Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.contributor.advisorLiu, Zhizhao (LSGI)-
dc.contributor.advisorChen, Wu (LSGI)-
dc.creatorXu, Rui-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/7752-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleImproving the robustness and accuracy of GPS software receiver under ionospheric scintillation conditionsen_US
dcterms.abstractIonospheric scintillation is a random fluctuation in the amplitude and phase of radio signal that passes through irregularities of electron density distribution in the ionosphere. It can lead to loss of lock on the carrier tracking loop of GPS receiver and hence a requirement of re-tracking and reacquisition of the lost signal. This results in cycle slips, increased navigation errors and even navigation interruption. Ionospheric scintillation poses a threat to the reliability and accuracy of various GPS applications. To reduce the occurrence of scintillation-caused loss of lock, several improved tracking algorithms such as Frequency Lock Loop (FLL)-assisted Phase Lock Loop (PLL), Kalman Filter based PLL (KFPLL) and vector based tracking algorithms are conducted. These methods commonly involve adjusting loop parameters (i.e. the equivalent noise bandwidth and integration time) to scintillation intensity. However, one limitation is the dependence of tracking loop performances on its parameters that are difficult to estimate under scintillation conditions. To understand the process of loss of lock due to scintillation, the effects of separate and combined amplitude and phase scintillation on PLL inputs (i.e. in-phase, quadra-phase and phase error) are first analyzed. The analysis reveals amplitude scintillation and phase scintillation have different effects on PLL inputs. Thus, scintillation effects on carrier tracking loop can be mitigated through dealing with in-phase and quadra-phase. In addition, the analysis results imply the effects of amplitude scintillation and phase scintillation can be decoupled from each other and mitigated separately.en_US
dcterms.abstractBased on the analysis results, a new approach called Frequency Lock Loop (FLL)-assisted Phase Lock Loop (PLL) with In-phase Pre-Filtering (IPF) is proposed. In the method, FLL-assisted PLL is used to mitigate phase scintillation effects because it has high dynamic performances and can fast track phase variations. IPF is used to mitigate the effects of amplitude scintillation. It is realized using a homomorphic filter and a novel segmented filter since scintillation amplitude is non-additive error. Their performances are evaluated under different levels of simulated scintillation cases and the segmented filter is suggested. To reduce the dependence of tracking performances on the integration time, a parallel multiple PLL architecture called multi-PLL is designed in the carrier tracking loop. In the multi-PLL, each channel contains several sub-PLLs with different loop parameters to track one satellite signal. Realization of the multi-PLL involves two issues: sub-PLL selection and integration algorithm. In the study, the degree of correlation between two sub-PLLs is introduced to choose the sub-PLLs parameters. A tracking fusion algorithm and an output fusion algorithm are designed to integrate the multiple sub-PLLs. In the study, both FLL-assisted PLL with IPF and multi-PLL were tested using simulated and real-world GPS scintillation data. The results verified the effectiveness of the FLL-assisted PLL with IPF and multi-PLL.en_US
dcterms.extentxi, 166 pages : illustrations (some color) ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2014en_US
dc.description.awardFCE Awards for Outstanding PhD Theses-
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHGPS receiversen_US
dcterms.LCSHGlobal Positioning Systemen_US
dcterms.LCSHIonosphereen_US
dcterms.LCSHScintillatorsen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b27629533.pdfFor All Users5.78 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/7752