) = 1 ≠ 𝛽𝑗. 

For the case where 𝑢𝑗𝑠∗ ≤ 0,  we have 𝑙𝑗𝑠∗ < 𝑢𝑗𝑠∗ ≤ 0.  Thus, Eq. (5.38) 

becomes 

Ρ𝑟(0 ≤  𝜂𝑗𝑠∗ ≤ 𝑢𝑗𝑠∗) + Ρ𝑟 (max (−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, 𝑙𝑗𝑠∗) ≤  𝜂𝑗𝑠∗ < 𝑢𝑗𝑠∗)  

= 0 + Ρ𝑟 (max (−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, 𝑙𝑗𝑠∗) ≤  𝜂𝑗𝑠∗ < 𝑢𝑗𝑠∗)       (5.41) 

As −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

> 𝑙𝑗𝑠∗ must be hold, so Eq. (5.41) turns into Ρ𝑟 (−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

≤  𝜂𝑗𝑠∗ <

𝑢𝑗𝑠∗) = 𝛽𝑗 , the same as Eq. (5.40). The above procedure indicates that when 

𝑢𝑗𝑠∗ = 𝑈𝑠∗ + 𝑎𝑠∗ − 𝑑𝑗 ≤
𝑐𝑗
𝐷𝐶

𝑐
𝑗
𝑝 (𝑑𝑗 − 𝑎𝑠∗ − 𝐹

−1(1 − 𝛽𝑗)) ,  𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝐷𝐶𝑞𝑗[𝑑𝑗 −

𝑎𝑠∗ − 𝐹
−1(1 − 𝛽𝑗)]. In this case, 𝑙𝑗𝑠∗ = 𝐿𝑠∗ + 𝑎𝑠∗ − 𝑑𝑗 < 𝐹

−1(1 − 𝛽𝑗) + 𝑎𝑠∗ −

𝑑𝑗 must be hold. 

For the case where 𝑢𝑗𝑠∗ = 𝑈𝑠∗ + 𝑎𝑠∗ − 𝑑𝑗 >
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
, Eq. (38) is converted into 

Ρ𝑟 (max(0, 𝑙𝑗𝑠∗) ≤  𝜂𝑗𝑠∗ ≤
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
) + Ρ𝑟 (max (−

𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, 𝑙𝑗𝑠∗) ≤  𝜂𝑗𝑠∗ < 0) = 𝛽𝑗  

               (5.42) 

If 𝑙𝑗𝑠∗ = 𝐿𝑠∗ + 𝑎𝑠∗ − 𝑑𝑗 ≥ −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

, Eq. (42) becomes 

Ρ𝑟 (max(0, 𝑙𝑗𝑠∗) ≤  𝜂𝑗𝑠∗ ≤
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
) + Ρ𝑟(𝑙𝑗𝑠∗ ≤  𝜂𝑗𝑠∗ < 0)  
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= Ρ𝑟 (𝑙𝑗𝑠∗ ≤  𝜂𝑗𝑠∗ ≤
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
) = Ρ𝑟 (𝐿𝑠∗ ≤  𝑡𝑠∗ ≤

𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
− 𝑎𝑠∗ + 𝑑𝑗) = 𝛽𝑗  (5.43) 

So, 𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝑝𝑞𝑗[𝐹
−1(𝛽𝑗) + 𝑎𝑠∗−𝑑𝑗] , which indicates that 𝑐𝑗

𝑝[𝐹−1(𝛽𝑗) +

𝑎𝑠∗−𝑑𝑗] ≥ 𝑐𝑗
𝐷𝐶(𝑑𝑗 − 𝑎𝑠∗ − 𝐿𝑠∗). 

If 𝑙𝑗𝑠∗ = 𝐿𝑠∗ + 𝑎𝑠∗ − 𝑑𝑗 < −
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

≤ 0, Eq. (5.42) becomes 

Ρ𝑟 (0 ≤  𝜂𝑗𝑠∗ ≤
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
) + Ρ𝑟 (−

𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

≤  𝜂𝑗𝑠∗ < 0)  

=Ρ𝑟 (−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

≤  𝜂𝑗𝑠∗ ≤
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
)=Ρ𝑟 (−

𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

− 𝑎𝑠∗+𝑑𝑗 ≤  𝑡𝑠∗ ≤
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
− 𝑎𝑠∗+𝑑𝑗) 

= F (
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
− 𝑎𝑠∗+𝑑𝑗) − F(−

𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

− 𝑎𝑠∗+𝑑𝑗) = 𝛽𝑗     (5.44) 

Set 𝑃𝑗𝑠∗ = F(
𝛼𝑗𝑠∗
′

𝑐
𝑗
𝑝
𝑞𝑗
− 𝑎𝑠∗+𝑑𝑗) and 𝑃𝑗𝑠∗

′ = F(−
𝛼𝑗𝑠∗
′

𝑐𝑗
𝐷𝐶𝑞𝑗

− 𝑎𝑠∗+𝑑𝑗),  

𝛼𝑗𝑠∗
′ = 𝑐𝑗

𝑝𝑞𝑗[𝐹
−1(𝑃𝑗𝑠∗) + 𝑎𝑠∗ − 𝑑𝑗] = 𝑐𝑗

𝐷𝐶𝑞𝑗[𝑑𝑗 − 𝑎𝑠∗ − 𝐹
−1(𝑃𝑗𝑠∗

′ )], for the case 

that 𝑐𝑗
𝑝[𝐹−1(𝛽𝑗) + 𝑎𝑠∗−𝑑𝑗] < 𝑐𝑗

𝐷𝐶(𝑑𝑗 − 𝑎𝑠∗ − 𝐿𝑠∗). Due to Eq. (5.44), 𝑃𝑗𝑠∗  is 

the root of 

{
𝑐𝑗
𝑝[𝐹−1(𝑃𝑗𝑠∗) + 𝑎𝑠∗ − 𝑑𝑗] = −𝑐𝑗

𝐷𝐶[𝐹−1(𝑃𝑗𝑠∗
′ ) + 𝑎𝑠∗ − 𝑑𝑗]

𝑃𝑗𝑠∗ − 𝑃𝑗𝑠∗
′ = 𝛽𝑗 .

      

In the above case, 𝑢𝑗𝑠∗ = 𝑈𝑠∗ + 𝑎𝑠∗ − 𝑑𝑗 > 𝐹
−1(𝛽𝑗) + 𝑎𝑠∗−𝑑𝑗  must hold. □ 

 

Proposition 5.1 verified that the individual risk cost can be found under once the 

probability distribution is given and this closed form is applicable to any 

distribution satisfying the basic probability distribution properties. Given the 

probability distribution, the value of 𝑃𝑗𝑠∗  can be calculated numerically and is 

determined by the selected shipment and its responsible job. Because 𝑠∗ ∈ 𝑆 is 

any feasible shipment selection for job j, the expression of 𝑓𝑗
′(𝑦𝑗) is 

𝑓𝑗
′(𝑦𝑗) = 𝛼𝑗

′ = ∑ ∑ 𝑦𝑖𝑗𝑠𝛼𝑗𝑠
′

𝑠∈𝑆𝑖∈𝐼 , ∀ 𝑗 ∈ 𝐽.  

