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Abstract

This thesis is concerned with optimal investment problems over a finite time horizon.

The value function is constructed and the corresponding Hamilton-Jacobi-Bellman

(HJB) equation can be derived by applying dynamic programming. In this thesis,

we derive the properties of the strategy as well as the boundary and terminal line.

We also discuss the optimal stopping time with multi-assets. The main contents of

this thesis are divided into three parts.

In the first part, we study an optimal consumption investment model with uncer-

tain exit time. The value function is not only the expectation of utility of the price of

assets on maturity date, but also the expected utility produced in the whole process.

Using the method of partial differential equation (PDE), we prove the smoothness

of the value function without specifying a particular utility function, where a non-

smooth and non-concave situation is considered. Some restrictions are imposed on

the problem. The continuity of the optimal strategy and some properties of the

boundary and terminal line are derived.

In the second part, we discuss the above problem with constraints. The value

function can be characterized by two types of second-order partial differential equa-

tions in different regions. One is a fully nonlinear equation, and the other is a linear

equation. We construct an approximation problem to make the equations satisfy

the parabolic condition. Using the method of partial differential equation, we prove

the existence, uniqueness and regularity of the solution to the original problem via
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the approximation problem. We derive the properties of the free boundary line and

ascertain its end point.

In the third part, we consider the optimal stopping time for investors to leave

the financial market among multi-assets to obtain maximum profit. The utility

function is considered as a quadratic form. Two models are researched respectively

in this part. One is with a normal utility function, and the other is based on a

Logarithmic utility-maximization objective. A two-stage problem is formulated. The

main problem is a nonstandard optimal stopping time problem. Using the method

of stochastic analysis, we turn it into a standard one. The subproblem with control

variable in the drift and volatility terms is solved via stochastic control method.

Numerical examples are also presented accordingly to illustrate the efficiency of the

theoretical results.
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Notation

Si,t : the price of risky asset i at time t

S0,t : the price of risk free asset at time t

rt : the return rate of risk free asset at time t

µi,t : the excess appreciation rate of risky asset i at time t

bi,t : the appreciation rate of risky asset i at time t

σi,t : the volatility vector of risky asset i at time t

W : the standard Brownian motion

πi,t : the holding amount of risky asset i at time t

Xt : the wealth of the investor at time t

τ : the uncertain exit time

∇A : the gradient of matrix A

A′ : the transpose of matrix A
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Chapter 1

Introduction

1.1 Background and Literature Review

With the explosion of economic growth, wealth has been accumulated in the hands

of people. As illiquid wealth cannot generate more money, it is crucial to invest

them into various kinds of activities so as to realize the accession of wealth and to

reduce the impact of inflation. Types of investment can be generalized as physical

investment and capital investment. Due to the fact that the investment products are

diversified, it becomes a problem to choose the appropriate combination of products

in order to maximize the terminal wealth without taking unbearable risks after an

investment period, which is the so-called portfolio selection problem.

Researchers have tried a lot to construct a pure mathematical model to describe

the portfolio selection problem. The work of Markowitz (1952) lays a firm foundation

and establishes the mean-variance framework, which has been the core of a majority

of researches in finance ever since. In the mean-variance framework, the objective of

investors is to select an optimal portfolio which can balance the gains and risks in

the whole process, where gains are expressed as the expectation of final return, and

risks are denoted by variances. Pratt (1964) considered utility functions for money

as a measure of risk aversion, where the elasticity of marginal utility is of great im-

portance in deciding the risk tolerance. Samuelson (1969) generalized the one-period
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case in Markowitz (1952) to a multi-period model, where the investment and con-

sumption lie on the whole lifetime. Merton (1969, 1971, 1973) established the theory

of a continuous-time case, where geometric Brownian motion is used to describe the

motion law of risky assets. A type of utility function called hyperbolic absolute risk

aversion (HARA) utility is also integrated into this model and an Hamilton-Jacobi-

Bellman (HJB) equation is derived by the principle of dynamic programming. The

HARA utility is a type of risk aversion which indicates that the risk tolerance is

linear to wealth. Merton (1971) describe the formulation of the investment problem

as follows. Consider that the consumption is denoted by N , the wealth is denoted by

X, the utility function is denoted by U , the time is denoted by t and the “bequest”

function is denoted by Q. Then the problem to choose the optimal portfolio for an

investment with consumption is formulated as follows:

max E0

[ ∫ T

0

U
(
N(t), t

)
dt+Q

(
X(T ), T

)]
,

s.t. X(0) = X0.

The classic article of Black and Scholes (1973) settles the foundation of option pricing

theory by using geometric Brownian motion to describe the stock prices.

The groundbreaking works have accelerated the development of researches in

financial field. Although most papers analyze HJB equation using stochastic analysis,

martingale theory, the dual method and original differential equations, few of them

solve the problem according to the theory of partial differential equation (PDE).

Consider the investment of a financial company, where a self-finance mode is uti-

lized during the allocation of wealth. The income of the company comes from the

return of its investment, and the consumption of the company is used on paying div-

idends. Investment is usually divided into two classes. First, companies will spend a

portion of wealth into risk-free assets, such as regular bank account or government
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loan. The income is always in direct proportion to the cost of investment. Second,

investment in risky assets is the major part such as purchasing risky securities and

shares. Multiple kinds of investment consumption problems are discussed by using

the Itô’s lemma to analyze the prices, wealth and consumption, and the correspond-

ing HJB equation can be derived. In a continuous-time case, when a model possesses

Markov property, an HJB equation is derived, converting stochastic optimal control

problems into partial differential equations or corresponding variational inequality

problems. The Itô’s lemma is introduced as follows. When a process Xt satisfies the

stochastic differential equation:

dXt = µtdt+ σtdWt,

where Wt is a Wiener process, µt and σt are parameters. Consider a twice differen-

tiable scalar function f(t, x), then the following equation can be obtained:

df(t,Xt) =

(
ft + µtfx +

1

2
σ2
t fxx

)
dt+ σtfxdWt.

The HJB equation is a type of partial derivative equation and it is vital in optimal

control theory. The solution to the HJB equation is a value function with minimum

cost according to some specific dynamic system and cost function. Bertsekas (2005)

introduces some basic ideas. Consider an continuous-time optimal control problem

during [0, T ]:

min
π

h
(
x(T )

)
+

∫ T

0

g
(
x(t), π(t)

)
dt

s.t.
dx(t)

dt
= f

(
x(t), π(t)

)
, 0 ≤ t ≤ T,

x(0) is given,

where g is the cost function, h is a function expressing the final state, x(t) is the

system state and π(t) is the admissible control. Here all f , g and h are assumed to
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be continuously differentiable. After dividing the time horizon into N pieces with

equal length of δ =
T

N
, we get the approximate discrete-time control problem as

min
π

h
(
x(Nδ)

)
+

N−1∑
k=0

g
(
x(kδ), π(kδ)

)
· δ,

s.t. x
(
(k + 1)δ

)
= x(kδ) + f

(
x(kδ), π(kδ)

)
· δ,

k = 0, 1, · · · , N.

In order to derive the HJB equation, we consider the optimal cost-to-go function,

which is also known as the value function. Let J̃∗(t, x) denote the optimal cost-to-

go at time t and let x denote the state in the discrete-time version. According to

dynamic programming, we derive

J̃∗(kδ, x) = min
π

[
g(x, π)δ + J̃∗

(
(k + 1)δ, x+ f(x, π)δ

)]
, k = 0, 1, · · · , N − 1,

J̃∗(Nδ, x) = h(x).

Let J∗(t, x) be the optimal cost-to-go for the continuous problem, then the following

HJB equation for J∗(t, x) is satisfied,

0 = min
π

[
g(x, π) +∇tJ

∗(t, x) +∇xJ
∗(t, x)′f(x, π)

]
, ∀t, x,

where the boundary condition is

J∗(T, x) = h(x).

We use the principle of optimality to obtain the equation, which is the basic idea in

dynamic programming. Bellman (1957) state that an optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first decision.
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In order to solve the HJB equation, the problem can be tackled backwards in time.

If we can get the explicit solution of of the HJB equation, then the optimal control

policy can be obtained. However, in most cases, the HJB equation is not tractable.

There is a wide range of applications for HJB equations. In the financial field, the

related work includes Asmussen and Taksar (1997), Højgaard and Taksar (1998) and

Zariphopoulou (1994). A classical solution in a bounded domain can be derived under

certain circumstances for HJB equations. The HJB equation usually corresponds

to different partial differential equations in different regions according to control

constraints. The solution of the HJB equation is governed by the so-called “principle

of smooth fit”. Illustrate an optimal stopping problem as follows:

V (x) = sup
τ

Ex
[
G(Xτ )

]
,

where V is the value function, G is the differentiable gain function, X is a diffusion

process and τ denotes the uncertain exit time. “Principle of smooth fit” states that

the optimal stopping time τ ∗ which separates the holding region C from the exit re-

gion D satisfies the property that V ′(τ ∗) = G′(τ ∗). In the case with an infinite time

horizon, the general solutions in each region are expressed with some unknown con-

stant parameters. Taksar (2000) and Asmussen et al. (2000) show that the unknown

parameters can be determined by using “principle of smooth fit” at free boundary

points and by analyzing conditions of fixed boundary points. For the problem with

a finite time horizon, it is hard to derive its explicit solution. This calls for studying

the corresponding solutions and the free boundaries. The free boundary often rep-

resents the switching curve determined by points between two regions arising from

two types of different policies. The properties of the solution play an important role

in financial decision-making. Carpenter (2000) researched the dynamic investment

problem of a risk averse manager compensated with a call option. The value function

is maximizing the expected utility of payoff at the terminal date. Thus, the utility
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function as the price of the total assets is not concave. However, the author still

proves the concavity of the value function. In addition, he derives the expression of

solution using the method of martingales. It should be noted that the expression

can also be obtained by making dual (Frenchel-Legendre) transformation of the HJB

equation and then solving a linear problem. Pliska (1986), Karatzas et al. (1987)

and Cox and Huang (1989) made dual transformation directly on the value function.

However, for problems of limited time, it is hard to find the explicit solution to the

corresponding Barenblatt parabolic partial differential equation. Guan and Yi (2014,

2016), and Han and Yi (2015) studied on this topic.

Consider a portfolio selection problem with uncertain exit time. Choosing a

proper time point to stop investment is one of the most important things for in-

vestors to make maximum profit. Since the highest return will be unknown until the

end of time horizon, it is natural to set a more realistic objective, which is to mini-

mize the difference between the return of the stopping time and the maximum return

over the whole time horizon. In the field of mathematical finance, this problem is

always formulated to an optimal stopping problem which has important applications

and has been well developed in the past decades, especially mixed with stochastic

dynamic system. Dayanik and Karatzas (2003) investigated the optimal stopping

problems for one dimensional diffusions and show how to reduce the discounted op-

timal stopping problem for an arbitrary diffusion process to an undiscounted one

for standard Brownian motion. For a stock selling model, Shiryaev et al. (2008)

addressed the optimal stopping issue in an equity market by considering the rela-

tive error and a log-normal price process. Du Toit et al. (2009) used the geometric

Brownian motion assumption of stock price as Shiryaev et al. (2008) considered the

optimal stopping problem for stochastic differential equations with random coeffi-

cients. Dai and Zhong (2012) provided a PDE approach to characterize the resulting

free boundary corresponding to the optimal selling strategy. Wu et al. (2018) chose
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an optimal point when the investor stops the investment among multi-assets. Li et al.

(2017) sought for the optimal exit time based on a logarithmic utility-maximization

objective .

In the financial market, investors need to select a portfolio among various assets.

An optimal consumption and investment under short-selling prohibition was studied

in Xu and Shreve (1992a,b). A consumption-portfolio selection problem and an

optimal stopping problem was mixed in Choi et al. (2004) and the investor’s decision

to switch from active portfolio management to passive management was discussed.

1.2 Contributions and Organization

In Chapter 2, the mathematical description of financial markets is presented, where

the risk free and risky assets are expressed as different differential equations respec-

tively. In addition, some prepositive knowledge and useful lemmas are shown for

further use in following chapters.

In Chapter 3, a class of optimal investment problem is studied in finite horizon.

Based on the model described in Carpenter (2000), we consider the case where there

is an uncertain exit time under some deterministic distribution, which forces the

investors to leave the market with some utilities as compensation. Thus, there will

be an integral term on time appearing in the definition of the value function. The

dual equation of the corresponding HJB equation is quasi-linear due to this integral

term, giving rise to the consequences that the expression of the solution cannot be

obtained. However, we can still use the technique of PDE to study the properties of

the solution and get the optimal trading strategies.

Consider the condition that the investment will generate utilities in the whole

process, but not just on the maturity date. We will not specify a particular utility

function except for some general restrictions such as the growth condition. Under
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these restrictions, we can prove that the value function is smooth, strictly increasing

and strictly concave on current assets. The optimal portfolios on risky assets are

continuous. The condition that the utility function is concave is not required in this

part. Moreover, when it approaches the terminal investment date and the asset price

belongs to the con-concave region, the investors tend to prefer risks to increase the

volatility of the assets process. In addition, when the price of assets becomes small,

the optimal portfolio on the risky assets approaches to zero, and the value function

increases rapidly.

Using the technique of PDE, we research a class of investment problems in general

cases, and give the proof of existence and smoothness of the value function. We also

make use of the method of dual transformation to study the HJB equation.

The organization of this chapter is shown below. After presenting the mathe-

matical model, we discuss the terminal condition of the value function when the

utility function is not concave. Then we derive the HJB equation and construct a

fully nonlinear problem. By making dual transformation, we convert the problem

into a new quasi-linear PDE problem, and get the existence and properties of the

solution. Moreover, the optimal investment strategy is given by the solution, and

the properties of the strategy on boundaries are studied. An example is illustrated

where the exit time is uncertain.

In Chapter 4, we continue to study the problem over finite time horizon with

constraints. For a classic option pricing model, the portion of risky investment is

certain, making HJB equation a linear equation, and the expression of solution is easy

to derive. Under an investment-consumption model, the risk capital is a controllable

variable with no upper bound. Thus a fully nonlinear equation is derived, which

can be converted to a linear equation by Legendre transformation. Considering

that in real financial market, the borrowing limit of an investor depends on the

corresponding total assets at present. We assume the amount of risky assets is
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controllable and depends on the upper bound of current total assets in a functional

form. When the amount of risky assets does not reach this upper bound, we derive

a fully nonlinear equation, while when the amount reaches the boundary, we get a

quasi-linear equation. Thus, it is a free-boundary problem, where there is usually no

explicit expression of solutions.

In order to study the existence and uniqueness of solution to the original problem,

we rewrite the equations as one fully nonlinear equation and construct an approxi-

mation problem. Using comparison principle, we obtain the properties of the approx-

imation problem and finally prove the properties of value function. This Barenblatt

parabolic equation is singular on the left boundary. We estimate the value function

and its partial derivatives, and then derive the uniqueness and upper bound of the

free boundary. In order to study the smoothness of the free boundary, we construct

a function to prove the continuity, and ascertain its end point.

The content of this chapter is organized as follows. After presenting the math-

ematical formulation of this model, we define the value function, then the related

HJB equation is derived and discussed. We construct the approximation problems

about the value function and its derivatives, discuss the existence and uniqueness of

the solution to the approximation problems and the original problem, and derive the

existence and smoothness of the free boundary.

In Chapter 5, we analyze the right time for an investor to stop the investment

among multi assets over a given time horizon. It means that before determining

the optimal stopping time, a portfolio problem need to be solved. There are two

models introduced in this chapter. We formulate the problem into a two-stage prob-

lem. The main problem is a stopping problem but not a standard one due to the

non-adapted term in the objective function. The subproblem is an optimal control

problem with a given terminal payoff where the control variables involving in the

drift and volatility terms of the dynamic system. After deriving the optimal portfo-
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lio of the sub-problem, we substitute it to the main problem. And then transform

the non-adapted stopping problem to a standard one by stochastic analysis. Simply

speaking, we face an optimal stopping problem with a utility-maximization objec-

tive and with more general drift and volatility coefficients. We consider the utility

function of a quadratic form instead of a relative error criterion in Shiryaev et al.

(2008). Therefore the maximum wealth can be zero. In addition, the involvement of

multi assets makes our model more general compared with those of Du Toit et al.

(2009) and Dai and Zhong (2012). The process of the multi assets is similar to Xu

and Shreve (1992a,b). All these make our analysis more realistic and meaningful.

This chapter is organized as follows. We formulate the problem to a two-stage

model and transform it into an equivalent optimal stopping problem. A numerical

example is presented to demonstrate the theoretical results.
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Chapter 2

Preliminary

In this chapter, we introduce the basic concepts in the financial market, and present

the differential equations which describe the properties of risk-free and risky assets.

Some useful lemmas are also introduced for further use.

2.1 Model Formulation

Consider a financial market with a fixed filtered complete probability space (Ω,

F , P, {Ft}t≥0). A standard Ft-adapted one-dimensional Brownian motion {Wt, t ≥

0} is defined on the space, where the boundary condition W (0) = 0 and the terminal

time T > 0 are given. Let L2
F(0, T ;R) denote the set of all R-valued, Ft-progressively

measurable stochastic processes f(t) satisfying E
∫ T

0

|f(t)|2dt < +∞.

