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ABSTRACT

Multi-view learning methods often achieve performance improvement compared with

single-view based methods in many applications. In this thesis, we mainly focus on multi-

view learning and its application of classification. Four novel multi-view based methods are

proposed.

Considering the similarity and diversity existing in various views, the Joint Similar

and Specific Learning (JSSL) is first proposed to jointly and sparsely represent different

views. In this method, each view is sparsely represented by the production of the view-

specific dictionary and representation coefficient. Particularly, the coefficient is divided into

two parts: the similar one and specific one. Thanks to this structure, we can not only exploit

the correlation among various views, but also extract individual components, representing

multiple views in an reasonable way. An efficient algorithm is proposed to alternatively

update the similar and specific parts in JSSL.

However, in many real-world datasets, the distributions are complex and linearly rep-

resenting the data, like JSSL, can not meet our requirement in many applications. To address

this problem, we propose another multi-view learning method based on the Gaussian Process

Latent Variable Model (GPLVM) to learn a set of non-linear and non-parametric mapping

functions. GPLVM is a generative model which assumes there is a mapping function that can

project a latent variable from a low-dimensional subspace to the observed high-dimensional

space. In order to apply GPLVM to the multi-view data, we assume that there is a shared la-

tent variable among various views and the conditionally independent mapping function with

Gaussian Process (GP) prior can be learned for each view which can project the shared vari-

able to its specific observed space. Here we denote this as the decoding part. Furthermore,

we also introduce an additional mapping from the observed data to the shared space. Here
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we denote this as the encoding part. Due to this auto-encoder framework, both non-linear

projections from and to the observation are considered simultaneously. Furthermore, differ-

ent from the conventional auto-encoder methods, we enforce the GP prior on the encoder,

which remarkably reduces the number of estimated parameters and avoids the phenomenon

of over-fitting. In this thesis, we call this method as Shared Auto-encoder Gaussian Process

latent variable model (SAGP). To apply SAGP to the classification, a discriminative regu-

larization is also embedded to encourage the latent variables belonging to the same class to

be close while these belonging to different classes to be far. In the optimization process, the

alternating direction method (ADM) and gradient decent technique are combined to update

the encoder and decoder effectively.

Although SAGP achieves an improvement compared with JSSL, it makes a strong

assumption on the kernel function, such as Radial Basis Function (RBF), which limits the

capacity of real data modeling. In order to address this issue, we further propose another

GPLVM based method, named Multi-Kernel Shared Gaussian Process latent variable model

(MKSGP). Instead of designing a deterministic kernel function, like SAGP, multiple kernels

are adaptively selected to construct the encoder and decoder. In MKSGP, weights corre-

sponding to different kernel functions are automatically learned for different input datasets,

which can represent the data in a more reasonable way. Furthermore, different from SAGP

which uses the classifer offline, a hinge loss is embedded into the model to jointly learn the

classification hyperplane, encouraging the latent variables belonging to different classes to

be separated. In this way, the learned classifier would be more suitable for the input data. Be-

ing similar to SAGP, we optimize the encoder and decoder alternatively by using ADM and

gradient decent method. Experimental results demonstrate that MKSGP is more powerful

than SAGP.

JSSL, SAGP and MKSGP can well exploit the correlation among different views.

However, in many real-world applications, each view often contains multiple features, which

means this type of data has a hierarchical structure, while JSSL, SAGP and MKSGP do not
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take these features with the multi-layer structure into account. In this thesis, we propose

a probabilistic hierarchical model to tackle this issue and apply it to classification. Here,

this approach is named as Hierarchical Multi-view Multi-feature Fusion (HMMF). In this

model, the multiple features extracted from a common view are first fused as a latent variable.

Concretely, we assume that the extracted multiple features are generated from this latent

variable. To achieve this goal, projection matrices corresponding to a certain view are learned

to map the latent variable from a shared space to the multiple observations. Since we prefer

to applying this method to classification, the estimated latent variables corresponding to

different views are influenced by their ground-truth label. In this way, this kind of multi-view

and multi-feature data are fused hierarchically. In order to effectively solve the proposed

method, the Expectation-Maximization (EM) algorithm is applied to estimate the parameters

and latent variables.

To quantitatively evaluate the effectiveness of our four proposed multi-view methods,

some experiments are conducted on several datasets, including synthetic dataset and real-

world datasets. Experimental results on these datasets substantiate the effectiveness and

superiority of our approaches as compared with some state-of-the-art methods.

Keywords: Multi-view, Sparse representation, Gaussian process, Latent variable model,

Classification.
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CHAPTER 1

INTRODUCTION

Classification as a classical field has always attracted much attention in pattern recog-

nition. Many works [63] [54] on classification have been done. The popular classifiers for

pattern recognition including K-Nearest Neighbor (KNN) [2] and Support Machine Vector

(SVM) [10] are widely used due to their effectiveness and simplicity. With the rapid de-

velopment of L1 norm, the sparse representation also has been exploited in computer vision

(e.g. Image restoration [49], face recognition [73]). In [73], Wright et al. proposed so-called

sparse representation based classification (SRC) for face recognition. In SRC, the sample is

represented with a dictionary consisting of training samples, and SRC gets a great improve-

ment in face recognition. Considering the samples that are corrupted by noise or outliers,

some robust models are presented [80], [53]. In [80], the method could regress a given sam-

ple robustly with regularized regression coefficients, while Nie et al. [53] used L2,1 norm

for the loss function which could robustly selected the feature for classification. Many other

models with sparse representation have been presented in [19], [88], [78], [57], [79] and

[77]. Recently, with the rapid development of the deep learning, some deep learning based

methods [31] [24] [62] also achieve remarkable performance in classification.

Although many methods are presented for classification, most methods only consider

the single view. However, there always exists different views from a common sample in

practice. For instance, a single object (e.g. face) can be captured from various angles or an

image can be represented with different features, such as Scale Invariant Feature Transform

(SIFT) [47] and Histogram of Oriented Gradient (HOG) [71]. These kinds of data are often

named as multi-view or multi-modal data. It has been proven that exploiting multi-view data

would contribute to the performance improvement for classification. Thus, it is important

and necessary to make a deep research on multi-view learning. In this thesis, we focus on
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how to well exploit the multi-view data and improve the performance for classification.

1.1 Main Problems

The key problem for the multi-view learning is how to model the correlations across

different modalities to overcome the limitation of a single view. A naive way is to con-

catenate different single views as a large one. Then the single view based classifiers such

as KNN, SVM and SRC can be used to process these concatenated vectors. Although this

strategy is easy to achieve, a common limitation is that it fails to exploit the latent structure

or correlation across multiple modalities. Generally, a reasonable assumption is that differ-

ent views are the different representations from a same object. Therefore, it is common to

assume that there exists a latent variable across various views, and what we should do is to

estimate a view-specific mapping [23, 40, 42, 68, 72] to project this latent variable from the

common space to each observation. Although some multi-view learning methods have been

proposed and achieve a satisfactory performance in some situations, there are still several

problems that should be solved:

(1) How to quantify the similarity and diversity existing in different views. The most

of existing multi-view learning methods assume that there is only common or similar part

across different views and several metrics are used to evaluate the similarity. For instance,

Yuan et al. [83] exploited the joint sparse representation (JSR) to jointly represent multiple

modalities with the L21 norm. This norm encourages the zero and non-zero elements of the

representation coefficients corresponding to various views on the same rows. By contrast,

Yang et al. [81] enforced the coefficients of different views to be close to their mean to

measure the similarity. However, these kinds of assumptions are too restrictive. For different

views, there are also view-specific components. Jointly taking the similar and specific parts

into consideration can represent the data in a more reasonable way. Thus, in this thesis we

propose a novel method named Joint Similar and Specific Learning (JSSL) [44] to extract

the similarity and diversity simultaneously. Due to the effectiveness and robustness of the

sparse representation, the input is first represented sparsely. Different from existing methods
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which only consider the common or similar part, the representation coefficient in JSSL is

divided into two parts: the similar one and the specific one. To exploit the correlation across

various views, we also enforce the similar parts to be close to their mean value. Thanks to

this similar and specific structure, JSSL achieves an improvement on classification compared

with the state-of-the-art methods. This method has been published in [44].

(2) How to represent the data in a non-linear way. In general, the distributions of the

real-world datasets are complex and simple linear representation can not meet our require-

ment in many situations. To adapt the non-linearity existing in the data, some kernel based

methods, such as kernel canonical correlation analysis (CCA) [1, 18, 33], randomized non-

linear CCA [46] etc. were proposed. Instead of assuming a specific set of deterministic or

parametric functions, the Gaussian Process Latent Variable Model (GPLVM) [15] [37] [14]

[69] as a non-parametric and generative strategy was proposed to non-linearly and effective-

ly fit the data. Lawrence et al. [37] presented GPLVM in 2004 to learn a low-dimensional

latent variable in a non-linear way. Due to the Gaussian Process (GP) [56] prior embedded

on the mapping function, the covariance function of GPLVM often has a powerful variety,

which contributes to characterizing the real-world data with complicated distributions and

diverge content [64]. Because of the powerful capacity of GPLVM, in this thesis, we pro-

pose a novel method to extract the correlation across various views by using GPLVM. Being

similar to shared GPLVM (SGPLVM) [14], a shared variable is learned for multiple views

by using the view-specific mapping functions with the Gaussian Process (GP) prior. How-

ever, our method is far different from GPLVM. Although the GPLVM as well as its various

extensions have been well learned in recent years, few of them consider the mappings from

and to the observations in a joint model. In other words, conventional GPLVM only assume

that there is a projection from the low-dimensional latent space to the high dimensional ob-

served space. However, at the testing stage, given a testing sample, what we need is the

latent variable corresponding to the testing sample. In GPLVM, to get this latent variable,

we should combine the test sample and the training samples together and use some strategies

such as the gradient descent method to optimize the model. Obviously, this strategy is quite

time consuming and can not meet our requirement in some real-time applications. Thus, it is
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necessary to learn another projection or a back constraint regularization from the observation

to the latent variable. In this way, we can easily get the latent variable corresponding to a

testing sample. Note that [38] also proposed a back constraint regularization for GPLVM.

However, this technique only learns a matrix to hold the regression between the observed s-

pace and the latent space. Differently, we propose a more powerful back projection from the

observed space to the latent space in a non-linear way. Here we denote the projection from

the observations to the latent variables as the encoder [28] [50] [51], and the projection from

the latent variables to the observations as decoder. Thus, we name this method as Shared

Auto-encoder Gaussian Process latent variable model (SAGP) [43] in this thesis.

Specifically, for the multiple views, we assume that there is a shared latent variable

in the subspace among them. Then mappings are learned to project the shared latent space

to the multiple views, and another back-projection from the multiple views to the shared

latent variable is also considered. From the perspective of the probabilistic model, the Gaus-

sian Process (GP) [56] is utilized to estimate the parameter and learn the active function

in contrast to the traditional Neural Networks (NN), which is more efficient and reliable.

From the perspective of the auto-encoder [51], mappings from the observations to the la-

tent space are similar to projecting the input data into the latent variable (encoder), while

mappings from the shared variable to the observed data are a reconstruction operation (de-

coder). Although this framework is similar to the well known auto-encoder [50] [51], there

are differences between them. In the same case (one hidden layer), SAGP is more efficien-

t to fit the input data as the covariance function of GPLVM often has a powerful variety,

which contributes to characterizing the real-world data with complicated distributions and

diverge content. Particularly, Gaussian Process is a non-parametric model, which can esti-

mate the kernel parameters more flexibly. Furthermore, referring to the number of estimated

parameters, SAGP only needs to estimate the kernel parameters, being far fewer than that

in traditional auto-encoders methods. It would greatly avoid the phenomenon of over-fitting

when the number of the training samples is relatively small. Additionally, in order to apply

SAGP to the classification task, we also impose a discriminative regularization on the latent

variables to enforce the latent variables belonging to the same category to be close while
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these belonging to different categories to be far. This method was published in [43].

(3) How to effectively construct the covariance using the kernel function and exploit

the class-based information. In SAGP, the GP prior is embedded to non-linearly represent

the data. The Radial Basis Function (RBF) is often used to construct the covariance matrix.

Generally speaking, the selection of the kernel function in the covariance matrix construction

plays a key role in GPLVM. A reasonable selection of the kernel function would be benefi-

cial for performance improvement. However, in different applications, the real-world data is

complex and a certain kernel may be incapable of fitting the data. In order to address this

problem, we further extend SAGP to a multi-kernel version. We combine multi-kernel learn-

ing with the proposed SAGP for classification. Instead of applying a certain kernel function

to covariance matrix construction, the multiple kernels are used to adaptively and automat-

ically build the covariance in both encoding and decoding parts. In this way, the proposed

method can well adapt the complex and non-linear distribution of the input data by automati-

cally updating the weights of different kernel functions. Here we name this proposed method

as Multi-Kernel Shared Gaussian Process latent variable model (MKSGP) [41].

In SAGP, the discriminative regularization is imposed on the latent variables to en-

courage the latent variables belonging to the same class to be close while these belonging to

different classes to be far. However, the limitation of this strategy is that it requires to retrain

a certain classifier, such as KNN and SVM, off-line. In this way, our learned variables in the

training phase may not fully meet the assumption of the classifier. A combination of latent

variable learning and classifier learning is necessary. Therefore, we also impose a large mar-

gin prior on the latent subspace to jointly learn a hyperplane for each category to separate the

latent variables belonging to different classes. In contrast to SAGP which training the latent

variables and classifier at two separated steps, our extension can take the variable learning

model and classifier learning model into account simultaneously, which makes these two

models both be adaptive for the input data. This method has been publish in [41].

(4) How to model the multi-view and multi-feature data. Although JSSL, SAGP and

MKSGP are proposed for multi-view data in sparse representation, non-linear, and multi-
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Figure 1.1. An example of the multi-view and multi-feature object. A person can be diag-

nosed through his or her tongue, face and sublingual vessel. Also, these modalities can be

represented with different features.

kernel ways to get an outstanding performance, respectively, there are still some problems

for us to tackle. One key difficulty is that except for collected multiple views from a sin-

gle object, each view may also be represented with different features. Often, these multiple

features from a view are fully beneficial for classification. Here, we name these data with

multiple views and multiple features as the multi-view and multi-feature data. A typical ex-

ample of multi-view and multi-feature is the person verification application. A person can

be identified by using the fingerprint, palmprint, iris and face. Meanwhile, each view or

modality can also be represented with various features, such as gabor and wavelet. Similar-

ly, in the following chapters, we conduct experiments on a biomedical dataset. This dataset

contains tongue, face and sublingual vessel modalities, while each modality includes dif-

ferent features, such as color, texture and geometric features, as shown in Fig.1.1. To the

best of our knowledge, most existing methods as well as JSSL, SAGP and MKSGP build the

models by only considering multiple views but ignoring the case that each view also can be

represented by different features. A naive way to model this kind of data is to concatenate

various features in each view as a single vector, then multi-view methods can be applied

to process these vectors in multiple views. Although this strategy is easy to achieve, it has

some limitations. One is that it may lose the correlation across different features in a view,

while this correlation is valuable for classification. Another one is that it may encounter the
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over-fitting if the dimension of concatenated vectors is large while the number of training

data is relatively small. Therefore it is necessary for us to design a novel method to model

the multi-view and multi-feature data to fully exploit the correlation among them.

In order to tackle this problem, a probabilistic and generative model [39] is proposed

by modeling the multi-view and multi-feature data under a hierarchical structure. With the

observed features from a view or modality, a shared and latent variable is learned as the fused

feature. Additionally, since our model is constructed for classification, the learned variables

associated with different views are assumed to be independently influenced by their ground-

truth label. The Expectation Maximization (EM) [8] is introduced to optimize the proposed

method. Specifically, a closed-form solution for each variable or parameter can be obtained.

Here, we name this method as Hierarchical Multi-view Multi-feature Fusion (HMMF) and

this is published in [39].

1.2 Main Contributions

The main contributions in this thesis are shown as follows:

• We first propose a joint sparse representation based method for multi-view data. Specif-

ically, the input data in each view is first represented sparsely. Different from existing

methods which only consider the common or similar part, we further take the specific

parts into account. By considering the similarity and diversity simultaneously, the pro-

posed method can better model the multiple views. To optimize the proposed method,

an efficient algorithm is proposed to alternatively update the similar and specific parts.

• To tackle the non-linearity existing in many real-world dataset, the Shared Auto-

encoder Gaussian Process latent variable model (SAGP) is proposed. Instead of as-

suming a specific mapping as done in many existing methods, SAGP introduces the

GPLVM to non-linearly represent data in a generative and nonparametric way. In

SAGP, a latent variable is shared among different views. Compared with GPLVM and

its various extensions, SAGP jointly takes the projections from and to the observations
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in to account. In other words, mapping functions are learned to project the variable

from the shared subspace to the observed space. Meanwhile, a back constraint which

maps the observations to the shared variable is also exploited. In this way, we are

capable to easily obtain the latent variable when a testing sample comes. To apply

SAGP to the classification, a discriminative regularization is embedded to encourage

the latent variables belonging to the same class to be close while these belonging to

different classes to be far.

• We further extend SAGP to a multi-kernel version. Although SAGP can non-linearly

model the multi-view data, it only uses the RBF to construct the covariance matrix,

while the selection of the kernel function in SAGP plays a key role and a certain ker-

nel function may be incapable of modeling complex distributions in some real-world

datasets. By contrast, the extended version Multi-Kernel Shared Gaussian Process

latent variable model (MKSGP) combines the multi-kernel learning and SAGP into

a joint model which can adaptively and automatically fit the data. Furthermore, dif-

ferent from SAGP which learns the latent variable and the classifier in two separated

phases, MKSGP embeds a large margin prior into the model to jointly learn a hyper-

plane for each category to separate the latent variables belonging to different classes.

