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Abstract 

Nowadays driver assistant system is popular in both research and application field. An 

efficient driver assistant system will alleviate the driver’s burden, provide essential 

warnings, and increase the overall driving safety. While a wide range of sensors such as 

radar and ultra-sound devices are available for developing driver assistant system, vision-

based analysis remains to be a robust and inexpensive approach. 

Driver assistant system, especially collision warning system, is also important for Light 

Rail Vehicles (LRVs). However, there lacks research on vision-based collision warning 

for LRV in the academic field. We develop this LRV Close-up Monitoring System for the 

Hong Kong Light Rail, which aims at providing warning signals once the system detects 

any frontal vehicle approaching certain safety distance. The challenges lie in the vast 

change of environmental conditions and scales of the front vehicles. As a real-time real-

world application, the system is required to make fast and reliable detections in a variety 

of situations with very limited computation time. 

We design a hierarchical multi-module structure to achieve the above objectives. Each 

module adopts various orthogonal or semi-orthogonal features to detect vehicles under 

certain circumstances. We also improve the detection accuracy by designing a verification 

module that checks the low-confident detections by totally different sets of features. These 

studies specifically show how multiple orthogonal features could increase discriminability 

as well as maintain high robustness. The system achieves high performance with no 

missing detections and few false alarms in our field tests. 

In our further research, we aim at enhancing individual modules by adopting machine 

learning techniques. We propose a modified decision tree algorithm to form a shadow 

detection module. The shadow detection module aims at recognizing the shadow part of 

the LRVs in an early stage to accelerate the detection process. Our proposed modified 

decision tree classifier takes each binary node as a weak classifier and combine all weak 

classifier predictions to obtain the final prediction and confidence measures. Our 

evaluation shows that the proposed detector significantly reduces the computation time by 

exploiting simple intensity pair features in binary test design, while giving the best 
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detection accuracy (the highest F-score) by combining the predictions from all decision 

nodes. We also study LRV detections using deep learning. We improve the accuracy of 

the vehicle detection module by adopting the Faster RCNN algorithm. Specifically, we 

propose a novel Adaptive ROI detection scheme to deal with remote-ranged vehicles. 

Compared with a direct implementation of Faster RCNN, experimental results show our 

proposed algorithm has achieved a significant improvement with a 48% (87.7-38.9)% 

increase of recall rate for “remote-range” detections, while maintaining an excellent 

performance for close-range detections. 
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 Introduction 

1.1 Driver Assistant System 

Intelligent transportation system has been a popular topic in both academic and application 

fields. It is reported that every year over tens of thousands of people die of traffic accidents 

[1]. Thus, it is extremely important developing reliable vehicle detection systems that can 

alleviate the driver’s burden, provide essential warnings, and increase the overall driving 

safety. A wide range of sensor techniques has been applied to the driverless system. Radar 

is one of the commonly used sensors [2, 3]. Radio waves are transmitted and collected to 

analyze the range, angle, and velocity of any objects in the front. While Radar signals are 

robust to illumination and weather conditions, the detection field-of-view is relatively 

narrow, and the radio signals can be quite noisy, requiring additional filtering techniques. 

Lidar tends to replace Radar and becomes a leading technology in driver assistant system, 

due to its purer signals and wider sensing range [4-6]. However, the cost of Lidar sensors 

remains high. Unlike Radar and Lidar sensing technology that analyzes returned signals 

reflected by the front object, and classifies vehicles based on speed and size of the object, 

vision based detection system directly recognize vehicles from raw images. The hardware 

requirement for vision based system is simple and inexpensive, mostly one or multiple 

cameras. Although vison based detection could be sensitive of illumination and weather 

change, it is believed that raw images can provide richer information, and deal with more 

complex situations due to the advance in computer vision techniques. 

1.2 Vision-based Vehicle Detection 

Vision based driver assistant system can be categorized into monocular vision based 

vehicle detection and stereo vision based detection based on the amount and type of 

cameras. Our research only involves monocular vision based system due to its low cost 

and practical values in industrial projects. The detection can be achieved by either 

appearance based approaches that recognize vehicles by modeling the appearance features 

of target vehicles, or motion based approaches that analysis the motion of the moving 

target through a group of frames [7]. However, due to the lack of additional disparity and 
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depth data for monocular camera system, the motion based approaches are not as popular 

as appearance based approaches. 

1.2.1 Vehicle Detection Framework 

This hierarchical structure is certainly promising for vehicle detection systems. The 

structure can be roughly described as a two-stage detection process [8]: 1) the hypothesis 

generation stage, and 2) the hypothesis verification stage. The hypothesis generation stage 

searches for the whole frame, trying to locate all candidate regions where a vehicle might 

exist, and then generate a proper region of interest for further exploration. Fast detection 

is required at this stage, so many of the hypothesis generation methods exploit simple 

features that describe local properties of the vehicle. 

1.2.2 Appearance Features for Vehicle Detection 

The earlier appearance features used for vehicle detection are often simple rear-view 

features that consider the edge and symmetry properties of vehicles, such as shadows, 

defined as a rectangular-shaped region underneath the vehicle, darker than its adjoining 

road surface [9-12], or symmetry pair of vertical edges along the left and right side of the 

rear view [13-16], or a pair of rear-lamps that is especially discriminative in nighttime 

conditions [17]. 

Shadow recognition is an important hypothesis generation process. It functions as a 

hypothesis generation of any locations that could possibly have a vehicle. The aim is to 

accelerate the detection by recognizing part of the train first so that a finer detection could 

be performed only at these locations of interest, instead of sliding windows over the entire 

frame. In [9] the shaded area is extracted from the paved road by an adaptive threshold, 

estimated from the average gray level of the free-driving-space (the lowest central 

homogenous region in the image), and further verified by examining the horizontal edge 

between the shadow and the paved road. [10] Takes very similar approach, but improves 

the threshold generation part by modeling the free-driving-space as normal distribution, 

and thus the approach can determine the threshold more intelligently based on mean and 

standard deviation of road pixels. The successful extraction and modeling of the free-

driving-space (road region) plays the key role in both methods. Thus although both are 

effective shadow detectors for on-road vehicles under ideal illumination, situations like 
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complex-structured road, unevenly illuminated road, and also nighttime road, could affect 

greatly the performance of the detectors. Another commonly used appearance feature, 

especially in nighttime videos, is the rear lamps/taillights [11, 17]. Taillights are strong 

features often exist in pairs and share symmetry properties. Vehicle color [18] has also 

been exploited. 

The recent advances in more general and robust feature extraction has boosted the vehicle 

detection to exploit those general features with machine learning techniques. One of the 

commonly used features is the Histogram of Oriented Gradient (HOG) feature. Proposed 

as a general feature describing the human contour [19, 20], the HOG feature sees a great 

success in pedestrian detection. HOG features are highly discriminative for objects with 

special edge patterns, and are also robust to illumination changes, thus HOG feature is 

also applied to many other detection and recognition tasks such as vehicle detection [10]. 

Haar wavelet features [21] calculate the contrast of neighboring rectangular regions with 

the help of integral images. The most advantage of Haar-like features over the HOG 

features are the fast-computational speed. Thus, a number of vehicle detection systems 

adopted this feature for fast detection [22-28]. Other features like SIFT [29] are not 

commonly seen in intelligent transportation system due to its extensive requirement of 

computation [30]. 

1.2.3 Classification of Appearance Features 

The classification methods for vehicle features develop with the classification for general 

objects. SVM [31] is a good classification tool compared with Neural Network, which 

often has too many parameters to tune and are vulnerable to local optimum. [32] extracts 

Haar-like features and uses SVM for classification, while [23] and [33] use HOG features 

plus the SVM classifier. Another widely used classification tool in vehicle system is the 

AdaBoost classifier [21]. [34-39] are vehicle detection systems that adopted a combination 

of AdaBoost and Haar-like feature. Decision tree was firstly proposed by Breiman et al. 

[35], and is now a commonly used data mining algorithm. The idea of decision tree is to 

solve a complex problem by testing some simple questions which are organized 

hierarchically, partitioning the problem to a more specific region of the decision space 
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according to the answers to the questions and making a decision when the problem reaches 

a region where the response is confident enough. 

Decision tree is a commonly used classification tool and has been successfully applied to 

many computer vision tasks [40]. 

Deep learning has been receiving constant attention in the past few years and has achieved 

the state-of-the-art performances in various fields such as image classification [41], 

segmentation [42], and object detection [43]. RCNN [44] applied convolutional neural 

network to classify region proposals generated by auxiliary objectness detection methods 

[45], and has achieved significant increase in detection accuracy on VOC dataset. Faster 

RCNN [46] further improves the detection speed by integrating region proposal network 

(RPN) and classification network (Fast RCNN) into one unified, end-to-end trainable net. 

However, Faster RCNN does not perform well in detecting small objects [47]. This is 

because for small objects, the feature map is too coarse after several pooling layers, and 

hence not enough information would remain during the ROI pooling process in the Fast 

RCNN network, and the classification afterwards will thus be degraded. 

1.3 Rail and Light-rail Vehicle Detection 

Light Rail Vehicle (LRV) is a popular public transport in urban cities due to inexpensive, 

highly convenient, and green characteristics. Light rail transportation helps to mitigate 

traffic congestions, especially at commute peak. Therefore, it is extremely important to 

ensure the safety for LRV systems. Like trains, there are usually more than one vehicles 

running on the same rail at the same time, but the interval between two consecutive trains 

is very short. Because of the huge inertia, the LRVs cannot stop in a short distance, which 

makes it important to control the interval to avoid collision risk. Some of the traditional 

safety guarantee systems are based on trackside infrastructure elements, like axle counters, 

track circuits, which are expensive to install and maintain. Compared with the traditional 

approaches, the hardware requirement for vision based system is simple and inexpensive, 

mostly single or multiple cameras, but the information it can capture is rich. Therefore, it 

is beneficial and important to develop vision-based vehicle detection techniques for driver 

assistant systems in light rail. 
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1.4 Introduction of Light Rail Vehicles Close-up Monitoring System 

Our project focuses on developing a driver assistant system, the first level of vehicle 

autonomy, for light-rail vehicles (LRV) operated in Hong Kong. The reason is to reduce 

the collision risks caused by driver drowsiness or distraction. The objective of our project 

is to provide accurate collision warning signals to the LRV driver whenever the distance 

of the front vehicle exceeds certain threshold. Our project uses monocular camera only to 

achieve vehicle detection, tracking, distance estimation and software-level decision 

making. The advantage is the low cost and high flexibility. The system can be easily 

implemented by a single smartphone, and therefore is capable of extensive field tests and 

trial runs, and even commercial-scale production. Although the project only aims at 

achieving the initial level of autonomous driving, once proved effective and reliable, the 

consequent design of autonomous control can then be done. 

We are developing a vision-based driving assistant system for light rail vehicles. The aim 

is to achieve highly reliable recognition and tracking of any possible vehicle in the front 

through the camera mounted on the moving train. The distance can be calculated based on 

detection results and warnings of collision will be given when the distance becomes close. 

The challenges lie in the vast change of environmental conditions and scales of the front 

vehicle. As a real-time real-world application that runs 24 hours a day, the system is 

required to make fast and reliable detection in a variety of situations, ranging from daytime 

to nighttime, from well-illuminated outdoors to gloomy indoors, from bright sunny 

weathers to cloudy and or rainy ones, and more difficultly, in some extreme situations 

where the backlight and headlight are too strong for the vehicle to be recognizable. As a 

collision warning application, the system is expected to be extremely sensitive for close-

range detection as well as performing steady detection and tracking from a far distance. 

