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Abstract 

Computers are commonplace and their ability to understand human intention 

will open up the possibility to provide potential useful assistance to human in many 

applications, including human social interactions and daily human-computer 

interactions. In this thesis, I investigate into these interactions to understand 

human intention. 

For human social interactions, I focus on a common type of social interaction 

in real life, namely, human fight. Prior studies about fight detection are challenged 

by some constraints, including the reliance on costly high level feature recognition, 

like human gestures, actions, or visual words and simulated fight events due to 

dataset availability. I propose two sets of motion analysis-based features to build 

human real fight detection models, without recognizing human gestures or visual 

words. To evaluate, we collect our own human real fight datasets. Experiments 

demonstrate that my models outperform the state-of-the-art counterparts in human 

real fight detection. I further extend my investigation to understand fights with real 

fight intention and simulated fights. The findings suggest that there are 

fundamental differences between human real fights and simulated fights, and my 

motion analysis-based features can effectively distinguish them. State-of-the-art 

data-driven approaches, such as deep learning, are constrained by the limited 

amount of spontaneous human real fight data available. To address this, I propose 

an ensemble-based method for cross-species fight detection by adapting 

knowledge from real animal fight events. Experiments demonstrate that it is 

feasible to build well-performing human real fight detection models via cross-

species learning. 

For daily human-computer interaction tasks, I study the user intention 
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prediction problem. The challenges include limited prescribed tasks, lack of full 

modalities and the need of expensive intrusive devices to capture interaction and 

body signals, especially physiological signals. First, I conduct the study on a 

common but more complex and open-ended daily computer interaction task: web 

search task, to overcome the limitation of studying on simple prescribed tasks. 

Second, I propose two feature representations to encode users’ interaction and 

body signals, including mouse, gaze, head and body motion signals. I combine 

these signal features with historical activity sequences to build effective 

multimodal user intention prediction models. Experiments indicate that the 

proposed features can successfully encode these signals and the model can achieve 

encouraging performance. I further extend the work to the application of detecting 

user slips. Experiments provide evidence about the feasibility of building useful 

intention-based user slips detection models. Third, I would like to capture the 

interaction and body signals with non-intrusive devices, as opposed to 

contemporary physiological signal measurements with expensive intrusive 

devices. Since physiological signals could well indicate human emotions and even 

intentions, measuring them in a non-intrusive and low cost manner would benefit 

human emotion and intention understanding. I propose a physiological mouse and 

build a prototype to non-intrusively measure human heart beat and respiratory rate. 

Experiments illustrate that the mouse can achieve promising performance on 

measuring the two physiological signals. Further experiments also suggest that it 

is feasible to correlate the measured signals to human emotions via the 

physiological mouse prototype.  



 

vi 

 

List of Publications 

[1] Yujun Fu, Hong Va Leong, Grace Ngai, Michael Xuelin Huang, Stephen C.F. 

Chan. 2014. “Physiological Mouse: Towards an Emotion-Aware Mouse,” in 

IEEE International Computer Software and Applications Conference 

Workshops(COMPSACW), 2014, pp. 258–263. 

[2] Eugene Yujun Fu, Hong Va Leong, Grace Ngai, Stephen C.F. Chan. 2015. 

“Automatic Fight Detection Based on Motion Analysis,” in IEEE 

International Symposium on Multimedia (ISM), 2015, pp. 57–60. 

[3] Yujun Fu, Hong Va Leong, Grace Ngai, Stephen C.F. Chan. 2016. “Non-

Intrusive Health-Monitoring Devices,” in Encyclopedia of E-Health and 

Telemedicine, Chapter 55, 2016, pp. 711–721. 

[4] Eugene Yujun Fu, Hong Va Leong, Grace Ngai, Stephen C.F. Chan. 2016. 

“Automatic Fight Detection in Surveillance Videos,” in Proceedings of ACM 

International Conference on Advance in Mobile Computing and MultiMedia, 

2016, pp. 225-234. - Best Student Paper Award 

[5] Yujun Fu, Hong Va Leong, Grace Ngai, Michael Xuelin Huang, Stephen C.F. 

Chan. 2017. “Physiological Mouse: Towards an Emotion-Aware Mouse,” in 

Universal Access in the Information Society, 2017, pp. 365–379. 

[6] Eugene Yujun Fu, Hong Va Leong, Grace Ngai, Stephen C.F. Chan. 2017. 

“Automatic Fight Detection in Surveillance Videos,” in International Journal 

of Pervasive Computing and Communications, 2017, pp. 130-156. 

[7] Eugene Yujun Fu, Tiffany C. K. Kwok, Erin You Wu, Hong Va Leong, and 

Grace Ngai. 2017 “Your Mouse Revals Your Next Activity : Towards 

Predicting User Intention from Mouse Interaction,” in Proceedings of the 



 

vii 

 

IEEE International Computer Software and Applications Conference 

(COMPSAC), 2017, pp. 869-874. 

[8] Eugene Yujun Fu, Michael Xuelin Huang, Hong Va Leong, Grace Ngai. 

2018. “Cross-Species Learning: A Low-Cost Approach to Learning Human 

Fight from Animal Fight,” in Proceedings of ACM Multimedia Conference 

(ACMMM), 2018, pp. 320-327. 

[9] Tiffany C. K. Kwok, Eugene Yujun Fu, Erin You Wu, Michael Xuelin 

Huang, Grace Ngai, and Hong Va Leong. 2018. “Ev’ry Little Movement Has 

a Meaning of Its Own: Using Past Mouse Movements to Predict the Next 

Interaction,” in Proceedings of the 23th International Conference on 

Intelligent User Interfaces (IUI), 2018, pp. 397-401. 

[10] Jun Wang, Eugene Yujun Fu, Grace Ngai, Hong Va Leong. 2019. “Detecting 

Stress from Mouse-Gaze Attraction”. To appear in Proceedings of 

ACM/SIGAPP Symposium on Applied Computing, 2019. 

[11] Jun Wang, Eugene Yujun Fu, Grace Ngai, Hong Va Leong. 2019. 

“Investigating Differences in Gaze and Typing Behavior Across Age Groups 

and Writing Genres”. - Submitted. To appear in Proceedings of the IEEE 

International Computer Software and Applications Conference (COMPSAC), 

2019. 

 

 

 

 

 

 

 



 

viii 

 

Acknowledgements 

I would like to express my sincere gratitude to all the people that have assisted 

me to complete this degree. The following acknowledgments are by no means 

exhaustive, for which I apologize. 

I am extremely grateful and remained indebted to my supervisor, Dr. Hong 

Va Leong, for his full support and expert guidance. Without the encouragement, 

constructive criticism and helpful advice from him, my thesis work would have 

been an overwhelming and frustrating pursuit. 

I would also like to thank the professors in my research group: Dr. Grace 

Ngai, and Dr. Stephen C.F Chan, who patiently support my work through 

instructional discussions, detailed analyses and continuous suggestions. Their 

constant sources of knowledge and inspiration provide invaluable guidance 

through my study.  

I have had great pleasure working with members in CHILab: Dr. Michael 

Xueling Huang, Dr. Jiajia Li, Dr. Yuanyuan Wang, Tiffany Kwok, Jun Wang, You 

Wu, and Andy Tam. The creativity of all my colleagues has been a constant 

inspiration throughout my time. 

Finally, I would like to acknowledge my parents and my wife, who 

unconditionally support me in all my decisions. 

 

 

 

 

 



 

ix 

 

Table of Contents 
Certificate of Originality ..................................................................................... iii 
Abstract ............................................................................................................... iv 
List of Publications ............................................................................................. vi 
Acknowledgements ........................................................................................... viii 
Table of Contents ................................................................................................ ix 
List of Figures ................................................................................................... xiii 
List of Tables .................................................................................................... xvii 

Chapter 1 Introduction ............................................................................ 1 

1.1 Background and Motivation .................................................. 3 

1.1.1 Understanding Human Fight Action and Intention ................ 3 

1.1.2 Understanding User Intention in Daily Computer Tasks ....... 6 

1.1.3 Understanding Interaction and Body Signals ........................ 9 

1.2 Study Overview ................................................................... 11 

1.2.1 Detecting Human Real Fight Action via Motion Analysis .. 12 

1.2.2 Modeling User Intention in Daily Computer Tasks ............. 14 

1.2.3 Monitoring Human Physiological Signals Non-intrusively . 15 

1.3 Thesis Aims and Outline ...................................................... 16 

Chapter 2 Literature Review................................................................. 19 

2.1 Human Fights and Aggressive Behavior Detection ............. 19 

2.2 Animal Action Recognition ................................................. 22 

2.3 Transfer Learning ................................................................. 22 

2.4 User Interaction Intention Prediction ................................... 23 

2.4.1 User Intention Detection ...................................................... 23 

2.4.2 User Errors Detection .......................................................... 26 

2.5 Interaction and Body Signals Analysis ................................ 27 

2.5.1 Interaction Signals ............................................................... 27 

2.5.2 Body Motion Signals ........................................................... 29 



 

x 

 

2.5.3 Physiological Signals ........................................................... 30 

2.6 Summary of Related Works ................................................. 31 

Chapter 3 Automatic Fight Detection via Motion Analysis ................. 33 

3.1 Fight Detection by Motion Analysis .................................... 36 

3.1.1 Optical Flow Images ............................................................ 37 

3.1.2 Extracting Motion Signal Features ...................................... 40 

3.1.3 Extracting Local Motion Features ....................................... 46 

3.2 Constructing Human Real Fight Dataset ............................. 49 

3.3 Evaluating Fight Detection Model in Real Fights ............... 51 

3.3.1 Experiments and Results ...................................................... 51 

3.3.2 Comparison with the State-of-the-Art Approaches .............. 53 

3.4 Discriminating Real Fights from Simulated Fights ............. 55 

3.4.1 Evaluating in Simulated Fights ............................................ 55 

3.4.2 Manual Detection ................................................................. 60 

3.4.3 Machine Detection ............................................................... 62 

3.5 Cross-species Learning in Fight Detection .......................... 63 

3.5.1 Source Datasets .................................................................... 64 

3.5.2 Ensemble-based Adaptation ................................................. 66 

3.5.3 Evaluating Cross-species Learning ...................................... 70 

3.6 Summary .............................................................................. 75 

Chapter 4 Exploring Multi-modalities User Intention Prediction ........ 78 

4.1 User Intention Task .............................................................. 81 

4.2 Extracting Features from Multi-modalities .......................... 83 

4.2.1 Features from Historical Activities ...................................... 83 

4.2.2 Features from Interaction and Body Signals ........................ 86 

4.3 Constructing User Intention Dataset .................................... 95 



 

xi 

 

4.4 Evaluating User Intention Prediction ................................... 96 

4.4.1 Modeling Historical Activity Sequence ............................... 97 

4.4.2 Modeling Individual Interaction and Body Signals ........... 100 

4.4.3 Going towards Multi-modalities ........................................ 107 

4.5 Towards User Slips Detection ............................................ 110 

4.6 Summary ............................................................................ 112 

Chapter 5 Physiological Mouse - Non-intrusive Measurement of 

Physiological Signals ....................................................... 114 

5.1 Physiological Mouse Prototype ......................................... 117 

5.2 Measuring Physiological Signals via Physiological 

Mouse ............................................................................... 119 

5.2.1 Measuring Heart Beat Rate ................................................ 119 

5.2.2 Measuring Respiratory Rate .............................................. 121 

5.3 Evaluating Physiological Signals Computation ................. 125 

5.3.1 Evaluating Heart Beat Rate ................................................ 125 

5.3.2 Evaluating Respiratory Rate .............................................. 128 

5.4 Correlating Physiological Signals with Human Emotions. 134 

5.5 Summary ............................................................................ 142 

Chapter 6 Conclusion and Future Work ............................................. 143 

6.1 Contributions...................................................................... 144 

6.1.1 Detecting Human Real Fight ............................................. 144 

6.1.2 Modeling User Interaction Intention .................................. 145 

6.1.3 Non-intrusively Measuring Physiological Signals............. 145 

6.2 Limitations ......................................................................... 146 

6.3 Future Work ....................................................................... 147 

6.3.1 Detecting Intention to Fight ............................................... 147 



 

xii 

 

6.3.2 Investigating on Diversified Real Tasks ............................ 148 

6.3.3 Applying Physiological Mouse to User Intention 

Prediction ......................................................................... 149 

6.3.4 Integrating with Deep Learning Approaches ..................... 149 

6.4 Other Relevant Contributions ............................................ 150 

6.4.1 Using LSTM for User Intention Prediction ....................... 150 

6.4.2 Using LSTM for Fight Detection ....................................... 151 

6.4.3 Modeling Mouse and Gaze Interaction for Stress 

Detection .......................................................................... 154 

References ........................................................................................................ 155 

 

  



 

xiii 

 

List of Figures 

Figure 1-1 The flow of this thesis. This thesis studies human intention 

understanding in two aspects. In human social interactions, this thesis 

investigates (1) automatic human real fight detection. In human-computer 

interactions, this thesis explores (2) multi-modalities user intention 

prediction and (3) non-intrusive measurement of physiological signals for 

emotion detection. ...................................................................................... 11 

Figure 3-1 Computing optical flow image. (a) original image, (b) optical flow 

image, (c) noise removal ............................................................................ 38 

Figure 3-2 Color code scheme (a) and optical flow image (b). ......................... 39 

Figure 3-3 Color code scheme (a) and light change in optical flow images (b).

.................................................................................................................... 40 

Figure 3-4 Example of motion signal features extraction. ................................. 40 

Figure 3-5 Decision tree for classifying motion types. ...................................... 41 

Figure 3-6 Motion attraction computation.   and   are the motion 

magnitudes of motion region 1 and 2 respectively. While,   is the 

Euclidean distance between the centroids of the two motion regions. ...... 44 

Figure 3-7 Examples of the optical flow image and local motion regions for 

extracting local motion features. ................................................................ 46 

Figure 3-8 Example of fight scenes from human real fights (first row) and 

simulated fights (second row). ................................................................... 49 

Figure 3-9 Example fight scenes from animal fights (first row), hockey fights 

(second row) and action movies (third row). ............................................. 65 

Figure 3-10 System architecture. Our cross-species learning is achieved through 

ensemble learning. Taking local motion features as an example, we 



 

xiv 

 

extracted features from animal fight videos and a small amount of available 

human fight videos for ensemble learning. ................................................ 67 

Figure 3-11 Example to illustrate the cross-species learning. ........................... 69 

Figure 3-12 Performance of adaptation by learning from ensemble classifiers. (a) 

adaptation from animal fights, (b) adaptation from hockey fights, (c) 

adaptation from action movies. .................................................................. 72 

Figure 3-13 The effect of different feature sets on ensemble learning in human 

fight detection when adapting from (a) animal fights, (b) hockey fights, and 

(c) action movies. The proposed LMF features generally outperform the 

state-of-the-art motion features across adaptation from different datasets.

.................................................................................................................... 75 

Figure 4-1 Web search task and the five types of activities ............................... 82 

Figure 4-2 Example of capturing gaze and head movement from a webcam with 

the help of OpenFace toolkit [7]. ............................................................... 88 

Figure 4-3 Example of the body based local motion regions. 1 head region, 2 eye 

region, 3 mouth region, 4 right body region, 5 left body region, 6 right 

shoulder region, and 7 left shoulder region ............................................... 89 

Figure 4-4 Example of an interaction movement and the attributes .................. 90 

Figure 4-5 Mapping interaction movements of (a) mouse, gaze movements, (b) 

head movements, and (c) body motions, to corresponding histogram bin to 

generate histogram-based features (d). ...................................................... 93 

Figure 4-6 Performance of intention prediction by modeling historical activity 

sequence only. ............................................................................................ 98 

Figure 4-7 Performance of intention prediction. Features: SF within the  most 

recent seconds. ......................................................................................... 102 

Figure 4-8 Performance of intention prediction. Features: HF within the  most 



 

xv 

 

recent seconds. ......................................................................................... 103 

Figure 4-9 Results of predicting users’ intention   seconds ahead by using 

different modalities individually. ............................................................. 105 

Figure 4-10 Examples of mouse movements (a), and their corresponding 

histogram representations (b). Longer radius means more movement 

magnitudes occur in that direction, deeper color means movement in that 

direction occur in more recent. The histogram representations can 

distinguish the two movements. ............................................................... 106 

Figure 4-11 Results for predicting users’ intention  seconds ahead with multi-

modalities. ................................................................................................ 108 

Figure 4-12 Results for predicting users’ intention   seconds ahead with 

different gaze estimation methods. .......................................................... 109 

Figure 4-13 Results for user slips detection. .................................................... 112 

Figure 5-1 The prototype of the physiological mouse (a) and its usage (b). ... 118 

Figure 5-2 Signal smoothing. ........................................................................... 120 

Figure 5-3 Frequency domain of heart beat (a) and inter-beat interval (b)...... 120 

Figure 5-4 A histogram for respiratory rate candidates. .................................. 124 

Figure 5-5 iHealth device to measure heart beat rate. ..................................... 126 

Figure 5-6 Average heart beat rate error for all subjects. ................................. 127 

Figure 5-7 Heart beat rate error for individual subjects. .................................. 128 

Figure 5-8 Example of candidate respiratory rates in controlled experiment (a 

good case). ............................................................................................... 130 

Figure 5-9 Example of candidate respiratory rates in controlled experiment (a bad 

case). ........................................................................................................ 130 

Figure 5-10 Average result with error bar for different respiratory rhythms. .. 131 

Figure 5-11 Average respiratory rate error for all subjects: Natural respiration.



 

xvi 

 

.................................................................................................................. 133 

Figure 5-12 Respiratory rate error for individual subjects: natural respiration.

.................................................................................................................. 133 

Figure 5-13 Experimental setup for emotion-related experiments by using the 

physiological mouse................................................................................. 135 

Figure 5-14 Average heart beat rates across subjects in different tasks. .......... 136 

Figure 5-15 Average respiratory rates across subjects in different tasks. ........ 137 

Figure 5-16 Average heart beat rates across tasks............................................ 139 

Figure 5-17 Average respiratory rates across tasks. ......................................... 139 

Figure 5-18 An example of temporal physiological signals captured in playing 

game. ........................................................................................................ 141 

Figure 5-19 An example of temporal physiological signals captured in watching 

the horror video. ....................................................................................... 141 

Figure 6-1 A dual-stream LSTM for user intention prediction. ....................... 151 

Figure 6-2 Learning fight detection model from local motion signals using SVM 

and LSTM. ............................................................................................... 153 

 

  



 

xvii 

 

List of Tables 

Table 3-1 Motion signals and their statistical features. ...................................... 46 

Table 3-2 Full set of motion signal features generated for a video. ................... 46 

Table 3-3 Local motion sequences and statistical features. ............................... 48 

Table 3-4 Performance of motion signal features on real fights. ....................... 52 

Table 3-5 Precision and recall of motion signal features on real fights. ............ 52 

Table 3-6 Performance of local motion features on real fights. ......................... 53 

Table 3-7 Precision and recall of local motion features on real fights. .............. 53 

Table 3-8 Evaluations on human real fight dataset. ........................................... 55 

Table 3-9 Performance of motion signal features on simulated fights. ............. 57 

Table 3-10 Precision and recall of motion signal features on simulated fights. 57 

Table 3-11 Performance of local motion features on simulated fights. ............. 57 

Table 3-12 Precision and recall of local motion features on simulated fights. .. 58 

Table 3-13 Evaluations on human simulated fight dataset. ............................... 58 

Table 3-14 Manual detection on discriminating real fights from simulated fights.

.................................................................................................................... 61 

Table 3-15 Performance of motion signal features on discriminating real fights 

from simulated fights. ................................................................................ 62 

Table 3-16 Performance of local motion features on discriminating real fights 

from simulated fights. ................................................................................ 63 

Table 3-17 pseudocode of learning ensemble classifiers. .................................. 68 

Table 3-18 Evaluations on various fight datasets. ............................................. 70 

Table 4-1 Features from historical activities. ..................................................... 86 

Table 4-2 Movement attributes and statistical features. ..................................... 91 

Table 4-3 Statistical features from multi-modalities. ......................................... 92 



 

xviii 

 

Table 4-4 Histogram features from multi-modalities. ........................................ 95 

Table 5-1 Heart beat rate performance. ............................................................ 128 

Table 5-2 Respiratory rate performance: controlled experiment. .................... 132 

Table 5-3 Respiratory rate performance: natural respiration. .......................... 133 

 

  



 

1 

 

Chapter 1 Introduction 
Affective computing is an up-surging research area relying on multimodal 

multimedia information processing techniques to understand human emotion and 

intention. Recent studies in affective computing have developed beyond simply 

the recognition of human basic emotions. There are several new directions, such 

as social signal processing [102] and user intention prediction [50, 90]. Many of 

these studies investigated on recognizing not only human basic emotions, but also 

human behaviors and intentions. They focused on the analysis of the 

communicative or informative patterns to understand the underlying intention 

behind a human action, in computer interaction tasks, or group and social 

interactions, etc. The former is more oriented towards human-computer interaction, 

and the latter more towards human-human interaction. 

Once a computer is able to interpret human intention, it can offer assistance 

to human in advance, in both scenarios of social events and daily human-computer 

interactions. For instance, when a computer detects the intention of fierce activities 

inside a bar, it can raise an alarm for warning, which may help to deter the potential 

violence from taking place. A computer can also help to automatically enlarge a 

potential target button for a user in a computer interaction task, when it detects the 

user’s interaction intention. We therefore focus our study on understanding human 

intention by using interaction and body signals in this thesis. We conduct our 

studies in both of the two directions respectively. 

 We first investigate techniques for understanding human action and intention 

in human-human interaction. In our work, we focus on a special kind of social 

event and human interaction: human fight. Although certain fight detection 

approaches show promising results in prior studies, not all of them are suitable for 
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real surveillance applications, due to some limitations, including relying on 

recognizing high level features, such as human gestures, or visual words, etc. [81, 

114] and studying on simulated fight events [10, 29, 66]. However, recognizing 

high level features may require high computational cost and high quality videos. 

Meanwhile, the simulated fights may not represent the spontaneous fights in real 

situations, although they may share some similar gestures. We therefore see the 

challenges of detecting human fights without recognizing high level features as 

well as understanding the difference between real fights and simulated fights. As 

the real fights and simulated fights can be considered as the fight actions with and 

without real fight intention, this study would also help us understand more about 

human fight intention. 

In addition, we also investigate techniques for predicting user intention in 

daily human-computer interaction tasks. There are few studies attempting to 

address this, but they are quite preliminary, either not studying on real applications 

nor using all reasonable modalities. On one hand, the approaches applied in 

prescribed tasks such as one mouse movement towards a predefined target are not 

extendable to real tasks, which may contain multiple interaction steps [5, 85, 124]. 

To our best knowledge, user intention prediction is not well investigated in the 

scenarios of daily computer interaction tasks. We therefore see the challenge of 

building an effective model to predict user intention in daily computer interaction 

tasks by using multiple interaction and body signals. 

On the other hand, in order to utilize all reasonable modalities, we should be 

able to capture users’ interaction and body signals during interaction tasks. 

Meanwhile, intrusive capturing methods would affect users’ feeling and even 

intention. With the help of some webcam and computer vision techniques, we can 

capture the signals of mouse, gaze, head and body movements in non-intrusive 
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manners. However, most of the contemporary approaches for measuring human 

physiological signals are still relying on intrusive and expensive devices. We 

therefore see the challenge of investigating the feasibility of measuring human 

physiological signals in a non-intrusive manner. As physiological signals are 

among those useful indicators towards human emotions and intention, studying on 

the non-intrusive physiological signals measurement would also benefit the future 

studies in human-computer interaction. 

To address the challenges described above, this thesis thus investigates on 

three studies. The details of the background and study overview of these studies 

are described in the following. 

 

1.1 Background and Motivation 

1.1.1  Understanding Human Fight Action and Intention 

To understand human intention in human-human interaction, we focus on the 

detection of human fight in our work. Human fight is an important class of human-

human interactions and social signals that has been drawing increasingly attention 

in recent years. Due to the growing need of fast response to social conflicts and 

security issues, there has been a mounting demand to automatically detect human 

fights in video surveillance scenarios. Therefore, in this thesis, we start our study 

by detecting human fights and understanding human real fight intention. 

However, there are some drawbacks in recent fight detection or aggression 

detection studies. One of the major drawbacks is that the approaches proposed in 

most of these studies rely on extracting features from human gestures, actions or 

visual words [81, 114]. On one hand, extracting these features induces high 

computational cost in processing the surveillance videos. That may affect the 



 

4 

 

response time of detecting key events for a surveillance system. On the other hand, 

these approaches rely on the availability of relatively high quality videos, which 

cannot be readily provided by most of the surveillance systems in real life. This is 

partially due to the elevated surveillance angle and sometimes the large area to be 

covered. To address this challenge, in this thesis, we therefore propose to detect 

human fights by using motion analysis-based features, which can be obtained by 

a natural and low computation approach. 

Another drawback of the prior fight detection studies is that most of them 

evaluated their approaches on simulated fight datasets [10, 29, 66]. On the contrary, 

little work had been performed on real fight surveillance scenarios. Although there 

are some similarities between real fight actions and simulated fight actions such 

as the gesture of raising a fist, they are triggered by different human intentions. 

The difference can be captured by body motion signals, such as the motion 

magnitudes. Since in the real fight scenarios, human really wants to knock down 

his/her opponent, the fight actions triggered by real fight intention would contain 

larger motion magnitudes. However, in simulated fights, since actors just want to 

express fight gestures, the simulated fight actions might not contain sufficient 

motion magnitudes to bring down the opponent. Simulated fights thus may not 

represent the real fight intention. Therefore, in this thesis, we would like to study 

fight detection in real application context. Since there is no standard surveillance 

dataset involving fights available, we proceed to collect and annotate human real 

fight dataset by ourselves. We would like to investigate whether our algorithms 

can detect real fight events in real surveillance effectively. Moreover, in order to 

further reveal the difference between real and simulated fights and gain a deeper 

understanding of human real fight intention, we would also like to evaluate our 

algorithms on detecting real fights from simulated fights in our study. Indirectly, 



 

5 

 

our results demonstrate that real fight events do differ from simulated fight events, 

especially in motion signals. 

On the other hand, data-driven approaches, in particular, deep learning 

approaches have been explored to learn effective prediction model in many aspects 

[107]. Recent fight detection studies also attempted to apply deep learning 

approaches to learn fight detection model directly from data [107, 122]. However, 

well-performing data-driven methods require high model capacity and thus a 

substantial amount of well-annotated data, which is generally difficult to acquire, 

or even impractical in certain domains, such as rare disease diagnostic, extreme 

social action monitoring, which includes human fight detection. 

Transfer learning such as adapting knowledge from real fight events in other 

scenarios to detect human real fights can be an effective solution. We would like 

to adapt knowledge from fights in real scenarios. An alternative source is using 

real fight videos, but not by human. Therefore, we turn our attention to fights 

involving animals. A natural question would then be “would human fight like 

animals”? Interestingly, there are a good amount of animal fight videos on the web. 

That would enable us in alleviating the data availability issue as well as attempting 

to answer this interesting question. The fighting actions exhibited by human and 

animals share intrinsic commonality, such as physical acceleration of moving body 

parts. Moreover, in contrast to the use of human videos, fewer privacy issues are 

involved in using animal fight videos. Inspired by the work of [105], we propose 

an ensemble-based method for cross-species fight detection to address this 

challenge. To the best of our knowledge, we are the first in investigating animal 

fights and cross-species learning in fight detection. In this thesis, we investigated 

the effect of different source data and feature sets on the adaptation of learning 

from fights in other scenarios to real human fights. 
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1.1.2  Understanding User Intention in Daily Computer Tasks 

In addition to understanding human intention in human-human interaction 

and social events, user experience has also gained attention in recent researches in 

human-computer interaction. To improve user experience, some of these works 

attempted to estimate user’s visual saliency to understand user’s attention [112]. 

Based on that, they can also adjust the visual saliency of user interface [63] to 

enhance user’s navigation experience. The other work tried to study on detecting 

user’s activity state, skill learning progress [59] and task performance [11] as well 

as understanding user’s action [90], etc. In addition, since complex and multi-step 

computer interaction tasks require a user to perform a series of actions, predicting 

the user’s next interaction activity in advance could be a potential research 

direction of enhancing user experience. Recent studies thus start to explore user 

intention prediction. The major objective of these works is to predict potential 

human action in the near future and understand the underlying intention beneath 

[20]. If a computer has the ability to perceive user intention, it can offer help to 

improve user experience, such as enlarging or highlighting the potential target. It 

can also correctly understand user’s action, even for the action that might not 

reflect users’ real intention, such as understanding whether an interaction action is 

triggered by user’s mistake [76]. To our best knowledge, there are only few prior 

studies tried to approach user intention prediction, but they are quite preliminary.  