 

Eventually, the IPCIP is formulated into  
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min  Z4 =∑ 𝑞𝑗(𝑗∈𝐽 ∑ ∑ 𝑐𝑖𝑗
𝑝𝑟𝑜𝑥𝑖𝑗𝑘𝑘∈𝐽∪{𝑜(𝑒)},𝑘≠𝑗𝑖∈𝐼 +

∑ 𝑐
𝑗

𝑤𝑓
𝑓∈𝐹 max( ∑ ∑ 𝑦𝑖𝑗𝑠𝑎𝑠𝑠∈𝑆 𝐿𝑓𝑖𝑖∈𝐼 + ∑ ∑ ∑ 𝑦𝑖𝑗𝑠𝐿𝑠𝑡𝐿𝑓𝑖𝑡𝑟𝑓𝑡𝑡∈𝑇𝑠∈𝑆𝑖∈𝐼 − 𝑐𝑗 , 0) +

∑ ∑ ∑ ∑ 𝑦𝑖𝑗𝑠𝐿𝑠𝑡𝐿𝑓𝑖𝑐𝑓𝑗𝑡
𝑡𝑟

𝑠∈𝑆𝑡∈𝑇𝑖∈𝐼𝑓∈𝐹 + ∑ ∑ 𝑦𝑖𝑗𝑠𝑐𝑠𝑠∈𝑆𝑖∈𝐼 ) + ∑ ∑ 𝑦𝑖𝑗𝑠𝛼𝑗𝑠
′

𝑠∈𝑆𝑖∈𝐼   

(5.45) 

where,  

𝛼𝑗𝑠
′ = 

{

𝑐𝑗
𝐷𝐶𝑞𝑗[𝑑𝑗 − 𝑎𝑠 − 𝐹

−1(1 − 𝛽𝑗)]    

𝑐𝑗
𝑝𝑞𝑗[𝐹

−1(𝛽𝑗) + 𝑎𝑠−𝑑𝑗]

𝑐𝑗
𝑝𝑞𝑗[𝐹

−1(𝑃𝑗𝑠) + 𝑎𝑠−𝑑𝑗]

𝑐𝑗
𝑝(𝑈𝑠 + 𝑎𝑠 − 𝑑𝑗) ≤ 𝑐𝑗

𝐷𝐶(𝑑𝑗 − 𝑎𝑠 − 𝐹
−1(1 − 𝛽𝑗))

𝑐𝑗
𝑝[𝐹−1(𝛽𝑗) + 𝑎𝑠−𝑑𝑗] ≥ 𝑐𝑗

𝐷𝐶(𝑑𝑗 − 𝑎𝑠 − 𝐿𝑠)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

  

 where 𝑃𝑗𝑠 is the root of  

{
𝑐𝑗
𝑝[𝐹−1(𝑃𝑗𝑠) + 𝑎𝑠−𝑑𝑗] = 𝑐𝑗

𝐷𝐶[𝑑𝑗 − 𝑎𝑠 − 𝐹
−1(𝑃𝑗𝑠

′ )]

𝑃𝑗𝑠 − 𝑃𝑗𝑠
′ = 𝛽𝑗 .

 

subject to (5.9) - (5.17), (5.19), (5.20), (5.22) and (5.25). 

 

It thus indicates that the IPCIP can be equivalent to mixed-integer programming 

and is applicable to any continuous probability distribution. 

 

5.2.3 Managerial insights 

Remark 5.1. The inverse cumulative distribution function 𝐹−1(∙)  is an 

increasing function of the standard deviation of the random variable 𝑡𝑠 (∀s ∈ S). 

Given the reliability level and the mean of the shipping lead-time, a deviation in 

the shipping lead-time directly determines the varying ranges of the risk cost of 

each job according to the formula in Proposition 5.1. This is illustrated in Fig. 5.3 

and Fig. 5.4. 
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Figure 5.3. Illustration of the quantitative relationship between shipping deviation and unit risk cost 

(𝛽𝑗= 0.95, 𝑐𝑗
𝑝
= 6.3, 𝑐𝑗

𝐷𝐶= 0.8, 𝑑𝑗  = 30, 𝑎𝑠= 20, 𝜇𝑠= 10). 

 

 

 

Figure 5.4. Illustration of the quantitative relationship between shipping deviation and unit risk cost 

(𝛽𝑗= 0.95, 𝑐𝑗
𝑝
= 10, 𝑐𝑗

𝐷𝐶= 1, 𝑑𝑗  = 30, 𝑎𝑠= 20, 𝜇𝑠= 10). 
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Remark 5.2. For the risk-averse case, when the deviation of the shipment cannot 

be predicted, the shipment with an earlier departure time can cut down the risk 

cost, which requires the production scheduling to be much more adaptive so as to 

make the completion time early enough. 

 

Corollary 5.1. For any case, a negative impact of the shipping lead-time 

uncertainty on the risk cost cannot be avoided. For the risk-averse case, the 

smaller the deviation of the selected shipment is, the lower the risk cost can be. 

Except for the extreme situation of 𝑐𝑗
𝑝(𝑈𝑠 + 𝑎𝑠 − 𝑑𝑗) ≤ 𝑐𝑗

𝐷𝐶(𝑑𝑗 − 𝑎𝑠 − 𝐹
−1(1 −

𝛽𝑗)) , the decrease is significant and equals [𝐹𝜎+∆𝜎
−1 (𝛽) − 𝐹𝜎

−1(𝛽)]𝑐𝑗
𝑝𝑞𝑗 ( 𝛽 ≥

𝛽𝑗 , 𝑗 ∈ 𝐽). 

 

Corollary 5.2. Except for the external factors, a high penalty level of job j 

amplifies the negative impact of the shipping lead-time uncertainty on the risk 

cost of the job by Δ𝑐𝑗
𝑝𝑞𝑗𝐹

−1(𝛽) (𝛽 ≥ 𝛽𝑗). 

 

Corollary 5.3. An additional risk cost of job j is introduced because of the 

possible storage cost in the DC under reliability level 𝛽𝑗 when the cost ratio is 

𝑐𝑗
𝐷𝐶

𝑐
𝑗
𝑝 >

[𝐹−1(𝛽𝑗)+𝑎𝑠−𝑑𝑗]

(𝑑𝑗−𝑎𝑠−𝐿𝑠)
. The additional risk cost depends on 𝛽𝑗, which is equal to 

𝑐𝑗
𝑝𝑞𝑗[𝐹

−1(𝑃𝑗𝑠) − 𝐹
−1(𝛽𝑗)]. 

 

This is an intuitive result as a low storage cost brings about a lower impact on the 

operating cost, and a high penalty cost dominates the risk cost. However, the 

effect of a high storage cost on the risk cost cannot be negligible under a high-

reliability level. This lemma formally formulates these intuitions by the cost ratio 
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of the DC storage cost and penalty cost. It also implies that the selection of 

shipments with earlier departure times and short lead-times cannot always be risk-

averse decisions. 

