Cyclometallated gold(III) complexes for organic synthesis and bioconjugation

Pao Yue-kong Library Electronic Theses Database

Cyclometallated gold(III) complexes for organic synthesis and bioconjugation

 

Author: Kung, Ka Yan Karen
Title: Cyclometallated gold(III) complexes for organic synthesis and bioconjugation
Degree: Ph.D.
Year: 2013
Subject: Gold.
Catalysis.
Metal catalysts.
Hong Kong Polytechnic University -- Dissertations
Department: Dept. of Applied Biology and Chemical Technology
Pages: viii, 275, [84] leaves : ill. (some col.) ; 30 cm.
Language: English
InnoPac Record: http://library.polyu.edu.hk/record=b2639063
URI: http://theses.lib.polyu.edu.hk/handle/200/7131
Abstract: Gold catalysis has attracted considerable attention in organic chemistry as gold compounds are able to exhibit excellent selectivity, high reactivity, and exceptional tolerance to organic transformations performed under air/moisture reaction conditions. Bioconjugation aims to attach biophysical probes to biomolecules including oligosaccharides, peptides and proteins for studying complex biological systems. However, it is a challenging task to conduct biomolecule modification as most of these reactions need to be carried out in aqueous medium, narrow pH (6-8) and temperature (4-37 ℃) range and low biomolecule concentration without protection of sensitive functional groups. In view of the unique advantages of gold catalysis, we set out to develop gold catalysis for efficient organic synthesis and selective bioconjugation. A series of cyclometallated gold(III) (C^N) complexes, [Au(C^N)Cl₂] (HC^N = arylpyridines), and a PEG-supported cyclometallated gold(III) complex were synthesized and characterized. The activity of the gold(III) complexes in catalyzing the synthesis of (1) chiral propargylamines, (2) axially chiral allenes, and (3) isoxazoles were studied. Firstly, propargylamines were synthesized in excellent yields (up to 99%) with turnover number up to 1021 using cyclometallated gold(III) complexes as the catalysts. When chiral galactose aldehydes and chiral prolinol derivatives were employed as the reaction substrates in propargylamine synthesis, excellent diastereoselectivities (up to >99:1) were achieved. Secondly, chiral propargylamines were converted to axially chiral allenes in yields up to 99% and excellent enantioselectivities (up to 98% ee) by using cyclometallated gold(III) complexes as catalysts. Thirdly, isoxazoles were synthesized from cyclometallated gold(III) complex-catalyzed cycloisomerization of α,β-acetylenic oximes in excellent yield (up to 99%). Finally, a PEG-supported cyclometallated gold(III) complex was found to be effective for catalyzing the organic transformation reactions especially in the synthesis of propargylamines (turnover number of 1600). On the basis of the present gold(III)-catalyzed synthesis of propargylamines via a three-component coupling of aldehydes, amines and alkynes, site-selective bifunctional modification of aldehyde-containing oligosaccharides (i.e. D-raffinose and D-stachyose) was developed. This gold-mediated bioconjugation gave excellent conversion (up to 99%) as indicated by LC-MS analysis, with high functional group tolerance in aqueous medium. Propargylamine-modified oligosaccharides were obtained through incorporation of two different functionalities (i.e. fluorescent dye and biotin) linked on amine and/or alkyne components onto a single-site of the oligosaccharide aldehydes. A new class of cyclometallated gold(III) (C^N) complexes with a biuret ligand, [Au(C^N)biuret] (HC^N = arylpyridines), were prepared. These complexes were found to be efficient chemoselective reagent for modification of cysteine-containing peptides STSSSCNLSK, AYEMWCFHQK, and ASCGTN via substitution reaction, with the overall peptide conversion up to 92% by LC-MS analysis. No modification was observed in a peptide YTSSSKNVVR, which has no cysteine in its amino acid sequence.

Files in this item

Files Size Format
b26390632.pdf 7.284Mb PDF
Copyright Undertaking
As a bona fide Library user, I declare that:
  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.
By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

     

Quick Search

Browse

More Information