The manager operates in a complete, arbitrage-free, continuous-time financial

market consisting of a riskless asset with instantaneous interest rate r and n risky

assets. The risky asset prices Si are governed by the stochastic differential equations

dSi,t
Si,t

= (r + µi)dt+ σidW
j
t , for i = 1, 2, · · · , n, (2.1.1)

where the interest rate r, the excess appreciation rates µi, and the volatility vectors

σi are constants, W is a standard n-dimensional Brownian motion. In addition, the
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covariance matrix σσ′ is strongly nondegenerate.

A trading strategy for the manager is an n-dimensional process πt, where πi,t is

the holding amount of the i-th risky asset in the portfolio at time t. An admissible

trading strategy πt must be progressively measurable with respect to {Ft} such that

Xt ≥ 0. Note that Xt = π0,t +
∑n

i=1 πi,t, where π0,t is the amount invested in the

money. Hence, the wealth Xt evolves according to dXs = (rXs + µ′πs)ds+ π′sσdWs, s ≥ t,

Xt = x.
(2.1.2)

2.2 Basic Knowledge

We provide some basic knowledge prepositive to this thesis, and present some useful

lemmas in this part.

2.2.1 Parabolic distance

Recall that Rn is the n-dimensional Euclidean space, the point on which is denoted

by x = (x1, x2, · · · , xn). By introducing a time variable t, denote the point on the

constructed n + 1-dimensional space Rn+1 as X = (x, tX). We now introduce the

distance in Rn+1. δ(X, Y ) is called the parabolic distance if

δ(X, Y ) = max
{
|x− y|, |tX − tY |

1
2

}
.

Let QR(X) represent a ball with the center of X and radius of R regarding the

parabolic distance δ(X, Y ), i.e.,

QR(X) =
{
Y ∈ Rn+1|δ(X, Y ) < R

}
= BR(x)× (tX −R2, tX +R2),
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where BR(x) denotes an n-dimensional ball with the center of x and radius of R.

Let D be a bounded region in Rn+1. For any random X ∈ D, denote D(X, r) =

D ∩Qr(X). Denote d = diam(D), which is the diameter of D in regard to δ(X, Y ).

Now we introduce some spaces.

Definition 2.2.1. (Morrey space) For 1 ≤ p < ∞, θ ≥ 0, let Lp,θ(D; δ) denote the

normed linear space composed by all functions u, where

‖u‖Lp,θ(D;δ) :=

{
sup
X∈D
d≥ρ>0

|D(X, ρ)|−θ
∫
D(X,ρ)

|u(Y )|pdY
} 1

p

<∞.

Here ‖u‖Lp,θ(D;δ) is the norm of the space.

Definition 2.2.2. (Campanato space) For p ≥ 1, θ ≥ 0, let Lp,θ(D; δ) denote the

normed linear space composed by all functions u, where

[u]Lp,θ(D;δ) :=

{
sup
X∈D
d≥ρ>0

|D(X, ρ)|−θ
∫
D(X,ρ)

|u(Y )− uX,ρ|pdY
} 1

p

<∞.

The norm is defined by

‖u‖Lp,θ(D;δ) :=
{
‖u‖pLp(D) + [u]p

Lp,θ(D;δ)

} 1
p
.

Here uX,ρ denotes the integral mean of u on D(X, ρ), i.e.,

uX,ρ = |D(X, ρ)|−1

∫
D(X,ρ)

u(Y )dY.

13



2.2.2 Hölder space

For 0 < α ≤ 1, let Cα(D; δ) denote the normed linear space composed by all functions

u, where

[u]α;D := sup
X∈D
d≥ρ>0

|u(X)− u(Y )|
δ(X, Y )α

<∞.

The norm is defined by

|u|α;D = sup
D
|u|+ [u]α;D.

In order to describe spaces of higher orders, we introduce the definition of semi-

norm as follows:

|u|0;QT = sup
QT

|u|,

[u]α;QT = sup
X,Y ∈QT
X 6=Y

|u(X)− u(Y )|
δ(X, Y )α

, 0 < α < 1,

[u]tα;QT
= sup

x∈Ω.t6=r
t,r∈[o,T ]

|u(x, t)− u(x, τ)|
|t− τ |α

, 0 < α < 1.

The semi-norm of higher derivatives is also introduced as

[u]k+α;QT =


∑

r+2s=k

[Ds
tD

r
xu]α, k is even,∑

r+2s=k

[Ds
tD

r
xu]α +

∑
r+2s=k−1

[Ds
tD

r
xu]t1+α

2

, k is odd.

The linear space composed by functions u in C(QT ) is denoted by Ck+α, k+α
2 (QT ) or

Ck+α(QT ; δ), where

|u|k+α;QT :=
∑

0≤r+2s≤k

[Ds
tD

r
xu]0;QT + [u]k+α;QT <∞.

After introducing the norm |u|k+α;QT , it will turn into a Banach space.

14



For a positive integer l, and 1 ≤ p <∞, denote

‖u‖
W
l, l2
p (QT )

=


{ ∑

0≤r+2s≤l
‖Ds

tD
r
xu‖

p
Lp(QT )

} 1
p

, l is even,{ ∑
0≤r+2s≤l

‖Ds
tD

r
xu‖

p
Lp(QT ) +

∑
0≤r+2s≤l−1

[Ds
tD

r
xu]p

L
1
2
p,t(QT )

} 1
p

, l is odd.

Let W
l, l

2
p (QT ) denote the normed linear space composed by functions u, where

‖u‖
W
l, l2
p (QT )

<∞.

Let Ω be a bounded region in Rn, and QT = Ω × (0, T ]. We now introduce some

concepts about weak solution.

Definition 2.2.3. Let V2(QT ) denote the normed linear space composed by functions

u, where

‖u‖V2(QT ) :=

{
ess sup
0<t<T

‖u(·, t)‖2
L2(Ω) + ‖Dxu‖2

L2(QT )

} 1
2

<∞.

Let V 1,0
2 (QT ) denote the normed linear space composed by functions u in V2(QT ),

where

lim
h→0
‖u(·, t+ h)− u(·, t)‖L2(Ω) = 0, t, t+ h ∈ [0, T ].

Afterwards, let V̊2(QT ), V̊ 1,0
2 (QT ), W̊ 1,1

2 (QT ) denote the spaces composed by func-

tions u where u(·, t)|∂Ω = 0, a.e. t ∈ (0, T ) in V2(QT ), V 1,0
2 (QT ) and W 1,1

2 (QT )

respectively.

Definition 2.2.4. Consider a parabolic equation

ut −Dj(a
ijDiu+ dju) + biDiu+ cu = f −Dif

i.

15



Denote

Lu = −Dj(a
ijDiu+ dju) + biDiu+ cu.

The function u ∈ V2(QT ) is a weak solution, if ∀t ∈ (0, T ), ϕ ∈ W̊ 1,1
2 (QT ), ϕ(x, 0) =

0, and

(u(·, t), ϕ(·, t))−
∫ t

0

(u, ϕt)dt+

∫ t

0

(Lu, ϕ)dt =

∫ t

0

[(f, ϕ) + (f i, Diϕ)]dt,

where

(u, v) =

∫
Ω

u(x, t)v(x, t)dx.

2.2.3 Some useful lemmas

Now we will introduce the comparison principle for parabolic equations.

Lemma 2.2.5. Suppose F is a continuous function in Ω× [0, T ]×R×RN ×SN . It

is assumed that for all x ∈ Ω, t ∈ [0, T ], r ∈ R, p ∈ RN , M, M̂ ∈ SN , we have

M ≤ M̂ ⇒ F (x, t, r, p, q,M) ≤ F (x, t, r, p, q, M̂).

Let u1, u2 ∈ C2,1(QT ) ∩ C(QT ) satisfy

Dtu1 − F (x, t, u1, Diu1, Diju1) ≥ Dtu2 − F (x, t, u2, Diu2, Diju2) in QT ,

u1 ≥ u2( or
∂u1

∂n
≥ ∂u2

∂n
) on ST = ∂Ω× [0, T ],

u1(x, 0) ≥ u2(x, 0),

where
∂u

∂n
is the gradient on outer normal direction of Ω. Then we have u1 ≥ u2 in

QT .
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Now we will introduce the Schauder estimate and Cα estimate for parabolic equa-

tions.

Lemma 2.2.6. (Schauder estimate) For parabolic equation
ut − aij(x, t)Diju+ bi(x, t)Diu+ c(x, t)u = f(x, t) in QT ,

u = g(x, t) on ST = ∂Ω× [0, T ],

u(x, 0) = ϕ(x),

where aij(x, t) satisfies that for Λ > λ > 0, we have

λ|ξ|2 ≤ aij(x, t)ξiξj ≤ Λ|ξ|2, ∀(x, t) ∈ QT , ξ ∈ Rn.

(a) Global estimate. Conditions are as follows: (i) aij, bi, c ∈ Cα,α
2 (QT ); (ii) ∂Ω ∈

C2,α, g ∈ C2+α,1+α
2 (ST ); (iii) u ∈ C2,1(QT )∩C(QT ) satisfies the equation and initial

boundary value and compatibility conditions. Then the conclusion is

|u|2+α,QT ≤ C
(
|f |α,QT + |ϕ|2+α,Ω + |u|0,QT + |g|2+α,ST

)
,

where C depends on n, α, Λ, λ, |aij, bi, c|α,QT , and ∂Ω.

(b) Interior estimate. Conditions are as follows: (i) aij, bi, c ∈ Cα,α
2 (QT ); (ii) Q ⊂⊂

QT ; (iii) u ∈ C2,1(QT ) ∩ C(QT ) satisfies the equation. Then the conclusion is

|u|2+α,Q ≤ C
(
|f |α,QT + |u|0,QT

)
,

where C depends on n, α, Λ, λ, |aij, bi, c|α,QT , and dist(Q, ∂pQT ).

(c) Maximum norm estimate. Conditions are as follows: (i) u ∈ C2,1(QT ) ∩ C(QT )

is the solution to the equation; (ii) Coefficients are continuous and bounded; (iii)

c(x, t) ≥ −C0, C0 > 0. Then the conclusion is

|u|0,QT ≤ eC0T
(

sup
∂pQT

|u|+ T sup
QT

|f |
)
.
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Combining the global estimate and the maximum norm estimate, we derive

|u|2+α,QT ≤ C
(
|f |α,QT + |ϕ|2+α,Ω + |g|2+α,ST

)
.

Lemma 2.2.7. (Cα estimate) For parabolic equation

ut −Dj(a
ijDiu+ dju) + (biDiu+ cu) = f −Dif

i,

where aij(x) satisfies for Λ > λ > 0, we have

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2, ∀(x, t) ∈ QT , ξ ∈ Rn.

(a) Global estimate. Conditions are as follows: (i) aij, bi, di, c ∈ L∞(Ω); (ii) f ∈

L
(n+2)p
n+2+p (QT ), f i ∈ Lp(QT ); (iii) Rn\Ω is a region of type (A), i.e., there exists A ∈

(0, 1), ρ0 > 0, such that |Bρ(x0)\Ω| ≥ A|Bρ(x0)|, ∀x0 ∈ ∂Ω, ρ ∈ (0, ρ0]; (iv)

u ∈ Cε(∂pQT , δ); (v) u is a weak solution to the equation. Then the conclusion is

|u|β,QT ≤ C
(
|u|0,QT + [u]ε,∂pQT + |f |

L
(n+2)p
n+2+p (QT )

+
∑
i

|f i|Lp(QT )

)
,

where C, β depend on n, Λ, λ, p, ε, Ω, and L∞ norm of coefficients.

(b) Interior estimate. Conditions are as follows: (i) aij, bi, di, c ∈ L∞(Ω); (ii) f ∈

L
(n+2)p
n+2+p (QT ), f i ∈ Lp(QT ); (iii) Q ⊂⊂ QT ; (iv) u is a weak solution to the equation.

Then the conclusion is

|u|β,Q ≤ C
(
|u|0,QT + |f |

L
(n+2)p
n+2+p (QT )

+
∑
i

|f i|Lp(QT )

)
,

where C, β depend on n, Λ, λ, p, Ω, L∞ norm of coefficients, and dist(Q, ∂pQT ).

(c) Maximum norm estimate. Conditions are as follows: (i) aij, bi, di, c ∈ L∞(QT );
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(ii) f ∈ L
(n+2)p
n+2+p (QT ), f i ∈ Lp(QT ), p > n + 2; (iii) c−Did

i ≥ −C0 in QT ; (iv) u is

a weak solution to the equation. Then the conclusion is

sup
QT

|u| ≤ sup
∂PQT

|u|+ C
(
|f |

L
(n+2)p
n+2+p (QT )

+
∑
i

|f i|Lp(QT )

)
,

where C depends on n, Λ, λ, p, T, and L∞ norm of coefficients.
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Chapter 3

Optimal Investment Problems over

a Finite Time Horizon

In this chapter, we study a class of optimal investment problems in finite horizon.

We discuss the terminal condition of the value function when the utility function

is not concave. We derive the HJB equation, construct a fully nonlinear problem,

and convert it into a new quasi-linear PDE problem by making dual transformation.

We prove the existence and properties of the solution, and the optimal investment

strategy is given. The properties of the strategy on boundaries are studied. An

example is illustrated where the exit time is uncertain.

3.1 Formulation of HJB Equations

In the general framework, the dynamic problem is to choose an admissible trading

strategy πs (t ≤ s ≤ T ) to maximize

V (x, t) = sup
π

E
[ ∫ T

t

f(Xs, s)ds+ g(XT )

]
, (3.1.1)

where f(x, t) and g(x) are non-negative continuous functions defined in ΩT = {(x, t) :

x > 0, 0 < t < T}, and are increasing in x.
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When Xt = 0, in order to keep Xs ≥ 0, we get that πs = 0 and Xs ≡ 0, t ≤ s ≤ T .

Thus, we obtain a left boundary condition

V (0, t) =

∫ T

t

f(0, s)ds+ g(0). (3.1.2)

In order to make (4.1.1) a well defined function (a finite function), some constraints

should be imposed on f(x, t) and g(x, t). Without loss of generality, we suppose

that:

Condition I: There is a γ ∈ (0, 1) and an M > 0 such that for all x, y ≥ 0, we get


|g(x)− g(y)| ≤ M

γ
|x− y|γ,

|f(x, t)− f(y, t)| ≤ M

γ
|x− y|γ,

(3.1.3)

which also imply the growth condition that
g(x) ≤ g(0) +

M

γ
xγ,

f(x, t) ≤ f(0, t) +
M

γ
xγ.

(3.1.4)

Condition II: The limit condition is shown as follows,

lim
x→+∞

g(x) = +∞. (3.1.5)

3.1.1 The Case that g(x) is Non-concave

When g(x) is non-concave, denote ϕ(x) as its concave hull, i.e., ϕ(x) is the minimal

concave function not less than g(x) (See Figure 3.1).

22



-

6

ϕ(x)

x1

q
x1

q
x2

q
x2

q
x

g(x)

@R

�

Fig 3.1 ϕ(x).

Since g(x) is an increasing and continuous function, ϕ(x) will be increasing and

continuous. Thus, {x > 0|ϕ(x) > g(x)} is an open set which can be written as (in

general case)

{ϕ(x) > g(x)} =
∞⋃
m=1

(xm, xm), (3.1.6)

where {(xm, xm)}∞m=1 are countable disjoint open intervals. In these intervals, ϕ(x)

is a linear function.

Since the portfolio πt is unconstrained, we point out that the terminal condition of

V (x, t) should be ϕ(x) but not g(x). In fact, in a short time, the behavior of the asset

price is like a martingale. When time approaches the terminal date and the current

asset price x is located in (xm, xm)(m ∈ Z), the investor could adopt such a strategy

that he/she will buy sufficient risky assets and then Xs will rapidly touch xm or xm

(with probability approximately equal to
x− xm
xm − xm

and
xm − x
xm − xm

, respectively), so

that the contribution of E[g(XT )] to the value function is approximate to

x− xm
xm − xm

g(xm) +
xm − x
xm − xm

g(xm) = ϕ(x).

Therefore, the value function is not less than ϕ(x) near the terminal date. Under

this idea, we could prove the following theorem.
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Theorem 3.1.1. The behavior of the value function near the terminal date is shown

below:

lim
t→T−

V (x, t) = ϕ(x). (3.1.7)

Proof. The proof of Theorem 3.1.1 can be accomplished by proving lim sup
t→T−

V (x, t) ≤

ϕ(x) and lim inf
t→T−

V (x, t) ≥ ϕ(x). We begin to prove the two inequalities respectively.

(i) Proof of the first inequality.

Define

ζs = e−(r+ 1
2
µ′(σ′σ)−1µ)s−µ′σ−1Ws ,

then we get

dζs = ζs[−rds− µ′σ−1dWs],

and

d(ζsXs) = ζsdXs +Xsdζs + dζsdXs

= ζs[(rXs + µ′πs)ds+ π′sσdWs − rXsds− µ′σ−1XsdWs − (µ′σ−1)(π′sσ)′ds]

= ζs[π
′
sσ − µ′σ−1Xs]dWs. (3.1.8)

Thus, ζsXs is a martingale. For any admissible π, by Jensen’s inequality, we have

E
[
ϕ
(ζT
ζt
XT

)]
≤ ϕ

(
E
[ζT
ζt
XT

])
= ϕ(x).

Then

lim sup
t→T−

sup
π

E
[
ϕ
(ζT
ζt
XT

)]
≤ ϕ(x). (3.1.9)

24



We come to prove

lim
t→T−

sup
π

E
[∣∣∣ϕ(XT )− ϕ

(ζT
ζt
Xτ

)∣∣∣] = 0. (3.1.10)

It is not hard to see from (3.1.3) that for all 0 < y < x,

|ϕ(x)− ϕ(y)| ≤ C|x− y|γ.

