Author: Tong, Ka-wai
Title: Design and development of an intelligent system for process design of microchip encapsulation
Degree: M.Phil.
Year: 2003
Subject: Hong Kong Polytechnic University -- Dissertations
Electronic apparatus and appliances -- Plastic embedment
Semiconductors
Department: Department of Industrial and Systems Engineering
Pages: xi, 135, [33] leaves : ill. ; 30 cm
Language: English
Abstract: Microchip encapsulation based on transfer molding is one of the important processes of semiconductor manufacturing. Quality of it is heavily dependent on the transfer mold design, properties of molding compound and parameters setting of transfer molding. In current practice, transfer mold design and parameters setting of transfer molding are done manually in a trial-and-error manner In this research, an Intelligent System for process design of Microchip Encapsulation (ISME) has been designed and developed mainly based on case based reasoning (CBR), artificial neural networks (ANNs) and a multiobjective optimization scheme, from which optimal mold design parameters and process parameters setting can be determined. The system consists of two modules, a case based reasoning (CBR) module and a process optimization module. The CBR module is used to determine initial mold design parameters and process parameters setting while the process optimization module is used to determine optimal mold design parameters and process parameters setting. In the design and development of the CBR module, fuzzy set theory was introduced in the case retrieval to improve the quality of retrieved cases and fuzzy regression was employed in the case adaptation to improve the accuracy of adapted solutions. In the design and development of the process optimization module, design of experiments (DOE) techniques, ANNs, multiple regression analysis, and minimax method were employed. Two validation tests have been conducted. In the first validation test, the initial parameters setting obtained from the fuzzy regression adaptation models was compared with the setting generated by the structured adaptation models. It was found that the setting generated from the fuzzy regression adaptation models is more close to the actual setting. In the second validation test, the quality measures based on the optimal parameters setting obtained from the system was compared with those based on the actual parameters setting with the use of the NN based process model and process simulation. It was found that the predicted quality of the molded packages based on the optimal setting has significant improvement compared with that based on actual setting. Compared with the process simulation for microchip encapsulation, ISME does not require finite element analysis that could lead to long time for obtaining optimal parameters setting. Implementation of the intelligent system has demonstrated that the time for the determination of optimal mold design parameters and process parameters setting can be greatly reduced and the parameters setting recommended by the system can contribute to the good quality of molded packages.
Rights: All rights reserved
Access: open access

Files in This Item:
File Description SizeFormat 
b17146859.pdfFor All Users19.35 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/3372