One of the major drawbacks of the prior related studies is that most of these 

works only studied on specific tasks, which are under well-controlled conditions, 

such as using predefined fixed interfaces. In their experiments, instead of 

interacting with a real interaction task, a subject is only required to perform some 

simple mouse movement trials, such as pointing the mouse to a particular target 

[5, 85, 124] in a fixed interface. However, in real applications, a task may contain 



 

7 

 

multiple steps of interaction activities, such as multiple mouse movements and 

clicks, etc. Compared with the prescribed trials, the interaction activities occurring 

in real multi-step tasks are more complex, of which the user interaction intention 

is difficult to predict. The user intention in the real interaction tasks might depend 

on the user, the task, and often the current as well as the previous state of the task, 

etc., which make predicting user intention in daily computer usage very 

challenging. The previous intention prediction approaches applied in the 

prescribed trials are restricted to predefined situations, and may not be extensible 

to daily multi-step computer interaction tasks. On the other hand, there are some 

works studying user browsing intention [25, 70]. Their approaches rely on 

browsing context, which is not accessible in other tasks. They thus are also not 

extensible to other computer interaction tasks. 

 Another limitation of the prior studies is that they did not investigate all 

reasonable modalities for user interaction intention prediction. Most of the related 

studies focus on modeling user intention from historical records [2]. According to 

these studies, user’s activities in multi-step interaction tasks are sequential and 

each of them is dependent on historical activities. However, in addition to 

historical information, interaction from other modalities including mouse, gaze 

and head movements, etc. may contain additional information about user’s next 

activity in the multi-step interaction tasks. In other words, they are not independent 

but correlated. Some work attempted to build user intention prediction model by 

these kinds of interactions. However, their model only involved one particular 

interaction modality such as modeling mouse movement profile only [85]. 

Although these approaches may succeed in prescribed trials, they may not be able 

to predict user intention in daily computer tasks. With the assumption that different 

interaction modalities may contain different information of user’s intention, 



 

8 

 

modeling multiple interaction modalities combined with the historical information 

could be a potential solution to build a more effective user interaction intention 

prediction model. However, to our best knowledge, very few works have 

attempted to investigate multimodal user intention prediction approach in daily 

computer interaction tasks. 

We therefore see that the major challenge of this study is how to effectively 

predict user’s intention or what is the upcoming activity during a daily human-

computer interaction task, with multiple modalities, which is also one of the core 

research questions in this thesis. To address this challenge, we therefore propose a 

multimodal user intention detection approach for multi-step human-computer 

interaction task based on mouse, eye, head and body motions. Specifically, we 

conduct experiments and study user interaction intention in a common daily 

computer interaction task, namely, web search, to predict the type of the next 

activity. Focusing on this task, we investigate the appropriate feature 

representation and the proper way to fuse multi-modalities for user interaction 

intention prediction. We believe that these studies would benefit future research in 

this area. 

In addition to building an effective user intention prediction model, we are 

also interested in applying the model to enhance user experience during an 

interaction task. Detecting user selection slips could be one of those applications. 

Slips are a type of human error, which is describing the wrong action triggered by 

users even they formulated the right intention [109]. Given that slips frequently 

occur during human-computer interactions, especially in complex and multi-step 

tasks which require users to perform a series of actions, user experience would be 

affected if systems fail to handle them. For instance, a user may need to handle an 

unexpectedly opened window, if he or she clicks a non-intentional button or link. 
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On the other hand, in real applications, additional time cost is required to recover 

from a slip, for example, a user may need some time for additional navigation to 

find the real intended target after a selection slip [8]. The ability of user slips 

detection is likely to help enhancing user experience in multi-step computer 

interaction tasks. Therefore, we then conduct a pilot study to investigate the new 

research question: can the multimodal intention prediction model be applied to 

user slips detection? To our best knowledge, we are the first to investigate the 

feasibility of using multimodal intention prediction model to detect user slips. 

1.1.3  Understanding Interaction and Body Signals 

Prior studies from psychology suggest that humans are able to interpret 

other’s intention during their communications. Their further investigations also 

suggest that humans tend to express their intention in human-human interactions 

via head and body orientation as well as vocal signals [9, 76]. According to these 

studies, the head, body motion, and vocal signals can be regarded as the important 

cues for understanding human intention. However, speech and vocal signals are 

not available in some scenarios such as CCTV surveillance, which is a major 

source of recording human-human interactions and social events. Meanwhile, 

speaking is not common when users are interacting with daily computer 

interaction tasks, such as web search. We therefore do not consider speech and 

vocal signals in this thesis. 

Instead, we observe that mouse and gaze interactions are important in daily 

computer tasks. Users can use the mouse to achieve different tasks, such as 

clicking buttons, selecting text, etc. Prior studies are focused on analyzing users’ 

mouse behavior to perform authentication [19, 121], and gaze position alignment 

[41], etc. In daily computer usage, the mouse can be regarded as an extension of 

the human body in daily computer interaction. And users’ interaction intention can 
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also be expressed via mouse movements. On the other hand, gaze interaction can 

indicate attention content and intended clicking targets in computer interaction 

tasks, therefore, it may also reveal users’ intention. Both of them can be captured 

in non-intrusive manners. Mouse coordinates can be obtained via system logs, 

while gaze position estimation can be achieved by eye track devices such as Tobii, 

and webcams through some gaze estimation algorithms [7, 42, 120]. Therefore, 

our studies on understanding human intention also involve the analysis of mouse 

and gaze interaction. 

In human face-to-face interaction, human can interpret partners’ intention 

simultaneously using the interaction and body signals from multiple modalities. 

By doing this, human can understand other’s intention in a more flexible and 

robust way. Even interpreting intention from one particular modality fails, they 

can still interpret other’s intention from other modalities [84]. We therefore 

propose to address the challenge of modeling multiple interaction and body signals 

to predict human intention in this thesis. In CCTV surveillance, the only signal 

that can be captured is the body movement. We therefore focus on body motion 

analysis-based approaches to study the human fight intention. In daily computer 

interaction tasks, we are able to capture multiple interaction and body signals from 

system logs and webcam, etc. We then study the multi-modal intention prediction 

approaches in daily computer interaction tasks. 

In addition to these interaction and body motion signals, physiological signals 

can also be applied to detect human emotion and even intention. Moreover, when 

compared with other body signals, physiological signals can even represent the 

unaware intention that is hard to control. However, the major drawback of 

traditional physiological signal measurement is that the measurement needs to rely 

on some intrusive devices. In order to make use of physiological signals to detect 
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human emotion and even intention in daily computer usage, we also investigate a 

non-intrusive way of capturing human physiological signals by enhancing 

standard input device in this thesis. 

1.2 Study Overview 

   

Figure 1-1 The flow of this thesis. This thesis studies human intention understanding in two 

aspects. In human social interactions, this thesis investigates (1) automatic human real fight 

detection. In human-computer interactions, this thesis explores (2) multi-modalities user intention 

prediction and (3) non-intrusive measurement of physiological signals for emotion detection. 

In this thesis, we studied human intention understanding in two aspects. 

Figure 1-1 presents the flow of this thesis. To have a better understanding of 

detecting human action and intention via body motion analysis, we first conduct 

our study in the scenario of human-human interaction. We focus on detecting 

human fight and understanding human real fight intention in our work. Another 

essential issue of this thesis is to build a well-performing user intention prediction 

model via modelling multiple modalities for common daily computer interaction 

tasks. In our study, we investigate the user interaction intention in the web search 

task. The modalities applied in our studies include history activity records, mouse 

interaction, eye gaze, head as well as body movements, which can be captured by 
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non-intrusive devices. Moreover, since physiological signal could be a potential 

modality to predict user intention, we also conduct a pilot study to make use of 

user's physiological signals as a new form of modality in determining human 

emotion, in a non-intrusive manner. 

1.2.1  Detecting Human Real Fight Action via Motion Analysis 

To investigate human-human aggressive interaction and understand human 

real fight intention, we first propose motion analysis-based approaches to detect 

human fights. Compared with deep learning and prior approaches that rely on 

recognizing human gestures or visual words, our proposed approach can be an 

ideal method to detect human fight in a low-computational cost manner. 

In our approach, we extract motion information from video clips based on 

optical flow. We then propose two approaches to further extract features from the 

motion information. In the first approach, we propose to extract features from the 

motion signals occurring with different types of motion, which can be detected by 

using the nature of motion regions present such as size of the motion region, 

without relying on the complicated mechanisms of gesture or action recognition. 

The motion signals involved in this approach include motion magnitude, 

acceleration and a new concept called motion attraction. We refer to the features 

extracted via this approach as the “motion signal features”. In our second approach, 

we propose to extract features from the motion signals occurring in different 

locations of a frame. More specifically, inspired by the local binary features 

proposed in [37], we try to extract the local motion features that describe motion 

amplitudes and accelerations within different regions of video frames. We refer to 

the features extracted via this approach as the “local motion features”. 

The proposed approaches are evaluated on a human real fight dataset, which 

is collected by our own, and another publicly available dataset which collected 



 

13 

 

fight events simulated by subjects. The evaluation results show that both of the 

proposed approaches can achieve promising performance on human real fight 

detection, and the local motion features can obtain better accuracy than the motion 

signal features. Moreover, this study also reveals that simulated fights are 

fundamentally different from real fights and our motion analysis-based features 

can detect the difference. 

Another challenge of building a well-performing human fight detection 

model is the lack of a large amount of training dataset, especially for the data-

driven approaches such as deep learning. To address this challenge, we propose an 

ensemble-based method for cross-species fight detection with the proposed 

features. Interestingly, the motion attributes such as physical acceleration of 

fighting actions from human and animals share some intrinsic similarities. We then 

apply an ensemble technique to adapt useful knowledge from similar animal fights 

to learning human fights.  

To evaluate the cross-species fight detection approach, we collect a dataset of 

animal fight. In the evaluation experiment, we apply the ensemble techniques to 

train on animal fights combined with a modest amount of data from the collected 

human real fight dataset and test on real human fights. Our experimental results 

show that our approach achieves a competitive accuracy with adaptation from 

animal fights to that of real human fights. A close scrutiny reveals that our 

proposed local motion feature representation describes the intrinsic motion 

attributes and thus is well generalizable across species and it is very beneficial to 

the learning of cross-species fight detection. We believe that our study can shed 

light on the appropriateness of feature representation for cross-species learning for 

human fights as well as the effectiveness of adaptation from different sources. 
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1.2.2  Modeling User Intention in Daily Computer Tasks 

Apart from understanding human fight intention (human aggressive intention 

in human-human interaction), it is also important to study user intention in daily 

computer interaction tasks. We therefore conduct a study to investigate user 

intention prediction in the scenario of multi-step human-computer interaction 

tasks. We focus on studying in natural web search task, as it is a common and 

multi-step interaction task. In this study, we aim to utilize the interaction and body 

signals captured by non-intrusive and low cost devices to predict users’ next web 

search activity. Fortunately, prior studies in computer science show that mouse 

interaction, eye gaze interaction, head movements, and body motion signals can 

be captured by non-intrusive and low cost devices. We then focus on modeling 

these interaction and body signals for user intention prediction. 

A well-performing model relies on effective features. In our study, we 

propose two feature representations to model mouse, eye gaze, head and body 

movements. Inspired by prior related studies, we first apply statistics-based 

features to summarize the interaction signals. We also hypothesize that considering 

the movement magnitude, orientation information, as well as temporal information 

together, could help in modeling the interaction signals. We then propose a 

histogram-based feature representation which can encode all the information at the 

same time. In order to investigate the proper feature representation for user 

intention prediction, we conduct an experiment to evaluate the intention prediction 

performance of using different feature representations. Meanwhile, to bridge the 

gap between the limited approach of modeling individual modality and modeling 

multiple interaction modalities, we conduct an experiment to explore the 

performance of the prediction models with different ways of fusing multiple 

modalities. The experimental results show that our proposed histogram-based 
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feature representation is more useful for user interaction intention prediction. 

Besides, the study also indicates that the performance of the prediction model can 

be improved by modeling multiple modalities together.  

The ability of predicting user’s interaction intention could be applied to 

enhance user experience in multiple ways. One potential application of the 

intention prediction model is to detect user slips. If the actual coming activity is 

different from the predicted activity, then the actual activity may be triggered by a 

slip. The system may need to take some action to help the user to correct the 

mistake. In this study, we also conduct a pilot study to investigate the performance 

of user slips detection by applying our multimodal intention prediction model. 

1.2.3  Monitoring Human Physiological Signals Non-intrusively 

In addition to interaction and body motion signals, physiological signals may 

also represent user intention, even for the implicit intention that the user is unaware 

of, and even cannot control or hide. Therefore, exploiting human physiological 

signals could be useful for user intention prediction. However, there are some 

drawbacks in the traditional manners of measuring physiological signals. First, 

these physiological signals measurements rely on expensive devices such as 

Mindset [79] and EPOC [26]. Though these devices might provide a higher 

measuring accuracy, they are not commonly-found equipment and not affordable 

and accessible to common users. Second, users need to wear these devices or 

attach them to the body during the measurement. Therefore, they are intrusive, 

imposing a burden on the user and even potentially affecting user behavior or 

emotion. 

It would be better if we can measure users’ physiological signals without the 

user feeling of the existence of the measuring devices. To address this challenge, 

one of the potential solutions is to utilize a standard device of personal computers. 
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Therefore, in this study we enhance the daily-used mouse by attaching a low-cost 

LED and a light sensor, to build the physiological mouse prototype and measure 

the photoplethysmographic (PPG) signal [3] in a non-intrusive manner. We then 

measure the infrared light which is emitted from the LED and reflected off users' 

skin, and then process those raw signals into appropriate physiological signals, 

specifically, the heart beat rate and respiratory rate. The mouse is virtually 

available in all computers, and the attached LED, as well as light sensor, are low-

cost and common devices, they are all affordable and accessible to common users. 

Meanwhile, physiological signals can be captured while the mouse is held, without 

the user being consciously being aware of the measuring devices. 

Our evaluation shows that the physiological mouse can accurately measure 

users' heart beat rate and respiratory rate. Going one more step, we further conduct 

a pilot study to investigate the relationship between measured physiological 

signals and human emotions. Experiment results show that physiological signals 

captured by the physiological mouse could be another potential modality to detect 

human emotion and it might also be applicable to user intention prediction and 

enhance user experience in the future. 

 

1.3  Thesis Aims and Outline 

The aims of this thesis, as outlined in the study overview, are as follows: 

• To propose low computation approaches based on motion analysis to 

automatically detect fights and discriminate fights with real fight 

intention against simulated fights. 

• To investigate cross-species learning in human real fight detection with 

a set of low-cost and effective local motion features. 
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• To collect a human real fight dataset and an animal fight dataset for fight 

detection models evaluation and cross-species learning. 

• To collect a user interaction intention dataset in web search task, with 

non-intrusive devices. 

• To propose the user intention prediction model with multiple interaction 

and body signals as well as history activity sequence. The proposed 

model can be further applied to detect user slips in mouse clicks. 

• To design and build a prototype for the novel physiological mouse, 

which can measure users' physiological signals during daily computer 

interaction tasks in a non-intrusive way. 

The remaining chapters of this thesis will cover the following: 

Chapter 2 provides the literature reviews on the research works about human 

interaction and body signals analysis. More specifically, it covers related prior 

research studies related to human fight detection, user intention prediction, mouse 

behavior analysis, gaze behavior analysis, body motion analysis, as well as 

physiological signals analysis. 

Chapter 3 presents two low computation motion analysis-based approaches 

as well as a cross-species learning technique for human fight detection. This study 

shows that the proposed approaches could accurately detect human real fights. Our 

model is even able to distinguish fights with real fight intention from simulated 

fights, that indirectly indicates that body motion is a potential modality to reveal 

underlying intention behind human action and it can be used to predict user 

intention. 

Chapter 4 describes the tasks and experiment details of the collected user 

interaction intention datasets as well as presents the multimodal approach to 

predict user interaction intention in daily common computer interaction tasks. This 
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study explores the performance of the intention prediction models with different 

ways to fuse the different modalities. The evaluation results indicate that the 

proposed approach is useful to predict user interaction intention. It also 

demonstrates a potential application with our intention prediction model to detect 

user slips click. 

Chapter 5 explores the performance of measuring user's physiological signals, 

specifically, heart beat rate and respiratory rate, by the physiological mouse. A 

pilot study on the relationship between measured physiological signals and human 

emotions are presented as well. This study shows another potential modality to 

predict user interaction intention with non-intrusive devices. 

Chapter 6 summarizes the contributions and limitations of this thesis and the 

potential future work. This chapter also introduces other contributions I have made 

that are related to the scope of this thesis.  
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Chapter 2 Literature Review 
This chapter begins with a review of the literature on the approaches of fights 

and aggressive interaction detection. In order to gain a better understanding of 

cross-species learning, which is an important technique that we adopt to address 

the problem of limitation of dataset availability, we therefore review the studies 

about animal action recognition and transfer learning as the basis of cross-species 

learning. This chapter also presents the studies about animal action recognition 

and transfer learning. These are followed by the review of user interaction 

intention studies. Finally, this chapter presents the studies that contribute to 

interaction and body signals analysis. The purpose of this chapter is to provide an 

understanding of the prior research in fight detection, human intention detection 

as well as interaction and body signals analysis. Based on that, this chapter outlines 

the rationales for the proposed studies. 

2.1 Human Fights and Aggressive Behavior Detection 

Researchers have made much effort to investigate fight, violence or 

aggression detection. In the work of [18] and [33], a violence detector was built 

by using audio features. In practice, this approach is not quite viable, since real 

life fight or violence is often captured by video surveillance systems without audio 

recording. 

Nievas et al. [81] attempted to detect violence from videos with visual 

features, and they introduced two video datasets that contain fight events for 

evaluation. In each of the two datasets, the videos were equally divided into two 

groups, and were annotated as “fights” or “non-fights”. They computed two video 

spatio-temporal motion descriptors, namely, Space-Time Interest Points (STIP) 

[17] and Motion SIFT (MoSIFT) [60] to generate a set of visual words, which can 
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incorporate local motion information into appearance features. After obtaining the 

visual words, they then applied the Bag-of-Words (BoW) [21] approach to 

represent each video as a histogram over the visual words for further classification. 

Their approach can yield a relatively good performance of detecting violence, and 

they proved that human fights and aggressive behavior can be automatically 

detected from some video surveillance scenarios. However, their approach is quite 

complicated, with high computational demand. 

Yang et al. [114] attempted to adopt a rule-based detection approach to 

implement automatic detection aggression inside a train. In their approach, they 

generated some low level features from the raw video data including energy 

signatures and motion paths, which were combined into high level concepts in the 

rule-based model for aggression detection. This approach was limited to an 

environment inside a train and yet required much computation. Hassner et al. [37] 

proposed the Violence Flows (ViF) descriptor to investigate Violence in crowded 

scenes. In their work, they focus on measuring how the motion magnitudes change 

over time. By comparing magnitudes, they can measure the significance of 

observed motion magnitudes in each frame compared to its predecessor. Changes 

in motion magnitude higher than a threshold are accumulated for each pixel in 

building a histogram for the local regions in the video frames, to create the feature 

vector for fight detection. Gao et al. [31] then proposed the OViF features to detect 

violence events by further considering motion orientations in the ViF. In addition, 

Improved Fisher Vectors (IFV) [86] that delineates local features by their deviation 

from the generative Gaussian mixture model was also suggested to be useful for 

violence detection. There are also some other works trying to detect human 

aggression behaviors and activity patterns [39, 117]. 

Besides the hand-crafted motion feature representations, recently, deep 
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learning approaches have been very successful in action recognition, and it can 

also be applied in fight detection. Wang et al. [107] proposed the Temporal 

Segment Networks (TSN) structure to perform deep action recognition. Their 

network achieved promising performance in many human action datasets such as 

UCF101 [95]. The TSN network [107] can be used to build a “FightNet” [122] to 

perform fight detection in deep learning. However, this network is quite 

complicated and demands a lot of training time and training data. Furthermore, it 

has only been evaluated in a subset of UCF101 with little fight scenarios, such as 

boxing game, but not on real fight events. Most of the publicly available human 

fights or aggressive actions datasets are not collected from real life surveillance. 

Some of these datasets are collected from specific sport games such as ice hockey 

[81]. Some are collected in simulated scenarios, where the fight events were acted 

by some subjects [10, 29]. These datasets may not reflect the fighting actions and 

intentions in real fight scenarios. 

In addition to detecting human fight actions, there are some other related 

studies attempting to study another aggressive social interaction: fierce argument. 

Predicting the conflict level of argument in conversations and debates could be 

useful in real life. To study conflict level detection in debates, Kim et al. [55] 

constructed a conflict detection dataset, based on the videos from some televised 

political debates [101], which contain also the audio channel. For each video in 

this dataset, they annotated a numeric conflict level. They then tried to predict 

continuous conflict level in political debates. In their study, they applied prosodic 

and conversational based features to detect the conflict level of those debate videos. 

Their experiment results suggested that the prosodic and conversational based 

features can be very useful for conflict predicting in the debate scenarios. However, 

their approach is not applicable to the surveillance scenarios, in which the audio 
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channel is not accessible. 

2.2  Animal Action Recognition 

This thesis involves the study of cross-species learning in fight detection. In 

order to gain a better understanding of cross-species learning, we review the 

studies about animal action recognition and transfer learning. There are some 

interesting studies on animal action recognition. Lu et al. [67] tried to estimate 

sheep pain level from the facial units of sheep. Burgos et al.[13] proposed a novel 

method to automatically segment and recognize social behaviors of mice, such as 

approaching, attacking, cleaning, and walking away. Mazur et al. [73] investigated 

automatic analysis of the aggressive behaviors of laboratory mice through thermal 

video processing. They recorded images of thermal sequences, which allowed 

them to track the mice. Corner detection technique was used for temperature 

analysis of mice to identify their aggressive behaviors such as biting. Ladha et al. 

[57] utilized a wearable sensor (accelerometer) to recognize the actions posed by 

dogs. Their study aimed to monitor and track the health and wellbeing of dogs. In 

the same spirit, Iwashita et al. [46] mounted a camera on the back of dogs and 

recognized dog actions from the first-person animal videos. Most interestingly to 

us, Wang et al. [105] studied cross agents action recognition, based on transfer 

learning across different agents including different groups of people and species. 

However, their method does not generalize well for cross-species fight detection. 

2.3  Transfer Learning 

Transfer learning can be broadly categorized into instance-, feature-, and 

model-based methods [83]. Instance-based transfer learns from samples that 

minimize the difference between target and source distributions, where adaptation 

can be conducted from either a single source [22] or multiple sources [115]. 
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Feature-based transfer aligns the source and target distributions by finding a new 

feature space through, for instance, domain-guided regularization [111], transfer 

component analysis [82], and maximum independence domain adaptation [113]. 

Model-based transfer exploits the pre-trained classifiers to build an adaptive 

classifier in the target domain, using such as domain-dependent regularization [24], 

different domain metrics [44], or parameter fine-tuning [116]. Despite the success 

of transfer learning in addressing the data limitation issue, only little attention has 

been paid to the computational cost of these methods and their practicability in 

real use. Sangineto et al. [89] mitigated the computational cost of a personalized 

model, using a regression function to determine the target parameters. Similarly, 

Zen et al. [118] used support vectors to achieve parameter transfer without model 

retraining. The closest work to this study is from Huang et al. [44]. In their 

approach, they proposed to reorganize the pre-trained weak source classifiers 

based on a domain metric. However, their work leveraged the person identity 

information which is agnostic in our case. This makes our problem more 

challenging. 

2.4  User Interaction Intention Prediction 

Our study about user interaction intention is related to the work about user 

intention detection as well as the application of user errors detection in daily 

computer interaction tasks. 

2.4.1  User Intention Detection  

In order to improve user experience, researchers are recently interested in 

detecting user intention and predicting what a user wants to do, when the user is 

interacting with a robot [20, 50, 99], mobile device [36, 78, 96], and vision-based 

interface [90, 103], etc. For instance, Kato et al. [50] attempted to predict the next 
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step of human behaviors by modeling human body movements and gestures for 

human-robot communication. Negulescu et al. [78] tried to predict user intention 

on mobile phones based on detecting the grip type of the phone. In the work of 

[90], Schwarz et al. attempted to detect whether a user gesture or movement is 

intended to control or not in vision-based interaction by modeling the user's 

gesture type. 

 When it comes to interacting with personal computers in daily interaction 

tasks, some works attempted to understand user behavior and the underlying intent. 

For instance, Toker et al. [97] focused on real time user skill level detection by 

modeling eye gaze interaction. Hu, et al. [40] tried to understand the underlying 

intention behind user's query, while Mandayam, et al. [69] demonstrates that 

understanding users' intent could be helpful for estimating relevance documents. 

Besides, some of these works tried to predict users' visual attention by modeling 

information available to the interface such as mouse interaction [112], as well as 

tracking and modeling eye gaze interaction [72]. However, to our best knowledge, 

few works attempted to predict users’ next interaction activity in daily multi-step 

tasks. Most of these works attempted to investigate user intention in the scenario 

of prescribed trials. For instance, some of these works are interested in predicting 

the target point of a mouse movement [5, 85, 124]. They conducted their studies 

in a simple task of pointing mouse to some specified targets. Among these works, 

Pasqual et al. [85] achieved the state-of-the-art. In their study, they summarized a 

mouse movement velocity profile and model its velocity time series as a 2D stroke 

gesture. By doing this, they can record the velocity profile from prior mouse 

movements as templates and can find the most likely template for the testing 

mouse movement in predicting the mouse endpoint, by applying the template 

matching approach. User interaction intention in real multi-step interaction tasks 
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was not investigated in these works. 

 Besides, some of these works focus on exploring user intention prediction 

in browsing activities. For instance, in the study of [70], Maniu et al. investigated 

user's search behavior on photo sharing platforms. They attempted to use historical 

search sessions and query types to predict the next URL class that the user is going 

to visit. In the work of [35], Guo et al. attempted to model user's history query, 

page content and mouse interaction in the context of e-commerce websites to 

predict whether a user is ready to buy or just browsing. However, these methods 

relied on extracting features from browsing context, such as the historical search 

query. Thus, it is difficult to generalize these approaches to other daily computer 

interaction tasks. 

The works of Alexander et al. [2] and Fitchett et al. [30] are kind of studying 

on predicting user intention in real daily interaction tasks. In their studies, they 

noticed that users will frequently return to previously visited regions within their 

document, during reading tasks. They then tried to investigate this revisit intention 

further to predict the possible revisit document regions by modeling historical 

reading records. Based on the prediction model, they then designed a scroll bar 

which can help users to easily select and jump to the possible revisit document 

regions. Their user study found that user experience can be improved by 

understanding user's revisit intent. However, this study only focused on the reading 

task which is relatively more restricted and has relatively fewer types of intention 

compared to our web search task. Fitchett et al. [30] also studied on predicting re-

visitations. They extended the revising contents to file accesses, website visits, 

window switches, etc. However, they still utilized log records only. Evans et al. 

[27] also focus their study on daily computer usage. In their study, they attempted 

to build a tool to automatically segment text entry and mouse pointing input 
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streams occurring in daily computer usage into “trials”. However, they did not try 

to model these interaction signals for further detecting user’s next interaction 

activity. To our best knowledge, user intention prediction via modeling multiple 

interaction patterns is not well investigated, especially in the scenarios of daily 

computer usage. 

2.4.2  User Errors Detection  

Human-machine interaction experience could be hampered by different types 

of errors. Errors detection thus has gained attention in recent studies in various 

scopes. Vandewynckel et al. [100] tried to perform real time activity error 

detection for Alzheimer's patients with accelerometer. In their study, they defined 

the deviation from the regular movement as an error. Jiang et al. [49] studied on 

whether a user is skipping a relevant search result without clicking on it in the web 

search tasks. They defined this action as skip error. Besides, Lin et al. [65] tried to 

predict user's errors in the task of numerical typing, based on the EEG signal. 

However, in our work, we are interested in user slips in daily computer usage, 

which defined as selecting the wrong target or triggering a wrong action with the 

right intention. 

To understand user errors in target pointing and selecting tasks, some studies 

attempted to predict error rates in target selecting [62, 110]. Some of these works 

investigated the trade-off between the mouse moving speed and target selecting 

accuracy [123]. These studies suggested users may adjust their mouse moving 

behavior to reduce clicking errors. Banovic et al. [8] further investigated the time 

cost associated with user selection errors and attempted to predict task completion 

time when the cost of error is involved. Their study also indicates that the user 

selection error would induce additional time cost, such as the time for recovering 

from the error and new target navigation. These kinds of additional time cost 
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would affect task completion time as well as user experience.  

These studies about user errors all focused on mouse pointing and selecting 

tasks. However, they only studied in prescribed mouse pointing trials, which only 

required subject to select some particular targets. Moreover, these works only 

utilize mouse movement profiles to study target selection errors. To the best of our 

knowledge, we are the first in investigating multimodal intention-based user 

selection slips detection in the scenario of daily computer usage. In our study, we 

therefore focused on studying user interaction intention in common daily computer 

interaction tasks, by using multimodal interaction and body signals. 

2.5 Interaction and Body Signals Analysis 

The studies in this thesis involve the analysis of multiple interaction signals 

such as mouse and gaze interactions, and body motion signals, such as head 

movements and body motions, as well as physiological signals. We therefore 

review the related studies about these interaction and body signals. 