Indeed, by (3.1.3), we derive

g(x) ≤ g(y) + C|x− y|γ ≤ ϕ(y) + C|x− y|γ.

Since ϕ(y) + C|x− y|γ is concave on x for any fixed y, we obtain

ϕ(x) ≤ ϕ(y) + C|x− y|γ.

Thus, for any admissible π, we get

E
[∣∣∣ϕ(XT )− ϕ

(ζT
ζt
XT

)∣∣∣] ≤ CE
[(ζT

ζt
XT

)γ∣∣∣ ζt
ζT
− 1
∣∣∣γ].

Using Hölder inequality, we obtain

E
[∣∣∣ϕ(XT )− ϕ

(ζT
ζt
XT

)∣∣∣] ≤ C

[
E
(ζT
ζt
XT

)]γ(
E
[∣∣∣ ζt
ζT
− 1
∣∣∣ γ
1−γ
])1−γ

≤ Cxγ
(
E
[∣∣∣ ζt
ζT
− 1
∣∣∣ γ
1−γ
])1−γ

.

Hence,

lim
t→T−

sup
π

E
[∣∣∣ϕ(XT )− ϕ

(ζT
ζt
XT

)∣∣∣] ≤ Cxγ lim
t→T−

(
E
[∣∣∣ ζt
ζT
− 1
∣∣∣ γ
1−γ
])1−γ

= 0.

Meanwhile, we turn to prove

lim
t→T−

sup
π

E
[ ∫ T

t

fT (Xs, s)ds

]
= 0. (3.1.11)
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Using (3.1.4), we have

E
[ ∫ T

t

fT (Xs, s)ds

]
≤ E

[ ∫ T

t

CXγ
s ds

]
+ E

[ ∫ T

t

fT (0, s)ds

]

≤ C

∫ T

t

(
E
[∣∣∣ζs
ζt
Xs

∣∣∣])γ(E[∣∣∣ ζt
ζs

∣∣∣ γ
1−γ
])1−γ

ds+ E
[ ∫ T

t

fT (0, s)ds

]

= C

∫ T

t

xγ
(
E
[∣∣∣ ζt
ζs

∣∣∣ γ
1−γ
])1−γ

ds+

∫ T

t

fT (0, s)ds.

Note that the right hand side of the last equality above is independent of π. Let

t→ T− and we have (3.1.11).

Therefore, by (3.1.9), (3.1.10) and (3.1.11), we get

lim sup
t→T−

V (x, t) = lim sup
t→T−

sup
π

E
[ ∫ T

t

fT (Xs, s)ds+ g(XT )

]

= lim sup
t→T−

sup
π

E[g(XT )]

≤ lim sup
t→T−

sup
π

E[ϕ(Xτ )]

≤ lim sup
t→T−

sup
π

E
[
ϕ
(ζτ
ζt
Xτ

)]
+ lim

t→T−
sup
π

E
[∣∣∣ϕ(Xτ )− ϕ

(ζτ
ζt
Xτ

)∣∣∣]

≤ ϕ(x).

Thus, we prove that lim sup
t→T−

V (x, t) ≤ ϕ(x).

(ii) Proof of the second inequality.

For fixed t < T , if x ∈ {ϕ(x) = g(x)}, set π = 0 and we can get

V (x, t) ≥ g(x) = ϕ(x).
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Thus, lim inf
t→T−

V (x, t) ≥ ϕ(x).

Otherwise, if x ∈ (xm, xm) for an m ∈ Z, we choose πs to make the coefficient of

(3.1.8) satisfying

ζs
ζt

[π′sσ − µ′σ−1Xs] = (πNs )′ := Nχ{
xm<

ζs
ζt
Xs<xm

}I ′n, ∀ N > 0,

where In is an n-dimensional unit column vector. Let XN
s =

ζs
ζt
Xs. Then using

(3.1.8) we have

dXN
s = (πNs )′dWs, t ≤ s ≤ T.

It is not hard to obtain that

xm ≤ XN
s ≤ xm, t ≤ s ≤ T.

Since

{xm < XN
s < xm} = {xm < XN

s = x+NI ′n(Ws −Wt) < xm, t ≤ s ≤ T}

⊂ {xm < x+NI ′n(WT −Wt) < xm},

we derive

P(xm < XN
T < xm) ≤ P(xm < x+NI ′n(WT −Wt) < xm)→ 0, N →∞.

Then we get

xmP(XN
T = xm) + xmP(XN

T = xm)→ EXN
T = x, N →∞.

Therefore,

lim
N→∞

P(XN
T = xm) =

xm − x
xm − xm

, lim
N→∞

P(XN
T = xm) =

x− xm
xm − xm

.
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As a result,

lim
N→∞

E[g(XN
T )] =

xm − x
xm − xm

g(xm) +
x− xm
xm − xm

g(xm) = ϕ(x).

Thus,

sup
π

E
[
g
(ζT
ζt
XT

)]
≥ lim

N→∞
E[g(XN

T )] = ϕ(x).

Meanwhile, similar to (3.1.10), we have

lim
t→T−

sup
π

E
[∣∣∣g(XT )− g

(ζT
ζt
XT

)∣∣∣] = 0.

Hence,

lim inf
t→T−

V (x, t) ≥ lim inf
t→T−

sup
π

E
[
g(XT )

]

≥ lim inf
t→T−

sup
π

E
[
g
(ζT
ζt
XT

)]
− lim

t→T−
sup
π

E
[∣∣∣g(XT )− g

(ζT
ζt
XT

)∣∣∣]

≥ ϕ(x).

Then we prove that lim inf
t→T−

V (x, t) ≥ ϕ(x).

As a result, we prove Theorem 3.1.1.

3.1.2 The HJB Equation

Using the theory of viscosity solution in differential equations, we obtain the following

HJB equation

− Vt −max
π

[
1

2
(π′σσ′π)Vxx + µ′πVx

]
− rxVx = f(x, t) in ΩT (3.1.12)
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in viscosity sense (See Crandall and Lions (1983), Lions (1983), Fleming and Soner

(1992)). Then we will prove that the solution of equation (3.1.12) under boundary

condition (3.1.2) and terminal condition (3.1.7) belongs to C2,1(ΩT )
⋂
C(ΩT ).

Since f(x, t) may not be smooth, concave or convex, we give an easing restriction

that

Condition III. f(x, t) is differentiable w.r.t x almost everywhere in ΩT and there

exists the following decomposition

fx(x, t) = P (x, t)−Q(x, t), a.e., (3.1.13)

where P (x, t) and Q(x, t) are locally bounded and increasing in x, namely fx(x, t) is a

bounded variation function for all t < T . In other words, f(x, t) can be decomposed

into a convex (in x) function and a concave (in x) function.

From the definition in (4.1.1), we easily see that V is increasing in x. From

equation (3.1.12), we know that the solution of it must be concave. Otherwise, the

maximum in the equation will be infinite. So we seek for the solution of (3.1.2)

satisfying

Vx > 0, Vxx < 0, x > 0, 0 < t < T. (3.1.14)

Note that the gradient of π′σσ′π with respect to π is

∇π(π′σσ′π) = 2σσ′π.

Hence,

π∗ = −(σσ′)−1µ
Vx
Vxx

.
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Define a2 = µ′(σσ′)−1µ, thus, we obtain the following initial-boundary problem



−Vt +
a2

2

V 2
x

Vxx
− rxVx = f(x, t),

V (0, t) =

∫ T

t

fT (0, s)ds+ g(0), 0 < t < T,

V (x, T−) = ϕ(x), x > 0.

(3.1.15)

We will show that this problem has a (unique) solution V̂ (x, t) ∈ C2,1(ΩT )
⋂
C(ΩT )

which satisfies (3.1.14) under Condition I–III.

3.2 Main Results

In this section, we will show the main results of this chapter. We will prove the solv-

ability of the initial-boundary problem, and study the behavior of optimal strategy

near the boundary and terminal line.

3.2.1 The Solvability of (3.1.15)

Since (3.1.15) is a fully nonlinear PDE problem, the parabolic condition is difficult

to verify directly. However, we are able to transform it to a quasi-linear equation

through the dual (Fenchel-Legendre) transformation. We will first introduce some

knowledge of dual transformation, and then derive the dual equation. Although

the derivation depends on some a-priori assumptions on the solution. But we will

rigorously prove the existence and uniqueness of solution to the dual problem, and

study the related properties. Then we are able to construct the solution of problem

(3.1.15) by inverse transformation. Under the verification theorem, we can get that

it is the value function defined in (3.1.1). Thus, we could construct the optimal

investment strategies by the solution of problem (3.1.15).
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The dual transformation of ϕ(x)

Firstly, we introduce the concept of dual transformation.

Definition 3.2.1. If u : (0,+∞) → R is increasing and concave on (0,+∞), then

the dual transformation is the function ũ : (0,+∞)→ R ∪ {+∞} such that

ũ(y) = sup
x>0

(u(x)− xy), y > 0.

The next proposition collects some results used in this section.

Proposition 3.2.2. ũ is a decreasing function, and is convex on (0,+∞). We have

the conjugate relation

u(x) = inf
y>0

(ũ(y) + xy), x > 0.

Denote dom(ũ) = {y > 0 : ũ(y) < +∞}. Suppose one of the two following equivalent

conditions is satisfied:

(i) u is differentiable on (0,+∞),

(ii) ũ is strictly convex on int(dom(ũ)),

then the derivative u′ is a mapping from (0,+∞) into int(dom(ũ)) 6= ∅ and we have

u′(x) = arg min
y≥0

(ũ(y) + xy), ∀x > 0.

Moreover, we can define ũ′(y±) = lim
z→y±

ũ(z)− ũ(y)

z − y
, then

ũ′(y−) ≤ ũ′(y+) ≤ 0, ∀y ∈ dom(ũ),

and

arg max
x≥0

(u(x)− xy) = {x ≥ 0 : u′(x) = y} = [−ũ′(y+),−ũ′(y−)], ∀y ∈ dom(ũ).
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If we further suppose that u is strictly concave, then ũ is differentiable with

ũ′(y) = −(u′)−1(y).

Finally, under the additional conditions

u′(0) = +∞, u′(+∞) = 0,

we have int(dom(ũ)) = dom(ũ) = (0,+∞).

Proof. See Appendix B of Pham (2009).

Now, let us define the duel transformation of ϕ(x) as

ψ(y) = sup
x>0

(ϕ(x)− xy), y > 0.

(see Figure 3.2.1)

-

6

ψ(y)

y2

q
y1

q
y

Fig 3.2.1 ψ(y).

-6

ψ′(y±)

y2q y1q y−x1 q
−x1 q
−x2 q
−x2 q

Fig 3.2.2 ψ′(y±).

Then, by Proposition 3.2.2, ψ(y) is a decreasing and convex function and

ϕ(x) = inf
y>0

(ψ(y) + xy).

Due to the fact that ϕ(x) is not strictly concave, thus ψ(y) is not continuously

differentiable. However, since ψ(y) is convex, we can define

ψ′(y±) = lim
z→y±

ψ(z)− ψ(y)

z − y
.
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Corresponding to the description of ϕ(x) in (3.1.6), we can define

ym = ϕ′(x), x ∈ (xm, xm), m = 1, 2, ...,

and we have

ψ′(ym+) = −xm, ψ′(ym−) = −xm, m = 1, 2, ...

(see Figure 3.2.2).

On the other hand, by (3.1.4), we derive

ψ(y) = sup
x>0

(ϕ(x)− xy) ≤ sup
x>0

(
g(0) +M

1

γ
xγ − xy

)
= g(0) +M

1
1−γ

1− γ
γ

y
γ
γ−1 .(3.2.1)

Due to (3.1.5), we obtain

ψ(y) = sup
x>0

(
ϕ(x)− xy

)
≥ ϕ

(1

y

)
− 1→ +∞. (3.2.2)

We will use these results later.

The dual problem of (3.1.15)

Now we define a dual transformation of V (x, t). For any t ∈ (0, T ), define

v(y, t) = sup
x>0

(
V (x, t)− xy

)
, y > 0. (3.2.3)

Firstly, we take a-priori assumption that V (x, t) is twice continuous differentiable in

x and

Vx(0+, t) = +∞, Vx(+∞, t) = 0. (3.2.4)

Then the optimal x to fixed y > 0 satisfies

∂x

(
V (x, t)− xy

)
= Vx(x, t)− y = 0.
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Define a transformation

x = I(y, t) :=
(
Vx(·, t)

)−1

(y). (3.2.5)

Owing to (3.1.14) and (3.2.4), I(y, t) is continuously decreasing in y and range onto

(0,+∞). Thus,

v(y, t) = V (I(y, t), t)− I(y, t)y. (3.2.6)

It follows from (3.2.6) that we have

vy(y, t) = Vx(I(y, t), t)Iy(y, t)− yIy(y, t)− I(y, t) = −I(y, t), (3.2.7)

vyy(y, t) = −Iy(y, t) =
−1

Vxx(I(y, t), t)
, (3.2.8)

vt(y, t) = Vt(I(y, t), t) + Vx(I(y, t), t)It(y, t)− yIt(y, t) = Vt(I(y, t), t).

Thus, for any y > 0, set x = I(y, t), then problem (3.1.15) yields

 −vt −
a2

2
y2vyy + ryvy = f(−vy, t), y > 0, 0 < t < T,

v(y, T−) = ψ(y), y > 0.

(3.2.9)
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The solvability of problem (3.2.9)

Theorem 3.2.3. Problem (3.2.9) has a solution v ∈ C2,1(ΩT )
⋂
C(ΩT

⋃
{t = T})

satisfying (in ΩT )

∫ T

t

f(0, s)ds+ ψ(y) ≤ v(y, t) ≤
∫ T

t

f(0, s)ds+ g(0) (3.2.10)

+M
1

1−γ eA(T−t) 1− γ
γ

y
γ
γ−1 ,

vy(y, t) < 0, (3.2.11)

vyy(y, t) > 0, (3.2.12)

where A =
a2

2

γ

(1− γ)2
+
γr + 1

1− γ
.

Proof. By the theorem of quasi-linear equation, since f(x, t) is Hölder continuous, we

could obtain a solution v ∈ C2,1(ΩT )
⋂
C(ΩT

⋃
{t = T}) to (3.2.9) (See Lieberman

(1996); Oleinik (1973)). Now we give the proof of estimate (3.2.10)-(3.2.12). Denote

w(y, t) =

∫ T

t

f(0, s)ds+ ψ(y),

then

wt(y, t) = −f(0, t), wy(y, t) ≤ 0, wyy(y, t) ≥ 0.

Thus,

−wt −
a2

2
y2wyy + rywy − f(−wy, t) ≤ f(0, t)− f(−wy, t) ≤ 0,

and w(y, T ) = ψ(y). Using the comparison principle (see Friedman (1975)), we know

that w is a sub-solution of (3.2.9).
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On the other hand, denote

W (y, t) =

∫ T

t

f(0, s)ds+ g(0) +M
1

1−γ eA(T−t) 1− γ
γ

y
γ
γ−1 ,

then we derive

−Wt −
a2

2
y2Wyy + ryWy − f(−Wy, t)

≥ f(0, t) +M
1

1−γ eA(T−t)y
γ
γ−1

[1− γ
γ

A− a2

2

1

1− γ
− r
]
− f

(
M

1
1−γ eA(T−t)y

1
γ−1 , t

)

≥ f(0, t) +M
1

1−γ eA(T−t)y
γ
γ−1

[1− γ
γ

A− a2

2

1

1− γ
− r
]
− f(0, t)−M

1
1−γ

1

γ
eAγ(T−t)y

γ
γ−1

≥ M
1

1−γ eA(T−t)y
γ
γ−1

[1− γ
γ

A− a2

2

1

1− γ
− r − 1

γ

]

≥ 0,

where the second inequality is derived due to (3.1.3). By (3.2.1), we can obtain

w(y, T ) = g(0) +M
1

1−γ
1− γ
γ

y
γ
γ−1 ≥ ψ(y).

By comparison principle, W is a super-solution of (3.2.9).

Since ψ(y) is decreasing, using maximum principle, we could prove vy ≤ 0. Dif-

ferentiate the equation in (3.2.9) w.r.t. y, we have

− ∂tvy −
a2

2
y2∂yyvy + (r − a2)y∂yvy + rvy + fx(−vy, t)vyy = 0. (3.2.13)

Using the strong maximum principle, we get vy < 0.

Moreover, differentiate the equation (3.2.13) w.r.t. y, we get

−∂tvyy − ∂y
[a2

2
y2∂yvyy

]
+ (r − a2)y∂yvyy + (2r − a2)vyy + ∂y

[
fx(−vy, t)vyy

]
= 0.
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Using (3.1.4), we obtain

−∂tvyy − ∂y
[a2

2
y2∂yvyy +Q(−vy, t)vyy

]
+ (r − a2)y∂yvyy + (2r − a2)vyy = −∂y

[
P (−vy, t)vyy

]
.

We change it to

−∂tvyy − ∂y
[a2

2
y2∂yvyy +Q(−vy, t)vyy

]
+ [(r − a2) + P (−vy, t)]y∂yvyy + (2r − a2)vyy

= −∂y
[
P (−vy, t)vyy

]
+ P (−vy, t)∂yvyy.

Regard it as a linear PDE on vyy with divergence form. Define a parabolic operator

L as

Lu := −∂tu− ∂y
[a2

2
y2∂yu+Q(−vy, t)u

]
+ [(r − a2) + P (−vy, t)]y∂yu+ (2r − a2)u,

then we have

Lvyy = −∂y
[
P (−vy, t)vyy

]
+ P (−vy, t)∂yvyy.