In MKSGP, the classifier can be learned online, adapting the input data.

• We propose a novel method to model the multi-view and multi-feature data. In many

applications, multiple views can be collected from a single object and each view can

also be represented with different features. To our best knowledge, most existing

multi-view learning methods can not be directly applied to this kind of multi-view

and multi-feature data. To tackle this issue, a probabilistic generative model named

Hierarchical Multi-view Multi-feature Fusion (HMMF) is proposed under a hierarchi-

cal structure. With the observed features from a view or modality, a shared and latent

variable is learned as the fused feature. Additionally, since our model is constructed

for classification, the learned variables associated with different views are assumed to

be independently influenced by their ground-truth label. To optimize HMMF, EM al-
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gorithm is exploited to obtain the closed-form solution for each variable or parameter.

Note that, some other works may also name different types of data from a same

object as the multi-modal data and its corresponding works are called multi-modal learning.

In fact, both multi-view learning and multi-modal learning are quite similar, which both aim

to exploit the correlation among different views or modalities to improve the performance

compared with single-view or single-modal based methods. Generally, multi-view learning

is a wider definition since different views, modalities, features and angles are all belonging

to multi-view data, while multi-modal data usually denotes different modalities such as the

text and the image. Although they have slight difference, most of existing methods can be

directly applied to both types of data.

The rest of this thesis is organized as follows. Some related works on multi-view

learning and background knowledge including sparse representation, GPLVM and SGPLVM

are briefly introduced in Chapter 2. In Chapter 3, 4, 5 and 6, we describe the proposed

methods including JSSL, SAGP, MKSGP and HMMF, respectively. The thesis is concluded

in Chapter 7.
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CHAPTER 2

RELATED WORKS AND BACKGROUND KNOWLEDGE

In this chapter, we briefly introduce the related works about multi-view learning.

Then some background knowledge including SRC, GPLVM and SGPLVM is further de-

scribed.

2.1 Multi-view Learning

Various works based on the multi-feature learning have been proposed. Because of

the effectiveness and robustness of the sparse representation, it has been widely extended to

multi-view learning. Joint sparse representation (JSR) [82] was first introduced by Yuan et

al. by introducing the L2,1 norm to jointly represent the multiple features (MTJSRC). The

L2,1 norm makes the representation coefficients be sparse following the row direction which

enables different features from the same sample to be sparsely represented by the training

samples on the same positions. Additionally, a similar work based on the collaborative rep-

resentation way proposed by Yang and Zhang et al. [81], which ensures the representation

coefficients of different views to be close to their mean value (RCR). Considering the la-

bel information, a discriminant collaborative representation method (JDCR) was proposed

in [42] for the multi-view data. In these three methods, the dictionary is fixed by using the

training data. By contrast, Jing et al. [74] proposed a dictionary learning method to exploit

the correlation across various features by imposing the low-rank prior on the learned dic-

tionary. A sparse model was described in [6] (UMDL and SMDL) to learn a multi-modal

dictionary which greatly exploit the correlation among different modalities. A convex sub-

space learning method (CSRL) was presented by Guo [22], in which a common space is
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obtained by exploiting a group sparsity norm. To apply the multi-feature learning to semi-

supervised field, a multi-feature shared learning approach was introduce by Zhang et al. [86]

by introducing a new L2 norm to achieve a global label consistency.

Except for the norm based methods, the Canonical Correlation Analysis (CCA) [25,

66, 84] has also attracted much attention. CCA aims to learn two mapping matrices by maxi-

mizing the correlation between two views. Besides, CCA is also extended to several methods

by imposing some priors on the shared subspace, such as sparse CCA [4] and robust CCA

[5, 52]. Specifically, Archambeau et al. [4] added the sparsity as a prior into CCA to reduce

the influence of noise. [52] and [5] imposed the L1 loss and a Student-t density on the CCA

to remove outliers in the data. As CCA as well as its extensions are only adaptive for the two-

view based application, Rupnik et al. proposed the multi-view CCA (MCCA) [59]. MCCA

aims to estimate multiple projections to map each view onto a shared subspace, in which the

sum of all pairwise correlations achieves the maximum. Despite of the CCA-based methods,

the famous and supervised subspace learning-the Linear Discriminative analysis (LDA) is

also extended to multi-view methods. Particularly, Kan et al. [29] described a Multi-view

Discriminant Analysis (MvDA) to estimate a discriminative common space. Additionally, a

generalized multi-view LDA (GMLDA) [61] was analyzed by learning a set of projections

for each view. After projection, different categories are separated.

The ensemble learning [17][67][75] is another type of fusion strategies. Different

from our proposed multi-view learning methods, the ensemble learning aims to fuse several

simple classifiers together to get the final classifier with the stronger capability. Recently

some ensemble learning works have been done for the multi-view data, which are called

multi-view ensemble learning. Cuzzocrea et al. [12] proposed a multi-view ensemble learn-

ing method, which can not only exploit the multi-dimensional inputs, but also implement a

stacking strategy. Additionally, the supervised feature set partitioning (SFSP) is introduced

to the multi-view ensemble learning for the high dimensional data classification [32]. Fur-

thermore, Xu et al. [76] proposed a novel method, named adaptive weighted fusion approach

(AWFA), to combined several CRC classifiers together the for multi-view data classification.

11



Despite that various multi-view learning methods have been introduced and achieved

a satisfactory performance, most of them assume that the collected data can be modeled

linearly. In many applications, this assumption may be not reasonable, since non-linearity

does exist in the real-world datasets. To represent the data non-linearly, some kernel based

methods have been proposed. A typical example is the kernel CCA [1], which was proposed

by mapping the data into a high-dimensional feature space. Taking the label information

into account, a supervised approach denoted as Multi-view Fisher Discriminative Analy-

sis (MFDA) [13] was introduced, which learns independent classifiers for multiple views.

Also, another multi-view learning method was presented by exploiting a manifold regular-

ization based on the sparse feature selection [48]. Due to the regularization, the manifold

structure of the data can be well preserved and the performance on the scene image classifi-

cation is greatly enhanced. Instead of assuming a specific set of deterministic or parametric

functions, the Gaussian Process Latent Variable Model (GPLVM) [15] [37] [14] [69] as a

non-parametric and generative strategy was proposed to non-linearly and effectively fit the

data. GPLVM adds the Gaussian Process into the projection to smoothly learn a variable in

a subspace. Thanks to Gaussian Process prior, GPLVM is more powerful in data represen-

tation compared with some dimensionality reduction methods. Besides, GPLVM has also

been extended to some versions. For instance, a discriminative GPLVM (DGPLVM) was

proposed by Urtasun et al. [69] through adding a discriminative prior. A shared GPLVM

(SGPLVM) [14] was presented to process the multi-view data. SGPLVM was extended to a

supervised version (DSGPLVM) [15] by exploiting a Laplacian matrix.

2.2 Sparse Representation Classifier

Since JSSL is based on the sparse representation, here we briefly introduce the sparse

representation classifier (SRC). In SRC, the testing instance can be represented in a linear

combination of the collected training instances. Particularly, the L1-norm minimization is

enforced on the representation coefficient to make it be sparse. In other words, a few of

training samples are selected to linearly represent the testing sample.

12



Assume that matrix D = [D1,D2, ·, ·, ·,DJ ], which is usually named dictionary,

consists of training samples, where J is the total number of categories, Di ∈ Rm×ni is the

training samples belonging to the i-th class with the dimension m and number ni. Here, we

denote each column in D as the atom. A testing instance y ∈ Rm×1 can be represented

through

α̂ = arg min ‖y −Dα‖22 + λ ‖α‖1 (2.1)

where λ is the penalty parameter, ‖·‖22 is the L2 norm and ‖·‖1 is L1 norm. α̂ = [α̂1; α̂2; · ·

·; α̂J ] is the sparse coefficient, and α̂i is the sparse coefficient corresponding to Di.

Suppose that the testing instance y belongs to the i-th class, then it can be well repre-

sented by the training samples from the i-th class. In other words, among its representation

coefficients α̂ over all the training samples, only coefficients in class i will be significan-

t while others will be insignificant. Then we can get the prediction for the testing sample

through following Eq.(2.2)

i∗ = arg min
i
‖y −Diα̂i‖22 (2.2)

More information about the SRC can be found in [73].

2.3 Gaussian Process Latent Variable Model

For GPLVM, it aims to learn a latent variable X = [x1, · · · ,xN ]T ∈ RN×q in a

low dimensional subspace and a mapping function from X to the observed high-dimensional

space Ys = [ys1, · · · ,ysN ]T ∈ RN×D, where q � D, N is the number of samples, q and

D are the dimensions of the latent variable and observation, respectively. The framework

of Gaussian Process is exploited to estimate the latent space and its mapping function to the

observed data. Mathematically, the raw data ys can be represented as

ys = f s(x) + ε

f s(x) ∼ GP(µ(x),k(x,x′))
(2.3)
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where f s is the projection function with the GP prior. In order to be simple, the mean

variable µ(x) is often set to be zero, and the element at the i-th row and j-th column of the

covariance is defined by a Mercer kernel such as the radius basis function (RBF)

k(xi,xj) = θ1 exp(−θ2
2
‖xi − xj‖22) +

δi,j
θ3

(2.4)

where xi and xj are the i-th and j-th latent variables, respectively; θs = (θ1, θ2, θ3) denote

the kernel parameters, governing the variance, the bandwidth of the RBF kernel, and the

variance of additive noise, respectively; δi,j is the Kronecker delta function.

The conditional distribution of the Ys w.r.t. the latent variables X can be obtained

through integrating over f s,

p(Ys | X,θs) =

∫
p(Ys | X,θs,f s)p(f s)df s

=
1

(2π)ND/2 |K|D/2
exp(−1

2
tr(K−1Ys(Ys)T ))

(2.5)

According to the Bayesian theory, the posterior distribution of the latent space X can

be computed as follows.

p(X,θs | Ys) ∝ p(Ys | X,θs)p(X) (2.6)

where p(X) is a certain prior such as the discriminative regularization. To estimate the vari-

able X and parameters in the covariance matrix, the posterior or the negative log-posterior

w.r.t. the latent variable X and parameter θs should be maximized or minimized, shown as

follows

arg minL =
D

2
ln |K|+ 1

2
(K−1Ys(Ys)T ) +

ND

2
ln 2π − log(p(X)) (2.7)

To optimize the Eq.(2.7), scalable gradient decent techniques can be used.

2.4 Shared Gaussian Process Latent Variable Model

However, GPLVM is only adaptive for the single-view based data. In [15] [64] [14],

GPLVM was also extended to multi-view applications, which was named as shared GPLVM
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(SGPLVM). In SGPLVM, various views share a common latent space and a projection func-

tion for each view is learned to map the shared variable to the observed data. Assume that the

multi-view data {Yv ∈ RN×Dv}Vv is collected from V views. Then the shared latent variable

X among multiple views should be learned, instead of computing an independent one for

each view as done in GPLVM. Furthermore, the distribution of the observed data Yv given

the shared X is conditionally independent across multiple views. Thus, we can factorize the

joint likelihood w.r.t. observations as follows

p({Yv}Vv | X) =
V∏
v=1

p(Yv | X,θv) (2.8)

where θv is the parameter of the kernel function for the v-th observation, being similar to

that in the Eq.(2.4). From the Eq.(5.1), we can see that each input view Yv is generated from

the latent variable X. Then the negative log-likelihood can be jointly minimized to estimate

the shared variable X, as shown in Eq.(2.9)

arg minL =
V∑
v=1

Lv =
V∑
v=1

Dv

2
ln |Kv|+ 1

2
tr[(Kv)−1Yv(Yv)T ] +

NDv

2
ln 2π (2.9)

where Kv is the kernel or covariance matrix associated with the v-th view Yv. Besides, being

similar to GPLVM, the Eq.(2.9) can be optimized by exploiting scalable gradient decent

techniques.
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CHAPTER 3

JOINT SIMILAR AND SPECIFIC LEARNING MODEL

Although various multi-view learning methods have been proposed, most of them

only consider the common or similar parts across different views. In practice, there does

exist view-specific components among them. Therefore, it is necessary to design a novel

approach which takes both the similar and specific parts into account. In this chapter, the

joint similar and specific learning (JSSL) is proposed to achieve this goal. This method has

been published in [44].

3.1 Proposed Method

As mentioned above, different views from a same object may share the similarity. It is

reasonable to assume that representation coefficients coded on their associated dictionaries of

different modalities should be similar to each other across them. Here we use the biomedical

data as an example. This dataset consists of tongue, face and sublingual vessel modalities.

As shown in Fig.3.1, a testing sample, including tongue, facial and sublingual vectors, is a

linear combination of the training instances; since all vectors belong to the same object, they

will be well represented by the training samples from their associated category. Therefore,

the position and non-zero elements of the representation coefficients in multiple views would

be similar. To achieve the above goal, we utilize the following regularization [81] to measure

the similarity among these three modalities.

arg min
K∑
k=1

‖αk − ᾱ‖22 (3.1)
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Figure 3.1. The framework of JSSL. There are three parts in this strategy, which are con-

structing the dictionary for each view, representing the data sparsely, and jointly doing clas-

sification, respectively. For the first part, we directly use the training samples of each view to

be the corresponding dictionary; for the second part, given a test sample, we sparsely repre-

sent its tongue, facial and sublingual features by using the constructed dictionary, where the

representation coefficients are separated into two components: similar and specific ones; for

the third part, we can get the estimated label based on the reconstruction error for each class.
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whereαk is the representation coefficient corresponding to the k-th view and ᾱ = 1
K

∑K
k=1αk

is the mean variable of all αk (K means the number of views). It is easy to observe that

Eq.(3.1) aims to reduce the variance of multiple coefficients αk, encouraging them to be

close to each one. However, as we have discussed, this assumption is too restrictive due to

the existing of the specific components in different views. Therefore, it is necessary to not

only utilize the similarity but also extract the diversity of each view. In this way, the balance

between similarity and diversity will model the input instance more adaptive and accurate.

To tackle aforementioned issue, the representation coefficients αk are separated into

two components: the similar one and the specific one. Mathematically,αk = αck+αsk, where

αck denotes the similarity, while αsk denotes the diversity. Fig.3.1 shows the framework of

JSSL. The formulation of this model is

arg min
K∑
k=1

{
‖yk −Dk (αck +αsk)‖

2
2 + τ ‖αck − ᾱc‖

2
2

}
+

K∑
k=1

λ (‖αck‖1 + ‖αsk‖1) (3.2)

where yk is the testing instance, Dk = [D1
k,D

2
k, · · · ,DJ

k ] is training set belonging to the k-th

view, and Di
k ∈ Rmk×nik is the training set belonging to the k-th view of the i-th category

with dimension mk and sample number nik; ᾱc = 1
K

∑K
k=1α

c
k is the mean variable, and τ

and λ are the non-negative parameters to trade off among different terms. From Eq.(3.2),

it is easy to see that JSSL aims to extract the similar parts of each view through xck, while

also preserves specific parts associated with different views through xsk. Furthermore, since

the testing instance can be linearly represented by training samples belonging to its own

category, the L1 norm is imposed on both αck and αsk to keep the sparsity.

3.2 Optimization of JSSL

We alternatively update the similar coefficients αck and special coefficient αsk. For

example, we update αck by fixing αsk, and vice versa.

Update αck: By fixing αsk, the optimization of Eq.(3.2) with respect to αck equals to

the following problem

αck = arg min ‖yk −Dk (αck +αsk)‖
2
2 + τ ‖αck − ᾱc‖

2
2 + λ ‖αck‖1 (3.3)
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we apply Augmented Lagrangian method (ALM) algorithm to modify Eq.(3.3).

Applying the ALM, the problem of (3.3) can be modified as follows.

αck = arg min ‖yk −Dk (αck +αsk)‖
2
2 + τ ‖αck − ᾱc‖

2
2 + λ

∥∥αck ′∥∥1 +
µ

2

∥∥∥∥αck −αck ′ + zk
µ

∥∥∥∥2
2

(3.4)

whereαck
′ is the relaxed variable, zk is the k-th lagrangian multiplier, and µ is the step value.

Then we can optimize αck and αck
′ alternatively.

(a) Firstly, we fix αck
′ to get αck

αck = arg min ‖yk −Dk (αck +αsk)‖
2
2 + τ ‖αck − ᾱc‖

2
2 +

µ

2

∥∥∥∥αck −αck ′ + zk
µ

∥∥∥∥2
2

(3.5)

Follow the Ref. [81], a closed-form solution of αck can be derived:

αck = αc0,k +
τ

K
PkQ

K∑
η=1

αc0,η (3.6)

where Pk = (DT
kDk + (τ + µ

2
)I)−1, αc0,k = Pk(D

T
k (yk − Dkα

s
k) + µ

2
αc
′

k −
zk
2

), and

Q = (I− τ
K

∑K
η=1 Pη)

−1.

(b) Secondly, after fixing αck, the optimization solution of Eq.(3.4) can be reduced to

Eq.(3.7) at the step of updating αck
′.

αck
′ = arg minλ

∥∥αck ′∥∥1 +
µ

2

∥∥∥∥αck −αck ′ + zk
µ

∥∥∥∥2
2

(3.7)

Then αck
′ could be derived by operating Threshold(αck + zk

µ
, λ
µ
). The operation of soft

threshold is shown as follows.

