Short-term traffic forecasting using Hong Kong annual traffic census

Pao Yue-kong Library Electronic Theses Database

Short-term traffic forecasting using Hong Kong annual traffic census

 

Author: Tang, Yuen-fan
Title: Short-term traffic forecasting using Hong Kong annual traffic census
Degree: M.Phil.
Year: 2002
Subject: Hong Kong Polytechnic University -- Dissertations
Traffic estimation -- China -- Hong Kong -- Mathematical models
Traffic surveys -- China -- Hong Kong
Department: Dept. of Civil and Structural Engineering
Pages: 1 v. (various pagings) : ill. ; 30 cm
Language: English
InnoPac Record: http://library.polyu.edu.hk/record=b1667764
URI: http://theses.lib.polyu.edu.hk/handle/200/2302
Abstract: In Hong Kong, the Annual Traffic Census (ATC) report is used to present the statistical results of traffic volume on the automatic traffic counter stations in the middle of each year. In the ATC report, the Annual Average Daily Traffic (AADT) is the most useful traffic information for engineers/planners. In practice, for most on-going transport studies, there is always a need to use the most up-to-date traffic data such as AADT for model development and calibration. However, the current-year AADT data are not always available. Obviously, there is a need to continuously update the AADT based on historical ATC data and available current-year partial traffic counts. The short-term traffic flow forecasting is to predict the traffic daily and hourly volumes at a given location in the next time period of near future (say next day or next month etc) using historical and real-time traffic data. This can be incorporated into the Transportation Information System (TIS) or Advanced Traveller Information Systems (ATIS) to provide travellers with accurate and timely information so as to allow them to make the intelligent decisions on travel choices. In August 1999, the Traffic and Transport Survey Division (TTSD) of the Transport Department (TD) commissioned the Review of the Annual Traffic Census project in which works were carried on the investigation of new approaches for data analysis and development of user-friendly computer programs for computation and presentation. In this research, the short-term traffic flow forecasting models are investigated and the user-friendly ATC computer programs are enhanced. This thesis presents four models for short-term prediction of the hourly and daily traffic flows by the day of week and by month as well as the AADT for the whole current year. These four models are developed and based on the Auto-Regressive Integrated Moving-Average (ARIMA), Neural Network (NN), Non-Parametric Regression (NPR) and Gaussian Maximum Likelihood (GML) methods. The historical traffic data and available current-year partial traffic data are the input data used for model development/calibration. The results (both hourly and daily flows) of the four models are compared with the observed data for validation. The daily flows estimated by the four models are used to calculate the AADT for the current year. From the comparison results, the GML and NPR models appear to be more promising and robust for extensive applications for TIS or ATIS. Therefore, the GML and NPR models are incorporated into the enhanced ATC computer programs to provide the off-line short-term traffic forecasting database for the whole Territory of Hong Kong. The model validation is carried out using the up-to-date ATC data. The prediction results of the estimated AADT show that the average errors of all ATC core stations are less than +-10% from the NPR and GML models. The developed NPR and GML models could be used to predict the hourly and daily traffic flows and estimate the AADT for transport model development and calibration. It was found from the validation results that the NPR model is suitable for prediction of traffic flows in Hong Kong ATC stations. The NPR model is likely to react to unexpected changes more effectively than the GML model.

Files in this item

Files Size Format
b1667764x.pdf 9.527Mb PDF
Copyright Undertaking
As a bona fide Library user, I declare that:
  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.
By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

     

Quick Search

Browse

More Information