Figure 1 and Figure 2 show some examples of environmental variation and some 

challenging situations. 
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(a) Phase 1 (Far) (b) Phase 2 (Far) (c) Phase 3 (Far) (d) Phase 4 (Far) 

    

(e) Phase 1 (Near) (f) Phase 2 (Near) (g) Phase 3 (Near) (h) Phase 4 (Near) 

 
 

Figure 1 Examples of scaling variations of trains 

 

 
Figure 2 Examples of illumination variation of trains 

 

1.5 Organization of Thesis 

This thesis is organized as follows. Chapter 2 briefly reviews the common features and 

classification tools used in vehicle detection systems. Chapter 3 introduces the complete 

framework and basic processing modules of our LRV Collision Warning System. Chapter 

4 proposes two examples of improving individual modules, hence to enhance system 

performances. Chapter 5 proposes further improvements through machine learning 

approaches. Chapter 6 gives the conclusion of this study. 
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 Technical Review 

2.1 Appearance Features for Vehicle Detection 

2.1.1 Histogram of Oriented Gradients 

Histogram of Oriented Gradients (HOG) has become more and more popular since the 

success of pedestrian detection in 2005. The HOG feature is insensitive to illumination 

conditions because it is based on the edge information.  HOG feature is efficient and 

discriminative. Therefore, it has been adopted in various object detection algorithms. As 

shown in Figure 3, Gamma correct process is conducted to normalize the image. Second, 

the gradient information is obtained by using Sobel 1-D [-1,0,1] operator at horizontal and 

vertical direction separately. Then, as shown in the following equations, the gradient 

magnitude and orientation can be calculated in (1), where g denotes the gradient 

magnitude, θ the gradient orientation, and gx and gy denote the gradient along x and y axis 

respectively.  
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Next, the orientation is divided into 9 bins and the hypothesis patch is partition into several 

cells. For each pixel position, voting the magnitude to it related bin forms a 9-bin gradient 

histogram. A sliding window covers some neighbored cells forms a small area called block, 

and histograms of these cells are concatenated together to form a large one. Then, a L-2 

normalization process is conducted as shown in (2) to limit the value from 0 to 1, where 

bini denotes the gradient sum of the ith bin. Finally, collect all the histograms of the blocks 

to form the final histogram that is the HOG.  
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Figure 3 Flowchart of HOG descriptor 

 

2.1.2 Haar-like Features 

Haar-like features are commonly used for object detection and face recognition. The 

concept using intensity differences of adjacent rectangular regions to represent the pattern 

of a patch. Figure 4 represents some example calculations of Haar-like feature values. The 

sum of the pixels lie within the white rectangles are subtracted from the sum of pixels in 

the grey rectangles. The feature response in Figure 4 (A) and Figure 4 (B) are the 

difference of sum of pixels between two horizontally and vertically adjacent rectangles, 

while the feature response in Figure 4 (C) is calculated by the sum within two outside 

rectangles subtracted from the sum in a center rectangle, and feature response in Figure 4 

(D) is the difference between diagonal pairs of rectangles. The reason of developing these 

kinds of features for face detection comes from the observation that the eye regions are 

normally darker than the nose region on a typical face. Similarly, the reason of applying 

Haar-like features for vehicle detection comes from the observation that some vehicle 

parts are normally brighter than other vehicle parts such as shadows. 

The Haar features are extremely fast to compute with the help of integral image, which is 

a pre-computed image map that stores the summation of all pixel intensities for each pixel 

location. For an image of size 24*24, the exhaustive set of rectangle features at 11 scales 

will have a number of 37525. However, not all features are useful to discriminate a face, 

and thus the AdaBoost learning is used as a feature selection process. 
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Figure 4 Examples of Haar-like Features (The sum of the pixels which lie within the white 

rectangles are subtracted from the sum of pixels in the grey rectangles.) 

 

2.2 Classification of Appearance Features 

2.2.1 SVM 

Support Vector Machine (SVM) is a widely used classifier formally defined by a 

separating hyperplane. It tries to find a split function which can maximum the margin 

among classes.  As shown in the following figure, the split function (green line) tries to 

gap the two class (orange and blue) which gives the largest the distance between the two 

support vectors. However, sometime the classes cannot be gapped by a line split function. 

By using different kennels, the data space can be mapped into a separating hyperplane, 

then the SVM can find the split function with the maximum margin. 

 
Figure 5, Support vector machine 

 

2.2.2 AdaBoost 

An AdaBoost classifier is formed for each stage by combining many weak classifiers 

(decision stumps in this case) learned in a boosted manner. The features learned in earlier 

Margin

Support vector
Split function



10 

 

boosting round are the most representative features describing a face, such as the contrast 

between eyes and nose regions, while the features selected in later boosting round will 

focus on discriminating hard examples. 

The study of the Boosting algorithms involves two questions: 1) How the weights of the 

training examples are updated at the end of each boosting round, and 2) How the 

predictions of each weak classifier are combined. AdaBoost, adaptive boosting, is one 

learning algorithm that tries to answer the two questions.  

Let {(xj, yj) | j=1,2,…,N} denote the original set of N training examples. Multiple base 

classifiers will be learned sequentially from datasets resampled from this original set. The 

AdaBoost algorithm assigns an importance score for each base classifier 
iC  defined by:  
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Where 
i denotes the error rate of classifier 

iC . When the error rate is large ( 1→i , for 

example), the importance score has a large negative value, while when the error rate is 

small ( 0→i ), the importance score will have a large positive value. It can be viewed as 

an evaluation of the performance for each individual weak classifier, and the classifier 

that provides more accurate predictions has a higher important score. 

The error rate 
i measures the prediction error of base classifier 

iC  over all weighted 

training examples. The definition is as follows:  
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where 1)( =p if p is true, and 0)( =p otherwise, and jw denotes the weight for the jth 

example. 

The importance score 
i is also used to update the weight assigned to example ),( jj yx
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where 
tZ  is the normalization factor used to ensure the sum of all example weights is 1. 

The weight updating scheme will increase the weights of incorrectly classified examples 

and decrease the weights of the correct ones. 

Finally, as shown in (6), the prediction is made by combining the results from all base 

classifiers, where C* stands for the final prediction result, and αj denotes the importance 

score of the jth class. AdaBoost does not adopt the majority voting scheme. Instead, each 

base classifier is weighted by its importance score 
i (3). Thus, the prediction could 

penalize models with poorer accuracy.  
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2.2.3 Neural Network 

Neural Network algorithm was inspired by animal brains in 1943. As shown in the figure, 

the whole network consists many neurons, which form the input, hidden and output layers. 

First, as shown in (7) and Figure 6, the set of data is sent into the input layer. The output 

y of each neuron is a linear combination of the input data xi. wi is the learnable weight, θ 

is the small bias of the activate function f(·). Then, the hidden layer consists of several 

neurons that will further process the data. Next, the output layer collects and processes the 

result of the hidden layer, and outputs the result.  Backpropagation algorithm is used to 

transfer the estimation error to the intermediate neurons, which means the network 

parameters can be updated after comparing with the target.  

 ( )i i
i

y f w x = −  (7) 

 
Figure 6. A simple Neural Network structure 
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2.2.4 Decision Tree and Random Forest 

Random forests is an ensemble learning method which enable fast and accurate 

classification. It is a commonly used classification tool and has been successfully applied 

to many computer vision tasks. There are multiple decision trees in random forests. As an 

ensemble method, the random forests approach reduces prediction variance by combing 

the prediction results from multiple predictors (i.e. decision trees). The averaged 

prediction from un-correlated decision trees could achieve low bias and low variance even 

if the prediction result from a single decision tree usually has low bias and high variance. 

Inserting randomness helps to reduce the correlation among base decision tree classifiers. 

The “randomness” comes from a randomly selected subset of the whole training data to 

train each decision tree, as well as the process that decision trees randomly generate binary 

test parameters. For each decision tree, a randomly selected F features are used to split 

each node of that tree. Instead of examining all possible features to find the optimal split, 

the decision to split a node is determined from these F selected features. 

Decision tree classifier solves a classification problem by asking a series of simple 

questions about the feature space. Each time an answer is received, a follow-up question 

is then asked until the conclusion about the class label has been achieved. The series of 

questions and answers are organized in a tree structure, consisting of nodes and directed 

edges.  

 
Figure 7 Illustration of the structure of decision tree 

 

2.2.4.1 Leaf and Non-Leaf Node 

As illustrated in Figure 7, a binary decision tree consists of non-leaf nodes and leaf nodes. 

The non-leaf node is a node that has one parent node and two child nodes. Each non-leaf 

Non-leaf node

Leaf node

… …

… …

… …
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node stores a binary test that performs the classification and partitions the input data into 

its left and right child nodes. A leaf node is the end of the tree structure and cannot be 

further split into child nodes. Each leaf node stores a prediction model determined by the 

data arriving at that node. 

2.2.4.2 Binary Test 

Binary test is the test to separate the incoming data into two sections and forward them to 

two child nodes accordingly. Each non-leaf node stores a binary test that performs the 

classification and partitions the input data into its left and right child nodes. The test could 

be either linear or non-linear, and could involve more than one dimensions of attributes. 

Essentially, the learning process is to find the optimal binary test for each non-leaf node 

through a pool of candidate binary tests. 

Two major concerns can be raised for the decision tree learning algorithm. The first one 

is how the split function be selected for each non-leaf node. Proper evaluation tool should 

be applied to compare the goodness of each possible split. Another question is when a 

node should not be further split. A stopping condition is needed to terminate the tree 

growing. 

Impurity measurement is used for evaluating each candidate split. Let )|( tip denote the 

fraction of records belonging to class i at a given node t .The impurity of this node can be 

evaluated by Shannon entropy )(tE : 
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where C is the total number of classes. 

Note that when there is only one class for all data in the node, the entropy is zero, 

indicating the node is the purest for such data distribution, while a node is the most impure 

when each class occupy the same percentage. 

An information gain oinf can be defined as the subtraction of entropies of child nodes 

from the parent node entropy: 
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where E(S) represents the entropy of parent node S, and E(Si) represents the entropy of 

child node i, where i belongs to either left or right child. 

A large information gain indicates the data becomes purer after the split, and thus the 

larger the information gain is, the better the performance of a split. A split that could 

maximize the information gain of node S is selected as the best split from a pool of 

candidate splits. 

 

2.2.4.3 Prediction Model 

The prediction model stored in each leaf node is estimated by posterior probability. 

according to Bayes’ Theorem. The class distribution of sample data fallen into this leaf 

reflects the class it predicts. The class that has the highest posterior probability is the final 

predicted class, and that probability is the confidence score of this prediction. 

2.2.4.4 Training 

During the training stage, an optimal binary test will be learned by evaluating a pool of 

candidate tests for each non-leaf node. A prediction model indicating whether the node is 

positive or negative is also assigned to each leaf node.  

A decision tree can grow in a greedy strategy by making a series of locally optimum 

decisions about the features of the training data. A brief tree growing process considering 

each node could be stated like this: 

1. For each node, decide whether it needs further split or not. 

2. If no further split needed, the growing of this node will be stopped, and the node itself 

becomes a leaf node. 

3. If further split needed, select a proper split function for the node. 

4. The split function can involve one or multiple feature variables. The function can be 

linear, non-linear, or even more complex, according to the user design. In fact, the 

split function can be regarded as a weak classifier, and the entire decision tree is a 

boosting of many weak classifiers. 
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5. Then split the data set into two subsets according to the split function 

2.2.4.5 Testing 

After training, each non-leaf node stores its best binary test binary test parameter   and 

each leaf node stores the learned prediction models. 

During the testing stage, the input data will be continuously classified into left or right 

child nodes according to each binary test result, until reaching to a leaf node. The 

prediction model stored in that leaf node will map the input data into either positive or 

negative class. 

 

2.2.5 Deep Learning 

2.2.5.1 Region proposal Convolutional Neural Network (RCNN) 

RCNN, Region-based Convolutional Neural Network, is one of the first several 

algorithms that applied deep learning framework on object detection. RCNN first takes 

out regions that probably contain object information and warps them into image regions 

of fixed size. It then forwards each extracted image region through a ConvNet, which can 

be regarded as a feature extraction network. The extracted features, i.e. the output after 

several conv layers, will be fed into an SVM, which classifies the features into different 

classes. Finally, a linear regression model (bounding box regression) will be applied to 

each class to slightly tune the offsets of the bounding box of the region proposal. 

Although the RCNN has achieved quite high detection rate on most standard object 

detection database, there is one drawback. Every image region is forwarded into the 

ConvNet, and since the number of extracted image regions is not small (around 2k regions 

for each image), the computational cost is too high. Also, since the image regions are 

overlapped with each other, many computations in the convolutional stage are in fact 

redundant. Thus, an improved framework, Fast RCNN is proposed. 
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2.2.5.2 Fast RCNN 

The essence of Fast RCNN is to share computations through the ConvNet for all region 

proposals, or in other word, feed the whole image, instead of extracted region proposals, 

into the ConvNet. The idea of “region proposal” is presented at the end of all convolutional 

layers (the 5th conv layer in this algorithm). Each region proposal in the original image 

can be mapped into a small region on the conv5 feature map (the 5th conv layer). ROI 

pooling is applied on this mapped region, so that each ROI after pooling can have the 

same feature length. 

Another improvement of Fast RCNN is the combination of the final classification and the 

bounding box regression. At test time (Figure 9), the ConvNet features are sent to two 

output layers, softmax classifier and bounding box regressor, the result combined is the 

final object detection result. It is similar to RCNN at test time. The training stage is 

different. For RCNN, the bounding box regressor is trained for each class. This means that 

the two procedures are separated, and the bounding box regression is simply an ad-hoc 

process to adjust the already extracted bounding box. However, in training time (Figure 

3), each training region is labeled with a class label, and four bounding box coordinates, 

and the training is a multi-task training that optimizes both object class and coordinates. 

Figure 8 RCNN framework (figure credit to Ross Girschick) 
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This multi-task training is also inherited by Faster RCNN algorithm, which will be 

introduced later. Thus, a more detailed explanation on multi-task training will be presented 

then. It has been proved that without selective search (the region proposal generation 

procedure), Fast RCNN can achieve over 100 times faster speed compared with RCNN. 

It also can be seen that in the Fast RCNN framework, the most time-consuming process 

is not the deep learning process, but the region proposal generation process. It is worth 

wondering whether the region proposal generation can be skipped. Thus, comes the Faster 

RCNN framework. 

 

2.2.5.3 Faster RCNN 

Faster RCNN is an end-to-end object detection network. The input of the network is a 

whole image, and the output are the detected objects with their bounding box coordinates. 