 

5.3 Numerical experiments 

This section is divided into two subsections. The method of problem generation 

for numerical experiments is presented firstly. Then, the method for comparison 

between stochastic model and deterministic model is described in Subsection 

5.3.2. 

5.3.1 Problem generation 

In this section, we evaluate the performance of the proposed IPCIP from three 

distinct aspects. To test the effectiveness of the IPCIP, the shipping lead-time is 

assumed to follow a normal distribution. We coded this mixed-integer 

programming in the IBM ILOG CPLEX Optimization Studio 12.5 and executed 

it on Intel® Core™ i7-4700MQ CPU @ 2.40GHz. Small-size problems are 

generated with 10 jobs at two geographically dispersed factories that have two 

production lines each. It is assumed that the unit production costs are the same in 

these two factories. Three shipping market situations are considered here, i.e., 

peak season, normal and off-season to observe their impact on the performance 

of the proposed model. The situation is reflected by the number of shipments 

available in the shipping market during the planning horizon, i.e., 20, 40 and 60 

shipments. Two terminals are considered in the assumed maritime transport 

network, and the number of shipments available in Terminal 1 is 2–3 times of that 

in Terminal 2. The input data are randomly generated as follows. 
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Table 5.1 Data generation 

Input data Description 

Unit production cost (𝑐𝑖𝑗
𝑝𝑟𝑜

) U(15,20) 

Unit warehouse storage cost (𝑐
𝑗

𝑤𝑓
)   2%− 3%𝑐𝑗

𝑝𝑟𝑜
   

Production capacity in the middle land 

factory  U(5,10) 
Production capacity in the coastal 

factory   80%U(5,10) 
Quantity (𝑞𝑗)  N(75, 52)  

Due date (𝑑𝑗) 
𝑁(𝐸(𝑝𝑖𝑗) + 𝐸(𝜇𝑠), 0.01[𝐸(𝑝𝑖𝑗) +

𝐸(𝜇𝑠)]
2)   

Unit penalty cost (𝑐𝑗
𝑝
)  20%− 100%𝑐𝑗

𝑝𝑟𝑜
 

Expected shipping lead time (𝜇𝑠)  U(10,30) 
Standard deviation of shipping lead time 

(𝜎𝑠) 
 

𝜇𝑠

10
, 
𝜇𝑠

9
, 
𝜇𝑠

8
, 
𝜇𝑠

7
, 
𝜇𝑠

6
 

Unit inland transportation cost (𝑐𝑓𝑗𝑡
𝑡𝑟 )  5%𝑐𝑗

𝑝𝑟𝑜
𝑡𝑟𝑓𝑡 

Unit liner shipping cost (𝑐s)  
300

𝜇𝑠
2  

Unit storage cost at DC (c𝑗
𝐷𝐶)  5%𝑐𝑗

𝑝𝑟𝑜
   

 

5.3.2 Demonstration of the significance of the proposed model 

To demonstrate the significance of the proposed model, the traditional 

deterministic method of the proposed model, which is called the deterministic 

multi-factory integrated production and distribution model (DMIPD), is used for 

comparison in this research. In DMIPD, the multiple factories are treated as an 

integrated manufacturing system. The production and distribution scheduling 

among the factories are related and affect each other. In terms of the shipments, 

the uncertainty of the shipping lead-time is represented by its expected value. 

 

We test the performance of the proposed IPCIP from three distinct aspects: 

shipping market situation, uncertainty level and penalty level. All the optimal 

solutions of the IPCIP are obtained at an individual reliability level 𝛽𝑗 =

0.95 (∀ 𝑗 ∈ 𝐽) . For each instance of the problem, 10 data sets are randomly 

generated for the tests. Because we have (3*5) + (2*3*2) = 27 different instances, 
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we obtain 270 different problem data sets. For each instance, we calculate the 

estimated reliability level by Monte Carlo sampling for both the proposed IPCIP 

and DMIPD and the corresponding improvement in the reliability level, namely 

( 𝑃𝑟
�̃�(α) − 𝑃𝑟

�̃�(𝛼) ), where α  is the given budget level. The estimated 

probability  𝑃�̃�(α) =
1

𝑁
∑ 1(0,∞)(α − 𝑍𝑖)
𝑁
𝑖=1   where 1(0,∞)(𝑡) = {

1  𝑖𝑓 𝑡 > 0 
0  𝑖𝑓 𝑡 ≤ 0

 , 

𝑍𝑖  is the total operating cost of the ith sample. Here, N = 1,000,000. 

 

5.4 Results and discussion of the proposed IPCIP vs DMIPD 

In the section, the comparison between the proposed stochastic model and the 

traditional expected model was carried considering three aspects. Subsection 

5.4.1 demonstrates the comparison under different shipping market situations. 

Subsections 5.4.2 and 5.4.3 demonstrate the comparison results in terms of 

different uncertainty levels and penalty levels. 

 

5.4.1 Performance of IPCIP vs DMIPD in terms of shipping 

market situations 

Fig. 5.5 shows the estimated average probabilities at which the total operating 

cost is within certain budget levels, which are obtained by the optimal solutions 

of the IPCIP and the DMIPD in terms of different shipping market situations. 

Here, we assume that the number of shipments available in the market represents 

different shipping market situations. Table 5.2 presents the corresponding data of 

Fig. 5.5 in detail. The ith line of Table 5.2 indicates the estimated probabilities at 
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which the total operating cost is no more than (1+0.05(i-1)) times the expected 

optimal value Z by the corresponding to the solutions of the IPCIP and DMIPD, 

i.e., 𝑃𝑟
�̃�([1 + 0.05(𝑖 − 1)]𝑍)  and 𝑃𝑟

�̃�([1 + 0.05(𝑖 − 1)]𝑍)  under three 

different shipping market situations. Firstly, the first line of Table 5.2 shows that 

irrespective of the model, the probability of realizing the expected optimal value 

Z is less than 3% under any situation. It is verified that if uncertainty exists, the 

expected optimal value obtained by the traditional deterministic method is fake, 

which is too low to be realized. Secondly, as we increase the budget level, the 

reliability level of the entire production–distribution system is improved. With 

the use of the IPCIP, the reliability level is increased faster than with the DMIPD 

for any shipment availability situation in the planning horizon. When the budget 

level increases by 35% of the expected optimal operating cost, the reliability level 

of the entire system can be improved from 2.3% to 83.9%, 1.9% to 75.6% and 

0.6% to 65.5% for the situations of 20, 40 and 60 shipments being available in 

the market, respectively. Compared with the DMIPD, the corresponding 

improved percentages achieved by the IPCIP are 9%, 17.9% and 23.9%. It is 

demonstrated that the results obtained by the traditional deterministic method are 

unreliable for the situation with many shipments being available. 
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Figure 5.5. Estimated reliability level achieved by DMIPD and IPCIP given the budget levels. 

 

Table 5.2 Performance of the IPCIP and DMIPD within the given budget levels under different 

shipment situations. 

No. of available shipments 

60 40 20 

Multiples 

of 

expected 

optimal 

values ($) 

Estimated 

probability 

(%) 

Multiples 

of 

expected 

optimal 

values ($) 

Estimated 

probability 

(%) 

Multiples 

of 

expected 

optimal 

values ($) 

Estimated 

probability 

(%) 

new exp. new exp. new exp. 

