Noise cancellation using piezoelectric actuators as control sources

Pao Yue-kong Library Electronic Theses Database

Noise cancellation using piezoelectric actuators as control sources

 

Author: Chong, Fan
Title: Noise cancellation using piezoelectric actuators as control sources
Degree: Ph.D.
Year: 2000
Subject: Piezoelectric devices
Actuators
Hong Kong Polytechnic University -- Dissertations
Department: Dept. of Civil and Structural Engineering
Pages: xxiv, [266] leaves : ill. (some col.) ; 30 cm
Language: English
InnoPac Record: http://library.polyu.edu.hk/record=b1520808
URI: http://theses.lib.polyu.edu.hk/handle/200/2523
Abstract: Loudspeakers are usually used for generating secondary noise in the active control of the sound in ducts. However, they are bulky, heavy, non-durable and of poor response at low frequencies. Piezoelectric actuators are suggested as an alternative control input in order to overcome some of the captioned disadvantages of the loudspeaker. Piezoelectric sources can reduce the level of acoustic potential energy in the enclosure by altering the vibration of the structure. The objectives of the research in this thesis are to, (1) study the vibration modes of long thin plate excited by the piezoelectric actuators using the nonlinear analysis method; (2) investigate the coupling behaviour of the panel vibration and the sound field in a duct; (3) experimentally study the attenuation of unwanted sound at the low frequency in the duct by using the panel vibration control source excited by piezoelectric actuators. A structural-acoustic coupled system of a long thin plate and a sound field in a duct is discussed. Piezoelectric actuators were used as a secondary (control) source to generate control disturbance to cancel the unwanted sound in the duct. The plate excited by the piezoelectric actuators was analysed by the geometric nonlinear finite element method. A computer program for nonlinear vibration analysis is verified by comparing the theoretical results with the experimental results. The dynamic response of the plate vibration subjected to piezoelectric actuators is small because of the stiffness of membrane structure and the small control forces produced by the piezoelectric actuators. Based on the experimental investigation, the vibration of a long thin plate can be used as the sound absorber at medium frequencies (170-320 Hz). And the plate vibration excited by piezoelectric actuators can be used as the control source to cancel the unwanted sound at low frequencies (60~140 Hz). The piezoelectric sources show the potential for noise cancellation in an enclosed sound field because of its advantages over the loudspeakers. Moreover, the piezoelectric source in this thesis can generate much higher sound pressure levels than the diaphragm piezoelectric actuation device. This thesis introduces a new method for noise cancellation by using plate vibration excited by piezoelectric actuators as an acoustic control source to increase sound absorption instead of the conventional method of reducing sound transmission. It is also found that nonlinear vibration can degrade the performance of piezoelectric actuators as acoustic source but can improve the passive dissipation of noise.

Files in this item

Files Size Format
b15208084.pdf 14.62Mb PDF
Copyright Undertaking
As a bona fide Library user, I declare that:
  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.
By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

     

Quick Search

Browse

More Information