Unlike RCNN, Faster RCNN does not need pre-hoc or post-hoc processes. 

As illustrated in Figure 10, The Faster RCNN consists of two important networks: the 

Region Proposal Network (RPN), and the Fast RCNN network. RPN is responsible for 

generating region proposals, while Fast RCNN is responsible for the classification based 

on the region proposals extracted from RPN. Both networks share a same set of fully 

convolutional layers. 

Figure 9: Fast RCNN framework at training time (figure credit to Ross Girschick) 
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The input of the RPN is the entire image, and the output is a set of object proposals with 

objectness scores. The region proposals are generated by sliding a small window over the 

feature map output from the convolutional layers. At each slide location, k anchor boxes 

with same center point, but different size and aspect ratio are generated. Each anchor box 

is associated with one objectness score that estimates the probability of object and non-

object, and four coordinates that encode the bounding box. Thus, the output of RPN to 

Fast RCNN network for each sliding window would be 2k objectness scores and 4k 

bounding box coordinates. 

The RPN is trained by optimizing both classification loss (the probability to be object or 

non-object) and the bounding box loss, so a multi-task loss function is applied as in (10), 

where i is the index of an anchor, pi is the predicted objectness probability for anchor i, 

pi* is the ground truth objectness label of anchor i. pi* is zero if the anchor is labeled as 

negative (non-object), and one if the label is positive (object). An anchor is labeled as 

positive if its IoU with any ground truth box is larger than 0.7, or if it has the highest IoU 

score among other anchors. It is labeled as negative if none of the IoU overlap score is 

larger than 0.3 for all ground truth boxes. 

 𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ (𝑝𝑖, 𝑝𝑖

∗) + 𝛿 ∑ 𝑝𝑖
∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖

∗
𝑖 )𝑖   (10) 

 

The first term in the summation is the classification loss, which is a log loss over the 

predicted anchor label with the ground truth anchor label. The second term is the bounding 

box loss, which is a L1 loss of the predicted bounding box with the ground truth bounding 

box. 
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Figure 10 Faster RCNN framework  

Figure 11 Generating object proposals in RPN of a Faster RCNN framework  
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 System Structure 

3.1 Framework of the Close-up Monitoring System 

3.1.1 The Overall Framework 

The objective of the light rail vehicle collision warning system is to provide warning 

signals once the system detects any frontal vehicle inside certain safety distance. A brief 

description of the system framework is shown in Figure 12. The system first performs 

Railway Detection to extract a pair of railways in the front to provide guidance for vehicle 

detection. Then, according to the detected railways, an LRV Detection Module with 

various sub-modules using multiple object detection algorithms is performed to detect if 

any light rail vehicle exists inside the region of interest. Once the vehicle is detected, a 

Distance Estimation module will be activated to estimate the real distance between the 

camera and the front vehicle, according to the geometric relationship of the camera 

calibration and the location of the detected vehicle. 

 
Figure 12 Relationship of Train Detection Module and other modules 
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LRV Detection Module is the core module in the whole project not only as it provides the 

essential information of the train situation, but also as it connects with other function 

modules and plays an important role in combining different modules to make fast and 

reliable decisions. The detailed relationship between LRV Detection Module and other 

modules is shown in Figure 12. 

The Train Detection Module takes the results of the Railway Detection Module to roughly 

estimate a reasonable searching region for train detection. This would largely reduce the 

computation effort of searching the whole frame, and thus increase the detection speed. 

The Track Detection Module can also provide extra information that helps securing the 

train detection results such as the vanishing line position, which is an estimated position 

where the left and right track intersects. The LRV Detection Module also feeds back the 

Railway Module with the detection result, and the Railway Module would deactivate itself 

if it receives continuous successful train detection, so as to save computation power. 

After conducting LRV detection, the LRV Detection Module would pass the results to 

Distance Estimation Module where the distance of the front train is calculated based on 

the received bounding box size. The Distance Estimation Module also feeds back with the 

records of the distance to the Train Detection Module, and the LRV Detection Module 

would decide whether to call the verification process based on the distance. Normally the 

verification would be conducted when the distance is decreasing to 20 meters, which is 

also the criterion of releasing critical warnings to the driver. 

3.1.2 Railway Detection 

Railway Detection is the first processing module in the LRV collision warning system, 

and the major objective is to provide a reliable detection ROI. Thus, the most essential 

criteria for railway detection is its robustness to various environmental conditions as well 

as low computational complexity. In order to meet such requirement, a novel railway 

extraction algorithm using angle alignment measure techniques has been proposed by our 

group. It is a layer wised railway detection algorithm, where a railway pair is extrapolated 

using angle alignment measure for each layer from the bottom to up until terminated. 
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The railway detection algorithm can be divided into two sections: the bottom layer railway 

detection section, and the iterative upper-layer railway extrapolation. The bottom layer 

railway detection divides the bottom layer into blocks, and uses HOG to identify the initial 

rail-area blocks that have obvious dominant gradients. Then it performs Hough transform 

to search for straight lines. Considering the color distribution for upper and lower regions 

of the railway line should be similar, the straight lines with inconsistent color histograms 

would then be eliminated. Finally, an optimal line-pair will be identified with symmetrical 

considerations. No railway is detected if no optimal line pair is found. After finding the 

railway lines for the bottom layer, the optimal line pairs for each upper layer will be 

extrapolated sequentially. A line is considered to be potential railway line if it is a well-

connected line. A line is identified as well-connected line if the gradient orientation of 

each pixel along this line is equal to the slope of the line. The iterative upper layer railway 

extrapolation is to extrapolate the most well-connected line for each upper layer, until no 

well-connected lines could be found. 

3.1.3 Light-rail Train Detection 

The LRV detection module is the core to the LRV collision warning system. The challenge 

lies in dealing with severe variation in the vehicle appearance due to various illumination 

and weather conditions and the constant changing of distances between the front vehicle 

and the camera. In order to sustain a robust and highly reliable performance, we adopt a 

multiple feature fusion approach in detection-level design, and a hierarchical modular 

structure approach in system-level design. The features we use include structural features 

such as edges and corners, and color information such as color histogram in HSV space, 

and also special patterns commonly possessed by vehicles, such as shadow. We also 

design a hierarchical structure for efficiently combining sub-modules (such as Rough 

Search Module, Far-distance Detection, Night-time Detection, Tracking, etc.) and a 

buffering mechanism that allows the system shift between modules if the current detection 

is not convincing. These designs allow our system to achieve extremely high robustness 

with zero missing detections through field tests. However, the system design is not the 

focus of this paper, and therefore will not be further explained in detail. 

3.1.4 Distance Estimation 
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Distance estimation in our system is measured using geometric information. As shown in 

Figure 13, the blue dot represents the camera, with a height of HC measured from the floor. 

D is the horizontal distance between the camera and the real front LRV. H is the height of 

the LRV. The camera has a focal length of f, and a CMOS pixel ratio of d. AB is the image 

plane of the camera. x is the distance between the image plane bottom to the floor. h is the 

LRV height in pixels on the image plane, and yb is the y coordinate of the LRV bottom to 

the bottom-left corner of the image plane. According to the similar triangle theorem, we 

can develop the following sets of equations. 
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Equations above shows two different approaches to calculate the distance D. For each 

frame, if the LRV is detected, two estimated distances will be calculated using the above 

approaches. If the two estimates are close to each other, the LRV bounding box is believed 

to be well fit and the distance is accurate. Otherwise the Distance Estimation Module will 

send a message to the LRV Detection Module to ask for a more accurate bounding box 

result. 

 

Figure 13 Geometric relationship of camera calibration, image plane, object height and 

distance 
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3.2 Framework of the Light-rail Vehicle Detection 

The LRV Detection Module aims at detecting and tracking four types light rail vehicles 

for each video-captured frame. The module outputs a Boolean value indicating the 

existence of train for current frame, and also the exact bounding box location if the LRV 

is detected. The objective is to design and implement a real-time application that performs 

accurate train detection with multiple train types under a variety of environmental 

conditions. In order to fulfill the requirement, there are several principles we should follow 

when designing the detection framework. The Train Detection Module should be able to: 

1. Perform successful detection when there is train in the front 

2. Provide accurate bounding box of the train if detection is made (otherwise it will 

influence the accuracy of the distance estimation) 

3. Keep tracking of the train once successful detection has been made 

4. Ensure no missed detection of trains closer than 20m 

5. Try not to make false detection when there is no train in the front 

6. Verify the detection result as the train comes closer and eliminate false results even if 

the detection was wrong at the first time 

7. Finish processing in a limited time 

The difficulty of fulfilling the above requirements lies in dealing with complex situations 

caused by the change of train appearance, weather condition, illumination, or background 

condition, etc. 

For example, the appearance of the train changes greatly as the distance decreases from 

far to near. When the distance is far, the train is complete with left, top, right and bottom 

boundaries distinguishable from the background. It also has a pair of long railway lines 

that could help locate the train position. All four types of trains process similar edge 

patterns at the distance, so they could share the same detection method. However, because 

of the distance, the feature of the train is not clear and thus not reliable. While at a closer 

distance, normally when the train is less than 15 meters away, the appearance starts to 

change. There is no more complete shape and even no top and bottom boundaries when 

the train gets closer. The railway information would be little or null. However the features 

of each type of train become clear and contain more information such as colour, corner, 
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edge, etc. Different train type will have different set of features, and will not share a 

common detection method. 

Another example would be the change of color and intensity caused by different 

illumination condition. The figures shown below are all red trains, but in different 

environmental conditions varying from dark night, dim indoor lightning, daylight with 

shadow casting on, to bright sunlight. The red and blue color of each train is very different 

from one another. This variation would greatly influence the performance of detecting 

methods using color as their main object feature. 

In order to overcome the difficulties and achieve the objectives discussed above, the Train 

Detection Module is divided into different functional blocks, each aiming at one detection 

problem in one specific case. The connection of each block and the overall decision 

making is of great importance for the whole module to perform fluent and reliable 

detection. 

3.2.1 The Overall Framework 

A number of different functional modules are designed in order to handle the varieties in 

scaling and appearance of the train. For example, the Far-train Detection module aims at 

recognizing any trains at a distance from 40m to 15m, while the Near-train Detection 

modules detect trains closer than 15m. The trains in our task could be roughly divided into 

two types according to their body color, and we believe it is more efficient to recognize 

them with different sets of features, and thus two near-train detection modules are 

designed. All functional modules are arranged in a hierarchical structure to perform the 

detection and tracking of the trains, as shown in Figure 14 and Figure 15. 

The first-time detection (Figure 14) starts after the railway detection. By examining the 

railway detection result, the system could have a rough understanding of whether it is a 

far-train case or near-train case, and corresponding detection modules will be applied. 

Once the train is detected, the detection record will be kept and the tracking mode will be 

activated. Note that although the detection relies on the railway detection result, the 

system can still function normally without the railway information. In such case, a Shadow 

Detection module is performed to quickly scan the frame and tell the system whether or 
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not a possible train exists. If yes, the train detection module can be applied to perform 

finer detection within the detected Region of Interest (ROI), instead of over the whole 

frame in a sliding window approach, which will be extremely time consuming. 

The Shadow Detection module is an important module at the early stage of the hierarchy. 

The major function of this module is to detect a small shadow-like area at the bumper 

region of the train, which we believe is a quite discriminative feature indicating the 

existence of a train. The advantage of this module is its fast detecting speed. It rejects most 

of the locations in the ROI that are unlikely to have a train, while keeps a few locations 

that could possibly have a train by very limited computation efforts. Thus, the Shadow 

Detection module is adopted in the detection hierarchy, prior to any other finer detection 

modules. (The flow diagram in Figure 14 does not show this module before the Near-train 

Detection modules because shadow detection function has been embedded into near-train 

detection modules.) If no railway detected, or the detection result does not seem 

reasonable, another shadow detection module will be triggered, which has the same 

functionality with the previously described one, but instead of conducting patch detection 

within the region of interest, it performs detection from the bottom of the entire frame. 
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ROI Size 
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Detected?

Far-train Detection

Detected?

Type 1 Near-train 

Detection

Detected?

Type 2 Near-train 
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Detected?
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Far-train Detection
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END

END

END

Record Down 

Detection Result

Record Down 

Detection Result

Y

N

Y

Y

Y
Y

Y

Y

N

N
N

N
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Figure 14 Flow Diagram of First-time Detection 
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After a successful detection, the tracking mode will be automatically activated. Tracking 

systems for far-distant-trains and close-distant-trains are designed separately, and are 

selected according to the detection result. Figure 15 only shows the flow diagram of far-

train tracking system. The Far-train Tracking function that performs object tracking for 

continuous frames is the core function in the system.  