Z 0.6 0.2 1Z 1.9 0.5 1Z 2.3 1.9 

1.05Z 1.9 0.7 1.05Z 5.2 1.7 1.05Z 6.7 5.0 

1.1Z 4.7 2.1 1.1Z 10.8 4.6 1.1Z 14.4 10.9 

1.15Z 10.6 5.3 1.15Z 20.4 10.2 1.15Z 26.9 20.7 

1.2Z 20.8 10.7 1.2Z 33.4 18.8 1.2Z 43.5 33.6 

1.25Z 34.6 18.9 1.25Z 48.6 30.4 1.25Z 59.2 47.7 

1.3Z 50.3 29.5 1.3Z 62.8 44.1 1.3Z 73.5 62.5 

1.35Z 65.6 41.7 1.35Z 75.6 57.7 1.35Z 83.9 74.9 

1.4Z 77.8 54.4 1.4Z 84.8 69.8 1.4Z 91.4 84.1 

1.45Z 86.8 66.1 1.45Z 91.2 79.7 1.45Z 95.5 90.7 

1.5Z 92.7 76.1 1.5Z 95.3 87.2 1.5Z 98.1 94.9 

1.55Z 96.3 84.3 1.55Z 97.7 92.4 1.55Z 99.3 97.2 

 

Fig. 5.6 presents the estimated improved percentages achieved by the IPCIP. It 
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shows that the average improved percentage first increases along with the budget 

level and later decreases and approaches 0. The reason is that the corresponding 

probabilities of both the IPCIP and the DMIPD approach 1 when the budget level 

is continuously extended to a large value. It is observed that when the available 

shipments are 20, 40 and 60, the corresponding maximum improvements made 

by the IPCIP are, on average, 11.5%, 18.7% and 23.9%. It demonstrates that with 

the increase in the number of available shipments, the performance of the IPCIP 

becomes much more significant with respect to the improvement in the reliability 

of the production–distribution system. Figs. 5.7 and 5.9 and Figs. 5.8 and 5.10 

illustrate in detail the optimal production–distribution scheduling obtained by the 

DMIPD and the IPCIP, respectively, for the cases of 20 and 60 shipments 

available in the market. The shaded boxes in Fig. 5.8 and Fig. 5.10 show the 

adjusted scheduling for both the production and distribution parts after applying 

the IPCIP. It is demonstrated that when many shipments are available in the 

market, the new model can make the production scheduling adaptive for better 

shipment selections with small deviated lead-times or early departure times to 

decrease the negative impact of the shipping uncertainty. 
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Figure 5.6. Estimated improved percentages by IPCIP given the budget levels under different 

shipment available situations. 

 

 

 

 

Figure 5.7. Illustration of the detailed optimal solution for a scheduling problem with 10 jobs 

and 20 shipment selections by the DMIPD. 
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Figure 5.8. Illustration of the detailed optimal solution for a scheduling problem with 10 jobs 

and 20 shipment selections by the IPCIP. 

 

 

Figure 5.9. Illustration of the detailed optimal solution for a scheduling problem with 10 jobs 

and 60 shipment selections by the DMIPD. 

 

 

Figure 5.10. Illustration of the detailed optimal solution for a scheduling problem with 10 jobs 

and 60 shipment selections by the IPCIP. 
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5.4.2 Performance of IPCIP vs DMIPD in terms of uncertainty 

level 

Tables 5.3, 5.4 and 5.5 reflect the influence of different uncertainty levels on the 

performance of the IPCIP and DMIPD under three different shipping market 

situations, respectively. The ith line of Table 5.3 (5.4, 5.5) indicates the estimated 

reliability levels of the corresponding solutions of the IPCIP and DMIPD under a 

certain budget level [1 + 0.05(𝑖 − 1)]𝑍 , i.e., 𝑃𝑟
�̃�([1 + 0.05(𝑖 − 1)]𝑍)  and 

𝑃𝑟
�̃�([1 + 0.05(𝑖 − 1)]𝑍) for different uncertainty levels. The uncertainty level is 

measured by the standard deviation of the random shipping lead-time 𝑡𝑠, which 

is varied within [
𝜇𝑠

10
, 
𝜇𝑠

6
]. Large (small) standard deviations correspond to high (low) 

uncertainty levels. Firstly, it is shown that the solutions obtained from the DMIPD 

are extremely unreliable when the uncertainty level increases, which is consistent 

with the analytical results of Proposition 5.1. Given a budget level of 135% of the 

expected optimal value Z, when the standard deviation of the shipping lead-time 

increases from 
𝜇𝑠

10
 to 

𝜇𝑠

6
 (∀ s ∈ S), the reliability levels of the DMIPD solutions 

decrease from 99.2% to 74.9%, 96.5% to 57.7% and 90.5% to 41.7% for 20, 40 

and 60 available shipments, respectively. However, under the IPCIP, the 

reliability levels corresponding to a high uncertainty level (i.e., σ𝑠 =
𝜇𝑠

6
, ∀ s ∈ S) 

are 83.9%, 75.6% and 65.6%, respectively. Secondly, even for a low uncertainty 

level, the reliability levels of the DMIPD solutions are not satisfactory. When the 

standard deviation is 
𝜇𝑠

10
 and the budget is increased by 25%, its reliability level 

only reached 65.6%, whereas the corresponding reliability level of the IPCIP 
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solutions is 83%. 

  

Table 5.3. Performance of the IPCIP and DMIPD in terms of different uncertainty levels under 

the case of a large number of shipments available. 

Multiples 

of 

expected 

optimal 

value ($) 

  Standard deviation σ𝑠 

𝜇𝑠/6 𝜇𝑠/7 𝜇𝑠/8 𝜇𝑠/9 𝜇𝑠/10 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

Z 0.6 0.2 1.0 0.3 1.5 0.6 1.9 0.8 2.3 1.2 

1.05Z 1.9 0.7 3.0 1.4 4.1 2.2 5.4 3.3 6.7 4.6 

1.1Z 4.7 2.1 7.5 4.0 10.5 6.4 14.3 9.5 18.2 13.0 

1.15Z 10.6 5.3 16.4 9.4 23.0 14.7 31.5 20.8 38.2 27.8 

1.2Z 20.8 10.7 30.8 18.3 41.2 27.2 53.8 37.0 63.7 46.6 

1.25Z 34.6 18.9 48.6 30.5 61.5 42.9 74.1 54.8 83.0 65.6 

1.3Z 50.3 29.5 66.2 44.7 79.5 59.0 88.3 71.0 94.0 80.7 

1.35Z 65.6 41.7 80.4 59.0 89.6 73.2 95.6 83.7 98.2 90.5 

1.4Z 77.8 54.4 89.7 71.7 95.6 84.0 98.6 91.6 99.5 95.9 

1.45Z 86.8 66.1 95.1 81.8 98.4 91.2 99.6 96.2 99.9 98.5 

1.5Z 92.7 76.1 98.0 89.1 99.5 95.6 99.9 98.4 100.0 99.5 

1.55Z 96.3 84.3 99.2 93.8 99.9 97.9 100.0 99.4 100.0 99.9 

  

Table 5.4 Performance of the IPCIP and DMIPD in terms of different uncertainty levels under 

the case of a medium number of shipments available. 