Since Q(x, t) is increasing in x and −vy(y, t) is decreasing in y, then Q(−vy(y, t), t)

is decreasing in y. Thus,

−∂yQ(−vy, t) ≥ 0

in weak sense and then we can use maximum principle on L. The same argument

yields −∂yP (−vy, t) ≥ 0, then we get

−∂y
[
P (−vy, t)vyy

]
+ P (−vy, t)∂yvyy = −

[
∂yP (−vy, t)

]
vyy ≥ 0

in weak sense. Therefore,

Lvyy ≥ 0
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in weak sense. Since ψ(y) is convex, using the strong maximum principle with

divergence form (see Lieberman (1996)), we have vyy > 0.

Lemma 3.2.4. The limit condition of vy is shown below as,

lim
y→0+

vy(y, t) = −∞, 0 < t < T, (3.2.14)

lim
y→+∞

vy(y, t) = 0, 0 < t < T, (3.2.15)

lim
y→+∞

yvy(y, t) = 0, 0 < t < T. (3.2.16)

Proof. For any t ∈ (0, T ), it is not hard to see that lim
y→0+

v(y, t) ≥ lim
y→0+

ψ(y) = +∞.

By vyy > 0, for some fixed y0 > 0, we derive

vy(y, t) ≤
v(y0, t)− v(y, t)

y0 − y
→ −∞, y → 0 + .

Hence, we prove (3.2.14).

Owing to vyy > 0, for any y > 0, we have

vy(y, t) ≥
v(y, t)− v

(y
2
, t
)

y

2

.

Using (3.2.10), we get

vy(y, t) ≥
ψ(y)− g(0)−M

1
1−γ eA(T−t) 1− γ

γ

(y
2

) γ
γ−1

y

2

≥ −Cy
1

γ−1 → 0, y → +∞,
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where the last inequality above is derived due to (3.2.1). Furthermore,

yvy(y, t) ≥ −Cy
γ
γ−1 → 0, y → +∞.

Combine the result with vy < 0, we obtain (3.2.15) and (3.2.16).

The solution of problem (3.1.15)

Now, we set

V̂ (x, t) = inf
y>0

(
v(y, t) + xy

)
. (3.2.17)

We come to prove that V̂ (x, t) defined in (3.2.17) is the solution of problem (3.1.15).

According to (3.2.12), (3.2.14) and (3.2.15), we derive

y∗ = arg min
y>0

(
v(y, t) + xy

)
= J(x, t) :=

(
vy(·, t)

)−1

(−x), ∀x > 0, 0 < t < T,

and

V̂ (x, t) = v
(
J(x, t), t

)
+ xJ(x, t), (3.2.18)

where J(x, t) ∈ C
(

(0,+∞)× (0, T )
)

is decreasing in x.

Lemma 3.2.5. The limit condition of J is shown as

lim
x→0+

J(x, t) = +∞, 0 < t < T, (3.2.19)

lim
x→0+

xJ(x, t) = 0, 0 < t < T, (3.2.20)

lim
x→+∞

J(x, t) = 0, 0 < t < T. (3.2.21)
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Proof. (3.2.19), (3.2.20) and (3.2.21) can be derived from (3.2.15), (3.2.16) and

(3.2.14), respectively.

Theorem 3.2.6. V̂ ∈ C2,1(ΩT )
⋂
C(ΩT ) is the solution of (3.1.15) which satisfies

V̂x > 0, V̂xx < 0, (x, t) ∈ ΩT , (3.2.22)

and

lim
x→0+

V̂x(x, t) = +∞, lim
x→+∞

V̂x(x, t) = 0, 0 < t < T. (3.2.23)

Proof. By (3.2.18), we get

V̂x(x, t) = vy(J(x, t), t)Jx(x, t) + xJx(x, t) + J(x, t) = J(x, t) > 0,(3.2.24)

V̂xx(x, t) = Jx(x, t) = ∂x

[(
vy(·, t)

)−1

(x)
]

=
−1

vyy

(
J(x, t), t

) < 0, (3.2.25)

V̂t(x, t) = vy

(
J(x, t), t

)
Jt(x, t) + vt

(
J(x, t), t

)
+ xJt(x, t) (3.2.26)

= vt

(
J(x, t), t

)
.

Then we derive V̂ (x, t) ∈ C2,1(ΩT ) and

(
− V̂t +

a2

2

V̂ 2
x

V̂xx
− rxV̂x + βV̂

)
(x, t) =

(
− vt −

a2

2
y2vyy − (β − r)yvy + βv

)(
J(x, t), t

)
= 0.

Next, we verify the boundary and terminal conditions. Due to (3.2.19), (3.2.20)

and (3.2.10), we have

lim
x→0+

V̂ (x, t) = lim
x→0+

[
v
(
J(x, t), t

)
+xJ(x, t)

]
= lim

y→+∞
v(y, t) =

∫ T

t

fT (0, t)+g(0), t ∈ (0, T ).
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Then V̂ meets the boundary condition in (3.1.15).

According to (3.2.10), which implies v(y, t) ≥ ψ(y), we derive

V̂ (x, t) = inf
y>0

(
v(y, t) + xy

)
≥ inf

y>0

(
ψ(y) + xy

)
= ϕ(x).

On the other hand, we obtain

V̂ (x, t) = inf
y>0

(
v(y, t) + xy

)
≤ v
(
ϕ′(x), t

)
+ xϕ′(x).

Let t→ T−, we get

lim sup
t→T−

V̂ (x, t) ≤ lim
t→T−

v
(
ϕ(x), t

)
+ xϕ(x) = ψ

(
ϕ′(x)

)
+ xϕ′(x) = ϕ(x).(3.2.27)

Then V̂ meets the terminal condition in (3.1.15).

(Actually, since ϕ′(x) is continuous and lim
t→T−

vy(y) = ψ(y) is locally uniform to

y, the limit in (3.2.27) will be locally uniform to x.)

The optimal portfolio in risky assets

Corollary 3.2.7. The optimal portfolio in risky assets π∗t is a continuous vector

function of the current asset x and the current time t, which can be expressed as

π̂(x, t) = −(σσ′)−1µ
V̂x(x, t)

V̂xx(x, t)
.

Thus, π∗s = π̂(Xs, s), t ≤ s ≤ T .

Proof. Here, we give the proof of the verification theorem. Before that, we introduce

the dynamic programming principle (see Pham (2009)) to (3.1.1). For any stopping

time θ,

V (x, t) = sup
π

E
[ ∫ T∧θ

t

f(x, s)ds+ V (XT∧θ, T ∧ θ)
]
.
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Set θ = T − ε, then we have

V (x, t) = sup
π

E
[ ∫ T−ε

t

f(x, s)ds+ V (XT−ε, T − ε)
]
.

Let ε→ 0 to the above, by using (3.1.7), we get

V (x, t) = sup
π

E
[ ∫ T

t

f(Xs, s)ds+ ϕ(XT )

]
, t < T. (3.2.28)

That means definition (3.1.1) is equivalent to (3.2.28), where g(x) is replaced by

ϕ(x).

We will prove that V̂ (x, t) constructed by (3.2.17) satisfies (3.2.28). Fix x > 0

and t < T , for any admissible πs, let Xs satisfies (2.1.2), i.e.,
dXs = (rsXs + µ′πs)ds+ π′sσsdWs, s ≥ t,

Xt = x.

Since V̂ (x, t) ∈ C2,1(ΩT )
⋂
C(ΩT ), we can use Itô formula and get

E
[
V̂ (XT−ε, T − ε)− V̂ (x, t)

]

= E
[ ∫ T−ε

t

[
V̂t +

1

2
(π′σσ′π)V̂xx + µ′π̂V̂x − rxV̂x

]
(Xs, s)ds

]

≤ −E
[ ∫ T−ε

t

[
− V̂t −max

π

(1

2
(π′σσ′π)V̂xx + µ′π̂V̂x

)
− rxV̂x

]
(Xs, s)ds

]

= −E
[ ∫ T−ε

t

f(Xs, s)ds

]
.

Let ε→ 0, we have

V̂ (x, t) ≥ E
[ ∫ T

t

f(Xs, s)ds+ ϕ(XT )

]
.
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Therefore,

V̂ (x, t) ≥ sup
π

E
[ ∫ T

t

f(Xs, s)ds+ ϕ(XT )

]
.

On the other hand, define

π̂(x, t) = −(σσ′)−1µ
V̂x(x, t)

V̂xx(x, t)
.

Let X̂s be the solution of the following SDE dXs = (rXs + µ′π̂(Xs, s))ds+ π̂′(Xs, s)σdWs, s ≥ t,

Xt = x.

By Itô’s formula, we derive

E
[
V̂ (x, T − ε)− V̂ (x, t)

]
= E

[ ∫ T−ε

t

[
V̂t +

1

2
(π̂′σσ′π̂)V̂xx + µ′π̂V̂x − rxV̂x

]
(X̂s, s)ds

]

= E
[ ∫ T−ε

t

[
V̂t −

a2

2

V̂x

V̂xx
+ rxV̂x

]
(X̂s, s)ds

]

= −E
[ ∫ T−ε

t

f(X̂s, s)ds

]
.

Let ε→ 0, we have

V̂ (x, t) = E
[ ∫ T

t

f(X̂s, s)ds+ ϕ(X̂T )

]
.

Thus,

V̂ (x, t) ≤ sup
π

E
[ ∫ T

t

f(Xs, s)ds+ ϕ(XT )

]
.
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3.2.2 Behavior of Strategy near Boundary and Terminal Line

In this part, we will study the behavior of π∗ near x = 0 and t = T .

Lemma 3.2.8. The limit condition of v when y → +∞ is shown below as

lim
y→+∞

y2vyy(y, t) = 0, 0 < t < T. (3.2.29)

lim
y→+∞

vt(y, t) = −f(0, t), 0 < t < T. (3.2.30)

Proof. Let z = ln y, u(z, t) = v(y, t)− ϕ(0)−
∫ T

t

fT (0, s)ds. Thus,

vt = ut − f(0, t), yvy = uz, y2vyy = uzz − uz.

Then, by (3.2.9), we get

 −ut −
a2

2
uzz +

(
r +

a2

2

)
uz = f(−e−zuz, t)− f(0, t), −∞ < z < +∞, 0 < t < T,

u(z, T−) = ψ(ez)− ϕ(0), −∞ < z < +∞.
(3.2.31)

According to (3.2.10) and (3.2.16), we know that

lim
z→+∞

u(z, t) = 0, 0 < t < T, (3.2.32)

lim
z→+∞

uz(z, t) = 0, 0 < t < T. (3.2.33)

In order to prove (3.2.29) and (3.2.30), we only need to prove

lim
z→+∞

uzz(z, t) = 0, 0 < t < T, (3.2.34)

lim
z→+∞

ut(z, t) = 0, 0 < t < T. (3.2.35)
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Set Qb,c
δ = {(z, t)|b < z < c, δ < t < T − δ}. For any c > b > 0, we apply W 2,1

p

interior estimate. For p > 3, we obtain

|u|
W 2,1
p

(
Qn−1,n+2
δ/2

) ≤ C
(
|u|

Lp

(
Qn−2,n+3
δ/3

) + |f(−e−zuz, t)− f(0, t)|
Lp

(
Qn−2,n+3
δ/3

)),
where C is independent of n. Using (3.2.32), (3.2.33) and the Höder continuity of

f(x, t), we have

lim
n→+∞

|u|
W 2,1
p

(
Qn−1,n+2
δ/2

) = 0.

By Sobolev embedding theorem, we get lim
n→+∞

|uz|α, Qn−1,n+2
δ/2

= 0, (0 < α < 1 − 3

p
).

Applying Schauder interior estimate, we get

|u|2+α, Qn,n+1
δ

≤ C
(
|u|0, Qn−1,n+2

δ/2
+ |f(−e−zuz, t)− f(0, t)|α, Qn−1,n+2

δ/2

)
.

Thus we have lim
n→+∞

|u|2+α, Qn,n+1
δ

= 0, which implies (3.2.34) and (3.2.35).

Theorem 3.2.9. The limit condition of π̂ near x = 0 is shown below as

lim
x→0+

π̂(x, t) = lim
x→0+

[
− (σσ′)−1µ

V̂x(x, t)

V̂xx(x, t)

]
= 0, 0 < t < T. (3.2.36)

Proof. By (3.2.29), we derive

lim
x→0+

V̂x(x, t)

V̂xx(x, t)
= lim

y→+∞

(
− yvyy(y, t)

)
= lim

y→+∞

1

y
lim

y→+∞

(
− y2vyy(y, t)

)
= 0.

45



Lemma 3.2.10. The limit condition of vy near t = T is shown below as

ψ′(y−) ≤ lim inf
t→T−

vy(y, t) ≤ lim sup
t→T−

vy(y, t) ≤ ψ′(y+), y > 0. (3.2.37)

Proof. For fixed y > 0, if (3.2.37) is not true, then there exists a sequence {tn}n∈Z+

such that lim
n→∞

tn = T , and

θ := lim
n→∞

vy(y, tn) > ψ′(y+) (or < ψ′(y−)).

Note that

v(y, tn) = V̂
(
− vy(y, tn), tn

)
+ vy(y, tn)y.

Let n→∞, we have

lim
n→∞

v(y, tn) = ϕ(−θ) + θy < max
x≥0

(
ϕ(x)− xy

)
= ψ(y),

which contradicts with lim
y→T−

v(y, t) = ψ(y). Thus, we prove the lemma.

Lemma 3.2.11. The limit condition of Vx near t = T is shown below as

lim
t→T−

Vx(x, t) = ϕ′(x) = ym =
ϕ(xm)− ϕ(xm)

xm − xm
, x ∈ (xm, xm), m ∈ Z. (3.2.38)

Proof. For x ∈ (xm, xm), due to Lemma 3.2.10, for any small ε > 0, we derive

lim inf
t→T−

vy(ym + ε, t) ≥ ψ′
(

(ym + ε)−
)
≥ ψ′(ym+)

= −xm > −x > −xm

= ψ′(ym−) ≥ ψ′
(

(ym − ε) +
)
≥ lim sup

t→T−
vy(ym − ε, t).
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When t is sufficiently close to T , we obtain

vy(ym + ε, t) > −x > vy(ym − ε, t).

Due to the fact that vy is increasing to y, we get

ym + ε >
(
vy(·, t)

)−1

(−x) > ym − ε,

namely

ym + ε > Vx(x, t) > ym − ε.

Thus,

ym + ε ≥ lim sup
t→T−

Vx(x, t) ≥ lim inf
t→T−

Vx(x, t) ≥ ym − ε.

Since ε is arbitrary, we prove (3.2.38).

Theorem 3.2.12. When t → T−, we get
1

π̂(x, t)
→ 0 in L1([b, c]) for any fixed

[b, c] ⊂ (xm, xm).

Proof. Owing to Lemma 3.2.11, we can prove that

∫ c

b

1

π̂(x, t)
dx =

−1

(σσ′)−1µ

∫ c

b

V̂xx(x, t)

V̂x(x, t)
dx

=
−1

(σσ′)−1µ

[
ln
(
V̂x(c, t)

)
− ln

(
V̂x(b, t)

)]
→ 0, t→ T − .
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3.3 An Example: Carpenter’s Model with Uncon-

trollable Exit Time

The wealth of the manager when he/she leaves the market is the addition of the

payoff of a call option on the assets and a constant K > 0, which represents the

personal wealth and the fixed compensation. Suppose that the strike price b > 0 is

postulated as a constant, then the wealth is denoted as

Wτ = (Xτ − b)+ +K,

where τ is the exit time.

The manager will choose an investment policy to maximize his/her expected

utility of wealth at any future possible exit time. The utility function U which shows

the behavior of the risk-averse manager, is strictly increasing and strictly concave.

It can be expressed as

U(W ) =
1

γ
W γ

with 0 < γ < 1.

We suppose that there is an exit time and the investor may be forced to leave

the financial market by some uncontrollable reasons. At any present time t, the

exit time denoted by τ is usually supposed as a random variable under exponential

distribution with mean value 1/λ, and it is assumed to be independent of {Ft}. We

can get that

P (τ ≤ s) =

 1− e−λ(s−t), s < T ;

e−λ(T−t), s = T.
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So the value function is

Vd(x, t) = sup
π
Ee−β(T−t)g(Xτ )

= sup
π
E

[ ∫ T

t

λe−(β+λ)(s−t)g(Xs)ds+ e−(β+λ)(T−t)g(XT )

]
,

where β > 0 is the discounted factor, and

g(x) := U
[
(x− b)+ +K

]
=

1

γ

(
(x− b)+ +K

)γ
.

Denote ϕ(x) as its concave hull, see Figure 6.1.

-

6

Utility

ϕ(x)

b
q

x̂
q

x

1
γ
[(x− b)+ +K]γ

@R

�

Fig 3.1 ϕ(x).

1
γ
Kγ

Let V (x, t) = e(β+λ)(T−t)Vd(x, t), then

V (x, t) = sup
π
E

[ ∫ T

t

λe−(β+λ)(s−T )g(Xs)ds+ g(XT )

]
.