2.5.1  Interaction Signals  

Traditional human-computer interaction involves three common KVM 

devices: the keyboard and mouse for input, and the screen for output. Users can 

use the mouse to achieve a lot of tasks, such as selecting text, clicking buttons to 

trigger events, etc. These actions generate a good volume of information 

highlighting the interaction from human to computer and previous studies 

suggested that mouse activities dominate interaction in daily computer use [15, 

74]. Due to the importance of mouse interaction, many researchers have worked 

on analyzing and modeling information about user behavior and intention from 

recent mouse interaction data in recent. For instance, some prior studies utilized 

mouse interaction to detect user's search attention [58], and predict users’ eye gaze 
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position [42], etc. Some recent work tried to model mouse interaction information 

to detect the quality of crowdsourcing workers [75], and users’ engagement [4]. 

In the study of [43], Huang et al. attempted to detect users’ stress level by modeling 

mouse movements. Meanwhile, some other studies suggested that different users 

may behave differently in terms of mouse movements, when they are interacting 

with some daily computer tasks. These studies then attempted to perform user 

authentication by modeling mouse behaviors [19, 121]. 

In addition to mouse interaction, users’ gaze interaction is also a fundamental 

interaction signal in the scenario of daily computer interaction tasks. Since the 

gaze positions and movements may indicate the attention contents and intended 

targets of a user. There are some related studies about user gaze interaction analysis 

in computer interaction tasks. For instance, in the work of [64], Li et al. attempted 

to correlate users’ reading attention with gaze interactions. In the work of [93], the 

authors tried to detect users click intention in web pages, by modeling eye gaze 

behaviors combined with EEG signals. While in [23], Debnath et al. attempted to 

detect drivers’ visual focus of attention by utilizing drivers’ gaze behaviors. 

Besides, some recent works attempted to consider both mouse and gaze 

information in their models. For example, Wang et al. [106] tried to detect users’ 

stress level by modeling mouse and gaze interactions as well as the interface 

contents together. 

Gaze positions and interactions can be obtained by using some eye tracker 

devices, which are not affordable and accessible for common users in daily 

computer usage. However, there are some gaze estimation techniques that can 

estimate gaze positions through standard webcams [7, 42, 120]. With the help of 

these techniques, we therefore can extract gaze information in daily computer 

usage in a non-intrusive and low cost manner. 
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2.5.2  Body Motion Signals  

Social interaction pattern study has become a very popular topic recently in 

human-computer interaction and affective computing. Motion analysis is an 

important approach for analyzing the interaction patterns in the context of social 

signal processing. For instance, in the work of [88], Ramseyer et al. proposed an 

approach based on frame differencing and motion energy analysis for 

synchronized movement in social interaction. While in [80], Nguyen et al. 

attempted to use a mixture of body communicative features to predict the 

personality and job interview rating of employees in the employment interview 

scenarios. Some of their features were based on motion analysis. They computed 

the dense optical flow map for each video frame, and then extracted the hand 

likelihood map by assuming that the hands are the fastest moving part in the optical 

flow map. They extracted the hand velocity and acceleration as features for 

predicting, after obtaining the hand likelihood map. 

The approach of motion analysis can also be applied in the area of analyzing 

audience behavior. For instance, in [77], Navarathna et al. utilized the face and 

body motions features generated by motion history images to learn and represent 

the individual and group behaviors of audience in watch movie scenarios. Then 

they used these representations to predict movie ratings. Motion analysis can be 

also be applied in group behavior analysis, such as predicting dominance in group 

conversation [48], extracting hand position and communicative cues in 

conversations [71]. These recent works demonstrated that motion analysis is an 

effective technique for extracting social interaction information from video. Since 

then, motion analysis techniques have been widely used in social signal processing. 

However, most of these works applied motion analysis for processing videos with 

good resolution, clear background, and simple actions. It is unclear whether the 
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motion analysis techniques can work well on the video surveillance scenarios 

where the video quality is not good enough for human or even face detection, with 

a relatively noisy background, for instance, in fight detection applications. 

2.5.3  Physiological Signals  

Prior studies suggest that facial expression, vocal information, hand gesture, 

body posture, and language, etc. are the most common input factors for human 

affect inference [14, 119]. In addition to these signals, physiological signals also 

appear to carry important information related to human emotions and intentions. 

For instance, some studies attempted to detect happy by analysis EEG signals [47], 

some tried to study stress by using human physiological signals including galvanic 

skin response, and heart rate variability, etc. [68], some attempted to detect users’ 

typing errors based on the analysis of EEG signals [65], while some other studies 

suggested to use physiological signals such as skin conductance level to predict 

users’ actions [61], when they are playing computer games. However, different 

from the extraction of facial expressions, gestures, and body postures, etc. which 

are easily captured by webcam or other non-intrusive devices, most current 

approaches of physiological signals measurements are often intrusive. These 

approaches require users to have additional sensors attached onto their body for 

electrocardiogram (heart-related), electromyogram (muscle-related), 

electroencephalogram (brain-related) signals and so on. For instance, BP@Home 

system [56] relies on an A&D blood pressure sensor that must be worn by the user. 

The MobiSense system [104] is capable of returning heart-beat and activity 

information to a server based on accelerometer and ECG sensor information, but 

also requires the user to wear sensors on the body. 

In this thesis, we therefore study on a non-intrusive approach to measure 

physiological signals in daily computer tasks. Specifically, we explore the usage 
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of the photoplethysmographic (PPG) signals to extract human heart beat rate and 

respiratory rate. There are some prior studies working on using non-intrusive 

video-based methods to measure human physiological signals for health 

monitoring. For instance, Scully et al. [91] used the video taken by smartphone 

cameras to determine human heart beat rate in their study. In the work of [1], Ahsan 

et al. attempted to detect hemoglobin level via fingertip video images which were 

collected by smartphone cameras. In [6], Balakrishnan et al. attempted to detect a 

periodic pulse from captured head movement videos via principal component 

analysis (PCA). Based on the detected pulse, heart beat rate and respiratory rate 

could be estimated in their study. In [53], independent component analysis (ICA) 

was adopted to reduce the impact of motion in the captured signal. These 

techniques, however, are very easily affected by movement of the body and 

changes in the head orientation. After physiological signals are extracted, one 

could proceed to associate them with human affects. It is observed that heart rate 

variability will decrease when human feel fear, sad or happy, while peak heart rate 

will increase with pleasure [87]. Slow respiration can be regarded as manifestation 

of relaxed emotion, while irregular rhythm and quick variations correspond to 

anger or fear [54, 87, 94]. Nevertheless, establishing a good mapping from the 

collection of physiological signals to human emotions remains an interesting and 

perhaps open research problem. 

2.6 Summary of Related Works 

Inspecting from the prior related research, we see some gaps between the 

existing studies and approaches about understanding human intention in both 

human-human and human-computer interaction tasks. The constraining issues of 

the prior studies include studies being conducted only on the predefined tasks or 



 

32 

 

on simulated applications without making use of all reasonable modalities. 

Besides, the literature review on the interaction and body signals suggests the 

feasibility to capture human interaction and body signals including mouse, gaze, 

head, body movements as well as physiological signals, in a non-intrusive manner. 

These studies also suggest that these interaction and body signals can be further 

applied to interpret human emotions and even intention. The studies described 

above together provide some practical approaches to further understand human 

intention in real applications.  
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Chapter 3 Automatic Fight Detection via Motion 

Analysis 
 

Selected notations and abbreviations used in this chapter 

 motion acceleration in optical flow image  

 motion acceleration of local region  in optical flow image  

 a set of classifiers for ensemble learning 

 a classifier in set  

 Euclidean distance between motion regions  and  

 motion attraction between motion regions  and  

 overall motion attraction among motion regions in optical flow image  

 number of ensemble classifiers for cross-species learning 

 a local region in a frame 

 motion magnitude of optical flow image  

 motion magnitude of motion region  in optical flow image  

 motion magnitude of local region  in optical flow image  

 number of frames in a video 

 number of columns for segmenting local motion regions in a frame, default value is 4 

 number of rows for segmenting local motion regions in a frame, default value is 4 

 number of optical flow images for type  in a video 

 a pixel in an optical flow image 

 a motion region in an optical flow image 

 set of motion regions in optical flow image  

 index of current frame 

 horizontal component of a motion vector in optical flow image  
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 vertical component of a motion vector in optical flow image  

 a motion type 

 source training set for cross-species learning 

 target training set for cross-species learning 

 a sub training set to learn classifier  

  

LMF abbreviation of local motion features 

MSF abbreviation of motion signal features 
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We start our study of understanding human intention by investigating human-

human interaction in social signal processing. We focus on detecting human fight, 

which is a special social event and interaction. This chapter presents our proposed 

motion analysis-based automatic fight detection approaches. Compared with data-

driven approaches or approaches relying on gesture recognition, etc. the proposed 

approaches require less computational cost. 

Different from the prior fight detection studies, we aim to detect real fight 

events happening around people in daily life. In order to evaluate the proposed 

fight detection models in real fight scenarios, we collect and annotate the human 

real fight dataset. We then present the details of the human real fight dataset, 

evaluation experiments and results. From the results, we find the appropriate way 

to model the body motion signals for human real fight detection. 

At the same time, we are also interested in revealing the fundamental 

difference between real fights and simulated fights, as well as understanding real 

human fight intention. To this end, we conduct experiments to discriminate real 

fights from simulated fights. This chapter presents these experiments and results. 

In addition, in real applications, only a small amount of human fight videos 

are available for training. That might affect the performance of fight detection 

models, especially when we build the model by data-driven approaches, such as 

deep learning. To address this challenge, we propose a cross-species learning 

approach based on the motion analysis features, to adapt knowledge from animal 

fights to human real fights. This chapter presents the collected animal fight dataset, 

cross-species learning approaches, as well as the evaluations. 

The rest of this chapter is organized as follows. Section 3.1 describes the 

motion analysis models that we build and adopt for the purpose of fight detection, 

as well as the underlying motion features contributing to the models. Section 3.2 
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introduces the human real fight dataset collected by ourselves, which is involved 

in our experiments for evaluating the proposed fight detection models and cross-

species learning approaches. Section 3.3 describes our evaluation experiments. 

Section 3.4 presents the study of evaluating proposed fight detection models in 

simulated fights as well as discriminating real fights from simulated fights. Section 

3.5 describes the work of cross-species learning in fight detection. Finally, this 

chapter is concluded in Section 3.6.  

 

3.1 Fight Detection by Motion Analysis 

In this study, we investigate in extracting a series of features based on motion 

analysis to build human fight detection models, which are resilient to relatively 

low resolution videos with noise induced by camera movement etc. Under the 

context of low resolution video with noise, it is often hard to perform action 

recognition or even human detection. As a result, we refrain from having to 

recognize the human and the associated body parts, e.g., the arm, the hand or the 

leg, which would normally be involved in a fight. Instead, we reckon that a fight 

will be associated with fast moving objects or motion regions. Stationary objects 

residing in the background would not contribute to a fight event and should not be 

considered for fight detection at all. We thus aim at detecting the presence of 

rapidly moving motion regions and their representative trajectories. 

Our approaches adopt a two-level statistical aggregation technique to 

generate the feature sets. We first implement an algorithm based on optical flow 

images to extract motion information from video clips. We extract the motion 

pixels and then the motion regions from consecutive frames by computing the 

optical flow vectors after eliminating the noise. We then extract features from the 
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motion information in two approaches. In the first approach, we consider the 

motion signals occurring with different types of motions present, which include 

motion magnitude, acceleration and a new concept called motion attraction. We 

do not want to rely on the complicated mechanisms of gesture or action recognition 

to detect different motion types. We therefore simplify the motion type detection 

by using the nature of motion regions present such as size of the motion region, 

etc. We then compute motion statistics according to the classified types in the 

video to generate the feature set for fight detection. We refer to this as the “motion 

signal features”. On the other hand, the locations of fight scenes in video frames 

may vary across the whole video. Therefore, in our second approach, we consider 

the motion signals occurring in different locations. In this approach, we propose 

to extract motion signals including motion magnitude and acceleration, within 

different regions of video frames. We then compute motion statistics of these 

motion signals according to the local motion regions as our features, which can 

effectively encode the spatial motion attributes for fight detection. We refer to this 

as the “local motion features”. 

3.1.1  Optical Flow Images  

Recall that our goal is to develop an effective algorithm that can deal with 

low resolution videos and resilient to noise. This would imply that common motion 

analysis techniques based on action recognition or even human detection could not 

be adopted. Instead, we need fast and simple but robust motion extraction and 

analysis approaches. Candidate methods include optical flow, frame difference, 

etc. In this study, we prefer to adopt optical flow for motion analysis, since in the 

application of human fight detection, the magnitude of optical flow vector is a very 

strong cue for measuring the amount of motion and the direction of optical flow 

vector is able to provide us with more motion information. Our approach is 
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actually based on extracting motion information from optical flow images, and in 

our approaches, we applied the algorithm described by Farneback, et al. [28] to 

compute optical flow images between two consecutive frames. 

Our motion analysis-based approaches consist of several steps: optical flow 

computation, noise removal, motion signal extraction and feature extraction. After 

extracting the motion analysis features, we then adopt machine learning 

approaches to recognize and classify the video. As illustrated in Figure 3-1, we 

generate an optical flow image in Figure 3-1 (b) from two consecutive raw frames 

from a video, such as Figure 3-1 (a). We then try to remove noises from the optical 

flow image, as shown in Figure 3-1 (c). 

   

            (a)               (b)               (c) 

Figure 3-1 Computing optical flow image. (a) original image, (b) optical flow image, (c) 

noise removal 

Figure 3-2 demonstrates a sample of optical flow image with camera motion 

noises. Figure 3-2 (a) indicates the color code scheme for visualizing the optical 

flow image. The hue of the color code represents the motion direction in Figure 

3-2 (b), while the intensity represents the motion magnitude. 
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               (a)                     (b) 

Figure 3-2 Color code scheme (a) and optical flow image (b). 

 

The videos involved in our human real fight dataset are collected from video 

surveillance. These videos are in bad resolution and contain a lot of background 

movements or environmental changes, such as environmental light change, etc. 

These background noises and environmental changes would introduce some 

noises when we generate the optical flow images. Figure 3-3 (b) shows some raw 

optical flow image noises, under the color coding scheme in Figure 3-3 (a). 

Therefore, we need to remove some noise before further processing. We observe 

that the main noises are introduced by environmental light changes. In our 

experiments, since most of the videos are collected from the videos produced by 

relatively stable camera, there is little camera movement happening during the 

video recording. The main causes of the noise can be attributed to environmental 

light changes, while these noises usually appear in fragmentary pixels. For this 

type of noise, we can remove them by filtering the motion regions with very small 

size. Therefore, we identify and extract connected motion regions from optical 

flow images, and then compute the size of each connected motion regions in our 

approach. The regions with very small size which contain few fragmentary pixels 

are usually the noise caused by light changes. We then remove those regions to 

remove light changing noises. 
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                  (a)                    (b) 

Figure 3-3 Color code scheme (a) and light change in optical flow images (b).  

 

3.1.2  Extracting Motion Signal Features 

 

Figure 3-4 Example of motion signal features extraction. 

After performing noise removal to produce denoised optical flow images, we 

can extract and analyze motion signals from these optical flow images. Figure 3-4 

illustrates the process of extracting motion signal features. As mentioned before, 

we would like to implement fight detection without performing behavior, gesture 

or action recognition. However, there are inherently multiple types of motions 

present in the raw optical flow images. Thus, in our first approach, we perform 

some preprocessing to simplify the task of detecting motion type. 
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Detecting Motion Type 

It is intuitive that different types of motions may tell different stories about 

the underlying motion activities. For instance, an optical flow image that contains 

one big motion region with big motion magnitude may mean a fast whole body 

movement, whereas two small motion regions both with big motion magnitudes 

may well represent two fighting fists. Though the motion magnitudes in both of 

the two cases are big, they may be manifesting different scenarios, due to the 

difference in number and size of motion regions. In general, most fighting scenes 

should involve at least two persons, often characterized by the presence of two or 

more fast moving regions. To improve the discriminative power of the motion 

detection algorithm without incurring excessive overhead, we would like to 

classify all the different possible types of motions into a few types based on the 

number of motion regions, the average size of regions, their moving directions, 

etc. Then for each optical flow image, the representative motion type reflecting 

the whole image is detected. 

 
Figure 3-5 Decision tree for classifying motion types. 

As illustrated in Figure 3-5, we specifically classify the motion regions into 
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8 motion types. All these motion types can be determined through the relative size 

and number of motion regions, as well as the motion directions. To make the 

detection task more efficient, we adopt a simple decision tree approach, as 

depicted in Figure 3-5. For instance, for an optical flow image containing two 

motion regions, we follow the appropriate branch of the decision tree and compare 

the directions of the two motion regions on whether they are moving in the same 

or different direction. This is achieved by computing the angle between the 

directions of the motion regions. If the difference is smaller than 90-degree 

orientation, the motion is regarded as a “Same Direction” motion; otherwise the 

motion is regarded as a “Different Direction” motion.  

Computing Motion Signals 

After computing for the optical flow images, removing noise thereof and 

classifying the resultant representative motion patterns, we extract the key features 

for machine learning. There are three representative attributes arising from our 

motion analysis approach: motion magnitude, motion acceleration, and strength of 

motion region relationship, collectively known as motion signals in this approach. 

Motion magnitude reflects the amount of movement observed in an optical flow 

image. It is a first order quantity. Acceleration measures the rate of change in 

motion magnitude, which is a second order quantity. We propose a third type of 

useful motion signal to cater for measuring the strength of the relationship between 

several motion regions, called motion region attraction, which is also a second 

order quantity. In statistics, distribution is often approximated via some first order 

and some second order parameters, the most common ones being the mean and the 

standard deviation. Additional parameters would be needed if the distribution 

deviates from standard ones, for example, mode or median as a variation to the 

mean, and the use of range (minimum and maximum) or inter-quartile range. 
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Occasionally, higher order quantities like third order skewness or fourth order 

kurtosis may also be considered. However, we demonstrate that our first and 

second order statistics already suffice in contributing to a good performance. 

In this approach, we first compute the motion magnitude from each optical 

flow image. Each pixel  in optical flow image index with  actually represents 

an optical flow vector , and the magnitude implied of each pixel can be 

computed as the length of this vector: . The magnitude  of 

a motion region  is defined as the average magnitude of all the pixels within the 

motion region, as in Equation 3.1. Let the optical flow image consist of a set of 

motion regions: . The motion magnitude of that optical flow image is then 

computed by the sum of all the motion region magnitudes, as in Equation 3.2. 

 
3.1 

 3.2 

We next compute the acceleration, as the change in motion magnitude. We 

would take two consecutive optical flow images and compute the absolute 

difference of the motion magnitudes between two consecutive optical flow images 

as the acceleration, as in Equation 3.3, where  and  are the indices of the 

current and previous frame respectively. 

 3.3 
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Figure 3-6 Motion attraction computation.  and  are the motion magnitudes of 

motion region 1 and 2 respectively. While,  is the Euclidean distance between the centroids 

of the two motion regions. 

We finally propose the notion of motion attraction   among motion 

regions in an optical flow image to summarize the relationship between different 

motion regions. If there are more than one motion regions in an optical flow image, 

we then measure the strength of the relationship between each pair of the motion 

regions in that image. The attraction between two regions is stronger if the regions 

are larger, and also stronger if they are closer to each other. We then compute the 

motion attraction   by Equation 3.4, which computes the product of the 

magnitudes for the two regions, normalized by the distance between the centroids 

of those regions.  and  are the two motion regions belonging to  and  

is the Euclidean distance between the centroids of the two motion regions. Figure 

3-6 illustrates the example of computing motion attraction. The overall attraction 

for an optical flow image is the average of all the pairwise attraction values, which 

can be computed by Equation 3.5, where the number of the total pairs of motion 

regions is . 

 3.4 

   

3.5 
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Extracting Motion Signal Features 

After obtaining the motion signals, namely, motion magnitude, motion 

acceleration, and motion region attraction, we would like to extract motion signal 

features based on their statistics across all the optical flow images throughout the 

video, as well as the individual statistics for optical flow images belonging to each 

of the 8 motion types described before. Starting from a video consisting of  

frames, we first compute a total of  optical flow images, removed of noise. 

Then we classify the optical flow images into one of the 8 motion types following 

the decision tree in Figure 3-8. Now there are  images for a motion type , and 

. For the set of optical flow images belonging to each type, we 

compute common statistics for each of the three motion signals, namely, mean, 

maximum, minimum, median, and standard deviation. Furthermore, we count as 

the final feature the percentage of optical images belonging to each motion type, 

hereby reflecting the distribution of the different motion types. All these features 

are used in the machine learning algorithm to detect the presence of a fight. 

To summarize, Table 3-1 shows the motion signals and statistics that we use 

to generate useful features. There are 3 motion signals and 5 statistics for each 

signal. As a result, there are a total of 15 features generated for frames belonging 

to each motion region type. This number is reduced to only 10 for those with just 

one motion region (without motion region attraction). Table 3-2 indicates the 

complete set of features that we generate for each video for machine learning. 

There are a total of 110 statistical features for the 8 motion types, plus the 8 frame 

count percentages for each type, and a final set of 15 global statistical features 

covering the whole video, regardless of the motion type. This results in a potential 

set of 133 features. 
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Motion Signals Statistics 

Motion magnitudes Mean, maximum, minimum, 

median, standard deviation Motion accelerations 

Motion region attractions 

Table 3-1 Motion signals and their statistical features. 

 

Region Statistics 

Single Magnitude / acceleration statistics, count 

Multiple Magnitude / acceleration / attraction statistics, count 

Global Magnitude / acceleration / attraction statistics 

Table 3-2 Full set of motion signal features generated for a video. 

 

3.1.3  Extracting Local Motion Features  

 
Figure 3-7 Examples of the optical flow image and local motion regions for extracting local 

motion features. 

Extracting Local Motion Sequences 

Fight scenes captured in the wild vary very much in nature and manifest with 

diverse camera locations and orientations. It is not uncommon to see that some 
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fight motions occupied a large central area of a video frame, while others only 

took place in a small corner region. Inspired by the spatial robustness of local 

binary features [37], we propose to extract local motion signals to account for 

spatial variations of the fight motions across the full image. 

To extract the generic motion features that depict signals, we focus on the 

motion magnitude, i.e. the velocity of the moving object in a pixel-based manner, 

rather than the moving direction. This is because the direction of an actual fight 

motion can vary from instance-to-instance, and even more according to the 

viewing angle of the camera and the location of the people, as many surveillance 

cameras are installed overhead. To further distill the essential motion attributes for 

fight detection, we also extract the motion acceleration. The acceleration reflects 

the suddenness of actions, which generally attains a high value in the real fight 

actions. 

More specifically, given a frame in a video, we first equally segment the video 

frame into  regions, where  and  are the number of columns and 

rows for segmenting a frame, respectively. In our evaluation, we adopt 

. After obtaining the optical flow image described above, we then measure and 

compute the amount of motion magnitude   and motion acceleration 

 by: 

 
3.6 

 3.7 

where  and  are the indices of the current and previous frame respectively, 

each pixel  belongs to local region ,  represents the motion vector 

of  in the optical flow image with the index .  represents the average 

motion magnitude within local region  . Processing the frames of a video 
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segment gives us   sequences of the motion magnitude and motion 

acceleration. We then consolidate these information to compute for statistical 

features as the temporal feature representation. We then feed these features into a 

conventional machine learning module, which is Support Vector Machine (SVM) 

[52] in our study, to learn a fight detection model. Examples of the optical flow 

image and local regions for motion features extraction can be found in Figure 3-7. 

Extracting Features from Local Motion Sequences 

After obtaining the local motion sequences, we analyze their motion patterns 

based on low-cost hand-crafted features. As shown in Figure 3-7, we measure the 

motion dynamics using the descriptive statistical features, which is similar to our 

motion signal features described above. 

Our approach extracts temporal features based on human heuristics and 

adopts traditional machine learning algorithm for fight detection. There are two 

representative attributes arising from local motion sequences: motion magnitude 

and acceleration, which we term motion signals. We represent the temporal 

information of motion signals based on their statistics throughout a video. Similar 

to the motion signal features, we compute five statistics for each motion signal as 

shown in Table 3-3. Extracting the five statistics from both sequences of motion 

magnitude and acceleration gives us   statistical 

features for each video. 

Motion Signals Statistics 

Local motion magnitudes   Mean, maximum, minimum, 

median, standard deviation Local motion accelerations 

Table 3-3 Local motion sequences and statistical features. 
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3.2 Constructing Human Real Fight Dataset  

 

Figure 3-8 Example of fight scenes from human real fights (first row) and simulated fights 

(second row). 

In order to evaluate the proposed approaches, we need to apply them to a 

video dataset containing human fight events. However, to our best knowledge, 

most of the prior related studies investigated fight, violence detection or human 

actions recognition on the datasets that are collected from sports, movies or 

simulated scenarios. The fights or actions involved in these datasets either only 

occur in some specific scenarios, such as hockey games, or are acted by subjects. 

These kinds of fight events may not truly represent the real situations of fights 

occurring in real daily life and may not reflect the real human fight intention. In 

order to study human real fight, we would need to collect the real fight dataset that 

contains the real fight events in daily life. However, it is difficult to collect real 

human fights videos by researchers in the laboratory environment. It is impossible 

or unethical to ask someone to fight for real in front of a camera. Fortunately, there 

are many videos uploaded to some video websites such as YouTube, including 

those containing real fight events. These events actually happened around the 

people involved and therefore represent the real situation of fighting. 

We then identify and download real surveillance fighting videos from 
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YouTube. The videos involve the events of real bar fights, prison fights, street 

fights, etc. They are all taken from a top angle view by some stable CCTV cameras 

installed in a specific location, such as a bar, or a post around the street corner. The 

first row in Figure 3-8 demonstrates some examples of real fight scenarios. These 

recorded videos contain events happening in this specific location. Thus they 

contain both the fight scenes and non-fight scenes. 

Since each video contains a sequence of fight and non-fight scenes, it would 

not be appropriate to label the whole video as fighting. Therefore, we partition 

these videos into several sub-clips and annotate each of the sub-clips to produce 

our dataset for evaluation. In most public datasets, especially those acted upon by 

actors, the annotation is frame-based. Each video frame was given a label of an 

event type such as fight, walk, etc. However, an event in the real situation should 

contain a series of actions and should last for a period of time. We believe that the 

frame-based annotation may not be suitable for representing a fight event, due to 

the overly fine granularity and the high cost of annotation. Instead of annotating 

based on each frame, we segment the videos into several semantically related sub-

clips based on the scenes of event and then annotate for each clip. For our 

experiments, each of the segmented video clips lasts for about 10 seconds, which 

we think is long enough to represent an event but is short enough to separate 

different events. 

Based on the scenes of event, our video clips can be categorized into two 

classes: Fight and Non-Fight. To establish the ground truth for performance 

evaluation, we annotate these video sub-clips manually. We ask three independent 

judges to perform the annotation task. Each of them should watch the video sub-

clips, and then give each sub-clip a label of either Fight or Non-Fight 

independently. After they finished with the labeling, we summarize the annotations 
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and retain only those video clips that receive the same annotation from all the three 

persons and remove the others, in order to ensure that our annotations represent 

the real ground truth. Finally, from 19 videos, we semantically partition them into 

299 clips. Among them, 266 clips receive the same annotation from all the three 

independent annotators and are included in our dataset, resulting in a yield of 89%. 

We then construct our dataset by using these 266 clips, the resolution of which is 

. Among these clips, there are 147 clips that contain fight scenes while 

the remaining 119 clips contain non-fight scenes. 

 

3.3 Evaluating Fight Detection Model in Real Fights 

3.3.1  Experiments and Results  
We would like to evaluate the performance of our proposed approaches under 

real surveillance scenarios. As mentioned before, little work had been done to 

detect fights from real scenarios. In this experiment, we evaluate our approaches 

based on our collected human real fight dataset described in Section 3.1. For the 

videos in our dataset, we extracted both the motion signal features and the local 

motion features as shown in Table 3-2 and Table 3-3 respectively. We then conduct 

experiments to evaluate the performance of these features. 

For each of the approaches, we use the feature vectors generated from videos 

and apply a classifier to build our fight detection model for classification. In our 

experiments, we choose Support Vector Machine [52] as our classifier to build 

fight detection model. For the evaluation, we divide our dataset into training set 

and test set and train the classifier with the training set and evaluate on the test set. 

We adopt a standard 10-fold cross-validation in classification performance 

evaluation. We proceed by dividing the dataset into 10 partitions. We then train the 
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classifier with 9 partitions and evaluate on the remaining one. This is repeated 10 

times for the 10 partitions for testing. We then summarized the overall 

performance for the evaluated approach. 

        Classified as 

Ground truth 

Fight Non-Fight CCR 

Fight 119 28  

82.7% Non-Fight 18 101 

Total 137 129 

Table 3-4 Performance of motion signal features on real fights. 

We first evaluate the proposed motion signal features (MSF). Table 3-4 

summarizes the performance of our motion signal features in the form of confusion 

matrix. We can observe that out of a total of 266 video clips, we are able to 

correctly classify 119+101 of them. This translates to a correctly classified rate 

(CCR) of 82.7%. The performance of our motion signal features is quite 

encouraging. The baseline of this study is 55.3%, by taking the size of the majority 

class. There is a performance improvement of over 27%. We are interested in those 

fight events, and report the precision and recall of the events in Table 3-5. It can 

be seen that for our interested events: fight events, the precision is 86.9%, while 

the recall is 81.0%. These results show that our fight detection algorithm can be 

applied in real surveillance scenarios with good accuracy without generating too 

many false positives. 