In addition to the core function, we have also added two more groups of functions, forming 

an exceptional case handling scheme and a re-detection buffering scheme that could 

significantly improve the reliability of the whole system. The exceptional handling 

scheme is activated when the tracking result is not trustworthy. We have kept a score for 

each tracking indicating our confidence for the result, and once this score is lower than 

certain threshold, the tracking is regarded as a low-confidence-tracking, and a verification 

function that measures the similarity between the tracking result and the real train will be 

conducted. If the verification test has been passed, the tracking will be continued, and if 

not, the tracking will be regarded as an unsuccessful tracking. The exceptional handling 

scheme can solve the shifting problems in a tracking system. When the tracking algorithm 

is not accurate enough, the tracked object location might be shifted from the real object 

location, and by tracking the shifted object, the error could increase gradually, leading to 

a high probability of losing a track. The exceptional handling scheme prevent such case 

by immediately identifying any low-confidence-tracking, and evaluating the result 

through a set of similarity tests, so that further actions could be taken based on the 

similarity. In addition to solving the shifting problem, the scheme can also reduce the 

number of false positive detections by identifying and rejecting the falsely detected 

backgrounds at the verification stage. 

The re-detection buffering scheme will be activated once the tracking fails at the current 

frame. It is unfair to immediately claim no train found in this frame and reset all results to 

their initial status, especially when we already have a number of successful tracking results 

beforehand, since we believe that the train cannot suddenly disappear. It is reasonable that 

we give the system a chance to re-detect the train while copying the previous tracking 

results. However, the re-detection chance cannot last infinitely, in case there is really no 

trains in the frame. Based on the above considerations, we introduce a re-detection 
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buffering scheme. As long as the number of previously successful detection/tracking 

exceeds certain threshold, we will allow the re-detection. If the train is re-detected, the 

tracking will be continued and the records will be updated as normal. If the re-detection 

fails again, a record of failed detection will be stored. The re-detection will be allowed 

until the number of failed detections exceeds certain limit, and the system will claim no 

train found at that time. The re-detection buffering scheme has greatly reduced the chance 

of missing detections and thus increased the overall accuracy of the whole system. 

Tracking ROI

Tracking 

Successful?

Far-train Tracking

Tracking Score 

> threshold?

Far-train 

Verification

Detected?

Update Record
Nsuccess > 
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Nfail < 
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Far-train Detection

Detected?

Update Record

Reset Record

END

Y

Y

Y

Y

Y

Y

N

N

N

N

N
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Figure 15 Flow Diagram of Tracking 
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Figure 16 Flow Diagram of Transiting Between Modules 

 

 

3.2.2 Modular Design of Vehicle Detection System 

3.2.2.1 Initialization Module 

At the beginning of the Train Detection Module, an initialization is conducted based on 

the railway situation of current frame and the detection results of previous frame to return 

an index indicating the most suitable detecting method for this frame, the corresponding 

functional block is then called to perform the detection. In order to make the illustration 

clear, the initialization is first divided into six cases based on Railway Result, Near-Train 

Record, and Far-Train Record. Each case will then be further explained, and an overall 

initialization flow diagram will be displayed after the explanation.  

 

Figure 17 Initialization (Six cases based on previous detected results) 
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Case 1 and Case 4: 

Both Case 1 and Case 4 have the Near-Train Record, meaning that the train at a close 

distance was successfully detected at previous frame, so the action of this frame is just 

tracking the previous detection result. Since Near-Train Record also stores the train type, 

the initialization result would then be Near Train Tracking of that certain train type. 

Case 2: 

Case 2 has the Railway Result, and the Far-Train Record, and no Near-Train Record. 

Having Far-Train Record means that in the last frame a far-distanced train was detected. 

It is reasonable to follow the record and call the Far Train Tracking block, but in order to 

be more cautious, a simple comparison is made between the Railway Result and the Far-

Train Record beforehand. If the two results match, then the initialization result is Far-

Train Tracking. However if they do not match, then the record is possible to be corrupted 

or the previous detection could be wrong, so it is passed to Case 3 where no Far-Train 

Record is used and the detection purely relies on the Railway Result. 
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Case 3: 

Case 3 does not have Far-Train Record or Near-Train Record but only the Railway Result, 

meaning that Case 3 would be a first-time detection based on the railway situation. The 

decision is made according to the length of the railway pair: if the railway is long, it is 

either the case of no train or far-distanced train, so after a quick rough searching process, 

the detection is either terminates or sent to far train detection; if the railway is short, there 

is likely to be large trains, so the full search method is used. Since we do not know the 

train type yet, so the three type-specific full search methods would take turns to be called.  

Case 2

Compare Far-Train 
Record with the 
Railway Result

Are they 
reasonable?

Far Train Tracking

Case 3

Yes

No

 
 

 

Figure 18 Initialization (Case 2 further explanation) 
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Case 5: 

Case 5 has no Near-Train Record, no Railway Result, but has Far-Train Record. Clearly 

it is in the tracking mode of a far-distanced train. However, there might be the case when 

the train comes too close that far-train-detection method cannot keep tracking. In such 

case the initialization would call the Far-to-Near Train Detection methods instead. 

Case 3

Is the detected 
railway long?

Far Train Detection

Full Search-Red

Full Search-White 
Small Win

Full Search-White 
Large Win

Get Full 
Search Mode

No

Rough Search

Is it a possible 
train?

END

Yes

No

Yes

 
 

Figure 19 Initialization (Case 3 further explanation) 
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Case 6: 

Case 6 has none of the three results, so the only solution left for it is conducting the Full 

Search. Similar to Case 3, the Full Search method for different type of train takes turn to 

be called. 

Case 5

Calculate the Train 
Height

(Train Height > Threshold)
 AND

(Train Height > Last Three 
Height s average)

?

Get the train type from 
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Figure 20 Initialization (Case 5 further explanation) 
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Figure 21 Overall Flow Diagram of Initialization Process 
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3.2.2.2 Shadow Detection 

The purpose of this block is to quickly locate the possible location of the train based on 

the track information provided, and conduct a fast and simple test indicating whether a 

possible train exists. 

There are two observations of the property of a possible train: 1). The bumper is right 

above the end of the track pair. 2). The bumper area has very sharp contrast and 

distinguishable color distribution. Thus, the Rough Search Block tries to use a small 

rectangular area right above the track to estimate the possible existence of the train.  

It first defines an initial searching area based on the tail of the detected track as shown in 

the figure below. The searching area will keep shifting upwards until it returns a true result 

or meets the stopping criteria. The decision of whether this area contains a train is made 

based on the intensity, color and edge information within the searching block. 

By observation, the most discriminative part is not the shadow underneath the train. 

Instead, the rectangular patch that contains the transition boundary of the train-body to the 

train-bumper (Figure 22 (e)) provides much more information of the existence of the train, 

and should thus be used as the “shadow” patch to be recognized in the shadow recognition 

process. 
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Based on the above observations, we propose a multiple feature based cascaded detector 

that can effectively and efficiently detect the shadow patch of the train in various scaling, 

illumination, and weather conditions. We also propose a decision tree based shadow patch 

detector that further improves the detecting accuracy and speed. Subsequently we propose 

a modified decision tree classifier that takes each binary node as a weak classifier. The 

final prediction and confidence measures are obtained by combining all weak classifier 

predictions. 

High reliability is essential for any vehicle detection system. A reliable detection system 

should perform almost no missing detections, and at the same time as few false alarms as 

possible. This requirement is the same for shadow detection, since it acts as an early stage 

coarse detection module in the whole train detection system. From the sample shadow 

patches in Figure 22(e) we can see that due to the non-ideal illumination, the influence 

from tail lights, and the difference of rear-view appearance, and the intra class variation 

of the shadow patches are high, making it hard to be modeled by one or two simple 

features and thresholds. More complex models, however, will make the detection slow, 

especially when the classification is performed at each candidate location as the detector 

slides over the entire frame. Observing that 1) the number of non-shadow patches is much 

larger than shadow patches in each frame, and 2) some non-shadow patches can be easily 

differentiated while some are more difficult, it is our strategy to design a cascade detection 

Figure 22 Train shadow under different environment ((a) uneven illumination (b)complex texture 

(c) strong tail-light (d) night and (e) example shadow patches) 

  

 

(a) (c) 

  
(b) (d) (e) 
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structure with multiple stages. Each stage, representing a different level of differentiation 

difficulty, rejects a certain amount of non-shadow patches, and only the testing patch that 

passes all tests will be classified as positive, as shown in Figure 23 

Among all patches being tested, most of the non-shadow patches will be rejected by the 

first stage, so no further classification is needed, and thus the computation time will be 

greatly reduced. The features used for classifying shadow/non-shadow patches should 

have the most obvious and discriminative features. Observing that all true shadow patches 

have sharp horizontal edges, the feature used for stage 1 classifier is the histogram of 

oriented gradients. All background patches without strong horizontal edges are rejected at 

this stage. However, non-shadow patches that have horizontal edges cannot be 

differentiated. They will be tested in stage 2 using another set of features. Color is an 

important piece of information, and the histogram of Hue value in the HSV color space 

can be used as the features for this stage. Still, there could be background patches that 

have similar edge and color distribution. We designed a new feature called line-contrast 

for discriminating such negative patches at the third stage. It compares the average 

intensity differences between horizontal lines, since most lines above the bumper have 

larger intensity values as compared with lines below the bumper. Different from 

comparing two single neighboring lines, this feature compares the intensity difference of 

one line with a bunch of contiguous lines below it. This approach increases the 

discrimination power of the line contrast feature since shadow patches always contain 

multiple low-intensity lines. 
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The classifier used in each stage uses some linear decision rules with weights and 

thresholds manually designed and tuned by experiments and observations. 

3.2.2.3 Far Train Detection Module 

Far Train Detection aims at detecting and localizing the train at far distance (>15m). The 

main detecting method is to compare the similarity between the HOG features of the 

testing patches and the HOG of 23 templates stored in advance. After a successful 

detection, the following detections will simplify the detecting process by selecting fewer 

testing patches and templates based on previous detection result, and thus greatly reduce 

the computation time. Still, false alarm cases might exist if the background has very 

Figure 23 flow diagram of proposed 3-stage-cascade shadow detector, and illustration of 

negative patches rejected by each stage 
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similar edge pattern with the train, and a further verification test is needed to ensure the 

accuracy of the detection. This is why the Far Train Verification is conducted every time 

when the train distance approaches 20m. 

 

As shown in Figure 24, The testing patch is divided into 9 cells, each cell containing one 

HOG vector. The HOG feature of this patch is built by concatenating 9 vectors together, 

denoted as 
HOG f

V
−

. 

 

The HOG feature of each template has already been calculated and stored in the program 

since start ( 1HOG t
V

− , 2HOG t
V

− ,etc.), and is now compared with the HOG of the testing patch. 

fHOGV −



Figure 24 HOG feature extraction of testing patch 

1HOG t
V

− 2HOG t
V

− 3HOG t
V

− HOG f
V

−

Figure 25 Comparing HOG features extracted from testing patch with HOG features 

from templates 
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The sum of squared differences (SSD) between two HOG features is calculated as the 

similarity measurement. The template is matched when the SSD value is smaller than a 

certain threshold, and the best match is defined by the template with the minimum SSD 

value. 

Refinement is still needed after finding the match for the testing patch. The testing patch 

is shifted horizontally and vertically with limited steps, and also resized by enlarging and 

shrinking the patch with one corner fixed each time, forming a group of candidate patches. 

Each candidate patch is compared with the matched template and the one with the least 

sum of squared difference is selected as the object patch. 

 

3.2.2.4 Close-range Train Detection 

The shape of close-distance train is quite different from remote-distance train, and it 

cannot provide the complete framework of the train when distance is too close. However, 

the local features are clearer and more reliable to detect large trains. Unlike the global 

features that treat the train as a whole, the local features focus more on each detailed part 

of the train, and thus some features suitable for one train type may not suit for another 

train type, so according to the type of the train, the Near Train Detection is divided into 

three different detection blocks: Red Train Detection for Phase2 and Phase 3 Trains, White 

  
(a) Resizing  (b) Shifting 

 
Figure 26 Shifting and Resizing the testing patch ((a). resize the patch into smaller and larger 

size with left-lower corner fixed; (b). shift the patch left and right horizontally) 
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Train with Small Window for Phase 4 Trains, and White Train with Large Window for 

Phase 1 Trains. 

Close-range Red LRV detection 

 

Unlike the close-distanced white trains, which have clear boundaries between the window 

and the white train body, the window boundary of the red train is not so obvious, especially 

in the daylight condition, when the window is normally black and the color around the 

window is blue (Figure 27). The intensity difference is always large for white-black or 

red-black comparison, while small for blue-black case as shown in the red train. Even in 

the RGB color space, the difference in B value for these two colors is too small to make 

reliable detection. This observation eliminates the chance of using the window lines as 

local features to detect near trains as used in white train cases. However, the red train still 

has an important feature: it is Red. It is quite rare to find such a large texture-less red area 

in the background or in other types of trains. In addition to this, the boundary of the upper-

blue and lower-red areas, and the bumper line of the train are also good features defining 

a near red train. 