Note that

g(x) ≤ 1

γ
(xγ +Kγ),

and

g(x) =
[1

γ

(
(x− b)+ +K

)γ
−Kγ−1(x− b)+

]
−
[
−Kγ−1(x− b)+

]
,

49



where
1

γ

(
(x− b)+ +K

)γ
−Kγ−1(x− b)+ and −Kγ−1(x− b)+ are concave functions

w.r.t. x. Therefore, g(x) and f(x, t) = e−(β+λ)(T−t)g(x) satisfy (3.1.3)-(3.1.4) and

(3.1.13). Thus, V (x, t) ∈ C2,1(ΩT )
⋂
C(ΩT ) and the optimal portfolio vector π∗t

converges to 0 when x→ 0.
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Chapter 4

Optimal Investment Problems

with Constraints over a Finite
Time Horizon

In this chapter, we study the investment problems with constraints in a finite time

horizon. We define the value function and derive the related HJB equation. We

construct the approximation problems about the value function and its derivatives,

discuss the existence and uniqueness of the solution to the approximation problems

and the original problem, and derive the existence and smoothness of the free bound-

ary.

4.1 Formulation of HJB Equations

The market consists of two continuously traded securities. One is a risk-free bank

account and the other is a risky stock.

In this chapter, we assume that the portfolio πs satisfies

πs ≤ kXs + b, s ∈ [t, T ],

where k, b > 0 are deterministic constants. Define an admissible investment set as

Πt :=
{
πs ∈ L2

F
(
[t, T ];R

)
: πs ≤ kXs + b, Xs ≥ 0

}
.
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Under the utility U(x) :=
x1−γ

1− γ
, γ > 0, γ 6= 1, the agent’s objective is to find

an admissible portfolio π(·), among all admissible portfolios such that

V (x, t) = sup
π∈Πt

E
[
e−β(T−t)X

1−γ
T

1− γ

∣∣∣∣Xt = x

]
, (4.1.1)

where β > 0 is the discounted rate. We just need to study the case with β = 0, since

we can take the transformation of V̂ = eβ(T−t)V .

If there is no restriction for πt, the explicit solution of (4.1.1) can be expressed

by

V := eρ(T−t) x
1−γ

1− γ
,

where ρ :=
µ2

2σ2

1− γ
γ

+ r(1− γ). In this case, the optimal investment is πt := κXt,

where κ :=
µ

σ2γ
.

When b = 0, it is obvious to derive the solution of (4.1.1) as

V := eη(T−t) x
1−γ

1− γ
,

where η := −σ
2

2
k2(1 − γ)γ + (µk + r)(1 − γ). In this case, the optimal investment

is πt := kXt, where k := min{κ, k}.

Hence, we can get an upper bound and a lower bound on V , where

V ≤ V ≤ V . (4.1.2)

If k ≥ κ, then V = V . This means V = V . Thus, we only need to discuss the case

with k < κ.

Due to the fact that the utility function U(x) =
x1−γ

1− γ
is increasing and concave,

we know that V is also increasing and concave with respect to x. Thus Vx(·, t) is
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finite almost everywhere for each t. Moreover, according to the concavity property,

we get

V (λx, t)− V (x, t)

(λ− 1)x
≤ Vx(x, t) ≤

V (x, t)− V
(x

2
, t
)

x

2

,

for λ > 1. Using (4.1.2), we choose λ large enough to satisfy a growth condition on

Vx so that

Cx−γ ≤ Vx ≤ Cx−γ, (4.1.3)

for 0 < C < C, where C and C are independent of x.

4.1.1 Related Equations

Applying dynamic programming principle, we derive the following HJB equation

with terminal-boundary condition

−Vt − max
0≤π≤kx+b

(1

2
σ2π2Vxx + µπVx

)
− rxVx = 0, x > 0, 0 < t < T,

Vx(0+, t) = +∞, 0 < t < T,

V (x, T ) =
x1−γ

1− γ
, x > 0.

(4.1.4)

Since V is increasing in x, we have

Vx ≥ 0. (4.1.5)

This leads to the optimal strategy to (4.1.4) satisfying (4.1.5) as follows:

π∗ = argmax
0≤π≤kx+b

(1

2
σ2π2Vxx+µπVx

)
=


− µ

σ2

Vx
Vxx

, if Vxx < 0 and − µ

σ2

Vx
Vxx

< kx+ b,

kx+ b, if Vxx ≥ 0 or − µ

σ2

Vx
Vxx
≥ kx+ b.
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Then the equation in (4.1.4) can be rewritten as
−Vt +

µ2

2σ2

V 2
x

Vxx
− rxVx = 0, if Vxx < 0 and − µ

σ2

Vx
Vxx

< kx+ b,

−Vt −
1

2
σ2(kx+ b)2Vxx − µ(kx+ b)Vx − rxVx = 0, if Vxx ≥ 0 or − µ

σ2

Vx
Vxx
≥ kx+ b,

(4.1.6)

which is a free boundary problem.

For convenience, we define the function

A(z, x) :=


− µ

σ2
z, if 0 < − µ

σ2
z < kx+ b,

kx+ b, if − µ

σ2
z ≥ kx+ b or z > 0.

Then π∗ = A
( Vx
Vxx

, x
)

. The derivatives and boundary conditions can be presented

by

Az(z, x) =


− µ

σ2
, if 0 < − µ

σ2
z < kx+ b,

0, if − µ

σ2
z > kx+ b or z > 0;

Ax(z, x) =


0, if 0 < − µ

σ2
z < kx+ b,

k, if − µ

σ2
z > kx+ b or z > 0;

A(±∞, x) := lim
z→±∞

A(z, x) = kx+ b;

Az(±∞, x) := lim
z→±∞

Az(z, x) = 0;

Ax(±∞, x) := lim
z→±∞

Ax(z, x) = k.

Thus, A ∈ C
(
[−∞,+∞] × (0,+∞)

)
and Az, Ax ∈ L∞

(
[−∞,+∞] × (0,+∞)

)
.

Denote

G(u, v, x) := A
(u
v
, x
)
.
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This function is Lipschitz continuous in [ε,+∞) × (−∞,+∞) × [0, L] for any fixed

ε, L > 0, since

|Gu(u, v, x)| =
∣∣∣Az(u

v
, x
)1

v

∣∣∣ =


− µ

σ2

1

v
= − µ

σ2

u

v

1

u
≤ kL+ b

ε
, if 0 < − µ

σ2

u

v
< kx+ b,

0, if − µ

σ2

u

v
> kx+ b or v > 0;

|Gv(u, v, x)| =
∣∣∣−Az(u

v
, x
) u
v2

∣∣∣ =



µ

σ2

u

v2
=
σ2

µ
(− µ

σ2

u

v
)2 1

u
≤ σ2

µ

(kL+ b)2

ε
,

if 0 < − µ

σ2

u

v
< kx+ b,

0, if − µ

σ2

u

v
> kx+ b or v > 0.

Now, (4.1.4) can be rewritten as a fully nonlinear equation problem

−Vt −
1

2
σ2A2

( Vx
Vxx

, x
)
Vxx − µA

( Vx
Vxx

, x
)
Vx − rxVx = 0, in (0,+∞)× [0, T ],

Vx(0+, t) = +∞, 0 < t < T,

V (x, T ) =
x1−γ

1− γ
, x > 0.

(4.1.7)

Define the following operator

LV :=
1

2
σ2A2

( Vx
Vxx

, x
)
Vxx + µA

( Vx
Vxx

, x
)
Vx + rxVx.

Then we derive the following equations from (4.1.6)

−Vt −
µ2

2σ2

( Vx
Vxx

)2

Vxxx +
µ2

σ2
Vx − rxVxx − rVx = 0,

if Vxx < 0 and − µ

σ2

Vx
Vxx

< kx+ b,

−Vt −
1

2
σ2(kx+ b)2Vxxx − (µ+ σ2k)(kx+ b)Vxx − rxVxx − rVx = 0,

if Vxx ≥ 0 or − µ

σ2

Vx
Vxx
≥ kx+ b,
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which can be merged into

−Vt −
1

2
σ2A2

( Vx
Vxx

, x
)
Vxxx − (µ+ σ2k)A

( Vx
Vxx

, x
)
Vxx − rxVxx − (µk + r)Vx = 0.

Further, we define

TW :=
1

2
σ2A2

(W
Wx

, x
)
Wxx + (µ+ σ2k)A

(W
Wx

, x
)
Wx + rxWx + (µk + r)W.

(4.1.8)

Hence, we have

∂x(LV ) = T Vx,

This means W = Vx. Then we obtain
−Wt − TW = 0, in (0,+∞)× [0, T ],

W (0+, t) = +∞, 0 < t < T,

W (x, T ) = x−γ, x > 0.

(4.1.9)

4.2 Main Results

In this section, we give the main results of this problem.

4.2.1 Approximation method

If we regard equations in (4.1.7) and (4.1.9) as linear equations, coefficients of the

second order term will not have positive lower bounds, i.e. (4.1.7) and (4.1.9) will

not satisfy the parabolic condition. Therefore, we define

LεV := LV +
ε2

2
Vxx

and

TεW := TW +
ε2

2
Wxx.
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Consider the following approximation problem of (4.1.9) in the bounded domain

Qε :=
(
ε,

1

ε

)
× [0, T ] as

−W ε
t − TεW ε = 0, in Qε,

W ε(ε, t) = ε−γ, 0 < t < T,

W ε(1
ε
, t) = εγ, 0 < t < T,

W ε(x, T ) = x−γ, ε < x <
1

ε
.

(4.2.1)

Now, we prove the existence, uniqueness and regularity of the solution to problem

(4.1.7) via the above approximation problem (4.2.1).

First, we introduce the lemma below.

Lemma 4.2.1. There exists a unique solution W ε ∈ C2,1(Qε)
⋂
C(Qε) of problem

(4.2.1). Moreover, it satisfies

e−N(T−t)x−γ ≤ W ε ≤ eM(T−t)2γ(x+ ε)−γ, (4.2.2)

where M :=
µ2(γ + 1)

2σ2γ
+(µk+r)+

1

2
γ(γ+1), N :=

(µ+ σ2k)2

2σ2

γ

γ + 1
+rγ−(µk+r).

Proof. Using the theorem of quasi-linear equation, we obtain the existence of solution

in C2,1(Qε)
⋂
C(Qε) (see Lieberman (1996) or Oleinik (1973)). Denote

φ(x, t) := e−N(T−t)x−γ.

Then we obtain the following results

φ > 0, φx < 0, φxx > 0.
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Furthermore, we have

−φt − Tεφ =− φt − Tεφ

=− φt −
1

2
σ2A2

( φ
φx
, x
)
φxx −

ε2

2
φxx − (µ+ σ2k)A

( φ
φx
, x
)
φx

− rxφx − (µk + r)φ

≤− φt + max
a∈R

(
− 1

2
σ2a2φxx − (µ+ σ2k)aφx

)
− rxφx − (µk + r)φ

≤− φt +
(µ+ σ2k)2φ2

x

2σ2φxx
− rxφx − (µk + r)φ

=e−N(T−t)x−γ
[
−N +

(µ+ σ2k)2

2σ2

γ

γ + 1
+ rγ − (µk + r)

]
=0.

Since φ ≤ W ε in ∂pQε (∂pQε :=
{
x = ε

}⋃{
x =

1

ε

}⋃{
t = T

}
is the parabolic

boundary of Qε), we can obtain the first inequality in (4.2.2) using the comparison

principle to the quasi-linear equation (see Friedman (1964) or Oleinik (1973)).

Similarly, denote

Φ(x, t) := eM(T−t)2γ(x+ ε)−γ,

and the corresponding derivatives are given by

Φ > 0, Φx < 0, Φxx > 0, A
( Φ

Φx

)
≤ µ

σ2

∣∣∣ Φ

Φx

∣∣∣.
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Moreover, we have

−Φt − TεΦ =− Φt − TεΦ

=− Φt −
1

2
σ2A2

( Φ

Φx

, x
)

Φxx −
ε2

2
Φxx − (µ+ σ2k)A

( Φ

Φx

, x
)

Φx

− rxΦx − (µk + r)Φ

≥− Φt −
µ2

2σ2

( Φ

Φx

)2

Φxx −
ε2

2
Φxx − (µk + r)Φ

≥eM(T−t)2γ
[
(x+ ε)−γ

(
M − µ2(γ + 1)

2σ2γ
− (µk + r)

)
− ε2

2
γ(γ + 1)(x+ ε)−γ−2

]

≥eM(T−t)2γ(x+ ε)−γ
(
M − µ2(γ + 1)

2σ2γ
− (µk + r)− 1

2
γ(γ + 1)

)
=0.

Due to the fact that 2γ(x+ ε)−γ ≥ x−γ, ∀x ≥ ε, we get Φ ≥ W ε in ∂pQε. According

to the comparison principle to quasi-linear equation, the second inequality in (4.2.2)

holds.

Next, we derive the following results.

Proposition 4.2.2. For ε > 0 and γ > 0, we have

W ε
x ≤ 0. (4.2.3)

Proof. First of all, we claim that

W ε
x(ε, t) ≤ 0, W ε

x

(1

ε
, t
)
≤ 0.

Note that ε−γ is a constant super-solution to problem (4.2.1). When W ε(ε, t) =

ε−γ, we have W ε
x(ε, t) ≤ 0. Similar discussions will lead to W ε

x

(1

ε
, t
)
≤ 0. Since

W ε
x(x, T ) = −γx−γ−1 < 0, (4.2.3) is true on the parabolic boundary of Qε.
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Taking derivation to the equation in (4.2.1), we obtain the following equation on

W ε
x in the divergence form as follows

− ∂tW ε
x − ∂x

[(σ2

2
A2
(W ε

W ε
x

, x
)

+
ε2

2

)
∂xW

ε
x

]
−
[
(µ+ σ2k)A

(W ε

W ε
x

, x
)

+ rx
]
∂xW

ε
x

− (µ+ σ2k)
[
Az

(W ε

W ε
x

, x
)(

1− W εW ε
xx

(W ε
x)2

)
+ Ax

(W ε

W ε
x

, x
)]
W ε
x − (µk + 2r)W ε

x = 0.

By simple calculation, we get

− ∂tW ε
x − ∂x

[(σ2

2
A2
(W ε

W ε
x

, x
)

+
ε2

2

)
∂xW

ε
x

]

−
[
(µ+ σ2k)A

(W ε

W ε
x

, x
)
− (µ+ σ2k)Az

(W ε

W ε
x

, x
)W ε

W ε
x

+ rx
]
∂xW

ε
x

−
[
(µ+ σ2k)

(
Az

(W ε

W ε
x

, x
)

+ Ax

(W ε

W ε
x

, x
))

+ (µk + 2r)
]
W ε
x = 0. (4.2.4)

Note that A
(W ε

W ε
x

, x
)

, Az

(W ε

W ε
x

, x
)W ε

W ε
x

and Ax

(W ε

W ε
x

, x
)

are bounded. Using the max-

imum principle of divergence form (see Friedman (1964) or Oleinik (1973)), we obtain

the desired result (4.2.3).

Proposition 4.2.3. The inequality is derived as follows,

W ε
t ≤ NW ε. (4.2.5)

Proof. Denote w(x, t) := eN(T−t)W ε(x, t) and w(x, t) = w(x, t − h). Then both w

and w satisfy the same following equation

−wt − Tεw −Nw = 0.

The first inequality in (4.2.2) yields w ≥ xγ, which implies

w(x, T ) = xγ ≤ w(x, T − h) = w(x, T ).
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Since w(ε, t) = eN(T−t)ε−γ and w
(1

ε
, t
)

= eN(T−t)εγ are decreasing in t, we have

w ≥ w in ∂pQε. Therefore, by comparison principle, we get w ≥ w in Qε, i.e.

w := eN(T−t)W ε(x, t) is decreasing in t, which implies the desired result (4.2.5).

According to the above propositions, we can get the following lemmas.

Lemma 4.2.4. For any d > a > 0, there exists δ > 0, which is independent of ε

(but depends on a, b), such that

A
(W ε

W ε
x

, x
)
≥ δ, (x, t) ∈ [a, d]× [0, T ].

By Lemma 4.2.1, we know that W ε has the uniform positive lower bound in

[a, d]× [0, T ]. Hence, we only need to prove the following result.

Lemma 4.2.5. For any a > d > 0, there exists C > 0 which is independent of ε,

such that

W ε
x ≥ −C in [a, d]× [0, T ]. (4.2.6)

Proof. Define

Sε =
{
− µ

σ2

W ε

W ε
x

< kx+ b
}⋂{

W ε
x < 0

}
,

Rε =
{
− µ

σ2

W ε

W ε
x

≥ kx+ b
}⋃{

W ε
x ≥ 0

}
.

It is obvious that (4.2.6) holds inRε

⋂(
[a, d]×[0, T ]

)
. Now, we focus on Sε

⋂(
[a, d]×

[0, T ]
)
. Denote θ :=

µ2

σ2
. By the PDE equation of (4.2.1), we have

−W ε
t −

θ

2

(W ε

W ε
x

)2

W ε
xx −

ε2

2
W ε
xx − rxW ε

x + (θ − r)W ε = 0, (x, t) ∈ Sε.
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Note that ∂x

(W ε

W ε
x

)
= 1 − W ε

(W ε
x)2

W ε
xx and W ε

xx = −(W ε
x)2

W ε

[
∂x

(W ε

W ε
x

)
− 1
]
. Then we

obtain

−W
ε
t

W ε
+

1

2

[
θ + ε2

(W ε
x

W ε

)2]
∂x

(W ε

W ε
x

)
− 1

2

[
θ + ε2

(W ε
x

W ε

)2]
− rxW

ε
x

W ε
+ (θ − r) = 0, (x, t) ∈ Sε.