Multiples 

of 

expected 

optimal 

value ($) 

  Standard deviation σ𝑠 

𝜇𝑠/6 𝜇𝑠/7 𝜇𝑠/8 𝜇𝑠/9 𝜇𝑠/10 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

Z 1.9 0.5 2.7 0.9 2.9 1.3 3.4 1.8 3.2 2.3 

1.05Z 5.2 1.7 6.8 3.0 8.6 4.5 10.5 6.2 10.9 8.1 

1.1Z 10.8 4.6 15.1 7.8 19.5 11.6 24.0 16.1 28.7 21.0 

1.15Z 20.4 10.2 29.0 16.7 37.0 23.9 43.9 32.5 52.3 40.7 

1.2Z 33.4 18.8 46.5 29.5 56.1 40.8 65.6 52.4 75.0 62.8 

1.25Z 48.6 30.4 62.3 44.9 73.2 58.8 81.7 70.7 89.7 80.2 

1.3Z 62.8 44.1 76.6 60.6 85.9 74.2 91.8 84.3 96.7 91.0 

1.35Z 75.6 57.7 86.9 74.1 93.4 85.6 96.9 92.7 99.1 96.5 

1.4Z 84.8 69.8 93.4 84.2 97.3 92.6 98.9 96.9 99.8 98.8 

1.45Z 91.2 79.7 96.9 91.1 99.0 96.6 99.7 98.8 100.0 99.6 

1.5Z 95.3 87.2 98.7 95.3 99.7 98.5 99.9 99.6 100.0 99.9 

1.55Z 97.7 92.4 99.5 97.7 99.9 99.4 100.0 99.9 100.0 100.0 

 

The corresponding improvement curves of the reliability level of the system 

achieved by the IPCIP are presented in Figs. 5.11, 5.12 and 5.13. Firstly, it is 
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shown that for any shipping market situation, overall, the improved percentages 

increase with an increase in the standard deviation of the shipping lead-time σ𝑠 

(s ∈ S) . When the standard deviation σ𝑠  (s ∈ S)  increases from 
𝜇𝑠

10
  to 

𝜇𝑠

6
 , the 

maximum improved percentages increase from 5.2% to 11.5%, 12.2% to 18.7% 

and 17.4% to 23.9% for the cases of the 20, 40 and 60 available shipments, 

respectively. The following is the analysis of covariance (ANCOVA), which is 

conducted to check whether the uncertainty level is related to the shipping market 

situation towards the performance of the proposed IPCIP.  

  

Table 5.5 Performance of the IPCIP and DMIPD in terms of different uncertainty levels under 

the case of a small number of shipments available 

Multiples 

of 

expected 

optimal 

value ($) 

  Standard deviation σ𝑠  
𝜇𝑠/6 𝜇𝑠/7 𝜇𝑠/8 𝜇𝑠/9 𝜇𝑠/10 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

Z 2.3 1.9 3.1 2.6 3.9 3.5 4.3 4.0 5.8 5.0 

1.05Z 6.7 5.0 9.0 7.2 12.0 10.0 15.3 12.3 18.7 15.8 

1.1Z 14.4 10.9 21.4 16.1 27.4 22.4 35.2 28.6 40.6 36.0 

1.15Z 26.9 20.7 38.0 29.9 47.8 40.1 58.9 50.6 65.3 60.1 

1.2Z 43.5 33.6 55.1 46.9 67.6 59.4 78.6 70.4 84.0 79.8 

1.25Z 59.2 47.7 73.9 63.4 83.4 75.7 91.4 85.2 94.7 91.3 

1.3Z 73.5 62.5 85.1 77.5 92.2 87.4 97.1 93.8 98.5 96.8 

1.35Z 83.9 74.9 92.8 87.2 96.9 94.2 99.2 97.7 99.7 99.2 

1.4Z 91.4 84.1 97.0 93.5 99.1 97.6 99.8 99.2 99.9 99.8 

1.45Z 95.5 90.7 98.8 96.9 99.7 99.1 100.0 99.8 100.0 99.9 

1.5Z 98.1 94.9 99.5 98.6 99.9 99.7 100.0 100.0 100.0 100.0 

1.55Z 99.3 97.2 99.9 99.5 100.0 99.9 100.0 100.0 100.0 100.0 

 

Table 4.6 gives the test results for the relation between the uncertainty level and 

the number of shipments available in the market. When the p-value equals 0.082 

> 0.05, there is no significant relation between these two factors. ANCOVA shows 

that both these factors have significant effects on the performance of the IPCIP. 

By regression analysis, as presented in Table 4.7, given the budget and penalty 

levels, we obtain the linear relationship P𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝛽0 + 𝛽1𝐴 + 𝛽2𝐵 with 
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𝑅2 = 0.947, where P𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 represents the improved percentage obtained 

from the IPCIP compared with the DMIPD, and A and B represent the shipping 

market situation and uncertainty level, respectively. 𝛽0, 𝛽1, 𝛽2 are the constants 

related to the given budget as well as the penalty levels. 

 

 
Figure 5.11. Estimated improved percentages by the IPCIP under different uncertainty levels 

with a large number of shipments available. 
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Figure 5.12. Estimated improved percentages by the IPCIP under different uncertainty levels 

with a medium number of shipments available. 

  

 

Figure 5.13. Estimated improved percentages by the IPCIP under different uncertainty levels 

with a small number of shipments available. 
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Therefore, it is demonstrated that the performance of the IPCIP has a positive 

correlation with the uncertainty level for any shipping market situation. However, 

the impact of the uncertainty level on the performance of the IPCIP is independent 

of the shipping market situation. It indicates that even under the case of limited 

shipments being available, if high uncertainty is predictable, the new model can 

guarantee a relative improvement in the reliability of the system to a certain extent. 

 

Table 5.6 Test for the interaction effect between the uncertainty level and the number of 

shipments available in the market on the performance of the IPCIP. 

  F Sig. 

shipment size*uncertainty level 3.349 0.082 

shipment size 8.700 0.008 

penalty level 86.690 0.000 

 

  

Table 5.7 Regression analysis for the performance of the IPCIP in terms of the uncertainty level 

and the number of shipments available in the market. 

  Coef. Std.err. Sig. 

(constant) -20.255 2.649 0.000 

shipment size 6.500 0.534 0.000 

uncertainty level 149.837 18.468 0.000 

F 106.977  0.000 

R2 0.947     

 

5.4.3 Performance of IPCIP vs DMIPD in terms of penalty level 

Figs. 5.14–5.19 show the estimated improved percentages obtained from the 

IPCIP in terms of different penalty levels given the different shipping market 

situations and uncertainty levels. The corresponding data are shown in Tables 

5.8–5.10. The penalty level of each job is denoted by the ratio of its unit penalty 

cost to the unit production cost (i.e., 
𝑐𝑗
𝑝

𝑐
𝑗
𝑝𝑟𝑜) and is set to be 20%, 50% and 100%.  
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Figure 5.14. Estimated average improved percentages by the IPCIP in terms of different penalty 

levels under the case of a large number of available shipments and a high uncertainty level. 