(a) White Train 

(Large Window)

(b) White Train 

(Small Window)
(c) Red Train

Figure 27 Window features of white and red trains at close distance 
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Firstly, this module searches for a red, texture-less box. For each pixel in the testing box, 

we compute its horizontal and vertical differences with neighboring pixels: 

)1,(),( +−= yxIyxIdy ),1(),( yxIyxIdx +−= . The average is computed afterwards:  

= dx
N

DX
1

, = dy
N

DY
1

. The box with both DX and DY smaller than certain threshold is 

considered as a texture-less box. A pixel is defined as “red” when its color angle, 

computed by RGB values, lies in some pre-defined limit, and the whole testing box is 

considered as red if more than 60% of its pixels are “red” pixels. 

Then it starts to search for the bumper below the box. We define the horizontal line 

contrast as average R channel intensity of green line minus the average R channel intensity 

of the blue line (multiple blue lines are involved while only one green line is involved). 

Then we search for a horizontal line giving the maximum contrast within the ROI, and 

this line is thus considered as the bumper line.  

Then Search for the blue line. Although there are two types of red trains, one with grey 

band between blue and red area while one without, it is interesting that the blue line of 

both trains can be found using the same method. This is because the difference between 

(a) Searching texture-less box (b) Searching bumper line

(c) Searching blue line (d) Searching blue line

Figure 28 Illustration of Near Red Train detection 
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grey-blue and the difference between red-blue are both large in the R channel, and this is 

also the reason we use R channel pixel values more frequent than pixel intensity. First, we 

use a linear equation to predict the position of the blue line based on the bumper position. 

Then we search for the blue line around the predicted region with the maximum contrast 

described in bumper detection. 

Close-range White Trains 

There are altogether four types of trains: Phase 2 and Phase 3 trains are red trains, sharing 

a same detecting algorithm; while Phase 1 and Phase 4 trains are all white trains, but with 

separate detecting functions. The main reason why we use different methods is the 

windows of the train look very differently for the two types.  

As shown in Figure 29, the window of Phase 1 train is wider than Phase 4 train. This 

would cause trouble if we use the window width estimating the train boundary, or use the 

bumper position estimating the window region. Another difference lies in appearance of 

the corner. Phase 1 train has round corners while corners of Phase 4 train are right angle. 

Finally, Phase 1 train shows a thicker black band around the window when the light inside 

the train is on, while the black band of Phase 4 train is much thinner. These differences in 

windows matter because window is a key feature for white train detection at close distance, 

just like color red being the key feature for red train detection. Thus it is necessary and 

straightforward separating white train detection into detection for trains with small 

window and trains with large window. 

(a) Phase 1 (no light) (b) Phase 1 (with light) (c) Phase 4 (no light) (d) Phase 4 (with light)

Figure 29 Window features of Phase 1 and Phase 4 trains with different lighting condition 
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The first several steps of White Train (with Small Window) Detection are quite similar to 

the ones of red train detection, since boxes of texture-less area and clear bumper line are 

common features shared with all types of close-range trains. The only difference is the 

pixels in the box mostly being white pixels. The window is then searched within a region 

of interest linearly predicted by the position of the bumper line. Three boundaries 

including left, right and bottom are searched in order to make sure it is the pattern of 

window detected, other than some random vertical lines generated by some background. 

Finally the bounding box of the whole train is estimated by the position and the size of the 

window. 

The detailed detection algorithm is described as follows: 

 

1. Searching for a white, texture-less box 

2. Searching for the bumper line 

3. (Searching method is the same as in Red Train Detection, results shown in Figure 

30(a).) 

4. Searching for the bottom line of the window (Figure 30(a)) 

5. The searching region is estimated by the bumper line position. Similar to the bumper 

line detection, the line with the maximum horizontal contrast is regarded as the 

window bottom line. 

6. Searching for the left and right boundary of the window 

x

y

(a) Texture-less box and bumper line (b) Left and right window boundaries
(c) Relationship between window width 

and window-bumper width

Figure 30 Illustration of Near Train detection for white trains with small window 
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The searching method is still finding lines with maximum contrast. However, this time 

the vertical contrast is computed and compared. After finding a candidate boundary line, 

some more features are examined to avoid false detection from texture-rich backgrounds. 

First, the pixel-pair difference is tested for two lines left and right to the candidate 

boundary, correspondently marked in yellow and green in Figure 30(b). If the candidate 

boundary passes this test, a thick rectangular region parallel to the boundary is then 

examined. The region with variance smaller enough and white pixels more than 60% is 

considered as a valid white region. Only the candidate boundary that passes the above two 

tests is regarded as the window boundary of the white train. 

Verifying the train with the window width and bumper-window distance (Figure 30(c)) 

After detecting the window, the width of the window (denoted as x) and the distance 

between the bumper and the window bottom line (denoted as y) are calculated, and the 

relationship between x and y is tested to see if it satisfy the relationship of a possible Phase 

4 train. Finally, the entire bounding box of the train is estimated based on x and y values. 

White Train with Large Window 

As described before, the window of this type of train has many unique features. The band 

around the boundary of the window is black and thick, making it a reliable and 

recognizable feature for any illumination conditions with trains at any distance closer than 

20m. The black band consists of two vertical straight lines, one horizontal straight line, 

and two round corners. Based on this observation, the feature detector is designed as a 

five-cell, window-shaped polygon, shown in Figure 31. 

 

0

123

4

Figure 31 5-cell HOG window detector of white trains with large window 

  



46 

 

 

Each cell contains a 9-bins’ histogram of edge orientations. The testing patch with 

histograms in all five cells satisfying the matching criteria is considered as the real window. 

The matching criteria are illustrated as follows: 

Step1: Searching for the right portion of the window 

The right portion is considered to be matched if Cell 0 contains strong vertical edge; Cell 

2 contains strong horizontal edge; While Cell 1 contains equally distributed 20°-40°,40°-

60°, and 60°-80° edges. 

Step2: Searching for the left portion of the window.  

After the right portion is found, the 5-cell polygon is extended to the left to search for 

positions that match with the left-window criteria. The left portion of the window is 

considered to be matched if Cell 4 contains strong vertical edge; Horizontal edge 

dominates Cell 2; And Cell 1 contains equally distributed 100°-120°,120°-140°, and 

140°-160° edges. 

The way of searching the candidate 5-cell-polygon patch includes an initial search of a set 

of resized polygons to find a rough position of the candidate patch (Figure 33 (a)), a 

refinement search of a set of vertically shifted polygons to further secure the position of 

the right window portion (Figure 33 (b)), and a final search of left and right extended 

polygons to find the left portion of the window (Figure 33 (c)). 

(a) Searching for right portion (b) Searching for left portion

Figure 32 Search scheme for white trains with large window 
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3.2.2.5 Buffering Mechanism 

Imagine a situation where we already have 100 successful detection of the train in front 

of us. However, due to some reason (probably a sudden change in illumination, or a large 

movement of the target object), we cannot detect the train in the 101th frame and neither 

can we quickly regain the detection. Then, at least in a certain period, we lose the detection. 

The buffering mechanism is thus introduced into our system to avoid such situation. It 

counts the number of successful detection made previously. Once the tracker fails at 

detecting the object, the buffering mechanism would give the tracker a chance to copy 

previous detection results while keep trying to regain the detection until it reaches the 

buffering allowance. 

The mechanism is introduced into all tracking methods including Far Train Tracking, Near 

Train Tracking-Red, Near Train Tracking-White Small Win and Near Train Tracking-

Large Win. Here only the Near Train Tracking for Red Train is taken as an example. There 

are several counters important to the flow of the mechanism: 

1. successful count (stores the number of previous successful detections, and will be reset 

to zero once the detection fails) 

2. buffering count (the times of allowing current frame to copy the results from previous 

frames) 

3. failing count (the number of continuous failing detections, reset to zero when 

successful detection is made) 

 

(a) Initial Search (b) Refinement Search (c) Final Search

Figure 33 Full Searching steps for detection of white trains with large window 



48 

 

 

Block-Switching Mechanism 

After initialization, a function block is assigned to perform the detection. However, the 

initialization could be wrong and the assigned method may not be the most suitable 

method for this situation. Thus, switching between blocks is needed. Block-switching 

mechanism is embedded in many detection processes. In fact, the example in the buffering 

mechanism itself contains a block-switching function when the detection switches from 

Near Train Tracking to Far Train Tracking under certain circumstances (Figure 34). Here 

is another example of switching between Far Train Tracking and Far Train Verification. 

START

Near-Train Tracking (Red)

Detected?

Successful Count > threshold AND 
Buffering Count < threshold

?

Train Top s y-coordinate
 > threshold?

Failing Count < threshold?

Update Near-Train Record
Update Train Detection Record

Successful Count ++
Reset Buffering Count

Reset Failing Count

Yes

No

Yes

No

No

Yes END

Reset Near-Train Record
Reset Train Detection Record

Reset Successful Count
Reset Buffering Count

Reset Failing Count

No

Yes

Copy Previous Near-Train Record
Copy Previous Train Detection Record

Buffering Count++

Reset Near-Train Record
Reset Train Detection Record

Reset Successful Count
Reset Buffering Count

Failing Count ++
Add a flag for next frame s 

initialization

END

Far-Train Tracking

END

END

1. Enough successful detection before this frame
2. Regard this frame as detected, and copy the 

last detection s result
3. increase the buffering count (we ll stop copying 

if the buffering count is too large)

The train is not  tall  enough and  
probably the train is still at a far 

distance, so we pass it to far-train 
tracking function

Regard as not detected, reset all train 
results, but still let next frame initialize 
to Near-Train Tracking (Red) function

 
 

Figure 34  Near Train Tracking for Red Train with Buffering Mechanism 
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Far-Train Detection/Tracking

Detected?

Previous distance < 21m
OR

Train height > 70 pixel?

Far-Train Verification

Similarity Score > 
threshold?

Update Far-Train Record
Update Train Detection Result

Successful Count ++

END

Reset Far-Train Record
Reset Train Detection Result

Reset Successful Count
END

Yes

Yes

Yes

No

No

No

 
 

 

Figure 35 Block-switching mechanisms for Far Train Detection and Far Train Verification 
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 Enhancing System Performance 

4.1 Far Train Verification Module 

4.1.1 Introduction 

Sometimes the background contains very similar edge patterns to the train. For example, 

in the indoor condition where the ceiling, floor, and the pillars construct very sharp 

horizontal and vertical edges, the HOG feature of such area will have SSD small enough 

to be called a match with one of the templates, and thus false detection would occur. In 

order to solve such problems, the “Far Train Verification Block” is introduced. This block 

aims at filtering out false detections by testing local features of the detected patch.  

4.1.2 Feature Extraction 

We select a set of features helpful to distinguish positive and negative samples to form a 

similarity test. The similarity test includes the following features: The difference between 

the height estimated from vanishing line and the height detected (larger difference 

indicating less possibility to be a train); the maximum contrast we obtained when finding 

the bumper; the ratio of valid pixel pairs from two lines above and below the bumper; the 

average difference (absolute value) of two lines above and below the bumper; the 

existence of smooth rectangular blocks (either red or white) above the bumper; and the 

pixel intensity variance (smoothness measurement score) of that block. 

4.1.2.1 Edge 

One obvious feature is the bumper line. A genuine train has a distinguishable bumper line 

where pixels below it are black and pixels above it are either red or white. Both red and 

white pixels have a large R value compared with black pixels in the RGB color format, so 

a possible solution would be comparing the R value differences between pixels above the 

bumper line and the pixels below. 
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Figure 36 illustrates the position of three lines. The line marked in pink denotes the 

bumper line, and two parallel green lines denote the lines above and below the bumper. 

The pixel on the upper green line is denoted as upper_pixel, and the pixel right below this 

upper_pixel on the lower green line is denoted as lower_pixel. The upper_pixel and its 

corresponding lower_pixel define a pixel pair, and the difference of this pixel pair is 

defined as R(upper-pixel)-R(lower pixel). The pixel pair with a difference larger than 

certain threshold is called a valid pixel pair. The idea of testing the bumper line feature is 

to calculate the ratio of valid pixel pairs over the total number of pixel pairs on this bumper 

line. Normally a ratio larger than 50% is considered as a pass on this feature test. Some 

false detected background patches like Figure 37 (a) and (b) are successfully eliminated 

using this test. 

 

Figure 36 Bumper line (pink) and lines above and below (green) the bumper line 

Figure 37 Testing valid pixel-pair ratio for falsely detected background and genuine train 
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However, an important question is then asked: Will this test affect the detection of the 

genuine train? Or in other words, can all genuine trains pass this test? A negative example 

would be the red train shown in Figure 37(c), where the tail of the train is casted inside 

the shadow, leaving the object to be detect very dark. In fact, the average pixel pair 

difference in this case is only 35, making almost all pixel pairs non-valid pixel pair. The 

genuine train thus fails the test. One solution is to compare relative difference instead of 

absolute difference. The new difference is defined as
( ) ( )

( )

R upper pixel R lower pixel

R upper pixel

−
. With 

this change, the feature test could filter out most falsely detected background patches 

without affecting the detection of real trains. 