[
Sλ/µ(β)

]
i

=

{
0 |βj| ≤ λ/µ

βi − sign(βi)λ/µ otherwise
(3.8)

where βi means the value of the i-th component of β. After getting αck and αck
′, zk and µ

can be updated following zk = zk + µ(αck − αck ′) and µ = 1.2µ. In order to avoid µ being

to large, we pre-fix the maximum of µ, following µ = min(1.2µ, 1000) and we set the initial

value of µ as 0.01.
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Algorithm 3.1 Algorithm of updating αsk in JSSL
Input: σ, γ = λ/2, yk, Dk, and αck, k = 1, · · · ,K

Initialization: α̃s(1)k = 0 and h = 1,

1: for k = 1, ...,K do

2: while not converged do

3: h=h+1

4: α̃
s(1)
k =Sγ/σ

(
α̃
s(h−1)
k − 1

σOF(α̃
s(h−1)
k )

)
5: where OF(α̃

s(h−1)
k ) is the derivative of the left of Eq. (3.9) ‖yk −Dk(α

c
k +αsk)‖

2
2, and Sγ/σ is

a soft threshold operator that defined in Eq. (3.8);

6: end while

7: end for

Output: αsk = α̃
s(h)
k , k = 1, · · · ,K

Update αsk: After acquiring αck, the optimization of Eq.(3.2) can be reformulated to

Eq.(3.9) at the step of updating αsk.

αsk = arg min ‖yk −Dk(α
c
k +αsk)‖

2
2 + λ ‖αsk‖1 (3.9)

In fact, there are many methods to tackle the problem (3.9). For example, both ALM and

Iterative Projection Method (IPM) [58] could deal with it. In this thesis, we use IPM to

address Eq.(3.9), as described in Algorithm 3.1.

Algorithm 3.2 summarizes the details of the optimization in JSSL. The values of

parameters λ and γ are selected through the cross validation.

Computational Complexity Analysis: To simplify the description of the computa-

tional complexity per iteration, here we firstly let M = max{mk}Km=1 and N be the number

of training data. The main complexity is in Eq. (3.6) and Algorithm 3.1. The complexity is

O(N2M +N3) for Pk calculation. Similarly, the complexity is O(N2 + 2MN) and O(N3)

for αc0,k and Q computation, respectively. Thus, the complexity of Eq. (3.6) for all views

is about O(K(N3 + N2M)). The complexity of Algorithm 3.1 is O(2KMNt1), where t1
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Algorithm 3.2 Joint Similar and Special Learning (JSSL)
Input: λ, τ , yk, Dk, k = 1, · · · ,K

Initialization: αck= 0, αsk= 0, zk= 0

1: while not converged do

2: Update coefficients αck: fix αsk

3: (a) compute αck following Eq. (3.6)

4: (b) compute αck
′ following Eq. (3.7)

5: (c) zk = zk + µ(αck −αck
′)

6: Update coefficients αsk: fix αck, and solve αsk following Algorithm 3.1

7: end while

Output: αck and αsk k = 1, · · · ,K

is the number of iteration in Algorithm 3.1. In conclusion, the total complexity for JSSL is

about O(K(N3 +N2M +MNt1)t2) , where t2 is the number of iteration in Algorithm 3.2.

3.3 The Classification Rule of JSSL

After obtaining the representation coefficients, the decision is ruled in favor of the

class with total lowest reconstruction residual over all K vectors.

j∗ = arg min
K∑
k=1

wk
∥∥yk −Dk,j(α

c
k,j +αsk,j)

∥∥2
2

(3.10)

where Dk,j , αck,j and αsk,j are the elements of the dictionary Dk, the similar coefficient

αck and the specific coefficient αsk of j-th category, respectively; wk is the weight value

corresponding to the k-th vector, which could be computed by using the method described

in [82].
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3.4 Experimental Results

In this section, two kinds of experiments are conducted. One is Healthy versus Dia-

betes Mellitus (DM) classification. Another is Healthy versus Impaired Glucose Regulation

(IGR) classification. In both experiments, some single-view based methods, including KN-

N [11], SVM [26], [16], SRC [73], GSRC (group sprase) [7] are used as the comparison

approaches. Since these methods can not be directly applied to multi-view data, we also

concatenate different views containing the tongue, facial and sublingual features as a sin-

gle one, symbolled as ’combination’. To quantatively demonstrate the superiority of the

proposed method, three multi-view learning methods called multi-task joint sparse represen-

tation classifier (MTJSRC) [82], relax collaborative representation (RCR) [81] and adaptive

weighted fusion approach (AWFA) [76] are also considered as the comparison approaches.

3.4.1 Dataset

This Biomedical dataset consists of 504 instances: 192 Healthy instances, 198 D-

M instances and 114 IGR instances. Each sample is comprised of three kinds of images:

tongue, face and sublingual vessel, respectively. All images were collceted at the Guang-

dong Provincial TCM Hospital, Guangdong, China, from the early 2014 to the late 2015.

Healthy samples were verified through a blood test and other examination according to the

standard indicators which are set by the Guangdong Provincial TCM Hospital. DM or IGR

samples are decided by using the FPG test.

3.4.2 Healthy Versus DM Classification

In this experiment, the number of training samples from 30 to 100 is randomly s-

elected with 5 independent times, and the remaining instances are regarded as the testing

samples. Fig.3.2 shows the experimental results computed by JSSL, KNN, SVM, SRC and

GSRC. Note that Fig.3.2 only shows the averaged results of 5 independent experiments. It

is easy to see that the JSSL consistently gains better performance between DM patients and
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(a) (b) (c)

Figure 3.2. The classification accuracy obtained by different methods based on the single

view and multi-view data under the change of different training numbers in the Healthy

Vs DM dataset. (a) The comparison between using multi-view data (JSSL) and the only

tongue based feature. (b) The comparison between using multi-view data (JSSL) and the

only face based feature. (c) The comparison between using multi-view data (JSSL) and the

only sublingual image based feature.

healthy controls. The accuracies obtained by JSSL along with the error bar and several state-

of-the-art results directly from the single task are tabulated in Tab.3.1. JSSL performs much

better than single-view based strategies not only on the average accuracy, but also on the

error bar.

Additionally, the results by feature concatenation methods (concatenate the tongue,

facial and sublingual features as a single vector) and another three fusion methods (MTJSR-

C, RCR and AWFA) are also listed in Tab.3.1. As we can see, the results gained by JSSL are

the best in most cases. The K-NN, SVM, SRC and GSRC combination based methods are

much inferior to our model. Note that, the results obtained by simply concatenating different

vectors may even suffer a large performance drop, such as K-NN and SRC. Meanwhile, in

contrast to multi-view based methods: MTJSRC, RCR and AWFA, JSSL is also competitive.

Fig.3.3 further plots the ROC curves obtained by various methods when the number of train-

ing samples is 100, as well as their associated AUC values listed in Tab.3.2. From Fig.3.3

and Tab.3.2, we can see that the area covered by the curve computed by JSSL is obviously
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Figure 3.3. ROC curves of different methods and different features for DM detection.

Table 3.2. The area under curve (AUC) for the different methods in DM detection.

Methods AUC Methods AUC Methods AUC

JSSL 0.8842 SRC(face) 0.7696 GSRC(face) 0.7686

SRC(sublingual) 0.7091 GSRC(sublingual) 0.7588 SRC(tongue) 0.6885

GSRC(tongue) 0.6944 SRC(combination) 0.8328 GSRC(combination) 0.8512

MTJSRC 0.8670 RCR 0.8633 AWFA 0.8887

larger than other curves except of that obtained by AWFA.

3.4.3 Healthy Versus IGR Classification

We then apply JSSL to IGR detection. Being similar to the setting in the DM ex-

periment, we randomly select from 30 to 70 samples from each category with 5 times as

the training set, and the remaining samples are used for testing. Fig.3.4 shows the averaged

experimental results compared with KNN, SVM, SRC and GSRC. It is easy to see that our

presented strategy is superior to these methods. Tab.3.3 tabulates the classification accuracy

along with the error bar. We can see that our proposed method gains an obvious enhancement

in comparison to K-NN, SRC and GSRC based combination methods. Similarly, a simple
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(a) (b) (c)

Figure 3.4. The classification accuracy obtained by different methods based on the single

view and multi-view data under the change of different training numbers in the Healthy

Vs IGR dataset. (a) The comparison between using multi-view data (JSSL) and the only

tongue based feature. (b) The comparison between using multi-view data (JSSL) and the

only face based feature. (c) The comparison between using multi-view data (JSSL) and the

only sublingual image based feature.

Table 3.3. The averaged classification accuracy as well as the error bar (percentage) in 5

independent experiments for the Healthy Vs IGR dataset.
Training samples

Methods 30 40 50 60 70

JSSL 72.63±1.64 74.23±2.46 74.88±1.32 75.37±1.85 76.68±3.45

K-NN (sub) 62.87±2.85 61.54±2.24 61.35±3.49 60.96±3.05 62.81±3.63

libSVM (sub) 67.21±0.93 69.95±1.50 72.80±1.17 74.49±1.52 75.87±1.51

SRC (sub) 69.68±2.96 71.01±4.32 72.08±2.08 72.41±4.19 74.85±3.79

GSRC (sub) 69.80±4.62 70.71±2.75 72.13±3.25 72.57±3.94 74.79±3.21

K-NN (combine) 66.64 ± 3.35 66.96 ±8.78 65.41 ±3.99 68.02 ±3.58 66.59 ±4.68

libSVM (combine) 72.87 ±1.69 73.30 ±2.80 72.37 ±5.63 72.83 ± 4.38 75.81 ±1.00

SRC (combine) 59.43 ±4.33 61.76 ±7.59 62.51 ±5.77 57.43 ±6.55 67.19 ±8.24

GSRC (combine) 69.64 ±0.95 71.89 ±3.52 72.66 ±5.38 71.76 ±3.90 73.65 ± 4.96

MTJSRC 71.74 ±4.84 70.57 ±2.60 73.8 ±2.54 74.76 ± 3.17 74.13 ± 4.70

RCR 72.53 ±4.55 71.81 ±3.55 74.94 ±2.34 73.37± 2.78 73.14 ±1.63

AWFA 65.02 ± 5.34 66.43 ± 1.93 65.89 ± 3.70 67.06 ± 3.70 67.78 ± 4.57
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Figure 3.5. ROC curves of different methods and different features for IGR detection.

Table 3.4. The area under curve (AUC) for the different methods in IGR detection.

Methods AUC Methods AUC Methods AUC

JSSL 0.8278 SRC(face) 0.7579 GSRC(face) 0.7596

SRC(sublingual) 0.6984 GSRC(sublingual) 0.7321 SRC(tongue) 0.5850

GSRC(tongue) 0.6155 SRC(combination) 0.7203 GSRC(combination) 0.7243

MTJSRC 0.7870 RCR 0.7982 AWFA 0.7646

concatenation may result in a large performance drop, e.g. SRC. In contrast to MTJSRC, R-

CR and AWFA, JSSL has a noticeable increase in average accuracy except when the number

of training samples is 50.

Fig.3.5 plots the ROC curves when the number of training samples is 70, followed by

their associated AUC values in Tab.3.4. Compared with these methods, our proposed method

JSSL is also outstanding.

27



Table 3.5. The accuracy and error bar obtained by JSSL on the DM dataset when the training

number is set to 100 for each class. Note that λ = 0.0001.

num=100

τ 0 0.00001 0.0001 0.001 0.01 0.1 1

Accuracy 84.71% 84.82% 84.82% 86.07% 84.61% 83.46% 83.25%

Error Bar 1.36% 1.23% 1.23% 1.07% 1.37% 1.76% 1.39%

Table 3.6. The accuracy and error bar obtained by JSSL on the DM dataset when the training

number is set to 100 for each class. Note that τ = 0.001.

num=100

λ 0 0.00001 0.0001 0.001 0.01 0.1 1

Accuracy 84.08% 85.03% 86.07% 84.40% 79.43% 78.64% 73.61%

Error Bar 1.21% 1.37% 1.07% 0.23% 1.32% 2.55% 1.55%

3.4.4 Parameter Analysis

In JSSL, the τ and λ should be tuned. Here we conduct an experiment on the DM

dataset to analyze the influence of these two parameters, as shown in Tab.3.5 and Tab.3.6.

Note that, the training number for each category is set to 100. As we can see, both τ and

λ have an influence on the classification performance, demonstrating the importance of the

similar and specific components. From Tab.3.6 it is also easy to observe that λ is sensitive to

the performance, which encourages us to tune it carefully through the cross-validation.

3.5 Conclusion

In this chapter, a novel multi-view learning method is proposed to extract the similar-

ity and diversity across multiple views. The similar parts reflect their correlation while the

specific parts indicate their difference. Thanks for this structure, the data can be represented

in a more reasonable way. To optimize the proposed method, an efficient algorithm is de-

signed to alternatively update the similar and specific components. We apply our proposed
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approach to the DM and IGR detection. According to the experimental results, our method

is superior to several state-of-the-art strategies.
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CHAPTER 4

SHARED AUTO-ENCODER GAUSSIAN PROCESS LATENT VARIABLE MODEL

Although JSSL achieves better performance compared with some existing multi-view

learning methods, it only represents the data linearly. However, there exists non-linearity in

the real-world data and linearly modeling can not meet our requirement in many applications.

To tackle this issue and instead of assuming a set of deterministic functions, in this chapter, a

novel method is proposed based on the GPLVM, which non-linearly and smoothly model the

data. To obtain the latent variable corresponding to the test sample in a simple way, another

projection from the observations to the shared latent variable is considered. Furthermore, we

also embedded a discriminative prior into the model to fully exploit the semantic information.

This method was published in [43].

4.1 Proposed Method

Fig.4.1 shows the main framework of SAGP. The main purpose of the proposed

method is to estimate a latent variable shared across multi-view data. Specifically, SAGP

assumes that the observed views y = {yv}Vv=1 are the projections from a shared latent vari-

able x in a subspace, where V is the number of views. To make the projection non-linear and

smooth, GPLVM is applied to our method because of its powerful capability. Being similar

to SGPLVM [14], the proposed method is conditionally dependent across various views w.r.t.

the latent variable X. Thus, the likelihood of the observed data {Yv}Vv given X is factorized

as follows

p({Yv}Vv | X, {θ
v}Vv ) =

V∏
i=1

p(Yv | X,θv) (4.1)
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Figure 4.1. The framework of SAGP. For the multiple observations, we first assume that

there exists a shared variable which can be projected to these observations by using different

mapping functions. Additionally, we also assume that there is another projection from the

multiple observations to this shared variable.

where Yv = [yv1, · · · ,yvN ]T ∈ RN×Dv is the set data of the v-th view, X = [x1, · · · ,xN ]T ∈

RN×q is the set of N latent variables, and θv = {θv1 , θv2 , θv3} are its corresponding kernel

parameters.

Differently, in contrast the existing works, the proposed method defines another pro-

jection from the observed data Yv to the corresponding latent variable X and then the ob-

served inputs are reconstructed by the shared latent variables. In particular, using the gaus-

sian process mapping function, X and Yv can be represented as

x = gv(yv,γv) + ε1,

yv = f v(x,θv) + ε2
(4.2)

where the function g = {gv}Vv and f = {f v}Vv are two groups of Gaussian Process with

kernel parameters γ = {γv}Vv (γv = {γv1 , γv2 , γv3}) and θ = {θv}Vv , respectively, and ε1

and ε2 are the independent gaussian noises, whose mean and covariance are zero and δ21I

and δ22I. Through the auto-encoder view, it is easy to see that the former part in Eq.(4.2)

is an encoder, while the later part is a decoder. Additionally, based on the GPs, we can

get the marginal likelihood of the shared latent variable and the observations w.r.t. their

31



corresponding mapping functions,

p(X | gv,Yv,γ) =
N∏
n=1

N
(
xn | gv(yvn), δ21I

)
p(Yv | f v,X,θ) =

N∏
n=1

N
(
yvn | f v(xn), δ22I

) (4.3)

and the projection functions follow the gaussian distribution

p(gv) ∼ N (gv | 0,Kv
Y ),

p(f v) ∼ N (f v | 0,Kv
X)

(4.4)

where the RBF kernel is applied to defined the kernel functions of the encoder and decoder

kvY (yvi ,y
v
j ) = γv1 exp(−γ

v
2

2

∥∥yvi − yvj
∥∥2
2
) +

δyi,j
γv3

kvX(xi,xj) = θv1 exp(−θ
v
2

2
‖xi − xj‖22) +

δxi,j
θv3

(4.5)

In this thesis, two frameworks are proposed to achieve the encoding part. A single

inverse projection from all the views to the latent subspace is first designed as shown in

Fig.4.2(c). Theoretically, the covariance matrix of p(X | {Yv}Vv , {γv}
V
v ) is set as the sum

of the kernel matrices defined on different views Yv:
∑

v Kv
Y . Additionally, we also learn an

independent projection from each view to the common subspaceas shown in Fig.4.2(d). The

former one is named as a shared encoder (SE), and the latter one is referred as an independent

encoder (IE). For the IE process, p(X | {Yv}Vv , {γv}
V
v ) is replaced by p(X | Yv,γv). The

reason why we design the second back projection is to adapt for the testing samples which

miss some certain views. In other words, if all views are available for a testing sample, both

inverse mappings can be adopted. However, it is also possible that a testing instance may

miss one or more than one modalities in applications. At this situation, we can still get the

latent variable by using the second back mapping approach. In order to be simple and without

loss generality, only the SE-based approach is described in the following sections. For the

second strategy, we only need to replace
∑

v Kv
Y with Kv

Y . Compared with [38] which

only learns the back-projection by estimating a mapping matrix that holds the parameters for

the regression, SAGP achieves the projection with the GP prior from the observed space to

the shared manifold. For the sake of the non-parametric and non-linear advantages of the GP
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Figure 4.2. The graphic representation of the GPLVM, Shared-GPLVM (SGPLVM) and the

proposed approach (SAGP). Here, the latent variable is denoted as X, the observed single

view is denoted as Ys, and the observed multi-view data for the encoder and decoder is de-

noted as Yv
γ and Yv, respectively, where v ∈ {1, · · · , V }. (a) In the GPLVM, a projection

function f s is learned to project the the latent variable X to the observed single view Ys.