Class Precision Recall F-score 

Fight 86.9% 81.0% 83.8% 

Non-Fight 78.3% 84.9% 81.5% 

Table 3-5 Precision and recall of motion signal features on real fights. 
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We also evaluated the local motion features on the dataset. The performance 

of the local motion features is presented in Table 3-6. According to the table, we 

can observe that the local motion features can also achieve a promising 

performance of 87.6% accuracy, which is even better than that of motion signal 

features. Again, we are interested in those fight events, and would like to report 

the precision and recall of the events, which are presented in Table 3-7. It can be 

seen that for the fight events, the precision is 91.3%, while the recall is 85.7%. 

These results suggested our local motion features can accurately detect human 

fight events in real applications. 

        Classified as 

Ground truth 

Fight Non-Fight CCR 

Fight 126 21  

87.6% Non-Fight 12 107 

Total 138 128 

Table 3-6 Performance of local motion features on real fights. 

Class Precision Recall F-score 

Fight 91.3% 85.7% 88.4% 

Non-Fight 83.6% 89.9% 86.6% 

Table 3-7 Precision and recall of local motion features on real fights. 

3.3.2  Comparison with the State-of-the-Art Approaches 

It is encouraging to see that both motion signal features and local motion 

features give promising results of detecting human real fights. Next, we would like 

to compare the performance of our proposed approaches with the state-of-the-art 

approaches. We thus applied the state-of-the-art methods to our human real fight 

dataset, which include MoSIFT [81], ViF [37], and OViF [31]. Table 3-8 shows 
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the evaluation CCR of these approaches. We can observe that our local motion 

features achieve the best performance against its counterparts. Though not as good 

as the local motion features, the performance of motion signal features can still 

beat those of the other approaches. 

We see that our approaches are promising. To further evaluate their 

effectiveness against state-of-the-art fight detection, we also compare our methods 

with FightNet [107, 122]. FightNet has a more complicated network structure than 

ours, thus requires much longer training time. In this experiment, we train the 

FightNet on the human fight dataset. We use 90% of the dataset for training and 

the remaining 10% for testing. We adopt the same data augmentation approach 

described in [107, 122] to the training set. For a fair comparison, we utilize the 

same settings in our approach with local motion features. The performance of the 

FightNet is around 88.5%, while the performance of our approach can also reach 

around 88.5%. Our model achieves promising performance even compared with 

the state-of-the-art FightNet. The FightNet model is a complex neural network. If 

we want to train an effective fight detection model using a normal personal 

computer, for instance, with a 2.90 GHz CPU, it would take more than one month. 

However, we only need around 100 milliseconds to train an SVM fight detection 

model by utilizing our proposed local motion features on the same machine. Our 

approaches are capable of performing the tasks at a very low cost in terms of 

computational power demand. 

Approach CCR 

MoSIFT [81] 74.4% 

ViF [37] 80.1% 

OViF [31] 81.6% 
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Motion Signal Features 82.7% 

Local Motion Features 87.6% 

Table 3-8 Evaluations on human real fight dataset. 

 

3.4 Discriminating Real Fights from Simulated Fights 

The experiments above demonstrate that our proposed approaches perform 

well on the human real fight dataset collected by us, which contains the fight 

events in real surveillance context. After that, we would like to cross-validate it 

against other commonly adopted datasets for research studies in fight detection. 

There are several common video datasets which contain fight events. Among them, 

the BEHAVE dataset [10] and CAVIAR dataset [29] are the most famous ones 

adopted by prior research works in detecting fight and other human actions. These 

datasets involve many common human actions such as walking, meeting, running, 

fighting, etc. However, the actions in these datasets were acted by some subjects. 

Even though the actions of these datasets are simulated, there are still a lot of 

research works conducting their studies on these datasets for the detection of 

different actions. Since they are so well-received, we would like to evaluate our 

approaches also on these datasets. 

3.4.1  Evaluating in Simulated Fights  

In our second experiment, we employ the publicly available BEHAVE and 

CAVIAR datasets to evaluate our algorithm in simulated fight scenarios. These 

datasets involve many common human actions, including fighting. Similar to the 

videos that we collect from YouTube, the videos from these two datasets are also 

taken from a top angle view by a stable camera. The biggest difference between 

them is that the former's fight actions are real, while the latter's are simulated. 
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Several subjects were required to act some human actions in generating these two 

datasets. In addition, as mentioned earlier, our datasets have been annotated based 

on each sub-clip, while both BEHAVE and CAVIAR datasets were annotated 

based on each frame. Since we regard a fight event as a series of fight actions, in 

order to compare the two kinds of datasets fairly, namely, YouTube versus 

BEHAVE and CAVIAR datasets, we transform the annotations of both BEHAVE 

and CAVIAR from the frame level to the clip level. We segment the videos in these 

two datasets into several sub-clips based on their events. Each of the sub-clips lasts 

for about 10 seconds, and is associated with only one label of either Fight or Non-

Fight. Finally, we complete with the simulated fight dataset for our experiment 

with some post-processing upon the BEHAVE and CAVIAR datasets. The dataset 

now contains 46 fight video clips and 123 non-fight clips. The second row in 

Figure 3-8 illustrates some examples of the simulated fight dataset. 

We adopt a similar evaluation procedure as in the experiments presented 

above. We generate a feature vector for each video clip with our proposed features 

and apply machine-learning algorithm on the generated feature vectors to build 

the fight detection models from the training set, and then test on the testing set. 

Same as those experiments, we adopt SVM as the classifier and 10-fold cross-

validation for evaluation. 

We first evaluate the MSF. Table 3-9 and Table 3-10 show the results of the 

experiment. It seems that the performance of our features is not good as that in 

real fight detection. The CCR is around 79.9%, only beating the relatively high 

baseline of 72.8% by around 7%. For the more interested fight events, the 

precision of this model is around 68.8% and the recall is only about 48%. It can 

be seen that our algorithm pessimistically classifies most fight instances as non-

fight ones. 
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        Classified as 

Ground truth 

Fight Non-Fight CCR 

Fight 22 24  

79.9% Non-Fight 10 113 

Total 32 137 

Table 3-9 Performance of motion signal features on simulated fights. 

Class Precision Recall F-score 

Fight 68.8% 47.8% 56.4% 

Non-Fight 82.5% 91.9% 86.9% 

Table 3-10 Precision and recall of motion signal features on simulated fights. 

We then evaluated the LMF. Table 3-11 and Table 3-12 illustrate the results. 

According to the results, we can also see that the performance of our proposed 

motion analysis-based features in simulated fight scenarios is not as good as that 

in real fight detection, though the performance of LMF is better than that of MSF. 

For the fight events, the precision and recall are 67.4% and 63.0% respectively. 

Moreover, the model still tends to classify fight instances as non-fight ones. 

        Classified as 

Ground truth 

Fight Non-Fight CCR 

Fight 29 17  

81.7% Non-Fight 14 109 

Total 43 126 

Table 3-11 Performance of local motion features on simulated fights. 
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Class Precision Recall F-score 

Fight 67.4% 63.0% 65.2% 

Non-Fight 86.5% 88.6% 87.5% 

Table 3-12 Precision and recall of local motion features on simulated fights. 

We then further compare the performance with the other state-of-the-art 

approaches. According to Table 3-13, we can observe that the two proposed 

features cannot outperform the other features. The performances of MoSIFT with 

BoW approach is much better than that in real fight detection.  

Approach CCR 

MoSIFT [81] 86.4% 

ViF [37] 82.2% 

OViF [31] 82.8% 

Motion Signal Features 79.9% 

Local Motion Features 81.7% 

Table 3-13 Evaluations on human simulated fight dataset. 

It is interesting to observe that this experiment seems to suggest that our 

algorithm is not able to precisely classify between simulated fight events and non-

fight events. However, in the real fight scenarios in the first experiment, the 

performance of our algorithm is much better. The two experiments have been run 

following the same procedure with the same algorithm. Furthermore, the videos 

of these two experiments are all taken from top view angle by stable cameras. Yet 

the performance is very different. This can be partially attributed to the much 

higher baseline in the second experiment, but that is just a minor factor. Since the 

biggest difference between the two types of datasets is that the fight actions in our 

dataset are real, while those in the two public datasets are simulated, a plausible 
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explanation would be due to the nature of the videos, namely, real versus simulated 

fights. 

In this second experiment, our algorithm is not doing as well, and the key 

ingredient of our algorithm is based on motion analysis. It is not difficult to see 

that the acceleration feature for real and simulated fights would be quite different. 

In real fights, the “force” exerted by the fighting parties would be large. The laws 

of physics imply a high acceleration, and then when the target is hit, a high 

deceleration is experienced, to bring in a stronger impact on the body being hit. In 

simulated fights, there is no intention for anyone to hurt anybody, so that the real 

“force” exerted will be small, leading to a small acceleration, and in general, a 

lower velocity and slower motion. In many Kung-Fu or martial art movies, the 

scenes are often shot at a frame rate of 16 per second, and played back at the 

normal rate of 24 per second, implying an automatic increase in perceived velocity 

to make them look more real. These differences in velocity and acceleration bring 

in much impact to our algorithm, whereas there would be less impact on research 

works not based on motion analysis. 

A related question with our motion analysis-based approaches is: does it 

matter if we cannot detect fights effectively in the simulated scenarios? Recall that 

our goal is to detect real fights and understand human real fight intention in a 

possible surveillance application. A simulated fight may just reflect some playing 

acts by children in real life, which may not reflect a real fight intention of human. 

Thus, it is not really necessary for us to identify those simulated fight events as 

real fight events. Rather, they are semantically non-fight events in real world 

setting, and may not represent the real fight intention. We thus transform the 

problem a little bit: can we detect real fight events against simulated fight events 

when they both occur in the same dataset? Next, we will conduct another set of 
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experiments to study this issue.  

3.4.2  Manual Detection 

Simulated fight events are different from real fight events, and they may not 

represent the human real fight intention. In order to understand more about the 

difference between real and simulated fight events as well as human real fight 

intention, we design two experiments for discriminating them. In the first 

experiment, we invited some human judges to watch and label some selected real 

fight and simulated fight video clips. They need to label each video clip as fight or 

non-fight. From this experiment, we want to see whether human can tell apart real 

fights from simulated fights, and whether human will regard simulated fight events 

as fights or not. In addition, we also tried to evaluate our approaches to see whether 

machine can tell apart real fights from simulated fights. Both experiments would 

help us understand more about real and simulated fight events as well as human 

real fight intention. 

First, we design a manual detection experiment. To avoid bias, we recruit 10 

judges to participate in this manual detection experiment. Besides, the three 

persons who helped to annotate videos downloaded from YouTube for our real 

fight dataset are excluded in this experiment to avoid any bias. Since we have 

hundreds of real and simulated fight video clips, requiring all the judges to perform 

a comprehensive manual detection task for each clip is very time consuming. 

Therefore, in this experiment, we only pick some real fight video clips from our 

real fight dataset and some simulated fight video clips from the BEHAVE and 

CAVIAR datasets to perform the manual detection. More speicificaly, we group 

all the real and simulated fight clips into 18 and 13 groups respectively, based on 

the variety of fight scenes and environment (e.g., bar fight, street fight, with 

different number of persons involved). We then randomly pick one clip from each 
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group to cover the varieties. Finally, we get 18 real fight clips and 13 simulated 

fight clips for this manual detection experiment. 

Before the experiment, each subject was told that there two types of videos: 

with fight events and without fight events. They were required to watch the video 

clips and determine the type for each clip. They had to make the judgment by 

themselves and they can only choose one type of either fight or non-fight for each 

clip. In order to give judges enough time and sufficient information to make their 

judgment, there was no time limit when they participated in this experiment. 

Furthermore, they were allowed to watch the clips over and over again if desired, 

but for each clip they only had one chance to label. 

Since there are 18 real fight clips and 13 simulated fight clips, and 10 judges 

participating in the experiment, we finally receive 310 labels, with an expected 

number of 180 labels for real fight clips coming from YouTube and 130 labels for 

the simulated fight clips coming from the BEHAVE and CAVIAR datasets. The 

results are shown in Table 3-14. 

        Detected as 

Fight scenarios 

Fight Non-Fight Total 

Real fight 152 28 180 

Simulated fight 18 112 130 

Total 170 140 310 

Table 3-14 Manual detection on discriminating real fights from simulated fights. 

According to the table, there are 152, about 84.4%, of real fight clips correctly 

labeled as Fight, whereas 112, around 86.2% of simulated fight clips are correctly 

labeled as Non-Fight. This translates to an overall CCR of 85.2% by human. In 

general, human can tell apart real fight events from simulated fight events 
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reasonably well. We would like to know the comparative performance by our 

algorithm on its ability to distinguish the events against human. It is interesting to 

notice that there are still a good number of cases (14.8%) that even human can 

mistakenly classify. When the mistakes are considered, human seems to tend to 

consider more real fight events (28) as non-fight events than to consider simulated 

fight events as fight events (18). 

3.4.3  Machine Detection 

In order to determine whether our algorithm can distinguish real fight events 

from simulated fight events, we select all the real fight videos and simulated fight 

videos from our dataset and all the simulated fight videos from BEHAVE and 

CAVIAR datasets to form a new dataset. We apply the same evaluation procedure 

on this new dataset as in our first two experiments. We report the average correct 

classi_cation rate as well as the precision and recall of fight events in Table 3-15 

and Table 3-16, with a baseline of 76.2%. 

        Classified as 

Ground truth 

Real fight Simulated fight Total 

Real fight 145 2 147 

Simulated fight 16 30 46 

Total 161 32 193 

Table 3-15 Performance of motion signal features on discriminating real fights from 

simulated fights. 

        Classified as 

Ground truth 

Real fight Simulated fight Total 

Real fight 142 5 147 

Simulated fight 18 28 46 
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Total 162 31 193 

Table 3-16 Performance of local motion features on discriminating real fights from 

simulated fights. 

From the tables, we can observe that our proposed features can accurately tell 

apart real fight events from simulated fight events, attaining an average accuracy 

around 90%, and 88% for the MSF and LMF respectively. It is interesting to note 

that the performance of machine detection for discriminating real fights from 

simulated fights is even better than that of human classification. Since our 

algorithm is based on motion analysis, the results give us the insights that the 

motion signals between real fight events and simulated fight events are largely 

different and machine can distinguish these two types of events very well based 

on their motion information. On the contrary, most existing works capable of 

identifying simulated fight events as fight events would experience difficulty to 

differentiate between real and simulated (perhaps child play) fights. That could 

have imposed some limitation on their applicability in real world surveillance 

scenarios. 

3.5 Cross-species Learning in Fight Detection 

It is encouraging to see that our proposed approaches can perform well in 

detecting human fights in real scenarios. Moreover, they can tell the difference 

between real human fights with simulated fights, which in turn can help us 

understand more about human real fight intention. At the same time, our model 

can achieve promising performance even compared with the state-of-the-art 

FightNet, which however may be limited by the small amount of training data. A 

large amount of well-annotated data is required for building a well-performing 

FightNet. However, it is difficult or even impractical to collect a large amount of 
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human real fight videos. Adapting knowledge from similar data sources can be an 

effective solution. However, our experiments demonstrate that simulated fights do 

exhibit fundamental different behaviors from real fighting scenarios, indicating 

that simulated fights generalized to real fights poorly. An alternative source is 

using real fight videos, but not by human. Interestingly, there are a good amount 

of animal fight videos on the web. And there are some similarities between human 

and animal fighting actions. We therefore propose to explore our study further on 

cross-species fight detection, being also curious about whether human are fighting 

like animals. 

3.5.1  Source Datasets  

This study aims to adapt useful knowledge from similar source subsets to 

learning human fights. We noticed that human real fights and animal fights may 

share some intrinsic similarity. We therefore are interested in adapting knowledge 

from animal fights to learning human fights. In addition, there are some other 

public datasets containing human fights in other scenarios, which are more similar 

to real human fights than the simulated fight dataset. Therefore, our experiments 

attempt to evaluate the performance with adaptation from animal fights and human 

fights in other scenarios to that of real human fights. 

Our experiments were conducted based on 4 datasets. The target dataset is the 

human real fight dataset described in Section 3.1, which is collected by ourselves. 

The source datasets of this study involve a public dataset consisting of human 

fights in hockey games [81], a public dataset capturing fight scenes from action 

movies [81] and finally an animal fight dataset collected and annotated by 

ourselves. Figure 3-9 depicts some examples of these datasets. 
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Figure 3-9 Example fight scenes from animal fights (first row), hockey fights (second row) 

and action movies (third row). 

 

Animal Fight Dataset 

In order to investigate fight recognition for animals and the cross-species 

learning in fight recognition, we need a video dataset of real animal fights. To our 

best knowledge, there was no available annotated video set containing animal fight 

events. As a result, we proceeded to collect our own animal fight dataset. We first 

found and downloaded videos containing animal fights from YouTube. The videos 

we found involve the events of real animal fights, such as dogs fighting with cats. 

The first row in Figure 3-9 depicts examples of animal fight scenarios. 

After getting these videos, we segmented each collected video into several 

sub-clips and annotated them for our evaluation. Similar to real human fights, a 

fight event in the situation of real animal fights should be composed of a series of 

actions and last for a period of time. Considering that, instead of annotating based 

on each frame, we segmented the videos into short sub-clips based on the scenes 
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of event and then annotated for each of them. 

Again, we categorized these video slips into Fight and Non-Fight, based on 

the event occurred within. We then recruited some judges to annotated these clips 

in order to establish the ground truth for evaluation. In the annotation task, judges 

were required to watch these video clips independently, and label each of them as 

either Fight or Non-Fight. There were three judges participated in this annotation 

task. When the three of them finished their labeling, we summarized all their 

annotations and only preserved those video clips that received the same annotation 

from all the three persons, but removed others receiving inconsistent annotations, 

to ensure that our annotations are close to ground truth. Finally, we got 206 clips, 

which received the same annotation from all the annotators. Among them, there 

are 111 clips that contain fight scenes while 95 clips contain non-fight scenes. 

Public Available Datasets 

In addition to animal fights, there are also some fight datasets capturing fights 

from other sources like sport events and action movies. In order to investigate the 

effect of different source data on transfer learning in real human fight detection, 

we need to also evaluate the transfer learning performance from other source 

domain. Nievas et al. [81] published two datasets capturing fights from hockey 

events and action movies separately, which are closer to real human fights 

compared with the simulated fight dataset. We therefore also adopted their datasets 

in our study. The second row and third row of Figure 3-9 show samples of the two 

datasets, respectively. 

3.5.2  Ensemble-based Adaptation 

Collecting a large number of human fights or aggressive videos is challenging. 

We observed some intrinsic commonalities of human and animal fighting actions, 
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such as moving amplitude and acceleration, which fits naturally into our motion 

analysis-based recognition approach. We believe that investigation of cross-

species fight detection would be highly beneficial to this application domain, 

namely, fight detection. 

 
Figure 3-10 System architecture. Our cross-species learning is achieved through ensemble 

learning. Taking local motion features as an example, we extracted features from animal fight 

videos and a small amount of available human fight videos for ensemble learning. 

For cross-species fight detection, the training data set is normally from one 

species, and the test data set from another. To address the original research problem, 

we mainly investigate training on animal fights and testing on real human fights. 

In practice, if merely a modest amount of target data is available compared with 

that of source data, directly training on the combined set of source and target data 
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generally results in unsatisfactory accuracy, mainly due to the domination of the 

source data. This is the exact issue we need to solve, as the data amount of the 

target species is limited in our problem setting. 

 

Input: source training set  and the training set of the target specie  

Output: A set of classifiers  for the target specie 

Randomly dividing source set into  subsets 

 

Learning ensemble classifiers 

for = 1 to  

    Form a training data set by  

Learn a classifier on  on  

Update the classifier set  

end for  

return  

Table 3-17 pseudocode of learning ensemble classifiers. 

To address this problem and achieve an appropriate adaptation, inspired by 

[44], we propose an approach of using ensemble classifiers to perform cross-

species fight detection, where we adapt animal fight data to build a human fight 

detection model. Figure 3-10 depicted the architecture of our approach. When 

source data dominates the training set, the resulting hyperplane tends to 

discriminate the difference in a specific domain, e.g. between animal fight and 

animal non-fight. However, when we regroup the subset of source data and the 

target data in a reasonable manner, there is a higher chance for each ensemble 

classifier to be able to identify the difference between fight and non-fight across 
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domains. However, some of the animal fight data may help in detecting human 

fight but some may not. In order to reduce the effect of bad animal fight data and 

maintain balanced training sets, we randomly divided the source data into  

subsets, and then we trained  classifiers on each subset combined with partial 

human data. Table 3-17 presents the pseudocode of learning our ensemble 

classifiers. Finally, we bag these   classifiers and apply a voting strategy to 

derive the final predictions. 

Figure 3-11 illustrates an example of our cross-species learning approach. The 

dashed lines denote the ideal hyperplanes for the target (blue) and source (green) 

domain. They may not align well due to differences in species. As in practice there 

is only a small amount of available target samples, the resulting target hyperplane 

(blue solid line) tends to deviate much from the ideal one. However, training with 

different source subsets enhances the chance to produce more proper hyperplanes 

(pink and purple solid lines) for the target domain, thus increasing the likelihood 

of learning the correct hyperplane. 

       
Figure 3-11 Example to illustrate the cross-species learning. 
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3.5.3  Evaluating Cross-species Learning 

Evaluating on Various Datasets 

It is encouraging to see that our approaches with MSF and LMF yield promising 

results for human fight recognition tasks. In order to compare with the state-of-

the-art methods in fight or violence detection, we then evaluated our approach with 

various datasets containing fights from different scenarios and species. Table 3-18 

summarizes the evaluation performance of our approaches. 

Approach Human 

Fights 

Animal 

Fights 

Hockey 

Fights 

Action 

Movie 

MoSIFT [81] 74.4% 75.2% 90.9% 89.5% 

ViF [37] 80.1% 80.1% 81.6% 93.0% 

OViF [31] 81.6% 79.6% 84.2% 89.0% 

Motion Signal Features 82.7% 79.6% 84.5% 98.5% 

Local Motion Features 87.6% 84.0% 87.5% 99.0% 

Table 3-18 Evaluations on various fight datasets. 

According to the table, we can observe that for real human fight, animal fight 

and action movie dataset, our approach with LMF outperforms the state-of-the-art 

methods using MoSIFT [81], ViF [37], OVif [31]. LMF consistently outperforms 

other features. As for hockey fights, the accuracy of LMF is slightly lower than that 

of MoSIFT features, but it still outperforms those of other features. This indicates 

that LMF is a good representation of intrinsic actions inherent in fight events. More 

importantly, it can be well generalized across different scenarios and species. 

Cross-species Fight Detection 

We are also interested in cross-species fight detection. In this situation, the 

training data set is from one source (e.g. animal fight) and the test data set is from 
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another (e.g. human fight). We therefore evaluate our method on this task. In order 

to make a comparison, we also evaluate our method on adapting from other 

sources including hockey fights and action movies, to real human fight detection. 

Besides, the effect on the choice of features in cross-species learning is another 

interesting research question to answer. In our experiments, we also investigated 

the effect of different features on cross-species learning in human fight detection. 

We are interested in whether our proposed features are really suitable for cross-

species learning. 

For studying cross-species fight detection, we first investigated the adaptation 

through ensemble learning using our proposed approaches. Using ensemble 

classifiers to do the cross-species fight detection is a solution to reduce the effect 

of some useless fight data from the source dataset. In practice, the amount of target 

data is oftentimes limited, especially in the case of fight detection. To evaluate the 

learning curve with incremental target data, we present the performances of human 

fight recognition while training on an incremental amount of target data. 

Following the previous practice [16], we evaluate on the training when 10% to 

90% samples (increments by 10%) are available. For each experiment, we first 

selected 10% samples from target data in random as the test samples. Then from 

the remaining 90% target samples, we incrementally added 10% to the training set 

to perform the adaptation learning with source data. In order to reduce the effect 

of randomization, we repeated the procedure 20 times for all the adaptation 

learning experiments to even out performance fluctuation.  

The cross-species adaptation by ensemble learning yields promising results. 

For the comparison purpose, in our experiments, we evaluated the ensemble 

learning models with 3 different choices on the number of ensemble classifiers, : 

5, 10 and 15 for all the sources. Figure 3-12 depicts the performance of the 
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experiments. The -axis shows the number of samples (10% to 90%) from the 

human fight dataset. Different curves present the results of 1) the single classifier 

trained on only human data as well as 2) the -ensemble classifiers trained on 

human data and different subsets of source data. 

   

             (a)                                (b) 

                   

                                   (c) 

Figure 3-12 Performance of adaptation by learning from ensemble classifiers. (a) adaptation 

from animal fights, (b) adaptation from hockey fights, (c) adaptation from action movies. 

 

For adapting from animal fights (Figure 3-12 (a)), in general, given a sufficient 

amount of human fight data (  samples), adaptation by ensemble can 

consistently outperform that of without adaptation. Even without sufficient target 

data, the ensemble model can also slightly outperform the model without 

adaptation. Additionally, as expected, the performance of adaptation improves as 
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the amount of human data increases as well as the number of classifiers  for the 

ensemble goes up. In particular, training with 90% samples of real human fight 

with 15 classifiers achieves an accuracy of almost 89%. 

In addition to animal fights, we also evaluated our method on adapting from 

hockey fights and action movies to real human fight detection. Figure 3-12 (b) and 

(c) depict the results. For adapting from hockey fights and action movies, we can 

also find that the performance of adaptation improves as the amount of human data 

increases as well as the number of classifiers   for the ensemble goes up. 

However, the performances are not as good as adapting from animal fight data. 

This further suggests the usefulness of cross-species learning, since both animals 

and human appear to fight in a similar natural manner. Fighting in hockey games 

is limited by the venue, their wearing and the device (hockey stick), and fighting 

in action movies is acted upon with possibly fast-motion for playback. 

Effect of Features on Ensemble Learning 

Since an appropriate feature representation that captures the intrinsic 

characteristic of fight motion is essential to facilitate cross-species learning, we 

start with experiments to answer the effectiveness of the proposed feature 

representation. To this end, we compare with the commonly used representations 

for human fight or action recognition, including motion signal, OViF [31], and ViF 

[37]. Since when compared with other approaches, the MoSIFT [81] approach 

does not perform very well in human real fight and animal fight detection 

according to Table 3-18, we thus did not adopt the MoSIFT approach in this 

experiment. As the very first step to investigate the practicability of cross-species 

learning in fight detection, we only focused on detecting fight events from hand-

crafted features. Once we understand more about it, cross-species learning in fight 

detection can be conducted in a better way by applying well-performing data-
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driven approaches like deep learning. 

According to the experiments above, we know that an ensemble with 15 

classifiers can contribute to a better performance than an ensemble with 5 or 10 

classifiers. Therefore, we adopted  as the number of ensemble classifiers 

consistently in this experiment for all the feature sets. Figure 3-13 shows the 

performance of real human fight detection with adaptation from animal fight 

dataset, hockey fight dataset, and action movie dataset. Different curves denote 

the performance of using different feature representations. Most encouragingly, 

we see that LMF (blue squares) can considerably outperform its counterparts. This 

is consistent across adaptations from either other human motion datasets or animal 

fight dataset. It thus indicates that the proposed LMF feature set is most suitable 

for cross-species learning.  

   

             (a)                                (b) 

                   

                                  (c) 
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Figure 3-13 The effect of different feature sets on ensemble learning in human fight 

detection when adapting from (a) animal fights, (b) hockey fights, and (c) action movies. The 

proposed LMF features generally outperform the state-of-the-art motion features across 

adaptation from different datasets. 

Another interesting observation is that adaptation from animal fights can 

outperform those from hockey fights and action movies with the LMF and motion 

signals features. In contrast, this is not consistently true with the two ViF based 

features. This may be because LMF and MSF features encode the motion 

information based on the value of motion amplitude or acceleration, while the ViF 

based features are more focused on counting the changes of significant motions. 

A potential interpretation is that the animal fights and human fights share some 

similarities in motion amplitude and acceleration. This also implies that among 

different motion features, the proposed motion analysis-based features can identify 

the intrinsic motion representation in the most appropriate manner, and thus 

facilitates the cross-species learning task in fight detection. 

 

3.6 Summary 

This chapter presents the efficient approaches of using motion analysis-based 

features to detect human real fights, without relying on recognizing complex 

behavior, gesture or actions, etc.  

To verify the performance on spontaneous fights in real scenarios, we proceed 

to collect real surveillance videos from YouTube, which contain real fight events. 

Then we annotated them to form a new dataset. The experiments demonstrate that 

the performances induced by the use of our features are quite encouraging. The 

use of LMF features can outperform the other state-of-the-art features in real fight 
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detection. 