4.1.2.2 Texture-less Rectangle 

Unfortunately, the bumper line feature test is not useful for all false detection cases. The 

examples on Figure 38shows a common situation when the light and shadow accidentally 

form a perfect bumper line that passes the above test without any difficulty. This forces 

us to find another feature distinguishable to the genuine train. By observation, there is 

always a smooth rectangular area without any texture right above the bumper on the 

genuine train, while most false detected backgrounds contain complex textures. Thus, the 

solution is searching around the bumper line for a pre-defined rectangular area with 

horizontal and vertical variance small enough to be regarded as texture-less. We can also 

examine the color of the detected area, since it can only be red or white for a genuine train. 

However, the color is always sensitive to environmental changes, and is therefore to be 

treated more carefully. Note that the smooth rectangular area can only be found when the 

train is close enough, otherwise the rectangular size would be too big for a far-distanced 

train, and that is why we only activate this Far Train Verification process when the train 

distance is around 20 meters. 
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4.1.3 Similarity Test 

Similar to the above two features; we select a set of features helpful to distinguish positive 

and negative samples to form a similarity test. The similarity test includes the following 

features: The difference between the height estimated from vanishing line and the height 

detected (larger difference → less possible to be a train). The maximum contrast we 

obtained when finding the bumper. The ratio of valid pixel pairs from two lines above and 

below the bumper. The average difference (absolute value) of two lines above and below 

the bumper. The existence of smooth rectangular blocks (either red or white) above the 

bumper. The pixel intensity variance (smoothness measurement score) of that block. The 

detailed flow diagram of extracting those features is shown as below. Figure 39 shows the 

test to extract the difference of detected height and estimated height. The estimated height 

is determined empirically. This feature is useful because false detections often occurs due 

to similar patterns from buildings or sky bridges, where the estimated height would differ 

much from the detected height. Figure 40 shows test to find valid bumper and the edge-

related features described in 4.1.2.1.Figure 41 shows the test to check the smooth and 

texture-less area as described in 4.1.2.2. 

Figure 38 Testing texture-less area above bumper for falsely detected background patches 
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Test 1: The Difference of Detected Height and Estimated Height

EstimateHeight = 

2.087 * (Bottom-VanishingLine)

HeightDifference = 
|| DetectedHeight – EstimatedHeight||

Score 1:
HeightDiff

 
Figure 39 The difference of detected height and estimated height 

 

Test 2: Finding & Testing the Bumper

START

Has Bumper?

Estimate Searching Bumper 
ROI According to Train 

Record

Estimate Searching Bumper 
ROI According to Bumper 

Position

Find the Bumper

Check whether it is a 
valid bumper

Score 2: MaxContrast

Score 3: ValidPixelPairRatio

Score 4: AveragePairDiff

 
Figure 40 Finding and testing the bumper 
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Test 3: Checking Smooth Area

Define a Searching ROI According to Refined 
Bumper Position and Train Height

Define the Block Size of Smooth Area we are 
searching & the Searching Steps  

(According to train height)

Exceeds the 
Searching ROI?

Calculate the x_variance, 

y_variance, variance, and the 

average R value

X_var<4 && y_var<6 && 
var<15 && average R

>AverageValueOfUpLine?

X_var<7 && y_var<10 && 
var<20 && average R

>AverageValueOfUpLine?

SumOfVariance = 
var_x+var_y+var

SumOfVariance is 
minimum? 

Record the window 
position

Moving the Searching Window by 

Pre-defined Steps

Next Step

N

Count++

Y

N

Y

Y

 
Figure 41 Checking smooth area 
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Next Step Score 5: SmoothCount

Count>0?

Has Recorded 
Window Position?

END

Check the Red and 
White Color Ratio of 

this block 

Score 6: Red Pixel Ratio

Score 7: White Pixel Ratio

Score 8: SumOfVariance
 

Figure 42 Extracting testing features for Far Train Verification 

 

4.2 Close-range Red Train Detection Module 

4.2.1 Introduction 

The Close-range Red Train Detection Module we introduced in Chapter 3 could perform 

good detection of near red train in a comfortable environment. However, it fails at 

generalizing to a variety of environments where the color shifts greatly with different 

illumination conditions. As illustrated in the overview section, the red color on the train 

changes greatly from indoor to outdoor, from day to night, and even from day time with 

bright sunlight, to day time with dark shadow. Below shows a collection of red color areas 

in different situations. We can see the difficulty in defining the color red whatever color 

space is used. Besides the color shift, the average maximum contrast calculated for finding 

the bumper line and the blue line also varies much with different illuminations. For 

example, as shown in Figure 43 and Figure 44, the contrast value is small for indoor or in 

shadow areas, but large under sunlight. Thus setting the threshold high in one case will 

cause missed detection in another case, but decreasing the threshold might also lead to 

false detection. 
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It is always the struggle of designing the testing criteria whether stringent or loose for a 

changing environment. One extreme leads to missed detections, while the other leads to 

false recognition. The solution is to use more features with less strict thresholds, record 

the score of each feature and distinguish the object from backgrounds through carefully 

designed decision rules involving all the features and the scores. 

4.2.2 Feature Extraction 

4.2.2.1 Texture-less Rectangle 

The red train still has an important feature: it is Red. It is quite rare to find such a large 

texture-less red area in the background or in other types of trains. We evaluate the texture-

less by calculating the variance of the intensities of all pixels inside the rectangular region 

R. N is the number of pixels in R. A simpler computation would be the x-variance and y-

variance as defined in the following equation: 

x-variance is the mean difference of horizontal neighboring pixels. 

 
( , ) ( 1, )x I x y I x y = − +

 (13) 

 
var

1
, ( , )x x for all x y R

N
=    (14) 

Figure 43 Example of close-range red trains in different lighting conditions 

Figure 44 Example of red rectangular boxes in different lighting conditions 
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y-variance is the mean difference of vertical neighboring pixels. 

 ( , ) ( , 1)y I x y I x y = − +  (15) 

 
var

1
, ( , )y y for all x y R

N
=    (16) 

Figure 45 shows an example of rectangular boxes and their x-variance and y-variance. It 

clearly shows the left box from background has much higher variance values than the right 

box from the smooth area of  the red LRV. 

 

4.2.2.2 Color 

Due to different illumination conditions under different environments, we define three 

kinds of red colors: The Normal Red, Dark Red, and Indoor Red. Pixels inside the testing 

box are classified according to their RGB and HSV values. For those with hue values 

between 340 and 360, if the R value is larger than 128, it is classified as Normal Red, 

otherwise Dark Red (with different confidence values relating to the R value). For those 

with hue values between 0 to 20, the classification is Indoor Red. Otherwise, the pixel is 

classified as non-red pixel. The final Red Indicator and Red Confidence for the whole box 

is calculated in the following steps. First, each pixel inside the rectangular box is scanned. 

Then each pixel is classified into “red pixels” and “non-red pixels” according to its RGB 

and HSV value. Each pixel is assigned with 2 values: red indicator that indicates the type 

of the red color, and red confidence that indicates how confident we are to classify the 

color to be “red”. Finally, the red indicator and confidence of the whole box can be 

Figure 45 Example of rectangular boxes and their x-variance and y-variance.  
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determined by summing up each pixel’s information. Figure 47 shows examples of red 

indicator and red confidence in different conditions. 

 

 

4.2.2.3 Edge and Line Contrast 

We define the horizontal line contrast as average R channel intensity of green line minus 

the average R channel intensity of the blue line (multiple blue lines are involved while 

only one green line is involved). Then we search for a horizontal line giving the maximum 

contrast within the ROI, and this line is thus considered as the bumper line. Although there 

are two types of red trains, one with grey band between blue and red area while one 

Figure 46 Range of “Red Color” in HSV color plane 

Figure 47 Example of red indicators in different conditions 
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without, it is interesting that the blue line of both trains can be found using the same 

method. This is because the difference between grey-blue and the difference between red-

blue are both large in the R channel, and this is also the reason we use R channel pixel 

values more frequent than pixel intensity. First, we use a linear equation to predict the 

position of the blue line based on the bumper position. Then we search for the blue line 

around the predicted region with the maximum contrast described in bumper detection.

 

 

 

Figure 48 Example of bumper line 

Figure 49 Example of line average and contrast 
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4.2.2.4 Other Features 

Besides the above features, there are also many other features that could be useful to 

differentiate a red train from backgrounds, especially in indoor or night-time conditions. 

Figure 50 shows a complete set of features we use during our searching and classification 

process. Feature 4 is a typical pattern for night-time trains where the train contains very 

bright white-colored lines caused by the reflection of lights from consecutive trains. 

Feature 8 is the tail-light from vehicles at night-time. This is a more discriminative feature 

in dark illuminated conditions where the color and line contrast features might be severely 

influenced. 
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4.2.3 Searching Scheme 

The flow diagram of searching and extracting the above features is shown in Figure 51. 

We divide the entire image or the entire RoI into multiple vertical stripes, and start to 

search for the smooth rectangular region from the bottom of each stripe. If a texture-less 

rectangular box is found, we then check the color of this box, and extract the red indicator 

and the red confidence features. If the ratio of red pixels passes certain threshold, then we 

continue to search for the bumper-line below this rectangular area, and similarly to search 

 

Feature 1: Red Pixel Ratio (the percentage of red pixels 

over the total pixel number in the square) 

Feature 2: Red Indicator (based on the hue value of the 

red pixels, define three types of red: normal red, indoor 

red, and dark red) 

 

Feature 3: Bumper Contrast (the maximum horizontal 

contrast when searching for the bumper) 

Feature 4: Reflection (whether the train contains bright 

white-colored lines caused by the reflection of lights at 

night) 

 

Feature 5: Blue line Contrast (the maximum horizontal 

contrast when searching for the blue line) 

 

Feature 6: Red box Ratio (the percentage of red pixels 

in the red box) 

Feature 7: Red box Position (the aspect ratio of the red 

box) 

 

Feature 8: Train light (whether or not the train has a 

pair of train lights) 

Figure 50 Extracting features for close-range red train 
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the blue-line above this area. If the line contrasts of these two lines are higher than certain 

threshold, then we could locate the boundaries of the entire red box. The features we 

mentioned beforehand have already been extracted during the searching process. Thus, a 

similarity test will be conducted to verify whether the extracted features are good enough 

to describe a close-range red train. If this set of features could pass the similarity test, then 

the search would be terminated, and a valid close-range LRV is detected. Otherwise, we 

will continue searching other texture-less rectangular regions until a set of features that 

passes the similarity test is obtained. Finally, if none of the such set of features could be 

found, then it is safe to say that there is no close-range LRV in this particular frame. 
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4.2.4 Similarity Test 

It is always the struggle of designing the testing criteria whether stringent or loose for a 

changing environment. One extreme leads to missed detections, while the other leads to 

false recognition. The solution is to use more features with less strict thresholds, record 

the score of each feature and distinguish the object from backgrounds through carefully 

designed decision rules involving all the features and the scores. The decision-making 

process based on the extracted features is shown in Figure 52. We set this decision rules 

start

Exceeding 

ROI?

Search for a smooth 

rectangular area

Search for the bumper-

line below this area

Check the color of this area

Search for the blue-line 

above this area

Locate the boundaries 

of the entire red box

Examine the features 

by a similarity test

Pass the test?

Red Train 

Detected

No Train

Not Red

Not Found

Not Found

Red

Found

Found

N

Y

N

Y

Figure 51  Flow diagram of the searching scheme 
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based on the statistical distribution of objects and backgrounds for each feature. For 

example, according to our analysis, the feature “Red Box Location” and “Red Box Ratio” 

could separate the most portion of objects and backgrounds, thus we make it the primary 

feature to test in our decision process. Then for all samples that have passed this test, we 

figure the “Red Pixel Ratio” is the most critical feature separating the rest background 

samples, and thus this would be the feature to be tested in the next level. Similarly, we 

will test the red indicator, the bumper and blue-line contrast and other features 

consequently. 

 
Figure 52 Decision rules of calculating the similarity scores for near red train 
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 Enhancing Performance via Machine 

Learning 

5.1 Shadow Detection via Learning Approach 

The conventional approach of the Shadow Detection Module introduced in Chapter 3 

performs well for most testing frames. However, it misses detection for unseen patch that 

does not fit in the pre-designed rules. We can of course re-design the rules by either adding 

new cases or tuning thresholds, but that requires too much manual work. The weakness of 

the conventional approach lies in 1) not enough cases to represent all possible shadow 

patches, 2) manually tuned thresholds, 3) one mistake in the middle of the cascaded 

structure results in the total failure, and 4) quite complex features. 

The classification of each stage is fast with satisfactory performance. The limitation of 

such rule-based classifiers is the inflexibility. A learning based method, however, could 

save the manual effort by either changing the training dataset or adding more penalty to 

miss detections during training. 

5.1.1 Shadow-patch Detection using Decision Tree 

5.1.2 Binary Test 

Originally the features we choose to represent the shadow patch involve the histogram of 

oriented gradient, the color histogram, and some line contrast based feature. These are 

good and discriminative features, but a little too complex for a relatively simple task like 

classifying a shadow patch. We believe that a set of simple features with the help of 

learning based classifier can already achieve as good performance as the conventional 

method, if not better. 