(b) In the SGPLVM, various projection functions {f v}Vv=1 are learned to project the shared

variable X to multiple observations {Yv}Vv=1. (c) In the SAGP(SE), two types of mapping

functions are learned. For the first type, we study a back constraint to project various ob-

served data {Yv
γ}Vv=1 to the shared variable X under the gaussian process priors {gv}Vv=1; for

the second type, being similar to SGPLVM, various projection functions {f v}Vv=1 are learned

to project the shared variable X to multiple observations {Yv}Vv=1. (d) In the SAGP(IE), an-

other two types of mapping functions are learned. The first one is to learn gv to project Yv
γ

to X and the second type of projections is similar to that in SAGP(SE).
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prior, our proposed method would be better to fit the training data exactly. Furthermore, there

are only a few number of parameters that should be estimated in this kind of back-constraint

compared with existing methods.

The marginal likelihood of X w.r.t. the multiple observations and the the observations

w.r.t. X (SE) are then represented as follows

p
(
X | {Yv}Vv , {γv}Vv

)
=

1√
(2π)Nq

∣∣∣∑V
v Kv

Y

∣∣∣q exp{−1

2
tr((

V∑
v

Kv
Y )−1XXT )}

p
(
{Yv}Vv | X, {θ

v}Vv
)

=

V∏
v=1

p(Yv | X,θv) =

V∏
v=1

1√
(2π)NDv

∣∣Kv
X

∣∣Dv exp{−1

2
tr
(
(Kv

X)−1Yv(Yv)T
)
}

(4.6)

In order to clearly distinct the observed data in the encoder and the reconstructed data

in the decoder, we re-symbol the data as
{
Yv
γ

}V
v

for the encoder. Noted that Yv
γ is only a

symbol and the numerical value of it can be set to be equal to Yv in the implementation.

Consequently, the joint likelihood function over the shared X based on the observations and

the reconstructions can be represented as

p(X |
{
Yv
γ

}V
v
, {Yv}Vv , {γ

v}VV , {θ
v})Vv ∝

p(X |
{
Yv
γ

}V
v
, {γv}Vv )p({Yv}Vv | X, {θ

v}Vv )

(4.7)

The Proof of Eq.(4.7):

p
(
X |

{
Yv
γ

}V
v
, {Yv}Vv , {γ

v}Vv , {θ
v}Vv

)
=
p
(
X,
{
Yv
γ

}V
v
, {Yv}Vv , | {γv}

V
v , {θv}

V
v

)
p
({

Yv
γ

}V
v
, {Yv}Vv | {γv}

V
v , {θv}

V
v

)
=
p(
{
Yv
γ

}V
v

)p(X |
{
Yv
γ

}V
v
, {γv}Vv )p({Yv}Vv | X, {θv}

V
v )

p
({

Yv
γ

}V
v
, {Yv}Vv | {γv}

V
v , {θv}

V
v

)
=
p(X |

{
Yv
γ

}V
v
, {γv}Vv )p({Yv}Vv | X, {θv}

V
v )

p({Yv
γ}Vv ,{Yv}Vv |{γv}

V
v ,{θv}

V
v )

p({Yv
γ}Vv )

=
p(X |

{
Yv
γ

}V
v
, {γv}Vv )p({Yv}Vv | X, {θv}

V
v )

p({Yv}Vv |
{
Yv
γ

}V
v
, {γv}Vv , {θv}

V
v )

(4.8)

Since p({Yv}Vv |
{
Yv
γ

}V
v
, {γv}Vv , {θv}

V
v ) is unrelated to the shared latent space, the result

of Eq.(4.7) is obtained.
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As mentioned above, the negative log likelihood of the proposed method is formed

as follows,

L = Lγ + Lθ + const

Lθ =
V∑
i=1

Lvθ

Lγ =
1

2
{qN log 2π + q log

∣∣∣∣∣∑
v

Kv
Y

∣∣∣∣∣+ tr((
∑
v

Kv
Y )−1XXT )}

Lvθ =
Dv

2
N log 2π +

Dv

2
log |Kv

X |+
1

2
tr((Kv

X)−1Yv(Yv)T )

(4.9)

where const means the constant part which is unrelated to the latent space. For the IE

scenario, the kernel matrix is replaced by Kv
Y in Lγ .

4.1.1 Discriminative Prior

Since we prefer to apply SAGP to the classification, a discriminative prior is used to

encourage the latent variables belonging to the same class to be close and those belonging

to the different classes to be far on the latent space. Urtasun et al. [69] firstly utilized a

Linear Discriminant Analysis (LDA) as the prior by maximizing the between-class while

minimizing the within-class through

arg max J(X) = tr(S−1w Sb) (4.10)

where Sb denotes the between-class matrix and Sw denotes the within-class matrix, respec-

tively. Moreover, this prior is modified to the graph Laplacian matrix by Eleftheriadis et al.

[15] and applied to multi-view data. In this thesis, we exploit this kind of discriminative

prior in [15] for the classification task. Theoretically, a weight matrix Wv for each view is

first calculated.

Wv
ij =

exp

(
−‖

yvi−yvj‖22
tv

)
if i 6= j and ci = cj

0 otherwise
(4.11)

where v = 1, · · · , V , yvi is the i-th feature in the sample set Yv, ci is its corresponding class

label, and tv is the RBF kernel parameter to control the kernel width. Based on [60], we set

it as the mean squared distance between the training samples. Then we can get the graph
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Laplacian Lv = Dv −Wv for each view, where the matrix Dv is diagonal and its diagonal

element is defined as Dv
ii =

∑
j=1 Wv

ij . Since the graph Laplacian matrices from different

views are different in scale, Eleftheriadis et al. [15] normalized them by

Lv
N = (Dv)−1/2Lv(Dv)−1/2 (4.12)

Consequently, the discriminative prior on X is defined as

p(X) =
V∏
v=1

p(X | Yv)1/V =
1

V · Zq
exp

(
−β

2
tr(XT L̃X)

)
(4.13)

where L̃ =
∑V

v=1 Lv
N + ξI, ξ (e.g., 10−4) is a regularization parameter with a small value

to ensure L̃ to be positive-definite, β is a non-negative penalty parameter to get a trade-

off between the Eq.(4.9) and Eq.(4.13). In conclusion, by jointly considering Eq.(4.9) and

Eq.(4.13), we can get the negative log posterior of SAGP as follows,

L = Lγ + Lθ + Ld (4.14)

where Ld = β
2
tr(XT L̃X).

4.2 Optimization

In this thesis, the gradient descend algorithm is applied to calculate the latent variable

X and the hyperparameters {γv}Vv , {θv}
V
v . However, we find that the value of Lγ is much

smaller than that of Lθ, which greatly influences the performance in experiments. Thus, we

update the shared space alternatively in Lγ and Lθ + Ld. The objective function Eq.(4.14) is

transformed to Eq.(4.15).

arg minLγ + Lθ + Ld s.t. X = Xγ (4.15)

where Xγ is the shared variable learned from Lγ , and X is the shared variable learned from

Lθ + Ld. To this end, the Augmented Lagrangian method (ALM) is used to solve this prob-
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lem. As a result, we obtain the following augmented Lagrangian function shown as follows

arg minLALM =
1

2
{qN log 2π + q log

∣∣∣∣∣∑
v

Kv
Y

∣∣∣∣∣+ tr((
∑
v

Kv
Y )−1XγX

T
γ )}+

1

2

V∑
v=1

{
DvN log 2π +Dv log |Kv

X |+ tr((Kv
X)−1Yv(Yv)T )

}
+
β

2
tr(XTLX) + 〈Z,X−Xγ〉+

µ

2
‖X−Xγ‖2F

(4.16)

where Z is the Lagrange multiplier, 〈·, ·〉 is the inner production and µ is the non-negative

penalty parameter.

Subsequently, the gradients w.r.t. Xγ and X can be acquired as follows:

∂LALM
∂Xγ

= (KY )−1Xγ − µ
(

X−Xγ +
Z

µ

)
(4.17)

∂LALM
∂X

=
V∑
v=1

∂Lvθ
∂X

+ βLX + µ

(
X−Xγ +

Z

µ

)
(4.18)

β is a scaling parameter to trade-off the significance of the discriminative prior, and we get

it empirically. Since the likelihood term Lvθ is a function of Kv
X , the chain rule is applied to

get the derivatives:
∂Lvθ
∂xij

= tr

(
(
∂Lvθ
∂Kv

X

)T
∂Kv

X

∂xij

)
(4.19)

Similarly, the derivatives with the kernel parameters {γv}Vv and {θv}Vv can be derived as

follows:
∂LALM
∂γvi

= tr

(
(
∂LALM

∂
∑V

v Kv
Y

)T
∂Kv

Y

∂γvi

)
(4.20)

∂LALM
∂θvi

= tr

(
(
∂Lvθ
∂Kv

X

)T
∂Kv

X

∂θvi

)
(4.21)

After obtaining the latent variable Xγ , X and their corresponding parameters, the Lagrange

multiplier Z and parameter µ can be updated as

Zt+1 = Zt + µt(X−Xγ)

µt+1 = min(µmax, ρµt)
(4.22)

from the t-th iteration to the (t + 1)-th iteration, where ρ is a constant keeping the step size

of µ (it is typically set as 1.1), and the µmax is the predefined maximum of µ (it is typically

set as 1000).
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Algorithm 4.1 Shared Auto-encoder Gaussian Process latent variable model (SAGP)
Input: the observed training data {Yv}Vv , testing data {yv∗}Vv , and the prior parameter β and the dimension-

ality of the latent space q.

Output: the latent variables X and x∗.

Initialization: initialize the latent variable X using LDA.

1: while not converged do

2: Encode-step:

3: optimize the latent variable Xγ and hyperparameter {γ}Vv by Eq.(4.17) and Eq.(4.20)

4: Decode-step:

5: compute the latent variable X and hyperparameter {θ}Vv by Eq.(4.18), Eq.(4.19) and Eq.(4.21)

6: Update Lagrange multiplier and µ:

7: update Z and µ using Eq.(4.22).

8: end while

9: Test: get the latent variable for the test sample by Eq.(4.23) or Eq.(4.24).

4.3 Inference

After the optimization, the latent variable and parameters for the proposed model

are obtained. Given the new test multi-modal observations y∗ = {yv∗}Vv , the inference

procedure is quite simple and straightforward. Based on the result in [56] Chapter 2, the

latent variable x∗ can be computed by

x∗ = (
∑
v

Kyv∗Y v)(
∑
v

Kv
Y )−1X (4.23)

where Kyv∗Y v denotes the kernel matrix evaluated at all pairs of training and test points. For

the independent encoder (IE) scenario, the latent variable x∗ can be estimated by Eq.(4.24)

if the v-th view is available.

x∗ = Kyv∗Y v(K
v
Y )−1X (4.24)

The optimization and inference of the proposed method are shown in Algorithm 1. After

obtaining the latent variable X associated with training samples and x∗ associated with the

test sample through Eq. (4.23) or Eq. (4.24), the KNN (K is set to 1 in our experiments)

classifier is applied to estimate the label of the test sample.
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4.4 Computational Complexity Analysis

Without loss the generality, here we firstly denote D = max{Dv}Vv=1 and number of

iterations in the gradient decent technique as t. Since SAGP(SE) is more complex than SAG-

P(IE), we only analyze SAGP(SE). From the optimization we can see that the main complex-

ity exists in Eq.(4.18). For ∂Lvθ
∂Kv

X
, the complexity is O(N3 +N2D). For ∂Kv

X

∂xij
, the complexity

is O(Nq). Therefore, the complexity of Eq.(4.19) is O((N3 +N2D)+(Nq+N2)). As ∂Kv
X

∂xij

should be computed with N2 times, the complexity of Eq.(4.18) is O(V (N2D + N2(Nq +

N2)) + qNC) = O(V (N2D +N3q +N4) + qNC). Since N is much larger than q, D and

C in most of the time, the computational complexity of our optimization is nearly O(tV N4).

Despite that the computational complexity of our training step is relatively high, the com-

plexity of our testing step is quite efficient which is only O(V DN +N2 +Nq) according to

Eq.(4.23).

4.5 Experiments

In this section, the proposed method SAGP is applied to the object recognition on

three real-world datasets to demonstrate its effectiveness and superiority compared with

state-of-the-art approaches. We first introduce the datasets used in this section, followed

by the experimental setting. The experimental results on both overall and average classi-

fication accuracy are then illustrated. The sensitivity of the parameter selection is finally

analyzed.

4.5.1 Dataset description

The Wiki Text-Image dataset [55] was collected from the WikiPedia’s featured ar-

ticles collection. Since some of the collected classes are very scarce, only the 10 most

populated ones are used here. Totally, this dataset consists of 2173 training samples and 693

testing samples. Simultaneously, each sample contains a single image and at least 70 words.

Here, the 128-D SIFT feature is used to represent the image and the 10-D latent Dirichlet
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allocation feature is used to represent the text.

There are 30,475 images, containing 50 classes in the animals with attributes (AWA)

dataset [30, 34, 35]. Two kinds of Convolutional Neural Network (CNN) features: the fc7

of 7-layer CaffeNet (pretrained on ILSVRC2012) feature and the fc7 layer of very deep 19-

layer CNN (pretrained on ILSVRC2014) feature are selected. Here, we randomly selected

50 samples from each class for training, and the remaining images are used for testing. Being

similar to [15], we first exploit the Principal Component Analysis (PCA) to primarily reduce

the dimension of the CNN features to 300, which greatly decreases the training time.

The NUS-WIDE-LITE dataset [9] consists of 27807 samples for training and 27,808

for testing. Since there are some classes with scarce images, 9 classes are chosen, including

birds, boats, flowers, rocks, sun, tower, toy, tree, and vehicle. Furthermore, due to some

multi-label samples existing in this dataset, we remove the samples with zero or more than

one labels. Therefore, 16,377 samples are selected. Then we randomly select 200 samples

from each class for training, and remaining samples are used for testing, respectively. Be-

sides, three types of features including the color correlogram histogram (CH), edge direction

histogram (EDH), and wavelet texture (WT) features are input into different methods after a

PCA pre-process, being similar to [15]. The dimensions of three features are 33, 43 and 40,

respectively.

4.5.2 Experimental settings

To quantitively evaluate the superiority of SAGP, we make a comparison among it,

CCA [23, 68], JSSL [44], AWFA [76], GPLVM [37], DGPLVM [69], and DS-GPLVM [15].

Since GPLVM and DGPLVM only adapt for sing-view based data, we concatenate multiple

views as a single vector as their input. Additionally, the number of outputs of CCA is based

on the number of views. Here, we only show its best results. In [15], DS-GPLVM also

has two back constraints denoted as DS-GPLVMI and DS-GPLVMS. Similarly, since DS-

GPLVMI and the independent encoder based SAGP has different experimental results for

each view, only the best performance is displayed in this thesis. Besides, apart from the
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Table 4.1. The experimental results (overall accuracies) on three datasets computed by DC-

CA and DCCAE with different structures.
Dataset Structure DCCA DCCAE

Wiki

Din × 100× 10 66.4% 60.0%

Din × 200× 10 63.5% 63.5%

Din × 300× 10 63.4% 62.8%

Din × 400× 10 62.2% 67.1%

Din × 200× 100× 10 63.9% 62.8%

AWA

Din × 100× 100 75.3% 74.7%

Din × 200× 100 77.5% 76.5%

Din × 300× 100 78.2% 76.9%

Din × 400× 100 77.5% 76.7%

Din × 200× 100× 100 66.9% 64.9%

NUS

Din × 100× 10 29.4% 34.1%

Din × 200× 10 30.8% 35.0%

Din × 300× 10 31.2% 34.8%

Din × 400× 10 31.5% 35.4%

Din × 200× 100× 10 28.9% 21.6%

JSSL, we use the 1-NN classifier with the latent variable as the input to classify different

classes.

Since the auto-encoder structure is introduced in the proposed model, we also com-

pare SAGP with multi-view deep learning methods containing deep canonical correlation

analysis (DCCA) [3] and deep canonically correlated auto-encoders (DCCAE) [70]. Based

on the experimental results as shown in Tab.4.1, we find that the these two deep learn-

ing structures with more than two latent layers would suffer from a performance degra-

dation. Empirically, the structures of DCCA and DCCAE are set as Din × Dm × dout and

Din × Dm × dout × Dm × Din, respectively, where Din is the dimensionality of the input

vector, Dm is the dimensionality of the first latent layer, and dout is the dimensionality of

the output used for classification by applying the 1-NN classifier. Based on the experimental

results in Tab.4.1, we set Dm as 100 and 400 for DCCA and DCCAE in the Wiki Text-Image

dataset, respectively. Similarly, Dm is set as 300 and 400 for both methods in the AWA and
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Art Biology Geography History Literature Media Music Royalty Sport Warfare

35.3% 93.2% 70.8% 62.4% 60.0% 48.3% 56.9% 53.7% 93.0% 82.7%SAGP(IE)

41.2% 89.8% 57.3% 40.0% 49.2% 39.7% 52.9% 51.2% 90.1% 81.7%CCA

47.1% 85.2% 57.3% 37.6% 60.0% 37.9% 45.1% 46.3% 91.5% 79.8%GPLVM

38.2% 90.9% 71.9% 54.1% 49.2% 37.9% 56.7% 58.5% 88.7% 81.7%DSGPLVMI

32.4% 92.1% 69.8% 64.7% 60.0% 41.4% 56.9% 61.0% 91.6% 81.7%DSGPLVMS

35.3% 87.5% 64.6% 43.5% 55.4% 39.7% 41.2% 58.5% 90.1% 79.8%DGPLVM

35.3% 93.2% 68.8% 65.9% 58.5% 50.0% 68.6% 56.1% 91.5% 82.7%SAGP(SE)

50.0% 93.2% 64.6% 36.5% 55.4% 44.8% 52.9% 61.0% 90.1% 82.7%DCCA

44.1% 89.8% 58.3% 44.7% 58.5% 41.4% 51.0% 58.5% 88.7% 88.5%DCCAE

25.7% 91.0% 77.0% 28.2% 71.0% 51.3% 50.3% 78.7% 86.7% 89.3%JSSL

14.7% 92.1% 77.1% 45.9% 69.2% 44.8% 60.8% 51.2% 87.3% 88.5%AWFA

Figure 4.3. The classification accuracies for each class by using various single-view or multi-

view based approaches on the Wiki Test-Image dataset. The percentages with bold font

means our method obtains the best result, and the percentage with bold italic font means

SAGP obtains the second best result in comparison to other approaches.

the NUS-WIDE-LITE datasets, respectively.

