Generalized convexity in optimization

Pao Yue-kong Library Electronic Theses Database

Generalized convexity in optimization


Author: Yang, Xinmin
Title: Generalized convexity in optimization
Degree: Ph.D.
Year: 2002
Subject: Hong Kong Polytechnic University -- Dissertations
Mathematical optimization
Department: Dept. of Applied Mathematics
Pages: xiii, 166 leaves ; 30 cm
Language: English
InnoPac Record:
Abstract: In this thesis, some new generalized convex functions and generalized monotone functions are introduced, and their properties and various relations are established. These new generalized convexities and generalized monotonicities are then applied to the study of optimality conditions and duality theory in optimization. The thesis consists of four parts. In part 1, real-valued generalized convexities such as the concepts of semistrictly preinvex functions and generalized preinvex functions are introduced and their properties are given. The preinvexity of a real-valued function is characterized by an intermediate-point preinvexity condition. Some properties of semistrictly preinvex functions and semipreinvex functions are discussed. In particular, the relationship between a semistrictly preinvex function and a preinvex function is investigated. It is shown that a function is semistrictly preinvex if and only if it satisfies a strict invexity inequality for any two points with distinct function values. We also prove that the ratio of two semipreinvex functions is semipreinvex. It is worth noting that these characterizations reveal various interesting relationships among prequasiinvex, semistrictly prequasiinvex, and strictly prequasiinvex functions. These relationships are useful in the study of optimization problems. Part 2 studies set-valued generalized convexities. Generalized subconvexlike and nearly subconvexlike functions are introduced. In particular, these two classes of generalized convexities are invariant under multiplication and division provided that the multiplier or the divisor is a positive function. We note here that no other generalized convex function in the family of convexlike functions and its generalizations possesses this prominent property. A potential application of the near subconvexlikeness or generalized subconvexlikeness is in fractional programming. Furthermore, theorems of the alternative are established. Applications are given to obtain Lagrangian multiplier theorems for set-valued optimization problems and scalarization theorems for a weakly efficient solution, Benson properly efficient solution and Geoffrion properly efficient solution for set-valued optimization problems. In Part 3, generalized inmonicity is introduced and its relationship with generalized invexity is established. Several examples are given to show that these generalized inmonicities are proper generalization of the corresponding generalized monotonicities. Moreover, some examples are also presented to illustrate the properly inclusive relations among the generalized inmonicities. Finally in Part 4, several second order symmetric duality models are provided for single-objective and multi-objective nonlinear programming problems. Weak and strong duality theorems are established under first order or second order generalized convexity assumptions. Our study extends some of known results in the recent literature. It is worth noting that special cases of our models and results can be reduced to the corresponding first order cases, but most of second order symmetric models presented in the literature do not possess this nice property.

Files in this item

Files Size Format
b16154538.pdf 6.338Mb PDF
Copyright Undertaking
As a bona fide Library user, I declare that:
  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.
By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.


Quick Search


More Information