The feature we use is a simple binary test of the intensity difference between two pixels 

pair with some threshold value. Figure 53 shows an example of pixel pairs on an image 

patch. Assume that 𝑝1 and 𝑝2 are the pixel locations of the pair, the binary test function ℎ 

is then defined by the following equation. 
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5.1.3 Modified Decision Tree 

The advantage of decision tree classifier is its fast speed, since only several binary tests 

are computed during the testing stage. However, it has some limitations. First, the 

prediction is made purely based on the posterior probability of the training data at leaf 

node, and the classifications at non-leaf nodes along the path have not been explicitly used. 

Second, at the training stage, the node stops growing as soon as the examples falling into 

its child node belong to the same class.  However, due to the limited human power on 

labeling samples, not all training dataset is optimal. Some may suffer from insufficient 

number of examples, and some may not be able to cover all hard-to-classify examples. 

Overfitting could be a serious problem for such dataset. In order to increase the 

generalization power, we propose a modified decision tree. 

Thus we propose a modified decision tree classifier where each non-leaf node is regarded 

as a weak classifier, and the overall prediction is the combination of the prediction from 

each weak classifier along the path. Let hj represent the binary test for non-leaf node Sj at 

the jth depth level. Let Cj (Cj {0,1} for binary classification) represent the classification 

result from test hj, and the overall prediction model C* would be C*=Vote(C1, C2,…, Cj,…). 

We adopted the majority vote, as expressed in eqn.1, where c  represents the class label, 

and }1,0{c  for binary classification, and 1)( = if its argument is true and 0 otherwise. 

 
 ==

j

j
c

cCC )(maxarg* 

 (18) 

In addition to the prediction model, we also propose a confidence measurement for the 

classification result, by evaluating the classification accuracy of each binary test.  The 

Figure 53 Example of pixel pairs on an image patch 
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classification accuracy of a binary test hj is defined as the percentage of correct prediction 

evaluated on training data that fall into the parent node. For example, for a training subset 

{(x(k),y(k))|k=1,2,…M} of M examples, where x(k) and y(k) are the image patch and class 

label of the kth example, the classification accuracy j of the binary test jh  is defined in 

(19), where Cj (x
(k)) is the prediction result of testing patch )(kx by the binary test jh . 

 
=

==
M

k

kk

jj yxC
M 1

)()( ))((
1

  (19) 

The overall prediction confidence α(C*) is the summation of the classification accuracy 

of each binary test that provides the correct prediction result in (20).  

 ))(,()( **  ==
j

jj CCifC   (20) 

The overall confidence is affected by 1) the majority prediction from all binary tests, and 

2) the number of binary tests giving that prediction. The idea can be illustrated in Figure 

54. The left path shows the classification of testing shadow patches with low confidence. 

Nodes 0 and 9 classify the patch as negative, while Nodes 4 and 20 predict them as positive. 

The right path shows the classification of a high-confidence patch. All nodes along the 

path classify the patch as positive. 

Another modification is the design of the termination criteria. For a traditional decision 

tree, the node stops further splitting if all examples belong to the same class. However, 

due to the suboptimal selection of training data, for example, insufficient training samples, 

the tree growth might stop quite early, resulting in insufficient binary tests. This could 

result in an over-simplified prediction model. For such situation, we propose to continue 

learning the binary test for the node, until the maximum depth has been reached. 

Continuing learning may not provide further information gain, but can increase the 

number of useful binary tests, and thus greatly increase the discrimination power of the 

prediction model. 
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5.1.4 Experimental Results 

We have evaluated our algorithms on the Hong Kong light railway transportation system 

in both urban and suburban areas. The dataset is built from 175-hour-long videos captured 

by a camera mounted on railway trains running in various environmental conditions 

including bright sunny, cloudy, rainy outdoor conditions and ill-illuminated indoor 

conditions. From all frames, we extracted and annotated 263 frames that contain many 

conditions with ground truth bounding box of the train. The positive shadow patch and 

negative non-shadow patches can be then generated (Table 1). 

We compare the learning-based modules with the conventional approach adopted in our 

early development stage, as described in 3.2.2.2, and we call it the 3-stage-cascade method 

for convenience. We have compared our proposed non-learning 3-stage-cascade method 

and learning based modified DT method with the classical SVM classifier implemented 

by OpenCV package. The feature used for SVM classifier is the HOG with 9 bins. The 

training dataset is the same for SVM classifier and for Modified DT, and the SVM hyper-

parameters are automatically tuned to optimal by cross-validating the training dataset. We 

have also implemented the ORB-RANSAC based shadow detector using OpenCV 

Figure 54 Classifying shadow patches using the proposed modified decision tree 
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package. However, the detection rate is very low due to the severe changes of 

environmental conditions. Table 2 shows the performance comparison of the HOG+SVM, 

the proposed 3-stage-cascade classifier, and the proposed modified decision tree classifier. 

The precision, recall, and F1-score are defined by 
fptp

tp

+
,

fntp

tp

+
,

recallprecision

recallprecision

+

**2
,where 

tp , tn , fp , and fn  denote the true positive, true negative, false positive and false negative 

respectively. Although the classical HOG detector gives higher recall rate than our 

proposed non-learning method, the precision is quite low, meaning that it gives many false 

alarms. This makes sense since the HOG feature is only the feature used for the first stage 

in our 3-stage-cascaded detector, and many non-shadow patches cannot be differentiated 

merely by this feature. The relatively lower recall rate of the 3-stage-cascaded detector is 

due to the suboptimal design of threshold values due to insufficient observations. The 

proposed learning based algorithm further improves the performance with the highest 

recall rate, and also a quite satisfying precision rate. This means that the proposed method 

has the lowest miss rate, which is essential, while a satisfying false alarm rate, which is 

also acceptable since the shadow recognition is only the first stage in a vehicle detection 

system. The F1-score also shows that the modified decision tree algorithm has the best 

performance among the compared methods. 

Table 3 compares the timing of the three methods. Although the 3-stage-cascade classifier 

spends the longest time on classifying positive patch, it spends much less time on negative 

patches. This is due to the cascade architecture, and most negative patches can be rejected 

at the first two stages without further exploration. Note that there are far more negative 

patches than positive patches in each frame, so the average computation time for the 3-

stage-cascade classifier is much less than the HOG+SVM method. The modified decision 

tree spends the least computation time among the three algorithms. In fact, it is 42 times 

faster than the SVM classifier with the HOG feature. 
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Table 1 Number of annotated frame and extracted positive and negative samples for training and 

testing datasets 

Dataset Number of Frames 
Number of +ve 

samples 

Number of 

-ve samples 

Training 140 7700 10980 

Test 1 60 3080 20226 

Test 2 63 3135 23081 

 

 

Table 2 Precision, recall, and F-score of 1) HOG and SVM classifier, 2) our proposed non-

learning 3-stage-cascade classifier, and 3) proposed learning based modified decision tree 

classifier 

Method precision recall F1 score 

SVM 0.35 0.97 0.52 

3-Stage-Cascade 0.88 0.61 0.72 

Modified DT 0.64 0.98 0.78 

 

Table 3 Computation time of 1) HOG and SVM classifier, 2) our proposed non-learning 3-stage-

cascade classifier, and 3) proposed learning based modified decision tree classifier. 

Method 
Time (ms) per +ve 

patch 

Time (ms) per -ve 

patch 
Time (ms) per patch 

HOG+SVM 1.240 1.195 1.200 

3-Stage-Cascade 1.444 0.302 0.397 

Modified DT 0.028 0.028 0.028 
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5.2 Enhancing Detection Module via Deep Learning 

5.2.1 Review of system framework 

 

The objective of the light rail vehicle collision warning system is to provide warning 

signals once the system detects any frontal vehicle inside certain safety distance. A brief 

description of the system framework is shown in Figure 55. The system first performs 

railway detection to extract a pair of railways in the front to provide guidance for vehicle 

detection. Then, according to the detected railways, an LRV detection module with 

various sub-modules using multiple object detection algorithms is performed to detect if 

any light rail vehicle exists inside the region of interest. Once the vehicle is detected, a 

distance estimation module will be activated to estimate the real distance between the 

camera and the front vehicle, according to the geometric relationship of the camera 

calibration and the location of the detected vehicle. 

The LRV detection module is the core to the LRV collision warning system. The challenge 

lies in dealing with severe variation in the vehicle appearance due to various illumination 

and weather conditions and the constant changing of distances between the front vehicle 

and the camera. In order to sustain a robust and highly reliable performance, we adopt a 

Figure 55  Multi-module based LRV detection system (left), LRV detection system with deep 

learning (right) 
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multiple feature fusion approach in detection-level design, and a hierarchical modular 

structure approach in system-level design. The features we use include structural features 

such as edges and corners, and color information such as color histogram in HSV space, 

and also special patterns commonly possessed by vehicles, such as shadow [48]. We also 

design a hierarchical structure for efficiently combining sub-modules (such as Rough 

Search Module, Far-distance Detection, Night-time Detection, Tracking, etc.) and a 

buffering mechanism that allows the system shift between modules if the current detection 

is not convincing [49]. These designs allow our system to achieve extremely high 

robustness with zero missing detections through field tests. However, the system design 

is not the focus of this paper, and therefore will not be further explained in detail. 

5.2.2 Faster RCNN with Adaptive ROI for LRV Detection 

Faster RCNN is a state-of-the-art object detection algorithm. However, as mentioned 

before, Faster RCNN suffers from classifying small objects due to insufficient feature at 

ROI pooling layer. Therefore, we propose an adaptive ROI scheme for LRV detection 

using Faster RCNN. 

The core of our proposed algorithm is a mode selection process based on railway 

information. For frames where the size of potential vehicle is large, ROI mode will not be 

used, and the entire frame will be forwarded as the input to the Faster RCNN detection 

module. For frames where the potential vehicle size is small, the ROI mode is selected, 

and a resized ROI will be forwarded as the input instead. Fig. 1 shows the framework of 

the system. The railway analysis module is responsible for checking the railway detection 

results and determine which mode to select. If ROI mode is selected, an ROI generation 

module followed by a reshaping module will be conducted to create the ROI and resize to 

a proper dimension. The Faster RCNN detection will then be conducted on this resized 

ROI, and the detection results will be projected to their original scale through the 

coordinate mapping process. If no ROI mode is selected, the Faster RCNN detection will 

be conducted on the entire frame. 

5.2.2.1 Railway Analysis 

After studying the railway detection output and the vehicle size, we found there an 

approximately linear relationship between the railway interval, i.e. the distance between 
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the ending pixels of the left and right rail, and the vehicle height. We formulate this 

relationship in (21), where hlrv denotes vehicle height, drail denotes the railway interval, β 

and β0 denote the parameters to be learned by linear regression. A similar linear 

relationship is also valid between the railway interval and the vehicle width, but here we 

choose height, because in our previous multi-module system, the detected height is more 

accurate and thus more reliable for learning. We took over 20000 training examples 

extracted from one video sequence and used the least square estimation defined in (22) to 

solve the linear regression, where β is the vector of the learned parameter β and β0, X and 

y is respectively the railway intervals and vehicle heights of the training samples in matrix 

form. 

 0lrv rail
h d =  +  (21) 

 = T -1 T
β (X X) X y  (22) 

The vehicle height can be estimated using (21) for each frame with a valid railway 

detection result. The detection ROI can thus be defined according to the estimated vehicle 

height and the railway location. The height of the ROI is the vehicle height hlrv plus some 

padding p, and the width is calculated so that the ROI has the same aspect ratio with the 

original frame. The center of the ROI is aligned with the center of the railway, i.e. the 

center of the ending pixels of both rail.  

Note that there is no need to resize every ROI but only the ones that are likely to have 

smaller-sized vehicles, we added a mode selection process based on the railway interval 

drail. Empirically we found the Faster RCNN not good at detecting objects smaller than 50 

pixels, so with certain tolerance we set the height thrseshold hth to be 100, and then 

calculate the railway interval threshold dth according to (21). For the frame where drail < 

dth, the Using ROI Mode would be selected, and an ROI as defined above will be generated 

and resized into the size of the original frame. This resized ROI will then be sent to the 

Faster RCNN detection module. For the frames where no railway has been detected or 

drail ≥ dth, the Not Using ROI Mode will be selected and the whole frame will be sent as 

the input of the Faster RCNN detection module. 

To test the validity of our proposed Adaptive ROI scheme, we studied on a short video 

sequence that contains LRVs from remote distances, i.e. larger than or equal to 50 meters. 
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The LRV height at this interval ranges from 14 to 43 pixels, and averaged at 25.7 pixels. 

These are the sizes that Faster RCNN normally could not perform well, and thus we expect 

our adaptive ROI scheme to conduct enlargement on these cases. We counted the number 

of cases where the LRVs can be resized to an ideal size, and the number of cases where 

the LRVs can be resized to a detectable size. We defined the ideal size as 112 pixels, 

because this is the size where zero padding to the feature map is not required for the ROI 

pooling process in Faster RCNN, if structures described in [46] is adopted. The destination 

size for ROI pooling is 7×7, meaning that any feature map smaller than 7 will be padded 

with zeros, and since there are 4 pooling layers with stride 2 padding 2 during the shared 

convolutional layers, the size of the receptive field from the input image would be 7×16, 

i.e. 112 pixels. We also defined the detectable size as 53 pixels, because empirically we 

found it the minimum size that Faster RCNN can still detect. Table I shows the number 

of frames where the small LRVs are resized to at least the ideal size, and the number of 

frames where LRVs are resized to at least the detectable size. 