4.5.3 Performance on the three datasets

Wiki Text-Image dataset: The overall and average classification accuracies on the

Wiki Text-Image dataset are tabulated in Tab.4.2 when the dimension of X ranges from 1

to 10. We can see that SAGP achieves the highest values on both overall accuracy and

average accuracy in most cases compared with CCA, JSSL, AWFA, GPLVM, DGPLVM,

DS-GPLVM, DCCA and DCCAE. In comparison to the CCA and GPLVM, SAGP obtains

at least a 7%-8% enhancement when the dimension is 8. Compared with DGPLVM, SAG-

P(IE) and SAGP(SE) have also a remarkable improvement at many times. Referring to

DS-GPLVMI and DS-GPLVMS, SAGP is also competitive. In contrast to two deep learning

methods: DCCA and DCCAE, our proposed method SAGP gains an obvious achievement

due to the few parameter estimation and strong data representation ability of SAGP. Dif-
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Table 4.3. The experimental results (overall accuracies) computed by DCCA and DCCAE

using dropout and sparsity regularization on the Wiki Text-Image dataset with different struc-

tures.
Dataset Structure DCCA DCCAE

Dropout

Din × 1000.3 × 10 62.1% -

Din × 1000.4 × 10 64.2% -

Din × 1000.5 × 10 64.1% -

Din × 4000.3 × 10 - 62.3%

Din × 4000.4 × 10 - 66.4%

Din × 4000.5 × 10 - 63.8%

Din × 2000.5 × 100× 10 63.9% 63.4%

Din × 200× 1000.5 × 10 63.6% 65.8%

Din × 2000.5 × 1000.5 × 10 62.2% 63.1%

Sparsity

Din × 100× 10 66.8% 61.2%

Din × 200× 10 62.8% 62.8%

Din × 300× 10 63.9% 63.5%

Din × 400× 10 62.5% 65.4%

Din × 200× 100× 10 61.5% 61.2%

ferently, DCCA and DCCAE are easy to have the over-fitting. Tab.4.3 shows the results

obtained by DCCA and DCCAE if the dropout and sparsity regularization are used. Note

that Din × 1000.3 × 10 means the dropout probability is 0.3 in the second layer. So do other

similar symbols. Despite that there is a slight improvement at some times by adding the

sparsity, they are still inferior to our method.

Fig.4.3 displays the classification accuracies of each class computed by different ap-

proaches, when dimension q is set to be 8. It is clear to see that SAGP achieves the best

performance in the biology, history, music, and sport. Particularly, almost all of the category

classification accuracies computed by SAGP(SE) are equal to or larger than 50% except for

the art. By contrast, CCA, DCCAE, GPLVM and DS-GPLVMI have at least three classes

whose results are below 50%. Compared with JSSL, AWFA, and DS-GPLVMS, the pro-

posed method SAGP is also competitive.
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Figure 4.4. Confusion matrix of the category recognition results on the AWA Dataset.

AWA dataset: Tab.4.4 lists the overall classification accuracies and average accura-

cies conducted on the AWA dataset. In contrast to CCA and GPLVM, SAGP obtains much

better results on both evaluation indexes. Compared with the DGPLVM, DCCA, DCCAE

and DS-GPLVM, our proposed method SAGP also achieves competitive results. Specifical-

ly, there is almost a 2% improvement in comparison to DS-GPLVM. In contrast to DCCA

and DCCAE, SAGP achieves almost 6 percents enhancement. Tab.4.5 displays experimental

results computed by DCCA and DCCAE with dropout and sparsity regularization. It is clear

to see that both methods gain a more or less improvement in some cases. However, SAGP is

still much superior to them.

The confusion matrix calculated by SAGP(SE) on the AWA dataset is shown in

Fig.4.4, whose diagonal elements mean the classification accuracy for each class. Note that
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Table 4.5. The experimental results (overall accuracies) computed by DCCA and DCCAE

using dropout and sparsity regularization on the AWA dataset with different structures.
Dataset Structure DCCA DCCAE

Dropout

Din × 3000.2 × 100 77.7% 77.5%

Din × 3000.3 × 100 77.5% 77.7%

Din × 3000.4 × 100 77.6% 78.1%

Din × 3000.5 × 100 77.0% 77.8%

Din × 2000.5 × 100× 100 67.5% 72.7%

Din × 200× 1000.5 × 100 57.0% 59.4%

Din × 2000.5 × 1000.5 × 100 56.2% 58.8%

Sparsity

Din × 100× 10 75.4% 75.3%

Din × 200× 10 77.6% 76.8%

Din × 300× 10 77.8% 77.1%

Din × 400× 10 77.8% 77.7%

Din × 200× 100× 10 75.12% 68.6%

the dimensionality q of X is set to be 50. From this figure we can see that the accuracy of

most classes outperforms 70% except for the blue+whale, cow, hamster, humpback+whale,

moose and rat, which relatively demonstrates the effectiveness of our proposed model SAGP.

NUS-WIDE-LITE dataset: The overall and average accuracy on the NUS-WIDE-

LITE dataset is tabulated in Tab.4.6, when the dimensionality of X ranges from 1 to 30.

Since the CCA, DCCA, and DCCAE are designed for two-view based data, the second and

third modalities are concatenated to be a single one empirically. From the Tab.4.6 we can see

that the results obtained by SAGP are much better than that obtained by other methods. Sim-

ilarly, we also conduct an experiment for DCCA and DCCAE with the dropout and sparsity

regularization, and the results are listed in Tab.4.7. Obviously, the classification accuracy

obtained by SAGP is still much higher than that computed by these two methods. Compared

with the JSSL, AWF, GPLVM, DGPLVM and DS-GPLVMS, SAGP(SE) outperforms these

four approaches remarkably.

The confusion matrices of various approaches are displayed in Fig.4.5 when the di-

mensionality q is 10. It is obvious to observe that the classification accuracy of different

categories obtained by our proposed method is superior or competitive to that gained by

other comparison methods.
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Table 4.6. The experimental results including both overall and average accuracies on the

NUS-WIDE-LITE dataset obtained by our proposed method and other comparison approach-

es under the changes of the dimensionality of the latent variable from 1 to 30.
Dimensionality

Methods Result dout=1 dout=5 dout=10 dout=15 dout=20 dout=25 dout=30

JSSL
Overall 47.2%

Average 48.9%

AWFA
Overall 51.3%

Average 50.1%

CCA
Overall 15.1% 30.6% 35.6% 36.7% 37.4% 37.7% 37.9%

Average 14.8% 29.6% 34.2% 34.7% 35.9% 35.3% 36.6%

GPLVM
Overall 16.3% 33.1% 36.7% 40.7% 42.1% 40.0% 40.3%

Average 14.9% 32.8% 34.8% 39.8% 40.5% 37.9% 39.6%

DGPLVM
Overall 19.6% 43.9% 51.2% 50.6% 51.9% 46.2% 45.1%

Average 21.5% 49.9% 52.8% 53.4% 54.0% 45.5% 44.8%

DS-GPLVMI
Overall 19.1% 24.5% 32.9% 33.8% 33.5% 32.6% 31.9%

Average 17.6% 30.7% 34.9% 35.9% 37.5% 34.3% 36.0%

DS-GPLVMS
Overall 25.4% 46.1% 54.8% 54.4% 53.8% 50.5% 48.9%

Average 25.0% 52.5% 56.6% 56.1% 55.6% 49.6% 48.6%

DCCA
Overall 14.6% 27.2% 31.5% 33.4% 34.0% 34.1% 35.0%

Average 14.4% 26.2% 31.5% 32.5% 32.2% 32.3% 33.6%

DCCAE
Overall 17.1% 29.8% 35.4% 36.4% 36.2% 37.3% 36.5%

Average 17.1% 28.4% 33.7% 34.4% 35.0% 36.1% 36.0%

SAGP(IE)
Overall 19.8% 29.1% 32.4% 34.7% 34.6% 37.8% 33.2%

Average 17.7% 33.7% 37.2% 36.4% 34.2% 37.5% 34.0%

SAGP(SE)
Overall 23.6% 52.6% 58.7% 56.2% 56.9% 53.1% 51.8%

Average 25.2% 51.9% 56.6% 55.0% 55.7% 50.4% 49.8%
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(c) DCCA

(d) DCCAE (e) GPLVM (f) DS-GPLVMI

(g) DS-GPLVMS (i) SASP-SE

(b) CCA

(h) SASP-IE

(a) JSSL

Figure 4.5. Confusion matrix of the category recognition results computed by different meth-

ods on the NUS-WIDE-LITE dataset. The vertical axis shows the true labels and the hori-

zontal axis shows the predicted labels.

4.5.4 Parameter analysis

In our proposed model, the selection of different parameters including q and β is

important. Here we give a discussion on these two parameters.

Fig.4.6 shows how the different values of dimensions of the latent variable affect

the classification accuracy. From this figure we can see that SAGP(SE) is optimal on the

8-D, 50-D, and 10-D for the three datasets, respectively. In fact, the value of q is quite

significant to the performance. With the increasing of q, the classification accuracy has

a remarkable increase. The reason is that the lower dimensional shared space may lose
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Table 4.7. The experimental results (overall accuracies) computed by DCCA and DCCAE

using dropout and sparsity regularization on the NUS-WIDE-LITE dataset with different

structures.
Dataset Structure DCCA DCCAE

Dropout

Din × 4000.2 × 10 31.3% 35.6%

Din × 4000.3 × 10 30.2% 32.8%

Din × 4000.4 × 10 30.0% 32.6%

Din × 4000.5 × 10 29.7% 32.7%

Din × 2000.5 × 100× 10 26.7% 28.6%

Din × 200× 1000.5 × 10 26.6% 25.2%

Din × 2000.5 × 1000.5 × 10 27.4% 25.6%

Sparsity

Din × 100× 10 29.3% 34.3%

Din × 200× 10 31.2% 34.3%

Din × 300× 10 30.8% 34.3%

Din × 400× 10 31.7% 36.5%

Din × 200× 100× 10 30.6% 26.7%

plenty of valuable information which is beneficial for the classification. Nevertheless, with

the continuous increase of the dimensionality q, our proposed method meets a performance

drop. In practice, a too large dimensionality q may be corrupted by other information which

has no contribution to our classification task.

Fig.4.7 plots the experimental results under different values of β. Note that, q is set

to be 8, 50 and 10 for the three datasets, respectively. The accuracy obtained by our proposed

method reaches the highest points when β is set to be 50, 60 and 70 for the three datasets,

respectively, while a further rise would result in an obvious drop on the performance. The

reason is that if β is too small, the label information of the latent variables cannot be fully

informed, resulting in a lower performance. By contrast, a too larger value of β may have a

too strong influence on the label information during the training, resulting in over-fitting.

4.6 Conclusion

In this chapter, a multi-view learning method based on the GPLVM is proposed to

learn a shared variable in a subspace. Different from conventional GPLVM and its extension-

s, the proposed method simultaneously takes the back projection from multiple observations
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(a) (b) (c)

Figure 4.6. SAGP(SE). The percentage of the overall and average accuracies under the

change of the dimensionality of the latent space. (a) Wiki Text-Image dataset. (b) AWA

dataset. (c) NUS-WIDE-LITE dataset.

(a) (b) (c)

Figure 4.7. SAGP(SE). The percentage of the overall and average accuracies under the

change of the β. (a) Wiki Text-Image dataset. (b) AWA dataset. (c) NUS-WIDE-LITE

dataset.

to the shared variable into account. Thanks to this back constraint, we can get the latent

variable simply but efficiently in the testing phase. Experimental results on three real-world

datasets demonstrate the superiority of our approach compared with the state-of-the-art meth-

ods.
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CHAPTER 5

MULTI-KERNEL SHARED GAUSSIAN PROCESS LATENT VARIABLE MODEL

As mentioned above, although SAGP achieves better performance compared with

JSSL, it only uses the RBF to construct the covariance and separates the latent variable

learning and classifier learning into two phases. In order to address these two issues, we

further extend SAGP to MKSGP. In this chapter, we first introduce MKSGP including the

encoder, decoder and prior, followed by its optimization, inference and computational com-

plexity analysis. The experiments are then conducted to demonstrate its effectiveness. This

method has been accepted in [41].

5.1 Problem Formulation

The framework of MKSGP is shown in Fig.5.1. Denote Y = {Yv ∈ RN×Dv}

(v = 1, · · · , V ) be the observed modalities, where V is the number of views, N is the

number of samples in each modality, Dv is the dimensionality of each view Yv, and Yv =

[yv1, · · · ,yvN ]T . Being similar to the SGPLVM [14, 36] and SAGP [43], there is a latent

variable X ∈ RN×q shared among different views, instead of estimating a single one for

each view as is done in GPLVM. In detail, the distribution of the observed data Yv given the

latent variable X is conditionally independent to other modalities. Thus, the likelihood of

multiple modalities given X satisfies

p(Y | X) =

V∏
v=1

p(Yv | X,θv) =

V∑
v=1

1√
(2π)NDv |Kv|Dv

exp(−1

2
tr((Kv

X)−1Yv(Yv)T )) (5.1)

where θv and Kv
X are the kernel parameters and kernel matrix corresponding to the v-th

view. In existing GP based works as well as SAGP, most of them exploit a certain kernel
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Figure 5.1. The Framework of MKSGP. Firstly, different types of features are obtained from

a same object. The projection from these features to a shared latent variable is learned with

multiple kernels. Simultaneously, projections from this latent variable to multiple observa-

tions are also learned with the multiple kernels. Particularly, to achieve the classification

goal, a large margin prior is embedded into the latent variable.

function such as RBF to establish the kernel matrix Kv
X . However, it may be an unreasonable

estimation because of the complexity of the real-world data. Instead of assuming Kv
X to

follow a determinative kernel function, we employ multiple kernels to automatically and

adaptively construct the kernel matrix, which is a more reasonable way for various real-

world dataset. Therefore, the kernel function Kv can be mathematically reformulated as

follows.

Kv
X =

Kf∑
kf=1

wvXkfK
v
Xkf

, s.t. wvXkf > 0, s.t.

Kf∑
kf=1

wvXkf = 1 (5.2)

where Kf is the number of selected kernel functions, and wvXkf is the weight for the kf -th

kernel function Kv
Xkf

in the v-th view. Without loss generality, the number and types of the

pre-defined kernel functions are set to be the same for all views.

To estimate the latent variable X, we optimize the proposed model by minimizing
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the negative log-likelihood function, as shown in Eq.(5.3).

Lf =
V∑
v=1

Lvf

Lvf =
Dv

2
N log 2π +

Dv

2
log |Kv

X |+
1

2
tr((Kv

X)−1Yv(Yv)T )

Kv
X =

Kf∑
kf=1

wvXkfK
v
Xkf

,

s.t. wvXkf > 0,

Kf∑
kf=1

wvXkf = 1 (v = 1, · · · , V )

(5.3)

5.2 Priors for Classification

Since our purpose is to apply the proposed method to the classification task, some

supervised priors would be embedded into the model to exploit the label information. Various

kinds of discriminative priors are widely utilized in [15, 20, 43, 45, 65, 69, 85]. For instance,

a discriminative prior is imposed on the SAGP to encourage the points belonging to the same

category to be close, while the points belonging to different classes to be far. However, this

prior requires an off-line classifier after training, which would make the model learning be

not adaptive for this classifier. Differently, in MKSGP, the large margin prior is utilized to

estimate the hyperplane for each class. In this way, we can not only learn our GPLVM model

and but also get the classifier online.

Formally, the large margin prior with the latent variable xi is represented as follows,

log p(xi) = λ
C∑
c=1

L(xTi , ti,wc, bc) (5.4)

where λ denotes the non-negative parameter to get a trade-off between Eq.(5.4) and Eq.(5.3),

C is the number of categories, wc is the hyperplane associated with the c-th category, bc is its

associated bias, and ti = [t1i , · · · , tci , · · · , tCi ] means the label vector (tci = 1 if the ground-

truth label of the i-th sample is equal to c and otherwise tci = −1).

Specifically, we define the large margin criterion as

L(XT ,T,wc, bc) =
1

2
‖wc‖22 + τ

N∑
i=1

l(xTi , ti,wc, bc) (5.5)
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where T is the ground-truth matrix, τ is a non-negative parameter. To get a simple yet

effective computation and keep a better smooth property, the quadratic hinge loss function is

utilized in Eq.(5.5).

l(xi, ti,wc, bc) =
[
max(1− tci(wT

c xi + bc), 0)
]2 (5.6)

5.3 Back-Constraints

In this approach, we assume that each observation can be generated from the shared

latent variable in a subspace. However, in the testing phase, the latent variable corresponding

to the test sample is what we need. Being similar to SAGP, the auto-encoder based projec-

tion, followed by the multi-kernel learning, is proposed in MKSGP, to estimate a projection

function to map the observations to the latent variable.