 

Figure 5.15. Estimated average improved percentages by the IPCIP in terms of different penalty 

levels under the case of a medium number of available shipments and a high uncertainty level. 
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Figure 5.16. Estimated average improved percentages by the IPCIP in terms of different penalty 

levels under the case of a small number of available shipments and a high uncertainty level. 

 

Figure 5.17. Estimated average improved percentages by the IPCIP in terms of different penalty 

levels under the case of a large number of available shipments and a low uncertainty level. 
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Figure 5.18. Estimated average improved percentages by the IPCIP in terms of different penalty 

levels under the case of a medium number of shipments available and low uncertainty level. 

 

Figure 5.19. Estimated average improved percentages by the IPCIP in terms of different penalty 

levels under the case of a small number of available shipments and a low uncertainty level. 
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Firstly, as shown in Figs. 5.14–5.19, the improved percentage has an increasing 

trend with the penalty level for any shipping market situation and uncertainty 

level. Secondly, given the case of 60 available shipments and a high uncertainty 

level (i.e., σ𝑠 =
𝜇𝑠

6
, ∀ s ∈ S) (see Fig. 5.14), the maximum improved percentages 

are 11%, 23.9% and 32.2% for the cases of 20%, 50% and 100% penalty levels, 

respectively. Under the low uncertainty situation (see Fig. 5.17), the 

corresponding improved percentages are 6.5%, 17.4% and 23.5%. Comparatively, 

under a high uncertainty level, both the mean and variance of the improved 

percentages are larger. Thirdly, as presented in Figs. 5.14, 5.15 and 5.16 (5.17, 

5.18 and 5.19), when the penalty is low (i.e., 20% of the production cost), the 

impact of the number of available shipments on the performance of the IPCIP is 

not significant. The maximum improvements are 8%, 10.8% and 11% (4.2%, 

6.1% and 6.5%). However, when the penalty is increased to 100% of the 

production cost, the impact of the number of available shipments on the 

performance of the IPCIP becomes significant where the maximum improved 

percentage is increased from 11.9% to 32.2% (6.2% to 20.4%). The impact of the 

penalty level on the performance of the IPCIP has a great correlation with the 

shipping market situation. Therefore, regression analysis is conducted to identify 

the correlation between the penalty level (C) and the shipping market situation 

(A), as well as that between the penalty level (C) and the uncertainty level (B). 
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Table 5.8 Performance of the IPCIP and DMIPD in terms of different penalty levels under the 

case of a large number of shipments available. 

Multiples 

of 

expected 

optimal 

value ($) 

 𝜎𝑠 = 𝜇𝑠/6  𝜎𝑠 = 𝜇𝑠/10 

20% 50% 100% 20% 50% 100% 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

Z 1.3 0.5 0.7 0.2 1.1 0.2 4.2 3.7 2.8 1.4 2.8 1.0 

1.05Z 4.4 2.6 2.1 0.8 2.2 0.4 13.6 13.4 7.2 5.3 6.5 2.7 

1.1Z 10.9 8.5 5.1 2.3 4.2 1.0 39.7 37.6 19.1 14.4 12.7 6.0 

1.15Z 26.3 21.2 11.6 5.7 7.4 1.9 77.2 71.2 40.0 29.7 22.8 11.7 

1.2Z 51.6 41.5 22.5 11.4 11.8 3.4 95.7 91.5 66.6 48.9 36.6 20.0 

1.25Z 76.3 64.3 37.2 20.1 18.3 5.9 99.6 98.2 85.8 67.8 51.7 30.2 

1.3Z 91.2 82.2 53.7 31.1 26.1 9.3 100 99.7 96.0 82.6 65.5 42.3 

1.35Z 97.5 92.7 69.2 43.7 35.7 13.5 100 100 99.0 91.8 78.1 54.6 

1.4Z 99.4 97.4 81.0 56.8 45.6 18.9 100 100 99.8 96.6 86.1 66.3 

1.45Z 99.9 99.1 89.3 68.5 54.8 25.3 100 100 100 98.7 92.6 76.1 

1.5Z 100 99.7 94.3 78.4 64.2 32.3 100 100 100 99.6 96.0 84.0 

1.55Z 100 100 97.4 86.0 71.9 39.8 100 100 100 99.9 98.0 89.7 

1.6Z 100 100 98.8 91.6 78.8 47.4 100 100 100 100 98.9 93.8 

1.65Z 100 100 99.5 96.5 84.4 55.1 100 100 100 100 99.4 96.3 

1.7Z 100 100 99.8 97.2 88.6 62.2 100 100 100 100 99.6 98.0 

 

Table 5.11 shows the test results for the correlation between any two of these three 

factors. The p-values corresponding to the correlations between A and B, B and 

C and A and C are 0.326, 0.020 and 0.000, respectively. It is identified that an 

interaction effect exists between the shipping market situation (A) and penalty 

level (C), as well as between the uncertainty level (B) and penalty level (C). No 

obvious interaction effect exists between the shipment market situation (A) and 

uncertainty level (B), which is consistent with the results in section 5.4.2. By 

regression analysis (see Table 5.12), we obtain the relationship 𝑃𝐼𝑃𝐶𝐼𝑃 −

𝑃𝐷𝑀𝐼𝑃𝐷 = 𝛽0
′ + 𝐶 ∗ (𝛽1

′𝐴 + 𝛽2
′𝐵)  with 𝑅2 = 0.848 where 𝑃𝐼𝑃𝐶𝐼𝑃(𝐷𝑀𝐼𝑃𝐷) 

represents the reliability level achieved by the IPCIP (DMIPD) given a certain 

budget level, and 𝛽0
′ , 𝛽1

′ , 𝛽2
′  are the coefficients related to the budget level.  
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Table 5.9 Performance of the IPCIP and DMIPD in terms of different penalty levels under the 

case of a medium number of shipments available. 

Multiples 

of 

expected 

optimal 

value ($) 

 𝜎𝑠 = 𝜇𝑠/6  𝜎𝑠 = 𝜇𝑠/10 

20% 50% 100% 20% 50% 100% 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

Z 0.2 0.3 1.9 0.5 3.4 0.8 1.2 1.6 3.2 2.3 6.0 3.0 

1.05Z 2.2 2.2 5.2 1.7 5.7 1.7 13.2 13.1 10.9 8.1 12.0 6.5 

1.1Z 11.4 9.8 10.8 4.6 9.3 3.2 49.8 44.4 28.7 21.0 20.2 12.5 

1.15Z 32.3 26.4 20.4 10.2 14.3 5.6 84.5 78.5 52.3 40.7 32.3 21.3 

1.2Z 60.0 49.2 33.4 18.8 20.5 8.8 97.5 94.9 75.0 62.8 46.6 32.2 

1.25Z 81.2 71.0 48.6 30.4 27.9 13.2 99.8 99.3 89.7 80.2 61.0 44.8 

1.3Z 93.1 86.1 62.8 44.1 36.4 18.9 100 99.9 96.7 91.0 73.7 56.6 

1.35Z 98.0 94.4 75.6 57.7 45.3 25.4 100 100 99.1 96.5 83.4 67.9 

1.4Z 99.5 98.1 84.8 69.8 54.1 32.6 100 100 99.8 98.8 90.1 76.6 

1.45Z 99.9 99.4 91.2 79.7 62.2 40.3 100 100 100 99.6 94.7 83.8 

1.5Z 100 99.9 95.3 87.2 70.2 48.1 100 100 100 99.9 97.4 88.9 

1.55Z 100 100 97.7 92.4 76.8 55.7 100 100 100 100 98.7 92.6 

1.6Z 100 100 98.9 95.5 82.4 62.6 100 100 100 100 99.4 95.3 

1.65Z 100 100 99.6 97.6 87.0 69.1 100 100 100 100 99.8 97.0 

1.7Z 100 100 99.8 98.8 90.3 74.9 100 100 100 100 99.9 98.1 

 