Table 4 Resizing Effects on Very Small LRVs Using Adaptive ROI Scheme 

Total Frames Ideal-sized Frames Detectable-sized Frames 

4246 2309 4220 

 

5.2.2.2 LRV Detection with Faster RCNN 

The Faster RCNN structure described in [46] takes 13 convolutional layers and 4 pooling 

layers as shared convolutional layers based on the VGG-16 net [50]. An RPN network for 

region proposal generation and a Fast RCNN network for classification are built on top of 

the last shared layer. For the Fast RCNN network, we suggest to use the default feature 

size, i.e. 7×7, in the ROI-Pooling stage, since we find it extremely useful to keep the 

dimensions for the following fully connected layers in order to take advantage of the 

weights pre-trained from ImageNet dataset. For the RPN network, we adopt the same 

anchor sizes, i.e. 128, 256, and 512 as in the original paper, instead of reducing the sizes 

to adapt for smaller objects, because our targets also contain very large objects, and we 

believe that our proposed algorithm can already solve the small vehicle detection problem 

without modifying the anchor sizes. 
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Transfer learning is important for training small dataset with deep models. Using pre-

trained model from larger dataset as initialization could accelerate the convergence of fine 

tuning. The Faster RCNN is trained via a 2-stage alternating optimization approach. In 

Stage 1, we use the ImageNet pre-trained model to initialize the RPN and Fast RCNN, 

and our LRV dataset for fine-tuning, including all shared layers. In Stage 2, we use the 

Fast RCNN model trained in Stage 1 as initialization and fine-tune all the unshared layers. 

The selection of training dataset is crucial to the performance of the detection. 

Preliminarily, we built a small training dataset consisting of 34 LRV images of different 

size, color, and illumination condition. With the help of transfer learning on pre-trained 

models from a much larger dataset (ImageNet), our model converged quickly after 5000 

iterations in the second stage of the alternating optimization process. Although the model 

performed well on most close-ranged, well-illuminated LRV detections, it failed at 

detecting more challenging situations such as turning, night-time, and remote-ranged 

LRVs. Later we expanded our training dataset into 110 examples including more difficult 

cases. However, we found the performance still unsatisfactory, especially for remote-

distanced LRVs, even when we already used the A-ROI scheme. The critical problem is 

that the previous trainings failed at modeling the pattern on the resized ROI, which is the 

actual input to the network at testing stage, if the Using ROI Mode is activated. Therefore, 

we added more samples of the resized ROI created using the algorithms introduced in 

5.2.2.1to form our final training dataset. Table 5 shows the number of successfully 

detected frames tested on a small video sequence of 327 frames, where an LRV at the exit 

of a tunnel is approached from remote to close distance. 

Table 5 Number of successfully detected frames using different training datasets 

Training Dataset 34 Examples 110 Examples 265 Examples 

Detected Frames 23 79 323 
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5.2.2.3 Coordinate Mapping 

The Faster RCNN detection module will output the probability of having or not having 

the vehicle as well as the bounding box coordinates of the vehicle if detected. However, 

these coordinates are the coordinates relative to the resized ROI, instead of the original 

frame. Therefore, a coordinate mapping mechanism is required to map back the relative 

coordinates regarding to ROI to absolute coordinates regarding to the whole frame. 

Figure 56illustrates the relationship between the absolute coordinates (left) and the 

relative coordinates (right), where the height and width of the original frame is denoted as 

wF and hF, the height and width of the ROI is denoted as wR and hR, and the coordinate of 

the top-left corner of the ROI is denoted by (xR, yR). Assume there is an object inside the 

ROI with its top-left corner denoted as (xo, yo). At the Reshaping ROI Step, the ROI is 

resized into the frame size, and the relative coordinate of its top-left corner (xR
’, yR

’) would 

become (0, 0). The coordinate of the object top-left corner (xo
’, yo

’) relative to the resized 

ROI can then be calculated as in(23). 
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After the Faster RCNN detection, the Coordinate Mapping Step will map the relative 

coordinates (xo
’, yo

’) back to the absolute coordinate (xo, yo), which is just the reverse 

computation of the forward mapping, as described in (24). 

Figure 56 Coordinate mapping for resized ROI (right) back to original frame (left) 
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Similar to the mode selection of the Railway Analysis Module described in5.2.2.1, the 

Coordinate Mapping is only applied to frames that selects Using ROI Mode. The output 

is the final bounding-box if the vehicle is detected, and will be passed to the Distance 

Estimation Module as in our conventional LRV system. 

5.2.3 Experiments 

We have evaluated the detection performances on video sequences collected from a 

monocular camera mounted on the front window of light rail vehicles running in Hong 

Kong. We labeled 55,000 frames out of these 175-hour-long sequences as containing 

LRVs (positive) or only backgrounds (negative) to form our testing dataset. In order to test 

the effectiveness of detection modules on LRVs from different distance levels, we further 

divided our dataset into three categories according to the front vehicle distance. The LRV 

is relatively large and its size normally ranges from 70 to 480 pixels when the distance is 

within 20 meters. It is critical for the system to perform extremely accurate detection and 

provide timely warning signals in such close range to prevent potential collision. The 

requirement is less strict when the distance of the front vehicle ranges from 20 to 60 meters, 

since the distance is larger than the safety distance and the ill-detections are likely to be 

saved as the LRV approaches closer. However, it is still desirable that highly accurate 

detection is achieved from a far distance, which will not only facilitate the closer-range 

detection/tracking, but could also accumulate a long-time detection record and thus 

increase the overall detection confidence from a system design view. And the rest are the 

LRVs at a distance farther than 60 meters, where the vehicle size is smaller than 20 pixels 

and becomes very difficult to recognize even with human eyes. 

We tested the system performances for three different detection modules. The first is the 

non-learning approached detection module with hand-crafted feature fusion techniques as 

described before, specifically, the module includes the Shadow Detection Module, the Far 

Train Detection Module, and the Close-range Train Detection Module described in 3.2.2.2, 

3.2.2.3 and 3.2.2.4 respectively. The second is the Faster RCNN detection module that 

directly applies the trained Faster RCNN network on the entire frame to perform detection. 
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The third module used our proposed Faster RCNN with Adaptive ROI algorithm (FRCNN 

with A-ROI). The Faster RCNN network used in both the second and the third module 

was trained with 265 training samples extracted from videos exclusive to our testing 

videos. 

Table 6, 7, and 8 show the performance comparison of the three detection modules in each 

distance range. The performance is measured by accuracy, precision, recall and F1-score, 

defined as tp fp

tp fp tn fn

+

+ + +
, tp

tp fp+
, tp

tp fn+
, 2* *precision recall

precision recall+
, where tp, tn, fp, fn denote the 

number of true positive, true negative, false positive and false negative. Recall rate reflects 

the situation of missing detections, and higher recall rate indicates fewer missing cases, 

which is crucial for vehicle detection systems, especially at close distance. Precision rate 

reflects situation of false alarms, and it is also important for collision warning system to 

have high precision rate since it should avoid annoying the driver with falsely detected 

cases as much as possible. 

From the result we can see that all three detection modules have achieved very high recall 

and precision rate when the distance is smaller than 20 meters. Note that we only evaluated 

the LRV detection modules frame by frame in this experiment, and some system-level 

techniques such as tracking and buffering mechanisms were disabled. Thus, it is 

understandable that the recall rate is not 100% in this evaluation. In fact, with these 

mechanisms enabled, the system performance of the non-learning approach can already 

achieve zero-missing-detection requirement. Now if we look at the results in 20-60m 

distance range, it is clear that the Faster RCNN detection module has the lowest recall rate. 

This is due to its inability to detect very small objects, and most LRVs at this distance 

have sizes ranging from 20 to 70 pixels. Our proposed Faster RCNN with adaptive ROI 

(FRCNN A-ROI) algorithm introduces a railway-based ROI selection mechanism that 

greatly enlarge the object to be detected, especially for very small vehicles. This is why 

our proposed detection module can achieve a 48% (87.7-38.9)% increase in the recall rate 

compared with the original Faster RCNN detection module. This result shows the 

effectiveness of our proposed algorithm in detecting distant vehicles. Our proposed 

detection module could still detect a small portion of LRVs farther than 60 meters, while 

the other two conventional detection modules can hardly detect any at such far distance. 
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Although detection beyond 60 meters is not our major focus, still it shows the capability 

of our proposed detection module as well as the entire system. Figure 57 shows the 

histogram of recall rate on vehicle distance. It is clear to see that the recall rate for Faster 

RCNN without A-ROI drops severely as the distance becomes larger, while the recall rate 

for Faster RCNN with A-ROI remains a high level until extreme distances. 

 

Table 6 Performance of different detection modules at distance from 0 to 20 m 

Detection Modules 
Distance : 0 - 20 (m) 

Accuracy Precision Recall F1-Score 

Multi-Feature Fusion 0.953 0.995 0.922 0.957 

Faster RCNN 0.966 0.974 0.967 0.97 

FRCNN with A-ROI 0.981 0.998 0.969 0.983 

 

Table 7 Performance of different detection modules at distance from 21 to 60 m 

Detection Modules 
Distance : 21 - 60 (m) 

Accuracy Precision Recall F1-Score 

Multi-Feature Fusion 0.749 0.821 0.725 0.77 

Faster RCNN 0.632 0.941 0.389 0.551 

FRCNN with A-ROI 0.913 0.97 0.877 0.921 

 

Table 8 Performance of different detection modules at distance over 60 m 

Detection Modules 
Distance : over 60 (m) 

Accuracy Precision Recall F1-Score 

Multi-Feature Fusion 0.554 0.016 0.008 0.011 

Faster RCNN 0.686 0.183 0.018 0.033 

FRCNN with A-ROI 0.761 0.757 0.281 0.41 
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Figure 58 shows some example detections using the proposed FRCNN A-ROI algorithm. 

Figures on the right shows the resized ROI estimated from railway. The resized ROIs 

provide larger and thus more discriminative features for Faster RCNN to process in the 

classification stage. Thus the system is able to detect distant vehicles even in ill-

illuminated environments, in which cases the original Faster RCNN without ROI fails to 

detect. 

For computational cost, the Faster RCNN based methods take an average of 0.065 seconds 

per frame, while the conventional method takes an average of 0.005 seconds, which can 

explain the reason of not using deep learning methods at the start of our development. It 

can be further explored as a future topic to reduce the computation of deep learning 

methods in this project. 
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Figure 57 Recall rate comparison for Faster RCNN with and without A-ROI at different 

distance levels 
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Figure 58 Examples of the Faster RCNN LRV Detection result. (Right: LRV detected on 

resized ROI; Left: final detection result after coordinate mapping; Green box: estimated ROI; 

Blue dots: detected railway ends) 



83 

 

 Conclusion 

We have developed a highly reliable Light Rail Vehicle detection system based on 

hierarchical structural design. We design a hierarchical multi-module structure with each 

module adopting various orthogonal or semi-orthogonal features to detect vehicles under 

certain circumstances. We also improve the detection accuracy by designing a verification 

module that checks the low-confident detections by totally different sets of features. These 

studies specifically show how multiple orthogonal features could increase discriminability 

as well as maintain high robustness. The system achieves high performance with no 

missing detections and few false alarms in our field tests. 

We propose a shadow detection step that aims at recognizing the shadow part of the train 

in various environments (including very tough cases) to accelerate the detection process. 

We propose two shadow recognition approaches for railway trains. In our first approach, 

we propose a prioritized feature extraction scheme that examines multiple features such 

as HOG and Color Histogram hierarchically to achieve high robustness as well as preserve 

the fast detecting speed. Experiments show satisfying results. Subsequently we propose a 

second approach using machine learning that automatically learns the features and 

decisions via a modified decision tree classifier with a novel confidence measuring 

scheme. Experiments show further improvements in both accuracy and execution time. 

We also proposed a faster RCNN based detection module for our LRV collision warning 

system. We then further improve the detection performance through a novel Adaptive ROI 

selection scheme based on railway information. Experimental results show high reliability 

in the overall detection accuracy and proves the ability of detecting small vehicles even 

from a very far distance. 

There are a few suggestions for future study. Our system is developed when the training 

samples are scarce. However, as obtaining data becomes more and more accessible, it is 

beneficial to take advantage of the big data environment. An online learning module where 

the system could automatically learn and adjust its detection model from new incoming 

data is suggested. Another suggestion could be a deeper analysis on interpreting and 

applying CNN features. Although we have shown the benefit of applying deep learning 
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models for detection in our research, yet it requires high-performance hardware support, 

which is often not available in inexpensive monocular cameras. Thus it is attractive if the 

CNN features or the filter design in deep learning models could also be used in other 

machine learning algorithms to enhance the performance. 
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