In detail, let gv be a projection function from Yv to X, and gv is embedded with a

GP∼(0, Kv
Y ) prior, where Kv

Y is the kernel matrix corresponding to the input Yv. Being

similar to Eq.(5.2), the multiple kernel functions are utilized to establish Kv
Y

Kv
Y =

Kg∑
kg=1

wvY kgK
v
Y kg , s.t. w

v
Y kg > 0,

Kg∑
kg=1

wvY kg = 1 (5.7)

where Kg is the number of selected kernels, Kv
Y kg

is the kg-th type of kernel function in

v-th view, followed by its weight wvY kg . Since there are V number of views, the conditional

distribution of the latent variable given these inputs p(X | Y = {Yv}Vv=1) is necessary to be

calculated. In this thesis, the covariance of p(X | Y) is simply defined as KY =
∑V

v=1 Kv
Y ,

being similar to [43]. Therefore, the distribution of p(X | Y) can be represented as

p(X | Y,γ) =
1√

(2π)Nq |KY |q
exp(−1

2
tr(K−1Y XXT )) (5.8)

where γ = {γvkg}kg ,v is the kernel parameter in function g.

Consequently, the joint conditional probabilistic function over the shared variable X

given the observations is represented as

p(X | Y,γ,θ) ∝ p(X | Y,γ)p(Y | X,θ) (5.9)
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Finally, by adding the priors of X into Eq.(5.9), the objective functions is generalized

as follows,

arg min L = Lf + Lg + Lpri, Lf =

V∑
i=1

Lvf

Lpri = λ
C∑
c=1

L(XT ,T,wc, bc)

Lvf =
Dv

2
N log 2π +

Dv

2
log |Kv

X |+
1

2
tr((Kv

X)−1Yv(Yv)T )

Lg =
1

2
qN log 2π +

1

2
q log |KY |+

1

2
tr((KY )−1XXT )

Kv
X =

Kf∑
kf=1

wvXkfK
v
Xkf

, s.t. wvXkf > 0,

Kf∑
kf=1

wvXkf = 1,

Kv
Y =

Kg∑
kg=1

wvY kgK
v
Y kg , s.t. w

v
Y kg > 0,

Kg∑
kg=1

wvY kg = 1

(v = 1, · · · , V )

(5.10)

5.4 Optimization

Being similar to SAGP, the latent variable X in Lf and Lg is alternatively updated.

Therefore, the objective function of Eq.(5.12) can be reformulated as follows.

arg min L = Lf + Lg + Lpri

Lf =

V∑
i=1

Lvf

Lpri = λ

C∑
c=1

L(XT ,T,wc, bc)

Lvf =
Dv

2
N log 2π +

Dv

2
log |Kv

X |+
1

2
tr((Kv

X)−1Yv(Yv)T )

Lg =
1

2
qN log 2π +

1

2
q log |KY |+

1

2
tr((KY )−1XgX

T
g )

Kv
X =

Kf∑
kf=1

wvXkfK
v
Xkf

, s.t. wvXkf > 0,

Kf∑
kf=1

wvXkf = 1,

Kv
Y =

Kg∑
kg=1

wvY kgK
v
Y kg , s.t. w

v
Y kg > 0,

Kg∑
kg=1

wvY kg = 1

(v = 1, · · · , V ) s.t. X = Xg

(5.11)
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To this end, the argument lagrange multiplier method (ALM) is utilized and the objective

function is then transformed as

arg min L =
1

2
{qN log 2π + q log |KY |+ tr((KY )−1XgX

T
g )}+

V∑
v=1

{D
v

2
N log 2π +

Dv

2
log |Kv

X |+
1

2
tr((Kv

X)−1Yv(Yv)T )}

+ λ
C∑
c=1

L(XT ,T,wc, bc) + 〈Z,X−Xg〉+
µ

2
‖X−Xg‖2F

(5.12)

where µ > 0 (we initially set it to 0.01 in the experiments) and Z is the Lagrange multiplier,

and 〈·, ·〉 denotes the inner product.

5.4.1 update the latent variable X

The derivative with respect to X is calculated as

∂L

∂X
=
∂Lf
∂X

+
∂Lpri
∂X

+ µ

(
X−Xg +

Z

µ

)
(5.13)

where Lf
X

=
∑V

v=1

Lvf
X

. In order to get the gradient of Lvf with respect to X, the chain rule is

utilized. Therefore,
∂Lvf
∂xij

= tr

(
(
∂Lvf
∂Kv

X

)T
∂Kv

X

∂xij

)
(5.14)

5.4.2 update the latent variable Xg

The derivative of Eq.(5.12) with respect to Xg is calculated as

∂L

∂Xg

= (KY )−1Xg − µ
(

X−Xg +
Z

µ

)
(5.15)

5.4.3 update the kernel parameters γ and θ

Being similar to Eq.(5.14), the derivatives of Eq.(5.12) with respect to the kernel

parameters γ and θ are calculated by using the chain rule.

∂L

∂γvkg ,i
= tr

(
(
∂Lg
∂KY

)T
∂Kv

Y

∂γvkg ,i

)
(5.16)
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∂L

∂θvkf ,i
= tr

(
(
∂Lvf
∂Kv

X

)T
∂Kv

X

∂θvkf ,i

)
(5.17)

where γvkg ,i and θvkf ,i are the i-th parameter in γvkg and θvkf , respectively.

5.4.4 update the weight of different types of kernel functions

Since there is no closed-form solution for the weight values wv
X and wv

Y , we use the

chain rule to get the gradient of the objective function with respect to the wv
X and wv

Y , and

then exploit the gradient decent algorithm to estimate the weight values. In detail,

∂L

∂wvY kg
= tr

(
(
∂Lg
∂KY

)T
∂Kv

Y

∂wvY kg

)
(5.18)

∂L

∂wvXkf
= tr

(
(
∂Lvf
∂Kv

X

)T
∂Kv

X

∂wvXkf

)
(5.19)

Due to the constraints of
∑Kg

kg=1w
v
Y kg

= 1,
∑Kf

kf=1w
v
Xkf

= 1 and wvY kg > 0, wvXkf > 0, we

set wvY kg = 0 and wvXkf = 0 if their values are smaller than 0. Then we normalize the sum of

wvY = {wvY kg}kg or wX = {wvXkf}kf to 1 after each iteration.

5.4.5 update the Lagrange multiplier Z and parameter µ

The Lagrange multiplier Z and parameter µ are updated following Eq.(5.20).

Zt+1 = Zt + µt(X−Xg)

µt+1 = min(µmax, ρµt)
(5.20)

where Zt and Zt+1 are the current and updated value, respectively; so do µt and µt+1; µmax

is the maximization of µ (it is typically set to 1000); ρ is the a constant, keeping the step size

of µ (it is typically set to 1.1).

5.4.6 Inference

Refer to [56] in Chapter 2, the latent variable x∗ can be obtained through a simple

yet effective way when a testing sample is given.

x∗ = (
∑
v

Kyv∗Y v)(
∑
v

Kv
Y )−1X (5.21)
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Algorithm 5.1 Multi-kernel Shared Gaussian Process Latent Variable Model (MKSGP)
Input: the observed training data Y, testing data y∗, and the prior parameter λ and τ , and dimension q of the latent variable.

Output: the latent variables X and x∗.

Initialization: initialize the latent variable X using LDA.

1: while not converged do

2: Update X and parameters θ: optimize the latent variable X and parameter {θv}Vv using Eq.(5.13) and Eq.(5.17)

3: Update Xg and parameters γ: compute the latent variable Xg and parameter {γv}Vv using Eq.(5.15) and Eq.(5.16)

4: Update the weight values wY and wX : estimate the weights of each type of the kernel function using Eq.(5.18) and Eq.(5.19)

5: Update Lagrange multiplier Z and µ: update Z and µ using Eq.(5.20).

6: end while

7: Test: get the latent variable of the test sample by Eq.(5.21).

where Kyv∗Y v denotes the kernel matrix evaluated on all pairs of training and testing points.

The optimization and inference of the proposed method is shown in Algorithm 5.1.

5.5 Computational Complexity Analysis

As RBF is complex enough in contrast to remaining kernel functions, we use it as

the typical one in our complexity analysis per iteration. Without loss the generality, let D =

max{Dv}Vv=1 and the number of iterations in the gradient decent technique be t. Referring to

the optimization, it is easy to see that the main complexity exists in Eq.(5.13) and Eq.(5.14).

It is easy to gain that the complexity of
∂Lvf
∂Kv

X
is O(N3 + N2D) and the complexity of ∂Kv

X

∂xij

is O(Nq). Therefore, the complexity of Eq.(5.14) is O((N3 + N2D) + (Nq + N2)). From

Eq.(5.13) we can see that ∂Kv
X

∂xij
should be computed with N2 times. Thus the complexity of

Eq.(5.13) is O(V (N2D + N2(Nq + N2)) + qNC) = O(V (N2D + N3q + N4) + qNC).

Since N is much larger than q, D and C, the complexity is nearly O(tV N4). Despite that

the complexity of our training step is relatively high, it is quite efficient at the testing step,

which is only is only O(V DN +N2 +Nq) according to Eq.(5.21).
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5.6 Experiments

In this section, we conduct experiments on AWA, NUS-WIDE-LITE, and biomedical

(Health VS DM) datasets to demonstrate the effectiveness of MKSGP.

5.6.1 Experimental Settings

To quantatively evaluate the superiority of MKSGP, we conduct the experiments

compared with CCA, randomized nonlinear CCA (RCCA) [46], DCCA [3], DCCAE [70],

JSSL [44], AWFA [76], GPLVM, DGPLVM [69], DSGPLVM [15] and SAGP [43]. Since

there are multiple kernels in the covariance construction for MKSGP, six kinds of kernels

containing Linear, RBF, Polynomial, Rational Quadratic (Ratquad), Multilayer Percep-

tron (MLP) and Matern kernels are used. Note that, for each kernel function, our method

can automatically estimate its corresponding weight. All experiments are implemented by

using the MATLAB R2014b on a CPU with 32G RAM.

In experiments, we tune the discriminative prior λ and τ through 3-fold cross-validation

by using small subsets selected from the training data. For the parameter τ , it is sensitive

and we tune it very carefully for different datasets. According to our cross-validation, we set

it to 0.1, 2, and 3 on the AWA, NUS-WIDE-LITE and Biomedical datasets, respectively.

5.6.2 Experimental Results

AWA dataset: Tab.5.1 displays the classification results on the AWA dataset ob-

tained by different methods, when the q ranges from 40 to 130. Note that in this experiment

λ and τ are set to be 40 and 0.1, respectively. It is easy to observe that the proposed method

is much superior to CCA, RCCA, DCCA, DCCAE, and GPLVM, achieving a remarkable

improvement. Compared with JSSL, AWFA, DGPLVM, DSGPLVM, and SAGP, MKSGP is

also competitive. Concretely, there is almost more or less 2% enhancement on the overall and

average accuracies. The main reason is that MKSGP jointly takes the multi-kernel and online

classifier learning into account, which are beneficial for the performance improvement.

60



Ta
bl

e
5.

1.
T

he
ov

er
al

la
nd

av
er

ag
e

ac
cu

ra
ci

es
on

th
e

A
W

A
da

ta
se

tc
om

pu
te

d
by

va
ri

ou
sm

et
ho

ds
un

de
rt

he
ch

an
ge

of
th

e
di

m
en

si
on

al
ity

of
th

e
la

te
nt

va
ri

ab
le

fr
om

40
to

13
0.

D
im

en
si

on
al

ity

M
et

ho
ds

R
es

ul
t

d
o
u
t

=4
0

d
o
u
t

=5
0

d
o
u
t

=6
0

d
o
u
t

=7
0

d
o
u
t

=8
0

d
o
u
t

=9
0

d
o
u
t

=1
00

d
o
u
t

=1
10

d
o
u
t

=1
20

d
o
u
t

=1
30

JS
SL

O
ve

ra
ll

83
.8

%

A
ve

ra
ge

81
.7

%

A
W

FA
O

ve
ra

ll
83

.4
%

A
ve

ra
ge

81
.3

%

C
C

A
O

ve
ra

ll
71

.8
%

73
.6

%
74

.3
%

74
.8

%
75

.1
%

75
.1

%
75

.5
%

73
.8

%
74

.1
%

74
.1

%

A
ve

ra
ge

69
.2

%
71

.1
%

72
.8

%
72

.4
%

72
.8

%
72

.7
%

73
.2

%
71

.6
%

72
.0

%
71

.8
%

R
C

C
A

O
ve

ra
ll

78
.1

%
78

.8
%

78
.9

%
79

.2
%

79
.3

%
79

.3
%

79
.4

%
79

.4
%

79
.2

%
79

.3
%

A
ve

ra
ge

75
.6

%
76

.3
%

76
.5

%
76

.8
%

76
.9

%
76

.8
%

76
.9

%
77

.1
%

76
.8

%
76

.9
%

G
PL

V
M

O
ve

ra
ll

70
.9

%
71

.9
%

71
.4

%
71

.1
%

69
.1

%
72

.1
%

71
.4

%
71

.8
%

72
.1

%
71

.6
%

A
ve

ra
ge

69
.5

%
70

.6
%

69
.9

%
70

.3
%

67
.2

%
69

.7
%

70
.9

%
70

.7
%

71
.6

%
70

.8
%

D
G

PL
V

M
O

ve
ra

ll
80

.1
%

82
.0

%
80

.2
%

78
.8

%
77

.6
%

76
.5

%
75

.4
%

75
.0

%
74

.5
%

73
.8

%

A
ve

ra
ge

78
.3

%
80

.1
%

78
.6

%
77

.3
%

76
.1

%
75

.0
%

74
.0

%
73

.6
%

73
.2

%
72

.3
%

D
SG

PL
V

M
I

O
ve

ra
ll

81
.8

%
82

.9
%

82
.8

%
81

.7
%

82
.8

%
82

.7
%

82
.4

%
82

.3
%

82
.4

%
82

.3
%

A
ve

ra
ge

80
.0

%
81

.0
%

80
.9

%
79

.8
%

81
.1

%
80

.8
%

80
.6

%
80

.5
%

80
.7

%
80

.8
%

D
SG

PL
V

M
S

O
ve

ra
ll

82
.0

%
83

.4
%

83
.1

%
82

.4
%

82
.5

%
82

.7
%

82
.7

%
82

.5
%

83
.2

%
82

.7
%

A
ve

ra
ge

80
.0

%
81

.4
%

81
.5

%
80

.7
%

80
.8

%
80

.8
%

80
.8

%
81

.4
%

81
.5

%
81

.2
%

D
C

C
A

O
ve

ra
ll

76
.6

%
78

.3
%

77
.5

%
77

.9
%

76
.9

%
77

.9
%

78
.2

%
78

.4
%

78
.1

%
78

.3
%

A
ve

ra
ge

74
.4

%
76

.3
%

75
.3

%
76

.0
%

74
.6

%
75

.6
%

76
.0

%
76

.1
%

75
.8

%
76

.1
%

D
C

C
A

E
O

ve
ra

ll
76

.7
%

77
.1

%
76

.9
%

76
.7

%
76

.8
%

77
.0

%
76

.9
%

76
.9

%
76

.9
%

76
.8

%

A
ve

ra
ge

74
.8

%
75

.0
%

74
.8

%
74

.9
%

74
.9

%
74

.9
%

74
.8

%
74

.8
%

74
.8

%
74

.7
%

SA
G

P(
IE

)
O

ve
ra

ll
82

.0
%

83
.6

%
83

.0
%

82
.7

%
82

.2
%

81
.8

%
81

.4
%

81
.1

%
80

.4
%

79
.8

%

A
ve

ra
ge

79
.9

%
81

.5
%

81
.1

%
80

.7
%

80
.3

%
79

.8
%

79
.5

%
79

.4
%

78
.7

%
78

.0
%

SA
G

P(
SE

)
O

ve
ra

ll
82

.4
%

84
.3

%
83

.4
%

82
.7

%
83

.3
%

83
.3

%
83

.1
%

83
.3

%
82

.6
%

82
.9

%

A
ve

ra
ge

80
.0

%
82

.3
%

81
.5

%
80

.8
%

81
.4

%
81

.4
%

81
.0

%
81

.5
%

80
.9

%
81

.4
%

M
K

SG
P

O
ve

ra
ll

81
.6

%
85

.3
%

85
.4

%
85

.3
%

85
.4

%
85

.2
%

85
.2

%
84

.9
%

85
.0

%
85

.1
%

A
ve

ra
ge

78
.7

%
83

.2
%

83
.4

%
83

.3
%

83
.3

%
83

.0
%

83
.0

%
82

.6
%

82
.8

%
83

.0
%

61



Figure 5.2. The confusion matrix conducted on the AWA dataset when the dimensionality of

X is set to 60.

Figure 5.3. The weight values of various kinds of kernels in multiple mappings on the AWA

dataset. Here ‘v1:Y2X’ denotes the weights from the observed data to X in the first view.