The results demonstrate that the individual analytical relationship between the 

reliability level and the deviation of the selected shipment, as well as the penalty 

level of the job, formulated in Proposition 5.1, is suitable for the entire system. 

Irrespective of the situation of the shipping market, when the shipping lead-time 

deviation is large, a high penalty coefficient will further amplify the negative 

impact of the shipping uncertainty on the reliability of the entire system. However, 

the proposed IPCIP can well compensate the low reliability of the risk cost caused 

by the amplification effect between the penalty level and shipping uncertainty, 

especially in the peak season of the shipping market. 
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Table 5.10 Performance of the IPCIP and DMIPD in terms of different penalty levels under the 

case of a small number of shipments available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.11 Test for the interaction effect between any two of the three factors on the 

performance of the IPCIP. 

  F Sig. 

shipment size*penalty level 7.104 0.000 

shipment size*uncertainty level 1.170 0.326 

uncertainty level* penalty level 3.857 0.020 

 

Table 5.12 Regression analysis for the performance of the IPCIP in terms of the three factors. 

  Coef. Std.err. Sig. 

(constant) -0.027 0.568 0.963 

shipment size*penalty level 3.605 0.545 0.000 

uncertainty level*penalty level 42.173 10.076 0.000 

F 117.112  0.000 

R2 0.848     

 

5.5 Summary 

In global supply chains, the uncertainty due to shipping problems leads to risk 

costs for the shippers, i.e., manufacturers, which influences the overall 

profitability and service level of the shippers. In this study, we focus on the 

Multiples 

of 

expected 

optimal 

value ($) 

 𝜎𝑠 = 𝜇𝑠/6  𝜎𝑠 = 𝜇𝑠/10 

20% 50% 100% 20% 50% 100% 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

new 

(%) 

exp. 

(%) 

1Z 1.8 1.8 2.3 1.9 3.7 2.7 4.0 5.2 5.8 5.0 6.8 5.5 

1.05Z 7.1 7.1 6.7 5.0 6.0 4.5 23.2 26.2 18.7 15.8 13.3 11.1 

1.1Z 21.3 20.8 14.4 10.9 9.8 7.4 64.6 63.3 40.6 36.0 23.7 19.5 

1.15Z 47.5 42.9 26.9 20.7 15.5 11.3 93.4 89.2 65.3 60.1 37.5 31.3 

1.2Z 74.4 66.4 43.5 33.6 22.5 16.5 99.5 97.9 84.0 79.8 52.4 46.9 

1.25Z 91.3 83.9 59.2 47.7 31.3 23.1 100 99.7 94.7 91.3 66.2 60.9 

1.3Z 97.7 93.4 73.5 62.5 40.3 30.9 100 100 98.5 96.8 79.3 73.0 

1.35Z 99.5 97.6 83.9 74.9 49.6 39.3 100 100 99.7 99.2 88.2 82.7 

1.4Z 99.9 99.3 91.4 84.1 60.0 48.1 100 100 99.9 99.8 93.6 89.6 

1.45Z 100 99.8 95.5 90.7 68.2 56.4 100 100 100 99.9 96.9 93.9 

1.5Z 100 99.9 98.1 94.9 75.9 64.6 100 100 100 100.0 98.7 96.5 

1.55Z 100 100 99.3 97.2 81.9 71.8 100 100 100 100.0 99.4 98.2 

1.6Z 100 100 99.8 98.7 86.9 77.9 100 100 100 100 99.8 99.1 

1.65Z 100 100 100 99.5 90.9 83.0 100 100 100 100 99.9 99.5 

1.7Z 100 100 100 99.9 93.8 87.2 100 100 100 100 100 99.8 
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impacts of the liner shipping lead-time uncertainty on the multi-factory 

production-distribution scheduling from the perspective of the manufacturers. 

Instead of applying the expected value in the objective function, the probabilistic 

constrained technique is applied to quantify the total operating cost including the 

risk cost under a specific reliability level. The decision should be made in terms 

of three aspects: the job assignment among the factories, production scheduling 

in each factory, as well as the selection of the shipment for each job. The objective 

function is to minimize the total operating cost under an overall reliability level. 

As jobs belong to different customers, the reliability level of each job guarantees 

the reliability of the entire system. Thus, the JPCIP is reformulated into the IPCIP 

by considering the reliability level of each job separately. In this way, equivalent 

deterministic mixed-integer programming is formulated to assess the necessity 

for considering the shipping randomness and its impact on the multi-factory 

production–distribution scheduling and the total operating costs.  

 

Based on probability theory, the analytical quantitative relationship of the 

individual risk cost in terms of the probabilistic and schedule information of the 

selected shipment under a specified reliability level is determined. For any case, 

a negative impact of the shipping lead-time uncertainty cannot be avoided. 

Therefore, adaptive production scheduling is highly required to avoid high-risk 

shipment selections, especially in the shipping market peak season. Additionally, 

a high penalty level will amplify the negative impact of the shipping uncertainty. 

However, when the storage cost reaches a particular point, additional risk cost 

will be introduced. Therefore, the pure buffer method cannot always be a good 

risk-averse solution. 

The numerical experiments and statistical analyses are carried out to verify the 
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effectiveness of the proposed optimization method IPCIP as well as the suitability 

of the proposed relationship for the entire system. It was demonstrated that when 

a large number of shipments are available in the market, the new model can make 

the production scheduling adaptive to the better shipment selections with small 

deviated lead-times or early departure times so as to decrease the negative impact 

of the shipping uncertainty. In addition, the degree of impact of the uncertainty 

level on the performance of the proposed model is not affected by the shipping 

market situation, which indicates that once high uncertainty exists, the new model 

can guarantee relative improvement on the reliability level of the system even 

under the case of limited shipments being available. Moreover, the proposed 

model is highly recommended for the case when the penalty level is high, as it 

enables compensation for the low reliability on the risk cost brought about by the 

amplification effect between the penalty level and the shipping uncertainty, 

especially in the peak season of the shipping market. 
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Chapter 6 Overall conclusions and future studies 

In this chapter, the proposed models and methodologies are discussed firstly. The 

results obtained are then analysed for implication and managerial insights. Finally, 

the limitations of the studies and future work are discussed. 

