Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Civil and Structural Engineeringen_US
dc.creatorLi, Cong-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/1795-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleMechanisms and performance of potassium ferrate in endocrine disrupting chemicalsen_US
dcterms.abstractFerrate(VI) has been found to be a powerful oxidant over a wide pH range and many studies have considered its role as an oxidant in water and wastewater treatment. The research outputs presented in this thesis include an improved procedure for preparing solid potassium ferrate (K2FeO4 of high purity (99%) and high yield (50-70%). In addition, it was discovered that the crystal form of solid potassium ferrate has a tetrahedral structure. Other physical and chemical characteristics of potassium ferrate have also been examined. In order to probe the effect of potassium ferrate on the degradation of endocrine disrupting chemicals (EDCs), the reactions of ferrate(VI) with five EDCs (bisphenol A (BPA), 17a-ethynylestradiol (EE2), estrone (El), 17b-estradiol (E2), estriol (E3)) were studied and an improved second order kinetic model was established to describe them. The kinetic study indicates that the reactivity of HFeO42- is stronger than that of FeO4-. The reaction mechanism of BPA degradation with ferrate(VI) has also been studied using LC/MS/MS and GC/MS/MS methods. The analytical results confirmed a proposed pathway of BPA degradation with ferrate(VI) in an aqueous solution. In addition, ferrate(VI) oxidation of BPA with photocatalytic oxidation has been studied. It was found that the one-step reduction of Fe(VI) to Fe(V) on the TiO2 surface provides an interactive function, which eliminates the recombination of electrons and holes, and hence enhances the efficiency of photocatalytic oxidation and ferrate(VI) oxidation. This research provides information on the preparation of solid potassium ferrate, kinetics of EDCs oxidation with ferrate(VI), and also the reaction mechanism of ferrate associated EDC degradation.en_US
dcterms.extentxxii, 227 leaves : ill. (some col.) ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2006en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.LCSHEndocrine glands -- Effect of chemicals onen_US
dcterms.LCSHFerrites (Magnetic materials)en_US
dcterms.LCSHEndocrine toxicologyen_US
dcterms.LCSHWater -- Pollution -- Physiological effecten_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b20696826.pdfFor All Users5.59 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/1795