So do other symbols.
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Table 5.2. The overall and average accuracies on the NUS-WIDE-LITE dataset computed

by various methods when q changes from 1 to 30.
Dimensionality

Methods Result dout=1 dout=5 dout=10 dout=15 dout=20 dout=25 dout=30

JSSL
Overall 47.2%

Average 48.9%

AWFA
Overall 51.3%

Average 50.1%

CCA
Overall 15.1% 30.6% 35.6% 36.7% 37.4% 37.7% 37.9%

Average 14.8% 29.6% 34.2% 34.7% 35.9% 35.3% 36.6%

RCCA
Overall 17.8% 35.6% 40.4% 42.8% 43.6% 44.3% 44.0%

Average 18.9% 32.9% 38.4% 39.6% 41.4% 42.4% 41.1%

GPLVM
Overall 16.3% 33.1% 36.7% 40.7% 42.1% 40.0% 40.3%

Average 14.9% 32.8% 34.8% 39.8% 40.5% 37.9% 39.6%

DGPLVM
Overall 19.6% 43.9% 51.2% 50.6% 51.9% 46.2% 45.1%

Average 21.5% 49.9% 52.8% 53.4% 54.0% 45.5% 44.8%

DSGPLVMI
Overall 19.1% 24.5% 32.9% 33.8% 33.5% 32.6% 31.9%

Average 17.6% 30.7% 34.9% 35.9% 37.5% 34.3% 36.0%

DSGPLVMS
Overall 25.4% 46.1% 54.8% 54.4% 53.8% 50.5% 48.9%

Average 25.0% 52.5% 56.6% 56.1% 55.6% 49.6% 48.6%

DCCA
Overall 14.6% 27.2% 31.5% 33.4% 34.0% 34.1% 35.0%

Average 14.4% 26.2% 31.5% 32.5% 32.2% 32.3% 33.6%

DCCAE
Overall 17.1% 29.8% 35.4% 36.4% 36.2% 37.3% 36.5%

Average 17.1% 28.4% 33.7% 34.4% 35.0% 36.1% 36.0%

SAGP(IE)
Overall 19.8% 29.1% 32.4% 34.7% 34.6% 37.8% 33.2%

Average 17.7% 33.7% 37.2% 36.4% 34.2% 37.5% 34.0%

SAGP(SE)
Overall 23.6% 52.6% 58.7% 56.2% 56.9% 53.1% 51.8%

Average 25.2% 51.9% 56.6% 55.0% 55.7% 50.4% 49.8%

MKSGP
Overall 26.2% 59.6% 62.2% 62.5% 63.0% 62.6% 58.6%

Average 27.1% 54.9% 58.6% 59.2% 59.9% 59.6% 56.4%
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birds boats flowers rocks sun tower toy tree vehicle

Figure 5.4. The average accuracy of selected 9 classes computed by different approaches.

Fig.5.2 further displays the confusion matrix when the dimensionality q is set to be

60. As we can see, the accuracy for each category gained by our presented method MKSGP

is larger than 70% for most classes. Furthermore, there are as many as 20 classes whose

percentages outperform 90%.

Fig.5.3 shows the weight values belonging to different types of kernels. From Fig.5.3

we can observe that MKSGP can adaptively estimate the weight values for different views

and different types of projections (encoder and decoder). The ‘MLP’ (Multilayer Perceptron)

kernel function gains the highest weights for both views in the encoder. In the decoding part,

the ‘Linear’, ‘RBF’, ‘Ratquad’ (Rational Quadratic), ‘MLP’ and ‘Matern’ kernels are mainly

used for establishing the covariance matrices, while ‘Polynomial’ almost has no contribution.

NUS-WIDE-LITE dataset: The overall and average percentages calculated by var-

ious single-view or multi-view methods are tabulated in Tab.5.2, when the dimensionality q

ranges from 1 to 30. Note that in this experiment we set λ and τ to be 70 and 2, respectively.

It is easy to see that MKSGP achieves the best performance compared with other comparison

methods. In comparison to CCA, RCCA, GPLVM, DSGPLVMI, DCCA, DCCAE and SAG-

PIE, MKSGP has almost 15% improvement on the two indexes. In contrast to DGPLVM,

DSGPLVMS and SAGPSE, our strategy MKSGP also obtains the remarkable enhancement
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Figure 5.5. The weight values of various kinds of kernels in multiple mappings on the NUS-

WIDE-LITE dataset.

since it jointly takes the multi-view correlation, multi-kernel learning, the auto-encoder back

constraint and large margin prior into account. Fig.5.4 shows the classification accuracy for

different classes, when q is set to be 10. From Fig.5.4 we can see that our presented strategy

obtains the best results in most of categories including birds, flowers, rocks, sun, tower and

vehicle.

Fig.5.5 shows the weight values belonging to different types of kernels, when q = 10,

λ = 70 and τ = 2, respectively. We can see that ‘RBF’ plays the main role at the decoding

step in the first view, followed by ‘Polynomial’, ‘Linear’ and ‘Matern’ kernels. For the

second and third views, these six kernels give a similar contribution. On the other hand,

the ‘MLP’ kernel is mainly utilized to construct the covariance matrices at the encoding

step in all views. Also, the ‘Linear’ kernel has more or less contribution to model the back

constraint.

Biomedical dataset: In this experiment, we use the accuracy, sensitivity and speci-

ficity to evaluate our proposed method and the experimental results are displayed in Tab.5.3.

As DCCA and DCCAE need a large number of training data, they do not perform well on

this dataset. Therefore, we ignore these two methods in this experiment. Being similar to the

setting in the NUS-WIDE-LITE dataset, the facial and sublingual features are empirically
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Figure 5.6. The accuracy obtained by different methods under different values of the dimen-

sionality of the latent variable on the Biomedical dataset.

Figure 5.7. The weight values of various kinds of kernels in multiple mappings on the

Biomedical dataset.
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concatenated as a single one for CCA and RCCA. Furthermore, except for JSSL and AWFA,

q is set to 10 in all methods and λ = 30 and τ = 3 for MKSGP, respectively. Compared

with CCA, RCCA, GPLVM, DSGPLVMI and SAGPI, MKSGP is far superior. In contrast

to DGPLVM and DSGPLVMS, our proposed approach also enjoys a large performance im-

provement. In comparison to SAGPS, JSSL and AWFA, MKSGP is still competitive. Ad-

ditionally, we further plots the accuracy curves in Fig.5.6 when q ranges. Here number of

training samples for each class is 50. We can see that our proposed method MKSGP get

outstanding performance in all situations.

Fig.5.7 displays the weight values of different kernels from and to the shared space,

when the training number is 50 and q = 10. As we can see, weights corresponding to the six

kernels are quite similar in the first and third views of the encoder. In the second view, ‘RBF’

and ‘MLP’ kernel functions play the main role, followed by the ‘Linear’ and ‘Polynomial’ k-

ernels. In the decoding part, ‘RBF’, ‘Polynomial’, ‘MLP’ and ’Matern’ kernels obtain higher

weights in three views, while ’Linear’ and ‘Ratquad’ kernels give a slight contribution.

5.6.3 Parameter analysis

Being similar to SAGP, we discuss the parameter sensitivity of MKSGP.

Fig.5.8 shows the influence of τ on the overall and average classification accuracy.

Here, q is set to 60, 10, and 10, and λ is set to 40, 70, and 30 for the three datasets, respec-

tively. It is easy to see that there is a performance increase with the rise of τ . However, with

the continuous increase of τ , MKSGP meets a slight performance degradation. In practice, a

too large value of τ may corrupt the influence of the constraint 1
2
‖wc‖22, resulting in learning

an inferior classifier.

The influence of λ is displayed in Fig.5.9. Note that q is set to 60, 10, and 10, and τ is

set to 0.1, 2, and 3 for the three datasets, respectively. With the increase of λ, MKSGP has a

performance increase, while a further increase leads to a noticeable drop on the performance.

In fact, λ makes a trade-off between the discriminative term and the latent variable learning

model. If it is too large, MKSGP may meet an over-fitting phenomenon since the model pays
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(a) (b) (c)

Figure 5.8. MKSGP. The percentage of the overall accuracy and average accuracy with the

change of the value of τ on the three datasets.

(a) (b) (c)

Figure 5.9. MKSGP. The percentage of the overall accuracy and average accuracy with the

change of the value of λ on the three datasets.

much attention on exploiting the label information. By contrast, the semantic information

cannot be fully utilized if λ is too small.

5.6.4 Time cost analysis

To obtain the latent variable at the testing stage, only Eq.(5.21) should be computed.

Its time complexity is only O(V DN + N2 + Nq). In order to further demonstrate the

Table 5.4. The time cost at the testing stages on different datasets

Dataset AWA NUS-WIDE-LITE Biomedical

Time(sec.) 7.7787× 10−4 7.0064× 10−4 3.1032× 10−5
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effectiveness of the proposed method, we record the time consumption on the three datasets

at the testing stage. Note that the dimension of the latent variable is set to 60, 10 and 10 for

the AWA, NUS-WIDE-LITE and Biomedical datasets, respectively. The time cost for each

testing sample is shown in Tab. 5.4. It is easy to observe that MKSGP can obtain the latent

variable and predict the label in real-time.

5.7 Conclusion

In this chapter, an extension of SAGP is proposed. Different from SAGP which only

uses a certain kernel function, multi-kernel learning is introduced to construct the covariance

matrices in both encoder and decoder, which can better model the data with complex distri-

butions. Furthermore, the large margin prior is also imposed on the latent variable to learn

the classifier online, which is more adaptive for our data and model.
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CHAPTER 6

HIERARCHICAL MULTI-VIEW MULTI-FEATURE FUSION

Although JSSL, SAGP and MKSGP have been proposed to process the multi-view

data and achieve satisfactory performance in classification, they can not be directly applied

to the multi-view and multi-feature data. Here the multi-view and multi-feature data means

an object can be represented with multiple views, and each view can also be represented

with multiple features. To address this problem, we propose a generative and probabilistic

model for multi-view and multi-feature classification in this chapter, which can hierarchically

exploit the correlation among them. This method is accepted in [39].

6.1 The Hierarchical probabilistic Model

The framework and graphic model of the proposed method are shown in Fig.6.1.

As we can see, an object is observed from J views, and the j-th (j ∈ {1, · · · , J}) view is

represented by Kj types of features. Specifically, the data and the label of the i-th sample

can be represented as {xijkj ∈ RDjkj }J,Kjj,kj=1 and a one-hot categorical variable zi ∈ RP ,

respectively, where Djkj is the dimension of the kj-th feature in the j-th view, P is the

number of the classes, and zi satisfies zpi ∈ {0, 1} and
∑P

p=1 zpi = 1.

Then some probability assumptions for these variables are made to construct our hier-

archical model. Firstly, the categorical distribution is introduced for the categorical variable

zi, which has the following form:

p(zi | θZ) =
P∏
p=1

πzpip (6.1)
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Figure 6.1. (a) The framework of the proposed method, where the number of the latent

variables is equal to the number of observed views. (b) The probabilistic framework of the

proposed method.

where θZ = {πp}Pp=1, zpi = 1 if the i-th sample belongs to the p-th class, otherwise zpi = 0

and the variable πp ∈ [0, 1] follows
∑P

p=1 πp = 1, which means the probability of a sample

belonging to its corresponding category.

In order to exploit the discriminative information, a latent variable hij ∈ RDj cor-

responding to the j-th view of the i-th sample is then learned by imposing the ground-truth

label on it. Specifically, for distinctive categories, the distributions of the latent variables

belonging to different views are different, greatly exploiting the complementary information

across multiple views. The most common and simple assumption for hij is that

p(hij | zi,θH) =
P∏
p=1

N (hij | µjp,Σjp)
zpi (6.2)

where θH = {µjp,Σjp}J,Pj,p=1, meaning that its distribution for the p-th category is a Gaussian

distribution with mean µjp and covariance matrix Σjp.

In general, it is reasonable to assume that multiple features are the projections from

a shared variable through different mapping functions. Thus, in the proposed model, a map-

ping matrix for each feature in a same modality is learned to transform the the latent variable
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hij to the observed data xijkj by a linear Gaussian model, which can be presented as follow-

ing equation:

p(xijkj | hij ,θX) = N (xijkj | Ajkjhij + bjkj ,Σjkj )
(6.3)

where θX = {Ajkj ,bjkj ,Σjkj}
J,Kj
j,kj=1, Ajkj is the learned mapping matrix, bjkj is the bias

and Σjkj denotes the covariance matrix.

Moreover, we also make some reasonable conditional independence assumptions

about different features and different views, including

p({xijkj}
Kj
kj=1 | hij ,θX) =

Kj∏
kj=1

p(xijkj | hij ,θX)

p({{xijkj}
Kj
kj=1,hij}

J
j=1 | θX ,θH , zi) =

J∏
j=1

p({xijkj}
Kj
kj=1,hij | θX ,θH , zi)

(6.4)

In order to acquire a simple representation derivation, let Z = {zi}Mi=1, H = {hij}M,J
i,j=1

and X =
{
xijkj

}M,J,Kj

i,j,kj=1
. Taking the aforementioned independent and identically distributed

(i.i.d.) assumption into account, the join distribution w.r.t. all variables is obtained:

P (X,Z,H | θX ,θZ ,θH) =
M∏
i=1

{p(zi | θZ)
J∏
j=1

{p(hij | zi,θH)

Kj∏
kj=1

p(xijkj | hij ,θX)}} (6.5)

which is a probabilistic hierarchical model. Generally speaking, it is infeasible to estimate

the covariance matrix Σjkj and Σjp , when the dimensions of the features and the latent

variables are large. To avoid overfitting, Σjp and Σjkj can be set to be σ2
jpI and σ2

jkj
I in this

case, where σjp and σjkj are two 1-D variables to control their variances of all dimensions,

and I is identical matrix.

To estimate the parameters of this probabilistic method, the log-likelihood function

w.r.t. all variables should be optimized. Since it is difficult to directly observe the latent

variable H, the log-likelihood function only related to the multi-view and multi-feature data

X and its label variable Z is considered. Therefore, the objective function is

arg min logP (X,Z | θX ,θZ ,θH) (6.6)
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However, it is quite different between marginalizing H in Eq.(6.5) and optimizing the ob-

jective function (6.6). Fortunately, the Expectation-Maximization(EM) [8] algorithm can be

readily utilized for efficiently solving this kind of problem with latent variables.

6.2 Optimization

As analyzed above, the EM algorithm, which is a two-stage iterative optimization

technique for finding maximum likelihood solutions, is employed to estimate the model pa-

rameters. Specifically, the posterior probability of latent variable H will be calculated in

E-step, followed by the estimation of the value of parameters θZ , θH and θX in M-step.

E Step: Primarily, we use the current values of all parameters to evaluate the poste-

rior probabilities of H. The log-posterior function

logP (H | X,Z,θX ,θZ ,θH) ∝ logP (X,H,Z | θX ,θZ ,θH)

∝
M∑
i=1

{
J∑
j=1

{−1

2
hTij(

P∑
p=1

zpiΣ
−1
jp +

Kj∑
kj=1

AT
jkj

Σ−1jkjAjkj )hij

+ hTij(
P∑
p=1

zpiΣ
−1
jp µjp +

Kj∑
kj=1

AT
jkj

Σ−1jkj (xijkj − bjkj ))}}

(6.7)

is an a quadratic form function w.r.t. hij . Thus the posterior probability of hij follows a

Gaussian distribution, which can be rewritten as follows:

p(hij | X,Z,θX ,θZ ,θH) = N (hij | µHij ,ΣH
ij ) (6.8)

where

ΣH
ij = (

P∑
p=1

zpiΣ
−1
jp +

Kj∑
kj=1

AT
jkj

Σ−1jkjAjkj )
−1

µHij = ΣH
ij {

P∑
p=1

zpiΣ
−1
jp µjp +

Kj∑
kj=1

AT
jkj

Σ−1jkj (xijkj − bjkj )}

(6.9)

M Step: In M-step, all parameters are re-estimated by optimizing a concave low-

bound function for (6.6), being

L(θX ,θZ ,θH) = EH [log p(X,Z,H | θX ,θZ ,θH)] (6.10)
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with a unique maximum point. In Eq.(6.10), the format is similar to log joint density

log p(X,Z,H | θZ ,θH ,θX), except to replace hij and hijh
T
ij with E[hij] and E[hijh

T
ij],

respectively. Since the mean and covariance of the posterior probability for hij are µHij and

ΣH
ij , which have been calculated in E-step, E[hij] and E[hijh

T
ij] can be obtained through the

following equation:

E[hij ] = µHij

E[hijh
T
ij ] = ΣH

ij + µHij (µHij )T
(6.11)

By calculating the derivative of the low-bound function L(θZ ,θH ,θX) w.r.t. θZ , θH , and

θX , and setting it to be zero, the parameters can be estimated with closed-form solutions.

The results are listed as follows.

For the parameters corresponding to θX , the solutions are

Ajkj = {
M∑
i=1

(xijkj − bjkj )E[hTij ]}{
M∑
i=1

E[hijh
T
ij ]}−1

bjkj =
1

M

M∑
i=1

{xijkj −AjkjE[hij ]}

Σjkj =
1

M

M∑
i=1

{AjkjE[hijh
T
ij ]A

T
jkj
− 2AjkjE[hij ]

(xijkj − bjkj )
T + (xijkj − bjkj )(xijkj − bjkj )

T }

(6.12)

For the parameters corresponding to θH , the solutions are

µjp =
1∑M

i=1 zpi

M∑
i=1

zpiE[hij ]

Σjp =
1∑M

i=1 zpi

M∑
i=1

zpi{E[hijh
T
ij ]− 2E[hij ]µ

T
jp + µjpµ

T
jp}

(6.13)

To estimate the parameter θZ = {πp}Pp=1, the Lagrange Multiplier term is introduced to

meet
∑P

p=1 πp = 1. By calculating the derivative of the Lagrange function w.r.t. πp and

setting it to 0, the solution of πp is then obtained according to the following equation:

πp =

∑M
i=1 zpi∑P

p=1

∑M
i=1 zpi

(6.14)

From Eq. (6.12), Eq. (6.13) and Eq. (6.14), we can see that each step has a closed-form

solution which would greatly facilitate the parameter estimation process. According to the
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Algorithm 6.1 [HMMF]Hierarchical Multi-view Multi-feature Fusion
Input: Observed data: X; label: Z;

Initialization: θZ ;θH ; θX

1: (Calculate θZ)

2: for p = 1, ..., P do

3: Calculate πp by Eq (6.14)

4: end for

5: while not converged do

6: E-step:

7: for i = 1, ...,M do

8: for j = 1, ..., J do

9: Evaluate ΣH
ij and µHij by Eq.(6.9), and Calculate E[hij ] and E[hijh

T
ij ] by Eq.(6.11).