 

6.1 Overall conclusions 

As the main support in the global trade, the reliability of container liner shipping 

dominates the reliability level of the whole supply chain. However, the high risk 

coming from the expensive storage and penalty costs brought about by the 

unreliability of container liner shipping is usually undertaken by the shippers, i.e., 

manufacturers. Moreover, the decisions cannot change once the products depart 

from the ports, thus the shipment assignment with distinct available times and 

long liner shipping lead-times brings many more challenges for make-to-order 

manufacturers. More reliable production scheduling and shipment assignment is 

essential to coordinate the limits and uncertainties coming from container liner 

shipping. However, in the existing literature, researchers focused on studies under 

a single-factory manufacturing environment, and the impact of the dominated 

transport mode, i.e., maritime transport, on the production and distribution for 

detailed scheduling level has not been addressed. Therefore, the corresponding 

research gaps were filled in this research study period, and the main contribution 

are summarized as follows: 

 

1. A new integrated model which can simultaneously determine the bi-
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assignment of each job among factories and machines, job scheduling on each 

machine as well as shipment assignment of each job was proposed to solve 

the practical production and distribution problems faced by the make-to-order 

approach under a deterministic background. Pure mathematical programming 

was formulated for this problem with consideration of two types of 

transportation, i.e., in-land distance and quantity dependent multi-destination 

transport and shipping schedule based maritime transport. The objective was 

to minimize total operating cost including production, earliness due to waiting 

for delivery at warehouses, in-land transport, liner shipping, earliness and 

tardiness of delivery.  

 

2. Due to the complexity and strong NP-hardness, even for small-scale problems, 

it cannot be solved in acceptable times. Thus, based on the proposed objective 

function, a valid inequality called the due-date based cut-off rule (DBC) was 

developed to accelerate the computational time of the enumerated branch and 

bound method, and thus optimal solutions were obtained in a reasonable time.  

 

3. In order to make the model applicable, a novel hybrid 2-level genetic 

algorithm that is guided by fuzzy controllers was proposed. Level 1 is 

responsible for production line assignment. Two fuzzy controllers based on 

the workload condition and busy condition on each production line were 

developed for the mutation operator in level 1. Level 2 is responsible for job 

scheduling and shipment assignment. A greedy search with DBC was used for 

the shipment assignment for each job. It was verified that the proposed hybrid 

fuzzy guided GA can get optimal solutions for small-scale problems and 

superior solutions for large-scale problems compared with simple GA in terms 
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of both computational time and solution quality. 

 

4. Based on the proposed deterministic model, a new stochastic model for the 

detailed production and distribution scheduling problem for a parallel-

structured multi-factory manufacturing system was proposed with further 

consideration of liner shipping uncertainty. Thus, a new objective function 

which makes a trade-off between deterministic cost and risk cost was 

proposed to obtain more reliable production and distribution scheduling 

solutions. 

 

 

5. A deterministic equivalent counterpart for the risk cost of each job was 

formulated in terms of the non-monotonic loss function composed of both 

earliness and tardiness penalties. The proposed formulation was a general 

form for the individual risk cost, which was applicable for arbitrary 

continuous probability distributions. 

 

Based on the proposed models, methodologies, and formulations, useful 

implication and managerial insights were obtained according to the results 

obtained by numerical experiments. The following summarises the main results 

and managerial insights: 

 

1. Under the deterministic problem background, the integrated model 

outperformed the separated multi-factory scheduling model in terms of total 

operating cost, especially for cases when the number of shipments available 

in the market is limited and the production cost difference among factories 
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become large. The main contribution came from the reduction of earliness 

penalties caused by the holding cost at the warehouse in waiting for delivery 

and early arrival at the overseas destination, as well as the tardiness penalties 

due to late delivery. It verified that coordination among different factories 

with distinct production capacities was highly important to realize overall 

benefits. Timely delivery can be achieved by close linkage between 

production and distribution, which can be attained only after sufficient 

coordination among the factories. 

 

2. Under the stochastic problem background, the numerical experiments verified 

that as long as uncertainty exists, the expected optimal cost obtained by the 

expected method was fake, being too low to be achieved. The proposed 

stochastic model was verified to be remarkably significant under the case of 

many shipments being available in the market. In addition, once high 

uncertainty is predicable, the proposed model can guarantee relative 

improvement in the reliability level of the system, even for the case of limited 

shipments being available. Moreover, the proposed model enabled 

compensation on the amplification effect between the penalty level and the 

shipping uncertainty, especially in the peak season. The results verified that, 

for any case, a negative impact of the shipping lead-time uncertainty cannot 

be avoided. Therefore, adaptive production scheduling is greatly required to 

avoid high-risk shipment selections, especially in the shipping market peak 

season. When high storage cost is involved, additional risk costs will be 

introduced. Thus, the pure buffer method cannot always be a good risk-averse 

solution in terms of total costs. 

 



142 
 

6.2 Limitations and future work 

In order to study the complicated integrated production and distribution 

scheduling problem, some assumptions related to both production network and 

maritime transport have been simplified for the current stage studies. The studies 

can be extended to more practical problems, as in the following suggestions: 

 

1. In the current study discussed in Chapter 5, a stochastic production and 

distribution scheduling problem was modelled with the objective of 

minimizing the total costs without random variables and the sum of individual 

risk cost of each job under a given reliability level. The risk cost was 

considered at the individual order level. However, multiple jobs can be 

assigned to the same shipment, which corresponds to a joint risk cost of jobs 

shipped together. The formulation of the joint risk cost will be different from 

the individual risk cost mathematically, which made the modelling a more 

general form. The relationship for jobs shipped together as well as the 

relationship among the jobs and their assigned shipment can be further studied. 

 

2. In the current stage study, it was assumed that multiple jobs belonging to 

different customers can be shipped by one shipment and discharged at the 

same destination port. In reality, due to the characteristics of maritime 

transport, a vessel has its own routing and multiple stops are involved in its 

voyage. Each stop corresponds to one port of call. The jobs ordered by 

different customers via one shipment can be discharged at different 

destination ports. In that case, vessel routing instead of direct shipping is 

involved. The shipping lead-time is then divided into several shipping lead-
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times in which the follow-up shipping lead time depends on its precedent. The 

shipping lead-times are not independent any more. Variant variance of the 

shipments undertaken by the same vessel may be taken into consideration. 

 

3. For production part, perfect reliability in terms of the multi-factory production 

network was assumed. However, there is no perfect manufacturing system in 

reality and correction maintenance for an uncertain machine breakdown is 

inevitable. In that case, the decisions to be made maybe divided into two 

stages. The decision made in the second stage, i.e., shipment selection, 

depends on the state and decision made in the first stage, i.e., the job allocation 

and scheduling.  

 

4. Due to the high uncertainty brought about by maritime transport, the 

traditional pricing method without consideration of uncertainty is not 

reasonable. In the existing literature, the integrated scheduling problems 

involving pricing and due date assignment were considered under a 

deterministic background. When uncertainty exists, the pricing method is 

supposed to be modified with consideration of risk costs. In that case, 

reliability is a factor affecting the pricing in a positive way. 
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