However, the performances of our proposed features are not good when we 

evaluate them on simulated fights. We suspect that this is due to the fact that real 

and simulated fights are different in motion behaviors, though they might look 

similar in gestures. We then conduct experiments to investigate the difference 

between real and simulated fights. The insights we learn from the experiments 

include: (1) human can easily tell real fights from simulated fight events; (2) 

human tend to regard simulated fight events as non-fight; (3) our algorithm can 

differentiate between real and simulated fights; (4) our algorithm seems to be 

capable of doing a better job than human. We believe that our approaches benefit 

from the motion analysis nature, being able to distinguish between real fights and 

simulated fights, which exhibit quite different motion behaviors. The study can 

help us understand more about the fundamental difference between real and 

simulated fights, as well as the real fight intention. 

The chapter also presents the study of cross-species learning to address human 

fight detection, where real spontaneous data is rare and insufficient for data-

demanding learning algorithm. Our approach adopts ensemble learning to adapt 

useful knowledge from similar subsets of source data and achieves adaptation with 

our proposed LMF and MSF features. For evaluation purpose, we prepared the first 

animal fight dataset. In our experiments, the proposed LMF features are 

demonstrated to be generalizable across scenarios as well as species. Our results 

indicate that learning with animal data can improve the performance of human 

fight detection. In addition, adapting from animal fights to human fights produces 

comparable and even favorable results with those of adaptation from other human 

fight from other scenarios such as sports and action movies. This seems to suggest 

that human perhaps fight like animals in some way. Further, the proposed LMF 
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feature representation is also empirically shown to be effective in cross-species 

learning in fight detection. We believe that our studies would shed lights to the 

studies of some other human and social interactions. 
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Chapter 4 Exploring Multi-modalities User 

Intention Prediction 
 

Selected notations and abbreviations used in this chapter 

 an activity, belonging to one of the five search activities introduced in Section 4.1 

 correct classified rate of modality  

 duration sequence containing the durations of  most recent activities 

 duration level sequence, obtained by quantizing the continuous values in  

 actual value of , a continuous value 

 feature vectors extracted for user intention prediction 

 the set of modalities 

 number of most recent activities involved in our models 

 actual value of , belonging to one of the discrete duration levels 

 movement magnitude of movement vector  

 number of subjects 

 pre-selected threshold for user slips detection 

 a search activity in  

 activity type value of , belonging to one of the five activities 

 activity sequence of a web search task 

 sequence that containing  most recent activities before the current moment 

 movement vector of interaction and body movements 

 horizontal component of  

 vertical component of  

 size of the time window for extracting interaction and body signals 

 weight of modality  for fusing multi-modalities in decision level 
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 time (seconds) preceding the next activity 

 orientation of movement vector  

 time duration between activities  and  

 discrete level of the duration between activities  and  

  

HF abbreviation of histogram-based feature 

SF abbreviation of statistics-based feature 
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Chapter 3 presented the body motion analysis-based approaches to build a 

well-performing model for fight detection and demonstrated that the proposed 

approaches can be applied to reveal the underlying real fight intention behind 

human action. In this chapter, we investigate user intention in a different direction, 

that is, predicting user interaction intention in daily computer interaction tasks. 

User intention may differ a lot in different tasks. We are more interested in multi-

step interaction tasks. We thus focus on natural web search task in our study 

presented in this chapter. 

In the fight detection task, we only utilize the body motion signals captured 

by camera. However, in this study, we aim to build a user intention prediction 

model by using multiple modalities, including mouse, gaze, head movements and 

body motions, as well as the historical activity sequence. To study and evaluate 

user intention prediction models, we collect a user interaction intention dataset by 

using non-intrusive and low cost devices. This chapter contains the description on 

the details of the dataset as well as the captured interaction and body signals.  

The major challenge of this study is to find the appropriate features and multi-

modalities fusion approaches to build effective user intention prediction models. 

To understand the performance of each individual modality and find the 

appropriate feature representation to model the interaction and body signals, this 

chapter investigates the user intention prediction models with different modalities 

and with different feature representations. Moreover, to bridge the gap between 

the limited approach of modeling individual modality and modeling multiple 

interaction modalities, this chapter explores the performance of the prediction 

models through different ways of fusing multiple modalities. Besides, a pilot study 

of user slips detection is also presented in this chapter. 

The rest of this chapter is organized as follows. Section 4.1 introduces the 
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user intention task that we adopt in our study, namely, the web search task. Section 

4.2 presents our prediction models and the extraction of the underlying multiple 

modalities. Section 4.3 describes the nature of our collected dataset. Section 4.4 

presents the evaluation experiments for user intention prediction. Section 4.5 

describes the pilot study of applying the proposed user intention prediction model 

to user slips detection. Finally, this chapter is concluded in Section 4.6. 

4.1 User Intention Task 

User behavior varies from task to task. We choose our target experimental 

task to be one which involves complex and multi-step interactions, in which a user 

needs to perform a series of actions to trigger a series of intended activities. Web 

search is a very common computer interaction task in daily life. Compared with 

the prescribed task and the task with fixed interface often adopted in other 

contemporary research works, the web search task is by far more open-ended and 

thus the interactions are more complicated. Therefore, we choose web search task 

to study user intention prediction in this thesis for better generality.  

In our web search experiment, we asked subjects to play a game similar to 

the search game “A Google a Day” [34]. In the experiment, users are asked to find 

the answer to a given question by searching on the web. The question is formulated 

in such a way that the answer cannot be found via a simple web search. We 

restricted the browser and search engine to Chrome and Google respectively. 

One of the questions associated with user intention prediction is how to 

categorize a user's intention. User's interaction intention may vary across different 

tasks. In our web search task, we define the user's intention based on the web 

search activities, such as reviewing search results. Since the web search may return 

any page, the interface of web search task is not fixed and we cannot classify a 
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user's activity based on the interface. We define an activity as a change in the 

currently-viewed page in the browser and do a rough classification of the content 

on the page, which serves as an indication of the users' intent. For instance, a “New 

Tab” probably means the user wants to start a new search, and users visiting a page 

linked to from the search results are probably in the state of parsing information. 

We thus classify five types of activities: 1) forming a searching goal, 2) starting a 

new query, 3) reviewing result page, 4) parsing information, and 5) submitting 

answer. Figure 4-1 demonstrates an example of our web search task and the five 

types of activities. 

          

Figure 4-1 Web search task and the five types of activities 

We formally describe the users' activity sequence through the visited page 

sequence , where  is an instance of the search task and  

is a search activity. For instance, if a user extracts search keywords before clicking 

“New Tab” to start a new query, and finally obtains the answer from search result 

page as well as submits it, then the activity sequence is  . 

Predicting a user's search intention involves predicting the value of . Recall 

the two different scenarios that we would like to study in user intention prediction, 
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i.e. predicting the next activity when it is about to occur, and predicting it when it 

would soon occur. In the first scenario, in which it is known that an activity is 

about to occur, we detect the value of  when  is about to occur. While 

in the second scenario, we predict the value of  a few seconds ahead before 

it occurs. 

Once we can efficiently predict user intention, we could be able to perform 

slips detection based on the intention prediction model. Sometimes users may 

trigger some wrong actions even after they formulated the right intention. These 

wrong actions are referred to as slips [109]. A user slips detection model can 

automatically detect whether a user is selecting the wrong target or triggering the 

wrong activity and can help to save the time from recovering from slips. Therefore, 

in this study, we are more interested in whether a triggered activity meets user’s 

intended activity.  To achieve this, instead of detecting the value of , we try 

to detect whether the given value of  is correct or not, when it occurs. 

4.2 Extracting Features from Multi-modalities 

We are interested in whether we can predict the next activity, i.e. the type of 

next mouse click event, given some interaction signals and history activity. Prior 

related studies suggest that historical records contain information about user 

activities and are highly useful. We also utilize historical information in our model. 

At the same time, our approach involves multiple interaction modalities, including 

mouse interaction, eye gaze, head movements and body motions, etc. We believe 

that these interaction and body signals could also convey useful clues to indicate 

user's intention. This chapter presents the details of our proposed features. 

4.2.1  Features from Historical Activities  

In a multi-step computer interaction task, user's activities are sequential and 
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each activity is probably dependent on past ones. Prior studies have investigated 

in modeling user's intention from historical records. And these studies demonstrate 

that hidden information about users' intentions can be deduced from the activity 

history. In this study, we also make use of the historical activity sequence as one 

of our feature sets. Specifically, we consider historical activity sequence in two 

ways: probability model and classification model. 

Probability Model 

We first try to consider adopting a statistical approach to utilize historical 

activity sequence. We refer to this as the “probability model”. This approach relies 

on a classical n-gram model on the historical activity sequence. In this approach, 

we describe the activity sequence as a tuple: . The value of 

a random variable   indicates one of the defined activity types introduced in 

Section 4.1. For practical purpose, we consider the most recent  activities. We 

then represent those   activities as: 

, where  is user's current activity,  is the value of the 

activity type. We refer to this as the  order probability model. Predicting the 

next activity  is a matter of computing the value of  that can maximize 

the conditional probability given the previous  activities by: 

 4.1 

 

In addition to historical activities, we consider the time spent on each activity, 

which we refer to as the duration of the activity. By using the duration information, 

we then build a second prediction model. Similarly, we represent the time spent 

on the activities by a duration sequence:

 , where   is a random variable that models the time 

duration between activities  and ,  is the actual value of that duration, 
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which is a continuous value. In order to apply it to the probability model, we 

quantize the continuous value into 3 discrete levels: {long, medium, short}. That 

makes it possible to generate a duration level sequence 

, where  belongs to one of the levels described above. This 

time, we consider the conditional probability, given the most recent  activities 

and the corresponding time durations. Predicting the next activity is to compute 

the value of  that can maximize the conditional probability of: 

 4.2 

 

Classification Model 

Probability model can be one solution to model historical information. 

However, it is difficult to extend the probability model by adding additional 

features to it. With the expansion of the number of conditions, the number of 

potential states grows exponentially, leading to a sparse data problem and large 

error with the probability distributions. If we want to make use of more features 

for prediction, a better choice is to apply machine learning algorithms. We 

therefore consider historical activity information in a second way, that is, to extract 

features from it and build classifiers to detect user intention. We refer to this 

approach as the “classification model”, which can be further augmented to a 

multimodal approach by fusing features from other interaction modalities together. 

In the classification model, our historical activity features include the  

most recent activities and their durations. In total, the history sequence information 

provides us  features. Table 4-1 lists the features extracted from historical 

activity sequence. 
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Attributes Features 

 most recent activities  

 most recent activity durations  

Table 4-1 Features from historical activities. 

4.2.2  Features from Interaction and Body Signals 

We hypothesize that users' intention may be concealed behind interaction and 

body signals including mouse, gaze, head, and body movement, especially in 

complex tasks. In the complex computer interaction task, the mouse serves as a 

key input method. The mouse movements may vary depending on whether the 

user is reading text, watching videos, clicking links or making decisions. Gaze 

behavior may also indicate user’s interaction activity and attention saliency which 

may indicate some intended targets. In addition, the head movement and body 

motion may also reflect human intention as we discovered in our fight detection 

study. Moreover, these interaction and body signals can be captured by computer 

log, standard camera, and other non-intrusive devices. We therefore focus on 

modeling these commonly available signals in our study. For these interaction and 

body signals, we consider two feature representations: statistics-based features (SF) 

and histogram-based features (HF). In our study, we extract the interaction features 

by using both the feature representations, and conduct experiments to investigate 

which one is more appropriate for user intention prediction. 

Capturing interaction and body signals 

 Before extracting features from the interaction and body signals, we need to 

be able to capture them. In daily computer interaction tasks, the mouse serves as a 

key input device. Therefore, in this study, we extract features from mouse 

movement (sequence of the x and y coordinates). The mouse movement 
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information is logged by the operating system. It thus can be easily extracted from 

the system log. 

 Eye gaze and head movement are also important interaction and body signals 

that contain the information about user intention. Fortunately, with the help of the 

computer vision techniques, both gaze and head movement can be captured from 

a standard webcam directly. By using computer vision techniques, human face can 

be detected from the webcam, and then the head movement can be directly linked 

to the movement of the detected human face. Meanwhile, the gaze direction and 

gaze points can be estimated by appearance-based estimation method from the 

detected face [120]. In this study, we apply OpenFace toolkit [7] to detect human 

face and estimate user's gaze direction. Figure 4-2 demonstrates the example of 

capturing head and gaze movement from a webcam. 

In addition to capturing from webcam, there are other possible methods to 

extract user's gaze interaction information. One common way is to rely on 

additional eye tracking device such as Tobii to estimate a relatively precise eye 

gaze location. However, these eye tracking devices are expensive. They are not 

affordable and accessible for common users. It is interesting to understand the 

performance gap between the features collected from these two methods, and 

explore how good we can achieve if we do not rely on an eye tracking device. 

Therefore, in our study, we collected and extracted user's gaze information by both 

methods for comparison. 
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Figure 4-2 Example of capturing gaze and head movement from a webcam with the help of 

OpenFace toolkit [7]. 

By using the approaches described above we can capture the mouse, gaze and 

head movement. However, detecting and tracking hand or other body part is not 

as easy as detecting human face, as the hand moves much faster and may manifest 

with various gestures. Tracking the movement of the other body parts may not be 

stable and may introduce additional noise. On the other hand, our fight detection 

study shows that it is possible to detect human intention based on body motion 

analysis. We therefore propose to extract the body motion signals from the other 

body parts as the additional information for user intention detection by using 

optical flow. Inspired by the local motion signals we applied in our fight detection 

task, we propose to extract local motion signals to account for spatial variations of 

the body motions in this task. Similar to the local motion features introduced in 

our fight detection study, given a frame in a video, we first segment the video 

frame into several regions. However, this time, we segment the frame based on the 

heuristic human body parts instead. As demonstrated in Figure 4-3, we segment 
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the frame into 7 regions. Body motion occupied in different regions may be related 

to the movement of different body parts, and it may indicate different underlying 

intention. For instance, a user holds his face in his left hand while he is thinking, 

then the left body region and mouth region may capture the corresponding hand 

motions. We then compute the optical flow [28] and measure the amount of motion 

magnitude of each motion region by Equation 3.6. We then obtain 7 sequences of 

the motion magnitude from the video. 

      

Figure 4-3 Example of the body based local motion regions. 1 head region, 2 eye region, 3 

mouth region, 4 right body region, 5 left body region, 6 right shoulder region, and 7 left shoulder 

region 

Statistical Features 

After obtaining the interaction and body signals, we need to extract features 

from them and apply those features to build user intention prediction models. We 

first introduce our statistics-based features in this section. 

For extracting features from the interaction and body signals, we first select 

a time window . Only the interactions that occur within  will be considered 

in our model. These interaction signals contain rich information and occur in 

various forms. We focus on extracting statistics-based interaction features from 

the movement attributes for all the interaction modalities. Taking mouse 

interaction as an example, a user moves the mouse cursor for various reasons, e.g. 
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to aid reading, select text, click buttons, etc. Thus different mouse movements may 

reflect different intentions of the user. We therefore extract features from the 

movement attributes to model user intention. There are many ways to define an 

interaction movement period and describe the information contained within. In our 

study, we segment a movement instances according to the moments when the 

movement speed effectively drops to zero. The trajectory traced out by movements 

with non-zero speed is then processed to generate movement attributes. In our 

work, we consider the following movement attributes for mouse, gaze and head 

movement (please refer to the mouse movement example in Figure 4-4): 

 Travel distance: total traversed distance of a movement, e.g. the black 

curve. 

 Shortest-path distance: length of the straight line connecting the start and 

end points of a movement, e.g. the red line. 

 Movement angle: angle between the shortest path defined above and the 

horizontal x-axis, e.g. . 

 Angle of curvature: for consecutive recorded points A, B, C, the angle 

between line AB and line BC, e.g. . 

       

Figure 4-4 Example of an interaction movement and the attributes 
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Given a temporal window , we might expect to see multiple movements. 

We thus would obtain a set of values for each of the above attributes. For each set 

of attribute values, we calculate the descriptive statistics, i.e. the mean, maximum, 

minimum, median and standard deviation, for these attribute values, as shown in 

Table 4-2

 

Attributes Statistics 

Travel distance  

 

Mean, maximum, minimum, 

median, standard deviation 

Shortest-path distance 

Movement speed 

Movement acceleration 

Movement angle 

Sum of angle of curvature 

Table 4-2 Movement attributes and statistical features. 

 

For mouse, gaze and head movement, we extract statistical features based on 

the movement attributes. For the body motion signals, we extract the local motion 

features that are applied in our fight detection task. After obtaining the local 

motion sequences based on the different body regions, we then measure the motion 

dynamics using the descriptive statistical features throughout the time window . 

We then obtain the statistics-based features (SF) from all the interaction and body 

signals, which are summarized in Table 4-3. 
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Attribute Features 

Mouse interaction  

Statistics of the movement attributes Gaze interaction 

Head movement 

Body motion Statistics of the local motions 

Table 4-3 Statistical features from multi-modalities. 

Histogram Features 

Statistical features can summarize some information of the interaction and 

body signals. However, the drawback of the proposed statistical features is that 

they consider the movement attributes separately. Interaction signals may contain 

rich information, and can be summarized in different ways. Considering different 

movement attributes at the same time may reveal additional information about 

user’s intention. Therefore, in our second approach, we aim to encode different 

movement attributes at the same time, specifically, we focus on extracting the 

mouse movement magnitude and orientation, which are the most import attributes 

of a movement.  

We propose to use histogram as our second feature representation method 

which can encode the mouse movement magnitude and orientation information at 

the same time. Similar to extracting statistical features, we first select a time 

window , and then only consider the interactions occur within that window. For 

a movement vector  of two consecutive recorded points, occurring 

in the defined time window (e.g.  in Figure 4-4), we calculated the movement 

magnitude  and orientation : 

 4.3 

 4.4 
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Where  and  are the movement speeds in horizontal and vertical direction 

respectively. 

Our movement magnitude histogram features use both the magnitude and 

orientation information of one particular movement vector. We equally divided the 

orientation between 0 to 2  into 16 orientation bins. We then mapped each 

movement vector to the corresponding orientation bin by accumulating the 

movement magnitude to that bin. For instance, if the orientation of a mouse 

movement vector belongs to bin 8 and the magnitude is 2.0, then 2.0 will be 

accumulated to the bin 8 of the histogram. Figure 4-5 illustrates an example of the 

mapping procedure. After mapping all the mouse movement vectors occurring in 

the defined time window, we then finally obtained the movement magnitude 

histogram features with 16 dimensions. 

 
Figure 4-5 Mapping interaction movements of (a) mouse, gaze movements, (b) head 

movements, and (c) body motions, to corresponding histogram bin to generate histogram-based 

features (d). 

However, the current features cannot model the temporal information of the 
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mouse movements. In order to utilize the temporal information, we induced an 

additional histogram. Same as the movement magnitude histogram, the temporal 

histogram is formed by dividing the full orientation 0 to 2  into 16 orientation bins. 

Similarly, we mapped each movement vector to the corresponding orientation bin. 

But this time, we assigned the relative time stamp of the mouse movement to that 

corresponding histogram bin. For instance, if a mouse movement vector occurring 

at the relative 0.9 seconds of the time window belongs to bin 8, then 0.9 will be 

assigned to bin 8 of the temporal histogram. Figure 4-5 illustrates the example of 

mapping temporal information of a movement. After mapping all the mouse 

movement vectors, the final temporal histogram recorded the latest updated time 

for each orientation bin. Combining the two histograms together brings us the final 

set of histogram features with 32 dimensions. 

For mouse, gaze, and head movement, we can all extract the histogram 

features by the same approach described above. However, we cannot apply this 

approach to extract histogram features of body motion signals, since we cannot 

capture the movement vectors from body motions. 

To capture the body motion signals, we compute optical flow and measure 

the amount of motion magnitude of each body motion region. As introduced in 

Section 3.2, each pixel in optical flow images actually represents an optical flow 

vector, and the magnitude implied of each pixel can be computed as the length of 

this vector. We can also get the orientation of the optical flow vector. Therefore, 

for extracting histogram features from body motion signals, we consider the 

magnitude and orientation of the optical flow vectors occur in each of the body 

motion regions within  . We then also obtain the magnitude histogram and 

temporal histogram for each body motion region. 

We finally obtain the histogram-based features (HF) for the interaction and 
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body signals. Table 4-4 shows the histogram features for all the interaction and 

body signals. 

Attributes Features 

Mouse interaction Magnitude, temporal histograms of the 

movements Gaze interaction 

Head movement 

Body motion Magnitude and temporal histograms of 

the local motions 

Table 4-4 Histogram features from multi-modalities. 

4.3 Constructing User Intention Dataset 

To study on the user interaction intention prediction and user slips detection, 

we need ground truth and interaction data. We designed and conducted 

experiments to collect user intention dataset in the web search task. The 

experiment involved 19 subjects (9 females), all comfortable with computer usage. 

A user interface, only used for displaying questions and submitting answers, was 

designed for the purposes of repeatability and controllability. In our experiment, 

each subject was asked to answer 6 questions. In total, 6598 mouse click events 

were collected. All the experiments were run on a standard desktop computer 

running Microsoft Windows. 

Since we are interested in predicting user intention with multiple interaction 

and body signals, in addition to recording historical information and mouse 

interaction by system logs, we also recorded the videos that captured subjects’ 

body movements by a standard webcam as well as eye gaze interaction by a Tobii 

EyeX Eye tracker. 
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4.4 Evaluating User Intention Prediction 

An effective user intention prediction model should be able to automatically 

predict a user's next potential activity. As a user stays longer on one page or one 

search activity, the user intention and the intended activity could be different. In 

fact, the closer to the next click moment, the more our prediction performance 

matters in assisting the user. Therefore, we are more interested in the intention 

prediction performance when the next click is nearing (e.g. next click is coming 

in 1 second). Specifically, we first evaluated our model in the extreme case, that is 

predicting the next activity at the moment when it is about to occur. We then 

evaluated the model in predicting the next activity 0.5 to 2.5 seconds (in increment 

of 0.5 seconds) before the event occurring moment. 

In our experiments, we first evaluate the model that only makes use of 

historical activity information. Since the historical activity information can be 

easily obtained from the log information and it does not involve any interaction 

patterns, modeling from historical activities can be regarded as one of the baseline 

models for user intention prediction. We then evaluate the performance of the 

model with each individual interaction modality (mouse, eye gaze, head 

movements, and body motions) as well as investigate the proper set of feature 

representation for user intention prediction. This is followed by our study on 

multimodal user intention prediction models using different ways of fusion.  

In real application contexts, a model may well be used to predict the intention 

of a new user, never seen before. Therefore, we need to investigate the 

performance of our model on an unseen user. Hence, we adopt the leave-one-

subject-out approach for evaluation. We train our model with data from  

subjects (training set), and evaluate on the data from the left-out subject (test set), 
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and repeat for each subject. The overall accuracy is the performance averaged over 

all iterations. Since we have  experimental subjects, we iterate 19 times 

and report the average correct classification rate (CCR) for both models. For all 

the experiment presented in this study, we adopt the same evaluation approach. 

The experiment results of this study are summarized in the following. 

4.4.1  Modeling Historical Activity Sequence  

We first evaluate the models that only consider historical activity sequence. 

As mentioned in Section 4.2.1, in our approaches, we perform our study based on 

the conditional probability model and classification model. We start with 

evaluating our probability model. We experiment with two conditional probability 

models. One only considers the sequence of user activities, while the second 

considers both the activities and their durations. In this experiment, we focus on 

evaluating our model in the scenario of predicting the next activity when it is about 

to occur, which is the extreme case in our study. Based on that, we also investigated 

the impact of the value of  on the performance of conditional probability models 

in Equation 4.1 and 4.2. 

Figure 4-6 presents the performance of the different models of using only 

historical activity sequence as a function of . According to the figure, we can see 

that for our experiment, the baseline is around 31%, by taking the size of the 

majority class. While the best performance of our probability model is around 57%, 

achieved by , when the model involves both activity and duration sequences. 

That suggests that the past three activities are helpful for predicting the next 

activity. However, this is already the peak performance, which drops rapidly when 

we consider more past activities. 
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Figure 4-6 Performance of intention prediction by modeling historical activity sequence 

only. 

From the results, we observe the effect when more information becomes 

available, comparing the curves for the model considering activity only versus 

considering both activity and duration. The performance of the latter is slightly 

better than the former. On the other hand, we also observe that when  is larger, 

the performance drops with additional information. This is probably due to the fact 

that the data becomes sparse rapidly as the length of the sequence increases, and 

the number of conditional states with duration is twice that without duration. It 

may also be due to the fact that there is no obvious lengthy interaction pattern that 

exhibits a high frequency. The improvement with more information is quickly 

offset by the increase in history length. Generally, these results show that it is 

possible to detect the user's next activity type from the historical activity and 

duration of the interaction sequence. It also suggests that it is not informative to 

go too far back: user activities from more than 3 events back in time are unlikely 

to be useful.  
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We next experiment with using machine learning approach to build a more 

sophisticated model for comparison. In all experiments in this study, we adopted 

support vector machine (SVM) [51] as our classification model. As with the 

classical probability model, the SVM is provided with   features and  

features depending on whether duration information is adopted, as depicted in 

Table 4-1. At a glance, the performance of the classification model is similar to the 

probability model for both tasks. The best performance is also around 57% for the 

model that considers both activity and duration sequences. This time, we also 

achieve the peak performance at  for the model considers both activity and 

duration sequences. Although for the SVM model with activity sequence only, the 

performance peaks at , we can still observe a trend of performance drop 

when we involve too much historical information. These results suggest again that 

the historical activities from too far back in time are not useful for predicting the 

next event. 

When we look into further details with the classification model, we do 

observe some interesting difference. First, the performance drop as  increases is 

not as serious as in the probability model. This is due to the exponential increase 

in potential (ordered) sequences with  for the probability model, as compared 

with a modest increase with (unordered) feature sets for SVM. Second, when more 

data is available, SVM is able to produce better performance. This can be 

witnessed by the curves between activity only versus activity plus duration. This 

exhibits a different trend with the probability model. This is because compared to 

probability models, classification models is more powerful to ignore features that 

cannot contribute to classification and to alleviate the data sparseness problem due 

to more features. 

In summary, we see that classification is more versatile to change in data 
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volume and number of attributes, producing more stable performance. 

Furthermore, there is no need to consider and record a long path of historical 

sequence for our prediction model since the best performance is achieved with 

small value of . That provides useful insights for our further studies. 

4.4.2  Modeling Individual Interaction and Body Signals 

After evaluating the models of using historical activity information, we then 

conduct experiments to evaluate the models of using different interaction 

modalities. As we observe from the results above, historical information from too 

far back in time is not useful for predicting the next event. We wonder whether 

this phenomenon also exists in interaction and body signal features. Thus, we first 

conduct an experiment to find the appropriate window size for extracting 

interaction and body signal features. Moreover, we proposed two feature 

representations to encode the interaction and body signal features. We therefore 

also investigate on finding the appropriate feature representation in our experiment. 

Finding the appropriate window size 

We investigate the performance with the interaction and body signal features 

by varying the temporal window size  instead of the length of the historical 

sequence . We anticipate that the interaction and body signal features will exhibit 

a similar phenomenon as before, i.e. that interaction data that is too old would not 

be helpful in prediction. We experiment with a window size  of 1 to 5 seconds, 

and extract features from the interaction and body signals that occur within the 

given time window prior to the prediction moment. Since we proposed two feature 

sets for the interaction and body signals, we run the experiments for the two feature 

sets respectively. In this experiment, we also evaluated in the extreme case: 

predicting the next activity at the end of the current activity. After finding out the 

appropriate window size, we then conduct further experiments to investigate the 
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performance of different feature representations. 

We first conduct experiments with the SF feature. The performance is 

encouraging especially for mouse movements. The best performance is around 

65%. In this experiment, we focus on finding the proper  for extracting features. 

According to the results demonstrated in Figure 4-7, the best performance for 

mouse and gaze interactions is achieved when   and it slightly but 

continuously decreases as  increases. While for the head movement and body 

motion features, there is a slightly declining trend when the window size is 

enlarged, and the highest performance is achieved when the window size is set to 

be 2 seconds. According to these results, it seems that the window size cannot be 

too large, as the information from interactions too far back in time generates noise 

that affects the prediction performance. For the SF, the optimal window is about 1 

second for mouse and gaze movement and 2 seconds for head movement and body 

motion. 

Based on the experiments above, we then extract SF for mouse and gaze 

movement from the most recent 1 second, and extract SF for head movement and 

body motion from the most recent 2 seconds in our further experiments presented 

in this chapter.   
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Figure 4-7 Performance of intention prediction. Features: SF within the  most recent 

seconds. 

We next conduct experiments with the HF feature. Overall, the performance 

is even better than that with the SF features. The best performance of mouse 

movement can be around 70%. The experiment results are illustrated in Figure 4-8. 

For the HF, the best performances for all the interaction and body signals are 

achieved when  and there is a slightly declining trend when the window 

size  increases. According to these results, we again observe that the window 

size cannot be too large for extracting interaction and body signals, as the 

information from interactions too far back in time generates noise that affects the 

prediction performance. For our HF, the optimal window is about 2 seconds for all 

of the interaction and body signals. 

Based on the experiments above, we then extract HF for interaction and body 

signals features from the most recent 2 seconds in our further experiments 

presented in this chapter.  
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Figure 4-8 Performance of intention prediction. Features: HF within the  most recent 

seconds. 

