Development of continuous-flow polymerase chain reaction microchip with integrated electrolytic pump

Pao Yue-kong Library Electronic Theses Database

Development of continuous-flow polymerase chain reaction microchip with integrated electrolytic pump

 

Author: Yiu, Chun Ying
Title: Development of continuous-flow polymerase chain reaction microchip with integrated electrolytic pump
Degree: M.Phil.
Year: 2013
Subject: Microfluidics -- Equipment and supplies.
Nucleic acids -- Analysis.
Polymerase chain reaction.
DNA polymerases.
Hong Kong Polytechnic University -- Dissertations
Department: Interdisciplinary Division of Biomedical Engineering
Pages: xix, 98 leaves : col. ill. ; 30 cm.
Language: English
InnoPac Record: http://library.polyu.edu.hk/record=b2653075
URI: http://theses.lib.polyu.edu.hk/handle/200/7274
Abstract: There has been huge demand for point-of-care and on-site nucleic acid analysis. Microfluidic devices or microchips have received considerable attention thanks to their high portability, simple operation, short assay time, and low cost. One important module is deoxyribonucleic acid (DNA) amplification as the amount of nucleic acid sample is usually too little for direct detection. Particularly useful for this task is continuous-flow polymerase chain reaction (CFPCR), which enables high-speed PCR by passing an amplification reaction mixture through a microchannel to achieve the required repeated thermal cycling. Up until now, the fluidic flow had been controlled off-chip by bulky syringe pump, thereby seriously affecting the portability of the microchip device. To address this issue, herein, a CFPCR microchip with integrated on-chip electrolytic pump was developed. The CFPCR microchip comprised an electrolytic pumping chamber, PCR reagent reservoir, oil reservoir, and microchannel for PCR thermal cycling. The chamber, reservoir, and microchannel were made from a polydimethylsiloxane substrate. Platinum electrodes for the electrolytic pump were patterned onto a glass substrate, which was then plasma-bonded to and thus sealed the polydimethylsiloxane substrate. A feedback control system was custom-built to achieve accurate PCR thermal cycling (±1 °C).
Gas bubbles generated from the on-chip electrolytic pump with constant voltage control successfully drove PCR reagent through the microchannel. CFPCR could be completed in ~20 min with the PCR product visible by gel electrophoresis. In addition, the effects of other key parameters, which included addition of silicone oil, concentration of Taq DNA polymerase, and dynamic/static passivation with bovine serum albumin on DNA amplification efficiency were studied. In fact, the on-chip electrolytic pump could also be driven by constant current and provide a more stable fluid flow than constant voltage control. This work successfully demonstrated the use of on-chip electrolytic pump to achieve fluidic control for CFPCR. Other functional modules such as sample preparation and product detection can be readily integrated to realize a portable device for decentralized nucleic acid analysis.

Files in this item

Files Size Format
b26530752.pdf 3.618Mb PDF
Copyright Undertaking
As a bona fide Library user, I declare that:
  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.
By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

     

Quick Search

Browse

More Information