Author: Chiu, Wai-man
Title: Limiting mutual diffusion of nonassociated aromatic solutes
Degree: M.Phil.
Year: 2001
Subject: Diffusion
Hong Kong Polytechnic University -- Dissertations
Department: Department of Applied Biology and Chemical Technology
Pages: xv, 110 leaves : ill. ; 30 cm
Language: English
Abstract: Limiting mutual diffusion coefficients D12 of benzene, chlorobenzene, toluene, ethylbenzene, naphthalene, 1,2,4-trichlorobenzene, propylbenzene, mesitylene and biphenyl in cyclohexane and acetone have been measured at selected temperatures by using the chromatographic peak-broadening method. When 1/D12 is plotted against the van der Waals volume of the solutes, a straight line is obtained for each temperature of the liquid systems studied. It is also found that the diffusion data measured at different temperatures obey the Arrhenius equation. The activation energies calculated from this equation for all solutes in a given solvent are about the same. The experimental mutual diffusion coefficients of the nonassociated aromatic molecules measured in this work were fitted by the following equation: D12=T/(pVvdw+q)(Vf/Vm)/n2/3d1/3 where p and q are constants, T is the system temperature, n and d is the solvent viscosity and density, respectively, Vf/Vm is the ratio of the free volume to the molar volume of a solvent, and Vvdm is the van der Waals volume of solute. The equation fits all data for each solvent system studied to within +(-) 2.2%. Other diffusion data of pseudoplanar solutes in various organic solvents were collected from the literature. The same equation above fits a total of all 318 data collected and measured to within +(-)4.3%.
Rights: All rights reserved
Access: open access

Files in This Item:
File Description SizeFormat 
b15995409.pdfFor All Users3.11 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/773