Finding the appropriate feature representation 

According to the experiments above, we find the appropriate   for 

extracting features. We also observe that it seems that there are some performance 

gap between HF and SF. In order to further understand the appropriate features for 

user intention prediction, we then evaluate our model of using individual 

interaction modality with different feature representations. Particularly, we utilize 

the interaction and body signals including mouse interaction, eye gaze, and head 

movement as well as body motion in our study. For each modality, we extract the 

proposed SF and HF from the signals to build the user intention prediction models.  

In the real application, in order to provide the chance of assisting users 

beforehand, a system needs to predict the next potential activity few seconds 

before it actually occurs. We then conduct experiments to investigate how well our 

prediction models could do in predicting a user's next activity  seconds ahead 

before it actually occurs. Since the closer to the moment of the next activity, the 
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more our prediction accuracy matters. The model does not need to be very precise 

when the next activity is too far away. We believe that 2.5 seconds should be 

adequate for such purposes. In this experiment, we evaluated our prediction model 

with  varying from 0 to 2.5 seconds, with the same features described above. 

The experiments involve the situation of  s, which can be considered as 

predicting at the occurrence moment of the next activity. This case is 

corresponding to the scenarios, in which we need to understand user's action 

correctly when it is completing, such as detecting whether an action is an error. 

Figure 4-9 shows the results. In this experiment, we set   for the 

historical activity sequence features, set the appropriate  for the corresponding 

interaction and body signal features to achieve the best performance of each 

individual modalities. Overall, as we move further away from the interaction event, 

obviously, the performance drops, as it is difficult to predict too far into the future. 

However, we can see that it is still possible to predict slightly ahead into the future 

with reasonable accuracy. Considering taking the size of the majority class as the 

baseline, the best performance (achieved by mouse movements with HF) can beat 

the baseline by 39% when  s and about 32% when  .5s. While 

considering the historical activity model as the baseline, the best performance can 

beat the baseline by 14% and 13% when s and s respectively. The 

results show that our models can predict user intention a few seconds ahead. 

Meanwhile, among the interaction modalities, modeling with mouse 

interaction can achieve the best performance for both feature representations 

across the experiments. Specifically, the models of using mouse features can 

achieve 70.2% and 64.7% for our histogram-based feature and statistics-based 

feature respectively, when  s. As mouse interaction is dominating in 

computer interaction tasks, it should contain abundant cues to indicate user's 
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interaction intention. Though not as good as mouse interaction, eye gaze and head 

movement could also indicate user's intention to a certain degree. Features from 

eye gaze movements can beat the baseline by more than 31% and 22%, when 

s and .5s respectively.  

 

 

 
Figure 4-9 Results of predicting users’ intention  seconds ahead by using different 

modalities individually. 

It is also interesting to know that our HF representation is more beneficial to 

indicate user interaction intention than SF representation across different 

interaction modalities. The HF representation encodes the movement magnitudes, 

orientation as well as temporal information together, and it thus may well describe 

the interaction patterns. For instance, consider a mouse movement moving left and 

then right, and the other one moving right and then left with the same speed and 
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distance, their SF should be very similar. However, they may be triggered by 

different intentions and the HF representation can distinguish them, as it captures 

the orientation and temporal information. Figure 4-10 demonstrates a particular 

case that the HF representation can describe the interaction pattern more precisely. 

The SF of the two mouse movements depicted in the figure may be similar to each 

other. However, the HF can extract the difference between them. 

 

                  (a)                            (b) 

Figure 4-10 Examples of mouse movements (a), and their corresponding histogram 

representations (b). Longer radius means more movement magnitudes occur in that direction, 

deeper color means movement in that direction occur in more recent. The histogram 

representations can distinguish the two movements. 

We also notice that the HF is much more appropriate for encoding mouse and 

head movements. The performance gain between the two features is around 5.5% 

and 13.2% for mouse and head movements respectively. Since our HF 

representation encodes the orientation and temporal information along with 

movement magnitudes together. From these phenomena, we can learn that the 

orientation and temporal information of mouse and head movement are important 

indicators for interpreting user intention. 
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4.4.3  Going towards Multi-modalities 

Our previous experiments have shown that mouse, eye gaze and head 

movements, as well as body motions are all helpful for indicating user intention, 

especially for the situations when the prediction moment is close to the occurrence 

moment of the next activity. However, we believe that the performance of the 

prediction model can be improved by modeling all the signals extracted during 

human-computer interactions together. We then further investigate into combing 

all the interaction and body signals as well as historical information together. In 

our study, we first tried to model the multi-modalities data by directly fusing all 

the features together in the feature level. With this strategy, we trained our 

prediction model once on all the modalities described above. Besides, we also tried 

to fuse the different modalities in the decision level. In this way, we trained 

multiple prediction models on each of the feature sets. Then we adopt a weighted 

average approach to fuse the final prediction. In our study, we decided the weight 

for each modality based on the performance obtained from itself only. Since the 

modality that can predict a better performance may contain more useful 

information, it should contribute more to the model. Given the set of modalities , 

we then compute the weight for each modality by the equation: 

 4.5 

where   is the weight of modality  , while   is its correct classified rate 

(CCR) , when it validated on the validation set. For comparison, we also try 

another decision fusion approach that is using equal weight for all modalities. We 

refer to the two approaches as decision level with “dynamic weight” and decision 

level with “equal weight” in our experiments. 

As demonstrated in our previous experiments, the HF features are more useful 



 

108 

 

for encoding interaction and body signals. We then adopt the HF as our feature 

representations in this experiment. According to Figure 4-11, we observe that 

applying multi-modalities helps in improving performance. The performances of 

different fusion methods are quite similar; however, applying the approach of 

fusing in decision level with dynamic weight can achieve a better performance. 

 
Figure 4-11 Results for predicting users’ intention  seconds ahead with multi-modalities. 

For   the best performance of multimodal approaches can beat the 

model using only the historical information by 21.3%, and can beat the model 

using only mouse interaction information by 7.4%. While for   the 

multimodal approach can beat the model using only the historical information by 

20.0%, and can beat the model using only mouse interaction information by 6.9%. 

These results further illustrate the feasibility of modeling multiple interaction and 

body signals to predict user intention in computer interaction tasks. 

So far, the prediction performance is encouraging. However, in our current 

approach, we extract gaze information through the use of a dedicated Tobii eye 

tracker device. We refer to this method as the Tobii method. Although the device 
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is non-intrusive, we still do not want to rely on it as it is not affordable for common 

users. We therefore try another method to estimate gaze information from webcam 

with the help of OpenFace toolkit [7]. We refer to this method as the webcam 

method. 

 
Figure 4-12 Results for predicting users’ intention  seconds ahead with different gaze 

estimation methods. 

 

Based on our previous experiments, we apply appropriate time window, 

 and HF features here. Figure 4-12 shows the results of using different gaze 

estimation methods. It is encouraging to see that using the gaze movements 

estimated from webcam can still achieve reasonable performance, even though not 

as good as that of using Tobii eye tracker. The performance of modeling individual 

gaze movements as well as multi-modalities for the webcam method are 55.2% 

and 74.6% respectively for , which are close to those of the Tobii method. 
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If we consider the model of using all the reasonable modalities, the performance 

gap between with and without using Tobii is around 3% and 2.4% for  and 

. And there is almost no difference between the model with and without 

using Tobii when  . The experiment results suggest that it is feasible to 

build effective user intention prediction model by using non-intrusive and low cost 

devices. 

4.5 Towards User Slips Detection 

Our model can successfully detect a user's next intended activity. The ability 

to predict users’ intention could be used to enhance an intelligent system in 

multiple applications. Detecting user slips could be one of the potential 

applications. To detect a user's slips, a system should be able to distinguish the 

intended and non-intended activity. When a non-intended activity is triggered, the 

user is probably making a slip, such as clicking an unexpected link by accident. 

Such a system should be able to understand user's intention which has been studied 

in our previous experiments. We now are interested in studying whether our 

intention prediction model can be applied to detecting user's slips. This section 

presents the pilot study that we conducted to investigate the feasibility of intention-

based user slips detection by using our intention prediction model. 

As the very first step of intention-based user slips detection, we design and 

conduct a toy experiment to study slips detection in a simulated scenario with the 

same web search task. In this experiment, we simplify the slips detection to 

estimate the likelihood of an interaction event. For instance, there is a mouse click 

event that triggers an activity , which belongs to one of the five web search 

activities described in Section 4.1. To detect whether the mouse click event is a 

user slip, we first extract the feature vectors  from the interaction and body 
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signals preceding the click event within the time window . We then feed  

and  to our model and obtain the value of , which is the likelihood of 

activity  estimated by our intention prediction model. We then compare  

with a pre-selected threshold . If the value of  is smaller than or equal to 

, then the activity  is classified as a non-intentional activity and the mouse 

click event is detected as a user slip, otherwise it is considered as a correct action. 

We then use this approach to perform our intention-based slips detection. For 

the evaluation purpose, we then produce slip click instances in our toy experiment. 

In the experiment, we randomly select 50% of the test instances in the test set and 

randomly assign a different activity class to these instances. This gives us a slips 

detection baseline of 50%. 

Figure 4-13 illustrates the results of our slips detection with different 

thresholds  . According to the results, We observe that when  , the 

model achieves the best balance between precision and recall. Our slips detection 

model can reach a performance of 89.4%, which is encouraging. However, it is 

just a very first step towards user slips detection. In the future, we will try to study 

the user slips detection in real applications. 
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Figure 4-13 Results for user slips detection. 

4.6 Summary  

This chapter presents several multimodal approaches to predict user 

interaction intention in a natural web search task. In the study, we proposed two 

feature representations: a statistics-based feature set and a histogram-based feature 

set to encode users’ interaction and body signals including mouse, eye gaze and 

head movements as well as body motion signals. We then utilize this information 

combined with historical activity sequence to build multimodal user intention 

prediction models. 

To evaluate, we collected our user intention dataset in the scenario of web 

search. In our study, we are more interested in the intention prediction performance 

when the next interaction activity is closing. Specifically, we evaluated our model 

in the situation of a few seconds (0s - 2.5s) preceding the occurrence of the next 

activity. The experiment results show that our proposed approaches can achieve 

encouraging performance in predicting user intention. 

In this study, we also investigate user intention prediction by modeling 
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individual modality with different feature representations. The experiment results 

show that all of the proposed modalities contain some information about user 

interaction intention. Compared with other modalities, modeling mouse 

interaction can achieve the best performance. Modeling mouse interaction with 

the histogram-based feature can attain an accuracy of 70.2% and 63.2%, for 

predicting 0 and 0.5 seconds ahead. The results also indicate that our proposed 

histogram-based feature representation is more proper for describing interaction 

patterns and predicting user intention, compared with the statistics-based features. 

We further evaluate the prediction model of using multi-modalities. The 

experiment results suggest that performance can be improved by fusing multi-

modalities, and fusing the modalities in the decision level with our proposed 

approach can achieve the best prediction performance. The best performance can 

be around 77.6%. The experiment results also suggest that it is possible to detect 

user intention by using non-intrusive and low cost devices. 

Finally, we also applied the intention prediction model to detect user selection 

slips. The experiment suggests that users’ intention prediction model has a good 

potential as a means of providing information to the intelligent system. Besides, 

corrective action in the event of a user slip could also be taken to improve user 

experience. 
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Chapter 5 Physiological Mouse - Non-intrusive 

Measurement of Physiological Signals 
 

Selected notations and abbreviations used in this chapter 

 frequency band that we adopt for heart beat rate calculation 

 frequency band that we adopt for respiratory rate calculation 

 candidate frequency for computing respiratory rate 

 heart beat rate series measured by iHealth device for subject  

  heart beat rate in  

 average heart beat rate error series for all subjects 

 heart beat rate error series for subject  

  error value in  

 sampling frequency of raw signal, default value is 200 Hz 

 peak power frequency of signal , after applying band-pass filter  

 peak power frequency of signal , after applying band-pass filter  

 candidate peak power frequency for computing respiratory rate 

 power frequency in local region of  

  candidate of  

 heart beat rate variability signal 

  data point in  

 equally-spaced interpolated series of  

  data point in  

 half window size of the moving window for computing the smooth series, default to 10 

data points 

 input series of raw signal 
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  data point in  

 series of smoothened signal of  over the moving window 

  data point in  

 heart beat rate series measured by physiological mouse for subject  

  heart beat rate in  

 number of subjects 

 size of neighborhood for extracting local maxima power 

 threshold for extracting candidate frequencies, default to 5% of total power 

 respiratory rate candidates 

  candidate in  

 moving window size for computing the smooth series, default to 21 data points 

 moving window size for computing heart beat rates, default to 5 seconds 

 moving window size for computing respiratory rates, default to 60 seconds 

  

IBI abbreviation of inter-beat interval 

PPG abbreviation of photoplethysmographic 
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In previous chapters, we attempted to build user intention prediction models 

by using multiple interaction and body signals, including mouse, gaze, head and 

body movements. Apart from these signals, physiological signals may also reveal 

human emotion or even intention and are useful in user intention understanding. 

However, traditional methods of measuring physiological signals rely on intrusive 

and expensive devices, which make measuring physiological signals inconvenient 

in daily computer usage for common users. Moreover, intrusive measuring 

methods may affect users’ behavior and even emotions during the measurements. 

A better way is to measure the physiological signals without users feeling of the 

existence of the devices. This chapter presents the design and prototype 

construction of a physiological mouse to measure human physiological signals by 

using non-intrusive and low cost devices. 

We enhance a daily-used mouse by some low cost components to capture 

photoplethysmographic (PPG) signal. Based on the PPG signal we then develop 

algorithms to measure heart beat rate and respiratory rate. A user’s physiological 

signals can be easily detected while he/she is holding on and using the 

physiological mouse. This chapter describes the detailed design of the 

physiological mouse, measuring algorithms as well as the evaluation experiments 

in this study.  

Moreover, to investigate on the feasibility of determining human emotions by 

using the physiological mouse, we also invited subjects to use the physiological 

mouse while they are watching movies and playing games. The mouse measures 

the PPG signals of the subjects and determines their heart beat rate and respiratory 

rate throughout the tasks, in the form of data sequence. We then conduct a pilot 

study to correlate the physiological signals to the subjects’ emotions. 

The rest of this chapter is organized as follows. Section 5.1 describes the 
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design and construction of the physiological mouse prototype and the devices 

involved. Section 5.2 introduces the algorithms of measuring heart beat rate and 

respiratory rate by using the physiological mouse through the processing of the 

acquired photoplethysmographic signals. Section 5.3 presents the experiments for 

evaluating our proposed approaches and the corresponding results. Then Section 

5.4 presents the pilot study of correlating the physiological signals with human 

emotions by using the physiological mouse. Finally, this chapter is concluded in 

Section 5.5. 

5.1 Physiological Mouse Prototype 

One potential solution of non-intrusive physiological signal measurement is 

to measure physiological signals via a standard device of personal computers. 

Mouse is one of the standard input devices when people are using personal 

computers. It would be better if users’ physiological signals can be measured when 

they are using a mouse. We therefore enhance a daily-used mouse to capture 

human physiological signals. 

In this study, we built a prototype of the physiological mouse for both proof-

of-concept and validation of our physiological signals capturing and processing 

algorithms. Figure 5-1 (a) demonstrates the prototype. We attach a small light 

sensor (a photodiode) to the left side of the mouse (red box in the figure), where 

the thumb of the user is placed. An infrared light emitting LED (yellow circle in 

the figure) is attached next to the sensor. The device picks up and relays the 

intensity of the reflected infrared by the thumb when the user is holding the mouse, 

as demonstrated in Figure 5-1 (b), via a connected Arduino board. Essentially, this 

is equivalent to attaching a second light sensor and light source to the side of the 

mouse (the first pair is at the bottom of a conventional optical mouse) and this can 
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be easily integrated by product engineers. 

   

                (a)                            (b) 

Figure 5-1 The prototype of the physiological mouse (a) and its usage (b). 

After attaching these optical components to our prototypical physiological 

mouse, we are able to capture the PPG signals by using the mouse. The infrared 

LED sends off infrared light, which is blocked and reflected by the user's finger 

when the mouse is in use. We use the photodiode light sensor to measure the 

intensity of the reflected light, which will vary over time. This light intensity signal 

is then analyzed and physiological signals can be extracted. Currently, the 

response time for the sensor is 5ms, which means that we are able to capture 200 

readings per second, i.e., 200 Hz. The range of the light intensity reading returned 

by the sensor is  . 

We record the intensity of the reflected infrared light and the 200 Hz time 

series signal is passed to a connected computer for processing. We use modeling 

clay to hold the gadget together. Though there are wires coming out of the mouse 

and the use of modeling clay does not look nice, users do not have a bad feeling 

when using it in general. This is a good proof-of-concept feedback. We believe 

that the market will react to the availability of useful or interesting technology. 

Had the idea of physiological mouse become well-accepted, product engineers 

will design a more user-friendly physiological mouse, as well as creating small 
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add-ons to transform a normal mouse into a physiological mouse. They would also 

be able to integrate more sensors within the device or add-on in order to capture 

additional inputs for processing into other physiological signals, for instance, 

temperature sensor and skin conductivity sensor. 

5.2 Measuring Physiological Signals via Physiological 

Mouse 

After building the physiological mouse, we then investigate the approaches 

of measuring human physiological signals through the mouse. In this study, we 

focus our signal processing work on two key physiological measures, namely, 

heart beat rate and respiratory rate (per minute). Since the infrared signal is 

monochromatic, it is not necessary to consider the more complex RGB signals. 

5.2.1  Measuring Heart Beat Rate  

In order to compute the heart beat rate, the first step is to clean the input signal 

by applying a smoothing function. The frequency of the input signal  is 

. We employ a moving window approach, with half window size 

  (window size  ). Given an input series of raw signal 

, we compute the smoothened series over the moving window, 

 , where  . This moving window 

smoothing admits an incremental evaluation upon computing , with 

. This is illustrated in Figure 5-2. 
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Figure 5-2 Signal smoothing. 

 

  

             (a)                                 (b) 

Figure 5-3 Frequency domain of heart beat (a) and inter-beat interval (b). 

The PPG principle states that periodic changes in signal intensity are 

manifested by the cardiac cycle. As such, we need to extract the dominant 

frequency from the smoothened signal. We remove signals of extreme frequency 

induced by noise, and retain those signals of a proper frequency band that we are 

interested in, by employing a band-pass filter. The frequency band that we adopt 

for heart beat rate is , corresponding to 30 to 210 beats per 
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minute. Even for champion athletes, it is uncommon to record a heart beat rate 

below 30. Similarly, a heart beat rate above 210 is unlikely in humans. 

To compute a continuous sequence of heart beat rates, we adopt a moving 

window of size  seconds on the smoothened signal . Upon acquiring 

 data points spanning 5 seconds, we start to evaluate the heart 

beat rate based on these 1000 data points. To perform filtering based on the desired 

band, we apply a Fast Fourier Transform (FFT) on the signal, transforming it from 

the temporal domain to the frequency domain. It is then easy to filter out unwanted 

frequency components. The raw FFT signal will be trimmed according to the 

passing band and in our situation, , as shown in Figure 5-3 

(a). 

Finally, we analyze the power spectral density of the smoothened signal and 

extract the one yielding the maximum power, via the Welch periodogram method 

[108]. This peak frequency,  is taken to be the heart beat rate (in Hz). The heart 

beat rate is then scaled for reporting as  (per minute). By sliding the moving 

window  , we are able to compute the heart beat rate throughout the 

experimental period in the form of a time series. 

5.2.2  Measuring Respiratory Rate 

Since respiration does not directly manifest itself in the periodic heart beat 

signal, we cannot directly extract respiratory rate by applying a band-pass filter 

corresponding to the potential range of respiratory rate on the raw PPG signal. 

However, since respiration corresponds closely to the high frequency component 

of the heart beat rate signal variation [12], we make use of heart beat rate variability, 

in the form of inter-beat interval (IBI) as the key signal to determine respiratory 

rate. IBI measures the timing difference between successive heart beats, and IBI 

fluctuation is known to be useful in characterizing respiratory sinus arrhythmia, 
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which is a cardiorespiratory phenomenon in phase with the inhalation and 

exhalation of the breathing process [12]. 

To compute IBI, we detect the peaks in the smoothened signal   that 

represent the physical heart beats and measure the timing difference between 

successive peaks as IBI values, to generate the heart variability signal 

. We then analyze  to extract the respiratory signal. Owing to the 

uneven distribution of the data points in this IBI signal  in the temporal domain, 

we perform interpolation to obtain an equally-spaced series 

. When the respiration rate changes, the high frequency peak also 

shifts accordingly [12]. We are interested in the higher frequency component of 

, which indirectly measures the respiratory rate. We make use of an appropriate 

band-pass filter:  , to extract the higher frequency 

component of , after applying a FFT on it. This band-pass filter represents a 

reasonable range of respiratory rates between 9 to 24 breaths per minute. Figure 

5-3 (b) shows the peak power frequency obtained after the band-pass filter 

 has been applied on the frequency domain. 

We then perform spectral analysis to locate the peak power frequency . 

We adopt a moving window   instead of   to compute the 

respiratory rate. A longer window is required for computing respiratory rate, 

because respiratory rate is much slower than heart beat rate, which means that 

there is a longer latency in the detection of the respiratory rate, as compared to the 

heart beat rate. Due to the possibility of spectral power spreading, instead of 

directly locating for one single candidate with a peak power frequency, we identify 

a cluster of strong candidates and apply a smoothing filter to locate the dominating 

powerful group. This gives due credit to a cluster of neighboring frequencies of 

high power, which is more representative than a single frequency with an even 
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higher power but without any supporting neighbor with high enough power. To be 

precise, for each moving window  , we locate candidate frequencies 

corresponding to local maxima power. To qualify as a candidate , the power of 

the frequency   must be a local maximum within a region  , which has 

power no less than a threshold . In other words, it must possess a local maxima 

power around its neighborhood of size : 

 5.1 

Upon locating a sequence of candidate peak power frequencies 

  for each frame, we normalize it to the respiratory rate (per 

minute) by multiplying it by 60 to yield  , the 

respiratory rate candidates. As the moving window slides, we accumulate the 

different respiratory rate candidates into a histogram. Finally, we apply an average 

filter to obtain the peak candidate for respiratory rate, which reflects a dominating 

group of frequencies possessing the highest power. In our experiments, we adopted 

 of the total power and . Too high a value for  would limit 

the size of the candidate set, while too low a value would not be effective in 

discarding weak candidates. Too high a value for  would reduce the size of 

candidate set, while too low a value would have generated too many candidates. 

This is illustrated in Figure 5-4, where the peak frequency corresponding to the 

respiratory rate can be identified in the histogram. 
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Figure 5-4 A histogram for respiratory rate candidates. 

The standard algorithm for determining respiratory rate assumes the 

availability of readings for the whole period. In particular, the algorithm of 

adopting a histogram works well when all data have been captured and stored 

offline. It provides a more accurate estimate for the respiration rate over time. 

However, in real applications, it is important to generate continuous physiological 

signals online, even before sufficient data is available. We thus adapt the 

algorithms to produce continuous outputs once some data become available. There 

is a tradeoff made when adapting the algorithm to the real time setting in terms of 

the length of the warmup stage. During the initial warmup stage, the computed 

respiratory rate would be inaccurate and fluctuate much due to insufficient data. 

This can be illustrated in Figure 5-12, where a delay period of 3 seconds is adopted, 

so that we obtain our first reading after 3 seconds. The initial fluctuation is quite 

significant, potentially extending for a few more seconds. However, the signal will 

become more stable and can track the respiratory rate as time goes on, especially 

after the first real breath is taken by the human subject. For practical purpose, it 
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would be sufficient to remove the readings for the first 10 seconds and adopt the 

remaining physiological signal series for emotion analysis purpose, since one 

would normally not expect the system to respond instantaneously, as we would 

wait for a computer system to “boot”, a smartphone to “turn on” or an application 

to “start”. In our evaluation experiments, we remove the first 3 data points for a 

warmup stage of 9 seconds.  

5.3 Evaluating Physiological Signals Computation 

We conduct experiments to evaluate the accuracy of the physiological signals 

obtained when users use the physiological mouse. In the experiment, we invite 8 

subjects, 5 males (Subjects 1 to 5) and 3 females (Subjects 6 to 8), to participate 

in our experiments using the mouse. The ages of the subjects range from 20 to 30 

and they are all university undergraduate and graduate students who do not suffer 

from any underlying chronic illness. We would like to study the viability and 

validity of the concept and algorithms in deriving physiological signals from PPG 

signals captured via the simple attachment of a small LED and light sensor on to 

the mouse. We conduct three sets of experiments, the first one to study the 

performance of heart beat rate computation, and the other two the performance of 

respiratory rate computation. We present the study in more details in the 

followings. 

5.3.1  Evaluating Heart Beat Rate  

The goal of our first experiment is to study the accuracy of the computation 

of heart beat rate from PPG signals acquired by our physiological mouse prototype. 

To measure the heart beat rate, we use a iHealth Pulse Oximeter [45] that clips 

onto a finger of the subject. Figure 5-5 shows the heart beat measurements of using 

iHealth device. The heart beat readings from the iHealth sensor are taken as the 
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ground truth and compared with the signal returned by the physiological mouse to 

calculate the heart beat error. 

                   

Figure 5-5 iHealth device to measure heart beat rate. 

In this first experiment, each subject is requested to use the mouse for 2 

minutes. The reading from the iHealth device and the result coming from the 

mouse are recorded every 3 seconds. This gives us two data series for each subject 

, one from iHealth device: , the other one from the 

mouse:  . We wish to study the trend of sensor 

readings returned by the two devices. In particular, we compute an error series for 

each subject over the time period by Equation 5.2, where  is the  subject. 

The general trend for the error is computed as the average of all the subjects: 

Equation 5.3, where   is the number of subjects. The results for the average 

error over time and error for individual subjects over time are depicted in Figure 

5-6 and Figure 5-7 respectively. 

 5.2 

 5.3 

From Figure 5-6, we observe that there is an initial transient impact to the 

readings due to the warmup effect, and we discard the first three readings in order 

to remove the bias induced by this warmup effect. After that, the average error is 

normally below 3 across the board. Similarly, there are very few subjects 

displaying an error of more than 5 after the warmup stage. We also observe a 

relatively high error with Subject 6, but when we interviewed with the subject, she 
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mentioned that her hand was not always holding on to the mouse and it is apparent 

that part of the signal deviates much from the norm. If this subject were removed 

from our set of results, the error would drop from 2.90 to 2.65. However, we 

believe that this is an interesting case to report and do not proceed to request for 

additional data taking. 

     

Figure 5-6 Average heart beat rate error for all subjects. 

The physiological signals for heart beat rate obtained by our algorithms are 

compared with the ground truth in Table 5-1. We calculate the mean values of , 

 over time and note their discrepancy, which reflects the error as an aggregate, 

for each subject, as depicted in Table 5-1. We compute two error metrics. The 

overall error reflects the error between the mean values of  and , and the 

absolute error measures the average of deviations across all readings. It can be 

noted that the overall error is at most equal to the actual error, and this occurs when 

there is a systemic bias in which the reading of one device is consistently higher 

or consistently lower than the other. In our experiment, we do observe that the 

physiological mouse is returning a lower reading most of the time, making the 

actual error close to the overall error. Nevertheless, this error is very small. Besides 
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the error, we also measure the mean square error (MSE) for each subject, so as to 

quantify the variability of the errors. In general, we observe small MSE values of 

at most 10 (except for Subject 6), which means that the error seldom exceeds 3 or 

4. We can conclude that the physiological mouse is able to attain a good accuracy 

for heart beat rate determination, sufficient for emotion recognition purpose. 

   

Figure 5-7 Heart beat rate error for individual subjects. 

 

Subject 1 2 3 4 5 6 7 8 

iHealth  103.97 65.84 82.92 68.11 86.84 66.27 66.81 80.86 

Mouse  102.14 64.30 83.70 65.92 84.24 61.73 65.51 82.73 

Overall error 1.77% 2.34% 0.95% 3.21% 2.99% 6.85% 1.94% 2.31% 

Actual error 2.19% 2.49% 1.61% 3.89% 3.00% 7.18% 2.43% 2.77% 

MSE 8.32 4.35 2.95 10.08 10.38 36.59 3.78 8.78 

Table 5-1 Heart beat rate performance. 

5.3.2  Evaluating Respiratory Rate  

We then conduct experiments to evaluate the accuracy of the computation of 
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respiratory rate from PPG signals. This is more challenging, since the mechanism 

to derive respiratory rate from PPG signals is more complex and indirect, and there 

is more variation to the respiration pattern exhibited by human beings. 

Furthermore, unlike heart beat, which is more or less an involuntary mechanism, 

respiration is controllable by a human to a certain degree and breath holding is not 

an uncommon phenomenon. 

