Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributor.advisorWong, K. Y. (ABCT)-
dc.creatorCheong, Wing Lam-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/9353-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleStructure-activity relationship (SAR) of some isatin-based glycosyltransferase inhibitors : molecular design, synthesis and antibacterial activitiesen_US
dcterms.abstractAntibacterial Resistance (ABR) has been a global challenge. The abusive use of antibiotics stimulates natural selection of bacteria and results in loss of activity against their targets. Peptidoglycan glycosyltransferase (GT), an enzyme which is essential for cell wall biosynthesis, is a potential novel drug target. It offers several advantages as a drug target: (i) it is absent in human cells; (ii) its sequence is highly conserved among bacteria; (iii) it is easily accessible on the surface of the cell; and (iv) its ABR is not significant. However, research on GT is hindered by its membrane-bound nature, which increases the difficulty to obtain crystallographic structures. Moreover, the activity assay of GT is also limited by the extremely low yield in the production of its substrate, lipid II. These factors all limited the development of GT inhibitors. With the aid of computational virtual screening on a library of 3,000,000 compounds, our research group previously discovered a potential isatin-based GT inhibitor, 2-(3-(2-Carbamimidoylhydrazone)-2-oxoindolin-1-yl)-N-(3-nitrophenyl) acetamide (10b-27), which has moderate antibacterial activity. Competitive saturation-transfer difference (STD)-NMR suggested that it binds to GT and shares the same active-site pocket with the known inhibitor moenomycin A.en_US
dcterms.abstractIn this thesis, the structure-activity relationship (SAR) of the isatin-based inhibitors was studied by further modifying the structure of 10b-27 with reference to the binding pose revealed by the GT crystal structure (PDB ID 2OLV). To achieve this goal, 20 new isatin derivatives with the aminoguanidinyl group conserved were designed and synthesized. The antibacterial activity (in terms of S. aureus MIC) showed a 4-fold enhancement when the nitrophenyl substituent was replaced by a m,p-naphthyl group. The best derivative (10-32), with the methanediylamidyl linkage removed and the substituent replaced by butyl, showed an overall 8-fold enhancement compared to 10b-27. The interaction between 10-32 and GT was confirmed by competitive saturation-transfer difference (STD)-NMR experiments. STD-NMR is one of the excellent alternatives to activity assay since it detects small molecules binding to macromolecules and does not consume the lipid II substrate. Upon addition of 10-32 into GT (100:1 ratio), strong STD-NMR signals of 10-32 were detected, suggesting that 10-32 and GT were in close contact (≤ 5 M). Further addition of moenomycin A displaced the STD signal intensities, suggested that 10-32 shares the same active-site binding pocket of GT as moenomycin A. Surprisingly, the clinically significant MRSA (ATCC® BAA-41TM) did not show any detectable resistance to 10-32, revealing its potential to be a promising antibiotic candidate. Taking into account that there are currently no GT inhibitors being used clinically, the studies of 10-32 opened up a new direction on novel antibiotic drug development.en_US
dcterms.extentxiii, 167 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2018en_US
dcterms.educationalLevelPh.D.en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.LCSHGlycosyltransferasesen_US
dcterms.LCSHBacterial cell walls -- Synthesis -- Inhibitorsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
991022095452703411.pdfFor All Users1.95 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/9353