Using(4.2.3) and (4.2.5), we get

∂x

(W ε

W ε
x

)
≤

2(N − θ + r) +
[
θ + ε2

(W ε
x

W ε

)2]
θ + ε2

(W ε
x

W ε

)2
, (x, t) ∈ Sε. (4.2.7)

Let λ := max

{
1,

2(N + r)− θ
θ

}
. Then

∂x

(W ε

W ε
x

)
≤ λ, (x, t) ∈ Sε.

Thus,

∂x

((W ε)−λ

W ε
x

)
= ∂x

(
(W ε)−(λ+1)W

ε

W ε
x

)

= (W ε)−(λ+1)
[
∂x

(W ε

W ε
x

)
− (λ+ 1)

]
≤ −(W ε)−(λ+1), (x, t) ∈ Sε.

According to estimation (4.2.2), there exist two constants C2 > C1 > 0 independent

of ε such that

C1 ≤ W ε ≤ C2, (x, t) ∈
[a

2
, d
]
× [0, T ].

Hence, we obtain

∂x

((W ε)−λ

W ε
x

)
≤ −C−(λ+1)

2 , (x, t) ∈ Sε
⋂[a

2
, d
]
× [0, T ]. (4.2.8)
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For any (x, t) ∈ Sε
⋂(

[a, d]× [0, T ]
)

, let y = sup
{
z ∈

(a
2
, x
)∣∣∣(z, t) ∈ Rε

}
, then we

obtain
{

(z, t)
∣∣∣y < z < x

}
⊂ Sε. If y =

a

2
, i.e.,

{
(z, t)

∣∣∣a
2
< z < x

}
⊂ Sε, due to

(4.2.8), we get

((W ε)−λ

W ε
x

)
(x, t) ≤

((W ε)−λ

W ε
x

)(a
2
, t
)
−
(
x−a

2

)
C
−(λ+1)
2 ≤

(
x−a

2

)
C
−(λ+1)
2 ≤ −a

2
C
−(λ+1)
2 .

Therefore,

W ε
x(x, t) ≥ −2

a
C

(λ+1)
2 (W ε)−λ(x, t) ≥ −2

a
C

(λ+1)
2 C−λ1 ,

which implies (4.2.6). Otherwise, if y >
a

2
, due to (4.2.8), we obtain

((W ε)−λ

W ε
x

)
(x, t) ≤

((W ε)−λ

W ε
x

)
(y, t) =

(W ε

W ε
x

1

(W ε)λ+1

)
(y, t)

= −σ
2

µ

(
ky + b

) 1

(W ε)λ+1(y, t)
≤ −σ

2

µ
k
a

2

1

Cλ+1
2

,

which also implies (4.2.6).

Now, suppose W ε is the solution of (4.2.1), and define

V ε(x, t) =

∫ x

1

W ε(y, t)dy +

∫ T

t

hε(t)dt+
1

1− γ
, (4.2.9)

where

hε(t) :=
(1

2
σ2A2

(W ε

W ε
x

, x
)
W ε
x + µA

(W ε

W ε
x

, x
)
W ε + rxW ε

)
(1, t).

Then V ε
x = W ε. Hence, we have

∂x(−V ε
t − LεV ε) = −W ε

t − TεW ε = 0.
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Moreover, note that

(−V ε
t − LεV ε)(1, t) = 0,

we derive

(−V ε
t − LεV ε)(x, t) = (−V ε

t − LεV ε)(1, t) +

∫ x

1

∂x(−V ε
t − LεV ε)(y, t)dy = 0.

Therefore, V ε satisfies the following equation.
−V ε

t − LεV ε = 0 in Qε,

V ε(x, T ) =
x1−γ

1− γ
, ε < x <

1

ε
.

(4.2.10)

Lemma 4.2.6. There exists 0 < α < 1 such that, for any [a, d] ⊂ (0,+∞),

|V ε|
C3+α, 3+α2 ([a,d]×[0,T ])

≤ C, (4.2.11)

where C is independent of ε.

Proof. Note that W ε is uniformly bounded in any bounded region [a, d] × [0, T ] ⊂

(0,+∞)×[0, T ]. Since the coefficients of the second derivative of (4.2.1) have uniform

positive upper and lower bounds which are independent of ε in [a, d] × [0, T ], i.e.,

(4.2.1) satisfies the uniform parabolic condition in [a, d]× [0, T ]. Taking Cα,α
2 interior

estimate (see Friedman (1964) or Lieberman (1996)), we obtain

|W ε|
Cα,

α
2 ([a,d]×[0,T ])

≤ C, (4.2.12)

where C is independent of ε. Using Cα,α
2 interior estimate to (4.2.4) yields

|W ε
x |Cα,α2 ([a,d]×[0,T ])

≤ C. (4.2.13)

Therefore, according to the definition in (4.2.9), V ε is uniformly bounded in [a, d]×

[0, T ]. Using Cα,α
2 interior estimate to (4.2.10), we derive

|V ε|
Cα,

α
2 ([a,d]×[0,T ])

≤ C.
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According to (4.2.12), (4.2.13) and the equation in (4.2.10), we have

|V ε
t |Cα,α2 ([a,d]×[0,T ])

≤ C.

Hence, |V ε|
C2+α,1+α2 ([a,d]×[0,T ])

is uniformly bounded. Furthermore, taking Schauder

interior estimate to (4.2.1) (seeFriedman (1964) or Lieberman (1996)), we have

|V ε
x |C2+α,1+α2 ([a,d]×[0,T ])

≤ C,

which implies the desired result (4.2.11).

4.2.2 Existence and uniqueness of solution to the original
problem

Based on analysis in the above sections, we can obtain the following theorem.

Theorem 4.2.7. There exists a unique solution V ∈ C3,2
(
(0,+∞)× [0, T ]

)
of prob-

lem (4.1.4). Moreover, it satisfies

e−N(T−t) x
1−γ

1− γ
− CT ≤ V ≤ eM(T−t)2γ

x1−γ

1− γ
+ CT , (4.2.14)

e−N(T−t)x−γ ≤ Vx ≤ eM(T−t)x−γ, (4.2.15)

Vxx ≤ 0, (4.2.16)

Vxt ≤ NVx, (4.2.17)

where M and N are defined in Lemma 4.2.1, CT > 0 only depends on T .

Proof. By Lemma 4.2.6, problem (4.2.10) has at least one solution V ε ∈ C3+α, 3+α
2

([
ε,

1

ε

]
×

[0, T ]
)

, such that for any region Q = [a, d]× [0, T ] ⊂ (0,+∞)× [0, T ], there exists a
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subsequence, which is denoted by V ε, satisfying V ε → V in C3, 3
2 (Q). Therefore, V

satisfies the equation and the terminal condition of (4.1.7).

Taking derivative for the PDE equation in (4.1.7) with respect to t, we obtain

the following equation

−∂tVt −
1

2
σ2A2

( Vx
Vxx

, x
)
∂xxVt − µA

( Vx
Vxx

, x
)
∂xVt − rx∂xVt = 0.

Since V ∈ C3+α, 3+α
2

(
(0,+∞)× [0, T ]

)
and A

( Vx
Vxx

, x
)

belongs to Cα,α
2 with positive

upper and lower bounds in any bounded region contained in (0,+∞) × [0, T ], we

obtain Vt ∈ C2,1
(
(0,+∞) × [0, T ]

)
using Schauder interior estimate. Therefore, we

get V ∈ C3,2
(
(0,+∞)× [0, T ]

)
.

It follows from (4.2.2) and (4.2.5) that we have (4.2.15) and (4.2.17). Also, we

derive (4.2.14) from (4.2.9) using estimation (4.2.15) together with the boundedness

of |V ε|
C3, 32 (Q)

.

Finally, we prove its uniqueness. Suppose that V1, V2 ∈ C2,1((0,+∞) × [0, T ])

are two solutions to problem (4.1.4) under growth condition:

|Vi| ≤ C(x1−γ + 1), i = 1, 2, (4.2.18)

for some large constant C > 0.

Define the barrier function

ΦL := 4eβ(T−t)C
x2 + 1

L
in [0, L]× [0, T ],

where β > 0 is undetermined. Note that

− ∂tΦL − sup
0≤π≤kx+b

(1

2
σ2π2∂xxΦ

L + µπ∂xΦ
L
)
− rx∂xΦL

=
4eβ(T−t)C

L

(
β(x2 + 1)− σ2(kx+ b)2 − 2µ(kx+ b)x− 2rx

)
.
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We choose β large enough to get

− ∂tΦL − sup
0≤π≤kx+b

(1

2
σ2π2∂xxΦ

L + µπ∂xΦ
L
)
− rx∂xΦL ≥ 0.

Introducing V ε
2 (x, t) := V2(x+ ε, t), we derive

− ∂tV ε
2 − sup

0≤π≤kx+b

(1

2
σ2π2∂xxV

ε
2 + µπ∂xV

ε
2

)
− rx∂xV ε

2

≥− ∂tV ε
2 − sup

0≤π≤k(x+ε)+b

(1

2
σ2π2∂xxV

ε
2 + µπ∂xV

ε
2

)
− r(x+ ε)∂xV

ε
2

=0.

According to the equation

−∂tV1 − sup
0≤π≤kx+b

(1

2
σ2π2∂xxV1 + µπ∂xV1

)
− rx∂xV1 = 0,

we obtain

− ∂t
(
V1 − V ε

2 − ΦL
)
− sup

0≤π≤kx+b

[1

2
σ2π2∂xx

(
V1 − V ε

2 − ΦL
)

+ µπ∂x

(
V1 − V ε

2 − ΦL
)]
− rx∂x

(
V1 − V ε

2 − ΦL
)
≤ 0.

Moreover,

(V1 − V ε
2 − ΦL)(x, T ) =

( x1−γ

1− γ
− (x+ ε)1−γ

1− γ
− ΦL(x, T )

)
≤ 0,

and owing to (4.2.18) and ∂xV1(0+, t) = +∞, we have
(
V1−V ε

2 −ΦL
)

(L, t) ≤ 0 and

∂x

(
V1 − V ε

2 − ΦL
)

(0+, t) = +∞ ≥ 0, respectively.

Applying the maximum principle, we get V1 − V ε
2 − ΦL ≤ 0 in (0, L] × [0, T ].

For the fixed point (x, t) ∈ (0,+∞) × [0, T ], we choose L satisfying x < L to get(
V1 − V ε

2 − ΦL
)

(x, t) ≤ 0. Taking L→ +∞ and ε→ 0, we have V1 ≤ V2.
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4.2.3 The existence and smoothness of free boundary under
a special case

Define

S := {π∗ < kx+ b}, R := {π∗ ≥ kx+ b},

where π∗ := min

{
− µ

σ2

Vx
Vxx

, kx+ b

}
. We discuss the existence of these two regions.

Lemma 4.2.8. For any t ∈ [0, T ],

lim
x→0

π∗(x, t) = 0. (4.2.19)

Proof. We first claim that

lim inf
x→0

π∗(x, t) = 0. (4.2.20)

If not, there exists t0 ∈ [0, T ] and δ > 0, such that

− µ

σ2

Vx
Vxx

(x, t0) ≥ π∗(x, t0) ≥ δ, x ∈ (0, δ).

Note that

ln
(
Vx(δ, t0)

)
− ln

(
Vx(x, t0)

)
=

∫ δ

x

Vxx
Vx

(y, t0)dy ≥ − µ

σ2δ
(δ − x), x ∈ (0, δ).

Using the first inequality in (4.2.15), we derive

ln
(
Vx(δ, t0)

)
+N(T − t) + γ lnx ≥ − µ

σ2δ
(δ − x), x ∈ (0, δ).

Taking x→ 0+, we get a contradiction that −∞ ≥ − µ

σ2
. Therefore, (4.2.20) holds.

Taking ε→ 0 to (4.2.7), we obtain

∂x

( Vx
Vxx

)
= ∂x

(W
Wx

)
≤ 2(N + r)− θ

θ
< +∞ in S.
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Thus, we have

lim
x→0

π∗(x, t) = lim inf
x→0

π∗(x, t) = 0.

Lemma 4.2.9. If k ≥ κ =
µ

σ2γ
, we have

π∗(x, t) < kx+ b, ∀x > 0, 0 ≤ t ≤ T.

Otherwise, if k < κ =
µ

σ2γ
, for any t ∈ [0, T ], we have

{
x > 0|π∗(x, t) = kx+ b

}
6= ∅. (4.2.21)

Proof. If k ≥ κ =
µ

σ2γ
, according to the discussion above, π∗(x, t) = κx < kx+ b.

Now, consider the case of k < κ =
µ

σ2γ
, we come to prove (4.2.21). If not, there

exists t0 ∈ [0, T ], such that π∗(x, t0) < kx+ b for all x > 0, i.e.,

− µ

σ2

Vx
Vxx

(x, t0) < kx+ b, x > 0.

Note that

ln
(
Vx(x, t0)

)
− ln

(
Vx(1, t0)

)
=

∫ x

1

Vxx
Vx

(y, t0)dy

< − µ

σ2

∫ x

1

1

ky + b
dy = − µ

σ2k

(
ln(kx+ b)− ln(k + b)

)
.

Using the first inequality in (4.2.15), we have

−N(T − t)− γ lnx− ln
(
Vx(1, t0)

)
< − µ

σ2k

(
ln(kx+ b)− ln(k + b)

)
,

which contradicts with γ <
µ

σ2k
when we take x→ +∞.
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Now, define the free boundary line

g(t) := inf{x > 0|π∗(x, t) = kx+ b}.

Due to (4.2.19) and (4.2.21), we obtain 0 < g(t) < +∞ when k < κ =
µ

σ2γ
.

Theorem 4.2.10. If

q := − γ

γ + 1

1

σ2
(µ+ σ2k)2 +

µ

σ2
(µ+ σ2k)− 2rγ > 0

(which implies k < κ), the free boundary line g(t) is unique, i.e.,

S =
{
x < g(t)

}
, R =

{
x ≥ g(t)

}
. (4.2.22)

Moreover, we have

0 < g(t) ≤ µb

q
,

g(t) ∈ C1([0, T ]) and g(T ) =
b

µ

σ2γ
− k

> 0.

Proof. Taking ε→ 0 for (4.2.7), we have

∂x

( Vx
Vxx

)
= ∂x

(W
Wx

)
≤ 2N + 2r − θ

θ

=

(µ+ σ2k)2

σ2

γ

γ + 1
+ 2rγ − 2(µk + r) + 2r − µ2

σ2

µ2

σ2

in S.

Then

∂x

(
− µ

σ2

Vx
Vxx
− (kx+ b)

)
≥ − µ

σ2

(µ+ σ2k)2

σ2

γ

γ + 1
+ 2rγ − 2(µk + r) + 2r − µ2

σ2

µ2

σ2

− k

=
q

µ
> 0 in S,
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which implies
{
x ≥ g(t)

}
⊂ R, and will imply (4.2.22).

What is more, define h(x, t) := − µ

σ2

Vx
Vxx
−(kx+b). Since h(g(t), t) = 0, h(0+, t) =

−b and ∂xh(x, t) ≥ 1

µ
q > 0 when x < g(t), we have

b = h(g(t), t)− h(0+, t) ≥ q

µ
g(t),

which implies g(t) ≤ µb

q
.

Define

J := −Vt −
µ

2
(kx+ b)Vx − rxVx,

we first claim that

π∗ < kx+ b⇔ J < 0. (4.2.23)

Indeed, π∗(x, t) < kx+ b implies − µ

σ2

Vx
Vxx

< kx+ b. According to the first equation

in (4.1.6), we have

J = − µ2

2σ2

V 2
x

Vxx
− µ

2
(kx+ b)Vx < 0.

On the other hand, π∗(x, t) = kx+ b implies − µ

σ2

Vx
Vxx
≥ kx + b. It follows from the

second equation in (4.1.6) that we have

J =
1

2
σ2(kx+ b)2Vxx +

µ

2
(kx+ b)Vx ≥ 0.

Therefore, (4.2.23) holds.

Now, we prove the continuity of g(t). By contradiction, if g(t) is discontinuous

at the point t0 ∈ [0, T ], i.e.,

x1 := lim inf
t→t0

g(t) < x2 := lim sup
t→t0

g(t), (4.2.24)
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by the continuity of J , we have J(x, t0) = 0, ∀x ∈ [x1, x2]. Hence, Jx = 0, ∀x ∈

[x1, x2]. On the other hand, when − µ

σ2

Vx
Vxx

(x, t0) = kx+ b, we have

Jx = −Vxt −
µ

2
(kx+ b)Vxx −

µ

2
kVx − rxVxx − rVx

= −Vxt +
µ2

2σ2
Vx −

µ

2
kVx − rxVxx − rVx

≥ −NVx +
µ2

2σ2
Vx −

µ

2
kVx − rVx

=
(
−N +

µ2

2σ2
− µ

2
k − r

)
Vx =

1

2
qVx > 0, (4.2.25)

where the first inequality follows (4.2.17) and (4.2.16). Thus, (4.2.24) is impossible.

To conclude, g(t) ∈ C
(
[0, T ]

)
.

Now, we prove g(t) ∈ C1
(
[0, T ]

)
. Note that

J
(
g(t), t

)
= 0, t ∈ [0, T ].

Since V ∈ C3,2
(
(0,+∞)× [0, T ]

)
, we have J ∈ C1,1

(
(0,+∞)× [0, T ]

)
. Therefore,

Jx
(
g(t), t

)
g′(t) + Jt

(
g(t), t

)
= 0, t ∈ [0, T ].