We evaluate our respiratory rate measurement via two sets of experiments in 

line with [91]. The first set of experiments measures the respiratory rate under a 

controlled environment via a metronome. We implement a simple metronome by 

displaying an inhale and exhale indicator at a given frequency, and request our 

subjects to breathe according to the rhythm. The second set measures respiration 

in a more natural context via self-reporting. Subjects are asked to breathe naturally 

over a period of time. For the measurement, unlike [91], which makes use of an 

intrusive respiratory belt fastened around the chest of the subject to measure 

respiration, we request our subjects to press a key on the keyboard on every inhale 

and exhale. The timestamp of each keypress then gives us the actual respiration 

events and hence the respiration rate. While the respiration rate induced by the 

metronome is constant in the controlled experiment, the actual respiration rate in 

the natural experiment exhibits variations. This variation provides us with more 

room for experimental validation of the accuracy over time and future human 

affect recognition. 
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Figure 5-8 Example of candidate respiratory rates in controlled experiment (a good case). 

 

Figure 5-9 Example of candidate respiratory rates in controlled experiment (a bad case). 

In our first set of controlled experiments, we ask the subjects to breathe 

according to the predefined rhythms of 10, 12, 14 and 16 breaths per minute for 2 

minutes. The examples of resulting candidate respiratory rate histograms are 

demonstrated in Figure 5-8 and Figure 5-9, which show the “good” and “bad” 

scenarios among the subjects respectively. For each subject, the corresponding 

histogram summarizes the candidate rates for the four rhythms in different colors. 
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It can be observed that in general, the peak frequency for each rhythm is correct. 

In the good case scenario, there is just one non-negligible second peak at 14 per 

minute. The result for the bad case contains non-negligible peaks at 16 per minute 

and there are also a number of spikes at 12 per minute. The results are summarized 

in Table 5-2. The error for each specific rhythm is illustrated in Figure 5-10. It can 

be observed that the error is not high, only ranging from 2.5% to 6%, with an 

average value of 4.1%. The mean square errors (MSE) are also very low, all below 

1.0. The small error rate is attributed to both the stable breathing rhythm and the 

spectral analysis performed on the collected offline data. We believe that this set 

of experimental results would indicate a potentially “best” case scenario for 

respiratory rate computation from PPG signals, as compared with natural breathing 

situation. 

           

Figure 5-10 Average result with error bar for different respiratory rhythms. 

Subject 1 2 3 4 5 6 7 8 

Rhythm 10 10.6 10.2 10.6 10.3 9.6 10.3 9.2 9.3 

Rhythm 12 12.4 12.5 11.7 12.3 11.8 12.5 12.2 11.4 

Rhythm 14 14.4 14.4 14.6 14.3 14.9 14.4 13.6 13.4 

Rhythm 16 16.4 15.5 17.5 15.6 14.9 16.4 14.7 15.6 
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Actual error 3.46% 3.08% 5.77% 2.50% 5.00% 3.08% 5.19% 4.42% 

MSE 0.21 0.17 0.76 0.11 0.56 0.16 0.63 0.34 

Table 5-2 Respiratory rate performance: controlled experiment. 

Performance results from the second set of natural respiratory experiments 

are shown in Figure 5-11and Figure 5-12, as captured by the physiological mouse 

and the self-reported respiratory rate, as well as the average error for each subject. 

Figure 5-11 summarizes the overall average for all the subjects while Figure 5-12 

highlights individual subjects. From these figures, we also observe that there is an 

initial transient impact to the readings due to the warmup effect. In general, the 

respiratory rate exhibits a larger error than heart beat rate, since the mechanism for 

its determination is more complicated. 

To make a fair comparison with heart beat rate computation and knowing that 

the initial transient data would likely be incorrect, we remove the first three data 

points (corresponding to a warmup stage of 9 seconds) when presenting Table 5-3. 

The reported rate is computed by measuring the time difference between two 

consecutive respirations. Since the frequency of respiration is lower than the 

frequency implied by our 3 seconds reporting interval, there may not be a breath 

taken in an interval. We thus perform linear interpolation to the respiratory rate 

when computing for the ground truth. This sampling frequency may also exert 

some impact on the accuracy of our physiological mouse. Comparing with the 

heart beat rate, the overall error for respiratory rate is generally smaller than those 

of the actual error, indicating that the error can go both ways and there is no 

evidence of the presence of any systemic error. The mean square error (MSE) is 

also not very high across the board, with a highest value of 9 to 16, i.e., a deviation 

of 3 or 4 in the worst case. 
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Figure 5-11 Average respiratory rate error for all subjects: Natural respiration. 

 
Figure 5-12 Respiratory rate error for individual subjects: natural respiration. 

Subject 1 2 3 4 5 6 7 8 

Ground rate 16.41 10.05 10.78 10.84 13.92 13.05 12.70 13.08 

Mouse rate 18.10 9.84 8.52 10.89 10.97 15.26 12.11 13.26 

Overall error 9.34% 2.22% 26.61% 0.51% 26.90% 14.46% 4.90% 1.32% 

Actual error 12.69% 5.89% 27.81% 13.43% 28.71% 15.00% 19.01% 6.06% 

MSE 10.84 0.47 8.61 3.71 15.09 6.84 9.42 1.04 

Table 5-3 Respiratory rate performance: natural respiration. 
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Though we can obtain very accurate results for heart beat rate as well as 

respiratory rate under the controlled environment, it can be observed that the 

results for natural respiratory are not as good, with an average actual error rate of 

16.9%, maximum reaching 28.7% and a minimum of 5.9%. This is likely due to 

the fact that respiratory rate is measured indirectly via some biological 

phenomenon, which allows noise to set in. The achievable accuracy also varies 

widely from subject to subject. The overall error rates, as with heart beat 

experiments, are in general lower and for respiratory rates, much lower. This also 

implies that the errors can sometimes cancel out each other, without clear presence 

of systemic errors. We believe that the measured respiratory rate can still be used 

for emotion recognition, especially when we compute for more aspects of the 

respiratory rate to form the list of features in recognition, e.g., the average rate 

over a past window and the rate variation, besides the instantaneous respiratory 

rate signal. 

5.4  Correlating Physiological Signals with Human 

Emotions 

 

Our pilot study to determine the relationship between physiological signals 

and human emotions involves two sets of experiments drawn from two frequently 

performed tasks in human-computer interaction: namely, watching videos and 

playing games. These experiments involve 8 subjects. The experimental setup is 

illustrated in Figure 5-13. The subject is requested to hold on to the mouse during 

the entire experiment. 
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Figure 5-13 Experimental setup for emotion-related experiments by using the physiological 

mouse. 

In the first set of experiments, each subject is requested to watch two short 

videos, a funny video of about 2 minutes and a horror video of about 3 to 4 minutes. 

The funny video is extracted from the famous hidden camera comedy show: “Just 

For Laughs: Gags", Season 9, Episode 8, between 9'38" and 10'58", whereas the 

horror video is taken from the movie “Final Destination 5”, running from 22'05" 

to 26'35". The funny video presents a joke whereby a number of participants are 

invited to hold a big sign asking for kisses from passers-by. The participants are 

all men, and the passers-by happen to be attractive women. At the end of the video, 

a male passer-by appears and attempts to follow the instructions, which leads to a 

number of humorous moments. In the horror video, a number of teenagers are 

practicing gymnastics, with some workers repairing the electricity supply nearby. 

There are a number of “disasters destined to happen” in the scene, including a 

hanging fan that is about to break loose (scene showing a loosening screw), uneven 

bars starting to fall apart, and leaking water that is slowly making its way across 

the ground towards a live wire. The screw that drops from the hanging fan on the 

ceiling onto the balance beam happens to play an important role in this horror 

video. It has been shown repeatedly with several near misses by the girl on the 
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beam, hence building up the suspense. There are also camera pans to the ceiling 

and the floor to build the suspense. Finally, the girl as expected steps on the screw 

to trigger a cascading series of accidents which culminate in the killing of another 

girl by electric shock and a fairly horrifying scene highlighting the death of a third 

girl, breaking her neck in a miserable way. Indeed, one of our female subjects 

could not handle the horror scene in the video and opted to watch an alternative 

video involving a snake charmer (despite the fact that she has a phobia of snakes). 

In the second set of experiments, we request our subjects to play a video game 

using the physiological mouse. The game we utilize is called “House of the Dead”, 

which is a classic first-person-shooter game, set in a haunted mansion with 

zombies and monsters. The sequence culminates in a battle with a powerful 

“named mob”, whom they have to beat before the experiment is considered 

complete. Since not all subjects possess the same skill level, the amount of time 

that they spend to complete the experiment varied from 5 minutes to 11 minutes. 

 

Figure 5-14 Average heart beat rates across subjects in different tasks. 
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Figure 5-15 Average respiratory rates across subjects in different tasks. 

 We measure the two physiological signals for each subject and summarize 

the results in Figure 5-14 and Figure 5-15 for the two sets of experiments. This 

provides a comparison for a same subject across different activities. In general, we 

observe that the heart beat rate is highest for the game-playing activity, which is 

not surprising given the more interactive nature of the activity, demanding 

continuous attention from the subject. Between the two videos, with the exceptions 

of two subjects, the horror video does not result in a significantly faster average 

heart beat than the funny video, and in fact, some subjects' heart rates are actually 

higher during the watching of funny video than during the horror video. Upon 

post-experiment interviews, our subjects stated that they were not particularly 

nervous or tense during the watching of horror video, perhaps as a result of 

desensitization because they were used to watching such videos. Subject 8 is the 

subject who had snake phobia (and who chose to watch the video with the snake 

charmer instead of the horror video). Not surprisingly, her heart beat rate during 

that video watching session is significantly higher than normal. Subject 1 also does 

not watch videos often, which means that he is not as desensitized as the others 
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and more susceptible to physiological changes brought on by changes of emotion. 

The respiratory rate, on the other hand, shows less of a pattern than the heart 

beat rate. It is interesting that a heightened heart beat rate does not automatically 

result in a faster respiratory rate (as evidenced especially for Subject 8). One 

potential cause of this is the breath holding phenomenon in the presence of 

suspense or threat for some human. This is an interesting issue that we intend to 

further investigate in future work. 

For a more in-depth investigation, we measure the physiological signals and 

align the temporal changes with turning points in the plot-line of the videos. 

Similarly, in game playing, we align the changes in the heart beat and respiratory 

rate with events in the game playing. In game playing, we differentiate two 

different types of events. The first type is when the player is to be engaged, namely, 

either about to face the boss or about to suffer an imminent death, and the second 

type is the set of transition cut-scenes that help to narrate the underlying storyline 

behind the game. We understand that changes would occur in the vicinity of the 

moment for the key events, i.e., funniest or humorous part in the funny video, 

horrifying part in the horror video, and the moment of threat in the game playing. 

We call these the elicitation events. We consider the heart beat rate and respiratory 

rate 3 seconds before and 3 seconds after the event and measure the change. 

According to the result, there can be three possibilities: a certain increase in heart 

beat rate or respiratory rate, a certain decrease, and a negligible change (effectively 

no change). 
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Figure 5-16 Average heart beat rates across tasks. 

 
Figure 5-17 Average respiratory rates across tasks. 

According to Figure 5-16 and Figure 5-17, unsurprisingly, the transition cut 

scenes in the game usually elicit a drop in the heart beat rate, which is expected 

since those scenes usually constitute a break from the constant interactive activity. 

Similarly, it is also expected that a player facing imminent death would generate a 

higher heart beat rate, and this seems also to be accompanied with an increase in 

respiratory rate. What is less expected is that the heart beat rate does not seem to 
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go up following the appearance of the boss, perhaps because the appearance of the 

boss is rather expected and that the image of the boss is not particularly scary. The 

funny scenes also appear to elicit an increase in the heart beat rate, perhaps because 

subjects often shift their position when laughing out loud, which then increases 

the heart beat rate momentarily. The respiratory rate does not seem to show much 

clear pattern. 

It is also interesting to analyze the change in heart beat rate and respiratory 

rate for an individual subject as a function of time. Figure 5-18 demonstrates the 

example data for one representative subject playing the game, showing the heart 

beat rate (red curve) against the left y-axis and respiratory rate (blue curve) against 

the right y-axis. It can be seen that the transition cut-scenes elicit a drop in the 

heart beat rate, as evidenced in the overall data. The moments of imminent death 

(vertical blue lines) seem to be correlated with an increase in the heart rate, which 

is also expected. The appearance of the boss (vertical purple line), on the other 

hand, does not seem to result in an increase in the heart beat rate, perhaps due to 

the fact that the boss appearance is rather expected following the transition scene. 

The heart rate is highest towards the end of the experiment, perhaps as a 

consequence of increased tension upon seeing the end of the mission “within 

sight”. 
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Figure 5-18 An example of temporal physiological signals captured in playing game. 

 

Figure 5-19 An example of temporal physiological signals captured in watching the horror 

video. 

Figure 5-19 illustrates the heart beat rate (red curve) and respiratory rate (blue 

curve) for another representative subject watching the horror video. The key 

horrifying events are indicated in the timeline and it can be observed that the heart 

beat rate increases more often than staying the same when those events happen. 

Nevertheless, when it comes near the end of the video that the girl is going to get 

killed, the heart beat rate and respiratory rate both stay at a relatively high level, 

implying intense felt by the subject. We would be conducting more in-depth study 
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to correlate the different events with physiological signals and machine learning 

would be our next direction to pursue. 

5.5 Summary 

This chapter presents the physiological mouse to measure human heart beat 

rate and respiratory rate in a non-intrusive manner. We designed and built a 

prototype of the physiological mouse by enhancing a daily used mouse by some 

low cost devices.  

To verify the performance of our physiological signals computation, we 

present the evaluation experiments by asking subjects to hold on to the mouse. 

Experiments demonstrate that our physiological mouse can effectively measure 

users’ heart beat rate with an overall error below 3% and respiratory rate with an 

overall error below 5% and 10% for the situations of controlled respiratory and 

natural respiratory respectively. 

With the ultimate goal towards developing an emotion-aware and even 

intention-aware mouse capable of determining the human emotions and intention, 

we also conduct a pilot study to investigate the relationship between physiological 

signals and human emotions, by requiring subjects to use the mouse when they are 

watching videos and playing games. Our future work will investigate that into 

more various emotions and diversified tasks.  

We believe that our study can contribute to affective computing and human-

computer interaction, as it provides a novel solution to measure physiological 

signals during daily computer interaction tasks in a non-intrusive manner, which 

could be further applied to enhance user experience in real applications in the 

future. 
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Chapter 6 Conclusion and Future Work  
Understanding human intention has been gaining attention in recent studies 

in computer science. Once a computer can interpret human intention, it opens up 

the vast possibility to provide potential assistance to users in advance, in social 

events and daily human-computer interactions, such as automatically raising an 

alarm for fierce activities inside a bar, and automatically enlarging a potential 

target button for a user. This thesis investigates techniques for understanding 

human intention in different applications. 

We investigate human intention in two aspects. We first study fight detection 

in human social interaction. There are some prior studies about fight detection. 

However, they are constrained by reliance on high level feature recognition and 

on simulated fight events. In addition, we also study on predicting user intention 

in daily computer interaction tasks, facing challenges on limited nature of 

prescribed tasks, ignoring useful modalities, and need of expensive and intrusive 

devices to capture signals. 

In this thesis, we present a low cost motion analysis-based approach for fight 

detection. The experiments show that the proposed approach can effectively detect 

human fights in real surveillance scenarios and can even distinguish human real 

fights from simulated fights. We developed a multimodal approach to predict users’ 

interaction intention in a nature web search task. The experimental results in this 

study demonstrate that our approach can achieve promising performance for user 

intention prediction. We also investigate measuring human physiological signals 

in a non-intrusive manner and the feasibility of correlating physiological signals 

to human emotions. This thesis concludes with a summary of the contributions and 

potential future work. 
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6.1 Contributions  

6.1.1  Detecting Human Real Fight 

In this study, we investigated the efficient approaches of using motion 

analysis for detecting fights in videos, without having to recognize complex 

behaviors, gestures or action events via video processing. 

Our main contributions of this study are summarized as follows: 

• We proposed and implemented low-cost and effective motion analysis-

based approaches for automatic fight detection; 

• We collected real surveillance videos containing real fight events from 

YouTube and annotated to produce a human real fight dataset; 

• We evaluated our approach and compared the performance with the 

state-of-the-art studies, and the experiment results show that our 

approach could accurately detect human real fights; 

• We conducted a new study in discriminating real fight events against 

simulated fight events, an issue often overlooked by prior studies, and 

the experiment results demonstrate that a computer could distinguish 

real from simulated fight events; 

• We proposed a cross-species learning technique for cross-species fight 

detection; 

• We collected a good set of animal fight videos from YouTube and 

annotated them to produce an animal fight dataset; 

• We performed in-depth evaluations of our method, which sheds light on 

the appropriateness of feature representation for cross-species learning 

for human fights as well as the effectiveness of adaptation from different 

sources. 
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6.1.2  Modeling User Interaction Intention  

In this study, we explored the multimodal approaches for predicting user 

interaction intention by using non-intrusive capturing of users’ interaction and 

body signals. We focused our study on a nature web search task. 

Our main contributions of this study are summarized as follows: 

• We proposed two feature representations to encode interaction and body 

signals captured in daily computer interaction tasks; 

• We proposed a user intention prediction approach for multi-step human-

computer interaction task based on mouse, eye, head and body 

movements, as well as historical activity sequence; 

• We conducted our study and collected user intention dataset in a 

common daily computer task: web search task; 

• We evaluated our user intention prediction model, and results show that 

our proposed approaches could achieve reasonable accuracy; 

• We performed in-depth evaluations of our approaches to investigate the 

appropriateness of feature representation for modeling user intention; 

• We conducted a pilot study to investigate user selection slips detection 

based on the multimodal intention prediction model. 

 

6.1.3  Non-intrusively Measuring Physiological Signals 

In this study, we developed a prototype of physiological mouse to investigate 

the feasibility of capturing human heart beat rate and respiratory rate in a non-

intrusive manner. 

Our main contributions of this study are summarized as follows: 

• We designed and built a prototype for the novel physiological mouse by 



 

146 

 

making use of low-cost optical components; 

• We proposed to capture the PPG signal by using the physiological mouse 

for measuring human physiological signals; 

• We provided algorithms to compute the physiological signals: heart beat 

rate and respiratory rate; 

• We conducted experiments to evaluate the physiological signals 

computation algorithms for accuracy; 

• We conducted a pilot study to investigate the relationship between 

captured physiological signals and human emotions that we drove the 

experimental subjects into, via video watching and gaming. 

6.2 Limitations 

This thesis investigates techniques for understanding human intention. The 

experimental results of the current studies are promising. However, there are still 

some limitations. 

The first limitation of our studies is the relatively small size of datasets, 

especially for the study about physiological mouse. As a pilot study towards 

physiological, emotion and even intention-aware mouse, our experiments only 

involve 8 subjects. The size of this dataset is reasonable for evaluating the 

accuracy of physiological signals, but it is not sufficient to gear towards emotion 

recognition. We would need to increase the number of subjects as well as the size 

of our datasets for further study of detecting human emotion and intention by using 

the physiological mouse. For our fight detection and user interaction prediction 

tasks, our datasets have moderate sizes. However, if we want to develop our 

approaches by applying a hybrid deep learning approach, we would need to 

increase the size of our datasets along with our future work, since well-performing 
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deep learning approaches require a great amount of training data. 

In addition, our studies are constrained by using hand-crafted features. Some 

data-driven approaches such as deep learning have not yet been involved in the 

current study. As the very first step towards understanding human intention, we 

developed hand-crafted features not only due to the constraint of small dataset, but 

also because of their interpretability with physical meanings such as acceleration 

of moving body parts, which helps us more for the purpose of this thesis. After 

gaining a fundamental understanding through our studies, we will try to investigate 

the approaches by integrating data-driven approaches in the future work. 

Finally, our studies can be further improved by investigating more diversified 

tasks. For the fight detection study, in addition to human fight events, we can also 

study on other fierce activities, such as arguments, etc. While for the study of 

predicting user interaction intention, we can also study on other common daily 

computer interaction tasks, such as reading, writing, playing game, and 

crowdsourcing, etc. Moreover, the current study of applying our intention 

prediction model to detect user slips is only conducted in simulated scenarios. We 

would try to conduct this study in multiple real tasks in the future. 

6.3 Future Work 

With respect to the limitations described above, there are some future works 

that are worth further investigation, based on the current studies. 

6.3.1  Detecting Intention to Fight 

Our current study is focused on detecting fight events when they are 

happening. In the future, we would like to extend our algorithm with the ability to 

detect the intention to fight, that is, the fight detection model should have the 

ability to predict fight events ahead before they happen. Such a preventive 
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application is highly useful in practice. For instance, when a system detects fight 

intention it will raise an alarm for warning, which may well deter the potential 

fight from happening, when the warning is perceived by the potentially offending 

parties.  

To this end, these kinds of models may need to detect the angry moments, 

arguments or other potential aggressive behaviors. Cross-species learning could 

also be an interesting direction of these works, in linking the affective states and 

actions between human and animals. 

6.3.2  Investigating on Diversified Real Tasks  

In real usage, a user intention prediction model needs to be able to predict 

user’s intention a few seconds ahead of the interaction event. Although the current 

model can achieve reasonable performance for predicting a few seconds ahead, it 

can still be further improved. In future work, we plan to experiment with more 

sophisticated models to improve the prediction performance, such as taking 

mouse-gaze movements coordination, gaze-head movements coordination, etc. 

into consideration. Moreover, our current study only focuses on web search task. 

In the future, we would try to study user intention prediction on more diversified 

tasks. For instance, we can study on writing tasks, where keyboard inputs 

dominate the interactions. We can then utilize users’ typing behaviors to model 

user intention, which are not considered in our current studies. 

In addition, in our current study, we only investigate user slips detection in 

some toy experiments. In the future, we plan to develop real time user slips 

detection models and investigate their suitability in real applications. Further 

experiments will also be conducted to evaluate the feasibility and usability of the 

models.  
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6.3.3  Applying Physiological Mouse to User Intention Prediction  

In the future, we plan to characterize more precisely the relationship between 

physiological signals and human emotions by using the physiological mouse, 

through more diversified tasks that are designed to elicit different emotions. 

Besides, we will try to investigate the feasibility of correlating human 

physiological signals with human intentions in different tasks. In addition, more 

sensors to measure skin temperature and skin conductivity could be augmented 

onto the mouse, making it a fully functional physiological mouse capable of 

returning multiple useful signals in a non-intrusive manner for physiological signal 

computation. In this aspect, different machine learning approaches would then be 

studied to better recognize the user emotion and interaction intention based on the 

various signals. 

Finally, we would like to expand the collection of human interaction and body 

signals in a multimodal setting, to more accurately detect human intention with 

the increased dimension of inputs, which include the physiological signals 

captured by the physiological mouse. In our user intention prediction study, we 

have successfully utilized mouse interaction, gaze interaction, head as well as 

body movements to build user intention prediction model. The physiological 

signals may also be one useful type of complementary signals for our ultimate user 

intention prediction model. More extensive experiments would need to be 

conducted to investigate multimodal user intention prediction approaches. 

Moreover, we would also like to explore building up a general model for generic 

users, and a learning module that will adapt to a specific user over time. 

6.3.4  Integrating with Deep Learning Approaches 

Current approaches described in this thesis rely on the hand-crafted features. 

Compared with deep learning approaches, hand-crafted features carry more 
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physical meanings such as the acceleration of fighting actions. That can help us 

understand more about human intention. However, it is also interesting to explore 

other features based on deep auto-encoders or features embedded within general 

event detection CNN [98, 107], etc. Therefore, in the future, we will increase the 

size of our datasets, and then try to apply and integrate deep learning approaches 

in our studies. 

6.4 Other Relevant Contributions 

In addition to the main contributions previously described, the following 

describes other relevant contributions arising from my thesis project. 

6.4.1  Using LSTM for User Intention Prediction  

 We extend our study of user intention prediction by an initial attempt to 

explore with a deep learning approach. In this study, we adopt the long short-term 

memory (LSTM) [32, 38] network to build our model. LSTM is a recurrent neural 

network architecture, which is appropriate for the recognition of sequential pattern. 

Specifically, we propose a dual-stream LSTM framework to predict users’ 

intention as depicted in Figure 6-1. Our proposed network framework utilizes the 

historical activity information as well as the mouse interaction information to 

predict user’s intentions. Instead of modeling the two types of features in one 

LSTM network, we model them via two separate LSTM networks and adopt a 

weighted average approach to fuse the mouse interaction and historical activity 

networks. 

Both networks are modeled as an LSTM with two layers and 64 neurons on 

each layer. We use the mini-batch stochastic gradient descent algorithm to learn 

the network parameters, where the batch size is set to 128 and momentum set to 

0.8. The learning rate is initialized as 0.001 and decays by 10 times every 10,000 
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iterations. The whole training procedure stops after 30,000 iterations. 

            

Figure 6-1 A dual-stream LSTM for user intention prediction. 

 

To evaluate, we consider two scenarios in daily computer usage: a more 

structured crowdsourcing annotation task and a more free-form, open-ended web 

search task. Our results indicate that we could predict the next interaction event 

with reasonable accuracy.  

Reference 

Tiffany C. K. Kwok, Eugene Yujun Fu, Erin You Wu, Michael Xuelin Huang, 

Grace Ngai, and Hong Va Leong. 2018. “Ev’ry Little Movement Has a Meaning 

of Its Own: Using Past Mouse Movements to Predict the Next Interaction,” in 

Proceedings of the 23th International Conference on Intelligent User Interfaces 

(IUI), 2018, pp. 397-401. 

 

6.4.2  Using LSTM for Fight Detection 

In this thesis, we have already attempted to encode the temporal information 

of local motion signals by statistical features for human fight detection, which lead 

to promising performance. We then extend our study by using deep learning 
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approach to encode temporal information. Specifically, we extract the local motion 

signals that describe motion amplitudes and accelerations within different regions 

of video frames. We then apply a long short-term memory (LSTM) network [32, 

38] to learn the temporal motion representation from each video segment. In 

general, our method encodes both the spatial and temporal motion features, which 

are essential for fight detection. Figure 6-2 demonstrates the framework of our 

approaches. 

We utilize the LSTM network to analyze the temporal information from the 

extracted local motion sequences. As a fight action generally presents a very 

unique pattern of speed and acceleration change along with time, learning an 

appropriate temporal motion representation is highly valuable for fight recognition. 

Furthermore, a video of a natural fight scene may contain multiple basic motion 

subsequences, which can be rather diverse and hard to delineate with human-

designed features. We, therefore, use an LSTM to capture the useful temporal 

feature representation directly from the fight data. 
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 Figure 6-2 Learning fight detection model from local motion signals using SVM and 

LSTM. 

In our method, a single-layer LSTM is deployed to accept the local motion 

features as input and output the binary recognition result of fight and non-fight. 

The input of LSTM includes the   motion magnitude features and the 

 acceleration features. The outputs of the LSTM first input layer are then 

fed into the second layer, which contains 64 nodes. Each step of the LSTM 

represents a time frame in the video. 

To generate more data for training and to prevent severe over-fitting, data 

augmentation is commonly adopted to generate diverse training samples. In some 

related works, random cropping and horizontal flipping are employed to augment 

training samples. In this paper, we exploit cropping augmentation technique to 

augment our training samples, by adapting the methods introduced in [92, 107]. In 

the cropping technique, the extracted regions are focusing on not only the center 

area of an image but also the corner area of an image. Besides, the width and height 

of cropped region are randomly selected to avoid only selecting regions of fixed 

size. Finally, the selected cropped regions will be resized to the original size of the 

frame for feature extraction and network training. 

In our experiment, we investigate the proposed LMF with LSTM model for 

fight detection on human real fight dataset introduced in Section 3. We evaluate 

this approach and compare with state-of-the-art methods in fight or violence 

detection. The experiment results show that this approach can outperform the 

state-of-the-art approaches including the approach of combining our LMF with 

SVM. This also indicates that LMF is a good representation for fight actions. More 

importantly, it can be well generalized across different classifiers. The finding of 

this study is being polished for publication. 
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Reference 

Eugene Yujun Fu, Hong Va Leong, Grace Ngai. 2019. “Automatic Fight 

Detection from Local Motion Signals with LSTM”. – In Preparation 

 

6.4.3  Modeling Mouse and Gaze Interaction for Stress Detection  

Detecting mental stress has gained attention in recent studies, as mental stress 

can lead to anxiety, depression, and various mental illnesses. However, most of the 

prior techniques applied for stress detection are constrained by the reliance on the 

interface layout or other information obtained from the graphical user interface 

(GUI), making these kinds of approaches hard to generalize across different 

interfaces and be applied to detect human mental stress in real applications.  

To address this challenge, we proposed a GUI-agnostic stress detection 

approach in this study, which can utilize the information about the correlation 

between mouse and eye gaze movements to build stress detection model, without 

considering the actual information of GUI. We evaluated the approach in two 

different computer interaction tasks with two different kinds of GUI. The 

experiment results suggest that our approach can effectively detect users’ mental 

stress in both of the tasks, in a GUI-agnostic manner. 

Reference 

Jun Wang, Eugene Yujun Fu, Grace Ngai, Hong Va Leong. 2019. “Detecting 

Stress from Mouse-Gaze Attraction”. To appear in Proceedings of ACM/SIGAPP 

Symposium on Applied Computing, 2019. 

