Modelling semantic uncertainty of land classification system

Pao Yue-kong Library Electronic Theses Database

Modelling semantic uncertainty of land classification system


Author: Xu, Qianxiang
Title: Modelling semantic uncertainty of land classification system
Degree: Ph.D.
Year: 2016
Subject: Land use -- Classification.
Hong Kong Polytechnic University -- Dissertations
Department: Dept. of Land Surveying and Geo-Informatics
Pages: xviii, 176 pages : illustrations
Language: English
Abstract: Land use and land cover information are fundamental for study of earth's ecosystem, global carbon cycling, global climate, atmospheric composition, energy and water balance, biodiversity, ecologically mediated diseases, and other concerns. Several global, regional and national land inventory projects have been carried out to acquire land classification data, e.g., AFRICOVER, CORINE, NLCD, etc. Correspondingly, a vast number of land classification systems have been developed using different philosophical principles to satisfy different purposes. Semantic problems, e.g., semantic overlap, have been identified by few researchers. However, classification systems are usually applied without considering their semantic problems that will cause confusion and could be misleading. Therefore, to address this research gap, this thesis focuses on the semantic uncertainties of classes in classification systems. First, classes are formalized for quantitative calculation. Based on the characteristics of land class definitions, classes are divided into two types: concept and category. A concept can be rebuilt by applying product operations and union operations, whereas a category can be formalized using an equation set of concepts. A class can always be formalized by applying product operations and union operations. Second, a reference system is established to uniquely represent all classes. The reference system is set up based on the contrast among classes using a bottom-up method through addition of classes step by step. A reference system is composed of reference concepts, which contain contrast components, not-contrast components, and complement components. All classes can be optimally and economically represented by a combination of reference concepts. Finally, different models for measuring semantic uncertainties are proposed based on the reference system. These models are divided into three groups: (1) uncertainties between classes, including semantic overlap and semantic similarity; (2) uncertainties between hierarchical levels, including semantic gap and semantic overflow; and (3) semantic interoperability between different classification systems. Characteristics of these models are also analysed in this thesis. Throughout the thesis, the National Land Cover Database Classification Systems (NLCD CS) of the United States are used for demonstration. The results reveal that the proposed theories and models are feasible and that semantic uncertainties are widespread in the NLCD CSs.

Files in this item

Files Size Format
b28905969.pdf 2.859Mb PDF
Copyright Undertaking
As a bona fide Library user, I declare that:
  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.
By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.


Quick Search


More Information