Note that (4.2.25) implies Jx
(
g(t), t

)
≥ 1

2
qVx > 0. Then we can derive

g′(t) =
Jt
(
g(t), t

)
Jx
(
g(t), t

) ∈ C([0, T ]
)
.

This means g(t) ∈ C1
(
[0, T ]

)
.

Finally, we ascertain g(T ). According to the terminal condition V (x, T ) =
x1−γ

1− γ
,
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we obtain − µ

σ2

Vx
Vxx

(x, T ) =
µ

σ2

1

γ
x. Thus, g(T ) is the root of the equation

µ

σ2

1

γ
x = kx+ b.

Then we have g(T ) =
b

µ

σ2γ
− k

.
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Chapter 5

Optimal Stopping Time with

Risky Assets

In this chapter, we discuss the problems with optimal stopping time. The investor is

expected to maximize her personal utilities and to minimize the difference between

the realized return at the stopping point and her potentially maximum return. The

utility function of a quadratic form is considered. Two models are introduced in this

chapter. The details are shown below.

5.1 Running Maximum

Consider the case where there are more than one risky assets in the market. There is

a capital market in which m+ 1 basic securities (or assets) are traded continuously.

One of the securities is a risk-free asset, whose price follows dS0,t = rS0,tdt, t ≥ 0,

S0,0 = s0 > 0,
(5.1.1)

where r > 0 is the interest rate. The other m securities are risky assets, whose prices

follow  dSi,t = Si,t

{
bidt+

m∑
j=1

σijdW
j
t

}
, t ≥ 0,

Si,0 = si > 0, i = 1, 2, · · · ,m,
(5.1.2)
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where b := (b1, b2, · · · , bm)′ is the appreciation rate, W j is the j-th dimensional

Brownian motion with W j(0) = 0, σ := (σij)m×m is the volatility, and the diffusion

matrix σ′σ is nondegenerate.

Suppose that an agent enters the market with an initial wealth x0 > 0. The total

wealth at time s ∈ [0, T̂ ] is denoted by x(s) and he can stop the investment at any

point before the pre-specified date T̂ > 0. The trading of assets is self-financed and

takes place continuously. The transaction cost and consumptions are ignored in this

paper. Let π(s) := (π1(s), π2(s), · · · , πm(s))′ be a portfolio of the agent at time s,

where πi(s), i = 1, 2 · · · ,m, is the value in the i-th asset. Then the amount of

wealth invested in the risk-free asset is x(s) − 1′π(s). Here 1 is the m-dimensional

column vector whose entries are all 1. Therefore x(·) satisfies

 dx(s) =

{
rx(s) +

m∑
i=1

(bi − r)πi(s)
}
ds+

m∑
j=1

m∑
i=1

σijπi(s)dW
j(s), 0 ≤ s ≤ T̂ ,

x(0) = x0,

(5.1.3)

Define the running maximum wealth process

M(s) = max
0≤u≤s

x(u), s ≥ 0.

5.2 Model 1

In this section, we study a right time for an investor to stop the investment among

multi-assets over a given investment horizon so as to obtain maximum profit. We

formulate it into a two-stage problem. The main problem is not a standard optimal

stopping problem due to the non-adapted term in the objective function and we turn

it to a standard one by stochastic analysis. The subproblem with control variable
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in the drift and volatility terms is solved first via stochastic control method. A

numerical example is presented to illustrate the efficiency of the theoretical results.

5.2.1 Model Formulation

The investor’s objective is to choose an optimal portfolio and to determine the right

time to stop investment. We can formulate it to the following optimal stopping

problem among multi assets:

min
0≤τ̂≤T̂

E
[
x(τ̂)−M(T̂ )

]2
(5.2.1)

subject to

 max
π(·)

E
[

(x(T̂ ))γ

γ

]
,

subject to
(
x(·), π(·)

)
satisfy (5.1.3),

(5.2.2)

where 0 < γ < 1.

Note that the above two-stage problem setting is very insightful. In this prob-

lem setting, the investor expects to maximize his personal utility and to minimize

the difference between the realized return at the stopping point and his potentially

maximum return. The criterion here we choose is minimizing a quadratic form

E
[
x(τ̂)−M(T̂ )

]2
over [0,

ˆ̂
T ] where the maximum wealth M(T ) can be zero. One can

also use linear form or log form in Dai and Zhong (2012), Du Toit et al. (2009) and

Shiryaev et al. (2008). Different performance measures will typically yield different

results, and it is up to the investor to decide which performance measure is most

appropriate to him. The problem is also not a standard optimal stopping problem

due to the non-Ft-adapted term M(T̂ ). We will turn it to a standard one by time-

change technique. Since the wealth process involves the control variable in the drift

and volatility terms, we need to derive the optimal portfolio first.
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5.2.2 An equivalent optimal stopping problem

Before solving the optimal stopping problem, we deal with the subproblem (5) via

stochastic control method. Since the payoff is homogeneous, we conjecture the fol-

lowing value function

V 1(s, x) = c(s)
xγ

γ

which satisfies the Hamilton-Jacobi-Bellman (HJB) function in Karatzas et al. (1998),

V 1
s (s, x) + max

π(·)

{
[rx+ π′(b− r1)]V 1

x (s, x) +
1

2
π′σσ′πV 1

xx

}
= 0.

It follows that the optimal portfolio is

π̂(s) = − V
1
x (s, x)

V 1
xx(s, x)

(σσ′)−1(b− r1)x(s).

By simple calculation we can derive

π̂(s) =
1

1− γ
(σσ′)−1(b− r1)x(s). (5.2.3)

Substituting (5.3.3) into (5.3.2) yields the wealth process x(·) without the control

variable in the drift and volatility terms


dx(s) = x(s)

{(
r +

1

1− γ
θ′θ
)
ds+

1

1− γ
θ′dW (s)

}
,

x(0) = x0,

(5.2.4)

where θ = σ−1(b− r1).

By virtue of a time-change technique, there exists a one-dimensional standard

Brownian motion B(s), s ≥ 0, on (Ω,F , P ) such that

1

1− γ
θ′W (s) = B(β(s)), 0 ≤ s ≤ T̂ ,

78



where β(s) :=
1

(1− γ)2
θ′θ.

Set t :=
1

(1− γ)2
θ′θ, equation (5.3.4) is equivalent to

 dx(t) = x(t)
{
µdt+ dB(t)

}
,

x(0) = x0,
(5.2.5)

where µ =
r

θ′θ
(1− γ)2 + 1− γ. Thus, problem (5.3.1) is equivalent to

min
0≤τ≤T

E
[
x(τ)−M(T )

]2
(5.2.6)

where T =
1

(1− γ)2
θ′θT̂ . This is still not a standard optimal stopping problem

because the term M(T ) is not Ft adapted. We use the same approach as in Shiryaev

et al. (2008) to get around it. The value function in Yong and Zhou (1999) associated

with problem (5.3.6) is

V (t, x,M) = min
t≤τ≤T

E
[
(x(τ)−M(T ))2|Ft

]
= min

t≤τ≤T
E
[
x(τ)2 − 2x(τ)M(T ) +M(T )2|Ft

]
= min

t≤τ≤T
E
[
x(τ)2 − 2x(τ)E[M(T )|Fτ ] + E[M(T )2|Fτ ]

∣∣Ft].
(5.2.7)

Defining ν := µ− 1

2
, we rewrite (see Steele (2012))

x(t) := x(0) exp(νt+B(t)), M(t) := x(0) exp
(

max
0≤u≤t

(νu+B(u))
)
.

Denote ψ(t, x(t),M(t)) = E[M(T )|Ft] and φ(t, x(t),M(t)) = E[M(T )2|Ft]. Then
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we have

ψ(t, x(t),M(t)) = E(M(T )|Ft)

= E
[
x(0) exp

(
max

0≤u≤T
(νu+B(u))

)∣∣∣Ft]
= E

[
x(0) exp

(
max

{
max
0≤u≤t

(νu+B(u)), max
t≤u≤T

(νu+B(u))
})∣∣∣Ft]

= E
[
x(0) exp

(
max

{
max
0≤u≤t

(νu+B(u)), (νt+B(t)) + max
0≤u≤T−t

(νu+B(u))
})∣∣∣Ft]

= E
[
x(t) exp

(
max

{
max
0≤u≤t

(νu+B(u))− (νt+B(t)), max
0≤u≤T−t

(νu+B(u))
})∣∣∣Ft]

= E
[
x(t) exp

(
max

{
y, max

0≤u≤T−t
(νu+B(u))

})∣∣∣y = max
0≤u≤t

(νu+B(u))− (νt+B(t))
]

= x(t)G1

(
t, ln

(M(t)

x(t)

))
,

(5.2.8)

where

G1(t, y) = E
[

exp
(

max
{
y, max

0≤u≤T−t
(νu+B(u))

})]
, (t, y) ∈ [0, T ]× [0,∞)

and

φ(t, x(t),M(t)) = E(M(T )2|Ft)

= E
[
x(0)2 exp

((
max

0≤u≤T
(νu+B(u))

)2
)∣∣∣Ft]

= E
[
x(0)2 exp

((
max

{
max
0≤u≤t

(νu+B(u)), max
t≤u≤T

(νu+B(u))
})2)∣∣∣Ft]

= E
[
x(0)2 exp

((
max

{
max
0≤u≤t

(νu+B(u)), (νt+B(t)) + max
0≤u≤T−t

(νu+B(u))
})2)∣∣∣Ft]

= E
[
x(t)2 exp

((
max

{
max
0≤u≤t

(νu+B(u))− (νt+B(t)), max
0≤u≤T−t

(νu+B(u))
})2)∣∣∣Ft]

= E
[
x(t)2 exp

((
max

{
y, max

0≤u≤T−t
(νu+B(u))

})2)∣∣∣y = max
0≤u≤t

(νu+B(u))− (νt+B(t))
]

= x(t)2G2

(
t, ln

(M(t)

x(t)

))
,

(5.2.9)
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where

G2(t, y) = E
[

exp
((

max
{
y, max

0≤u≤T−t
(νu+B(u))

})2)]
, (t, y) ∈ [0, T ]× [0,∞).

It follows (5.3.7) that

V (t, x,M) = min
t≤τ≤T

E
[
x(τ)2− 2x(τ)ψ(τ, x(τ),M(τ)) +φ(τ, x(τ),M(τ))|Ft

]
(5.2.10)

satisfies the free boundary partial differential equation form (see Karatzas et al.

(1998)) 
max{L V, V − x2 + 2xψ − φ} = 0,

VM(t,M,M) = 0,

V (T, x,M) = (x−M)2,

(5.2.11)

where the operator L is defined by

L f(t, x,M) = ft(t, x,M) + µxfx(t, x,M) +
1

2
x2fxx(t, x,M).

Since the value function V (t, x,M) (5.3.10) is homogenous, let

U(t, ln z) = V (t, 1, z), 0 ≤ t ≤ T, z ≥ 1, (5.2.12)

we have

V (t, x,M) = x2V
(
t, 1,

M

x

)
= x2U

(
t, ln

(M
x

))
, 0 ≤ t ≤ T, 0 < x ≤M.

According to Equation (5.3.10) and expressions of G1 and G2, we have

V (t, x,M) = min
t≤τ≤T

E
[
x(τ)2 − 2x(τ)ψ(τ, x(τ),M(τ)) + φ(τ, x(τ),M(τ))

∣∣Ft]
= min

t≤τ≤T
E
[
x(τ)2 − 2x(τ)2G1

(
τ, ln

(M(τ)

x(τ)

))
+ x(τ)2G2

(
τ, ln

(M(τ)

x(τ)

))∣∣∣Ft]
= min

t≤τ≤T
E
[
x(τ)2

(
1− 2G1

(
τ, ln

(M(τ)

x(τ)

))
+G2

(
τ, ln

(M(τ)

x(τ)

)))∣∣∣Ft]
= min

t≤τ≤T
E
[
x(τ)2G

(
τ, ln

(M(τ)

x(τ)

))∣∣∣Ft],
(5.2.13)
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where G(t, y) = 1 − 2G1(t, y) + G2(t, y). Please refer to 5.4 for the explicit form of

G1(t, y) and G2(t, y). The proofs are similar to those in Shiryaev et al. (2008).

Equation (5.3.12) implies that equation (5.3.6) is equivalent to a standard optimal

stopping problem with a terminal payoff G and an underlying (adapted) state process

Y (t) = ln
(M(t)

x(t)

)
, Y (0) = 0.

Following the standard techniques from the theory of optimal stopping for Markov

Processes (see e.g. Peskir and Shiryaev (2006)) we consider the problem below

U(t, y) = inf
τ∈TT−t

Et,y[G(t+ τ, Y (t+ τ))],

where Y (t) = y under the probability Pt,y with (t, y) ∈ [0, T ]× [0,∞) given and fixed,

and Ts in general denotes the set of all Fτ -stopping times, τ ∈ [0, s] for s > 0.

In fact, U satisfies the following dynamic programming equation (or variational

inequalities)


max {L̂U,U −G} = 0, (t, y) ∈ [0, T ]× [0,∞),

subject to Uy(t, 0+) = 0, t ∈ [0, T ),

U(T, y) = G(T, y), y ∈ (0,∞),

(5.2.14)

where the operator L̂ is defined by

L̂ f(t, y) = ft(t, y)− (ν + 2)fy(t, y) +
1

2
fyy(t, y) + 2(ν + 1)f(t, y).

Hence, the original problem is transferred into finding U . Since x(·) has stationary

independent increments and Y (·) is a Markovian process, we rewrite

U(t, y) = inf
0≤τ≤T−t

E[G(t+ τ, Y y(τ))], (5.2.15)
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where Y (·) under P is explicitly given as

Y y(t) = y ∨ ln
(M(t)

x(t)

)
, t ≥ 0.

Applying the theory of optimal stopping, we derive the following region in which

the investor may sell the shares he holds, given the pre-determined relationship

between his target return and the expected maximum return.

Theorem 5.2.1. For the optimal stopping problem (5.2.15), the holding region is

C = {(t, y) ∈ [0, T ]× [0,∞) : U(t, y) < G(t, y)},

while the selling region is

D = {(t, y) ∈ [0, T ]× [0,∞) : U(t, y) = G(t, y)}.

Also, an optimal selling time is

τ ∗ = inf

{
t ∈ [0, T ] :

(
t, ln

(M(t)

x(t)

))
∈ D

}
.

5.2.3 Numerical Results

In this section, we give one numerical example to in which we change the value of

the parameter γ. The main steps are as follows:

step 1 Give all the parameters γ, b and σ in the model (4);

step 2 Compute the optimal portfolio of sub-problem (5) by (6);

step 3 Construct the equation (17) and discretize it;

step 4 Draw the regions based on Theorem 3.1.
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We solve the mathematical formulation given in equation (5.3.13) via the finite

difference approach by imposing a uniform grid on the (t, y) domain. A Crank-

Nicolson scheme is adopted for the discretization of the partial differential equation

and the semi-infinite interval for y is truncated at a sufficiently large value of y. The

derivative boundary condition is discretized using a forward difference approxima-

tion. For the results shown below, we take the grid spacing to be 0.005 for y and

0.001 for t dimensions.

Let m = 3. The interest rate of the bond and the appreciation rate of the m

stocks are r = 0.05 and (b1, b2, b3)′ = (0.1, 0.12, 0.15)′, respectively, and the volatility

matrix is

σ =

 0.3000 0 0
0.2000 0.3464 0
0.2500 0.1443 0.4082

 .
Then

θ := σ−1(b1 − r, b2 − r, b3 − r)′ = (0.1667, 0.1058, 0.1055)′.

Using Theorem 5.3.1 and the parameter value of γ ranging between 0.7 and 0.9,

we observe that the selling region decreases as the value of γ increases, as shown by

the following 6 figures.
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Figure 3: γ = 0.8 Figure 4: γ = 0.85
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5.3 Model 2

In this section, we study the right time for an investor to stop the investment over

a given investment horizon so as to obtain as close to the highest possible wealth

as possible, according to a Logarithmic utility-maximization objective involving the

portfolio in the drift and volatility terms. The problem is formulated as an optimal

stopping problem, although it is non-standard in the sense that the maximum wealth

involved is not adapted to the information generated over time. By delicate stochastic

analysis, the problem is converted to a standard optimal stopping one involving

adapted processes. Numerical examples shed light on the efficiency of the theoretical

results.

5.3.1 Model Formulation

Assume that an investor can stop investment at any point before a pre-specified date

T̂ > 0. The question is to choose an optimal portfolio and to determine the right time
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to stop investment. The main objective of this study is to determine conditions for

which the investor should sell her shares. Ideally, the investor would like to exit when

the value is highest, which is at time s, such that x(s) = αM(T̂ ). More generally,

the investor may have an investment target that is a fraction of (or possibly equal to)

the maximum value, αM(T̂ ), where 0 < α ≤ 1. With this objective, we assume that

the investor chooses an exit time to minimize the mean squared difference between

exit value and investment target value. We formulate it to the following optimal

stopping problem:

min
0≤τ̂≤T̂

E
[
x(τ̂)− αM(T̂ )

]2
, (5.3.1)

subject to

 max
π(·)

E
[

ln(x(T̂ ))
]
,

subject to (x(·), π(·)) satisfy (5.1.3).

(5.3.2)

Note that the above two-stage problem setting is very insightful. It is more re-

alistic than those addressed in Shiryaev, Xu and Zhou (2008) since m-dimensional

financial assets are considered and the drift and volatility terms involving the port-

folio.