 

 

 

 



 

155 

 

References 

[1] Ahsan, G.M.T., Gani, M.O., Hasan, M.K., Ahamed, S.I., Chu, W., 

Adibuzzaman, M. and Field, J. 2017. A Novel Real-Time Non-invasive 

Hemoglobin Level Detection Using Video Images from Smartphone 

Camera. Proceedings of the 2017 IEEE 41st Annual Computer Software and 

Applications Conference (COMPSAC). (2017), 967–972. 

[2] Alexander, J., Cockburn, A., Fitchett, S., Gutwin, C. and Greenberg, S. 2009. 

Revisiting read wear: analysis, design, and evaluation of a footprints 

scrollbar. Proceedings of the SIGCHI Conference on Human Factors in 

Computing Systems (2009), 1665–1674. 

[3] Allen, J. 2007. Photoplethysmography and its application in clinical 

physiological measurement. Physiological measurement. 28, 3 (2007), R1–

39. 

[4] Arapakis, I. and Valkanas, G. 2014. Understanding Within-Content 

Engagement through Pattern Analysis of Mouse Gestures. Proceedings of 

the 23rd ACM International Conference on Conference on Information and 

Knowledge Management (2014), 1439–1448. 

[5] Asano, T., Sharlin, E., Kitamura, Y., Takashima, K. and Kishino, F. 2005. 

Predictive interaction using the delphian desktop. Proceedings of the 18th 

annual ACM symposium on User interface software and technology (2005), 

133–141. 

[6] Balakrishnan, G., Durand, F. and Guttag, J. 2013. Detecting pulse from head 

motions in video. Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR) (2013), 3430–3437. 

[7] Baltrušaitis, T., Robinson, P. and Morency, L.-P. 2016. Openface: an open 



 

156 

 

source facial behavior analysis toolkit. Applications of Computer Vision 

(WACV), 2016 IEEE Winter Conference on (2016), 1–10. 

[8] Banovic, N., Grossman, T. and Fitzmaurice, G. 2013. The effect of time-

based cost of error in target-directed pointing tasks. Proceedings of the 

SIGCHI Conference on Human Factors in Computing Systems (2013), 

1373–1382. 

[9] Blakemore, S.-J. and Decety, J. 2001. From the perception of action to the 

understanding of intention. Nature Reviews Neuroscience. 2, 8 (2001), 561–

567. 

[10] Blunsden, S. and Fisher, R.B. 2010. The BEHAVE video dataset: ground 

truthed video for multi-person behavior classification. Annals of the BMVA. 

4, 1–12 (2010), 4. 

[11] Brown, E.T., Ottley, A., Zhao, H., Lin, Q., Souvenir, R., Endert, A. and 

Chang, R. 2014. Finding waldo: Learning about users from their interactions. 

IEEE Transactions on visualization and computer graphics. 20, 12 (2014), 

1663–1672. 

[12] Brown, T.E., Beightol, L.A., Koh, J. and Eckberg, D.L. 1993. Important 

influence of respiration on human RR interval power spectra is largely 

ignored. Journal of Applied Physiology. 75, 5 (1993), 2310–2317. 

[13] Burgos-Artizzu, X.P., Dollár, P., Lin, D., Anderson, D.J. and Perona, P. 2012. 

Social behavior recognition in continuous video. Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR) (2012), 

1322–1329. 

[14] Calvo, R.A. and D’Mello, S. 2010. Affect detection: An interdisciplinary 

review of models, methods, and their applications. IEEE Transactions on 

affective computing. 1, 1 (2010), 18–37. 



 

157 

 

[15] Chang, C.J., Amick, B.C., Menendez, C.C., Katz, J.N., Johnson, P.W., 

Robertson, M. and Dennerlein, J.T. 2007. Daily computer usage correlated 

with undergraduate students’ musculoskeletal symptoms. American journal 

of industrial medicine. 50, 6 (2007), 481–488. 

[16] Chen, J., Liu, X., Tu, P. and Aragones, A. 2013. Learning person-specific 

models for facial expression and action unit recognition. Pattern 

Recognition Letters. 34, 15 (2013), 1964–1970. 

[17] Chen, M.Y. and Hauptmann, A. 2009. Mosift: Recognizing human actions 

in surveillance videos. 

[18] Cheng, W.H., Chu, W.T. and Wu, J.L. 2003. Semantic context detection 

based on hierarchical audio models. Proceedings of the 5th ACM SIGMM 

International Workshop on Multimedia Information Retrieval (2003), 109–

115. 

[19] Chuda, D., Kratky, P. and Tvarozek, J. 2015. Mouse Clicks Can Recognize 

Web Page Visitors! Proceedings of the 24th International Conference on 

World Wide Web (2015), 21–22. 

[20] Clair, A.S., Mead, R., Matarić, M.J. and others 2010. Monitoring and 

guiding user attention and intention in human-robot interaction. ICRA-

ICAIR Workshop, Anchorage, AK, USA (2010), 1025. 

[21] Csurka, G., Dance, C., Fan, L., Willamowski, J. and Bray, C. 2004. Visual 

categorization with bags of keypoints. Workshop on Statistical Learning in 

Computer Vision, ECCV (2004), 1–2. 

[22] Dai, W., Yang, Q., Xue, G.-R. and Yu, Y. 2007. Boosting for transfer learning. 

Proceedings of the 24th International Conference on Machine Learning 

(2007), 193–200. 

[23] Debnath, P.P., Rashidul Hasan, A.F.M. and Das, D. 2017. Detection and 



 

158 

 

controlling of drivers’ visual focus of attention. ECCE 2017 - International 

Conference on Electrical, Computer and Communication Engineering. 

(2017), 301–307. 

[24] Duan, L., Xu, D. and Tsang, I.W.-H. 2012. Domain adaptation from multiple 

sources: A domain-dependent regularization approach. IEEE Transactions 

on Neural Networks and Learning Systems. 23, 3 (2012), 504–518. 

[25] Elkahky, A.M., Song, Y. and He, X. 2015. A multi-view deep learning 

approach for cross domain user modeling in recommendation systems. 

Proceedings of the 24th International Conference on World Wide Web 

(2015), 278–288. 

[26] Emotiv 2014. EEG System / Electroencephalography. 

[27] Evans, A. and Wobbrock, J. 2012. Taming wild behavior: the input observer 

for obtaining text entry and mouse pointing measures from everyday 

computer use. Proceedings of the SIGCHI conference on human factors in 

computing systems (2012), 1947–1956. 

[28] Farnebäck, G. 2003. Two-frame motion estimation based on polynomial 

expansion. Image Analysis. (2003), 363–370. 

[29] Fisher, R.B. 2004. The PETS04 surveillance ground-truth data sets. 

Proceedings of the 6th IEEE International Workshop on Performance 

Evaluation of Tracking and Surveillance (2004), 1–5. 

[30] Fitchett, S. and Cockburn, A. 2012. Accessrank: predicting what users will 

do next. Proceedings of the SIGCHI Conference on Human Factors in 

Computing Systems (2012), 2239–2242. 

[31] Gao, Y., Liu, H., Sun, X., Wang, C. and Liu, Y. 2016. Violence detection 

using oriented violent flows. Image and vision computing. 48, (2016), 37–

41. 



 

159 

 

[32] Gers, F.A., Schmidhuber, J. and Cummins, F. 1999. Learning to forget: 

Continual prediction with LSTM. (1999), 850–855. 

[33] Giannakopoulos, T., Kosmopoulos, D., Aristidou, A. and Theodoridis, S. 

2006. Violence content classification using audio features. SETN (2006), 

502–507. 

[34] Google 2012. A Google A Day. 

[35] Guo, Q. and Agichtein, E. 2010. Ready to buy or just browsing?: detecting 

web searcher goals from interaction data. Proceedings of the 33rd 

international ACM SIGIR conference on Research and development in 

information retrieval (2010), 130–137. 

[36] Guo, Q., Jin, H., Lagun, D., Yuan, S. and Agichtein, E. 2013. Mining touch 

interaction data on mobile devices to predict web search result relevance. 

Proceedings of the 36th international ACM SIGIR conference on Research 

and development in information retrieval - SIGIR ’13. (2013), 153. 

[37] Hassner, T., Itcher, Y. and Kliper-Gross, O. 2012. Violent flows: Real-time 

detection of violent crowd behavior. 2012 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition Workshops 

(CVPRW) (2012), 1–6. 

[38] Hochreiter, S. and Schmidhuber, J. 1997. Long short-term memory. Neural 

computation. 9, 8 (1997), 1735–1780. 

[39] Hongeng, S., Brémond, F. and Nevatia, R. 2000. Representation and optimal 

recognition of human activities. Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR) (2000), 818–825. 

[40] Hu, B., Zhang, Y., Chen, W., Wang, G. and Yang, Q. 2011. Characterizing 

search intent diversity into click models. Proceedings of the 20th 

international conference on World wide web (2011), 17–26. 



 

160 

 

[41] Huang, J. and White, R. 2012. User See, User Point: Gaze and Cursor 

Alignment in Web Search. Proceedings of the SIGCHI Conference on 

Human Factors in Computing Systems. (2012), 1341–1350. 

[42] Huang, M.X., Kwok, T.C.K., Ngai, G., Leong, H.V. and Chan, S.C.F. 2014. 

Building a self-learning eye gaze model from user interaction data. 

Proceedings of the 22nd ACM international conference on Multimedia 

(2014), 1017–1020. 

[43] Huang, M.X., Li, J., Ngai, G. and Leong, H.V. 2016. StressClick. 

Proceedings of the 2016 ACM on Multimedia Conference - MM ’16. (2016), 

1395–1404. 

[44] Huang, M.X., Li, J., Ngai, G., Leong, H.V. and Hua, K.A. 2017. Fast-

PADMA: Rapidly Adapting Facial Affect Model from Similar Individuals. 

IEEE Transactions on Multimedia. (2017). 

[45] iHealth 2014. iHealth Pulse Oximeter. 

[46] Iwashita, Y., Takamine, A., Kurazume, R. and Ryoo, M.S. 2014. First-

person animal activity recognition from egocentric videos. 2014 22nd 

International Conference on Pattern Recognition (ICPR) (2014), 4310–

4315. 

[47] Jatupaiboon, N., Pan-Ngum, S., Israsena, P., Chen, B.-W., Hsieh, S. and Wu, 

C.-H. 2013. Real-Time EEG-Based Happiness Detection System. The 

Scientific World Journal. 2013, (2013). 

[48] Jayagopi, D.B., Hung, H., Yeo, C. and Gatica-Perez, D. 2009. Modeling 

dominance in group conversations using nonverbal activity cues. IEEE 

Transactions on Audio, Speech, and Language Processing. 17, 3 (2009), 

501–513. 

[49] Jiang, J. and Allan, J. 2016. Reducing click and skip errors in search result 



 

161 

 

ranking. Proceedings of the Ninth ACM International Conference on Web 

Search and Data Mining (2016), 183–192. 

[50] Kato, Y., Kanda, T. and Ishiguro, H. 2015. May I help you?: Design of 

Human-like Polite Approaching Behavior. HRI ’15 Proceedings of the Tenth 

Annual ACM/IEEE International Conference on Human-Robot Interaction 

(2015), 35–42. 

[51] Keerthi, S.S., Shevade, S.K., Bhattacharyya, C. and Murthy, K.R.K. 2001. 

Improvements to Platt’s SMO algorithm for SVM classifier design. Neural 

Computation. 13, 3 (2001), 637–649. 

[52] Keerthi, S.S., Shevade, S.K., Bhattacharyya, C. and Murthy, K.R.K. 2001. 

Improvements to Platt’s SMO Algorithm for SVM Classifier Design. 

Neural Computation. 13, 3 (2001), 637–649. 

[53] Kim, B.S. and Yoo, S.K. 2006. Motion artifact reduction in 

photoplethysmography using independent component analysis. IEEE 

transactions on biomedical engineering. 53, 3 (2006), 566–568. 

[54] Kim, J. and André, E. 2008. Emotion recognition based on physiological 

changes in music listening. IEEE transactions on pattern analysis and 

machine intelligence. 30, 12 (2008), 2067–2083. 

[55] Kim, S., Valente, F., Filippone, M. and Vinciarelli, A. 2014. Predicting 

Continuous Conflict Perception with Bayesian Gaussian Processes. IEEE 

TRANSACTIONS ON AFFECTIVE COMPUTING. 5, 2 (2014), 187–200. 

[56] Kusk, K., Nielsen, D.B., Thylstrup, T., Rasmussen, N.H., Jørvang, J., 

Pedersen, C.F. and Wagner, S. 2013. Feasibility of using a lightweight 

context-aware system for facilitating reliable home blood pressure self-

measurements. Proceedings of the 7th International Conference on 

Pervasive Computing Technologies for Healthcare (2013), 236–239. 



 

162 

 

[57] Ladha, C., Hammerla, N., Hughes, E., Olivier, P. and Ploetz, T. 2013. Dog’s 

life: wearable activity recognition for dogs. Proceedings of the 2013 ACM 

International Joint Conference on Pervasive and Ubiquitous Computing 

(2013), 415–418. 

[58] Lagun, D. and Agichtein, E. 2015. Inferring searcher attention by jointly 

modeling user interactions and content salience. Proceedings of the 38th 

International ACM SIGIR Conference on Research and Development in 

Information Retrieval (2015), 483–492. 

[59] Lallé, S., Toker, D., Conati, C. and Carenini, G. 2015. Prediction of users’ 

learning curves for adaptation while using an information visualization. 

Proceedings of the 20th International Conference on Intelligent User 

Interfaces (2015), 357–368. 

[60] Laptev, I. 2005. On space-time interest points. International Journal of 

Computer Vision. 64, 2–3 (2005), 107–123. 

[61] Laufer, L. and Németh, B. 2008. Predicting user action from skin 

conductance. Proceedings of the 13th international conference on 

Intelligent user interfaces (2008), 357–360. 

[62] Lee, B. and Oulasvirta, A. 2016. Modelling error rates in temporal pointing. 

Proceedings of the 2016 CHI Conference on Human Factors in Computing 

Systems (2016), 1857–1868. 

[63] Lee, B., Savisaari, O. and Oulasvirta, A. 2016. Spotlights: Attention-

Optimized Highlights for Skim Reading. Proceedings of the 2016 CHI 

Conference on Human Factors in Computing Systems (2016), 5203–5214. 

[64] Li, J., Ngai, G., Va Leong, H. and Chan, S. 2016. Multimodal Human 

Attention Detection for Reading. Proceedings of the 31st Annual ACM 

Symposium on Applied Computing - SAC ’16 (2016), 187–192. 



 

163 

 

[65] Lin, C.-J., Wu, C. and Chaovalitwongse, W.A. 2015. Integrating human 

behavior modeling and data mining techniques to predict human errors in 

numerical typing. IEEE Transactions on Human-Machine Systems. 45, 1 

(2015), 39–50. 

[66] List, T., Bins, J., Vazquez, J. and Fisher, R.B. 2005. Performance evaluating 

the evaluator. Visual Surveillance and Performance Evaluation of Tracking 

and Surveillance, 2005. 2nd Joint IEEE International Workshop on (2005), 

129–136. 

[67] Lu, Y., Mahmoud, M. and Robinson, P. 2017. Estimating Sheep Pain Level 

Using Facial Action Unit Detection. Automatic Face & Gesture Recognition 

(FG 2017), 2017 12th IEEE International Conference on (2017), 394–399. 

[68] Lyu, Y., Luo, X., Zhou, J., Yu, C., Miao, C., Wang, T., Shi, Y. and Kameyama, 

K. 2015. Measuring Photoplethysmogram-Based Stress-Induced Vascular 

Response Index to Assess Cognitive Load and Stress. Proceedings of the 

33rd Annual ACM Conference on Human Factors in Computing Systems - 

CHI ’15. April (2015), 857–866. 

[69] Mandayam Comar, P. and Sengamedu, S.H. 2017. Intent Based Relevance 

Estimation from Click Logs. Proceedings of the 2017 ACM on Conference 

on Information and Knowledge Management (2017), 59–66. 

[70] Maniu, S., O’Hare, N., Aiello, L.M., Chiarandini, L. and Jaimes, A. 2013. 

Search behaviour on photo sharing platforms. Multimedia and Expo (ICME), 

2013 IEEE International Conference on (2013), 1–6. 

[71] Marcos-Ramiro, A., Pizarro-Perez, D., Marron-Romera, M., Nguyen, L. and 

Gatica-Perez, D. 2013. Body communicative cue extraction for 

conversational analysis. 2013 10th IEEE International Conference and 

Workshops on Automatic Face and Gesture Recognition, FG 2013. (2013). 



 

164 

 

1–8. 

[72] Masciocchi, C.M. and Still, J.D. 2013. Alternatives to eye tracking for 

predicting stimulus-driven attentional selection within interfaces. Human--

Computer Interaction. 28, 5 (2013), 417–441. 

[73] Mazur-Milecka, M. and Rumiński, J. 2017. Automatic analysis of the 

aggressive behavior of laboratory animals using thermal video processing. 

Engineering in Medicine and Biology Society (EMBC), 2017 39th Annual 

International Conference of the IEEE (2017), 3827–3830. 

[74] Mikkelsen, S., Vilstrup, I., Lassen, C.F., Kryger, A.I., Thomsen, J.F. and 

Andersen, J.H. 2007. Validity of Questionnaire Self-Reports on Computer, 

Mouse and Keyboard Usage during a Four-Week Period. Occupational and 

environmental medicine. 64, 8 (2007), 541–547. 

[75] Mok, R.K.P., Chang, R.K.C. and Li, W. 2017. Detecting Low-Quality 

Workers in QoE Crowdtesting: A Worker Behavior-Based Approach. IEEE 

Transactions on Multimedia. 19, 3 (2017), 530–543. 

[76] Mollaret, C., Mekonnen, A.A., Ferrane, I., Pinquier, J. and Lerasle, F. 2015. 

Perceiving user’s intention-for-interaction: A probabilistic multimodal data 

fusion scheme. Proceedings of the IEEE International Conference on 

Multimedia and Expo (ICME) (2015), 1–6. 

[77] Navarathna, R., Lucey, P., Carr, P., Carter, E., Sridharan, S. and Matthews, 

I. 2014. Predicting movie ratings from audience behaviors. IEEE Winter 

Conference on Applications of Computer Vision (WACV) (2014), 1058–

1065. 

[78] Negulescu, M. and McGrenere, J. 2015. Grip change as an information side 

channel for mobile touch interaction. Proceedings of the 33rd Annual ACM 

Conference on Human Factors in Computing Systems (2015), 1519–1522. 



 

165 

 

[79] NeuroSky 2014. NeuroSky / MindSet. 

[80] Nguyen, L.S., Marcos-Ramiro, A., Marrón Romera, M. and Gatica-Perez, 

D. 2013. Multimodal analysis of body communication cues in employment 

interviews. Proceedings of the 15th ACM on International Conference on 

Multimodal Interaction (2013), 437–444. 

[81] Nievas, E.B., Suarez, O.D., Garcia, G.B. and Sukthankar, R. 2011. Violence 

detection in video using computer vision techniques. International 

Conference on Computer Analysis of Images and Patterns (2011), 332–339. 

[82] Pan, S.J., Tsang, I.W., Kwok, J.T. and Yang, Q. 2011. Domain adaptation 

via transfer component analysis. IEEE Transactions on Neural Networks. 

22, 2 (2011), 199–210. 

[83] Pan, S.J. and Yang, Q. 2010. A survey on transfer learning. IEEE 

Transactions on Knowledge and Data Engineering. 22, 10 (2010), 1345–

1359. 

[84] Pantic, M. and Rothkrantz, L.J.M. 2003. Toward an affect-sensitive 

multimodal human-computer interaction. Proceedings of the IEEE. 91, 9 

(2003), 1370–1390. 

[85] Pasqual, P.T. and Wobbrock, J.O. 2014. Mouse pointing endpoint prediction 

using kinematic template matching. Proceedings of the SIGCHI Conference 

on Human Factors in Computing Systems (2014), 743–752. 

[86] Perronnin, F., Sánchez, J. and Mensink, T. 2010. Improving the fisher kernel 

for large-scale image classification. European Conference on Computer 

Vision (2010), 143–156. 

[87] Rainville, P., Bechara, A., Naqvi, N. and Damasio, A.R. 2006. Basic 

emotions are associated with distinct patterns of cardiorespiratory activity. 

International journal of psychophysiology. 61, 1 (2006), 5–18. 



 

166 

 

[88] Ramseyer, F. 2013. Synchronized movement in social interaction. 

Proceedings of the 2013 Inputs-Outputs Conference: An Interdisciplinary 

Conference on Engagement in HCI and Performance (2013), 2. 

[89] Sangineto, E., Zen, G., Ricci, E. and Sebe, N. 2014. We are not all equal: 

Personalizing models for facial expression analysis with transductive 

parameter transfer. Proceedings of the 22nd ACM International Conference 

on Multimedia (2014), 357–366. 

[90] Schwarz, J., Marais, C.C., Leyvand, T., Hudson, S.E. and Mankoff, J. 2014. 

Combining body pose, gaze, and gesture to determine intention to interact 

in vision-based interfaces. Proceedings of the SIGCHI Conference on 

Human Factors in Computing Systems (2014), 3443–3452. 

[91] Scully, C.G., Lee, J., Meyer, J., Gorbach, A.M., Granquist-Fraser, D., 

Mendelson, Y. and Chon, K.H. 2012. Physiological parameter monitoring 

from optical recordings with a mobile phone. IEEE Transactions on 

Biomedical Engineering. 59, 2 (2012), 303–306. 

[92] Simonyan, K. and Zisserman, A. 2014. Very deep convolutional networks 

for large-scale image recognition. arXiv preprint arXiv:1409.1556. (2014). 

[93] Slanzi, G., Balazs, J. a. and Velásquez, J.D. 2017. Combining Eye Tracking, 

Pupil Dilation and EEG Analysis for Predicting Web Users Click Intention. 

Information Fusion. 35, (2017), 51–57. 

[94] Soleymani, M., Lichtenauer, J., Pun, T. and Pantic, M. 2012. A multimodal 

database for affect recognition and implicit tagging. IEEE Transactions on 

Affective Computing. 3, 1 (2012), 42–55. 

[95] Soomro, K., Zamir, A.R. and Shah, M. 2012. {UCF}101: A dataset of 101 

human actions classes from videos in the wild. arXiv preprint 

arXiv:1212.0402. (2012). 



 

167 

 

[96] Sun, Y., Yuan, N.J., Xie, X., McDonald, K. and Zhang, R. 2016. 

Collaborative Nowcasting for Contextual Recommendation. Proceedings of 

the 25th International Conference on World Wide Web - WWW ’16. (2016), 

1407–1418. 

[97] Toker, D., Steichen, B., Gingerich, M., Conati, C. and Carenini, G. 2014. 

Towards facilitating user skill acquisition: identifying untrained 

visualization users through eye tracking. Proceedings of the 19th 

International Conference on Intelligent User Interfaces (2014), 105–114. 

[98] Tran, D., Bourdev, L., Fergus, R., Torresani, L. and Paluri, M. 2015. 

Learning spatiotemporal features with 3d convolutional networks. 

Proceedings of the IEEE International Conference on Computer Vision 

(ICCV) (2015), 4489–4497. 

[99] Trung, P., Giuliani, M., Miksch, M., Stollnberger, G., Stadler, S., Mirnig, N. 

and Tscheligi, M. 2017. Head and shoulders: automatic error detection in 

human-robot interaction. Proceedings of the 19th ACM International 

Conference on Multimodal Interaction (2017), 181–188. 

[100] Vandewynckel, J., Otis, M., Bouchard, B., Bouzouane, A. and others 

2013. Towards a real-time error detection within a smart home by using 

activity recognition with a shoe-mounted accelerometer. Procedia 

Computer Science. 19, (2013), 516–523. 

[101] Vinciarelli, A., Dielmann, A., Favre, S. and Salamin, H. 2009. Canal9: 

A database of political debates for analysis of social interactions. 

International Conference on Affective Computing and Intelligent 

Interaction and Workshops (2009), 1–4. 

[102] Vinciarelli, A., Pantic, M., Heylen, D., Pelachaud, C., Poggi, I., D’Errico, 

F. and Schroeder, M. 2012. Bridging the gap between social animal and 



 

168 

 

unsocial machine: A survey of social signal processing. IEEE Transactions 

on Affective Computing. 3, 1 (2012), 69–87. 

[103] Wacharamanotham, C. 2014. Making bare hand input more accurate. 

CHI’14 Extended Abstracts on Human Factors in Computing Systems 

(2014), 307–310. 

[104] Waluyo, A.B., Yeoh, W.-S., Pek, I., Yong, Y. and Chen, X. 2010. 

Mobisense: Mobile body sensor network for ambulatory monitoring. ACM 

Transactions on Embedded Computing Systems (TECS). 10, 1 (2010), 13. 

[105] Wang, H. and Wanga, L. 2017. Cross-Agent Action Recognition. IEEE 

Transactions on Circuits and Systems for Video Technology. (2017). 

[106] Wang, J., Huang, M.X., Ngai, G. and Leong, H.V. 2017. Are You 

Stressed ? Your Eyes and the Mouse Can Tell. International Conference on 

Affective Computing and Intelligent Interaction (2017), 222–228. 

[107] Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X. and Van Gool, 

L. 2016. Temporal segment networks: Towards good practices for deep 

action recognition. European Conference on Computer Vision (2016), 20–

36. 

[108] Welch, P. 1967. The use of fast Fourier transform for the estimation of 

power spectra: a method based on time averaging over short, modified 

periodograms. IEEE Transactions on audio and electroacoustics. 15, 2 

(1967), 70–73. 

[109] Wickens, C.D., Hollands, J.G., Banbury, S. and Parasuraman, R. 2015. 

Engineering psychology & human performance. Psychology Press. 

[110] Wobbrock, J.O., Cutrell, E., Harada, S. and MacKenzie, I.S. 2008. An 

error model for pointing based on Fitts’ law. Proceedings of the SIGCHI 

conference on human factors in computing systems (2008), 1613–1622. 



 

169 

 

[111] Xiao, T., Li, H., Ouyang, W. and Wang, X. 2016. Learning deep feature 

representations with domain guided dropout for person re-identification. 

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 

(2016), 1249–1258. 

[112] Xu, P., Sugano, Y. and Bulling, A. 2016. Spatio-temporal modeling and 

prediction of visual attention in graphical user interfaces. Proceedings of the 

2016 CHI Conference on Human Factors in Computing Systems (2016), 

3299–3310. 

[113] Yan, K., Kou, L. and Zhang, D. 2016. Domain Adaptation via Maximum 

Independence of Domain Features. arXiv preprint arXiv:1603.04535. 

(2016). 

[114] Yang, Z. and Rothkrantz, L.J.M. 2010. Automatic aggression detection 

inside trains. 2010 IEEE International Conference on Systems Man and 

Cybernetics (SMC) (2010), 2364–2372. 

[115] Yao, Y. and Doretto, G. 2010. Boosting for transfer learning with 

multiple sources. 2010 IEEE conference on Computer Vision and Pattern 

Recognition (CVPR) (2010), 1855–1862. 

[116] Yosinski, J., Clune, J., Bengio, Y. and Lipson, H. 2014. How transferable 

are features in deep neural networks? Advances in Neural Information 

Processing Systems (2014), 3320–3328. 

[117] Zelnik-Manor, L. and Irani, M. 2001. Event-based analysis of video. 

Computer Vision and Pattern Recognition, 2001. Proceedings of the 2001 

IEEE Computer Society Conference on CVPR (2001), II--II. 

[118] Zen, G., Porzi, L., Sangineto, E., Ricci, E. and Sebe, N. 2016. Learning 

personalized models for facial expression analysis and gesture recognition. 

IEEE Transactions on Multimedia. 18, 4 (2016), 775–788. 



 

170 

 

[119] Zeng, Z.H., Pantic, M., Roisman, G.I. and Huang, T.S. 2009. A Survey 

of Affect Recognition Methods: Audio, Visual, and Spontaneous 

Expressions. IEEE Transactions On Pattern Analysis And Machine 

Intelligence. 31, 1 (2009), 39-58. 

[120] Zhang, X., Sugano, Y., Fritz, M. and Bulling, A. 2017. It’s written all 

over your face: Full-face appearance-based gaze estimation. Proc. IEEE 

International Conference on Computer Vision and Pattern Recognition 

Workshops (CVPRW) (2017), 51-60. 

[121] Zheng, N., Paloski, A. and Wang, H. 2011. An efficient user verification 

system via mouse movements. Proceedings of the 18th ACM conference on 

Computer and communications security (2011), 139–150. 

[122] Zhou, P., Ding, Q., Luo, H. and Hou, X. 2017. Violent Interaction 

Detection in Video Based on Deep Learning. Journal of Physics: 

Conference Series (2017), 12044. 

[123] Zhou, X., Cao, X. and Ren, X. 2009. Speed-accuracy tradeoff in 

trajectory-based tasks with temporal constraint. IFIP Conference on 

Human-Computer Interaction (2009), 906–919. 

[124] Ziebart, B., Dey, A. and Bagnell, J.A. 2012. Probabilistic pointing target 

prediction via inverse optimal control. Proceedings of the 2012 ACM 

international conference on Intelligent User Interfaces (2012), 1–10. 

 