10: end for

11: end for

12: M-step: (re-estimate θH and θX )

13: for j = 1, ..., J do

14: for p = 1, ..., P do

15: calculate µjp and Σjp through Eq.(6.13)

16: end for

17: for kj = 1, ...,Kj do

18: calculate Σjkj , bjkj and Ajkj through Eq.(6.12)

19: end for

20: end for

21: end while

Output: θZ ;θH ; θX
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convergence theory of EM algorithm, each update of the parameters acquired from an E-step

followed by an M-step can guarantee the increase of the log likelihood function. Hence, to

obtain a local maximin point, we alternatively execute E-step and M-step until convergence.

The Algorithm 6.1 illustrates the details of the optimization. In this thesis, our proposed

method is named as Hierarchical Multi-view Multi-feature Fusion (HMMF).

Computational Complexity Analysis: Without loss the generality per iteration, we

let D1 = max(Dj), D2 = max(Djkj), and K = max(Kj). Thus the complexity of our

algorithm is O(MC + J(CD3
1 + K(MD2D1 + D2

2D1 + D3
2))) for the general covariance

matrix and O(MC + JD3
1 + JKMD1D2) for the diagonal covariance matrix.

6.3 Prediction

According to the Bayesian principle, the posterior probability of a given test sample

x = {xjkj}
J,Kj
j,kj=1 belonging to the p-th class is calculated through

p(zp = 1 | x,θZ ,θH ,θX) =
p(x | zp = 1,θZ ,θH ,θX)p(zp = 1)∑P
p=1 p(x | zp = 1,θZ ,θH ,θX)p(zp = 1)

. (6.15)

Since the second term of the numerator p(zp = 1) = πp, the key problem is how to calculate

the first term of the numerator. Actually, we get its value by the following process:

log p(x | zp = 1,θZ ,θH ,θX)

= log

∫
p(x,h | zp = 1,θZ ,θH ,θX)dh

=

J∑
j=1

{(−1

2
log
|Σjp|∣∣∣ΣH

jp

∣∣∣ − 1

2
µTjpΣ

−1
jp µjp)+

1

2
(µHjp)

T (ΣH
jp)
−1µHjp +

Kj∑
kj

(−
Djkj

2
log(2π)−

1

2
log
∣∣Σjkj

∣∣− 1

2
(xjkj − bjkj )

TΣ−1jkj (xjkj − bjkj ))}

(6.16)

where

ΣH
jp = (Σ−1jp +

Kj∑
kj=1

AT
jkj

Σ−1jkjAjkj )
−1

µHjp = ΣH
jp{Σ−1jp µjp +

Kj∑
kj=1

AT
jkj

Σ−1jkj (xjkj − bjkj )}

(6.17)
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Every parameter or variable is well-defined in Eq.(6.16). Thus first term of the numerator in

Eq(6.15) as well as the posterior probability of this new sample belonging to the p-th class

are easily gained. If only requiring the predicted label, the logarithm of the numerator in

Eq(6.15) for all classes can be calculated, and predicted category is the one with the max

value.

6.4 Experiments

In this section, experiments are conducted on both synthetic and real-world datasets

to show the effectiveness of HMMF. We first introduce the datasets as well as the experi-

mental setting. The comparison across various methods is then analyzed. Note that, since

HMMF is not a kernel based method, we do not make a comparison between it and other

GPLVM based approaches.

6.4.1 Datasets and Experimental Setting

The synthetic data is generated according to the assumption of the proposed method.

Particularly, given the values of Dj and Dkj , the parameters Ajkj
, Σjkj

, Σjp and µjp are ran-

domly generated. The latent variable hij is then obtained by followingN (hij |
∑P

p=1 zpiµjp,∑P
p=1 zpiΣjp). Consequently, the observations are acquired according toN (xijkj | Ajkjhij,Σjkj).

Without loss generality, we set the dimensionality Dj to be the same for each view. So does

Djkj . In this experiment, we set Dj and Djkj to be 10 and 20, respectively.

The biomedical dataset (Health VS DM) [44] is also used to measure the effective-

ness of HMMF. 40, 50, 60, and 70 samples in each class are randomly selected with five

independent times as the training set, and the remaining samples are utilized for testing. Dif-

ferent from the setting in SAGP and MKSGP, we do not concatenate features in the tongue,

face and sublingual vessel as a single one for HMMF. In fact, we regard the raw data as

the multi-view and multi-feature data. Concretely, the face image can be represented by the

24-dimensional color feature (4 block×6 dimension) and another 5-dimensional texture fea-
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Table 6.1. The classification accuracies on the synthetic dataset obtained by HMMF.

(J , Kj)

Model (2,2) (2,1) (1,4) (4,1)

Accuracy 82.2% 80.6% 63.6% 80.4%

Model (3,3) (3,1) (1,9) (9,1)

Accuracy 86.8% 85.0% 68.6% 84.8%

Model (4,4) (4,1) (1,16) (16,1)

Accuracy 93.6% 92.4% 82.0% 92.0%

Model (5,5) (5,1) (1,25) (25,1)

Accuracy 94.4% 93.0% 90.2% 91.0%

ture; the tongue image can be represented with 12-dimensional color feature, 9-dimensional

texture feature and 13-dimensional geometry feature; and the sublingual image can be rep-

resented with 6-dimensional color feature and 6-geometrical feature.

The third one is the Wiki Text-Image dataset [55]. As mentioned above, the image

view is described with the 128-D SIFT histogram image feature and the text view is presented

with 10-D latent Dirichlet features. In order to make this dataset be multi-view and multi-

feature style, we also apply the Alexnet [31] to extract a CNN feature from the provided

images. Note that, the dimensionality of the output of the Alexnet is reduced from 4096 to

30 in this thesis to decrease the training time.

Since HMMF is a subspace learning based linear method, we make it compare with

some similar algorithms containing DPL [21], MDL (UMDL and SMDL) [6], JDCR [42],

AWFA [76], MTJSRC [82], RCR [81], and CSRL [22] on the real-world datasets. For DPL,

we concatenate all features in all views as a single one.

Here onlyDj should be tuned through the 5-fold cross-validation. For the Biomedical

dataset, since the dimension of several features is around 5 and according to results of the

first and third datasets, we set Dj to be 5 empirically.
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(a)

original data

(b)

generated data

Figure 6.2. The comparison of the distributions between the original data and generated data.

6.4.2 Experimental Results on Three Datasets

Synthetic Dataset: In this experiment, we randomly generate four types of synthetic

datasets, which are (J = 2, Kj=2), (J = 3, Kj=3), (J = 4, Kj=4) and (J = 5, Kj=5). As

mentioned above, without loss generality, we set the number Kj of types of features in each

view to be same. Note that Dj and Djkj are set to be 10 and 20, respectively. Additionally,

we randomly generate 5 categories whose number of training and test samples is 20 and 100

in each class, respectively. In order to demonstrate the superiority of the hierarchical fusion,

we reconstruct the inputs in another three types. For instance, as shown in Tab.6.1, when the

number of views and their corresponding features are (J = 3, Kj=3), we concatenate the

features in each view as a single one. Thus a novel input, whose J is 3 and Kj is 1 (3,1)

is obtained. Additionally, we also follow the input as many existing multi-view methods

do. We regard the sample with 9 types of features as the input and two cases including

(J = 1, Kj=9 (1,9)) and (J = 9, Kj=1 (9,1)) are consequently acquired. From Tab.6.1 we

can see that HMMF always obtains remarkable results compared with other methods. The

performance obtained by HMMF is particularly better than that in other columns, indicating

the significance of hierarchical fusion structure.
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Figure 6.3. The ROC curves obtained by different methods in DM detection.

Additionally, we also visualize the data generated through the estimated parameters.

In order to display distributions of different categories more clearly, we randomly re-generate

the synthetic data by enlarging the mean of distributions belonging to different classes. The

Fig.6.2(a) shows the locations of the first two dimensional points of the synthetic data in the

first type of features in the first view when J = 3 and Kj = 3. Inputting this data into our

model, we can subsequently obtain the parameters θZ , θH and θX . Then these estimated pa-

rameters are exploited in our model to re-generate the five-class data, as shown in Fig.6.2(b).

It is easy to see that the distributions of different categories generated according to the esti-

mated parameters are quite similar to that in original data, which relatively substantiates the

effectiveness and superiority of our hierarchical fusion model.

Biomedical Dataset: The experimental results computed by multiple approaches are

listed in Tab.6.2. It is easy to observe that HMMF always achieves the better results com-

pared with other strategies. Compared with UMDL, SMDL and CSRL, HMMF is obviously

superior. In contrast to DPL, AWFA, RCR, MTJSRC and JDCR, the proposed method is

also competitive, gaining about 2% improvement in classification accuracy.

The ROC curves and their associated AUC values are shown in Fig.6.3 and Tab.6.3,
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Table 6.3. The area under curve (AUC) obtained by the different methods in DM detection.

Methods AUC Methods AUC

DPL 0.8639 JDCR 0.8703

UMDL 0.8639 CSRL 0.8420

SMDL 0.8089 AWFA 0.8859

HMMF 0.9027

Table 6.4. The accuracy obtained by the different methods in the Wiki Text-Image dataset.

Method DPL MTJSCR RCR UMDL AWFA

Accuracy 65.1% 67.7% 66.1% 67.2% 69.0%

Method SMDL JDCR CSRL HMMF

Accuracy 69.1% 68.5% 64.2% 71.1%

respectively, when the training number is 70. From this figure we can see that the area

covered by the ROC curve calculated by the proposed method is much larger than that com-

puted by SMDL and CSRL. Compared DPL, AWFA, UMDL, and JDCR, HMMF also has

the more or less enhancement. From the Tab.6.3, we can see that HMMF obtains the highest

AUC values.

Wiki Text-Image Dataset: Tab.6.4 lists the overall accuracy conducted on the Wiki

Text-Image Dataset. In this experiment, the dimension of the latent variable is set to be 8

for our proposed method. For CSRL, the dimension is 10 since it obtains the best result

in this situation. From Tab.6.4 we can see that our presented hierarchical method gains

the best performance compared with other methods. Compared with CSRL, DPL, AWFA,

RCR, MTJSRC and UMDL, the presented approach achieves a noticeable enhancement. In

contrast SMDL and JDCR, our algorithm also obtains about 2.0% improvement.

The Tab.6.5 further demonstrates the overall accuracy under the change of the di-

mension of the latent variable. When the dimension changes from 1 to 8, HMMF obtains an

obvious increase. The reason is that a too low dimension would lose some valuable infor-
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Table 6.5. The accuracy obtained by HMMF with the change of the dimensionality of the

latent variable.

Dimension Accuracy Dimension Accuracy

Dj=1 44.0% Dj=6 68.7%

Dj=2 53.4% Dj=7 70.6%

Dj=3 59.0% Dj=8 71.1%

Dj=4 64.4% Dj=9 70.4%

Dj=5 66.8% Dj=10 69.4%

mation. Subsequently, with the continuous increase of the dimension, HMMF meets a slight

performance degradation, relatively reflecting that a reasonable selection of the dimension

plays a key role in the classification.

6.5 Conclusion

In this chapter, a generative and probabilistic method is proposed to process the

multi-view and multi-feature data. Different from most existing multi-view learning meth-

ods which are only for traditional multi-view data, our proposed method is capable of fusing

multiple features from a same view hierarchically. These fused features associated with var-

ious views are also influenced by their ground-truth. Thanks for this hierarchical structure,

the correlation and semantic information among multiple view and multiple features are ful-

ly exploited. Experimental results on both synthetic datates and real-world datasets show the

effectiveness of our proposed method.
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CHAPTER 7

DISCUSSION, CONCLUSION AND FUTURE WORKS

7.1 Discussion

In this thesis, four multi-view learning methods including JSSL, SAGP, MKSGP and

HMMF are proposed. In comparison to JSSL and HMMF, SAGP and MKSGP introduce the

GP prior into the model to non-linearly represent the data. Differently, HMMF is designed

which is quite adaptive for the multi-view and multi-feature data. To make a comparison

among these four methods, we conduct an experiment on the Biomedical dataset since it is

multi-view and multi-feature dataset, which can be applied to all methods. The accuracy,

sensitivity and specificity values obtained by these four methods on the Biomedical dataset

when the number of training samples is 30, 40, and 50 are shown in Tab.7.1.As we can see,

MKSGP gains the best performance on the classification accuracy. Compared with JSSL and

SAGP, MKSGP not only utilizes the GPLVM structure, but also introduces the multi-kernel

strategy, which are both beneficial for real-world data representation. Although HMMF is

designed for multi-view and multi-feature data, its assumption follows the gaussian distribu-

tion, which is linear and inferior to that in MKSGP.

We also list the comparison of JSSL, SAGP and MKSGP on the Wiki Text-Image,

AWA and NUS-WIDE-LITE datasets in Tab.7.2, Tab.7.3 and Tab.7.4, respectively. Note that

the experimental setting for the MKSGP on the Wiki Text-Image dataset is the same to that

in SAGP. It is easy to see that MKSGP achieves the best performance in most cases, followed

by SAGP and JSSL.
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Table 7.4. The overall and average accuracies on the NUS-WIDE-LITE dataset computed

by JSSL, SAGP and MKSGP when q changes from 1 to 30.

Dimensionality

Methods Result dout=1 dout=5 dout=10 dout=15 dout=20 dout=25 dout=30

JSSL
Overall 47.2%

Average 48.9%

SAGP(SE)
Overall 23.6% 52.6% 58.7% 56.2% 56.9% 53.1% 51.8%

Average 25.2% 51.9% 56.6% 55.0% 55.7% 50.4% 49.8%

MKSGP
Overall 26.2% 59.6% 62.2% 62.5% 63.0% 62.6% 58.6%

Average 27.1% 54.9% 58.6% 59.2% 59.9% 59.6% 56.4%

7.2 Conclusion

In this thesis, we focus on the multi-view learning and propose four novel methods

for classification.

In chapter 3, considering the similar and specific parts existing across different views,

the JSSL is proposed to effectively and sparsely divide the representation coefficients into

the similar and diverse ones. In this case, a balance between similarity and distinctiveness

among all features is achieved which leads to a more stable and accurate representation for

classification tasks.

In chapter 4, to tackle the non-linearity existing in the real-world data, the second

method SAGP is presented by introducing the auto-encoder and GPLVM to learn a shared

variable on the manifold. Thanks for these two structures, we can not only represent the data

in a non-linear and smooth way, but also get the latent variable corresponding to the testing

sample simply.

In chapter 5, to address the limitations of SAGP in the covariance construction and

classifier learning, we further extend SAGP to MKSGP by jointly taking the multi-kernel

learning and the large margin prior into account. Compared with SAGP, MKSGP is more
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Figure 7.1. The examples of incomplete multi-view data.

powerful in data representation and more adaptive for classifier learning. Experimental re-

sults show that MKSGP achieves better performance.

In chapter 6, considering the multi-view and multi-feature data, we also propose a

probabilistic model to hierarchically fuse multiple views and multiple features, fully exploit-

ing the correlation among them. Particularly, a shared and latent variable is first fused for the

observed features from a view or modality. These learned variables associated with different

views are then assumed to be independently influenced by their ground-truth label. To opti-

mize HMMF, EM algorithm is exploited to obtain the closed-form solution for each variable

or parameter.

7.3 Future Works

Although four fusion approaches have been presented and achieved the remarkable

performance in classification, there are still some problems on multi-view or multi-feature

data that should be overcome.

The main importance is how to model the correlation when the multi-view data is

incomplete. Incomplete multi-view data means one or more than one views may suffer from
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missing data, as shown is Fig.7.1. In the real world applications, there are many situations

in which complete datasets are not available due to the sensor failure or other reasons. Thus,

many existing multi-view methods would inevitably degenerate or even fail. To solve the

incomplete multi-view problem, a naive strategy is to remove samples suffering from missing

information or generate the incomplete samples before processing [87]. However, these

methods would result in the reduction of the number of the training samples or inaccurate

estimation, which greatly degrade the performance of classification. Therefore, an efficient

approach of well modeling the incomplete multi-view data is crucial. In our future work,

we will focus on this problem to not only reveal the common and latent correlation across

views, but also fully exploit the information among different views. In our plan, we attempt

to divide the incomplete multi-view data into two parts: the overlapped and specific ones.

For the overlapped part, the conventional multi-view based methods can be applied to reveal

the relationship across different views. Generally speaking, the key issue is to exploit the

view-specific parts to improve the performance. However, since these specific samples from

different views are not paired, it is unable to find a common component in a latent space. In

our future work, we plan to use the distribution to measure the correlation of these specific

parts, which means that these parts from different views would be projected in a subspace by

following the same distribution.

Additionally, from Tab.7.1 we can see that, HMMF is still inferior to MKSGP al-

though it is specifically designed for the multi-view and multi-feature data. The main rea-

son is that the assumption of HMMF only follows gaussian distributions, while MKSGP

introduces the GP prior and multi-kernel strategy, which is more powerful of non-linearly

representing the data. To overcome the limitation of the HMMF, we plan to extend it to a

more powerful version. One reasonable strategy is to modify the gaussian distribution to

the mixture of gaussian model, which would be more reasonable to represent the real-world

data. However, this assumption would increase the difficulty of the optimization. To address

this problem, it would be better to use the variational bayes to estimate the parameter in the

extended HMMF. We will make a detail analysis for the extension version of HMMF.

Furthermore, since our goal is to apply the proposed methods to classification, it

91



is general to encounter the case with imbalanced data in different classes. Especially, the

imbalanced data classification is less to be discussed in the multi-view learning. Therefore,

it is significant to have a study on this field. To address this problem, a simple way is to

downsample the data from a class with abundant samples. However, this strategy is too naive

since the samples which are not selected would be ignored. Thus, we prefer to introducing a

strategy named self-space learning [27] to our multi-view learning methods. In this way, we

can encourage the classes with fewer samples to have larger weights, which can enhance the

importance of these classes, being reasonable to solve the imbalanced problem.
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