5.3.2 An equivalent optimal stopping problem

Before further developing techniques derived in Shiryaev, Xu and Zhou (2008), we

know the optimal portfolio of sub-problem (5.3.2) via stochastic control method

π̂(s) ≡ (π̂1(s), π̂2(s), · · · , π̂m(s))′ = (σσ′)−1(b− r1)x(s), (5.3.3)

where 1 = (1, 1, · · · , 1)′ is an m-dimensional column vector.

Substituting (5.3.3) into (5.3.2) yields the wealth process x(·) without the control
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variable in the drift and volatility terms dx(s) = x(s)
{

(r + |θ|2)ds+ θ′dW (s)
}
,

x(0) = x0,
(5.3.4)

where θ = σ−1(b− r1).

This is similar to the case in Shiryaev, Xu and Zhou (2008), but it is more

mathematically complex. By virtue of a time-change technique, there exists a one-

dimensional standard Brownian motion B(s), s ≥ 0, on (Ω,F , P ) such that

θ′W (s) = B(β(s)), 0 ≤ s ≤ T̂ ,

where β(s) := |θ|2s.

Set t := |θ|2s, equation (5.3.4) is equivalent to dx(t) = x(t)
{
µdt+ dB(t)

}
,

x(0) = x0,
(5.3.5)

where µ =
r

|θ|2
+ 1. Thus, the problem (5.3.1) is equivalent to

min
0≤τ≤T

E
[
x(τ)− αM(T )

]2
(5.3.6)

over τ ∈ T , the set of all Ft-stopping time τ ∈ [0, T ], where T = |θ|2T̂ . Consequently,

the value function associated with problem (5.3.6) is

V (t, x,M) = min
t≤τ≤T

E
[
(x(τ)− αM(T ))2|Ft

]
= min

t≤τ≤T
E
[
x(τ)2 − 2αx(τ)M(T ) + α2M(T )2|Ft

]
= min

t≤τ≤T
E
[
x(τ)2 − 2αx(τ)E[M(T )|Fτ ] + α2E[M(T )2|Fτ ]

∣∣Ft].
(5.3.7)

Defining ν := µ− 1

2
, we rewrite

x(t) := x(0) exp(νt+B(t)), M(t) := x(0) exp
(

max
0≤u≤t

(νu+B(u))
)
.
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Denote ψ(t, x(t),M(t)) = E[M(T )|Ft] and φ(t, x(t),M(t)) = E[M(T )2|Ft]. Then

ψ(t, x(t),M(t)) = E[M(T )|Ft]

= E
[
x(0) exp

(
max

0≤u≤T
(νu+B(u))

)∣∣∣Ft]
= E

[
x(0) exp

(
max

{
max
0≤u≤t

(νu+B(u)), max
t≤u≤T

(νu+B(u))
})∣∣∣Ft]

= E
[
x(0) exp

(
max

{
max
0≤u≤t

(νu+B(u)), (νt+B(t)) + max
0≤u≤T−t

(νu+B(u))
})∣∣∣Ft]

= E
[
x(t) exp

(
max

{
max
0≤u≤t

(νu+B(u))− (νt+B(t)), max
0≤u≤T−t

(νu+B(u))
})∣∣∣Ft]

= E
[
x(t) exp

(
max

{
y, max

0≤u≤T−t
(νu+B(u))

})∣∣∣y = max
0≤u≤t

(νu+B(u))− (νt+B(t))
]

= x(t)G1

(
t, ln

(M(t)

x(t)

))
,

(5.3.8)

where

G1(t, y) = E
[

exp
(

max
{
y, max

0≤u≤T−t
(νu+B(u))

})]
, (t, y) ∈ [0, T ]× [0,∞)

and

φ(t, x(t),M(t)) = E[M(T )2|Ft]

= E
[
x(0)2 exp

((
max

0≤u≤T
(νu+B(u))

)2
)∣∣∣Ft]

= E
[
x(0)2 exp

((
max

{
max
0≤u≤t

(νu+B(u)), max
t≤u≤T

(νu+B(u))
})2)∣∣∣Ft]

= E
[
x(0)2 exp

((
max

{
max
0≤u≤t

(νu+B(u)), (νt+B(t)) + max
0≤u≤T−t

(νu+B(u))
})2)∣∣∣Ft]

= E
[
x(t)2 exp

((
max

{
max
0≤u≤t

(νu+B(u))− (νt+B(t)), max
0≤u≤T−t

(νu+B(u))
})2)∣∣∣Ft]

= E
[
x(t)2 exp

((
max

{
y, max

0≤u≤T−t
(νu+B(u))

})2)∣∣∣y = max
0≤u≤t

(νu+B(u))− (νt+B(t))
]

= x(t)2G2

(
t, ln

(M(t)

x(t)

))
,

(5.3.9)
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where

G2(t, y) = E
[

exp
((

max
{
y, max

0≤u≤T−t
(νu+B(u))

})2)]
, (t, y) ∈ [0, T ]× [0,∞).

It follows (5.3.7) that

V (t, x,M) = min
t≤τ≤T

E
[
x(τ)2 − 2αx(τ)ψ(τ, x(τ),M(τ)) + α2φ(τ, x(τ),M(τ))|Ft

]
,

(5.3.10)

which is governed by


max{L V, V − x2 + 2αxψ − α2φ} = 0,

VM(t,M,M) = 0,

V (T, x,M) = (x− αM)2,

(5.3.11)

where the operator L is defined by

L f(t, x,M) = ft(t, x,M) + µxfx(t, x,M) +
1

2
x2fxx(t, x,M).

The value function V (t, x,M) satisfies

V (t, λx, λM) = λ2V (t, x,M),

because scaling both x(t) and M(t) by the same positive constant at a time t prior

to the terminal time T results in the payoff (x(T ) − αM(T ))2 being scaled by the

same constant. In particular, if

U(t, ln z) = V (t, 1, z), 0 ≤ t ≤ T, z ≥ 1,

then we may determine V (t, x,M) as

V (t, x,M) = x2V
(
t, 1,

M

x

)
= x2U

(
t, ln

(M
x

))
, 0 ≤ t ≤ T, 0 < x ≤M.
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According to equation (5.3.10) and expressions of G1 and G2, we have

V (t, x,M) = min
t≤τ≤T

E
[
x(τ)2 − 2αx(τ)ψ(τ, x(τ),M(τ)) + α2φ(τ, x(τ),M(τ))

∣∣Ft]
= min

t≤τ≤T
E
[
x(τ)2 − 2αx(τ)2G1

(
τ, ln

(M(τ)

x(τ)

))
+ α2x(τ)2G2

(
τ, ln

(M(τ)

x(τ)

))∣∣∣Ft]
= min

t≤τ≤T
E
[
x(τ)2

(
1− 2αG1

(
τ, ln

(M(τ)

x(τ)

))
+ α2G2

(
τ, ln

(M(τ)

x(τ)

)))∣∣∣Ft]
= min

t≤τ≤T
E
[
x(τ)2G

(
τ, ln

(M(τ)

x(τ)

))∣∣∣Ft],
(5.3.12)

where G(t, y) = 1− 2αG1(t, y) + α2G2(t, y).

Equation (5.3.12) implies that equation (5.3.6) is equivalent to a standard optimal

stopping problem with a terminal payoff G and an underlying (adapted) state process

Y (t) = ln
(M(t)

x(t)

)
, Y (0) = 0.

Following the dynamic programming approach we consider the problem below

U(t, y) = inf
τ∈TT−t

Et,y[G(t+ τ, Y (t+ τ))],

where Y (t) = y under the probability Pt,x with (t, y) ∈ [0, T ] × [0,∞) given and

fixed, and Ts in general denotes the set of all F -stopping times τ ∈ [0, s] for s > 0.

In fact, U satisfies the following dynamic programming equation (or variational

inequalities)
max {L̂U,U −G} = 0, (t, y) ∈ [0, T ]× [0,∞),

subject to Uy(t, 0+) = 0, t ∈ [0, T ),

U(T, y) = G(T, y), y ∈ (0,∞),

(5.3.13)

where the operator L̂ is defined by

L̂ f(t, y) = ft(t, y)− (ν + 2)fy(t, y) +
1

2
fyy(t, y) + 2(ν + 1)f(t, y).
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Hence, the original problem is transferred into finding U . Since x(·) has stationary

independent increments and Y (·) is a Markovian process, we rewrite

U(t, y) = inf
0≤τ≤T−t

E[G(t+ τ, Y y(τ))],

where Y (·) under P is explicitly given as

Y y(t) = y ∨ ln
(M(t)

x(t)

)
, t ≥ 0.

Theoretically, we have derived a region in which the venture capitalist may sell

the shares they hold, given the pre-determined relationship between her target return

and the expected maximum return.

Theorem 5.3.1. The holding region is

C = {(t, y) ∈ [0, T ]× [0,∞) : U(t, y) < G(t, y)},

while the exit region is

D = {(t, y) ∈ [0, T ]× [0,∞) : U(t, y) = G(t, y)}.

Also, an optimal exit time is

τ ∗ = inf

{
t ∈ [0, T ] :

(
t, ln

(M(t)

x(t)

))
∈ D

}
.

5.3.3 Numerical Results

To investigate comparative statics, we present one numerical example in which we

change the value of the parameter α. Following the standard approach for estimating

the above problem via the finite difference approach, we solve the mathematical for-

mulation given in equation (5.3.13) by imposing a uniform grid on the (t, y) domain.
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A Crank-Nicolson scheme is adopted for the discretization of the partial differential

equation and the semi-infinite interval for y is truncated at a sufficiently large value

of y. The derivative boundary condition is discretized using a forward difference

approximation. For the results shown below, we take the grid spacing to be 0.005

for y and 0.001 for t dimensions.

Let m = 3. The interest rate of the bond and the appreciation rate of the m

stocks are r = 0.05 and (b1, b2, b3)′ = (0.1, 0.12, 0.15)′, respectively, and the volatility

matrix is

σ =

 0.3000 0 0
0.2000 0.3464 0
0.2500 0.1443 0.4082

 .
Then

θ := σ−1(b1 − r, b2 − r, b3 − r)′ = (0.1667, 0.1058, 0.1055)′.

Using Theorem 5.3.1 and the parameter value of α ranging between 0.8 and 1,

we observe that the exit region decreases as the value of α increases, as shown by

the combined picture at the right-bottom corner of Figure.
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Figure 1: α = 0.8 Figure 2: α = 0.85
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Figure 5: α = 1 Figure 6: different α

5.4 Expression of Function G1 and G2

In this part, we derive the expression of functions G1 and G2.

5.4.1 Expression of Function G1

We now derive the explicit expression of the function G1, defined by

G1(t, y) = E
[

exp
(

max
{
y, max

0≤u≤T−t
(νu+B(u))

})]
=

∫ ∞
y

ezdP
(

max
0≤u≤T−t

(νu+B(u)) ≤ z
)

+ eyP
(

max
0≤u≤T−t

(νu+B(u)) ≤ y
)
.
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Note that

P
(

max
0≤u≤T−t

(νu+B(u)) ≤ z
)

= Φ
(z − ν(T − t)√

T − t

)
− e2νzΦ

(−z − ν(T − t)√
T − t

)
.

According to the standard normal distribution, we have

∫ ∞
y

ezdΦ
(z − ν(T − t)√

T − t

)
=

∫ ∞
y

ez
1√

2π(T − t)
e−

(z−ν(T−t))2
2(T−t) dz

= e(ν+ 1
2

)(T−t)
[
1− Φ

(y − (ν + 1)(T − t)√
T − t

)]
.

Assume that ν 6= −1

2
. Then

∫ ∞
y

ezd
[
e2νzΦ

(−z − ν(T − t)√
T − t

)]
=

∫ ∞
y

2νe(1+2ν)zΦ
(−z − ν(T − t)√

T − t

)
dz +

∫ ∞
y

e(1+2ν)zdΦ
(−z − ν(T − t)√

T − t

)
= − 2ν

1 + 2ν
e(1+2ν)yΦ

(−y − ν(T − t)√
T − t

)
− 1

1 + 2ν
e(ν+ 1

2
)(T−t)

[
1− Φ

(y − (ν + 1)(T − t)√
T − t

)]
.

Thus

G1(t, y) = eyΦ
(y − ν(T − t)√

T − t

)
− 1

1 + 2ν
e(1+2ν)yΦ

(−y − ν(T − t)√
T − t

)
+

2(1 + ν)

1 + 2ν
e(ν+ 1

2
)(T−t)

[
1− Φ

(y − (ν + 1)(T − t)√
T − t

)]
.
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In addition, note that when ν = −1

2
,

∫ ∞
y

ezd
[
e2νzΦ

(−z − ν(T − t)√
T − t

)]
=

∫ ∞
y

ezd
[
e−zΦ

(−z − ν(T − t)√
T − t

)]
= −

∫ ∞
y

Φ
(−z − ν(T − t)√

T − t

)
dz +

∫ ∞
y

dΦ
(−z − ν(T − t)√

T − t

)
= yΦ

(−y − ν(T − t)√
T − t

)
−
√
T − t√

2π
e−

(x+ν(T−t))2
2(T−t) + ν(T − t)

[
1− Φ

(y + ν(T − t)√
T − t

)]
−Φ
(
−y−ν(T−t)√

T−t

)
.

Thus

G1(t, y) = 1− Φ
(y − (ν + 1)(T − t)√

T − t

)
− yΦ

(−y − ν(T − t)√
T − t

)
+

√
T − t√

2π
e−

(y+ν(T−t))2
2(T−t)

−ν(T − t)
[
1− Φ

(y + ν(T − t)√
T − t

)]
+ eyΦ

(y − ν(T − t)√
T − t

)
.

5.4.2 Expression of Function G2

We now derive the explicit expression of the function G2, defined by

G2(t, y) = E
[

exp
(

max
{
y, max

0≤u≤T−t
(νu+B(u))

})2]
=

∫ ∞
y

e2zdP
(

max
0≤u≤T−t

(νu+B(u)) ≤ z
)

+ e2yP
(

max
0≤u≤T−t

(νu+B(u)) ≤ y
)
.

Note that

P
(

max
0≤u≤T−t

(νu+B(u)) ≤ z
)

= Φ
(z − ν(T − t)√

T − t

)
− e2νzΦ

(−z − ν(T − t)√
T − t

)
.
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According to the standard normal distribution, we have

∫ ∞
y

e2zdΦ
(z − ν(T − t)√

T − t

)
=

∫ ∞
y

e2z 1√
2π(T − t)

e−
(z−ν(T−t))2

2(T−t) dz

= e2(ν+1)(T−t)
[
1− Φ

(y − (ν + 2)(T − t)√
T − t

)]
.

Assume that ν 6= −1. Then

∫ ∞
y

e2zd
[
e2νzΦ

(−z − ν(T − t)√
T − t

)]
=

∫ ∞
y

2νe2(1+ν)zΦ
(−z − ν(T − t)√

T − t

)
dz +

∫ ∞
x

e2(1+ν)zdΦ
(−z − ν(T − t)√

T − t

)
= − ν

1 + ν
e2(1+ν)yΦ

(−y − ν(T − t)√
T − t

)
− 1

1 + ν
e2(ν+1)(T−t)

[
1− Φ

(y − (ν + 2)(T − t)√
T − t

)]
.

Thus

G2(t, y) = e2yΦ
(y − ν(T − t)√

T − t

)
− 1

1 + 2ν
e2(1+ν)yΦ

(−y − ν(T − t)√
T − t

)
+

2 + ν

1 + ν
e2(ν+1)(T−t)

[
1− Φ

(y − (ν + 2)(T − t)√
T − t

)]
.

Also, note that when ν = −1,

∫ ∞
y

e2zd
[
e2νzΦ

(−z − ν(T − t)√
T − t

)]
=

∫ ∞
y

e2zd
[
e−2zΦ

(−z − ν(T − t)√
T − t

)]
= −2

∫ ∞
y

Φ
(−z − ν(T − t)√

T − t

)
dz +

∫ ∞
y

dΦ
(−z − ν(T − t)√

T − t

)
= 2yΦ

(−y − ν(T − t)√
T − t

)
− 2
√
T − t√
2π

e−
(y+ν(T−t))2

2(T−t) + 2ν(T − t)
[
1− Φ

(y + ν(T − t)√
T − t

)]
−Φ
(−y − ν(T − t)√

T − t

)
.
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Thus

G2(t, y) = 1− Φ
(y − (ν + 2)(T − t)√

T − t

)
− 2yΦ

(−y − ν(T − t)√
T − t

)
+

2
√
T − t√
2π

e−
(y+ν(T−t))2

2(T−t)

−2ν(T − t)
[
1− Φ

(y + ν(T − t)√
T − t

)]
+ e2yΦ

(y − ν(T − t)√
T − t

)
.
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Chapter 6

Conclusion

In this thesis, we investigate the optimal investment problems over a finite time hori-

zon. We construct the value function and derive the corresponding HJB equation.

The properties of trading strategy are studied in the thesis, and the problem of op-

timal stopping time is also discussed. We study an optimal consumption investment

model with uncertain exit time and also discuss the case with constraints. The value

function is not only the expectation of utility of the price of assets on maturity date,

but also the expected utility produced in the whole process. By using the method of

partial differential equation, we prove some properties of the problem. Meanwhile,

the behavior of free boundary line is also researched. The problem of optimal stop-

ping time is also studied. We formulate a two-stage problem. By Using the method

of stochastic analysis, we turn the nonstandard main problem into a standard one.

By using stochastic control method, we solve the subproblem. Numerical examples

are given respectively.
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